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Modified Power-Symmetric Distribution
Reprinted from: Symmetry 2019, 11, 1410, doi:10.3390/sym11111410 . . . . . . . . . . . . . . . . . 1
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Abstract: In this paper, a general class of modified power-symmetric distributions is introduced.
By choosing as symmetric model the normal distribution, the modified power-normal distribution
is obtained. For the latter model, some of its more relevant statistical properties are examined.
Parameters estimation is carried out by using the method of moments and maximum likelihood
estimation. A simulation analysis is accomplished to study the performance of the maximum
likelihood estimators. Finally, we compare the efficiency of the modified power-normal distribution
with other existing distributions in the literature by using a real dataset.

Keywords: maximum likelihood; kurtosis; power-normal distribution

1. Introduction

Over the last few years, the search for flexible probabilistic families capable of modeling different
levels of bias and kurtosis has been an issue of great interest in the field of distributions theory. This was
mainly motivated by the seminal work of Azzalini [1]. In that paper, the probability density function
(pdf) of a skew-symmetric distribution was introduced. The expression of this density is given by

g(z; λ) = 2 f (z)G(λz), z, λ ∈ R, (1)

where f (·) is a symmetric pdf about zero; G(·) is an absolutely continuous distribution function,
which is also symmetric about zero; and λ is a parameter of asymmetry. For the case where f (·)
is the standard normal density (from now on, we reserve the symbol φ for this function), and G(·)
is the standard normal cumulative distribution function (henceforth, denoted by Φ), the so-called
skew-normal (SN ) distribution with density

φZ(z; λ) = 2φ(z)Φ(λz), z, λ ∈ R, (2)

is obtained. We use the notation Z ∼ SN (λ) to denote the random variable Z with pdf given by
Equation (2). A generalization of the SN distribution is introduced by Arellano-Valle et al. [2] and
Arellano-Valle et al. [3]; they study Fisher’s information matrix of this generalization. For further
details about the SN distribution, the reader is referred to Azzalini [4]. Martínez-Flórez et al. [5] used
generalizations of the SN distribution to extend the Birnbaum-Saunders model, and Contreras-Reyes
and Arellano-Valle [6] utilized the Kullback–Leibler divergence measure to compare the multivariate
normal distribution with the skew-multivariate normal.

One of the main limitations of working with the family given by Equation (1) is that the
information matrix could be singular for some of its particular models (see Azzalini [1]). This might

Symmetry 2019, 11, 1410; doi:10.3390/sym11111410 www.mdpi.com/journal/symmetry1
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lead to some difficulties in the estimation, due to the asymptotic convergence of the maximum
likelihood (ML) estimators. To overcome this issue, some authors (see Chiogna [7] or Arellano-Valle
and Azzalini [8]) have used a reparametrization of the SN model to obtain a nonsingular information
matrix. However, this methodology cannot be extended to all type of skew-symmetric models
which suffers of this convergence problem. On the other hand, the family of power-symmetric (PS)
distributions does not have this problem of singularity in the information matrix (see, Pewsey et al. [9]).
The pdf of this family of distribution is given by

ϕF(z; α) = α f (z){F(z)}α−1, z ∈ R, α ∈ R
+. (3)

where F(·) is itself a cumulative distribution function (cdf) and α is the shape parameter. For the
particular case that F(·) = Φ(·), the power-normal (PN ) distribution is obtained, with density
given by

f (z; α) = αφ(z){Φ(z)}α−1, z ∈ R, α ∈ R
+. (4)

For some references where this family is discussed, the reader is referred to Lehmann [10], Durrans [11],
Gupta and Gupta [12], and Pewsey et al. [9], among other papers. Other extensions of this
model are given in Martínez-Flórez et al. [13], where a multivariate version from the model is
introduced; also, Martínez-Flórez et al. [14] carried out applications by using regression models;
finally, Martínez-Flórez et al. [15] examined the exponential transformation of the model , and
Martínez-Flórez et al. [16] examined a version of the model doubly censored with inflation in a
regression context. Truncations of the PN distribution were considered by Castillo el al. [17].

In this paper, a modification in the pdf of the PS probabilistic family is implemented to increase
the degree of kurtosis. This methodology is later used to explain datasets that include atypical
observations. Usually, this methodology is accomplished by increasing the number of parameters in
the model.

The paper is organized as follows. In Section 2, first, we introduce the modified power symmetric
distribution. Then, the particular case of the modified power normal distribution is derived. Some
of the most relevant statistical properties of this model, including moments and kurtosis coefficient,
are presented. Next, in Section 3, some methods of estimation are discussed. Later, a simulation
study is provided to illustrate the behavior of the shape parameter. A numerical application where
the modified power normal distribution is compared to the SN and PN distributions is given in
Section 4. Finally, Section 5 concludes the paper.

2. Genesis and Properties of Modified Power-Normal Distribution

In this section, we introduce a new family of probability distributions. The idea is to make a
transformation to a given probability density, as the skew-symmetric or power-symmetric distributions
does. As there exists a certain resemblance between our formula (Equation (6)) and the formula
for the power-symmetric distributions (Equation (3)), we agree to name these new distributions as
modified power-symmetric (MPS) distributions. From the standard normal distribution, we obtain
the so-called Modified Power-Normal (MPN ) distribution. The main parameters and properties of
this particular distribution will be studied throughout this work.

2.1. Probability Density Function

Definition 1. Let Z be a continuous and symmetric random variable with cdf G(z; η) and pdf g(z; η), where η

denotes a vector of parameters. We say that, a random variable, X, follows a MPS distribution, denoted as
X ∼ MPS(η, α), if its cdf is given by

F(x; η, α) =
[ 1 + G(x; η) ]α − 1

2α − 1
, (5)
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and its pdf is given by
f (x; η, α) =

α

2α − 1
g(x; η) [ 1 + G(x; η) ]α−1 . (6)

where x ∈ R and α > 0.

Remark 1. In the case α = 1, the transformation given by Equation (6) is the identity. That is, the MPS
distribution for α = 1 always provides the input probability density function.

Thereforeforth, we proceed to examine the MPN distribution, whose cdf is provided by

F(x; μ, σ, α) =

[
1 + Φ

(
x−μ

σ

) ]α
− 1

2α − 1
, (7)

and whose pdf is given by

f (x; μ, σ, α) =
α

(2α − 1)σ
φ

(
x − μ

σ

) [
1 + Φ

(
x − μ

σ

) ]α−1
, (8)

where x ∈ R, μ ∈ R is the location parameter, σ > 0 is the scale parameter, and α > 0 is the shape
parameter. Hereafter, this will be denoted as X ∼ MPN (μ, σ, α). Figure 1 depicts some different
shapes of the pdf of this model, for selected values of the parameter α with μ = −1, 1 and σ = 1. The
MPN class of distributions is applicable for the change point problem, due to its favorable properties
(see Maciak et al. [18]); moreover, the MPN model can be utilized in calibration (see Pešta [19]).

Remark 2. Here, μ ∈ R and σ > 0 are location and scale parameters of the MPN distribution, respectively.
For the particular case α = 1, these are not only location and scale parameters but also the mean and standard
deviation of the standard normal distribution.

Figure 1. Plot of the pdf of MPN distribution for selected values of the parameters.
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2.2. Statistical Properties

2.2.1. Shape of the Density

The MPN distribution exhibits a bell-shaped form, which can be symmetric or positively or
negatively skewed depending on the value of the parameter α. Now, we derive some analytical
expressions that are useful to obtain approximations of modal values and inflection points of this
model. In the following, it will be assumed that μ = 0 and σ = 1.

Proposition 1. The pdf of X ∼ MPN (0, 1, α) has a local maximum at (x1, f (x1; α)) and two inflection
points at (x2, f (x2; α)) and (x3, f (x3; α)), respectively, where x1 is the root of the equation

x∗ =
(α − 1)φ(x∗)

1 + Φ(x∗)
, (9)

and x2 and x3 are two solutions of the equation

1 =

(
−x +

(α − 1)φ(x)
1 + Φ(x)

)2

− (α − 1)φ(x)
1 + Φ(x)

(
x +

φ(x)
1 + Φ(x)

)
. (10)

Proof. The proof consists of simple derivatives of the function f . From the equation (8), we calculate

∂

∂x
f (x; α) =

α

2α − 1
φ(x)[1 + Φ(x)]α−1

(
−x +

(α − 1)φ(x)
1 + Φ(x)

)
.

∂2

∂x2 f (x; α) =
α

2α − 1
φ(x)[1 + Φ(x)]α−1

{(
−x +

(α − 1)φ(x)
1 + Φ(x)

)2

−
[

1 +
(α − 1)φ(x)

1 + Φ(x)

×
(

x +
φ(x)

1 + Φ(x)

)]}
.

By setting Equations (9) and (10) to be equal to zero, the results are obtained after some algebra.
Figure 2 displays the graph of the first derivative of f (·), where it is observed that the maximum exists
and it is unique. Therefore, the MPN distribution is unimodal. �

Figure 2. Plot of the first derivative of MPN distribution for selected values of the parameters.
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Remark 3. The solutions of Equations (9) and (10) can be numerically obtained by using the built-in function
“uniroot” in the software package R. Table 1 below illustrates some approximations of the roots x1, x2, and x3,
and the corresponding figures of the pdf evaluated at these values.

Table 1. Approximations of the roots of Equations (9) and (10) for some values of α, and the
corresponding figures of the pdf of the MPN evaluated at these roots.

α x1 x2 x3 f (x1; α) f (x2; α) f (x3; α)

0.5 −0.136 −1.135 0.886 0.397 0.239 0.241
1.0 0.000 −1.000 1.000 0.399 0.242 0.242
2.0 0.243 −0.691 1.173 0.412 0.261 0.251
3.0 0.435 −0.414 1.299 0.433 0.282 0.266
4.0 0.586 −0.203 1.396 0.457 0.298 0.284
5.0 0.706 −0.041 1.475 0.481 0.316 0.301

2.2.2. Moments

Proposition 2. The rth moments of X ∼ MPN (0, 1, α) for r = 1, 2, 3, . . . , are given by

E(Xr) =
α

2α − 1
ar(α), (11)

where ar(α) is defined as

ar(α) =
∫ 1

0
[Φ−1(u)]r(1 + u)α−1 du. (12)

Here, Φ−1(·) is the quantile function of the standard normal distribution.

Proof. By using the change of variable u = Φ(x), it follows that

E(Xr) =
∫ ∞

−∞
xr α

2α − 1
φ(x)[1 + Φ(x)]α−1 dx

=
α

2α − 1

∫ 1

0
[Φ−1(u)]r(1 + u)α−1 du

=
α

2α − 1
ar(α). �

Corollary 1. The mean and variance of X are given by

E(X) =
α

2α − 1
a1(α) and

Var(X) =
α

2α − 1

(
a2(α)−

α

2α − 1
a2

1(α)

)
,

respectively.

Corollary 2. The skewness (β1) and kurtosis (β2) coefficients are, respectively, given by

β1 =
a3(α)− 3α

2α−1 a1(α)a2(α) +
2α2

(2α−1)2 a3
1(α)(

α
2α−1
)3/2

[a2(α)− α
2α−1 a2

1(α)]
3/2

and

β2 =
a4(α)− 4α

2α−1 a1(α)a3(α) +
6α2

(2α−1)2 a2
1(α)a2(α)− 3α3

(2α−1)3 a4
1(α)

α
2α−1 [a2(α)− α

2α−1 a2
1(α)]

2
.

Remark 4. Observe that the integral in Equation (12) can be numerically approximated by using the built-in
function integrate available in the software package R. Below, in Table 2, some approximations of the mean and

5
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variance for the MPN distribution for different values of α are displayed. Figure 3 illustrates the behavior of
the E(X) and Var(X) of the MPN distribution for different values of α. It is observable that when α grows,
the mean increases and the variance decreases.

Figure 4 displays the curves associated with the coefficients of skewness (left panel) and kurtosis (right)
of the MPN and PN distributions. It is shown that, depending on the values of α, the MPN distribution
exhibits equal, greater, or lesser values for these coefficients compared to the PN model. In general, the MPN
distribution has a smaller range of skewness than the PN distribution. On the other hand, when α < 13.05, the
MPN distribution has a greater kurtosis coefficient than the PN model.

Table 2. Approximations of E(X) and Var(X) of the MPN distribution for different values of α.

α E(X) Var(X)

0.5 −0.097 1.006
1.0 0.000 1.000
5.0 0.659 0.770
10.0 1.119 0.521
100.0 2.247 0.218

Figure 3. Plot of the E(X) and Var(X) of the MPN distribution.

Figure 4. Graphs of the skewness and kurtosis coefficients for the MPN and PN distributions.
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2.2.3. Stochastic Ordering

Stochastic ordering is an important tool to compare continuous random variables. It is well-known
that random variable X1 is smaller than random variable X2 in stochastic ordering (X1 ≤st X2) if
FX1(x) ≥ FX2(x) for all x, and in likelihood ratio order (X1 ≤lr X2) if fX1(x)/ fX2(x) decreases with x.
Using Theorem 1.C.1 and Theorem 2.A.1 of Shaked and Shanthikumar [20], the above stochastic orders
hold according to the following implications,

X1 ≤lr X2 ⇒ X1 ≤st X2. (13)

The proposition shows that the members of the MPN family can be stochastically ordered
according to parameters values.

Proposition 3. Let X1 ∼ MPN (0, 1, α1) and X2 ∼ MPN (0, 1, α2). If α1 > α2, then X1 ≤lr X2 and,
therefore, X1 ≤st X2.

Proof. From the quotient of both densities, it follows that

fX2(x; α2)

fX1(x; α1)
=

α2

α1

(
2α1 − 1
2α2 − 1

)
[1 + Φ(x)]α2−α1 ,

is non-decreasing if and only if μ′(x) ≥ 0 for x ∈ (−∞, ∞), where

μ(x) = [1 + Φ(x)]α2−α1 .

After some calculations, it is shown that

μ′(x) = (α2 − α1)φ(x)[1 + Φ(x)]α2−α1−1.

It is straightforward that for α1 > α2, then μ′(x) < 0 for x ∈ (−∞, ∞). Therefore, fX2(x; α2)/ fX1(x; α1)

is decreasing in x, and consequently X1 ≤lr X2. The other implication follows immediately from (13).
�

3. Inference

In this section, parameters estimation for the MPN distribution is discussed by using the method
of moments and ML estimation. Additionally, a simulation analysis is carried out to illustrate the
behavior of the ML estimators.

3.1. Method of Moments

The following proposition illustrates the derivation of the moment estimates of the
MPN distribution.

Proposition 4. Let x1, . . . , xn be a random sample obtained from the random variable X ∼ MPN (μ, σ, α),
then the moment estimates θ̂M = (μ̂M, σ̂M, α̂M) for θ = (μ, σ, α) are given by

σ̂M =
Sx√

α̂M

2α̂M − 1

(
a2(α̂M)− α̂M

2α̂M − 1
a2

1(α̂M)

) , μ̂M = x − σ̂M
α̂M

2α̂M − 1
a1(α̂M) (14)

and
a3(α̂M)− 3α̂M

2α̂M−1
a1(α̂M)a2(α̂M) +

2α̂2
M

(2α̂M−1)2 a3
1(α̂M)(

α̂M
2α̂M−1

)3/2
[a2(α̂M)− α̂M

2α̂M−1
a2

1(α̂M)]3/2
− Ax = 0, (15)

7
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where x, Sx and Ax denote the sample mean, sample standard deviation and sample Fisher’s skewness
coefficient respectively.

Proof. As μ and σ are location and scale parameters respectively, the skewness coefficient does not
depend on these parameters. Thus, the result in (15) is directly obtained from matching the sample
skewness coefficient with population counterpart given in Corollary 2. In addition, by considering
that X = σZ + μ, where Z ∼ MPN (0, 1, α), and again by equating sample mean and sample variance
to the mean and variance respectively, it follows that

x = σ̂ME(X) + μ̂M,

= σ̂M
α̂M

2α̂M − 1
a1(α̂M) + μ̂M,

and
S2

x = σ̂2
MVar(X)

= σ̂2
M

α̂M

2α̂M − 1

(
a2(α̂M)− α̂M

2α̂M − 1
a2

1(α̂M)

)
,

where α̂M satisfies expression (15). Then, (14) is obtained by solving the latter equations for μ̂M and
σ̂M, respectively. �

3.2. Maximum Likelihood Estimation

For a random sample x1, . . . , xn derived from the MPN (μ, σ, α) distribution, the log-likelihood
function can be written as

�(μ, σ, α) = nc(σ, α)− 1
2σ2

n

∑
i=1

(xi − μ)2 + (α − 1)
n

∑
i=1

log
[

1 + Φ
(

xi − μ

σ

)]
, (16)

where c(σ, α) = log(α)− log(2α − 1)− log(σ)− 1
2 log(2π).

The score equations are given by

nμ + σ(α − 1)
n

∑
i=1

κ(xi) = nx, (17)

nσ2 + σ(α − 1)
n

∑
i=1

(xi − μ)κ(xi) =
n

∑
i=1

(xi − μ)2, (18)

n
α
+

n

∑
i=1

log
[

1 + Φ
(

xi − μ

σ

)]
=

2α log(2)n
2α − 1

, (19)

where κ(w) = κ(w; μ, σ) =
φ( w−μ

σ )
1+Φ( w−μ

σ )
.

Solutions for these Equations (17)–(19) can be obtained by using numerical procedures such as
Newton–Raphson algorithm. Alternatively, these estimates can be found by directly maximizing
the log-likelihood surface given by (16) and using the subroutine “optim” in the software package [21].

3.3. Simulation Study

To examine the behavior of the proposed approach, a simulation study is carried out to assess
the performance of the estimation procedure for the parameters μ, σ, and α in the MPN model.
The simulation analysis is conducted by considering 1000 generated samples of sizes n = 50, 100,
and 200 from the MPN distribution. The goal of this simulation is to study the behavior of the ML

8
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estimators of the parameters by using our proposed procedure. To generate X ∼ MPN (μ, σ, α), the
following algorithm is used,

1. Step 1: Generate W ∼ Uni f orm(0, 1).

2. Step 2: Compute X = μ + σΦ−1
[
(2αW − W + 1)1/α − 1

]
.

where μ ∈ R, σ > 0, α > 0 and Φ−1(·) is the quantile function of the standard normal distribution.
For each generated sample of the MPN distribution, the ML estimates and corresponding standard
deviation (SD) were computed for each parameter. As it can be seen in Table 3, the performance of the
estimates improves when n and α increases.

Table 3. Maximum likelihood (ML) estimates and standard deviation (SD) for the parameters μ, σ and
α of the MPN model for different generated samples of sizes n = 50, 100, and 200.

n = 50

μ σ α μ̂ (SD) σ̂ (SD) α̂ (SD)

0 1 0.1 −0.352478 (0.149214) 0.994441 (0.091321) 0.190243 (0.175202)
0.5 −0.19534 (0.14501) 0.990622 (0.094550) 0.613052 (0.272096)
0.8 −0.083183 (0.144587) 0.990286 (0.098669) 0.854338 (0.164924)
1 −0.009586 (0.141691) 0.995312 (0.0997256) 1.007328 (0.122688)
5 0.004225 (0.100001) 0.997408 (0.088254) 5.030272 (0.229064)
10 0.001108 (0.066610) 0.999124 (0.068611) 10.060478 (0.475019)
100 0.002171 (0.017362) 1.001152 (0.029604) 100.437990 (2.668190)

n = 100

0 1 0.1 −0.351446 (0.104552) 0.998513 (0.070831) 0.180054 (0.111930)
0.5 −0.19268 (0.101786) 0.997622 (0.068806) 0.576957 (0.223378)
0.8 −0.08140 (0.099360) 0.997674 (0.069451) 0.830318 (0.152995)
1 0.002786 (0.097411) 0.996444 (0.069648) 1.002200 (0.088749)
5 0.002014 (0.099305) 0.996788 (0.085987) 5.023032 (0.221756)
10 0.002897 (0.046109) 1.000515 (0.050192) 10.032857 (0.339106)
100 0.000623 (0.012137) 1.000185 (0.019759) 100.168752 (1.866302)

n = 200

0 1 0.1 −0.348177 (0.072732) 0.999433 (0.047548) 0.170978 (0.076165)
0.5 −0.196617 (0.072015) 0.999142 (0.047896) 0.562935 (0.218890)
0.8 −0.076657 (0.069510) 0.997719 (0.050718) 0.824700 (0.127661)
1 0.001158 (0.06877) 0.998408 (0.050586) 1.003651 (0.058344)
5 −0.000165 (0.053006) 1.000623 (0.044182) 5.005130 (0.115719)
10 −0.000239 (0.033615) 1.000017 (0.035902) 10.014958 (0.246652)

100 0.000514 (0.008452) 1.000491 (0.014599) 100.104380 (1.295144)

Fisher’s Information Matrix

Let us now consider X ∼ MPN (μ, σ, α) and Z =
(

X−μ
σ

)
∼ MPN (0, 1, α). For a single

observation x of X, the log-likelihood function for θ = (μ, σ, α) is given by

�(θ) = log fX(θ, x) = c(σ, α)− 1
2σ2 (x − μ)2 + (α − 1) log

[
1 + Φ

(
x − μ

σ

)]
.

The corresponding first and second partial derivatives of the log-likelihood function are derived
in the Appendix A. It can be shown that the Fisher’s information matrix for the MPN distribution is
provided by

IF(θ)=

⎛⎜⎝ Iμμ Iμσ Iμα

Iσσ Iσα

Iαα

⎞⎟⎠
9
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with the following entries,

Iμμ =
1
σ2 +

(
α − 1

σ2

)
(b11 + b02),

Iμσ =
2
σ2E(Z)−

(
α − 1

σ2

)
(b01 − b21 − b12),

Iμα =
1
σ

b01,

Iσσ = − 1
σ2 +

3
σ2E(Z2)−

(
α − 1

σ2

)
(2b11 − b31 − b22),

Iσα =
1
σ

b11,

Iαα =
1
α2 − 2α log2(2)

(2α − 1)2 ,

where bij = E
[
Ziκ j(Z; 0, 1)

]
must be numerically computed.

The Fisher’s (expected) information matrix can be obtained by computing the expected values of
the above expressions. By taking in this matrix, α = 1, we have that Z ∼ N(μ, σ) and

IF(μ, σ, α = 1) =

⎛⎜⎝
1

σ2 0 1
σ d02

0 2
σ2

1
σ d12

1
σ d02

1
σ d12 1 − 2 log2(2)

⎞⎟⎠ ,

where dij =
∫ ∞
−∞

ziφj(z)
1+Φ(z)dz must be numerically obtained.

The determinant of IF(μ, σ, α = 1) is (2 − 4 log2(2) − b2
12 − 2b2

02)/σ4 = 0.003357435/σ4 
= 0,
consequently, the Fisher’s information matrix is nonsingular at α = 1.

Therefore, for large samples, the ML estimators, θ̂, of θ are asymptotically normal, that is,

√
n
(

θ̂− θ
) L−→ N3(0, I(θ)−1),

resulting in the asymptotic variance of the ML estimators θ̂ being the inverse of Fisher’s information
matrix I(θ). As the parameters are unknown, the observed information matrix is usually considered,
where the unknown parameters are estimated by ML.

4. Application

In this section, a numerical illustration based on a real dataset is presented. The goal of this
application is to show empirical evidence that the MPN yields a better fit to data than the PN ,
SN , and t-student (T S) with α degrees of freedom distributions. For that reason, we consider
a set of 3848 observations of the variable “density” included in the dataset verb “POLLEN5.DA”
available at http://lib.stat.cmu.edu/datasets/pollen.data. This variable measures a geometric
characteristic of a specific type of pollen. This dataset was previously used by Pewsey et al. [9] to
compare the PN and SN distributions. A summary of some descriptive statistics are displayed in
Table 4 below.

10
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Table 4. Summary of descriptive statistics for the pollen density dataset.

Mean Median Variance Skewness Kurtosis

0.000 −0.030 9.887 0.109 3.193

By using the results derived in Proposition 4, we have computed the moment estimates for the
parameters (μ, σ, α) of the MPN distribution, obtaining (−5.609, 4.576, 11.857). Then, by taking these
numbers as initial values, the ML estimates are derived. In Table 5, the ML estimates for the parameters
of the MPN , PN , SN , and T S distributions. The figures between brackets are the asymptotic
standard errors of the estimates obtained by inverting the Fisher’s information matrices for the three
models evaluated at their respective ML estimates. Additionally, for each model, the values of the
maximum of the log-likelihood function (�max) are reported. The MPN distribution attains the largest
value, and consequently provides a better fit to data.

Table 5. Parameter estimates; standard errors (SE); and maximum of the log-likelihood function, �max,
for the T S , SN , PN , and MPN corresponding to the pollen density dataset.

Parameters T S(SE) SN (SE) PN (SE) MPN (SE)

μ −0.010 (0.05) −2.04 (0.24) −1.74 (0.68) −5.73 (0.43)
σ 3.037 (0.05) 3.75 (0.14) 3.69 (0.21) 4.62 (0.14)
α 29.995 (13.01) 0.93 (0.14) 1.77 (0.37) 12.13 (1.21)

�max −9864.99 −9863.42 −9863.37 −9861.98

To compare the fit achieved by each distribution, the values of several measures of model selection,
i.e., Akaike’s information criterion (AIC) (see Akaike [22]) and Bayesian information criterion (BIC)
(see Schwarz [23]) are reported in Table 6. A model with lower numbers in these measures of model
selection is preferable. It can be seen that the MPN is preferable in terms of these two measures of
model validation. In addition, the Kolmogorov–Smirnov test statistics and the corresponding p-values
has been included in this table for all the models considered. It can be observed that none of the
models is rejected at the usual significance levels. However, the MPN distribution has a higher
p-value and is rejected later than the other two models. Alternative methods of model selection to
the Kolmogorov–Smirnov test that can be applied here can be found in Jäntschi and Bolboacă [24]
and Jäntschi [25]. Furthermore, the histogram associated to the empirical distribution of the variable
“density” in the pollen dataset is illustrated in the left hand side of Figure 5. In addition, the densities
of T S , SN , PN , and MPN , by using the maximum likelihood estimates of their parameters, have
been superimposed. Similarly, on the right hand side of Figure 5, the fit in both tails is shown. It is
observable that, for this dataset, the MPN has thicker tails than the other three distributions. Finally,
the QQ-plots for each distribution considered have been illustrated in Figure 6. Here, note that the
MPN distribution exhibits an almost perfect alignment with the 45◦ line, and therefore it provides a
better fit for extreme quantiles. Finally, Figure 7 displays the profile log-likelihood of μ, σ, and α of the
MPN distribution. It is noticeable that the estimates are unique.

Table 6. Akaike’s information criterion (AIC), Bayesian information criterion (BIC), Kolmogorov–
Smirnov (KSS) test, and the corresponding p-values for all the models considered.

Criteria T S SN PN MPN
AIC 19,735.98 19,732.84 19,732.74 19,729.96
BIC 19,754.74 19,751.61 19,751.50 19,748.72

KSS (p-value) 0.014 (0.516) 0.013 (0.559) 0.012 (0.627) 0.010 (0.820)
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Figure 5. Left panel: Histogram of the empirical distribution and fitted densities by ML superimposed
for pollen dataset. Right panel: Plots of the tails for the four models.

Figure 6. QQ-plots: (a) MPN model; (b) PN model; (c) SN model; (d) T S model.
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Figure 7. Profile log-likelihood of μ, σ and α for the MPN distribution.

5. Concluding Remarks

In this paper, a modification of the continuous symmetric-power distribution has been introduced.
The particular case of the normal distribution the MPN distribution has been examined in detail.
This distribution arises by modifying the distribution function of the symmetrical powers family. After
carrying out this modification, a more flexible family of probability distributions is obtained, allowing
for the kurtosis coefficient to take a certain range of values in the parameter space. For this model,
its basic properties, different method of estimation and Fisher’s information matrix were studied.
By using a real dataset, we showed that the MPN distribution provides a better fit than other existing
models in the literature such as the T S , SN , and PN distributions.
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Appendix A

The first derivatives of �(θ) are given by

∂�(θ)

∂μ
=

1
σ

[
x − μ

σ
− (α − 1)κ(x)

]
∂�(θ)

∂σ
= − 1

σ

[
1 −
(

x − μ

σ

)2
+ (α − 1)

(
x − μ

σ

)
κ(x)

]
∂�(θ)

∂α
=

1
α
− 2α log(2)

2α − 1
+ log

[
1 + Φ

(
x − μ

σ

)]
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The second derivatives of l(θ) are

∂2�(θ)

∂μ2 = − 1
σ2 −

(
α − 1

σ2

) [(
x − μ

σ

)
κ(x) + κ2(x)

]
∂2�(θ)

∂μ∂σ
= − 2

σ2

(
x − μ

σ

)
+

(
α − 1

σ2

)
κ(x)

[
1 −
(

x − μ

σ

)2
−
(

x − μ

σ

)
κ(x)

]

∂2�(θ)

∂μ∂α
= − k(x)

σ

∂2�(θ)

∂σ2 =
1
σ2 − 3

σ2

(
x − μ

σ

)2
+

(
α − 1

σ2

)(
x − μ

σ

)
κ(x)

[
2 −
(

x − μ

σ

)2
−
(

x − μ

σ

)
κ(x)

]

∂2�(θ)

∂σ∂α
= −

(
x − μ

σ2

)
k(x)

∂2�(θ)

∂α2 = − 1
α2 +

2α log2(2)
(2α − 1)2
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Abstract: In this paper, we propose a novel class of probability distributions called Normal-G. It has
the advantage of demanding no additional parameters besides those of the parent distribution,
thereby providing parsimonious models. Furthermore, the class enjoys the property of identifiability
whenever the baseline is identifiable. We present special Normal-G sub-models, which can fit
asymmetrical data with either positive or negative skew. Other important mathematical properties
are described, such as the series expansion of the probability density function (pdf), which is used
to derive expressions for the moments and the moment generating function (mgf). We bring Monte
Carlo simulation studies to investigate the behavior of the maximum likelihood estimates (MLEs) of
two distributions generated by the class and we also present applications to real datasets to illustrate
its usefulness.

Keywords: probabilistic distribution class; normal distribution; identifiability; maximum likelihood;
moments

1. Introduction

For many purposes, statistical distributions are used in a plethora of science fields. They are
regularly useful tools to describe natural and social phenomena, providing suitable models which can
help dealing with real problems, such as for instance, those concerning the prediction of an event of
interest. Recent works have focused attention at formulating and describing new classes of probability
distributions, which are defined generally as extensions of widely known models by adding a single or
more parameters to the cumulative distribution function (cdf). Hopefully, the new models will provide
more flexibility and better fitting to real data. Some examples are [1,2] where a shape parameter is
added to the model by exponentiating the cdf. A general method of introducing a parameter to expand
a family of distributions was presented by [3]; they applied the method to create a new two-parameter
extension of the exponential distribution and a new three-parameter Weibull distribution.

A natural generalization of the Normal pdf was proposed by [4] and perhaps it is the most widely
known generalized Normal distribution. The power 2 appearing in the original pdf was replaced by a
shape parameter s > 0. Therewith, the new pdf becomes:

f (x|μ, σ, s) = K exp
{
−
∣∣∣∣ x − μ

σ

∣∣∣∣s} ,
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where K is a normalizing constant, which depends on σ and s. One can see that the Laplace distribution
is a particular case of the generalized Normal of Nadarajah [4] when s = 1.

Azzalini [5] defined a mathematically tractable class that includes strictly (not just asymptotically)
the Normal distribution. The general pdf of the class is 2G(λy) f (y) for −∞ < y < ∞, where λ ∈ R,
G is an absolutely continuous cdf, d

dy G and f are pdfs symmetric about 0. Making G = Φ and
f = φ, namely the standard normal cdf and pdf respectively, one gets to the well-known skew-normal
distribution, whose pdf is φ(y; λ) = 2φ(y)Φ(λy). It is easy to see that φ(y; 0) = φ(y), but when λ 
= 0,
the distribution is asymmetric and its coefficient of skewness has the same sign as λ.

A generalization denoted by compressed normal distribution was introduced by [6], whose
objective was dealing with negatively skewed data (specifically with human longevity data); in this
way, they induced a skew by adding kx to the denominator of the location-scale transformation, that is,

t(x) =
x − μ

σ + kx

and when k < 0, the curve presents a negative skew; for k > 0, a positive skew occurs.
Classes with one or more additional parameters usually generalize existing classes as particular cases.

The McDonald-Weibull distribution [7] is an important sub-model of the McDonald class; it has three extra
parameters and includes the Beta-Weibull [8] and the Kumaraswamy-Weibull [9] as special cases.

A technique to derive families of continuous distributions using a pdf as a generator was
introduced by [10] and the models emerged from such method are called members of the T-X family.
In other words, if r(t) is the pdf of a random variable T ∈ [a, b], for −∞ ≤ a < b ≤ ∞ and W(G(x)) is
a function of the cdf G(x) of a random variable X so that:

• W(G(x)) ∈ [a, b];
• W(G(x)) is differentiable and monotonically non-decreasing;
• W(G(x)) → a as x → −∞ and W(G(x)) → b as x → ∞;

then F(x) =
∫W(G(x))

a r(t)dt is the cdf of a new family of distributions.
An example of a T-X family member is the Gompertz-G class [11]; to define its cdf, the chosen

functions were W[G(x)] = − log[1− G(x)] and r(t) = θeγte−
θ
γ (e

γt−1) for t > 0, given that θ > 0, γ > 0.
Varying G(x), one can get different sub-models of the class.

The procedure to define a T-X family member is indeed capable to generalize a large number
of distributions. Even though it can be regarded as a particular case described by the method of
generating classes of probability distributions presented in the recent work of [12]. This new method
has a high power of generalization. It consists of creating distribution classes by integrating a cdf,
such that the limits of the integration are special functions that satisfy some conditions. Thus, the cdf
of the general class is given by:

F(x) = ζ(x)
n

∑
j=1

∫ Uj(x)

Lj(x)
dH(t)− ν(x)

n

∑
j=1

∫ Vj(x)

Mj(x)
dH(t) (1)

where H is a cdf, n ∈ N, ζ, ν : R �→ R and Lj, Uj, Mj, Vj : R �→ R ∪ {±∞} are the aforementioned
special functions that will be discussed in the next section.

Based on this innovative method, we introduce the Normal-G class of distributions. We consider
that this extension will yield good submodels. This paper aims to investigate and compare some of
them with other competitive extended probability distributions.

