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Abstract: The impacts of climate change on water resources management as well as the increasing
severe natural disasters over the last decades have caught global attention. Reliable and accurate
hydrological forecasts are essential for efficient water resources management and the mitigation of
natural disasters. While the notorious nonlinear hydrological processes make accurate forecasts a
very challenging task, it requires advanced techniques to build accurate forecast models and reliable
management systems. One of the newest techniques for modelling complex systems is artificial
intelligence (AI). AI can replicate the way humans learn and has the great capability to efficiently
extract crucial information from large amounts of data to solve complex problems. The fourteen
research papers published in this Special Issue contribute significantly to the uncertainty assessment
of operational hydrologic forecasting under changing environmental conditions and the promotion
of water resources management by using the latest advanced techniques, such as AI techniques.
The fourteen contributions across four major research areas: (1) machine learning approaches to
hydrologic forecasting; (2) uncertainty analysis and assessment on hydrological modelling under
changing environments; (3) AI techniques for optimizing multi-objective reservoir operation; and (4)
adaption strategies of extreme hydrological events for hazard mitigation. The papers published in
this issue can not only advance water sciences but can also support policy makers toward more
sustainable and effective water resources management.

Keywords: artificial intelligence; machine learning; water resources management; multi-objective
reservoir operation; hydrologic forecasting; uncertainty; risk

1. Introduction

Natural disasters have been inclined to increase and become more severe over the last decades
due to climate change. A preparation measure to cope with future floods is flood forecasting in each
river basin for warning persons involved and for mitigating damages and the loss of life. Hydrological
forecasting is essential for efficient water resources management and the mitigation of natural disasters
such as floods and droughts. Establishing a viable hydrological forecasting model for communities
at risk requires the combination of meteorological and hydrological data, forecast tools and trained
forecasters. Forecasts must be sufficiently accurate to promote confidence so that communities and users
will take effective actions when being warned. Multidisciplinary research and advanced methodologies
in hydrological forecasts, especially in extreme floods and droughts, are widely implemented for water
planning and management, which ultimately lead to improved optimum water resources management
and effective control under a changing environment. Among them, artificial intelligence (AI) techniques
are efficient tools for extracting the key information from complex highly dimensional input–output
patterns and are widely used to tackle various hydrological problems such as flood forecasts discussed
in this Special Issue [1–14]. Over the last decades, many studies have demonstrated that artificial

Water 2020, 12, 1819; doi:10.3390/w12061819 www.mdpi.com/journal/water1
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intelligence (AI) techniques, such as machine learning (ML) methods, can produce flood forecasts
in a few hours [15–19] while extending to seasonal forecasts many months in advance for larger
river basins [20–24]. AI can also be an ideal tool for managing water resources in an ever-changing
environment and for allowing water utility managers to effectively optimize multi-objective water
resources revenues [25–30].

Reliable and accurate streamflow forecasts with lead-times from hours to days are critical to
managing floods and to improving the efficiency of streamflow forecasts utilized for real-time reservoir
operation. All forecasts, however, involve various degrees of uncertainty, which could be associated
with meteorological data, hydrological model mechanics and parameters, or the model’s errors in
forecasts. To implement streamflow forecasts in real-time reservoir operation, we must deal with the
uncertainty involved in streamflow forecasts. Although the forecast uncertainty plays an important
role in reservoir operation and has been extensively studied in hydrology, there are comparatively
less studies discussing the effect of forecast uncertainty on real-time reservoir operations [31–36].
This Special Issue aims at overcoming these challenges, addressing continuing efforts undertaken to
gain insights on hydrological processes, dealing with the effect of forecast uncertainty, and engaging in
more efficient water management strategies in a changing environment.

2. Summary of the Papers in the Special Issue

The papers in this Special Issue are well-balanced in terms of their focuses, encompassing
hydrological forecasts, uncertainty analyses and water resources management. Three papers [1–3]
address operational hydrological forecasts by using various machine learning (ML) methods. In [1],
the authors propose an Internet of Things (IoT) machine learning-based flood forecast model to predict
average regional flood inundation depth in a river basin in Taiwan, and they demonstrate how to on-line
adjust the machine learning models so that the models’ accuracy and applicability in multi-step-ahead
flood inundation forecasts are promoted. They also highlight the combination of IoT and machine
learning techniques could be beneficial to flood prediction. In [2], the authors introduce a general
framework that fuses an unscented Kalman filter (UKF) post-processing technique with a recurrent
neural network for probabilistic flood forecasting conditional on point forecasts. They declare that the
proposed approach could overcome the under-prediction phenomena and alleviate the uncertainty
encountered in data-driven flood forecasting so that model reliability as well as forecast accuracy for
future horizons could be significantly improved. In [3], the authors propose a random forest (RF)
model to predict the Normalized Difference Vegetation Index (NDVI) and explore its relationship with
climatic factors. The results demonstrate that RF can be integrated into water resources management
and can elucidate ecological processes in the Yarlung Zangbo river basin. These studies clearly indicate
that machine learning techniques have a great capability to model the nonlinear dynamic features in
hydrological processes, such as flood forecasts and NDVI, and IoT sensors are useful instruments for
carrying out the monitoring of natural environments and enhancing hydrological forecasts.

Papers [4–6] report research on uncertainty analysis and assessment in hydrological modelling
and forecasting. In [4], Hong’s method is implemented to execute the point estimate method (PEM)
in a case study that simulates water runoff using the ANUGA hydrodynamic model for an area in
Glasgow, UK. The authors demonstrate that the Hong’s method could more efficiently produce very
similar probabilistic flood-inundation maps in the same areas as those of Monte Carlo (MC) simulation,
where the Hong’s method requires just three 11-minute simulation runs, rather than the 500 required for
the MC simulation. In [5], the authors propose a multiple-criteria decision analysis method, namely the
Generalized Likelihood Uncertainty Estimation-Technique for Order Preference by Similarity to Ideal
Solution (GLUE-TOPSIS). The proposed method was implemented in the Storm Water Management
Model (SWMM) and applied to the Dahongmen catchment in Beijing, China. They conclude that the
proposed GLUE-TOPSIS is a valid approach to assessing the uncertainty of the urban hydrological
model from a multiple objective perspective, which improves the reliability of model results in the
urban catchment. In [6], the authors evaluate the parameter uncertainty for the Snowmelt Runoff
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Model (SRM) based on different calibration strategies and its impact on a data-scarce deglaciating
Yurungkash watershed in China. The results show that the future runoff projection contains a large
amount of uncertainty and the onset of snowmelt runoff is likely to shift earlier in the year and the
discharge over the snowmelt season is projected to increase.

Hydrological nonstationary has brought great challenges to the reliable applications of hydrological
models with time-invariant parameters. Two papers [7,8] investigate the predictive ability and
robustness of a hydrological model under changing environments. In [7], the authors propose a
new method based on empirical mode decomposition (EMD) to synthesize and generate data which
be interfered with the non-stationary problems. The new synthetic and historical flow data were
used to simulate the water supply system of the Hushan reservoir in Taiwan, and the compared
results show that the synthetic data are like the historical flow distribution. In [8], the authors
investigate the predictive ability and robustness of a conceptual hydrological model (GR4J) with
time-varying parameter under changing environments. The results show that the performance of
streamflow simulation was improved when applying the time-varying parameters. Furthermore,
the GR4J model with time-varying parameters outperformed the original GR4J model by improving
the model robustness. Overall, these studies emphasize the importance of considering the parameter
uncertainty of time-varying hydrological processes in hydrological modelling and climate change
impact assessment.

Due to climate change, the importance of reservoirs is likely to increase, not only for water storage
purpose but also for maximizing water use benefits and mitigating climate extremes. Four papers [9–12]
employ advanced optimization methods to derive reservoir operating rules for multi-reservoir systems
and/or optimize multi-objective reservoir operation. In [9], the authors conduct a multi-target
single dispatching study on ecology and power generation in the lower Yellow River to solve the
single-objective and the multi-objective optimal schema using the genetic algorithm (GA) and an
improved non-dominated genetic algorithm (NSGA-II). The results provide a decision-making basis for
the multi-objective dispatching of the Xiaolangdi reservoir and have important practical significance
for further improvement on the ecological health of the lower Yellow River. In [10], the authors fuse
the grey entropy method (GEM) with the Mahalanobis–Taguchi System (MTS) for selecting the optimal
water level scheme at the Pankou reservoir in flood season. The results show that the optimal scheme
selected by the proposed model can achieve greater benefits within an acceptable risk range and thus
better coordinate the balance between risk and benefit, which verifies the feasibility and validity of the
model. In [11], the authors show the advancement of the seasonal flow forecasts could provide the
opportunity for reservoir operators to identify the early impoundment operation rules (EIOR) in the
upper Yangtze river basin. Their results indicate the proposed GloFAS-Seasonal forecasts are skillful
for predicting the streamflow condition according to the selected 20th and 30th percentile thresholds
and the obtained seasonal forecasts and the early reservoir impoundment could enhance hydropower
generation and water utilization. In [12], a novel enhanced gravitational search algorithm (EGSA) is
proposed to resolve the multi-objective optimization model by considering the power generation of a
hydropower enterprise and the peak operation requirement of a power system located on the Wujiang
river of China. The results show that the EGSA method could obtain satisfying scheduling schemes in
different cases for the multi-objective operation of hydropower system.

The early warning and post-assessment of extreme hydrological events are crucial for hazard
mitigation. In [13], the authors explore the most effective flood control strategy for small and
medium-scale rivers in highly urbanized areas. The probable cost-effective flood control scheme is
to construct two new tributaries for transferring floodwater in the midstream and downstream of
the Shegong river into the downstream of the Tieshan river. Their results indicate that flood control
for small- and medium-scale rivers in highly urbanized areas should not simply consider tributary
flood regimes but, rather, involve both tributary and mainstream flood characters from a whole
region perspective. In [14], the authors report emergency disposal solutions for properly handling the
landslide and dammed lake within a few hours up to days for mitigating flood risk. They present a

3



Water 2020, 12, 1819

general strategy to effectively tackle the dangerous situation created by a giant dammed lake with
770 million m3 of water volume and formulate an emergency disposal solution for the 25 million m3 of
debris, composed of engineering measures of floodgate excavation and non-engineering measures of
reservoirs/hydropower stations operation. The disposal solution not only reduces a large-scale flood
(10,000-year return period, 0.01%) into a small-scale flood (10-year return period, 10%) but minimizes
the flood risk with no death raised by the giant landslide.

3. Conclusions

Over the last several decades, substantial climate changes have occurred due to global warming.
We also notice that artificial intelligence has been satisfactorily used to enhance our knowledge, to learn
hydrological processes, and to engage in more efficient water management strategies under changing
environmental conditions. The research papers published in this Special Issue contribute significantly
to our understanding of the hydrological modelling approaches as well as water resources management.
They can be categorized into four main subject areas: (1) machine learning methods for hydrologic
forecasting; (2) uncertainty analysis and assessment on hydrological forecasts; (3) AI techniques for
optimizing multi-objective reservoir operation; and (4) adaption strategies of extreme hydrological
events for hazard mitigation. These papers presented novel methods to learn the complex hydrological
processes and model hydrological forecasts, reduce models’ uncertainty, and optimize water resources
management. The selected manuscripts presented in this Special Issue make original contributions
to addressing the state-of-the-art of artificial intelligence techniques, which provide a high level of
research and practical information of implementing AI methods and strategies for accurate flood
forecasts and reservoir operation, along with case studies from different regions of the world.
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Abstract: Natural disasters have tended to increase and become more severe over the last decades. A
preparation measure to cope with future floods is flood forecasting in each particular area for warning
involved persons and resulting in the reduction of damage. Machine learning (ML) techniques
have a great capability to model the nonlinear dynamic feature in hydrological processes, such as
flood forecasts. Internet of Things (IoT) sensors are useful for carrying out the monitoring of natural
environments. This study proposes a machine learning-based flood forecast model to predict average
regional flood inundation depth in the Erren River basin in south Taiwan and to input the IoT sensor
data into the ML model as input factors so that the model can be continuously revised and the
forecasts can be closer to the current situation. The results show that adding IoT sensor data as input
factors can reduce the model error, especially for those of high-flood-depth conditions, where their
underestimations are significantly mitigated. Thus, the ML model can be on-line adjusted, and its
forecasts can be visually assessed by using the IoT sensors’ inundation levels, so that the model’s
accuracy and applicability in multi-step-ahead flood inundation forecasts are promoted.

Keywords: machine learning model; Internet of Things (IoT); regional flood inundation depth;
recurrent nonlinear autoregressive with exogenous inputs (RNARX)

1. Introduction

Flood is one of the most disruptive natural hazards, which causes significant damage to life,
agriculture, and economy, and has a great impact on city development. Nowadays, flood tends to
increase and become more severe as climate changes together with the rapid urbanization and aging
infrastructure in cities. Early notification of flood incidents could benefit the authorities and public
for devising preventive measures, preparing evacuation missions, and alleviating flood victims. A
precautionary measure to cope with the upcoming flood is flood forecasting and warning involved
persons, which would result in the reduction of damage and life lost. Flood forecast models have been
developed over the last decades. Among them, physically based models have been commonly used
and showed great capabilities for flood estimation, while they often require hydro-geomorphological
monitoring datasets and intensive computation, which prohibits short-term prediction [1–3]. Statistical
models, such as the multiple linear regression (MLR) [4–6] and autoregressive integrated moving
average (ARIMA) [7–10] are also frequently used for flood modeling. Nevertheless, their capability for
short-term forecasting has been restricted because of the nonlinear dynamic feature of storm events
resulting in a lack of accuracy and robustness of the statistical methods [11].

Machine learning (ML) models have a great capability to model the nonlinear dynamic feature
and have widely been used in hydrological issues, such as predicting the level of sewage in sewers [12];
arsenic concentration in groundwater [13]; or flood level prediction [14–19]. Among the ML models,
nonlinear autoregressive models with exogenous inputs (NARX) [20] can adaptively learn complex

Water 2020, 12, 1578; doi:10.3390/w12061578 www.mdpi.com/journal/water7



Water 2020, 12, 1578

flood systems and have been reported as valid for flood forecasting [21–26]. There is also relevant
literature that applied it to regional flood forecasting. For instance, Shen and Chang [27] established a
NARX model for flood forecasting in flood-prone areas in Yilan County, Taiwan and demonstrated that
it has an error tolerance rate and can effectively suppress error accumulation in predicting the next 1–6
h; and Chang et al. [28,29] proposed the use of self-organizing map combing with recurrent nonlinear
autoregressive with exogenous inputs (SOM-RNARX) for multi-time regional flood forecasting model
and indicated the method could effectively model regional flood forecasting. It can provide the accuracy
and reliability of the flood management system. The majority of these ML models have used rainfall
as an input to make regional flood inundation forecasts. A drawback of these models was that they
mainly relied on measurements from rain stations, which hinders the models from being sequentially
adjusted due to lack of real observed inundation depth. Consequently, most existing models could not
properly respond to a sudden flood and could not verify the resultant flood forecasts. Furthermore,
the forecast was made based on present data that restrict it from determining flood inundation depths
much further ahead. Consequently, there is a research gap from the perspective of ML modeling and
the data monitoring system. In light of this, an analysis was conducted on the use of monitoring
inundation depth data gathered from urban areas to forecast flooding with a view of on-line updating
the model and mitigating the residuals between model outputs and real observed inundation depths.

Internet of Things (IoT) sensors are a useful means of carrying out the monitoring of rivers
and other natural environments. They have attractive features: simple to install, low energy
consumption, and high-precision sensors. The integration of a large number of IoT sensors can provide
on-line comprehensive and broader information to effectively perform environmental monitoring
and forecasting [30–34]. Recently, several studies have implemented IoT and big data [35–38] for
flood forecasting. For instance, Chang et al. [39] proposed building an intelligent hydro-informatics
integration platform to integrate ML models with sensors data for flood prediction. Sood et al. [40]
proposed the Internet of Things (IoT) smart flood monitoring to predict floods and flood levels. Mishra
et al. [41] combined IoT and deep learning to identify ditch or drainage channel blockage images. IoT
has become one of the vital development projects in Taiwan lately. The authorities’ IoT centers, (e.g.,
Water Resources Agency) can analyze the data and provide suitable countermeasures and rapidly
transmit the data to regional control centers against flood. The integration and application of various
sensors can offer a large amount of real-time monitoring data (e.g., inundation depths) for ML models’
updating and testing.

This study intends to use the IoT sensor data to construct a machine learning-based embedded
flood forecast model for predicting average flood depth in a river basin. The IoT sensor data will
be sequentially fused into the ML model as extra input factors, so that the forecast model can be
continuously updated and assessed, and the results can be closer to the current situation. This paper is
organized as follows. The next section describes the proposed methodology. Subsequently, Sections 3
and 4 present the study area and practices relating to flood forecasting systems, respectively. Then, the
results of visual assessments and numerical evaluations on studied areas are reported and discussed.
Concluding remarks are given in the last section.

2. Methodology

We propose a methodology that couples machine learning models, i.e., the recurrent nonlinear
autoregressive with exogenous inputs (RNARX) model [20], with the IoT sensor data for providing
multi-step-ahead average regional inundated depth (ARID) during storm events. Various IoT sensor
data were explored and implemented into the ML model as input factors to continuously update the
model’s parameters for better forecasting the ARID.

The architecture of the RNARX shown in Figure 1 is a three-layer dynamic neural network. The
network was configured by using the model’s outputs as parts of inputs, and its weights can be adjusted
by using the conjugate gradient back-propagation learning algorithm. The major difference between
the dynamic neural networks (e.g., RNARX) and the static neural networks (e.g., back propagation
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neural network, BPNN) is that dynamic neural networks use the network output of the current moment
as one of the input factors for the next moment, so the model can effectively track the time-series
features. The dynamic neural networks have been widely used in modeling time series, especially
when there is no actual (observed) value of upcoming time, such as inundation depth. For instance,
in this study, the average regional flood inundation depth in the urban area would be continuously
predicted along the storm event, while there is no observed value in the coming hours. In model
configuring stage, we used simulation results to train and validate the constructed model, while in
actual applications, the average flooding depth of all grids, however, cannot be obtained. As known,
the longer the forecast horizon, the greater the forecast error would be due to a lack of real monitoring
of the inundation depth. In this study, a number of flood sensors implemented in the study area were
explored for their effectiveness in modeling the multi-step flood inundation forecasts.

Figure 1. The architecture of the recurrent nonlinear autoregressive with exogenous inputs
(RNARX) network.

The network contained P rainfall inputs (R), Q flood sensor inputs (S), and one recurrent input from
the previous output. Let X(t) denote the (P + Q + 1)× 1 input vector, ŷ(t + n) denote the n-step-ahead
network output, and yj(t + n) denote the output vector of the jth layer. The network multiplied the
input factors by weights and forwarded them to the next neuron. The neurons were summed up and
outputted through the activation function f (·), which was continuously forwarded to the final output
layer. The output values of each neuron were defined as Equations (1)–(4).

netj(t + n) =
∑

i

wjixi(t) (1)
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yj(t + n) = f
(
netj(t + n)

)
(2)

net(t + n) =
∑

j

vjyj(t + n) (3)

ŷ(t + n) = f (net(t + n)) (4)

Let W denote the N × (P + Q + 1) weight matrix of the hidden layer. Let V denote the N × 1
weight matrix of the output layer. RNARX uses the conjugate gradient back-propagation learning
algorithm to adjust the average regional inundation depth (ARID) in a specific time during the training
phase. The target output value at time t + n and its error vector were defined as e(t + n), as shown in
Equation (5), and the instantaneous error function E(t + n) was as in Equation (6).

e(t + n) = y(t + n) − ŷ(t + n) (5)

E(t + n) =
1
2

e2(t + n) (6)

The correction of vj was defined as the partial differential of the error function E(t + n) as Equation
(7). After the chain-rule process, Equation (8) could be obtained, so vj was updated in Equations (9)
and (10).

∂E(t + n)
∂vj

=
∂
(

1
2 e2(t + n)

)
∂vj

(7)

∂E(t + n)
∂vj

= (y(t + n) − ŷ(t + n))(− f ′(net(t + n)) ×
⎛⎜⎜⎜⎜⎜⎜⎝yj(t + n) +

∑
j

vj

(
f ′

(
netj(t + n)

)
wji
∂ŷ(t + n− 1)

∂vj

)⎞⎟⎟⎟⎟⎟⎟⎠ (8)

Δvj = −η2
∂E(t + n)
∂vj

(9)

vj(p) = vj(p− 1) + Δvj p = epochs (10)

where η2 is the learning rate. Similarly, we could partially differentiate wji of the E(t + n), and the
results are shown in Equations (11)–(14).

∂E(t + n)
∂wji

=
∂
(

1
2 e2(t + n)

)
∂wji

(11)

∂E(t + n)
∂wji

= (y(t + n) − ŷ(t + n))(− f ′(net(t + n)) ×
⎛⎜⎜⎜⎜⎜⎜⎝∑

j

vj f ′
(
netj(t + 1)

)(
wji
∂(ŷ(t + n− 1))

∂wji
+ δ jixi(t)

)⎞⎟⎟⎟⎟⎟⎟⎠ (12)

Δwji = −η1
∂E(t + n)
∂wji

(13)

wji(p) = wji(p− 1) + Δwji p = epochs (14)

where η1 is the learning rate; δ ji is Kronecker delta with value 1 if and only if i = j. Through the
above weight adjusting process, the error, because of the complicated interaction between the inputs
(rainfall, sensor data, feedback flood depth) and the outputs (flood depth at time T + 1–T + 3), would be
computed, and the weights were systematically adjusted through continuous iterations so that the error
would be gradually reduced until the satisfactory accuracy and/or the number of iterations was reached
for the set requirements. Therefore, the RNARX model was used to predict the multi-step-ahead flood
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depth, and at the same time, the differences by using only rainfall and the extra sensors of inundation
were compared.

3. Study Area and Datasets

This research area was the Erren River basin (Figure 2) located in southern Taiwan. The river
length is 63.2 km with the upstream up to 460 m above sea level, and the catchment area is 350.4
km2, which is further divided into 10,744 grids (40 m × 40 m). In this study, six actual storm events
and twelve designed rainfall patterns with various return periods, as well as their correspondent
2D flood simulation results (simulated by the SOBEK software of Deltares), were collected from the
Water Resources Agency. A total of 631 hourly datasets were used to configure the ML models. There
were also 631 regional flood inundation maps generated by the SOBEK based on the rainfall patterns
mentioned above, which were used as the virtual inundation maps for ML models’ training and testing.
These datasets were further divided into 391 datasets (10 events) for training, 144 datasets (4 events)
for validation, and 96 datasets (4 events) for testing (Table 1).

 

Figure 2. Study area of Erren river catchment.

Table 1. Simulation events used for model training, validation, and testing.

Event
Number

Event
Name

Average
Rainfall
(mm/h)

Total
Rainfall (mm)

Average
Inundation

(m)

Max
Inundation

(m)

Training phase (number of data: 391 h)
1 24H800 mm1 33.3 800 0.46 0.89
2 24H450 mm 18.8 450.1 0.17 0.34
3 24H200 mm 8.3 200 0.05 0.10
4 24H10 y 17.4 417.6 0.14 0.32
5 24H500 y2 33.5 803.7 0.49 0.91
6 201907193 3.2 99.7 0.01 0.02
7 20170601 1.2 86.7 0.01 0.02
8 20160925 7.6 550.1 0.16 0.34
9 20160912 2.7 128.7 0.03 0.10
10 20190813 4.7 226.2 0.07 0.20
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Table 1. Cont.

Event
Number

Event
Name

Average
Rainfall
(mm/h)

Total
Rainfall (mm)

Average
Inundation

(m)

Max
Inundation

(m)

Training phase (number of data: 391 h)
Validation phase (number of data: 144 h)

11 24H50 y 24.1 578 0.22 0.43
12 24H400 mm 16.7 400 0.16 0.29
13 24H5 y 14.4 344.8 0.11 0.27
14 20170613 1.4 100.2 0.01 0.03

Testing phase (number of data: 96 h)
15 24H100 y 26.9 646.1 0.26 0.52
16 24H2 y 9.8 234.7 0.06 0.11
17 24H500 mm 20.9 500.5 0.17 0.34
18 24H300 mm 12.5 300 0.11 0.25

1,2 24H800 mm and 24H500 y are the design storm events of 800 mm and 500-year for 24 h rainfall, respectively.
3 20190719 (i.e., 2019, 07, 19) means the real event happened on the 19 July 2019.

Figure 3 shows a graph of rainfall and average regional flooding depth (ARID) history of 10
training events, which included three quantitative rainfalls (200, 450, and 800 mm), two different return
period rainfalls (10 and 500 years), and five actual rainfall events. The rainfall pattern of quantitative
rainfalls and two return period rainfalls adopted the centrally concentrated rain pattern, where the
maximum rainfall is placed in the center and then sorted according to the amount of rainfall to the right
and left, respectively. The average regional inundation depth (ARID) in a specific time was calculated
by summarizing all the inundation depths in each grid and then dividing by the number of grids.
The time series of ARID shown in Figure 3 presents a complete hydrograph for the correspondent
rainfall event (pattern), with the ARID value along with the time from rising limb to the peak and
then to the recession limb. We noticed that the actual rainfall events show more irregular rainfall
patterns and produce a variant ARID hydrograph. According to the design of training cases, the model
can learn the relationship between the different magnitudes of rainfall (large or small) and rainfall
types (design rainfall or actual rainfall) with their correspondent average flooding depths during the
training process.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Cont.
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 3. Rainfall histogram and average regional inundation depth hydrograph for training events.
(a) 24H800 mm; (b) 24H450 mm; (c) 24H200 mm; (d) 24H10 y; (e) 24H500 y; (f) 20190719; (g) 20170601;
(h) 20160925; (i) 20160912; (j) 20190813.

4. Model Construction

The research process was divided into three stages as shown in Figure 4. The first stage was to
collect data, which includes two-dimensional flood simulation data, five stations of rainfall data, and
25 stations of flood sensor datasets. The total datasets were divided into three independent datasets
for model training, validation, and testing. The second stage was to construct the forecast models.
Three models were built to make multi-step-ahead forecasts of the average regional inundation depth
(ARID). The models’ parameters are shown in Table 2. The input factors of Model 1 were 5 rainfall
stations’ data (R1 ∼ R5) and one model’s self-feedback value ˆARID(t + n− 1), a total of 6 input factors,
and the number of weights was 41. Model 2 used 5 rainfall stations’ data (R1 ∼ R5), 25 flood sensors’
data (S01 ∼ S25), and one model’s self-feedback value ˆARID(t + n− 1), a total of 31 input factors,
the number of weights was 166. Model 3 used 5 rainfall stations’ data (R1 ∼ R5), 7 stations of flood
representative sensor data (i.e., S02, S04, S05, S09, S13, S15, S22) selected through correlation analysis, and
one model’s feedback value ˆARID(t + n− 1), a total of 13 input factors, the number of weights was 76.
The third stage was to assess the results of the three models using evaluation indicators.
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Figure 4. Research framework.

Table 2. Parameters of the proposed models.

Parameters Model 1 Model 2 Model 3

Input
1. Rainfall Data

2. Recurrent Model
Output

1. Rainfall Data
2. All Sensor Data

3. Recurrent Model
Output

1. Rainfall Data
2. Correlation

Selected Sensor
3. Recurrent Model

Output

Input Dimension
Counts

Rainfall = 5
Sensor = 0

Recurrent = 1

Rainfall = 5
Sensor = 25

Recurrent = 1

Rainfall = 5
Sensor = 7

Recurrent = 1

Hidden Neuron
Counts 5 5 5

Weights Counts 41 166 76

Input variable selection is an essential step in the development of machine learning models. In
recent years, various input selection methods have been satisfactorily used to improve prediction
accuracy and produce parsimonious models in numerous applications [42–45]. For instance, in
hydrological issues, Taormina and Chau [46] used binary-coded particle swarm optimization and
extreme learning machines for rainfall–runoffmodeling; Chang et al. used the Gamma test to identify
the most suitable input variables for multi-step-ahead water level forecasting [26] and estimating
stream total phosphate concentration [47]. While new methods continue to emerge, each has its own
advantages and limitations, and there is no best method for all modeling purposes. In this study, we
aimed learn whether the new implemented 25 sensors in the study area could be beneficial to model
the regional flood inundation forecast. The input variable selection was mainly based on correlation
analysis between the sensors. As shown above, the main difference between Model 2 and Model 3 was
that Model 2 used all sensors (25) as the model input, while Model 3 used 7 selected sensors as input.
A 25 × 25 correlation matrix was constructed. The selection process is shown in Figure 5 and explained
as follows.

1. Calculate the correlation matrix between sensors.
2. Count the number of highly correlated (R2 > 0.9) sensors and sorting their number from large

to small.
3. Select a representative sensor from those sensors that have the highest number of correlated

sensors; if the number is the same, compare their ARID and then select the sensor with the largest
ARID for priority selection (as the representative sensor).
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4. Remove those highly correlated sensors with the above representative sensor to avoid repeated
selection. For example, in the first round, S22 was selected as the representative sensor (Figure 5).
Before moving to the next round of selection, those sensors highly correlated with S22 sensor (i.e.,
R2 > 0.9) would be removed from the correlation matrix. In this round, 10 sensors (including S22)
were removed.

5. If the selection has not been completed, return to step 1 and recalculate the correlation matrix
of the remaining sensors until the selection is completed. That is, all the sensors will either be
selected as the representative sensors or be removed during the selection process.

Figure 5. The procedure of selecting representative sensors.

In this way, one of the most representative sensors will be selected for each round until all sensors
have been picked or removed. We noticed that this study conducted a total of 7 rounds and picked out
S22, S13, S02, S09, S04, S15, S05, a total of 7 representative sensors.

The hydrographs show 25 flood sensors and their correspondent ARID during the 500 year
event used in Model 2 (Figure 6a) and 7 representative sensors used in Model 3 (Figure 6b),
representatively. We noticed that many of these 25 sensors showed the same trend (such as
S11, S12, S13, S14, S15, S16, S17, S19, S20, S21, S23, S24, S25, etc.), which will result in additional parameters
in the model and cause noise. In Model 3, which used only 7 representative sensors, the number of
parameters and noise were both greatly reduced. Thus, the model could more accurately describe the
relationship between rainfall, flooding sensor, and model output.

The evaluation indicators used in this study were RMSE (root-mean-square error), R2, and
Nash–Sutcliffe coefficient (NSE). The formulae are shown in Equations (15)–(17).

RMSE =

√∑N
i=1(di − yi)

2

N
(15)
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R2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑N

i=1

(
di − d

)
× (yi − y)√∑N

i=1

(
di − d

)2 ×∑N
i=1(yi − y)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2

(16)

NSE = 1−
∑N

i=1(di − yi)
2∑N

i=1

(
di − d

)2 (17)

where di and yi are the observed value and the forecasted value of the ith data, respectively; d and y
are the means of the observed and forecasted values.

  
(a) Forecasted average regional inundation depth 

by Model 2 vs. 25 sensors’ data 
(b) Forecasted average regional inundation depth 

by Model 3 vs. 7 sensors’ data 

Figure 6. The sensor data vs. T + 1 forecasted average regional inundation depths by Models. (a) 25
sensors’ data vs. T+1 forecasted ARIDs of Model 2; (b) 7 sensors’ data vs. T+1 forecasted ARIDs of
Model 3.

5. Results

As known, there is a temporal relationship between observations of the rainfall and IoT sensors’
inundation level of the study area and hence the value of observation at a particular time depends to
some extent on past values. This study sought to model the temporal relationship and forecast the
average regional inundation depth by using the machine learning model. Our reason for employing
IoT sensor data was that the sensors could provide monitored (real) inundation values for model’s
training as well as testing and thus improve the multi-step forecast accuracy. Moreover, the real-time
monitoring datasets could be used to on-line adjust the model’s parameters and visually assess the
model’s performance, which could largely promote the model’s applicability and reliability. The results
of the three models are shown in Table 3. There were two very large flood events (water depth > 0.5 m)
in the training case. Model 1 results indicated those high flood events were underestimated, but its
performances, in general, was good, where the RMSE could reach 0.049, 0.050, and 0.061 m in training,
validation and testing cases, respectively. The small values of RMSE and high R2 and NSE values
indicate that Model 1, which was solely based on rainfall information as input, could provide suitable
1–3 h ahead forecasts, while it would largely underestimate the peak flood inundation depth.

Model 2 used the data of 5 rainfall stations and 25 flood sensors. In the training phase, its errors
in T + 1–T + 3 were significantly reduced as compared with those of Model 1. For instance, the RMSE
values of Model 1 and Model 2 at T + 3 were 0.083 and 0.049, respectively. We notice that Model 2
had much better performances in multi-step-ahead forecasts (T + 1–T + 3) than those of Model 1 in
the training phase, while that was not the case in both the validation and testing phases. In order
to investigate the inconsistency problem, we explored the relationship between sensors’ data with
the models’ forecast values in the event (24H100y) of the testing case. Figure 7a shows that the time
series of 25 sensors were inconsistent, especially during the 12th–18th hours, where some of them were
ascending, while the rest of them were descending, and the time series of the 3 h ahead forecasted
ARID made by Model 2 was in sharp descent. We noticed that the inconsistency between sensors’
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hydrographs might have been due to the propagation time between the upstream and downstream
locations of the sensors resulting in the different lag time between the increasing and decreasing limb of
their associated hydrograph. The inconsistency between the sensors’ datasets as well as the forecasted
ARID values, however, could result in a large error (i.e., RMSE = 0.113 shown in Table 3). The results
indicated that adding the IoT sensors information could, in general, reduce the forecast error of the
ARID in the training phase due to using more information (25 sensors’ data) as input. Nevertheless,
using a large number of inconsistent sensors values along the time series as input might introduce too
many parameters in the model and result in an overfitting (overtraining) problem.

Table 3. Performance of one- to three-hour-ahead forecasts of the Model 1, Model 2, and Model 3.

Model

RMSE (m) R2 NSE

Time
Step

Train Val Test Train Val Test Train Val Test

Model
1

T + 1 0.049 0.050 0.061 0.940 0.920 0.860 0.943 0.867 0.858
T + 2 0.063 0.057 0.073 0.910 0.930 0.900 0.917 0.805 0.792
T + 3 0.083 0.068 0.092 0.860 0.870 0.830 0.859 0.723 0.710

Model
2

T + 1 0.025 0.032 0.059 0.991 0.953 0.873 0.986 0.939 0.864
T + 2 0.036 0.044 0.090 0.981 0.899 0.696 0.971 0.887 0.685
T + 3 0.049 0.056 0.113 0.965 0.828 0.539 0.947 0.822 0.510

Model
3

T + 1 0.027 0.030 0.036 0.986 0.968 0.967 0.984 0.947 0.951
T + 2 0.041 0.031 0.048 0.964 0.954 0.931 0.963 0.946 0.913
T + 3 0.052 0.038 0.065 0.941 0.922 0.900 0.939 0.916 0.839

RMSE: root-mean-square error, NSE: Nash–Sutcliffe coefficient.

To reduce the input variables (sensors), correlation analysis was used to select a limited number of
sensors as the representative sensors. Model 3 used the data of 5 rainfall stations and 7 representative
sensors as inputs. Figure 7b shows the time series of 3 h forecasted ARID with the inundation depths
of 7 representative sensors. As shown, the time series of 7 selected sensors as well as the forecasted
ARID were relatively consistent, as compared with those of Figure 7a. The results show that Model 3,
in general, was superior to the Model 1 and Model 2 in all the validation and testing phases, and its R2

values in T + 1–T + 3 were consistent and higher than 0.9 in all the phases (Table 3). Thus, the Model 3
forecasts maintained fairly high accuracy (very small RMSE and high R2 and NSE).

  
(a) Model 2 vs. 25 sensors’ data (b) Model 3 vs. 7 sensors’ data 

Figure 7. The sensor data vs. T + 3 forecasted average regional inundation depths by Models. (a) 25
sensors’ data vs. T+3 forecasted ARIDs of Model 2; (b) 7 sensors’ data vs. T+3 forecasted ARIDs of
Model 3.
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Figure 8 presents the forecast results of Model 1 and Model 3 at T + 1 in three phases. It shows
that Model 1 underestimated the peak flow in the first and fifth events of the training session (i.e.,
24H800mm and 24H500y), while they overestimated the peak flow in the validation and testing phases.
In contrast, the results of Model 3 indicated that the problems of overestimated or underestimated
peak values of ARIDs were significantly mitigated, its estimating errors (RMSE), in general, were also
much smaller than those of Model 1 in all three phases.

 
(a) training phase 

 
(b) validation phase 

 

(c) testing phase 
 

Figure 8. Comparison of simulation, Model 1, and Model 3 in three phases. (a) training phase;
(b)validation phase; (c)testing phase.

Figure 9 shows the RMSE charts in the training, validation, and testing phases of the three models.
It is clearly shown that Model 3 had the most reliable and accurate performance compared to Models 1
and 2. Model 2 could be very well trained and was superior to Model 1 in all cases except in the cases
of T + 2 and T + 3 in the testing phase, which was mainly caused by an inconsistency issue in the event
of 24H100y. Model 3 had better performance than Model 2 in the validation and testing phases, where
the average improvement rates were 22.65% and 42.71%, respectively. Moreover, the model’s weights
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were reduced from 166 (Model 2) to 76 (Model 3), when the number of parameters was significantly
reduced by 54.21%. The analyzed results provide an extra evidence and demonstrate that using the
selected sensors as model input not only produces a parsimonious model but also improves prediction
accuracy in multi-step-ahead flood inundation forecasts. These results represent the great value and
benefit of IoT sensors, which fuse as inputs into the machine learning models.

 

Figure 9. The radar chart of models’ performance (RMSE) in three phases.

6. Conclusions

This study sought to model the temporal relationship and forecast the average regional inundation
depth by using the IoT-based machine learning model. The datasets obtained from rainfall stations
and IoT flood sensor data were used to model the average regional flood forecasts and explore the
effectiveness and usefulness of the IoT sensors data in the model’s reliability and accuracy. The results
show that adding IoT sensor data as a model input can reduce the model error, especially for those of
long horizontal (T + 2 and T + 3) forecasts in high-flood-depth conditions, where their underestimations
are significantly mitigated. For instance, by adding 25 IoT sensors of inundation depth as extra inputs
of Model 2, an average error improvement rate up to 18.49% could be reached as compared with Model
1 (only used rainfall datasets). While we also noticed that the inconsistent relationship between the
25 sensors datasets could over train the model and result in a chaotic issue in late application. For
instance, Model 2 does provide the worst performances in the testing phase of T + 3 case. On the
other hand, Model 3 used 7 IoT representative sensors, selected by the principle of correlation, as
the extra inputs to model the multi-step flood forecasts. The number of parameters of Model 3 were
greatly reduced (over 50%) as compared with Model 2. Furthermore, Model 3 was superior to Model 2,
with an average improvement rate up to 18%, and it also provided much better forecast performances
(small RMSE and high R2 and NSE values) than Model 1 in all the T + 1–T + 3 cases. Therefore, these
results give very promising evidence and demonstrate that using the IoT representative sensors as the
model input to configure the machine learning models not only can produce a parsimonious model
but also significantly improve the models’ reliability and accuracy in multi-step-ahead regional flood
inundation forecasts. The most fascinating achievement of this study is that the constructed model now
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can be on-line adjusted and its real-time forecast can be visually assessed and numerically evaluated
based on the current implemented IoT inundation levels in the studied areas. Thus, the IoT-based
machine learning model performance could be continuously assessed and adjusted, and its reliability
and accuracy could be consistent.
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Abstract: It is fundamentally challenging to quantify the uncertainty of data-driven flood forecasting.
This study introduces a general framework for probabilistic flood forecasting conditional on point
forecasts. We adopt an unscented Kalman filter (UKF) post-processing technique to model the
point forecasts made by a recurrent neural network and their corresponding observations. The
methodology is tested by using a long-term 6-h timescale inflow series of the Three Gorges Reservoir
in China. The main merits of the proposed approach lie in: first, overcoming the under-prediction
phenomena in data-driven flood forecasting; second, alleviating the uncertainty encountered in
data-driven flood forecasting. Two commonly used artificial neural networks, a recurrent and a static
neural network, were used to make the point forecasts. Then the UKF approach driven by the point
forecasts demonstrated its competency in increasing the reliability of probabilistic flood forecasts
significantly, where predictive distributions encountered in multi-step-ahead flood forecasts were
effectively reduced to small ranges. The results demonstrated that the UKF plus recurrent neural
network approach could suitably extract the complex non-linear dependence structure between the
model’s outputs and observed inflows and overcome the systematic error so that model reliability as
well as forecast accuracy for future horizons could be significantly improved.

Keywords: probabilistic forecast; Unscented Kalman Filter; artificial neural networks; Three
Gorges Reservoir

1. Introduction

Reliable and accurate flood forecasting is one of the most important tasks of operational hydrology,
while it is also very challenge due to the inordinately non-linear hydro-geological features and dynamic
nature of climate conditions. High uncertainty encountered in the occurrence and magnitudes of
future flood event stimulates the demands for probabilistic flood forecasting. The goal of probabilistic
forecasting is to provide information about the uncertainty of the forecast [1]. Most hydrological
forecast models produce deterministic forecasts, which provide the best point-value estimates rather
than quantify the predictive uncertainty [2]. Nevertheless, when a deterministic forecast turns out to
be far from what has taken place, the consequences will probably be worse than a situation where
no forecast is available [3]. Probabilistic hydro-meteorological forecasts have been used frequently
to communicate forecast uncertainty over the last few decades [4–6]. The transformation from a
deterministic approach to a probabilistic approach is a development trend of flood forecasting around
the world [6,7]. The optimal mega-reservoir operation for live-saving and resources utilization creates
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outreach demands for probabilistic flood forecasting; consequently, scientific research should focus
on quantifying and mitigating the uncertainty of probabilistic flood forecasts [8,9]. The reliability of
hydrologic forecasts can be affected by input uncertainty, meteorological uncertainty, and hydrologic
uncertainty of model structure and parameters. One of the primary techniques to reflect different
uncertainties in hydrologic forecasts is to create a probabilistic forecast [10,11]. Probabilistic forecasts
can be made using three approaches: a probabilistic pre-processing approach plus a deterministic
forecast model; a probabilistic forecast model; and a deterministic forecast model plus a probabilistic
post-processing approach [12–14]. The first two approaches quantify uncertainties in inputs and
model structure while the third quantifies the overall uncertainty in model structure and parameters.
Our study would concentrate on improving hydrologic forecasts using deterministic models plus
probabilistic post-processing technique.

Probabilistic post-processing techniques are commonly introduced to complement point-value
estimations offered by the deterministic forecast model [15,16]. The Kalman filter (KF) proposed by
Kalman [5] provides a theoretical post-processing framework based on model point estimation for
reducing forecast uncertainty through recursively calculating a statistically optimal estimate of the
prediction. The KF post-processing is a component of the probabilistic post-processing techniques, and
is a recursive state estimator for a process that is assumed to be affected by stochastic interference and
by stochastic noise [5]. The KF family consists of the linear KF (LKF) and non-linear KF (NKF) [17]. The
LKF approach can only identify the linear error estimation whereas the NKF approach can quantify
the non-linear error estimation. As is known, the NKF is widely used for extracting non-linear
dependence of forecast errors and conquering the white noise with systematic over/under-predicting
characteristics [17]. Furthermore, the extended KF (EKF) and the unscented KF (UKF) [17] are two
common usages of NKF. Most importantly, the UKF approach has not yet been employed to lessen
the uncertainty of multi-step-ahead flood forecasting driven by a recurrent neural network (RNN)
according to a review of literature [18–21]. Despite there are several researches associated with
the combination of UKF/EKF and hydrological models [22–24] on hydrological domain, all of them
concentrate on quantifying the uncertainty of hydrological forecast driven by static (i.e., non-recurrent)
artificial neural networks (ANNs), e.g., feed-forward neural network and local linear models as well as
the hydraulic model. Bearing this in mind as motivation, for the first time, the UKF is introduced to
quantify the uncertainty of multi-step-ahead flood forecasts driven by the RNN (i.e., RNN is more
complicated than the static ANNs). Therefore, it is interesting to explore UKF for modeling and
lowering the uncertainty appeared in RNN-driven flood forecasts.

Machine-learning techniques have developed fast during the last few decades, and they have
been adopted as data-driven methods to model hydrological systems [11,25,26]. For instance, the
back-propagation neural network (BPNN), the radial basis function (RBF), the support vector machine,
the quantile regression neural network (QRNN), the recurrent neural network (RNN), the long-short
term memory (LSTM) and the non-linear auto-regressive with exogenous inputs neural network
(NARX) have been widely applied to modeling hydrologic and meteorological time series [27–38]. A
number of recent studies indicate that ensemble artificial neural network can improve the probabilistic
forecast skill for hydrological events [39–41]. The main advantage of ANN is owing to its ability to
discern linear or non-linear relationships even with very limited data inputs and being able to recognize
even complex patterns in a data set without a priori understating of the underlying mechanism. The
major drawbacks, on the other hand, are that they are prone to under-predict flood series for extreme
flood events. Therefore, it is essential to conduct in-depth research on machine-learning models
for enhancing model accuracy and reliability through converting deterministic flood forecasts into
probabilistic ones using a stochastic post-processing technique.

This study proposes a probabilistic forecasting approach to reduce the prediction intervals of
multi-step-ahead flood forecasts, which consists of two parts: the deterministic forecast model and the
probabilistic post-processing technique. First, the recurrent neural network (NARX) is introduced to
make multi-step-ahead point forecasts. Then, the UKF technique driven by point forecasts is employed
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to create the prediction intervals of flood forecasts. We concentrate on hydrological uncertainty only
(i.e., the uncertainty resulting from imperfect rainfall-runoffmodeling), considering “perfect” rainfall
as inputs. A static BPNN and a recurrent NARX are used to construct flood forecast models, and
the model that produces more accurate point estimations will be employed to carry out probabilistic
forecasting. The UKF approach is implemented separately to transform point flood forecasts into
probabilistic flood forecasts. The rainfall and inflow datasets of the Three Gorges Reservoir (TGR) in
China are used to demonstrate the reliability and applicability of the approach.

2. Methods

Figure 1 illustrates the probabilistic forecast architecture that separately integrates the NARX
(Figure 1a) with the UKF approach (Figure 1b). The related methods are briefly described below.

Figure 1. Probabilistic forecast architecture. (a) The non-linear auto-regressive with exogenous inputs
(NARX) neural network model. (b) The unscented Kalman filter (UKF) post-processing approach.

2.1. Deterministic Flood Forecast Models Based on Artificial Neural Network (ANN)

The NARX is a recurrent neural network suitable for time-series prediction [42,43]. This study
uses it to carry out deterministic flood forecasting because its recurrent mechanism can effectively
integrate rainfall and discharge data with the latest outputs of the model to alleviate the time shift
phenomenon and improve model reliability. The NARX network produces recurrent connections from

25



Water 2020, 12, 578

the outputs, which could delay several unit times to produce new inputs (Figure 1a). This nonlinear
system for M-step-ahead forecasting (M ≥ 1) can be described mathematically below:

ŷ(t + M) = f(ŷ(t + M− 1), . . . , ŷ(t + M− q), y(t), r(t), . . . , r(t− p)) (1)

where R(t) = [y(t), r(t), . . . , r(t− p)] and ŷ(t + M) denote the input vector and the output value at the
time step t and t +M, respectively. f (·) is the nonlinear function. p and q are the input-memory and
output memory orders. Two inputs: ŷ(t + M− i) (i = 1, 2, . . . , q) serves as an autoregressive variable
(e.g., forecasted runoff), R(t), serves as an implicit exogenous variable (e.g., observed rainfall and
runoff) in a time series.

The BPNN, a static neural network, is implemented for comparison purposes. Both BPNN and
NARX have the same model architecture of one input layer, one hidden layer and one output layer.
The NARX model is a dynamic ANN model with the recurrent mechanism whereas the BPNN is a
non-recurrent ANN model. The mathematical equation of the BPNN model is described as follows:

ŷ(t + M) = f(y(t), r(t), . . . , r(t− p)) (2)

In this study, the Levenberg–Marquardt back-propagation algorithm is used to train both ANN
models [44]. The transfer functions of hidden and output layers are of a sigmoid type and a linear type,
respectively, owing to their practicability and good performance in flood forecasting [45].

The parameters of both models consist of: the maximal epoch = 1000, the initial learning rate (mu)
= 0.001, the increasing factor of mu = 10, the decreasing factor of mu = 0.1 and the maximal value of
mu = 1000 respectively. Besides, the two ANN models are configured to have one hidden layer with
8–10 nodes in the perspective of different forecast horizons. The value of output memory q is set as one
whereas the value of input memory p should be determined by using correlation analysis methods
(presented in the section of study area and materials).

2.2. Probabilistic Forecasting Based on the Unscented Kalman Filter (UKF)

The UKF is an optimal recursive data processing algorithm and can be introduced to find the
optimal estimation error for each state in multi-step-ahead flood forecasts [17]. The unscented Kalman
filter is applied to model a nonlinear flood forecasting system and described as below:

x(t + 1) = g(x(t), u(t), v(t), t) (3)

z(t) = h(x(t), u(t), t) + w(t) (4)

where x(t) is the n-dimensional state of the flood forecasting system at time-step t, u(t) is the input
vector at time-step t, v(t) is the k-dimensional state noise process vector owing to disturbances and
model errors, z(t) and w(t) are the observation vector and noise, g(·) and h(·) are the distributions of
forecasted and observed datasets, both are assumed following Gaussian distribution.

The implementation procedures for the UKF (Figure 1b) contain the following four steps [17].
Step 1: Computation of set of sigma points and assignment of weights to all sigma points. The

n-dimensional random variable x with mean x and covariance Pxx is transformed to 2n + 1 weighted
points described below:

χ0 = x, W0 = λ/(n + λ) (5a)

χi = x +
√
(n + 1)Pxx, Wi = 1/2(n + λ) (5b)

χi+n = x−
√
(n + 1)Pxx, Wi+n = 1/2(n + λ) (5c)

where χ0, χi and χi+n are the 2n + 1 sigma points, W0, Wi and Wi+n are the 2n + 1 weight coefficients,
λ is the spreading parameter.
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Step 2: Transformation of the points through non-linear function. The transformed set is produced
by using a nonlinear function and the predicted mean and covariance are described below:

χi(t + 1|t) = g
(
χn+k

i (t|t), u(t), t
)

(6)

x̂(t + 1|t) =
2(n+k)∑

i=0

Wi·χn+k
i (t + 1|t) (7a)

P(t + 1|t) =
2(n+k)∑

i=0

Wi·[χi(t + 1|t) − x̂(t + 1|t)]·[χi(t + 1|t) − x̂(t + 1|t)]T (7b)

where χi(t + 1|t) is the transformed set. x̂(t + 1|t) and P(t + 1|t) are the predicted mean and covariance
of the transformed set.

Step 3: Computation of Gaussian function from weighted and transformed points.

Zi(t + 1|t) = h(χi(t + 1|t), u(t), t) (8)

where Zi(t + 1|t) is the observed dataset computed by using the transformed point.
Step 4: Probabilistic forecasts. A Monte Carlo simulation is conducted to create probabilistic

forecasts. A realization of observation hm at the horizon m can be simulated according to the Gaussian
function (Equation (7)) and the Monte Carlo simulation would be repeated for K times. K is the
number of Monte Carlo samples and set as 1000 in this study; 90% confidence intervals are employed
to reveal the uncertainty of probabilistic flood forecasts. Then, both observed and forecasted datasets
are transformed into the real space for evaluating the performance of UKF probabilistic forecasts.

2.3. Evaluation Indicators

To evaluate the deterministic forecast accuracy and predictability of flood peak and flood volume,
the mean absolute error (MAE), the peak percent threshold statistics (PPTS) [46] and the Nash–Sutcliffe
efficiency (NSE) coefficient [47] were introduced accordingly. Their mathematical expressions are
described below:

MAE =
1
N

N∑
t=1

∣∣∣Ẑ(t) −Z(t)
∣∣∣, MAE ≥ 0 (9)

PPTS(l, u) =
1

(kl − ku + 1)

N∑
t=1

(∣∣∣∣∣∣ Ẑ(t) −Z(t)
Z(t)

∣∣∣∣∣∣
)
, PPTS ≥ 0 (10)

NSE = 1−
∑N

t=1

(
Ẑ(t) −Z(t)

)2

∑N
t=1

(
Z(t) −Z(t)

)2 , NSE ≤ 1 (11)

where kl =
l×N
100 and ku = u×N

100 . N is the number of observed data while l and u are the lower and higher
limits in percentage, respectively. For instance, PPTS(l, 10%) denotes the flood percentage threshold
statistic of larger than 10% data whereas PPTS(90%, u) denotes the flood percentage threshold statistic
of smaller than 90% data. Ẑ(t), Z(t) and Z(t) are the forecasted data (i.e., model output), observed
data and the average of observed data at the t time, respectively.

The containing ratio (CR), the average relative bandwidth (RB) and the continuous ranked
probability score (CRPS) were used for assessing the performance of probabilistic forecasts [48,49].
Their mathematical formulas are described below.

N(t) =

⎧⎪⎪⎨⎪⎪⎩ 1, if
(
ql(t) ≤ Ẑ(t) ≤ qu(t)

)
0, else

(12a)
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CR =

∑N
t=1 N(t)

N
× 100% (12b)

RB =
1
N

N∑
t=1

(
qu(t) − ql(t)

Z(t)

)
(13)

CRPS =

∫ +∞

−∞

[
Ff(x) − Fo(x)

]2
dx (14)

where ql(t) and qu(t) are the lower and upper limitation of the forecasted value at the t time, F f (x) and
Fo(x) are the cumulative distribution functions (CDF) of the forecast and observation distributions,
respectively, x is the variable of the CDF.

From the standpoint of model performance, the indicators of MAE, PPTS and NSE are employed
to evaluate the accuracy of deterministic flood forecasts while the indicators of CR, RB and CRPS
are employed to evaluate the correctness and sharpness of probabilistic flood forecasts. The general
implementation programming of the NARX and UKF can be downloaded from the Statistics and
Machine Learning Toolbox of the Matlab software (website: https://ww2.mathworks.cn/products/
statistics.html#machine-learning).

3. Study Area and Materials

Figure 2a illustrates the study area. The Yangtze River is famous for the longest river of China,
and its length and drainage area are 6300 km and 1.80 million km2 accordingly. The Three Gorges
Reservoir (TGR) is a pivotal hydraulic facility that serves many purposes consisting of flood control,
hydropower production and navigation etc. We notice that the upper Yangtze River’ tributaries have
notoriously complex hydro-geological characteristics. Plenty of studies were devoted to developing
reliable and accurate short-term (less than 24-h ahead) flood forecast models for the Yangtze River
due to the extremely non-linear relationship between rainfall and runoff over this basin during storm
events [50,51]. Besides, a small improvement in the reliability and accuracy of short-term flood forecasts
could be critical and beneficial to flood prevention as well as the dynamic management of the TGR.
Heavy rainfalls usually cause floods and further induce downstream flooding within one day. In
consequence, rational reservoir operation as well as river basin management require reliable and
accurate flood forecasting so that they can adequately handle the high uncertainty of river discharge
ranging from 8000 up to 70,000 m3/s, according to the observed reservoir inflows (Figure 2b).

The inflow of the TGR contains three parts: the upstream inflow from the discharge of the XJB
reservoir, the inflows from 8 tributaries (flow stations F1–F8), and rainfall (aggregated into two variables:
Rainfall-I and Rainfall-II) monitored by 67 rain gauge stations spreading over the TGR intervening
basin. Inflow and rainfall data for use in this study were gathered from 2003 to 2018 at a temporal scale
of 6 h. When model training completes (2003–2010, 8 years), two ANN models (BPNN and NARX) are
constructed. Then the trained ANN that creates the best forecast accuracy in the validation period
(2011–2014, 4 years) is identified as the final model to be evaluated upon model reliability using test
datasets (2015–2018, 4 years). The Kendall tau coefficient analysis [38,52] is employed to extract the
highest correlation of lag-times between model input and output values. According to the highest
correlation coefficients, lag-times between the inflow of the TGR and flow/rainfall at various gauge
stations are set as 6 h (TGR), 48 h (XJB reservoir), 48 h (F1), 48 h (F2), 42 h (F3), 42 h (F4), 24 h (F5), 18 h
(F6), 18 h (F7), 12 h (F8), 42 h (Rainfall-I) and12 h (Rainfal-II) [36]. To reduce the adverse effect of the
distinct scales of input data on model performance, all 12 input variables (one autoregressive variable
plus 11 exogenous variables) were transformed into the same scale during data preprocessing.
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Figure 2. Study area and the statistical characteristics of reservoir inflows. (a) Locations of the
Xiang-Jia-Ba (XJB) Reservoir and the Three Gorges Reservoir (TGR), river flow as well as rain gauging
stations; (b) The boxplot of TGR inflows collected in flood seasons (from 1 June to 30 September) during
2003 and 2018 at a temporal scale of 6 h.

4. Results and Discussion

This study intends to promote the predictability of the deterministic flood forecast model that is
integrated with a UKF for probabilistic forecasting at different time horizons.

4.1. Performance of Deterministic Flood Forecasts

The short-term (one-day-ahead) forecast not only provides a crucial guideline in reservoir
operation but also offers a warning to residents at inundation prone areas. Consequently, a 24 h lead
time at a temporal scale of 6 h is suggested to evaluate the performance of two deterministic flood
forecast models (NARX and BPNN). Four horizons (t + 1 to t + 4) are specified that 6 h (t + 1) is the
first prediction, 12 h (t + 2) is the second prediction, 18 h (t + 3) is the third prediction and 24 h (t + 4) is
the fourth prediction.

Table 1 summarizes the results of the NARX and BPNN models. It indicates that the BPNN model
creates much lower NSE values but much higher PPTS and MAE values than the NARX model at all
three stages. The PPTS indicator is able to show model forecast accuracy in different flood magnitudes.
For instance, PPTS (l, 10%) denotes the flood percentage threshold statistic of larger than 10% data. The
results in Table 1 demonstrate that the PPTS indicator raises gradually if the lead time increases from t +
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1 to t + 4. The NARX model makes the smallest increments in PPTS and MAE values along the lead time
while the BPNN model makes the largest ones. In addition, the NARX model displays its superiority
compared with the BPNN model in predicting high-magnitude floods regarding frequencies of 2%
and 5%. Given a lead time of one day (24 h), the NARX model can increase the NSE by 14.5% while
decreasing the PPTS (l, 2%) by 35.8% and the MAE by 20.1% at the testing stage, in comparison to the
BPNN model. The results demonstrate that the NARX model performs much better than the BPNN
model as the forecast horizon increases. Therefore, it is obvious that the NARX model incorporated
with a recurrent mechanism can improve forecast accuracy at longer horizons by feeding itself with
the forecasted inflows attained from previous horizons.

Table 1. Performances (peak percent threshold statistics (PPTS), mean absolute error (MAE) and
Nash–Sutcliffe efficiency (NSE)) of NARX and back-propagation neural network (BPNN) models in
three stages.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

NARX

PPTS (l, 2%) 0.0293 0.0310 0.0332 0.0349
PPTS (l, 5%) 0.0314 0.0330 0.0355 0.0383
PPTS (l, 10%) 0.0334 0.0356 0.0393 0.0450
PPTS (l, 20%) 0.0366 0.0388 0.0429 0.0488
MAE (m3/s) 689 750 849 1037

NSE 0.980 0.969 0.963 0.942

BPNN

PPTS (l, 2%) 0.0293 0.0346 0.0364 0.0398
PPTS (l, 5%) 0.0314 0.0447 0.0483 0.0512
PPTS (l, 10%) 0.0334 0.0546 0.0606 0.0616
PPTS (l, 20%) 0.0366 0.0601 0.0661 0.0672
MAE (m3/s) 689 951 1024 1295

NSE 0.980 0.935 0.907 0.858

Validation

NARX

PPTS (l, 2%) 0.0295 0.0314 0.0340 0.0361
PPTS (l, 5%) 0.0315 0.0334 0.0364 0.0397
PPTS (l, 10%) 0.0335 0.0354 0.0395 0.0438
PPTS (l, 20%) 0.0372 0.0399 0.0445 0.0491
MAE (m3/s) 716 782 919 1079

NSE 0.978 0.965 0.957 0.936

BPNN

PPTS (l, 2%) 0.0295 0.0432 0.0472 0.0493
PPTS (l, 5%) 0.0315 0.0472 0.0515 0.0547
PPTS (l, 10%) 0.0335 0.0551 0.0606 0.0643
PPTS (l, 20%) 0.0372 0.0621 0.0690 0.0732
MAE (m3/s) 716 964 1088 1317

NSE 0.980 0.931 0.904 0.853

Testing

NARX

PPTS (l, 2%) 0.0305 0.0312 0.0332 0.0349
PPTS (l, 5%) 0.0320 0.0339 0.0365 0.0418
PPTS (l, 10%) 0.0343 0.0368 0.0411 0.0456
PPTS (l, 20%) 0.0374 0.0401 0.0448 0.0497
MAE (m3/s) 793 931 893 1006

NSE 0.978 0.967 0.961 0.940

BPNN

PPTS (l, 2%) 0.0305 0.0488 0.0536 0.0544
PPTS (l, 5%) 0.0320 0.0511 0.0562 0.0571
PPTS (l, 10%) 0.0343 0.0582 0.0647 0.0686
PPTS (l, 20%) 0.0374 0.0635 0.0705 0.0749
MAE (m3/s) 793 992 1079 1259

NSE 0.978 0.929 0.872 0.821

To distinguish between the BPNN and NARX models on deterministic forecasting capabilities in
the testing stage, three flood events with maximal peak-flows reaching 35,000 m3/s (small), 50,000 m3/s
(medium) and 60,000 m3/s (large) are specified to test both models by evaluating the goodness-of-fit
between observed and forecasted values at time-step t + 3 and t + 4 (Figure 3). The results appear to
show that the NARX model is able to significantly mitigate the time gap between the observed and
forecasted flood peaks. Furthermore, the NARX model can produce good forecast results at time-step
t + 3 and t + 4, whereas the BPNN model creates a noticeable time-lag problem and fairly big gaps
between observed and forecasted values at time-step t + 3 and t + 4. This demonstrates that the
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NARX model is able to effectively reduce time-lag phenomena and provide accurate deterministic
flood forecasting results.

