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The present volume contains the invited, accepted and published submissions (see [1–22]) to a
Special Issue of the MDPI’s journal, Mathematics, on the subject-area of “Fractional-Order Integral and
Derivative Operators and Their Applications”. Three successful predecessors of this volume happens
to be the Special Issue of the MDPI’s journal, Mathematics, on the subject-areas of “Recent Advances
in Fractional Calculus and Its Applications”, “Recent Developments in the Theory and Applications
of Fractional Calculus” (see, for details, [23]) and “Operators of Fractional Calculus and Their
Applications”. In fact, encouraged by the noteworthy successes of this series of four Special Issues,
as well as of (for example) two other Special Issues of Axioms, on the subject-areas of “Mathematical
Analysis and Applications” and “Mathematical Analysis and Applications II”, Axioms has already
started the publication of a Topical Collection, entitled “Mathematical Analysis and Applications”
(Collection Editor: H. M. Srivastava), with an open submission deadline. The interested reader should
refer to and read the book format of several of these Special Issues (Guest Editor: H. M. Srivastava),
which are cited below (see [23–26]).

In recent years, various families of fractional-order integral and derivative operators, such as
those named after Riemann-Liouville, Weyl, Hadamard, Grunwald-Letnikov, Riesz, Erdelyi-Kober,
Liouville-Caputo, and so on, have been found to be remarkably important and fruitful, due mainly
to their demonstrated applications in numerous seemingly diverse and widespread areas of the
mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order
operators provide interesting, potentially useful tools for solving ordinary and partial differential
equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus
analogues and extensions of each of these equations; and various other problems involving special
functions of mathematical physics and applied mathematics, as well as their extensions and
generalizations in one or more variables.

In this Special Issue, we invited and welcomed review, expository, and original research articles
dealing with the recent advances in the theory of fractional-order integral and derivative operators
and their multidisciplinary applications.

The suggested topics of interest for the call of papers for this Special Issue included, but by no
means limited to, the following keywords:

• Operators of fractional calculus and their applications;
• Chaos and fractional dynamics;
• Fractional-order ODEs and PDEs;
• Fractional-order differintegral equations;
• Fractional-order integro-differential equations;
• Fractional-order integrals and fractional-order derivatives associated with special functions of

mathematical physics and applied mathematics;

Mathematics 2020, 8, 1016; doi:10.3390/math8061016 www.mdpi.com/journal/mathematics1
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• Identities and inequalities involving fractional-order integrals and fractional-order derivatives;
• Dynamical systems based upon fractional calculus.

Here, in this Editorial, we choose first to briefly describe the status of the Special Issue as follows:
Papers included in this volume deal extensively with various theoretical as well applied topics of

fractional calculus and its applications of current research interests. Some of the notable contributions
in this volume happen to have successfully addressed such topics of fractional calculus and related
mathematical analysis as (for example) operational matrix of fractional-order derivatives for solving
systems of fractional differential equations via Legendre wavelets, Hermite polynomial approach
for solving the SIR model of epidemics, the extremal solution to conformable fractional differential
equations involving integral boundary condition, approximate controllability of sub-diffusion equation
with impulsive condition, incomplete hypergeometric functions and incomplete Riemann-Liouville
fractional integral operators, random coupled Hilfer and Hadamard fractional differential systems
in generalized Banach spaces, uniqueness and existence of approximate solution to initial value
problem for fractional differential equation of variable order involving the derivative arguments on the
half-axis, solvability of a mixed problem for a high-order partial differential equation with fractional
derivatives with respect to time, with Laplace operators with spatial variables and nonlocal boundary
conditions in Sobolev classes, fractional-calculus connections between Mittag–Leffler functions,
impact of fractional calculus on correlation coefficient between available potassium and spectrum data
in ground hyperspectral and Landsat 8 image, efficacy of the post-exposure prophylaxis and of the HIV
latent reservoir in HIV infection, fractional-order unknown inputs fuzzy observer for Takagi–Sugeno
systems with unmeasurable premise variables, stability results for implicit fractional pantograph
differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional
integral condition, and so on. In connection with such works as (for example) [4,18], and indeed also
many papers included in the published volumes [23–26], the recent survey-cum-expository review
articles [27,28] will be potentially useful in order to motivate further researches and developments
involving a wide variety of operators of basic (or q-) calculus and fractional q-calculus and their
widespread applications in Geometric Function Theory of Complex Analysis.

I take this opportunity to thank all of the participating authors, and the referees and the
peer-reviewers, for their invaluable contributions toward the remarkable success of each of the
above-mentioned Special Issues. I do also greatly appreciate the editorial and managerial help and
assistance provided efficiently and generously by Ms. Grace Wang and Ms. Cynthia Chen, and also
many of their colleagues and associates in the Editorial Office of Mathematics.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Miura transform is known as the transformation between Korweg de-Vries equation and
modified Korweg de-Vries equation. Its formal similarity to the Cole-Hopf transform has been
noticed. This fact sheds light on the logarithmic type transformations as an origin of a certain kind
of nonlinearity in the soliton equations. In this article, based on the logarithmic representation of
operators in infinite-dimensional Banach spaces, a structure common to both Miura and Cole-Hopf
transforms is discussed. In conclusion, the Miura transform is generalized as the transform in abstract
Banach spaces, and it is applied to the higher order abstract evolution equations.

Keywords: Miura transform; soliton equations; logarithm

1. Introduction

The Korteweg-de-Vries equation (KdV equation, for short) and the modified Korweg de-Vries
equation (mKdV equation, for short) are known as nonlinear equations holding the soliton solutions.
Let u and v be the solutions of the KdV equation and mKdV equation, respectively. Let functions u
and v be the general solutions that satisfy

[KdV] ∂tu− 6u∂xu + ∂3
xu = 0,

[mKdV] ∂tv− 6v2∂xv + ∂3
xv = 0

without identifying the details such as the initial and boundary conditions of the mixed problem.
For a recent result associated with the well-posedness of the KdV equations, the existence and
uniqueness of the solution of semilinear KdV equations in non-parabolic domain is obtained in [1]
by using the parabolic regularization method, the Faedo-Galerkin method, and the approximation of
a non-parabolic domain by a sequence of regularizable subdomains. Meanwhile, interesting studies on
the family of KdV-type equations have been recently carried out in [2]. Let a set of all the real numbers
be denoted by R. Although u and v are functions of t ∈ R and x ∈ R, they are not apparently shown if
there is no confusion. The Miura transform [3]M : u → v reads

u = ∂xv + v2, (1)

which is formally the same as the Riccati’s differential equation of a variable x if u is assumed to be
a known function. In this article, the Miura transform is generalized as the transform in the abstract
spaces. The essence of several nonlinear transforms are pined downed within the theory of abstract
equations defined in a general Banach spaces. In conclusion, the structure of the general solutions of
second order abstract evolution equations are presented in association with the Miura transform.

Mathematics 2020, 8, 747; doi:10.3390/math8050747 www.mdpi.com/journal/mathematics5
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2. Operator Logarithm as Nonlinear Transform

2.1. Nonlinear Transform Associated with the Riccati’s Equation

Following the method for solving the Riccati’s equation, the logarithmic type transform appears as

v = ψ−1∂xψ, (2)

which corresponds to v = ∂x log ψ if log ψ and its derivative are well-defined. This is formally the
same as the Cole-Hopf transform [4–6]. By applying this transform to the Miura transform, the Miura
transform is written by

u = ∂xv + v2

= ∂x(ψ−1∂xψ) + (ψ−1∂xψ)2

= −ψ−2(∂xψ)2 + ψ−1(∂2
xψ) + ψ−1(∂xψ)ψ−1(∂xψ).

(3)

If ψ and ∂xψ commute,

u = −(∂xψ)2ψ−2 + (∂2
xψ)ψ−1 + (∂xψ)2ψ−2 = (∂2

xψ)ψ−1

⇔ ∂2
xψ = uψ.

(4)

This is the second order evolution equation in which u plays a role of infinitesimal generator, and
the evolution direction is fixed to x. It is remarkable that, after the combination with the Cole-Hopf
transform, the Miura transform M : u → ψ is a transform between nonlinear KdV equation and
linear equation. In other words, it provides the transform between the evolution operator and its
infinitesimal generator. In the following the obtained transform from u to ψ is called the combined
Miura transform.

2.2. Miura Transform and Cole-Hopf Transform

It is worth differentiating Equation (2) for clarifying the identity of the Miura transform. Under the
commutation assumption, the formal calculation without taking the differentiability into account
leads to

∂2
x(log ψ) := ∂x(ψ−1∂xψ) = (∂2

xψ)ψ−1 − (ψ−1∂xψ)2, (5)

where the first term of the right hand side corresponds to the combined Miura transform, and the
second term of the right hand side is the square of the Cole-Hopf transform. It simply means that
∂2

x(log ψ) being defined by the right hand side of (5) can be defined by the combined Miura transform
and Cole-Hopf transform simultaneously. As is well known in the theory of integrable systems,
∂2

x(log ψ) corresponds to one typical type of Hirota’s methods [7], thus a typical type of linear to
nonlinear transformation. This type is known to be associated with the Bäcklund transform and
KP theory (for a textbook, see [8]). That is, the second order derivative can be represented by the
two transforms.

2.3. Logarithmic Representation of Infinitesimal Generators

Let X be a Banach space, B(X) is a set of bounded linear operators on X, and Y be a dense Banach
subspace of X. The Cauchy problem for the first order abstract evolution equation of hyperbolic
type [9,10] is defined by

du(t)/dt− A(t)u(t) = f (t), t ∈ [0, T]

u(0) = u0

(6)

6
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in X, where A(t) : Y → X is assumed to be the infinitesimal generator of the evolution operator
U(t, s) ∈ B(X) satisfying the strong continuity and the semigroup property:

U(t, s) = U(t, r)U(r, s)

for 0 ≤ s ≤ r ≤ t < T. U(t, s) is a two-parameter C0-semigroup of operator (for definition, see [11–13])
that is a generalization of one-parameter C0-semigroup and therefore an abstract generalization of
the exponential function of operator. If A(t) is confirmed to be an infinitesimal generator, then the
solution u(t) is represented by u(t) = U(t, s)us with us ∈ X for a certain 0 ≤ s ≤ T (cf. Hille-Yosida
Theorem; for example, see [11–13]). Then, for a certain complex number κ, the alternative bounded
infinitesimal generator a(t, s) = Log(U(t, s) + κI) to A(t) is well defined [14,15], where Log denotes
the principal branch of logarithm.

Lemma 1 (Logarithmic representation of infinitesimal generators [14]). Let t and s satisfy 0 ≤ t, s ≤ T,
and Y be a dense subspace of X. Let a(t, s) ∈ B(X) be defined by a(t, s) = LogU(t, s). If A(t) and U(t, s)
commute, infinitesimal generators {A(t)}0≤t≤T are represented by means of the logarithm function; there exists
a certain complex number κ �= 0 such that

A(t) u = (I − κe−a(t,s))−1 ∂ta(t, s) u, (7)

where u is an element of a dense subspace Y of X, and the logarithm of operator is defined by the
Riesz-Dunford integral.

Proof. Only formal discussion is given here (for the detail, see [14,16]). Since a(t) is defined by
a(t, s) = Log(U(t, s) + κI), ∂ta(t, s) = (U(t, s) + κI)−1∂tU(t, s),

(U(t, s) + κI)∂ta(t, s) = (U(t, s) + κI)(U(t, s) + κ I)−1∂tU(t, s).

Under the commutation relation between U(t, s) and A(t),

A(t) u := ∂tLogU(t, s)u

= U(t, s)−1∂tU(t, s)u

= U(t, s)−1(U(t, s) + κ I)∂ta(t, s) u

= (I + κ(ea(t,s) − κI)−1)∂ta(t, s) u

= (ea(t,s) − κI + κI)(ea(t,s) − κ I)−1∂ta(t, s) u

= (I − κe−a(t,s))−1∂ta(t, s) u,

where u is an element in Y.

The commutation assumption is trivially satisfied if A(t) is independent of t. Equation (7) is the
logarithmic representation of infinitesimal generator A(t). This representation is the generalization of
the Cole-Hopf transform [4,5].

3. Main Result

3.1. Generalization of Miura Transform

Let X be a Banach space, and Y be a dense Banach subspace of X . By focusing on establishing
the definition of infinitesimal generator, the discussion is limited to the autonomous case. The Cauchy

7
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problem for the second order abstract evolution equation of hyperbolic type (for example, see [17]) is
defined by

d2u(t)/dt2 −A(t)u(t) = 0, t ∈ [0, T]

u(0) = u0

(8)

in X and A(t) : Y → X . Let the Cauchy problem be solvable; i.e., it admits the well-defined evolution
operator U (t, s) ∈ B(X ) satisfying the strong continuity and the semigroup property:

U (t, s) = U (t, r)U (r, s)

for 0 ≤ s ≤ r ≤ t < T. The solution is represented by u(t) = U (t, s)us with us ∈ X for a certain 0 ≤ s ≤
T. For the second order equation, U (t, s) is not equal to the abstraction of exp(

∫
A(t)dt), so that A(t)

is not the infinitesimal generator of U (t, s), and A(t) is the infinitesimal generator of exp(
∫
A(t)dt)

instead. In the following, the combined Miura transform is shown to be equivalent to the logarithmic
representation for the infinitesimal generator of the second order abstract evolution equations.