2. The Normal-G Class and Some Mathematical Properties

The method established by [12] states that if H, ζ, ν : R �→ R and Lj, Uj, Mj, Vj : R �→ R∪ {±∞}
for j = 1, 2, 3, . . . , n are monotonic and right continuous functions such that:

(c1) H is a cdf and ζ and ν are non-negative;
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(c2) ζ(x), Uj(x) and Mj(x) are non-decreasing and ν(x), Vj(x), Lj(x) are non-increasing ∀j =
1, 2, 3, . . . , n;

(c3) If lim
x→−∞

ζ(x) 
= lim
x→−∞

ν(x), then lim
x→−∞

ζ(x) = 0 or lim
x→−∞

Uj(x) = lim
x→−∞

Lj(x) ∀j =

1, 2, 3, . . . , n, and lim
x→−∞

ν(x) = 0 or lim
x→−∞

Mj(x) = lim
x→−∞

Vj(x) ∀j = 1, 2, 3, . . . , n;

(c4) If lim
x→−∞

ζ(x) = lim
x→−∞

ν(x) 
= 0, then lim
x→−∞

Uj(x) = lim
x→−∞

Vj(x) and lim
x→−∞

Mj(x) =

lim
x→−∞

Lj(x) ∀j = 1, 2, 3, . . . , n;

(c5) lim
x→−∞

Lj(x) ≤ lim
x→−∞

Uj(x) and if lim
x→−∞

ν(x) 
= 0, then lim
x→+∞

Mj(x) ≤ lim
x→+∞

Vj(x) ∀j =

1, 2, 3, . . . , n;
(c6) lim

x→+∞
Un(x) ≥ sup{x ∈ R : H(x) < 1} and lim

x→+∞
L1(x) ≤ inf{x ∈ R : H(x) > 0};

(c7) lim
x→+∞

ζ(x) = 1;

(c8) lim
x→+∞

ν(x) = 0 or lim
x→+∞

Mj(x) = lim
x→+∞

Vj(x) ∀j = 1, 2, 3, . . . , n and n ≥ 1;

(c9) lim
x→+∞

Uj(x) = lim
x→+∞

Lj+1(x) ∀j = 1, 2, 3, . . . , n − 1 and n ≥ 2;

(c10) H is a cdf without points of discontinuity or all functions Lj(x) and Vj(x) are constant at
the right of the vicinity of points whose image are points of discontinuity of H, being also
continuous in that points. Moreover, H does not have any point of discontinuity in the set{

lim
x→±∞

Lj(x), lim
x→±∞

Uj(x), lim
x→±∞

Mj(x), lim
x→±∞

Vj(x)
}

for some j = 1, 2, 3, . . . , n;

then Equation (1) is a cdf.
Let n = 1, ζ(x) = 1, ν(x) = 0, L1(x) = −∞, U1(x) = [2G(x) − 1]/ (G(x)[1 − G(x)]) and

H(t) = Φ(t); the function in Equation (1) turns into:

FG(x) =
∫ 2G(x)−1

G(x)(1−G(x))

−∞
dΦ(t) , (2)

where G(x) is a cdf. Since ν(x) = 0, there is no need to specify M1(x) and V1(x). The conditions (c1),
(c7), (c8) and (c10) are straightforward; clearly (c4), (c5) and (c9) do not need to be verified in this case.
Given that G(x) is non-decreasing:

x1 < x2 ⇒ G(x1) ≤ G(x2) ⇒
1

1 − G(x1)
≤ 1

1 − G(x2)

⇒ 1
1 − G(x1)

− 1
G(x1)

≤ 1
1 − G(x2)

− 1
G(x2)

⇒ 2G(x1)− 1
G(x1)(1 − G(x1))

≤ 2G(x2)− 1
G(x2)(1 − G(x2))

⇒ U1(x1) ≤ U1(x2) ,

so U1(x) is non-decreasing, as well as ζ(x); and since L1(x) is non-increasing, (c2) is true. Considering
that U1(x) = 1/[1 − G(x)]− 1/G(x), it is easy to verify that lim

x→−∞
U1(x) = −∞ = lim

x→−∞
L1(x); and

since lim
x→−∞

ν(x) = 0, (c3) is satisfied. The condition (c6) is also true because lim
x→+∞

U1(x) = +∞ =

sup{x ∈ R : H(x) < 1} and lim
x→+∞

L1(x) = −∞ = inf{x ∈ R : H(x) > 0}.

Therefore, according to the method exposed above, Equation (2) is a cdf and, from now on, we will
denote it by Normal-G class of probability distributions. The new cdf can be viewed as a composed
function of G(x), which will be referred as parent distribution or baseline; in agreement with [12], if the
baseline is continuous (discrete), then the Normal-G will generate a continuous (discrete) distribution,
whose support will be the same as G(x). It is worth remarking that the proposed class demands no
additional parameters other than the ones of the parent distribution.

Although the Normal-G class has been defined as a composed function of a single G(x), it is
possible to formulate classes that depend on more than one baseline; see [12] for further details.
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We can rewrite Equation (2) as:

FG(x) =
∫ 2G(x)−1

G(x)(1−G(x))

−∞

1√
2π

e−t2/2dt , (3)

and since φ(t) = 1√
2π

e−t2/2, and Φ(x) =
∫ x
−∞ φ(t)dt, we get to:

FG(x) = Φ
(

2G(x)− 1
G(x)[1 − G(x)]

)
. (4)

In case of continuous G(x), we can take the derivative of Equation (4) with respect to x:

fG(x) = φ

(
2G(x)− 1

G(x)[1 − G(x)]

)
1 − 2G(x)[1 − G(x)]

G(x)2[1 − G(x)]2
g(x) . (5)

The expression in Equation (5) is the pdf of the class Normal-G, whose hazard rate function (hrf) is
given by:

τG(x) =
φ
(

2G(x)−1
G(x)[1−G(x)]

)
1 − Φ

(
2G(x)−1

G(x)[1−G(x)]

) [1 − 2G(x)[1 − G(x)]
G(x)2[1 − G(x)]2

g(x)
]

.

Many distributions presented in the statistical literature undergo the problem of non-identifiability.
One cannot assume that the parameters of a non-identifiable model will be uniquely determined from
a set of observed random variables; in other words, inferences on the parameters may not be reliable.
As the Theorem 1 states, the Normal-G class is exempt from this problem, whenever the parent
distribution G satisfies the property of identifiability.

Theorem 1. If the cdf FG belongs to the Normal-G class and the cdf G is identifiable, then FG is identifiable.

Proof of Theorem 1. Given that 0 < G(x|ξ j) < 1 for j = 1, 2, where ξ j is a parametric vector and
assuming that FG(x|ξ1) = FG(x|ξ2), we have:

Φ
(

2G(x|ξ1)− 1
G(x|ξ1)[1 − G(x|ξ1)]

)
= Φ

(
2G(x|ξ2)− 1

G(x|ξ2)[1 − G(x|ξ2)]

)
.

Since the function Φ is injective, we can write:

1
1 − G(x|ξ1)

− 1
G(x|ξ1)

=
1

1 − G(x|ξ2)
− 1

G(x|ξ2)

G(x|ξ1)− G(x|ξ2)

[1 − G(x|ξ1)][1 − G(x|ξ2)]
=

G(x|ξ1)− G(x|ξ2)

−G(x|ξ1)G(x|ξ2)

If G(x|ξ1) 
= G(x|ξ2), then:

[1 − G(x|ξ1)][1 − G(x|ξ2)] = −G(x|ξ1)G(x|ξ2) (6)

The left-hand side of Equation (6) is necessarily positive for almost all x ∈ R, whereas the right-hand
side is negative, a contradiction. Thereby, G(x|ξ1) = G(x|ξ2) ⇒ ξ1 = ξ2.

2.1. Special Normal-G Sub-Models

Here we present two distributions from the Normal-G class.
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2.1.1. The Normal-Weibull Distribution

Weibull is one of the most used models to describe natural phenomena and failure of several
kinds of components. It is extensively used in survival analysis and reliability. In recent times, many
authors have focused on new extensions for it, such as [13,14]. The two-parameter Weibull cdf is given
by GW(x|k, λ) = 1 − e−(x/λ)k

for x ≥ 0, where k, λ > 0. Replacing the baseline G in Equation (4) by
GW , we get to the Normal-Weibull cdf, namely:

FNW(x) = Φ

[
e(x/λ)k − 2

1 − e−(x/λ)k

]
, (7)

for x ≥ 0. Using Equation (5) to write the corresponding pdf, we have:

fNW(x) = φ

[
e(x/λ)k − 2

1 − e−(x/λ)k

](
kxk−1

λk

)
1 − 2

[
1 − e−(x/λ)k

]
e−(x/λ)k

e−(x/λ)k
[
1 − e−(x/λ)k

]2 . (8)

Plots of pdf and hrf of the Normal-Weibull distribution for different values of the parameters are
portrayed in Figure 1. The different shapes of the hrf curve evince the flexibility of the model. Particularly
for k = 1, the Weibull distribution is equivalent to an Exponential distribution, so the hrf is constant;
in contrast, the Normal-Exponential model has an increasing hrf in some left-bounded interval.
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Figure 1. Plots of pdf and hrf for the Normal-Weibull distribution.

In Figure 2, the vertical axis shows the range of values of Pearson’s moment coefficient of
skewness, which depends on the parameters k and λ. We can see in the graph that the Normal-Weibull
distribution is also able to fit data with either positive or negative skew.

Figure 2. Skewness of the Normal-Weibull distribution.
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2.1.2. The Normal-Log-Logistic Distribution

The Log-logistic distribution is commonly applied to reliability and oftentimes it works well

as a lifetime model. Its cdf is given by GLL(x|α, β) = 1 −
[
1 + (x/α)β

]−1
for x ≥ 0, where α, β > 0.

The Normal-log-logistic cdf is easily obtained replacing the parent distribution G in Equation (4) by
GLL. Thus:

FNLL(x) = Φ
[( x

α

)β
−
( x

α

)−β
]

, (9)

for x ≥ 0. Taking the derivative of Equation (9) with respect to x, we get to the pdf:

fNLL(x) = φ

[( x
α

)β
−
( x

α

)−β
] [

1 +
( x

a

)2β
]

βαβx−β−1 . (10)

Figure 3 shows plots of pdf and hrf for different values of α and β. It is worth noting that the
Normal-log-logistic distribution may have a decreasing hrf of early failure. It is also possible for the
hrf to be increasing or unimodal.
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Figure 3. Plots of pdf and hrf for the Normal-log-logistic distribution.

Pearson’s moment coefficient of skewness for the Normal-log-logistic distribution is depicted in
Figure 4.

Figure 4. Skewness of the Normal-log-logistic distribution.

2.2. Series Representation

The normal cdf is related to the error function erf as follows:

Φ(z) =
1
2

[
1 + erf

(
z√
2

)]
, (11)
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where erf(z) = 2√
π

∫ z
0 e−t2

dt. Provided that erf(z/
√

2) can be linearly represented by:

erf
(

z√
2

)
=

2√
π

∞

∑
n=0

(−1)n · (z/
√

2)2n+1

n!(2n + 1)

=

√
2
π

·
∞

∑
n=0

(
−1

2

)n z2n+1

n!(2n + 1)
, (12)

replacing Equation (12) in Equation (11), we obtain:

Φ(z) =
1
2
+

1√
2π

∞

∑
n=0

(
−1

2

)n z2n+1

n!(2n + 1)
. (13)

Now, considering |G(x)| < 1, we can write:

2G(x)− 1
G(x)[1 − G(x)]

=
2G(x)− 1

G(x)
· 1

1 − G(x)
=

(
2 − 1

G(x)

) ∞

∑
k=0

G(x)k (14)

and replacing z of the right member of Equation (13) by the expression in Equation (14), we have:

Φ
(

2G(x)− 1
G(x)[1 − G(x)]

)
=

1
2
+

1√
2π

∞

∑
n=0

(−1/2)n

n!(2n + 1)

[(
2 − 1

G(x)

) ∞

∑
k=0

G(x)k

]2n+1

=
1
2
+

1√
2π

∞

∑
n=0

(−1/2)n

n!(2n + 1)

(
2 − 1

G(x)

)2n+1

︸ ︷︷ ︸
A1

[
∞

∑
k=0

G(x)k

]2n+1

︸ ︷︷ ︸
A2

. (15)

The right member of Equation (15) has two factors, namely, A1 and A2, that can be rewritten as power
series. Concerning to A1, the binomial theorem allows us to write:(

2 − 1
G(x)

)2n+1
=

2n+1

∑
j=0

(
2n + 1

j

)
22n+1−j

(
− 1

G(x)

)j

=
2n+1

∑
j=0

(
2n + 1

j

)
(−1)j · 22n+1−j · G(x)−j

=
2n+1

∑
j=0

δj · G(x)−j (16)

It is a known result related to power series raised to powers that:[
∞

∑
k=0

akG(x)k

]N

=
∞

∑
k=0

ckG(x)k , (17)

where c0 = aN
0 , ck =

1
ka0

∑k
s=1(sN − k + s)asck−s for k ≥ 1 and N ∈ N. Setting N = 2n + 1 and ak = 1

for all k ≥ 0, we get to the expression A2 in Equation (15) and we can use the result in Equation (17) to
write as follows: [

∞

∑
k=0

G(x)k

]2n+1

=
∞

∑
k=0

ck · G(x)k , (18)
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such that c0 = 1, ck =
1
k ∑k

s=1(s[2n + 1]− k + s)ck−s for k ≥ 1 and 2n + 1 ∈ N. Now replacing A1 and
A2 of the Equation (15) by the right members of the Equations (16) and (18) respectively, we obtain the
result below:

Φ
(

2G(x)− 1
G(x)[1 − G(x)]

)
=

1
2
+

1√
2π

∞

∑
n=0

(−1/2)n

n!(2n + 1)
·

2n+1

∑
j=0

δj · G(x)−j ·
∞

∑
k=0

ck · G(x)k

=
1
2
+

∞

∑
n=0

2n+1

∑
j=0

∞

∑
k=0

(
2n + 1

j

)
(−1)n+j · 2n+1−j

n!(2n + 1)
√

2π
ck︸ ︷︷ ︸

ηj,n,k

·G(x)k−j

=
1
2
+

∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k · G(x)k−j . (19)

The Fubini’s theorem on differentiation allows us to write the derivative of Equation (19) with
respect to x as follows:

fG(x) =
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k · (k − j)g(x)G(x)k−j−1︸ ︷︷ ︸
gk−j(x)

. (20)

Since gk−j(x) is the pdf of a random variable of the exponentiated family, as described in [15,16], one
can say that (20) is the Normal-G pdf (5) expressed as a linear combination of pdfs of exponentiated
distributions. Such useful property is typically found and detailed in works on new classes of
distributions; see for instance: [17–20].

2.3. Quantile Function

By inverting Equation (4), the quantile function associated with the Normal-G class is obtained.
For simplification, let us write v = FG(x). From Equation (4) we have:

Φ−1(v) =
2G(x)− 1

G(x)[1 − G(x)]
⇒ Φ−1(v)G(x)2 + [2 − Φ−1(v)]G(x)− 1 = 0 ,

that is, a quadratic equation for G(x), that admits the following two solutions:

Φ−1(v)− 2 −
√

4 + Φ−1(v)2

2Φ−1(v)
and

Φ−1(v)− 2 +
√

4 + Φ−1(v)2

2Φ−1(v)
.

If the first solution above is picked, then G(x) might assume values lesser than 0 (see v = 0.95
for example). On the other hand, the second one allows us to verify that 0 < G(x) < 1 is valid for all
x ∈ R. Finally, we can write the quantile function of Equation (4) as follows:

QF(v) = QG

[
Φ−1(v)− 2 +

√
4 + Φ−1(v)2

2Φ−1(v)

]
, (21)

such that QG(·) is the quantile function of the baseline G. A uniform random number generator and
(21) make the simulation of random variables following (3) quite simple. Namely, if Z ∼ U (0, 1),
then QF(Z) follows a Normal-G distribution.
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2.4. Raw Moments, Incomplete Moments and Moment Generating Function

Provided that X follows a Normal-G distribution, the rth raw moment of X is E(Xr) =∫ ∞
−∞ xr fG(x)dx, where fG(x) is given in Equation (20) and r ∈ Z∗

+. Using Fubini’s theorem to change
the order of integration and series, we have:

E(Xr) =
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k

∫ ∞

−∞
xrgk−j(x)dx (22)

=
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,kE(Yr
k−j) (23)

where Yk−j follows the exponentiated distribution whose pdf is gk−j(x) shown in Equation (20).
Despite the upper infinity limit in the sums, expressions like Equation (23) are not intractable.

According to [21], one can get fairly accurate results truncating each infinite sum by 20; they used
numerical routines to compute accurately similar expressions for the moments of some Kumaraswamy
generalized distributions.

The rth moment can also be represented in terms of the quantile function of the baseline. Defining
u = Gk−j(x) and replacing x in Equation (22) by QG

(
u1/(k−j)

)
, we have:

E(Xr) =
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k

∫ 1

0

[
QG

(
u

1
k−j

)]r
du .

The rth incomplete moment of X is given by the following expression:

Tr(z) =
∫ z

−∞
xr fG(x)dx =

∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,kT∗
r (z) (24)

where T∗
r (z) is the rth incomplete moment of Yk−j. One can also write Equation (24) in terms of the

quantile function of G:

Tr(z) =
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k

∫ [G(x)]k−j

0

[
QG

(
u

1
k−j

)]r
du .

The mgf is a function associated with a random variable, whose moments can be straightforwardly
derived using it. It is also useful to check whether two functions of random variables are equal since
there is a bijection between pdfs and mgfs (when they exist). The mgf MX(t) of X is the expected value
of etX, where t ∈ (−ι, ι), ι > 0. Given that MYk−j(t) is the mgf of Yk−j, on the lines of Equation (23),
we can write:

MX(t) =
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,k

∫ ∞

−∞
etxgk−j(x)dx

=
∞

∑
n,k=0

2n+1

∑
j=0

ηj,n,kMYk−j(t) .

2.5. Estimation and Inference

Attractive asymptotic properties, such as efficiency and consistency, are some of the reasons
that make the maximum likelihood method the most usually applied method of parametric point
estimation. The MLEs are the points that maximize the likelihood function over the domain of the
parameter space. Since the logarithmic function is increasing, performing the maximization of the
log-likelihood function, besides being a more convenient task, also provides the MLEs.
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Given that ξ = (ξ1, . . . , ξr)� is the r × 1 parametric vector of a random variable X that follows a
Normal-G distribution, G(x|ξ) = Gξ(x) is the baseline, g(x|ξ) = gξ(x) is its corresponding pdf and
X = (x1, . . . , xm) is a complete random sample of size m from X, then the log-likelihood function is:

�(ξ|X) =
m

∑
j=1

log φ

(
2Gξ(xj)− 1

Gξ(xj)
[
1 − Gξ(xj)

])+
m

∑
j=1

log
(

1 − 2Gξ(xj) + 2Gξ
2(xj)

)
− 2

m

∑
j=1

log Gξ(xj)− 2
m

∑
j=1

log
[
1 − Gξ(xj)

]
+

m

∑
j=1

log gξ(xj) .

(25)

Thanks to powerful functions available within the software for statistical computing, it is possible
to use numerical methods to maximize (25); for this purpose, R [22] brings the function optim in
package stats.

The MLEs can also be obtained by solving the system of equations U(ξ|X) = 0r, where U(ξ|X) =
∇ξ�(ξ|X) = (ui)1≤i≤r is the score vector, such that:

ui =
m

∑
j=1

[Gξ(xj)− 1]4 − G4
ξ(xj)

G3
ξ(xj)[1 − Gξ(xj)]3

· ∂

∂ξi
Gξ(xj) +

m

∑
j=1

4Gξ(xj)− 2

1 − 2Gξ(xj) + 2G2
ξ(xj)

· ∂

∂ξi
Gξ(xj)

− 2
m

∑
j=1

1
Gξ(xj)

· ∂

∂ξi
Gξ(xj) + 2

m

∑
j=1

1
1 − Gξ(xj)

· ∂

∂ξi
Gξ(xj) +

m

∑
j=1

1
gξ(xj)

· ∂

∂ξi
gξ(xj)

and 0r is a r × 1 vector of zeros.
The information matrix J(ξ|X) is essential to construct confidence intervals and to test hypotheses

on ξ. The expectation of J(ξ|X) is the expected Fisher information matrix Iξ and under certain
conditions of regularity,

√
m(ξ̂ − ξ) follows approximately a multivariate normal distribution

Nr

(
0r, Iξ

−1
)

. The expression for J(ξ|X) is presented in Appendix A.

3. Numerical Analysis

3.1. Simulation Study

We used the free software R version 3.4.4 [22] to carry out the Monte Carlo simulation study; the
number of replications was 10,000. The pseudo-random samples were generated via Von Neumann’s
acceptance-rejection method [23]. This simple procedure requires the corresponding pdf y = f (x),
a minorant and a majorant for x and a majorant for y; it is not necessary to implement the quantile
function in this case. Four sample sizes, namely n = 50, 100, 200 and 500, and five different values
for the vector of parameters were considered. For each scenario, we calculated the bias and the mean
squared error (MSE) as follows:

Biasi =
1

10000

10000

∑
j=1

(
ξ̂ij − ξi

)
, MSEi =

1
10000

10000

∑
j=1

(
ξ̂ij − ξi

)2

where ξi is the i-th element of the vector of parameters ξ = (ξ1, . . . , ξr)� and ξ̂ij is the estimate for ξi
at the j-th replication. The log-likelihood function was maximized using the technique of simulated
annealing, available by the optim subroutine, for which the user has to pass a vector ξ0 of initial values.
At first, we took ξ0 = 1r, namely a r × 1 vector of ones, then we run one single replication considering
sample size n = 50; the obtained estimates from this procedure were assigned to ξ0 and used in all of
the aforementioned scenarios.

The results for both parameters of the Normal-Weibull density (8), shown in Table 1, indicate that
the estimates are fairly close to the actual values. Moreover, as it would be expected, the bigger the
sample size, the smaller the MSEs.
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Table 1. Bias and MSE of the estimates under the maximum likelihood method for the
Normal-Weibull model.

Actual Value Bias MSE

n k λ k̂ λ̂ k̂ λ̂

1.0 1.7 0.02707850 −0.00948110 0.00822299 0.00659991
0.5 2.0 0.01446186 −0.02037125 0.00209051 0.03647395

50 3.0 0.5 0.07878343 −0.00096778 0.07352625 0.00006357
0.9 4.0 0.02586182 −0.02752101 0.00675452 0.04497248
7.1 5.8 0.19086399 −0.00540407 0.41402178 0.00153179

1.0 1.7 0.01306919 −0.00453981 0.00377883 0.00332042
0.5 2.0 0.00726917 −0.01412373 0.00095786 0.01838681

100 3.0 0.5 0.03914672 −0.00057766 0.03400929 0.00003204
0.9 4.0 0.01167774 −0.01403219 0.00305903 0.02273089
7.1 5.8 0.08363335 −0.00279451 0.18835856 0.00077190

1.0 1.7 0.00651588 −0.00253820 0.00181409 0.00166703
0.5 2.0 0.00358578 −0.00678178 0.00045681 0.00923355

200 3.0 0.5 0.01901041 −0.00029362 0.01628677 0.00001604
0.9 4.0 0.00658567 −0.00745541 0.00148059 0.01138373
7.1 5.8 0.03656102 −0.00066316 0.09041610 0.00038519

1.0 1.7 0.00317837 −0.00127234 0.00071164 0.00066754
0.5 2.0 0.00195165 −0.00609800 0.00017967 0.00370983

500 3.0 0.5 0.00748033 −0.00008804 0.00636008 0.00000641
0.9 4.0 0.00297109 −0.00200533 0.00057744 0.00455810
7.1 5.8 0.01427116 −0.00045889 0.03550063 0.00015444

The results given in Table 2 suggest that the estimates of the parameters of the Normal-log-logistic
model (10) have similar behavior of those shown in Table 1, that is to say, the biases are quite small
and the MSE decreases as the sample size increases.

Table 2. Bias and MSE of the estimates under the maximum likelihood method for the
Normal-log-logistic model.

Actual Value Bias MSE

n α β α̂ β̂ α̂ β̂

2.7 5.0 0.00054404 0.13424700 0.00109551 0.20695579
0.4 1.2 0.00024567 0.03275857 0.00041864 0.01195999

50 6.0 2.5 −0.00002168 0.06835325 0.02161847 0.05192641
4.0 3.4 0.00185659 0.08997153 0.00521251 0.09539035
1.0 8.0 0.00010181 0.21835854 0.00005868 0.53164800

2.7 5.0 0.00012046 0.06377031 0.00055694 0.09509012
0.4 1.2 0.00005101 0.01519026 0.00021246 0.00547655

100 6.0 2.5 0.00191769 0.03297888 0.01099844 0.02386620
4.0 3.4 −0.00004923 0.04701171 0.00263820 0.04439236
1.0 8.0 0.00009827 0.11057419 0.00002980 0.24582360

2.7 5.0 0.00015504 0.03299212 0.00028047 0.04585339
0.4 1.2 0.00006551 0.00866507 0.00010677 0.00265802

200 6.0 2.5 −0.00106277 0.01625314 0.00553891 0.01145699
4.0 3.4 −0.00002407 0.02295567 0.00133064 0.02123514
1.0 8.0 0.00000852 0.05090923 0.00001503 0.11715066

2.7 5.0 0.00021558 0.01327469 0.00011277 0.01789692
0.4 1.2 −0.00008941 0.00435633 0.00004284 0.00104215

500 6.0 2.5 −0.00042358 0.00648252 0.00222639 0.00447192
4.0 3.4 −0.00007789 0.00855609 0.00053513 0.00826466
1.0 8.0 0.00003954 0.01663711 0.00000604 0.04559331
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3.2. Applications

The first data to be considered is related to the soil fertility influence and the characterization of
the biologic fixation of N2 for the Dimorphandra wilsonii Rizz growth. It was originally studied by [24]
and it also figures in the work of [25]. For 128 plants, the phosphorus concentration in the leaves was
quantified. Here are the numbers: 0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23,
0.24, 0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12, 0.12, 0.10, 0.09, 0.17, 0.19,
0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19, 0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 0.19,
0.27, 0.16, 0.28, 0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12, 0.09, 0.14, 0.07, 0.09, 0.05, 0.06, 0.11, 0.16, 0.20, 0.25,
0.16, 0.13, 0.11, 0.11, 0.11, 0.08, 0.22, 0.11, 0.13, 0.12, 0.15, 0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12,
0.18, 0.14, 0.18, 0.13, 0.12, 0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16, 0.19,
0.15, 0.07, 0.09, 0.17, 0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08, 0.12, 0.13. Table 3 brings some
descriptive statistics.

Table 3. Descriptive statistics for soil fertility dataset.

n mean median min max Variance Skewness Kurtosis

128 0.14078 0.13 0.05 0.28 0.00296 0.45438 −0.64478

We fitted the Normal-Weibull distribution (NW) (7) to the soil fertility dataset and compared
it to the fits of Weibull (W), Exponentiated Weibull (ExpW) [1], Marshall-Olkin Extended Weibull
(MOEW) [26], Kumaraswamy-Weibull (KwW) [9], Beta-Weibull (BW) [8] and McDonald-Weibull
(McW) [7]. The function goodness.fit of the R package AdequacyModel provides, besides the MLEs
and the standard errors (SE), some criteria for model selection (AIC, CAIC, BIC and HQIC); they are
shown in Table 4.

Table 4. Fitted distributions to the soil fertility dataset (estimates and information criteria).

Distribution Parameters Estimates (SE) AIC CAIC BIC HQIC

NW k 0.8398477 (0.0445182) −395.7584 −395.6624 −390.0544 −393.4408
λ 0.2049909 (0.0074017)

W k 2.8185566 (0.1919639) −385.6297 −385.5337 −379.9256 −383.3121
λ 0.1584836 (0.0052564)

ExpW k 1.5321145 (0.5023377) −387.4361 −387.2426 −378.8801 −383.9598
λ 0.0939938 (0.0374090)
a 3.5076974 (2.6763009)

MOEW k 3.9300962 (0.2426080) −377.9475 −377.754 −369.3914 −374.4711
λ 8.9163819 (4.5940983)
a 0.0031628 (0.0007240)

KwW k 1.1503912 (0.3443931) −384.1491 −383.8239 −372.7409 −379.5139
λ 0.1953371 (0.1291154)
a 3.3444607 (1.5352029)
b 7.5480698 (10.206142)

BW k 0.8477957 (0.2166409) −385.7589 −385.4337 −374.3508 −381.1237
λ 0.3304922 (0.4395169)
a 9.0436364 (4.5271059)
b 15.211970 (22.481984)

McW k 5.6665646 (8.3928707) −384.6657 −384.1739 −370.4055 −378.8717
λ 0.5912941 (0.5124852)
a 13.441193 (23.051917)
b 14.363802 (18.264058)
c 0.0870787 (0.1234075)
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Information criteria may be used as relative goodness-of-fit measures, such that the lowest values
will characterize the best fitted models. In this sense, the Normal-Weibull distribution outperforms the
other ones.

Figure 5 shows the histogram of soil fertility data and the fitted densities with the three lowest values of
AIC among the distributions in the first column of Table 4. Although the Normal-Weibull and Exponentiated
Weibull curves appear to be very close, the blue one (NW) seems to be closer to the histogram.
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Figure 5. Histogram of soil fertility dataset and fitted densities.

The modified versions of Anderson-Darling (A∗) and Cramér-von Mises (W∗) statistics (more
details in [27]) are typically used to investigate the quality of fit of probabilistic models. Table 5 brings
these statistics concerning the fitted models to soil fertility data.

Table 5. Goodness-of-fit test statistics.

Distribution A∗ W∗

NW 0.454008 0.079841
W 1.156994 0.207118

ExpW 0.784451 0.138403
MOEW 1.123759 0.183128
KwW 0.907239 0.163617
BW 0.750593 0.130501

McW 0.758296 0.137509

The measures portrayed in Table 5 represent the difference between the empirical distribution
function and the real underlying cdf; hence we will consider that the models with lower values of A∗ and
W∗ fit the data better. Therefore, once again the Normal-Weibull distribution beats the competing models.

The second application concerns to a dataset representing waiting times (in seconds) between
65 successive eruptions of water through a hole in the cliff at the coastal town of Kiama (New South
Wales, Australia), known as the Blowhole. These data can be obtained in [17,28]. Here are they: 83, 51,
87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28,
56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.
Table 6 provides descriptive statistics.

Table 6. Descriptive statistics for eruption dataset.

n Mean Median min max Variance Skewness Kurtosis

64 39.82812 28 7 169 1139.097 1.54641 2.77108

We fitted the Normal-log-logistic distribution (NLL) (9) to the eruption dataset and compared
it to the fits of Log-logistic (LL), Exponentiated Log-logistic (ExpLL), Beta-log-logistic (BLL),
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Kumaraswamy-log-logistic (KwLL) and Gompertz-log-logistic (GoLL); the four latter along the lines
of [1,8,9,11] respectively. Table 7 brings the MLEs, SEs and information criteria.

Table 7. Fitted distributions to the eruption dataset (estimates and information criteria).

Distribution Parameters Estimates (SE) AIC CAIC BIC HQIC

NLL α 28.71747 (2.751091) 587.5681 587.7649 591.8859 589.2691
β 0.568200 (0.042998)

LL α 28.27831 (3.203986) 597.1497 597.3464 601.4674 598.8506
β 1.969345 (0.198878)

ExpLL α 7.394859 (6.479904) 597.3629 597.7629 603.8396 599.9144
β 1.461528 (0.197256)
a 4.572569 (4.470086)

BLL α 7.445103 (10.72863) 596.186 596.864 604.8215 599.588
β 0.484528 (0.223626)
a 17.28664 (13.82502)
b 9.285354 (9.566756)

KwLL α 2.107772 (5.325557) 596.68 597.358 605.3156 600.082
β 0.511324 (0.130629)
a 12.14489 (12.25210)
b 11.42477 (8.749787)

GoLL α 5.667167 (1.680598) 591.7172 592.3952 600.3528 595.1192
β 4.348435 (1.450980)
a 0.035617 (0.017111)
b 0.234894 (0.100666)

Since the Normal-log-logistic fitted model presents the smallest values of AIC, CAIC, BIC and
HQIC compared to the fits of the other distributions, selecting it rather than the others is a reasonable
decision in this case.

In Figure 6 the histogram of eruption data and the fitted densities with the three lowest values
of AIC among the distributions in the first column of Table 7 are depicted. By a visual comparison,
the three curves are apparently good approximations to the histogram, but the Normal-log-logistic’s
seems to explain the behavior of the data more accurately.
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Figure 6. Histogram of eruption dataset and fitted densities.

Table 8 provides the values of A∗ and W∗ of the distributions in the first column of Table 7. These
statistics suggest that GoLL and NLL models fit the eruption dataset very closely. Nonetheless, in order to
pick a more parsimonious model, one should prefer the NLL, since it has fewer parameters than GoLL.
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Table 8. Goodness-of-fit tests.

Distribution A∗ W∗

NLL 0.612291 0.0803799
LL 1.019129 0.1413872

ExpLL 1.138218 0.1617136
BLL 0.837211 0.1141264

KwLL 0.818072 0.1118931
GoLL 0.605822 0.0805111

It is worth mentioning that [17] proposed the new class Exponentiated Kumaraswamy-G and
fitted one of its submodels (with Weibull as baseline) to the same eruption dataset. It presented
A∗ = 0.7594 and W∗ = 0.1037, whereas NLL presented lower values of these statistics as one can check
in Table 8.

4. Concluding Remarks

Based on the method of generating classes of probability distributions presented by [12],
we introduce a new class called Normal-G. It has the advantage of demanding no additional parameters
besides the baseline ones. We demonstrate that the proposed class generates identifiable sub-models as
long as the parent distribution is identifiable. The pdf of the class can be written as a linear combination
of pdfs of exponentiated distributions; it allows us to easily derive the raw moments, the incomplete
moments and the moment generating function.