 
Figure 3. TGR inflow forecasts using the NARX and the BPNN models. Three flood events with
maximal peak-flow exceeding (a) 35,000 m3/s (small-scaled), (b) 50,000 m3/s (medium-scaled) and (c)
60,000 m3/s (large-scaled).

Although the NARX model provides substantial evidence of a good performance in flood
forecasting, it is easy to produce systematic under-prediction results for extreme flood events (Figure 3).
In addition, hydrologic uncertainties raised in model inputs (e.g., precipitation), as well as the structure
and parameters, can be the drivers and causes of time-lag problems occurring in flood forecasting.
Therefore, we next adopt a processing approach (i.e., UKF) to decrease the hydrological uncertainty
based on the presumption that no uncertainty encounters in model input data.
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4.2. Probabilistic Flood Forecasting Performance

Table 2 illustrates the results of the CR, RB and CRPS corresponding to the UKF plus NARX and
the UKF plus BPNN approaches in all three stages at forecast horizons (t + 1 to t + 4). It supports the
superiority of the UKF plus NARX approach in all three stages, whereas the UKF plus BPNN approach
performs almost as well as the UKF plus NARX one only in the training stages at forecast horizons
up to t + 2 (RB is lower than 0.15, CRPS is lower than 1200 m3/s and CR is higher than 90%). The
results demonstrate that the UKF plus NARX approach achieves higher reliability in probabilistic flood
forecasting than the UKF plus BPNN one. For horizon t + 4 (one day ahead) in the testing stage, the
UKF plus NARX approach is able to increase the CR value by 8.48% while reducing the RB and the
CRPS values by 22.73% and 20.31%, respectively, in comparison to the UKF plus BPNN one. In other
words, the UKF plus NARX approach is able to significantly improve probabilistic forecast accuracy by
producing the narrower prediction bound.

Table 2. Probabilistic forecasting performance (containing ratio (CR), average relative bandwidth (RB)
and continuous ranked probability score (CRPS)) regarding TGR reservoir inflow.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

UKF plus
NARX

CR (%) 98.23 96.37 95.06 94.53
RB 0.08 0.10 0.13 0.17

CRPS (m3/s) 754 911 1092 1253

UKF plus
BPNN

CR (%) 98.23 94.11 92.25 89.03
RB 0.08 0.12 0.18 0.21

CRPS (m3/s) 754 1092 1361 1517

Validation

UKF plus
NARX

CR (%) 98.21 96.32 95.00 94.37
RB 0.08 0.11 0.14 0.18

CRPS (m3/s) 789 934 1112 1274

UKF plus
BPNN

CR (%) 98.21 93.07 91.21 88.06
RB 0.08 0.13 0.19 0.23

CRPS (m3/s) 789 1118 1395 1576

Testing

UKF plus
NARX

CR (%) 98.18 96.29 95.02 94.41
RB 0.09 0.10 0.13 0.17

CRPS (m3/s) 776 922 1104 1267

UKF plus
BPNN

CR (%) 98.18 92.04 89.25 87.03
RB 0.09 0.12 0.18 0.22

CRPS (m3/s) 776 1127 1412 1590

For obviously differentiating the capabilities of the UKF plus NARX and the UKF plus BPNN
approaches in the testing stage, the three aforementioned flood events are still specified to test both
approaches by evaluating whether the observations fall in the 90% confidence interval at lead time t +
4 (Figure 4). It appears that most of the observations lie within the 90% confidence intervals created
by both probabilistic forecasting approaches while the UKF plus NARX approach offers a narrower
prediction range. Gneiting et al. [1] advocated that the maximization of the sharpness of the predictive
distribution is the goal of probabilistic flood forecasts. Therefore, the UKF plus NARX approach is
considered superior to the UKF plus BPNN one.

32



Water 2020, 12, 578

Figure 4. Probabilistic flood forecasts for TGR of the testing stage at lead time t + 4. Three flood events
with maximal peak-flow exceeding (a) 35,000 m3/s (small-scaled); (b) 50,000 m3/s (medium-scaled);
and (c) 60,000 m3/s (large-scaled). The 90% confidence bound is corresponding to the lower (5%) and
upper (95%) limitation of the forecasted value at time t.

For median forecasts at horizons from t + 1 up to t + 4 in three stages, the indicators of MAE
and CRPS closely associated with the deterministic forecast model (NARX) and the UKF plus NARX
approach are listed in Table 3. It is revealed that the median forecasts of the UKF plus NARX approach
would output lower values of MAE and CRPS indicators than those of the deterministic forecast
model NARX after the horizon t + 2. That is to say, from the perspective of the median forecast, the
probabilistic forecast approach also can mitigate the drawback of under-prediction.
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Table 3. Results of median forecasts regarding inflows of Three Gorges Reservoir.

Stage Model Indicator
Horizon

t + 1 t + 2 t + 3 t + 4

Training

NARX
MAE (m3/s) 453 750 849 1037
CRPS (m3/s) 781 1025 1189 1306

UKF plus
NARX

MAE (m3/s) 412 702 811 954
CRPS (m3/s) 724 894 1064 1202

Validation

NARX
MAE (m3/s) 474 782 919 1079
CRPS (m3/s) 813 1106 1216 1390

UKF plus
NARX

MAE (m3/s) 439 736 851 975
CRPS (m3/s) 767 910 1097 1243

Testing

NARX
MAE (m3/s) 465 931 893 1006
CRPS (m3/s) 798 1035 1194 1354

UKF plus
NARX

MAE (m3/s) 428 719 838 960
CRPS (m3/s) 749 901 1082 1224

In summary, the UKF plus NARX approach not only can create more accurate and robust
probabilistic forecasting results but can also mitigate the problems of systematic under-prediction of
extreme flood events. Despite UKF indeed correcting for bias, it also produces a probabilistic forecast
which we believe is more important. Furthermore, the reasons that we do not conduct a comparative
analysis between LKF (including the autoregressive model, AR(1)) and NKF consist of: first, the
AR(1) is a simple formation of LKF. The LKF approach can only identify the linear error estimation
whereas the NKF approach can quantify the non-linear error estimation. Second, the rainfall-runoff
process is intrinsically complex and non-linear and demands non-linear techniques for quantifying
predictive uncertainty.

We want to mention that the probabilistic forecasting approach only spent around 60-s calculation
temporal cost to provide the deterministic (within 50 s) and the probabilistic (within 10 s) flood
forecasting with respect to the inflows of the TGR. A DELL computer conducted the computation
(Intel® CoreTM i5, 7th Generation CPU @ 2.50 GHz, RAM 8 GB and 1 TB Hard Disk).

5. Conclusions

We adopt a probabilistic forecasting methodology that hybridises UKF and ANN to generate
posterior distributions from observed and forecasted inflows for effectively reducing the predictive
distributions occurring in data-driven flood forecasting to small ranges. The contribution of the
UKF approach depends on modeling the non-linear correlation among hydrologic variables and on
reducing the uncertainty arosing in flood forecasting. The results demonstrated that the recurrent
neural network (NARX model) produced more accurate and stable deterministic flood forecasting on
the inflows as longer lead time and effectively mitigated time-lag effects as compared with the static
neural network (BPNN model). The reason could be due to a key strategy: the recurrent mechanism
drives the integration of the antecedent observations and forecasts of input variables into the next
forecasting step for alleviating the accumulation and propagation of multi-step-ahead forecast errors.

Nevertheless, the NARX model also suffered the technical barrier of systematic under-prediction of
extreme flood events. Therefore, the UKF was applied to the post-processing of deterministic forecasts
obtained from the NARX model. The results demonstrated that the UKF plus NARX approach not
only can provide a narrower predictive distribution on the inflow series at longer forecast horizons but
also can significantly alleviate under-prediction phenomena. The reason can be due to the key strategy:
the effective quantification of the non-linear correlation among variables for lessening hydrologic
uncertainty. Finally, it is worth noting that the computational time of the UKF plus NARX approach is
extremely short (less than 60 s); therefore, it can be applied with success to real-time flood forecasting.
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Abstract: Vegetation coverage variation may influence watershed water balance and water resource
availability. Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial
heterogeneity in vegetation coverage and is the main freshwater resource of local residents and
downstream countries. In this study, we proposed a model based on random forest (RF) to
predict the Normalized Difference Vegetation Index (NDVI) of the Yarlung Zangbo River Basin
and explore its relationship with climatic factors. High-resolution datasets of NDVI and monthly
meteorological observation data from 2000 to 2015 were used to calibrate and validate the proposed
model. The proposed model was then compared with artificial neural network and support vector
machine models, and principal component analysis and partial correlation analysis were also used for
predictor selection of artificial neural network and support vector machine models for comparative
study. The results show that RF had the highest model efficiency among the compared models.
The Nash–Sutcliffe coefficients of the proposed model in the calibration period and verification period
were all higher than 0.8 for the five subzones; this indicated that the proposed model can successfully
simulate the relationship between the NDVI and climatic factors. By using built-in variable importance
evaluation, RF chose appropriate predictor combinations without principle component analysis or
partial correlation analysis. Our research is valuable because it can be integrated into water resource
management and elucidates ecological processes in Yarlung Zangbo River Basin.

Keywords: NDVI; Yarlung Zangbo River; machine learning model; random forest

1. Introduction

Vegetation is produced as a result of the interactions among factors such as soil, atmosphere,
and moisture [1]. Vegetation is affected by climate because of biophysical responses such as plant
respiration, photosynthesis, and evapotranspiration [2]. Recent research found that vegetation
plays a key role in future terrestrial hydrologic response, and understanding water stress is of the
utmost importance for properly predicting future dryness and water resources [3]. Changes in
global climate and associated effects on vegetation condition have received an increasing amount
of attention [4]. Among such research, the Normalized Difference Vegetation Index (NDVI) is
frequently used to monitor changes in vegetation conditions, because of its close relationship with
photosynthetically active radiation, which is absorbed by photosynthesizing tissues [5,6]. With the
improvement of remote sensors, the NDVI has been widely applied in continental and regional
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research [7]. Continuous NDVI datasets make it possible to trace vegetation conditions changes
and explore the underlying climate factor-associated mechanisms [8,9]. The NDVI has been widely
exploited to monitor and quantify drought disturbance in semiarid and arid regions with low values
corresponding to stressed vegetation [10,11]. As a known covariate with other environmental variables,
the NDVI was also applied to soil-loss-prone area identification [12,13], wetland delineation [14],
irrigation and soil salinity management [15]. Therefore, quantifying the relationship between NDVI
and climate factors, and predicting the NDVI trends will help effectively guide regional water resource
managements [16,17].

Yarlung Zangbo River, the longest river on the Tibetan Plateau, has high spatial heterogeneity in
vegetation conditions and is the main freshwater resource of local residents and downstream countries.
As one of the most important ecosystems in the Tibetan Plateau, the vegetation conditions of the Yarlung
Zangbo River Basin (YZRB) have a significant impact on the water balance and biological population of
the Tibetan Plateau and surrounding areas [17]. Because of the influence of the plateau’s high altitude,
YZRB vegetation is extremely fragile and sensitive to global climate change. In recent years, statistically
significant warming and intensive drought were observed in the YZRB [18], where the cultivated land
accounts for about 62.89% of the area of the Tibet Autonomous Region [19]. Soil erosion is another water
resources problem of YLZB, where the vegetation conditions play an important role [20]. Moreover,
the changes in vegetation cover also influence the water availability of the YLZB [21,22]. Therefore,
investigating and modelling the vegetation responses to climate changes is of great significance to
the water resource management of YLRB and the water governance of the transboundary rivers [23].
Han et al. explore the relationship between the NDVI and the meteorological variables of the YZRB [24].
Liu et al. analyzed the spatiotemporal patterns of vegetation during 1998–2014 using the NDVI [25].
Sun et al. investigate the spatial heterogeneity of changes in vegetation growth and their driving
forces using the NDVI of the YLZB [26]. Based on these researches, an NDVI prediction model that
incorporates a comprehensive understanding of the climate–vegetation–hydrology relationships could
be important for integrated water resource management.

A large amount of studies have been devoted to exploring the response of the NDVI to
precipitation and temperature on regional and global scales, which are the most common climate
factors [27,28]. Most of the studies adopted linear methods, such as partial correlation coefficient [29],
complex correlation coefficient [30] and linear regression [31]. Due to the complexity of ecosystem
and the uncertainties of vegetation dynamics, nonlinear modes, especially machine learning models,
attached the attention of researchers [32–35]. Moreover, because the climate and topography show
high heterogeneity from upstream to downstream regions [36,37], it puts forward higher requirements
on the universal abilities of prediction models in the YZRB. Furthermore, because of the diversity
of ecosystems and climate characters, the correlation between NDVI and climate are diverse in
different regions [38]. Therefore, predictor selection is also a challenge for NDVI prediction models.
Recently, random forest (RF) has received substantial attention in water resource research [39,40]. RF is
advantageous because it can handle large datasets and undergoes predictor selection using a built-in
variable importance evaluation method [41,42]. Therefore, RF should be highly suitable for the NDVI
prediction of the YZRB. This is the first time RF has been applied to explore the complex relationship
between the NDVI and climatic factors to the best of our knowledge.

The objective of this study was to propose feasible NDVI prediction models for the YZRB on
the subzone scale. RF was adopted to simulate the relationships between NDVI and climatic factors.
A comparison was then conducted between the RF and Artificial Neural Network (ANN) and Support
Vector Machines (SVM) models. For comparative study, principal component analysis (PCA) and
partial correlation analysis (PAR) were used for predictor selection of the models. This research will
improve our knowledge on the climate–vegetation–hydrology relationships of the YZRB, which is an
important high-altitude continental plateau basin.
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2. Materials and Methods

2.1. Study Area

The Yarlung Zangbo River is the largest river on the Tibetan Plateau and one of the most important
international rivers [43]. It originates from the Jemayangzong Glacier in southern Tibet and has a total
length of 2229 km and its drainage area is 2.42 × 105 km2 [44]. This river is one of the highest rivers
in the world, with an average elevation of above 4600 m, and tilts from the west to the east, with an
average slope of 2.6◦ [21]. The Yarlung Zangbo River has six major tributaries (the Dogxung Zangbo,
Nyangqu, Lhasa, Nyang, Yigong Zangbo, and Purlung Zangbo Rivers). The locations of the YZRB and
its tributaries are shown in Figure 1.

Figure 1. Location of the Yarlung Zangbo River Basin (YZRB) and its five subzones.

Because of the unique topographic characteristics and high altitude of the plateau, the vegetation
and ecological environment of the YZRB are relatively fragile and complex [23] and show obvious
changes from upstream to downstream [45]. According to the China Vegetation Atlas (Figure 2),
the upstream region is located in an arid zone that is dominated by alpine grassland and meadows [46].
With decreasing elevation, the midstream transitions into a continental climate and is mainly covered
by alpine grassland and meadows, and the cultivated vegetation slightly increases. The lower reaches
of YZRB have a subtropical climate and are mainly covered by coniferous and broadleaf forests.

Figure 2. Vegetation conditions map of the YZRB.
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Yarlung Zangbo river has more than 130 tributaries, which is larger than 100 km2, and its major
tributaries include Nianchu River, Lhasa River, Nyang River, and Parlung Tsangpo. By considering
the hydrological and vegetation similarity, which is shown in Figures 1 and 2, the YLZB is divided
into 5 subzones in the research. The area and vegetation conditions of the five subzones are shown in
Tables 1 and 2.

Table 1. Name and area of the subzone.

Subzone Watershed Name Area (km2)

1 Upper reaches of the Yarlung Zangbo River 70,048
2 Nianchu River 43,741
3 Lhasa River 31,571
4 Parlung Zangbo 26,574

5
Nyang River 66,543

Lower reaches of the Yarlung Zangbo River

Table 2. Proportion of different vegetation types in each subzone.

Subzone 1 2 3 4 5

Cultural Vegetation 0.29 2.49 1.41 0.11 2.43
Alpine Vegetation 32.71 26.26 20.81 26.65 21.8
Broadleaf Forest 0 0 0 0.38 15.73

Needle leaf Forest 0 0 0 19.23 16.13
Meadow 49.23 48.82 53.86 11.48 8.85
Steppe 11.86 12.79 7.69 0 1.6
Scrub 3.44 8.34 13.97 23.69 30.47
Others 2.48 1.29 2.25 18.46 3

total 100 100 100 100 100

2.2. Data Description

A quality-controlled NDVI remote sensing product (MOD13A3) is selected in this study,
obtained from the observation of MODIS (Moderate Resolution Image Spectroradiometer) data
provided by NASA, spanning 16 years (February 2000 to December 2015). MOD13A3 is the third
level product, based on the secondary product, corrected the edge distortion (Bowtie effect) produced
by the sensor imaging process. The spatial resolution of the product is 1.1 km × 1.1 km, while the
time resolution is monthly. The data were processed into the Geostationary Earth Orbit Tag Image
File Format (GEO TIFF) by MODIS Reprojection Tool (MRT) software and processed by ArcGIS
projection splicing. The monthly mean air temperature and precipitation data covering 2000–2015
from 30 meteorological stations located in the YZRB were collected from the China Meteorological
Data Network. The locations of the meteorological stations are shown in Figure 1.

2.3. Methodology

2.3.1. Random Forest

RF was first proposed by Breiman (2001) [47] as an ensemble learning method that can be used
in both classification and regression tasks. The model is considered capable of dealing with small
sample sizes and high-dimensional correlation relationships [47]. RF is also advantageous because of
its robustness; it does not easily lead to overfitting or provide biased estimates when predictors that do
not add information are used [48].

RF includes a group of classification and regression decision trees (CARTs) that are unpruned and
generated by bootstrap sampling and random variable selection. The RF algorithm can be divided
into the following steps. First, the training dataset is randomly extracted from the original dataset by
bootstrap resampling. Second, the CARTs are established for each training set. Compared with the
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traditional CART method, RF selects random feature combinations to split each node, and each CART
grows to the maximum extent without any pruning. Finally, the RF output is obtained by voting in
classification mode or averaging in the regression mode of all of the CART predictions.

RF provides a built-in cross-validation process that occurs in parallel with the training procedure
for the out-of-bag (OOB) samples, which are not chosen by the bootstrap process. RF can evaluate
variable importance by randomly permuting these variables and observing the difference in model
performance using OOB samples. At the end of procedure, RF obtains variable importance by averaging
these differences, which is then normalized by the standard deviation.

2.3.2. Model Implementation and Validation

The RF is utilized to simulate the nonlinear relationship between the NDVI and climate factors
in the 5 subzones. The monthly area-averaged NDVI datasets for each subzone were obtained by
calculating the average values of each pixel. The monthly area-averaged precipitation and temperature
of 5 subzones were obtained from actual data. For model development, the monthly average NDVI
datasets and monthly area precipitation and temperature datasets of each subzone are divided into
two datasets. The datasets from 2000 to 2009 were used for model calibration, and those from 2010 to
2015 were used for model validation.

Two machine learning models, ANN and SVM, which were previously used for NDVI
prediction [49,50], were selected to compare with RF performance. A three-layer back propagation (BP)
ANN model was used in this research. The BP method has been the most widely used algorithm to
design multiple layer neural networks, and has also been successfully used for NDVI prediction [16].
SVM was the first classification machine learning algorithm and was proposed by Vapnik, and then
gradually derived to the regression algorithm [51]. SVM has been widely used for hydrological
prediction, and most recently for NDVI prediction. In this research, SVM with linear kernel function
was used, which has been widely used in former studies.

One of the most important steps in the development of machine learning prediction models is
the choice of appropriate predictors. Due to the spatial heterogeneity of the vegetation in the YLZB,
the relationships between the NDVI and climate factors are different in the 5 subzones. Therefore, it is
important to choose appreciate climate factors as predictors in NDVI prediction. In previous studies,
PCA and PAR were used for predictor selections of ANN and SVM models. For comparative study,
here, PAR and PCA were both used for predictor selection of the ANN and SVM models [52]. For PCA,
the climate factors are standardized by subtracting the mean from the original values and then dividing
the results by the standard deviation of the original variables. The PCA method is then applied to the
standardized climate factors to extract principal components (PCs) that are orthogonal. The obtained
PCs preserve more than 90% of the variances that are selected as predictors. Then, the PCs are used in
the ANN and SVM modeling, and these results are marked as, ANN-PCA and SVM-PCA. For PAR,
climate factors with a partial correlation coefficient greater than 0.3 were selected as predictors, and the
corresponding results are marked as ANN-PAR and SVM-PAR.

2.3.3. Model Evaluation Index

The mean absolute percentage error (MAE), Nash–Sutcliffe coefficient (NASH), root mean square
errors (RMSE), and correlation coefficient (R) statistical indicators were used to assess the predictive
performance of the ANN, SVM, and RF models. MAE, NASH, RMSE, and R were defined as:

NASH = 1−

n∑
i=1

(Yi,obs −Yi,sim)
2

n∑
i=1

(Yi,obs −Yobs)
2

,
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RMSE =

√√√√ n∑
i=1

(Yi,obs −Yi,sim)
2

n
,

MAE =

n∑
i=1

∣∣∣Yi,obs −Yi,sim
∣∣∣

n
,

r =

n∑
i=1

[(Yi,obs −Yobs)(Yi,sim −Ysim)]√
[

n∑
i=1

(Yi,obs −Yobs)
2
]

√
[

n∑
i=1

(Yi,sim −Ysim)
2
]

where Yi,obs is the measured NDVI value of the station, Yobs is the mean of the observed NDVI value,
Yi,sim is the vector of the simulated NDVI value, and Ysim is the mean of the simulated NDVI value.
In general, a higher NASH value indicates better model efficiency; in contrast, smaller RMSE, MAE,
and R values indicate higher accuracy.

3. Results and Discussion

3.1. Spatial and Temporal Characteristics of the NDVI in the YZRB

The inter-annual variations of the NDVI, precipitation, and temperature on the subzone scale
from 2000 to 2015 are shown in Table 3. The NDVI and temperature values showed a statistically
insignificant increase, whereas the average precipitation of the Yarlung Zangbo River Basin significantly
decreased from 528 mm in 2000 to 396 mm in 2015, with a total increase of 0.8 ◦C over the 16 years.
This finding is consistent with the results of previous studies [26].

Table 3. Rainfall, temperature and the Normalized Difference Vegetation Index (NDVI) perennial
change rate.

Subzone Precipitation (mm) Temperature (◦C) NDVI

Sub1 −3.9 0.02 0.1 × 10−3

Sub2 −3.7 0.04 0.1 × 10−3

Sub3 −9.86 0.07 0.4 × 10−3

Sub4 −13.86 0.04 0.7 × 10−3

Sub5 −12.8 0.01 0.2 × 10−3

Total −8.25 0.03 0.2 × 10−3

In the five subzones, NDVI gradually increased from upstream to downstream. The average
annual growth of NDVI in the five subzones was 0.1 × 10−3, 0.1 × 10−3, 0.4 × 10−3, 0.7 × 10−3,
and 0.2 × 10−3. The precipitation and temperature show similar trends. The average annual growth of
precipitation was −3.9, −3.7, −9.86, −13.86, and −12.8; the average annual growth of temperature was
0.02, 0.04, 0.07, 0.04, and 0.01.

3.2. Predictors Selection

In order to determine the optimal predictors for NDVI prediction models, PCA and PAR were
used to analyze the relationships between NDVI and precipitation/temperature at different lead times.
The results are shown in Tables 4 and 5, where Pn represents the average precipitation with a lead
time n month, and Tn represents the average precipitation with a lead time n month. With reference to
similar studies and the meteorological cycles [32–35], the maximum lead times were set to 6 months.

As shown in Tables 4 and 5, the correlations between the NDVI and precipitation/temperature
gradually decayed with the increase of lead time. The PCA results show that the precipitation and
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temperature whose lead time was shorter than 2 months had major impacts on the NDVI in these
subzones. However, the PAR results varied in these subzones. In Sub1 and Sub5, the precipitation in
the present month and temperature whose lead time was shorter than 2 months had major impacts
on the NDVI. In Sub2, the precipitation whose lead time was shorter than 1 month and temperature
whose lead time was shorter than 2 months had major impacts on the NDVI. In Sub3, the precipitation
whose lead time shorter than 1 months and temperature whose lead time shorter than 3 months had
major impacts on NDVI. In Sub4, the precipitation whose lead time was shorter than 2 months and
temperature whose lead time was shorter than 3 months had major impacts on the NDVI. In general,
the relationships between the NDVI and temperature were slightly closer than those between NDVI
and precipitation in the five subzones.

RF evaluates the relative contribution of each predictor using a built-in variable importance
evaluation process. The importance of the precipitation/temperature at different lead times in these
subzones are calculated and indicated in Figure 3. As illustrated in Figure 3, although the importance
of precipitation and temperature gradually decreased, the increase in lead time and the decreases
were not as significant as in the PCA and PAR results. This finding may indicate that RF can use all
predictors without overfitting. Thus, the precipitation and temperature whose lead time was shorter
than 6 months were used for RF modeling of the five subzones.

Figure 3. Important factors (rainfall and temperature) in different months.

Table 4. Contribution and cumulative contribution rates for selected principal components.

Subzone PCA T0 P0 T1 P1 T2 P2 T3 P3

sub1
Contribution rate 0.46 0.26 0.14 0.06 0.03 0.03 0.01 0.01

Cumulative contribution rate 0.46 0.72 0.86 0.92 0.95 0.98 0.99 1.00

sub2
Contribution rate 0.56 0.27 0.05 0.05 0.03 0.02 0.01 0.01

Cumulative contribution rate 0.56 0.83 0.88 0.93 0.96 0.98 0.99 1.00

sub3
Contribution rate 0.59 0.19 0.06 0.05 0.04 0.03 0.03 0.01

Cumulative contribution rate 0.59 0.78 0.84 0.89 0.93 0.96 0.99 1.00

sub4
Contribution rate 0.58 0.24 0.05 0.05 0.03 0.03 0.01 0.01

Cumulative contribution rate 0.58 0.82 0.87 0.92 0.95 0.98 0.99 1.00

sub5
Contribution rate 0.57 0.20 0.08 0.06 0.04 0.03 0.01 0.01

Cumulative contribution rate 0.57 0.77 0.85 0.91 0.95 0.98 0.99 1.00

T0: Temperature of the month, P0: rainfall of the month, T1: temperature of the previous month, P1: rainfall of the
previous month, T2: temperature of the first 2 months, P2: rainfall of the last 2 months, T3: temperature of the first
3 months, P3: rainfall in the first 3 months.
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Table 5. Partial correlation calculation results.

PAR Sub1 Sub2 Sub3 Sub4 Sub5

T0 0.61 0.80 0.60 0.75 0.60
P0 0.56 0.78 0.58 0.66 0.57
T1 0.41 0.53 0.44 0.57 0.39
P1 −0.06 0.50 0.42 0.50 −0.06
T2 0.38 0.45 0.36 0.45 0.32
P2 −0.16 0.11 0.28 0.35 −0.11
T3 0.27 0.20 0.33 0.43 0.28
P3 −0.25 −0.20 −0.15 0.22 −0.25

T0: Temperature of the month, P0: rainfall of the month, T1: temperature of the previous month, P1: rainfall of the
previous month, T2: temperature of the first 2 months, P2: rainfall of the last 2 months, T3: temperature of the first
3 months, P3: rainfall in the first 3 months.

3.3. Comparative Study

The calibration and validation results of the RF and comparative models are summarized in
Table 6.

Table 6. Machine learning calculation results.

Subzone Model
Calibration Validation

NASH RMSE MAEP R NASH RMSE MAEP R

Sub1 ANN-PCA 0.68 0.03 0.02 0.84 0.67 0.03 0.03 0.86
ANN-PAR 0.65 0.03 0.02 0.84 0.63 0.03 0.03 0.82
SVM-PCA 0.90 0.02 0.01 0.95 0.87 0.02 0.01 0.95
SVM-PAR 0.90 0.02 0.01 0.94 0.85 0.03 0.02 0.95

RF 0.96 0.02 0.01 0.98 0.91 0.02 0.01 0.98

Sub2 ANN-PCA 0.74 0.03 0.03 0.91 0.73 0.04 0.03 0.92
ANN-PAR 0.69 0.03 0.03 0.83 0.71 0.04 0.03 0.84
SVM-PCA 0.90 0.02 0.02 0.95 0.91 0.02 0.01 0.95
SVM-PAR 0.89 0.02 0.02 0.94 0.90 0.02 0.02 0.94

RF 0.97 0.01 0.01 0.98 0.95 0.01 0.01 0.98

Sub3 ANN-PCA 0.78 0.05 0.05 0.94 0.77 0.05 0.04 0.94
ANN-PAR 0.79 0.05 0.04 0.91 0.79 0.05 0.04 0.91
SVM-PCA 0.91 0.04 0.03 0.95 0.89 0.04 0.03 0.95
SVM-PAR 0.89 0.04 0.03 0.94 0.87 0.04 0.03 0.94

RF 0.96 0.02 0.02 0.98 0.96 0.02 0.02 0.98

Sub4 ANN-PCA 0.75 0.05 0.04 0.90 0.75 0.05 0.04 0.89
ANN-PAR 0.71 0.05 0.04 0.84 0.67 0.06 0.05 0.82
SVM-PCA 0.85 0.04 0.03 0.92 0.82 0.04 0.03 0.92
SVM-PAR 0.79 0.05 0.04 0.88 0.77 0.05 0.04 0.88

RF 0.94 0.03 0.02 0.97 0.89 0.03 0.03 0.97

Sub5 ANN-PCA 0.78 0.04 0.03 0.89 0.72 0.05 0.04 0.87
ANN-PAR 0.72 0.05 0.04 0.86 0.67 0.05 0.04 0.83
SVM-PCA 0.84 0.04 0.03 0.92 0.73 0.05 0.03 0.92
SVM-PAR 0.78 0.04 0.04 0.89 0.68 0.05 0.03 0.89

RF 0.92 0.03 0.02 0.96 0.83 0.04 0.03 0.96

The results show that RF was superior to the comparative models in the calibration and validation
periods. The NASH RF values for the five subzones were 0.96, 0.97, 0.96, 0.94, and 0.92 in the calibration
period, and 0.91, 0.95, 0.96, 0.89, and 0.83 in the validation period. All of the measured criteria were
superior to those of the compared models (ANN and SVM).

The results of the two-parameter selection were also compared between the ANN and SVM
models. PCA was superior to PAR for both the ANN and SVM models. For the ANN models,
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the average RMSE and MAE were similar in both the calibration and validation periods. However,
the average NASH and R of the results using PAR were superior to those of the PCA by 0.03 and
0.04 in the calibration period, and 0.03 and 0.05 in the validation period, respectively. For the SVM
models, the average NASH and R increased by 0.03 and 0.02 in the calibration period, and 0.03 and
0.02 in the validation period, respectively. The average RMSE and MAE decreased by 0.002 and 0.004
in the calibration period, and 0.004 and 0.006 in validation period, respectively. Therefore, PCA was
advantageous over PAR, with increases of NASH and R, and decreases of RMSE and MAE.

4. Conclusions

As a key component of ecohydrological processes, vegetation conditions influence the efficiency
of plant water use and potentially affect water resources. Therefore, investing the changes of
vegetation conditions and exploring the vegetation responses to climate changes will provide essential
information for regional water resource management [53,54]. Combining with climate models,
NDVI prediction models can assess the effects of future drought events [10]. As a covariate with
other environmental variables, NDVI prediction models will also provide essential information for
irrigation management [15] and soil-loss-prone area identification [12,13], etc. By exploring the
vegetation condition changes of the YZRB and their relationship with climatic factors, we proposed an
NDVI prediction model based on RF with area-averaged precipitation and temperature as predictors.
The monthly rainfall and temperature observations from 30 meteorological stations in the YZRB and the
MODIS NDVI datasets from 2000 to 2015 were selected to calibrate and validate the proposed model.
The RF results were also compared with those of ANN and SVM models. The primary conclusions are
as follows:

1. RF successfully simulated the relationship between NDVI and climatic factors. The NASH
coefficients of the proposed model during the calibration period in the five subzones were all
higher than 0.9, and those during the verification period were all higher than 0.8. Among the five
tested models, RF showed the highest model efficiency in both the calibration and validation
periods among all compared models.

2. RF showed advantages for predictor selection. The built-in variable importance evaluation
allowed RF to select predictors without additional selection methods, such as PAR and PCA.
Moreover, the numbers of predictors were greatest for RF among the compared models. RF showed
robustness for modeling, because it could take full advantage of all predictor and avoid overfitting.

3. PCA and PAR were used to analyze the factors that affect the NDVI in YZRB subzones. The results
show that the rainfall and temperature of the first 3 months had significant impacts on NDVI,
and temperature had a greater influence than rainfall in most of the subzones.

Because of sparse meteorological networks, this research was conducted on a subzone scale.
In the future, we will try to explore the relationships between NDVI and climatic factors at a higher
resolution with gridded meteorological observations, which will be more applicable for integrated
water resource management. The adoption of more vegetation indices, such as leaf area index (LAI),
is another important direction.
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Abstract: Practitioners often neglect the uncertainty inherent to models and their inputs. Point
Estimate Methods (PEMs) offer an alternative to the common, but computationally demanding,
method for assessing model uncertainty, Monte Carlo (MC) simulation. PEMs rerun the model with
representative values of the probability distribution of the uncertain variable. The results can estimate
the statistical moments of the output distribution. Hong’s method is the specific PEM implemented
here for a case study that simulates water runoff using the ANUGA model for an area in Glasgow, UK.
Elevation is the source of uncertainty. Three realizations of the Sequential Gaussian Simulation,
which produces the random error fields that can be used as inputs for any spatial model, are scaled
according to representative values of the distribution and their weights. The output from a MC
simulation is used for validation. A comparison of the first two statistical moments indicates that
Hong’s method tends to underestimate the first moment and overestimate the second moment. Model
efficiency performance measures validate the usefulness of Hong’s method for the approximation
of the first two moments, despite the method suffering from outliers. Estimation was less accurate
for higher moments but the moment estimates were sufficient to use the Grams-Charlier Expansion
to fit a distribution to them. Regarding probabilistic flood-inundation maps, Hong’s method shows
very similar probabilities in the same areas as the MC simulation. However, the former requires just
three 11-minute simulation runs, rather than the 500 required for the MC simulation. Hong’s method
therefore appears attractive for approximating the uncertainty of spatiotemporal models.

Keywords: flood-risk map; hydrodynamic modelling; Sequential Gaussian Simulation; urban
stormwater

1. Introduction

Flood inundation, in its many forms, is one the most devastating types of natural disaster for
civilization [1]. Floods are involved in the majority of fatalities associated with natural disasters [2]
and cause severe economic damage by disrupting and destroying processes within the society and
economy. The socio-economic impact of flood inundations has given rise to studies on the subject
receiving widespread interest. Flood-risk assessments are in particular focus and are legally required
in some parts of the world, for example in the European Directive on the Assessment and Management
of Flood Risks [3].

Maps are one of the best ways to present the spatial distribution of uncertainty and risk. Flood-risk
maps are event-based and show the probability of the occurrence and consequences of a flood [1].
The process of producing flood-risk maps involves floodplain mapping and uncertainty analysis.
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Floodplain maps are generated by a deterministic approach using either empirical, hydrodynamic or
simplified-conceptual models [4–9]. Historical flood data is employed to validate models and calibrate
their parameters [10]. Despite a notable research effort in recent decades, deterministic models remain
afflicted by uncertainty [9]. This is in part because the models are assumed to be a comprehensive
representation of the relevant physical processes and their relationship to water flow, and in part
because they are assumed to use an optimal set of parameters. The issue is further compounded
because uncertainty is likely to be non-stationary. Practitioners such as environmental agencies, river
basin authorities and engineering consultancies often fail to fully invest the effort required for the
detailed setting up of model and lack the computational resources required to solve the physical
models [1]. This means that, in practice, additional uncertainty can be introduced to flood inundation
modelling by the application of simplified, conceptual models in a deterministic way.

Realistically evaluating the risk of flood events and planning countermeasures therefore requires
probabilistic floodplain maps, which are produced from ensemble simulations, like sensitivity
analysis, of deterministic models [1]. The probabilistic approach is also more robust concerning
the non-stationary aspect of uncertainty because of the many simulations that use a diverse set of data
and parameters. Despite awareness of the benefits of this approach, Di Baldassarre et al. [1] claims
that practitioners rarely apply probabilistic methods because of a slow rate of knowledge transfer
and their familiarity with deterministic results. The authors further conclude there is a lack of a
coherent terminology, a systematic approach and mature guidance for the use of probabilistic methods
in hydrological analyses.

Reliability engineering has made a major contribution to uncertainty analysis. For one-dimensional
models, several approaches can be used to quantify uncertainty. These include the First-Order
Second-Moment (FOSM) method [11], Monte Carlo (MC) simulations [12], the Moment method [13],
the spectral method [14], the Mellin transformation [15,16] and Point Estimate Methods (PEMs) [17–22].

Two-dimensional models are complicated by the need to consider spatial variability, which is
handled by random field theories. Random fields can be generated in many ways [23] and serve as
input for MC simulations which are common in uncertainty analysis, though very demanding in terms
of computational resources. The study by Aerts et al. [24] is a good example: the researchers attempt
to optimally locate and design a ski run while considering the uncertainty arising from an uncertain
Digital Elevation Map (DEM). The uncertainty is analyzed by a MC simulation, the distinct DEM
realizations are derivatives of random error fields, and the error values are the result of measurements
at ground control locations. The measured differences are then analyzed for their spatial structure in
the form of a variogram. Kriging is used as part of a Sequential Gaussian Simulation (SGS) [25–27].
SGS is a method of generating random fields to interpolate the non-measured errors between the
ground control locations.

The popularity of MC simulations is illustrated by their continuous development. This development
has led to various stratified sampling methods [28,29] that reduce the computational burden of MC,
for example, Latin Hypercube Sampling [30–32]. Another improvement was the combination of MC
with the Markov Chain process [33–35]. A useful implementation of MC can be found in the work by
Feinberg and Langtangen [36].

Suchomel et al. [37] present a hybrid method combining the FOSM with random fields. Although the
method can only consider uncorrelated uncertain variables, spatial correlation is accounted for by
spatial averaging, which thus implies a variance reduction. The method was implemented as a finite
element model.

In hydrology, uncertainty is commonly quantified by sensitivity analysis [9]. This involves
perturbing within feasible limits variables and parameters–either individually and gradually (local) or
simultaneously and randomly–and then assessing the effects on the outputs and any interactions.

The Generalized Likelihood Uncertainty Estimation (GLUE) is based on a Bayesian approach [1].
Similar to MC, GLUE requires several model realizations using random samples of the parameter in
focus. The realizations are subsequently distinguished into behavioral and non-behavioral groups.
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The outputs (e.g., the extent of flood inundation) are merged using Bayesian equations to result in a
distributed probability profile. GLUE is less rigorous and requires the user to make many choices,
increasing the potential for methodological errors [9].

A probabilistic modelling approach usually involves repeated runs of deterministic models using
samples from across the range of parameters and available data. The purpose is to approximate
the probability distribution of the output. For users with scarce computational resources, simplified
conceptual methods are often more convenient than physics-based models.

The purpose of this study is to expand the application of PEMs to uncertainty analysis of
spatiotemporal models and to develop a convenient way to produce probabilistic inundation maps.

2. Materials and Methods

This section explains the modelling approach and data used in this study. First, the ANUGA
inundation spatial model [38,39] is briefly explained. The MC approach is subsequently discussed
and this is followed by an introduction to Hong’s PEM [20]. Furthermore, the expansion of PEM to
two-dimensional space is clarified. Finally, the section concludes by describing a case study and its
data set.

2.1. ANUGA

ANUGA is developed by the Australian National University (ANU) and Geoscience Australia
(GA). The fluid dynamics of ANUGA is implemented using a finite volume approach to solve the
Shallow Water Wave Equations. The simulation domain is partitioned into a mesh of triangular
cells. The governing Shallow Water Wave Equations are solved at the centroid of the cell and thus
provide water depth and horizontal momentum over time. ANUGA is capable of simulating the
wetting and drying process when water enters and leaves a cell. It can therefore approximate the flow
onto a beach, dry land and around structures such as buildings. Discontinuities, such as hydraulic
jumps, are accommodated by the finite-volume implementation. A scenario set-up requires the
domain’s geometry, initial water level and boundary conditions. The drivers of the system in the
inundation model, like rainfall, abstraction and culverts, are designed as operators and are also
required to set up the scenario. The mesh generator can be used interactively to help the user to
tailor the domain’s geometry. Mesh triangles are symbolically tagged to indicate boundary regions
or regions with different parameters, such as the Manning friction coefficients. ANUGA is mainly
written in the Python programming language, which allows for flexible usage [39]. Computationally
intensive components are executed as C routines by the means of Python’s numerical module Numpy.
The approach has been validated by adequately modelling various inundation problems [40,41].

2.2. Monte Carlo Simulation

MC simulation involves running a simulation many times with different random samples from
the probability distribution of an uncertain input variable to obtain a numerical probability distribution
of the output variable [24]. MC is very commonly used in uncertainty quantification to capture a
system’s natural variability [12,42,43]. The MC simulation serves as benchmark in this study to test the
accuracy of the spatially implemented PEM. The outcome of MC is currently the best approximation
to the “ground truth” of a stochastic system.

Distinct spatial realizations of the input variable in question (ground elevation) are produced by a
SGS. Random error fields induce noise into the DEM data to derive distinct realizations. The error
values originate from the differences between the original data set and the ground control data set at
50 locations. Figure 1 shows the histogram of the elevation error, which displays a non-normal form.
Error values were interpolated by Ordinary Kriging to obtain error values for the whole spatial domain.
Because Kriging provides an estimate of a variable’s mean and standard deviation, the variable can be
represented as a random variable according to a Gaussian distribution. However, Figure 1 shows that
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the errors are not normally distributed, and thus need to be normalized by the means of normal score
transformation [44].

Figure 1. Histogram showing the elevation error and the location of the representative values (red):
mean = −0.12, standard deviation = 0.14.

The MC approach requires many simulation runs. Accordingly, 500 were carried out for this
study, requiring 500 distinct realizations of the random error field. The first step was to create the
same number of random paths visiting every grid cell. Following these paths, the error value for
each non-ground control cell was interpolated according to neighboring cells in relationship to the
variogram. Because each path is different, the error value of each cell differed slightly from those
around it. The mean and standard deviation of the Kriging enabled a random selection from a
normal distribution. SGS was conducted by a Python library using the mean of the High Performance
Geostatistics Library [45]. Subsequently, the error values were back-transformed into the original
distribution [44]. The advantage of using Kriging was weighting the influence of the neighboring cells
according to the semivariogram permitted the spatial structure to be respected.

2.3. Hong’s Point Estimate Method

2.3.1. Theory

The core idea of the PEM is to calculate the statistical moments of the output variables.
The moments are derived from several realizations of a deterministic model using representative
values of the uncertain variable as an input. The purpose is to approximate the probability distribution
of the model’s output variable, which is related to the probability distribution of the uncertain input
variables. The process only requires a few statistical moments of the input variables to be known.
The derivation of PEM assumes that the rth moment of the output variable is the integral of the
evaluation function with the random input variables over their domains with respect to their joint
distribution functions. The equations of the representative values and weights are the products of
expanding this function by Taylor series at various points of the variable distributions. The original
PEM was proposed by Rosenblueth [21], but this has since proved to be too inefficient because it
requires 2m model evaluations, where m is the number of uncertain variables. Thus, the refinement
suggested by Hong [20], which is a is a 2m + 1 PEM scheme, was used.

Although this study considers only one variable (elevation), the set of random variables is defined
as Xi, i = 1, 2, . . . , m. Therefore, to compute the statistical moments of the output requires just three
simulation runs, one for each representative input value, k. The first four statistical central moments
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(mean, variance, skewness and kurtosis) were used to approximate the distribution of the uncertain
variable and thus compute the location of the representative values.

The locations of the representative values for each uncertain variable, i, in standardized space, ξi,k,
were computed by Equation (1) based on the skewness, λi,3, and kurtosis, λi,4, of the uncertain variable.

ξi,k =

{
λi,3

2 + (−1)3−k
√

λi,4 − 3
4 λ2

i,3 , k = 1, 2

0 , k = 3
(1)

Subsequently, the standardized location was transformed using the mean, μi, and standard
deviation, σi, of the uncertain variable to its original space, xi,k, by Equation (2). The representative
value k = 3 was the mean value of the variable.

xi,k = μi + σiξi,k (2)

Based on the standardized values for location, skewness and kurtosis, the weights for the
representative values, ωi,k, were then calculated by Equation (3).

ωi,k =

⎧⎨
⎩

(−1)3−k 1
ξi,k(ξi,1−ξi,2)

, k = 1, 2
1
m − 1

ξi,4−ξ2
i,3

, k = 3 (3)

The weight determines the proportion of impact that each evaluation of the model F(.) at the
location of the representative value has on the statistical moment of the output variable. The rth
statistical moment of a function of m random variables, Z, was then approximated by Equation (4).

E(Zr) ≈Σm
i=1ωi,3(F(μx1, μx2, ..., μxi, ..., μxm))

r+

Σm
i=1Σ2

k=1ωi,k(F(μx1, μx2, ..., xi,k, ..., μxm))
r (4)

2.3.2. Spatial Implementation of PEM

Similar to the MC approach, the spatial implementation also relies on random error fields.
Instead of 500 error fields, this study only uses 2m + 1 error fields, i.e., three, given that only
one uncertain variable is considered. The three error fields were produced by the SGS process.
Hong’s method was then used to determine the representative values of the distribution as described
by Equations (1) and (2). Figure 1 shows the histogram of the errors with the locations of the
representative values.

The representative values and the corresponding weights were thereafter used to scale the three
error fields, as can be seen in Equation (5).

sREFi,k = xi,k − (REFi − μREFi )
ωi,kσi

σREFi

(5)

where REFi is the SGS-produced random error field of the uncertain variable, i. Figure 2 shows the
realizations of the random error field, sREFi,k, scaled by the representative values, xi,k; their weights,
ωi,k; and the standard deviation of the uncertain variable, σi. It is important that the range of values in
three scaled random error fields is similar to that of the original random error field.

The simulation was run three times with the corresponding error fields. The statistical moments
of the output variable were computed with Equation (4) as the weighted sum of the simulation results
at the locations of the representative values to the power of the order of the statistical moment.

55



Water 2020, 12, 229

(a) Representative value 1 (b) Representative value 2

(c) Representative value 3

Figure 2. The random error field produced by SGS and scaled according to Equation (5) for three
representative values.

2.4. Workflow

The Figure 3 illustrates the workflow of this study. The point of departure is the DEM and
elevation of ground control locations. Both data sets combined result in error values. The error values
need to be normalized because SGS requires that the input variable has a normal distribution. SGS
generates 500 error fields for MC and three for PEM. The error values are back-transformed to the
original distribution. Equation (5) scales the error fields for PEM. The error fields modify the DEM.
The modified DEMs are supplied to ANUGA with the purpose to run an inundation scenario with a
rainfall operator. The outputs are 500 raster time series data sets for MC and three for PEM. In the case
of MC, the 500 raster time series data sets are reduced to four data sets, one for each statistical moment.
In the case of PEM, Equation (4) estimates the raster time series data of the moments. The model
efficiency performance measures finally compare the raster time series of each moment estimated
by both methods. For each model efficiency performance measure, the results are one raster data
set for each moment where each grid cell contains a model efficiency value. Each raster data set is
subsequently summarized by mean, median, standard deviation, range and skew. The flowchart only
displays the model efficiency performance assessment for the reason of readability.

2.5. Case Study

The location of the case study is Cockenzie Street and its surroundings in the city of Glasgow,
UK. The data set was provided by the UK Environment Agency following their benchmark test
No. 8 of two-dimensional hydraulic packages [41]. The data set contains the DEM, the geometry of
buildings and roads, the Manning friction coefficients of paved and unpaved surfaces, the extent of
the simulation domain, the location of the nine water level gauges and a rainfall curve. The study area
is visualized in Figure 4. The DEM covers an area of approximately 0.4 km by 0.96 km. The original
resolution of the DEM (0.5 m) was reduced to 5 m because of computational limitations. The range of
the ground elevation is 21 m to 37 m. There are over 14.000 grid cells in the domain.
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Figure 3. Workflow of the study.
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Figure 4. Digital Elevation Map with land cover of the area around Cockenzie Street in Glasgow, UK.

There are only two land cover categories with Manning friction coefficients: pavements (0.02)
and unpaved surfaces (0.05). The simulation time was 1000 s with a 10-second time-step. The initial
condition was a dry bed. The rainfall began after 1 min and lasted for 3 min with an intensity of
400 mm/h.

3. Results and Discussion

The model comparison below follows the recommendations in Bennett et al. [46] and Biondi et al. [47].
The times series at the nine gauge locations indicated in Figure 4 were visually compared. The similarities
and differences of the spatial extents of the maximal inundations are then briefly assessed. The evaluation
is completed by using the following model efficiency performance measures [47] on all time series over
the whole spatial domain: Nash-Sutcliffe Model Efficiency (NSE), Root Mean Square Error (RMSE)
and Index of Agreement (IoA). The statistical moments of MC should correspondingly be considered
as “ground truth”, i.e., akin to observed data. We focus on the first and second statistical moments
because of their more important relationship with real-world applications, but also consider the third
and fourth moments because they permit the fitting of a probability distribution to the output variable.

A comparison of the water depth values is shown using residual plots in Figures 5 and 6.
The residual plots show the differences and similarities over time. Figure 6 groups the time series with
noteworthy behavior. During rainfall (from time-step 61 to 240), PEM mostly underestimates the first
and second moment, except for at gauges 4 and 6 where it overestimates both moments. Gauge 7 is
particular as PEM underestimates the first moment here but then overestimates the second moment.
PEM also appears to be less sensitive during the more dynamic period, i.e., when mass (rainfall)
is added to the system. Therefore, the residuals are much higher during these periods. After the
rainfall had stopped, the output from MC and PEM converged at most gauges, except at gauges 1
and 3. PEM continued to slightly underestimate the first moment at most gauge locations while also
overestimating the second moment at many gauge locations. Concerning the first moment, there is
a bias towards MC, except at gauge 4. The plots show a bias of the second moment towards PEM,
which is especially visible for gauge 3. The estimations of the second moment by PEM are also marked
by outliers, especially for gauges 2, 6, 7 and 9. However, it is very sensitive to the multitude of paths
runoff can take when slightly changing elevation. This is especially the case for the gauges grouped in
Figure 6.
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(a) Gauge 2 (b) Gauge 4

(c) Gauge 5 (d) Gauge 6

(e) Gauge 8 (f) Gauge 9

Figure 5. Residual plots showing similarities and differences between predictions made by MC
simulation and PEM.
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(a) Gauge 1 (b) Gauge 3

(c) Gauge 7
Figure 6. Residual plots showing similarities and differences between predictions made by MC
simulation and PEM for gauges with noteworthy behaviour.

The spatial extent of the first two moments of the maximal flood inundation are compared in both
Figures 7 and 8 because peak water depth is important for practical purposes. The mean estimations by
MC and PEM in Figure 7 depict a very similar spatial structure and magnitude. Figure 8 confirms the
previous statements about the second moment. Despite similar spatial structures, the second moment
is systematically overestimated by PEM. This observation is useful as it seems that PEM sets the upper
limit for the second moment.

Table 1 summarizes the model efficiency performance measures for all time series of the estimated
statistical moments. The model efficiency performance measures consequently compare the similarity
between the results of MC and PEM. The empirical distributions of the performance measures are
described by mean, median, standard deviation, range and skew. The column NSEmean characterizes
the means of the Nash–Sutcliffe efficiency between MC and PEM of every estimated moment. The other
columns follow the same logic. The NSE in Table 1 is the most commonly employed performance
measure in hydrology. It ranges from 1 to negative infinity, where 1 indicates a perfect match.
The RMSE in Table 1 ranges from 0 to positive infinity, where 0 indicates a perfect match. The NSE and
RMSE suffer potential bias when comparing models with offsets [46], perhaps because of the usage of
the square root. To complement the evaluation, the IoA in Table 1 was also calculated. The advantage
of using the IoA is that it uses absolute differences, and thus might better avoid bias. It ranges from 0
to 1, where 1 indicates a perfect match. The mean values for the performance measures for the first and
second moments show a good match. The situation is further improved when regarding the median
owing to the impact on the mean values of far outliers, as indicated by the range and skew values.
The outliers also prevent the performance measures being summarized in a box plot. Estimations
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of the second moment by PEM yielded more under-outliers, as is clearly observed when comparing
the negative mean of the NSE with the median. The third and fourth moments perform less well.
The reasons for this appear to be more systematic because range and skew indicate that outliers are
less of a problem than for the first and second moments. Interestingly, the NSE and IoA suggest that
the estimations of the fourth moment match the observations better than those of the third moment,
but RMSE suggests the opposite. The decreasing performance of the PEM estimations with the order
of moments might have been caused by the usage of the square function in the calculation of the
moments in Equation (4).

(a) Estimation by MC

(b) Estimation by PEM

Figure 7. Map of the 1st statistical moment of maximal water depth.
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(a) Estimation by MC

(b) Estimation by PEM

Figure 8. Map of the 2nd statistical moment of maximal water depth.

Table 1. Summary statistics of model efficiency performance for all time series of the estimated
statistical moments at each grid cell.

NSEmean NSEmedian NSESD NSErange NSEskew

1st Moment 0.73 0.99 2.35 141.49 −34.87
2nd Moment −1.95 0.96 38.10 2008.66 −35.86
3rd Moment −0.78 −0.25 1.81 12.61 −1.72
4th Moment 0.07 −0.32 0.96 10.92 −1.74

RMSEmean RMSEmedian RMSESD RMSErange RMSEskew

1st Moment 0.0074 0.0007 0.0164 0.1775 3.6896
2nd Moment 0.0179 0.0014 0.054 0.9263 6.1075
3rd Moment 5.092 3.6726 4.101 20.4579 1.0632
4th Moment 74.6667 33.7397 85.76 443.706 1.7032

IoAmean IoAmedian IoASD IoArange IoAskew

1st Moment 0.96 0.99 0.09 0.96 −5.28
2nd Moment 0.88 0.99 0.18 0.99 −2.22
3rd Moment 0.55 0.64 0.35 0.99 −0.23
4th Moment 0.62 0.81 0.36 0.99 −0.51
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The end-product of this study is the probabilistic inundation map. The Gram-Charlier expansion,
which was implemented using the R package PDQutils [48], was used to fit the statistical moments to a
probability distribution based on a normal distribution. Figure 9 displays the probability of a maximal
inundation over 0.2 m. Despite the differences of the higher moments between MC and PEM, PEM
predicts a similar risk of inundation of over 0.2 m in terms of probability values and spatial extent.

(a) Estimation by MC

(b) Estimation by PEM

Figure 9. Probabilistic inundation maps showing the probability of inundation over 0.2 m.

4. Conclusions

This study demonstrated that PEMs are capable of approximating the uncertainty of an output
in spatiotemporal models. Using PEMs instead of the more commonly used MC simulations yields
considerable savings of computational resources. Instead of 500 simulation runs, each lasting 11 min for
the data used in this study, only 3 simulation runs were required for the PEM approach. This decrease
in computational resource requirement is especially important for spatiotemporal models because
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of the amount of data and the complexity involved. Methodological advances like this are key to
development because challenges arising from the use of Big Data are unlikely to be overcome by
increases in computational power alone, despite its continually falling cost.

Uncertainty analysis is important to mitigate the impact of an overreliance by practitioners
on deceptive deterministic solutions that arise because fundamental natural principles are less
deterministic than we think and our continued lack of capacity to model phenomena in their totality.
While MC simulations are computationally too demanding to be widely adopted outside of the research
community, PEMs’ ability to decrease computational costs could facilitate the uptake of uncertainty
analysis in various fields. For example, hydrologists could combine water pollution models and PEMs
to assess the risk of exceeding the legislated values (such as the U.S. EPA’s Total Maximum Daily
Loads). In a similar fashion, PEMs could help to determine the risk of exceeding health-related air
pollution thresholds. Concerning flooding, flood-control authorities and insurance companies could
better evaluate the potential risks for critical infrastructure and for insured objects, respectively.

Future studies should investigate different implementations of PEMs for spatiotemporal models
and how to accommodate multivariate cases, where spatial cross-correlation is of tremendous
importance. Current visualization techniques need to be improved to exploit the full potential of the
information furnished by uncertainty analysis.
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Abstract: The uncertainty assessment of urban hydrological models is important for understanding the
reliability of the simulated results. To satisfy the demand for urban flood management, we assessed the
uncertainty of urban hydrological models from a multiple-objective perspective. A multiple-criteria
decision analysis method, namely, the Generalized Likelihood Uncertainty Estimation-Technique for
Order Preference by Similarity to Ideal Solution (GLUE-TOPSIS) was proposed, wherein TOPSIS was
adopted to measure the likelihood within the GLUE framework. Four criteria describing different
urban stormwater characteristics were combined to test the acceptability of the parameter sets. The
TOPSIS was used to calculate the aggregate employed in the calculation of the aggregate likelihood
value. The proposed method was implemented in the Storm Water Management Model (SWMM),
which was applied to the Dahongmen catchment in Beijing, China. The SWMM model was calibrated
and validated based on the three and two flood events respectively downstream of the Dahongmen
catchment. The results showed that the GLUE-TOPSIS provided a more precise uncertainty boundary
compared with the single-objective GLUE method. The band widths were reduced by 7.30 m3/s in
the calibration period, and by 7.56 m3/s in the validation period. The coverages increased by 20.3% in
the calibration period, and by 3.2% in the validation period. The median estimates improved, with an
increase of the Nash–Sutcliffe efficiency coefficients by 1.6% in the calibration period, and by 10.0% in
the validation period. We conclude that the proposed GLUE-TOPSIS is a valid approach to assess the
uncertainty of urban hydrological model from a multiple objective perspective, thereby improving
the reliability of model results in urban catchment.

Keywords: urban hydrological model; Generalized Likelihood Uncertainty Estimation (GLUE);
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS); uncertainty analysis

1. Introduction

Land use modifications accompanied by urbanization, including the decrease of vegetation
cover, increase of impervious surfaces, and drainage channel modifications, result in changes in the
characteristics of the surface runoff hydrograph [1,2]. Urban flooding and waterlogging are severe
global environmental issues. Urban hydrological models play an important role in the planning and
construction of urban drainage and flood control systems [3,4]. The Storm Water Management Model
(SWMM), which was developed by the United States Environmental Protection Agency (EPA), has
become one of the most popular urban hydrological models [5,6] in urban stormwater simulation.

Urban hydrological models typically require a large number of parameters, which are difficult
or impossible to measure with sufficient accuracy, and must generally be estimated or evaluated
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from secondary information sources [7,8]. Hence, the obtained simulation results are typically laden
with notable degrees of uncertainty [9]. Thus, various methods have been developed to assess the
uncertainty in urban hydrological models, such as the Monte Carlo Markov chain [10,11], grey box
model [12], Bayesian approach [13], and Generalized Likelihood Uncertainty Estimation (GLUE)
method [14,15]. The selection of the objective function is critical for many of these uncertainty
analysis methods. According to GLUE method, the objective function and acceptability threshold
exert substantial influence on the final assessment results. The Nash–Sutcliffe Efficiency index (NSE) is
widely used as the objective function in the GLUE method for urban hydrological models [16,17].

In 1998, Gupta et al. [18] proposed that hydrological model calibration inherently comprises
multiple objectives, and that converting it into a single-objective model must involve some degree of
subjectivity. The complexity of urban stormwater management comes from flood characteristics such as
the flood volume, peak flood value, lag time, and overflow characteristics such as the overflow volume
and duration. These characteristics concern different management system components [15,19] and are
difficult to be captured by a single-objective function during model calibration and validation. Moreover,
the adoption of the single-objective function introduces additional uncertainties in applications because
it may consider unacceptable parameter sets [20,21]. The controversy can also be found in the use of
informal likelihood measures based on the NSE, which involves subjective decisions [22].

This paper proposes a new framework for analyzing the uncertainty of an urban hydrological
model. TOPSIS (evaluation technique for order performance by similarity to ideal solution), which
is a multiple-criteria decision analysis (MCDA) method developed by Hwang and Yoon [23,24], was
adopted as the likelihood criterion of the GLUE method using four important objective criteria in
urban flood modelling. The proposed method was used to quantify the parameter uncertainties in the
SWMM model and was applied to the Dahongmen (DHM) catchment located in Beijing, China. We
attempted to improve the uncertainty assessment of an urban hydrological model by comprehensively
investigating the performance of the parameter sets during simulation.

2. Methods

The proposed uncertainty analysis method is based on the GLUE framework, which was developed
by Beven and Binley [25]. In the GLUE method, a likelihood measure is selected and calculated to
reflect the goodness of fit between the model simulation and the observations. The model simulations
are considered as non-behavioral when the values of the likelihood measures are lower than the cut-off
threshold. The selection of the likelihood measure and cut-off threshold has been discussed in various
papers, owing to the subjective decisions involved [22,26–28]. Because the single objective always
involves some degree of subjectivity [18], the proposed method uses MCDA to carry out the likelihood
measure; the critical points are summarized as follows:

• The performance of the parameter sets was comprehensively investigated by considering the
threshold of each objective function. Only the parameter sets for which all objective function
values exceeded their threshold were considered as behavioral.