The master equation of (8) is also written as a system of equations:⎧⎨⎩ du(t)/dt− v(t) = 0,

dv(t)/dt−A(t)u(t) = 0,
(9)

where, by focusing on the representation of v(t), v(t) is formally represented by v(t) = ∂tU (t, s)vs

for a certain vs ∈ D(∂tU (t, s)) that is compatible with the original u(t) = U (t, s)us for a certain
us ∈ D(U (t, s)) = X .

Lemma 2 (Logarithmic representation of the derivative). Let κ be a certain complex number. For the
evolution operator of Equation (8), let U (t, s) be included in the C1 class in terms of variables t and s, and the
first order derivative V(t, s) := ∂tU (t, s) be further assumed to be bounded on X and strongly continuous for
0 ≤ t, s ≤ T. Then, for V(t, s),

∂tLogV(t, s) := (I − κe−α̂(t,s))−1 ∂tα̂(t, s) (10)

is well defined if V(t, s) and ∂tV(t, s) commute, where â(t, s) : ∂tU (t, s) → X is an operator defined by
α̂(t, s) = Log(V(t, s) + κI).

Proof. The statement follows from Lemma 1.

On the other hand, another logarithmic representation

∂tLogU (t, s) := (I − κe−α(t,s))−1 ∂tα(t, s) (11)

is trivially well-defined by the assumption. According to the representations (10) and (11), the abstract
version of the Miura transform is obtained as the product of two logarithmic representations.

Theorem 1 (Abstract formulation of the Miura transform). Let t and s satisfy 0 ≤ t, s ≤ T, κ be a certain
complex number, and Y and Y′ be a dense subspace of X . The operator ∂tα(t, s) is assumed to be a closed
operator from Y to X , and ∂tα̂(t, s) is assumed to be a closed operator from Y′ to X . If U (t, s), ∂tU (t, s),
and ∂2

tU (t, s) commute with each other within a properly given domain space, the operators {A(t)}0≤t≤T are
represented by means of the logarithm function; there exists a certain complex number κ �= 0 such that

A(t) u = (I − κe−α̂(t,s))−1∂tα̂(t, s) (I − κe−α(t,s))−1∂tα(t, s) u, (12)

8
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for an element u of a dense subspace {u ∈ Y ; (I − κe−α(t,s))−1∂tα(t, s)u ⊂ D(∂tα̂(t, s))} of X , and

A(t) û = (I − κe−α(t,s))−1∂tα(t, s)(I − κe−α̂(t,s))−1∂tα̂(t, s) û, (13)

for an element û of a dense subspace {û ∈ Y′; (I − κe−α̂(t,s))−1∂tα̂(t, s)û ⊂ D(∂tα(t, s))} of X .

Proof. The autonomous Equation (8), which corresponds to the abstract form of the combined Miura
transform (4), is written by

∂2
tU (t, s)u = A(t)U (t, s)u

for any u ∈ X , so that it follows that ∂2
tU (t, s) = AU (t, s) is valid as an operator equation. Under the

assumption of commutative property between A and U (t, s), the operator A is represented by

A(t) = U (t, s)−1∂2
tU (t, s)

= U (t, s)−1∂tU (t, s) (∂tU (t, s))−1∂2
tU (t, s),

where the former part U (t, s)−1∂tU (t, s) and the latter part (∂tU (t, s))−1∂2
tU (t, s) of the right hand

side correspond to the logarithmic representation (I− κe−α(t,s))−1∂tα(t, s) and (I− κe−α̂(t,s))−1∂tα̂(t, s)
respectively. In this equation U (t, s), ∂tU (t, s), and ∂2

tU (t, s) are assumed to commute with each other,
so that the logarithmic representation of A(t) follows.

In particular, for the commutation between two generally-unbounded operators, the intermediate
domain space can be different depending on the order of operators. Here is a reason why two different
orders of representations (12) and (13) are obtained.

3.2. Second Order Abstract Evolution Equations

Corollary 1 (Logarithmic representation of infinitesimal generator). Let operators ∂tU (t, s) and
∂tV(t, s) = ∂2

tU (t, s) satisfy the sectorial property. If either Equation (12) or Equation (13) is well-defined, then
their square roots being represented by either

±A(t)1/2 = ±
{
(I − κe−α̂(t,s))−1 ∂tα̂(t, s)(I − κe−α(t,s))−1∂tα(t, s)

}1/2
(14)

or
±A(t)1/2 = ±

{
(I − κe−α(t,s))−1∂tα(t, s) (I − κe−α̂(t,s))−1 ∂tα̂(t, s)

}1/2
(15)

are the infinitesimal generators of Equation (8) in the sense that the solution of d2u(t)/dt2 = A(t)u(t) is
represented by

u(t) = U (t, s)u0 = exp
[
+A(t)1/2

]
u+ + exp

[
−A(t)1/2

]
u−, (16)

where u+ and u− are the elements of X . The representation (14) is valid if (12) is true, and the representation
(15) is valid if (13) is true.

Proof. Under the commutation relation, the autonomous Equation (8) is also formally factorized as(
∂tU (t, s)1/2 +A1/2U (t, s)1/2

) (
∂tU (t, s)1/2 −A1/2U (t, s)1/2

)
u = 0

for any u ∈ X . It leads to the decomposition such that⎧⎨⎩ ∂tU (t, s)1/2u+ +A1/2U (t, s)1/2u+ = 0,

∂tU (t, s)1/2u− −A1/2U (t, s)1/2u− = 0.

The representation shown in Equation (16) is understood.

9
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It is necessary to confirm the possibility of defining the fractional power of A. The possibility of
defining square root of operator is justified if it is possible to define the exponential of

Log
[
A(t)1/2

]
:= 1

2 {Log [∂tLogU (t, s)] + Log [∂tLogV(t, s)]} ,

where note that the logarithms of the right hand side are the formal form, and it does not matter
whether they are well defined or not. According to the commutation assumption between ∂tU (t, s) and
∂tV(t, s) = ∂2

tU (t, s), the exponential of each logarithm of the right hand side are independently
well-defined. According to the commutation relation between U (t, s), ∂tU (t, s) and ∂tV(t, s) =

∂2
tU (t, s), the exponential function of right hand side is equal to

[∂tLogU (t, s)]1/2 [∂tLogV(t, s)]1/2 = [∂tLogV(t, s)]1/2 [∂tLogU (t, s)]1/2 ,

and each square root is well-defined by the sectorial assumption (for the sectorial property,
see Section 2.10 of Chapter 5 in [11]), where the logarithms of U (t, s) and V(t, s) leading to the
definition of fractional powers of U (t, s) and V(t, s) are valid as seen in Equations (10) and (11).
Consequently, the logarithmic representations of infinitesimal generators ±A(t)1/2 are true.

4. Conclusions

In this article, the Miura transform is generalized in the following sense:

• it is not only the transform between the KdV and mKdV equations;
• the spatial dimension of the equation is not necessarily equal to 1;
• the differential in Equation (12) is not necessarily for the spatial variable x;

where, in terms of applying to theory of higher order abstract evolution equations, the variable is
taken as t in this article. For the preceding work dealing with the general choice of the evolution
direction, see [16,18]. Consequently, the generalized Miura transform is obtained as the product of two
logarithmic representations of operators in a general Banach space framework and they are applied to
clarify the structure of the general solutions of second order abstract evolution equations defined in
finite and infinite dimensional Banach spaces. Since the linear operator A is a generalized concept of
matrices, the presented result potentially includes any matrix situations.
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the results.

Keywords: Hilfer fractional derivative; Ulam stability; pantograph differential equation; nonlocal
integral condition

MSC: 26A33; 34A34; 34D20; 34A12

1. Introduction

The fractional-order differential equation is the oldest theory in the field of science and engineering.
This theory has been used over the years, as the outcomes were found to be important in the field
of economics, control theory and material sciences see [1–4]. Because of the nonlocal property
of fractional-order differential equation, researchers are allowed to select the most appropriate
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operator and use it in order to get a better description of the complex phenomena in the real
world. The generalization of classical calculus are the fractional calculus. Nevertheless, there are
various definitions of fractional integrals and derivatives of arbitrary order with different types of
operator. Recently, Furati et al. [5] proposed a Hilfer fractional derivatives which interpolates with
Riemann-Liouville and Caputo fractional derivatives. These fractional operator provide an extra degree
of freedom when choosing the initial condition. Furthermore, models based on this operator provide
an excellent results compared with the integer-order derivatives, for example, we refer the interesting
reader to see [6–18].

Qualitative analysis of fractional differential equations plays a vital role in the field of fractional
differential equations. However, many researchers studied the existence and uniqueness of solution
of differential equation with different types of fractional integral and derivatives. More recently,
motivated by classical Riemann-Liouville, Caputo fractional derivative, Hilfer-fractional derivative,
ψ-Riemann-Liouville integral and ψ-Caputo fractional derivatives, Sousa and Oliveira [19] initiated
an interesting fractional differential operator called ψ-Hilfer fractional derivatives, that is a fractional
derivative of a function with respect to another function ψ. These fractional derivatives generalized
the aforementioned fractional derivatives and integrals. The main advantages of these operator is the
freedom of choice of the function ψ and its merge and acquire the properties of the aforementioned
fractional operators. Results based on these setting can be found in [18–34]. The Ulam-Hyers stability
point of view, is the vital and special type of stability that attracts many researchers in the field of
mathematical analysis. Moreover, the Ulam-Hyers and Ulam-Hyers-Rassias stability of linear, implicit
and nonlinear fractional differential equations were examined in [17,35–49].

Pantograph differential equations are a special class of delay differential equation arising in
deterministic situations and are of the form:{

g′(s) = kg(s) + lg(λs), s ∈ [0, b], b > 0, 0 < λ < 1,

g(0) = g0.
(1)

The pantograph is a device used in electric trains to collects electric current from the overload lines.
This equation was modeled by Ockendon and Tayler [50]. Pantograph equation play a vital role in
physics, pure and applied mathematics, such as control systems, electrodynamics, probability, number
theory, and quantum mechanics. Motivated by their importance, a lot of researchers generalized these
equation in to various forms and introduced the solvability aspect of such problems both theoretically
and numerically, (for more details see [16,51–57] and references therein). However, very few works
have been proposed with respect to pantograph fractional differential equations.

In [48], the authors considered an implicit fractional differential equations with nonlocal condition
described by: {

Dα,β
0+ w(τ) = f (τ, w(τ), Dα,β

0+ w(τ)), τ ∈ I = [0, T],

I1−γ
0+ w(0) = ∑m

i=1 ciw(ηi), α ≤ γ = α + β− αβ, ηi ∈ [0, T],
(2)

where Dα,β
0+ (·) is the Hilfer fractional derivative of order (0 < α < 1) and type 0 ≤ β ≤ 1. The existence

and uniqueness results were obtained by applying Schaefer’s fixed point theorem and Banach’s
contraction principle. Moreover, the authors discussed the stability analysis via Gronwall’s lemma.
Sousa and Oliveira [47] discussed the existence, uniqueness and Ulam-Hyers-Rassias stability for
a class of ϕ-Hilfer fractional differential equations described by:{

HD
α,β;ϕ
a+ g(t) = f (t, g(t),H D

α,β;ϕ
a+ g(t)), t ∈ J = [a, T],

I
1−γ;ϕ
a+ g(a) = ga, α ≤ γ = α + β− αβ, T > a,

(3)
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where HD
α,β;ϕ
0+ (·) is the ϕ-Hilfer fractional derivative of order (0 < α ≤ 1) and operator (0 ≤ β ≤ 1),

I
1−γ;ϕ
0+ (·), is the Riemann-Liouville fractional integral of order 1− γ, with respect to the function ϕ,

f : [a, T]×R2 → R is a continuous function. Recently Harikrishman et. al [58] established existence
and uniqueness of nonlocal initial value problem for fractional pantograph differential equation
involving ψ-Hilfer fractional derivative of the form:{

HD
α,β;ψ
a+ v(s) = f (s, v(s), v(λs)), s ∈ (a, b], s > a, 0 < λ < 1,

I
1−γ;ψ
a+ v(a) = ∑k

j=1 civ(τj), τj ∈ (a, b], γ = α + β− αβ,
(4)

where HD
α,β;φ
a+ (·) is the ψ-Hilfer fractional derivative of order 0 < α < 1 and type 0 ≤ β ≤ 1, I1−γ;ψ

a+ (·),
is the Riemann-Liouville fractional integral of order 1− γ, with respect to the continuous function ψ

such that ψ′(·) > 0, f ∈ C(t ∈ (a, b],R2,R).
Motivated by the papers [21,47,48] and some familiar results on fractional pantograph differential

equations [16,52,55,58]. We discuss the existence and uniqueness of the solution of the implicit
pantograph fractional differential equations involving φ-Hilfer fractional derivatives. Furthermore,
the Ulam-Hyers and generalized Ulam-Hyers stability are also discussed. The implicit pantograph
fractional differential equations involving φ-Hilfer fractional derivatives is of the form{

HDr,p;φ
0+ z(t) = f (t, z(t), z(γt),H Dr,p;φ

0+ z(γt)), t ∈ J = (0, T], 0 < γ < 1,

I1−q;φ
0+ z(0+) = ∑m

i=1 biIρ;φ
0+ z(ξi), r ≤ q = r + p− rp,

(5)

where HDr,p;φ
0+ (·) is the generalized φ-Hilfer fractional derivatives of order (0 < r < 1) and type

(0 ≤ p ≤ 1), I1−q;φ
0+ (·) and Iρ;φ

0+ (·) are φ-Riemann-Lioville fractional integral of order 1− q and ρ > 0
respectively with respect to the continuous function φ such that φ′(·) �= 0, f : (0, T] × R3 → R is
a given continuous function, T > 0, bi ∈ R and ξi ∈ J satisfying 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξm < T for
i = 1, 2, · · · , m.