We bring Monte Carlo simulation studies to attest the good performance of the MLEs of two
distributions generated by the class and to illustrate its usefulness, applications to real datasets
are made. The fitted models are compared to other competitive distributions regarding the
Anderson-Darling and the Cramér-von Mises statistics, as well as commonly used information criteria
as goodness-of-fit measures. The general results indicate that the Normal-G outperforms the other
distributions in comparison. The new class is powerful and provides parsimonious models, which
may hopefully interest practitioners of statistics, soil science, oceanography and other fields.
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Appendix A

The information matrix mentioned in Section 2.5 is given by
J(ξ|X) = −∇ξ∇ξ

��(ξ|X) = −(uih)1≤i≤r,1≤h≤r, where:

uih =
m

∑
j=1

[
2Gξ(xj)− 3

G4
ξ(xj)

−
2Gξ(xj) + 1
[1 − Gξ(xj)]4

]
· ∂

∂ξi
Gξ(xj) ·

∂

∂ξh
Gξ(xj)

+
m

∑
j=1

[1 − Gξ(xj)]
4 − G4

ξ(xj)

G3
ξ(xj)[1 − Gξ(xj)]3

· ∂2

∂ξi∂ξh
Gξ(xj)

+
m

∑
j=1

8[1 − Gξ(xj)]Gξ(xj)

1 − 2Gξ(xj) + 2G2
ξ(xj)

· ∂

∂ξi
Gξ(xj) ·

∂

∂ξh
Gξ(xj)

+
m

∑
j=1

4Gξ(xj)− 2

1 − 2Gξ(xj) + 2G2
ξ(xj)

· ∂2

∂ξi∂ξh
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+
m
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2
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ξ(xj)
· ∂

∂ξi
Gξ(xj) ·

∂

∂ξh
Gξ(xj)−

m

∑
j=1

2
Gξ(xj)

· ∂2

∂ξi∂ξh
Gξ(xj)

+
m

∑
j=1

2
[1 − Gξ(xj)]2

· ∂

∂ξi
Gξ(xj) ·

∂

∂ξh
Gξ(xj) +

m

∑
j=1

2
1 − Gξ(xj)

· ∂2

∂ξi∂ξh
Gξ(xj)

−
m

∑
j=1

1
g2

ξ(xj)
· ∂

∂ξi
gξ(xj) ·

∂

∂ξh
gξ(xj) +

m

∑
j=1

1
gξ(xj)

· ∂2

∂ξi∂ξh
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Abstract: In this article we study the properties, inference, and statistical applications to a parametric
generalization of the truncation positive normal distribution, introducing a new parameter so as to
increase the flexibility of the new model. For certain combinations of parameters, the model includes
both symmetric and asymmetric shapes. We study the model’s basic properties, maximum likelihood
estimators and Fisher information matrix. Finally, we apply it to two real data sets to show the
model’s good performance compared to other models with positive support: the first, related to the
height of the drum of the roller and the second, related to daily cholesterol consumption.

Keywords: truncation; half-normal distribution; likelihood

1. Introduction

The half-normal (HN) distribution is a very important model in the statistical literature. Its density
function has a closed-form and its cumulative distribution function (cdf) depends on the cdf of the
standard normal model (or the error function), which is implemented in practically all mathematical
and statistical software. Pewsey [1,2] provides the maximum likelihood (ML) estimation for the general
location-scale HN distribution and its asymptotic properties. Wiper et al. [3] and Khan and Islam [4]
perform analysis and applications for the HN model from a Bayesian framework. Moral et al. [5] also
present the hnp R package, which produces half-normal plots with simulated envelopes using different
diagnostics from a range of different fitted models. The HN model is also presented in the stochastic
representation of the skew-normal distribution in Azzalini [6,7] and Henze [8]. In recent years this
distribution has been used to model positive data, and it is becoming an important model in reliability
theory despite the fact that it accommodates only decreasing hazard rates. Some of the generalizations
of this distribution can be found in Cooray and Ananda [9], Olmos et al. [10], Cordeiro et al. [11],
Gómez and Bolfarine [12], among others.

In particular, we focused on the extension of Cooray and Ananda [9]. The authors provided a
motivation related to static fatigue life to consider the transformation Z = σY1/α, where Y ∼ HN(1).
This model was named the generalized half-normal (GHN) distribution. An alternative way to extend
the HN model was introduced by Gómez et al. [13] considering a normal distribution with mean
and standard deviation μ and σ, respectively, truncated to the interval (0,+∞) and considering the
reparametrization λ = μ/σ. This model was named the truncated positive normal (TPN) distribution
with density function given by

f (z; σ, λ) =
1

σΦ(λ)
φ
( z

σ
− λ
)

, z, σ > 0, λ ∈ R, (1)
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where φ(·) and Φ(·) denote the density and cdf of the standard normal models, respectively. We
use TPN(σ, λ) to refer to a random variable (r.v.) with density function as in Equation (1). Note that
TPN(σ, 0) ≡ HN(σ).

In this work we consider a similar idea to that used in Cooray and Ananda [9] to extend the
TPN model including the transformation Y = σX1/α, where X ∼ TPN(1, λ). We will refer to this
distribution as the generalized truncation positive normal (GTPN).

The rest of the manuscript is organized as follows. Section 2 is devoted to study of some
important properties of the model, as well as its moments, quantile and hazard functions and its
entropy. In Section 3 we perform an inference and present the Fisher information matrix for the
proposed model. Section 4 discusses the selection model in nested and non-nested models for the
GTPN distribution. In Section 5 we carry out a simulation study in order to study properties of the
ML estimators in finite samples for the proposed distribution. Section 6 presents two applications to
real data-sets to illustrate that the proposed model is competitive versus other common models for
positive data in the literature. Finally, in Section 7, we present some concluding remarks.

2. Model Properties

In this section we introduce the main properties of the GTPN model such as density, quantile and
hazard functions, moments, among others.

2.1. Stochastic Representation and Particular Cases

As mentioned previously, we say that a r.v. Z has GTPN(σ, λ, α) distribution if Z = σY1/α, where
Y ∼ TPN(1, λ). By construction, the following models are particular cases for the GTPN distribution:

• GTPN(σ, λ, α = 1) ≡ TPN(σ, λ).
• GTPN(σ, λ = 0, α) ≡ GHN(σ, α).
• GTPN(σ, λ = 0, α = 1) ≡ HN(σ).

Figure 1 summarizes the relationships among the GTPN and its particular cases. We highlight
that λ = 0 and α = 1 are within the parametric space (not on the boundary). Therefore, to decide
between the GTPN versus the TPN, GHN, or HN distributions we can use classical hypothesis tests
such as the likelihood ratio test (LRT), score test (ST), or gradient test (GT).

GTPN(σ, λ, α)

λ=0

��

α=1

��
λ=0,α=1

��

TPN(σ, λ)

λ=0

��

GHN(σ, α)

α=1

��
HN(σ)

Figure 1. Particular cases for the GTPN distribution.

2.2. Density, Cdf and Hazard Functions

Proposition 1. For Z ∼ GTPN(σ, λ, α), the density function is given by

f (z; σ, λ, α) =
α

σαΦ(λ)
zα−1φ

(( z
σ

)α
− λ
)

, z ≥ 0. (2)
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where σ, α > 0 and λ ∈ R

Proof. Considering the stochastic representation discussed in Section 2.1, we have that z = g(y) =
σy1/α and

fZ(z) = fY(g−1(z))
∣∣∣∣dg−1(z)

dz

∣∣∣∣ = 1
Φ(λ)

φ(g−1(z)− λ)
αzα−1

σα
.

Replacing g−1(z) = (z/σ)α the result is obtained.

Proposition 2. For Z ∼ GTPN(σ, λ, α), the cdf and hazard function are given by

F(z; σ, λ, α) =
Φ(( z

σ )
α − λ) + Φ(λ)− 1

Φ(λ)
and h(z) =

f (z)
1 − F(z)

=
αzα−1φ

(( z
σ

)α − λ
)

σα
[
1 − Φ

(( z
σ

)α − λ
)] ,

respectively, for all z ≥ 0.

Figure 2 shows the density and hazard functions for the GTPN(σ = 1, λ, α) model, considering
some combinations for (λ, α). Note that the GTPN model can assume decreasing and unimodal shapes
for the density function and decreasing or increasing shapes for the hazard function.

Figure 2. Density and hazard functions for the GTPN(σ = 1, λ, α) model with different combinations
of λ and α.

2.3. Mode

Proposition 3. The mode of the GTPN(σ, λ, α) model is attained:

1. at z = σ
21/α

(
λ +

√
λ2 + 4

(
1 − 1

α

))1/α

whenever α ≥ 1 or 0 < α < 1 and λ > 0,

2. at z = 0 in otherwise.

Proof. Let l = log( f ), where f is the density function defined in (2), of a direct computation we have

∂l
∂z

= lz = −1
z

[
α
( z

σ

)2α
− αλ

( z
σ

)α
− (α − 1)

]
.

Note that lz vanishes when α
( z

σ

)2α − αλ
( z

σ

)α − (α − 1) = 0. Using the auxiliary variable w =( z
σ

)α the last equation is rewritten as follows:
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αw2 − αλw − (α − 1) = 0. (3)

In the rest of the proof we use the discriminant of the quadratic equation in Equation (3),
which is given by Δ = α2λ2 + 4α(α − 1) = α2[λ2 + 4(1 − 1

α )] and its zeros are given by: w =

(λ ±
√

λ2 + 4(1 − 1
α ))/2.

If α ≥ 1 then Δ ≥ λ2. In consequence, the mode is attained at z1 =

σ
21/α

(
λ +

√
λ2 + 4

(
1 − 1

α

))1/α

.

If 0 < α < 1 then Δ < λ2. Here, two cases may occur. The first when 0 < Δ < λ2, in which

case if λ > 0 its mode is attained at z = σ
21/α

(
λ +

√
λ2 + 4

(
1 − 1

α

))1/α

, since lzz < 0, and if λ < 0,

then the zeros of Equation (3) are negative, implying that function l is strictly decreasing. Its mode is
therefore attained at zero. The other case is when Δ < 0, then we have that αw2 − αλw − (α − 1) > 0
for all w ≥ 0, implying that lz < 0 for all z ≥ 0. Therefore, l is strictly decreasing and thus its mode is
zero.

Remark 1. Note that α ≥ 1 or λ > 0 implies that the mode of the GTPN model is attached in a positive value.

2.4. Quantiles

Proposition 4. The quantile function for the GTPN(σ, λ, α) is given by

Q(p) = σ
[
Φ−1(1 − (1 − p)Φ(λ)) + λ

] 1
α .

Proof. Follows from a direct computation, applying the definition of quantile function.

Corollary 1. The quartiles of the GTPN distribution are

1. First quartile σ[Φ−1(1 − 3
4 Φ(λ)) + λ]

1
α .

2. Median σ[Φ−1(1 − Φ(λ)
2 ) + λ]

1
α .

3. Third quartile σ[Φ−1(1 − 1
4 Φ(λ)) + λ]

1
α .

2.5. Central Moments

Proposition 5. Let Z ∼ GTPN(σ, λ, α) and r = 1, 2, . . .. The r-th non-central moment is given by

μr = E(Zr) =

(
σλ1/α

)r
br(λ, α)

2Φ(λ)
√

π
,

where br(λ, α) = ∑∞
k=0 (

r/α
k )
(

λ
2

)−k
Γ
(

k+1
2 , λ2

2

)
and (r/α

k ) = 1
k!

k−1

∏
n=1

(r/α − n) is the generalized binomial

coefficient. When r/α ∈ N, the sum in br(λ, α) stops at r/α.

Proof. Considering the stochastic representation of the GTPN model in Section 2.1, it is immediate that
E(Zr) = σrE(Y

r
α ), where Y ∼ TPN(1, λ). This expected value can be computed using Proposition 2.2

in Gómez et al. [13].

Remark 2. When r/α ∈ N, Closed Forms Can Be Obtained for μr

Figure 3 illustrates the mean, variance, skewness, and kurtosis coefficients for the GTPN(σ =

1, λ, α) model for some combinations of its parameters.
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(a) Expectation (b) Variance

(c) Skewness (d) Kurtosis

Figure 3. Plots of the (a) expectation, (b) variance, (c) skewness and (d) kurtosis for GTPN(σ =

1, λ, α) for α ∈ {0.75, 1, 1.5} as a function of λ. In (d), the dashed line represents the kurtosis of the
normal distribution.

2.6. Bonferroni and Lorenz Curves

In this subsection we present the Bonferroni and Lorenz curves (see Bonferroni [14]). These curves
have applications not only in economics to study income and poverty, but also in medicine, reliability,
etc. The Bonferroni curve is defined as

B(p) =
1

pμ

∫ q

0
z f (z)dz, 0 ≤ p < 1.

where μ = E(Z), q = F−1(p). The Lorenz curve is obtained by the relation L(p) = pB(p). Particularly,
it can be checked that for the GTPN model the Bonferroni curve is given by

B(p) =
1

pμ

[
E(Z)− σ

Φ(λ)
√

2π

∞

∑
k=0

( 1
α

k

)
λ

1
α −k2

k−1
2 Γ(

k + 1
2

,

(
( q

σ )
α − λ

)2
2

)

]
.
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These curves serve as graphic methods for analysis and comparison, e.g., the inequality of
non-negative distributions. See, for example, for a more detailed discussion [15].

Figure 4 shows the Bonferroni curve for the GTPN(σ = 1, λ, α) model, considering different
values for λ and α.

Figure 4. Bonferroni curve for the generalized truncation positive normal (GTPN)(σ, λ, α) model.

2.7. Shannon Entropy

Shannon entropy (see Shannon [16]) measures the amount of uncertainty for a random variable.
It is defined as:

S(Z) = −E (log f (Z)) .

Therefore, it can be checked that the Shannon entropy for the GTPN model is

S(Z) = log

(√
2πσΦ(λ)

α

)
− (α − 1)E (log(Z)) +

μ2α

2σ2α
− λμα

σα
+

λ2

2
,

Figure 5 shows the entropy curve for the GTPN(σ = 1.5, λ, α) model, considering different
values for λ and α. We note that this function is increasing in λ and α. where E (log(Z)) =∫ ∞

0
log(z) f (z; σ, λ, α)dz. For α = 1, the Shannon entropy is reduced to

S(Z) = log
(√

2πσΦ(λ)

)
+

μ2

2σ2 − λμ

σ
+

λ2

2
,

which corresponds to the Shannon entropy for the TPN model; and for α = 1 and λ = 0, S(Z) is
reduced to

S(Z) = log
(√

πσ
)
+

μ2

2σ2 ,

which corresponds to the Shannon entropy for the HN distribution.
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Figure 5. Entropy for the GTPN(σ = 1, α, λ) model.

3. Inference

In this section we discuss the ML method for parameter estimation in the GTPN model.

3.1. Maximum Likelihood Estimators

For a random sample z1, . . . , zn from the GTPN(σ, λ, α) model, the log-likelihood function for
θ = (σ, λ, α) is given by

�(θ) = n log(α) + (α − 1)
n

∑
i=1

log(zi)− nα log(σ)− n log(Φ(λ))− n
2

log(2π)− 1
2

n

∑
i=1

(( zi
σ

)α
− λ
)2

.

Therefore, the score assumes the form S(θ) = (Sσ(θ), Sλ(θ), Sα(θ)), where

Sσ(θ) = −nα

σ
+

n

∑
i=1

(( zi
σ

)α
− λ
)

α
( zi

σ

)α−1 zi
σ2 ,

Sλ(θ) = −nξ(λ) +
n

∑
i=1

(( zi
σ

)α
− λ
)

and

Sα(θ) =
n
α
+

n

∑
i=1

log zi − n log(σ)−
n

∑
i=1

(( zi
σ

)α
− λ
) ( zi

σ

)α
log
( zi

σ

)
,

where ξ(λ) = φ(λ)
Φ(λ)

is the negative of the inverse Mills ratio. The ML estimators are obtained by solving
the equation S(θ) = 03, where 0p denotes a vector of zeros with dimension p. This equation has the
following solution for λ

λ̂(σ̂, α̂) =

n

∑
i=1

( zi
σ̂

)2α̂
− n

n

∑
i=1

( zi
σ̂

)α̂
. (4)

Replacing Equation (4) in Sλ(θ) = 0 and Sα(θ) = 0, the problem is reduced to two equations. The
solution of this problem needs to be solved by numerical methods such as Newton-Raphson. Below
we discuss initial values for the vector θ to initialize the algorithm.
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3.2. Initial Point to Obtain the Maximum Likelihood Estimators

In this subsection, we discuss the initial points for the iterative methods to find the ML estimators
in the GTPN distribution.

3.2.1. A Naive Point Based on the HN Model

In Section 2 we discuss that GTPN(σ, λ = 0, α = 1) ≡HN(σ). Based on this fact, and considering
that the ML estimator for σ in the HN distribution has a closed-form, we can consider as an initial

point θnaive =

(√
1
n

n

∑
i=1

z2
i , 0, 1

)
.

3.2.2. An Initial Point Based on Centiles

Let qt, t = 1, . . . , 99, the t-th sample centile based on z1, . . . , zn. An initial point to θ can be
obtained by matching qu, q50 and q100−u, with u ∈ {1, 2, . . . , 48, 49}, with their respective theoretical
counterparts. Defining p = u/100, the equations obtained are

qu = σ
[
Φ−1(1 − (1 − p)Φ(λ)) + λ

] 1
α , q50 = σ

[
Φ−1(1 − 0.5Φ(λ)) + λ

] 1
α and

q100−u = σ
[
Φ−1(1 − pΦ(λ)) + λ

] 1
α .

The solutions for σ and α are

σ̃ = σ̃(λ̃) =
q100−u[

Φ−1
(

1 − pΦ(λ̃)
)
+ λ̃
]1/α̃(λ̃)

and α̃ = α̃(λ̃) =

log
(

Φ−1(1−(1−p)Φ(λ̃))+λ̃

Φ−1(1−pΦ(λ̃))+λ̃

)
log
(

qu
q100−u

) ,

where λ̃ is obtained from the non-linear equation

σ̃(λ̃)
[
Φ−1

(
1 − 0.5Φ(λ̃)

)
+ λ̃
]1/α̃(λ̃)

= q50.

Therefore, the initial point based on this method is given by θcent =
(

σ̃, λ̃, α̃
)

.

3.3. An Initial Point Based on the Method of Moments

A more robust initial point can be obtained using the method of moments. The equations to solve
are μr = zr, r = 1, 2, 3. The solution for σ is

σ̃� = σ̃�(λ̃�, α̃�) =
2
√

πzΦ(λ̃�)(
λ̃�
)1/α̃�

b1(λ̃�, α̃�)

.

The solution for λ and α (say λ̃� and α̃�, respectively) are obtained from the non-linear equations

(σ̃�(λ, α)λ1/α)2b2(α, λ)

2Φ(λ)
√

π
= z2 and

(σ̃�(λ, α)λ1/α)3b3(α, λ)

2Φ(λ)
√

π
= z3.

Therefore, the initial point based on this method is given by θmom =
(

σ̃�, λ̃�, α̃�
)

.
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3.4. Fisher Information Matrix

The Fisher information (FI) matrix for the GTPN distribution is given by IF(θ) =
(

Iab

)
a,b ∈ {σ,λ,α}

.

Consider the notation

Tjk = Tjk(λ) =
∫ ∞

0
[log(w)]kwjφ(w − λ)dw, j ∈ {1, 2}, k ∈ {0, 1, 2}.

Therefore,

Iσσ = − α

σ2 +
α(2α + 1)
σ2Φ(λ)

T20 −
λα(α + 1)
σ2Φ(λ)

T10,

Iσλ =
α

σΦ(λ)
T10,

Iσα =
1
σ
+

1
σΦ(λ)

[λ(T10 + T11)− T20 − 2T21],

Iλλ = 1 − λξ(λ)− ξ2(λ),

Iλα = − 1
αΦ(λ)

T11,

Iαα =
1
α2 +

2
α2Φ(λ)

T22 −
λ

α2Φ(λ)
T12

We observe that Tjk(λ) is a continuous function and lim|λ|→+∞ Tjk(λ) = 0, then Tjk(λ) < +∞.
Note that for λ = 0 and α = 1 this matrix is reduced to

FI(σ, 0, 1) =

⎛⎜⎝ 2
σ2

1
σ

√
2
π − 4

σ T̂21

· 1 − 2
π −2T̂11

· · 1 + 4T̂22

⎞⎟⎠ ,

where T̂jk = Tjk(0). Additionally, we note that

det(FI(σ, 0, 1)) =
2
σ2

[
(π − 3)

π
(1 + 4T̂22 + 4T̂21)− 4(T̂11 −

√
2
π

T̂21)
2

]
≈ 0.1021506

σ2 > 0, ∀σ > 0,

where det(·) denotes the determinant operator. Therefore, the FI matrix for the reduced model (HN)
is invertible.

4. Model Discrimination

In this section we discuss some techniques to discriminate among the GTPN distribution and
other models.

4.1. GTPN versus Submodels

An interesting problem to solve is the discrimination between GTPN and the three submodels
represented in Figure 1. In other words, we are interested in testing the following hypotheses:

• H(1)
0 : α = 1 versus H(1)

1 : α 
= 1 (TPN versus GTPN distribution).

• H(2)
0 : λ = 0 versus H(2)

1 : λ 
= 0 (GHN versus GTPN distribution).

• H(3)
0 : (α, λ) = (1, 0) versus H(3)

1 : (α, λ) 
= (1, 0) (HN versus GTPN distribution).

The three hypotheses can be tested considering the LRT, ST, and GT. Below we present the
statistics for the three tests considered and for the three hypotheses of interest.
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4.1.1. Likelihood Ratio Test

The statistic for the LRT (say SLR) to tests H(j)
0 , j = 1, 2, 3, is defined as

SLRj = 2
[
�
(

σ̂, λ̂, α̂
)
− �
(

σ̂0j, λ̂0j, α̂0j

)]
,

where σ̂0j, λ̂0j and α̂0j denote the ML estimators for σ, λ and α restricted to H(j)
0 , j = 1, 2, 3. Under H(j)

0 ,

j = 1, 2, SLRj ∼ χ2
(1) and under H(3)

0 , SLR3 ∼ χ2
(2), where χ2

(p) denotes the Chi-squared distribution

with p degrees of freedom. For H(3)
0 , we obtain

σ̂03 =

√
1
n

n

∑
i=1

z2
i , λ̂03 = 0 and α̂03 = 1,

whereas to test H(1)
0 and H(2)

0 the ML estimators under the null hypotheses need to be computed
numerically. However, in both cases the problem is reduced to a unidimensional maximization. For
details see Cooray and Ananda [9] and Gómez et al. [13], respectively.

4.1.2. Score Test

The statistic for the ST (say SR) to test H(j)
0 , j = 1, 2, 3, is defined as

SRj =
[
S
(

θ̂0j

)]� [
IF
(

θ̂0j

)]−1
S
(

θ̂0j

)
,

where θ̂j is the ML estimator under H(j)
0 . Under H(j)

0 , j = 1, 2, SRj ∼ χ2
(1) and under H(3)

0 , SR3 ∼ χ2
(2).

4.1.3. Gradient Test

The statistic for the GT (say ST) to tests H(j)
0 , j = 1, 2, 3, is defined as

STj = S(θ̂j)
(

θ̂− θ̂j

)
.

Again, under H(j)
0 , j = 1, 2, STj ∼ χ2

(1) and under H(3)
0 , ST3 ∼ χ2

(2). After some algebraic
manipulations, we obtain that

ST1 = (α̂ − 1)

{
n [1 − log (σ̂01)] +

n

∑
i=1

[
log zi −

((
zi

σ̂01

)
− λ̂01

)(
zi

σ̂01

)
log
(

zi
σ̂01

)]}
.

ST2 = λ̂

[
−n

√
2
π

+
n

∑
i=1

(
zi

σ̂02

)α̂02
]

.

ST3 = (α̂ − 1)

{
n [1 − log (σ̂03)] +

n

∑
i=1

[
log zi −

(
zi

σ̂03

)2
log
(

zi
σ̂03

)]}
+ λ̂

[
−n

√
2
π

+
n

∑
i=1

(
zi

σ̂03

)]
.
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4.2. Non-Nested Models

The comparison of non-nested models can be performed based on the AIC criteria (Akaike [17]),
where the model with a lower AIC is preferred. However, in practice we can have a set of inappropriate
models for a certain data set. For this reason, we also need to perform a goodness-of-fit validation.
This can be performed, for instance, based on the quantile residuals (QR). For more details see Dunn
and Smyth [18]. These residuals are defined as

QRi = G(zi; ψ̂), i = 1, . . . , n,

where G(; ψ̂) is the cdf of the specified distribution evaluated in the estimator for ψ. If the model
is correctly specified, such residuals are a random sample from the standard normal distribution.
This can be assessed using, for instance, the Anderson–Darling (AD), Cramer-Von-Mises (CVM) and
Shapiro–Wilks (SW) tests. A discussion of these tests can be seen in Yazici and Yocalan [19].

5. Simulation

In this section we present a Monte Carlo (MC) simulation study in order to illustrate the behavior
of the ML estimators. We consider three sample sizes: n = 50, 150 and 300; two values for σ:1 and
2; two values for λ:3 and 4; and three values for α: 0.8, 1 and 2. For each combination of n, σ, λ and
α, we draw 10,000 samples of size n from the GTPN(σ, λ, α) model. To simulate a value from this
distribution, we consider the following scheme:

1. Simulate X ∼ Uni f orm(0, 1).
2. Compute Y = Φ−1(1 + (X + 1)Φ(λ)) + λ.

3. Compute Z = σY
1
α .

For each sample generated, ML estimators were computed numerically using the
Newton-Raphson algorithm. Table 1 presents means and standard deviations for each parameter in
each case. Notice that bias and standard deviations are reduced as the sample size increases, suggesting
that the ML estimators are consistent.
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6. Applications

In this section we present two real data applications to illustrate the better performance of the
GTPN model over other well known models in the literature. For these comparisons we also consider
the Weibull (WEI) and the Generalized Lindley (GL, Zakerzadeh [20]) models. The density function of
the Weibull distribution is given by

f (x; σ, λ) =
σ

λ
xσ−1e−xσ/λ,

with x > 0, σ > 0 and λ > 0, whereas for the GL model is given by

f (x; α, θ, γ) =
θ2(θx)α−1(α + γx)e−θx

(γ + θ)Γ(α + 1)
,

with x > 0, θ > 0 α > 0 and γ > 0.

6.1. Application 1

The data set was taken from Laslett [21], and consisted of n = 115 heights measured at 1 micron
intervals along the drum of a roller (i.e., parallel to the axis of the roller). This was part of an extensive
study of the surface roughness of the rollers. A statistical summary of the data set is presented in
Table 2.

Table 2. Descriptive statistics of the Laslett data set.

Dataset n X S2
√

b1 b2

Heights measured 115 3.48 0.52 −1.24 6.30

Initially, we calculate the estimators based on the centiles, naive, and moments of the
GTPN distribution, which are θcent = (2.326, 2.741, 2.376), θnaive = (3.557, 0, 1), and θmom =

(3.075, 1.572, 3.203) . We used these estimations as initial values in computing the ML estimators
for the GTPN model. Results are presented in Table 3. Note the high estimated standard error for the
γ parameter in the GL model. In addition, note that, based on the AIC criteria and BIC criteria [22], the
GTPN model is preferred (among the fitted models) for this data set. Figure 6 shows the estimated
density for each model in this data set, where the GTPN model appears to provide a better fit. Finally,
Figure 7 also presents the qq-plot for the QR in the same models and the p − values for the three
normality tests discussed in Section 4.2. Results suggest that the GTPN model is an appropriate model
for this data set while the rest of models are not.

Table 3. Estimation of the parameters and their standard errors (in parentheses) for the GTPN, TPN,
WEI, and GL models for the data set. The AIC and BIC criteria are also included.

Estimated GTPN TPN WEI GL

σ 2.354(0.379) 0.720(0.047) 5.855(0.435) -
λ 2.512(0.495) 4.842(0.333) 3.744(0.062) 4.093(0.539)
α 2.227(0.401) - - 13.467(1.902)
γ - - - 15.528 (29.638)

AIC 238.43 254.63 251.74 308.67
BIC 246.67 260.12 257.23 316.90
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Figure 6. Fit of the distributions for the Laslett data set.

(a) GTPN (b) TPN

(c) WEI (d) GL

Figure 7. QR for the fitted models in the Laslett data set. The p − values for the Anderson–Darling
(AD), Cramer-Von-Mises (CVM) and Shapiro–Wilks (SW) normality tests are also presented to check if
the RQ came from the standard normal distribution.
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6.2. Application 2

The data set to be investigated was taken from Nierenberg et al. [23], and is related to a study
on plasma retinol and betacarotene levels from a sample of n = 315 subjects. More specifically, the
response variable observed is grams of cholesterol consumed per day. Descriptive statistics for the
variable are provided in Table 4.

Initially, we calculate the estimators based on the centiles, naive, and moments of the
GTPN distribution, which are θcent = (2.326, 2.741, 2.376), θnaive = (275.960, 0, 1), and θmom =

(0.003,−86.024, 1.854). We used these estimations as initial values in computing the ML estimators
for the GTPN model. Table 5 summarizes the fit for this data set. As in last application, we noted
the high estimated standard error for the γ parameter in the GL model. Again, based on the AIC
criteria and BIC criteria, the preferred model is the GTPN. Figure 8 shows the estimated density for
each model in the cholesterol data set. The GTPN model appears to provide a better fit. For this data
set, we also present the hypothesis tests for the three particular models of the GTPN distribution
discussed in Section 4.1. Specifically, for H(1)

0 : α = 1 versus H(1)
1 : α 
= 1 we obtained p − values

< 0.0001, 0.0157, and < 0.0001 for the SLR, SR, and ST tests, respectively. Therefore, with a significance
of 5% we preferred the GTPN over the TPN model. For H(2)

0 : λ = 0 versus H(2)
1 : λ 
= 0 we obtained

p − values < 0.0001, 0.0008 and < 0.0001 for the SLR, SR and ST tests, respectively. Hence, with a
significance of 5% we preferred the GTPN over the GHN model. Finally, H(3)

0 : (α, λ) = (1, 0) versus

H(3)
1 : (α, λ) 
= (1, 0) we obtained p − values < 0.0001 for the three tests. Therefore, with a significance

of 5% we preferred the GTPN over the HN model. Finally, Figure 9 also presents the qq-plot for the
QR in the fitted models and the p − values for the three normality tests. Results suggest that the GTPN
model is appropriate for this data set while the rest of the models are not.

Table 4. Descriptive statistics for the cholesterol data set.

Data Set n X S2
√

b1 b2

Heights measured 315 242.46 17421.79 1.47 6.34

Table 5. Estimated parameters and their standard errors (in parentheses) for the GTPN, TPN, WEI, and
GL models for the cholesterol data set. The AIC and BIC criteria are also presented.

Estimated GTPN TPN WEI GL

σ 0.040(0.027) 151.106(8.734) 1.964(0.080) -
λ 7.888(0.459) 1.455(0.138) 274.717(8.353) 0.016(0.001)
α 0.240(0.013) - - 2.831(0.293)
γ - - - 2.067 (6.720)

AIC 3874.92 3943.25 3905.68 3879.07
BIC 3886.17 3950.75 3913.18 3890.42

Figure 8. Fit of the distributions for the cholesterol data set.
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(a) GTPN (b) TPN

(c) WEI (d) GL

Figure 9. RQ for the fitted models in the cholesterol data set. The p − values for the AD, CVM, and SW
normality tests are also presented to check if the QR came from the standard normal distribution.

7. Conclusions

In this work we introduce a new distribution for positive data named the GTPN model. This new
distribution includes as particular cases three models well-known in the literature: the TPN, GHN,
and HN models. The basic properties of the model and ML estimation were studied. We performed a
simulation study in finite samples and two real data applications, showing the good performance of
the model compared with other usual models in the literature.
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Abstract: In this paper, we obtain a matrix formula of order n−1/2, where n is the sample size,
for the skewness coefficient of the distribution of the maximum likelihood estimators in the Weibull
censored data. The present result is a nice approach to verify if the assumption of the normality of
the regression parameter distribution is satisfied. Also, the expression derived is simple, as one only
has to define a few matrices. We conduct an extensive Monte Carlo study to illustrate the behavior of
the skewness coefficient and we apply it in two real datasets.

Keywords: maximum likelihood estimates; type I and II censoring; skewness coefficient; Weibull
censored data

1. Introduction

In its first appearance, the Weibull distribution [1] claimed its wide applicability. Survival analysis,
reliability engineering, and extreme value theory are some of its applicability. To amplify the relevance
of the Weibull, a regression structure is added to one of the parameters, i.e., the behavior of the
distribution may be explained from covariates (explanatory variables) and unknown parameters to be
estimated from observable data.

In statistical inference, it is often desirable to test if there are regression parameters statistically
significant and the Wald test is commonly performed. Under standard regularity conditions, the null
distribution of the Wald statistic is asymptotically chi-squared, a consequence of the maximum
likelihood estimators (MLE) distribution. Therefore, the Wald test must be avoided if the sample size
is not large enough, because the distribution of the MLE will be poorly approximated by the normal
distribution.

Preventing the complexity of the statistical tests, the skewness coefficient (say γ) of the distribution
of the MLE is an easy way to verify if the approximation to normality is adequate. A value of γ far
from zero indicates a departure from the normal distribution. Pearson’s standardized third cumulant
defined by γ = κ3/κ3/2

2 , where κr is the rth cumulant of the distribution, is the most well-known
measure of skewness. When γ > 0 (γ < 0) the distribution is positively (negatively) skewed and
will have a longer (shorter) right tail and a shorter (longer) left tail. If the distribution is symmetrical,
γ equals zero. However, there are in [2] (Exercise 3.26) asymmetrical distributions with as many
zero-odd order central moments as desired, so, the value of γ must be interpreted with some caution.

In the statistical literature, there is not a closed-form for the skewness coefficient of γ of the MLE
in several regression models. Ref. [3] obtained a general n−1/2 γ expression (say γ1) for the distribution
of the MLE, where n is the sample size. Following [3], several works have been developed in order
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to obtain the γ1 coefficient. In the first, Ref. [4] determined its expression for the class of generalized
linear models and, the last one, Ref. [5] defined the γ1 for the varying dispersion beta regression model
and showed that this coefficient for the distribution of the MLE of the precision parameter is relatively
large in small to moderate sample sizes. This paper is the first focused on a censored model.

In this work, we derive the γ1 coefficient of the distribution of the MLE of the linear parameters
in the Weibull censored data, assuming σ known, as σ = 1/2 and 1, the Rayleigh and exponential
models, respectively. We discuss the situation when σ is unknown, however, it can be replaced by a
consistent estimator, and then we can turn back to the original situation. This type of procedure was
performed, for instance, by [4].

The remainder of the paper is organized as follows. Section 2 defines the Weibull censored data.
In Section 3, we obtain a simple matrix expression, of order n−1/2, for the skewness coefficients of
the distributions of the MLEs of the linear regression parameters. In Section 4, some Monte Carlo
simulations are performed. Two applications are presented in Section 5. Concluding remarks are
offered in Section 6.

2. The Weibull Censored Data

We say that a continuous random variable T has Weibull distribution with scale parameter θ and
shape parameter σ, or T ∼ WE(θ, σ), if its probability density function (pdf) is given by

f (t; θ, σ) =
1

σθ1/σ
t1/σ−1 exp

{
− (t/θ)1/σ

}
, (1)

with t > 0, σ > 0 and θ > 0. From (1), we can observe two particular distributions: the exponential
and the Rayleigh, where σ = 1 and σ = 1/2, respectively. In lifetime data, there is the censoring
restriction, i.e, if T1, . . . , Tn are a random sample from (1), instead of Ti, we observe, under right
censoring, ti = min(Ti, Li), where Li is the censoring time, independent of Ti, i = 1, . . . , n. In this work,
we consider an hybrid censoring scheme, where the study is finalized when a pre-fixed number, r ≤ n,
out of n observations have failed, as well as when a prefixed time, say L1 = . . . = Ln = L, has been
reached. The type I censoring is a particular case for r = n and the type II censoring appears when
L1, . . . , Ln = +∞. Additionally, we add the non-informative censoring assumption, i.e., the random
variables Li does not depend on θ. Under this setup, the log-likelihood function has the form

L(θ, σ) =
(

σθ1/σ
)−r

exp
{(

1
σ − 1

)
A1 − 1

θ1/σ A2

}
,

where r = ∑n
i=1 δi, A1 = ∑n

i=1 δi log ti, A2 = ∑n
i=1 t1/σ

i , δi = 1, if Ti ≤ Li and δi = 0, otherwise. Usually,
the regression modeling considers the distribution of Yi = log(Ti) instead of Ti. The distribution of Yi
is of the extreme value form with pdf given by

f (yi; xi) =
1
σ

exp
{

yi − μi
σ

− exp
(

yi − μi
σ

)}
, −∞ < yi < ∞, (2)

where μi = log θi. The regression structure can be incorporated in (2) by making θi = exp
(
x�i β
)
,

where β is a p-vector of unknown parameters and xi is a vector of regressors related to the ith
observation. From this moment, we assume that σ is known, then, the log-likelihood function derived
from (2) is given by

�(β) =
n

∑
i=1

[
δi

(
−n log σ +

yi − μi
σ

)
− exp

(
yi − μi

σ

)]
.