• An integrated likelihood measure was carried out using TOPSIS, which was used as a weighting
factor to derive the posterior probability density functions for both the parameters and the
predictions. The prominent advantage of TOPSIS is that different types of objective functions can
be easily integrated into a unified evaluation index by setting the benefit criteria and loss criteria.

The uncertainty assessment process can be described as follows:

1. Based on Monte Carlo sampling from feasible parameter spaces with a defined prior distribution,
wherein uniform probability distributions are often adopted without prior knowledge [29,30].

2. Instead of a unique likelihood measure, multiple thresholds from multiple criteria are used to
determine the behavioral parameter sets. In urban stormwater management, not only the precision
of the flood process but also the precision of the flood volume and flood peak is considered by the
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modeler [31]. A behavior parameter set should be able to achieve these objectives. The criteria
typically used in flood prediction are as follows:

NSE = 1−
∑n

i=1 (y obs,i− ysim,i

)2

∑n
i=1 (y obs,i − yobs,i

)2 (1)
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∣∣∣∑n
i=1 yobs,i−

∑n
i=1 ysim,i

∣∣∣∑n
i=1 yobs,i

(2)
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∣∣∣∣∣max
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and
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∑(
yobs,i − yobs

)(
ysim,i − ysim

)
√∑(

yobs,i − yobs

)2(
ysim,i − ysim

)2
(4)

where yobs is the observed flow, ysim is the simulated flow, yobs is the average measured flow,
ysim is the average simulated flow, and n is the number of the observed flow points. In the above
formula, NSE is the widely used Nash–Sutcliffe efficiency index [32]. The flood volume bias
(VB) and flood peak bias (PB) are the modified expressions for the flood volume and flood peak
deviation [18,33], respectively. The parameter R represents the consistency between the observed
flow and the simulated flow [34]. The threshold of these criteria can be defined with reference to
practical demand [35]. The reasonable range of the four criteria is between 0 to 1. The optimum
value of NSE and R is 1, and optimum value of VB and PB is 0, which means the simulation
results of the model completely fit the measured results. In this study, the behavioral parameter
sets whose likelihood values of the four criteria were greater than the corresponding thresholds
were chosen for further analysis.

3. TOPSIS, which is a well-known MCDA method and can provide the ranking order of all
alternatives [36,37], was employed in the calculation of the aggregate likelihood value L(θi) of the
behavioral parameter set θi. In the TOPSIS method, the four criteria of all parameter sets should
be normalized by the classification of the benefit and cost criterion, where the benefit criterion
means that a larger value is more valuable, and vice-versa for the cost criterion [37]. In this study,
NSE and R are benefit criteria, while VB and PB are cost criteria; xij is the ith criterion of the jth
parameter set. For the benefit criteria, the normalized value (rij) is calculated as follows:

rij =
xij√∑n
i=1 xij

2
. (5)

For the cost criteria, the normalized value (rij) is calculated as follows:

rij =

1
xij√∑n
i=1

1
xij

2
. (6)
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In many situations, the criterion should be weighted according its importance [36]. Because it
is difficult to identify which criterion is more important, we assume that all criteria are equally
important. The ideal solution Rj

+ and negative-ideal solution Rj
− can be calculated as follows:

Rj
+= max{x1j, x2j, . . . , xnj} (7)

Rj
+= min{x1j, x2j, . . . , xnj}. (8)

Then, the separation of each alternative from the ideal and negative-ideal solutions are expressed,
respectively, as follows:

D+
i =

√√√ n∑
j=1

(
rij −R+

j

)2
(9)

D−i =

√√√ n∑
j=1

(rij −R−j )
2 (10)

The aggregate likelihood value L(θi) is evaluated by comparing the distance from the ideal
solution and the distance from the negative-ideal solution:

L(θi) =
Di

+

Di
++Di

− (11)

4. Finally, the predictions from the behavioral parameter sets are ranked in the order of the likelihood
weights W(i), which is defined as follows:

W(i) =
L(θi)∑N

i=1 L(θi)
(12)

where N is the number of behavioral parameter sets. Additionally, the cumulative probability
distribution for the ranked discharge predictions can be obtained as follows:

P(Q < Q i) =

∑i
j=1 W(j)∑n
j=1 W(j)

(13)

where Q denotes the discharge, and Qi is the discharge prediction ranked at the ith position; n
has the same meaning as in Equation (2). According to the cumulative probability distribution,
the uncertainty bound can be obtained for a given certainty level.

3. Study Area and SWMM Model

3.1. Study Area

The Dahongmen catchment is a typical urbanized area in Beijing, PRC, with a high population
density and heavily built-up underlying surface. The catchment covers an area of approximately
131.49 km2 and is located upstream of the Liangshui River basin in Beijing, between 39◦48’–39◦55’ N and
116◦90’–116◦24’ E. In the catchment, the terrain exhibits a downward trend from the western mountains
to the eastern plains. The annual average precipitation is 522.4 mm, and 80% of the precipitation occurs
during the period from June to September. The river systems and hydro-meteorological stations of the
Dahongmen catchment are shown in Figure 1.
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Figure 1. Station distribution at Dahongmen catchment.

3.2. SWMM Model

The SWMM is a dynamic hydrological simulation model used in single-event or long-term
(continuous) simulations of runoff quantity and quality from primarily urban areas. The runoff
component of SWMM operates on a collection of subcatchment areas that receive precipitation and
generate runoff and pollutant loads. The routing portion of the SWMM transports this runoff through
a system of pipes, channels, storage/treatment devices, pumps, and regulators [38,39]. Additionally,
the SWMM tracks the quantity and quality of the runoff generated within each subcatchment, and the
flow rate, flow depth, and quality of the water in each pipe and channel during a simulation period
with multiple time steps. In this study, SWMM version 5.1 was used; its technical details have been
reported by Rossman et al. [40]. The best performance of SWMM before and after urbanization in the
Dahonmen catchment was addressed by Xu and Zhao (2017) [41].

In this study, five heavy storms (accumulated precipitation > 50 mm) occurred between 2011 and
2012 in the Dahongmen catchment were used for model calibration and verification. Precipitation
on 23 June 2011, 26 July 2011, and 14 August 2011 were used to calibrate the model, and the other
two on 24 June 2012 and 21 July 2012 were used for validation. The accumulated precipitation of
the five events was 110.6, 66.8, 66.9, 63.9, and 197.4 mm, respectively. The rainfall duration of the
five storms was14, 5, 3, 16, and 18 h, respectively. As shown in Figure 1, the hourly series from three
precipitation stations and a DHM gauge station were obtained from the Hydrographic Station of
Beijing, CHINA. The hourly inflow data of the Youanmen station were obtained from the Liangshui
River Basin Authority. The floodwater from this gate only account for very small amount of streamflow
thus will not have great impact on the results of uncertainly analysis. The Digital Elevation Model
(DEM) and sewer system map were provided by the National Aeronautics and Space Administration
(NASA, ASTER GDEM) and Beijing Municipal Institute of City Planning and Design. These datasets
include the locations, section shapes, and conveyance capacities of the river and sewer system in the
study area. The catchment was divided into 13 subcatchments, jointly controlled by the river and
pipe network, wherein there existed a total of 351 drainage channels (282 watercourses and 69 road
drainage channels), as shown in Figure 2.
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Figure 2. Structure of Storm Water Management Model (SWMM) model in Dahongmen catchment.

Table 1 lists the parameters used in the uncertainty analysis of this study, along with their units and
distribution. The minimum and maximum values were obtained from the SWMM user’s manual [40]
and relevant literature [42,43]. The values for the selected model parameters were randomly selected
from uniform probability distributions.

Table 1. Distribution of SWMM parameters.

Category Parameter Description Units Distribution

Basic characteristic %Imperv Percent of impervious area % 60–80

Manning
roughness

N-Imperv Manning coefficient for impervious area 0.025–0.045
N-perv Manning coefficient for pervious area 0.1–0.5
N-river Manning coefficient for riverway 0.03–0.06

N-conduit Manning coefficient for conduit 0.01–0.03

Reservoir in
depressions

D-imperv Depth of depression storage on impervious
area mm 15–40

D-perv Depth of depression storage on pervious area mm 20–50

Infiltration
parameters

MaxRate Maximum rate on Horton infiltration curve mm/h 100–150
MinRate Minimum rate on Horton infiltration curve mm/h 10–90

Decay Decay constant for the Horton infiltration curve h−1 0–50

3.3. Interval Evaluation Index

To analyze the effectiveness of the range of uncertainty, we selected three evaluation indices,
namely, the average band width (B), coverage (CR), and average relative deviation (RD) [41,44], which
are defined as follows:

B =
1
n

n∑
i=1

(Q i
s,upper− Qi

s,lower

⎞⎟⎟⎟⎟⎟⎠ (14)

CR =
nQin

n
× 100% (15)
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n
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2
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)
− Qi

o

∣∣∣∣
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o
(16)

Here, Qi
s,upper and Qi

s,lower are the upper and lower boundary values of the confidence interval;

Qi
o is the observed flow; and nQin is the number of observed values in the confidence interval.
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4. Results

4.1. Comparison of Different Acceptability Thresholds

By the application of Monte Carlo method, 10,000 parameter sets were generated within the
ranges listed in Table 1. The four objective criteria illustrated in Equations (1)–(4) were calculated by
running the SWMM with these sampled parameter sets.

We set the threshold of each objective criterion according to the catchment characteristics and time
scale, which are list in Table 2. The number of parameter sets which met the threshold requirements
are also list in the table.

Table 2. Numbers of behavior parameter sets under different criteria.

Criterion Number Criterion Number Criterion Number Criterion Number

NSE ≥ 0.7 2506 NSE ≥ 0.7 and VB ≤ 0.3 2226 NSE ≥ 0.7 and VB ≤
0.3 and PB ≤ 0.2 1598 NSE ≥ 0.7

and VB ≤
0.3 and PB
≤ 0.2 and

R ≥ 0.8

1598VB ≤ 0.3 3958 NSE ≥ 0.7 and PB ≤ 0.2 1772 NSE ≥ 0.7 and VB ≤
0.3 and R ≥ 0.8 2226

PB ≤ 0.2 4215 NSE ≥ 0.7 and R ≥ 0.8 2506 NSE ≥ 0.7 and PB ≤
0.2 and R ≥ 0.8 1772

R ≥ 0.8 6918 VB ≤ 0.3 and PB ≤ 0.2 2557 VB ≤ 0.3 and PB ≤ 0.2
and R ≥ 0.8 2396

VB ≤ 0.3 and R ≥ 0.8 3413
PB ≤ 0.2 and R ≥ 0.8 3927

As shown in Table 2, 2506 parameter sets could satisfy the requirement of NSE threshold, which
is the least in the 4 criteria and indicates NSE is the strictest criterion among them. Nevertheless,
R threshold is the most flexible one, 6918 parameter sets can satisfy the criterion. Additionally, all
parameter sets that satisfied other criteria thresholds can satisfy R threshold simultaneously.

From Table 2 we can also observe that the number of behavioral parameter sets decreased when
more criteria were considered. There are 2226 parameter sets that satisfied the NSE and VB thresholds
simultaneously, and 1772 parameter sets that satisfied the NSE and PB thresholds. When we considered
all criteria thresholds in GLUE-TOPSIS, the number of behavioral parameter sets reduced to 1598 finally.

4.2. Comparison of Posterior Distribution

We can obtain the posterior probability distributions of the SWMM parameters from the behavioral
parameter sets listed in Table 2. The posterior probability distributions from the single criterion (NSE)
and GLUE-TOPSIS are shown in Figure 3.

Obvious difference can be observed between the posterior probability distributions from single
criterion (NSE) and those from GLUE-TOPSIS. In general, we can find the obvious areas with high
frequency distributions in the posterior probability distribution curves from GLUE-TOPSIS. However,
those from single criterion (NSE) are relative flat.

Overall, the posterior probability distributions of Imperv, N-perv, D-perv, MaxRate, Decay, and
N-conduit are similar for the two methods. Nevertheless, N-imperv, D-imperv, MinRate, and N-river
exhibit a significantly higher frequency interval under GLUE-TOPSIS conditions, which results in
higher sensitivity. Notably, there are obvious high-frequency intervals in the parameters characterizing
the impervious area, owing to the large impervious area in the DHM catchments. Additionally, the
parameter spatial distribution has more than one high frequency interval, which may reflect the
“equifinality” of parameter sets proposed by Beven and Binley [25].
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(a) Posterior distribution of Imperv (b) Posterior distribution of N_Imperv 

  
(c) Posterior distribution of N_perv (d) Posterior distribution of D_Imperv 

  
(e) Posterior distribution of D_perv (f) Posterior distribution of MaxRate 

 
(g) Posterior distribution of MinRate (h) Posterior distribution of Decay 

 
(i) Posterior distribution of N_river (j) Posterior distribution of N_conduit 

Figure 3. Parameter posterior distribution for single criterion and multiple criteria.
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4.3. Uncertainty Estimation of Discharge Simulation

We simulated the SWMM discharge with parameter sets from the single-criterion and
GLUE-TOPSIS method. The normalized simulations were sorted by the likelihood value to determine
the 95% and 5% uncertainty bounds (90 confidence interval). Figures 4 and 5 present the plotted
simulation results obtained by the single criterion and GLUE-TOPSIS methods for five rainfall events
during the calibration and validation periods. To analyze the effectiveness of the uncertainty ranges,
the evaluation results of the uncertainty indices under the two methods are listed in Table 3.

  
(a) Single criterion (20110623) (b) GLUE-TOPSIS (20110623) 

  
(c) Single criterion (20110726) (d) GLUE-TOPSIS (20110726) 

  
(e) Single criterion (20110814) (f) GLUE-TOPSIS (20110814) 

Figure 4. MCDA analysis results for rainstorm events 20110623, 20110726, and 20110814 in
calibration period.
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(a) Single criterion (20120624) (b) GLUE-TOPSIS (20120624) 

  
(c) Single criterion (20120721) (d) GLUE-TOPSIS (20120721) 

Figure 5. Multiple-criteria decision analysis (MCDA) analysis results for rainstorm event 20120624,
20120721 in validation period.

Table 3. Uncertainty interval evaluation results.

Method Criteria B(m3/s) CR (%) RD (m3/s)

Calibration
period

20110623
Single criteria 48.308 54.5 13.606
GLUE-TOPSIS 35.17 54.5 12.804

20110726
Single criteria 50.563 20.0 41.454
GLUE-TOPSIS 43.723 40.0 40.551

20110814
Single criteria 39.829 50.0 18.995
GLUE-TOPSIS 37.908 62.5 16.276

Average Single criteria 46.233 41.5 24.685
GLUE-TOPSIS 38.934 52.3 23.211

Validation
period

20120624
Single criteria 17.100 10.0 17.100
GLUE-TOPSIS 14.100 10.0 14.150

20120721
Single criteria 53.953 81.8 17.140
GLUE-TOPSIS 41.839 84.8 13.358

Average Single criteria 35.526 45.9 17.120
GLUE-TOPSIS 27.970 47.4 13.754

As shown in Figures 4 and 5, the widths of the uncertainty bound from GLUE-TOPSIS method
obviously narrower than those from single criterion method, particularly for the flood peak area and
drop section of the discharge curve. Most of the observations fell within the 90% confidence interval,
except rainstorm 20120624, which is the smallest storm and may influenced by the strobe operation.
However, SWMM model show high performance in rainstorm 20120721, which is one of the most
disastrous rainstorms in history.
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As presented in Table 3, the band width (B), coverage (CR), and relative deviation (RD) were
46.233, 41.5%, and 24.685, respectively, for single criterion method in the calibration period, and 38.934,
52.3%, and 23.211, respectively, for GLUE-TOPSIS method. In the verification period, B, CR, and RD
were 35.526, 45.9%, and 17.120, respectively, for the single criterion method, and 27.970, 47.4%, and
13.754, respectively, for GLUE-TOPSIS method. The results indicate that the GLUE-TOPSIS method
show superiority in uncertainty bounds assessment over the single criterion methods, with lower
values in average band width (B), average relative deviation (RD) and higher values in coverage (CR).

From the simulation results of the median GLUE estimates in Table 4, it can be seen that under
the GLUE-TOPSIS method, the simulation results of NSE, VB are significantly improved compared
with the single criterion method, although the VB of 20110623 has a slight increase. The median
estimates improved, with an increase of the NSE by 1.6% in the calibration period, and by 10.0% in
the validation period. However, the cost criteria PB increased by 0.010 during the calibration period,
from the perspective of single field precipitation, the PB of the 20110814 precipitation and the 20120624
precipitation have increased, indicating that the flood peak flow simulation effect is poor. And the
benefit criteria R decreased by 0.078.

Table 4. Simulation results of the median Generalized Likelihood Uncertainty Estimation (GLUE) estimates.

Method Criteria NSE VB PB R

Calibration
period

20110623
Single criteria 0.863 0.003 0.118 0.994
GLUE-TOPSIS 0.876 0.02 0.112 0.995

20110726
Single criteria 0.936 0.086 0.096 0.955
GLUE-TOPSIS 0.949 0.123 0.077 0.941

20110814
Single criteria 0.966 0.184 0.085 0.962
GLUE-TOPSIS 0.982 0.103 0.138 0.991

Average Single criteria 0.921 0.091 0.099 0.970
GLUE-TOPSIS 0.936 0.082 0.109 0.975

Validation
period

20120624
Single criteria 0.429 0.402 0.375 0.790
GLUE-TOPSIS 0.530 0.300 0.428 0.663

20120721
Single criteria 0.936 0.041 0.077 0.989
GLUE-TOPSIS 0.974 0.005 0.059 0.962

Average Single criteria 0.683 0.222 0.226 0.890
GLUE-TOPSIS 0.752 0.153 0.244 0.812

5. Discussion

The uncertainties of urban hydrological models have been addressed by several researches [45–48].
Most researches used single objective function such as NSE or VB as evaluation index [45,46]. As shown
in the Figure 6a,b, we found that VB and PB still involved large uncertainties when the NSE was higher
than 0.8. This means that a high NSE value can still lead to the poor simulation of the flow volume and
flood peak.
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(a) Plot of criteria NSE and VB (b) Plot of criteria NSE and PB 

Figure 6. Relationship between different criteria.

Some attempts were made to construct one likelihood function [47,49] considering different
objectives. This likelihood function will not work when the objective change. Other important
objectives such as overflow and flow in sewer system should be considered in uncertainty analysis of
urban hydrological model [15]. The proposed method avoids the process of function construction and
is feasible to be applied considering different objectives.

Considering the completeness and consistent of data, five heavy storms between 2011 to 2012
were selected for uncertainty analysis. These are representative enough to test the model reliability for
heavy storms. However, small storms are easily affected by local Blue-Green Infrastructure in urban
areas that make it difficult to predict [50,51]. Further work needs to test the reliability of the propose
method for different magnitude of flood.

6. Conclusions

Urban hydrological models are extensively used in flood forecasting, sponge cities design, and
pollution management, etc. The uncertainty assessment of an urban hydrological model is important
when evaluating the model’s reliability. Because of the various applications of urban hydrological
models, a single criterion is hard to evaluate their performance. In this research, we proposed a
multiple-criteria uncertainty analysis method, namely GLUE-TOPSIS, and applies it to the uncertainty
assessment of SWMM model in Dahongmen catchment, Beijing. Five typical rainstorm events that
occurred during 2011–2012 were investigated and used to test the performance of the proposed method.
The conclusions can be summarized as follows:

1. 10,000 parameter sets generated by the Monte Carlo sampling in GLUE framework revealed
that none of the four commonly used objective criteria could fully represent the urban flow
process. Notably, the NSE, which is widely used in assessing the performance of hydrological
models also cannot describe the flow characteristics alone, which highlights the need for adopting
multi-criteria methods.

2. The GLUE-TOPSIS method provided more precise uncertainty bounds and median estimates
than traditional GLUE method which used NSE as single criterion. The GLUE-TOPSIS method
reduced the bandwidth and deviation of the uncertainty bounds with a higher coverage than
these from single criterion. The median estimates of GLUE-TOPSIS are also superior to these
from single criterion according to the four objective criteria.

3. The SWMM model performed well in the flood simulation of Dahongmen catchment in Beijing,
PRC. Most observed flows fell within the 90% uncertainty interval, which suggests that the
parameter uncertainty analysis has a relatively high contribution toward improving the simulation
accuracy of flood prediction. The comparison results for the posterior distribution revealed that
the parameters characterizing the impervious area had obvious high frequency intervals, owing
to the large impervious area of Dahongmen catchment.
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The GLUE-TOPSIS method provide a feasible way to assess the uncertainty of urban hydrological
models, which have been used various aspects in urban water resources management. The users
can select objective criteria flexibly and combine them in the GLUE-TOPSIS framework according to
their actual needs. We will proceed our research and apply GLUE-TOPSIS to a wider area in water
resource management.
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Abstract: The impacts of climate change on water resources in snow- and glacier-dominated basins
are of great importance for water resource management. The Snowmelt RunoffModel (SRM) was
developed to simulate and predict daily streamflow for high mountain basins where snowmelt
runoff is a major contributor. However, there are many sources of uncertainty when using an SRM
for hydrological simulations, such as low-quality input data, imperfect model structure and model
parameters, and uncertainty from climate scenarios. Among these, the identification of model
parameters is considered to be one of the major sources of uncertainty. This study evaluates the
parameter uncertainty for SRM simulation based on different calibration strategies, as well as its
impact on future hydrological projections in a data-scarce deglaciating river basin. The generalized
likelihood uncertainty estimation (GLUE) method implemented by Monte Carlo sampling was used
to estimate the model uncertainty arising from parameters calibrated by means of different strategies.
Future snowmelt runoff projections under climate change impacts in the middle of the century
and their uncertainty were assessed using average annual hydrographs, annual discharge and flow
duration curves as the evaluation criteria. The results show that: (1) the strategy with a division
of one or two sub-period(s) in a hydrological year is more appropriate for SRM calibration, and is
also more rational for hydrological climate change impact assessment; (2) the multi-year calibration
strategy is also more stable; and (3) the future runoff projection contains a large amount of uncertainty,
among which parameter uncertainty plays a significant role. The projections also indicate that the
onset of snowmelt runoff is likely to shift earlier in the year, and the discharge over the snowmelt
season is projected to increase. Overall, this study emphasizes the importance of considering the
parameter uncertainty of time-varying hydrological processes in hydrological modelling and climate
change impact assessment.

Keywords: Snowmelt RunoffModel; parameter uncertainty; data-scarce deglaciating river basin;
climate change impacts; generalized likelihood uncertainty estimation

1. Introduction

The intergovernmental on Climate Change (IPCC) stated that the temperature will continue to
increase in the 21st century [1]. Potential impacts of global warming on water availability, especially in
snow- and glacier-dominated regions are of great concern [2]. Due to the sensitivity and vulnerability
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of snow and glaciers due to climate change, previous studies have paid considerable attention to
how climate change impacts snow accumulation [3–5], as well as to the timing and amount of
snowmelt [6–8]. Water resources in snow- and glacier-dominated regions will suffer from the probable
risk of declining amounts of snow and size of glaciers. In order to assess the climate change impacts
on the water resources in snow- and glacier-dominated watersheds, it is common to use data from
climate simulations to drive snow/glacier hydrological models [9–11]. In these models, snow- and
glacier-related processes are usually simulated by energy budget methods [12–14] and/or temperature
index methods [15,16], as well as/or multi-layer snow models with snow depth data assimilation
methods [17–19]. The physically-based energy-budget methods and snow models incorporate energy
fluxes occurring within the snowpack and interacting with the surface [20], while the empirical
temperature-index method assumes a linear relationship between air temperature and the rate of
snowmelt [21]. Since the energy budget method requires more meteorological data as input, it is
often impractical to conduct at high-altitude snow and glacier basins with sparse observations.
Temperature-index methods are more practical for snowmelt simulation in data-scarce mountain
regions with insufficient data, as the air temperature is relatively widely available compared to
other components [21].

The Snowmelt RunoffModel (SRM) is one of the most commonly used temperature-index models.
It is a conceptual model developed to simulate and predict daily streamflow based on the degree-day
method in high mountain basins where snowmelt is a major contribution [16]. It has been used to assess
the climate change impacts on river discharge in mountainous environments [11,22–26]. For instance,
Elias et al., [11] investigated the climate change impacts on streamflow timing and runoff volume
utilizing the SRM in the Upper Rio Grande basin, Colorado and New Mexico, USA, and found that
the large decrease in runoff volume in summer would pose challenges to water management in this
region. Tahir et al., [25] applied the SRM to assess the climate change impacts on snowmelt runoff
in the Upper Indus Basin and showed that the SRM is effective in estimating snowmelt runoff in
high mountain regions. Xie et al., [26] proposed and applied a progressive segmented optimization
algorithm (PSOA) for calibrating time-variant parameters of the SRM on the Manas River basin of
Xinjiang, China. Their study showed that the PSOA can effectively calibrate the time-variant model
parameters while avoiding the high increase in computational time caused by a significant increase of
parameter dimensionality.

However, there are multiple sources of substantial uncertainties when applying the SRM for
snowmelt runoffmodeling and projection. Snowmelt modeling generally involves three uncertainty
sources related to forcing data (i.e., input data and data for calibration), imperfections in the model
structure and model parameters [27]. In climate change impact studies, uncertainties arise from
different climate scenarios, as well as from parameter instability due to the possible changes in a basins’
physical characteristics [28]. Among these uncertainties, the identification of model parameters is
an essential step for any hydrological modeling, as there are parameters that cannot be derived directly
from watershed characteristics but rather need to be inferred via a trial-and-error process [29,30].

Parameter uncertainty may be especially amplified in future climate change impact studies [31–33].
Therefore, quantifying uncertainties due to parameter instability, identifiability and non-uniqueness
should be undertaken routinely, and robust methodologies should be implemented. Much attention has
been given to uncertainty in model parameters in the hydrological literature [28,31,34–36]. Among the
methods developed to deal with parameter uncertainty, the generalized likelihood uncertainty
estimation (GLUE) method [37] has been widely used in recent decades [38–41]. The GLUE method is
easy to implement and allows a flexible definition of the so-called likelihood function. The likelihood
function, which is used to separate behavioural and non-behavioural solutions is particularly valuable
for assessment of integrated, distributed models that operate with multi-variable, multi-site and
multi-response criteria [39]. Moreover, a numerical Monte Carlo sampling technique [42] which is
used to sample from the prior parameter distribution is usually coupled with GLUE for quantifying
parameter uncertainties in hydrological modeling [40,43]. Conditioned on the available observational
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data and associated uncertainty bounds, this approach produces a well-distributed set of parameter
distributions, the acceptability of which are similarly good at producing model simulations.

According to previous studies [44–46], the determination of parameters is essential to utilizing
the SRM. Among the SRM parameters, the runoff coefficients (Cs and Cr) expressing the losses as ratios
(Cs/Cr corresponds to the ratio of runoff contributed by snowmelt/rainfall to precipitation) vary in
time, and so are affected by different climatic conditions and land cover properties in a hydrological
year. They are usually calibrated if the agreement between observed and simulated runoffs is not
acceptable [47]. The calibration strategy most commonly used for time varying parameters is to
calibrate them in several sub-periods during the whole calibration period, and then assume that these
parameters are constant in each sub-period. For example, Senzeba et al., [48] used the SRM to simulate
the snowmelt runoff in a seasonally snow-covered eastern Himalayan catchment in 2006, 2007 and
2009. Single values of CS and Cr were applied for each calibration year and the mean value from the
three calibration years was used for a validation year (hereafter referred to as 1-period calibration).
Zhang et al., [49] divided the hydrological year into two sub-periods (i.e., May–June and July–April) to
calibrate the runoff coefficients of the SRM (hereafter referred to as 2-period calibration). In the study
of Fuladipanah & Jorabloo [50], more than two sub-periods were divided in a hydrological year based
on the variations of climatic conditions (hereafter referred to as multi-period calibration).

In the last few decades, the SRM has been applied successfully to mountainous watersheds all
over the world, and it was recommended by Abudu et al., [46] that the SRM has a potential to forecast
streamflow and to evaluate the effects of climate change on runoff in the mountainous watersheds
of northwestern China, especially in data-scarce watersheds in high-elevation regions. However,
the parameter uncertainty of the SRM restricts its application in this respect, as its parameter stability
is relatively limited due to the highly dynamic behavior of snowpack and snowmelt.

Accordingly, this study aims to evaluate the parameter uncertainty for SRM simulation by using
different calibration strategies, and to assess its impact on future hydrological projections. More specific
objectives are to: (1) estimate the uncertainty of SRM simulation based on parameter uncertainty (i.e.,
the overfitting problem) and different calibration strategies (i.e., yearly calibration and multi-year
calibration); and (2) assess the uncertainty of future SRM discharge projections determined by utilizing
different calibrated parameter sets in a data-scarce deglaciating river basin.

In order to have a wide review of calibration strategies, we apply yearly calibration (which obtains
optimal parameter sets from year to year) and multi-year calibration (which gets one optimal parameter
value set for many years) with different sub-periods. The GLUE method is used to assess the flexibility
and sensitivity of the parameters and to model the uncertainty arising from calibrated parameters.

2. Study Area and Data

2.1. Study Area

The data-scarce deglaciating Yurungkash watershed was chosen to implement the proposed study
(Figure 1). It is one of the tributaries of the snow- and glacier-fed Tarim River Basin, the biggest inland
river basin in China. The Yurungkash watershed is located approximately between 80◦–82◦ N latitude
and 74◦–75◦ E longitude in the Xinjiang Uygur Autonomous Region and covers a surface area of about
14,600 km2. It originates from the Akshay Glacier located on the northern slope of Kunlun Mountain,
and its elevation ranges from about 1280 m above sea level (asl) up to 6780 m asl. The mean altitude of
the watershed is about 4680 m asl and nearly 60% of the area lies above 5000 m asl.
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Figure 1. The location and topography of the deglaciating Yurungkash watershed with the
meteorological station (Hotan) and the discharge station (Tunguz Locke).

The studied watershed is typically snow- and glacier-characterized, with about 40% of the
watershed covered by permanent snow and ice. There is no meteorological station installed within
the watershed; Hotan station is the closest one (Figure 1), about 600 km far away from the outlet of
the river basin, located at 37.13◦ N, 79.93◦ E and 1375 m asl. The mean annual temperature of the
study region is about –8 ◦C, and it receives a mean total annual precipitation of 260 mm with 65%
falling between June and September. The Tunguz Locke station is located at the basin outlet (36.81◦ N,
79.92◦ E) and records a mean annual flow of 80 m3/s. The annual runoff presents a large intra-annual
variability with about 90% occurring in the snowmelt season (April–September).

2.2. Data

The Shuttle Radar Topography Mission (SRTM), comprised of a modified radar system and
offering high-resolution DEM data [51], was used to derive the topography of the study area and
delineate the elevation zones. The Yurungkash watershed was divided into six elevation zones and
the properties of these zone areas are listed in Table 1. The mean elevation of each elevation zone
was calculated by using hypsometric curves, which were also used to derive the temperature of
different elevation zones by extrapolation of base station temperature. Daily air temperature observed
at the Hotan station and daily precipitation from the China Ground Rainfall Daily Value 0.5◦ × 0.5◦
Lattice Dataset (CGRD) [52] for the 2003–2012 period were used for model simulation. Two different
datasets were used for temperature and precipitation because precipitation at the Hotan station cannot
well represent the whole study watershed, due to the large spatial variability of precipitation in
mountain basins. The CGRD was generated by interpolating observed precipitation from more than
2000 meteorological stations in China, utilizing the thin plate spline approach which was developed
to interpolate and smooth scattered data in geosciences [53]. The reliability of this dataset has been
proven by Zhao et al., [54]. Daily runoff data at the Tunguz Locke station for the 2003–2012 period was
used for SRM calibration and validation.
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Table 1. Characteristics of elevation zones.

Zone Elevation Range (m) Mean Elevation (m) Area (km2) Area (%)

A 1280–2700 2230 1324 9.07
B 2701–3700 3190 2248 15.40
C 3701–4700 4250 2170 14.86
D 4701–5200 4975 2485 17.02
E 5201–5700 5440 3238 22.18
F 5701–6780 6020 3135 21.47

Total 1280–6780 4470 14600 100

The daily snow-covered area (SCA) is another model input, derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) [55] snow cover product. The MODIS 8-day composite snow
cover data product (MOD10A2) is generated by compositing observations from the MODIS Snow
Cover Daily L3 Global 500 m Grid (MOD10A1) data set. For every eight-day period, the grid is
mapped as snow if snow is observed on any single day, and cloud cover is reported only if the grid
was cloud-obscured for all eight days. The MOD10A2 can better eliminate the influence of clouds
and improves the precision of snow identification over that of the MOD10A1 [56]. The daily SCA
derived from the MOD10A2 by using linear interpolating was used for model simulation in this study.
The mean monthly watershed-averaged temperature (T), precipitation (P) and snow-covered area
(SCA) for the 2003–2012 period is presented in Figure 2. This figure indicates that the T is above 0 ◦C
during May–September. The watershed receives much more precipitation in July and August than in
other months. The SCA decreases from April and increases after August, and then decreases again after
October. The minimum SCA of the watershed is greater than 40%, which is the area of its permanent
snow/ice.

Figure 2. The watershed-averaged temperature (T), precipitation (P) and snow-covered area (SCA)
(Period 2003–2012). The T, P and SCA were derived from the Hotan station, China Ground Rainfall
Daily Value 0.5◦ × 0.5◦ Lattice Dataset and MODIS product, respectively.

For runoff projection, General Circulation Model (GCM) simulations from phase 5 of the Coupled
Model Intercomparison Project [57] were used to drive the SRM. Although it is desirable to use as
many GCMs as possible, the selection of a representative subset is usually necessary due to the high
computational costs of model simulations.

The k-means clustering method [58], which has been used in several previous studies [59–61],
was applied to select subsets from 26 GCMs under representative concentration pathway 4.5 (RCP
4.5) and RCP 8.5, respectively. The k-means clustering method divided the ensemble of 26 GCMs
into a number of clusters to minimize the within-cluster sum of squared error (SSE). The SSE was
characterized by the Euclidean distance based on the standard changes in temperature and precipitation
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simulated by GCMs between the 2003–2012 and the 2041–2050 periods. A value of four clusters was
determined to offer good group separation as well as a manageable number of simulations. Figure 3
presents the selected subsets of GCMs under RCP 4.5 and RCP 8.5. In each cluster, the colour marker
which is closest to the centroid is the selected one. Table 2 presents the detailed information of the
seven GCMs used in this study.

Figure 3. Sub-sets of the four selected General Circulation Model (GCMs) (color-filled markers) under
representative concentration pathway (RCP) 4.5 and RCP 8.5 found by the k-means clustering method
from a total of 26 GCMs (non-color-filled markers). These are based on the standard changes in
temperature and precipitation simulated by GCMs between the 2003–2012 and the 2041–2050 periods.

Table 2. Seven General Circulation Model simulations’ details of CMIP5.

Model Name Institute/Country Horizontal Resolution (lon×lat)

MPI-ESM-MR Max Planck Institute for Meteorology, Germany 192 × 96
MPI-ESM-LR Max Planck Institute for Meteorology, Germany 192 × 96

IPSL-CM5A-LR Institute Pierre-Simon Laplace, France 96 × 96
GFDL-CM3 USA 144 × 90
NorESM1-M Norwegian Climate Centre, Norway 144 × 96

MIROC5 MIROC, Japan 256 × 128
MIROC-ESM MIROC, Japan 128 × 64

3. Methods

3.1. SRM Modeling

The SRM is a conceptual, simple degree-day-based model that was designed to simulate and forecast
daily streamflow resulting from snowmelt and rainfall in mountain basins. Since it was developed by
Martinec et al., [16], the SRM has been successfully applied to many mountain basins of various sizes
ranging from 0.76 to 917,444 km2, and elevations ranging from 0 to 8848 m asl [62]. In recent years, the SRM
has also been applied to investigate the impacts of climate change on runoff [7,11,25].

In this study, the SRM is applied to simulate and predict daily runoff for the Yurungkash
watershed. It requires three daily input variables (temperature, precipitation and snow-covered area)
and has seven parameters (runoff coefficients Cs and Cr, the degree-day factor, critical temperature,
rainfall contribution area, recession coefficient and the time lag). A detailed description of the SRM
model can be found in the Appendix A.
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3.2. SRM Calibration Methods

Among the SRM parameters, the runoff coefficients (Cs and Cr) vary with time, and so they are
the parameters that are most sensitive to different climatic conditions and land cover properties over
a year-long time frame [47]. Therefore, they are usually the parameters chosen for calibration in SRM
modelling. In order to have a broad perspective for calibrating runoff coefficients, both the yearly
and multi-year calibration strategies with 1, 2, 4, 5, 6, and 7 sub-periods were used for comparison.
X-period calibration means that a hydrological year is divided into × sub-periods based on similar
characteristics in climatic data for runoff calibration. In total, our approach used 12 calibration
strategies. Additional details, including the beginning and ending dates of each sub-period of the
different calibration strategies, are presented in Figure 4. For the 2-period calibration, the ending date
of the last period is 31st may in the following year. For the other calibration strategies, the ending date
of the last period is 31st March in the following year. Apart from Cs and Cr, other model parameters
are presented in Table 3, which were determined as described in the appendix. Calibration was carried
out in the odd-numbered years and validation was performed in the even-numbered years for the
2003–2012 period.

Figure 4. The beginning and ending dates of each period in a hydrological year for different calibration
strategies. Each color in each calibration strategy represents a sub-period. For example, there are
2 sub-periods in the 2-period calibration, the 1st period is June 1 August 31 and the 2 period is September
1 May 31. a represents June 20, b represents July 15 and c represents August 5.
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Table 3. Parameters determined by hydrological judgment as described in the appendix.

Model Parameters Values

Degree Day Factor (cm/◦C/day) 0.3
Lapse Rate (◦C/100 m) 0.65

Threshold Temperature, Tcrit 1 (June–August); 3 (September–May)
Rainfall Contributing Area, RCA 1 (May–September); 0 (October–April)

Recession Coefficient, K, which is Determined by:
Kn+1 =

Qn+1
Qn

= x×Q−y
n

Xc = 0.9895; Xy = 0.026

The Nash-Sutcliffe coefficient (NSE) [63] and the relative volume error (VE), two classical efficiency
criteria in hydrological modelling, were used to evaluate the performance of the SRM. The NSE and
the VE are computed as follows:

NSE = 1−
∑n

i=1

(
Qi −Q′i

)2

∑n
i=1

(
Qi −Q

)2 (1)

VE[%] =
VR −V′R

VR
·100 (2)

where Qi is the measured daily discharge, Q′i is the simulated daily discharge, Q is the average
measured discharge of the given time period or snowmelt season, VR is the measured yearly or seasonal
runoff volume, V′R is the simulated yearly or seasonal runoff volume, and n is the number of daily
discharge values.

3.3. Bias Correction of GCM Outputs

_ENREF_12GCM outputs are too coarse and biased to directly drive an SRM in climate change
impact studies; therefore, a downscaling or bias correction process is needed [64]. In this study,
the watershed-averaged value of the GCM–simulated precipitation was first calculated by the Thiessen
Polygon method [65]. The GCM–simulated temperature was interpolated to the Hotan station using the
Inverse Distance Weighted method [66] in order to be extrapolated later to the higher elevation zones.
The precipitation and temperature were then corrected, respectively based on the watershed-averaged
precipitation from CGRD and temperature at the Hotan station, by a distribution-based bias correction
method, called the Daily Bias Correction (DBC) method in Chen et al., [67]. The DBC is a hybrid method
combining the Local intensity scaling (LOCI) method [68] to correct the precipitation occurrence and
the Daily translation (DT) method [69] to correct the frequency distributions of precipitation amounts
and temperatures. Here are the two steps of this DBC method:

1. The LOCI method was used to correct the precipitation occurrence, which ensures that the
frequency of the precipitation occurrence simulated by GCMs at the reference period equals that
of the observed data for a specific month. A threshold for precipitation occurrence determined at
the historical period was then applied to the future period.

2. The DT method was used to correct the empirical distribution of GCM-simulated precipitation
and temperature magnitudes in terms of 100 quantiles from 0.01 to 1 with an interval of 0.01.

3.4. Future Snow Covered Area Projection

A changed climate would cause a change in the SCA in mountain snow basins. The method for
future SRM simulation developed by Rango & Martinec [70] was used to evaluate the impact of future
temperature and precipitation on SCA in this study. This method estimates the time shift of the SCA in
the present climate over the snowmelt period to produce the SCA in a future climate. The characteristics
of the watershed (i.e., the number of elevation zones, the area and the mean elevation of each zone) and
the SCA parameters (i.e., the degree-day factor, the temperature lapse rate and the critical temperature)
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determined in the present climate, as well as the bias corrected temperature and precipitation in the
future climate are required for future SCA projection. More detailed procedures for calculating SCA
can be found in Rango and Martinec [70].

3.5. GLUE Method for Uncertainty Estimates

The GLUE method [37,71] coupled with Monte Carlo sampling [42] was used in this study to
investigate the parameter uncertainty of the SRM. In this method, a large number of model runs were
made by using many different parameter sets randomly selected from a priori probability distribution.
The acceptability of each run was evaluated against observed values and, the posterior parameter
distribution was extracted based on a certain subjective threshold to maintain a good population
of behavioral solutions. The parameter set with the corresponding model run considered to be
non-behavioral was removed from further analysis. In this study, the GLUE scheme associated with
the SRM includes the following steps:

1. 100,000 Monte Carlo sampling points of Cs and Cr were implemented from a feasible parameter
space (0–1) with uniform distribution;

2. The likelihood values were calculated for all 100,000 model runs;
3. The likelihood functions (NSE and VE) and the threshold values (0.55 and ±10%, respectively)

were specified as behavioral parameter sets; and
4. Posterior parameter sets were extracted depending on the threshold of the likelihood functions.

The sample sizes of the posterior parameter distributions were all over 1000. These posterior
parameter sets were then used in validation and projection. It should be mentioned that for the
yearly calibration, the posterior parameter sets of each year were used individually in the validation
and projection.

The following three indices were used to evaluate the resolution, reliability and efficiency of the
uncertainty interval estimates:

1. The Average Relative Interval Length (ARIL) [34] measures the resolution of the predictive
distributions, which is defined over the entire simulation time period as:

ARIL =
1
n

∑ QUpper,t −QLower,t

Qobs,t
(3)

where n is the number of days in the observed record, QUpper,t and QLower,t are the upper and lower
simulated discharges of the 95% confidence interval, respectively, and Qobs,t is the observed discharge.

The percentage of observations bracketed by the Confidence Interval (PCI) [72] measures the
amount of the observed data within a range of simulated intervals, defined as:

PCI =
Qobs,in

n
(4)

where Qobs,in is the number of observed discharges that are contained within the 95% confidence
interval. A smaller ARIL means a narrower uncertainty interval and a larger PCI means that the
interval has a greater reliability; and

2. The percentage of observations bracketed by the Unit Confidence Interval (PUCI) [35] based on
ARIL and PCI, which is defined as:

PUCI =
(1−Abs(PCI − 0.95))

ARIL
(5)

Larger PUCI values represent smaller uncertainty of 95% confidence interval of discharge
in general.

For the climate change impacts on runoff projection for the 2041–2050 period, the sub-periods’
division in a hydrological year may be different due to the changes in climatic conditions and land

91



Water 2019, 11, 2417

cover properties, which may bring further uncertainty to hydrological projections. This study assumed
there is no change of sub-period division in the future climate. To better represent the changed climate,
the value of Cs, which reflects the decline of the snow coverage and the stage of vegetation growth,
was shifted earlier by 30 days in the climate run, as recommended by previous studies [11,16,73].
The climate change impacts on hydrology were assessed at the 95% confidence intervals of average
annual hydrographs, annual discharge, and flow duration curves.

4. Results

4.1. Parameter Uncertainty

The SRM was calibrated based on the yearly and multi-year calibration strategies, with different
sub-periods (i.e., 1-, 2-, 4-, 5-, 6- and 7-period strategies) in the odd-numbered years, and validation
was performed in the even-numbered years during the 2003–2012 period. Calibration performances
with NSE > = 0.55 and −10% < VE < 10%, as well as the corresponding validation performances are
shown in Figure 5 for different calibration strategies. This figure shows that: (1) for both yearly and
multi-year calibration strategies, the maximum NSE values at the calibration period increase from
1– to 5-period approaches, while there is no obvious improvement for the 6- and 7-period strategy;
(2) the maximum NSE values are larger at the calibration period for yearly calibration, but smaller at
the validation period than those for multi-year calibration; and (3) there are much more samples with
NSE values below 0.55 and absolute values of VE above 10% when using more than two sub-periods
at the validation period, especially for yearly calibration.

Figure 5. Scatter plots of the Nash-Sutcliffe coefficient (NSE) (upper) and the relative volume error VE
(lower) of calibration versus validation for different calibration strategies. The left subplots present the
yearly calibration and the right subplots present the multi-Year calibration.

4.2. Confidence Interval of Discharge

Three uncertainty indices for evaluating 95% confidence intervals of discharge derived from
different calibration strategies are given in Table 4. The following features can be observed: (1) both
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ARIL and PCI increase with the increase of sub-periods for both yearly and multi-year calibration
strategies, making it difficult to identify which calibration strategy is better; (2) considering the PUCI,
the 1– and 2-period calibrations have a larger value of PUCI than the other sub-periods, which indicates
their results are more reliable and less uncertain; and (3) the PUCI values of the multi-year calibrations
are generally larger than those of the yearly calibrations, which means the former approach is better.

Table 4. The Average Relative Interval Length (ARIL), the percentage of observations bracketed by
the Confidence Interval (PCI) and the percentage of observations bracketed by the Unit Confidence
Interval (PUCI) values of the different calibration strategies for the 95% confidence interval of discharge
by different calibrations.

Sub-Period(s)
Yearly Calibration Multi-Year Calibration

ARIL PCI PUCI ARIL PCI PUCI

1 0.454 0.204 0.559 0.440 0.178 0.517
2 1.009 0.430 0.475 0.848 0.376 0.501
4 1.287 0.500 0.427 1.192 0.470 0.436
5 1.531 0.586 0.416 1.361 0.538 0.432
6 1.546 0.596 0.418 1.356 0.556 0.447
7 1.548 0.606 0.424 1.396 0.570 0.444

The 95% confidence intervals of the simulated daily discharge are presented in Figure 6. The results
from the 5-, 6- and 7-period calibrations are not shown in this figure because they are very similar to
those from the 4-period calibration. Figure 6 shows that the confidence intervals of discharge derived
by yearly calibration are slightly larger than those derived by multi-year calibration. The confidence
intervals also become larger with the increase in sub-periods, which is consistent with the higher PCI
values in Table 4. Furthermore, discharges can be observed lying outside the confidence intervals,
which indicates that there are some other uncertainty sources related to forcing data and imperfections
in the model structure that impact SRM discharge simulation in addition to the parameter uncertainty.

Figure 6. The 95% confidence intervals of daily discharge simulated by posterior parameter sets (color
envelope), compared with observed runoff (black lines).
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4.3. Projected Future Temperature, Precipitation, and SCA

By the degree-day method, daily temperature in a future climate modifies the SCA in the present
climate to the approximate future SCA in the snowmelt season (April–September). Figure 7 depicts
the daily watershed-averaged temperature, precipitation and SCA in snowmelt season from four
selected GCMs under RCP 4.5 and RCP 8.5 for the 2041–2050 period (hereafter ‘seasonal’ means
the average value from the snowmelt season). Four GCMs suggest an increase in temperature over
the catchment between 1.2 to 2.6 ◦C under RCP4.5, and an increase of between 1.2 to 3.3 ◦C under
RCP8.5. The precipitation over the catchment is also projected to increase by 12.0% to 39.8% under
RCP4.5, and by 12.2% to 61.8% under RCP8.5. The SCA is projected to decrease in response to the high
temperatures in late June. The figure shows that the predicted SCA decreases rapidly from a (June 21st,
58.0%) to b (July 31st, 40.1%) under RCP4.5 and from c (June 11st, 60.3%) to d (July 25th, 42.8%) under
RCP8.5. The relative decrease in seasonal SCA ranges from 5.7% to 17.7% under RCP4.5, and from
1.2% to 14.8% under RCP8.5.

Figure 7. Projected mean monthly temperature (T), precipitation (P) and snow coverage area (SCA)
(Period 2041–2050) compared with observations (Period 2003–2012). The pink shading represents the
four chosen GCMs, whose mean value is represented by the red line. The same representation is used
for the precipitation, indicated in blue. a represents (June 21st, 58.0%), b represents (July 31st, 40.1%),
c represents (June 11st, 60.3%), d represents (July 25th, 42.8%).

4.4. Uncertainty in the Discharge Projections

The daily discharges are simulated by the SRM using bias corrected temperature and precipitation
from the chosen GCMs under RCP4.5 and RCP8.5, as well as the projected SCA, utilizing the posterior
parameter sets derived by the yearly and multi-year calibration strategies with 1-, 2- and 4-period
segments. Figure 8 presents the 95% confidence interval of the mean daily discharge for the snowmelt
season of the 2041–2050 period. The observed mean daily discharge of the 2003–2012 period is also
presented for comparison. The confidence intervals represent uncertainties from four different GCMs
as well as from the calibrated parameters. The following results can be observed: (1) the median values
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of the future discharge simulated by the yearly and multi-year calibration strategies are higher than
those of the historical discharge, with the onset of snowmelt runoff shifted earlier. (2) The parameter
uncertainty of the yearly calibration is larger than that of the multi-year calibration, as indicated by the
wider pink intervals. (3) The discharge confidence interval is wider when there are more sub-periods,
in particular for the 4-period strategy, which is much wider than the others.

Figure 8. The 95% uncertainty intervals for the GCM–srm predicted daily discharge (Period 2041–2050).
The bottom and top of the colored intervals represent the 2.5th and 97.5th percentile values, respectively.
In each subplot, the pink and blue shadings represent the yearly and the multi-year calibration
strategies, respectively. Median values of the pink and blue envelopes are shown as the red and blue
curves, respectively.

Figure 9 shows the 95% confidence intervals of the mean discharge in the snowmelt season
from four GCMs under RCP4.5 and RCP8.5 for the 2041–2050 period. The observed mean discharge
during the snowmelt season for the 2003–2012 period is also shown. Generally, the projections suggest
increases in the mean discharge for the future period, especially under RCP8.5. The confidence intervals
of mean discharge from the 1- and 2-period calibrations are smaller than those from the 4-period
calibration. In order to compare different sources for uncertainty, these discharge confidence intervals
were grouped into five sources (RCPs, GCMs, multi-year/yearly calibration strategies, division of
sub-periods, and calibrated parameters). For example, to investigate the uncertainty related to the RCP,
discharges were grouped by two RCPs. Each group includes discharges from four GCM, and yearly
and multi-year calibration strategies with different sub-periods. The results show that uncertainty
ranges related to the choice of RCP, GCM, multi-year/yearly calibration, sub-period and calibrated
parameter are [283.11, 308.25], [260.92, 347.93], [267.30, 318.49], [201.86, 229.22] and [165.18, 307.91]
with the unit of m3/s, respectively. In terms of the uncertainty range, the largest uncertainty is found to
be related to the SRM parameters.
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Figure 9. The 95% confidence intervals for the GCM–SRM predicted average discharge of the snowmelt
season (Period 2041–2050). The bottom and top of the colored bars represent the 2.5th and 97.5th
percentile values, respectively. The black bar represents the average snowmelt season discharge
during 2003–2012.

The 95% confidence intervals of the flow duration curve (FDC) for four GCMs under RCP8.5 for
the 2041–2050 period are shown in Figure 10. Only the high-representative concentration pathway
of RCP8.5 is presented to illustrate the uncertainties of the FDC and discuss the differences between
GCMs and calibration strategies. Figure 10 reveals that the low, mid, and high flows are all predicted
to increase in the Yurungkash watershed for the 2041–2050 period. The highest flow, which occurs less
than 10% of the time, is predicted to increase or decrease for different GCMs. This suggests that the
number of days with flows exceedingly above 10% will increase in the future, but there will be no
significant change in the number of days with the highest flows.
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Figure 10. The 95% confidence intervals for the GCM–SRM predicted flow duration curves under
RCP8.5 (Period 2041–2050) compared with the observations (Period 2003–2012) shown as black line.
The dotted and solid lines represent the 2.5th and 97.5th percentile values, respectively.

5. Discussion

It is widely acknowledged that calibration plays an important role in any hydrological modelling
due to parameters that are spatially and temporally heterogeneous or that cannot be measured.
Hence, the problem of parameter optimization and the associated uncertainty must be addressed [74].
Our results show that the simulation performance of the SRM is sensitive to calibration strategies with
different sub-periods for calibrating the time-varying parameters. In terms of the NSE and the VE,
the model’s calibration performance becomes better with more sub-periods. However, there are more
NSE values below 0.55 when the sub-period is more than 4, indicating higher uncertainty. According to
previous studies [32,75], increasing the number of calibrated parameters could yield better calibration
performance, while also bringing larger uncertainties at the validation period. An overfitting problem
may arise from over-parameterization when the amount of information contained in a hydrograph
used for calibration is not enough to estimate a larger number of parameters [76]. An over-fitted model
results in a smaller error for calibration but a larger error for validation. Hence, the 1– and 2-period
strategies appear to be the most rational choice for calibration when considering the balance between
simulation performances and the overfitting problem. In addition, the multi-year calibration would
be more stable than the yearly calibration for SRM modeling, as the former performs better at the
validation period.

In addition, much attention has been paid to parameter uncertainty assessment in hydroclimatic
modeling recently [33,77]. In this study, both the yearly and multi-year calibration strategies with 1-,
2- and 4-periods were used for hydrological climate change impact assessment. Although the runoff
projection contains large uncertainty, it shows that the onset of snowmelt runoff shifts earlier and the
mean discharge of the snowmelt season increases. This result is similar to that of Wang et al., [78],
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in which the response of snowmelt runoff to climate change was investigated in a basin located in
northwest China.

Particularly, it is noticeable that the predicted hydrographs derived from the 4-period calibration
do not shift earlier for peak river runoff. This is not consistent with the common view that the effects of
a warming climate will lead to a peak flow shifting from summer and/or autumn to winter and/or early
spring [2]. Elias et al., [11] applied a forward shift of 30 days for Cs based on a 2-period calibration in
the climate change impact assessment and predicted higher streamflow in March and April, which is
similar to the results derived from the 1- and 2-period calibrations in our study. The result of the
4-period calibration is different from our expectations because it shifts a large value of Cs is shifted to
August, which leads to the peak flow occurring in August under climate change. This result indicates
that the shift in runoff timing predicted by more sub-periods contains greater uncertainty. In addition,
the predicted hydrograph and mean discharge show much wider intervals with the 4-period calibration
than with the 1- and 2-period calibrations, which also indicates larger uncertainties. Hence, the 1- and
2-periods are recommended for SRM hydrological climate change impact assessment. This work also
suggests that a multi-year calibration strategy would be more stable than a yearly calibration strategy
in climate change impact studies.

It is necessary to point out some of the limitations of this study. This study adopted the GLUE
method to estimate parameter uncertainty, one drawback of which is that the derived parameter
distributions and uncertainty intervals are sensitive to some subjective factors, e.g., the threshold
values of the estimation criteria [40,43]. Lower threshold values could result in a wider uncertainty
interval of the posterior distribution [34] which may explain why the parameter uncertainty of SRM has
the largest impact on the future hydrological projection compared to other uncertainties in this study.
This result is similar to that of Tian et al. [79], in which parameter was found to be the major source of
uncertainty for simulating future high flows over a southern river basin in China. However, this result
is different from that of previous studies [64,80], which showed that hydrological model parameter
uncertainty was relatively small compared to other uncertainty sources (RCP and GCM). In previous
studies, hydrological model parameters were calibrated by a certain optimization algorithm, which is
not recommended for the SRM [47]. However, the use of thresholds in this study cannot guarantee that
all parameters are optimized. Nevertheless, the results indicate that the uncertainty associated with
a parameter should be highlighted in SRM modeling. It is acknowledged that the parameter distribution
and uncertainty intervals derived by GLUE have no clear statistical meaning [81]. Comparison of the
results by different threshold values is needed to test the sensitivity of the GLUE, as recommended by
Jin et al., [34].

Another limitation of this study is that only different calibration strategies were taken into
account in the parameter estimation. It would be more comprehensive to calibrate parameters over
different periods, such as wet and dry climate periods [82], as well as by a multi-objective calibration
approach [83]. In addition, Seiller et al., [77] showed that the diagnosis of the impacts of climate
change on water resources is very much affected by the objective functions used for hydrological model
calibration. Investigation of the parameters’ nonstationarity in a changed climate could be another
avenue for future studies [84].

Also, it is necessary to mention that although temperature-index models are more practical, they are
often less accurate than full energy balance models [85]. In addition, the skill of temperature-index
models is likely to decrease for future climate change impact studies due to the changes in the energy
balance which is not a direct result of temperature (e.g., changes in albedo). The degree day factor has
been shown to change over time scales of a decade or even over a single melt season [85–87].

6. Conclusions

This study evaluated the parameter uncertainty for SRM simulation by different calibration
strategies and its impact on future hydrological projections in a data-scarce deglaciating river basin.
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Different sub-periods were compared and the uncertainty of future discharge derived by the calibrated
parameter sets was assessed. The following conclusions can be drawn:

1. The strategy with a division of 1 or 2 sub-period(s) in a hydrological year is appropriate for SRM
modeling when considering the balance between simulation performance and the overfitting
problem/uncertainty. In addition, the multi-year calibration approach is more stable than the
yearly calibration for SRM hydrological simulation and projection, as the latter presents a lower
validation performance combined with higher future projection uncertainty.

2. The future runoff projection contains large uncertainties, among which parameter uncertainty
plays a significant role. The projection results indicate that the onset of snowmelt runoff is
likely to shift earlier, and the discharge of the snowmelt season is projected to increase for the
2041–2050 period.

Overall, this research highlights the parameter uncertainty of SRM and its impact on hydrological
climate change assessment in a data-scarce deglaciating river basin. The results imply that for
hydrological models, like the SRM, time-variant parameters could result in over-parameterization
issues and bring uncertainties in the hydrological simulation. Both of these have a significant effect
on climate change impact assessment, and therefore should be routinely considered when using
these models.
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Appendix A

Appendix A.1 SRM Modelling

The following equation shows the daily discharge estimated by superimposing snowmelt and
rainfall on the calculated recession flow:

Qn+1 = [Csn × an(Tn + ΔTn)Sn + Crn × Pn] ×A× α× (1−Kn+1) + QnKn+1 (A1)

where:

Q = the average daily discharge (m3/s)
Cs/Cr= the runoff coefficient expressing the losses as a ration of runoff to precipitation, with Cs referring
to snowmelt and Cr referring to rainfall
a = the degree-day factor (cm/◦C/day)
T = the number of degree-days (◦C day)
ΔT = the adjustment by temperature lapse rate when extrapolating the temperature from the station to
the mean elevation of the zone (◦C day)
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S = the ratio of the snow covered area to the total area (%)
P = the precipitation contributing to runoff (cm), which is determined by a preselected threshold
temperature, Tc, to be rainfall or snowfall. The contribution of rainfall is immediate while snowfall
will be kept on storage until melting conditions occur.
A = the area elevation zone (km2)
α = 10,000/86,400, the coefficient converting data from a runoff depth (cm×km2/day) to discharge (m3/s)

Kn+1 = the recession coefficient, Kn+1 =
Qn+1

Qn

n = the day number

It is recommended to subdivide the basin into several elevation zones if the elevation range exceeds
500 m. The simulated discharge of each zone is summed to estimate the runoff of the basin. The study
area was divided into 6 elevation zones, characters of which are present in Table 1. Model structure are
shown above, the determination of input variables and parameters are declared below:

Appendix A.1.1 Input Variables

T, P, S are three basic inputs of SRM.
The daily snowmelt depth is calculated by the number of degree-days, which is determined by the

daily temperature. In order to run SRM for each elevation zone, daily temperature from Hotan station
was extrapolated to the mean elevation of each zone based on the global lapse rate value of 6.5 ◦C/km.

The daily watershed-averaged precipitation was derived from the China Ground Rainfall Daily
Value 0.5◦ × 0.5◦ Lattice Dataset by using the Thiessen polygon (TP) method, which was used for each
elevation zone.

The daily SCA for each elevation zone was generated from the SCA of 8-day composite MOD10A2
satellite images by using linear interpolating.

Appendix A.1.2 Parameters

Cs, Cr, a, Tc, RCA, K, and time lag are the seven parameters to set up SRM, whose value are
presented in Table 3.

The runoff coefficients Cs and Cr, account for the losses between the runoff contributed by
snowmelt and rainfall to precipitation. Cs and Cr are time-varying parameters, affected by lots of
controlling factors such as climatic conditions and land cover properties. They can vary over seasonal,
monthly, or even daily scale, which are the primary candidates for tuning if a runoff simulation is not
immediately successful [47].

The degree-day factor a (cm/◦C/day), converts the degree-days T (◦C day) into the daily snowmelt
depth M (cm) by Equation (A2). a is related to snow properties. According to the research for
degree-day factors in western China conducted by Zhang et al. [88], 0.3 is adopted in this study.

M = a × T (A2)

The critical temperature Tc is used to determine whether the precipitation is rainfall (T > Tc)
or snowfall (T <Tc). The Tc values for June–August and September–May are set to 3 ◦C and 0 ◦C,
respectively, As recommended by Martinec [47].

The rainfall contributing area RCA represents the way that how to treat the rainfall determined by
Tc and it needs to be determined according to the basin characteristics beforehand. When RCA is set to
be 0, it is assumed that the rain falling on the snowpack is retained by the snow which is dry and deep.
In this situation, rainfall depth is reduced by the ratio snow-free area/zone area. RCA is set to be 1
when the snowpack is ripe, which means that rainfall from the entire area is added to snowmelt. In this
study, the snowpack is assumed to be ripe during May–September when the temperature is above 0 ◦C.