As far as we know, to the best of our understanding, results of Ulam-Hyers and generalized
Ulam-Hyers stability with respect to the pantograph differential equation are very few and in fact
most authors discuss existence and uniqueness, while we study existence, uniqueness and stability
analysis for a class of implicit pantograph fractional differential equations with φ-Hilfer derivatives
and nonlocal Riemann-Liouville fractional integral condition.

This paper contributes to the growth of qualitative analysis of fractional differential equation in
particular pantograph fractional differential equation when φ-Hilfer fractional derivatives involved
and the nonlocal initial condition proposed in this paper generalized the following initial conditions:

• If ρ → 0, the initial condition reduces to multi-point nonlocal condition.
• If ρ → 1, the initial condition coincide with the nonlocal integral condition.
• In physical problems, the nonlocal condition yields an excellent results compared with the initial

condition z(0) = z0 [59,60].

In addition, we notice that the function f (s, v(s), v(λs)), s ∈ (a, b], 0 < λ < 1, defined in
Equation (4) is not well-define for some choices of λ.

Therefore, the paper is organized as follows: In Section 2, it recalls some basic and fundamental
definitions and lemmas. In Section 3, we prove existence and uniqueness of the proposed problem (5).
Ulam-Hyers and generalized Ulam-Hyers stability for the proposed problem were discussed in
Section 4. While in Section 5, two examples were given to illustrate the applicability of our results.
Lastly, the conclusion part of the paper is given in Section 6.
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2. Preliminaries

This section will recall some useful prerequisites facts, definitions and some fundamental lemmas
with respect to fractional differential equations.

Throughout the paper, we denote C[J ,R] the Banach space of all continuous functions from J
into R with the norm defined by [1]

‖ f ‖ = sup
t∈J
{| f (t)|}.

The weighted space Cq,φ[J ,R] of continuous function f on the interval [a, T] is defined by

Cq,φ[J ,R] = { f (t) : (a, T] : (φ(t)− φ(0))q f (t) ∈ C[J ,R]},

with the norm

‖ f ‖Cq,φ [J ,R] = ‖(φ(t)− φ(0))q f (t)‖ = max |(φ(t)− φ(0))q f (t) : t ∈ J |.

Moreover, for each n ∈ N and 0 ≤ q < 1 with q = r + p− rp

Cn
q,φ[J ,R] = { f n ∈ Cq;φ[J ,R]}

Cr,p
q;φ[J ,R] = { f ∈ Cq;φ[J ,R] : Dr,p;φ

0+ ∈ Cq;φ[J ,R]}.

Indeed, for n = 0, we have
C0

q;φ[J ,R] = Cq;φ[J ,R],

with the norm

‖ f ‖Cn
q;φ [J ,R] =

n−1

∑
k=0
‖ f k‖C[J ,R] + ‖ f n‖Cn

q;φ [J ,R].

Furthermore, we present the following space Cr,p
1−q;φ[J ,R] and Cq

1−q;φ[J ,R] defined as:

Cr,p
1−q;φ[J ,R] = { f ∈ C1−q;φ[J ,R],Dr,p;φ

0+ ∈ C1−q;φ[J ,R]}

and
Cq

1−q;φ[J ,R] = { f ∈ C1−q;φ[J ,R],Dq;φ
0+ ∈ C1−q;φ[J ,R]}.

Clearly, Cq
1−q;φ[J ,R] ⊂ Cr,p

1−q;φ[J ,R].

Definition 1 ([1]). Let (0, b] be a finite or infinite interval on the half-axis R+, and φ(ξ) ≥ 0 be monotone
function on (a, b] whose φ′(ξ) is continuous on (0, b). The φ-Hilfer Riemann-Liouville fractional integral of
order r ∈ R+ of function w is defined by

(I r;φ
0+ w)(ξ) =

1
Γ(r)

∫ ξ

0+
φ′(s)(φ(ξ)− φ(s))w(s)ds, ξ > 0, (6)

where Γ(·) represent the Gamma function.

Definition 2 ([5]). Let n− 1 < r < n, 0 ≤ p ≤ 1. The left-sided Hilfer fractional derivative of order r and
parameter p of function w is defined by

Dr,p
0+ w(ξ) =

(
I p(n−r)

0+ DnI (1−p)(n−r)
0+ w

)
(ξ), (7)

where Dn =
( d

dξ

)n.
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The following Definition generalized Euqation (7).

Definition 3 ([19]). Let f , φ ∈ Cn[J ,R] be two functions such that φ(ξ) ≥ 0 and φ′(t) �= 0 for all
ξ ∈ [J ,R] and n− 1 < r < n with n ∈ N. The left-side φ-Hilfer fractional derivative of a function w of order
r and type (0 ≤ p ≤ 1) is defined by

HDr,p;φ
0+ w(ξ) = I p(n−r);φ

0+

(
1

φ′(ξ)
d

dξ

)n
I (1−p)(n−r);φ

0+ w(ξ). (8)

The following lemma shows the semigroup properties of φ-Hilfer fractional integral
and derivative.

Lemma 1 ([5]). Let r ≥ 0, 0 ≤ p < 1 and w ∈ L1[J ,R]. Then

I r;φ
0+ I

p;φ
0+ w(ξ) = I r+p;φ

0+ w(ξ),

a.e ξ ∈ J .
In particular, if w ∈ Cq,φ[J ,R] and w ∈ C[J ,R], then

I r;φ
0+ I

p;φ
0+ w(ξ) = I r+p;φ

0+ w(ξ),

for all ξ ∈ (0, T] and
HDr;φ

0+ I
r;φ
0+ w(ξ) = w(ξ),

for all ξ ∈ J .

The composition of the φ-Hilfer fractional integral and derivative operator is given by the
following lemmas.

Lemma 2 ([21]). Let r ≥ 0, 0 ≤ p < 1 and q = r + p− rp. If w(ξ) ∈ Cq
1−q[J ,R], then

Iq;φ
0+

HDq;φ
0+ w(ξ) = I r;φ

0+
HDr,p;φ

0+ w(ξ)

and
HDq;φ

0+ I
r;φ
0+ w(ξ) =H Dp(1−r);φ

0+ w(ξ).

Lemma 3 ([6,19]). If w ∈ Cn[J ,R] and let n− 1 < r < n, 0 ≤ p ≤ 1 and q = r + p− rp. Then

I r;φ
0+

HDr,p;φ
0+ w(ξ) = w(ξ)−

n

∑
k=1

(φ(ξ)− φ(0))q−k

Γ(q− k + 1)
w[n−k]

φ I (1−p)(n−r);φ
0+ w(0),

for all ξ ∈ J . Moreover, if 0 < r < 1, we have

I r;φ
0+

HDr,p;φ
0+ w(ξ) = w(ξ)− (φ(ξ)− φ(0))q−1

Γ(q)
I (1−p)(1−r);φ

0+ w(0).

In addition, if w ∈ C1−q;φ[J ,R] and I1−q;φ
0+ w ∈ C1

1−q;φ[J ,R], then

Iq;φ
0+

HDq;φ
0+ w(ξ) = w(ξ)− (φ(ξ)− φ(0))q−1

Γ(q)
I (1−q);φ

0+ w(0),

for all 0 < q < 1 and t ∈ J .
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Lemma 4 ([6]). Let r > 0, 0 ≤ q < 1 and w ∈ Cq;φ[J ,R]. If r > q, then I r;φ
0+ w ∈ C[J ,R] and

I r;φ
0+ w(0) = lim

ξ→0
I r;φ

0+ w(ξ) = 0.

Lemma 5 ([21]). Let r > 0, 0 ≤ p ≤ 1 and q = r + p− rp. If w ∈ Cq
1−q;φ[J ,R], then

Iq;φ
0+ D

q;φ
0+ w(ξ) = I r;φ

0+D
r,p;φ
0+ w(ξ)

and
HDq;φ

0+ I
r;φ
0+ w(ξ) = Dq(1−r);φ

0+ w(ξ).

Lemma 6. Let f ∈ L1(J ) such that Dp(1−r);φ
0+ w ∈ L1(J ) exists, then

Dr,p;φ
0+ I r;φ

0+ w(ξ) = I p(1−r);φ
0+ Dp(1−r);φ

0+ w(ξ).

Next, we take into account some important properties of φ-fractional derivative and integral
operator as follows:

Proposition 1 ([1]). Let ξ > 0, r ≥ 0 and s > 0. Then, φ-fractional integral and derivative of a power
function are given by

HDr;φ
0+ (φ(ξ)− φ(0))s−1 =

Γ(s)
Γ(s− r)

(φ(ξ)− φ(0))r+s−1

and

I r;φ
0+ (φ(ξ)− φ(0))s−1 =

Γ(s)
Γ(s + r)

(φ(ξ)− φ(0))r+s−1.

Furthermore, if 0 < r < 1, then

HDr;φ
0+ (φ(ξ)− φ(0))r−1 = 0.

Theorem 1 ([19]). If w ∈ C1[J ,R], 0 < r < 1 and 0 ≤ p ≤ 1. Then we have the followings:
(i) HDr,p;φ

0+ I r;φ
0+ w(ξ) = w(ξ).

(ii) I r;φ
0+

HDr,p;φ
0+ w(ξ) = w(ξ)− (φ(ξ)−φ(0))q−1

Γ(q) I (1−p)(1−r);φ
0+ w(ξ).

Lemma 7 ([6]). Let h : J × R → R such that for any z ∈ C1−q;φ[J ,R], h ∈ C1−q;φ[J ,R]. A function
z ∈ Cq

1−q;φ[J ,R] is a solution of the fractional initial value problem:

{
H Dr,p;φ

0+ z(t) = h(t), 0 < r ≤ 1, 0 ≤ p ≤ 1,

I1−q,φ
0+ z(0+) = z0 ∈ R, q = r + p− rp,

if and only if z satisfies the following integral equation,

z(t) =
z0

Γ(q)
(φ(t)− φ(0))q−1 +

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1h(s)ds.

3. Main Results

In this section, we first adopt some techniques from Lemma 7 in order to establish an important
mixed-type integral equation of problem (5). Thus, we need the following auxiliary lemma.
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Lemma 8. Let 0 < r < 1, 0 ≤ p ≤ 1 and q = r + p− rp. Suppose f : J ×R3 → R is a function such that
f ∈ C1−q;φ[J ,R] for any z ∈ C1−q;φ[J ,R]. If z ∈ Cq

1−q;φ[J ,R] then z satisfies the problem (5) if and only if
z satisfies the mixed-type integral equation:

z(t) =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds,

(9)

where

δ =
1

Γ(ρ + q)−
m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1
,

such that Γ(ρ + q) �=
m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1.

(10)

For simplicity, we take
Tz(t) =H Dr,p;φ

0+ z(t) = f (t, z(t), z(γt), Tz(t)). (11)

Proof. Suppose z ∈ Cq
1−q;φ[J ,R] is a solution to the problem (5), then, we show that z is also a solution

of (5). Indeed, from Lemma 7, we have

z(t) =
(φ(t)− φ(0))q−1

Γ(q)
I1−q;φ

0+ z(0) +
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds. (12)

Now, if we substitute t = ξi and multiply both sides by bi in Equation (12), we obtain

biz(ξi) =
(φ(ξi)− φ(0))q−1

Γ(q)
biI1−q;φ

0+ z(0) +
bi

Γ(r)

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))r−1Tz(s)ds. (13)

Next, by applying Iρ;φ
0 to both sides of Equation (13) and using Lemma 1 and Proposition 1,

we get

Iρ;φ
0+ biz(ξi) =

(φ(ξi)− φ(0))ρ+q−1

Γ(ρ + q)
biI1−q;φ

0 z(0)

+
bi

Γ(ρ + r)

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds.

(14)

This implies that

m

∑
i=1
Iρ;φ

0+ biz(ξi) =
1

Γ(ρ + q)

(
m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1

)
I1−q;φ

0+ z(0)

+
1

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds.

(15)
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Inserting the initial condition: I1−q;φ
0+ z(0+) =

m

∑
i=1
Iρ;φ

0+ biz(ξi) in Equation (15) we have

I1−q;φ
0+ z(0) =

1
Γ(ρ + q)

(
m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1

)
I1−q;φ

0+ z(0)

+
1

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds,

(16)

which implies that

1
Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

=

(
1− 1

Γ(ρ + q)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1

)
I1−q;φ

0+ z(0)

=
1

δΓ(ρ + q)
I1−q;φ

0+ z(0).

(17)

Thus,

I1−q;φ
0+ z(0) =

δΓ(ρ + q)
Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds. (18)

Hence, the result follows by putting Equation (18) in Equation (12). This implies that z(t) satisfies
Equation (9).

Conversely, suppose that z ∈ Cq
1−q;φ satisfies the mixed-type integral Equation (9), then, we show

that z satisfies Equation (5). Applying Dq;φ
0+ to both sides of Equation (9) and using Lemma 2 and

Proposition 1, we get

Dq;φ
0+ z(t) =Dq;φ

0+

(
δΓ(ρ + q)
Γ(q)Γ(r)

(φ(t)− φ(0))q−1
m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

)

+Dq;φ
0+

(
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds

)
= Dp(1−r);φ

0+ f (t, z(t), z(γt),Dr,p;φ
0+ z(γt)).