The total score function and the total Fisher information matrix for β are, respectively, Uβ =

σ−1X�W1/2v and Kββ = σ−2X�WX, where X = (x1, . . . , xn)�, the model matrix, assuming
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rank (X) = p, W = diag(w1, . . . , wn), wi = E
[
exp
(

yi−μi
σ

)]
and v = (v1, . . . , vn)�, vi ={

−δi + exp
(

yi−μi
σ

)}
w−1/2

i . It can observed that the value of wi depends on the mechanism of

censoring. That means wi = q ×
(

1 − exp
{
−L1/σ

i exp(−μi/σ)
})

+ (1 − q) × (r/n), where W(r)

denotes the rth order statistic from W1, . . . , Wn and q = P
(

W(r) ≤ log Li

)
. Note that q = 1 and q = 0

for types I and II censoring, respectively. The proof is presented in the Appendix A. The MLE of
β, β̂, is the solution of Uβ = 0. The β̂ can not be expressed in closed-form. It is typically obtained
by numerically maximizing the log-likelihood function using a Newton or quasi-Newton nonlinear
optimization algorithm. Under mild regularity conditions and in large samples,

β̂ ∼ Np

(
β, K−1

ββ

)
,

approximately.

3. Skewness Coefficient

As discussed, the skewness coefficient is simple way to verify whether the approximation to
normality is adequate. The model presented in (2) does not has a closed-form for this coefficient.
The alternative is to apply the [3] result. These authors derived an approximation of order O(n−2) for
the third cumulant of the MLE of the a-th regressor, i.e.,

κ3(β̂a) = E
{[

β̂a −E(β̂a)
]3}

,

a = 1, . . . , p, which can be expressed as

κ3(β̂a) = ∑′
κa,bκa,cκa,dm(d)

bc , (3)

where m(d)
bc = 5κ

(d)
bc − (κ

(b)
cd + κ

(c)
bd + κbcd), a = 1, . . . , p. Here, ∑′ represents the summation over all

combinations of parameters and over all the observations. From (3), after some algebra, we can express
the third cumulant of the distribution of β̂ for the Weibull censored data as

κ3(β̂) = −σ−3P(3) (W + 3σW ′) 1, (4)

where W ′ = diag(w′
1, . . . , w′

n), w′
i = −σ−1L1/σ

i exp{−L1/σ
i exp(−μi/σ) − μi/σ}, P = K−1

ββ X� =

σ2
(

X�WX
)−1

X�, P(3) = P � P � P, � represents a direct product of matrices and 1 is a
n-dimensional vector of ones. Finally, by (4) and the Fisher information matrix, the asymmetry
coefficient of the distribution of β̂ to order n−1/2 is given by

γ1(β̂) = −σ−3P(3) (W + 3σW ′) 1 �
{

diag
(

K−1
ββ

)
1
}−3/2

, (5)

for type II censoring, W ′ = 0, then (5) reduces to γ1(β̂) = −σ−3P(3)W1 �
{

diag
(

K−1
ββ

)
1
}−3/2

. More
details about the involved expressions are presented in Appendix A. The study of asymptotic properties
of the Weibull censored data was the goal of many papers. Refs. [6,7] derived the Bartlett and the
Bartlett-type correction factors for likelihood ratio and score tests, respectively, for the exponential
censored data. Ref. [8] generalized these previous for the Weibull censored data and also derived the
Bartlett-type correction factors for the gradient test. Ref. [9] presented the asymptotic expansions up to
order n−1/2 of the non null distribution functions of the likelihood ratio, Wald, Rao score and gradient
statistics also for the censored exponential data. The result in expression (5) can be incorporated in
this gallery.
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4. Simulation Study

In this section, we compare the sample skewness coefficient (ρ) and the n−1/2 skewness
coefficients evaluated in the true and estimated parameters (γ̂�

1 and γ̂1, respectively) of the distributions
of the MLEs in the Weibull censored model. To draw the data, we consider three values for σ: 0.5, 1 and
3; five sample sizes: 20, 30, 40, 60 and 100; three values for the percent of censoring C: 10%, 25% and
50%; and two number of regressors p: 3 and 5, where we consider two vectors for β in each case:
(−2, 0.5, 1) and (1,−0.75, 0.5) for p = 3 and (−2, 0.5, 1,−0.3,−0.5) and (1,−0.75, 0.5,−1, 0.8) for p = 5.
For each combination of σ, β, % of censoring and sample size we considered 20,000 Monte Carlo
replicates. Each vector of covariates xi considers an intercept term and the p − 1 remaining covariates
were drawn independently from the standard normal distribution. Values from the Weibull model
are drawn considering the inverse transformation method. Therefore, the greater n × C/100 values
were censored at the observed (1 − C/100)-th quantile (a type II censoring scheme). For each sample,
we considered the jackknife estimator for σ, say σ̂J . Therefore, the computation of γ̂�

1 and γ̂1 was
performed considering (β, σ) and (β̂, σ̂J), the true and estimated parameters, respectively. Additionally,
ρ is computed based on the 20,000 (marginal) skewness coefficient for the components of β̂. Table 1
summarizes the case β = (−2, 0.5, 1) (with p = 3 regressors) and C = 10%. The main conclusions are
the following:

Table 1. The n−1/2 and sample skewness coefficients of the distributions of the MLEs in the Weibull
censored data with p = 3 regressors and β = (−2, 0.5, 1).

β̂0 β̂1 β̂2

C σ n ρ γ̂�
1 γ̂1 ρ γ̂�

1 γ̂1 ρ γ̂�
1 γ̂1

20 −0.235 −0.080 −0.095 0.052 0.207 0.197 0.071 0.245 0.234
30 −0.169 0.009 0.001 0.037 0.040 0.041 0.097 0.212 0.204

0.5 40 −0.114 −0.013 −0.019 0.038 0.107 0.104 0.075 0.196 0.193
60 −0.139 −0.082 −0.083 0.011 0.061 0.061 0.033 0.171 0.170

100 −0.059 −0.055 −0.055 0.054 0.074 0.073 −0.005 0.087 0.087

20 −0.198 0.017 0.004 −0.008 0.225 0.197 0.068 0.298 0.284
30 −0.219 −0.101 −0.107 0.110 0.200 0.192 0.216 0.304 0.299

10% 1.0 40 −0.210 0.004 −0.002 0.083 0.140 0.137 0.109 0.185 0.182
60 −0.147 −0.005 −0.010 0.085 0.143 0.137 0.057 0.173 0.171

100 −0.092 −0.013 −0.015 0.019 0.048 0.047 0.116 0.132 0.131

20 −0.232 0.006 0.005 0.094 0.143 0.131 0.022 0.093 0.087
30 −0.178 −0.041 −0.040 0.004 0.054 0.048 −0.007 0.147 0.136

3.0 40 −0.185 0.005 0.003 0.002 0.024 0.023 0.064 0.156 0.151
60 −0.128 −0.020 −0.020 0.044 0.049 0.047 0.073 0.124 0.120

100 −0.117 −0.028 −0.028 0.084 0.100 0.095 0.039 0.077 0.075

• The terms γ̂�
1 and γ̂1 are closer in all the considered combinations, suggesting that γ̂1 approaches

γ̂�
1 in a reasonable way, even when the sample size is small.

• In general terms, γ̂1 approaches well ρ for β̂1 and β̂2. However, for β̂0 the terms seem discrepant
even for n = 100.

• Considering the 90 cases for p = 3, ρ ranges from (−0.245, 0.255), (−0.429, 0.340) and
(−0.819, 1.181) for C 10%, 25% and 50%, respectively. For p = 5, ρ ranges from (−0.373, 0.252),
(−0.402, 0.198) and (−0.787, 0.495) for C 10%, 25% and 50%, respectively. This suggest that
a higher percentage of censorship produce a higher skewness in the MLE estimators for the
components of β.

• Considering the 90 cases for p = 3, ρ ranges from (−0.819, 1.181), (−0.363, 0.867), (−0.351, 0.411),
(−0.305, 0.346) and (−0.273, 0.255), for n = 20, 30, 40, 60 and 100, respectively. For p = 5, ρ ranges
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from (−1.015, 0.740), (−0.529, 0.426), (−0.372, 0.413), (−0.318, 0.320) and (−0.225, 0.243) for
n = 20, 30, 40, 60 and 100, respectively. This suggest that, as expected, when n increases the
skewness coefficient of the MLE estimators for the components of β will be more symmetric.

Results suggest that, even with a moderate percentage of censored observations and small sample
sizes, the distribution of the MLE for the components of β in the Weibull censored model are closer
to the symmetry. The combinations of β, p and C not seem to affect the results. A simulation study
showing this finding was omitted for the sake of brevity.

5. Applications

In this section we illustrate with two real dataset the application of the estimated skewness
coefficient for the MLE estimators in the Weibull censored regression model. All the routine was
performed in the statistical software R, [10]. Codes can be found in the personal website from the first
author https://www.ufjf.br/tiago_magalhaes/downloads/.

5.1. Smokers Dataset

This dataset is related to a clinical trial on the effectiveness of triple-combination pharmacotherapy
for tobacco dependence treatment conducted by the Cancer Institute of New Jersey and Robert Wood
Johnson Foundation. The trial recruited 127 smokers 18 years or older with predefined medical illnesses
from the local community. The outcome were the time (in days) to first relapse (return to smoking).
The study lasted 182 days (26 weeks). Therefore, the times are subject to a censoring type I (32% of times
were censored). We only considered the 113 patients where such observed time was positive (non-zero).
Other measures were assigned randomly treatment group with levels combination or patch only (grp),
age in years at time of randomization (age) and employment (full-time or non-full-time). We consider
that timei ∼WE(θi; σ), where log θi = X�

i β, β = (βintercept, βgrp, βage, βemployment)� and

X�
i = (1, grpi, agei, employmenti)

We estimated σ̂J = 1.617008 based on the jackknife method, which was used as known in all
the computations. Table 2 shows the parameters estimates, their standard errors and the estimated
skewness coefficients and Figure 1 shows the estimated density function based on 1000 bootstrap
samples for the coefficients related to the covariates grp, age and employment. Note that the estimated
skewness for all parameters were closer to zero, suggesting a symmetric distribution for the estimators
which is corroborated by the estimated density based on the bootstrap.

Figure 1. Estimated density function based on 1000 bootstrap samples and the asymptotic distribution
for β̂grp (left panel), β̂age (center panel) and β̂employment (right panel). The red line denotes the
estimated parameter.
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Table 2. Estimates for parameters and skewness coefficient in smokers dataset.

Parameter Estimate s.e. γ1

βintercept 3.1690 0.8136 −0.0478
βgrp −1.0303 0.3694 −0.0529
βage 0.0541 0.0167 0.1251
βemployment −1.1460 0.3935 −0.0753

5.2. Insulating Fluids Dataset

This dataset was presented in [11] on insulating fluids and it is related an accelerated test
performed in order to determine the relationship between time (in minutes) to breakdown and
voltage (in kilovolts). The authors assumed a regression structure based on the Weibull model and
a common censoring time at L = 200 (type I censoring), i.e., timei ∼WEI(θi, σ), where log θi = X�

i β,
i = 1, . . . , 76, X�

i = (βIntercept, βlog-voltage). We estimated σ̂J = 1.296704 based on the jackknife
method, which was used as known. Table 3 shows the estimates, standard errors and estimated
skewness coefficient for the MLE estimators and Figure 2 shows the estimated density function for
β̂Intercept and β̂log-voltage. Newly, the estimated skewness for both parameters are closer to zero,
suggesting a symmetric distribution for the estimators as also suggest the estimated density based
on bootstrap.

Table 3. Estimates for parameters and skewness coefficient in insulating fluids dataset.

Parameter Estimate s.e. γ1

βintercept 20.4342 1.8772 0.1451
βlog-voltage −0.5311 0.0557 −0.1517

Figure 2. Estimated density function based on 1000 bootstrap samples and the asymptotic distribution
for β̂Intercept (left panel) and β̂log-voltage (right panel). The red line denotes the estimated parameter.

6. Concluding Remarks

Since its beginning, the Weibull distribution and regression showed how it is important. In the
frequentist context, this model depends strongly on the asymptotic properties of the MLE. Here,
we presented an expression of the skewness that, in practical applications, can be used as an indicator
of departure from the normal distribution of the MLE. Although the expression (3) entails a great deal
of algebra, the final expression (5) of the skewness of the MLE distribution has a very nice form only
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involving simple operations on diagonal matrices and can be easily implemented into a statistical
software, for instance, R, [10].
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Appendix A

In this Section we provided some additional details related to the computation of the manuscript.

Appendix A.1. W’s Quantities

In order to compute wi = E
[
exp
(

yi−μi
σ

)]
, i = 1, . . . , n, we first study the case type I censoring.

Note that

exp
(

yi − μi
σ

)
=

⎧⎨⎩ exp
(

yi−μi
σ

)
, if yi ≤ log Li

exp
(

log Li−μi
σ

)
, otherwise

Therefore,

wi =
∫ log Li

−∞

1
σ

exp
(

2(yi − μi)

σ
− exp

(
yi − μi

σ

))
dyi + exp

(
log Li − μi

σ

)
P(Ti > Li)

= 1 − exp
(
−L1/σ

i e−μi/σ
) (

1 + L1/σ
i e−μi/σ

)
+ L1/σ

i e−μi/σ exp
(
−L1/σ

i e−μi/σ
)

= 1 − exp
(
−L1/σ

i e−μi/σ
)

.

Direct computation also shows that

vi = E

[
exp
(

2(yi − μi)

σ

)]
=
∫ log Li

−∞

1
σ

exp
(

3(yi − μi)

σ
− exp

(
yi − μi

σ

))
dyi + exp

(
2(log Li − μi)

σ

)
P(Ti > Li)

= 2 − exp
(
−L1/σ

i e−μi/σ
) [

2 + 2L1/σ
i e−μi/σ + L2/σ

i e−2μi/σ
]
+ L2/σ

i e−2μi/σ exp
(
−L1/σ

i e−μi/σ
)

= 2
{

1 − exp
(
−L1/σ

i e−μi/σ
) [

1 + L1/σ
i e−μi/σ

]}
= 2
{

wi + σw′
i
}

.

On the other hand, for the type II censoring note that Wi = exp
(

yi−μi
σ

)
∼ E(1). By [12],

we have that

W(i)
D
=

i

∑
j=1

Zj

n − j + 1
, (A1)

59



Symmetry 2019, 11, 1351

where W(i) is the ith order statistic from W1, . . . , Wn, D
= denotes “equal in distribution” and Z1, . . . , Zn

are independent and identically distributed E(1) random variables. Therefore, E(W(j)) = Var(W(j)) =

∑
j
k=1(n − k + 1)−1 and

Wi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W(1), with probability 1/n
...
W(r−1), with probability 1/n
W(r), with probability (n − r + 1)/n

Therefore,

wi = E(Wi) =
1
n

r−1

∑
j=1

j

∑
k=1

(n − k + 1)−1 +
(n − r + 1)

n

r

∑
k=1

(n − k + 1)−1.

With some manipulations, we obtain that E(Wi) = r/n. Also, we have that E(W2
(j)) = E(W(j)) +

E2(W(j)) and

Vi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W2
(1), with probability 1/n
...

W2
(r−1), with probability 1/n

W2
(r), with probability (n − r + 1)/n

Therefore,

vi = wi +
1
n

r−1

∑
j=1

[
j

∑
k=1

(n − k + 1)−1

]2

+
(n − r + 1)

n

[
r

∑
k=1

(n − k + 1)−1

]2

.

Algebraic manipulations shows that

vi =
1
n

[
r +

r

∑
k=1

2(r − k) + 1
n − k + 1

]
.

Finally, as the hybrid scheme can be seen as a mixture between type I and II censoring, we obtain
directly that

wi = q ×
(

1 − exp
(
−L1/σ

i e−μi/σ
))

+ (1 − q)× (r/n),

vi = q × 2
{

1 − exp
(
−L1/σ

i e−μi/σ
) [

1 + L1/σ
i e−μi/σ

]}
+ (1 − q)× 1

n

[
r +

r

∑
k=1

2(r − k) + 1
n − k + 1

]
,

where q is the mixing probability given by q = P(W(r) ≤ log L). By (A1), W(r) has hypoexponential [13]
distribution with vector of parameters λ = (λ1, . . . , λn), where λj = (n − j + 1)−1. Therefore,

q = 1 −
n

∑
j=1

L−λj

Pj
,

where Pj = ∏n
k=1,k 
=j(k − j)/(n − j + 1).
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Appendix A.2. Derivatives and Cumulants

Let Y1, . . . , Yn a random sample from Weibull censored data, the logarithm of the likelihood
function is given by

�(β) =
n

∑
i=1

{
δi

[
−n log σ +

yi − μi
σ

]
− exp

(
yi − μi

σ

)}
. (A2)

The first four derivatives of (A2) can be expressed, respectively, for

∂

∂βr
�(β) =

1
σ

n

∑
i=1

{
−δi + exp

(
yi − μi

σ

)}
xri;

∂2

∂βr∂βs
�(β) = − 1

σ2

n

∑
i=1

exp
(

yi − μi
σ

)
xrixsi;

∂3

∂βr∂βs∂βt
�(β) =

1
σ3

n

∑
i=1

exp
(

yi − μi
σ

)
xrixsixti.

The second- to third-order cumulants are

κrs = − 1
σ2

n

∑
i=1

wixrixsi; κr,s = −κrs =
1
σ2

n

∑
i=1

wixrixsi;

κrst =
1
σ3

n

∑
i=1

wixrixsixti; κ
(t)
rs = − 1

σ2

n

∑
i=1

w′
ixrixsixti;

where wi = E
{

exp
(

yi−μi
σ

)}
,

wi = 1 − exp
{
−L1/σ

i exp(−μi/σ)
}

,

w′
i = − 1

σ
L1/σ

i exp{−L1/σ
i exp(−μi/σ)− μi/σ},

It can be observed that w′
i = 0 for type II censoring.
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Abstract: In this paper, we propose a bimodal extension of the Birnbaum–Saunders model by
including an extra parameter. This new model is termed flexible Birnbaum–Saunders (FBS) and
includes the ordinary Birnbaum–Saunders (BS) and the skew Birnbaum–Saunders (SBS) model as
special cases. Its properties are studied. Parameter estimation is considered via an iterative maximum
likelihood approach. Two real applications, of interest in environmental sciences, are included,
which reveal that our proposal can perform better than other competing models.

Keywords: flexible skew-normal distribution; skew Birnbaum–Saunders distribution; bimodality;
maximum likelihood estimation; Fisher information matrix

1. Introduction

The BS distribution was originally introduced in [1] to model the fatigue in the lifetime of certain
materials. During the last decades, mainly due to its good properties, the use of this model spread out
to other fields, such as economics and environmental sciences. In these applied scenarios, quite often,
departures of the BS model are found, and therefore it is necessary to introduce some improvements.
In this paper, we focus on those situations in which extra asymmetry or bimodality are present in our
data, and a generalization of the BS model should be considered to deal with these issues. To reach this
end, a flexible BS model is introduced. Our proposal is based on the flexible skew-normal distribution
introduced in [2], and includes, as particular cases, the BS and skew BS distribution. Next, we briefly
describe the key aspects that properly combined result in the flexible BS model. These are asymmetry,
bimodality and main features of the basic BS model.

1.1. Asymmetry

Earlier results on asymmetric models started with the pioneering works by [1,3,4]. This topic
regained interest with the study in [5], which from a Bayesian point of view developed a new
asymmetric model which was later studied in depth by Azzalini [6], from a classical point of view.
Azzalini model was termed the skew-normal distribution. Following Azzalini’s method, a general
family of asymmetric models termed skew-symmetric models appeared in the literature. The following
lemma, originally presented in [6], can be considered as the starting point for the development of these
asymmetric models.

Symmetry 2019, 11, 1305; doi:10.3390/sym11101305 www.mdpi.com/journal/symmetry63
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Lemma 1. Let f0 be a probability density function (pdf) which is symmetric around zero, and G a cumulative
distribution function (cdf) such that G′ exists and is a symmetric pdf around zero. Then

fZ(z; λ) = 2 f0(z)G(λz), z ∈ R, (1)

is a pdf for λ ∈ R.

Equation (1) provides the skew version of f0(·) with skewing function G(·) and λ the skewness
parameter. If f0(·) = φ(·) and G(·) = Φ(·), the pdf and cdf, respectively, of the N(0, 1) distribution,
then the skew-normal is obtained, whose pdf is

fZ(z) = 2φ(z)Φ(λz), z ∈ R, λ ∈ R . (2)

Other examples of skew models are: skew-t, skew-Cauchy, skew-elliptical, and generalized
skew-elliptical. We highlight that all of them are unimodal distributions.

1.2. Bimodality

Another fundamental result in our proposal will be the following lemma, which was given in
Gómez et al. [2]. These authors extended (1), by introducing a parameter δ in f0, in such a way that for
certain values of δ the resulting distribution is bimodal.

Lemma 2. Let f be a symmetric pdf around zero, F the corresponding cdf and G an absolutely continuous cdf
such that G′ exists and is symmetric around zero. Then

g(z; δ, λ) = cδ f (|z|+ δ)G(λz), z ∈ R, λ, δ ∈ R (3)

is a pdf and c−1
δ = 1 − F(δ).

Taking f (·) = φ(·) and G(·) = Φ(·), in (3), the flexible skew-normal (FSN) model was
obtained and studied in detail in [2]. There, it was proved that the FSN model can be bimodal
for certain values of δ. Notice that the FSN model is obtained by adding an extra parameter, δ, to the
skew-normal distribution proposed in [6]. That is a random variable (rv) Z follows a FSN distribution,
Z ∼ FSN(δ, λ), if its pdf is given by

f (z; δ, λ) = cδφ(|z|+ δ)Φ(λz), z ∈ R, λ, δ ∈ R (4)

where φ and Φ are the pdf and cdf of the N(0, 1) distribution, respectively, and c−1
δ = 1 − Φ(δ).

Other recent proposals in the contemporary literature dealing with bimodality are the extended
two-pieces skew-normal model (ETN), introduced in [7] and the uni-bi-modal asymmetric power
normal model given in [8] whose properties are based on results given in [9,10]. Applications of
interest in Economics are given in [11]. All these references show the interest in the latest years for
modelling bimodality.

1.3. BS Model

The BS or fatigue life distributions was proposed for modelling survival time data and material
lifetime subject to stress in [12,13]. This model is asymmetric and only fits positive data. The pdf of a
BS distribution is given by

fT(t) = φ(at)
t−3/2(t + β)

2α
√

β
, t > 0, (5)
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where

at = at(α, β) =
1
α

(√
t
β
−
√

β

t

)
, (6)

α > 0 is a shape parameter, β > 0 is a scale parameter and the median of this distribution. (5) is denoted
as T ∼ BS(α, β). It is well known that α is the parameter that controls asymmetry. Specifically, (5)
becomes more asymmetric as α increases and symmetric around β as α gets close to zero. It can be
seen in [13] that (5) can be obtained as the distribution of the random variable

T = β

[
α

2
Z +

√(α

2
Z
)2

+ 1

]2

, (7)

where Z ∼ N(0, 1).
The BS model has been applied to a variety of practical situations. However, quite often, although

the data suggest a BS distribution, some deficiencies are observed in the fitted BS model. This problem
has motivated an increasing interest in its generalizations. We highlight that, recently, this model
was extended by [14] to the family of elliptical distributions, this is known in the literature as the
generalized Birnbaum–Saunders (GBS) distribution. Later, [15] proposed an extension based on the
elliptical asymmetric distributions, known as the doubly generalized Birnbaum–Saunders model.
On the other hand, [16] presents the asymmetric BS distribution with five parameters called the
extended Birnbaum–Saunders (EBS) distribution. Other types of extensions are the asymmetric
epsilon-Birnbaum–Saunders model given in [17], models in [18] based on the slash-elliptical family
of distributions, and the generalized modified slash Birnbaum–Saunders (GMSBS) proposed in [19],
which is based on [20].

In these extensions, we find that the asymmetric BS models previously cited, such as [15,21],
are designed to fit data with greater or smaller asymmetry (or kurtosis) than that of the ordinary BS
model, but they are not appropriate for fitting bimodal data. On the other hand, we highlight that the
extension given in [21], which can become bimodal for certain combination of parameters is unable to
capture bimodality unless it is accentuated enough.

Therefore there exists a real need for an asymmetric model, based on the BS distribution, and able
to fit data presenting bimodal features, which is not uncommon in the literature. So the present paper
presents a flexible BS distribution able to model skewness and to fit data with and without bimodality.

The paper is organized as follows. Section 2 is devoted to the development of an asymmetric
uni-bimodal BS model. Its properties are studied in depth. Specifically, a closed expression for the
cumulative distribution function (cdf) is given in terms of the cdf of a bivariate normal distribution.
Some of the models proposed in [15,22] are obtained as particular cases. The shape and bimodality
of the distribution are studied. It is shown that this model is closed under a change of scale and
reciprocity. Survival and hazard functions are also obtained. Section 3 deals with moments derivation
and iterative maximum likelihood estimation methods for the new model. Section 4 is devoted to real
data applications of interest in environmental sciences. The first one deals with a bimodal situation
in which our proposal performs better than other BS models and a mixture of normal distributions.
The second one is taken from [16], where the extended BS model was proposed as the best for this
dataset. It is shown that the FBS outperforms the extended BS model.

2. Results in Flexible Birnbaum-Saunders

Based on the flexible skew-normal model proposed in [2], we extend the Birnbaum–Saunders.
The main idea is to apply (7) with Z ∼ FSN(δ, λ) introduced in (4). This new model is called the
flexible Birnbaum–Saunders (FBS) distribution whose pdf is given by

f (t; α, β, δ, λ) =
t−3/2(t + β)

2αβ1/2(1 − Φ(δ))
φ(|at|+ δ)Φ(λat), (8)
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with at defined in (6), t > 0, α > 0, β > 0, δ ∈ R, λ ∈ R, φ(·) and Φ(·) the pdf and cdf of a N(0, 1),
respectively. We use the notation T ∼ FBS(α, β, δ, λ). The inclusion of parameters δ and λ makes
our approach more flexible than the extensions previously discussed. λ is a parameter that controls
asymmetry (skewness) and δ is a shape parameter related to bimodality of our proposal.

If λ = 0 then we obtain, as a particular case, the model introduced by [22].
Figures 1 and 2 depict the behaviour of (8) for some values of parameters, illustrating that it can

be bimodal for some combinations of them.

2.1. Interpretation of Parameters.

In both figures the values of parameters α and β are fixed. We study the effects of

(i) λ positive versus λ negative.
(ii) Increasing δ > 0 in Figure 1. Decreasing δ < 0 in Figure 2.

Figure 1 suggests that, for α and β fixed, if a positive value of δ is considered then we have a
unimodal distribution and the peak of the distribution increases when δ increases: δ = 0.75 (red solid
line), δ = 1.5 (green dashed line), . . . , δ = 3 (blue dashed dotted line). This happens for positive and
negative values of λ.

On the other hand, in Figure 2, we have different situations. This plot suggests that, for α and β

fixed, if a negative value of δ is considered then a bimodal distribution can be obtained. For positive
λ, if δ decreases: δ = −0.75 (red solid line), δ = −1.5 (green dashed line), . . . , δ = −3 (blue dashed
dotted line), then the peaks decrease and bimodality becomes more accentuated. For negative λ, if δ

decreases, then main peak increases and bimodality becomes less accentuated.
Also, note in Figures 1 and 2, that in the FBS model the pdf for negative λ is no longer the specular

image of plot for positive λ.

(a) (b)

Figure 1. FBS distributions for α = 0.75, β = 1 (both fixed). In (a) λ = 1 versus (b) λ = −1. Increasing
values of δ > 0: δ = 0.75 (red solid line), 1.5 (green dashed line), 2.25 (black dotted line) and 3.0 (blue
dashed and dotted line).
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(a) (b)

Figure 2. Flexible Birnbaum–Saunders (FBS) distributions for α = 0.30, β = 0.75 (both fixed). In (a)
λ = 0.5 versus (b) λ = −0.5. Decreasing values of δ < 0: δ = −0.75 (red solid line), −1.5 (green dashed
line), −2.25 (black dotted line) and −3.0 (blue dashed and dotted line).

2.2. Properties

Next, important properties of the FBS model are presented. First an explicit expression for the cdf
is given in terms of the cdf of a bivariante normal distribution.

Proposition 1. Let T ∼ FBS(α, β, δ, λ). Then the cdf of T is

FT(t) =

⎧⎪⎪⎨⎪⎪⎩
cδΦBNλ

(
λδ√
1+λ2 , at − δ

)
, if 0 < t < β

cδ

[
ΦBNλ

(
λδ√
1+λ2 ,−δ

)
+ ΦBNλ

(
− λδ√

1+λ2 , at + δ
)
− ΦBNλ

(
− λδ√

1+λ2 , δ
)]

, if t ≥ β,
(9)

where ΦBNλ
(x, y) is the cdf of a bivariate normal distribution, with mean vector μ′ = (0, 0) and

covariance matrix

Ωλ =

(
1 ρλ

ρλ 1

)
where ρλ = − λ√

1+λ2 . (10)

Proof. It can be seen in Appendix A.

Next some particular cases of interest for λ and δ parameters are discussed. Results about the
shape of fT(·) are included.

2.2.1. Effect of λ.

Corollary 1. Let T ∼ FBS(α, β, δ, λ). If λ = 0 then the cdf of T is

FT(t) =

{
cδ
2 Φ(at − δ), if 0 < t < β
cδ
2 {Φ(at + δ) + 1 − 2Φ(δ)} , if t ≥ β .

(11)

Proof. If λ = 0 then ρλ, defined in (10), is equal to zero, and since in the bivariate normal distribution
uncorrelation implies independence, we have that

ΦBNλ=0(x, y) = Φ(x) Φ(y), ∀(x, y) .

Taking into account that Φ(0) = 1/2 and Φ(−δ) = 1 − Φ(δ), we have that (9) reduces to (11).

Result in Corollary 1 corresponds to the model studied in [22].

2.2.2. Effect of δ.

Corollary 2. Let T ∼ FBS(α, β, δ, λ). If δ = 0 then FT reduces to FT(t) = 2ΦBNλ
(0, at), for t > 0 .
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Corollary 2 is a particular case of models studied in [15].

2.2.3. Shape of fT(·).
Proposition 2. Let T ∼ FBS(α, β, δ, λ). Then the pdf given in (8) is nondifferentiable at t = β.

Proof. It follows from (8), by noting that if t = β then at = 0 and the absolute value function is not
differentiable at zero.

Proposition 3. Let T ∼ FBS(α, β, δ, λ). The pdf given in (8) can be bimodal. The modes are the solution of the
following non-linear equations.

1. 0 < t∗1 < β solution of

at1 = δ + λ
φ(λat1)

Φ(λat1)
+

a′′t1{
a′t1

}2 . (12)

2. t∗2 > β solution of

at2 = −δ + λ
φ(λat2)

Φ(λat2)
+

a′′t2{
a′t2

}2 , (13)

With at given in (6), a′t and a′′t the first and second derivatives of at with respect to t, respectively.

Proof. It is given in Appendix A.

Comments on the use of (12) and (13) are included in Appendix A, Remark A1.

Remark 1. Equations obtained in (12) and (13) are similar to those we have in the skew normal and BS model.

1. Let Z ∼ SN(λ), λ ∈ R. Then Z is unimodal and the mode, z∗, is given by the solution of the
non-linear equation

z = λ
φ(λz)
Φ(λz)

.

2. Let T ∼ BS(α, β), α, β > 0. Then T is unimodal and the mode, t∗, is given by the solution of the
non-linear equation

−at
{

a′t
}2

+ a
′′
t = 0.

Next it is shown that the p-th quantile of T can be given in terms of the pth quantile of the
FSN(δ, λ). Also it is proved that the FBS model is closed under change of scale and reciprocity.

Theorem 1. Let T ∼ FBS(α, β, δ, λ), with α, β ∈ R+ and δ, λ ∈ R. Then

(i) Let tp be the pth quantile of T , 0 < p < 1.

tp = β

(
α

2
zp +

√(α

2
zp

)2
+ 1

)2

(14)

where zp denotes the pth quantile of Z ∼ FSN(δ, λ).
(ii) kT ∼ FBS(α, kβ, δ, λ) for k > 0.

(iii) T−1 ∼ FBS(α, β−1, δ,−λ).

Proof. It can be seen in Appendix A.
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2.2.4. Lifetime Analysis

The BS model is commonly used to explain survival and material resistance data. The survival
and risk (or hazard) functions are important indicators in such fields. For the FBS model these functions
are given next.

Proposition 4. Let T ∼ FBS(α, β, δ, λ) with α, β ∈ R+ and δ, λ ∈ R. Then

(i) The survival function is S(t) = P[T > t] = 1 − FT(t) with FT(·) given in (9).
(ii) The hazard function, r(t) = f (t)/S(t), is

r(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cδa′tφ(|at |+δ)Φ(λat)

1−cδΦBNλ

(
λδ√
1+λ2

,at−δ

) , if 0 < t < β

cδa′tφ(|at |+δ)Φ(λat)

1−cδ

[
ΦBNλ

(
λδ√
1+λ2

,−δ

)
+ΦBNλ

(
− λδ√

1+λ2
,at+δ

)
−ΦBNλ

(
− λδ√

1+λ2
,δ
)] , if t ≥ β

with ΦBNλ
(·) the cdf of the bivariate normal given in Proposition 1.

In Figure 3, the hazard function for those pdf’s considered in Figures 1 and 2 are plotted. These
graphs show that, for the FBS distribution, the hazard function admits a variety of shapes, which is
interesting from an applied point of view.