The recession coefficient K indicates the decline of discharge in a period without snowmelt or
rainfall, and (1−K) presents the proportion of the meltwater production immediately appearing in the
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runoff. K is determined by Equation (A3) [47], in which parameters x and y can be obtained through
linear regression analysis using the historical discharge data.

Kn+1 =
Qn+1

Qn
= x×Q−y

n (A3)

There is a time lag (L) between the temperature cycle and the resulting discharge cycle in
Equation (A1). In this study, a lag time of 18 h is adapted depending on the relation between L and
basin size [16]. In the case of 18 h, temperature measured on the nth day corresponds to the discharge
on the n + 1 day.
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Abstract: Although empirical mode decomposition (EMD) was developed to analyze nonlinear and
non-stationary data in the beginning, the purpose of this study is to propose a new method—based
on EMD—to synthesize and generate data which be interfered with the non-stationary problems.
While using EMD to decompose flow record, the intrinsic mode functions and residue of a given
record can be re-arranged and re-combined to generate synthetic time series with the same period.
Next, the new synthetic and historical flow data will be used to simulate the water supply system of
Hushan reservoir, and explore the difference between the newly synthetic and historical flow data for
each goal in the water supply system of Hushan reservoir. Compared the historical flow with the
synthetic data generated by EMD, the synthetic data is similar to the historical flow distribution overall.
The flow during dry season changes in significantly (±0.78 m3/s); however, the flow distribution
during wet season varies significantly (±0.63 m3/s). There are two analytic scenarios for demand.
For Scenario I, without supporting industrial demand, the simulation results of the generation data of
Method I and II show that both are more severe than the current condition, the shortage index of each
method is between 0.67–1.96 but are acceptable. For Scenario II, no matter in which way the synthesis
flow is simulated, supporting industrial demand will seriously affect the equity of domestic demand,
the shortage index of each method is between 1.203 and 2.12.

Keywords: empirical mode decomposition; Hushan reservoir; data synthesis

1. Introduction

Water resources are necessary for human survival, and are an important part of maintaining
socio-economic development and the sustainability of the ecological environment as well. Taiwan is
located at the border of tropical and subtropical areas. The main source of water resources is rainfall.
The annual average rainfall in Taiwan is about 2500 mm, which is 2.5 times of the world’s average.
In recent years, statistics show that rainfall characteristics have become more extreme in Taiwan.
Not only the raining days gradually decreasing, but the intensity gradually is increasing. On the
whole, although Taiwan seems to be a country with abundant rainfall, the overall water resources
environment is not easy to manageme because of climate change.

The impact of climate change tends to cause non-stationary conditions in hydrological data.
Traditionally, hydrological analysis and data generation only deal with stationary data. Empirical mode
decomposition (EMD) can be applied to any type of signal decomposition. Unlike singular spectrum
analysis, Fourier transform, and Wavelet transform, EMD does not require any pre-determined basis
functions and can extract intrinsic mode function (IMF) components from the original signal in a
self-adaptive way [1]. Through the characteristics of EMD, non-stationary and nonlinear signals can be
processed, which effectively overcomes the limitations of traditional methods.
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EMD has been proposed [2] as an adaptive time-frequency data analysis method. In this study,
the EMD method and the decomposed IMFs were used for data analysis and synthesis. Many
studies use EMD to analyze different time series and decompose the implied fluctuation periods [3–6].
In recent years, there are many carefully studies of nonlinear and non-stationary for the hydrological
field: Lee and Ouarda [7,8] proposed model reproduces Nonstationary oscillation (NSO) processes
by utilizing EMD and nonparametric simulation techniques; Molla et al. [9,10] show that the EMD
successively extracts the IMFs with the highest local frequencies in a recursive way, which yields
effectively a set low-pass filters based entirely on the properties exhibited by the data. In addition, there
are many studies based on the EMD method to predict and estimate streamflow data: Huang et al. [11]
and Meng et al. [12] developed a modified EMD-based support vector machine for non-stationary
streamflow prediction; Zhang et al. [13] improved the efficiency of a prediction approach which can be
used as a general technique for non-stationary time series forecasting.

However, the mode mixing problem may occur during the EMD. To avoid mode mixing,
Wu and Huang [14] proposed a new noise-assisted data analysis method, the Ensemble EMD (EEMD),
which defines the true IMF components as the mean of an ensemble of trials, each consisting of the
signal plus a white noise of finite amplitude. Zhao and Chen [15] and Zhang et al. [16] used the
EEMD and other methods to build a hybrid model for annual runoff time series forecasting. Many of
EEMD applications in hydrology focus on the diagnostic analysis of historical data, such as features of
temperature variation trends [17], forward prediction of runoff data in data-scarce basins [18], and
forecast monthly reservoir inflow [19].

The analysis methods of water resources allocation system are mainly divided into two
categories: simulation method and optimization method. Yeh [20] and Wurbs [21] introduced
the theory development of the simulation model and optimization model in reservoir system analysis.
Chang et al. [22] present the usefulness of the neural network in deriving general operating policies
for a multi-reservoir system. An optimization-based approach is typically required for the optimal
operation of a reservoir system, in order to obtain the optimal solutions to support the decision-making
process [23]. In this study, we use the simulation method for the analysis of water resources systems.
Lee and Huang [24] evaluated the impact of climate change on the water supply of the reservoir in
central Taiwan.

The Hushan reservoir is a new water supply resource system in central Taiwan (Figure 1). Since
some problems exist in the water supply system of the Zhuoshui river, such as its high concentration
of sediment, and low efficiency for the Hushan reservoir while it considers a joint operation with
Jiji weir [25]. Therefore, Chu and Huang [26] recommends the Hushan reservoir should operate
independently. Under the assumption that simulation results show that the Hushan reservoir is capable
of supplying more than 100,000 m3 per day (up to 380,000 m3/day) and the reservoir utilization rate
can reach 2.41 from 1.18 while Shortage Index (SI) = 1.

This study proposes a novel procedure, which is based on EEMD and its derivation (IMF and
residue) as an implement for synthesizing non-stationary data, which will be applied in reservoir
inflow and impact assessment for water supply. This study will continue the research results of Huang
et al. [27]. Huang et al. [27] proposed a surface temperature and rainfall synthesis method base on EMD.
The method utilizes the recombination of the IMF of the segmented data, as well as the characteristics
of the residuals to generate the data. There is a plan to use the IMFs and residues obtained, after EMD
decomposition to permutation and combination, to generate new flow data. There is also a plan to try
to apply the newly synthetic flow data to simulate the water supply system of the Hushan reservoir
(as shown in Figure 1). Finally, several evaluation indicators are used to evaluate water supply system
simulation results.
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Figure 1. Research flowchart. EMD, empirical mode decomposition components.

2. Materials and Method

2.1. Study Area

2.1.1. Hushan Reservoir

Hushan reservoir is an off-channel reservoir. It is located between Douliu City and Gukeng
Township, Yunlin County, 10 km southeast away from the Douliu City center (as shown in Figure 2).
The reservoir was set up in 2016 and first reached its full water level in June 2019. The main purpose
of the Hushan Reservoir is to reduce pumping groundwater and to slow down the problem of land
subsidence in Yunlin county. The elevation-area-capacity relationship of Hushan Reservoir is shown in
Table 1. The elevation of the remaining water level is 165 m, the full water level is 211.5 m, and the
effective storage capacity of the reservoir is 53.47 × 106 m3. The elevations of the water outlets are
165 m and 180 m respectively. The designed flow of the domestic water channel and the permanent
river outlet are 12.27 m3/s and 1.00 m3/s, respectively. The watershed of Hushan reservoir is only
6.58 km2 and leads to limited water resources. Therefore, the Tongtou weir, the intake of Hushan
reservoir, on the Qingshui river needs to be guided through the diversion tunnel.

Figure 2. Location of study area.
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Table 1. Elevation-area-capacity relationship of Hushan reservoir.

Water Level (m) Area (ha) Volume (104 m3)

Dead water level: 165 12 36

170 32 147

175 76 418

180 99 857

185 107 1371

190 132 1969

195 142 2653

200 170 3432

205 181 4310

210 210 5288

Full water level: 211.5 214 5612

2.1.2. Tongtou Weir

Tongtou weir is the intake of Hushan reservoir. In order to ensure the river base flow and the
downstream water requirements—such as agriculture and domestic—of Tongtou weir will be satisfied.
The weir diversion operation will give priority to the base flow and water right; next, the intake of
Hushan reservoir from Tongtou weir on Qingshui river be considered. The plan of the Tongtou weir
diversion water accounts for about 10% of the Qingshui river during the wet season (May to October),
and about 13% during the dry season. The Tongtou weir is located 70 m downstream of the Tongtou
suspension bridge in the Qingshui river. There is a sedimentation basin before the water be taken from
Tongtou weir to Hushan reservoir. The intake channel is 2.8 km long and designed intake capacity is
20 m3/s, with a gravity type.

2.2. Research Method

2.2.1. Empirical Mode Decomposition

EMD is proposed for nonlinear and nonstationary time series analysis [2]. For the hydrological
time series, EMD divides the sequence into two parts: IMFs and residue. The IMFs represent the
implied period sequence of the data, and the residue represents the non-period sequence of the data.
Although the methods used in traditional signal analysis fields such as fast Fourier transform, harmonic
analysis, and wavelet analysis can also express the original sequence as a superposition of multiple
period functions; these Fourier basic function-based analyses usually only deal with stationary time
series. Contrary to the previous methods, EMD is intuitive, direct, a posteriori, and adaptive, with
the basis of the decomposition based on, and derived from, the data [2]. EMD is more suitable for
analyzing non-stationary hydrological time series.

EMD decomposes the original signal into different time scale of oscillation components called
IMF. Unlike singular spectrum analysis, Fourier transform, and Wavelet transform, EMD does not
require any pre-determined basis functions and can extract IMF components from the original signal
in a self-adaptive way [1]. Each IMF component should satisfy the following two conditions:

1. In the whole data series, the number of extrema and the number of zero-crossings must either
equal or differ at most by 1;

2. At any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima is zero.
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An IMF represents a simple oscillatory mode as a counterpart to the simple harmonic function,
but it is much more general. For time series data x(t) (t = 1, 2, . . . , n), the procedure of EMD can be
described as follows [16]:

1. Identify all the local maxima and minima of the original time series x(t);
2. Using the three-spline interpolation function to create the upper envelopes eup(t) and the lower

envelopes elow(t) of the time series;
3. Calculate mean value m(t) of the upper and lower envelopes

(
m(t) =

[
eup(t) + elow(t)

]
/2

)
;

4. Calculate the difference value d(t) between time series x(t) and mean value m(t),
(d(t) = x(t) −m(t));

5. Check the difference value d(t): (a) if d(t) satisfies the two IMF conditions, then d(t) is defined as
the ith IMF, the residue r(t) = x(t) − d(t) replace the x(t). The ith IMF is denoted as ci(t); (b) if
d(t) is not an IMF, then d(t) replace the x(t).

6. Repeat (1)–(5) until the residue item r(t) becomes a monotone function or the number of extrema
is less than or equal to 1, so that the IMF component cannot be decomposed again.

Finally, original time series x(t) can be denoted as sum of IMFs ci(t) and residue r(t).

x(t) =
n∑

i=1

ci(t) + r(t) (1)

where n, ci(t) and r(t) represent the number of IMF, the ith IMF and the residue, respectively. The residue
r(t) also represents the overall trend or the mean value of the original time series data. Figure 3 shows
the results of the EMD method decomposition.

The procedure is illustrated in Huang et al. [2] and Zhang et al. [16].

 
Figure 3. Results of EMD (empirical mode decomposition) method decomposition.
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2.2.2. Ensemble Empirical Mode Decomposition

EEMD, an improvement of EMD, was proposed by Wu and Huang [14]. Although EMD has
obvious advantages in signal analysis, there are unavoidable defects such as the boundary-effect
and mode-mixing. Mode mixing is a problem often encountered when using EMD to decompose
sequences. Mode mixing means that a certain IMF contains waves with very different periodicity,
often caused by intermittent signal interference. In particular, the mode-mixing will not only cause
the mixing of various scale vibration modes but can even lose the physical meaning of individual
IMF. To overcome this problem of the EMD method, a new noise-assisted data analysis method is
proposed—the EEMD [14]—which defines the true IMF components as the mean of an ensemble of
trials, each consisting of the signal plus a white noise of finite amplitude.

The main step of EEMD is described as follows [16]:

1. Add white noise w(t) to the original time series x(t). The new time series can be defined as:

X(t) = x(t) + w(t) (2)

2. Decompose the new time series into IMFs using EMD method;
3. Repeat steps (1) and (2) with different white noises series each time;
4. Obtain the mean of the ensemble corresponding IMFs of the decompositions as the final result.

Differently from EMD, the EEMD method first adds white noise to the original data before
decomposition and uses the statistics feature of white noise, the expectation is equal to zero, to perform
the screening process. After adding white noise many times, the effect of adding white noise will be
offset by the mean of the ensemble IMF. Therefore, the decomposition using EEMD not only keeps the
inherent feature of the original signal, but also overcomes the mode-mixing.

The effect of the added white noise should decrease using the equation [14]

εn =
ε√
N

(3)

where N is the number of ensemble members, ε is the amplitude of the added noise and εn is the
final standard deviation of error, which is defined as the difference between the input signal and the
corresponding IMF(s). According to Equation (3), when the average number of times increases, the
error will reduce, and when n reaches a certain number of times, its error value can be ignored.

2.2.3. Zero Up-Cross Method

Statistical analysis of a IMF, a wave set, requires establishment of the definition of individual
wave heights and periods. The standard is the employment of the zero-crossing definition. The zero
line or the line of the mean wave level is set for a record of wave registration, and each wave is defined
with the reference point where the instantaneous water level crosses the zero line. When the upward
crossing point is employed as the beginning of an individual wave, the method is called the zero
up-crossing method [28]. The definition of upward crossing point is [29]

ηi × ηi+1< 0;ηi+1 >0 (4)

where ηi is the wave height in given time.
The wave period, T, of an individual wave will be defined as the time between two successive

upward crossing point, as Figure 4 showing. For any individual wave, the peak and valley are
expressed as

ηi−1< ηi ∩ ηi >ηi+1 (highest point) (5)

ηi−1 > ηi ∩ ηi < ηi+1 (lowest point) (6)
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Figure 4. Show of the zero up-cross method [30]. H, The wave high; nmax: The average value of the
highest point (peak).

The average value of ηmax the highest point (peak) and the lowest point (valley) of ηmin is used as
the amplitude of each wave, as shown in Equation (7)

amplitude : (ηmax + ηmin)/2 (7)

In this study, we use the IMF decomposed by the EEMD to perform a zero up cross analysis
method, analyze the periods of each IMF, and discuss it.

After finding the period in the fluctuation using the zero up cross analysis method, the sum of
squares of each IMFs is regarded as its energy, and its value can correspond to the period relationship
in the fluctuation. The total energy value of each group is added up to form the IMF percentage
of each group compared with the energy of each group. The relational expressions of the energy
percentages are

Ei =
n∑

i=1

xi
2 (8)

Wi =
Ei∑n

i=1 Ei
× 100% (9)

where xj
2 is the square value at each time point of each group of IMF; Ei is the total energy; Wi is

weight of energy.

2.2.4. Data Synthesis

The impact of climate change tends to cause non-stationary conditions in hydrological data.
Therefore, we use the EEMD [14] in this study, and proposes a new way to synthesize and generate
data that can solve the non-stationary data problems. For a given flow time series, the IMFs and
residue, the EEMD decomposed result, would be replace by corresponding component in another
period; next, the new combination of IMFs and residue are summed up according to the completeness
of EMD [2]; then, the synthetic new flow time series will be produced. Thus, if there are many EEMD
decomposed results with the same length but different period, we could synthesize a flow data set
through permutation and combination of the corresponding IMFs and residues.

In this study, the historical 60-year (1956–2015) flow data of Tongtou streamflow gauge are
segmented in groups of 10 years. Through the EEMD method divides the sequence into two parts:
IMFs represent the inherent period sequence of the data, and the residue represents the non-period
sequence of the data. We can go through the permutations and combinations of the IMFs to get ni

sequences. Where n is the number of groups of data grouping; i is the number of IMFs by the group.
After completing the permutations and combinations of IMFs as shown in Figure 5, we can get

the new synthesis data of equal length streamflow. In this study, two permutations and combinations
methods are used to synthesize new 10-year flow series data. The method is described as follows:
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1. Regression analysis is performed on the different residue of each group to fit a new residue to
represent the residue value. By adding the results of the IMFs permutation and combination
with the representative values of the residue, we can get 10-year new synthetic flow data for the
ni groups.

2. Permutation and combination of the different remainders of each group with IMFs, we can get
10-year new synthetic flow data for the ni+1 groups.

Figure 5. Graphs of the data synthesis process. h: segment.

2.2.5. Water Supply System Simulation of Hushan Reservoir

The simulation method is commonly used in the analysis of water resources systems.
It conceptualizes the actual operation of the system to explore the use of water resources. In this study,
we use the simulation method to simulate the water supply system and explore the difference between
the newly synthesized flow data for each goal in the water supply system of Hushan reservoir.

First of all, the historical (1956–2015) flow data of Qingshui river were used to simulate accordance
with the Hushan reservoir operation rules. Because the Hushan reservoir takes water from the Qingshui
river through a water diversion tunnel, and there is some agricultural water right downstream of the
Tongtou weir (as shown in Figure 6). Therefore, before taking water to the Hushan reservoir, Tongtou
weir has to consider and satisfy the agricultural water downstream. The remaining flow is the amount
of water that can be taken to the Hushan reservoir. The main thing of simulation is that the water taken
into the Hushan reservoir should not affect the downstream agricultural water right.

 
Figure 6. Water supply system of Hushan reservoir.

This study will assume different scenarios to simulate the water supply system of Hushan reservoir.
The main difference of these two scenarios is the object of water supply (as shown in Table 2). The local
water supply system is shown in Figure 6, and the simulation program calculation process is shown in
Figure 7.
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Table 2. Scenario description.

Scenario I II

Water supply range Supply the domestic water Support the industrial water

The operational regulations The upper and lower rule was set at the water level of 190 and 185 m in
Hushan reservoir, respectively.

 
Figure 7. Program simulation flowchart.

In the past, the Linnei water purifying plant only supplied 1.2 × 105 m3 water per day, and the
deficit of demand was filled by pumping groundwater. After the completion of the Hushan reservoir,
the situation of over pumping will be improved. The Hushan reservoir was originally intended to
be used in conjunction with the Jiji weir to supply water for domestic demand in the Yunlin area.
However, the conjunction operation of Hushan reservoir and Jiji weir will result in a low reservoir
utilization rate of only 1.18 [25]. Therefore, we assume the Hushan reservoir operates independently
in this study. The domestic demand in the Yunlin area is 2.8 × 105/day, and the support demand for
industrial is 3.0 × 105/day. Based on the previous study, the operational regulations of reservoir were
added [26], and the upper and lower rule curve is set at the water level of 190 m and 185 m for Hushan
reservoir, respectively. In order to explore the situation of water resources utilization in the Yunlin area
of the Hushan reservoir under different demand scenarios, the operation of reservoir should follow
these principles:

1. Supply of the Hushan reservoir must not be less than the projected demand if the water surface
elevation exceeds the upper curve.

2. Supply of the Hushan reservoir should satisfy 100% of the projected domestic demand, 90% of
the projected industrial demand, and 50% of the projected irrigation demand if the water surface
elevation is between the upper and lower curve.

3. Supply of the Hushan reservoir should satisfy 80% of the planning domestic demand and 0%
of the projected irrigation and industrial demand if the water surface elevation is under the
lower curve.

2.2.6. Indices for Impact and Risk Assessment

To assess the impact and the risk under different scenarios, the shortage index (SI), satisfaction
and reliability of the water supply were determined. Equations (10)–(16) define these indices.
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1. Satisfaction:

Satisfaction =
Qsup

Qd
× 100% (10)

2. Reliability:

Reliability =
Nsat

N
× 100% (11)

3. Shortage Index:

SI =
100
N

N∑
t=1

⎛⎜⎜⎜⎜⎜⎝
∣∣∣Qd −Qsup

∣∣∣
Qd

⎞⎟⎟⎟⎟⎟⎠
2

(12)

where Qd and Qsup are the quantities of water demand and supply, respectively; N is the
given time scale of the simulation, and Nsat is the number of days for which the demand has
been satisfied.

4. Reservoir Efficiency:

RE =
Annual actual water supply
reservoir effective capacity

(13)

5. The average duration of water shortage events:

ln =
1
M

M∑
j=1

lj (14)

where M is the number of occurrences of water shortage events, lj is the duration of each water
shortage event, ln is the average duration of water shortage events.

6. The average water shortage in the water shortage event (106 m3):

dn =
1
M

M∑
j=1

dj (15)

where dj is the total water shortage in each event, and dn is the average water shortage in the
water shortage event.

7. The daily average water shortage in the water shortage event (106 m3/day):

dn

ln
(16)

3. Results and Discussion

3.1. 60-Year Flow Data Analysis with EEMD

We analyze the historical flow data from 1956 to 2015 in this study. Because the skewness of flow
data will affect the decomposition process, the historical flow data is taken nature log transformation
before decomposing by the EEMD. The 60-year historical data is decomposed by the EEMD method,
and the decomposed IMFs are shown in Figure 8.
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Figure 8. Decomposition of 60-year flow data by EMD.

Figure 8 shows that there are 10 IMFs and 1 residue. The termination condition of the EEMD is
according to following literatures: Wu and Huang [14] show that the number of IMFs approaching
log2 n can be obtained by EEMD decomposition of the original data; in addition, Huang et al. [27] also
explained that the IMF obtained after the data is decomposed will be between

[
log2 n

]
− 1 and log2 n.

Therefore, the result that deals with 60-year daily flow by EEMD will introduce 10 IMFs and 1 residue.
Among them, the oscillation of IMF1–IMF10 gradually decrease from ± 3 to ± 0.008, but the range of
the residue gradually increased from 1.73 to 2.09 and then decreased to 1.75, which is a monotonic
function. From the decomposition, we can find that the residue part plays an important role, which
often affects the trend of whole time series.

Historical flow data is regarded as a signal for a certain period of time. After decomposing the
flow data through EEMD, the physical meaning of IMFs will be diagnosed. The period of each IMF is
estimated according to zero up-cross analysis. However, the true energy value cannot be calculated,
the square of the IMF value only be regarded as direct proportion with the true energy. In other words,
the energy representation, the summation of square of each IMF, should be regarded as the ‘weight’ of
oscillation for IMFs.

The values of the IMFs decomposed by the EEMD are squared and the sum is taken as the
representative value of energy, as shown in Figure 9 and Table 3. After the zero up cross analysis
method is used to average the IMF period of each group, the average period represented by the IMF
can be obtained. IMF10 is NAN because the period of the sequence cannot get after the zero up cross
analysis method.
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Figure 9. Weight of each IMF for a 60-year flow.

Table 3. Results of 60-year data by EMD with energy and period.

IMF 1 2 3 4 5 6 7 8 9 10

Energy (%) 29% 22% 10% 39% 1% 0% 0% 0% 0% 0%

Period (ten-day) 3.06 6.10 12.51 36.15 68.15 122.69 219.52 506.72 1262.74 N/A

As can be seen from Figure 9, the energy value is mostly concentrated in IMF4, reaching 39% and
the energy of IMF4 is higher than that of other IMFs. Corresponding to IMF4 in Figure 10, it can be
found that the corresponding period is about 36 ten-day, which represents that the flow data has a
strong annual (36 ten-day) period characteristic. In addition, the IMF1 and IMF2 still have a certain
proportion of the energy percentage, which are 29% and 22% respectively, and their periods correspond
to about 3 and 6 ten-day, respectively. Therefore, it can be seen that seasonal characteristics exists in
the flow data.

Figure 10. Average period of each IMF for a 60-year flow.

3.2. Analysis of 6 Groups of 10-Year Flow Data

The historical flow data (1956–2015) is divided into 6 decades, and the EEMD screening is
implement to get the IMFs and the residue. The relationship between the period, energy, and flow data
of different segment IMFs will be discussed. The period and energy percentage distribution of IMFs
for each decade are shown in Table 4 and Figures 11 and 12.
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Table 4. Results of decadal data by EMD with energy and period.

Energy and Period of
Each IMFs Title

1956–1965 1966–1975 1976–1985 1986–1995 1996–2005 2006–2015

IMF1
Energy (%) 29.21 29.80 30.01 32.27 36.61 28.63

Period (ten-day) 3.34 3.39 3.04 2.96 3.05 3.18

IMF2
Energy (%) 17.89 21.43 23.75 27.34 24.22 16.89

Period (ten-day) 5.89 6.38 6.79 6.29 6.17 5.72

IMF3
Energy (%) 7.94 7.57 11.98 8.09 17.82 9.12

Period (ten-day) 11.80 11.48 14.16 12.28 15.97 11.87

IMF4
Energy (%) 44.32 40.85 30.22 31.93 20.54 44.46

Period (ten-day) 37.03 35.97 33.00 36.98 36.78 36.90

IMF5
Energy (%) 0.60 0.31 3.47 0.28 0.72 0.59

Period (ten-day) 68.73 83.47 63.53 61.08 75.53 78.63

IMF6
Energy (%) 0.04 0.04 0.56 0.10 0.09 0.31

Period (ten-day) 93.06 155.07 95.69 114.80 129.14 173.41

IMF7
Energy (%) 0.00 0.00 0.00 0.00 0.00 0.00

Period (ten-day) - - - - - -

Figure 11. Weight of each IMF for a 10-year flow.

Figure 12. Average period of each IMF for a 10-year flow.

The corresponding relationship between the energy percentage of each IMFs and the average
period is shown in Figures 11 and 12. We can find the energy distribution concentrates in IMF1–IMF4,
which correspond to an average period from 2.96 to 37.03 ten-days. In addition, it can be found that
the energy percentage of IMF4 for the 6 groups has the most highest weight, with an average of about
20.5–44.5% compared with total weight of all IMFs, and it corresponds to an average period around
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36 ten-days. Moreover, the minor IMFs, IMF1 and IMF2, are have around 28–36% and 18–27% energy
of the total respectively, and their corresponding periods are about 3 and 6 ten-days. These results are
similar to the 60-year flow analysis, as shown in Table 4.

3.3. Data Synthesis

This section explains the synthesis of flow data. The historical flow data (1956–2015) is divided
into six groups of 10-year segments in order. After decomposing through EEMD, multiple IMFs
and residue corresponding to them can be obtained. The decadal residues are shown in Figure 13.
Regression analysis of different residue in each group is fitted to a new residue representing the value.

This study used two methods to synthesize new decadal flow data as the basis for simulation
research. Method (I): first permutations and combinations all IMFs to get ni (67 = 279,936) new IMF
(IMF1 + IMF2 + . . .+ IMF7) set. Where n is the number of groups and i is the number of IMFs each
group. After permutations and combinations of the IMFs, add a representative value of the residue,
which is the regression of six residues. The representative value of the residue is shown in Figure 13,
the bold dashed line. Regression analysis fits the representative value of the residue, and then adds
this residue to the IMF of the 279,936 group to obtain the synthesis flow data of the 279,936 group for
10 years. Method (II): all the IMFs and the residue in each group are permutations and combinations
to obtain a total of ni + 1 (67 + 1 = 1,679,616) new synthetic flow data. In the following, the new flow
data synthesized from the two methods and historical flow data are compared with each other, and
the differences are explored. In addition, this study will apply new flow data synthesized from two
different methods to simulate Hushan reservoir water supply systems, and sequentially discuss the
simulation results of different synthetic flow data in different water supply scenarios.

 
Figure 13. Flow data residues and their representative equation. CMS, m3/s; r*(t): representative values
of the residue.

Result of comparing the synthetic data with historical data divided by 10 years is shown in
Table 5 and Figure 14. For the historical data, the flow in Qingshui river is significantly different
between the wet and dry season; the flow from wet season, May to October, is significantly higher than
November to April. The ratio of wet/dry is about 9:1. The highest flow occurs in August (62.09 m3/s)
and the lowest flow occurs in January (2.05 m3/s). Compared the historical with the synthetic flow,
the monthly distribution is similar between both Method I and Method II. The synthetic flow is
concentrated in May–October, and the highest flow always occurs in August, but the lowest flow
occurs in the dry season in January and February. In terms of the overall flow during the wet season,
the average synthesized by Method I is significantly less than the current situation; in contrast, the
average synthesized by Method II is much higher. In the dry season, the average synthesized by
Method I and Method II is not much different from the current.
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Table 5. Comparison of historical and synthesis flow data.

Flow (cms)
Month

1 2 3 4 5 6 7 8 9 10 11 12 Average

Observation 2.05 2.56 3.39 5.74 16.85 45.82 41.02 62.09 36.43 10.67 3.88 2.55 19.24

Synthesis (I) 1.91 1.98 2.28 3.44 12.17 33.89 27.69 41.37 25.33 8.59 3.54 2.33 13.71

Synthesis (II) 3.29 3.10 3.70 5.67 20.70 57.92 55.11 80.93 40.40 12.68 5.08 3.54 24.34

 
Figure 14. Comparisons of 10-year flow data.

The distribution of the probability of exceedance is shown in the Figures 15 and 16. For the 10-year
synthesis, the overall time distribution is consistent with the historical one; furthermore, the synthesis
keeps the distribution of wet and dry seasons as well. Through the probability of exceedance of 0.05,
the extreme flow of Method II is greater than Method I. In contrast, while the probability of exceedance
is 0.95, the flow data of Method II is much less than Method I. This will also lead to the opposite result
of the average flow in the simulation of the water supply system.

 
Figure 15. Comparisons of 10-year flow data with Method I. P(X > x): probability of exceedance.

 
Figure 16. Comparisons of 10-year flow data with Method II.
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Although the preceding says that, there are not much variance of the distribution trend between
the 10-year flow data synthesized by these two different methods. However, the annual average
between two synthesis methods is more significant. The flow data synthesized by Method II has an
annual average flow of 24.34 m3/s, which is more than the annual average of Method I, 13.71 m3/s.
The water supply system simulation will be based on these three flow sequences, historical data,
Method I and Method II synthetic data, to simulate the water supply system of Hushan reservoir.

3.4. Application of Synthesis Data

Next, we apply the synthesized flow data to simulate the water supply system according to the
given two demand scenarios. Using the historical flow data, Method I and the Method II synthetic
flow data are used for simulation, and the simulation results are shown in the Table 6 and Figure 17.

Table 6. Indices of the water supply for present.

Simulation Results

Unit: Quantity of Water in 106 m3/yr

Present

Project

Scenario No Support
Industrial Water

Support Industrial
Water (30 × 104 CMD)

Support Industrial
Water (10 × 104 CMD)

Reservoir supply 101.93 165.14 128.30

Domestic shortage 0.27 9.74 2.18

Reservoir inflow 101.90 162.80 128.05

Domestic SI 0.002 0.309 0.10

Reservoir efficiency 1.91 3.09 2.40

Public ACDD 9.00 135.00 45.00

ADWS during water shortage events 0.03 0.06 0.05

Note: CMD, m3/day; ACDD, average consecutive dry days; ADWS, average daily water shortage.

 
Figure 17. Ten-day reliability and satisfaction of the water supply in present each scenario. CMD,
m3/day.

First, we apply the historical flow to simulate the water supply system. For the case of no
supporting industrial water in Scenario I, the annual water supply and shortage are 101.93 × 106 m3

and 0.27 × 106 m3, respectively. The water shortage index (SI) is only 0.002. While the water shortage
occurring, the average daily water shortage (ADWS) is only 0.03 × 106 m3. The preceding indices show
that if the Hushan reservoir only supplies water for domestic demand, the water supply situation
will be very stable and shortage will not be easy to occur. In the case of supporting industrial water
in Scenario II. If the daily support for industrial water is 300,000 m3, the annual water supply will

120



Water 2020, 12, 927

reach 165.14 × 106 m3, and the annual water shortage will also increase significantly to 9.74 × 106 m3.
Although the SI only increases to 0.309, and the ADWS only increases to 0.06 × 106 m3 while the water
shortage occurred. The reliability of the water supply reaches 0 already at the 9th and 11th ten-day,
as depicted in Figure 17. The result show that the water supply risk in demand Scenario II is relatively
severe than Scenario I.

Because the simulation of demand Scenario II indicates severe impact on domestic, we set the
domestic SI = 0.1, and try to find the capability of industrial supporting for Hushan reservoir. We found
that Hushan reservoir can support 100,000 m3/day of industrial water, and the annual water shortage
has decreased to 2.18 × 106 m3. The number of average consecutive dry days (ACDD) for domestic
has been greatly reduced to 45 days, and the reliability of the water supply is also raised to 0.4–0.5.
In the following analyses, we recommend the daily supporting amount for industry from the Hushan
reservoir should be 100,000 m3 as basis.

We simulate the water supply system with the historical flow as applied to method I (279,936 groups)
and method II (1,679,616 groups) for newly synthesized flow data. The results are compared based on
the ensemble average (as shown in Table 7). Scenario I without considers supporting industrial water,
the current annual water supply is 101.93 × 106 m3, the annual water shortage is only 0.27 × 106 m3,
and the SI is only 0.002. While the water shortage occurring, the ADWS is only 0.03 × 106 m3.

According to the water supply simulation results of 279,936 sets of flow data in Method I,
the annual water supply slightly decreased to 98.25 × 106 m3, the annual water shortage increased
to 3.59 × 106 m3, and the SI increased significantly to 0.668. While the water shortage occurring,
the ADWS is increased slightly to 0.05 × 106 m3. However, Figure 18 shows that whether the reliability
is lower than the current simulation result, they are still above 0.5, the lowest satisfaction is 0.87, which
is generally acceptable.

According to the water supply simulation results of 1,679,616 sets of flow data in Method II.
The annual water supply decreases to 95.52 × 106 m3, the annual water shortage has increased
significantly to 6.68 × 106 m3. The SI increased significantly to 1.96 and the ADWS increased to
0.07 × 106 m3 as well. Figure 18 shows that the reliability is similar to the method I in dry season.
However, Method II’s reliability is lower than method I value in the wet season. The satisfaction is
generally lower than the current situation and the method I, but the minimum is still 0.84. The water
supply situation of Method II is still acceptable. There is something odd: why the average annual flow
of Method II is significantly more than the current situation and the average flow of Method I, but
the simulation results are worse than the other cases? The main reason is that the extreme flow of the
Method II often occurs; excessive flow cannot be used efficiently and there are many low flows during
wet season. Therefore, the simulation result of Method II is the worst.

Table 7. Comparison of historical and synthesis flow data. SI, Shortage Index.

Simulation Results

Unit: Quantity of Water in 106 m3/yr

No Support Industrial Water

Project

Scenario
Present Method I Method II

Reservoir supply 101.93 98.25 95.52

Domestic shortage 0.27 3.95 6.68

Reservoir inflow 101.90 94.72 92.07

Domestic SI 0.002 0.668 1.96

Reservoir efficiency 1.91 1.84 1.79

Domestic ACDD 9.00 51.2 59.28

ADWS during water shortage events 0.03 0.05 0.07
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(a) 

 

(b) 
Figure 18. Monthly (a) reliability and (b) satisfaction of the water supply for Scenario I.

Finally, we simulate the water supply system using the historical flow with Method I and Method
II’s synthesis flow data. The results are compared to the ensemble average (as shown in Table 8). Under
the condition of supporting 100,000 m3 of industrial demand daily, the current annual water supply is
128.30 × 106 m3, the annual water shortage is 2.18 × 106 m3 and the SI is 0.1. While water shortage
occurs, the average daily water shortage is 0.05 × 106 m3.

According to the simulation result of water supply in Method I, the annual water supply decreased
slightly to 116.82 × 106 m3, the annual water shortage increased to 11 × 106 m3, and the SI increased
significantly to 1.203. While the water shortage occurring, the ADWS is still maintained at 0.05 × 106 m3.
Figure 19 shows that the reliability decrease more earlier than the current situation, the lowest monthly
reliability reaches 0.24 in March, and recoveries in May. The lowest fulfillment of demand still occurs
in March (0.74). In terms of dry season, the risk of water supply shortage is much worse than the
current situation.

According to the simulation result of water supply in Method II, the annual water supply decreased
to 113.82 × 106 m3, the annual water shortage increased sharply to 13.46 × 106 m3, and the SI increased
significantly to 2.12. While occurs the water shortage event, the ADWS also increased to 0.07 × 106 m3.
Figure 19 depicts that the reliability is similar to but lower than Method I in the dry season. Compared
with the current situation, the water shortage occurs earlier, but it is lower than the Method I in the
wet season. The satisfaction is generally lower than the current situation and the Method I, but similar
to Method I. The satisfaction rises rapidly in May, which is higher than the current simulation results.
However, the satisfaction is decreasing from August to October in wet season, it seems worse than
the others.

In summary, no matter what kind of water supply scenario is applied, the current results are better
than Method I and Method II. Although the simulation result of Method I is similar to Method II, the
ensemble result of Method I is slightly better than the Method II. However, Method II synthesis annual
average flow is significantly more than the current flow and the Method I flow, but the simulation
results are worse than other cases. The main reason is that the extreme flow of the method II often
occurs. Excessive flow cannot be used efficiently and there are many low flows in wet season. Therefore,
the simulation result of Method II is the worst.

122



Water 2020, 12, 927

Table 8. Comparison of historical and synthesis flow data.

Simulation Results

Unit: Quantity of Water in 106 m3/yr;

Support Industrial Water (10 × 104 m3/s)

Project

Scenario
Present Method I Method II

Reservoir supply 128.30 116.92 113.82

Public shortage 2.18 11.00 13.46

Reservoir inflow 128.05 112.37 109.43

Public SI 0.10 1.203 2.12

Reservoir efficiency 2.40 2.19 2.13

Public ACDD 45.0 111.0 113.82

ADWS during water shortage events 0.05 0.05 0.07

 
(a) 

 
(b) 

Figure 19. Monthly (a) reliability and (b) satisfaction of the water supply for Scenario II.

4. Conclusions

The IMFs and residue of the Tongtou weir flow data can be obtained by EEMD decomposition.
This method can effectively solve the stationary or nonstationary impacts of hydrological data due
to climate change. In this study, two methods are used to synthesize new 10-year flow series data.
Method I uses the IMFs segmented data to reorganize the periodic characteristics and sums them up
with the residue representation; in contrast, Method II uses the permutation and combination of all
IMFs and residues. The new synthetic flow data will provide the input of simulation for the Hushan
Reservoir water supply system.

In the energy distribution of IMFs, most of the energy is concentrated between IMF1 and IMF4,
which IMF4 has the largest weight (39%), and the corresponding period is about 36 ten-day periods
(1 year). However, IMF1 still has a certain proportion of energy percentage, the corresponding period
is about 3 ten-day periods (1 month). This reflects that the flow of Tongtou weir is not only affected
by a 1-year periodic sequence, but influenced by the monthly rainfall event. Comparing the current
situation with the new data generated by EEMD, the generated data is similar to the current flow
distribution, but the flow distribution during the wet season is significantly different (±0.63 m3/s), and
the flow difference during the dry season is insignificant (±0.78 m3/s).

For the Scenario I without considers supporting industrial water, the simulation results of the
generation data of Method I show that compared with the current situation, the SI has increased
significantly from 0.002 to 0.668, and the number of ACDD of water shortage has also increased
significantly from 9 to 51.2 days. The simulation results of Method II show that the SI is more severe
than the current situation and Method I, it reaches 1.96. The number of ACDD increased slightly to
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59.28 days. In addition, it can be found from the reliability and satisfaction Figure that the simulation
results of the synthesis flow in this study will occur water shortages earlier than the current situation.

Scenario II considers supporting industrial water usage, the simulation results of Method I show
that the SI has increased significantly to 1.023, and the number of ACDD of water shortage has also
increased significantly to 111 days. The simulation results of Method II show that the SI is more severe
to 2.12. The number of ACDD increased slightly to 113.82 days. In addition, it can be found from
the reliability and satisfaction figure that no matter in which way the synthesis flow is simulated,
supporting industrial water will seriously affect the equity of domestic water.

In this study, the multiplication data obtained through permutation and combination after EEMD
can show the flow distribution characteristics of the Tongtou weir. In the future, the hydrological
factors, such as temperature and rainfall in the same area, can be integrated to explore the correlation
between the overall hydrological factors.
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Abstract: Hydrological nonstationarity has brought great challenges to the reliable application of
conceptual hydrological models with time-invariant parameters. To cope with this, approaches
have been proposed to consider time-varying model parameters, which can evolve in accordance
with climate and watershed conditions. However, the temporal transferability of the time-varying
parameter was rarely investigated. This paper aims to investigate the predictive ability and robustness
of a hydrological model with time-varying parameter under changing environments. The conceptual
hydrological model GR4J (Génie Rural à 4 paramètres Journalier) with only four parameters was
chosen and the sensitive parameters were treated as functions of several external covariates that
represent the variation of climate and watershed conditions. The investigation was carried out in Weihe
Basin and Tuojiang Basin of Western China in the period from 1981 to 2010. Several sub-periods with
different climate and watershed conditions were set up to test the temporal parameter transferability
of the original GR4J model and the GR4J model with time-varying parameters. The results showed
that the performance of streamflow simulation was improved when applying the time-varying
parameters. Furthermore, in a series of split-sample tests, the GR4J model with time-varying
parameters outperformed the original GR4J model by improving the model robustness. Further
studies focus on more diversified model structures and watersheds conditions are necessary to verify
the superiority of applying time-varying parameters.

Keywords: time-varying parameter; GR4J model; changing environments; temporal transferability;
western China

1. Introduction

The conceptual hydrological models are simplified representations of the complex rainfall-runoff
processes in the real world. Hence, great emphases are placed on the calibration of parameters to
improve the performance of hydrological models. The optimal constant parameter set for a catchment
can be inferred using various approaches [1,2] under the assumption that both the climate and the
catchment characteristics are stationary. However, the ability to produce reliable predictions with the
constant parameter set has been challenged under changing climate and watershed conditions [3–8].

The transferability of the model parameters between periods with different climate and watershed
conditions is essential for reliable application of the hydrological models. Plenty of previous studies
have revealed the fact that model parameters are strongly dependent on the data period with which
the hydrological models are calibrated [9–11]. In general, loss of robustness and variation in model
performance can be witnessed when the model parameters are inappropriately transferred [12].
For example, a model calibrated under wet conditions is usually unlikely to perform well under dry
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conditions and vice versa. In addition, the optimal parameter set may become no longer suitable once
the watershed conditions change significantly as a result of human activities (e.g., the construction of
dams, afforestation and deforestation). The impact of such changes on hydrologic processes such as
streamflow has been well documented [13,14]. In such cases, hydrological models with time-invariant
parameters may show a poor predictive performance due to their inability to explicitly represent the
changes within the catchment.

One approach to make the model perform robustly under changing environments is to identify
the optimal parameter set with time consistent performance [15–22]. Such approach is based on a
series of calibration procedures on different sub-periods, and careful identification of the parameter
sets with consistent performance for all these sub-periods. All parameter sets are independently
evaluated in every sub-period, and only the parameter set that performs well in all cases are finally
selected. Nevertheless, this is achieved at the cost of a possible decline in model performance for some
individual sub-periods.

Another approach to improve the predictive performance of hydrological models under changing
environments is to allow model parameters to evolve over time [23–33]. For example, Wallner
and Haberlandt [25] linked the time-varying model parameters of a modified version of the HBV
(Hydrologiska Byråns Vattenbalansavdelning) model with the climate indices. The results showed a
significant improvement in model performance for streamflow simulation when using the time-varying
parameters, especially for low flows. Pathiraja et al. [26] demonstrated the potential for the data
assimilation method to detect the temporal variation in all parameters of the Probability Distributed
Model and to improve model performance for streamflow simulation. Westra et al. [27] reported a
significantly improved streamflow simulation performance of the GR4J model when the parameter
represents the production storage capacity was made dependent on covariates describing seasonality,
annual variability, and longer-term trends. Deng et al. [28] assumed the parameters of the two-parameter
monthly water balance model to be time-varying as functions of catchment properties. Their case
study in southern China suggests that the incorporation of time-varying parameters can enhance
the capability of hydrological models to produce reliable predictions under changing environments.
These studies suggest that the time-varying parameter may serve as an effective compensation for the
possible deficiency of model structure, which failed to represent changes in hydrological dynamics
within the watershed.

However, few recent studies focus on the temporal transferability of the time-varying parameters
(i.e., robustness under extrapolation). Some previous studies [25,27,28] have tested the temporal
transferability of the time-varying parameter from only one calibration period to only one validation
period. They reported that the streamflow simulation using a model with the time-varying parameter
is better than the original model during the validation procedure. However, these studies failed to fully
account for the cases where time-varying parameter is transferred between periods with contrasting
climate and watershed conditions (e.g., from driest period to wettest period), which remains an
interesting topic that deserves further researches.

This study aims to investigate whether a hydrological model with time-varying parameter would
achieve a better streamflow simulation performance and parameter transferability under changing
environments than its original form. The GR4J model was chosen for its simplicity in model structure
and parsimony in model parameters [34]. The relatively sensitive parameters of the GR4J model
were treated as time-varying and assumed to be a function of several external covariates. Several
sub-periods with different climate and watershed conditions were set up for a series of split-sample
test for the GR4J model with constant parameter and time-varying parameter. The investigation was
carried out for Weihe Basin and Tuojiang Basin in western China.
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2. Methodology

2.1. The Original GR4J Model and GR4J Model with Time-Varying Parameter

The original GR4J model has four parameters, namely the production storage capacity x1, the
groundwater exchange coefficient x2, the one day ahead maximum capacity of the routing storage x3

and the time base of unit hydrograph x4, as presented in Table 1. More details about the GR4J model
can be found in the work of Perrin et al. [34].

Table 1. Description of the GR4J model parameters.

Parameter Description Unit
Feasible Range

Lower Bound Upper Bound

x1 production storage capacity mm 20 1200
x2 groundwater exchange coefficient mm −5 3

x3
one day ahead maximum capacity

of the routing store mm 20 500

x4 time base of unit hydrograph days 1 5

A comprehensive sensitivity analysis of all four parameters is needed to determinate which
parameter is relatively more sensitive and should be treated as time-varying. To this end, the Sobol’
sensitivity analysis method [35] was applied in this study. Considering that this study focuses on
changing environments where stationary rainfall-runoff relationship is usually absent, the Sobol’
sensitivity indices were computed at the monthly timescale. This temporally discretized sensitivity
analysis was expected to provide significant information about model behavior and capture the
diversity of parameter sensitivity during different periods [36].

The GR4J model with time-varying parameters is referred to as GR4J-T model hereafter.
The selected time-varying parameters are treated as functions of several external covariates related to
the alternation of climate or watershed conditions. The potential covariates for time-varying parameters
are denoted as Vj( j = 1, 2, . . . , M) and their long-term mean values as Vj( j = 1, 2, . . . , M), where M is
the total number of the external covariates. When the parameter xi(i = 1, 2, 3, 4) of the GR4J model is
considered to be time-varying, it is denoted as xi,t, where t indicates the time. The general relationship
of xi,t with the corresponding external covariates is assumed to be,

xi,t − xi,c

xi,c
=

M∑
j=1

βi, j f j

⎛⎜⎜⎜⎜⎜⎝Vj,t −Vj

Vj

⎞⎟⎟⎟⎟⎟⎠ (1)

which can be rewritten as,

xi,t = xi,c +
M∑

j=1

λi, j f j

⎛⎜⎜⎜⎜⎜⎝Vj,t

Vj
− 1

⎞⎟⎟⎟⎟⎟⎠ (2)

where xi,c stands for the constant value of parameter xi over the calibration period, while βi, j and
λi, j (λi, j = βi, j · xi,c), j = 1, . . . , M, are the corresponding regression parameters. The f j(·) is the link
function between the time-varying parameter xi,t and the external covariate Vj, which can take multiple
forms such as f (z) = z (linear), f (z) = ez (exponential), or f (z) = ln(z + 1) (logarithmic), so as to
account for possible linear or non-linear relationship of the time-varying parameter with the external
covariates.

Choosing suitable external covariates is a critical issue for the utilization of Equation (1) and (2),
but it is usually limited by the availability of dataset. Considering that in practice the daily changes in
any external covariates could only cause negligible changes in the time-varying parameters, so only
impacts of the monthly changes in any physical covariates on the parameter were investigated in
this study, i.e., the time-varying parameters were updated monthly in every simulation run. Inspired
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by recent work [27,28], 8 external covariates related to variation of climate or watershed underlying
conditions, including 1-month, 2-month and 3-month antecedent monthly precipitation and potential
evapotranspiration (P1, P2, P3, PET1, PET2 and PET3) and NDVI (Normalized Difference Vegetation
Index) of current month (NDVI0), one-month shifted NDVI (NDVI1) (as shown in Table 2), were
considered as candidate covariates for the time-varying parameter.

Table 2. Description of external covariates for time-varying parameters.

Covariates Unit Description

P1 mm One-month antecedent monthly total precipitation
P2 mm Two-month antecedent monthly total precipitation
P3 mm Three-month antecedent monthly total precipitation

PET1 mm One-month antecedent monthly total potential evapotranspiration
PET2 mm Two-month antecedent monthly total potential evapotranspiration
PET3 mm Three-month antecedent monthly total potential evapotranspiration

NDVI0 - NDVI value for the current month
NDVI1 - NDVI value for the previous month

2.2. Model Calibration and Evaluation

The differential split-sample test (DSST) is a common way to evaluate hydrological models
between sub-periods with contrasting climate and watershed underlying conditions [37,38]. In practice,
usually only two or three contrasting sub-periods can be identified due to the availability of the
hydro-meteorological data. This may limit the potential of DSST for accessing the transferability of
model parameters and drawing general conclusions. To overcome this limitation, the generalized
split-sample test (GSST) proposed by Coron et al. [39,40] was chosen to test the temporal transferability
of parameter for the GR4J and GR4J-T model in this study. The main objective of GSST procedure is
to evaluate the model performance under as many and as varied climatic and watershed conditions
as possible. To this end, a sliding window with a specific length (e.g., five years) is applied to define
the sub-periods (as illustrated in Figure 1). In Figure 1, the blue bars indicate the sub-periods while
the grey bars represent the remaining part of the time series. Between two adjacent sub-periods, the
sliding window is moved by one year.
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Figure 1. Illustration of the generalized split-sample test (GSST) procedure (example with 15 years
available and 5-year subperiods). (Adapted from the work of Coron et al. [40]).

When the sub-periods creation completed, both the GR4J and GR4J-T model were calibrated in
each sub-period. Then the parameter sets obtained was used to perform validation test on independent
sub-periods, i.e., the sub-periods that do not overlap with the calibration sub-period. For example, the
parameter calibrated during SP1 won’t be validated in SP2, SP3, SP4 and SP5, as illustrated in Figure 1.
For more detail about GSST, the readers can refer to the work of Coron et al. [39,40].

The original GR4J model and the GR4J-T model have different numbers of calibrated parameters.
For the original GR4J model, the number of calibrated parameters is 4, i.e., θ = {x1, x2, x3, x4}. In the
case of the GR4J-T model, when the parameter xi(i = 1, 2, 3, 4) is treated to be time-varying, its
constant value xi,c and the corresponding regression parameters λi, j( j = 1, . . . , M) are calibrated
together with other time-invariant parameters. For example, when only the parameter x1 is regarded as
the time-varying parameter, parameters that require calibration are θ =

{
x1,c,λ1,1, . . . ,λ1,M, x2, x3, x4

}
.

Similarly, when multiple parameters are assumed to be time-varying, e.g., x1 and x2, the calibrated
parameters become θ =

{
x1,c,λ1,1, . . . ,λ1,M, x2,c,λ2,1, . . . ,λ2,M, x3, x4

}
.

The widely used Kling-Gupta Efficiency (KGE) [41] was applied to assess the overall performance
of the GR4J and GR4J-T model. The KGE is calculated as follows,

KGE = 1−
√
(r(Qact, Qsim) − 1)2 +

(
μ(Qact)

μ(Qsim)
− 1

)2

+

(
σ(Qact)

σ(Qsim)
− 1

)2

(3)

where Qact and Qsim are the observed and model-simulated streamflow series, respectively, r(Qact, Qsim)

is the Pearson’s correlation coefficient between the observed and simulated streamflow series, μ(Qact)
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and μ(Qsim) are the mean values of the observed and simulated streamflow series, respectively, σ(Qact)

and σ(Qsim) are the standard deviation of the observed and simulated streamflow series, respectively.
KGE value ranges from −∞ to 1, with a value closer to 1 indicating a better simulation performance.

The bias between the observed and simulated streamflow (BIAS) was also applied, which is
calculated as follows,

BIAS =

∑T
t=1 Qsim(t)∑T
t=1 Qact(t)

− 1 (4)

where Qact(t) and Qsim(t) are the observed and model-simulated streamflow at time t, respectively.
BIAS with a value of 0 indicates no bias, and a value above 0 means an overestimation of the total
streamflow volume.

Both the GR4J and GR4J-T models were calibrated using the SCEM (Shuffled Complex Evolution
Metropolis) optimization algorithm [2,42], which has been widely used for practical assessment of
parameter uncertainty in hydrological modeling. The SCEM algorithm, partially inspired by the
SCE-UA (Shuffled Complex Evolution - University of Arizona) algorithm [1], merges the strengths of
Metropolis-Hastings sampling [43,44], controlled random search, competitive evolution and complex
shuffling to evolve a population of sampled points to an approximation of the posterior distribution of
the parameters. Besides, the SCEM method can identify the most likely parameter set and meanwhile
its underlying posterior probability distribution in every single run [45]. The likelihood of a parameter
set was calculated as the corresponding KGE value. Considering that the likelihood value must be
nonnegative and monotonically increasing with improved performance, the parameter set that leads to
a KGE value below 0 was rejected during the evolution procedure within SCEM. The convergence of the
algorithm was determined using the Gelman-Rubin statistic [46], which is calculated on the posterior
densities to check whether convergence to a stationary target distribution has been reached. For more
detail about the SCEM optimization algorithm, the reader can refer to the work of Vrugt et al. [2].

After the convergence of the SCEM optimization algorithm, the final posterior distribution of
parameter can be obtained. In total 5000 parameter sets were sampled from the posterior distribution
to account for parameter uncertainty in this study. It should be noted that the 5000 parameter sets
can lead to very similar streamflow simulation performance in terms of the KGE criteria, and the one
corresponding to the highest KGE value (i.e., the KGE-best) was chosen to represent the estimate of the
global optimum and used for the model evaluation and selection.

2.3. Temporal Transferability Test of Model Parameters

When a parameter setθ that calibrated from the sub-period D (denoted as “donor period” hereafter)
is transferred to the sub-period R (i.e., validation, denoted as “receiver period”), the Kling-Gupta
Efficiency (KGE) can be rewritten as,

KGED→R = 1−
√
(r(Qact,R, Qsim,R[θD]) − 1)2 +

(
μ(Qact,R)

μ(Qsim,R[θD])
− 1

)2

+

(
σ(Qact,R)

σ(Qsim,R[θD])
− 1

)2

(5)

where Qact,R is the simulated streamflow series of sub-period R, Qsim,R[θD] is the simulated streamflow
series of sub-period R using parameter set obtained from sub-period D. In addition, KGER→R is defined
to access the streamflow simulation performance during sub-period R using parameter sets obtained
from sub-period R.

Note that the temporal transferability test on one single parameter set could be less persuasive.
To fully evaluate the temporal parameter transferability of both the GR4J and GR4J-T model, the 5000
parameter sets from each sub-period were then validated at other independent sub-periods, and the
average performance of both models were compared. To this end, a parameter transferability criteria
(PTC) is defined as:

PTC =

∑N
n=1 KGEt

D→R(n) −
∑N

n=1 KGEc
D→R(n)

N
(6)
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where KGEc
D→R(n) and KGEt

D→R(n) represent the KGED→R value in the case of the GR4J and the
GR4J-T model using the nth parameter set, respectively. Here, N takes the value of 5000. Note that PTC
with a value above 0 indicates a better parameter transferability for the GR4J-T model over the original
GR4J model when transferred from sub-period D to sub-period R.

3. Study Data and Area

Weihe Basin and Tuojiang Basin in Western China were chosen as the study areas. Weihe Basin
is located between the coordinates 33◦40′–37◦26′ N and 103◦57′–110◦27′ E, with a drainage area of
148,000 km2 above Huaxian hydrological station, as shown in Figure 2. The elevation within Weihe
Basin ranges from 3671 m in the western upstream region to 318 m in the eastern downstream region.
Dominated by the semi-arid continental monsoon climate, most precipitation and flood events in Weihe
Basin occur in late summer and early autumn. For Weihe Basin, climate variability is significant and
human activities have been proved to be the main cause of the alternation of flow regimes. Previous
studies have shown that the annual streamflow of the gauge Huaxian has been declining over the past
decades [47–49], mainly due to the increasing human activities including the agricultural irrigation,
the construction of large water control projects and the implementation of the water-soil conservation
projects [50,51]. In addition, the variations of the annual precipitation have also contributed to the
reduced annual streamflow in Weihe Basin [52].

Figure 2. Location of Weihe Basin and Tuojiang Basin in China and the meteorological and
hydrological gauges.
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Tuojiang Basin (28◦88′–30◦29′ N, 105◦44′–108◦20′ E) is an upstream tributary of the Yangtze River,
with a total length of 712 km. Tuojiang Basin covers 19,613 km2 with Fushun hydrological station as
the catchment outlet. The elevation within Tuojiang Basin ranges from 264 to 4741 m and decreases
from northwest to southeast. Tuojiang Basin is dominated by the subtropical monsoon climate, with
most precipitation and flood events occurring in summer and early autumn. The annual streamflow of
Tuojiang Basin was also in a downtrend. However, few recent studies focus on Tuojiang Basin and the
reason for the declined annual streamflow remains unclear.

The input data for the GR4J model include precipitation (P) and potential evapotranspiration (PET).
The precipitation and air temperature data were provided by National Meteorological Information
Center of China [53] on a daily basis for the period from 1981 to 2010 and has been widely validated
for its quality in previous studies [47–49]. Limited by availability of the meteorological dataset, the
potential evapotranspiration (PET) was calculated using the Blaney-Criddle method [54] from the
daily average air temperature and the daily sunshine duration. To calibrate and validate the GR4J
model, the observed streamflow (Q) series from the gauge Huaxian and Fushun were obtained for the
period 1981–2010. The NDVI dataset for the period from 1981–2010 was obtained from the GIMMS
(Global Inventory Modelling and Mapping Studies) NDVI–3g product [55], which has been widely
validated [55,56]. Since its temporal resolution is 15-day, the monthly NDVI is represented by the mean
value of the two NDVI values in each month.

4. Results and Discussion

4.1. Diagnostics of Hydrological Nonstationarity

Considering the available hydro-meteorological dataset for Weihe Basin and Tuojiang Basin are
for the period 1981–2010, in total 26 sub-periods of 5-year in length are set up following the method
described in Figure 1. The reasons for the selection of 5-year as the sub-period length are: (1) 5-year is
sufficient for continuous hydrological simulation, (2) a large number of sub-periods (26 in this study)
can be set up given that only 30-year records were available. To identify the long-term variation of the
hydro-meteorological data series of both basins, the non-parametric Mann-Kendall method [57,58]
was applied to examine the trends in the annual P, PET, Q and annual runoff ratios (RR) series of the
period 1981–2010, and the result is shown in Table 3. The results show a significant downtrend for
the annual Q and RR series, a slight downtrend for annual P series and uptrend for the PET series
in Weihe Basin. In the case of Tuojiang Basin, a slight downtrend for annual P series and significant
downtrend for annual PET, Q, and RR series are presented. It can be found that both basins witnessed
a clear nonstationary in rainfall-runoff relationship. In terms of the annual NDVI series, Weihe Basin
shows a clear uptrend while Tuojiang Basin shows no clear changes. This may be attributed to the fact
that Weihe Basin has experienced an incessant construction of water-soil conservation projects (e.g.,
afforestation) since the early 1980s [49].

Variability is also apparent between longer periods, as shown in Figure 3, where the relative
mean P, PET, Q, and RR values for all sub-periods (5-year sliding window) are plotted for both basins.
Figure 3a–d show how the 5-year hydro-meteorological conditions differ from those of the whole
period (1981–2010). For each basin, a line corresponds to the series of the mean values over a 5-year
sliding window (sub-period). Each value is expressed relative to the mean value of the whole period
(1981–2010) and plotted in the middle year of the corresponding sub-period. The result is in line with
the results of the MK-test. For both Weihe Basin and Tuojiang Basin, a significant downtrend of 5-year
total streamflow volume and a decreased runoff-ratios are presented. This may question the parameter
transferability of the GR4J model, which is detailed in following sections.
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Table 3. Mann-Kendal (MK) test results of the annual hydro-meteorological data series, the annual
runoff ratios and the annual NDVI data series for Weihe Basin and Tuojiang Basin. The critical value of
the MK statistic is Z1−α/2 = 1.960 with α = 0.05.

Basin Data Z statistic Trend

Weihe Basin

Annual P −1.22 ↓
Annual PET 1.56 ↑

Annual Q −2.61 ↓**
Annual RR −2.56 ↓**

Annual NDVI 3.96 ↑**

Tuojiang Basin

Annual P −1.32 ↓
Annual PET −3.51 ↓**

Annual Q −2.75 ↓**
Annual RR −2.78 ↓**

Annual NDVI 0.46 ↑
Notes: The symbol “**” indicates a significant uptrend or downtrend.

Figure 3. Relative long-term hydro-meteorological variability of (a) precipitation (P), (b) potential
evapotranspiration (PET), (c) runoff (Q), and (d) runoff ratio (RR) over Weihe Basin and Tuojiang Basin.