(19)

Since Dr,p;φ
0+ z ∈ C1−q;φ[J ,R], then by definition of Cq

1−q;φ[J ,R] and make use of Equation (19),
we have

Dp(1−r);φ
0+ f = DI1−p(1−r);φ

0+ f ∈ C1−q;φ[J ,R].

For every f ∈ C1−q;φ[J ,R] and Lemma 3, we can see that I1−p(1−r);φ
0+ f ∈ C1−q;φ[J ,R],

which implies that I1−p(1−r);φ
0+ f ∈ C1

1−q;φ[J ,R] from the definition of Cn
q;φ[J ,R]. Applying I p(1−r);φ

0+

on both sides of Equation (19) and using Lemma 3, we have

I p(1−r);φ
0+ Dq;φ

0+ z(t) = I p(1−r);φ
0+ Dp(1−r);φ

0+ Tz(t)

= Tz(t)−

(
I1−p(1−r);φ

0+ Tz

)
(0+)

Γ(p(1− r))
(φ(t)− φ(0))p(r−1)−1

= Tz(t) = f (t, z(t), z(γt),Dr,p;φ
0+ z(γt)).

(20)
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Finally, we show that if z ∈ Cq
1−q[J ,R] satisfies Equation (9), it also satisfies the initial condition.

Thus, by applying I1−q;φ
0+ to both sides of Equation (9) and using Lemma 1 and Proposition 1, we obtain

I1−q;φ
0+ z(t)

= I1−q;φ
0+

(
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

)

+ I1−q;φ
0+

(
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds

)
=

δΓ(ρ + q)
Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds + I1−p(1−r);φ

0+ Tz(t).

(21)

Using Lemma 4 and the fact that 1 − q < 1 − p(1 − r), then taking limit as t → 0 in
Equation (21) yields

I1−q;φ
0+ z(0+) =

δΓ(ρ + q)
Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds. (22)

Now, substituting t = ξi and multiplying through by bi in Equation (9), we get

biz(ξi) =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
bi(φ(ξi)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+ I1−q;φ
0+

bi
Γ(r)

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))r−1Tz(s)ds.

(23)

Applying Iρ;φ
0+ to both sides of Equation (23), we obtain

Iρ;φ
0+ biz(ξi) =

δbi(φ(ξi)− φ(0))ρ+q−1

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+
bi

Γ(ρ + r)

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds,

(24)

which implies

m

∑
i=1

biIρ;φ
0+ z(ξi)

=
δ

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1

+
1

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

=
1

Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds×(

1 + δ
m

∑
i=1

bi(φ(ξi)− φ(0))ρ+q−1

)
(25)

and

I1−q;φ
0+ z(0+) =

δΓ(ρ + q)
Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds. (26)
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Therefore, in view of Equations (22) and (26), we have

I1−q;φ
0+ z(0+) =

m

∑
i=1

biIρ;φ
0+ z(ξi). (27)

3.1. Existence Result Via Schaefer’S Fixed Point Theorem

This subsection will provide the proof of the existence results of Equation (5) using Schaefer’s
fixed point theorem.

Theorem 2 ([61]). Let A : X → X be a completely continuous operator. Suppose that the set
E(A) = {p ∈ X : p = �Ap, f or some � ∈ [0, 1]} is bounded, then A has a fixed point.

Thus we need the following assumptions:
(A1) Let f : J ×R3 → R be a function such that f ∈ C1−q;φ[J ,R] for any z ∈ C1−q;φ[J ,R].
(A2) There exist k, l, m, n ∈ C1−q;φ[J ,R] with k∗ = sup

t∈J
|k(t)| < 1 such that

| f (t, u, v, w)| ≤ k(t) + l(t)|x|+ m(t)|y|+ n(t)|z|, t ∈ J , u, v, w ∈ R.

Theorem 3. Let 0 < r < 1, 0 ≤ p ≤ 1 and q = r + p− rp. Suppose that the assumptions (A1) and (A2) are
satisfied. Then there exist at least one solution of the problem (5) in the space Cr,p

1−q;φ[J ,R].

Proof. Define the operator F : C1−q;φ[J ,R]→ C1−q;φ[J ,R] by

(Fz)(t) =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds,

(28)

then, clearly the operator F is well-defined. The proof is given in the following steps: Step 1:
the operator F is continuous. Let zn be a sequence such that zn → z in C1−q,φ[J ,R]. Then for
each t ∈ J , we have

|((Fzn)(t)− (Fz)(t))(φ(t)− φ(0))1−q|

≤ |δ|Γ(ρ + q)
Γ(q)Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1|Tzn(s)− Tz(s)|ds

+
1

Γ(r)
(φ(t)− φ(0))1−q

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|Tzn(s)− Tz(s)|ds

≤ |δ|Γ(ρ + q)
Γ(q)Γ(ρ + r)

B(q, ρ + r)
m

∑
i=1

bi(φ(ξi)− φ(s))ρ+r+q−1‖Tzn(·)− Tz(·)‖C1−q;φ

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r‖Tzn(·)− Tz(·)‖C1−q;φ

≤
[
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(s))ρ+r+q−1

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r

]
‖Tzn(·)− Tz(·)‖C1−q;φ .

(29)
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Since f is continuous, this implies that Tz is also continuous. Therefore, we have

‖Tzn − Tz‖C1−q;φ → 0, as n → ∞.

Step 2: F maps bounded sets into bounded sets in C1−q;φ[J ,R].
Indeed, it suffices to show that for any κ > 0, there exist a μ > 0 such that for any

z ∈ Bκ = {z ∈ C1−q;φ[J ,R] : ‖z‖ ≤ κ}, thus we have ‖F(z)‖C1−q;φ ≤ μ.
For simplicity, we put

E1 =
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1|Tz(s)|ds (30)

and

E2 =
1

Γ(r)
(φ(t)− φ(0))1−q

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|Tz(s)|ds. (31)

It follows from assumption (A2) that

|Tz(t)| =| f (t, z(t), z(γt), Tz(t))|
≤ k(t) + l(t)|z|+ m(t)|z|+ n(t)|Tz(t)|

≤ k∗ + (l∗ + m∗)|z(t)|
1− n∗

.

(32)

Thus, in view of Equations (30)–(32), we get

E1 ≤ |δ|Γ(ρ + q)
Γ(q)(1− n∗)

m

∑
i=1

bi

(
k∗

Γ(ρ + r + 1)
(φ(ξi)− φ(0))ρ+r

+(l∗ + m∗)
(φ(ξi)− φ(0))ρ+r+q−1

Γ(ρ + r)
B(q, ρ + r)‖z‖C1−q;φ

)
E2 ≤ 1

(1− n∗)

(
k∗

Γ(r + 1)
(φ(T)− φ(0))ρ+r−q+1

+
(l∗ + m∗)B(q, r)

Γ(r)
(φ(T)− φ(0))r‖z‖C1−q;φ

)
.

This implies that,

|(Fz)(t)((φ(t)−φ(0))q−1)|

≤ k∗

(1− n∗)

[
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r + 1)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r

+
k∗

Γ(r + 1)
(φ(T)− φ(0))ρ+r−q+1

]
+

(l∗ + m∗)
(1− n∗)

[
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r+q−1

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r

]
‖z‖C1−q;φ

= μ.

(33)
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Step 3: F maps bounded sets into equicontinuous set of C1−q;φ[J ,R]. Let t1, t2 ∈ J such that
t1 ≥ t2 and Bκ be a bounded set of C1−q;φ[J ,R] as defined in Step 2. Let z ∈ Bκ , then

|((φ(t1)− φ(a))q−1)(Fz)(t1)− ((φ(t2)− φ(0))q−1)(Fz)(t2)|

≤
∣∣∣∣ 1
Γ(r)

(φ(t1)− φ(0))1−q
∫ t1

0+
φ′(s)(φ(t1)− φ(s))r−1Tz(s)ds

− 1
Γ(r)

(φ(t2)− φ(0))1−q
∫ t2

0+
φ′(s)(φ(t2)− φ(s))r−1Tz(s)ds

∣∣∣∣
≤ 1

Γ(r)

∣∣∣∣∫ t1

0+
φ′(s)

[
((φ(t1)− φ(0))q−1)(φ(t1)− φ(s))r−1

− ((φ(t2)− φ(0))q−1)(φ(t2)− φ(s))r−1Tz(s)ds
]∣∣∣

+

∣∣∣∣ (φ(t2)− φ(0))q−1

Γ(r)

∫ t2

t1

φ′(s)(φ(t1)− φ(0))r−1Tz(s)ds
∣∣∣∣

→ 0, as t1 → t2.

(34)

Thus, steps 1–3, together with the Arzela–Ascoli theorem, show that the operator F is
completely continuous.

Step 4: a priori bounds.
It is enough to show that the set χ = {z ∈ C1−q;φ[J ,R] : z = σ(Fz), 0 < σ < 1} is bounded.

Now, let z ∈ χ, z = σ(Fz) for some 0 < σ < 1. Thus for each t ∈ J , we obtain

z(t) =σ

[
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds

]
.

It follows from assumption (A2), that for every t ∈ J ,

|z(t)(φ(t)− φ(0))1−q| ≤ |(Fz)(t)(φ(t)− φ(0))1−q|

≤ k∗

(1− n∗)

[
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r + 1)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r

+
k∗

Γ(r + 1)
(φ(T)− φ(0))ρ+r−q+1

]
+

(l∗ + m∗)
(1− n∗)

[
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r+q−1

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r

]
‖z‖C1−q;φ

< ∞.

(35)

This shows that the set χ is bounded. Hence, by the Schaefer’s fixed point theorem, problem (5)
has at least one solution.

3.2. Existence Result Via Banach Contraction Principle

Now, we prove the uniqueness of problem (5) by means of Banach contraction principle. Therefore,
the following hypotheses are needed.

(A3) There exist constants K, L > 0 such that

| f (t, u, v, w)− f (t, ū, v̄, w̄)| ≤ K(|u− ū|+ |v− v̄|) + L|w− w̄|
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for any u, v, w, ū, v̄, w̄ ∈ R and t ∈ J .
(A4) Suppose that (

2K
1− L

)
Ω < 1,

where

Ω =
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r+q−1 +
B(q, r)

Γ(r)
(φ(T)− φ(0))r. (36)

Theorem 4. Let 0 < r < 1, 0 ≤ p ≤ 1 and q = r + p− rp. Suppose that the hypotheses (A1), (A3) and
(A4) are satisfied. Then, problem (5) has a unique solution in the space Cr,p

1−q;φ[J ,R].

Proof. Define the operator F : C1−q;φ[J ,R]→ C1−q;φ[J ,R] by

(Fz)(t) =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds,

(37)

then, clearly the operator F is well-defined. Let z1, z2 ∈ Cr,p
1−q;φ[J ,R] and t ∈ J , then, we have

|((Fz1)(t)− (Fz2)(t))(φ(t)− φ(0))1−q|

≤ |δ|Γ(ρ + q)
Γ(q)Γ(ρ + r)

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1|Tz1(s)− Tz2(s)|ds

+
1

Γ(r)
(φ(t)− φ(0))1−q

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|Tz1(s)− Tz2(s)|ds

(38)

and

|Tz1(t)− Tz2(t)| = | f (t, z1(t), z1(γt)), Tz1(t)− f (t, z2(t), z2(γt), Tz2(t))|
≤ K(|z1(t)− z2(t)|+ |z1(γt)− z2(γt)|) + L|(Tz1)(t)− (Tz2)(t)|

≤
(

2K
1− L

)
|z1(t)− z2(t)|.

(39)

Thus, by substituting Equation (39) in Equation (38), we obtain

|((Fz1)(t)− (Fz2)(t))(φ(t)− φ(0))1−q|

≤ |δ|Γ(ρ + q)
Γ(q)Γ(ρ + r)

m

∑
i=1

bi

(
2K

(1− L)

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1ds

)
‖z1(t)− z2(t)‖C1−q;φ

+
1

Γ(r)
(φ(t)− φ(0))1−q 2K

(1− L)

(∫ t

0+
φ′(s)(φ(t)− φ(s))r−1ds

)
‖z1(t)− z2(t)‖C1−q;φ

≤ 2K
(1− L)

(
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r+q−1

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r

)
‖z1(t)− z2(t)‖C1−q;φ .

(40)
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Also,

‖(Fz1)− (Fz2)‖C1−q;φ ≤
2K

(1− L)

(
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
B(q, ρ + r)

m

∑
i=1

bi(φ(ξi)− φ(0))ρ+r+q−1

+
B(q, r)

Γ(r)
(φ(T)− φ(0))r

)
‖z1(t)− z2(t)‖C1−q;φ .

(41)

It follows from hypotheses (A4) that F is a contraction map. Therefore, by Banach contraction
principle, we can conclude that problem (5) has a unique solution.

4. Ulam-Hyers Stabilty

Two types of Ulam stability for (5) are discussed in this section, namely Ulam-Hyers and
generalized Ulam-Hyers stability.

Definition 4. Problem (5) is said to be Ulam-Hyers stable if there exists ω ∈ R+\{0}, such that for each
ε > 0 and solution x ∈ C1

1−q;φ[J ,R] of the inequality

|HDr,p;φ
0+ x(t)− f (t, x(t), x(γt),H Dr,p;φ

0+ x(γt))| ≤ ε, t ∈ J , (42)

there exists a solution z ∈ C1
1−q;φ[J ,R] of equation (5), such that

|x(t)− z(t)| ≤ ωε, t ∈ J .