0.5 1.0 1.5 2.0 2.5 3.0

1

2
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Figure 1 (a)
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Figure 1 (b)
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1
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5
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Figure 2 (a)
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2
4
6
8

Figure 2 (b)

Figure 3. Hazard function of the FBS distribution for plots corresponding to Figure 1 (a), (b): α = 0.75,
β = 1 (both fixed), δ = 0.75 (red solid line), 1.5 (green dashed line), 2.25 (black dotted line) and 3.0
(blue dashed dotted line), in (a) λ = 1 versus (b) λ = −1. For plots corresponding to Figure 2 (a), (b):
α = 0.30, β = 0.75 (both fixed), δ = −0.75 (red solid line), –1.5 (green dashed line), –2.25 (black dotted
line) and –3.0 (blue dashed dotted line), in (a) λ = 0.5 versus (b) λ = −0.5.

Remark 2. More complicated hazard functions than the traditional ones are obtained when we are dealing with
models with complex structure, as it happens with the FBS. For instance, in Figure 3, we have two situations:

1. r(t) corresponding to Figure 1a,b. These are, first, quickly increasing, later decreasing more slowly or even
in a flat way. It can be applied in practical situations in which the risk of failure increases quickly until
certain point in which its behaviour becomes flatter. As [23] points out, the flat area is very interesting in
survival analysis and reliability contexts.
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2. r(t) corresponding to Figure 2a,b are increasing-decreasing-increasing. This kind of hazard functions has
been recently introduced and discussed in literature, due to its interest in reliability of systems, see for
instance [23] or [24] (and references therein). In plot for Figure 2b, r(t) is (quickly) increasing—or (quickly)
decreasing. On the other hand, for Figure 2a the initial effect increasing—decreasing is less accentuated.

3. Moments and Maximum Likelihood Estimation

Moments of the FBS model can be obtained from the moments of the flexible skew-normal model
given in [2]. The following results present important properties relating those distributions, and the
expressions for the first moment and variance in the FBS model.

Theorem 2. Let T ∼ FBS(α, β, δ, λ) and Z ∼ FSN(δ, λ). Then E(Tr), r = 0, 1, . . ., always exists. Moreover

E(Tr) =
βr

4r

2r

∑
k=0

(
2r
k

)
E

[
(αZ)k

(
α2Z2 + 4

) 2r−k
2

]
, r = 0, 1, . . . . (15)

Proof. From (7), we can write

T =
β

4

{
αZ +

(
α2Z2 + 4

)1/2
}2

.

Taking expectation of the rth-power of T

E(Tr) =
βr

4r E

[{
αZ +

(
α2Z2 + 4

)1/2
}2r
]

. (16)

From (16), note that for r = 0, 1, . . ., E(Tr) exists if and only if E(Z2r) exists. On the other hand, it
can be seen in [2] that E(Z2r) always exists, and therefore E(Tr) too.

Finally note that (15) is the result of applying the binomial formula to (16).

Next, explicit expressions for the expected value and variance of T ∼ FBS(α, β, δ, λ) are given.
In these expressions, κj = ESFN

(
Zj

2

√
α2Z2 + 4

)
with Z ∼ FSN(δ, λ).

Theorem 3. Let T ∼ FBS(α, β, δ, λ). Then

E(T) = β

[
1 + ακ1 +

α2

2
cδ

{
(1 + δ2)(1 − Φ(δ))− δφ(δ)

}]
, (17)

E(T2) = β2
[

7α4cδ

16

(
(3 + 6δ2 + δ4)(1 − Φ(δ))− δ(5 + δ2)φ(δ)

)
+ α3κ3 + 2ακ1 + 1

]
+ 2α2β2cδ

(
(1 + δ2)(1 − Φ(δ))− δφ(δ)

)
and

Var(T) = β2
[

7α4cδ

16

(
(3 + 6δ2 + δ4)(1 − Φ(δ))− δ(5 + δ2)φ(δ)

)
+ α3κ3 − α2κ1 + 1

]
− α2β2cδ

4

(
(1 + δ2)(1 − Φ(δ))− δφ(δ)

) (
α2cδ

(
(1 + δ2)(1 − Φ(δ))− δφ(δ)

)
+ 4(1 − ακ1)

)
where κj = EFSN

(
Zj

2

√
α2Z2 + 4

)
and Z ∼ FSN(δ, λ).
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Proof. These results follows from Theorem 2 and the expressions of κj, which have been computed by
using the results for moments of Z ∼ FSN(δ, λ) obtained in [2].

As illustration, note that for the case r = 1, (15) reduces to

E(T) =
β

4

[
E(α2Z2 + 4) + 2E

(
(αZ)

√
α2Z2 + 4)

)
+E(α2Z2)

]
= β

[
1 + ακ1 +

α2

2
E(Z2)

]
,

it can be seen in [2] that E(Z2) = cδ(1 + δ2) (1 − Φ(δ))− δφ(δ)), and so (17) is obtained.

3.1. Maximum Likelihood Estimators

Parameter estimation in the BS model has been the topic of interest in many papers. Among
others, we mentioned [25–27]. To estimate the parameters in the usual BS model, the modified moment
method (MME) and maximum likelihood (MLE) are commonly used. To start the maximum likelihood
approach moment estimators are used which are given by

β̂M =
√

sr, α̂M =

√
2
(√

s
r
− 1
)

.

where s = 1
n ∑n

i=1 ti and r =
(

1
n ∑n

i=1
1
ti

)−1
are the sample (arithmetic) and harmonic mean,

respectively. Relevant aspects of this distribution such as its robustness with respect to parameter
estimation and O(n−1) bias corrections for MLEs, can be seen in [25–27].

In the following, we discuss MLE estimation for the FBS model in depth. Thus, given
n observations independent and identically distributed, T1, T2, ..., Tn, with Ti ∼ FBS(α, β, δ, λ),
the log-likelihood function for the parameter vector θ = (α, β, δ, λ)′ is given by

�(θ) = −n
(

log(α) +
1
2

log(β) + log (1 − Φ(δ))

)
− 3

2

n

∑
i=1

log(ti) +
n

∑
i=1

log(ti + β)

− 1
2

n

∑
i=1

(a2
ti
+ 2δ|ati |+ δ2) +

n

∑
i=1

log (Φ(λati )). (18)

To maximize l(θ) in θ, consider the first derivatives of l(θ) with respect to α, β, δ and λ, denoted
as l̇α, l̇β, l̇δ and l̇λ, respectively. From l̇α = 0, l̇β = 0, l̇δ = 0 and l̇λ = 0, the likelihood equations are
given by

− n +
n

∑
i=1

a2
ti
− δ

n

∑
i=1

|ati | − λ
n

∑
i=1

ati

φ(λati )

Φ(λati )
= 0 (19)

− n
2β

+
n

∑
i=1

1
ti + β

+
1

2αβ3/2

n

∑
i=1

(
sgn(ati ) (|ati |+ δ)− λ

φ(λati )

Φ(λati )

)
ti + β√

ti
= 0 (20)

δ − φ(δ)

1 − Φ(δ)
= − 1

n

n

∑
i=1

|ati | (21)

n

∑
i=1

ati

φ(λati )

Φ(λati )
= 0 (22)

in which sgn(·) denotes the sign function.
The solution to the previous system of equations must be obtained by iterative methods such as

the Newton-Raphson or quasi-Newton procedures, which can be implemented using the statistical
software R, [28].
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As initial estimates of α and β can be proposed the estimates of these parameters obtained in the
basic BS model, denoted as α̂0 and β̂0. These estimates can be plugged into (21) and (22) to obtain
preliminar estimates of δ and λ, δ̂0 and λ̂0, and so, start the recursion.

3.2. Expected and Observed Information Matrices

Recall that, the Fisher information matrix is given by

I(θ) =
(

ji,j
)

i,j=α,β,δ,λ ,

which entries are equal to minus the second partial derivatives of the log-likelihood function given
in (18) with respect to the parameters in the model. They are denoted as jαα = − ∂2

∂α2 l(θ), and so on.
So we have

jαα = − n
α2 +

1
α2

n

∑
i=1

(
3a2

ti
+ 2δ|ati |

)
+

λ

α2

n

∑
i=1

ati wi (2 + λati Bi) ,

jβα = − 1
α3β2

n

∑
i=1

(
β2 − t2

i
ti

)
+

1
2α2β3/2

n

∑
i=1

(δsgn(ati ) + λwi(−1 + λati Bi))

(
ti + β√

ti

)
,

jββ = − n
2β2 +

n

∑
i=1

1
ti + β

+
1

α2β3

n

∑
i=1

ti +
1

4αβ5/2

n

∑
i=1

(δsgn(ati )− λwi)

(
3ti + β√

ti

)

+
λ2

4α2β3/2

n

∑
i=1

wiBi

(
ti + β√

ti

)2
,

jδα = − 1
α

n

∑
i=1

|ati |, jδβ = − 1
2α2β3/2

n

∑
i=1

sgn(ati )

(
ti + β√

ti

)
,

jλα =
1
α

n

∑
i=1

ati wi (1 − λati Bi) , jλβ =
1

2αβ3/2

n

∑
i=1

wi (1 + λati Bi)

(
ti + β√

ti

)
,

jδδ = n (wδ(δ − wδ) + 1) , jδα = jδβ = jλδ = 0, jλλ =
n

∑
i=1

a2
ti

wiBi

where w = φ(λat)
Φ(λat)

, wδ = φ(δ)/(1 − Φ(δ)) and B = λat + w.
The Fisher (expected) information matrix would be obtained by computing the expected values of

the above second derivatives. Taking in this matrix δ = λ = 0, that is, T ∼ BS(α, β), and, using results
in [21], we have

I(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
2
α2 0 − 1

α

√
2
π 0

0 α−2β−2
(

1 + αq(α)√
2π

)
0 1√

2π
1

αβ3/2 A1(t)

− 1
α

√
2
π 0 1 − 2

π 0
0 1√

2π
1

αβ3/2 A1(t) 0 2
π

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where A1(t) = E

(
ti+β√

ti

)
, q(α) = α

√
2
π − π exp( 2

α2 )

2 er f c( 2
α ), with er f c(·) the error function, i.e.,

er f c(x) = 2√
π

∫ ∞
x exp(−t2)dt, see [29].

It can be shown that |I(θ)| 
= 0, so the Fisher information matrix is not singular at δ = λ = 0.
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Hence, for large samples, the MLE, θ̂, of θ is asymptotically normal, that is,

√
n
(

θ̂− θ
) L−→ N4(0, I(θ)−1),

resulting that the asymptotic variance of the MLE, θ̂, is the inverse of Fisher information matrix I(θ).
Since the parameters are unknown, usually the observed information matrix is considered where the
unknown parameters are estimated by ML.

Asymptotic confidence intervals for the parameters in the FBS model can be obtained from
these results.

4. Numerical Illustrations

The numerical illustrations introduced next are aimed to show that the FBS model can be an
alternative to modelling unimodal or bimodal data from different areas. First illustration is related
to nickel content in soil samples analyzed at the Mining Department (Departamento de Minas) of
Universidad de Atacama, Chile. We start by showing that both, BS and skew-BS (SBS) models are not
able to capture bimodality present in this data set. Thus, the FBS model turned out to be a good option,
to fit the data even better than a mixture of two normal distributions, which is another competing
alternative to fit bimodal data. Second illustration is related to air pollution in New York city in USA,
which was previously analyzed in [16,30]. In this case, it is shown that FBS model again provides
a better fit than BS and SBS. As competing model the extended Birnbaum-Saunders (EBS) is also
considered. Recall that the EBS(α, β, σ, ν, λ) is a five-parameter model proposed in [16] where the
parameter σ affects the kurtosis; ν and λ affect the skewness; and α and β the shape and scale as in the
usual BS model. We highlight that, for this dataset, the FBS(α, β, δ, λ) model provides a better fit than
that given by the EBS(α, β, σ, ν, λ) in [16] with the merit of using less parameters.

4.1. Nickel Concentration

For illustrative purposes, we apply the FBS model to a data set related to nickel content in soil
samples. This data set encompasses 85 observations of the variable concentration of nickel with
sample mean = 21.588, sample standard deviation = 16.573, sample asymmetry = 2.392 and sample
kurtosis = 8.325, much higher than expected with the ordinary BS distribution.

4.1.1. FBS versus the BS and SBS distributions

To fit the nickel concentration variable, we use the BS, skew BS (SBS) and FBS models. Using
function optim from the R-package, [28], the following point estimates (and their standard errors) are
obtained for each of the three models under consideration
BS model: α̂ = 0.789 (0.060) and β̂ = 16.382 (1.296).
SBS model: α̂ = 1.073 (0.201), β̂ = 8.841 (1.998) and λ̂ = 1.252 (0.590).
FBS model: α̂ = 0.870 (0.104), β̂ = 5.072 (0.763), δ̂ = −1.520 (0.282) and λ̂ = 1.405 (0.341).

The bimodal hypothesis can be formally tested as follows

H0 : δ = 0 versus H1 : δ 
= 0,

which is equivalent to compare models SBS versus FBS. Given the nonsigularity of the Fisher
information matrix, and since these models are nested, we can consider the likelihood ratio
statistics, namely

Λ1 = LSBS(α̂, β̂, λ̂)/LFBS(α̂, β̂, δ̂, λ̂).

It is obtained −2 log(Λ1) = 5.618, which is greater than the 5% chi-square critical value with
one degree of freedom (df), which is equal to 3.84. Therefore, the null hypothesis of no-bimodality is
rejected at the 5% critical level, leading to the conclusion that FBS model fits better than the unimodal
SBS model to the nickel concentration data.
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To compare the FBS model with the BS model, consider to test the null hypothesis of a BS
distribution versus a FBS distribution, that is

H0 : (δ, λ) = (0, 0) vs H1 : (δ, λ) 
= (0, 0)

using the likelihood ratio statistics based on the ratio Λ2 = LBS(α̂, β̂)/LFBS(α̂, β̂, δ̂, λ̂). After
substituting the estimated values, we obtain −2 log(Λ2) = 7.628, which is greater than the 5%
chi-square critical value with 2 df, which is 5.99. Therefore the FBS is preferred to BS model for this
data set.

4.1.2. FBS versus a Mixture of Normal Distributions

Another model widely applied in such situations of bimodality is the mixture of two normal
distributions. The normal mixture model is given by:

f (x; μ1, σ1, μ2, σ2, p) = p f1(x, μ1, σ1) + (1 − p) f2(x; μ2, σ2) (23)

where f j is a normal distribution with parameters (μj, σj), j = 1, 2 and 0 < p < 1. (23) is denoted by
MN(μ1, σ1, μ2, σ2, p).

To compare FBS model with the MN model, we propose the Akaike information criterion (AIC),
see [31], namely AIC = −2�̂(·) + 2k, the modified AIC criterion (CAIC), typically called the consistent
AIC, namely CAIC = −2�̂(·) + (1 + log(n))k and the Bayesian Information Criterion, BIC, BIC =

−2�̂(·) + log(n)k, where k is the number of parameters and �̂(·) is the log-likelihood function evaluated
at the MLEs of parameters. The best model is the one with the smallest AIC or CAIC or BIC.

Now we compare the FBS with MN(μ1, σ1, μ2, σ2, p). The estimated mixture model is

MN(15.348, 6.622, 40.908, 21.960, 0.755)

with AIC = 674.849, CAIC = 692.061 and BIC = 687.062. On the other hand, for the FBS model, we
have AIC = 671.859, CAIC = 685.628 and BIC = 681.630. According to these criteria, the FBS model
provides a better fit to the data of nickel concentration.

4.1.3. FBS versus a Mixture of Log-Normal Distributions

Following reviewer’s recommendations, a mixture of two log-normal distributions is also
considered. The log-normal mixture model will be given by (23) with f j the pdf of a log-normal
distribution with parameters (μj, σj), j = 1, 2 and 0 < p < 1, and it is denoted by MLN(μ1, σ1, μ2, σ2, p).
The estimated mixture model is

MLN(2.829, 0.177, 2.8275, 0.877, 0.327)

with AIC = 663.571, CAIC = 680.784 and BIC = 675.784. All of them are less than those
corresponding to FBS. So, according to these criteria, the mixture ot two log-normal distributions
provides a better fit to this dataset than the FBS model.

This discussion illustrates that, quite often, the final selection of a model is a matter of choice.
FBS model can be considered as appropriate if we want to use a more parsimonious model, and this
is better than other BS models and a mixture of two normal distributions. On the other hand, based
on AIC, CAIC and BIC, the mixture of two log-normal would be preferred but this model has more
parameters than the FBS distribution and may present problems of identifiability. Anyway, the final
choice must be properly justified.

Figure 4 depicts maximized likelihoods and empirical cdf for variable nickel concentration
revealing that FBS model fitting is quite good.
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(a) (b)

Figure 4. (a) Plots for FBS, (solid line), MLN (dashed line), BS (dotted line) and SBS (dotted and dashed
line) models . (b) Empirical cdf with estimated FBS cdf (dashed line) and estimated BS cdf (dotted line).

Remark 3. Going through the origin of this data set, the bimodal behavior of the nickel concentration statistical
model seems to be due to the fact that the samples were taken according to different lithologies. Lithology classifies
according to the physical and chemical elements in rock formation. Mining operations found different lithologies
in these samples, as it is depicted in Figure 4.

4.2. Air Pollution

The concentration of average air pollutants has been used in epidemiological surveillance as an
indicator of the level of atmospheric contamination. Among its associated adverse effects in humans,
diseases such as bronchitis are found. The distribution of this concentration has a bias to the right, and is
always positive. It is typically assumed that the data on air pollutant concentrations are uncorrelated
and independent and thus they do not require the diurnal or cyclic trend analysis, see [32]. The data
set studied in this section corresponds to daily measures of ozone levels (in ppb = ppm × 1000) in the
city of New York, USA, from May to September, 1973, collected by the New York State Conservation
Department. The sample mean, standard deviation, asymmetry and kurtosis coefficients are given,
respectively, by 42.129, 32.987, 1.209 and 1.112.

4.2.1. FBS versus the BS and SBS Distributions

Maximum likelihood estimators, their estimated standard errors (in parenthesis), for the BS, SBS
and FBS models, were computed, the results are:
BS model: α̂ = 0.982 (0.064) and β̂ = 28.031 (2.265).
SBS model: α̂ = 1.270 (0.235), β̂ = 14.831 (4.019) and λ̂ = 1.066 (0.533).
FBS: α̂ = 5.160 (0.481), β̂ = 78.000 (0.008), δ̂ = 3.991 (0.050) and λ̂ = −9.135 (2.417).
For this data set, the log-likelihood ratio statistics to test BS vs FBS and SBS vs FBS are given by

−2 log(Λ1) = 12.812 and − 2 log(Λ2) = 5.828,

which are greater than the corresponding 5% critical values from the chisquare distribution, which are
5.99 (with 2 df) and 3.84 (with one df), respectively. So, we can conclude that the unimodal FBS model
provides a better fit to this dataset than BS and FBS models.

75



Symmetry 2019, 11, 1305

4.2.2. FBS versus the Extended BS (EBS) Model

Fitting the five-parameter EBS model, EBS(α, β, σ, ν, λ), proposed in [16] as the best for this
dataset, and whose point estimates for the parameters and summaries for comparison are equal to

EBS(0.780, 0.596, 3.618,−3.539,−0.096),

CAIC = 1111.154 and BIC = 1106.154. On the other hand, for the FBS model, it was obtained
CAIC = 1108.396 and BIC = 1104.396. Then, according to the CAIC and BIC criteria, FBS model
presents the best fit to this data set dealing with the daily ozone level concentration in the atmosphere.

Figure 5 depicts the histograms and the fitted density curves for the data set studied and empirical
cdf for variable daily ozone level concentration in the atmosphere, while the dashed line corresponds
to the cfd for FBS model.

(a) (b)

Figure 5. (a) Plots for FBS, (solid line), BS (dotted line), SBS (dashed line) and EBS (dotted and dashed
line) models. (b) Empirical cdf with estimated FBS cdf (dashed line).

5. Conclusions

We have introduced a new family of distributions able to model skewness, unimodality and
bimodality in the BS distribution. We have discussed several of its properties. Explicit expressions
for the cdf are given in terms of the cdf of a bivariate normal variable. Non-linear equations to
obtain the modes of this distribution are provided. The estimation of parameters is carried out via
maximum likelihood. We highlight that the ML equations must be solved by using iterative methods.
The information matrix is non-singular and therefore likelihood ratio tests to compare this model with
other nested models can be implemented. The interest and flexibility of our proposal is supported
with two illustrations to real data in which we show that:

(i) the FBS model provides consistently better fits than the BS and SBS models (they can be considered
relevant precedents of our proposal)

(ii) the FBS distribution can improve the fit provided by other competing models designed to deal
with bimodality (such as a mixture of normal distributions). It can also perform better for
unimodal situations in which a generalized BS model with skewness parameters must be applied,
such as the EBS model proposed in [16]. We highlight that in both situations FBS provides a
better fit with a more parsimonious model (less number of parameters), and the problem of
identifiability of mixtures can be circumvented.

Therefore the outcome of these practical demonstrations show that the new family is very flexible
and widely applicable.
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Appendix A

Proof of Proposition 1 (cdf in the FBS model). From Equation (7), T is a monotonically increasing
function of Z ∼ FSN(δ, λ). Therefore the cdf of T is given by

FT(t) = FZ(at) (A1)

where FZ(·) denotes the cdf of Z and at was given in (6).
(i) First, we obtain the cdf of Z ∼ FSN(δ, λ)

It can be seen in Gómez et al. [2], Proposition 4, that the pdf of Z ∼ FSN(δ, λ) is

fZ(z) =

{
cδφ(z − δ)Φ(λz), if z < 0
cδφ(z + δ)Φ(λz), if z ≥ 0.

Let us consider the case for z < 0

FZ(z) =
∫ z

−∞
fZ(t)dt =

∫ z

−∞
cδφ(t − δ)Φ(λt)dt

By making the change of variable v = t − δ, and later, taking into account that Φ(·) is the cdf of a
N(0, 1) distribution, we have that

FZ(z) = cδ

∫ z−δ

−∞
φ(v)Φ(λ(v + δ))dv = cδ

∫ z−δ

−∞

∫ λ(v+δ)

−∞
φ(v)φ(s)dsdv (A2)

The integrand in (A2) is the joint pdf of two independent N(0, 1) rv’s, (S, V), i.e.,(
S
V

)
∼ N2

((
0
0

)
,

(
1 0
0 1

))

Note that (A2) can be rewritten as

FZ(z) = cδ Pr [S − λV ≤ λδ, V ≤ z − δ]

= cδ Pr
[

S − λV√
1 + λ2

≤ λδ√
1 + λ2

, V ≤ z − δ

]
= cδΦBNλ

(
λδ√

1 + λ2
, z − δ

)
(A3)

where ΦBNλ
(x, y) denotes the cdf of a bivariate normal distribution, with mean vector μ′ = (0, 0) and

covariance matrix Ωλ given in (10).
For z > 0, we have that

FZ(z) =
∫ 0

−∞
fZ(t)dt +

∫ z

0
fZ(t)dt

= FZ(0) + cδ

∫ z

0
φ(t + δ)Φ(λt)dt . (A4)
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From (A3), it follows that

FZ(0) = lim
z→0−

FZ(z) = cδΦBNλ

(
λδ√

1 + λ2
, −δ

)
(A5)

On the other hand, proceeding similarly to the previous case (change of variable v = t + δ), it can
be proved that

∫ z

0
φ(t + δ)Φ(λt)dt = Pr

[
S − λV√

1 + λ2
≤ − λδ√

1 + λ2
, δ < V ≤ z + δ

]
= ΦBNλ

(
− λδ√

1 + λ2
, z + δ

)
− ΦBNλ

(
− λδ√

1 + λ2
, δ

)
(A6)

Therefore, from (A3)–(A6), we have just proved that the cdf of Z is

FZ(z) =

⎧⎪⎪⎨⎪⎪⎩
cδΦBNλ

(
λδ√
1+λ2 , z − δ

)
, if z < 0

cδ

[
ΦBNλ

(
λδ√
1+λ2 ,−δ

)
+ ΦBNλ

(
− λδ√

1+λ2 , z + δ
)
− ΦBNλ

(
− λδ√

1+λ2 , δ
)]

, if z ≥ 0

(A7)

(ii) Finally, the expression for the cdf of T ∼ FBS(α, β, δ, λ) given in (9) follows from (A1)
and (A7).

Proof of Proposition 3 (Modes in the FBS model). Recall that, from (A1), the pdf of T is given by

fT(t) = fZ(at)a′t = cδa′tφ(|at|+ δ)Φ(λat)

where fZ(·) denotes the pdf of Z ∼ FSN(δ, λ), at was given in (6) and

a′t =
∂

∂t
at =

t−3/2β−1/2

2α
(t + β) . (A8)

For at < 0, or equivalently 0 < t < β, consider the first derivative with respect to t of fT(·) and
equating to zero, we have

f ′T(t) = cδ
∂

∂t
{

a′tφ(−at + δ)Φ(λat)
}
= 0 (A9)

By using that φ′(z) = −zφ(z), it can be proved that (A9) is equivalent to{
a′t
}2

[(δ − at)Φ(λat) + λφ(λat)] + a
′′
t Φ(λat) = 0 (A10)

Since a′t > 0, ∀t > 0 (β > 0), we have that (A10) is equivalent to (12).
Similarly, for at > 0, i.e., t > β, from f ′T(t) = cδ

∂
∂t {a′tφ(at + δ)Φ(λat)} = 0 , (13) is obtained.

Remark A1 (Comments to Proposition 3). In order to illustrate the use of Equations (12) and (13) next cases
are considered.

1. Consider the pdf given in Figure 1a, case α = 0.75, β = 1, λ = 1, δ = 0.75. In this setting there do not
exist t∗1 ∈ (0, β) and t∗2 > β satisfying (12) and (13), respectively. It can be checked than the distribution
is unimodal and the mode is at β.

2. Figure 1b, case α = 0.75, β = 1, λ = −1, δ = 0.75. There exists t∗1 ∈ (0, β) satisfying (12) and there
does not exists t∗2 > β satisfying (13). Then the distribution is unimodal and the mode is at t∗1 .

3. Figure 2a,b, in all cases under consideration, there exist t∗1 ∈ (0, β) and t∗2 > β satisfying (12) and (13).
Then the distribution is bimodal and the modes are t∗1 and t∗2 .
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Proof of Theorem 1 (pth quantile, change of scale and reciprocity). (i) (14) follows from the fact
that (7) is one-to-one function preserving the order from R to R+.

(ii) Note that the pdf of T can be rewritten as

fT(t) = cδa′t(α, β)φ(|at(α, β)|+ δ)Φ(λat(α, β)) (A11)

with cδ = (1 − Φ(δ))−1, at = at(α, β) given in (6) and

a′t = a′t(α, β) =
∂

∂t
at(α, β) =

t−3/2β−1/2

2α
(t + β) . (A12)

Let Y = kT with k > 0. By applying the Jacobian technique fY(y) = |J| fT(
y
k ; α, β, δ, λ) with

|J| = 1
k . From (6), ay/k(α, β) = ay(α, kβ), and from (A12)

|J|a′y/k(α, β) =
y−3/2(kβ)−1/2

2α
(y + kβ) = a′y(α, kβ) .

Therefore
fY(y) = cδa′y(α, kβ)φ(|ay(α, kβ)|+ δ)Φ(λay(α, kβ)),

i.e., Y ∼ FBS(α, kβ, δ, λ).
(iii) Let be Y = T−1. In this case |J| = Y−2, ay−1(α, β) = −ay(α, β−1), and |J|a′y−1(α, β) = a′y(α, β−1).

Therefore

fY(y) = |J| fT(y−1; α, β, δ, λ) = cδa′y(α, β−1)φ
(
|ay(α, β−1)|+ δ

)
Φ
(
−λay(α, β−1)

)
,

i.e., Y = T−1 ∼ FBS(α, β−1, δ,−λ).
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Abstract: In this paper we introduce a new distribution constructed on the basis of the quotient of
two independent random variables whose distributions are the half-normal distribution and a power
of the exponential distribution with parameter 2 respectively. The result is a distribution with greater
kurtosis than the well known half-normal and slashed half-normal distributions. We studied the
general density function of this distribution, with some of its properties, moments, and its coefficients
of asymmetry and kurtosis. We developed the expectation–maximization algorithm and present a
simulation study. We calculated the moment and maximum likelihood estimators and present three
illustrations in real data sets to show the flexibility of the new model.

Keywords: slashed half-normal distribution; kurtosis; likelihood; EM algorithm

1. Introduction

In recent years, for data with positive support, specifically, lifetime, or reliability, the half-normal
(HN) model has been widely used. The probability density function (pdf) is given by

f (x; σ) =
2
σ

φ
( x

σ

)
I{x > 0},

where σ > 0 is the scale parameter and φ(·) represents the standard normal pdf. We denote this by
writing X ∼ HN(σ).

Some generalizations for this model are proposed by Cooray and Ananda [1], Cordeiro et al. [2],
Bolfarine and Gómez [3] and Gómez and Vidal [4].

Olmos et al. [5] extended the HN distribution by incorporating a kurtosis parameter q, with the
purpose of obtaining heavier tails, i.e., it has greater kurtosis than the base model. They called this
model the slashed half-normal (SHN) distribution. Its construction is based on considering the quotient
of two independent random variables, with random variable X ∼ HN(σ) in the numerator and the
U ∼ U(0, 1) in the denominator (See Rogers and Tukey [6] and Mosteller and Tukey [7] for more
details). Thus a model is obtained that has more flexible coefficients of asymmetry and kurtosis than
the HN model. We say that a random variable T follows a SHN if its pdf is given by

fT(t; σ, q) = q

√
2q

π
σqΓ((q + 1)/2)t−(q+1)G

(
t2; (q + 1)/2,

1
2σ2

)
, t > 0, (1)

Symmetry 2019, 11, 1150; doi:10.3390/sym11091150 www.mdpi.com/journal/symmetry81



Symmetry 2019, 11, 1150

where σ > 0 is a scale parameter, q > 0 is a kurtosis parameter, G(z; a, b) =
∫ 2

0 g(x; a, b)dx is the
cumulative distribution function (cdf) of the gamma distribution and g(·; a, b) is the pdf of the gamma
model with shape and rate parameters a and b, respectively.

Reyes et al. [8] introduced the modified slash (MS) distribution. We say that M has a MS
distribution if

M = Z/E
1
q , (2)

the construction of which is based on considering an exponential (Exp) distribution with parameter
2 in the denominator, i.e., they consider that E ∼ Exp(2). The motivation of the selection of the
Exp(2) distribution is given in Reyes et al. [8]. The result of this work shows that the MS model has a
greater coefficient of kurtosis and this characteristic is very important for modeling data sets when
they contain atypical observations.

The principal goal of this article is to use the idea published by Reyes et al. [8] to construct an
extension of the half-normal model with a greater range in the coefficient of kurtosis than the SHN
model, in order to use it to model atypical data. This will allow us obtain a new model generated on
the basis of a scale mixture between an HN and a Weibull (Wei) distribution.

The rest of the paper is organized as follows: Section 2 contains the representation of this model
and we generate the density of the new family, its basic properties and moments, and its coefficients of
asymmetry and kurtosis. In Section 3 we make inferences using the moments and maximum likelihood
(ML) methods. In Section 4 we implement the expectation–maximization (EM) algorithm. In Section 5
we carry out a simulation study for parameter recovery. We show three illustrations in real datasets in
Section 6 and finally in Section 7 we present our conclusions.

2. An Asymmetric Distribution

In this section we introduce the representation, its pdf, and some important properties and graphs
to show the flexibility of the new model.

2.1. New Distribution

The representation of this new distribution is

T =
X

Y1/q , (3)

where X ∼ HN(σ) and Y ∼ Exp(2) are independent, σ > 0, q > 0. We call the distribution of T the
modified slashed half-normal (MSHN) distribution. This is denoted by T ∼ MSHN(σ, q).

2.2. Density Function

The following Proposition shows the pdf of the MSHN distribution with scale parameter σ and
kurtosis parameter q, generated using the representation given in (3).

Proposition 1. Let T ∼ MSHN(σ, q). Then, the pdf of T is given by

fT(t; σ, q) =
2q√

2πσ2tq+1
N
(

q + 1
2

,
2
tq ,

q
2

,
1

2σ2

)
, (4)

where t > 0, σ > 0, q > 0, and N(·, ·, ·, ·) is defined in Lemma 1 in the Appendix A.

Proof. Using the stochastic representation given in (3) and the Jacobian method, we obtain that the
density function associated with T is given by

fT(t; σ, q) = 4q√
2πσ2

∫ ∞

0
wq exp

{
−
(

t2w2

2σ2 + 2wq
)}

dw.
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Making the change of variable u = t2w2 we have,

fT(t; σ, q) = 2q√
2πσ2tq+1

∫ ∞

0
u

q−1
2 exp

{
−
(

u
2σ2 +

2uq/2

tq

)}
du.

Hence, applying the Lemma 1 as set forth in the Appendix A, we obtain the result.

Figure 1 depicts plots of the density of the MSHN distribution for different values of parameter q.
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Figure 1. The density function for different values of parameter q and σ = 1 in the MSHN distribution.

We perform a brief comparison illustrating that the tails of the MSHN distribution are heavier
than those of the SHN distribution.

Table 1 shows the tail probability for different values in the SHN and MSHN models.
It is immediately apparent that the MSHN tails are heavier than those of the SHN distribution.

Table 1. Tails comparison for different slashed half-normal (SHN) and modified slashed half-normal
(MSHN) distributions.

Distribution P(T > 3) P(T > 4) P(T > 5) P(T > 6) P(T > 7)

SHN(1, 0.5) 0.3781 0.3497 0.3239 0.3009 0.2805
MSHN(1, 0.5) 0.5304 0.48289 0.4466 0.4176 0.3936

SHN(1, 1) 0.1777 0.1570 0.1385 0.1224 0.1086
MSHN(1, 1) 0.3678 0.2992 0.2519 0.2173 0.19102
SHN(1, 3) 0.0350 0.0205 0.0120 0.0044 0.0034

MSHN(1, 3) 0.0901 0.0438 0.0238 0.0142 0.0091

2.3. Properties

In this sub-section we study some properties of the MSHN distribution.

Proposition 2. Let T ∼ MSHN(σ, q), then when σ = q = 1 the density is

fT(t) =
4
t2

(
1√
2π

− 2
t

exp(2/t2)Φ
(
−2

t

))
, t > 0, (5)
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where Φ(·) is the cdf of the standard normal.

Proof. Using Proposition 1 for σ = q = 1, we have,

fT(t) =
2√

2πt2
N
(

1,
2
z

,
1
2

,
1
2

)
=

2√
2πt2

∫ ∞

0
exp
(
−2

z
x1/2 − 1

2σ2 x
)

dx, t > 0. (6)

Changing the variable x = u2 we obtain the result.

Proposition 3. If T|W = w ∼ HN
(

σ
w
)

and Y1/q = W ∼ Wei(q, 1/2) then T ∼ MSHN(σ, q).