4.2. Parameter Estimation for the GR4J and GR4J-T Model

To incorporate time-varying sensitivity analysis, the Sobol’ sensitivity analysis was repeated at a
monthly temporal resolution rather than over the whole period (1981–2010). The monthly sensitivity
indices (including the first-order and total-order) of each parameter were therefore obtained with KGE
as the metric. More detail about the time-varying sensitivity analysis can be found in the work of
Herman et al. [36]. Figure 4 provides a simple and direct interpretation of the relationships between the
sensitivity of the GR4J’s parameters and changing precipitation and streamflow conditions, which was
achieved by sorting the monthly sensitivity indices (only the total-order were presented for brevity)
for both basins along ascending gradients of monthly precipitation and streamflow.
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Figure 4. Monthly total-order sensitivity indices of GR4J parameters for (a) Weihe Basin and (b)
Tuojiang Basin. For each basin, the left panel and the right panel share the same sensitivity indices, but
they are sorted by monthly total precipitation (left) and monthly streamflow (right), respectively.

For Weihe Basin, the parameter x1, which controls the production storage capacity, shows a strong
sensitivity during both high-flow and low-flow months. In contrast, the parameter x2, x3 and x4

are less sensitive. In the case of Tuojiang Basin, the parameter x1 and x3 dominate the months with
low-flow and less-precipitation, while the parameter x2 and x4 show relatively weaker sensitivity.
Thus, the parameter x1 is assumed to be time-varying for Weihe Basin, and the parameter x1 and x3 for
Tuojiang Basin.

The correlation between monthly runoff-ratios and monthly external covariate is summarized
in Figure 5 in term of Spearman’s rank correlation coefficient. Note that the monthly runoff-ratios
were calculated as the ratios of monthly runoff depth (mm) and the monthly total precipitation (mm).
It can be found that the monthly runoff-ratios has a strong correlation with PET1 and NDVI0 for Weihe
Basin. In the case of Tuojiang Basin, the covariates with high correlation coefficient are P2 and NDVI0.
This correlation analysis was done to justify the reasonability of incorporating the abovementioned
external covariates into the time-varying parameters. It may be arbitrary to assert that an external
covariate with a weak correlation coefficient is inappropriate and useless. In this study, all 8 external
covariates were applied to construct the time-varying parameters for both Weihe Basin and Tuojiang
Basin, which is detailed in the following section.
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Figure 5. Spearman rank correlation coefficient between monthly covariates and monthly runoff ratio
(RR) for Weihe Basin and Tuojiang Basin for the whole period (1981–2010).

To reduce the influence of the initial state, a spin-up period of 1-year was used at the parameter
calibration procedure for each sub-period, and the simulated streamflow within the spin-up period
was excluded in the model assessment procedure. To fully explore the potential for the GR4J-T model
in streamflow simulation, all combination of the eight external covariates were investigated and their
corresponding performances were compared in terms of the KGE and BIAS criteria. Considering a
large number of model assessment procedure (e.g., 255 covariate combinations for each sub-period in
Weihe Basin,C1

8 +C2
8 +C3

8 +C4
8 +C5

8 +C6
8 +C7

8 +C8
8 = 255), only a small part of the results is presented

hereafter for the sake of brevity. For each covariate combination, totally 5000 parameter sets were
obtained from the calibration procedure and only the KGE-best for each covariate combination is
shown here. For example, Table 4 presented the streamflow simulation performance for 8 different
cases (C0–C7) during the sub-period 1 (SP1) in Weihe Basin. The case C0 was designed to represent
the original GR4J model, where the value of parameter x1 is invariant over time. Under cases C1–C7,
the external covariate P1, PET1 and NDVI0 were incorporated into the time-varying parameter x1,t.
The corresponding equations for time-varying parameter x1,t are also presented in Table 4. It should be
noted that three forms of link functions including ‘linear’, ‘exponential’ and ‘logarithmic’ were used
to link the external covariates with the time-varying parameter. Three link functions lead to similar
model performance, while the ‘linear’ was always the best and simplest one. So only the ‘linear’ is
shown here.

It can be found that the streamflow simulation performance significantly improves when parameter
x1 was allowed to change over time. For example, the KGE value is 0.752 when only the covariate
P1 was considered when compared to 0.727 for the original GR4J model. The difference in BIAS
criteria (from −16.1% to −6.3%) also indicates a better water balance simulation of the GR4J model with
time-varying parameter. Furthermore, the highest KGE value (0.761) was achieved when P1, PET1 and
NDVI0 were incorporated into the time-varying parameter.
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Table 4. Comparison of streamflow simulation performance of the GR4J model (C0) and the GR4J-T
model (C1–C7) in Weihe Basin during the sub-period 1 (SP1, from 1981 to 1985).

Case
Covariate

Equation for Time−Varying Parameter x1,t
KGE

(-)
BIAS
(%)P1 PET1 NDVI0

C0 x1,t = 320.1 0.727 −16.1

C1 � x1,t = 290.3 + 0.28P1,t 0.752 −6.3

C2 � x1,t = 306.5 + 0.54PET1,t 0.749 −8.1

C3 � x1,t = 296.8 + 99.8NDVI0,t 0.751 −11.2

C4 � � x1,t = 271.8 + 0.19P1,t + 0.27PET1,t 0.755 −6.2

C5 � � x1,t = 312.5 + 0.17PET1,t + 60.6NDVI1,t 0.759 −6.4

C6 � � x1,t = 298.4 + 0.25P1,t + 41.8NDVI0,t 0.751 −9.3

C7 � � � x1,t = 303.4 + 0.18P1,t + 0.28PET1,t + 32.6NDVI0,t 0.761 −6.1

4.3. Streamflow Simulation Performance of the GR4J and GR4J-T Model

Similarly, the model assessment procedure was repeated for the rest sub-periods (SP2-SP26).
Table 5 presents the streamflow simulation performance of the GR4J model and the GR4J-T model for
all 26 sub-periods in Weihe Basin. Note that the equations for time-varying parameter x1,t corresponds
to the covariate combination case with the best streamflow simulation performance in terms of the KGE
criteria during the corresponding sub-period, i.e., the KGE-best one. The GR4J-T model significantly
outperforms the original GR4J model in terms of the KGE criteria and achieve a better water balance
simulation in most cases. This is not unexcepted as previous studies have proven the advantage of
applying time-varying parameter in streamflow simulation [27,28].

Table 5. Comparison of streamflow simulation performance of the GR4J model and the GR4J-T model
in Weihe Basin for all sub-periods (SP1–SP26).

Sub-
Period

GR4J Model GR4J-T Model

Value of x1
KGE

(-)
BIAS
(%)

Equation for Time−Varying Parameter x1,t
KGE

(-)
BIAS
(%)

SP1 320.1 0.727 −16.1 x1,t = 303.4 + 0.18P1,t + 0.28PET1,t + 32.6NDVI0,t 0.761 −6.1

SP2 443.2 0.617 −17.3 x1,t = 278.6 + 0.16P1,t + 0.17PET1,t + 57.7NDVI0,t 0.631 −14.5

SP3 324.1 0.571 −19.1 x1,t = 309.2 + 0.25P1,t − 0.14PET1,t − 28.6NDVI0,t 0.572 −11.6

SP4 263.5 0.509 −26.2 x1,t = 251.5 + 0.35P1,t − 0.19PET1,t + 38.6NDVI0,t 0.591 −20.2

SP5 447.3 0.611 −16.2 x1,t = 399.5 + 0.27P1,t − 0.15PET1,t − 4.3NDVI0,t 0.635 −13.2

SP6 375.5 0.389 −22.2 x1,t = 259.1 + 0.38P1,t − 0.21PET1,t + 44.6NDVI0,t 0.481 −20.3

SP7 367.4 0.392 −22.9 x1,t = 292.7 + 0.29P1,t − 0.19PET1,t + 44.2NDVI0,t 0.514 −27.9

SP8 300.9 0.442 −25.7 x1,t = 251.5 + 0.35P1,t + 0.15PET1,t + 21.7NDVI0,t 0.575 −26.4

SP9 256.3 0.341 −23.3 x1,t = 205.6 + 0.45P1,t − 0.37PET1,t + 61.9NDVI0,t 0.504 −19.6

SP10 414.5 0.403 −18.1 x1,t = 283.5 + 0.48P1,t − 0.12PET1,t + 17.1NDVI0,t 0.442 −15.2

SP11 417.6 0.392 −26.4 x1,t = 233.5 + 0.17P1,t − 0.09PET1,t − 7.6NDVI0,t 0.438 −26.6

SP12 244.1 0.483 −25.2 x1,t = 241.5 + 0.37P1,t − 0.49PET1,t + 48.2NDVI0,t 0.536 −19.7

SP13 182.4 0.230 −42.9 x1,t = 194.1 + 0.67P1,t + 0.34PET1,t − 27.9NDVI0,t 0.432 −40.3

SP14 340.4 0.499 −23.6 x1,t = 305.8 + 0.47P1,t − 0.15PET1,t − 34.8NDVI0,t 0.535 −17.9

SP15 424.1 0.659 −13.7 x1,t = 341.5 + 0.53P1,t − 0.09PET1,t − 13.6NDVI0,t 0.713 −7.8

SP16 208.1 0.601 −28.2 x1,t = 221.6 + 0.19P1,t + 0.09PET1,t − 6.3NDVI0,t 0.622 −26.4

SP17 295.5 0.582 −18.4 x1,t = 329.4 + 0.54P1,t − 0.03PET1,t − 28.1NDVI0,t 0.639 −10.1

SP18 315.3 0.489 −24.5 x1,t = 300.7 + 0.52P1,t − 0.35PET1,t − 12.2NDVI0,t 0.543 −17.5
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Table 5. Cont.

Sub-
Period

GR4J Model GR4J-T Model

Value of x1
KGE

(-)
BIAS
(%)

Equation for Time−Varying Parameter x1,t
KGE

(-)
BIAS
(%)

SP19 378.7 0.734 −23.3 x1,t = 308.3− 0.13P1,t + 0.52PET1,t − 23.6NDVI0,t 0.763 −16

SP20 429.1 0.779 −21.5 x1,t = 229.8 + 0.57PET1,t − 29.2NDVI0,t 0.801 −17.4

SP21 339.5 0.732 −4.6 x1,t = 325.1− 0.51P1,t + 0.27PET1,t + 29.1NDVI0,t 0.771 −1.5

SP22 460.1 0.746 −4.7 x1,t = 334.5− 0.13P1,t + 0.25PET1,t − 12.1NDVI0,t 0.765 −3.2

SP23 382.8 0.729 −15.3 x1,t = 281.9− 0.17P1,t − 0.09PET1,t + 22.4NDVI0,t 0.772 −13.8

SP24 334.5 0.563 −24.6 x1,t = 336.7 + 0.34P1,t − 0.13PET1,t + 15.2NDVI0,t 0.654 −10.6

SP25 223.1 0.522 −37.5 x1,t = 284.1 + 17.5P1,t + 0.09PET1,t + 11.5NDVI0,t 0.583 −22.3

SP26 426.5 0.586 −18.7 x1,t = 316.2 + 0.51P1,t − 0.28PET1,t + 33.8NDVI0,t 0.691 −13.8

The case of Tuojiang is more complicated since two parameters (x1 and x3) are assumed to be
time-varying. Therefore, four scenarios were considered for each sub-period, including: (1) both
parameters are constant, (2) x1 is constant and x3 is time-varying, (3) x1 is time-varying and x3 is
constant, (4) both parameters are time-varying. However, only the results of the first and fourth
scenario are presented here in Table 6, because: (1) the calibration procedure is not the main purpose of
this study, (2) the second and third scenario show less significant improvement in term of KGE when
compared to the fourth scenario. For Tuojiang Basin, it is clear that the GR4J-T outperforms the original
GR4J model, though the improvement in terms of KGE is not as significant as the case of Weihe Basin.
This may partly be attributed to the fact that the original GR4J can achieve a satisfying performance in
most sub-periods for Tuojiang Basin.

Table 6. Comparison of streamflow simulation performance of the GR4J model and the GR4J-Model in
Tuojiang Basin for all sub-periods (SP1–SP26).

Sub-
Period

GR4J Model GR4J-T Model

Values of x1
and x3

KGE
(-)

BIAS
(%)

Equations for x1,t and x3,t
KGE

(-)
BIAS
(%)

SP1 x1 = 153.5
x3 = 129.3 0.706 −4.7 x1,t = 179.9 + 0.23PET1,t − 52.3NDVI0,t

x3,t = 125.9 + 0.28PET1,t − 50.1NDVI0,t
0.729 −3.8

SP2 x1 = 210.1
x3 = 225.3 0.619 −5.2 x1,t = 221.5 + 0.14P2,t + 0.18PET1,t − 50.1NDVI0,t

x3,t = 185.2 + 0.34PET1,t − 41.5NDVI0,t
0.654 −3.2

SP3 x1 = 119.1
x3 = 180.2 0.677 −4.4 x1,t = 287.7− 0.23PET1,t − 66.3NDVI0,t

x3,t = 156.9 + 0.18PET1,t − 31.7NDVI0,t
0.701 −4.2

SP4 x1 = 191.5
x3 = 255.9 0.725 −4.5 x1,t = 233.8 + 0.37PET1,t + 7.2NDVI0,t

x3,t = 289.1 + 0.12PET1,t − 33.2NDVI0,t
0.738 −1.9

SP5 x1 = 183.2
x3 = 293.9 0.696 −4.9 x1,t = 253.2− 0.14PET1,t − 38.7NDVI0,t

x3,t = 217.9− 0.41PET1,t − 48.3NDVI0,t
0.702 −6.3

SP6 x1 = 230.7
x3 = 110.1 0.738 −5.2 x1,t = 286.8− 0.56PET1,t + 19.6NDVI0,t

x3,t = 131.2− 39.1NDVI0,t
0.754 −4.1

SP7 x1 = 239.2
x3 = 124.6 0.724 −2.2 x1,t = 263.1− 0.27PET1,t − 35.1NDVI0,t

x3,t = 217.9− 0.24PET1,t − 18.5NDVI0,t
0.743 −0.7

SP8 x1 = 201.3
x3 = 281.2 0.725 −2.5 x1,t = 267.8 + 0.18PET1,t − 36.5NDVI0,t

x3,t = 237.5 + 0.24P2,t − 0.31PET1,t − 18.9NDVI0,t
0.752 −4.4

SP9 x1 = 259.7
x3 = 115.8 0.771 −3.5 x1,t = 161.5 + 0.32PET1,t + 56.6NDVI0,t

x3,t = 237.9 + 0.14P2,t − 0.28PET1,t − 45.7NDVI0,t
0.792 −0.1

SP10 x1 = 234.6
x3 = 122.7 0.756 −5.1 x1,t = 191.3 + 0.64PET1,t − 18.9NDVI0,t

x3,t = 187.2 + 0.19P2,t − 72.1NDVI0,t
0.776 −4.8

SP11 x1 = 217.4
x3 = 220.8 0.759 −2.3 x1,t = 285.1 − 0.22P2,t − 24.3NDVI0,t

x3,t = 188.2 + 0.12P2,t + 0.28PET1,t − 35.1NDVI0,t
0.771 −7.7
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Table 6. Cont.

Sub-
Period

GR4J Model GR4J-T Model

Values of x1
and x3

KGE
(-)

BIAS
(%)

Equations for x1,t and x3,t
KGE

(-)
BIAS
(%)

SP12 x1 = 137.3
x3 = 199.3 0.764 −4.9 x1,t = 216.5 + 0.36PET1,t − 62.7NDVI0,t

x3,t = 244.7 + 0.34PET1,t − 46.8NDVI0,t
0.779 −8.6

SP13 x1 = 261.8
x3 = 161.6 0.726 −7.5 x1,t = 307.8 + 0.18P2,t − 0.42PET1,t − 42.9NDVI0,t

x3,t = 155.8 + 0.52PET1,t − 29.1NDVI0,t
0.739 −10.1

SP14 x1 = 240.4
x3 = 152.5 0.728 −2.1 x1,t = 271.9 − 0.19PET1,t − 56.3NDVI0,t

x3,t = 141.4 + 0.43PET1,t − 42.7NDVI0,t
0.736 −2.5

SP15 x1 = 240.1
x3 = 177.2 0.725 −6.7 x1,t = 234.7− 0.16PET1,t − 36.1NDVI0,t

x3,t = 185.5− 0.16PET1,t − 24.2NDVI0,t
0.728 −8.2

SP16 x1 = 265.3
x3 = 178.9 0.691 0.8 x1,t = 292.1− 0.42PET1,t − 40.9NDVI0,t

x3,t = 248.4− 61.6NDVI0,t
0.703 3.4

SP17 x1 = 239.6
x3 = 123.4 0.721 −3.7 x1,t = 209.8− 0.43PET1,t + 22.3NDVI0,t

x3,t = 144.3 + 0.21P2,t − 0.18PET1,t + 18.3NDVI0,t
0.727 −2.3

SP18 x1 = 236.7
x3 = 152.2 0.745 −3.9 x1,t = 267.4− 0.36PET1,t

x3,t = 195.9− 0.52PET1,t + 18.3NDVI0,t
0.751 −3.0

SP19 x1 = 210.5
x3 = 138.8 0.728 −9.1 x1,t = 188.3 + 0.13PET1,t − 51.1NDVI0,t

x3,t = 137.8 + 0.15P2,t − 0.28PET1,t + 15.4NDVI0,t
0.739 −9.9

SP20 x1 = 221.5
x3 = 138.4 0.717 −11.9 x1,t = 107.6 + 0.12P2,t + 97.3NDVI0,t

x3,t = 153.2− 0.16PET1,t − 42.4NDVI0,t
0.747 −7.4

SP21 x1 = 234.4
x3 = 162.3 0.795 −7.1 x1,t = 219.4− 0.28PET1,t + 75.1NDVI0,t

x3,t = 143.1− 0.31PET1,t − 42.4NDVI0,t
0.812 −5.2

SP22 x1 = 165.4
x3 = 211.6 0.714 −8.8 x1,t = 138.7 + 0.56PET1,t − 62.3NDVI0,t

x3,t = 200.6− 0.34PET1,t − 39.4NDVI0,t
0.745 −6.6

SP23 x1 = 303.5
x3 = 185.2 0.749 −6.6 x1,t = 339.1− 0.38PET1,t − 60.8NDVI0,t

x3,t = 139.9 + 0.35PET1,t − 62.4NDVI0,t
0.766 −7.1

SP24 x1 = 285.9
x3 = 112.5 0.688 −9.4 x1,t = 138.7 + 0.34PET1,t + 41.6NDVI0,t

x3,t = 225.9− 0.45PET1,t − 68.5NDVI0,t
0.716 −7.5

SP25 x1 = 224.5
x3 = 168.7 0.678 −9.4 x1,t = 136.8 + 0.18PET1,t + 57.9NDVI0,t

x3,t = 257.1− 0.42PET1,t − 61.3NDVI0,t
0.681 −6.9

SP26 x1 = 185.9
x3 = 129.7 0.687 −9.7 x1,t = 200.1− 0.58PET1,t + 72.6NDVI0,t

x3,t = 244.9 + 0.18P2,t − 0.48PET1,t − 71.2NDVI0,t
0.708 −7.4

The observed streamflow and the uncertainty bounds associated with model parameter for both
models during part of SP1 (1982–1983) are presented in Figure 6 (for Weihe Basin) and Figure 7 (for
Tuojiang Basin) for an illustration purpose. The uncertainty bounds associated with model parameter
were calculated as follows [59]. For both the GR4J and GR4J-T model, the streamflow simulation for a
certain sub-period was repeated using the 5000 parameter sets, and 5000 simulated hydrographs were
therefore obtained. Then the likelihood value of each parameter set was assigned to the respective
simulated hydrograph. At each time step of the simulation, the posterior distributions of simulated
streamflow can be calculated based on the 5000 simulated streamflow and the corresponding likelihood
values. The upper and lower uncertainty bounds are here defined as the 2.5% and 97.5% quantiles
of the posterior distribution, respectively. Then the 95% predictive uncertainty bounds associated
with model parameter for both models were obtained. More detail of the calculation of the predictive
uncertainty bounds can be found in the work of Blasone et al. [59]. The red and grey shaded areas
indicate the prediction uncertainty associated with the GR4J model and GR4J-T model, respectively.
It can be found that most parts of the observed streamflow series lie within the uncertainty bounds
for both models, indicating a good simulation performance. In addition, the original GR4J model
tends to underestimate the low flows in Weihe Basin, as presented in Figure 6b, where the simulated
streamflow series is constantly lower than the observed in November of 1983. However, the average
relative bandwidth of the uncertainty bounds associated with the GR4J-T model is wider, which
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indicates a higher parameter uncertainty. This agrees with the finding of Wallner and Haberlandt [25],
who showed that time-varying model parameters can improve the model performance at the cost of
possible growth in parameter uncertainty. The growth in parameter uncertainty may also relate to the
choice of the external time-varying covariates when applying time-varying parameter, which may be
an interesting topic that deserves further exploration.

Figure 6a presents the constant value of the parameter x1 and its temporal dynamic when treated
as time-varying for Weihe Basin during part of SP1 (1982–1983). The constant value was obtained from
the KGE-best parameter set of the GR4J model, while the temporal dynamic of x1,t is presented in
the form of boxplot using the 5000 resultant parameter sets of the GR4J-T model. It can be seen that
the time-varying parameter x1,t increases in the growing season and decreases as the dormant season
begins, with its values around the constant value of the parameter x1. The case is the same for the
parameter x1 and x3 in Tuojiang Basin, as shown in Figure 7a,b.

Figure 6. Temporal comparison of (a) the values of the parameter x1 and (b) the simulated daily
streamflow of the GR4J model and the GR4J-T model for Weihe Basin during SP1 (only the period
from 1 January 1982 to 31 December 1983 are presented here). The uncertainty bounds associated with
model parameter are derived from the streamflow simulation results using the corresponding 5000
parameter sets.
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Figure 7. Temporal comparison of the values of the parameter (a) x1 and (b) x3, and (c) the simulated
daily streamflow of the GR4J model and the GR4J-T model for Tuojiang Basin during SP1 (only the
period from 1 January 1982 to 31 December 1983 are presented here). The uncertainty bounds associated
with model parameter are derived from the streamflow simulation results using the corresponding
5000 parameter sets.

The increased value of the parameter x1 during the growing season indicates larger catchment
storage (e.g., interception) and, therefore, a weaker response of the watershed to precipitation inputs.
As a result, the same hydrological inputs of precipitation may lead to less streamflow, therefore lower
runoff ratio when compared to the dormant season. Likewise, the relatively low value of the parameter
x1 during the dormant season may lead to a stronger response to the precipitation inputs and may
help to reduce the possibility to underestimate the low flow, as mentioned above. The parameter x3,
which controls the routing storage of GR4J model, shows a similar trend with x1 in the case of Tuojiang.
Similarly, the relatively low values of the parameter x3 during dormant season, could contribute to a
more rapid hydrological response and therefore a better representation of the low flow.

The improved streamflow simulation performance can be attributed to: (1) the dynamics in model
parameter, which may help to compensate the possible deficiency of model structure, (2) the increased
degree of freedom of model parameters. For the GR4J-T model applied in Weihe Basin, the number of
parameters that required calibration is 7. The trade-off between a simple model structure and good
model performance could be an interesting topic that deserves further researches, especially under
changing environments.
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4.4. Parameter Transferability of the GR4J and GR4J-T Model

To test the parameter transferability of the GR4J and GR4J-T Model, the abovementioned 5000
parameter sets obtained from each sub-period (donor period) were then validated at its independent
sub-periods (receiver periods). For example, Figure 8 compares the streamflow simulation performance
of the GR4J model and GR4J-T model under 10 different sub-periods using parameter sets obtained
from SP1 in Weihe Basin. The corresponding PTC criteria are also presented. As a reference, the
red solid line represents the highest value of KGE (KGEc

R→R) achieved by the original GR4J model
using parameter from each receiver period, while the blue solid line for the GR4J-T model (KGEt

R→R).
The blue boxes represent the KGE values (KGEc

D→R) achieved by the original GR4J model using the
5000 parameter sets obtained from SP1, and the green boxes represent those of the GR4J-T model
(KGEt

D→R). It is clear that when parameter sets were transferred from the donor period to the receiver
periods, the model performance significantly decreased for both the GR4J model and GR4J model.
However, the maximum value of the green boxes (KGEt

D→R) is constantly higher than those of the blue
boxes (KGEc

D→R), as shown in Figure 8. Besides, the PTC criteria, which is the difference between the
average value of KGE achieved using 5000 parameter sets by both models over each receiver period
(see Equation (6)), is above 0 in most cases, which indicates a better temporal transferability of the
GR4J-T model. The case is the same for Tuojiang Basin (see Figure 9), though the corresponding PTC
values are quite close to 0.

Figure 8. Comparison of streamflow simulation performance in terms of KGE when parameter sets
calibrated during P1 are transferred to other sub-periods (SP6–SP26) for the GR4J model and the GR4J-T
model in Weihe Basin. The boxplots represent the KGE values using the 5000 parameter sets obtained
from SP1. The PTC values indicate the difference of the average simulation performance between the
GR4J model and the GR4J-T model during the validation procedure.
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Figure 9. Comparison of streamflow simulation performance in terms of KGE when parameter sets
calibrated during P1 are transferred to other sub-periods (SP6–SP26) for the GR4J model and the GR4J-T
model in Tuojiang Basin.

To comprehensively compare the temporal transferability of the constant parameter and the
time-varying parameter, the PTC criteria for every possible case is also presented in Figure 10.
The blank area indicates the cases where the transferability test is inapplicable (e.g., between adjacent
sub-periods or among sub-periods that overlap each other). The labels on the y-axis indicate the
26 donor periods while the labels on the x-axis indicate the receiver periods. Each cell in the figure
stands for a transferability test and its color represents the corresponding PTC value. The red cells,
indicating positive PTC values, stands for the cases where the GR4J-T model shows a better temporal
transferability over the GR4J model, while the blue cells are in the opposite cases. It is clear that the
PTC criteria have a positive value in most cases. This further demonstrates that the GR4J-T model has
advantage in term of temporal transferability over the original GR4J model.

Note that the loss in model performance when the model parameter was transferred among
sub-period with different climate and watershed conditions is inevitable even for the hydrological
model with time-varying parameter. Here, it was proven that a better transferability can be achieved
under changing environments when applying the time-varying parameter. Though in practice,
applying the time-varying parameter is not an easy job, as a more complicated calibration procedure
is necessary. However, it is still worth identifying the sensitive parameter and find out how it may
change over time, which may help to improve the model structure and to provide new sights for better
understanding the hydrological processes.

144



Water 2019, 11, 2029

Figure 10. PTC values of the parameter transferability test for (a) Weihe Basin and (b) Tuojiang Basin.

5. Conclusions

This study investigated the parameter transferability under changing environments of the original
GR4J model and its modified version, in which the parameter was allowed to vary over time. To set up
the GR4J model with the time-varying parameter, a sensitivity analysis was applied to identify the
most sensitive parameter, which was then treated as time-varying and assumed to be a function of
several external covariates. Both models were calibrated and validated in a series of sub-periods with
different climatic and watershed conditions. The investigation was carried out for Weihe Basin and
Tuojiang Basin in western China. The main findings of this study are as follows:
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(1) A better streamflow simulation performance in terms of the KGE criteria was achieved by the
GR4J model with time-varying parameters (x1 for Weihe Basin, x1 and x3 for Tuojiang Basin) during most
calibration sub-periods for both basins, though at the cost of slight growth in parameter uncertainty,

(2) The GR4J model with time-varying parameter shows a better transferability among sub-periods
with different climate and watershed conditions when compared to the original GR4J model for
both basins.

Although the time-invariance of model parameters is one of the basic criteria of a high-quality
hydrologic model, very few (if any) models can achieve this due to their inherent limitations. Numerous
previous studies have proved that hydrological models with time-varying parameters can achieve
a better streamflow simulation performance during the calibration period. This study further
demonstrates the advantage of the GR4J model with time-varying parameter in terms of temporal
transferability among different sub-periods. This may provide new insights for improving the structure
of existing hydrological models and for building new models.

Considering the availability of the dataset for both basins, only six climate-related covariates (P1,
P2, P3, PET1, PET2, and PET3) and 2 watershed-related covariates (NDVI0 and NDVI1) were accounted
for to describe the dynamic variation of the selected parameter. More covariates should be investigated
in further researches. Besides, the key factor that leads to the alternation in flow regimes also differs
for different catchments. Thus, more emphases should be placed on the careful identification of proper
external covariates when applying time-varying parameter.
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Abstract: Given the increasingly worsening ecology issues in the lower Yellow River, the Xiaolangdi
reservoir is chosen as the regulation and control target, and the single and multi-objective operation
by ecology and power generation in the lower Yellow River is studied in this paper. This paper
first proposes the following three indicators: the ecological elasticity coefficient (f1), the power
generation elasticity coefficient (f2), and the ecological power generation profit and loss ratio (k).
This paper then conducts a multi-target single dispatching study on ecology and power generation
in the lower Yellow River. A genetic algorithm (GA) and an improved non-dominated genetic
algorithm (NSGA-II) combining constraint processing and feasible space search techniques were
used to solve the single-objective model with the largest power generation and the multi-objective
optimal scheduling model considering both ecology and power generation. The calculation results
show that: (1) the effectiveness of the NSGA-IIcombined with constraint processing and feasible
spatial search technology in reservoir dispatching is verified by an example; (2) compared with the
operation model of maximizing power generation, the power generation of the target model was
reduced by 0.87%, the ecological guarantee rate was increased by 18.75%, and the degree of the
impact of ecological targets on the operating results was quantified; (3) in each typical year, the
solution spatial distribution and dimensions of the single-target and multi-target models of change are
represented by the Pareto-front curve, and a multi-objective operation plan is generated for decision
makers to choose; (4) the f1, f2, and k indicators are selected to analyze the sensitivity of the five
multi-objective plans and to quantify the interaction between ecological targets and power generation
targets. Ultimately, this paper discusses the conversion relationship and finally recommends the
best equilibrium solution in the multi-objective global equilibrium solution set. The results provide
a decision-making basis for the multi-objective dispatching of the Xiaolangdi reservoir and have
important practical significance for further improving the ecological health of the lower Yellow River.

Keywords: multi-objective optimal operation model; feasible search space; Pareto-front optimal
solution set; loss–benefit ratio of ecology and power generation; elasticity coefficient

1. Introduction

Rivers are the most important life support system for mankind—they are the key to maintaining
the material and energy cycle of a region or river basin. On the other hand, the hydrological situation
of rivers affects all aspects of natural ecosystems. Good hydrological conditions are important for
maintaining the health of rivers and maintaining aquatic life. Ecosystem integrity plays a very
important role. As the mother river of China, the Yellow River is the largest water supply source
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in Northwest China and North China. It undertakes water supply tasks for 15% of the country’s
cultivated land diversion irrigation, 12% of the population, and more than 50 large and medium-sized
cities. As we all know, the Yellow River is the river with the highest sand content in the world. Its
largest sediment is located in the middle reaches and flows through the Loess Plateau. The large
amount of sediment carried in the Yellow River caused great damage to the national economy and
ecological environment. Thus, there is an urgent need to mitigate this problem by means of reservoir
management. The construction of cascade reservoirs in the Yellow River basin has made great economic
benefits, resulting in serious ecological problems at the same time. The ecological problems in the
middle and lower reaches of the Yellow River are mainly reflected in the following aspects: 1� The
reservoir operation has a great effect on the morphological changes of the river. The water and sediment
regulation of the Xiaolangdi dam is beneficial to river erosion, but the erosion amplitudes are becoming
smaller [1–3]. It is predicted that the river downstream of Xiaolangdi will quickly be desilted after
2020, and the amount of desilted river will reach the pre-reservoir level by around 2028. By then, the
Zhongshui River Channel will be difficult to maintain, and the ecological flow in some sections will
be destroyed [4,5]. 2� The seasonal basic ecological flow in the river channel cannot be guaranteed,
and the species diversity in the river channel is severely damaged [6,7]. 3� The water quality of the
downstream river water deteriorates [8], the oxygen content of the water body decreases, and BOD,
COD, and other indicators exceed the normal threshold, resulting in the self-healing and dirt-holding
capacity being significantly reduced.

The multi-objective optimal dispatching of reservoirs has become a hot spot in the research of
reservoir operation in China. In the past, the study on the optimal operation of reservoirs has been
carried out by power generation [9], flood control [10,11], irrigation [12], and other single target to
maximize the reservoir economic benefits. With the rapid development of social economy, the reservoir
urgently needs to improve the utilization of water and play its comprehensive benefit. The operation
models and the optimization algorithms from single target [13,14] to multi-objective [15–26] have
become the future overall trend of reservoir optimization. The operation model was based on a
single-objective model of power generation originally. Robin W. [27] established a single-objective
model of power generation and constructed a reservoir [28] that established an optimal power
generation operation model, which is simple and easy to implement and provides an effective method
for the optimal operation of cascade hydropower stations. In today’s world, the reservoir has to
undertake more and more tasks, so the reservoir began to use the multi-objective model to guide the
actual operation. Authors such as Huang Cao [29] established a power generation, flood control, and
ecological multi-objective joint operation model—a model that can better reflect the interrelationships
and changes between these objectives. Yang Na [30] established a multi-objective reservoir operation
model that takes into account the profiting requirements of a reservoir and the ecological requirements of
a river. The optimization results show that the scheduling method of preference for eco-environmental
targets is more favorable for the implementation of the water diversion project of the South-to-North
Water Transfer Project. Jin Xin [31] constructed a multi-objective ecological operation model for water
supply reservoirs, which can provide theoretical support for the ecological operation decision of the
northern reservoir for water supply. In 1962, domestic scholars began to apply a genetic algorithm
as a classical single-objective solution algorithm [32] to reservoir operation. At the beginning of
this century, Chang Jianxia [33] coded an algorithm in decimal mode that is now widely used in
reservoir operation. The genetic algorithm can also transform the multi-objective into a single-objective
solution by constraint processing [34]. However, with the emergence of dimensionality, the genetic
algorithm (GA) also derives the evolutionary algorithm for solving multi-objective models, which
is the non-dominated sorting genetic algorithm (NSGA-II) [35–39]. NSGA-II is an improvement
on the basis of GA. At the beginning of the twenty-first century, a multi-objective evolutionary
algorithm is applied to the field of reservoir operation [40], and Yuan Ruan [41] use NSGA-II to solve
multi-objective optimization scheduling model. This example analysis shows that the algorithm has a
good accuracy in solving the multi-objective problem. Zhu Jie [42] uses improved NSGA-II to obtain
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a better dispatching scheme for the Zhanghe reservoir. NSGA-II has shown its superiority in the
application of multi-objective reservoir scheduling.

However, the existing NSGA-II stochastic search algorithm still has some shortcomings, such as
the instability of results and a long computation time. At the same time, in the current research on the
ecological regulation of reservoirs, the ecological demand was mostly a fixed process [43–49], or even
a fixed value, and there was no distinction between different incoming water years, which is not a
comprehensive consideration of the ecological needs of the basin. In view of this, this paper set different
ecological needs in each typical year and conducted both a single- and multi-objective optimization
scheduling of the Xiaolangdi reservoir, and studied the impact of different ecological objectives on
the operation mode of the reservoir. The used genetic algorithm and improved NSGA-II algorithm
based on constraint processing and the spatial optimization technology-multi-objective model to
obtain the single-objective optimal solution and its distribution characteristics in the multi-objective
Pareto-front optimal solution set, revealing the multi-objective scheduling mutual conversion rules
between targets. This paper chooses index factors to quantify the ecological and mutual feedback
conversion relationship between power generation targets and finally recommends the use of a global
optimal balance solution in a multi-target solution set to minimize the impact of the reservoir on the
surrounding environment adverse effects [50]. The research results provide a decision-making basis
for the dispatchers of the Xiaolangdi reservoir and the Xixiayuan reservoir. This paper has important
practical significance and application value for improving the ecological environment of the lower
Yellow River and improving the comprehensive utilization of reservoirs.

2. Research Area and Data

The Yellow River originated from Maqu in the Yoguzonglie basin at the northern foot of the
Bayankala Mountains on the Qinghai-Tibet Plateau, and finally flowed into the Bohai Sea in Shandong
Province. The basin area is 795,000 km2, and the total length of the main stream is 5464 km, which is
the second longest river in China. The Xiaolangdi Reservoir has great regulation and storage capacity,
and plays an important role in ecological protection of the Yellow River and sediment control in the
river. This paper selects Xiaolangdi as the research object, whose location is on the main stream of the
Yellow River, north of Luoyang. The location overview shown is in Figure 1. The main parameters of
the Xiaolangdi reservoir are shown in Table 1.

 

Figure 1. Location overview of Xiaolangdi.
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Table 1. Main parameters of Xiaolangdi.

Installed
Capacity

(MW)

Guaranteed
Output
(MW)

Total Storage
Capacity

(Billion m3)

Normal
Water Level

(m)

Dead
Water Level

(m)

Ecological
Guarantee
Rate (%)

Maximum
Overflow

(m3/s)

Adjustment
Performance

1800 354 126.5 275 230 90 1776 Year

Long series runoff collected during the historical period from 1961 to 2009 (hydrological year) of
the Xiaolangdi Reservoir was used as input data, and the data was input according to the reservoir
optimization model. The monthly average natural runoff of the Xiaolangdi Long-series is shown in
Figure 2.

Figure 2. Monthly average runoff process of the Xiaolangdi reservoir.

This article integrates the collected industrial, agricultural, domestic, and ecological water demand
processes downstream of the Xiaolangdi reservoir to obtain the comprehensive water demand process
downstream of the Xiaolangdi reservoir, and uses it as a constraint for optimal scheduling research.
The comprehensive water demand process is shown in Figure 3.

Figure 3. Integrated water requirement process in the lower reaches of Xiaolangdi.

In Figure 3, the minimum ecological water requirement is the flow process needed to maintain the
downstream ecosystem without degradation during the minimum water requirement. The suitable
ecological water requirement during the process of water demand is the flow process to maintain
the suitable habitat of the lower reaches and ensure the normal survival and reproduction of the
downstream species; the maximum ecological water requirement is the flow process to maintain the
balance of river scouring and deposition and to restore the capacity of river pollution.
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3. Modeling

Model 1: Maximize power generation

MaxE =
T∑

t=1

kQo(t)H(t) × Δt (1)

where E is the total power generation of hydropower stations during dispatching period, and t and
T are the time serial numbers and the total number of periods, respectively. In addition, k is the
comprehensive output coefficient for power station; Qo(t) and H(t) are the power discharge and water
head in the t-th period of the power station, respectively.

Model 2: Maximize power generation while meeting the ecological flow requirement
The objective function and constraints are the same as Model 1. In addition, the ecological flow

requirement needs to be considered:
Qd(t) ≤ Qo(t) (2)

where Qd(t) is the ecological flow requirement of the downstream channel during the t-th period.
Model 3: Multi-objective optimal operation considering both ecology and power generation

Obj1: MaxE =
T∑

t=1

kQo(t)H(t) × Δt (3)

Obj2: MinW =
T∑

t=1

Qs(t) × Δt (4)

where W and Qs(t) are the total water shortage in dispatching periods and water shortage flow in the
t-th period. The constraints are the same as Model 1.

The constraints for models one to three are as follows:
(1) water balance constraints

V(i, t) = V(i, t− 1) + [QI(i, t− 1) −QO(i, t− 1)] × Δt (5)

where V(i, t) and V(i, t− 1) are the initial storages of the ith reservoir at times t and t− 1, respectively.
QI(i, t− 1) and QO(i, t− 1) are the inflow and outflow of the ith reservoir at time t− 1, respectively. t is
the time interval.

(2) Outflow constraints
QOmin(i, t) ≤ QO(i, t) ≤ QOmin(i, t) (6)

QO(i, t) = QI(i, t) − [V(i, t + 1) −V(i, t)]/Δt (7)

where QOmin(i, t) and QOmin(i, t) are the minimum and maximum allowable outflows of the ith
reservoir at time t, respectively.QO(i, t) and QI(i, t) are the outflow and inflow of the ith reservoir at
time t, respectively. V(i, t + 1) and V(i, t) are the initial and final storages of the ith reservoir at times
t + 1 and t, respectively.

(3) water level constraints
Zmin(i, t) ≤ Z(i, t) ≤ Zmax(i, t) (8)

where Zmin and Zmax are the minimum and the maximum water levels of the ith reservoir at time t,
respectively.

(4) Hydropower outputs constraints

Nmin(i, t) ≤ N(i, t) ≤ Nmax(i, t) (9)
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where Nmin(i, t) and Nmax(i, t) are the minimum and maximum hydropower outputs of the ith reservoir
at time t, respectively. In general, Nmin is the guaranteed output and Nmax is the installed capacity.

4. Methodology

4.1. Single-Objective Solution

Genetic algorithm (GA) is a common method for solving the single-objective optimal dispatching
model [51]. This article intends to use the basic genetic algorithm, such as references, to solve the
single-objective Model 1 and Model 2.

4.2. Multi-Objective Solution

There are many methods to solve the multi-objective optimization model of reservoir, such as the
constraint method, the weight coefficient method, the multi-objective evolutionary algorithm, and so
on. The constraint method is to transform the multi objective into a single objective, and the weight
coefficient method is to set the weight of each target and transform it into a single objective. Indeed,
the two objective problems are transformed into a single-objective solution, while it is impossible to
reveal the transformation rules among the targets from the global equilibrium solution to clarify the
sensitive relationship among the targets. In this multi-objective optimal dispatching model, which
considers both ecology and power generation, the key of each dispatching objective is the process
of outflow. Specifically, the expected discharge process of power generation target has strong pulse
in non-flood season, reducing the outflow volume, to obtain high water level and maximum power
generation; the expected outflow process in Model 3 is similar to ecological water demand, and the
pulse is weakened. In the non-flood season, the steady outflow of the reservoir can be maintained to
meet the gentle ecological base flow of the lower reaches, so that the difference between them is reduced,
and the minimum amount of water shortage is obtained. Hence, one can see that the ecology and
power generation objectives are contradictory and counter-productive contradictions. Thus, this paper
intends to use the non-dominated ranking genetic algorithm (NSGA-II), which is based on constraint
processing to optimize the feasible search space, and treats each dispatching objective equally to make
it survive the competition in the process of optimization so as to obtain the global equilibrium solution.

In order to improve the accuracy and efficiency of the NSGA-II, this paper optimizes the NSGA-II
by optimizing the feasible search space. The reservoir multi-objective optimization scheduling
model has a highly nonlinear characteristic, and different treatment methods should be adopted for
different constraints. In this paper, the constraints are divided into the convertible constraints and the
non-convertible constraints, in which the convertible constraints are used to optimize the initial search
space. The convertible constraints are water level constraints, discharge constraints, ecological water
demand constraints. The non-convertible constraints include flow balance constraints, water balance
constraints, and power output constraints.

The specific feasible search space optimization steps are as follows:
Step1: The minimum and maximum water level of the reservoir form the initial search space, as

shown in Figure 1;
Step2: In the convertible constraints, the constraint of reservoir capacity and the flow constraint of

reservoir outflow are converted to the upper and lower limits of the water level, and it is intersected
with the water level constraints of the reservoir in order to eliminate the search space that does not
satisfy the convertible constraint conditions.

Step3: The initial population of each target is generated in the feasible search space, and the
optimization is finished by the constraint processing and the search space optimization.

The optimized feasible search space is shown in Figure 4. Among them, Z represents the water
level, the unit is meter, T represents time in seconds. Z(T) represents the water level of the reservoir
during the T period, Z0 represents the initial water level of the reservoir, Zmax represents the highest
water level, and Zmin represents the lowest water level.
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Figure 4. Optimization of the feasible search space.

The optimization of feasible search space: the infeasible solution space is removed from the initial
search space, which, in a sense, not only does not reduce the diversity of the population, but also
improves the quality of initial population, which makes easier to converge.

When the initial population is optimally calculated, the stage solutions of all the generations of
each group can meet the transformable constraints, only to determine the non-transitive constraints.
When the non-transformable constraint is not satisfied, the penalty function will be adopted to reduce
the fitness function value, thereby reducing the chance that the individual will inherit to the next
generation and ensure the optimal path for the optimization. The optimized NSGA-II, on the one hand,
optimizes the initial search space to the feasible search space, eliminates the infeasible search space,
reduces the search range of the global equilibrium solution, and improves the optimization speed;
on the other hand, all the solutions of all generations in the optimal search satisfy the convertible
constraints, and only need to determine whether the non-convertible constraints are satisfied or not,
thus avoiding the cumbersome and redundant judgment of all the constraints. After the NSGA-II is
optimized, it not only avoids falling into the local optimal solution, but also accelerates the convergence
rate and improves the search efficiency and the precision of the algorithm. The operation flow chart of
the NSGA-II in which the feasible search space was optimized is shown as Figure 5.
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Figure 5. The operation flow chart of the non-dominated genetic algorithm (NSGA-II).

5. Results and Discussion

5.1. Illustrate the Effectiveness of the NSGA-II

The parameters of the genetic algorithm, multi-objective particle swarm optimization (MOPSO),
NSGA-II, and optimized NSGA-II are set in Table 2. Verifying the validity and stability of NSGA-II
based on constrained processing is a crucial part of optimizing the feasible search space. Since NSGA-II
belongs to a posteriori algorithm, the effectiveness of the multi-objective reservoir scheduling is verified
by selecting the 1981 data, and the comparison results are shown in Table 3.

Table 2. Parameter setting of the genetic algorithm (GA) and the improved NSGA-II.

Parameter GA MOPSO NSGA-II
Optimized

NSGA-II [12]

Population size 300 300 300 300
Selection probability 0.5 - 0.5 0.5

Cross probability 0.8 - 0.8 0.8
Mutation probability 0.05 - 0.05 0.05

Maximum number of iterations 200 200 200 200
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In order to determine the accuracy and stability of the GA, MOPSO, NSGA-II, and the improved
NSGA-II algorithm, take the result of running five times as an example, in which the different indexes
of each algorithm are obtained. The upper and lower limits of the optimal value of power generation
and water shortage, the mean value, the standard deviation, and the average running time are shown
in Table 3. It can be seen that:

(1) The upper limit of the power generation of optimized NSGA-II is 10.315 billion kW·h. Compared
with NSGA-II and MOPSO, however, both of which improved by 1 million kW·h, there is almost no
change relative to the GA. The lower limit of the power generation of optimized NSGA-II is the same
as that of NSGA-II and MOPSO.

(2) From the view of ecological water shortage, the lower limit of ecological deficiency is consistent.
The upper limit of ecological water shortage for optimized NSGA-II is 506 million m3, which is higher
than NSGA-II but lower than MOPSO.

(3) From the stability of results, the maximum and minimum standard deviation of ICS optimization
results is 0.03, which is lower than the other three algorithms. In addition, the first results of MOPSO
significantly premature convergence, the lower limit of the amount of water is non-zero. Meanwhile,
the second result of NSGA-II has local convergence, and the power generation does not reach the
maximum. Therefore, the results of optimized NSGA-II are relatively stable.

(4) From the optimization time, NSGA-II is longer than GA, and different optimization strategies
will make the algorithm optimization time longer. While optimized NSGA-II is shorter than NSGA-II,
which reflects that the improved strategy proposed in this paper accelerates the population convergence
under the premise of ensuring a certain accuracy. Overall, the optimized NSGA-II is superior to GA,
NSGA-II, and MOPSO, indicating that the optimization strategy is effective.

5.2. Analysis of the Impact of Ecological Goals on Dispatching Results

For the single-objective model with the maximum power generation as the target, a strong
ecological constraint is added to form Model 2. The maximum degree of influence of ecological
goals on the scheduling results can be found by comparing Model 1 with Model 2. Among the long
series of results, the total power generation was 8.759 billion kW · h, which was 0.87% lower than the
8.836 billion kW · h of Model 1. However, the ecological guarantee rate of the Huayuankou section
increased by 18.75%, which met the planned 90% guarantee rate. It shows that using ecological goals
as a constraint can significantly increase the guarantee rate of ecological water demand, but the power
generation benefits are slightly lost.

Model 2 is a single-objective model with maximum power generation after adding strong ecological
constraints, and the impact of ecological objectives on the dispatching results can be compared between
Model 1 and Model 2. Select 1981–1982, 1960–1961, and 1972–1973 as wet, normal, dry. Among
these dates, July–October is the flood season, November–March is the dry season, and April–June is
the water-supply period. The process of reservoir water level, reservoir discharge, and the power
generation of Model 1 and Model 2 are compared and analyzed, as shown in Figure 6, Figure 7,
and Figure 8.

Figure 6. Water level change of the Xiaolangdi reservoir in each typical year.
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Figure 7. Variation of discharge from the Xiaolangdi reservoir in each typical year.

 

Figure 8. Variation of the monthly generating capacity of Xiaolangdi in each typical year.

(1) The water level of each month in Model 2 is basically lower than Model 1, especially in the
non-flood period of the wet year, the normal, and the dry year, and the water level of the reservoir
is obviously maintained at the low water level. This is because, in order to meet the downstream
ecological water storage, the reservoir needs to increase the discharge, which causes the water level to
drop. Therefore, considering the ecological constraints, the water level during the water supply period
of the Xiaolangdi dam during the dispatching period has been changed.

(2) Restricted by ecological constraints, the monthly outflow of the Xiaolangdi dam in Model 2
basically meets the ecological requirements. In Model 1, the discharge flow of individual months is
lower than the ecological water demand and cannot meet the ecological requirements. This is because,
in order to maximize the power generation, Model 1 needs to discharge as little and as much water as
possible during the storage period and store it at the normal storage level as soon as possible. As a
result, the amount of water discharged during the storage period cannot meet the ecological water
demand. The destruction of the month occurred in the dry season. The number of damaging months
is 2, 4, and 4, respectively, and the degree of damage for the wet year, normal year, and dry year are
as follows.

(3) The power generation of Xiaolangdi Hydropower Station shows the same variation in all
typical years: the flood season is large, the dry season is small, and the water supply period is large.
In Model 2, the power generation in the dry season is obviously larger than Model 1. The main reasons
are as follows: In Model 1, the destruction of ecological water demand are all in the dry season. In order
to ensure the ecological flow, Model 2 runs at the low water level during the dry year, which increases
the discharge and power generation.

Table 4 shows the annual electricity generation and the number of eco-friendly months of different
models in each typical year. As can be seen from Table 4, the monthly number of ecological guarantees
in each typical year of Model 2 was increased by 2, 4, and 4 months, while the power generation
decreased by 0.33, 0.86 and 1.27 billion kW·h. The ecological target has a great impact on power
generation during the year and has the greatest impact on power generation in the dry year.

Therefore, adding Model 2 with strong ecological constraints, there is a clear change in the
operation process and the magnitude of the reservoir during the dispatch cycle, and Model 2 sacrifices
more power generation to complete the ecological target.
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Table 4. Analysis of power generation and ecological guarantee in each typical year.

Wet Year Normal Year Dry Year

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Power generation/108 kW·h 95.97 95.64 67.95 67.09 60.02 58.75
The number of guarantee

ecology 10 12 8 12 8 12

5.3. Result Analysis of the Multi-Objective Model

In this paper, we use the optimized NSGA-II to solve the multi-objective Model 3. The results of
the multi-objective optimization scheduling model are plotted as a Pareto-front curve, as shown in
Figure 9.

Figure 9. Multi-objective Pareto-front curves in each typical year.

In the Pareto-front curve of multi-objective optimal scheduling, the annual variation in
the annual water power generation and the comprehensive water shortage in the wet year are
9.564–9.597 billion kW·h and 0–0.530 billion m3, respectively; the annual variation in the annual water
power generation and the comprehensive water shortage in normal year are 6.707–6.795 billion kW·h
and 1.547–3.246 billion m3, respectively; and the annual variation in the annual water power
generation and the comprehensive water shortage in dry year are 5.875–6.002 billion kW·h and
0–2.835 billion m3, respectively.

It can be seen that with the decrease in typical annual runoff that the decrease in hydropower
generation and the increase in ecological comprehensive water shortage make the contradiction
between ecological target and power generation target aggravating. The total water shortage in normal
year is larger than that of the dry year, which is mainly caused by the annual runoff process and the
integrated water demand process.

Due to the different water requirement processes in typical years, Model 1 and Model 2 are
different in Pareto-front curves:

(1) The annual generation capacity of the model 1 is 9.597 billion kW·h, and the comprehensive
water shortage is 0.530 billion m3, which is located at the right extreme value of the Pareto-front curve;
the annual generation capacity of Model 2 is 9.564 billion kW·h, and the comprehensive water shortage
is 0 billion m3, which is located at the left extreme value of the Pareto-front curve.

(2) The annual generation capacity of Model 1 and Model 2 in the normal water year is
6.795 billion kW·h and 6.707 billion kW·h, respectively, and the comprehensive water shortage is
3.246 billion m3 and 1. 547 million m3, respectively.

(3) The annual generation capacity of Model 1 and Model 2 in the dry water year is
6.002 billion kW·h and 5.875 billion kW·h, respectively, and the comprehensive water shortage is
2.835 billion m3 and 0 million m3, respectively.

(4) With the increase in the total amount of incoming water, the power generation in the dry year,
the normal year, and the wet year increase sequentially, and the water shortage also increases in turn.
There is a lot of water in the normal year, but it is restricted by the constraints of poor distribution
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in the water year, and the ecological water demand is greater than in the dry year, which causes the
maximum water shortage to increase.

It can be seen that the single-objective calculation results fall on the Pareto-front curve of the
global equilibrium solution. With the decrease in incoming water, the power generation decreased
drastically, the water deficit increased significantly, and the contradiction between the target of
ecological comprehensive water demand and the power generation goal was aggravated.

On the Pareto-front curve of the multi-objective global equilibrium solution, we select the power
generation index, and generate Schemes 1 to 5 shown from small to large (the position is shown in
Figure 9). The outflow of Xiaolangdi in each typical year is shown in Figures 10–12. The scheduling
results of each scheme are shown in Table 5.

Figure 10. Comparative analysis of the outflow of Xiaolangdi in the wet year.

Fl
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/

Figure 11. Comparative analysis of the outflow of Xiaolangdi in the normal year.
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Figure 12. Comparative analysis of the outflow of Xiaolangdi in the dry year.
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Table 5. Comparative analysis of various schemes in typical years.

Scheme
Wet Year Normal Year Dry Year

Power
Generation/108kW·h

Eco-Water
Shortage/108m3

Power
Generation/108kW·h

Eco-Water
Shortage/108m3

Power
Generation/108kW·h

Eco-Water
Shortage/108m3

Scheme 1 95.65 0 67.09 16.01 58.82 0.28
Scheme 2 95.76 1.34 67.51 19.88 59.04 3.38
Scheme 3 95.82 2.08 67.71 22.6 59.33 7.9
Scheme 4 95.88 3.05 67.73 22.98 59.63 14.32
Scheme 5 95.95 4.62 67.92 29.57 60 27.36

Table 5 shows that in wet year, the multi-objective scheme can meet the ecological requirements
under the condition of minimum power generation. From Schemes 1–5, the power generation increased
from 9.565 billion kW·h to 9.595 billion kW·h, and the outflow decreased during the dry year. From
the ecological destruction duration, the monthly number of guarantees is reduced from 12 months to
9 months; from the depth of ecological destruction, the ecological water shortage increased from 0 to
0.462 billion m3, and Schemes 2–5 failed to meet the ecological requirements.

Compared with the wet year, the power generation Schemes 1–5 consist of 6.709–5 kW·h increased
to 6.792 billion kW·h, from the diachronic perspective of ecological destruction, which dropped from
11 months to 8 months. From the depth of ecological damage, the ecological water shortage of
1.601 billion m3 increased to 2.957 billion m3.

Like the normal year, the power generation of each scheme is reduced to a minimum value of
5.875 billion kW·h, which can basically guarantee the minimum ecological runoff process in the dry
year. The ecological flow of Scheme 2 to Scheme 5 has been destroyed in varying degrees. Under the
condition of a continuous decrease in incoming water, the contradiction between power generation
target and ecological target is aggravated day by day.

From the above analysis, the following conclusions are drawn:
(1) Due to the difference in incoming water and ecological water demand, the Pareto-front

optimal solution set shows the solution spatial distribution and the dimension change of each typical
single-multi-objective model. The results of the single-objective Model 1 or Model 2 are basically on
the curve, and the results of Model 1 are close to the maximum target of power generation, and Model
2′s results are close to the minimum target of water shortage.

(2) The location of the single-objective result in the curve shows that it has some limitations. The
multi-objective model considers the power generation and ecological targets and gives a multi-objective
global equilibrium solution set. The multi-objective model has superiority that can fully meet the
ecological flow requirements. It provides a multi-objective dispatching solution for decision-makers in
reservoir operation and watershed management.

(3) In the multi-objective model, except for Scheme 1, other schemes cannot meet the downstream
ecological objective. The safety of ecological flow in the lower reaches of the Yellow River is serious, and
as the inflow decreases, the amount of power generation will be correspondingly reduced, the number
of ecological assurances and the amount of ecological water deficit will increase, and the ecological
targets will be harder to meet. The contradiction between ecological and power generation targets is
increasingly aggravated—it is bound to sacrifice the efficiency of power generation in exchange for
ecological benefits.

5.4. Sensitivity Analysis

In order to reveal the law of mutual transformation between power generation and ecology,
this paper analyzes the sensitivity of various dispatching schemes in each typical year. Using the
dimensionless method, three new indicators are creatively proposed: the ratio of power generation
to the installed capacity is defined as the coefficient of elasticity (f 1); the ratio of the difference in the
total water requirement and water deficit to the total water demand is defined as the ecological elastic
coefficient (f 2), as shown in Table 5.
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The increase in power generation benefit when reducing the 1% ecological benefit is the ratio of
ecological- and power-loss benefits (k), just like the Formula (4). The greater the k, the smaller the
impact of ecological benefits on power generation benefits, and the greater the overall benefits of
the scheme.

k(i) =
{
f1(i) − f1(i− 1)

}
/
{
f2(i) − f2(i− 1)

}
(10)

Based on the Scheme 1, the k of each typical year can be obtained as shown in Figures 12 and 13.

Figure 13. Correlation between power generation and ecological elasticity in each typical year.

It can be seen from Figure 14 that the linear fitting relationship between f 1 and f 2 in each typical
year is better, and the linear slopes of the typical years are 15.03, 14.70, and 22.45, respectively, showing
a consistent and significant increasing trend. In response to the sensitivity of power generation and
ecology, the normal year is the smallest, followed by the wet year and the dry year. That is, with the
decrease in inflow, the amount of power generation, eco-elastic coefficient, and the number of ecological
guarantee months are all reduced, the ecological water deficit is greatly increased, the restrictive
relationship between power generation and ecological targets is strengthened, and the sensitivity
between the two is enhanced. The decrease in the ecological elasticity coefficient will make the
restoration of ecological environment more severe; the reservoir should take the ecological as the main
goal in the dry year and take the phased measures to alleviate the ecological deterioration situation.

 

Figure 14. k value of different scheme intervals in each typical year.

It can be seen from Figure 13 that from Scheme 1 to Scheme 5, the k value in each typical year
shows a continuous decreasing trend, and the maximum value of k in each typical year is 0.082, 0.109,
and 0.071, respectively. The corresponding optimal mediation scheme all are Schemes 1–2 intervals.
The recommended best coordination solution can maximize the comprehensive benefit.

6. Conclusions

In this paper, the multi-objective optimization algorithm is applied to solve the different models
by GA and optimized NSGA-II. The results of the single-objective and multi-objective calculation are
compared and analyzed, and the following conclusions are obtained.
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(1) Compared with the GA, MOPSO, and NSGA-II algorithms, the feasibility and effectiveness of
the optimized NSGA-II are verified.

(2) With the single-objective model of maximum power generation, the total power generation is
8.84 billion kW·h, and the guarantee rate of ecological water demand is 74.43%; the single-objective
model considering ecological constraints has a total power generation of 8.759 billion kW·h, and
increases the ecological guarantee rate to 93.18%, which basically meets the ecological requirements.
The comparison of the results of the two models reveals the degree of impact of ecological goals
on dispatching.

(3) The single-objective typical annual optimal value basically falls on the multi-objective
Pareto-front curve, which is in good agreement with the Pareto-front curve, further demonstrating
the accuracy and reliability of each model and algorithm. With the decrease in incoming water, the
ecological security situation in the lower reaches of the Yellow River is poor. The multi-objective model
gives a global equilibrium solution set of power generation and ecology, which provides the best
coordination scheme for the decision makers of reservoir actual operation and river basin management.

(4) In the multi-objective power generation and ecological sensitivity, the weakest year is in the
dry year, and the strongest in the wet year, which is the contradiction between the ecological and the
power generation in the dry year. To improve the same ecological benefits, it is bound to sacrifice
greater power generation benefits. As the situation of ecological security in the dry years is more severe,
stage-by-stage measures should be taken to ease the deterioration of the ecological environment.

In this paper, the different ecological water demand processes of each typical year is regarded as
the ecological target. The influence of water quality factors such as water and sediment from alluvial
water and algae on the ecological flow in Xiaolangdi is neglected. The next step is to establish an
ecological and discharge flow response model to determine the process of integrated ecological water
demand for the lower reaches of the Yellow River, and then improve the multi-objective optimization
scheduling model.
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Abstract: In decision-making with interval numbers, there are problems such as how to reduce the
loss of decision information to improve decision accuracy and the difficulty of using interval numbers
for sorting. On the basis of fully considering the subjective and objective weights of indexes, the grey
entropy method (GEM) is improved by taking advantage of the Mahalanobis-Taguchi System (MTS)
in which the orthogonal design has few tests but much obtained information, and the Mahalanobis
distance can reflect the correlation between indexes. Then, the signal-to-noise ratio is integrated with
the improved degree of balance and approach, and a multi-dimensional interval number decision
model based on MTS and GEM is put forth. This model is applied to selecting the optimal scheme of
controlling the Pankou reservoir’s water level in flood season. Compared with the decision results
of other methods, the optimal scheme selected by the proposed model can achieve greater benefits
within an acceptable risk range and thus better coordinate the balance between risk and benefit,
which verifies the feasibility and validity of the model.