Definition 5. Problem (5) is said to be generalized Ulam-Hyers stable if there exist Φ ∈ C(R+,R+),
Φ f (0) = 0, such that for each solution x ∈ C1

1−q;φ[J ,R] of the (42), there exists a solution z ∈ C1
1−q;φ[J ,R]

of Equation (5), such that
|x(t)− z(t)| ≤ Φ f ε, t ∈ J .

Remark 1. A function x ∈ C1−q;φ[J ,R] is a solution of the inequality (42), if and only if there exist a function
g ∈ C1−q;φ[J ,R] such that:

(i) |g(t)| ≤ ε, t ∈ J .

(ii) HDr,p;φ
0+ x(t) = f (t, x(t), x(γt),H Dr,p;φ

0+ x(γt)) + g(t), t ∈ J .

Lemma 9. Let 0 < r < 1, 0 ≤ p ≤ 1, if a function x ∈ C1−q;φ[J ,R] is a solution of the inequality (42),
then x is a solution of the following integral inequality∣∣∣∣x(t)− Ax −

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Txds

∣∣∣∣ ≤ Ωε. (43)

Proof. Clearly it follow from Remark 1 that

HDr,p;φ
0+ x(t) = f (t, x(t), x(γt),H Dr,p;φ

0+ x(γt)) + g(t)

= Tx(t) + g(t),
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and

x(t) =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

(∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tx(s)ds

+
∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1g(s)ds

)
+

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tx(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1g(s)ds.

(44)

Hence∣∣∣∣x(t)− Ax −
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Txds

∣∣∣∣
=

∣∣∣∣∣ δΓ(ρ + q)
Γ(q)Γ(ρ + r)

(φ(t)− φ(0))q−1
m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1g(s)ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1g(s)ds

∣∣∣∣
≤ |δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1
|bi|
∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1|g(s)|ds

+
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|g(s)|ds

≤ Ωε.

(45)

Theorem 5. Suppose that the hypotheses (A1), (A3) and (A4) are satisfied. Then problem (5) is both
Ulam-Hyers and generalized Ulam-Hyers stable on J .

Proof. Let ε > 0 and x ∈ C1−q;φ[J ,R] be a function which satisfies the inequality (42)
and let z ∈ C1−q;φ[J ,R] be a unique solution of the following implicit fractional pantograph
differential equation

HDr,p;φ
0+ z(t) = f (t, z(t), z(γt),H Dr,p;φ

0+ z(γt))| ≤ ε, t ∈ J , 0 < r < 1, 0 ≤ p ≤ 1,

I1−q;φ
0+ z(0+) = I1−q;φ

0+ z(0+) =
m

∑
i=1

biIρ;φ
0+ z(ξi), ξi ∈ (0, T], q = r + p− rp.

Using Lemma 9, we have

z(t) = Az −
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tz(s)ds,

where

Az =
δΓ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(a))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1Tz(s)ds.
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Clearly, if z(ξi) = x(ξi) and I1−q;φ
0+ z(0+) = I1−q;φ

0+ z(0+), we get Az = Ax and that

|Az − Ax|

=
|δ|Γ(ρ + q)

Γ(q)Γ(ρ + r)
(φ(t)− φ(0))q−1

m

∑
i=1

bi

∫ ξi

0+
φ′(s)(φ(ξi)− φ(s))ρ+r−1|Tz(s)− Tx(s)|ds

≤ |δ|Γ(ρ + q)
Γ(q)Γ(ρ + r)

(φ(t)− φ(0))q−1
(

2K
1− L

) m

∑
i=1

biIρ+r;φ
0+ |z(s)− x(s)|(ξi)

= 0.

Now for any t ∈ J and Lemma 9, we have

|x(t)− z(t)| =
∣∣∣∣x(t)− Ax −

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tx(s)ds

∣∣∣∣
+

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|Tx(s)− Tz(s)|ds

≤
∣∣∣∣x(t)− Ax −

1
Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1Tx(s)ds

∣∣∣∣
+

(
2K

1− L

)
1

Γ(r)

∫ t

0+
φ′(s)(φ(t)− φ(s))r−1|x(s)− z(s)|ds

≤ Ωε +

(
2K

1− L

) B(r, q)(φ(T)− φ(0))r

Γ(r)
|x(t)− z(t)|ds.

Thus,
|x(t)− z(t)| ≤ ωε,

where

ω =
Ω(1− L)Γ(r)

(1− L)Γ(r)− 2K(φ(T)− φ(0))rB(r, q)
.

Therefore, problem (5) is Ulam-Hyers stable. Moreover, if we set Φ f (ε) = ωε such that Φ f (0) = 0,
then problem (5) is generalized Ulam-Hyers stable.

5. Examples

Example 1. Consider the implicit fractional pantograph differential equation which involves φ-Hilfer fractional
derivative of the following form:⎧⎪⎨⎪⎩

HD
2
3 , 1

2 ;t
0+ z(t) = 1

3(52t+5)[1+|z(t)|+|z( 1
2 t)|+|HD

2
3 , 1

2 ;t

1+
z( 1

2 t)|]
, t ∈ J = (0, 2],

I1− 5
6 ;t

0+ z(0) = 3I
1
2 ;t

0+ z( 3
2 ),

2
3 ≤ 5

6 = 2
3 + ( 1

2 )− ( 2
3 )(

1
2 ).

(46)

By comparing (5) with (46), we have:
r = 2

3 , p = γ = ρ = 1
2 , q = 5

6 , T = 2 and φ(·) = t. Also from the initial condition we can easily see that
b1 = 3 since m = 1, ξ1 = 3

2 ∈ J and f : J ×R3 → R is a function defined by

f (t, u, v, w) =
1

3(52t + 5)(1 + |u|+ |v|+ |w|) , t ∈ J , u, v, w ∈ R+.
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Obviously, f is continuous and for all u, v, w, ū, v̄, w̄ ∈ R+ and t ∈ J , we have
| f (t, u, v, w)− f (t, ū, v̄, w̄)| ≤ 1

90 (|u− ū|+ |v− v̄|+ |w− w̄|) . Thus, it follows that conditions (A1) and
(A3) are true with K = L = 1

90 . Therefore, by simple calculation, we get |δ| ≈ 0.3935 and(
2K

1− L

)
Ω ≈ 0.0642 < 1.

Since, all the assumptions of Theorem 4 are satisfied. Then problem (5) has a unique solution on J . However,
we can also find out that Ω ≈ 2.8551 > 0 and ω = 2.9321 > 0. Hence, by Theorem 5, problem (5) is both
Ulam-Hyers and also generalized Ulam-Hyers stable.

Example 2. Consider the implicit fractional pantograph differential equation which involves φ-Hilfer fractional
derivative of form:⎧⎪⎪⎪⎨⎪⎪⎪⎩

HD
1
3 , 2

3 ;
√

t
0+ z(t) =

2+|z(t)|+|z( 3
2 t)|+
∣∣HD 1

3 , 2
3 ;
√

t

0+
z( 3

2 t)
∣∣

95e2t cos 2t

(
1+|z(t)|+|z( 3

2 t)|+
∣∣HD 1

3 , 2
3 ;
√

t

0+
z( 3

2 t)
∣∣) , t ∈ J = (0, 1],

I1− 7
9 ;
√

t
0+ z(0) = z( 1

2 ) + 3z( 4
5 ),

2
3 < 7

9 = 1
3 + ( 2

3 )− ( 1
3 )(

2
3 ).

(47)

By comparing Equation (47) with Equation (5), we obtain that:
r = 1

3 , p = 2
3 , q = 7

9 , ρ = 0, γ = 3
2 , T = 1 and φ(·) =

√
t. Also we can easily see that b1 = 1, b2 = 3 since

m = 2, ξ1 = 1
2 , ξ2 = 4

5 ∈ J and f : J ×R3 → R is a function defined by

f (t, u, v, w) =
2 + |u|+ |v|+ |w|

95e2t cos 2t (1 + |u|+ |v|+ |w|) , t ∈ J , u, v, w ∈ R+.

Thus, f is continuous and we can see that, for all u, v, w, ū, v̄, w̄ ∈ R+ and t ∈ J ,
| f (t, u, v, w)− f (t, ū, v̄, w̄)| ≤ 1

95 (|u− ū|+ |v− v̄|+ |w− w̄|) .
So assumptions (A1) and (A3) are fulfilled with K = L = 1

95 . Furthermore,

| f (t, u, v, w)| ≤ 1
95e2t cos 2t

(2 + |u|+ |v|+ |w|), t ∈ J .

The above implies that (A2) is true with k(t) = 2
95e2t cos 2t , l(t) = m(t) = n(t) = 1

95e2t cos 2t and k∗ = 2
95 ,

l∗ = m∗ = n∗ = 1
95 . Therefore, all the hypotheses of Theorem 4 are satisfied, which means that problem (5)

has at least one solution on J . Moreover, by using the same procedure as in example 5.2, we obtain, that
|δ| ≈ 1.1025, Ω ≈ 3.6662 > 0 and (

2K
1− L

)
Ω ≈ 0.0782 < 1.

Thus, all the hypotheses of Theorem 4 holds. Hence, problem (5) has a unique solution on J .

Example 3. Consider the implicit fractional pantograph differential equation which involves φ-Hilfer fractional
derivative of the following form:⎧⎪⎨⎪⎩

HD
1
2 , 1

3 ;t
0+ z(t) = 1

4t+3[1+|z(t)|+|z( 1
6 t)|+|HD

1
2 , 1

3 ;t

0+
z( 1

6 t)|]
, t ∈ J = (0, 3],

I1−q;t
0+ z(0) =

√
2I

2
5 ;t

0+ z(2) +
√

5I
2
5 ;t

0+ z( 5
2 ), q = 1

2 + ( 1
3 )− ( 1

2 )(
1
3 ).

(48)
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By comparing Equation (5) with Equation (48), we get the followings values:
r = 1

2 , p = 1
3 γ = 1

6 ρ = 2
5 , q = 2

3 , T = 3 and φ(·) = t. Also from the initial condition we can easily see that
b1 =

√
2 b1 =

√
5 since m = 2, ξ1 = 2 ξ2 = 5

2 and f : J ×R3 → R is a function defined by

f (t, u, v, w) =
1

4t+3(1 + |u|+ |v|+ |w|) , t ∈ J , u, v, w ∈ R+.

Thus, f is continuous and for all u, v, w, ū, v̄, w̄ ∈ R+ and t ∈ J , yields
| f (t, u, v, w)− f (t, ū, v̄, w̄)| ≤ 1

64 (|u− ū|+ |v− v̄|+ |w− w̄|) . Hence, it follows that conditions (A1) and
(A3) are true with K = L = 1

90 . Therefore, by substitution these values, we get |δ| ≈ 0.3456, Ω ≈ 7.4535 >

0 and (
2K

1− L

)
Ω ≈ 0.2366 < 1,

which implies that, all the assumptions of Theorem 4 are satisfied. Thus, problem (5) has a unique solution on J .

6. Conclusions

In our study, Firstly, we established the equivalence between problem (5) and the Volterra integral
equation. Secondly, Banach and Schaefer’s fixed point theorems were used to establish the existence
and uniqueness solutions for implicit fractional pantograph differential equation which involves
φ-Hilfer fractional derivatives. Based on φ-Hilfer fractional derivatives, we found that the stability of
Ulam-Hyers and generalized Ulam-Hyers allowed on the implicit fractional pantograph differential
equation, supplemented with a nonlocal Riemann-Liouville condition. In addition, examples were
given to illustrate our main results. Moreover, it worthy to mention the following remarks:

• If ρ → 0 and φ(t) = t, we obtain the results of [48] and [52]. Furthermore, if ρ → 0 we obtain
the Ulam-Hyers and generalized Ulam-Hyers stability for the implicit fractional pantograph
differential equations with φ-Hilfer fractional derivatives [52,58] and if q = 0 we obtain [51].

• If ρ → 1, the nonlocal Riemann-Liouville integral condition reduces to a nonlocal integral
condition which plays an important role in computational fluid dynamics, ill-posed problems and
mathematical models [62].

• If ρ → 0, the initial condition reduces to multi-point nonlocal condition.
• If t ∈ [a, b] as defined in paper [58], the function f (t, x(t), x(λt)) is not well-defined for some

choice of 0 < λ < 1. Thus, our results modify and improve the above cited remarks and can
be considered as the development of the qualitative analysis of fractional differential equations.
The study of Ulam-Hyers stability in the frame of φ-Hilfer fractional derivative with a generalized
nonlocal boundary condition proposed in this paper and other coupled system will be presented
in the near future.
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1. Introduction

We consider the fractional in time and space shallow-water system⎧⎨⎩ ∂
α,ψ
0|t η + ∂

β,ψ
0|x (ηu) = 0, t > 0, 0 < x < L,

1
2

[
1

ψ′(t)∂t(ηu) + ∂
α,ψ
0|t (ηu)

]
+ ∂

β,ψ
0|x (ηu2) + ∂

β,ψ
0|x (η

2) = 0, t > 0, 0 < x < L
(1)

with
(u(0, ·), η(0, ·)) = (u0, η0) (2)

and
η(·, 0) = η(·, L) ≡ 0; (3)

here η = η(t, x), u = u(t, x), L > 0, 0 < α, β < 1, ψ ∈ C1([0, ∞)), limx→∞ ψ(x) = +∞, ψ′(x) > 0,
x ≥ 0, ∂

α,ψ
0|t is the ψ-Caputo derivative in time of fractional order α and ∂

β,ψ
0|x is the ψ-Caputo derivative

in space of fractional order β. Using the test function method [1], we get sufficient criteria for which
problem (1)–(2)–(3) has no global solutions in time.