Proof. Since the marginal pdf of T is given by

fT(t; σ, q) =
∫ ∞

0
fT|W(t|w) fW(w) dw =

4q
σ
√

2π

∫ ∞

0
wqe−

w2t2

2σ2 −2wq
dw,

and using the Lemma 1 in the Appendix A, the result is obtained.

Proposition 4. Let T ∼ MSHN(σ, q). If q → ∞ then T converges in law to a random variable T ∼ HN(σ).

Proof. Let T ∼ MSHN(σ, q) and T = X
Y1/q , where X ∼ HN(σ) and Y ∼ Exp(2).

We study the convergence in law of T, since Y ∼ Exp(2) then W = Y1/q ∼ Wei(q, 1/2), we have
that E (W − 1)2 = 1

22/q Γ(1 + 2/q)− 2
21/q Γ(1 + 1/q) + 1. If q → ∞ then E (W − 1)2 → 0, i.e., we have

W P−→ 1 (see Lehmann [9]).
Since T ∼ MSHN(σ, q), by applying Slutsky’s Lemma (see Lehmann [9]) to T = X

W , we have

T L−→ X ∼ HN(σ), q → ∞, (7)

that is, for increasing values of q, T converges in law to a HN(σ) distribution.

Remark 1. Proposition 2 shows us that the MSHN(1, 1) distribution has a closed-form expression.
Proposition 3 shows that an MSHN(σ, q) distribution can also be obtained as a scale mixture of an HN
and a Wei distribution. This property is very important since it makes it possible to generate random numbers
and implement the EM algorithm. Proposition 4 implies that, if q → ∞ then the cdf of an MSHN(σ, q) model
approaches to the cdf of a HN(σ) distribution.

2.4. Moments

In this sub-section, the following proposition shows the computation of the moments of a random
variable T ∼ MSHN(σ, q). Hence, it also displays the coefficients of asymmetry and kurtosis.

Proposition 5. Let T ∼ MSHN(σ, q). Then the r-th moment of T is given by

μr = E(Tr) =
2r
(

1
q +

1
2

)
√

π
σrΓ
(

r + 1
2

)
Γ
(

q − r
q

)
, q > r, (8)

where Γ(·) denotes the gamma function.

Proof. Let W ∼ Wei(q, 1/2) and using Proposition 3, we have

μr = E(Tr) = E (E(Xr|Wr)) = E

(√
2r

π
Γ
(

r + 1
2

)
σrW−r

)
=

√
2r

π
Γ
(

r + 1
2

)
σrE
(
W−r) ,

84



Symmetry 2019, 11, 1150

where E(W−r) = 2r/qΓ ((q − r)/q), q > r is the r-th moment of the inverse Weibull distribution .

Corollary 1. Let T ∼ MSHN(σ, q). Then the expectation and variance of T are given respectively by

E(T) =
2

1
q +

1
2

√
π

σΓ
(

q − 1
q

)
, q > 1, and

Var(T) = 2
(

2
q +1
)

σ2
[

1
2

Γ
(

q − 2
q

)
− 1

π
Γ2
(

q − 1
q

)]
, q > 2.

Corollary 2. Let T ∼ MSHN(σ, q). Then the coefficients of asymmetry (β1) and kurtosis (β2) are given by

β1 =

1√
π

Γ
(

q−3
q

)
− 3

2
√

π
Γ
(

q−1
q

)
Γ
(

q−2
q

)
+ 2√

π3 Γ3
(

q−1
q

)
[

1
2 Γ
(

q−2
q

)
− 1

π Γ2
(

q−1
q

)]3/2 , q > 3, and

β2 =

3
4 Γ
(

q−4
q

)
− 4

π Γ
(

q−1
q

)
Γ
(

q−3
q

)
+ 3

π Γ2
(

q−1
q

)
Γ
(

q−2
q

)
− 3

π2 Γ4
(

q−1
q

)
[

1
2 Γ
(

q−2
q

)
− 1

π Γ2
(

q−1
q

)]2 , q > 4.

Remark 2. Figure 2 shows graphs of the coefficients of the MSHN distribution compared with those of the
SHN distribution. Note that the MSHN distribution presents higher asymmetry and kurtosis values than the
SHN distribution. Furthermore, in both distributions when q → ∞ the coefficients of asymmetry and kurtosis
converge to

√
2(4 − π)(π − 2)−3/2 and (3π2 − 4π − 12)(π − 2)−2, respectively; they coincide with the

coefficients of the HN distribution.
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Figure 2. Graph of the coefficients of asymmetry and kurtosis for the MSHN and SHN distributions.

3. Inference

Proposition 6. Let T1, . . . , Tn be a random sample of size n of the T ∼ MSHN(σ, q) distribution. Then for
q > 2, the moment estimators of σ and q are given by

σ̂M =

√
π T

2
1
q +

1
2 Γ
(

q̂M−1
q̂M

) , (9)

πT2Γ
(

q̂M − 2
q̂M

)
− 2T2Γ2

(
q̂M − 1

q̂M

)
= 0, (10)
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where T is the mean of the sample and T2 is the mean of the sample for the square of the observations.

Proof. From Proposition 5, and considering the first two equations in the moments method, we have

T =
2

1
q +

1
2

√
π

σΓ
(

q − 1
q

)
and T2 = 2

2
q σ2Γ

(
q − 2

q

)
.

Solving the first equation above for σ we obtain σ̂M given in (9). Substituting σ̂M in the second equation
above, we obtain the result given in (10).

4. Em Algorithm

The EM algorithm (Dempster et al. [10]) is a useful method for ML estimation in the presence of
latent variables.

To facilitate the estimation process, we introduce latent variables W1, . . . , Wn through the following
hierarchical representation of the MSHN model:

Ti | Wi = wi ∼ HN
( σ

w

)
and Wi ∼ Wei(q, 1/2).

In this setting, we have that

fc(w|t) ∝ wq exp
{
−
(

w2t2

2σ2 + 2wq
)}

.

Therefore, the complete log-likelihood function can be expressed as

lc(θ|tc) ∝ −n log(σ)−
n

∑
i=1

w2
i t2

i
2σ2 + lc(q|wc),

where lc(q|wc) = n log(q) + q
n

∑
i=1

log(wi)− 2
n

∑
i=1

wq
i .

Letting ŵi = E[Wi|ti, θ = θ̂], it follows that the conditional expectation of the complete
log-likelihood function has the form

Q(θ|θ̂) ∝ −n log(σ)−
n

∑
i=1

ŵ2
i t2

i
2σ2 + Q(q|θ̂), (11)

where Q(q|θ̂) = n log(q) + qS1n − 2S2n,q, with S1n =
n

∑
i=1

E[log(Wi)|ti] and S2n,q =
n

∑
i=1

E[Wq
i |ti].

As both quantities S1n and S2n,q have no explicit forms in the context of the MSHN model, they
have to be computed numerically. Thus to compute Q(q|θ̂) we use an approach similar to that of Lee
and Xu ([11], Section 3.1), i.e., considering {wr; r = 1, ..., R} to be a random sample from the conditional
distribution W|(T = t, θ = θ̂), then Q(q|θ̂) can be approximated as

Q(q|θ̂) ≈ 1
R

R

∑
r=1

�c(q|wr).

Therefore, the EM algorithm for the MSHN model is given by

E-step: Given θ = θ̂
(k)

= (σ̂(k), q̂(k))�, calculate ŵi
(k), for i = 1, . . . , n.

CM-step I: Update σ̂(k)

σ̂2(k+1) =
S(k)

u
2

,
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CM-step II: Fix α = σ̂(k+1), update q(k) by optimizing q̂(k+1) = arg max qQ(σ̂(k+1), q| θ̂
(k)

),

where S(k)
u = 1

n

n

∑
i=1

ŵ(k)
i ti.

The E, CM-I and CM-II steps are repeated until a convergence rule is satisfied, say |l(θ̂(k+1)
)−

l(θ̂
(k)

)| is sufficiently small. Finally, standard errors (SE) can be estimated using the inverse of the
observed information matrix.

Remark 3.

i. For q → ∞, σ̂ in M-step reduces to those obtained when the HN distribution is used;

ii. An alternative to the CM-Steps II is obtained considering the idea in Lin et al. ([12], Section 3), by using
the following estimation:
CML-step: Update q(k) by maximizing the constrained actual log-likelihood function, i.e.

q̂(k+1) = arg max q � (σ̂(k+1), q).

5. Simulation

We present a simulation study to assess the performance of the EM algorithm for the parameters
σ and q in the MSHN model. We consider 1000 samples of three sample sizes generated from the
MSHN model: n = 30, 50 and 100. To generate T ∼ MSHN(σ; q) the following algorithm was used:

1. Simulate X ∼ N(0, σ2) and Y ∼ Exp(2).
2. Compute T = |X|

Y1/q .

For each sample generated, the ML estimates were computed using the EM algorithm.
Table 2 shows the mean of the bias estimated for each parameter (bias), its SE and the estimated
root of the mean squared error (RMSE). From Table 2, we conclude that the ML estimates are quite
stable. The bias is reasonable and diminishes as the sample size is increased. As expected, the terms
SE and RMSE are closer when the sample size is increased, suggesting that the SE of the estimators is
well estimated.

Table 2. Maximum likelihood (ML) estimations for parameters σ and q of the MSHN distribution.
Standard error (SE), root of the mean squared error (RMSE).

True Value n = 30 n = 50 n = 100

σ q Estimator Bias SE RMSE Bias SE RMSE Bias SE RMSE

1

1 σ 0.178 0.430 0.528 0.122 0.320 0.378 0.089 0.206 0.279
q 0.199 0.422 0.668 0.097 0.219 0.263 0.059 0.138 0.163

2 σ 0.111 0.355 0.407 0.078 0.258 0.295 0.042 0.172 0.186
q 1.006 2.500 2.603 0.480 1.105 1.519 0.182 0.458 0.562

5 σ 0.026 0.277 0.239 0.033 0.222 0.189 0.023 0.159 0.149
q 2.227 8.833 3.871 2.012 6.743 3.550 1.333 4.092 2.905

2

1 σ 0.284 0.835 0.973 0.192 0.617 0.665 0.104 0.414 0.481
q 0.168 0.356 0.571 0.094 0.215 0.263 0.058 0.141 0.166

2 σ 0.294 0.727 0.815 0.122 0.507 0.572 0.074 0.343 0.383
q 1.210 2.821 2.835 0.465 1.067 1.534 0.174 0.454 0.623

5 σ 0.057 0.544 0.454 0.066 0.441 0.371 0.044 0.305 0.290
q 2.456 8.991 3.934 2.089 6.712 3.615 1.545 4.150 3.075

5

1 σ 0.834 2.111 2.548 0.494 1.527 1.826 0.386 1.038 1.233
q 0.217 0.414 0.740 0.119 0.225 0.287 0.083 0.144 0.174

2 σ 0.658 1.782 2.065 0.293 1.285 1.475 0.209 0.872 0.966
q 1.218 2.872 2.836 0.413 1.018 1.414 0.188 0.489 0.694

5 σ 0.094 1.379 1.160 0.146 1.096 0.950 0.123 0.779 0.731
q 2.266 8.894 3.880 1.952 6.526 3.557 1.370 4.118 2.948
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6. Aplications

In this section we provide three applications to real datasets that illustrate the flexibility of the
proposed model.

6.1. Application 1

Lyu [13] presents a data set related 104 times with programming in the Centre for Software
Reliability (CSR). Some descriptive statistics are: mean = 147.8, variance = 60, 071.7, skewness = 3,
and kurtosis = 14.6. The moment estimators for the MSHN model were σ̂M = 74.085 and q̂M = 2.402,
which were used as initial values to compute the ML estimator in Table 3.

For each distribution we report the estimated log-likelihood. To compare the competing models,
we consider the Akaike information criterion (AIC) (Akaike [14]) and the Bayesian information
criterion (BIC) (Schwarz [15]), which are defined as AIC = 2k − 2 log lik and BIC = k log(n)− 2 log lik,
respectively, where k is the number of parameters in the model, n is the sample size and log lik is the
maximum value for the log-likelihood function. Table 4 displays the AIC and BIC for each model
fitted. Figure 3 presents the histogram of the data fitted with the HN, SHN and MSHN distributions,
provided with the ML estimations. The QQ-plot for the MSHN and SHN distributions are presented
in Figure 4.

Table 3. ML estimations with the corresponding SE for the models fitted. Half-normal (HN).

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 285.191 (19.774) 20.977 (5.674) 19.874 (4.867)
q̂ - 0.687 (0.118) 0.872 (0.115)

Log-likelihood −663.411 −605.102 −600.876

Table 4. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) for each
model fitted.

Criterion HN SHN MSHN

AIC 1328.822 1214.204 1205.752
BIC 1331.466 1219.493 1211.041
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Figure 3. Histogram fitted with the HN, SHN and MSHN distributions provided with the
ML estimations.
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Figure 4. QQ plots: (a) MSHN distribution and (b) SHN distribution.

6.2. Application 2

The second dataset is taken from Von Alven [16], and represents 46 instances of active repairs
(in hours) for an airborne communication transceiver. Some descriptive statistics are: mean = 3.607,
variance = 24.445, skewness = 2.888, and kurtosis = 11.802.

Initially we computed the moment estimators for the MSHN distribution, obtaining the following
estimations: σ̂M = 2.407 and q̂M = 2.635. We used these estimations as initial values in computing the
ML estimators presented in Table 5. For each distribution we report the estimated log-likelihood.

Table 5. ML estimations with the corresponding SE for the models fitted.

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 6.07 (0.6335) 1.6251 (0.4777) 1.5108 (0.3179)
q̂ - 1.3539 (0.4347) 1.6365 (0.3425)

Log-likelihood −116.3881 −103.1834 −102.65

Table 6 displays the AIC and BIC for each model fitted. Figure 5 presents the histogram of the
data fitted with the HN, SHN and MSHN distributions, provided with the ML estimations.

Table 6. AIC and BIC for each model fitted.

Criterion HN SHN MSHN

AIC 234.7762 210.3668 209.302
BIC 236.6048 214.0241 212.9573
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Figure 5. Histogram fitted with the HN, SHN and MSHN distributions provided with the
ML estimations.

6.3. Application 3

The third data set (Linhart and Zucchini [17]) represents 31 times of air conditioning system
failure of an aeroplane. Some descriptive statistics are: mean = 55.35, variance = 5132.503, skewness =
1.805, and kurtosis = 5.293.

Initially we computed the moment estimators for the MSHN distribution, and obtained the
following estimations: σ̂M = 38.125 and q̂M = 2.743. We used these estimations as initial
values in computing the ML estimators presented in Table 7. For each distribution we report the
estimated log-likelihood.

Table 7. ML estimations with the corresponding SE for the models fitted.

Parameters HN (SE) SHN (SE) MSHN (SE)

σ̂ 89.616 (11.381) 13.785 (6.047) 16.148(5.128)
q̂ - 0.859 (0.285) 1.233 (0.251)

Log-likelihood -161.861 -154.857 -153.954

Table 8 displays the AIC and BIC for each model fitted. Figure 6 presents the histogram of the
data fitted with the HN, SHN and MSHN distributions, provided with the ML estimations.

Table 8. AIC and BIC for each model fitted.

Criterion HN SHN MSHN

AIC 325.7224 313.715 311.908
BIC 327.1564 316.583 314.776
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Figure 6. Histogram fitted with the HN, SHN and MSHN distributions provided with the ML
estimations.

7. Conclusions

In this paper, we have introduced a new and more flexible model, as it increases kurtosis and
contains, as a particular case, the HN distribution. The EM algorithm is implemented, obtaining
acceptable results for the maximum likelihood estimators. In applications using real data it performs
very well, better than competing models. Some further characteristics of the MSHN distribution are:

• The MSHN distribution has a greater kurtosis than the SHN distribution, as is clearly reflected in
Table 1.

• The proposed model has a closed-form expression and presents more flexible asymmetry and
kurtosis coefficients than that of the HN model.

• Two stochastic representations for the MSHN model are presented. One is defined as the
quotient between two independent random variables: An HN in the numerator and Exp(2)
in the denominator. The other shows that the MSHN distribution is a scale mixture of an HN and
a Wei distribution.

• Using the mixed scale representation, the EM algorithm was implemented to calculate the
ML estimators.

• Results from a simulation study indicate that with a reasonable sample size, an acceptable bias
is obtained.

• Three illustrations using real data show that the MSHN model achieves a better fit in terms of the
AIC and BIC criteria.
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Appendix A

Density function of the gamma, exponential and Weibull distributions, respectively, are given by
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Gamma distribution:
f (x; α, β) =

βα

Γ(α)
xα−1e−βx,

with, x > 0, α > 0 and β > 0.
Exponential distribution:

f (x; β) =
1
β

e−x/β,

with, x > 0 and β > 0.
Weibull distribution:

f (x; γ, β) =
γ

β
xγ−1e−xγ/β,

with, x > 0, γ > 0 and β > 0.

In the following, Lemma presents an important result used in the derivation of the pdf for the MSHN
distribution.

Lemma A1. Prudnikov et al. [18], Equation (2.3.1.13) For γ > 0 , a > 0, r > 0 and s > 0. Then∫ ∞

0
xγ−1 exp (−axr − sx)dx = N(γ, a, r, s), (A1)

where

N =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q−1

∑
j=0

(−a)j

j!sγ+rj Γ(γ + rj)p+1Fq(1, Δ(p, γ + rj); Δ(q, 1 + j); (−1)qz), if 0 < r < 1

p−1

∑
h=0

(−s)h

rh!a(γ+h)/r
Γ(

γ + h
r

)q+1Fp(1, Δ(q,
γ + h

r
); Δ(p, 1 + h);

(−1)p

z
), if r > 1

Γ(γ)
(a+s)γ , if r = 1,

considering γ = p/q, p ≥ 1 and q ≥ 1 are coprime integers, where z = (
p
s
)p(

a
q
)q, Δ(k, a) =

a
k , (a+1)

k , . . . , (a+k−1)
k and pFq(., ., .) is the generalized hypergeometric function defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞

∑
k=0

(a1)k(a2)k . . . (ap)kxk

(b1)k(b2)k . . . (bp)kk!

where (c)k = c(c + 1) . . . (c + k − 1).
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Abstract: In this article, we study an extension of the sinh Cauchy model in order to obtain
asymmetric bimodality. The behavior of the distribution may be either unimodal or bimodal.
We calculate its cumulative distribution function and use it to carry out quantile regression. We
calculate the maximum likelihood estimators and carry out a simulation study. Two applications are
analyzed based on real data to illustrate the flexibility of the distribution for modeling unimodal and
bimodal data.

Keywords: asymmetric bimodal distribution; bimodal; maximum likelihood

1. Introduction

It frequently occurs in real life that we find continuous data that are bimodal; these cannot be
modeled by known unimodal distributions. It is therefore of interest to investigate more flexible
distributions in modes that will be useful for professionals working in different areas of knowledge.

In unimodal distributions, the flexibility is based on the asymmetry and kurtosis of the data.
In this context, Azzalini [1] introduced the skew-normal (SN) distribution, with asymmetry parameter
λ. It has a probability density function (pdf) given by

f (y; μ, σ, λ) =
2
σ

φ

(
y − μ

σ

)
Φ
(

λ
(y − μ)

σ

)
, y, μ, λ ∈ R, σ > 0, (1)

where φ and Φ denote, respectively, the density and cumulative distribution functions of the N (0, 1)
distribution. This is denoted as Y ∼ SN(λ). SN(0) becomes the standard normal distribution.

Bimodal distributions generated from skew distributions can be found in Ma and Genton [2],
Kim [3], Lin et al. [4,5], Elal-Olivero et al. [6], Arnold et al. [7], Arnold et al. [8], and Venegas et al. [9],
among others. The importance of studying these distributions is based on the fact that they do not
have identifiability problems and can be used as alternative parametric models to replace the use of
mixtures of distributions that present estimation problems from either the classical or the Bayesian
point of view (see McLachlan and Peel [10]; Marin et al. [11]). One difficulty with these distributions is
that in general, there is no closed-form expression for their cumulative distribution function (cdf). This
makes it more difficult to generate data from these distributions for simulation studies or to carry out
quantile regression. Additionally, many such bimodal distributions have complicated expressions for
a general quantile (say, the q-th).
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A variety of bimodal data sets and appropriate models have been presented by many authors.
For example, Cobb et al. [12] used the quartic exponential density presented by Fisher [13] to
model crude birth rates data; Rao et al. [14] used a bimodal distribution to analyze fish length
data; Famoye et al. [15] used the beta-normal distribution to analyze egg diameter data; Everitt and
Hand [16] discussed some mixture distributions for modeling bimodal data; Chatterjee et al. [17]
and Weisberg [18] presented two bimodal data sets on the eruption and interruption times of the
Old Faithful geyser; Bansal et al. [19] discussed the bimodality of quantum dot size distribution;
Famoye et al. [15] cited a variety of bimodal distributions that arise from different areas of science. On
the other hand, the sinh Cauchy (SC) distribution is given by

f (z; Λ) =
λ cosh(z)

σπ(1 + {λ sinh(z)}2)
,

where Λ = (λ, μ, σ), z = y−μ
σ , z ∈ R, μ ∈ R is a location parameter, σ > 0 is a scale parameter, and

λ > 0 is a symmetric parameter. The SC distribution produces unimodal and bimodal densities. The
disadvantage of the SC distribution is that it is symmetric, which limits it to modeling only symmetric
bimodal data. The main objective of this article is therefore to study a bimodal skew-symmetric model
with closed cdf, in order to apply it to quantile regression. To do this, we used an extension of the
SC distribution that we call the gamma–sinh Cauchy (GSC) distribution, which presents flexibility in
its modes and also closed-form expression in its cdf. The GSC distribution belongs to the (gamma-G
generator) family introduced by Zografos and Balakrishnan [20]. For any baseline cdf G(y; Λ), x ∈ R,
they defined the gamma-G generator by the pdf and cdf given by

f (y; φ, Λ) =
g(y; Λ)

Γ(φ)
{− log [1 − G(y; Λ)]}φ−1 , (2)

and

F(y; φ, Λ) =
γ(− log[1 − G(y; Λ)], φ)

Γ(φ)
=

1
Γ(φ)

∫ − log[1−G(y;Λ)]

0
uφ−1e−u du, (3)

respectively, where φ > 0 is a skewness parameter, Λ is a vector of parameters, g(y) = d
dy G(y),

γ(y, a) =
∫ y

0 ta−1e−tdt is the incomplete gamma function, and Γ(a) = γ(+∞, a) is the usual gamma
function. We remark that in the literature, there are many models that can accommodate bimodal
distributions. However, in only a few of them do the parameters have an interpretation in terms of
measures of central tendency (mean, median, for instance) or a general q-th quantile. As we will show
in Section 3, the main advantage of the GSC is that the location parameter represents the respective
q-th quantile under a certain restriction over φ, which is very convenient for the use of this model in a
quantile regression framework.

The paper is organized as follows. Section 2 develops the GSC distribution, its basic properties,
and quantile regression. In Section 3, we perform a small-scale simulation study of the maximum
likelihood (ML) estimators for parameters. Two applications to real data are discussed in Section 4,
which illustrate the usefulness of the proposed model. Finally, conclusions are given in Section 5.

2. Gamma–Sinh Cauchy Distribution

The GSC distribution is obtained considering G in (2) as the cdf of the SC distribution. The pdf
can be written as

f (z; Θ) =
λ cosh(z)

σπΓ(φ)(1 + {λ sinh(z)}2)

{
− log

[
0.5 − 1

π
arctan {λ sinh(z)}

]}φ−1
, (4)

where Θ = (φ, λ, μ, σ), and φ > 0 is an asymmetric parameter. We denoted this by Z ∼ GSC(φ, λ, μ, σ).
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The cdf is given by

F(z; φ, λ, μ, σ) =
1

Γ(φ)
γ

(
− log

[
0.5 − 1

π
arctan{λ sinh(z)}

]
, φ

)
. (5)

Particular cases:

1. φ = 1 SC distribution,
2. φ = 1, λ = 1 hyperbolic secant distribution (Talacko [21]).

The following proposition states conditions for the symmetry of the GSC distribution.

Proposition 1. The density of the GSC(φ, λ, μ, σ) model is symmetric if and only if φ = 1.

Proof. Without loss of generality, we consider μ = 0 and σ = 1. For φ = 1, the density of the model is

f (y; 1, λ, 0, 1) =
λ cosh(y)

σπΓ(φ)(1 + {λ sinh(y)}2)
.

This function is clearly even because cosh(y) and sinh(y)2 are even. To prove the reciprocal,
we will argue by contradiction. Let φ0 
= 1 such that the density is symmetric, i.e. f (y; φ0, λ, 0, 1) =
f (−y; φ0, λ, 0, 1), ∀y ∈ R, ∀λ > 0. This implies that

⎛⎝ log
[

1
2 + 1

π arctan {λ sinh(y)}
]

log
[

1
2 − 1

π arctan {λ sinh(y)}
]
⎞⎠φ0−1

= 1.

From the latter equality, and jointly with the fact that the logarithmic function is injective, we find
that arctan(λ sinh(y)) = 0, ∀y ∈ R, which implies that λ = 0, producing a contradiction.

The unimodal and bimodal regions for GSC(φ, λ, μ, σ) are illustrated in Figure 1. We can see that
for all φ, there is λ such that GSC is bimodal. Figure 2 shows the density function for some values of
the parameters φ and λ, considering the location and scale parameters fixed at 0 and 1, respectively. The
distribution assumes symmetric unimodal and bimodal shapes and asymmetric unimodal and bimodal
shapes. Figure 3 shows the skewness and kurtosis coefficients for the GSC model under different values
of λ and φ (such coefficients do not depend on μ and σ). As illustrated previously, the model can assume
positive and negative values for the skewness coefficient and can also accommodate kurtosis coefficients
lower than, equal to, and greater than the normal model (<3, =3 and >3, respectively).

Figure 1. Unimodal and bimodal regions for GSC(φ, λ, μ, σ).
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(a) (b)

(c) (d)

Figure 2. Plots for the gamma–sinh Cauchy (GSC) model for different values of the parameters with
μ = 0, σ = 1 (a) φ = 1 (b) λ = 0.5, and (c,d) λ = 0.2

Figure 3. Skewness and kurtosis coefficients for the GSC (φ, λ, μ, σ) model with different values for λ

and φ.
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The GSC Model for Quantile Regression

From Equation (5), it follows that the cdf of the GSC distribution evaluated in μ is given by

P(Y ≤ μ; φ, λ, μ, σ) = F(μ; φ, λ, μ, σ) =
γ(log(2), φ)

Γ(φ)
= G (log(2), φ) , (6)

where G(y, a) = γ(y, a)/Γ(a) corresponds to the cdf of the gamma distribution with shape and scale
parameters a and 1, respectively. Note that G (log(2), φ) depends only on φ (and not on σ or λ). As
G(log(2), φ) is an increasing function in terms of φ and G(·, φ) ∈ (0, 1), the equation G(log(2), φ) = q
has an unique solution for q ∈ (0, 1), which can also be written as

1
Γ(φ)

∫ log(2)

0
uφ−1e−udu = q. (7)

Equation (7) can be solved numerically. For instance, in R the uniroot function can be used. Table 1
shows some values for φ(q) with different values for q.

Table 1. Some values for φ(q) in terms of q.

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

φ(q) 2.301 1.802 1.475 1.219 1.000 0.802 0.613 0.427 0.230

For this reason, for a fixed q, if we take φ = φ(q) satisfying (7), by (6) the parameter μ directly
represents the q-th quantile, allowing regression to be performed conveniently even though μ. Under
this setting, a set of available p-covariates, say x�i = (xi1, . . . , xip), for i = 1, . . . , n, can be introduced
as follows:

μi = x�i β, i = 1, . . . , n.

This is a convenient property of the GSC distribution because it provides a simple way to
performing quantile regression in a model that can be unimodal or bimodal, depending only on
parameter λ (because φ = φ(q) is considered as fixed in this setting).

As far as we know, there is no model in the literature that is parameterized conveniently in terms
of the q-th quantile and can also be unimodal or bimodal. Figure 1 shows that for any φ = φ(q) fixed
in the GSC, there is an interval Λ(1)

φ(q) for λ where the distribution is unimodal and an interval Λ(2)
φ(q)

where the distribution is bimodal.

3. ML Estimation for the GSC Distribution

3.1. ML Estimation

Consider y1, y2, . . . , yn as a size n random sample from the pdf GSC(φ, λ, μ, σ). Hence, the
log-likelihood function is given by

l(φ, λ, μ, σ) = n log(λ) +
n

∑
i=1

log{cosh(zi)} −
n

∑
i=1

log
{

1 + λ2 sinh2(zi)
}

+ (φ − 1)
n

∑
i=1

log
{
− log

[
1
2
− 1

π
arctan{λ sinh(zi)}

]}
− n log(σ)− n log(π)− n log(Γ(φ)), (8)
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where zi =
yi−μ

σ . To compute the ML estimation for Θ = (φ, λ, μ, σ), (8) must be maximized. That
is, we have to solve the following system of equations: δl

δφ , δl
δλ , δl

δμ , and δl
δσ . More precisely, we have

to solve

n

∑
i=1

log(− log(ti))− nΨ(φ) = 0,

n

∑
i=1

2λ sinh2(zi)

1 + λ2 sinh2(zi)
+ (φ − 1)

n

∑
i=1

sinh(zi)

πti(1 + λ2 sinh2(zi)) log(ti)
=

n
λ

,

n

∑
i=1

λ2 sinh(2zi)

1 + λ2 sinh2(zi)
+

λ(φ − 1)
π

n

∑
i=1

cosh(zi)

ti(1 + λ2 sinh2(zi)) log(ti)
=

n

∑
i=1

tanh(zi),

n

∑
i=1

λ2zi sinh(2zi)

1 + λ2 sinh2(zi)
+

λ(φ − 1)
π

n

∑
i=1

zi cosh(zi)

ti(1 + λ2 sinh2(zi)) log(ti)
− n =

n

∑
i=1

zi tanh(zi),

where ti = 1
2 − 1

π arctan{λ sinh(zi)}, and Ψ(·) is the digamma function. The system of equations
given above can be solved using numerical procedures such as the Newton–Raphson procedure. An
alternative is to use the NumDeriv routine with the R software (R Core Team [22]).

3.2. Simulation Study

In this Section, we present a brief simulation study to assess the performance of MLE in the GSC
model. To draw values from the model, we used the inversion method. If U ∼ U(0, 1), then

Z = μ + σ sinh−1
(

λ−1 tan
[
π/2 − π exp

(
−G−1 (U; φ)

)])
∼ GSC(φ, λ, μ, σ),

where G−1(·; φ) is the inverse of the cdf of the gamma distribution with shape and rate parameters
equal to φ and 1, respectively. In all scenarios, we considered μ = 0 and σ = 1, three values for
φ—0.75, 1, and 1.5—and three values for λ—0.5, 1, and 2. We also considered three sample sizes: 100,
200, and 500. For each combination of the parameters, we drew 1,000 samples and computed the ML
estimates. Table 2 summarizes the results considering the average of the bias (bias), the root of the
estimated mean squared error (RMSE), and the 95% coverage probability (CP). Note that in all cases,
the bias and RMSE decreased when the sample size was increased, suggesting that the estimators are
consistent. Finally, we also remark that the coverage probability converged to the nominal values used
for the construction of the confidence intervals when the sample size was increased, suggesting that
the normality for the ML estimates is reasonable in sample sizes.

Table 2. Simulation study for the GSC(φ, λ, μ = 0, σ = 1) model.

n = 100 n = 200 n = 500
φ λ parameter bias RMSE CP bias RMSE CP bias RMSE CP

0.75 0.5 μ −0.094 0.663 0.846 −0.055 0.578 0.900 −0.014 0.457 0.932
σ −0.037 0.392 0.880 −0.014 0.337 0.904 −0.006 0.268 0.933
λ −0.031 0.372 0.869 −0.013 0.317 0.905 −0.006 0.252 0.930
φ 0.044 0.411 0.867 0.023 0.349 0.907 0.006 0.272 0.934

1.0 μ −0.015 0.607 0.831 0.021 0.532 0.880 0.016 0.428 0.925
σ −0.035 0.460 0.848 −0.024 0.396 0.886 −0.009 0.320 0.927
λ −0.004 0.544 0.831 −0.010 0.459 0.889 −0.003 0.365 0.927
φ 0.018 0.424 0.843 −0.004 0.363 0.890 −0.006 0.290 0.926

2.0 μ 0.011 0.361 0.934 0.004 0.298 0.944 0.001 0.233 0.944
σ −0.011 0.504 0.911 −0.007 0.419 0.932 −0.003 0.333 0.945
λ 0.055 0.789 0.928 0.017 0.650 0.939 0.010 0.513 0.945
φ −0.007 0.337 0.940 −0.003 0.279 0.949 −0.001 0.220 0.947
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Table 2. Cont.

n = 100 n = 200 n = 500
φ λ parameter bias RMSE CP bias RMSE CP bias RMSE CP

1.0 0.5 μ −0.060 0.666 0.846 −0.036 0.580 0.899 −0.012 0.460 0.933
σ −0.044 0.373 0.877 −0.022 0.318 0.915 −0.009 0.253 0.933
λ −0.033 0.366 0.867 −0.018 0.308 0.913 −0.007 0.245 0.936
φ 0.045 0.458 0.874 0.023 0.388 0.909 0.007 0.304 0.938

1.0 μ −0.052 0.622 0.816 −0.024 0.543 0.881 −0.002 0.428 0.940
σ −0.040 0.431 0.832 −0.024 0.367 0.887 −0.006 0.293 0.936
λ −0.017 0.535 0.811 −0.015 0.448 0.875 0.000 0.354 0.934
φ 0.060 0.493 0.842 0.027 0.417 0.890 0.005 0.324 0.946

2.0 μ −0.001 0.357 0.937 0.000 0.291 0.946 −0.001 0.229 0.951
σ −0.014 0.494 0.896 −0.006 0.413 0.929 0.000 0.328 0.942
λ 0.033 0.795 0.916 0.017 0.658 0.937 0.011 0.521 0.944
φ 0.007 0.372 0.942 0.002 0.303 0.947 0.002 0.238 0.949

1.5 0.5 μ 0.015 0.683 0.850 0.014 0.597 0.894 0.008 0.480 0.925
σ −0.045 0.354 0.890 −0.021 0.300 0.926 −0.009 0.239 0.935
λ −0.022 0.366 0.877 −0.014 0.308 0.916 −0.006 0.245 0.937
φ 0.026 0.533 0.876 0.008 0.455 0.906 0.002 0.364 0.930

1.0 μ −0.134 0.688 0.835 −0.138 0.612 0.856 −0.076 0.492 0.904
σ -0.038 0.413 0.836 −0.025 0.347 0.856 −0.011 0.275 0.896
λ 0.091 0.581 0.840 −0.001 0.459 0.860 −0.010 0.360 0.896
φ 0.211 0.681 0.886 0.166 0.579 0.880 0.076 0.446 0.912

2.0 μ −0.029 0.383 0.933 −0.009 0.309 0.945 −0.004 0.241 0.948
σ −0.014 0.472 0.895 −0.007 0.395 0.927 −0.003 0.313 0.942
λ 0.065 0.784 0.932 0.023 0.646 0.942 0.010 0.510 0.952
φ 0.070 0.484 0.948 0.023 0.379 0.954 0.009 0.294 0.950

4. Applications

In this section, we carry out two applications to real data, the first using the GSC model without
covariates and the second applying quantile regression to uni- and bimodal data.