Keywords: Mahalanobis-Taguchi System; grey entropy method; signal-to-noise ratio; degree of
balance and approach; interval number

1. Introduction

Multi-attribute decision-making refers to the process of sorting and selecting among a group of
alternatives by using the obtained information [1]. Multi-attribute decision-making methods include
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) [2], set pair analysis
(SPA) [3], grey relation analysis (GRA) [4], grey target method (GTM) [5], etc. Under the influence of
many factors, the objective things in nature are complex and changeable (e.g., runoff and flood in the
hydrological and water resources system), which show great uncertainty like randomness, fuzziness
and greyness [6], in addition to the fuzziness of human thinking. In recent years, the multi-attribute
decision-making methods with uncertain decision information, especially uncertain attribute values
and attribute weights, have become a hot research issue. In general, the priority and also difficulty in
solving this kind of problem is to transform uncertain decision-making into definite decision-making.
During this process, on the one hand, we should try to avoid or reduce the loss of decision information.
The more information loss, the larger deviation caused in the selection of the optimal scheme, which
may fail to achieve the expected objectives in scheme implementation and incur risk events. On the
other hand, the cumbersome calculation of interval numbers should be reduced, so that the technique
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is more operable in a practical application. For instance, when using the methods in references [7,8],
the comparison of interval numbers only considers their upper and lower boundaries, which loses too
much information even though the decision-making efficiency is enhanced. Moreover, the tedious
calculation in rough set method [9] and Vlsekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) method [10] makes interval number ranking more difficult.

At present, grey analysis, set pair analysis, stochastic analysis and fuzzy analysis are the four
main kinds of hydrologic uncertainty analysis methods. In information theory, a system with some
known information and also some unknown information is a grey system, such as the hydrologic and
water resources system. Grey relation analysis is a multi-factor analysis method in the grey system
theories [11]. Its basic idea is to determine the closeness of relation between a comparison sequence and
a reference sequence according to their geometric similarity. Grey relation analysis can overcome the
shortcomings of regression analysis, variance analysis and other factor analysis methods in traditional
mathematical statistics [12], and has the advantages of a small sample size and simple calculation
procedure. Gao and Zhang [13] first used grey relation analysis for scheme selection. However, in the
relation coefficient series obtained from the alternatives and the reference scheme, the larger relation
coefficient often plays a decisive role in determining the relation degree, while the information implied
by other relation coefficients tends to be neglected. As an improvement, Zhang [14] put forward the
grey entropy method (GEM) based on the idea that an alternative scheme is better when it is evenly
closer to the reference scheme. This method combines the relation degree in grey relation analysis
with the balance degree defined in grey entropy by multiplication, and thus, develops the degree of
balance and approach for scheme decision-making, which in some way remedies grey relation analysis.
The GEM has been widely used in logistics [15], transportation [16], tourism [17] and other industries,
with satisfactory results. Grey entropy is a concept that combines grey system theory and information
entropy theory. As an effective statistical measurement for information uncertainty [18], it is consistent
with the physical meaning of Shannon entropy. Wang et al. [19] defined the grey distance entropy of
the real grey number and the interval grey number, respectively, took it as the measurement for the
proximity degree of the two grey numbers, and discussed the multi-attribute decision-making methods
based on grey distance entropy and TOPSIS. Liu et al. [20] deemed that in the grey entropy method
the attribute value is a real number and the attribute weight is not considered, thus they extended
the application scope to interval numbers. At present, grey entropy is mainly used to determine the
objective weight of indexes in uncertain decision-making, and there are not many in-depth theoretical
studies. The comparison of the above decision-making methods is shown in Table 1.

Table 1. Comparison of the five multi-attribute decision-making methods.

Method Advantage Shortage

TOPSIS
Alternative schemes are evaluated by both how close

they are to the positive ideal scheme and how far
away from the negative ideal scheme.

The Euclidean distance does not consider the
correlation between indexes, producing indistinct

decision result, “reverse order” and other problems.

SPA

Alternative schemes are evaluated by their
identical-discrepant-contrary degree to the optimal
scheme, preventing the "reverse order" problem of

TOPSIS.

The uncertainty of the discrepancy coefficient may
lead to decision risk.

GRA Alternative schemes are evaluated by their geometric
proximity to the optimal scheme.

The Euclidean distance is used to calculate the
correlation coefficient, which neglects the correlation

between indexes; larger correlation coefficients
determine the correlation degree, which causes

information loss.

GTM Alternative schemes are evaluated by their distance
from the optimal scheme (off-target distance).

The single bull’s-eye may cause the decision result to
be indistinct; the off-target distance is calculated
using the Euclidean distance, which neglects the

correlation between indexes, and index weight is not
considered.

GEM
Alternative schemes are evaluated by how evenly

close they are to the optimal scheme, which remedies
GRA in some way.

The Euclidean distance is used to calculate the
correlation coefficient, which neglects the correlation

between indexes; the calculation of correlation
degree does not consider index weight.
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The combination of the Mahalanobis-Taguchi System (MTS) theory and grey entropy can provide
a new idea for uncertain multi-attribute decision-making. The Mahalanobis-Taguchi System [21,22],
proposed by Japanese engineer Taguchi G. in the 1990s, is a pattern recognition method for unbalanced
data. Scholars are becoming gradually more familiar with MTS and constantly try to explore its
application or its combination with other theories in different fields. Buenviaje et al. [23] obtained
medical patterns from historical data sets through MTS. Huang et al. [24] utilized the data mining
function of MTS, combined it with the artificial neural network (ANN) and came up with the MTS-ANN
algorithm. Zeng et al. [25] studied how to make the risk decision on power transformer maintenance
by using MTS and the grey cumulative prospect theory. Chang et al. [26] employed the three key tools
of MTS, namely, orthogonal table, Mahalanobis distance and signal-to-noise ratio, to tackle the problem
of multi-attribute decision-making with interval numbers on the basis of TOPSIS. The orthogonal
table [27] is a direct test method for multi-factor system optimization. It can be expressed in the form
of La(bN), where a is the number of tests, b the number of levels of each factor and N the number of
factors that can be arranged at most in the orthogonal table. The orthogonal table is a prepared set of
standard tables, from which the suitable one is chosen in actual application according to the number
of factors and the number of levels of each factor. The orthogonal table designs a small number of
tests and obtains comprehensive information, which can effectively reduce the loss of information.
The Mahalanobis distance [28], proposed by Indian statistician Mahalanobis, is a covariance distance
that, compared with Euclidean distance, can better reflect the correlation between attributes. The
concept of signal-to-noise ratio (SNR) [29] originates from signal transmission and is defined as the
ratio of signal power to noise power. Taguchi G. redefined the SNR, regarding the square (μ2) and the
variance (σ2) of the expected value of an index (non-negative and continuous) as the signal power
and the noise power, respectively. The SNR can be divided into three types: nominal-the-better,
smaller-the-better and larger-the-better. The first one means that the closer to the expected value
when it is positive, the better; the second one means that the smaller the expected value when it is
0, the better; the third one means that the larger the expected value when it is +∞, the better. The
signal-to-noise ratio can be used to measure the volatility of indexes and thereby ensure the accuracy
of decision results.

Like other pattern recognition methods, MTS also uses distance to measure the similarity between
samples; however, instead of using Euclidean distance, it uses Mahalanobis distance, which is more
suitable to distinguish sample similarity. As the theory of MTS has only been developed for the past 20
years and there are few studies on its integration with grey analysis, more work needs to be done to
deepen this field of theoretical research and expand its application.

To address the uncertain multi-attribute decision-making problem in which both attribute weight
and attribute value are interval numbers, we improved the grey entropy method based on the treatment
of interval numbers in reference [26], and put forward a multi-dimensional interval number decision
model based on the Mahalanobis-Taguchi System with the grey entropy method (MTS-GEM). The
model is applied to the selection of the optimal scheme of controlling the Pankou reservoir’s water
level in flood season, which can facilitate reservoir operation research.

2. Multi-Dimensional Interval Number and Mahalanobis-Taguchi System

2.1. Orthogonal Test of Multi-Dimensional Interval Number

Interval number generally refers to the normal interval number in the form of ã =
[
aL, aU

]
(aL,

aU∈R and aU≥aL), where aL and aU are, respectively, the lower and upper bounds of the interval
number. Real numbers can be regarded as interval numbers whose lower bounds are equal to their
upper bounds. For the basic operation rules of any two interval numbers ã =

[
aL, aU

]
and b̃ =

[
bL, bU

]
,

see reference [30].
Suppose that there are n factors x̃ j (j=1,2, . . . ,n, and n≤N) in a test, which are uniformly distributed

within their variation range, and the number of levels of each factor is b. Because n factors can constitute
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a hypercube in an n-dimensional space, the result of one orthogonal test corresponds to a point on
the hypercube.

Take the orthogonal test of three factors as an example. Let the lower bound value of interval
number be level 1 and the upper bound value of interval number be level 2, then the orthogonal table
of L4(23) shown in Table 2 can be used for the orthogonal test, and the results are shown in Figure 1.

Table 2. Orthogonal table of L4(23).

Test
Factor

~
x1

~
x2

~
x3

One 1 1 1
Two 1 2 2

Three 2 1 2
Four 2 2 1

.
Figure 1. Orthogonal test results of three-dimensional interval numbers.

2.2. Signal-to-Noise Ratio and Mahalanobis Distance

Let D be the population of a non-negative continuous index, whose signal-to-noise ratio η* is
calculated as follows [31]:

η∗ = μ2/σ2, (1)

where μ2 and σ2 are the mean square and the variance of population D, respectively.
The three types of signal-to-noise ratio for measuring index volatility are calculated as follows.

1 Nominal-the-better (NB) signal-to-noise ratio

According to the knowledge of mathematical statistics, the unbiased estimators of variance σ2

and mean square μ2 of population D are as follows:

σ̂2 =
1

a− 1

∑a

g=1
(Dg −D

2
), μ̂2 = D

2 − σ̂
2

a
, (2)

where D = 1
a
∑a

g=1 Dg and a is the number of samples.

Put σ̂2 and μ̂2 into Equation (1) and conduct the common logarithmic transformation on η*, then
the NB signal-to-noise ratio ηNB can be obtained:

ηNB = 10 log10
μ̂2

σ̂2 , (3)

2 Smaller-the-better (SB) signal-to-noise ratio
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For an SB index, the smaller μ2 and σ2 are, the better, meaning that the smaller μ2 + σ2 = E(D2)

is, the better. The unbiased estimator of D2 is D̂2 = 1
a
∑a

g=1 D2
g. Take (D̂2)

−1 as the signal-to-noise ratio,

and the SB SNR ηSB is calculated as follows:

ηSB = −10 log10

(1
a

∑a

g=1
Dg

2
)
, (4)

3 Larger-the-better (LB) signal-to-noise ratio
If D stands for an LB index, then D−1 stands for an SB index. From the above derivation process

of the ηSB formula, the LB SNR ηLB can be obtained:

ηLB = −10 log10

(
1
a

∑a

g=1

1
Dg2

)
, (5)

Let Z be a population of an n-dimensional real number space, μ = (μ1μ2 · · · μn)
T and

∑−1 be
the mean vector and the inverse of covariance matrix of Z, respectively. If x = (x1x2 · · · xn)

T is one
sample of the n-dimensional real number space, then the Mahalanobis distance d from sample x to
population Z is:

d2 = (x− μ)T
∑−1

(x− μ), (6)

In scheme decision-making, an alternative scheme is better if its Mahalanobis distance to the
reference scheme is smaller, hence, we adopted the SB SNR. If the reference scheme’s sample x and
population Z are taken as the input of MTS, then the Mahalanobis distance d between the alternative
scheme and the reference scheme is the responding output.

3. Improved Grey Entropy Method by Mahalanobis-Taguchi System

3.1. Grey Entropy

Grey entropy is the entropy of a grey number [32,33]. Grey number refers to a number set with
incomplete and uncertain information, in which the numbers are possible values. For a discrete grey
number q =

{
qi|i = 1, 2, · · · , n

}
, i ∈ J (where J is a finite set and qi ≥ 0,

∑n
i=1 qi = 1), H(q) = −∑n

i=1 qi ln qi
is called the corresponding grey entropy. When qi = 0, qi ln qi = 0. The more equal q1, q2, · · · , qn are,
the greater the grey entropy H(q) is, thereby, H(q)max = ln n, and B(q) = H(q)/H(q)max is defined as
the balance degree of the grey number.

3.2. The Comparison of Grey Entropy and Information Entropy

Information entropy refers to the entropy of a signal source [34]. A discrete signal source can

be expressed as X :
[

x1 x2 · · · xi
p1 p2 · · · pi

· · ·
· · ·

xn

pn

]
, i ∈ J (where J is an infinite set, the probability of

random variable xi is pi and P(X = xi ∩X = xj) = 0, i � j,
∑n

i=1 pi = 1). Then, H(X) = −∑n
i=1 pi ln pi is

called the information entropy of the signal source.
Accordingly, grey entropy and information entropy have the following similarities and differences.

• Similarities

1. With the same form of calculation formula, grey entropy and information entropy
share some characteristics, such as symmetry, non-negativity, additivity, convexity and
extremum property.

2. The physical meanings of grey entropy and information entropy are essentially the same.
The former is to measure the fluctuation degree of a grey number, while the latter is to
describe the uncertainty of a signal source.

• Differences
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1. Grey entropy is defined in a finite information space, whereas information entropy is defined
in an infinite information space.

2. Grey entropy is a kind of non-probability entropy with greyness, that is, qi is a possible value.
On the contrary, information entropy is a type of probability entropy with certainty, that is,
pi is a certain value.

3.3. Fundamentals of Grey Entropy Method

GEM was originally used for scheme decision-making with multi-dimensional real numbers.
Suppose an initial decision matrix X =

[
xij

]
m×n

(I = 1,2, . . . ,m; j=1,2, . . . ,n) composed of m schemes

and n indexes. Through weighted standardization, X is converted into C =
[
cij

]
m×n

, and the alternative
scheme is ci = (ci1, ci2, · · · , cin). Given the reference scheme pk = (pk1, pk2, · · · , pkn) (k = 1,2, . . . ,z),
the correlation degree Gki between the alternative scheme and the reference scheme is calculated as
follows:

Gki =
∑n

j=1
r( j)

ki /n, (7)

r( j)
ki =

min
i

min
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣+ ζmax
i

max
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣+ ζmax
i

max
j

∣∣∣∣p( j)
k − c( j)

i

∣∣∣∣ , (8)

where r( j)
ki is the correlation coefficient of index j between ci and pk and ζ is the distinguishing coefficient

and generally set at 0.5.

The correlation coefficient sequence of ci and pk is rki =
{
r( j)

ki

∣∣∣ j = 1, 2, · · · , n
}
, whose balance degree

Jki is calculated as follows:

Jki = − 1
ln n

∑n

j=1
q( j)

ki ln q( j)
ki , (9)

where q( j)
ki = r( j)

ki /
∑n

j=1 r( j)
ki .

The degree of balance and approach of ci and pk is calculated as follows:

γki = Gki × Jki, (10)

The greater the degree of balance and approach is, the similar the alternative scheme is to the
reference scheme.

It can be seen from Equation (8) that the correlation coefficient reflects the distance between
two points. When using the Euclidean distance for calculation, the correlation between indexes,
which usually exits in reality, is ignored, making the calculation results of the correlation degree and
the balance degree unreasonable. Moreover, there is interaction between indexes, either controllable or
uncontrollable. Additionally, the uncontrollable interaction affects the stability of the responding output.
Consequently, although the balance degree is an indicator of the volatility of correlation coefficient
series, it cannot embody the variability caused by the uncontrollable interaction between indexes.
The merit of MTS is that it can not only use the orthogonal table to deal with multi-dimensional real
numbers or multi-dimensional interval numbers, taking the interaction among indexes into account,
but also use the Mahalanobis distance considering the correlation between indexes to calculate the
correlation coefficient. Therefore, using MTS to improve GEM can enhance the decision-making
performance of GEM.
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4. Multi-Dimensional Interval Number Decision Model Based on MTS-GEM

4.1. Development of the Weighted Standardized Decision Matrix

Suppose that there are m alternative schemes and n indexes, and they constitute the initial interval

number decision matrix X̃ =
[
x̃i j

]
m×n

(i=1,2, . . . ,m; j=1,2, . . . ,n) where x̃i j =
[
xL

ij, xU
ij

]
. As the dimensions

of the indexes are often different, we used Equations (11) and (12) to nondimensionalize different types

of indexes, and get the standardized interval number decision matrix B̃ =
[̃
bij

]
m×n

, where b̃i j =
[
bL

ij, bU
ij

]
.

For a benefit index:

b̃i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
xL

ij −min
i

xi j

max
i

xi j −min
i

xi j
,

xU
ij −min

i
xi j

max
i

xi j −min
i

xi j

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (11)

For a cost index:

b̃i j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
max

i
xi j − xU

ij

max
i

xi j −min
i

xi j
,

max
i

xi j − xL
ij

max
i

xi j −min
i

xi j

⎤⎥⎥⎥⎥⎥⎥⎥⎦, (12)

where min
i

xi j = min(min
i

xL
ij, min

i
xU

ij ) and max
i

xi j = max(max
i

xL
ij, max

i
xU

ij ).

To make the weight distribution of each index reasonable, the integration of expert scoring
(subjective weight) and entropy weight method [35] (objective weight) is used to determine the
combined weight of each index.

1 Subjective weight S̃ =
[̃
sj

]
1×n

where s̃ j =
[
sL

j , sU
j

]
Assuming that there are υ experts who participate in the weight scoring of n indexes, the scoring

matrix is Ỹ =
[
ỹl j

]
ν×n

(l=1,2, . . . ,υ; j=1,2, . . . ,n) where ỹl j =
[
yL

l j, yU
l j

]
, then s̃ j =

[
min

l
yL

l j, max
l

yU
l j

]
.

2 Objective weight T̃= [̃tj]1×n, where t̃ j =
[
tL

j , tU
j

]
First, the entropy of the interval number index is calculated based on the standardized interval

number decision matrix B̃:

EL
j = − 1

ln m
∑m

i=1

[(
bL

ij∑m
i=1 bL

ij

)
ln

(
bL

ij∑m
i=1 bL

ij

)]
EU

j = − 1
ln m

∑m
i=1

[(
bU

ij∑m
i=1 bU

ij

)
ln

(
bU

ij∑m
i=1 bU

ij

)] (13)

where EL
j and EU

j are the information entropy of the interval number index’s lower bound and upper

bound, respectively; when bL
ij = 0 or bU

ij = 0,
(

bL
ij∑m

i=1 bL
ij

)
ln

(
bL

ij∑m
i=1 bL

ij

)
= 0 or

(
bU

ij∑m
i=1 bU

ij

)
ln

(
bU

ij∑m
i=1 bU

ij

)
= 0.

Then, calculate the objective weight of the interval number index t̃ j:

t̃ j =
[
tL

j , tU
j

]
=

⎡⎢⎢⎢⎢⎢⎢⎣min

⎛⎜⎜⎜⎜⎜⎜⎝ 1− EL
j∑n

j=1 (1− EL
j )

,
1− EU

j∑n
j=1 (1− EU

j )

⎞⎟⎟⎟⎟⎟⎟⎠ , max

⎛⎜⎜⎜⎜⎜⎜⎝ 1− EL
j∑n

j=1 (1− EL
j )

,
1− EU

j∑n
j=1 (1− EU

j )

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦, (14)

3 Combined weight W̃= [w̃j]1×n, where w̃j =
[
wL

j , wU
j

]
Considering both the subjective weight S̃ and the objective weight T̃, we obtained the combined

weight of the interval number index W̃= [w̃j]1×n where w̃j =
[
βsL

j + (1− β)tL
j , βsU

j + (1− β)tU
j

]
and is

an empirical factor that reflects the preference of decision makers between subjective experience and
objective data [36].

175



Water 2020, 12, 685

With the standardized decision matrix B̃ and the indexes’ combined weight W̃, we used the
multiplication algorithm of interval number to obtain the weighted standardized decision matrix
C̃ =

[̃
cij

]
m×n

, where c̃i j = w̃j × b̃i j. Additionally, based on TOPSIS, the positive ideal scheme p̃+ and the
negative ideal scheme p̃− were determined:

p̃+ =
{[

max
i

cL
i1, max

i
cU

i1

]
,
[
max

i
cL

i2, max
i

cU
i2

]
, · · · ,

[
max

i
cL

in, max
i

cU
in

]}
p̃− =

{[
min

i
cL

i1, min
i

cU
i1

]
,
[
min

i
cL

i2, min
i

cU
i2

]
, · · · ,

[
min

i
cL

in, min
i

cU
in

]} (15)

4.2. Orthogonal Test of Schemes and Calculation of Derivative Indicators

According to the number of indexes, a two-level orthogonal table with N≥n was selected, where n
indexes can be arranged in any n columns. For the interval number ã =

[
aL, aU

]
, take aL as level 1 and

aU as level 2. The layout matrix Ci of the alternative scheme c̃i (i=1,2, . . . ,m) is as follows:

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(1)i
c(2)i

...

c(a)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c(1)i1 c(1)i2 · · · c(1)in
c(2)i1 c(2)i2 · · · c(2)in

...
...

. . .
...

c(a)i1 c(a)i2 · · · c(a)in

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
a×n

, (16)

where c(g)
i (g=1,2, . . . ,a) is the distribution point of scheme c̃i and c(g)

i1 , c(g)
i2 , . . . , c(g)

in are the components

of c(g)
i .

Similarly, the layout matrix of the positive ideal scheme P+ and the layout matrix of the negative
ideal scheme P− can be obtained.

Here, we define derivative indicators as the signal-to-noise ratio and the degree of balance and
approach based on square Mahalanobis distance obtained by the initial interval number indexes.
According to Equation (6), calculate the square Mahalanobis distance between the alternative

scheme’s distribution point c(g)
i and the positive/negative ideal scheme, and we obtain d2

[
c(g)

i , P+

]
and

d2
[
c(g)

i , P−
]
.

1 Signal-to-noise ratio

The SB signal-to-noise of the scheme i to the positive (negative) ideal scheme is η+i (η−i):

η+i = −10 log10

{∑a
g=1 d′2

[
c(g)

i , P+

]
/a

}
η−i = −10 log10

{∑a
g=1 d′2

[
c(g)

i , P−
]
/a

} (17)

where a is the number of orthogonal tests and d′2
[
c(g)

i , P+

]
, d′2

[
c(g)

i , P−
]

is the square Mahalanobis

distance standardized by Equation (18):

d′2
[
c(g)

i , P+

]
=

max
g

d2
[
c(g)

i ,P+

]
−d2

[
c(g)

i ,P+

]
max

g
d2

[
c(g)

i ,P+

]
−min

g
d2

[
c(g)

i ,P+

]
d′2

[
c(g)

i , P−
]
=

d2
[
c(g)

i ,P−
]
−min

g
d2

[
c(g)

i ,P−
]

max
g

d2
[
c(g)

i ,P−
]
−min

g
d2

[
c(g)

i ,P−
]

(18)

2 Improved degree of balance and approach
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The correlation degree of the alternative scheme c̃i and the positive (negative) ideal scheme is G+i
(G−i):

G+i =
∑a

g=1
r(g)
+i /a, G−i =

∑a

g=1
r(g)
−i /a, (19)

where r(g)
+i (r(g)

−i ) is the correlation coefficient of the alternative scheme c̃i and the positive (negative)
ideal scheme at distribution point g.

Based on the square Mahalanobis distance, the formula of correlation coefficient is revised
as follows:

r(g)
+i =

min
i

min
g

d2
[
c(g)

i ,P+

]
+ζmax

i
max

g
d2

[
c(g)

i ,P+

]
d2

[
c(g)

i ,P+

]
+ζmax

i
max

g
d2

[
c(g)

i ,P+

]
r(g)
−i =

min
i

min
g

d2
[
c(g)

i ,P−
]
+ζmax

i
max

g
d2

[
c(g)

i ,P−
]

d2
[
c(g)

i ,P−
]
+ζmax

i
max

g
d2

[
c(g)

i ,P−
]

(20)

where the distinguishing coefficient ζ is set at 0.5.
The balance degree of the alternative scheme c̃i and the positive (negative) ideal scheme is J+i (J−i):

J+i = − 1
lna

∑a
g=1 q(g)

+i lnq(g)
+i

J−i = − 1
lna

∑a
g=1 q(g)

−i lnq(g)
−i

(21)

where q(g)
+i = r(g)

+i /
∑a

g=1 r(g)
+i and q(g)

−i = r(g)
−i /

∑a
g=1 r(g)

−i .
The degree of balance and approach of the alternative scheme c̃i and the positive (negative) ideal

scheme is γ+i (γ−i):
γ+i = G+i × J+i,γ−i = G−i × J−i, (22)

4.3. Scheme Decision-Making

Based on the signal-to-noise ratio and the improved degree of balance and approach, the decision
matrix Y is constructed as shown in Equation (23), in which the benefit indicator is η−i and γ+i, while
the cost indicator is η+i and γ−i:

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
η+1 η−1 γ+1 γ−1

η+2 η−2 γ+2 γ−2
...

...
...

...
η+m η−m γ+m γ−m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×4

, (23)

Now, the decision-making problem with multi-dimensional interval numbers is changed into
a decision-making problem with multi-dimensional real numbers [37]. The optimal scheme can be
selected with the following multi-dimensional real vector space decision-making method (MRVSDM).

1. The n-dimensional real numbers are regarded as the points A1, . . . ,Ai, . . . ,Am in an n-dimensional

space with O as the origin, and then we can get the vectors a1 =
→

OA1, . . . ,ai =
→

OAi, . . . ,am =
→

OAm.
2. Assuming that the reference scheme vector is p, |ai| and

∣∣∣p∣∣∣ are the modules of vector ai and vector

p, respectively. Between vectors ai and p, calculate their angle θi = ( ˆai, p) = arccos
(

ai·p
|ai ||p|

)
(where

ai · p is their product), as well as their mapping distance MDi = |ai|Sinθi.
3. The set of mapping distance MD = {MDi|i = 1, 2, · · · , m } can be obtained. According to the

principle that the smaller MDi is, the closer vector ai is to vector p, the scheme that satisfies the
objective min

i
MDi is selected as the optimal scheme.

The diagram of decision-making in a three-dimensional real number vector space is shown
in Figure 2. The input of the MTS-GEM model is the interval number indexes derived from
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different schemes. After orthogonal tests and calculation of the Mahalanobis distance, the signal-to-noise
ratio, the improved degree of balance and approach, the output is the mapping distance from each
scheme to the ideal scheme. The flow chart of this study is shown in Figure 3.

Figure 2. Diagram of decision-making in a three-dimensional real number vector space.

Figure 3. Flow chart of multi-dimensional interval number decision-making based on
Mahalanobis-Taguchi System with grey entropy method.

5. Case Study

5.1. Initial Interval Number Decision Matrix and Its Weighted Standardization

Multi-objective reservoir operation is a multi-dimensional and complicated system engineering
issue. Affected by runoff forecast, operation model, solution method and other factors, in the obtained
non-inferior solution set, the attribute values are not always a precise real number but an interval
number with uncertainty. The Pankou reservoir, located at the upstream of the Du River in China, is an
annual-regulating reservoir with comprehensive utilization tasks of power generation, flood control,
water supply and so forth. Its basic information is listed in Table 3, and its location map is shown in
Figure 4.
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Table 3. Basic information of the Pankou reservoir.

Item Unit Pankou

Dead water level m 330
Flood control limit water level m 347.6

Normal water level m 355
Flood control high water level m 358.4

Design flood water level m 357.14
Spillway flood water level m 360.82
Minimum storage capacity 108 m3 8.5
Regulating storage capacity 108 m3 11.2

Total storage capacity 108 m3 23.38
Regulating performance – Annual regulating
Installed power capacity MW 500

Average annual generated power 108 kW·h 10.474

Figure 4. The location of the Pankou reservoir.

According to the current regulations of the China Yangtze River Flood Control and Drought
Relief Headquarters, for the Pankou reservoir, the upper limit of operation water level in flood season
(June 20–August 20) is the flood control limit water level (347.6 m), while in other periods it is the
normal water level (355 m); the lower limit of operation water level in all periods is the dead water
level (330 m), and falling to the lower limit should be avoided during operation.

However, in the actual operation of the Pankou reservoir, it can barely store water to the normal
water level in most years, undermining such benefits as power generation and water supply. In order
to reasonably adjust the upper limit of water level in flood season and improve the utilization rate of
flood resources, in reference [38] the three indexes of flood control risk rate, annual generated power
and water storage at the end of flood season were used as the evaluation indexes for selecting the
optimal scheme of water level upper limit in flood season. Flood control risk rate was obtained by
means of flood stochastic simulation [39]. Firstly, the flood stochastic simulation model was used to
simulate n (a large number) pieces of annual maximum flood inflow hydrographs, which can fully
reflect the statistical characteristics of the reservoir’s measured flood inflow. Then, a flood operation
calculation was conducted to obtain the highest annual water level sequence, and the ratio of times
that the water level limit was exceeded to n was taken as the flood control risk rate, the value of which
needs to meet people’s acceptable level of risk. Annual generated power refers to the total electricity
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generated by the hydropower station within a one-year operation cycle, which represents the power
generation benefit of the hydropower station. The more annual generated power, the greater the
annual power generation benefit. The water storage at the end of the flood season refers to the water
storage between the dead water level and the particular water level at the end of flood season, which
represents the water supply benefit of the reservoir. The more water storage at the end of flood season,
the greater the water supply benefit.

The scheme setting is shown in Figure 5. Currently, Scheme 1 is being adopted as the operation
strategy of the Pankou reservoir’s upper water level limit in flood season.
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Figure 5. Scheme setting of the Pankou reservoir’s upper water level limit in flood season.

For the flood control risk rate, the Monte Carlo method was used to randomly simulate 100
groups of 1000 floods corresponding to the 1000-year return period (0.1%). After flood operation
calculation of each flood, the number of times that the design flood water level (357.14m) is exceeded
in each group of 1000 floods were counted as λξ(ξ = 1, 2, · · · , 100). The flood control risk rate of
each group was λξ/1000, and the flood control risk rate in the form of an interval number was[

min
1�ξ�100

(λξ/1000), max
1�ξ�100

(λξ/1000)
]
. Similarly, the annual generated power and water storage at the

end of flood season were obtained through reservoir operation calculation by using the monthly inflow
data of 41 years from 1971 to 2011. Then, the minimum and maximum values of the 41 results formed
the interval numbers. The initial interval number decision matrix X̃ is shown in Table 4.

180



Water 2020, 12, 685

Table 4. Initial interval number decision matrix X̃.

Scheme i Flood Control Risk Rate
~
xi1/% Annual Generated Power

~
xi2/108 kW·h Water Storage at the End of Flood Season

~
xi3/108 m3

1 [1.812,4.371] [6.531,14.392] [4.887,11.200]
2 [1.882,4.408] [7.086,14.983] [5.411,11.200]
3 [1.993,4.421] [7.687,15.639] [6.033,11.200]
4 [2.211,4.689] [8.275,16.136] [6.751,11.200]
5 [2.534,5.028] [8.699,16.641] [7.523,11.200]
6 [2.977,5.594] [9.320,17.343] [8.431,11.200]

According to Equation (11)–(12), the benefit indexes (annual generated power, water storage at the
end of flood season) and the cost index (flood control risk rate) in Table 3 are standardized, resulting in
the standardized interval number decision matrix B̃ shown in Table 5.

Table 5. Standardized interval number decision matrix B̃.

Scheme i Flood Control Risk Rate
~
bi1 Annual Generated Power

~
bi2 Water Storage at the End of Flood Season

~
bi3

1 [0.323,1.000] [0.000,0.727] [0.000,1.000]
2 [0.314,0.981] [0.051,0.782] [0.083,1.000]
3 [0.310,0.952] [0.107,0.842] [0.182,1.000]
4 [0.239,0.895] [0.161,0.888] [0.295,1.000]
5 [0.150,0.809] [0.201,0.935] [0.418,1.000]
6 [0.000,0.692] [0.258,1.000] [0.561,1.000]

According to Lynne [40] who derives the variance formula of interval number sample matrix
based on uniform distribution, for B̃ =

[̃
bij

]
m×n

, its variance D(̃bj) can be expressed as follows:

D(̃bj) =
1

3m

∑m

i=1

[
(bL

ij)
2
+ bL

ijx
U
ij + (bU

ij )
2
]
− 1

4m2

[∑m

i=1
(bL

ij + bU
ij )

]2
, (24)

Based on the definition of the correlation coefficient of two random real number variables in the
probability theory and mathematical statistics, the correlation coefficient of two interval variables
ρ(̃bh, b̃ j) (h, j=1,2, . . . ,n) is:

ρ(̃bh, b̃ j) =
Cov(̃bh, b̃ j)√

D(̃bh, )
√

D(̃bj)

=
D(̃bh + b̃ j) −D(̃bh) −D(̃bj)

2
√

D(̃bh)
√

D(̃bj)

, (25)

From Equation (24)–(25), the correlation coefficient matrix of B̃ =
[̃
bij

]
m×n

can be obtained, as
shown in Table 6.

Table 6. Correlation coefficient matrix of the standardized interval number decision matrix.

Index Flood Control Risk Rate
~
b1 Annual Generated Power

~
b2 Water Storage at the End of Flood Season

~
b3

Flood control risk rate b̃1 1.000 0.613 0.573
Annual generated power b̃2 0.613 1.000 0.971
Water storage at the end of

flood season b̃3
0.573 0.971 1.000

It is shown in Table 5 that there is positive correlation among the three indexes. The correlation
between the flood control risk rate and annual generated power or water storage at the end of flood
season is slightly weak. The correlation between annual generated power and water storage at the
end of flood season is significant in that their correlation coefficient is 0.971. Thus, it is necessary to
consider the correlation between the indexes in the decision-making process of the reservoir water
level scheme in flood season.

There are five experts to grade the importance of the indexes, and the subjective
weight of the interval number indexes obtained from the scoring matrix is S̃ =
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{
[0.320, 0.397] [0.292, 0.360] [0.235, 0.300]

}
. According to Equation (13), the information entropy weight

is tL
j = (0.252, 0.347, 0.401) and tU

j = (0.573, 0.427, 0). Thus, the objective weight of the interval

number indexes is T̃ =
{
[0.252, 0.573] [0.347, 0.427] [0, 0.401]

}
. Let the empirical factor β be 0.5, then the

combined weight is W̃ =
{
[0.286, 0.485] [0.320, 0.394] [0.118, 0.351]

}
. From B̃ and W̃, the weighted

standardized decision matrix C̃ is obtained, as shown in Table 7.

Table 7. Weighted standardized interval number decision matrix C̃.

Scheme i Flood Control Risk Rate
~
ci1 Annual Generated Power

~
ci2 Water Storage at the End of Flood Season

~
ci3

1 [0.092, 0.485] [0.000, 0.286] [0.000, 0.351]
2 [0.090, 0.476] [0.016, 0.308] [0.010, 0.351]
3 [0.089, 0.462] [0.034, 0.332] [0.021, 0.351]
4 [0.068, 0.434] [0.052, 0.350] [0.035, 0.351]
5 [0.043, 0.392] [0.064, 0.368] [0.049, 0.351]
6 [0.000, 0.336] [0.083, 0.394] [0.066, 0.351]

Through the matrix C̃, based on TOPSIS and Equation (15), the positive (negative) ideal scheme
p̃+ (p̃−) is determined as follows:

p̃+ =
{
[0.092, 0.485] [0.083, 0.394] [0.066, 0.351]

}
p̃− =

{
[0.000, 0.336] [0.000, 0.286] [0.000, 0.351]

}
.

5.2. Orthogonal Test of the Schemes

Since there are three indexes, the orthogonal table is L4(23). The alternative scheme’s layout
matrix Ci (i=1,2, . . . ,6), the positive ideal scheme’s layout matrix P+ and the negative ideal scheme’s
layout matrix P− are shown in Table 8.

Table 8. Layout matrixes of the schemes.

Matrix
Flood Control

Risk Rate

Annual
Generated

Power

Water Storage
at the End of
Flood Season

Matrix
Flood Control

Risk Rate

Annual
Generated

Power

Water Storage
at the End of
Flood Season

C1

0.092 0.000 0.000

C5

0.043 0.064 0.049
0.092 0.286 0.351 0.043 0.368 0.351
0.485 0.000 0.351 0.392 0.064 0.351
0.485 0.286 0.000 0.392 0.368 0.049

C2

0.090 0.016 0.010

C6

0.000 0.083 0.066
0.090 0.308 0.351 0.000 0.394 0.351
0.476 0.016 0.351 0.336 0.083 0.351
0.476 0.308 0.010 0.336 0.394 0.066

C3

0.089 0.034 0.021

P+

0.092 0.083 0.066
0.089 0.332 0.351 0.092 0.394 0.351
0.462 0.034 0.351 0.485 0.083 0.351
0.462 0.332 0.021 0.485 0.394 0.066

C4

0.068 0.052 0.035

P−

0.000 0.000 0.000
0.068 0.350 0.351 0.000 0.286 0.351
0.434 0.052 0.351 0.336 0.000 0.351
0.434 0.350 0.035 0.336 0.286 0.000

5.3. Scheme Decision-Making and Result Evaluation

The square Mahalanobis distance from each point in the layout matrix Ci to the positive ideal
scheme’s layout matrix P+ and the negative ideal scheme’s layout matrix P− is worked out, as shown
in Table 9.
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Table 9. Square Mahalanobis distance.

Scheme i d2[c(g)i ,P+] d2[c(g)i ,P−]

1 4.139 1.567 3.263 2.428 1.658 1.649 4.166 4.175
2 3.774 1.662 2.966 2.290 1.424 1.906 3.858 4.190
3 3.386 1.790 2.630 2.155 1.187 2.222 3.478 4.192
4 3.152 2.076 2.238 1.909 1.054 2.583 2.930 3.936
5 3.071 2.436 1.901 1.668 1.037 3.018 2.308 3.583
6 3.132 3.112 1.542 1.543 1.177 3.806 1.628 3.355

The square Mahalanobis distance is standardized by Equation (18) and the SNR indicator is
obtained. The indicator of the degree of balance and approach is worked out by Equation (19)–(22).
Accordingly, the decision matrix X is derived, as shown in Table 10.

Table 10. Derivative indicator decision matrix X.

Scheme i η+i η−i γ+i γ−i

1 2.998 3.010 0.753 0.652
2 2.829 2.894 0.775 0.660
3 2.508 2.784 0.801 0.669
4 1.869 2.633 0.824 0.686
5 2.429 2.446 0.841 0.705
6 2.984 3.010 0.838 0.710

In accordance with Equation (11)–(12), X is standardized and with the weight of each index being
0.25, the weighted standardized decision matrix C is obtained, as shown in Table 11.

Table 11. Weighted standardized derivative indicator decision matrix C.

Scheme i η∗
+i η∗−i γ∗

+i γ∗−i

1 0.000 0.250 0.000 0.250
2 0.037 0.199 0.063 0.216
3 0.109 0.150 0.136 0.177
4 0.250 0.083 0.202 0.103
5 0.126 0.000 0.250 0.022
6 0.003 0.250 0.241 0.000

p = [0.25, 0.25, 0.25, 0.25] is taken as the reference scheme to calculate the mapping distance MDi
from the alternative scheme to the reference scheme.

To verify the feasibility and effectiveness of the method in this paper, the first comparison method
of scheme ranking (method 1) is based on the closeness degree of the SNR defined by Equation (26),
according to reference [40]:

ηi =
η−i

η+i + η−i
, (26)

On the basis of TOPSIS, the improved closeness degree of the degree of balance and approach is
defined as follows:

γi =
γ+i

γ+i + γ−i
, (27)

When γ−i → 0 , γi → 1 , the closer scheme i is to the positive ideal scheme, whereas when γ+i → 0 ,
γi → 0 , the farther scheme i is to the positive ideal scheme. This ranking criterion is that the larger γi
is, the better the corresponding scheme i is, which is the second method for comparison (method 2).

The schemes are sorted according to the different ranking criteria of method 1, method 2 and the
method in this study. The results are shown in Table 12.
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Table 12. Results of scheme ranking.

Scheme i
Method 1 Method 2 This Study’S Method

ηi Ranking γi Ranking MDi Ranking

1 0.5010 6 0.5359 6 0.2500 6
2 0.5057 3 0.5401 5 0.1585 3
3 0.5260 2 0.5449 2 0.0492 1
4 0.5848 1 0.5457 1 0.1378 2
5 0.5018 5 0.5440 3 0.1983 4
6 0.5021 4 0.5413 4 0.2443 5

It can be seen from Table 11 that Scheme 1 ranks the last in the decision results of all the three
methods, meaning that the currently-adopted strategy is far from decent and other schemes need to
be selected, which conforms to the status quo of the Pankou reservoir. This study’s method chooses
Scheme 3 as the optimal scheme, which raises the upper water level limit in flood season by 0.8 m
compared with Scheme 1.

The reasons for the inconsistent scheme ranking results can be explained by the calculation process
of the SNR and the improved degree of balance and approach in Section 4.2. The two indicators
respectively reflect the output strength and the degree of balance and approach of geometric curves in
the alternative and the reference schemes. If method 1 or method 2 is used alone, their decision results
will be less likely to be adopted. The method proposed in this paper includes the advantages of both
method 1 and method 2, and gets closer to the reference scheme by the mapping distance, producing
more accurate and reasonable decision results. Therefore, scheme 3 is recommended as the optimal.

In Table 11, the closeness degree of the SNR and the closeness degree of the balance and approach
degree are benefit indicators, whereas the mapping distance is a cost indicator, and therefore converted
into a benefit indicator by the range method. After normalizing the three indicators, the decision
results of the three methods are illustrated in Figure 6. It can be seen that compared with method 1
and method 2, this study’s method produces more obviously distinct decision results, which proves
that the proposed model can effectively mine the hidden rules in data, especially for the analysis of a
system with deficient information.

Figure 6. Comparison of closeness degree of each alternative scheme to the reference scheme.

6. Conclusions

In order to reduce the uncertainty of interval numbers as well as computation work and fully
mine the implied information in multi-attribute decision-making, a multi-dimensional interval number
decision model based on Mahalanobis-Taguchi System with grey entropy method (MTS-GEM) was
proposed and verified by a case study. The principal conclusions are as follows.
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1. MTS-GEM can effectively reduce the uncertainty created by interval numbers. In the model,
the bounded uncertain n-dimensional interval number is expressed quantitatively as a hypercube
in the n-dimensional space. Meanwhile, the alternative and reference schemes are all transformed
into finite vertices of the hypercube, which realizes the transformation from an interval number
decision vector to a real number decision vector.

2. MTS-GEM can produce markedly distinctive decision results, which demonstrates the sufficiency
of decision information contained in the model. The model not only considers the output response
strength and the degree of balance and approach between alternative and reference schemes,
but also uses the idea of further approaching the reference scheme by mapping distance, which
elevates the accuracy and reliability of the decision results.

3. The case study of selecting the optimal scheme of controlling the Pankou reservoir’s water
level in flood season shows that the proposed method can pick out the best scheme that
better coordinates risk and benefit, which further proves the comprehensive and excellent
decision-making performance of the model.
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22. Wang, Z.; Lu, C.; Wang, Z.; Liu, H.; Fan, H. Fault diagnosis and health assessment for bearings using the

Mahalanobis–Taguchi system based on EMD-SVD. Trans. Inst. Meas. Control 2013, 35, 798–807. [CrossRef]
23. Buenviaje, B.; Bischoff, J.E.; Roncace, R.A.; Willy, C.J. Mahalanobis–Taguchi System to Identify Preindicators

of Delirium in the ICU. IEEE Trans. Inf. Technol. B. 2016, 20, 1205–1212. [CrossRef] [PubMed]
24. Huang, C.; Hsu, T.; Liu, C. The Mahalanobis–Taguchi system—Neural network algorithm for data-mining in

dynamic environments. Expert Syst. Appl. 2009, 36, 5475–5480. [CrossRef]
25. Zeng, W.; Hao, Y.; Fan, R.; Yuan, J.; Li, C. Risk decision-making with intervals based on Mahalanobis-Taguchi

System and grey cumulative prospect theory for maintenance of power transformers. J. North China Electr.
Power Univ. 2015, 42, 100–110.

26. Chang, Z.; Cheng, L.; Liu, J. Multiple attribute decision making method with intervals on Mahalanobis-Taguchi
System and TOPSIS method. Syst. Eng. Theor. Pract. 2014, 34, 168–175.

27. Zhang, L. Orthogonal Method and Applied Mathematics; Science Press: Beijing, China, 2009.
28. Mahalanobis, P.C. On the generalized distance in statistics. P. Indian Natl. Sci. A. 1936, 2, 49–55.
29. Chang, Z. Research progress of Mahalanobis-Taguchi system. Control Decis. 2019, 34, 2505–2516.
30. Zhou, Z.; Xing, Y.; Sun, H.; Cai, Y.; Yu, X. Interval game analysis of government subsidies on haze governance

in Beijing-Tianjin-Hebei. Syst. Eng. Theor. Pract. 2017, 37, 2640–2648.
31. Wang, W. The Design of the Test and Analysis; Higher Education Press: Beijing, China, 2004.
32. Zhang, Q.; Qin, H.; Deng, J. New definition of grey number’s grey grade. J. Northeast Petrol. Univ. 1996, 20, 89–92.
33. Zhang, Q.; Guo, X.; Deng, J. Grey relation entropy method of grey relation analysis. Syst. Eng. Theor. Pract.

1996, 8, 7–11.
34. Wu, N.; Yuan, S. Maximum Entropy Method; Hunan Science & Technology Press: Changsha, China, 1991.
35. Li, C.; Zhang, F.; Zhu, T.; Feng, T.; An, P. Evaluation and correlation analysis of land use performance based

on entropy-weight TOPSIS method. T. Chin. Soc. Agric. Eng. 2013, 29, 217–227.
36. Peng, Y.; Ji, C.; Liu, F. Multi-objective optimization model for coordinative dispatch of water and sediment in

cascade reservoirs. J. Hydraul. Eng. 2013, 44, 1272–1277.
37. Zhang, P.; Ji, C. In Multi-Dimensional Vector Space Decision Model and Its Application for Multi-Objective

Operation Risk Analysis of Reservoirs, Proceedings of the World Environmental and Water Resources Congress 2017:
International Perspectives, History and Heritage, Emerging Technologies, and Student Papers, Sacramento, CA, USA,
21–25 May 2017; Dunn, C.N., Van Weele, B., Eds.; Amer Soc Civil Engineers: New York, NY, USA, 2017;
pp. 184–191.

38. Wang, L.; Yan, X.; Wang, B.; Yu, H.; Ji, C. Interval number grey target decision-making model based on
multi-dimensional association sampling and its application. Syst. Eng. Theor. Pract. 2019, 39, 1610–1622.

39. Xiao, Y.; Guo, S.; Luo, Z.; Xiong, L.H.; Li, W. Estimation of hydrological risk rate for dams. Eng. J. Wuhan
Univ. 2005, 38, 10–13.

40. Lynne, B.; Edwin, D. Symbolic Data Analysis: Conceptual Statistics and Data Mining; John Wiley & Sons Inc.:
Chichester, UK, 2006.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

186



water

Article

Evaluation of GloFAS-Seasonal Forecasts for Cascade
Reservoir Impoundment Operation in the Upper
Yangtze River

Kebing Chen 1, Shenglian Guo 1,*, Jun Wang 1, Pengcheng Qin 2, Shaokun He 1, Sirui Sun 3 and

Matin Rahnamay Naeini 4,*

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China; chenkb@whu.edu.cn (K.C.); wangjwd@whu.edu.cn (J.W.);
he_shaokun@whu.edu.cn (S.H.)

2 Wuhan Regional Climate Centre, Hubei Meteorology Bureau, Wuhan 430074, China;
qinpengcheng027@163.com

3 Middle Changjiang River Bureau of Hydrology and Water Resources Survey, Wuhan 430012, China;
threesun123@icloud.com

4 Center for Hydrometeorology and Remote Sensing (CHRS) & Department of Civil and Environmental
Engineering, University of California, Irvine, CA 92697, USA

* Correspondence: slguo@whu.edu.cn (S.G.); rahnamam@uci.edu (M.R.N.)

Received: 1 November 2019; Accepted: 28 November 2019; Published: 1 December 2019

Abstract: Standard impoundment operation rules (SIOR) are pre-defined guidelines for refilling
reservoirs before the end of the wet season. The advancement and availability of the seasonal flow
forecasts provide the opportunity for reservoir operators to use flexible and early impoundment
operation rules (EIOR). These flexible impoundment rules can significantly improve water
conservation, particularly during dry years. In this study, we investigate the potential application
of seasonal streamflow forecasts for employing EIOR in the upper Yangtze River basin. We first
define thresholds to determine the streamflow condition in September, which is an important period
for decision-making in the basin, and then select the most suitable impoundment operation rules
accordingly. The thresholds are used in a simulation–optimization model to evaluate different
scenarios for EIOR and SIOR by multiple objectives. We measure the skill of the GloFAS-Seasonal
forecast, an operational global seasonal river flow forecasting system, to predict streamflow condition
according to the selected thresholds. The results show that: (1) the 20th and 30th percentiles of the
historical September flow are suitable thresholds for evaluating the possibility of employing EIOR;
(2) compared to climatological forecasts, GloFAS-Seasonal forecasts are skillful for predicting the
streamflow condition according to the selected 20th and 30th percentile thresholds; and (3) during dry
years, EIOR could improve the fullness storage rate by 5.63% and the annual average hydropower
generation by 4.02%, without increasing the risk of flooding. GloFAS-Seasonal forecasts and early
reservoir impoundment have the potential to enhance hydropower generation and water utilization.

Keywords: Yangtze River; cascade reservoirs; impoundment operation; GloFAS-Seasonal;
forecast evaluation

1. Introduction

The rapid population and economic growth in recent decades, along with climate change and
variability, impose more stress on water resources and cascade reservoir systems. Reservoirs, as one
of the most important components of the hydrologic system, play a significant role as water supply
by altering natural streamflow across space and time [1,2], while mitigating the effect of extreme
events [3,4]. Conventionally, during wet season, reservoir operators release water preferentially for
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flood control [5,6] while storing water before the end of wet season to meet the demand for hydropower
generation, navigation, and water supply. For full replenishment of storage, reservoir operators
and academic researchers have highlighted the importance of reservoir impoundment operation and
impoundment rules in several studies [7–10].

Reservoir operation rules are often used to provide guidelines for reservoir operators to determine
the amount of controlled discharge. Among these rules, the reservoir impoundment rules are designed
to refill the reservoir and raise the storage water level. The New York City rule [11] is among the
early guidelines for reservoir impoundment and provides the probability of spills rather than the
amount of spill to minimize the water shortage [12]. Since the development of the New York City rule,
different types of reservoir impoundment operation rules have been developed and employed for
various reservoir systems [7,13–17]. In the Yangtze River, which is one of the largest rivers in the world
by discharge volume with huge reservoir storage capacity, the impoundment operation is complex and
challenging. Water managers and stakeholders employ predefined impoundment rules for reservoir
systems. These fixed rules, so-called standard impoundment operation rules (SIOR), are derived based
on the historical flow records [7,9,18]. The SIOR is designed to reduce the flood control risk during
the impoundment period. However, these fixed rules are unable to fully replenish the storage of
the reservoir during dry years, which could lead to water shortage. On the contrary, flexible early
impoundment operation rules (EIOR) allow the reservoir operators to start the impoundment process
earlier and avoid unnecessary spills. However, employing EIOR requires information about the
streamflow forecast to alleviate the risk of flooding.

The recent advancements of the meteorological and hydrological forecast systems provide
an unprecedented opportunity for employing flexible operation rules rather than fixed ones for
reservoir systems [19–21]. Combining seasonal meteorological forecasts with hydrological models at
continental-scale has provided several continental-scale seasonal hydro-meteorological forecasting
systems [22–24], such as the European Flood Awareness System [25], the Australian Government
Bureau of Meteorology Seasonal Streamflow Forecasts [26], and the National Hydrologic Ensemble
Forecast Service, USA [27]. Several studies have demonstrated that a skillful streamflow forecast
can enhance the efficiency of water allocation systems to manage the trade-off between hydropower,
irrigation, municipal, and environmental services [28–31]. The potential for employing seasonal
forecast in the Yangtze River basin has been investigated in several research studies, mostly through
statistical techniques [32–34]. However, the potential application of the available seasonal forecasts for
reservoir impoundment operation is not well understood in the Yangtze River basin. In this study,
we evaluate the global seasonal river flow forecasting system (GloFAS-Seasonal) developed by the
European Centre for Medium-Range Weather Forecasts (ECMWF) [35] for reservoir impoundment in
the upper Yangtze River basin.

We follow two steps for our evaluation. First, we investigate different streamflow thresholds
to evaluate the possibility of employing EIOR. These thresholds can be considered as an indicator
for the dry condition which has adverse effects on reservoir impoundment operation. To find these
thresholds, we analyze multiple impoundment operation scenarios for EIOR and SIOR using a
simulation–optimization model. We test different percentiles of historical streamflow as thresholds
to find the impoundment rule curves for these scenarios. These rule curves are derived using the
non-dominated sorting genetic algorithm-II (NSGA-II) [36] through a multi-objective optimization
process. We then analyze the objective function values to select the most suitable thresholds for
employing EIOR or SIOR. Second, we apply these thresholds to evaluate the skill of the GloFAS-Seasonal
streamflow forecast for selecting EIOR or SIOR. When the streamflow forecast is below the selected
threshold, it means a dry condition. Hence, the EIOR provides a longer impoundment period during
this condition and a more suitable impoundment approach for water conservation. We employ different
scores to show the skill of the GloFAS-Seasonal streamflow forecast to detect the streamflow condition
according to selected thresholds.
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The rest of the paper is organized as follows: In Section 2, after introducing the study area, we build
a cascade reservoir impoundment model for reservoir early refill operation. Section 3 reviews the
GloFAS-Seasonal forecasting system and explains different measures to evaluate the skill of the forecast
for streamflow conditions. We demonstrate and discuss the results for the streamflow thresholds and
performance of the GloFAS-Seasonal forecast in Section 4. Finally, we draw the conclusion in Section 5.

2. Cascade Reservoir Impoundment Model

2.1. Study Area

The Yangtze River, the longest river in Asia, flows 6300 km to the East China Sea with a total
drainage area of 1.8 million km2 and has abundant hydropower resources. A series of cascade reservoirs
have been constructed along the upper Yangtze River which provides a wide range of services including
flood control, hydropower generation, water supply, as well as navigation. There are five cascade
reservoirs in the upper Yangtze River, WDD (Wu-Dong-De), BHT (Bai-He-Tan), XLD (Xi-Luo-Du),
XJB (Xiang-Jia-Ba), and TGR (Three Gorges Reservoir). These reservoirs, along with their characteristics,
are listed in Table 1. There are no main tributaries between WDD and XJB reservoirs, while there are
three main tributaries between XJB and TGR, Min River, Jia-Ling River, and Wu River. The inflow to
WDD (QWDD) and TGR (QTGR) are derived from gauges at Hua-Tan and Yi-Chang hydrological stations
by revivification, respectively. Figure 1 shows the sketch map of the cascade reservoirs, hydrological
stations, and tributaries in the upper Yangtze River basin.

Table 1. Characteristics of the five cascade reservoirs in the upper Yangtze River.

Reservoir
Basin Area

(Thousand km2)

Annual Top of Buffer
Pool
(m)

Top of
Conservation

Pool
(m)

Total Storage
Capacity

(Billion m3)

Storage for Flood
Control

(Billion m3)

Installed Hydropower
Capacity

(GW)

WDD 406.1 952 975 3.94 2.44 10.20
BHT 430.3 785 825 20.60 7.50 16.00
XLD 454.4 560 600 12.67 4.65 13.86
XJB 458.8 370 380 5.16 0.90 7.75
TGR 1000 145 175 45.07 22.15 22.50

Figure 1. Sketch map of the five cascade reservoirs in the upper Yangtze River.

2.2. Impoundment Operation Rules for Cascade Reservoirs

The impoundment operation rules are employed to refill reservoir storage during the impoundment
period. The impoundment operation rules (Figure 2c) delineate trajectories to raise the water level
from the annual top of buffer pool at the initial impoundment time to the top of conservation pool
by the end of impoundment period. The SIOR derived from historical flow records initiates the
impoundment operation at fixed predefined dates. However, the SIOR may fail to refill reservoir
during the impoundment period in dry years. Hence, in low flow conditions and dry years, an early
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impoundment operation is more desirable to refill the storage capacity. Table 2 lists the potential
time for employing early initial impoundment in the upper Yangtze River obtained from previous
investigations [7,9]. We employ these initial dates along with the inflow conditions for the WDD
and TGR reservoirs (QWDD and QTGR) to evaluate the possibility of an early impoundment for the
cascade reservoirs.

Figure 2. The flowchart of the parameterization–simulation–optimization (PSO) strategy to derive
reservoir impoundment operation rule curves (a) input data of PSO, (b) optimization strategy of PSO,
(c) concept of the seasonal top of buffer pool (STBP) and impoundment operation rules, similar to a
previous study [9].
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Table 2. Impounding periods of Standard impoundment operation rules (SIOR) and early impoundment
operation rules (EIOR) for the five reservoirs.

Reservoir
Initial Impoundment Time Final Impoundment Time

(SIOR, EIOR)
(SIOR) (EIOR)

WDD Aug. 10th Aug.1st Sep. 10th
BHT Aug. 10th Aug.1st Sep. 30th
XLD Sep. 10st Aug. 25th Sep. 30th
XJB Sep. 10st Aug. 25th Sep. 30th
TGR Sep. 15th Aug. 25th Oct. 31st

Employing EIOR without considering the seasonal top of buffer pool (STBP) could increase the
risk of flooding. Figure 2c shows the concept of the STBP and Table 3 lists the value of the STBP for
selected reservoir (calculation method obtained from previous studies [7,9]). STBP is employed as
the maximum water level to mitigate the risk of flooding for the impoundment period. We follow an
iterative process to find the STBP for the reservoirs by evaluating the most extreme event. For further
information for this process, please refer to [7,9]. We use the STBP in our model to control and assess
the risk of flooding for the selected reservoirs.

Table 3. Seasonal top of buffer pool (STBP) for the five reservoirs in different periods.

Reservoir
Seasonal Top of Buffer Pool (m)

Aug.15th Aug.25th Sep.1st Sep.10th Sep.30th Oct.31st

WDD 965 965 970 975 975 975
BHT 800 810 810 810 825 825
XLD 560 565 575 575 600 600
XJB 370 372 375 375 380 380
TGR 145 145 152 152 165 175

According to Table 2, the impoundment process for most reservoirs starts before September.
Hence, streamflow forecast data with 2-month lead time can be used in early August to evaluate the
possibility of using EIOR. For this purpose, we define quantile-based thresholds based on historical
September monthly inflow to the Wu-Dong-De and Three Gorges Reservoir (QWDD and QTGR). These
thresholds are used to determine the streamflow condition to help decision-makers decide to use either
EIOR or SIOR. For instance, if the September monthly QWDD is forecasted to be below the threshold
percentile, EIOR is recommended as the suitable impoundment operation rule.

It is worth noting that, employing higher percentiles thresholds for inflow would increase the
possibility of using EIOR. However, it also increases the risk of flooding. So, careful consideration
should be devoted to the selection of these thresholds. Here, we examine four quantiles of historical
monthly inflow in September, including 20, 30, 40, and 50-percentile (Figure 2a), for the QWDD and
QTGR to select the best thresholds. For instance, considering the 20-percentile threshold of the historical
monthly inflow in September, the observed inflow can fall into the above 20-percentile and below
20-percentile category. Then, we evaluate the potential benefit and risk for each of these thresholds
by employing a cascade reservoirs impoundment simulation–optimization model under EIOR and
SIOR scenarios. Since each of these thresholds divide the historical streamflow observation into two
groups, we employ each group to find the impoundment rule curve separately. Hence, there are
eight scenarios for the thresholds that need to be evaluated for each impoundment approach by the
simulation–optimization model.

The reservoir simulation–optimization model is generally used to construct the rule curves by
simulating the reservoir responses to predefined operating rules. Due to a large number of policies
and constraints, mathematical optimization techniques can be used to identify the optimal operation
rules by evaluating all possible alternatives [37]. The parameterization–simulation–optimization (PSO)
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approach is a popular and effective way of deriving optimal rule curves for cascade reservoirs [38].
Initially, PSO employs a linear rule curve (impoundment operation rule curve shown in Figure 2c),
which connects the annual top of the buffer pool to the top of the conservation pool. It then
employs a heuristic strategy to find the optimal rule curve according to predefined objective functions
under possible inflow scenarios. Figure 2 shows the scheme of the PSO approach [39]. Finally,
the objective function values of the PSO are employed to select the best threshold for reservoir
impoundment decision-making.

Here, we employ PSO at a daily timescale to find the optimum rule curve for each threshold
and scenario (Figure 2b). By optimizing the parameters of the rule curves for SIOR and EIOR,
decision-makers can decide to employ EIOR or SIOR based on the obtained objective function values.
The objective functions and the constraints for the impoundment operation employed in the PSO
model are discussed in Sections 2.3.1 and 2.3.2. In Section 2.4, we describe the NSGA-II algorithm
employed for optimizing impoundment operation rule curve.