The considered problem is a fractional version of the shallow-water system{
∂tη + ∂x(ηu) = 0, t > 0, 0 < x < L,
∂t(ηu) + ∂x(ηu2) + ∂x(η2) = 0, t > 0, 0 < x < L,

(4)

which models the motion of an incompressible fluid in a gravitational field when the fluid height
above the channel bottom is small with respect to the characteristic flow length. Here u is the velocity
of the fluid particle and η is the height of the fluid above the horizontal flat bottom [2–4].
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In [2], Korpusov and Yushkov derived sufficient criteria for the non-existence of global in time
solutions of problem (4) under different types of boundary conditions. In particular, under the
boundary conditions (3), they proved that if for some 0 < T0 < ∞, the problem admits a solution
(u, η) ∈ C1([0, T0]× [0, L])× C1([0, T0]× [0, L]), and

∫ L

0
xη0(x)u0(x) dx > 0,

then there exist no solutions on intervals larger than [0, T∞], where

T∞ =
L2
∫ L

0 η0(x) dx∫ L
0 xη0(x)u0(x) dx

.

It was shown in many published works that the theory of fractional calculus provides useful
tools for modeling various phenomena from physics (see e.g., [5–8]). Specifically, it was found that
fractional order models of many real-world phenomena are more adequate than the classical integer
order models. This fact motivated researchers to take an interest in the study of fractional in time
and/or space evolution equations. In particular, the study of analytic and numerical solutions of
fractional shallow-water equations was investigated by many authors (see e.g., [5,9–12]). For the
study of existence and non-existence of global solutions for fractional in time and/or space evolution
equations, we refer to [13–15] and references therein.

Motivated by the above contributions, the study of the absence of global in time solutions for
problem (1)–(2)–(3) is investigated in this work. In the considered problem, we use ψ-Caputo fractional
derivative (in time and space) [16], which depends of a function ψ ∈ C1([0, ∞)). In the special case
ψ(t) = t, the considered fractional operator reduces to Caputo fractional derivative. Let us mention
that in this paper we are concerned essentially with the mathematical study of problem (1)–(2)–(3).
For the physical interpretation of this model, we are not able to check if it is more adequate than the
standard model (4)–(2)–(3). For a such study, some physical experiments and numerical simulations
are needed; this is not the goal of this paper. Nevertheless, let us notice that Tao in [17] proposed a
possible scenario for obtaining blowing-up solutions of the Navier–Stokes system; he showed that it is
possible for a body of fluid to form a sort of computer, which can build a self—replicating fluid robot
that keeps transferring its energy to smaller and smaller copies of itself until the fluid “blows up.” He
tried to devise a system that would incorporate a delay at each step—a sort of timer that would push
the energy cleanly from one size scale to the next at just the right moment (according to Erica Klarreich,
A Fluid New Path in Grand Math Challenge, Quantamagazine, 24 February 2014). From here, one can
speculate any form of delay in time or space for fluid dynamical systems.

In Section 2, we provide some preliminary results that will be needed afterwards. A key lemma
is established in Section 3. In the next section, we present and establish our principal results.
Specifically, we first establish a mass conservation law for problem (1)–(2)–(3). Next, we obtain
sufficient criteria for which the considered problem has no global in time solutions.

2. Preliminaries

Let c1, c2 ∈ R, c1 < c2, R ∈ L1(c1, c2) and μ > 0. The Riemann-Liouville fractional integrals of
order μ ofR are given by (see e.g., [18])

Iμ
c1R(x) = [Γ(μ)]−1

∫ x

c1

(x− σ)μ−1R(σ) dσ

and
Iμ
c2R(x) = [Γ(μ)]−1

∫ c2

x
(σ− x)μ−1R(σ) dσ,

for a.e. x ∈ [c1, c2], where Γ denotes the gamma function.
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Let ψ be a C1 function in [0, ∞) satisfying

lim
x→∞

ψ(x) = +∞ and ψ′(x) > 0, x ≥ 0.

Please note that under the above conditions, the function ψ : [0, ∞)→ [ψ(0), ∞) is bijective. Let
τ > 0 andR ∈ L1((0, τ), ψ′(σ) dσ), i.e.,∫ τ

0
|R(σ)|ψ′(σ) dσ < ∞.

The ψ-fractional integrals of order μ ofR are given by (see [16])

Iμ,ψ
0 R(x) = [Γ(μ)]−1

∫ x

0
(ψ(x)− ψ(σ))μ−1ψ′(σ)R(σ) dσ

and
Iμ,ψ
τ R(x) = [Γ(μ)]−1

∫ τ

x
(ψ(σ)− ψ(x))μ−1ψ′(σ)R(σ) dσ, (5)

for a.e. x ∈ [0, τ].
IfR ∈ C([0, τ]), then Iμ,ψ

0 R, Iμ,ψ
τ R ∈ C([0, τ]) and Iμ,ψ

0 R(0) = Iμ,ψ
τ R(τ) = 0.

Lemma 1. ForR ∈ L1((0, τ), ψ′(σ) dσ), it holds(
Iμ,ψ
0 R

)
(x) =

(
Iμ

ψ(0)R ◦ ψ−1
)
(ψ(x)), a.e. x ∈ [0, τ] (6)

and (
Iμ,ψ
τ R

)
(x) =

(
Iμ

ψ(τ)
R ◦ ψ−1

)
(ψ(x)), a.e. x ∈ [0, τ], (7)

where ◦ stands for the composition of mappings.

Proof. For a.e. x ∈ [0, τ], one has(
Iμ,ψ
0 R

)
(x) = [Γ(μ)]−1

∫ x

0
(ψ(x)− ψ(σ))μ−1ψ′(σ)R(σ) dσ

= [Γ(μ)]−1
∫ ψ(x)

ψ(0)
(ψ(x)− t)μ−1R

(
ψ−1(t)

)
dt

=
(

Iμ

ψ(0)R ◦ ψ−1
)
(ψ(x)),

which proves (6). Proceeding as above, one obtains (7).

Lemma 2 (see e.g., [18]). Let (R,S) ∈ L1(a, b)× C([a, b]). Then

∫ b

a
R(t)

(
Iμ
a S
)
(t) dt =

∫ b

a
S(t)

(
Iμ
bR
)
(t) dt.

Lemma 3. Let (R,S) ∈ L1((0, τ), ψ′(σ) dσ)× C([0, τ]). Then∫ τ

0
R(σ)

(
Iμ,ψ
0 S
)
(σ)ψ′(σ) dσ =

∫ τ

0
S(σ)

(
Iμ,ψ
τ R

)
(σ)ψ′(σ) dσ.
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Proof. Using (6), one obtains∫ τ

0
R(σ)

(
Iμ,ψ
0 S
)
(σ)ψ′(σ) dσ =

∫ τ

0
R(σ)

(
Iμ

ψ(0)S ◦ ψ−1
)
(ψ(σ))ψ′(σ) dσ

=
∫ ψ(τ)

ψ(0)
R(ψ−1(t))

(
Iμ

ψ(0)S ◦ ψ−1
)
(t) dt.

Next, using Lemma 2, one deduces that

∫ τ

0
R(σ)

(
Iμ,ψ
0 S
)
(σ)ψ′(σ) dσ =

∫ ψ(τ)

ψ(0)
S ◦ ψ−1(t)

(
Iμ

ψ(τ)
R ◦ ψ−1

)
(t) dt.

Hence, by (7), the desired result follows.

LetR ∈ C1([0, τ]) and 0 < θ < 1. The ψ-Caputo fractional derivative of order θ ofR is given by
(see [16]) (

∂
θ,ψ
0|xR
)
(x) =

(
I1−θ,ψ
0

R′
ψ′

)
(x), 0 ≤ x ≤ τ, (8)

i.e., (
∂

θ,ψ
0|xR
)
(x) = [Γ(1− θ)]−1

∫ x

0
(ψ(x)− ψ(σ))−θR′(σ) dσ.

Lemma 4 (see [16]). LetR ∈ C1([0, τ]) and 0 < θ < 1. One has

Iθ,ψ
0

(
∂

θ,ψ
0|xR
)
(x) = R(x)−R(0), 0 ≤ x ≤ τ.

3. A Key Lemma

The following lemma will be useful for proving our principal result.

Lemma 5. Let 0 < θ < 1 and a > 0. Suppose that for some 0 < T0 < ∞, J ∈ C1([0, T0]) is a function
satisfying J(0) > 0 and

1
ψ′(t)

J′(t) +
(

∂
θ,ψ
0|t J
)
(t) ≥ aJ2(t), 0 < t < T0. (9)

Let
T∞ := sup

{
τ > 0 : J ∈ C1([0, τ)) satisfies (9) for all 0 < t < τ

}
.

Then
T0 ≤ T∞ ≤ ψ−1 (ψ(0) + M(a, θ)) < ∞, (10)

where
M(a, θ) = sup{X > 0 : f (X) ≤ 0} < ∞, f (X) = BX2−θ + CX−DX2−2θ − 1 (11)

and
B =

a
Γ(4− θ)

J(0), C =
a
2

J(0), D =
1

(3− 2θ)Γ(3− θ)2 .

Proof. First, since f (0) = −1 < 0 and f is continuous, {X > 0 : f (X) ≤ 0} �= ∅. Furthermore, since
B > 0 (because J(0) > 0), on has lim

X→+∞
f (X) = +∞. Hence, one deduces that 0 < M(a, θ) < ∞.

Next, let τ > 0 be such that J ∈ C1([0, τ)) satisfies (9) for all 0 < t < τ. Then, for all 0 < T < τ,
J ∈ C1([0, T]) satisfies (9) for all 0 < t < T. Fix 0 < T < τ and introduce the function

ϕ(t) = κ(0)−2κ(t)2ψ′(t) := Z(t)ψ′(t), (12)
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for all 0 ≤ t ≤ T, where
κ(t) = ψ(T)− ψ(t).

Using (9), one obtains

a
∫ T

0
J2(t)ϕ(t) dt ≤

∫ T

0

(
∂

θ,ψ
0|t J
)
(t)ϕ(t) dt +

∫ T

0
J′(t)Z(t) dt. (13)

On the other hand, using (8) and Lemma 3, one has

∫ T

0

(
∂

θ,ψ
0|t J
)
(t)ϕ(t) dt =

∫ T

0

(
I1−θ,ψ
0

J′

ψ′

)
(t)ϕ(t) dt

=
∫ T

0
J′(t)
(

I1−θ,ψ
T Z

)
(t) dt.

Integrating by parts, it holds

∫ T

0

(
∂

θ,ψ
0|t J
)
(t)ϕ(t) dt = J(T)

(
I1−θ,ψ
T Z

)
(T)− J(0)

(
I1−θ,ψ
T Z

)
(0)−

∫ T

0
J(t)
(

I1−θ,ψ
T Z

)′
(t) dt. (14)

Using (5), an elementary calculation gives us that(
I1−θ,ψ
T Z

)
(t) =

2
Γ(4− θ)

κ(0)−2κ(t)3−θ (15)

and (
I1−θ,ψ
T Z

)′
(t) = − 2

Γ(3− θ)
κ(0)−2κ(t)2−θψ′(t), (16)

for all 0 ≤ t ≤ T. Using (14) and (15), one deduces that

∫ T

0

(
∂

θ,ψ
0|t J
)
(t)ϕ(t) dt = − 2

Γ(4− θ)
κ(0)1−θ J(0)−

∫ T

0
J(t)
(

I1−θ,ψ
T Z

)′
(t) dt. (17)

Again, integrating by parts, it holds

∫ T

0
J′(t)Z(t) dt = −J(0)−

∫ T

0
J(t)Z′(t) dt. (18)

Hence, it follows from (13), (17) and (18) that

AJ(0) + a
∫ T

0
J2(t)ϕ(t) dt ≤

∫ T

0
|J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣ dt +

∫ T

0
|J(t)||Z′(t)| dt, (19)

where
A =

2
Γ(4− θ)

κ(0)1−θ + 1.

On the other hand, by Young’s inequality with parameter a
2 > 0, one has

∫ T
0 |J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣ dt =

∫ T
0

√
aϕ(t)|J(t)|

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣√

aϕ(t)
dt

≤ a
2

∫ T
0 J2(t)ϕ(t) dt + 1

2a
∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t) dt.

(20)
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Similarly, one gets

∫ T

0
|J(t)||Z′(t)| dt ≤ a

2

∫ T

0
J2(t)ϕ(t) dt +

1
2a

∫ T

0

|Z′(t)|2
ϕ(t)

dt. (21)

Combining (19)–(21), it comes that

2aAJ(0) ≤
∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
dt +

∫ T

0

|Z′(t)|2
ϕ(t)

dt. (22)

Furthermore, using (12) and (16), one obtains∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
=

[
2

Γ(3− θ)

]2
κ(0)−2κ(t)2−2θψ′(t),

for all 0 < t < T, which yields

∫ T

0

∣∣∣∣(I1−θ,ψ
T Z

)′
(t)
∣∣∣∣2

ϕ(t)
dt =

1
(3− 2θ)

[
2

Γ(3− θ)

]2
κ(0)1−2θ . (23)

Similar calculations yield ∫ T

0

|Z′(t)|2
ϕ(t)

dt = 4κ(0)−1. (24)

It follows from (22)–(24) that

2aAJ(0) ≤ 1
(3− 2θ)

[
2

Γ(3− θ)

]2
κ(0)1−2θ + 4κ(0)−1,

which yields
f (κ(0)) ≤ 0.