4.1. Application 1: Without Covariates

The first application reported is for the data set consisting of 1150 heights measured at 1 micron
intervals along the drum of a roller (i.e., parallel to the axis of the roller). This was part of an extensive
study of roller surface roughness. It is available for downloading at http://lib.stat,emu.edu/jasadata/
laslett. Table 3 presents summary statistics for the data set where b1 and b2 correspond to the sample
asymmetry and kurtosis coefficients, respectively.

Table 3. Descriptive statistics for the data set

n y s2 b1 b2

1150 3.535 0.422 −0.986 4.855

We fitted this using the SN model, the exponentiated sinh Cauchy (ESC) model (see Cooray [23]),
and the GSC model. A summary of these fits is presented in Table 4. Based on the AIC criteria, the
GSC provided the best fit for the height data set. Figure 4 shows plots of the density functions for the
fitted models using the MLEs for SN, ECG and GSC distributions.
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Table 4. Maximum likelihood (ML) estimates for the GSC, exponentiated sinh Cauchy (ECG), and
skew-normal (SN) models for the roller data set.

Parameter GSC ECG SN

μ 4.1115 (0.0388) 4.0460 (0.0482) 4.2475 (0.0276)
σ 0.2053 (0.0172) 0.1903 (0.0205) 0.9644 (0.0286)
λ 0.5353 (0.0682) 0.5535 (0.0860) −2.7578 (0.2426)
φ 0.3621 (0.0373) 0.3322 (0.0445) −

log-likelihood −1053.8 −1056.0 −1071.3
AIC 2115.7 2119.9 2148.7

Figure 4. Fitted models for roller data set.

4.2. Data Set 2: Quantile Regression to Bimodal Data

The second application we consider is the Australian data set available in the sn package in R.
This data set is related to 102 male and 100 female athletes collected at the Australian Institute of Sport.
The linear model considered is

Bfati = β0(q) + β1(q)bmii + β2(q)lbmi + εi(q), i = 1, . . . , 202, (9)

where Bfati is the body fat percentage for the i-th athlete and bmii and lbmi are the covariates body
mass index and lean body mass for the i-th athlete, respectively. In addition, εi(q) ∼ GSC(0, σ, λ, φ(q)),
φ(q) satisfies Equation (7), and q ∈ (0, 1) is the fixed quantile that is being modeled. This data set
was also analyzed in Martínez-Flórez et al. [24] using a bimodal regression model. However, the
authors modeled the mean of the distribution. In our approach, we model the 0.1, 0.25, 0.5, 0.75, and
0.9 percentiles of the distribution, which provides a more informative scenario to explain body fat
in terms of the body mass index and lean body mass. Our approach is compared with the skewed
Laplace (SKL) and skewed Student-t (SKT) models discussed in Galarza et al. [25], where the authors
proposed a flexible model in a quantile regression model context. Table 5 shows the AIC for those
models considering different quantiles. We also present the p-value for the Kolmogorov–Smirnov
(K–S) test of the hypothesis that the respective quantile residuals came from the standard normal
distribution. P-values greater than 5% suggest that with this significance level, the standard normal
assumption is reasonable for those residuals, in which case the model would be appropriate for this
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data set. Note that based on the AIC criteria, the GSC presents a better fit for this data set, except for
the median regression (q = 0.5). On the other hand, based on the p-value for the K–S test applied to
the quantile residuals, we conclude that GSC, SKL, and SKT are appropriate models for q = 0.25 and
q = 0.5 (the GSC and SKT provide a better fit based on the AIC criteria). However, for q = 0.1 and
0.75, GSC provides the better fit because the p-values are (significantly) greater than 0.05. Finally, for
q = 0.9 no model seems appropriate, but based on the p-values, the GSC provides a better fit than SKL
and SKT distributions.

Table 5. AIC and p-value for K–S test in the ais data set for the GSC, skewed Laplace (SKL), and
skewed Student-t (SKT) models and different quantiles.

AIC p-value for K–S test
q GSC SKL SKT GSC SKL SKT

0.10 1156.54 1194.28 1166.74 0.79 0.06 0.02
0.25 1160.72 1172.70 1153.15 0.65 0.71 0.96
0.50 1162.74 1182.66 1161.80 0.32 0.13 0.31
0.75 1159.50 1221.65 1200.87 0.87 <0.001 0.02
0.90 1211.71 1280.45 1253.48 0.02 <0.001 <0.001

Figure 5 shows the regression coefficients for the quantile regression presented in Equation (9)
and their respective 95% confidence intervals. Note that body mass index and lean body mass are
significant in explaining all the quantiles modeled.

Figure 6 shows the profile density for the q-th quantile of body fat percentage for q = 0.1 and
q = 0.75. Note that the distribution of the 0.1 quantile is unimodal, and the distribution of the 0.9
quantile is bimodal.

Figure 5. Estimates for regression coefficients (and 95% confidence interval)s for variables bmi
(left panel) and lbm (right panel) in different quantile regression models with quantiles equal to
0.1, 0.25, 0.5, 0.75, and 0.9 and response variable Bfat.
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Figure 6. Distribution for 0.1 and 0.75 quantiles of body fat percentage considering body mass index
and lean body mass equal to 22.96 and 64.87, respectively. Curves in black, red, and green represent
the density functions estimated by the GSC, SKL, and SKT models, respectively.

5. Final Comments

This paper proposes the GSC distribution, which is flexible in its modes and contains the SC
distribution as a special case. We implemented ML estimation in a quantile regression, obtaining
significant results. In the applications to real data it performs very well, better than potential rival
models. Some further characteristics of the GSC distribution are:

• The GSC distribution contains the SC and hyperbolic secant models as special cases.
• The GSC distribution presents great flexibility in its modes, as can be observed in Figure 1.
• The proposed model has a closed-form expression for its cdf.
• In the two applications, we show that the GSC model fits better than the other models.
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Abstract: In this paper, we consider a stochastic representation of the epsilon–skew–Cauchy
distribution, viewed as a member of the family of skewed distributions discussed in
Arellano-Valle et al. (2005). The stochastic representation facilitates derivation of distributional
properties of the model. In addition, we introduce symmetric and asymmetric extensions of the
Cauchy distribution, together with an extension of the epsilon–skew–Cauchy distribution. Multivariate
versions of these distributions can be envisioned. Bivariate examples are discussed in some detail.
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1. Introduction

Mudholkar and Hutson (2000) [1] studied an asymmetric normal distribution that they called
the epsilon–skew–normal {ESN(ε); |ε| < 1}, with asymmetry or skewness parameter ε. When the
parameter ε assumes the value 0, the distribution simplifies to become a standard normal distribution.
The family thus consists of a parameterized set of usually asymmetric distributions that includes the
symmetric standard normal density as a special case. Specifically, we say that X ∼ ESN(ε) if its
density is of the form:

g (x; ε) = φ

(
x

1 − sgn (x) ε

)
where x ∈ R, φ is the standard normal density and sgn(·) is the sign function.

Arellano-Valle et al. (2005) [2] discuss extension of this model, together with associated inference
procedures. They consider a class of Epsilon-skew-symmetric distributions associated with a particular
symmetric density f (·) that is indexed by an asymmetry parameter ε with densities given by

h(x; ε) = f
(

x
1 − sgn (x) ε

)
(1)

where x ∈ R and |ε| < 1.
If X has density of the form (1), then we say that X is an epsilon-skew-symmetric random

variable and we write X ∼ ES f (ε). Arellano-Valle et al. (2005) [2] extend this family to the model
epsilon-skew-exponential-power, a model that has major and minor asymmetry and kurtosis that
the ESN model. On the other hand Gómez et al. (2007) [3] study the Fisher information matrix for
epsilon-skew-t model, which was used before in the study a financial series by Hansen (1994) [4];
see also Gómez et al. (2008) [5]. Note that if in (1) we set f (t) = 1/

(
π
(
1 + t2)), we obtain the

epsilon–skew–Cauchy model.
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We will write X ∼ N(0, 1) to indicate that X has a standard normal distribution, and we will
write Y ∼ HN(0, 1) to indicate that Y has a standard half-normal distribution, i.e., that Y = |X| where
X ∼ N(0, 1).

The distribution of the ratio X/Y of two random variables is of interest in problems in biological
and physical sciences, econometrics, and ranking and selection. It is well known that if X ∼ N(0, 1),
Y1 ∼ N(0, 1) and Y2 ∼ HN(0, 1) are independent, then the random variables X/Y1 and X/Y2 both
have Cauchy distributions; see Johnson et al. (1994, [6] Chapter 16). Behboodian, et al. (2006) [7] and
Huang and Chen (2007) [8] study the distribution of such quotients when the component random
variables are skew-normal (of the form studied in Azzalini (1985) [9]). The principle objective of the
present paper is to study the behavior of such quotients when the component random variables have
epsilon-skew-normal distributions.

The paper is organized in the following manner. In Section 2, we describe a representation
of the epsilon–skew–Cauchy model. In Section 3, we consider the distribution of the ratio of two
independent random variables, one of which has an ESN (ε) distribution and the other a standard
normal distribution. In addition, an extension of the epsilon–skew–Cauchy (ESC) distribution is
introduced. Bivariate versions of these distributions are discussed in Section 4. Extensions to higher
dimensions can be readily envisioned, but are not discussed here. In Section 5, some of the bivariate
distributions introduced in this paper are considered as possible models for a particular real-world
data set.

2. Representation of the ESC (Epsilon–Skew–Cauchy) Model

Proposition 1. If X ∼ ESN (ε) and Y ∼ HN(0, 1) are independent random variables, then Z1
d
= X

Y has an
epsilon–skew–Cauchy distribution with asymmetry parameter ε and density given by

fZ1 (z; ε) =
1

π

[
1 +
(

z
1−sgn(z)ε

)2
] ,

where z ∈ R, |ε| < 1 and we write Z1 ∼ ESC(ε).

Proof. With the transformation Z1 = X/Y and W = Y, whose Jacobian |J| = w, we obtain

fZ1,W (z, w) =
w
π

exp

{
−1

2

[
z2

(1 − sgn (z) ε)2 + 1

]
w2

}
,

where z ∈ R, w > 0.
It follows directly that

fZ1 (z; ε) =
∫ ∞

0
fZ1,W (z, w)dw =

1

π

[
1 +
(

z
1−sgn(z)ε

)2
] .

Figure 1 depicts the behavior of the ESC density for a variety of parameter values.
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Figure 1. Examples of the ESC(ε) density for : ε = 0 (green line), ε = −0.5 (blue line), ε = −0.8
(black line), ε = 0.5 (red line) and ε = 0.8 (pink line).

3. Generalized Cauchy Distribution

Proposition 2. If X ∼ ESN (ε1) and Y ∼ ESN (ε2) are independent random variables, then Z d
= X

Y has what
we call a generalized epsilon–skew–Cauchy (GESC) distribution with parameters ε1 and ε2 and with density
given by

fZ (z; ε1, ε2) =
1

2π

[(
1

1+ε2

)2
+
(

z
1+sgn(z)ε1

)2
] + 1

2π

[(
1

1−ε2

)2
+
(

z
1−sgn(z)ε1

)2
] ,

where z ∈ R, |ε1| < 1, |ε2| < 1 and we write Z ∼ GESC(ε1, ε2).

Proof. Arguing as in Proposition 1, we have that

fZ (z; ε1, ε2) =
∫ ∞

−∞

|w|
2π

exp

{
−1

2

[
z2

(1 − sgn (zw) ε1)
2 +

1

(1 − sgn (w) ε2)
2

]
w2

}
dw.

By considering separately the cases in which z ≥ 0 and z < 0, result follows directly.

From Proposition 2 two special cases are obtained directly,

1. If ε2 = 0 a generalized Cauchy (GC) distribution is obtained. In this case we write Z ∼ GC(ε),
and its pdf is given by

fZ (z; ε) =
1

2π

[
1 +
(

z
1+sgn(z)ε

)2
] + 1

2π

[
1 +
(

z
1−sgn(z)ε

)2
] ,
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where z ∈ R, 0 < ε < 1 and Z d
= X/Y where X ∼ ESN (ε) and Y ∼ N(0, 1) are independent

random variables.
2. If ε1 = ε2 = ε an epsilon–skew–Cauchy distribution is obtained. In this case we write Z ∼

ESC2(ε), and its pdf is given by

fZ (z; ε) =
1

2π

[(
1

1+ε

)2
+
(

z
1+sgn(z)ε

)2
] + 1

2π

[(
1

1−ε

)2
+
(

z
1−sgn(z)ε

)2
] ,

where z ∈ R, |ε| < 1 and Z d
= X/Y where X ∼ ESN (ε) and Y ∼ ESN (ε) are independent

random variables.

4. General Bivariate Mudholkar-Hutson Distribution

Define Z1, Z2, Z3 to be i.i.d. standard normal random variables. For i = 1, 2, 3 define

Ui =

{
−αi with probability γi
βi with probability 1 − γi

where α1, α2, α3, β1, β2, β3 are positive numbers and 0 < γ1, γ2, γ3 < 1. So, the parameters αi and
βi indicate the propensity in which the discrete random variable takes negative and positive values,
respectively. The parameters γi control how often negative and positive values are taken by Ui.

In addition assume that all six random variables Z1, Z2, Z3, U1, U2 and U3 are independent,
and define

(X, Y) =
(

U1 |Z1|
U3 |Z3|

,
U2 |Z2|
U3 |Z3|

)
. (2)

The model (2) is highly flexible since it allows for different behavior in each of the four quadrants
of the plane. From (2) it may be recognized that only fractional moments of X and Y exist.

Note that if we define (W1, W2) =
(
|Z1|
|Z3| ,

|Z2|
|Z3|

)
, it is readily verified that

fW1,W2 (w1, w2) =
2
π

(
1 + w2

1 + w2
2

)−3/2
I (w1 > 0, w2 > 0) , (3)

in which case we say that (W1, W2) has a standard bivariate half-Cauchy distribution.
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Using (3) and conditioning on U1, U2 and U3 we obtain the density of (X, Y) in the albeit
complicated form:

f (x, y) = 2
π

{
γ1γ2γ3

α2
3

α1α2

[
1 +
(

α3
α1

x
)2

+
(

α3
α2

y
)2
]−3/2

I(x > 0, y > 0)

}

+ 2
π

{
γ1γ2(1 − γ3)

β2
3

α1α2

[
1 +
(

β3
α1

x
)2

+
(

β3
α2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 2
π

{
γ1(1 − γ2)γ3

α2
3

α1β2

[
1 +
(

α3
α1

x
)2

+
(

α3
β2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 2
π

{
γ1(1 − γ2)(1 − γ3)

β2
3

α1β2

[
1 +
(

β3
α1

x
)2

+
(

β3
β2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 2
π

{
(1 − γ1)γ2γ3

α2
3

β1α2

[
1 +
(

α3
β1

x
)2

+
(

α3
α2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 2
π

{
(1 − γ1)γ2(1 − γ3)

β2
3

β1α2

[
1 +
(

β3
β1

x
)2

+
(

β3
α2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 2
π

{
(1 − γ1)(1 − γ2)γ3

α2
3

β1β2

[
1 +
(

α3
β1

x
)2

+
(

α3
β2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 2
π

{
(1 − γ1)(1 − γ2)(1 − γ3)

β2
3

β1β2

[
1 +
(

β3
β1

x
)2

+
(

β3
β2

y
)2
]−3/2

I(x > 0, y > 0)

}
.

(4)

Some special cases which might be considered include the following:

1. Mudholkar and Hutson type. For this we set: αi = 1 + εi, βi = 1 − εi and γi = (1 + εi) /2 for
i = 1, 2, 3.

In this case the density (4) simplifies somewhat to become:

f (x, y) = 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1+ε1

x
)2

+
(

1+ε3
1+ε2

y
)2
]−3/2

I(x > 0, y > 0)

}

+ 1
4π

{
(1 − ε3)

3
[

1 +
(

1−ε3
1+ε1

x
)2

+
(

1−ε3
1+ε2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1+ε1

x
)2

+
(

1+ε3
1−ε2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 − ε3)

3
[

1 +
(

1−ε3
1+ε1

x
)2

+
(

1−ε3
1−ε2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1−ε1

x
)2

+
(

1+ε3
1+ε2

y
)2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1 − ε3)

3
[

1 +
(

1−ε3
1−ε1

x
)2

+
(

1−ε3
1+ε2

y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 + ε3)

3
[

1 +
(

1+ε3
1−ε1

x
)2

+
(

1+ε3
1−ε2

y
)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1 − ε3)

3
[

1 +
(

1−ε3
1−ε1

x
)2

+
(

1−ε3
1−ε2

y
)2
]−3/2

I(x > 0, y > 0)

}
.

(5)

A further specialization of the density (5) can be considered, as follows.
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2. Homogenous Mudholkar and Hutson type. For this we set: αi = 1 + ε, βi = 1 − ε and
γi = (1 + ε) /2 for i = 1, 2, 3.
This homogeneity results in a little simplification of (4), thus:

f (x, y; ε) = 1
4π

{[
(1 + ε)3 + (1 − ε)3] [1 + x2 + y2]−3/2 I(x > 0, y > 0)

}
+ 1

4π

{
(1 − ε)3

[
1 +
(

1−ε
1+ε x

)2
+
(

1−ε
1+ε y
)2
]−3/2

I(x < 0, y < 0)

}

+ 1
4π

{
(1 + ε)3

[
1 + x2 +

(
1+ε
1−ε y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 − ε)3

[
1 +
(

1−ε
1+ε x

)2
+ y2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1 + ε)3

[
1 +
(

1+ε
1−ε x

)2
+ y2
]−3/2

I(x < 0, y > 0)

}

+ 1
4π

{
(1 − ε)3

[
1 + x2 +

(
1−ε
1+ε y
)2
]−3/2

I(x > 0, y < 0)

}

+ 1
4π

{
(1 + ε)3

[
1 +
(

1+ε
1−ε x

)2
+
(

1+ε
1−ε y
)2
]−3/2

I(x < 0, y < 0)

}
.

(6)

It is easy to see that the parameter ε is not identifiable in (6) because f (x, y; ε) = f (x, y;−ε).
An adjustment to ensure identifiability involves introducing the constraint ε ≥ 0.

3. Equal weights. In this case we assume that α1, α2, α3, β1, β2, β3 are positive numbers and γi = 1/2
for i = 1, 2, 3.

f (x, y) = 1
4π

{
α2

3
α1α2

[
1 +
(

α3
α1

x
)2

+
(

α3
α2

y
)2
]−3/2

+
β2

3
β1β2

[
1 +
(

β3
β1

x
)2

+
(

β3
β2

y
)2
]−3/2

}
×I (x > 0, y > 0)

+ 1
4π

{
β2

3
α1α2

[
1 +
(

β3
α1

x
)2

+
(

β3
α2

y
)2
]−3/2

+
α2

3
β1β2

[
1 +
(

α3
β1

x
)2

+
(

α3
β2

y
)2
]−3/2

}
×I (x < 0, y < 0)

+ 1
4π

{
α2

3
α1β2

[
1 +
(

α3
α1

x
)2

+
(

α3
β2

y
)2
]−3/2

+
β2

3
β1α2

[
1 +
(

β3
β1

x
)2

+
(

β3
α2

y
)2
]−3/2

}
×I (x > 0, y < 0)

+ 1
4π

{
α2

3
β1α2

[
1 +
(

α3
β1

x
)2

+
(

α3
α2

y
)2
]−3/2

+
β2

3
α1β2

[
1 +
(

β3
α1

x
)2

+
(

β3
β2

y
)2
]−3/2

}
×I (x < 0, y > 0) .

(7)

The pdf (7) is not identifiable because the values of αi can be interchanged with those of βi and
f (x, y) does not change. Moreover, multiplying all of the α’s and β’s by a constant does not
change f (x, y). So, one way to get identifiability in the model (7) is to set αi = βi (i = 1, 2, 3) and
α3 equal to 1. In that case, Equation (7) takes the form

f (x, y) =
1

2π

1
α1α2

[
1 +
(

x
α1

)2
+

(
y
α2

)2
]−3/2

.

However, this is then recognizable as being simply a scaled version of the standard bivariate
Cauchy density (compare with Equation (3)).

We now consider the marginal densities for the random variable (X, Y) defined by (2). From (2)
we have X = U1|Z1|

U3|Z3| and Y = U2|Z2|
U3|Z3| and the density of W1 = |Z1|

|Z3| =
∣∣∣ Z1

Z3

∣∣∣ is a standard half-Cauchy

density, i.e., fW1(w1) =
2
π (1 + w2

1)
−1.
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Consequently, the density of X is of the form

fX (x) = 2
π γ1γ3

α3
α1

[
1 +
(

α3
α1

x
)2
]−1

I (x > 0) + 2
π γ1(1 − γ3)

β3
α1

[
1 +
(

β3
α1

x
)2
]−1

I (x < 0)

+ 2
π (1 − γ1)

{
γ3

α3
β1

[
1 +
(

α3
β1

x
)2
]−1

I (x < 0) + (1 − γ3)
β3
β1

[
1 +
(

β3
β1

x
)2
]−1

I (x > 0)

}
,

which is a mixture of half-Cauchy densities. The density of Y is then of the same form with α1, β1

replaced by α2, β2.
To get a more direct bivariate version of the original Mudholkar-Hutson density in which the

α’s, β’s and γ’s were related to each other, we go back to the original representation, i.e., Equation (2),
but now we set α1 = (1 + ε1), β1 = (1 − ε1), γ1 = (1 + ε1) /2, α2 = (1 + ε2), β2 = (1 − ε2),
γ2 = (1 + ε2) /2 and α3 = β3 = γ3 = 1. So the density is of the form

f (x, y) =
1

2π

[
1 +
(

x
1 + ε1

)2
+

(
y

1 + ε2

)2
]−3/2

I (x > 0, y > 0)

+
1

2π

[
1 +
(

x
1 + ε1

)2
+

(
y

1 − ε2

)2
]−3/2

I (x > 0, y < 0)

+
1

2π

[
1 +
(

x
1 − ε1

)2
+

(
y

1 + ε2

)2
]−3/2

I (x < 0, y > 0)

+
1

2π

[
1 +
(

x
1 − ε1

)2
+

(
y

1 − ε2

)2
]−3/2

I (x < 0, y < 0)

with marginal density

fX (x) =
1
π

[
1 +
(

x
1 + ε1

)2
]−1

I (x > 0) +
1
π

[
1 +
(

x
1 − ε1

)2
]−1

I (x < 0) .

A more general version of the density with γ3 = 1, is of the form: (without loss of generality set
α3 = 1)

f (x, y) =
2
π

⎧⎨⎩γ1γ2
1

α1α2

[
1 +
(

x
α1

)2
+

(
y
α2

)2
]−3/2

I (x > 0, y > 0)

⎫⎬⎭
+

2
π

⎧⎨⎩γ1(1 − γ2)
1

α1β2

[
1 +
(

x
α1

)2
+

(
y
β2

)2
]−3/2

I (x > 0, y < 0)

⎫⎬⎭
+

2
π

⎧⎨⎩(1 − γ1)γ2
1

β1α2

[
1 +
(

x
β1

)2
+

(
y
α2

)2
]−3/2

I (x < 0, y > 0)

⎫⎬⎭
+

2
π

⎧⎨⎩(1 − γ1)(1 − γ2)
1

β1β2

[
1 +
(

x
β1

)2
+

(
y
β2

)2
]3/2

I (x < 0, y < 0)

⎫⎬⎭
with corresponding marginal

fX (x) =
2
π

γ1
1
α1

[
1 +
(

x
α1

)2
]−1

I (x > 0) +
2
π
(1 − γ1)

1
β1

[
1 +
(

x
β1

)2
]−1

I (x < 0) .
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Needless to say we can consider analogous models in which, instead of assuming that
(W1, W2) =

(
|Z1|
|Z3| ,

|Z2|
|Z3|

)
has a density of the form (3) we assume that it has another bivariate density

with support R+ ×R+, e.g., bivariate normal restricted to R+ ×R+, or bivariate Pareto, etc.
Another general bivariate MH model which includes the bivariate skew-Cauchy distribution

given by (2) is the bivariate skew t model. This model can be obtained replacing |Z3| by V3 ∼ χ2
ν in

Equation (2). Thus, if we assume that all six random variables Z1, Z2
iid∼ N (0, 1), V3 ∼ χ2

ν; U1, U2 and
U3 are independent, and define

(X, Y) =
(

U1 |Z1|
U3

√
V3/ν

,
U2 |Z2|

U3
√

V3/ν

)
, (8)

then, because (W1, W2) =
(

|Z1|√
V3/ν

, |Z2|√
V3/ν

)
has density

fW1,W2 (w1, w2) =
2
π

(
1 +

w2
1 + w2

2
ν

)−(ν+2)/2

I (w1 > 0, w2 > 0) ,

the density of (X, Y) is

f (x, y) =
∫

f (x, y |u1, u2, u3 ) f (u1, u2, u3)du1du2du3

=
∫ u2

3
u1u2

fW1,W2

(
u3
u1

x, u3
u2

y
∣∣∣ u1, u2, u3

)
f (u1, u2, u3)du1du2du3

=
∫ 2

π
u2

3
u1u2

[
1 + 1

ν

(
u3
u1

x
)2

+ 1
ν

(
u3
u2

y
)2
]−(ν+2)/2

f (u1, u2, u3)du1du2du3

= 2
π

{
γ1γ2γ3

α2
3

α1α2

[
1 + 1

ν

(
α3
α1

x
)2

+ 1
ν

(
α3
α2

y
)2
]−(ν+2)/2

I(x > 0, y > 0)

}

+ 2
π

{
γ1γ2(1 − γ3)

β2
3

α1α2

[
1 + 1

ν

(
β3
α1

x
)2

+ 1
ν

(
β3
α2

y
)2
]−(ν+2)/2

I(x < 0, y < 0)

}

+ 2
π

{
γ1(1 − γ2)γ3

α2
3

α1β2

[
1 + 1

ν

(
α3
α1

x
)2

+ 1
ν

(
α3
β2

y
)2
]−(ν+2)/2

I(x > 0, y < 0)

}

+ 2
π

{
γ1(1 − γ2)(1 − γ3)

β2
3

α1β2

[
1 + 1

ν

(
β3
α1

x
)2

+ 1
ν

(
β3
β2

y
)2
]−(ν+2)/2

I(x < 0, y > 0)

}

+ 2
π

{
(1 − γ1)γ2γ3

α2
3

β1α2

[
1 + 1

ν

(
α3
β1

x
)2

+ 1
ν

(
α3
α2

y
)2
]−(ν+2)/2

I(x < 0, y > 0)

}

+ 2
π

{
(1 − γ1)γ2(1 − γ3)

β2
3

β1α2

[
1 + 1

ν

(
β3
β1

x
)2

+ 1
ν

(
β3
α2

y
)2
]−(ν+2)/2

I(x > 0, y < 0)

}

+ 2
π

{
(1 − γ1)(1 − γ2)γ3

α2
3

β1β2

[
1 + 1

ν

(
α3
β1

x
)2

+ 1
ν

(
α3
β2

y
)2
]−(ν+2)/2

I(x < 0, y < 0)

}

+ 2
π

{
(1 − γ1)(1 − γ2)(1 − γ3)

β2
3

β1β2

[
1 + 1

ν

(
β3
β1

x
)2

+ 1
ν

(
β3
β2

y
)2
]−(ν+2)/2

I(x > 0, y > 0)

}
.

(9)

The pair of variables in (8) allows one to model a wider variety of paired data sets than that given
in (2) because it also can model light and heavy “tails” in a different way for each quadrant of the
coordinate axis. Additionally, it is possible to compute the r−order moments.

Proposition 3. The expected value of (X, Y) in (8) is given by

E (X, Y) =
√

ν√
π
(β1 (1 − γ1)− α1γ1, β2 (1 − γ2)− α2γ2)

(
1 − γ3

β3
− γ3

α3

)
Γ (ν/2 − 1/2)

Γ (ν/2)
,

provided that ν > 1.
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Proof. For i = 1, 2 it is immediate that E (Ui)E (|Zi|) = (βi (1 − γi)− αiγi)
√

2/
√

π and E

(
U−1

3

)
=

(1 − γ3) /β3 − γ3/α3.
On the other hand, since V3 ∼ χ2

ν then

E

( √
ν√

V3

)
=
∫ ∞

0

√
ν√
x

xν/2−1

2ν/2Γ (ν/2)
e−x/2dx ν>1

=

√
νΓ (ν/2 − 1/2)√

2Γ (ν/2)
.

Therefore, from (8) we have

E (X, Y) = (E (U1)E (|Z1|) ,E (U2)E (|Z2|))E
(

1
U3

)
E

( √
ν√

V3

)
and the result is obtained straightforward.

Following the proof of the previous proposition it is possible to obtain the r−order moments
provided that ν > r.

In applications, it will usually be appropriate to augment these models by the introduction of
location, scale and rotation parameters, i.e., to consider(

X̃, Ỹ
)
= μ + Σ1/2 (X, Y) ,

where μ ∈ (−∞, ∞)2 and Σ is positive definite.

5. Application

The data that we will use were collected by the Australian Institute of Sport and reported by Cook
and Weisberg (1994) [10]. The data set consists of values of several variables measured on n = 202
Australian athletes. Specifically, we shall consider the pair of variables (Ht,Wt) which are the height
(cm) and the weight (Kg) measured for each athlete.

We fitted the bivariate Mudholkar-Hutson distributions for five different cases. In addition to
the general case which is given by the pdf f (x, y; αi, βi, γi, ν, μ, Σ), based on (9), where i = 1, 2, 3,
and μ = (μ1, μ2)

′ is the location parameter and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)

is the symmetric positive definite scale matrix, we also consider four special cases:

1. When the pdf is given by Equation (4). That is taking ν → ∞ in the bivariate skew t MH model.
2. When the pdf is given by

f
(

x, y; εi, μj, Σ11, Σ22, Σ12
)
= f
(

x, y; 1 + εi, 1 − εi,
1 + εi

2
, μ, Σ

)
,

which is the bivariate MH distribution specified using the special case (1.), where |εi| < 1 for all
i = 1, 2, 3.

3. When the pdf is given by

f
(

x, y; ε, μj, Σ11, Σ22, Σ12
)
= f
(

x, y; 1 + ε, 1 − ε,
1 + ε

2
, μ, Σ

)
,

which is the bivariate MH distribution specified using the special case (2.), where |ε| < 1.

115



Symmetry 2019, 11, 794

4. When the pdf is given by

f
(

x, y; μj, Σ11, Σ22, Σ12
)
= f
(

x, y; 1, 1,
1
2

, μ, Σ

)
,

which is the bivariate Cauchy distribution (as in (3)).

All fits were done by maximizing the likelihood through numerical methods which combine
algorithms based on the Hessian matrix and the Simulated Annealing algorithm. Standard errors of
the estimations were computed based on 1000 bootstrap data samples.

To compare model fits, we used the Akaike criterion (see Akaike, 1974 [11]), namely

AIC = −2 ln
[
L
(
θ̂
)]

+ 2k,

where k is the dimension of θ which is the vector of parameters of the model being considered.
Table 1 displays the results of the fits for 100 women. In Table 1, we see the results of fitting the five

competing models. They are the general bivariate skew−t MH model with pdf given in Equation (9),
General bivariate MH with pdf given in Equation (4), Bivariate MH (1.) with pdf given in Equation (5),
Bivariate MH (2.) with pdf given in Equation (6) and Bivariate Cauchy. It shows the maximum
likelihood estimates (mle’s) of the five models. The last column shows the estimated standard errors
(se) of the estimates. Non identifiability of the bivariate skew−t MH model is evidenced by the huge
value of the estimated standard error of the estimate of ν. However, the AIC criterion indicates that
data are better fitted by the general bivariate skew−t MH (9) model. Figure 2 shows the contour lines
of the fitted pdf.

Table 1. Bivariate Mudholkar-Hutson fits for women.

Model AIC (αi, βi, γi, μ, Σ) Estimates
Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 1354.5

(α1, α2, α3) = (13.48, 16.62, 1.25)
(β1, β2, β3) = (10.65, 36.47, 3.00)
(γ1, γ2, γ3) = (1.00, 0.97, 0.94)
ν = 10.93
(μ1, μ2) = (161.97, 52.50)
(Σ11, Σ22, Σ12) = (1.82, 1.67, 1.58)

(10.02, 29.96, 8.05)
(1.53, 17.79, 19.75)
(0.006, 0.02, 0.03)
168.56
(2.18, 2.22)
(17.80, 14.36, 14.33)

General bivariate
MH 1413.5

(α1, α2, α3) = (13.26, 16.04, 1.05)
(β1, β2, β3) = (10.64, 36.50, 4.99)
(γ1, γ2, γ3) = (1.00, 0.98, 0.94)
(μ1, μ2) = (161.69, 50.90)
(Σ11, Σ22, Σ12) = (1.13, 1.17, 1.09)

(2.70, 4.30, 0.90)
(0.92, 3.85, 3.64)
(0.003, 0.02, 0.02)
(1.79, 2.39)
(1.57, 1.59, 1.47)

Bivariate
MH (1.) 1429.4

(ε1, ε2, ε3) = (0.85, 0.83,−1.00)
(μ1, μ2) = (186.30, 83.80)
(Σ11, Σ22, Σ12) = (169.37, 334.65, 224.88)

(0.07, 0.08, 0.003)
(1.45, 1.47)
(33.30, 51.34, 36.83)

Bivariate
MH (2.) 1453.8

ε = 0.50
(μ1, μ2) = (171.60, 62.30)
(Σ11, Σ22, Σ12) = (32.49, 61.40, 33.96)

0.15
(1.86, 2.80)
(8.59, 16.41, 10.87)

Bivariate
Cauchy 1665.5 (μ1, μ2) = (177.21, 69.08)

(Σ11, Σ22, Σ12) = (77.84, 124.86, 41.53)
(1.64, 2.01)
(2.23, 1.39, 8.32)

Table 2 displays the results of the fits for 102 men. In Table 2 we again compare five competing
models. The maximum likelihood estimates (mle’s) of the five models, the corresponding Akaike
criterion values and estimated standard errors of the estimates are displayed in the table. Again,
the AIC indicates that the data are better fitted by the general bivariate skew−t MH (9) model. Figure 3
shows the contour lines of the fitted pdf. Non identifiability of the general bivariate skew−t MH (9)
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and General bivariate MH (4) models is shown by the large values of the estimated standard errors for
some estimates.

Table 2. Bivariate Mudholkar-Hutson fits for men.