2.3. Objective Functions and Constrains

2.3.1. Objective Functions

Decision-makers rely on different criteria to make a comprehensive assessment of operation
rules and address trade-offs among different users and services. In the Yangtze River, the goal of
reservoir impoundment is to enhance water conservation in order to maximize hydropower generation
and fullness storage rate, while minimizing the risk of flooding [7,18]. Hence, we employ objective
functions that can measure the degree that these goals are achieved. These objectives are adopted from
previous studies [7,18] and can be mathematically expressed as:

(1) Maximum hydropower generation (HG),

max HG = max

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑
i = 1

⎛⎜⎜⎜⎜⎜⎝ M∑
k = 1

HGi,k

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦; (1)

(2) Maximum fullness storage rate (FSR),

max FSR = max

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑
i = 1

⎛⎜⎜⎜⎜⎜⎝ M∑
k = 1

αkFSRi,k

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦, (2)

FSRi,k =
Vk

high,i − Vk
min

Vk
max − Vk

min

× 100%; (3)

(3) Minimum flood control risk (R),

min R = min[max(R1, R2, · · · , Rk, · · · , RM)], (4a)

Rk = P (Water level > STBP) = Nrisk,k/N; (4b)

where
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M the number of reservoirs;
N the number of years for hydrological time series;
HGi,k hydropower generation of the kth reservoir in the ith simulated year, kW·h
αk

the weight for fullness storage rate of the kth reservoir, calculated by the ratio about the
total storage capacity of M reservoirs;

FSRi,k fullness storage rate of the kth reservoir in the ith simulated year;
Vk

min the storage capacity corresponding to the annual top of buffer pool of the kth reservoir, m3;
Vk

max the storage capacity corresponding to the top of conservation pool of the kth reservoir, m3;

Vk
high,i

the highest storage during impoundment operation of the kth reservoir in the ith simulated
year, m3;

Rk flood control risk of the kth reservoir;
Nrisk,k the number of years when the water level exceeds STBP of the kth reservoir.

2.3.2. Operation Constraints

In addition to the objective functions, the constraints of the reservoir system need to be specified
for the optimization process. The following equality and inequality operational constraints need to be
satisfied in the cascade reservoirs impoundment operation. Adopted from previous studies [7,18,40],
the mathematical formulations of these constraints are as follows:

(1) Water balance equation,

Vk
i, j+1 = Vk

i, j + (Q k
in(i, j) − Qk

out(i, j))Δt i = 1, . . . , N j = 1, . . . , T; (5)

(2) Reservoir capacity,

Vk
min ≤ Vk

i, j ≤ Vk
max i = 1, . . . , N j = 1, . . . , T; (6)

(3) Power generation,

Pk
min ≤ AkQk

o(i, j)H
k
i, j ≤ Pk

max i = 1, . . . , N j = 1, . . . , T; (7)

(4) Reservoir discharge,

Qk
min ≤ Qk

out(i, j) ≤ Qk
safe i = 1, . . . , N j = 1, . . . , T; (8)∣∣∣∣Qk

out(i, j+1) − Qk
out(i, j)

∣∣∣∣ ≤ ΔQk i = 1, . . . , N j = 1, . . . , T (9)

(5) Navigation,

Zk
dmin ≤ Zk

d(i, j) ≤ Zk
dmax i = 1, . . . , N j = 1, . . . , T; (10)

Zk
d(i, j) = f

(
Qk

out(i, j)

)
i = 1, . . . , N j = 1, . . . , T; (11)

where
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N the number of years for hydrological time series;
T total number of days during impoundment operation in the ith simulated year;
Vk

i, j the kth reservoir storage at the beginning of the jth day in the ith simulated year, m3;
Qk

in(i, j) the kth reservoir inflow on the jth day in the ith simulated year, m3/s;
Qk

out(i, j) the water discharge of kth reservoir on the jth day in the ith simulated year, m3/s;

Qk
o(i, j)

the water discharge for hydropower generation of the kth reservoir on the jth day in the ith
simulated year, m3/s;

Qk
w(i, j) the spilled water discharge of the kth reservoir on the jth day in the ith simulated year, m3/s;

Ak the hydropower generation efficiency of the kth reservoir;

Hk
i, j

the average hydropower head of the kth reservoir on the jth day in the ith
simulated year, m;

Pk
min the minimum power limits of the kth hydropower plant, kW;

Pk
max the maximum power limits of the kth hydropower plant, kW;

Qk
min the minimum water discharge for downstream of the kth reservoir, m3/s;

Qk
safe

the maximum water discharge for flood control safety in downstream of the kth reservoir,
m3/s;

ΔQk the maximum water discharge fluctuation of the kth reservoir, m3/s;
Zk

dmin the minimum water level at downstream of the kth dam site, m;
Zk

dmax the maximum water level at downstream of the kth dam site, m;
Zk

d(i, j) the water level at downstream of kth dam site on the jth day in the ith simulated year, m;

f(·) the function provided by reservoir managers expressing the relationship between reservoir
discharge and downstream water level.

2.4. NSGA-II Optimization Algorithm

The nonlinearity of the reservoir systems, along with the existing constraints, require an effective
optimization algorithm to solve these types of problems [41]. Here, we employ the non-dominated sorting
genetic algorithm-II (NSGA-II), which is a robust multi-objective optimization algorithm [36], to derive
the parameters of the rule curves. The NSGA-II algorithm has been applied to a wide range of complex
multi-objective reservoir optimization and water resources management problems [18,38,42–44].

The NSGA-II algorithm has four parameters, including population size, generation number,
crossover rate, and mutation rate, that need to be tuned by the user. Population size and generation
number determine the effectiveness and efficiency of the algorithm and control the convergence speed
to the optimal non-dominated solutions. Crossover and mutation rates control the ability of the
algorithm to perform an effective search over the problem space [38,45]. In this study, the population
size and the generation number were set to 50 and 200, respectively. These values are selected based
on trial and error to obtain reasonable non-dominated solutions with acceptable simulation time. The
crossover and mutation rates were empirically set to 0.9 and 0.1, respectively. The non-dominated
solutions are used to evaluate the three objective functions for each threshold and each of the EIOR
and SIOR scenarios.

3. Evaluation of GloFAS-Seasonal Forecasts

GloFAS-Seasonal forecasts combine the ECMWF’s latest seasonal meteorological forecasting
system, SEAS5, and a river routing model, Lisflood, to provide streamflow forecasts at global scale [35].
This dataset provides weekly-averaged river flow with 4-month lead time. The first component of the
GloFAS-Seasonal forecast is the meteorological input from SEAS5 which employs a data assimilation
system along with a global circulation model. SEAS5 is executed once a month to produce seasonal
weather forecasts with 7-month lead time. The second model component is a revised Hydrology
Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) which computes the land surface
response to atmospheric forcing and simulates the evolution of soil temperature, moisture content,
and snowpack conditions through the forecast horizon to produce a corresponding forecast of surface
and subsurface run-off [46]. The third model component is Lisflood which simulates the groundwater
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(subsurface water storage and transport) processes and routing of the water through the river network.
While SEAS5 provides forecasts for the 7 months ahead, the GloFAS-Seasonal uses only the first
4 months and produces forecasts of river flow for the next 4 months. For more details on the forecast
method, please refer to paper [35].

The GloFAS-Seasonal is a real-time forecast dataset which contains data from January 2018
and updates every month, with a total of 51 ensemble members. In order to evaluate the skill
of the dataset, a set of retrospective seasonal forecasts for past dates, which are called reforecasts
(also known as hindcasts), are available to compare with the historical observation streamflow.
GloFAS-Seasonal reforecasts are available at http://www.globalfloods.eu/ and have 25 ensemble
members from January 1981 to December 2017. In this study, GloFAS-Seasonal reforecasts at Hua-Tan
and Yi-Chang hydrological stations in the Yangtze River are downloaded and analyzed. Also, the
original weekly-averaged reforecasts are converted into monthly products for reservoir impoundment
operation. Hence, monthly-averaged streamflow in September is obtained at the beginning of August
with 2-month lead time (LM2).

We evaluate the GloFAS-Seasonal reforecasts to measure the capability of the dataset to predict
the condition of the streamflow, i.e., the ability of the reforecast to predict that September monthly
averaged flow falls below the selected thresholds which is defined in Section 2.1. Since seasonal climate
is inherently probabilistic, seasonal forecasts should be evaluated probabilistically [47]. If each of the
25 ensemble members of the GloFAS-Seasonal reforecasts are equally likely, the proportion of ensemble
members below each percentile threshold is calculated as the probability of the forecast. In addition,
the percentile thresholds are calculated separately for historical observed and reforecast data [48]. This
approach takes into account the systematic additive error (bias) of the reforecast data, hence further
bias adjustment for the reforecast data is not required [48,49].

The conversion of raw ensemble members to forecast probabilities enables us to validate
GloFAS-Seasonal reforecasts by using probabilistic forecasts verification measures. Here, we employ
multiple metrics for our evaluation. These metrics include: I) discrimination, ability of the forecast
to discriminate among observations; II) skill, the relative accuracy of the forecast over a reference
forecast; III) reliability, the agreement between forecast probability and mean observed frequency; IV)
resolution, the ability of the forecast to resolve the set of sample events into subsets; and V) sharpness,
the tendency to forecast probabilities near 0 or 1. These metrics are briefly discussed here. Interested
readers can refer to https://www.cawcr.gov.au/projects/verification/ for further details.

3.1. Discrimination

To assess the potential application of GloFAS-Seasonal forecasts for the prediction of the
streamflow condition, the relative operating characteristic (ROC) curve, a measure of discrimination [50],
is calculated for the selected thresholds. If the forecasts indicate that flow will be below threshold,
which means a dry and unfavorable condition for reservoir impoundment operation, then a warning is
issued. The forecasts are converted into a binary (e.g., “yes” or “no”) format depending on whether
a warning has been issued or not issued. Then the ROC curve is plotted based on hit rate (HR) and
false-alarm rate (FAR) of the forecast for streamflow condition. The HR and FAR can be calculated by
Equation (12):

HR =
h

h + m
(12a)

FAR =
f

f + r
(12b)

where h refers to a correct warning (hit), m refers to a missed warning, f refers to a false warning, and r
correct no warning detection.

The area under the ROC curve (referred as AUC) is then calculated, which is used to measure
whether the forecast is informative for decision-making. Most of the time, the ROC curve does not
clearly indicate the accuracy of forecast. As a numerical value, it is more intuitive to use the AUC value
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as the evaluation standard. The larger the AUC value, the more skillful the forecast is. The value of
the AUC ranges from 0 to 1. If the AUC is equal to 0.5, it indicates that forecasts are consistent with
the random guess and provides no information. Generally, when the AUC value is greater than 0.6,
the seasonal forecast can be regarded as useful [25,35].

3.2. Skill

Skill implies information about the relative accuracy of the forecast according to a reference
forecast. The reference forecast is generally an unskilled forecast such as random chance, persistence,
or climatology. To assess the skill of GloFAS-Seasonal reforecasts, we compare the reforecasts with
climatology [51], an ensemble of observed flows, and use the ROC skill score (ROCSS), which has been
used in previous studies for the verification of seasonal forecasts [52]. ROCSS is computed as follows:

ROCSS =
AUC f c − AUCcm

1 − AUCcm
(13)

where AUCfc refers to the AUC value of reforecasts and AUCcm refers to the AUC value of climatological
forecasts. ROCSS of one means a perfect forecasting system; ROCSS of zero indicates no improvement
over the climatology.

3.3. Reliability, Resolution, and Sharpness

For assessing the reliability of forecasts, the reliability diagram is used here, where X and
Y axes represent the forecast probability and the observed frequency of the future below the
streamflow threshold, respectively. When the forecast probability and the observed frequency
are equal, the reliability of forecasts is perfect. For example, if an event will occur with a forecast
probability of 70%, then, on average, the event should occur on 70% of the occasions that this forecast
is made. So, reliability is indicated by the proximity of the plotted curve to the diagonal. If the plotted
curve lies below the diagonal, this indicates over-estimation (forecast probabilities are too high); curve
above the diagonal indicates under-estimation (forecast probabilities are too low).

The climatological average can produce high reliability, but it lacks information for practice.
In theory, we are interested in probability forecast systems which give a forecast probability that
deviates from the climatological average and approaches 0% or 100% while maintaining a high level
of reliability [35]. So, the reliability diagram can also be used to assess the resolution of forecasts.
Forecasts that discriminate between events and non-events are said to have a resolution (a forecast of
climatological average, a curve lying on or near the horizontal line would have no resolution). For
assessing the sharpness of forecasts, the reliability diagram is usually accompanied by a histogram.
If the histogram is U-shaped, then the frequency of forecasts approaches 0% and 100% and the forecast
system sharpness is well. Forecasts with no or low sharpness will show a peak in the forecast frequency
near the climatological average.

4. Results and Discussion

4.1. The Selected Thresholds

As the first step of our evaluation, we select thresholds to evaluate the streamflow condition for
impoundment operation. The Changjiang (Yangtze River) Water Resources Commission (CWRC)
provides daily inflow and discharge data series for the selected five reservoirs and streamflow for
adjacent gauges at hydrological stations, which covers the whole impoundment operation period
from 1 August to 31 October (92 days) for 1950–2015 (66 years). We use 20, 30, 40, and 50-percentile
of historical inflow as thresholds to determine the inflow condition in September according to the
monthly-averaged inflow (QWDD and QTGR). For example, the 20-percentile historical average inflow
in September divides data into two groups where one group (above 20-percentile in Figure 2a) includes
53 years of data and the other group (below 20-percentile in Figure 2a) has 13 years of data. Therefore,
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we get two scenarios for these thresholds, one above and one below each threshold. By this approach,
we get 16 different flow scenario groups (two QWDD or QTGR × four quantiles × two groups for
each quantile).

These scenarios are evaluated independently along with the EIOR and SIOR by the PSO approach.
Since the population size for the NSGA-II algorithm is set to 50, the algorithm provides 50 Pareto-optimal
solutions (non-dominated solutions). Since there are three objective functions for each scenario and
considering the multi-purpose nature of these reservoirs, a single value cannot be reported as the best
answer from these 50 Pareto-optimal solutions. Therefore, we average the objective function of the 50
Pareto-optimal solutions as a potential benefit and risk in response to this combination of historical flow
group and impoundment rules. For 16 different groups and two operation rules, the averaged three
objective functions of 50 Pareto-optimal solutions are shown in Table 4. Comparing these 16 different
scenarios, we can see that the HG and FSR values are improved by employing larger thresholds. This
improvement is due to the increase in streamflow and reservoirs storage in September from the lowest,
below 20-percentile, to the highest, above 50-percentile, threshold. It is clearly shown that low flow in
September has an adverse impact on impoundment operation.

Table 4. Benefit and risk results of the cascade reservoir system in response to the combination of
historical flow group and impoundment rule.

Flow Group
EIOR SIOR

HG
(108 kW·h)

FSR
(%)

R
(%)

HG
(108 kW·h)

FSR
(%)

R
(%)

QWDD

below 20% 813.784 82.68% 0 805.070 79.78% 0
below 30% 845.857 85.43% 0 834.963 82.45% 0
below 40% 868.680 89.40% 0 857.848 87.25% 0
below 50% 895.822 91.72% 0 884.002 89.81% 0
above 20% 1025.617 99.25% 1.802% 1011.410 98.86% 2.229%
above 30% 1040.072 99.98% 2.035% 1022.395 99.96% 2.123%
above 40% 1060.128 100.00% 2.924% 1042.975 100.00% 2.284%
above 50% 1074.293 100.00% 3.730% 1057.887 100.00% 2.842%

QTGR

below 20% 816.973 81.86% 0 808.284 79.18% 0
below 30% 838.596 86.20% 0 829.380 83.76% 0
below 40% 876.391 89.49% 0 864.720 87.80% 0
below 50% 895.437 91.56% 2.055% 881.728 90.13% 0
above 20% 1024.592 99.23% 2.217% 1005.852 98.97% 2.742%
above 30% 1042.250 99.70% 2.313% 1023.483 99.65% 2.098%
above 40% 1048.775 99.88% 2.237% 1030.204 99.87% 2.902%
above 50% 1072.242 99.96% 2.263% 1052.043 99.96% 3.043%

Note: EIOR: early impoundment operation rules; SIOR: standard impoundment operation rules; HG: hydropower
generation; FSR: fullness storage rate; R: flood control risk.

Comparing EIOR with SIOR for cascade reservoirs, the EIOR improves the HG and FSR from the
flow group below 20% to below 40% for both of QWDD and QTGR without affecting the risk of flooding.
We employ these results to select the most suitable threshold among these 16 scenarios for our analysis.
Figure 3 shows the relationship between increased benefit ratio and different flow groups of QWDD and
QTGR. According to Figure 3, HG is less affected by the selected thresholds. On the contrary, FSR values
are decreased by increasing the threshold or inflow. For the group below the 20-percentile and below
the 30-percentile, the FSRs of the proposed EIOR are increased significantly around or above 3% in
comparison to the SIOR, without increasing the risk of flooding. Hence, we select the 20-percentile
and 30-percentile as the thresholds for our study, as their performance is superior to others. In early
August, we use these thresholds to evaluate the performance of the GloFAS-Seasonal in predicting the
streamflow condition for QWDD and QTGR next month.
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Figure 3. The relationship between increased benefit ratio of EIOR and different flow groups of
(a) QWDD and (b) QTGR.

4.2. Evaluation of GloFAS-Seasonal Reforecasts

GloFAS-Seasonal reforecasts are evaluated using adjusted historical river flow data at the Hua-Tan
and Yi-Chang hydrologic stations in the Yangtze River. GloFAS-Seasonal reforecasts represent natural
flow and do not consider any reservoir routing. The CWRC provides monthly averaged historical
flow records which have been adjusted to represent the natural flow. These adjusted historical
natural streamflow timeseries span over thirty years (1981–2013). So, GloFAS-Seasonal reforecasts are
evaluated over the same 33-year period. Since the impoundment operation starts before September,
we investigate the GloFAS-Seasonal reforecasts on 1 August (2-month lead, LM2) to evaluate the
potential for employing EIOR. We also investigate the 1-month lead, LM1, on 1 September to evaluate
the performance of GloFAS-Seasonal for different lead times.

4.2.1. AUC Values

In order to compare AUC values for different stations, lead times, and thresholds, we employ the
Nightingale’s Rose chart. This chart is suitable to visually evaluate the evident differences between
various categorical data. The results are shown in Figure 4, and it is clearly shown that all AUC values
are greater than 0.6, which means that the forecasts can be regarded as informative and have the ability
to predict the streamflow condition (whether streamflow is below the threshold or not). Besides, the
AUC values exhibit a decline from the LM1 (around 0.9) to the LM2 (below 0.8) as expected.

For different stations and thresholds, AUC values of forecasts vary more significantly with lead
times. So, the discrimination of GloFAS-Seasonal reforecasts is relatively stable over space in the
upper Yangtze River. Moreover, an interesting finding is that the performance of thresholds varies
for hydrological stations. For Hua-Tan, the 20-percentile has the best performance, whereas the
30-percentile for the Yi-Chang station. This emphasizes that a spatial evaluation of thresholds is
necessary for the Yangtze River to find the best thresholds for employing the GloFAS-Seasonal forecast
at the basin.
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Figure 4. The area under the ROC curve (AUC) values for GloFAS-Seasonal reforecast at Hua-Tan (left)
and Yi-Chang (right) hydrologic stations.

4.2.2. ROCSS Values

Tercile plots are designed to show the performance of a forecast system at different periods [53].
Here, we employ these plots to compare reforecast probabilities (color coded from light to dark color
for lower to higher probability) for different threshold events with the observed condition (white
dots). We defined three different categories of threshold events for our comparison. Since low flow
condition leads to employing the EIOR, we only employ 0–20%, 20–40%, and 40–60% quantiles of the
streamflow data to evaluate the performance of GloFAS-Seasonal reforecasts for predicting the correct
flow condition. However, the evaluation can be done for other flow ranges based on the selected
thresholds. ROCSS values for each quantile is shown on the right axis for comparison. Significant
values of ROCSS with a 95% confidence are marked with an asterisk for statistical evaluation.

Results show that for GloFAS-Seasonal reforecasts below 20%, the ROCSS exhibit a decline in skill
from the LM1 (0.8 and 0.76) to the LM2 (0.46 and 0.42) for both Hua-Tan and Yi-Chang hydrological
stations. However, skills (ROCSS greater than 0) still prevail in the LM2 and are marked with asterisks,
which means that forecasts of LM2 are better than climatology. Furthermore, forecast sharpness is
also evident in this tercile plot. The darker the color of the square, the better the sharpness of that
probabilistic forecasts is. Forecasts for both LM1 and LM2 exhibit sharpness, although the sharpness is
higher for LM1, which is indicated by the colors of the squares in Figure 5.

According to Figure 5, the streamflow condition for the Hua-Tan hydrological station is below
the 20-percentile in seven years, among which the forecast predicted the highest probability for
five and three of these years by LM1 and LM2, respectively. For the Yi-Chang hydrological station,
the number of years with streamflow below the 20-percentile is seven, out of which GloFAS-Seasonal
reforecasts with LM1 and LM2 predicted the highest probability for five and three of these years,
respectively. Consistent with the results of AUC, although LM1 shows better performance with shorter
lead time, aiming at reservoir impoundment operation, GloFAS-Seasonal reforecasts with 2-month
lead time (LM2) are still informative. Further, compared with the LM1, LM2 still has a lot of potential
improvement in the future, which depends on developing the seasonal climate prediction. A similar
analysis can be performed for the 30-percentile threshold with other ranges.
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Figure 5. Tercile plots and ROC skill score (ROCSS) for GloFAS-Seasonal reforecasts (a) 2-month lead
at the Hua-Tan, (b) 1-month lead at the Hua-Tan, (c) 1-month lead at the Yi-Chang, and (d) 2-month
lead at the Yi-Chang hydrologic station.

4.2.3. Reliability Diagram

Similar to ROC calculations, the reliability is assessed for both the 20-percentile and 30-percentile
threshold. Due to the limit number of samples, the range of forecast probabilities is divided into
five bins (for every 20% from 0% to 100%) rather than ten bins in order to avoid sparseness of the
probability categories. Since GloFAS-Seasonal reforecasts have similar performance at hydrological
stations, reliability diagrams are only presented for Yi-Chang hydrologic station here. Figure 6 shows
the effect of (a) the lead time (LM1 and LM2) and (b) the threshold (20-percentile and 30-percentile) on
reliability by combining the contingency table for thresholds and lead times, respectively.

Figure 6. Reliability diagrams of GloFAS-Seasonal reforecasts for comparing (a) two lead times and
(b) thresholds.
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Figure 6a shows that forecasts have more reliability than climatology, regardless of the lead time.
It is worth noting that the observed frequency is unrealistically equal to 1 for 60–80% and the LM1
due to sampling limitations rather than necessarily true deviations from reliability [54]. Overall, the
reliability appears to be slightly better for forecasts of LM2 than LM1. The forecast data for both
LM2 and LM1 exhibit sharpness, which means that forecast probabilities are more informative than
climatology. Similar behavior is observed for the 60–80% bin in Figure 6b, because of the limited
number of samples. Figure 6b shows that the reliability of the 30-percentile threshold is better than the
20-percentile. In contrast to reliability, sharpness is better for forecasts of the 20-percentile rather than
the 30-percentile threshold. Differences in reliability and sharpness can be explained by the limited
number of samples. So, the performance of the two selected thresholds is close and hard to distinguish.

Due to most dots laying below the diagonal, Figure 6 suggests that in general, GloFAS-Seasonal
reforecasts have a tendency to over-estimate the likelihood of a below percentile streamflow condition,
which is a common situation for seasonal forecasting [55]. This conclusion is consistent with the
reliability diagram of GloFAS-Seasonal reforcasts aggregated across all observation stations globally [35],
and reflects the characteristics of the GloFAS-Seasonal forecasting system. However, with respect to the
impoundment of the reservoirs, it is more favorable to over-estimate the below threshold conditions
rather than under-estimating. The reservoir operators could employ GloFAS-Seasonal forecasts for
decision-making for the early impoundment operation, while control the risk of flooding through
short-term hydrological forecasting in real-time operation.

4.3. Specific Analysis and Benefits of the EIOR

The above results demonstrate that GloFAS-Seasonal forecasts have the potential to give water
managers the flexibility to employ early impoundment in the upper Yangtze River. Here, we try to
analyze the EIOR and find its benefits. As an example, Figure 7 shows the Pareto-optimal solutions of
EIOR (plot a) and SIOR (plot b) for the QTGR below the 20-percentile threshold. These Pareto-optimal
solutions are averaged for derving parts of Table 4. We are employing three objective functions.
Therefore, three subplots are needed for Pareto-optimal solutions to show three objectives in pairs.
However, the flood control risk (R) of almost all Pareto-optimal solutions are equal to zero. Hence,
we only show two objective functions (FSR and HG) in Figure 7. Each one of the 50 Pareto-optimal
solutions obtained from the NSGA-II algorithm represents impoundment rule curve for each of the
five cascade reservoirs. Figure 7 also shows EIOR and SIOR rule curves of WDD and TGR reservoirs
focusing on the extreme solution of the FSR objective function. The figure shows that the average water
level of EIOR is higher than SIOR for the selected 20-percentile threshold, while the risk of flooding
is zero.

To illustrate the potential maximum benefits of EIOR, Figure 7 also shows a linear operation
rule (LOR), which connects the initial water level to the top of STBP at the end of impoundment
period. As a benchmark, LOR could present the maximum benefit of the EIOR from two parts where
one is the earlier initial impoundment time and the other is the optimized rule curve. For curves of
EIOR and LOR in Figure 7, Table 5 shows the benefit and risk of EIOR compared to the LOR. The
proposed EIOR improves the FSR by 5.63% and increases HG by 4.02%. In conclusion, during dry
years, our proposed methodology could significantly increase the hydropower generation and water
utilization by employing GloFAS-Seasonal forecasts and early reservoir impoundment.
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Figure 7. Optimized EIOR and SIOR rule curves of WDD and TGR reservoirs focusing on fullness
storage rate (FSR) for flow scenario group (below 20%) of QTGR.

Table 5. Comparison of the benefit and risk of EIOR and linear operation rule (LOR) rule curves for the
QTGR below the 20-percentile threshold.

Flow Group
Rule Curve in

Figure 7
Benefit and Risk

HG
(108 kW·h)

FSR
(%)

R
(%)

QTGR below 20%
LOR 785.042 77.512% 0
EIOR 816.601 81.876% 0

Increased ratio 4.02% 5.63% 0

Note: QTGR: inflow to the Three Gorges Reservoir; LOR: linear operation rule; EIOR: early impoundment operation
rules; HG: hydropower generation; FSR: fullness storage rate; R: flood control risk.

5. Conclusions

In this study, we evaluated the potential application of GloFAS-Seasonal forecasts for early reservoir
impoundment in the upper Yangtze River. A cascade reservoirs impoundment simulation–optimization
model was employed to select suitable low flow thresholds for decision-making for EIOR or SIOR. These
thresholds were selected by analyzing the historical inflow data of WDD and TGR reservoirs, which were
derived from Hua-Tan and Yi-Chang hydrologic stations. The performance of GloFAS-Seasonal
reforecasts to predict the streamflow condition at these two hydrological stations was evaluated
using AUC, ROCSS, and reliability diagram for two different lead times (LM1 and LM2) and selected
thresholds. The main findings of our study can be summarized as follows:

(1) The low flow condition in September has a very significant impact on reservoir impoundment
operation in the upper Yangtze River. The 20-percentile and 30-percentile selected thresholds of
inflow at WDD and TGR are suitable for evaluating the possibility of early impoundment. These
two selected thresholds can be used as a measure for flow condition and decision-making for early
impoundment operation.

(2) All AUC values of reforecasts are greater than 0.6 which shows that GloFAS-Seasonal forecasts
can be used to predict the streamflow condition according to the selected thresholds. However, AUC
decreases from the LM1 (around 0.9) to the LM2 (below 0.8) as expected. The ROCSS reveals that both
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LM1 and LM2 are significantly better than climatology. The reliability diagrams also show that both
LM1 and LM2 forecasts have more reliability and sharpness than climatology. Furthermore, results
also indicate a tendency of the two lead time forecasts to over-estimate, which is more favorable for
water managers.

(3) GloFAS-Seasonal forecasts with 2-month lead time (LM2) are valuable for reservoir
impoundment operation. During dry years, the proposed EIOR improves the fullness storage
rate by 5.63% and the annual average hydropower generation by 4.02% without increasing the risk
of flooding.

This paper demonstrates that GloFAS-Seasonal forecasts has the potential to improve the standard
impoundment operation rules in the upper Yangtze River and give water managers the flexibility to
employ early impoundment.
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Abstract: In this research, a novel enhanced gravitational search algorithm (EGSA) is proposed to
resolve the multi-objective optimization model, considering the power generation of a hydropower
enterprise and the peak operation requirement of a power system. In the proposed method,
the standard gravity search algorithm (GSA) was chosen as the fundamental execution framework;
the opposition learning strategy was adopted to increase the convergence speed of the swarm;
the mutation search strategy was chosen to enhance the individual diversity; the elastic-ball
modification strategy was used to promote the solution feasibility. Additionally, a practical constraint
handling technique was introduced to improve the quality of the obtained agents, while the technique
for order preference by similarity to an ideal solution method (TOPSIS) was used for the multi-objective
decision. The numerical tests of twelve benchmark functions showed that the EGSA method could
produce better results than several existing evolutionary algorithms. Then, the hydropower system
located on the Wu River of China was chosen to test the engineering practicality of the proposed
method. The results showed that the EGSA method could obtain satisfying scheduling schemes
in different cases. Hence, an effective optimization method was provided for the multi-objective
operation of hydropower system.

Keywords: cascade hydropower reservoirs; multi-objective optimization; TOPSIS; gravitational
search algorithm; opposition learning; partial mutation; elastic-ball modification

1. Introduction

With the merits of low pollution emission and high work efficiency, hydropower is seen as
one of the most important renewable energy sources and usually shoulders many different kinds of
management requirements, in practice [1–3]. For hydropower enterprises, it is preferred to make full
use of the water resources to obtain the maximum economic benefit [4]; for power systems, the flexible
hydropower generators are often asked to respond to the peak loads and smooth the energy demand
curves [5]. Under such a background, the operation optimization of cascade hydropower reservoirs
balancing a power generation and peak operation has become one of the most important tasks in both
water resource systems and modern power systems [6]. However, as far as we know, there are few
reports that have addressed this engineering problem, and therefore, the goal of this research was to
refill this huge gap between theoretical research and engineering requirement.

From a mathematical point of view, the target problem was a typical multi-objective constrained
optimization problem with a set of complex equality or inequality constraints [7], and many
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classical methods have been successfully developed by scholars, during the past decades [8–13],
like linear programming [14], quadratic programming [15], dynamic programming [16–18], Lagrange
relaxation, and network optimization [19–21]. However, the hydropower operation problem is usually
modeled with nonlinear characteristic curves, physical constraints, or objective functions [22–24].
The above-mentioned traditional methods might fail to address the complexity due to various defects,
like dimensionality problem [25], high computational burden [26], duality gap [27], or parameter
tuning [28–30]. In recent years, with the booming development of computer technology, many
evolutionary algorithms have been proposed to resolve these kind of problems [31–33], like genetic
algorithm (GA) [34], differential evolution (DE) [35,36], particle swarm algorithm (PSO) [37–40],
cuckoo search (CS) [41], Covariance Matrix Adaptation Evolution Strategy with a Directed Target
to Best Perturbation (CMA-ES-DTBP) [42], and a clustered adaptive teaching–learning-based
optimization (CATLBO) [43]. Compared with traditional methods, the evolutionary algorithms
can produce satisfying solutions in most cases, regardless of the problem features (like continuity or
nonconvexity) [44–46]. However, due to the premature convergence, evolutionary algorithms often fall
into local optima, which have limited their widespread applications in practical engineering [47–50].
Hence, it is necessary to find some effective modified strategies to enhance the performances of the
evolutionary algorithms in the hydropower operation problems.

Gravitational search algorithm (GSA) is a famous evolutionary algorithm based on the laws
of gravity and mass interactions in Newtonian mechanics [51–53]. Although GSA outperforms the
standard PSO and GA methods in many problems, certain defects (like exploration–exploitation
imbalance and local convergence) still exist. For improving the performance of the standard GSA
method, this study proposes an enhanced GSA algorithm (EGSA) where three modified strategies
(opposition learning strategy, mutation search strategy, and elastic-ball modification strategy) are
integrated to alleviate the premature convergence problem. Several famous test functions are used to
verify the feasibility of the developed method in solving the global optimization problems, and the
results demonstrate that the modified strategies could effectively enhance the convergence speed
and the global search ability of the population at the same time. Then, two specific strategies
were embedded into the EGSA method to help address the multi-objective operation problem of
a hydropower system—(i) the practical constraint handling strategy for solution feasibility and (ii) the
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) for multi-objective decision.
Finally, the EGSA method was applied to address the operation optimization of cascade hydropower
system in the Wu River of China. The simulations showed that the proposed method could produce
better scheduling schemes in different application scenarios.

The rest of this paper is organized as below—the EGSA method is presented in Section 2; several
benchmark functions are used to verify the performance of the EGSA method in Section 3; Section 4
gives the mathematical model for the multi-objective operation of cascade hydropower reservoirs;
Section 5 compares the results of different methods; and the conclusions are drawn in the end.

2. Enhanced Gravitational Search Algorithm (EGSA)

2.1. Gravitational Search Algorithm (GSA)

GSA is a novel swarm-based evolutionary algorithm inspired by the universal gravitation and
mass interactions in classical Newton’s Mechanics [54]. In GSA, the potential solution for the target
optimization problems is considered to be an agent with a certain quality, and all the agents are
attracted by other agents via the so-called gravity force, which can effectively help the swarm share
the acquired beneficial information about the surrounding [55]. Figure 1 draws the sketch map of the
GSA method. It can be seen that during the evolutionary process, the gravity force of the two agents is
directly and inversely proportional to their qualities and distances, respectively; while the agents with
better performances usually have larger attraction forces and slower velocity than those agents with
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smaller quality. By these means, all agents gradually finish the transition from the global exploration
to local exploitation in the decision space, which help the swarm obtain the global optima.

Figure 1. Sketch map of the gravitational search algorithm (GSA) method for a two-variable problem.

Without a loss of generality, it is assumed that there are N agents in the evolutionary swarm to
determine the optimal solution for the minimization–optimization problem with D variables, and then
the position of the ith agent at the kth iteration (Xi(k) for short) can be expressed as follows:

Xi(k) = (x1
i (k), · · · , xd

i (k), · · · , xD
i (k)) (1)

where xd
i (k) is the position of the ith agent in the dth dimension at the kth iteration.

In the evolutionary process, the gravitational force of the nth agent acting on the ith agent in the
dth dimension at the kth iteration can be expressed as follows:

Fd
in(k) = G(k)

Mi(k) ×Mn(k)
Rin(k) + ϕ

(xd
i (k) − xd

n(k)) (2)

where Mi(k) and Mn(k) are the gravitational masses of the ith agent and the nth agent at the kth
iteration, respectively. Rin(k)=||Xi(k), Xn(k) ||2 is the Euclidian distance between the ith agent and the
nth agent at the kth iteration. ϕ is a small constant used to prevent the denominator being 0. G(k) is
the gravitational constant of the swarm at the kth iteration, which is dynamically updated by:

G(k) = G0 × exp(−αk

k
) (3)

where G0 is the initial gravitational constant. α is the attenuation coefficient. k is the maximum number
of iterations.

After obtaining the latest positions of all agents, the mass of the ith agent at the kth iteration
(mi(k) for short) can be expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mi(k) =
f iti(k)−worst(k)
best(k)−worst(k)

Mi(k) = mi(k)
/

N∑
i=1

mi(k)
(4)

where f iti(k) is the fitness of the ith agent at the kth iteration. best(k) and worst(k) are the best and
worst fitness values of the swarm at the kth iteration, respectively.

In order to reduce the negative influence of agents that are not conducive to the evolution of the
swarm, the resultant force of the ith agent in the dth dimension at the kth iteration (Fd

i (k) for short) is
obtained by:

Fd
i (k) =

Kbest∑
j=1, j�i

randjFd
ij(k) (5)
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where randj is the random number uniformly distributed in the range of [0,1]. Kbest is the number of
agents with better fitness values.

Based on the motion law in the classical Newtonian mechanics, the acceleration of the ith agent in
the dth dimension at the kth iteration (accd

i (k) for short) can be expressed as follows:

accd
i (k) =

Fd
i (k)

Mi(k)
(6)

The velocity and position values of the ith agent in the dth dimension at the k+1th iteration
(xd

i (k + 1) and vd
i (k + 1) for short) can be updated as below:{

vd
i (k + 1) = randi × vd

i (k) + accd
i (k)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1)

(7)

where randi is the random number uniformly distributed in the range of [0,1].

2.2. Opposition Learning Strategy to Improve the Convergence Speed of the Swarm

In practice, a large number of situations can be expressed by the opposition concept, like west–east,
south–north, up–down, and left–right. Inspired by this case, opposition learning was proposed for
intelligent computing. For the point x ∈ [a, b], the corresponding opposite point (x1 for short) of x could
be easily obtained by x1 = a + b− x. Based on previous references, when the optimal objective function
value was unknown, the opposite directions of the current solution could increase the probability
of finding better solutions [56–58]. The opposition learning strategy could enlarge the search region
in the three-dimensional space. Thus, the modified opposition learning strategy based on the social
learning mechanism in PSO is proposed to improve the convergence speed of the swarm, which could
be expressed as below: {

red
i (k) = Ubd + Lbd − ad

i (k)
ad

i (k) = c1 × xd
i (k) − c2 × rand× [gBestd(k) − xd

i (k)]
(8)

where red
i (k) is the ith opposite agent in the dth dimension at the kth iteration. Ubd and Lbd are the

upper and lower limits of the dth dimension. c1 and c2 are two learning factors. rand is the random
number uniformly distributed in the range of [0,1]. gBestd(k) is the dth dimension of the global optimal
agent at the kth iteration.

2.3. Partial Mutation Strategy to Enhance the Individual Diversity

Generally, most agents at a later evolutionary stage are often attracted by the heavier individuals,
leading to the loss of swarm diversity [47]. As a result, the GSA method easily falls into the local
optima, and it is necessary to find some ways to help the agents search in different regions of the
problem space. In some evolutionary algorithms represented by DE and GA, the elitism strategy is
often employed to conserve better solutions, while the mutation strategy is used to promote the swarm
diversity [59]. Inspired by this, a new partial mutation strategy is introduced to achieve the above goal.
Specifically, the agents produced by the opposition learning strategy are first merged with the original
parent swarm to form the offspring swarm υ; second, the first cbest agents in υ directly enter the next
cycle, while the left agents in υ are used to generate the mutated individuals using Equation (9). In this
way, some elite agents are maintained, while the search directions of other agents are promoted, which
effectively enhance the individual diversity.

Bd
i (k) = pBestd

λ(k) + r1 × (pBestd
i (k) − gBestd(k)) (9)
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where Bd
i (k) is the position of the ith mutated agent in the dth dimension at the kth iteration. pBestd

i (k)
is the best-known position of the ith agent in the dth dimension at the kth iteration. λ is the number
randomly selected from the index set {1, 2, · · · , N}. r1 is the random number uniformly distributed in
the range of [−0.5, 0.5].

2.4. Elastic-Ball Modification Strategy to Promote Solution Feasibility

During the random search process of the algorithm, the newly-obtained agent falls out of the
feasible space with a certain probability. In the conventional method, the infeasible agents are often
forced to be equal to the boundary value. As a result, the number of the agents with boundary
values increase gradually with the increasing number of iterations, which might produce a certain
negative influence on the evolution of the swarm. To alleviate this problem, an improved elastic-ball
strategy was proposed to modify the infeasible agents [60]. Specifically, the infeasible agents were first
modified to the feasible position using Equations (10) and (11), and if the newly-obtained agent was
still infeasible, the corresponding position would be randomly initialized in the feasible space.

xd
i (k) =

⎧⎪⎪⎨⎪⎪⎩ Ubd − r2 × Δd
i (k) if

(
xd

i (k) > Ubd
)

Lbd + r2 × Δd
i (k) if

(
xd

i (k) < Lbd
) (10)

Δd
i (k) =

⎧⎪⎪⎨⎪⎪⎩ xd
i (k) −Ubd if

(
xd

i (k) > Ubd
)

Lbd − xd
i (k) if

(
xd

i (k) < Lbd
) (11)

where r2 is the random number uniformly distributed in the range of [0,1].

2.5. Execution Procedure of the Proposed EGSA Method

In the EGSA method, three modified strategies (the opposition learning strategy, mutation search
strategy, and the elastic-ball modification strategy) were introduced to enhance the global search
ability of the standard GSA method in the complex nonlinear constrained optimization problems.
Specially, the GSA module could well guarantee the search performance of the swarm; the opposition
learning strategy could increase social interaction ability of the agents by exploring the reverse
areas; the mutation search strategy was used to balance the convergence speed and the swarm
diversity; while the elastic-ball modification strategy could effectively guarantee the feasibility of the
newly-generated agents. By combining the advantages of the above strategies, the EGSA method
had a stronger ability to enhance the local exploration and global search, in comparison with the
conventional GSA method, which would help alleviate the premature convergence problem. Then, the
brief execution procedure of the EGSA method was summarized as below:

Step 1: Set the values of the computational parameters and then randomly generate the initial swarm
in the problem space.
Step 2: Calculate the fitness values of all the agents in the current population, and then update the
personal best-known of each agent and the global best-known agent of the swarm.
Step 3: Calculate the correlated variables (like the gravitational coefficient, mass, and acceleration) to
update the velocity and position values of all the agents.
Step 4: Execute the opposition learning strategy to increase the convergence speed of the swarm.
Step 5: Execute the partial mutation search strategy to enhance the individual diversity.
Step 6: Execute the elastic-ball modification strategy to promote the solution feasibility.
Step 7: Repeat Step 2–6 until the stopping criterion is met, and then the global optimal position is
regarded as the final solution of the optimization problem.
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3. Numerical Experiments to Verify the Performance of the EGSA Method

3.1. Benchmark Functions

To verify the performance of the EGSA algorithm, 12 classic benchmark functions are chosen for
numerical experiments. Table 1 shows the details of the selected functions, where D is the number
of variables; range is the search scope for each variable; and f min is the optimal objective value in
theory. For all test functions, the optimal value of F8, −418.9 × D, varies with the dimension; while the
optimal values for other functions are 0. Meanwhile, the benchmark functions are divided into two
categories—unimodal functions (F1–F8) with one global optimum, and multimodal functions (F9–F12)
with multiple local optimums. The unimodal functions are used to test the convergence speed of the
algorithm, while the multimodal function can test the ability of jumping out of the local optimum,
which can fully verify the performance of the evolutionary methods.

Table 1. Detailed information of the twelve benchmark functions.

Function D Range f min

F1(x) =
n∑

i=1
xi

2 30 [−100,100] 0

F2(x) =
n∑

i=1
|xi|+

n∏
i=1
|xi| 30 [−10,10] 0

F3(x) =
n∑

i=1
(

i∑
j=1

xj)
2 30 [−100,100] 0

F4(x) = max{|xi|, 1 ≤ i ≤ n} 30 [−100,100] 0

F5(x) =
n−1∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2] 30 [−30,30] 0

F6(x) =
n∑

i=1
(xi + 0.5)2 30 [−100,100] 0

F7(x) =
n∑

i=1
ix4

i + random[0, 1) 30 [−1.28,1.28] 0

F8(x) =
n∑

i=1
−xi sin(

√|xi|) 30 [−500,500] −418.9 × D

F9(x) =
n∑

i=1
[xi

2 − 10 cos(2πxi) + 10] 30 [−5.12,5.12] 0

F10(x) = −20 exp(−0.2

√
1
n

n∑
i=1

x2
i ) − exp( 1

n

n∑
i=1

cos(2πxi))

+20 + e

30 [−32,32] 0

F11(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1 30 [−600,600] 0

F12(x) = π
n {10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2}+ n∑
i=1

u(xi, 10, 100, 4)

yi = 1 + xi+1
4 , u(xi, a, k, m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(xi − a)m xi > a
0 a ≤ xi < a
k(−xi − a)m xi < −a

30 [−50,50] 0

3.2. Parameters Settings

For the sake of fair comparison, the results of 11 famous evolutionary algorithms are introduced
in this section, including differential evolution (DE), particle swarm optimization (PSO), sine cosine
algorithm (SCA), gravitational search algorithm (GSA), ant lion optimizer (ALO) [61], cuckoo search
algorithm (CS) [62], modified cuckoo search algorithm (MCS) [63], lightning search algorithm (LSA) [64],
grey wolf optimizer (GWO) [65], firefly algorithm (FA) [66], and whale optimization algorithm
(WOA) [67]. The results of these five methods (DE, PSO, SCA, GSA, and EGSA) were developed in the
JAVA procedures, while the results of the other methods were taken from the corresponding literature.
For the five developed methods, the swarm size and maximum iteration were set as 50 and 1000; while
the other parameters were set as:

DE: The scaling factor was set as 0.5 and the crossover probability was set as 0.6.
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PSO: The inertia weight w was linearly decremented from 0.9 to 0.3; while two learning factors
(c1 and c2) were set as 2.0, respectively.

SCA: The computational constant a was set as 2.0.
GSA: The attenuation coefficient was set as 20; the initial gravitational constant was set as 100.
EGSA: The attenuation coefficient was set to 20; the initial gravitational constant was set to 100;

while the value of cbest was set to 0.7.

3.3. Comparison with Other Evolutionary Algorithms in Small-Scale Problems

3.3.1. Result Comparison in Multiple Runs

For the sake of alleviating the adverse influence of random initial seeds, all approaches were
independently executed 30 times. Table 2 shows the average (Ave.) and standard deviation (Std.) of
12 algorithms for all the test functions, where the number of variables was set as 30. It could be seen
that for all the functions, EGSA was always superior to the GSA method in terms of both the average
and standard deviation; as compared with other methods, the EGSA method could obtain satisfying
results in most functions. For instance, EGSA outperformed ALO in the average of all test functions
except for F5, the WOA performance was tied with EGSA in F9 and defeated by EGSA in the other
functions. To sum up, the proposed method could obtain better results than the other evolutionary
algorithms in the 12 test functions.

3.3.2. Box and Whisker Test

In this section, the box and whisker test was employed to demonstrate the objective distribution
of the solutions since it can show the abundant information (including minimum, second and third
quartile, median, and maximum) on the studied data. Figure 2 shows the detailed data obtained by
the three methods in 30 independent runs. It could be clearly observed that compared to the other
methods, the proposed method had a smaller distribution and better values in all indices. For instance,
the standard GSA algorithm had different degrees of outliers on F4–F5, which indicated that this
method easily fell into the state of premature convergence in the search process; the SCA algorithm
exhibited outliers in most functions but had a distribution of relatively discrete solutions in F3, which
indicated that SCA was not ideal in terms of robustness. Additionally, the EGSA method had a more
concentrated solution distribution and fewer outliers in all functions, demonstrating its satisfying
robustness and search ability. Thus, the performances of the EGSA method were superior to the
comparative methods in the 12 functions.

F F F F

Figure 2. Cont.
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Figure 2. Box and whisker test of three algorithms for 12 functions with 30 variables.

3.3.3. Wilcoxon Nonparametric Test

To achieve statistically meaningful conclusions, the Wilcoxon nonparametric test was employed to
test the significance level of various methods. Table 3 shows the statistical results of various methods.
If the results of the EGSA was better than the control method, it was recorded as a win; if two methods
were tied, it was recorded as a tie; otherwise, it was recorded as a loss. From Table 3, it can be seen
that the proposed method could produce better solutions as compared to the other methods, due to
the larger number of the ‘Win’ symbol. Then, the multiple-problem statistical results obtained by the
Wilcoxon nonparametric test with a significance level of 0.05 are given in Table 4, where the mean
objective value obtained by each method is chosen as the data sample. From Table 4, it can be found
that the proposed method could achieve higher R+ than R– in all comparisons, while all values of p
were smaller than 0.05. This case proved that the EGSA method outperformed the other methods in
a statistical manner.
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3.3.4. Convergence Analysis

Figure 3 shows the convergence trajectories of five algorithms for 12 functions with 30 variables.
It can be seen that the proposed method could constantly improve the solution’s quality from the
beginning to the end, and could find the best solutions in the end. Taking the functions F1–F4 as
examples, three methods (GSA, PSO, and DE) quickly fail into local optima because their best-so-far
solutions change slightly in the evolutionary process; both EGSA and SCA converge to a smaller
objective at the initial stage, but EGSA can quickly find better solutions at iteration 800, while SCA
fails to make it. Additionally, for multimodal functions, EGSAs achieve the global optimal solution in
both F9 and F11, and better results than other methods in F8, F10, and F12. Thus, the above analysis
fully proves that the presented method has a superior convergence speed and global search ability.

 

 

 

Figure 3. Convergence trajectories of the different methods for 12 benchmark functions with 30 variables.

4. EGSA for the Multi-Objective Operation of Cascade Hydropower Reservoirs

4.1. Mathematical Model

4.1.1. Objective Functions

With the advantages of low pollutant emission and high operational efficiency, hydropower now
plays an increasingly important role in the energy system throughout the world [68–70]. As a result,
the cascade hydropower reservoirs are often responsible for a variety of operational requirements.
Considering the practical requirements of generation enterprises and electrical power systems in China,
the generation benefit and peak operations were chosen as the focus of this paper.

(1) Power Generation
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For almost all hydropower enterprises, the economic benefit is an important indicator of
performance check under the market environment [71–73]. Generally, the same amount of available
water resource can produce numerous scheduling schemes with different generation benefits. Hence,
the first objective was chosen to find the best scheme that could maximize the total power generation
of all hydropower reservoirs, which could be expressed as below:

E = max
T∑

t=1

N∑
n=1

Pn,t × Δt (12)

where E is the power generation of all hydropower reservoirs. T is the number of periods. N is the
number of hydropower reservoirs. Pn,t is the output of the nth hydroplant at the tth period. Δt is the
total hours of the tth period.

(2) Peak Operation
In modern power systems, the hydropower system is often asked to respond to the peak loads of

power grid to produce a relatively smooth load series for other kinds of energy systems (like thermal,
solar, and wind) [74–76]. In this way, the total operational cost of the electrical power system in the
long run can be sharply reduced [77–79]. Hence, the second objective function was chosen to minimize
the mean square deviation of the residual load curve obtained by subtracting all power outputs of
hydropower reservoirs from the original energy load curve, which could be expressed as:

F = min

√√√√
1
2

T∑
t=1

⎡⎢⎢⎢⎢⎢⎣Loadt −
N∑

n=1

Pn,t

⎤⎥⎥⎥⎥⎥⎦
2

(13)

where Loadt is the load demand of the power system at the tth period.

4.1.2. Physical Constraints

(1) Water Balance Equation:

Vn,t+1 = Vn,t + 3600Δt ×
⎡⎢⎢⎢⎢⎢⎣In,t +

Num∑
i=1

(Qi,t + Si,t) −Qn,t − Sn,t

⎤⎥⎥⎥⎥⎥⎦ (14)

where Vn,t, In,t, Qn,t, Sn,t are the storage volume, local inflow, turbine discharge and spillage of the
nth hydroplant at the tth period, respectively. Num is the number of upstream hydroplants directly
connected to the nth hydroplant.

(2) Reservoir Storage Constraint:

Vn,t ≤ Vn,t ≤ Vn,t (15)

where Vn,t and Vn,t denote the maximum and minimum storage volumes of the nth hydroplant at the
tth period, respectively.

(3) Turbine Discharge Constraint:

Q
n,t
≤ Qn,t ≤ Qn,t (16)

where Qn,t and Q
n,t

denote the maximum and minimum turbine discharges of the nth hydroplant at
the tth period, respectively.

(4) Total Discharge Constraint:
q

n,t
≤ qn,t ≤ qn,t (17)
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where qn,t and q
n,t

denote the maximum and minimum total discharges of the nth hydroplant at the tth
period, respectively.

(5) Power Output Constraint:
Pn,t ≤ Pn,t ≤ Pn,t (18)

where Pn,t and Pn,t denote the maximum and minimum power outputs of the nth hydroplant at the tth
period, respectively.

(6) Initial and Final Water Levels Constraint:⎧⎪⎪⎨⎪⎪⎩ Zn,0 = Zbeg
n

Zn,T = Zend
n

(19)

where Zbeg
n and Zend

n represent the initial and final water level of the nth hydroplant, respectively.

4.2. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

As mentioned above, the multi-objective operation of cascade hydropower reservoirs is a typical
multiple-criteria decision-making problem. Thus, it was necessary to find some tools to transform the
original multi-objective problem into the single-objective optimization problem that can be addressed
by EGSA. After a comprehensive comparison, TOPSIS was introduced to achieve this goal. In TOPSIS,
the best scheme had the smallest distance from the positive ideal scheme and the largest distance from
the negative ideal scheme, respectively. Then, the procedure of TOPSIS was give as below:

Step 1: Create an initial decision evaluation matrix with m schemes and J attributes. For the target
problem, each scheme is composed of two attributes—the power generation E and the peak operation
F. Then, the decision-making matrix A can be expressed as follows:

A =
(
ai, j

)
m×J

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1J
a21 a22 · · · a2J

...
... ai, j

...
am1 am2 · · · amJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

where ai, j is the original value of the jth attribute in the ith scheme.
Step 2: Obtain the modified decision evaluation matrix to reduce the potential impact of various

attribute properties (like measurement unit and tendency); given below:

B =
(
bi, j

)
m×J

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11 b12 · · · b1J
b21 b22 · · · b2J

...
... bi, j

...
bm1 bm2 · · · bmJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

bij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
amax

j −aij

amax
j −amin

j
minimization attribute

aij−amin
j

amax
j −amin

j
maximization attribute

, i = 1, 2, · · · , m; j = 1, 2, · · · , J (22)

where amax
j and amin

j are the maximum and minimum values of the jth attribute.
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Step 3: Obtain the normalized decision-making matrix to reduce the possible numerical problem
caused by the feature differences (like units or magnitude), which could be expressed as below:

R =
(
ri, j

)
m×J

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r11 r12 · · · r1J
r21 r22 · · · r2J
...

... ri, j
...

rm1 rm2 · · · rmJ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

rij =
bij√
m∑

i=1
b2

i j

, i = 1, 2, · · · , m; j = 1, 2, · · · , J (24)

where rij is the normalized value of the jth attribute in the ith scheme.
Step 4: Set the weight vector w =

[
w1, · · · , wj, · · · , wJ

]
, where wj is the weight of the jth attribute

and there is
J∑

j=1
wj= 1. Then, calculate the weighted normalized decision-making matrix V by:

V =
(
vi, j

)
m×J

=
(
wj × ri, j

)
m×J

(25)

Step 5: Determine the positive ideal scheme C+ and negative ideal scheme C− by:⎧⎪⎪⎨⎪⎪⎩ C+ =
[
c+1 , c+2 , . . . , c+J

]
= max

{
vi, j

∣∣∣i = 1, 2, · · · , m
}

C− =
[
c−1 , c−2 , . . . , c−J

]
= min

{
vi, j

∣∣∣i = 1, 2, · · · , m
} j = 1, 2, . . . , J (26)

Step 6: Calculate the Euclidean distances between the decision scheme and the positive (negative)
ideal scheme, which could be expressed as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D+
i =

√
J∑

j=1
(vij − c+j )

2

D−i =

√
J∑

j=1
(vij − c−j )

2
, i = 1, 2, . . .m (27)

where D+
i or D−i is the distance between the ith scheme and the position (or negative) ideal scheme.

Step 7: Calculate the closeness of each decision plan to the negative ideal scheme by

fi =
D−i

D−i + D+
i

, i = 1, 2, . . .m (28)

Step 8: Use the obtained closeness values to sort all the schemes, and the scheme possessing the
maximum closeness will be treated as the optimal decision scheme.

fbest = max
{
f1, f2, . . . , fm

}
(29)

4.3. Details of EGSA for Multi-Objective Operation of Cascade Hydropower Reservoirs

4.3.1. Individual Structure and Swarm Initialization

To enhance the execution efficiency of reservoir operation, the total discharge of the hydropower
reservoir is selected as the decision variable for encoding, and then the ith agent at the kth iteration
Xi(k) can be expressed as below:
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Xi(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q1,1 q1,2 · · · q1,T
q2,1 q2,2 · · · q2,T

...
... qn,t

...
qN,1 qN,2 · · · qN,T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (30)

During the initialization phase, the elements of the solution Xi(k) are randomly generated in the
preset of the total discharge scopes of all hydroplants, which could be expressed as follows:

qn,t = q
n,t

+ random×
(
qn,t − q

n,t

)
(31)

where random is the random number uniformly distributed in the range of [0,1].

4.3.2. Heuristic Constraint Handling Method

During the evolutionary process, it is possible that some agents violate the equality or inequality
constraints imposed on the hydropower system. In order to effectively modify the infeasible agents,
this section presents a heuristic constraint handling method that tries to equally allocate the violated
final storage volume to the turbine discharges of all adjusting periods. The detailed procedures for the
solution Xi(k) are given as below:

Step 1: Set n = 1 and determine the necessary parameters for the constraint processing.
Step 2: Set the counter L = 1, and then use the water balance equation to calculate the storage of

the nth hydroplant at the tth period by

Vn,t = max

⎧⎪⎪⎨⎪⎪⎩Vn,t, min

⎧⎪⎪⎨⎪⎪⎩Vn,t−1 + 3600Δt−1 ×
⎡⎢⎢⎢⎢⎢⎣In,t−1 +

Num∑
i=1

(Qi,t−1 + Si,t−1) −Qn,t−1 − Sn,t−1

⎤⎥⎥⎥⎥⎥⎦, Vn,t

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (32)

Step 3: Set L = L + 1, and then calculate the violation value ηn of the final storage by Equation (33).
Then, if

∣∣∣ηn
∣∣∣ is smaller than the accuracy ε or L is larger than the maximum iteration, go to Step 5;

otherwise, turn to Step 4.
ηn = fn(Zn,T) − fn

(
Zend

n

)
(33)

where fn(·) is the nonlinear stage-storage curve of the nth hydropower reservoir.
Step 4: Use Equation (34) to obtain the modified total discharges of the target reservoir, and then

calculate the corresponding reservoir storage volume by Equation (32) before turning to Step 3.

qn,t= max
{
q

n,t
, min

{
qn,t +

ηn

T × 3600Δt
, qn,t

}}
(34)

Step 5: Set n = n+1. If n ≤ N, turn to Step 2 for the new hydroplant; otherwise, stop the iteration.

4.3.3. Calculation of the Modified Objective Values

Generally, the agents modified by the above heuristic constraint handling procedures would
satisfy most of the physical constraints. Nevertheless, the agents might still violate some constraints
due to reasons like unreasonable operation trajectory and limited adjusted times. To eliminate the
negative effect of the infeasible agents, the value of the constraint violation involved in the solution
Xi(k) (Viol[Xi(k)] for short) was obtained by Equation (35), and then merged into two original objective
values (E and F) by Equation (36) to obtain the modified objective values (E’ and F’).

Viol[Xi(k)] =
Lg∑

l1=1

cl1 ·max
{
gl1(Xi(k)), 0

}
+

Le∑
l2=1

cl2 ·
[
el2(Xi(k))

]2
(35)
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
E′[Xi(k)] =

T∑
t=1

N∑
n=1

Pn,t × Δt−Viol[Xi(k)]

F′[Xi(k)] =

√
1
2

T∑
t=1

[
Loadt −

N∑
n=1

Pn,t

]2

+ Viol[Xi(k)]
(36)

where gl1(·) ≤ 0 is the l1th inequality constraint; el2(·) ≤ 0 is the l2th equality constraint; cl1 and cl2 are
the penalty coefficients for the relevant inequality or equality constraint. Lg and Le denote the number
of inequality and equality constraints, respectively.

4.3.4. Execution Procedures of the EGSA Method for the Target Problem

The flowchart of the developed EGSA method for solving multi-objective operation of cascade
hydropower reservoirs is given in Figure 4.

Figure 4. The flowchart of enhanced gravitational search algorithm (EGSA) for multi-objective operation
of cascade hydropower reservoirs.

5. Case Studies

5.1. Engineering Background

In this section, five reservoirs of the Wu hydropower system in Southwest China were chosen to
test the performance of the proposed method, including Hongjiadu (HJD), Dongfeng (DF), Suofengying
(SFY), Wujiangdu (WJD), and Goupitan (GPT). Since being put into operation, the Wu hydropower
system has played a vitally important role in the environment protection and economic development of
the Guizhou province. Figure 5 shows the topological structure of the selected hydropower reservoirs,
while the typical load demand curves of the four seasons are shown in Figure 6. From Figures 5 and 6,
it could be observed that in the Wu hydropower system, there were tight hydraulic and electrical
connections from upstream to downstream reservoirs, while four load curves with different features
further increased the optimization difficulty.
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Figure 5. The topological structure of the studied hydropower reservoirs.

Figure 6. Typical load curves in different season.

5.2. Case Study 1: Power Generation of Cascade Hydropower Reservoirs

5.2.1. Robustness Testing of Different Evolutionary Algorithms

In this section, to verify the robustness of the developed method, four famous methods (DE, PSO,
SCA, and GSA) were introduced for comparative analysis. Table 5 shows the detailed statistical results
of the 5 methods in 20 independent runs for 4 cases, where the swarm size and maximum iteration
were set as 50 and 500, respectively. It can be clearly seen that the solutions obtained by the EGSA
method were more stable than the other methods. For instance, in Case 1, the EGSA method could
make about 96.4%, 96.5%, 97.8%, and 97.7% reductions in the standard deviations of the DE, PSO, SCA,
and GSA. Hence, the feasibility of the EGSA method was fully demonstrated in this case.

Table 5. Statistical results of the 5 methods in 20 independent runs for 4 cases of power generation
(104 kW·h).