Therefore, one deduces that
κ(0) ≤ M(a, θ).

Hence, it holds
T ≤ ψ−1 (ψ(0) + M(a, θ)) , for all 0 < T < τ,

which implies that
τ ≤ ψ−1 (ψ(0) + M(a, θ)) ,

and (10) follows.

Remark 1. Taking ψ(t) = t and the limit as θ → 1−, (9) reduces to

J′(t) ≥ a
2

J2(t), 0 < t < T0.

Hence, under the assumptions of Lemma 5, passing to the limit as θ → 1− in (10), it holds

T0 ≤ T∞ ≤
2

aJ(0)
,

which is the same estimate as in ([19], Corollary 1).
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4. Non-Existence of Global in Time Solutions for Problem (1)–(2)–(3)

We assume that

(i) 0 < α, β < 1, L > 0.
(ii) ψ ∈ C1([0, ∞)), limx→∞ ψ(x) = +∞, ψ′(x) > 0, x ≥ 0.
(iii) η0, u0 ∈ C1([0, L]).

We first establish the following mass conservation law.

Proposition 1. Suppose that for some 0 < T0 < ∞, (η, u) ∈ C1([0, T0] × [0, L]) × C1([0, T0] × [0, L]),
η ≥ 0, is a solution of problem (1)–(2)–(3). Then

∫ L

0
KL(x)β−1η(t, x)ψ′(x) dx =

∫ L

0
KL(x)β−1η0(x)ψ′(x) dx := m0, 0 ≤ t ≤ T0, (25)

where
KL(x) = ψ(L)− ψ(x). (26)

Proof. From the first equation in (1), one has

−∂
α,ψ
0|t η(t, x) = ∂

β,ψ
0|x (ηu)(t, x), (t, x) ∈ (0, T0]× (0, L),

whereupon
−∂

α,ψ
0|t

(
Iβ,ψ
0 η(t, ·)

)
(L) =

(
Iβ,ψ
0 ∂

β,ψ
0|x (ηu)(t, ·)

)
(L).

Using Lemma 4 and the boundary conditions (3), one obtains(
Iβ,ψ
0 ∂

β,ψ
0|x (ηu)(t, ·)

)
(L) = η(t, L)u(t, L)− η(t, 0)u(t, 0) = 0.

Hence, it holds
∂

α,ψ
0|t

(
Iβ,ψ
0 η(t, ·)

)
(L) = 0,

i.e.,

∂
α,ψ
0|t

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx = 0,

which implies that

Iα,ψ
0 ∂

α,ψ
0|t

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx = 0.

Again, using Lemma 4, one deduces that

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx−

∫ L

0
KL(x)β−1ψ′(x)η(0, x) dx = 0,

which yields (25).

Our principal result is the following.

Theorem 1. Suppose that for some 0 < T0 < ∞, (η, u) ∈ C1(Q)× C1(Q), Q = [0, T0]× [0, L], η ≥ 0, is a
solution of problem (1)–(2)–(3). Let

Tmax := sup
{

τ > 0 : (η, u) ∈ C1([0, τ)× [0, L])× C1([0, τ)× [0, L]) is a solution of (1)− (2)− (3)
}

.

If

J(0) :=
∫ L

0
η0(x)u0(x)KL(x)

β
2−1ψ′(x) dx > 0, (27)
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where KL is given by (26), then

T0 ≤ Tmax ≤ ψ−1 (ψ(0) + M(a, α)) < ∞, (28)

where M(a, α) is given by (11) (with θ = α),

a = 2
Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0

and m0 is given by (25).

Proof. We introduce the function

ϕ(x) = KL(x)
β
2−1ψ′(x), 0 ≤ x < L. (29)

Multiplying the second equation in (1) by ϕ(x) and integrating over (0, L), one obtains

1
2

∫ L

0
ϕ(x)

1
ψ′(t)

∂t(ηu)(t, x) dx +
1
2

∫ L

0
ϕ(x)∂α,ψ

0|t (ηu)(t, x) dx +
∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx

+
∫ L

0
ϕ(x)∂β,ψ

0|x (η
2)(t, x) dx = 0, 0 < t < T0,

which yields

1
2ψ′(t) J′(t) + 1

2

(
∂

α,ψ
0|t J
)
(t) = −

∫ L
0 ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx−
∫ L

0 ϕ(x)∂β,ψ
0|x (η

2)(t, x) dx, 0 < t < T0, (30)

where

J(t) =
∫ L

0
ϕ(x)(ηu)(t, x) dx, 0 ≤ t ≤ T0.

On the other hand, using (8), one has

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx =
∫ L

0

(
I1−β,ψ
0

∂x(ηu2)(t, ·)
ψ′

)
(x)

ϕ(x)
ψ′(x)

ψ′(x) dx.

Hence, by Lemma 3, one obtains

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx =
∫ L

0

∂x(ηu2)(t, x)
ψ′(x)

(
I1−β,ψ
L

ϕ

ψ′

)
(x)ψ′(x) dx

=
∫ L

0
∂x(ηu2)(t, x)

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx.

Next, using an integration by parts and the boundary conditions (3), one deduces that

∫ L

0
ϕ(x)∂β,ψ

0|x (ηu2)(t, x) dx = −
∫ L

0
η(t, x)u2(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (31)

Similarly, one has

∫ L

0
ϕ(x)∂β,ψ

0|x (η
2)(t, x) dx = −

∫ L

0
η2(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (32)

It follows from (30)–(32) that

1
2ψ′(t) J′(t) + 1

2

(
∂

α,ψ
0|t J
)
(t) =

∫ L
0 (ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x) dx +

∫ L
0 η2(t, x)∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x) dx. (33)
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Next, using (29), for x ∈ (0, L), an elementary calculation gives us that

(
I1−β,ψ
L

ϕ

ψ′

)
(x) =

Γ
(

β
2

)
Γ
(

1− β
2

)KL(x)−
β
2 .

Hence, it holds

∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) =

Γ
(

1 + β
2

)
Γ
(

1− β
2

)KL(x)−
β
2−1ψ′(x) > 0, 0 < x < L. (34)

It follows from (33) and (34) that

1
2ψ′(t)

J′(t) +
1
2

(
∂

α,ψ
0|t J
)
(t) ≥

∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx. (35)

On one hand, by Hölder’s inequality, one has

J2(t)

≤
(∫ L

0
η(t, x)|u(t, x)|ϕ(x), dx

)2

=

⎛⎜⎝∫ L

0

√
η(t, x)|u(t, x)|

√
∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x)

√√√√ η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ(x) dx

⎞⎟⎠
2

≤
(∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx

)⎛⎝∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx

⎞⎠ .

(36)

On the other hand, using (29) and (34), one obtains

∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx

=
Γ
(

1− β
2

)
Γ
(

1 + β
2

) ∫ L

0
KL(x)β−1ψ′(x)η(t, x)KL(x)

β
2 dx

≤
Γ
(

1− β
2

)
Γ
(

1 + β
2

)KL(0)
β
2

∫ L

0
KL(x)β−1ψ′(x)η(t, x) dx.

Furthermore, using the mass conservation law (25), one deduces that

∫ L

0

η(t, x)

∂x

(
I1−β,ψ
L

ϕ
ψ′

)
(x)

ϕ2(x) dx ≤
Γ
(

1− β
2

)
Γ
(

1 + β
2

)KL(0)
β
2 m0. (37)

Next, (36) and (37) yield

∫ L

0
(ηu2)(t, x)∂x

(
I1−β,ψ
L

ϕ

ψ′

)
(x) dx ≥

Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0
J2(t), 0 < t < T. (38)
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It follows from (35) and (38) that

1
ψ′(t)

J′(t) +
(

∂
α,ψ
0|t J
)
(t) ≥ 2

Γ
(

1 + β
2

)
Γ
(

1− β
2

) KL(0)−
β
2

m0
J2(t), 0 < t < T0.

Hence, using (27) and Lemma 5, the estimate (28) follows.

Example 1. Consider the system⎧⎨⎩
CDα

0|tη + CDβ

0|x(ηu) = 0, t > 0, 0 < x < L,
1
2

[
∂t(ηu) + CDα

0|t(ηu)
]
+ CDβ

0|x(ηu2) + CDβ

0|x(η
2) = 0, t > 0, 0 < x < L

(39)

under the initial and boundary conditions (2) and (3). Here CDα
0|t is the Caputo derivative in time of fractional

order 0 < α < 1 and CDβ

0|x is the Caputo derivative in space of fractional order 0 < β < 1. System (39) is a

special case of (1) with ψ(s) = s. Hence, by Theorem 1, one deduces that if (η, u) ∈ C1([0, T0]× [0, L])×
C1([0, T0]× [0, L]) is a solution of problem (39)–(2)–(3) for some 0 < T0 < ∞, and

J(0) :=
∫ L

0
η0(x)u0(x)(L− x)

β
2−1 dx > 0,

then
T0 ≤ Tmax ≤ M(a, α) < ∞,

where M(a, α) is given by (11) (with θ = α) and

a = 2
Γ
(

1 + β
2

)
Γ
(

1− β
2

) L
−β
2

(∫ L

0
(L− x)β−1η0(x) dx

)−1

.

5. Conclusions

A fractional in time and space shallow-water system is investigated in this paper. The considered
fractional derivative depends of a function ψ ∈ C1([0, ∞)), and generalizes Caputo fractional
derivative, which corresponds to the case ψ(t) = t. Using the test function method, it is shown
that under certain conditions imposed on the initial data, the system admits no global in time solutions.
Furthermore, an upper bound of the lifespan is obtained.
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Abstract: This paper presents a new procedure for designing a fractional order unknown input
observer (FOUIO) for nonlinear systems represented by a fractional-order Takagi–Sugeno (FOTS)
model with unmeasurable premise variables (UPV). Most of the current research on fractional
order systems considers models using measurable premise variables (MPV) and therefore cannot
be utilized when premise variables are not measurable. The concept of the proposed is to model
the FOTS with UPV into an uncertain FOTS model by presenting the estimated state in the model.
First, the fractional-order extension of Lyapunov theory is used to investigate the convergence
conditions of the FOUIO, and the linear matrix inequalities (LMIs) provide the stability condition.
Secondly, performances of the proposed FOUIO are improved by the reduction of bounded external
disturbances. Finally, an example is provided to clarify the proposed method. The obtained results
show that a good convergence of the outputs and the state estimation errors were observed using the
new proposed FOUIO.

Keywords: fractional order unknown input fuzzy observer; fractional order Takagi–Sugeno models;
L2 optimization; linear matrix inequalities; unmeasurable premise variables

1. Introduction

Recently, the interest in fractional derivatives and integral applications, as well as in theoretical
and practical works, has grown immensely, see for example [1–6]. The main aspects, concept and
several applications of fractional calculus are outlined, for example, in [7–14]. This is essentially due to
the fact that various physical systems are well described by a fractional order state equation [15–17].

Growing applications have attracted interest in studying the state estimation of fractional
differential equations in a linear case [18–21] and in a nonlinear case [22–25]. It is well known
that the study of the problem of stabilization of the fractional order system is particularly important
for the synthesis of the observer [26–36].

Takagi–Sugeno (TS) fuzzy models have also attracted attention in recent years. The main feature
of this class of nonlinear models is to represent the local dynamics of each fuzzy implication (rule)
by linear system models. It has been effectively employed in the implementation of nonlinear
systems [37–41]. Takagi–Sugeno models have been broadly utilized to represent nonlinear integer-order
systems. However, the fuzzy Takagi–Sugeno scheme remains very efficient for nonlinear fractional
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order systems (FOS) [42–44]. Therefore, the use of fractional-order Takagi–Sugeno (FOTS) models to
represent nonlinear FOS will be introduced in this paper. Several approaches confirm that the validity
functions of Takagi–Sugeno representation rely on measurable premise variables, whereas various
applications, like diagnosis, consider that those variables rely on the input and state variables of the
system that are usually immeasurable [45–48].

Takagi–Sugeno uses premise variables for computing weighting functions. Premise variables can
be known (inputs or outputs of the system), or unknown variables taken as the state of the system to
be estimated. State variables are usually unmeasurable, but they can be measured by the introduction
of sensors, with an additional cost, but the right choice is to estimate the state variables in order to
avoid the effects of sensor and shareholder faults that may have appeared on the inputs or outputs
of the system considered. This justifies the research works on the state estimation of systems [48,49].
In order to use the state of the system as premise variables, then the states must be estimated, hence
the need to synthesize an adequate observer able to estimate the state of the system despite the
presence of unknown inputs and disturbances. Hence, it is motivating to deem the common state
of unmeasurable variables such as system states. The problem appears especially in the structure of
the state of the TS observer.

To implement a fuzzy observer for TS systems with unmeasurable premise variables (UPV),
several methods have been evolved, comprising those which take account of analytical advances of an
estimation error [50–52], and those which use the error description by a TS model with uncertainty or
unorganized disruption [49]. The present work presents the Takagi–Sugeno unknown input fractional
order observers design for FOTS models with UPV.