Model AIC (αi, βi, γi, μ, Σ) Estimates
Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 1396.9

(α1, α2, α3) = (13.43, 20.16, 2.62)
(β1, β2, β3) = (35.02, 11.84, 6.01)
(γ1, γ2, γ3) = (0.94, 0.96, 0.88)
ν = 9.99
(μ1, μ2) = (177.92, 70.30)
(Σ11, Σ22, Σ12) = (4.77, 4.71, 4.04)

(14.66, 5.34, 4.12)
(8.42, 1.82, 7.83)
(0.02, 0.02, 0.04)
64.18
(0.65, 1.22)
(1.89, 6.12, 1.83)

General bivariate
MH 1441.8

(α1, α2, α3) = (52.54, 52.17, 14.58)
(β1, β2, β3) = (29.83, 62.76, 31.76)
(γ1, γ2, γ3) = (0.96, 0.98, 0.96)
(μ1, μ2) = (174.60, 66.6)
(Σ11, Σ22, Σ12) = (9.32, 17.40, 11.78)

(0.89, 1.28, 0.43)
(1.52, 1.39, 0.59)
(0.01, 0.01, 0.02)
(1.13, 1.16)
(0.76, 0.50, 0.55)

Bivariate
MH (1.) 1456.2

(ε1, ε2, ε3) = (−0.87,−0.91,−1.0)
(μ1, μ2) = (172.70, 61.00)
(Σ11, Σ22, Σ12) = (195.26, 445.26, 279.93)

(0.06, 0.05, 0.00)
(1.39, 1.94)
(32.88, 62.62, 38.52)

Bivariate
MH (2.) 1512.6

ε = 0.17
(μ1, μ2) = (185.10, 80.54)
(Σ11, Σ22, Σ12) = (36.15, 70.27, 38.53)

0.21
(2.73, 3.54)
(14.66, 26.93, 19.09)

Bivariate
Cauchy 1775.2 (μ1, μ2) = (184.45, 79.36)

(Σ11, Σ22, Σ12) = (65.57, 155.19, 59.31)
(3.01, 3.43)
(3.62, 1.54, 8.29)

Figure 2. Female Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH.
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Figure 3. Male Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH.

Table 3 displays the results of the fits for the full set of n = 202 Australian athletes, regardless of
gender. Table 3 shows the maximum likelihood estimates (mle’s) of the five models together with the
corresponding Akaike criterion values and estimated standard errors of the estimates. The AIC here
also indicates that the data are better fitted by the general bivariate skew−t MH model (9). Figure 4
shows the contour lines of the fitted pdf. Thus, in all three cases, males, females and combined, the best
fitting model was the general bivariate skew−t MH.

Table 3. Bivariate Mudholkar-Hutson fits.

Model AIC (αi, βi, γi, μ, Σ) Estimates
Bootstrap Standard Errors
of the Estimates

Bivariate
skew t MH 2803.3

(α1, α2, α3) = (14.15, 17.35, 1.09)
(β1, β2, β3) = (49.35, 67.05, 1.62)
(γ1, γ2, γ3) = (0.98, 0.96, 0.91)
ν = 10.93
(μ1, μ2) = (171.09, 61.00)
(Σ11, Σ22, Σ12) = (1.01, 1.32, 1.04)

(8.18, 10.35, 3.57)
(5.22, 5.57, 6.86)
(0.01, 0.01, 0.02)
9.42
(0.24, 0.76)
(5.74, 7.75, 6.07)

General bivariate
MH 2901.4

(α1, α2, α3) = (15.42, 17.67, 2.25)
(β1, β2, β3) = (49.28, 66.53, 3.36)
(γ1, γ2, γ3) = (0.98, 0.96, 0.88)
(μ1, μ2) = (170.54, 60.95)
(Σ11, Σ22, Σ12) = (2.16, 3.02, 2.35)

(10.74, 12.92, 2.61)
(5.00, 5.97, 5.10)
(0.01, 0.02, 0.02)
(0.54, 1.02)
(1.55, 1.84, 1.32)

Bivariate
MH (1.) 2984.0

(ε1, ε2, ε3) = (1.00, 0.39,−0.13)
(μ1, μ2) = (181.06, 74.48)
(Σ11, Σ22, Σ12) = (11.41, 50.90, 18.73)

(0.01, 0.07, 0.06)
(0.76, 0.84)
(1.59, 5.00, 2.17)

Bivariate
MH (2.) 3022.2

ε = 0.70
(μ1, μ2) = (171.37, 61.32)
(Σ11, Σ22, Σ12) = (48.62, 103.69, 64.24)

0.10
(2.42, 3.07)
(53.89, 89.24, 68.07)

Bivariate
Cauchy 3536.9 (μ1, μ2) = (178.84, 71.81)

(Σ11, Σ22, Σ12) = (106.75, 199.84, 83.64)
(0.83, 1.55)
(2.16, 1.16, 5.53)

118



Symmetry 2019, 11, 794

Figure 4. Australian athletes data: scatter plot (Ht, Wt) and fitted General bivariate MH. Red point for
Men and sign + for women.

For the three real cases analyzed the general bivariate skew-t MH model (9) was indicated as
the best fitted. That means that it seems worth considering the more general model to explain the
variability of these data sets.

6. Concluding Remarks

The Mudholkar–Hutson skewing mechanism admits flexible extensions in both the univariate and
multivariate cases. Stochastic representations of such extended models typically have corresponding
likelihood functions that are somewhat complicated (for example Equations (4) and (9)). This is partly
compensated for by the ease of simulation for such models using the representation in terms of latent
variables ( the Ui’s and Zi’s in (2) or (8)). The data set analyzed in Section 5 illustrates the potential
advantage of considering the extended bivariate Mudholkar-Hutson model, since the basic bivariate
M-H model does not provide an acceptable fit to the “athletes” data. Needless to say, applying Occam’s
razor, it would always be desirable to consider the hierarchy of the five nested bivariate models that
were considered in Section 5, in order to determine whether one of the simpler models might be
adequate to describe a particular data set. Indeed there may be other special cases of the model (4),
intermediate between (4) and (5) say, that might profitably be considered for some data sets. However,
it should be remarked that selection of such sub-models for consideration should be done prior to
inspecting the data. The addition of the GBMH model to the data analysts tool-kit should provide
desirable flexibility for modeling data sets which exhibit behavior somewhat akin to, but not perfectly
adapted to, more standard bivariate Cauchy models.
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Abstract: This paper describes a complementary tool for fitting probabilistic distributions in data
analysis. First, we examine the well known bivariate index of skewness and the aggregate skewness
function, and then introduce orderings of the skewness of probability distributions. Using an example,
we highlight the advantages of this approach and then present results for these orderings in common
uniparametric families of continuous distributions, showing that the orderings are well suited to
the intuitive conception of skewness and, moreover, that the skewness can be controlled via the
parameter values.
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1. Introduction

Detailed knowledge of the characteristics of probability models is desirable (if not essential) if
data are to be modeled properly. In studying these properties, many authors have considered orderings
within probability distribution families, according to diverse measuring criteria. The usual approach
taken by researchers in this field is to evaluate or measure one or more theoretical characteristics of a
given distribution and to study the effect produced by the value of its parameters on this measurement.
In actuarial science, stochastic orders are widely used in order to make risk comparisons [1].

Some parametric distributions can be ordered according to the evaluation made of a given
property, merely by comparing some of its parameters. Although most related orders are actually
preorders, each one presents interesting applications. Many studies have been conducted in this area,
and the following are particularly significant: Lehmann (1955) [2], which is of seminal importance;
Arnold (1987) [3], who compared random variables according to stochastic ordering in a particular
Lorenz order; Shaked and Shanthikumar (2006) [1], on stochastic orders; Nanda and Shaked (2001) [4],
on reversed hazard rate orders; Ramos-Romero and Sordo-Díaz (2001) [5], on the likelihood ratio order;
and Gupta and Aziz (2010) [6], on convex orders.

In this paper, we study the relationship between the skewness of some parametric distributions
and the value of one of their parameters. The first question to be addressed is that of measuring the
skewness. In this respect, Oja (1981) [7] introduced a set of axioms to be verified by any measurement
of skewness considered. These axioms were established for indexes of skewness with one main
constraint: that the skewness of a distribution should be evaluated by a single real number. This point
is discussed below.

Symmetry 2018, 10, 286; doi:10.3390/sym10070286 www.mdpi.com/journal/symmetry121
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Many authors have proposed and obtained different descriptive elements to measure skewness
(see, for instance, [8–13]). Ref [10] suggested a measurement of skewness corresponding to the (unique)
mode, M, given by the following index:

γM (F) = 1 − 2F (M) . (1)

Ref [10] applied this index to ordering the gamma, log-logistic, lognormal and Weibull families of
distributions by their skewness, taking into account the feasible values of their respective parameters.
Index (1), which is proven to satisfy those axioms derived from Oja (1981) [7], is also recommended
in [14] as a (very) good index of skewness. However, notice that (1) only compares the probability
weight on the left side of a central point (the mode) with the value 1/2, but it does not account for how
the weights are distributed to each side of the centre.

García et al. (2015) [15] introduced some further elements to be incorporated into the list of
skewness measurements of a probability distribution. According to these authors, given a unimodal
probability distribution F (x), its skewness is considered to be a local function of a given distance, z,
from the mode, M. For such a distance, and given the interval [M − z, M + z], the aggregate skewness
function, νF (z), compares the probability weight of F at either side of the interval:

νF (z) = Pr (X > M + z)− Pr (X < M − z) , (2)

where z ≥ 0. Thus, the (maximum) right skewness of the distribution F and its (minimum) left
skewness are respectively given by

S+ (F) = max
z≥0

νF (z) , S− (F) = min
z≥0

νF (z) . (3)

The distances, zp and zn, where these extreme values are achieved, are termed the critical distances
to the mode. As the skewness function is bounded inside the interval [−1, 1] and νF (∞) = 0,
the bivariate index

(
S− (F) , S+ (F)

)
belongs to [−1, 0]× [0, 1]. A given distribution function F such

that νF (z) ≥ 0 for all z ≥ 0 is said to be only skewed to the right; and if νF (z) ≤ 0 for all z ≥ 0, it is
said to be only skewed to the left.

The relationship F <c G (F c−precedes G) means that G−1 [F (x)] is a convex function. For a
continuous distribution F, the bivariate measurement of skewness

(
S− (F) , S+ (F)

)
verifies the

following properties, where aF + b and −F mean the distributions of the corresponding transformation
of a random variable that is F−distributed:

1.
(
S− (F) , S+ (F)

)
= 0, for any symmetric distribution F.

2.
(
S− (aF + b) , S+ (aF + b)

)
=
(
S− (F) , S+ (F)

)
, for all a > 0, −∞ < b < ∞.

3.
(
S− (−F) , S+ (−F)

)
=
(
−S+ (F) ,−S− (−F)

)
.

4. If F <c G, then
(
S− (F) , S+ (F)

)
≤
(
S− (G) , S+ (G)

)
, understood as vector dominance.

These properties can be considered as a vectorial interpretation of the axioms given by Oja
(1981) [7].

As it is easily proven that νF (0) = γM (F), we can establish that (2) and (3) give considerably
clearer and more complete information than (1) about the skewness of any distribution function.

Most families of continuous distributions are only skewed to the right (or only to the left), while
doubles-sign skewness is abundant within the discrete families, as shown in [15]. Nevertheless,
the joint use of the function (2) and the bivariate index (3) makes it possible to improve the ordering of
the skewness-based distribution discussed in [10], as can be seen in the following example.
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Example 1. Assume the following random variable X ∈ [−2, ∞) with PDF given by:

f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
4

x +
1
2

, −2 ≤ x < 0;

1
2

exp (−x) , x ≥ 0.

Assume also the PDF, g (y) of Y = −X. Then, γM (F) = 0 = γM (G) . That is, according to coefficient
γM (·), both distributions have the same null skewness, although they do not even have a symmetric support set.

However, using expression (2), we find that

νF (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

exp (−z)− 1
8
(z − 2)2 , 0 ≤ z < 2;

1
2

exp (−z) , z ≥ 2,

and νG (z) = −νF (z) , for all z ≥ 0. These functions are plotted in Figure 1, where it can be seen that
νF (z) ≥ νG (z) for all z ≥ 0, S+ (F) = −S− (G) 
= 0 and S− (F) = 0 = S+ (G). Clearly, the information
about skewness obtained from the aggregate skewness function ν (z) and the indices S+ (·) and S− (·) is
considerably more comprehensive than that obtained from γM (·).

Figure 1. Skewness functions νF(z) and νG(z) in Example 1.

Outline

In applied statistical analysis, it is useful to have a large catalogue of plausible distributions with
which to fit the data. According to García et al. (2015) [15], common measures of skewness can be
complemented with a bivariate index of positive–negative skewness, and the authors show that the
mode is the relevant central value to study both right and left skewness. In this paper, we extend
the tool-box approach to fit data from probability distributions, introducing two orderings that are
deduced from the skewness measures given in [15]. The first of those orderings is based on the positive
part of the bivariate index of skewness, which in many instances coincides with the well known γM (F).
Nevertheless, the differences can be highly significant, as in the previous example. The second, more
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noteworthy, order is based on the skewness function νF (z) and meets the first of the conditions, but
not the reciprocal.

There are two reasons for ordering a family of distributions according to a given measurement of
skewness. Firstly, as a property of the distribution, this ordering allows us to control its skewness by the
appropriate selection of the parameter. When this is done (and the parameter is readily determined),
the theoretical results have immediate applications in the data-fitting process. Secondly, when a given
family of distributions is conceived as being more or less skewed according to the value of a parameter,
and a measurement of skewness ratifies the ordering, it may be concluded that the functioning of this
measurement provides a reasonably good fit with an intuitive conception of skewness.

The rest of this paper is organized as follows. In Section 2, we study the aggregate skewness
function and the resultant skewness-based ordering of the gamma, log-logistic, lognormal, Weibull
and asymmetric Laplace families of continuous probability distributions. In Section 3, we study the
ordering of two of the most well-known distributions commonly used in PERT methods: the beta and
the asymmetric triangular distributions. Finally, conclusions are presented in Section 4.

2. Families of Uniparametric Distributions Ordered by Skewness

Let F and G be unimodal distribution functions, with no centre or scale parameters, and modes
MF and MG, respectively. We compare their respective skewness by two different criteria.

Definition 1. If
νF (z)− νG (z) ≥ 0, ∀z ≥ 0, (4)

then we say that F has equal or more aggregate skewness to the right at any point than G. We denote this by
F ≥ν G.

Definition 2. If F and G are both skewed only to the right, we say that F has equal or more maximum aggregate
skewness to the right than G when

S+ (F)− S+ (G) ≥ 0, (5)

and we denote this by F ≥+ G.

With these definitions, it immediately follows that:

Proposition 1. If F ≥ν G, then F ≥+ G.
The reverse implication is not true in general.

Proof. The proof follows immediately from the definitions given in (4) and (5).

In the next section, we consider some well known uniparametric families of continuous
distributions, with no centre or scale parameters but depending on a skewness parameter, and examine
whether they are ordered by aggregate skewness, or by maximum aggregate skewness. The gamma
family is a very broad one, which includes many other well known distributions as particular cases.
A study of the log-logistic, lognormal, Weibull and asymmetric Laplace families, one by one and in
turn, when not included inside the previous one, will produce widely varying results.

2.1. Uniparametric Gamma Distributions

Let X be a uniparametric gamma distributed random variable, G(α). That is, its CDF G (x; α) is
given by

G (x; α) =
1

Γ (1 + α)

∫ x

0
tαe−tdt, (6)
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for x > 0, where −1 < α < ∞, and the mode is given by M = max {α, 0}. Then, for −1 < α ≤ 0,
the density function decreases on x along the positive real line and we obtain that

νG (z; α) = 1 − G (z; α) =
1

Γ (1 + α)

∫ ∞

z
tαe−tdt.

In these cases, νG (z; α) is a decreasing function on z, and S+ (G (α1)) = νG (0; α1) = 1.

Proposition 2. Let G (α1) and G (α2) be gamma distributions with CDF as in (6). Then:

1. If −1 < α1 < α2 < 0, then G (α2) ≥ν G (α1) .
2. If 0 < α1 < α2, then G (α1) ≥+ G (α2) .

Proof. Part 1. We can write

νG (z; α1)− νG (z; α2) = G (z; α2)− G (z; α1) .

By denoting α2 = α1 + ε, ε > 0, and then considering u (z) =
d
dz

[νG (z; α1)− νG (z; α2)] , we obtain

u (z) =
zα2 e−z

Γ (1 + α2)
− zα1 e−z

Γ (1 + α1)
= zα1 e−z

[
zεΓ (1 + α1)− Γ (1 + α2)

Γ (1 + α2) Γ (1 + α1)

]
.

Therefore, u (z) = 0 when

z = z0 =

[
Γ (1 + α2)

Γ (1 + α1)

]1/ε

,

u (z) is negative for 0 < z < z0, and positive for z > z0. Also, νG (0+; α1) − νG (0+; α2) = 0,
νG (∞; α1)− νG (∞; α2) = 0. Then,

νG (z0; α1)− νG (z0; α2) =
1

Γ (1 + α1) Γ (1 + α2)

∫ x0

0
tα1 e−t [Γ (1 + α1) tε − Γ (1 + α2)] dt,

is the integral of a negative function, so it is negative, and the proof is complete.

Part 2. For 0 < α < ∞, we have that

νG (z; α) =

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1+α)

(∫ ∞
z+α tαe−tdt −

∫ α−z
0 tαe−tdt

)
, 0 ≤ z < α,

1
Γ(1+α)

∫ ∞
z+α tαe−tdt, z ≥ α.

and,

dνG
dz

=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(1+α)

[
(α − z)α e−(α−z) − (α + z)α e−(α+z)

]
, 0 ≤ z < α,

−1
Γ(1+α)

zαe−z, z ≥ α.

Then, clearly we have that dνG/dz < 0 for all z ≥ α. For 0 ≤ z < α, if we denote

w (z) = (α − z)α ez − (α + z)α e−x,

then the sign of dνG/dz is the sign of w (x). As w (0) = 0, w (α) = − (2α)α e−α < 0, and

dw
dz

= z (z + α)α−1 e−z − z (α − z)α−1 ez ≤ 0,
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we conclude that νG is a decreasing function on z ≥ 0 and S+ (G (α)) = νG (0; α) .

S+ (G (α)) =
Γ (1 + α, α)

Γ (1 + α)
,

where Γ (1 + α, α) is the incomplete Gamma function, and then S+ (G (α)) is a decreasing function
on α, when α → ∞. Nevertheless, a simple plotting of the functionals νG (z; αi) for any 0 < α1 < α2

shows that both functionals cross each other and that they are not ordered by ”≥ν”. Thus, the proof
is completed.

2.2. Log–Logistic Distributions

The CDF of a uniparametric log–logistic distributed random variable X is given by

FLL (x; θ) =
(

1 + x−θ
)−1

, (7)

for x > 0, with θ > 0. The mode of these distributions depends on θ. If 0 < θ ≤ 1, then M = 0, and

νLL (z; θ) =
1

1 + zθ
,

and S+ (FLL (θ)) = 1. The functionals νLL (z; θ) for different values of θ inside the rank cross each other
at z = 1, and these distributions are ordered neither by skewness function nor by skewness indexes.
Nevertheless, for θ > 1, the mode is

0 < M =

(
θ − 1
θ + 1

)1/θ

< 1. (8)

Notice that M is an increasing function of θ when θ > 1, because

dM
dθ

= M ·
[

2
(θ2 − 1) θ

− 1
θ2 ln

θ − 1
θ + 1

]
> 0. (9)

When θ > 1, it is also known from Arnold and Groeneveld (1995) that

νLL (0; θ) =
1
θ

.

As νLŁ (z; θ) is a decreasing function, it is then stated that 1 < θ1 < θ2 implies FLL (θ1) ≥+ FLL (θ2).
Furthermore, the skewness functions are ordered, as we prove below.

Proposition 3. Let be FLL (θ1) and FLL (θ2) log-logistic distributions with CDF as in (7), where 1 < θ1 < θ2.
Then,

FLL (θ1) ≥ν FLL (θ2) . (10)

Proof. Let θ > 1. Then,

νLL (z; θ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 −
(

M2 − z2)θ
1 + (M + z)θ + (M − z)θ + (M2 − z2)

θ
, 0 ≤ z ≤ M,

1

1 + (M + z)θ
, z > M,
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If we consider 1 < θ1 < θ2, such that the respective modes verify 0 < M1 < M2 < 1, we can
then denote

a = (M1 − z)θ1 < b = (M1 + z)θ1 ,

c = (M2 − z)θ2 < d = (M2 + z)θ2 .

and consider the function h given by

h (θ) = (M ± z)θ , 0 ≤ z ≤ M,

with M as in (8). Then,

dh
dθ

=
(M ± z)θ−1

θ (θ + 1)2

(
2θ

Mθ−1 + θ (1 + θ)2 (M ± z) ln (M ± z) + (1 + θ)2 M ln
θ + 1
θ − 1

)
,

For z < M, this implies that a < c, b < d. With this notation, we can write νLL (z; θ1)− νLL (z; θ2)

as follows.
Firstly, for 0 ≤ z ≤ M1,

νLL (z; θ1)− νLL (z; θ2) =
1 − ab

(1 + a) (1 + b)
− 1 − cd

(1 + c) (1 + d)

=
(c − a) + (d − b) + ac (d − b) + bd (c − a) + 2 (cd − ab)

(a + 1) (b + 1) (c + 1) (d + 1)
> 0.

Secondly, for M1 < z ≤ M2, we only need to compare d − b, because

νLL (z; θ1)− νLL (z; θ2) =
1

1 + b
− 1 − cd

(1 + c) (1 + d)

=
c + (d − b) + 2cd + bcd
(1 + b) (1 + c) (1 + d)

> 0.

Finally, when z > M2,

νLL (z; θ1)− νLL (z; θ2) =
1

1 + b
− 1

1 + d
=

d − b
(1 + b) (1 + d)

> 0.

Hence, the proof is completed.

2.3. Lognormal Variance Distributions

LN (x; σ) = Φ
(

ln x
σ

)
, (11)

for x, σ > 0, where Φ (·) is the standard normal distribution function. The mode is given by
Mσ = exp

(
−σ2) and

νLN (z; σ) = 1 − Φ

(
ln
[
z + exp

(
−σ2)]

σ

)
− Φ

(
ln
[
exp
(
−σ2)− z

]
σ

)
.

Proposition 4. Let LN (σ1) and LN (σ2) be lognormal distributions with CDF as in (11), where 0 < σ1 < σ2.
Then,

LN (σ2) ≥ν LN (σ1) .
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Proof. For 0 < σ1 < σ2, the corresponding modes are M1 > M2, and

Φ
(

ln (z + M1)

σ1

)
> Φ

(
ln (z + M2)

σ2

)
,

Φ
(

ln (−z + M1)

σ1

)
> Φ

(
ln (−z + M2)

σ2

)
,

because Φ is a strictly increasing function. Thus, we obtain that νLN (z; σ1) > νLN (z; σ2) for all z > 0
and the proof is completed.

2.4. Uniparametric Weibull Distributions

Consider the uniparametric Weibull distributions family given by the CDF

W (x; c) = 1 − exp (−xc) , x > 0, c > 0. (12)

The mode is known to be at 0, for c ≤ 1 (as a limit, when c < 1) and at

0 < Mc =

(
c − 1

c

)1/c
< 1,

for c > 1. The expression for νW is given by

νW (z; c) =

⎧⎪⎨⎪⎩
exp
[
− (Mc + z)c]+ exp

[
− (Mc − z)c]− 1, 0 < z < Mc

exp
[
− (Mc + z)c] , z ≥ Mc

On the one hand, when c < 1, note that νW(c) (1) = e−1, so all these functions intersect at this
point. Graphically, it can be seen that there is no ordering by “≥ν”, and also that S+ (W (c)) = 1, when
c < 1. On the other hand, for 1 ≤ c1 < c2, the following result is obtained.

Proposition 5. Let W (c1) and W (c2) be Weibull distributions with 1 ≤ c1 < c2 and CDF as in (12). Then,

W (c1) ≥ν W (c2) .

Proof. For 1 ≤ c1 < c2, the corresponding modes are M1 < M2. Then, for 0 < z < M1,

νW (z; c1)− νW (z; c2) =
{

exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

] }
+
{

exp
[
− (M1 − z)c1

]
− exp

[
− (M2 − z)c2

] }
> 0,

because each part of the expression inside brackets {·} is positive. If we take M1 ≤ z < M2, then

νW (z; c1)− νW (z; c2) =
{

exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

] }
+
{

1 − exp
[
− (M2 − z)c2

] }
> 0,

for a similar reason. Finally, if we take z > M2, then

νW (z; c1)− νW (z; c2) = exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

]
> 0,

and the proof is completed.
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2.5. Asymmetric Laplace Distributions

The asymmetric Laplace distribution has been introduced in the literature by different ways ([16,17]).
In this paper we will use Kozubowski and Podgórski (2002) [18] (later refined in [19]) to refer it.
This distribution is obtained by using the scheme introduced by Fernández and Steel (1998) [20] to
produce skewness on a symmetric distribution. In this way, the pdf of a skewed or asymmetric Laplace
distribution can be written in the form

f (x; μ, σ, κ) =

⎧⎨⎩
√

2
σ

κ
1+κ2 exp

[
−

√
2

κσ (μ − x)
]

, x < μ,
√

2
σ

κ
1+κ2 exp

[
− κ

√
2

σ (x − μ)
]

, x ≥ μ,

where σ, κ > 0, and −∞ < μ < ∞. Then, we assign values (0, 1) to the centre and scale parameters
(μ and σ, respectively) in order to study the aggregate skewness function, and the extreme right and
left skewness indices then depend only on the skewness parameter κ > 0. Thus, it is easily proven that:

1. The aggregate skewness function of an AL (κ) distribution can be written as

νAL (z; κ) =
1

1 + κ2

[
exp
(
−
√

2κz
)
− κ2 exp

(
−
√

2
κ

z

)]
.

2. νAL (z; κ) is an increasing negative function of z when κ > 1, and it is a decreasing positive
function of z when 0 < κ < 1. νAL,1 (z; 1) = 0, for all z ≥ 0. That is, any AL distribution
is skewed only to the right or to the left, depending on κ. In any case, the function verifies
limz→∞ νAL (z; κ) = 0 but, when κ 
= 1, the function never reaches that limit value. To prove
these results, it is sufficient to note that

dνAL (z; κ)

dz
=

√
2κ

κ2 + 1

[
exp

(
−
√

2
κ

z

)
− exp

(
−
√

2κz
)]

.

3. At z = 0, the skewness function takes the following value:

νAL (0; κ) =
1 − κ2

1 + κ2 .

Then, νAL (0; κ) is the value for S+ (FAL (κ)) or S− (FAL (κ)), depending on its sign.
4. νAL (z; κ) is a strictly decreasing function on κ. This is easily shown by means of

dνAL (z; κ)

dκ
= −

√
2zκ2 + 2κ +

√
2z

(κ2 + 1)2

[
exp
(
−
√

2
z
κ

)
+ exp

(
−
√

2κz
)]

< 0,

for all z > 0, and all κ > 0.

As a conclusion, we can enunciate the following Proposition, whose proof is straightforward and
hence omitted.

Proposition 6. Assume 0 < κ1 < κ2 < ∞, and let FAL (κ1) and FAL (κ2) be the respective asymmetric
Laplace distributions. Then:

1. FAL (κ1) ≥ν FAL (κ2) .
2. If 0 < κ1 < 1, then FAL (κ1) is skewed only to the right.
3. If κ1 > 1, then FAL (κ1) is skewed only to the left.

3. The Beta and the AST Distributions

The methods for Project Management and Review Technique (PERT) are well known and widely
applied when the needed activities for a given project must be ordered according to precedence in
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time. Some of these methods require modelling the time length of each activity as a random variable,
following an expert’s opinion. The beta and the asymmetric triangular distributions are commonly
used by engineers to describe these time lengths. In any case, the indications of the experts can be
related to a maximum and a minimum values and a mode, often completed with further considerations
about the shape and skewness of the PDF of the time random variable. Then, a deep study of the
skewness of both families of probability distributions would be welcome to improve the model fit.

On the one hand, the asymmetric standard triangular distribution (ASTD) , free of center and
scale parameters, depends on only one parameter 0 ≤ θ ≤ 1, and has the pdf:

f (x|θ) =

⎧⎪⎨⎪⎩
2xθ−1, 0 ≤ x ≤ θ,

2 (1 − x) (1 − θ)−1 , θ ≤ x ≤ 1,
0, elsewhere.

There is a large body of literature that shows the use of the ASTD in PERT methods (see [21]
and [19] and cites therein). Note that cases θ = 0, 1 are members of the beta family of distributions.

For 0 < θ < 1, the ASTD(θ) CDF can be written as follows:

F (x|θ) =
{

x2θ−1, 0 ≤ x ≤ θ,(
2x − x2 − θ

)
(1 − θ)−1 , θ ≤ x ≤ 1.

As the mode is found to be at x = θ, its skewness function is found to be

νASTD (z; θ) = (1 − 2θ)− (1 − 2θ)

θ (1 − θ)
z2,

for 0 ≤ z ≤ min {θ, 1 − θ} . In the case θ = 0.5, the skewness function is null. Then, for 0 < θ < 0.5
and θ < z ≤ 1 − θ,

νASTD (z; θ) =
(z − 1 + θ)2

1 − θ
.

In the case 0.5 < θ < 1, for 1 − θ < z ≤ θ,

νASTD (z; θ) = − (θ − z)2

θ
,

and it is easily found that
νASTD (z; θ) = −νASTD (z; 1 − θ) , (13)

for 0 ≤ z < ∞.
Some algebra allows to prove that, being 0 < θ1 < θ2 < 1,

1. ASTD (θ1) ≥ν ASTD (θ2) .
2. If 0 < θi < 0.5, then S+

ASTD (θi) = νASTD (0; θi) = 1 − 2θi, and S−
ASTD (θi) = 0.

3. If 0.5 < θi < 1, then S+
ASTD (θi) = 0 and S−

ASTD (θi) = νASTD (0; θi) = 1 − 2θi.

Therefore, the skewness of the ASTD distributions is completely controlled by the parameter θ.

On the other hand, the pdf of a beta distribution is given by

fB (x; α, β) =
xα−1 (1 − x)β−1

B (α, β)
, 0 ≤ x ≤ 1,

where α, β > 0, and B (·, ·) is the beta function. Given that its CDF F (x; α, β) verifies that
F (x; α, β) = 1 − F (x; β, α) and the sign of its skewness depends only on the condition β ≥ α or
β ≤ α, we can study only the case β > α.
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We are interested on the cases α, β > 1, where there is an unique mode M,

M =
α − 1

α + β − 2
.
= b (α, β) .

Hence, we only consider cases where 1 < α < β, where there exists a right skewness; the cases
1 < β < α, with left skewness, can be immediately deducted by taking the parameters in reverse.

Notice that Pr (X > M + z) > 0 requires 0 ≤ z ≤ b (β, α), and that Pr (X < M − z) > 0 requires
0 ≤ z ≤ b (α, β). Then,

νB (z; α, β) =

⎧⎪⎨⎪⎩
1 − IM+z (α, β)− IM−z (α, β) > 0, 0 ≤ z ≤ b (α, β)

1 − IM+z (α, β) > 0, b (α, β) < z ≤ b (β, α)

0, z > b (β, α) ,
(14)

where,

Iz (α, β) =
∫ z

0

tα−1 (1 − t)β−1 dt
B (α, β)

is the well known Beta Regularized function.
Firstly, observe that

νB (0; α, β) = 1 − 2
B (α, β)

∫ M

0
xα−1 (1 − x)β−1 dx,

and
1

B (α, β)

∫ M

0
xα−1 (1 − x)β−1 dx <

1
B (α, β)

∫ m

0
xα−1 (1 − x)β−1 dx ≈ 1

2
,

where

m =
α − 1

3

α + β − 2
3

is the approximate median of the distribution.
Secondly, if 0 ≤ z ≤ b (α, β) < b (β, α) , then

B (α, β) · dνB (z; α, β)

dz
= − [b (α, β) + z]α−1 [b (β, α)− z]β−1 − [b (α, β)− z]α−1 [b (β, α) + z]β−1 ,

which is negative within the rank of z. For b (α, β) < z ≤ b (β, α),

B (α, β) · dνB (z; α, β)

dz
= − [b (α, β) + z]α−1 [b (β, α)− z]β−1 < 0.

Hence, for 0 ≤ z ≤ b (β, α), νB (z; α, β) is a strictly decreasing continuous function with
νB (0; α, β) > 0 and νB (b (β, α) ; α, β) = 0.

Now we focus on the family of Beta distributions with given mode, M. That is, we consider the
subfamily of Beta distributions:

B
(

α + 1, 1 +
1 − M

M
α

)
,

with α > 0. Then, with the aid of a proper software (we have used Wolfram Mathematica 10), one can
obtain the derivative

∂

∂α
νB

(
z; α + 1, 1 +

1 − M
M

α

)
,

and maximize this function, in two cases:
First case, the constrains are α ≥ 1, 0 < m < 1/2, 0 ≤ z ≤ b (α + 1, 1 + (1 − M) α/M) .

The maximum value of the function is 0, and it is achieved when M = 0.5, α � 3.54147, z � 0.309936.
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Second case, the constrain are α ≥ 1, 0 < m < 1/2, b (α + 1, 1 + (1 − M) α/M) < z ≤
b (1 + (1 − M) α/M, α + 1) . The maximum value of the function is −5.07056× 10−6, and it is achieved
when M = 0.123564, α � 1.62726, z � 0.632457.

With these results, we can conclude that νB (z; α + 1, 1 + (1 − M) α/M) decreases with the feasible
values of α. That way, the subsets of Beta distributions with fixed mode are ordered on skewness
(see Figure 2). As the parameter values increase, these Beta distributions become less skewed.

Figure 2. Beta distributions with common given mode M = 0.2 (left panel) for α = 2, 4 and 9 and their
skewness functions νB (right panel).

4. Conclusions

In this paper two main objectives are achieved: on the one hand, the given examples show that
the skewness function orders the mesh in good accordance with the intuitive conception of skewness.
Moreover, these examples show that the skewness of a distribution obtained from certain parametric
families can be controlled by reference to their parameters.

As we show, the function νF (z) facilitates the description of a random variable by means of
a probability distribution, by making any skewness in the model easily observable and should be
undertaken to examine the use of these properties in data fitting.

In practice, much can be learned from this model, but there remains the risk that it may be wrongly
specified in real applications. Thus, in practice we must be willing to assume that the underlying
distribution has a unique mode and belongs to a uniparametric family of distributions.

In many practical situations, the maximum skewness index coincides with the well known γM (F),
but this second index only takes into account the difference of probability weights at each side of
the mode, while the first takes a value from the point where this difference is maximum. Moreover,
the aggregate skewness function gives more accurate information about how the probability weight is
distributed along both sides of the mode. Accordingly, the condition F ≥ν G provides highly valuable
information.
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