Case Method Best Worst Average Standard Deviation Range

Case 1

DE 5388.10 5386.25 5387.19 0.56 1.85
PSO 5393.67 5391.27 5392.49 0.57 2.40
SCA 5388.26 5384.34 5385.65 0.89 3.92
GSA 5388.37 5385.34 5386.76 0.88 3.03

EGSA 5396.87 5396.81 5396.86 0.02 0.06

Case 2

DE 6439.12 6434.22 6436.14 1.43 4.90
PSO 6445.48 6442.35 6444.12 0.79 3.13
SCA 6439.06 6435.25 6437.07 1.03 3.81
GSA 6440.17 6437.00 6438.55 0.79 3.17

EGSA 6450.34 6450.33 6450.33 0.01 0.01

Case3

DE 4977.94 4976.38 4977.17 0.40 1.56
PSO 4981.62 4979.71 4980.58 0.55 1.91
SCA 4975.51 4973.58 4974.54 0.58 1.93
GSA 4976.74 4973.83 4975.25 0.71 2.91

EGSA 4984.56 4984.54 4984.55 0.01 0.02

Case4

DE 4433.08 4431.68 4432.32 0.44 1.40
PSO 4435.89 4434.23 4435.11 0.49 1.66
SCA 4431.51 4428.62 4429.58 0.70 2.89
GSA 4431.61 4429.07 4430.37 0.64 2.54

EGSA 4438.33 4438.32 4438.33 0.01 0.01
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Figure 7 draws the box and whisker test of the best-so-far solutions obtained by 5 algorithms in
4 cases. It can be observed that the performances of four control methods in the power generation of
hydropower system are relatively stable but still inferior to the EGSA method possessing the smallest
variation ranges in the final solutions. Therefore, the proposed method proves to be an effective tool to
deal with the power generation of a hydropower system.

   

Figure 7. Box and whisker test of different algorithms in different cases for power generation.

5.2.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

Table 6 shows the detailed results in the best solutions obtained by different methods. It can
be seen that in all cases, EGSA can always find the best results among all algorithms. For instance,
compared with DE, PSO, SCA, and GSA, the EGSA method could make about 8.77 × 104 kW·h,
3.2 × 104 kW·h, 8.61 × 104 kW·h, and 8.5 × 104 kW·h improvements in power generation in Case 1,
respectively. Additionally, among all hydroplants, the GPT hydroplant with a huge installed capacity
produced the largest proportion of power generation in all solutions, which was in line with the actual
operation situation of the hydropower system [80–83]. Thus, the above analysis demonstrated the
effectiveness and rationality of the scheduling process obtained by the proposed method.

Table 6. Detailed results in the best solutions by different methods (104 kW·h).

Runoff Method HJD DF SFY WJD GPT Sum

Case 1

DE 726.73 646.19 527.41 1106.65 2381.12 5388.10
PSO 728.66 647.76 526.51 1107.99 2382.75 5393.67
SCA 727.92 644.60 527.68 1106.77 2381.29 5388.26
GSA 728.35 647.35 526.77 1107.15 2378.75 5388.37

EGSA 728.84 646.94 530.33 1108.10 2382.66 5396.87

Case 2

DE 869.46 770.94 632.25 1322.47 2844.00 6439.12
PSO 871.70 774.09 627.59 1325.38 2846.72 6445.48
SCA 871.15 771.70 628.34 1322.76 2845.11 6439.06
GSA 871.48 774.01 627.42 1324.03 2843.23 6440.17

EGSA 871.58 773.17 633.84 1324.91 2846.84 6450.34
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Table 6. Cont.

Runoff Method HJD DF SFY WJD GPT Sum

Case 3

DE 234.57 400.46 461.27 1052.33 2829.31 4977.94
PSO 235.21 402.56 459.19 1054.13 2830.53 4981.62
SCA 233.99 401.01 459.94 1052.01 2828.56 4975.51
GSA 235.02 402.45 457.71 1053.20 2828.36 4976.74

EGSA 235.50 401.67 462.62 1054.23 2830.54 4984.56

Case 4

DE 208.46 355.81 411.02 936.99 2520.8 4433.08
PSO 208.58 358.21 409.24 938.46 2521.4 4435.89
SCA 208.26 356.74 409.21 937.08 2520.22 4431.51
GSA 208.82 357.66 408.43 937.47 2519.23 4431.61

EGSA 209.13 357.35 411.88 938.51 2521.46 4438.33

5.2.3. Convergence Analysis of Different Evolutionary Algorithms

Figure 8 shows the convergence trajectories of 5 algorithms in different cases. It could be observed
that in four cases, SCA failed into a local optima at the early stage, and then started to improve the
quality of solutions as the iteration number reached 300, but still failed to find out the satisfying
solutions at the end; due to the loss of individual diversity [84], three other methods (PSO, GSA, and
DE) outperformed the SCA method but were still inferior to the proposed method from the beginning
to end. Additionally, the proposed method could quickly converge to the scheduling schemes that were
close to the optimal solution at the early stage, and then change slightly with an increasing number of
iterations. Thus, it could be concluded that three modified strategies could effectively enhance the
performance of the standard GSA method.

   

   
Figure 8. Convergence trajectories of 5 methods in different cases.

5.3. Case Study 2: Peak Operation of Cascade Hydropower Reservoirs

5.3.1. Robustness Testing of Different Evolutionary Algorithms

In this section, the proposed method was applied to deal with the peak operation of a hydropower
system. Table 7 shows the statistical results of the 5 methods in 20 independent runs for 4 cases. It was
observed that all of the methods could achieve the goal of reducing the peak loads of a power system

225



Water 2019, 11, 2040

due to the reductions in the statistical indices; while the proposed method had the performances
among all methods. For instance, the average improvements in the range of the objective values of
EGSA was about 99.7%, compared to the three other methods in the 4 cases. Hence, the feasibility of
the EGSA method in addressing the peak operation of the hydropower system was proved in this case.

Table 7. Statistical results of the 5 methods in 20 independent runs for 4 cases of peak operation.

Season Item Best Worst Average Standard Deviation Range

Spring

DE 32,130.69 32,183.80 32,153.90 16.22 53.11
PSO 32,052.91 32,127.22 32,084.17 20.24 74.31
SCA 32,160.67 32,230.89 32,194.00 22.32 70.22
GSA 32,173.70 32,224.22 32,199.76 14.41 50.52

EGSA 31,986.47 31,986.62 31,986.53 0.04 0.15

Summer

DE 33,006.63 33,093.05 33,051.56 23.51 86.42
PSO 32,962.41 33,057.03 32,993.63 22.72 94.62
SCA 33,032.40 33,129.77 33,100.08 24.05 97.37
GSA 33,069.24 33,134.56 33,097.29 19.83 65.32

EGSA 32,888.05 32,888.16 32,888.10 0.03 0.11

Autumn

DE 36,681.47 36,752.01 36,719.49 17.51 70.54
PSO 36,595.43 36,714.71 36,667.14 30.32 119.28
SCA 36,745.91 36,840.43 36,781.14 24.73 94.52
GSA 36,738.72 36,835.34 36,802.57 27.25 96.62

EGSA 36,536.95 36,537.06 36,537.00 0.03 0.11

Winter

DE 35,825.89 35,890.14 35,857.52 14.79 64.25
PSO 35,762.63 35,850.26 35,811.97 23.97 87.63
SCA 35,822.72 35,950.51 35,896.25 32.32 127.79
GSA 35,879.31 35,965.39 35,931.63 22.63 86.08

EGSA 35,671.70 35,671.80 35,671.74 0.03 0.10

Figure 9 shows the box and whisker test of 5 algorithms in different cases. It can be seen that the
distribution ranges of the solutions obtained by the proposed method were much smaller than the
other methods, demonstrating the effectiveness of the constraint handling method and the modified
strategies. Thus, it can be concluded that the EGSA method could produce stable scheduling schemes
for the complex hydropower system peak operation problem.

   

Figure 9. Box and whisker test of 5 algorithms in different cases for peak operation.
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5.3.2. Comparison of the Optimal Results Obtained by Different Evolutionary Algorithms

To clearly show the feasibility of the EGSA method, the detailed results in the best solutions as
obtained by different methods are given in Table 8. It was found that the EGSA method could achieve
satisfactory results. For instance, the proposed method could bring about a 30.9% reduction in the
peak values in Summer, which was obviously better than 21.0% of DE and 24.9% of PSO, 23.9% of SCA
and 19.4% of GSA. Thus, this simulation clearly proved the superiority of the proposed method in
responding to the peak operation requirement of the power system.

Table 8. Detailed results in the best solutions as obtained by the different methods (MW).

Season Method Item Peak Valley Peak-valley Average Standard Deviation

Spring

Original 13,477.93 10,101.60 3376.33 11,910.93 1281.95
DE Optimization 10,952.90 7716.77 3236.13 9242.92 789.32

Reduction 2525.03 2384.83 140.20 2668.01 492.63
PSO Optimization 10,050.98 8169.90 1881.08 9231.64 640.11

Reduction 3426.95 1931.7 1495.25 2679.29 641.84
SCA Optimization 10,752.18 7809.30 2942.88 9239.61 926.13

Reduction 2725.75 2292.3 433.45 2671.32 355.82
GSA Optimization 10,737.30 7592.29 3145.01 9229.75 1058.60

Reduction 2740.63 2509.31 231.32 2681.18 223.35
EGSA Optimization 9428.01 8987.22 440.79 9232.28 165.13

Reduction 4049.92 1114.38 2935.54 2678.65 1116.82

Summer

Original 14,119.78 10,342.98 3776.80 12,170.94 1302.21
DE Optimization 11,151.13 8535.00 2616.13 9505.54 670.54

Reduction 2968.65 1807.98 1160.67 2665.40 631.67
PSO Optimization 10,610.47 8392.24 2218.23 9492.57 673.27

Reduction 3509.31 1950.74 1558.57 2678.37 628.94
SCA Optimization 10,749.92 7591.09 3158.83 9500.12 839.87

Reduction 3369.86 2751.89 617.97 2670.82 462.34
GSA Optimization 11,379.10 7774.71 3604.39 9493.04 1028.32

Reduction 2740.68 2568.27 172.41 2677.90 273.89
EGSA Optimization 9759.71 9234.99 524.72 9492.46 172.66

Reduction 4360.07 1107.99 3252.08 2678.48 1129.55

Autumn

Original 14,773.84 10,786.00 3987.84 13,220.16 1528.83
DE Optimization 12,615.24 8928.53 3686.71 10,553.86 880.28

Reduction 2158.6 1857.5 301.1 2666.3 648.6
PSO Optimization 11,234.24 9366.35 1867.89 10,547.10 613.62

Reduction 3539.6 1419.65 2119.95 2673.06 915.21
SCA Optimization 11,891.57 8142.23 3749.34 10,552.90 1099.32

Reduction 2882.27 2643.77 238.50 2667.26 429.51
GSA Optimization 12,649.33 8347.14 4302.19 10,541.04 1193.12

Reduction 2124.51 2438.86 −314.35 2679.12 335.71
EGSA Optimization 10,760.16 10,182.25 577.91 10,545.07 221.99

Reduction 4013.68 603.75 3409.93 2675.09 1306.84

Winter

Original 14,913.26 11,028.24 3885.02 12,971.28 1489.76
DE Optimization 11,709.53 8772.72 2936.81 10,303.38 955.49

Reduction 3203.73 2255.52 948.21 2667.90 534.27
PSO Optimization 11,884.52 8637.32 3247.20 10,293.13 970.91

Reduction 3028.74 2390.92 637.82 2678.15 518.85
SCA Optimization 12,391.09 8667.77 3723.32 10,301.54 1052.86

Reduction 2522.17 2360.47 161.70 2669.74 436.90
GSA Optimization 11,946.42 8414.17 3532.25 10,293.50 1174.01

Reduction 2966.84 2614.07 352.77 2677.78 315.75
EGSA Optimization 10,568.93 10,012.57 556.36 10,295.50 208.98

Reduction 4344.33 1015.67 3328.66 2675.78 1280.78

Note: Reduction = original–optimization of the target method.

5.3.3. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

Figure 10 shows the detailed output process obtained by the different methods in four cases.
It was found that there were often two peak periods (morning and evening) in the original load curves,
and obvious differences in the load features (like peak times or numbers) of the four load curves, which
would increase the optimization difficulty of the peak operation. The two methods (GSA and EGSA)
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exhibited excellent responses to the load changes by collecting the hydropower generation at the peak
periods and storing the energy at valley periods. The EGSA method was superior to the GSA method
due to its smoother residual load curves; besides, the outputs of all the hydroplants varied in the
feasible range between the minimum output limit and the installed capacity. Thus, the EGSA method
could produce feasible solutions for the peak operation of a hydropower system.

Figure 10. Detailed output process obtained by the different methods in the four cases.

5.4. Case Study 3: Mutli-Objective Operation of Cascade Hydropower Reservoirs

5.4.1. Comparative Analysis of the Optimal Results Obtained by the Different Methods with
100 Weights

The focus of this section is on the demonstration of the feasibility of the proposed method in
addressing the multi-objective optimization problems of a hydropower system. Figure 11 draws
the distributions of the objective functions obtained by different methods, where each method was
executed in 100 different weight combinations. Specifically, the weight w1 for power generation was
increased from 0 to 1.0 at the same interval of 0.01, while the weight w2 for peak operation was set as
1.0 – w1. From Figure 11, it was observed that the total generation was gradually decreasing with the
increasing objective value of peak operation, which implied that there was an obvious conflict between
power generation and peak operation. Additionally, the solutions of PSO and GSA were dominated by
that of the EGSA method, which meant that the EGSA method had a higher probability to obtain the
Pareto optimal solutions than the PSO and GSA method. Thus, the proposed method can generate the
near-optimal Pareto solutions to approximate the relationship between power generation and peak
shaving in practice.
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Figure 11. Distributions of the objective functions obtained by different methods with 100 weights.

5.4.2. Rationality Analysis of the Best Results Obtained by the Different Evolutionary Algorithms

Figure 12 shows the detailed results of three typical schemes obtained by the EGSA method
in Spring, where Scheme 1 showed the maximum power generation, Scheme 3 had the best peak
operation performance, while Scheme 2 could achieve a balance between power generation and peak
operation. It could be seen that for all the hydropower reservoirs, the water levels varied in the
preset range between a dead water level and a normal water level while the power outputs were
smaller than the installed capacity, demonstrating the effectiveness of the heuristic constraint handling
method in guaranteeing the feasibility of the solution. Meanwhile, there were obvious differences in
the peak operation and power generations of the three typical schemes, which indicated that it was
necessary to choose a suitable scheme based on the actual requirement. Thus, this case again proved
the practicability of the EGSA method in solving the multi-objective operation problems.

Figure 12. Cont.
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Figure 12. Detailed scheduling results of three typical schemes obtained by EGSA in Spring.

6. Conclusions

In this research, an enhanced gravitational search algorithm coupled with the Technique for
Order Preference by Similarity to an Ideal Solution (TOPSIS) was developed to deal with the complex
multi-objective operation problem of cascade hydropower reservoirs balancing the power generation
and peak operation benefits. The proposed method and several famous evolutionary methods were
used to solve the 12 famous benchmark functions and the optimal operation of the Wu hydropower
system in China. The critical findings obtained from the experimental results are given as below:

(1) Due to the loss of the population diversity, the conventional GSA method suffered from severe
premature convergence shortcomings. The proposed method based on the three modified
strategies (opposite learning strategy, partial mutation strategy and elastic-ball modification
strategy) could effectively improve the convergence speed, swarm diversity, and solution feasibility
of the standard GSA method, respectively.

(2) For the original complex multi-objective optimization problem, balancing power generation
and peak operation requirements, the famous TOPSIS method was used to transform it into the
relatively simple single-objective problem, which could help make an obvious reduction in the
modeling difficulty of the multi-objective decision.

(3) There was a competitive relationship between the generation benefit of the hydropower enterprise
and the peak operation of the power system. In other words, an increasing value of one objective
would obviously reduce another objective value. Thus, it was necessary for operators to carefully
determine the scheduling schemes so as to effectively balance the practical requirements of power
generation enterprises and power grid companies.
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Abstract: While rapid urbanization promotes social and economic development, it poses a serious
threat to the health of rivers, especially the small and medium-scale rivers. Flood control for small
and medium-scale rivers in highly urbanized areas is particularly important. The purpose of this
study is to explore the most effective flood control strategy for small and medium-scale rivers in
highly urbanized areas. MIKE 11 and MIKE 21 were coupled with MIKE FLOOD model to simulate
flooding with the flood control standard, after which the best flooding control scheme was determined
from a whole region perspective (both the mainstream and tributary conditions were considered).
The SheGong River basin located near the Guangzhou Baiyun international airport in Guangzhou
city over south China was selected for the case study. The results showed that the flooding area in the
basin of interest accounts for 42% of the total, with maximum inundation depth up to 0.93 m under the
20-year return period of the designed flood. The flood-prone areas are the midstream and downstream
where urbanization is high; however the downstream of the adjacent TieShan River is still able to
bear more flooding. Therefore, the probable cost-effective flood control scheme is to construct two
new tributaries transferring floodwater in the mid- and downstream of the SheGong River into the
downstream of the TieShan River. This infers that flood control for small and medium-scale rivers in
highly urbanized areas should not simply consider tributary flood regimes but, rather, involve both
tributary and mainstream flood characters from a whole region perspective.

Keywords: small and medium-scale rivers; highly urbanized area; flood control; whole region
perspective; coupled models

1. Introduction

It is undisputed that frequent rainstorms driven by climate change and land-use change caused
by high urbanization have resulted in urban flooding in many countries and regions [1–18]. As one of
the most serious natural hazards, urban flooding, especially in highly urbanized areas, threatens lives
and hinders society’s sustainable development nowadays [19–24]. See, for example, the major flooding
that occurred throughout most of the Brisbane River’s catchment in January 2011, with more than 20
deaths and an economic loss of $2.55 billion [25]. During the 2011 rainy season, Thailand encountered
a large flood of a 50-year return period and a total of 65 provinces were flooded; more than 700 people
died and the economic loss reached up to $41.2 billion [26]. In China, an extreme storm attacked
Beijing on 21 July 2012 and a flash flood was triggered in the urban area, causing 79 deaths and a direct
economic loss of $1.86 billion, damaging infrastructure like roads with trapped cars and buses, bridges,
and collapsed buildings [27–29]. Therefore, urban flooding is a hot topic in the field of disaster research
at present and has attracted much attention in both developed and developing countries [30–37].
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The middle and lower reaches of a river are usually more prosperous than the upper reach,
and consequently, flooding problems are more serious. Therefore, more effective measures of flooding
should be carried out to deal with increasing flooding risk with high urbanization [38]. In general,
there are two ways of flood control: engineering and non-engineering measures. Engineering measures
include building reservoirs, dikes, detention basins, pumping stations, and spillways. Non-engineering
measures usually include flood forecasting or simulation, land-use management, land acquisition and
relocation plans, flood emergency planning and response, and post-flood recovery [39]. Among these,
flood forecasting or simulation analysis is essential for flood control. The state-of-the-art method
for flood simulation includes a one-dimensional river flow model coupled with a two-dimensional
surface flow model [40]. For example, Yazdi et al. coupled MIKE 11 with the NSGA-II model for a
small watershed in the central part of Iran, showing that optimal designs of multi-reservoir systems
can efficiently reduce construction costs, flood peaks and their corresponding damage costs at the
downstream reaches of the basin [41]. For flood control measures, there are usually scientific urban
plans, sufficient funds, effective laws and regulations in developed countries to put the flood control
system on the right track, while the blind and disordered development in developing or undeveloped
countries usually cause river flooding problems [42–44]. Rapid urban growth in developing countries
usually results in the proliferation of informal settlements. The housing within informal settlements
is virtually always built without the consent of the official planning authorities and rarely conforms
to official planning guidelines, building regulations, and construction standards [45]. In most cases,
there are many buildings along rivers in highly urbanized areas and there is not enough space for the
construction of flood control. Meanwhile, the height of river levees differ from one place to another.
To solve the problem of river flooding, many developing countries have paid much attention to
flooding control measures. Ali Reza Shokoohi has studied the effect of constructing feasible detention
dams in urban areas and found that they had good operational effects [46]. Marcelo et al. (2009)
focused upon the use of a wide range of different flood control measures in the Joana River watershed,
located at the northern region of Rio de Janeiro City, Brazil, and pointed out that distributed detention
reservoirs in upstream reaches, parks, public squares, or at urban sites, are very important flood control
alternatives [47]. In Turkey, to cope with floods and decrease any further damage, local authorities
have designed a set of measures aiming to improve stream conveyance capacity by straightening
reaches, lining channels, and building hydraulic structures such as new dams [48]. While in Vietnam,
the Red River Delta, the central part of the country, and the Mekong Delta all have completed master
plans for flood defenses including upgrading dikes [49]. However, these conventional flood control
measures such as widening rivers and increasing embankment height are usually not the best flood
control measure for small and medium-scale rivers in highly urbanized areas, nor do they control
floods in such a way that other rivers within the same region are considered and fully used to reduce
the flood hazards of the target river [50]. When widening the river, due to a large number of residential
buildings around rivers, the surrounding residents need to be compensated with land compensation,
resettlement compensation and compensation for attachments and young crops, which is a huge
financial burden for the government. In the process of land acquisition and compensation allocation,
there are often some distribution disputes. If the levee is raised, it will also not be coordinate with the
surrounding buildings. Accordingly, the traditional measures are time-consuming and expensive due
to the large population and dense buildings, making it very difficult to build a flood control system
for small and medium-scale rivers in highly urbanized areas. Unlike large rivers, it is impossible
to carry out unified planning for small rivers. Decision making and optimization should be carried
out according to the local and actual situation. From a whole region perspective, river networks in
the same region are usually connected to each other, and some might suffer floods while the others
may not during a storm event; it is possible to utilize the rivers having enough flood bearing capacity
to reduce flood hazards of the flooded rivers. However, such idea is seldom proposed in either the
research community or the engineering field; how to achieve this idea remains unsolved at present and
requires further study.
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Therefore, this paper aims to explore a new flood control measure by fully considering the flood
bearing capacities of all rivers within the same region. We specifically looked to use the surplus
flood bearing capacities of the rivers free from flooding to reduce flood hazards of the flooded rivers.
To demonstrate such an idea, we chose a tributary of TieShan River, i.e., the SheGong River located in
the comprehensive development zone of Guangzhou Baiyun international airport in China as the case
study, and integrated MIKE 11 with MIKE 21 and MIKE FLOOD [47] to simulate flooding situations of
all the rivers in the case region. We expect to provide a new idea of flood control for highly urbanized
areas around the world.

2. Study Area and Data

2.1. Study Area

In this study, we chose the river SheGong River located in GuangZhou BaiYun airport development
zone in China as the study case. It is a tributary of the TieShan River originated from TieShan New
Village in Huashan Town, flowing into the Tieshan River from north to south. The total length of the
SheGong River is 7.98 km with a drainage area of 9.58 km2, and the average slope of the river is 3.4%.
The Tieshan River Basin covers an area of 58.3 km2, and the topographic map of the basin is shown
in Figure 1. The SheGong River, located in the central part of Huashan Town, constitutes the main
channel for irrigation and flood channel. Many small reservoirs were built along the river channel and
these reservoirs could store massive amounts of water. With the rapid development and utilization
of land in the river basin, the irrigation function has been gradually weakened, and the request for
ecological landscape water use is prevailing. At present, although the TieShan River has been regulated
based on the standard of 20-year return period, the SheGong River is basically in a natural state.
The twisted, narrow, and seriously silted channel and the reservoirs frequently lead to flooding after
rainstorms; the accumulation of water in the plains of the two sides has caused serious impacts on
local production and life. The map of land-use type of the study area in the year 2000 and 2019 are
showed in Figure 2.

Figure 1. Topographic and water system in the study area.
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Figure 2. Land-use type in 2000 and 2019.

According to the topographical conditions and possible submergence range, we finally determined
the boundary of the study area: the north boundary reaches the Sanjia sluice of the TieShan River and
the source of SheGong River and the south boundary reaches the SheGong River estuary, forming a
relatively complete river basin (Figure 3). In the study area, the section of the SheGong River is
determined as 7.94 km long and that of the TieShan River is 13.4 km.

Figure 3. River generalization map of the study area.

2.2. Data

The land-use type of the study area was obtained from satellite remote sensing image maps in the
years 2000 and 2019. The data was acquired by combining and correcting the remote sensing data of
the study area, and by comprehensive classification methods such as supervised classification and
decision tree classification.
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The water system planning of Huadu District in Guangzhou indicates that the flood control
standard of the SheGong River is a 20-year return period in the near future and a 50-year return
period in the long term. Therefore, according to the flood control standard of China (GB50201-2014),
the flood control (tide) standard of Guangdong Province (Trial), and the Huadu District water system
planning of Guangzhou, the flood standard of this project is a 20-year return period, with the protection
level of 4 in both levee and the main building, and level 5 in both the secondary building and the
temporary building.

According to the requirements of the code for design of levee engineering of China (GB50286-98),
the safety heightening value of level 4 in the levee engineering is as follows: 0.6 m for the levee
engineering that is not allowed to cross the waves, and 0.3 m for the levee engineering that is allowed
to cross the waves. The elevation of dike top of this project is designed according to the principle that
no overtopping is allowed; in this case, the safe heightening is set to 0.6 m. The calculation height
induced by run-up wave is 0.2 m and the super elevation of the dike top is 0.8 m. Therefore, the design
flood level plus 0.8 m super elevation of the dike top is the elevation value of the dike top.

The design river bottom elevation at 0 + 000 section at the beginning of the regulation in the
SheGong River is 22.2 m, and that of the 5 + 600 section at the key point of regulation is 9.1 m.
According to the measured data in 2015, the current river bottom elevation of the 0 + 000 section is
22.54 m, and that of the 5 + 600 section is 9.38 m.

A hydrological atlas of Guangdong Province published by Guangdong Hydrological Bureau was
used in the study. The lower boundary condition in the simulation model, i.e., river stages, came from
the Comprehensive Planning Report of River Basin in Huadu District of Guangzhou City provided by
the Guangzhou Water Conservancy Bureau. The topographic map of the Huadu District was provided
by the Guangzhou Surveying and Mapping Institute, while that of SheGong River with a measuring
scale of 1:2000 and the cross- and vertical section of the river were given by a commissioned surveying
and mapping company.

3. Methodology

3.1. Design Flood Calculation

According to the manual regarding the use of rainfall-runoff curves in Guangdong Province
and the standard of design flood calculation for water conservancy and hydropower engineering
(SL44-2006), the design peak flow of small watershed is as follows [48,49]:

Qm =
0.278ψSp

τn F (1)

τ =
0.278L

mJ
1
3 Q

1
4

(2)

where Qm is design peak flow (m3/s); ψ is runoff coefficient of flood peak ; Sp is design rainfall intensity;
F is catchment area of the basin (km2); τ is routing duration; m is routing parameter, L is river length
(km); J is average slope of the river basin. These parameters are further given as

ψ = 1− μ
Sp
τn(tc ≥ τ) (3)

ψ = n
( tc

τ

)1−n
(4)

μ = RS(rl)p (5)

Sp = H24ptn−1 (6)
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tc =

[
(1− n)Sp

μ

] 1
n

(7)

where μ is the soil infiltration rate; R is the loss coefficient; rl is the loss index (for the calculation of
rainstorm peak in a small watershed); H24p is the maximum 24-h rainfall; n is the rainstorm decay
index (by referring to the Hydrographic Atlas of Guangdong Province).

The cross-section inputs are set up according to the observed data in the SheGong River and the
calculated data in the TieShan River channel. The cross sections are set at an average spatial distance of
50 m, and there are 427 sections in total. Since there are no smaller sub-basins in the river channel and
the river channel is long enough, the inflow between two sections is regarded as uniform. The results
of design peak flow for each section are shown in Table 1.

Table 1. Discharge of each calculated section of river.

Section Station Number
Discharge
Number

Discharge for Different Return
Period (m3/s)

2a 5a 10a 20a

Sanjia sluice TieShan River
TSH13 + 404 Q1 108.5 156.3 188.1 281.0

7#weir TieShan River
TSH3 + 600 Q2 149.6 218.8 259.6 348.7

The source of
SheGong River

SheGong River
SG0 + 000 Q3 11.9 18.0 22.4 26.5

SheGong sluice SheGong River
SG5 + 600 Q4 26.7 40.5 50.4 59.2

TieShan River
estuary

TieShan River
TSH0 + 000 Q5 201.2 297.1 354.7 453.9

3.2. Flood Simulation Model

MIKE FLOOD is used to couple the one-dimensional MIKE 11 model and the two-dimensional
MIKE 21 model, for simulating the flood prone area with different return periods.

3.2.1. MIKE 11

MIKE 11 is an implicit finite difference model for one dimensional unsteady flow computation,
the basic equations of which are Saint–Venant equations that are solved by the Abbott–Ionescu six-point
implicit difference method and are used to simulate flood processes in a river channel [50]. The general
steps of model setup include river network generalization, river section setting, boundary conditions
setting, and determination of hydraulic parameters (Figure 4). In this study, we generalized the river
network based on geographic data of the study area (Figure 3). Based on observed data, a total of
427 river sections were set up, and for boundary conditions, the upstream boundary was selected
as the flow boundary, whilst the downstream boundary was selected as the water level boundary;
through analysis and demonstration, we selected the design flood level with a 5-year return period as
the boundary water level. The setting of hydraulic parameters mainly included the determination of a
river roughness coefficient based on the current status of the river and the related data.

3.2.2. MIKE 21

MIKE 21 belongs to the free two-dimensional surface flow model, and uses the finite volume
method to solve the planar two-dimensional shallow water equation. The general steps of model
setup include grid division, elevation interpolation, boundary conditions setting, and determination
of hydraulic parameters (Figure 4). In this study, the study area was divided into 28,800 grids with
grid size of 50 × 50 m. We also performed elevation interpolation based on the measured terrain
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data. For the boundaries connected to rivers in MIKE 21, we set them as open boundaries, and other
boundaries were set as closed boundaries. The setting of hydraulic parameters was to determine the
surface roughness coefficient based on the type of land-use [51].

Figure 4. Flow chart of flooding simulation model.

3.2.3. MIKE FLOOD

MIKE FLOOD is used to couple the one-dimensional MIKE 11 model and the two-dimensional
MIKE 21 model. By simulating the momentum transfer between the 1D river network and the 2D
surface, the flood situation in the study area can be simulated. In this paper, a lateral coupling method
was adopted; water above the river bank is exchanged with the two-dimensional surface model along
the flow direction perpendicular to the river, and the exchange flow is approximately calculated by the
weir flow formula [52]:

q = WC(Hus −Hds)
k
[
1−

(Hds −Hw

Hus −Hw

)]0.385
(8)

where q is the exchange flow (m3/s); W is the width of the connection part (m); C is the coefficient of
weir flow taken as 1.838; k is the weir index; Hus and Hds are the water levels in the upstream and
downstream sections of weir (m), respectively; Hw is the elevation at the top of weir (m).

3.2.4. Model Verification

On 7 May 2017, a flood event with a 20-year return period occurred in TieShan River basin,
and was selected to verify the flooding simulation model.

(1) One-dimensional model verification
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Choosing the water level in the upstream section of overflow weirs 7#–15# in TieShan River to
compare with the observed water level, it is found that the differences between simulated and observed
values are between 0.01 and 0.18 m (Table 2). Therefore, the one-dimensional model can be considered
as accurate enough for flood simulation.

Table 2. Comparison of simulated and observed water levels.

Position Station Number Observed Values/m Simulated Values/m Bias/m

7#weir TSH3 + 720 13.02 13.03 −0.01
8#weir TSH5 + 640 16.77 16.95 −0.18
9#weir TSH6 + 570 19.31 19.26 0.05
10#weir TSH7 + 200 21.21 21.27 −0.06
11#weir TSH8 + 180 23.6 23.69 −0.09
12#weir TSH8 + 700 26.16 26.34 −0.18
13#weir TSH9 + 640 28.81 28.69 0.12
14#weir TSH11 + 210 31.69 31.74 −0.05
15#weir TSH11 + 800 33.68 33.72 −0.04

(2) Two-dimensional model verification
The survey result shows that the culvert of SheGong River and the urban area in the south are the

main flooding areas; meanwhile, the TieShan River is in a safe state. Comparing the actual flooding
area and depth with the simulated ones, we found that the simulation results are basically consistent
with the actual situation. Therefore, it can be concluded that the parameters in the 2D model are
reasonable, and the model can be used to reflect the actual flooding situations in the study area [53].

4. Results

4.1. Flooding Analysis

We applied the flooding simulation model to simulate the situation of the current river
channel when it encounters floods with different return periods. For a 2-year return period,
the maximum flooding depth increases during the time interval of 2–6 h, and decreases from 6
to 17 h, reaching maximum value of 0.32 m at the time of 6 h; the flooding depth tends to be relatively
stable after 17 h. In correspondence, the maximum flooding area increases from 2 to 9 h and decreases
during 9–11 h, reaching the maximum value of 0.93 km2 at 9 h, and remains unchanged after 11 h.
For a 5-year return period, the maximum flooding depth increases from 2 to 5 h and decreases after
that, with the maximum value of 0.59 m at 5 h; the maximum flooding area increases before 7 h and
decreases from 7 to 14 h, with the maximum value of 2.32 km2; the flooding area remains almost
unchanged after 14 h. When meeting the 10-year return period, the maximum flooding depth increases
from 2 to 5 h, and decreases during 5–10 h, reaching the maximum value of 0.73 m; the maximum
flooding area increases from 2 to 8 h, decreasing from 8 to 15 h, with the maximum value of 3.14 km2 at
8 h. As for the 20-year return period, the maximum flooding depth increases over time before 8 h,
but gradually decreases from after that, with the maximum value of 0.91 m and the flooding depth is
relatively stable after 14 h; the maximum flooding area also increases over time before 7 h, decreasing
from 7 to 16 h, reaching the maximum value of 4.03 km2 and remaining unchanged after 16 h (Figure 5).

The spatial flooding situations for different return periods are shown in Figure 6. In combination
of the results from Figure 5, it can be found that the current flood bear capacity of SheGong River
does not reach the standard with a 20-year return period; the flooding area increases from 0.93 km2 to
4.03 km2 with the return periods of 2, 5, 10, and 20 years, and the maximum flooding depths increases
from 0.32 to 0.91 m. The inundated area is gradually increasing from midstream to downstream of
SheGong River with the return periods of 2, 5, 10, and 20 years, respectively (Figure 6). When under the
10-year and 20-year return period scenarios, the flooding depth of the downstream of SheGong River
is higher than 0.4 m. However, the TieShan River can bear flooding with a 20-year return period safely,
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and the downstream flood discharge capacity is still at a surplus. It can also be seen from Figure 6
that because the section width of culvert is too narrow, flood overflowed from river channel at this
location, while the TieShan River can bear the flooding with a 20-year return period safely, and the
flood discharge capacity of downstream is still at a surplus. Therefore, under this condition, how to
solve the problem of insufficient flood control capacity in the section of the culvert should be the focus
of regulation schemes.

Figure 5. Maximum flooding depths and areas.

4.2. River Regulation Schemes

4.2.1. Formulation of River Regulation Schemes

According to the results of flooding analysis and survey results in the TieShan River basin,
the main problems are as follows:

A. The banks at the south of the SG5 + 600 pile are seriously invaded, resulting in the flood control
capacity below the standard with a 5-year return period; developed urban areas in the vicinity
are affected by flood seriously;

B. At the north of the SG3 + 750 pile in SheGong River, there is a culvert with narrow section and
shallow depth, which results in not enough flood discharge capacity of the river channel for
flooding with a 2-year return period. Moreover, both sides of this culvert are construction lands;
it is difficult to widen the culvert by land acquisition and demolition.

In order to solve these problems, the following three regulation schemes are proposed:

(1) Scheme 1: Widening the downstream width and heightening dikes on both sides of the TieShan
River to improve flood control capacity to reach the standard of a 20-year return period.
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(2) Scheme 2: Set a sluice at the SG5 + 600 section in the downstream of SheGong River, and open up
the tributary-1 in front of the sluice, transferring flood water from the upstream of SheGong River
to the downstream of TieShan River; meanwhile, widen the culvert at the north of the SG3 + 750
pile in the SheGong River.

(3) Scheme 3: As in Scheme 2, i.e., set up sluice and open up tributary-1 in SheGong River; for the
culvert, widen it slightly, and open up tributary-2 in front of the culvert, which leads part of the
water flow into TieShan River before entering the culvert.

Figure 6. Flooding situation in the study area.

4.2.2. Comparison and Selection of Three Schemes

For Scheme 1, considering the difficulty and high cost in land acquisition and demolition,
the general practice is to build dikes on both sides of the SheGong River, maintaining the existing
river width. However, according to the results of the water surface calculated by the simulation
model (Figure 7), if we only build dikes to improve the flood control capacity to reach the standard
of a 20-year return period, the elevation at the top of dikes must be 1.5 m above the ground at least
(the safe height above the water surface is taken as 0.6 m), which is probably not allowed for the
surrounding environment. Therefore, Scheme 1 that only adopts general engineering measures is not
recommended here.
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Figure 7. Comparison of current bank elevation and design flood level (20-year return period).

If analyzing from the whole region perspective, it can be found that the surplus of flood discharge
capacity in TieShan River is the key of the solution. In Schemes 2 and 3, the construction of tributary-1
is to take advantage of this convenience, and it can play a role in alleviating the flood pressure of
SheGong River and avoid the construction of dikes. At the same time, taking the construction cost
of engineering projects into account, it is still more reasonable to open up the tributary than to build
dikes. Therefore, the next content is mainly to compare Scheme 2 and Scheme 3 (Figure 8).

Figure 8. Schematic diagram of Scheme 2 and Scheme 3.

Through simulation, it can be determined that after the adoption of Scheme 2 or Scheme 3, there is
no flooding with the 20-year return period. The difference between Scheme 2 and Scheme 3 is the
treatment of the culvert. In Scheme 2, the culvert is to be widened; in Scheme 3, a part of water flows
that should have passed through the culvert is transferred to the TieShan River through tributary-3.
Considering the land acquisition and demolition, the costs of Schemes 2 and 3 are shown in Table 3.
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Table 3. Cost of land acquisition and house demolition for Scheme 2 and Scheme 3.

Scheme

Area of Land Acquisition and
Demolition (m2)

Unit Price ($/m2)
Total Cost ($)

Construction Land Farmland Construction Land Farmland

#2 11,861 64,989
24.31 4.29

558,702

#3 3385 83,915 439,869

The simulation results of water surface lines with Scheme 2 and Scheme 3 are shown in Figure 9.
It can be seen from Figure 9 that when flooding with a 20-year return period occurs, the water level
of the culvert is below safe altitude; the water level of the culvert in Scheme 2 is 0.4 m lower than
the water level in Scheme 3 on average, but in the downstream of SheGong River, the water level is
significantly higher than that in Scheme 3.

Figure 9. Simulation results of design water surface line.

In terms of the cost of land acquisition and house demolition, Scheme 3 is lower than Scheme 2.
When looking into the water level reduction effect, Scheme 2 has a better reduction effect at the culvert,
but Scheme 3 has a better reduction effect in the downstream area. Considering that the downstream
area has a higher grade in the development planning, the final regulation scheme is to adopt Scheme 3,
which is easier to implement in terms of economic cost and is more effective in reducing flood hazards
in the downstream area.

Through the comparison of Schemes 1 and 2, it can be found that a sluice in the downstream
of SheGong River can be set and a tributary in front of the sluice transferring floodwater from the
upstream of SheGong River to the downstream of TieShan River can be opened, avoiding the widening
of the downstream width and heightening dikes on both sides of the SheGong River. In Scheme 2,
the downstream of SheGong River could remain the original width but the culvert would need to be
widened, while in Scheme 3, the culvert needs to be slightly widened, or can even remain unchanged
after opening up a tributary in front of the culvert. Considering the land acquisition and demolition,
along with the simulation results of water surface lines, Scheme 3 is the optimal one.

5. Discussion

Due to high urbanization development, there is nearly no extra land around the downstream of
the SheGong River that is surrounded by various kinds of buildings. The mid- and the downstream of
the river are also the reaches with extremely serious flooding. Therefore, there is not enough space for
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flood control construction in the SheGong River. Large land occupation, high cost of land acquisition
and demolition, difficult demolition work, local resident disputes have increased the difficulty of
traditional river flood control measures. If one wants to reduce land acquisition and demolition and
keep the original river width, then the embankment height should be at least 1.5 m above the ground,
which is disharmonious to the surrounding environment. However, if one makes full use of the flood
bearing capacity of the downstream of the Tieshan River and develops new tributaries, it would be an
efficient and economical solution. The scope of land acquisition, which is mainly farmland, will be
minimized, and the cost of compensation for land acquisition and demolition will be at its lowest.
The reduction of land acquisition, demolition and compensation disputes, and the avoidance of raising
river embankment make the flood control measures of the river simpler and reduce flooding risk.
According to the flood simulation analysis, the flood bearing capacity of the TieShan River is still at
a surplus. Flood water in the SheGong River can be transferred into the TieShan River so that the
buildings around the SheGong River can remain and the work is greatly simplified, whilst the flood
pressure in the mid- and downstream of the SheGong River is effectively reduced. This is from a whole
region perspective, given that flood control of the SheGong River is not conducted independently in
the SheGong River.

In this study, three possible flood control schemes are proposed. Scheme 1 is to simulate the
design flood condition of the SheGong River without changing the existing river width. However,
the bank elevation of the whole river in the scheme is lower than the design flood level; consequently
the river channel will seriously flood. Due to the lack of flood bearing capacity in the middle and
lower reaches of the SheGong River, the downstream of the SheGong River will suffer from flooding.
A tributary can be opened in the downstream. There is a culvert in the midstream, which can be
uncovered and widened or a tributary can be opened in front of the culvert. In Scheme 2, a flood
gate will be built at the downstream of the SheGong River, and a tributary will be built in front of the
gate to transfer floodwater to the downstream of the TieShan River. Meanwhile, the culvert at the
midstream will be uncovered and widened. Scheme 3 is to open the tributary at the downstream of the
SheGong River with the culvert at the midstream unchanged and build the second tributary in front
of the culvert. Compared with Scheme 1, Scheme 2 effectively reduces flooding in the downstream
of the SheGong River. Comparing Scheme 2 with Scheme 3, the design flood level of the original
culvert in Scheme 2 is 0.4 m lower than that in Scheme 3 on average, and the design flood level of the
downstream section is higher due to large flows, while tributary 2 in Scheme 3 can effectively reduce
flooding pressure of the downstream of the SheGong River. Scheme 3 needs to build a new tributary
because water flows in the bottom of the river in Scheme 2 are relatively large and the river needs to be
widened. In terms of the cost of land acquisition and house demolition, Scheme 3 is lower than Scheme
2; for a water level reduction effect, Scheme 2 has a better reduction effect at the culvert, but Scheme 3
has a better reduction effect in the downstream. Considering that the downstream area has a higher
grade in the development planning and that the cost of land acquisition and demolition cannot be
neglected, Scheme 3 is preferable. This scheme makes full use of the surplus flood discharge capacity
of the TieShan River from a whole basin perspective. Transferring river floodwater not only avoids a
lot of land acquisition and demolition but also solves flooding in the SheGong River economically
and effectively. With the rapid development of high urbanization in developing countries around the
world, the problem of flood control and drainage in small and medium-scale river basins has become
increasingly prominent. Therefore, this study can provide a feasible flood control measure for small
and medium-scale rivers in other developing countries.

While this study provides a new idea of flood control, there are some caveats when the idea is
applied in other regions. For one, MIKE 21 has high requirements for data; for tributaries and rivers,
when simulating small-scale areas using the model, it needs a precise spatial resolution, whilst it
is unable to predict elevation differences in floodplain modeling, which has its own significance in
accurate results [54,55]. Second, there are some differences between the data obtained in the research
area and the requirements of the model, and considering errors such as the generalization of the
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river network and grids as well as the changes in working conditions in the model, the verification
of the one-dimensional model and the two-dimensional model is seemingly simple. Third, we only
tested three schemes in the study which are seemingly inadequate given that flood conditions across
different regions are rather complicated, and therefore a variety of schemes should be tested, if allowed,
for other regions. Last but not least, the development of tributaries will somewhat impact the ecological
environment, which needs further study.

6. Conclusions

To explore the most effective flood control strategy for small and medium-scale rivers in highly
urbanized areas, this study took the SheGong River (the tributary of the TieShan River) basin as the
case to demonstrate how flooding across small and medium-scale river basins can be controlled from
a whole region perspective. The MIKE FLOOD model was coupled with MIKE 11 and MIKE 21 to
simulate flooding in the basin for different return periods, and the results showed that the mid- and
downstream areas of the basin suffer from serious flooding with a 20-year return period, yet the
downstream of the mainstream, i.e., TieShan River, can still sufficiently bear more flooding. Therefore,
it is possible to deal with flooding over the SheGong River basin by consideration of the flood bearing
capacity of the mainstream TieShan River from a whole region perspective. Further, three possible
flood control schemes were compared to determine the most cost-effective one. It showed that the
construction of two new tributaries transferring floodwater in the mid- and downstream of the SheGong
River into the downstream of the TieShan River is the best way to reduce flooding pressure in the
SheGong River basin. The scheme of opening up new tributaries to replace the reconstruction of the
original river channel can reduce a large number of land acquisition and demolition projects and in
turn, reduces the compensation cost of land acquisition and demolition. In highly urbanized areas,
the rivers with abundant flood bearing capacity can be fully utilized to control floods. When the
flood bearing capacity of small and medium-scale rivers is inadequate, floods in the middle and lower
reaches of the river can be transferred to the river with abundant flood-carrying capacity. The new idea
of dealing with flooding from a whole region perspective can consider and make full use of the flood
bearing capacities of both the mainstream and tributaries. This can not only avoid a large number
of land acquisitions, demolitions and compensation fees in highly urbanized areas but also reduce
the risk of river flood control, which is particularly useful for highly urbanized areas in developing
countries around the world.
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Abstract: Although landslide early warning and post-assessment is of great interest for mitigating
hazards, emergency disposal solutions for properly handling the landslide and dammed lake within
a few hours or days to mitigate flood risk are fundamentally challenging. In this study, we report a
general strategy to effectively tackle the dangerous situation created by a giant dammed lake with
770 million cubic meters of water volume and formulate an emergency disposal solution for the
25 million cubic meters of debris, composed of engineering measures of floodgate excavation and
non-engineering measures of reservoirs/hydropower stations operation. Such a disposal solution
can not only reduce a large-scale flood (10,000-year return period, 0.01%) into a small-scale flood
(10-year return period, 10%) but minimize the flood risk as well, guaranteeing no death raised by the
giant landslide.

Keywords: water resources management; landslide; dammed lake; flood risk

1. Introduction

Landslides can be attributed to rainstorms [1–3], earthquakes [4,5], avalanches, human construction
activities, land-use change [6–8] as well as natural processes of erosion that ruin land slopes [9,10].
Furthermore, large landslides often block river vales, giving rise to the formation of giant dams, so that
catastrophic debris flows and floods would easily take place in case of dam break [11].

Early warning, in close association with theoretical considerations, predicts that the intensity of
giant landslides will increase in a climate and anthropogenic changes setting according to physical
experiments and post-assessment [12,13]. The potential for a giant landslide intensification with
earthquake, rainfall-induced storm runoff, and avalanche is of significant societal concern, with a huge
dammed lake inducing dam break, flash floods and debris being one of the costliest and dangerous
natural hazards worldwide [14]. Landslides are one of the most difficult natural disasters to predict
since the factors that affect slope stability vary dramatically in both space and time. An emergency
disposal solution for adequately handling the landslide and dammed lake within a few hours or days
to reduce flood risk is fundamentally challenging, despite landslide early warning and post-assessment
being of great interest for mitigating hazards. Nevertheless, the expected general strategy in response
to landslides and dammed lake extreme intensification is still unclear. Hence, we propose that
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more attention should be paid to increase infrastructure resilience to our changing environment,
as observations and field surveys of storm runoff extremes, earthquakes and avalanches show that
they would cause major challenges for existing infrastructure systems.

In the stream nearby the Baige Village of the Tibet Autonomous Region, which suffers from the
obstacles caused by massive landslides, bulldozers are excavating a diversion channel to reduce the
risk of flooding due to the fast-rising water levels of the blocked Jinsha River, which is situated in the
upper reach of the Yangtze River (Figure 1). On 3 November, 2018, the landslide following the first
landslide, which occurred on 11 October, 2018, caused about 25 million cubic meters of debris to hurtle
down a mountainside, which created a natural dam that was 58.24 m high, 195 m wide and 273 m
long, situated above the elevation of 2966 m along the Jinsha River. “I was surprised that the water
level of the lake increased so fast at a speed of 0.7 m per hour” said one of the hydrologists from the
Changjiang Water Resources Commission (CWRC) who first glimpsed the dammed lake. In the next
few days, the water volume of this dammed lake increased from 300 million cubic meters and reached
770 million cubic meters.

Figure 1. Location of landslide and excavation of floodgate. (a) Location of landslide; (b) workers
carved out a diversion channel through the landslide blocking the Jinsha River. Baige is the place
where the landslide occurred, and Yebatan is a hydropower station. Batang, Benzilan, and Shigu are
hydrological stations. Liyuan and Guanyinyan are the first and the last reservoirs of the six cascade
reservoirs in the midstream of the Jinsha River, respectively.

In this study, we propose an emergency disposal solution combining structural and non-structural
measures to reduce the flood risk encountered in a giant landslide and dammed lake. The rest of
this study is arranged as below. Section 2 introduces the used methods, including the structural
measures and the non-structural measures, respectively. Section 3 shows the results on the methods
employed to control the landslide and dammed lake while discussing the future challenges of landslide
management in the Yangtze River.

2. Methods

The goal of this study is to propose an emergency disposal solution for landslide control, including
structural and non-structural measures and reducing flood risk to a safe range. Figure 2 illustrates the
emergency disposal solution architecture that integrates the structural measures (Figure 2a) with the
non-structural measures (Figure 2b). The used methods are briefly described below.
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Figure 2. Emergency disposal solution for landslide control. (a) Structural measures; (b) non-structural measures.

2.1. Structural Measures

The most commonly used structural measures are classified by the sort of slope stabilization
methods used, including the geometric method [15,16], chemical and mechanical method [17],
and hydrogeological method [18]. The former two methods are preferentially adopted to mitigate
potential landslides, while the third method is preferentially adopted to handle breakout landslides [19].
Therefore, in this study, a package of hydrogeological methods is employed to mitigate landslide and
dammed lake. The hydrogeological methods consist of downstream related-people evacuation,
installation of monitoring equipment, as well as excavation of floodgate. The downstream
related-people evacuation can effectively lower life and property losses ahead of natural disasters
extension. Mobile hydrological monitoring equipment is installed to collect real-time rainfall and
flood information. The excavation of floodgate can be used to rapidly decrease the water volume
of the dammed lake after implementing landslide surface protection and control of surface erosion
mitigation measures.
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2.2. Non-Structural Measures

The non-engineering measures consist of analysis of the causes, rainfall and flood forecasting
and reservoir operation for flood prevention. Firstly, a clear understanding of the processes that
caused the landslide (i.e., cause analysis) plays a vital role in the selection and design of appropriate,
cost-effective remedial measures. While the destabilizing processes are grouped into slow changing
(e.g., weathering, erosion) and fast-changing processes (e.g., earthquake, drawdown) [20]. Secondly,
the early warning system for rainfall and flood forecasting can make it possible to implement a
regional real-time assessment of landslide hazard threats [21]. Last but not least, flood prevention and
pre-discharge measures for reservoirs (hydropower stations) can be used to decrease the flood risk
of downstream area—especially when the breakout landslide has further caused a dammed lake in
the river.

After several structural and non-structural measures are formulated and designed to cope with
the breakout landslide, it is imperative to undertake a flood risk analysis [22–25] for selecting an
appropriate and cost-effective emergency disposal solution from the standpoint of minimizing losses.

3. Results and Discussion

3.1. Causes Analysis for Giant Landslide

First—consdering the earthquake factor—Tibet in China is an earthquake-prone area, and a great
number of earthquakes (642, respectively) larger than magnitude 5.0 occurred in Tibet during 1900
and 2017. Out of these earthquakes, there were 503 measuring a magnitude of 5.0–5.9, 130 measuring
6.0–6.9, 7 measuring 7.0–7.9, and two measuring 8.0–8.9 (Figure 3).

 

Figure 3. Data on earthquakes in Tibet. Data on earthquakes larger than magnitude 5.0 in Tibet
during 1900 and 2017, extracted from the United States Geological Survey (USGS) [26] and the China
Earthquake Networks Center (CENC) [27].

According to the statistical data released by the USGS, the Chayu County of Tibet underwent a
magnitude 8.6 earthquake on 15 August, 1950—which was the most massive earthquake in China to
date. Besides, the Naqu City of Tibet was hit by two earthquakes of magnitudes 4.1 and 4.2 on the 6
and 7 October, 2018, respectively. The epicenters of the two earthquakes were 1000 km away from the
Baige Village. Second—considering the weather factor—between 11 October and 3 November 2018,
some heavy rainfalls (100–250 mm/day) occurred in succession. Therefore, in consequence of the two
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factors associated with earthquake and storm precipitation, a landslide struck the Baige Village and
initiated the formation of a giant dammed lake.

3.2. Emergency Disposal Solution

The director of the Changjiang Water Resources Commission (CWRC) and experts from the
Changjiang River Defense General formulated an emergency disposal plan for the dammed lake to
properly handle disasters for minimizing losses, as addressed below: (1) organize an evacuation of
the affected areas in Tibet, Sichuan, and Yunnan Provinces. (2) Undertake hydrological emergency
monitoring, forecasting, and early warning in the upper and lower reaches of the dammed lake.
(3) Quickly tackle the dangerous situation raised by the dammed lake and formulate an emergency
disposal plan for the stagnation. (4) Implement flood prevention and pre-discharge measures for
reservoirs (hydropower stations) that are operational and under construction in the lower reaches of
the dammed lake.

On 4 and 5 November, 2018, combining the aerial videos, images and in-situ measurement data
collected by drones with the development of the water storage in the dammed lake, it was concluded that
without human intervention, the possibility for the dammed lake to collapse would be very high. Besides,
the anticipated magnitude of the flood-induced by such a collapse would be enormous, and would bring
significant economic losses to the downstream. During 4 and 5 November, 2018, after a comprehensive
site-specific survey of the landslide (Figure 4), the director of the CWRC said, “in such emergency case,
we only have a few days to assess landslide hazards and figure out what to do”.

 

Figure 4. Field survey of the Baige landslide. Engineering geologists and hydrologists carried out a
field survey of the Baige landslide during (a) 4 November, 2018 and (b) 5 November, 2018.

The CWRC dispatched 245 people to participate in the disposal of the dammed lake. On 9
November, 2018, three kinds of diversion channels and flood risks were analyzed and formulated,
based on three scenarios designed to reduce the lake water level by 5, 10, and 15 m, respectively. Flow
peaks of the main control sites along the downstream of the dammed lake were predicted in case of a
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dam break as well. On 10 November, 2018, about 80 sets of equipment—including automatic gauges
designed for high water level and water gauges—were installed and the forecasts of water level, flow,
and possible inundated areas were made (Figure 5). On 11 November, 2018, the engineering team
succeeded in digging out a diversion channel with a length of 220 m, the maximum depth of 15 m,
a width of 42 m at the top, and a width of 4 m at the base so that floodwater could be released for
decreasing the lake water level as well as reducing the flood risks at downstream areas (Supplementary
Video S1). Meanwhile, the government quickly evacuated more than 50,000 people downstream of the
Baige area and at least 18,657 people in Lijiang City of Yunnan Province.

 

Figure 5. Hydrological monitoring in the downstream of Baige landslide. (a) Installation of water level
ruler; (b) testing hydrological monitoring equipment.

Before the dam broke on 13 November, 2018 (Supplementary Video S2), four operational commands
on cascade reservoirs were issued by the CWRC to cope with the dam break based on in-situ survey and
hydrological forecasting, as described below. To deal with the floods caused by dam break, a series of
reservoir operation was implemented started from 5 November, 2018. Three cascade reservoirs (Liyuan,
Ahai, and Jinanqiao) vacated a total storage capacity of 0.62 billion cubic meters on 5 November, 2018.
It followed six cascade reservoirs (Liyuan, Ahai, Jinanqiao, Longkaikou, Ludila, and Guanyinyan) that
vacated a total storage capacity of 1.03 billion cubic meters on 10 November, followed by 1.189 billion
cubic meters on 14 November, and finally reached 1.3 billion cubic meters on 15 November.

A few hours after the dam break, the peak flow discharge reached 28,300 cubic meters per second
(cms) at the Yebatan hydropower station (19:00, 13 November), 20,900 cms at the Batang station
(02:00, 14 November), 15,700 cms at the Benzilan station (13:00, 14 November), 7170 cms at the Shigu
station (08:00, 15 November), and 7410 cms in the Liyuan Reservoir (10:00, 16 November), respectively.
We noticed that reservoir inflow increased by 30% to 60% at the above-mentioned upstream reservoirs,
whereas it only increased 5% to 20% at downstream stations, as compared with historical maximal
peak flows. Taking the Liyuan Reservoir as an example, the decreasing rate of the flood peak reached
40%, based on the maximal inflow (7410 cms) and outflow (4490 cms) (Figure 6 and Supplementary
Video S3). In other words, the joint operation of the six cascade reservoirs released a total of 1.3 billion
cubic meters in storage capacity for flood control would pave the way not only to reduce a large-scale
(10,000-year return period) flood into a small-scale (10-year return period) flood but to minimize the
flood risk raised by the Baige landslide as well.
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Figure 6. Sketch map of reservoir operation for releasing water in the Liyuan Reservoir.

The results indicate that the flood risk and life-property loss are significantly reduced if the
structural and non-structural measures are contained and a wide scope of stakeholders are involved
in response to the destruction caused by water-related natural catastrophes. The effectiveness of the
structural and non-structural measures in such a case is due to a variety of reasons: the downstream
related-people evacuation can play a vital role in helping avert losses from flooding and debris;
the fast installation of mobile hydrological monitoring equipment can provide first-hand information
of real-time hydro-meteorological data for flood forecasting; the excavation of floodgate can effectively
address floods resulting from the failure of the dammed lake; the physical cause analysis results can
help managers and decision-makers to figure out remedial measures according to the causes and
effects of landslides; the early warning system based on hydrological forecasts can make sufficient lead
time for diverse sectors and stakeholders to respond if flooding is severe, widespread and sudden;
and reservoir operation (e.g., pre-discharge measures) can provide flood control capacity for coping
with the floods, in case the dam resulting from the landslide breaks.

In the coming months, the director of the CWRC and his team will assess landslide hazards,
reconstruct the damaged monitoring facilities, and revise the safety standards against landslides and
dammed lakes. In addition, follow-up studies will pay special attention to predicting rainfall and
flood used machine learning techniques [28–30], simulating and/or optimizing reservoirs operation
based on advanced intelligent algorithms [31,32], and assessing the impacts of dammed lakes and
dam collapse on the hydrological conditions [33,34], sediment deposition and erosion [35,36] as well
as biodiversity [37] of the Yangtze River. After these studies were accomplished, the director of the
CWRC said, “new achievements will contribute to landslide management in other countries or regions
of the world”. An integration of landslide-risk-management measures demands the participation
of diverse sectors (water management, spatial planning, and emergency management) and diverse
governmental levels to offer appropriate policy instruments. Improving cooperation and coordination
between policy sectors and administrative levels will benefit to cope with natural hazards. Besides,
from the standpoint of methodological transferability, the package of the structural and non-structural
measures—apart from the reservoir operation—can be directly applied for the management of other
landslide cases or studies, whereas the reservoir operation can only be considered as a special measure
against landslide in response to the landslide and a dammed lake raised in the river.
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4. Conclusions

Sudden landslides with large rock avalanches often block river valleys and result in the formation
of large dammed lakes, which would cause devastating debris flows and floods once the dams collapse.
The loss of life and destruction of property caused by catastrophic debris flows around the world
will most likely continue intensifying as the world population increases, urban development boosts,
deforestation expands and land-use alternates. In this case report, we proposed an emergency disposal
solution for adequately processing the landslide and dammed lake. The Baige landslide and dammed
lake upstream of the Yangtze River of China was selected as a study case. The contributions of the
proposed solution consisted of: (1) the emergency disposal solution’s ability to integrate the structural
and non-structural measures; and (2) that the emergency disposal solution can significantly reduce the
flood risk and property losses caused by the landslide and dammed lake.

Despite the Baige landslide created a giant dammed lake with 770 million cubic meters of water
volume, the formulated emergency disposal solution can adequately remove the 25 million cubic
meters of debris and effectively release the water volume. Furthermore, the hybrid of engineering
measures of floodgate excavation and non-engineering measures of reservoirs/hydropower stations
operation can decrease a large-scale flood (10,000-year return period, 0.01%) into a small-scale flood
(10-year return period, 10%) to minimize the flood risk.

Within only two weeks, China succeeded in coping with the life-threatening event of the
giant landslide-induced dammed lake that took place in the Baige Village along the Yangtze River,
guaranteeing that no death was caused by the landslide. Besides, this provided valuable experiences
and effective strategies to minimize disaster damages, and the losses of life and property resulted from
giant landslides stimulated by climate and anthropogenic changes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1939/s1,
Video S1: Succeeded in excavating the diversion channel. After working round the clock for one week, workers
succeeded in excavating the diversion channel through the Baige Dam on 11 November 2018. Video S2: Break of
the Baige dam. After the human intervention, the Baige dam started to break on 13 November 2018. Video S3:
A swollen Jinsha River gush through the Liyuan reservoir. In response to the Baige dam break, the Liyuan Reservoir
started to release floodwaters in advance on 13 November 2018. Data and materials availability: The data of global
earthquakes can be downloaded from the United States Geological Survey (USGS, https://earthquake.usgs.gov)
and the China Earthquake Networks Center (CENC, http://www.cenc.ac.cn, Chinese). All data needed to evaluate
the results and conclusions in the manuscript are provided in the manuscript or the Supplementary Materials.
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