The main objective of the current paper is to found new stability and stabilization conditions using
FOTS systems with UPV in the continuous case, to implement observers for nonlinear systems. The case
where the weighting functions rely on premise variables depending on unmeasurable system states is
considered. First, the representation of FOTS systems with UPV and their observers will be considered,
which are given under the linear matrix inequalitie (LMI) formulation. Then, an analysis of the
stability of the state estimation error studied by using the minimization of the L2 norm of the transfer
from bounded unknown exogenous disturbances to the state estimation error will be established.
An application example is designed to demonstrate the performance of the suggested approach.

This paper is organized in the following way. The next section provides some background
on the fractional calculus. The FOTS model is presented in Section 3. The main results of the paper, namely
the synthesis of the fractional fuzzy observer based unmeasurable premise variables, are presented in
Section 4. A new proposed method for unknown input estimation of the fractional order Takagi–Sugeno
unknown input observer is given in Section 5. A numerical example is given in Section 6 to demonstrate
the efficiency and validity of the proposed approach. Finally, the paper ends with concluding remarks
and future perspectives in Section 7.

2. A Brief Introduction to Fractional Calculus

The fractional differo-integral operators are symbolized byaDα
t f (t), where a and t, are the bounds

of the operation and α ∈ R is a generalization of the standard integration and differentiation
to an arbitrary order, which can be rational, irrational or even complex. The basic continuous
differo-integral operator is given by the following:

aDα
t :=

⎧⎪⎨⎪⎩
dα

dtα , for α > 0,
1, for α = 0,∫ t

a (dτ)α , for α < 0.
(1)

In the literature, different definitions can be found concerning fractional order systems. The best
most commonly used definitions of fractional order derivatives are:

The Riemann–Liouville (RL) definition [53]:
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aDα
t f (t) =

1
Γ(m− α)

(
d
dt

)m ∫ t

a

f (τ)
(t− τ)1−(m−α)

dτ. (2)

The Grunwald–Letnikov (GL) definition [53]:

aDα
t f (t) = lim

h→0

1
hα

(t−a)/h

∑
k=0

(−1)k

(
α

k

)
f (t− kh). (3)

The Caputo definition of the fractional differ-integral operator for the function f (t) is adopted
in this paper as the Caputo definition allows the initial values of classical integer-order derivatives
with clear physical interpretation to be used as follows [51,53]:

aDα
t f (t) =

1
Γ(m− α)

∫ t

a

f m(τ)

(t− τ)1−(m−α)
dτ. (4)

In these expressions m− 1 < α < m, and Γ(.) is the well-known Eulers gamma function:

Γ(x) =
∫ ∞

0
e−tt(x−1)dt, x > 0. (5)

3. Fractional Order Takagi–Sugeno Model

Consider the following nonlinear system given by [54]:{
aDα

t x(t) = f (x, u) ,
y(t) = g (x, u) ,

(6)

where x(t) ∈ Rn and α is the fractional order derivative. f and g are nonlinear functions.
Using the well-known transformation by nonlinear sector, the following TS fuzzy system is

given [49]: ⎧⎪⎪⎨⎪⎪⎩
aDα

t x(t) =
M
∑

i=0
hi (ξ(t)) [Aix(t) + Biu(t)] ,

y(t) =
M
∑

i=0
hi (ξ(t)) [Cix(t) + Diu(t)] ,

(7)

where u(t) ∈ Rm is the input vector, x(t) ∈ Rn is the state vector, and y(t) ∈ Rp represents the
output vector. Ai ∈ Rn×n, Bi ∈ Rn×nu , Ci ∈ R

n×ny and Di ∈ R
ny×nu are known matrices. hi (ξ(t))

are the weighting functions relying on the premise variables ξ(t) which can be measurable (input or
output of the system) or unmeasurable variables (state of the system). It can also be an external signal.
These functions confirm the following so-called convex sum property:⎧⎨⎩

M
∑

i=0
hi (ξ(t)) = 1,

0 ≤hi (ξ(t)) ≤ 1, ∀i ∈ {1, 2, ..., M} .
(8)

In this paper, the target is to model a fractional order fuzzy TS observer with UPV. Thus, the work
is dedicated to the problem of state estimation for nonlinear fractional order systems characterized by
continuous time TS models, with unknown input ū(t).

Under the hypothesis C1 = C2 = · · · = C and Di = 0, the FOTS model in the presence of
unknown inputs and a measurable premise variable can be defined as follows:⎧⎨⎩ aDα

t x(t) =
M
∑

i=0
hi (x(t)) [Aix(t) + Biu(t) + Eiū(t)] ,

y(t) = Cx(t) + Eū(t),
(9)
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where ū(t) ∈ Rq (q < p) is the input vector, and Ei ∈ Rn×nū and E ∈ R
ny×nū are known matrices. This

can be rewritten as:⎧⎨⎩ aDα
t x(t) =

M
∑

i=0
hi (x̂(t)) [Aix(t) + Biu(t) + Eiū(t) + (hi (x(t))− hi (x̂(t))) (Aix(t) + Biu(t) + Eiū(t))]

y(t) = Cx(t) + Eū(t).
(10)

After rewriting the model (9), we obtain:⎧⎨⎩ aDα
t x(t) =

M
∑

i=0
hi (x̂(t)) [Aix(t) + Biu(t) + Eiū(t) + ω(t)] ,

y(t) = Cx(t) + Eū(t).
(11)

This form corresponds to a perturbed FOTS model with measurable premise variables
(estimated state of the system), where:

ω(t) =
M

∑
i=1

(hi (x(t)− x̂(t))) [Aix(t) + Biu(t) + Eiū(t)] . (12)

This term is considered a global bounded and asymptotically vanishing perturbation.

4. Fractional Order Takagi–Sugeno Unknown Input Observer

The proposed fractional order Takagi–Sugeno fuzzy unknown input observer is given by
the following equations:⎧⎨⎩ aDα

t x(t) =
M
∑

i=0
hi (x̂(t)) [Niz(t) + Giu(t) + Liy(t)] ,

x̂(t) = z(t) + Hy(t).
(13)

The state and the output estimation can be defined as:

x̃(t) = x(t)− x̂(t),
= x(t)− z(t) + HCx(t) + HEū(t),
= Px(t)− z(t) + HEū(t),

(14)

where
P = I + HC. (15)

Hence, the dynamics of the state estimation error is

t0 Dα
t x̂(t) = Pt0 Dα

t x(t)−t0 Dα
t z(t) + HEt0 Dα

t ū(t)

=
M
∑

i=1
hi (x̂(t)) [PAix(t) + PBiu(t) + PEiū(t)

+Pω(t)− Niz(t)− Giu(t)− Liy(t)] + HEt0 Dα
t ū(t),

(16)

replacing y(t) and z(t) by their respective expressions given by (11) and (13), the state error is given
as follows:

t0 Dα
t x̃(t) =

M
∑

i=1
hi (x̂(t)) [(PAi − Ni − KiC) x(t) + (PBi − Gi) u(t) + (PEi − KiE) ū(t) + Pω(t)

+Nie(t)] + HEt0 Dα
t ū(t),

(17)

with Ki = Ni H + Li.
If the next conditions are satisfied:

HE = 0, (18)
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Ni = PAi − KiC, (19)

PBi = Gi, (20)

PEi = KiE (21)

and
Li = Ki − Ni H. (22)

Then, the dynamics of the state estimation error become:

t0 Dα
t x̃(t) =

M

∑
i=1

hi (x̂(t)) [Nix̃(t) + Pω(t)] , (23)

thus showing that the dynamics of the state estimation error is disturbed by ω(t).
To synthesize the matrices of the observer (13), two techniques are proposed.

4.1. First Approach

It is assumed that the term ω(t) defined in (12) satisfies the following Lipschitz condition:

|ω(t)| ≤ δ |x̃(t)| , (24)

where δ is a positive constant.

Lemma 1 (see [55]). Let M and N be matrices of the appropriate sizes, then the following property holds:

MT N + NT M ≤ ηMT M + η−1NT N, η > 0. (25)

Theorem 1. A fractional order unknown input observer (13) for system (11) exists if there exists a positive
definite matrix X, matrices Mi, S, positive scalars η and δ satisfying the following conditions for all
i = 1, · · · , M: [

Θi (X + SC)
(X + SC)T −λI

]
< 0, (26)

SE = 0, (27)

(X + SC) Ei = MiE, (28)

where
Θi = AT

i

(
X + CTS

)
+ (X + SC) Ai − CT MT

i −MiC + ηδ2 I. (29)

Then, the fractional order observer (13) is completely defined by:

H = X−1S, (30)

Ki = X−1Mi, (31)

Ni = (I + HC) Ai − KiC, (32)

Li = Ki − Ni H, (33)

and
Gi = (I + HC) Bi. (34)

Proof of Theorem 1. In order to found the existence conditions of the fractional order observer
in Theorem 1, Lemma 1 can be introduced:
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Considering the following quadratic Lyapunov function:

V(t) = x̃(t)TXx̃(t), X = XT > 0, (35)

its derivative with regard to time is given by:

t0 Dα
t V(t) ≤t0 Dα

t x̃(t)TXx̃(t)(t) + x̃(t)TXt0 Dα
t x̃(t). (36)

By substituting (24), the dynamic of the quadratic Lyapunov function becomes:

t0 Dα
t V(t) ≤

M

∑
i=1

μi (x̂(t))
[

x̃(t)T
(

NT
i X + XNi

)
x̃(t) + x̃(t)TXPω(t) + ω(t)T PTXx̃(t)

]
, (37)

and when using Lemma 1 and (25), this allows for the following:

x̃TXPω + ωT PTXx̃ ≤ ηωTω + η−1 x̃TXPPTXx̃
≤ ηγ2 x̃T x̃ + η−1 x̃TXPPTXx̃.

(38)

Substituting (38) in the fractional derivative of the Lyapunov function (36) yields:

t0 Dα
t V =

M

∑
i=1

μi (x̂)x̃T
(

NT
i X + XNi + ηγ2 I + η−1XPPTX

)
x̃. (39)

Since the activation functions satisfy condition (8), the fractional derivative of the Lyapunov
function is negative if:

NT
i X + XNi + ηγ2 I + η−1XPPTX < 0. (40)

According to (19), Equation (40) becomes:

(PAi − KiC)
T X + X (PAi − KiC) + ηδ2 I + η−1XPPTX < 0. (41)

It is noted unfortunately that the matrix inequality (41) gives a disadvantage since it is nonlinear
with respect to the variables Ki, X and η (more precisely bilinear). A numerical procedure of resolution
by linearization is obtained in the following section.

In order to convert these conditions into an LMI formulation, the following change of variables
is considered:

Mi = XKi (42)

and by using the Schur complement [16], the linear matrix inequality is obtained:[
AT

i PTX + XPAi − CT MT
i + ηδ2 I XP

PTX −η I

]
< 0. (43)

To satisfy condition (18), the equality can be solved:

XHE = 0. (44)

Using the change of variable S = XH, linear matrix equality is obtained:

SE = 0. (45)

The conditions (21) must be satisfied simultaneously, and using the change of variable (42) gives:

(X + SC) Ei = MiE. (46)
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Since P = I + HC, replacing P in (43), the matrix inequality of Theorem 1 can be obtained.
The conditions (26)–(28) of Theorem 1 are thus demonstrated.

4.2. Second Approach

In the case where hypothesis (24) is not satisfied, meaning that the information on its bounded δ

is not available, the method established in the previous section cannot be applied.
In this section, another method based on the use of the L2 approach is proposed.

Theorem 2. A fractional order unknown input observer (13) for system (11) exists if there exists a positive
definite matrix X, matrices Mi, S and positive scalars δ̄ satisfying the following conditions for all i = 1, · · · , M:[

Θi X + SC
(X + SC)T −γ̄I

]
< 0, (47)

SE = 0 (48)

and
(X + SC) Ei = MiE, (49)

where
Θi = AT

i

(
X + CTS

)
+ (X + SC) Ai − CT MT

i −MiC + I. (50)

Then, the fractional order UI observer (13) is completely defined by (30)–(34).

Proof of Theorem 2. To prove Theorem 2, the real bounded Lemma 1 [56] is used.
The dynamics of the fractional state estimation error are given by:

t0 Dα
t x̃(t) =

M

∑
i=1

hi (x̂(t)) [Nix̃(t) + Pω(t)] . (51)

Consider the following Lyapunov quadratic function:

V(t) = x̃(t)TXx̃(t), X = XT > 0. (52)

Its derivative with regard to time is specified by:

t0 Dα
t V(t) ≤t0 Dα

t x̃(t)TXx̃(t) + x̃(t)TXt0 Dα
t x̃(t). (53)

By substituting (23), the dynamic of the quadratic Lyapunov function is obtained:

t0 Dα
t V(t) ≤

M

∑
i=1

μi (x̂(t))
[

x̃(t)T
(

NT
i X + XNi

)
x̃(t) + x̃(t)TXPω(t) + ω(t)T PTXx̃(t)

]
. (54)

In order to mitigate the impact of ω(t) on the state estimation error, the L2 [52] will be used.
It can guarantee:

‖x̃(t)‖2
‖ω(t)‖2

< δ, δ > 0. (55)

The system of the state estimation error is stable and the gain L2 noted δ of the transfer from ω(t)
to x̃(t) is bounded, if:

t0 Dα
t V (x̃(t)) + x̃(t)T x̃(t)− δ2ω(t)Tω(t) < 0. (56)
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By substituting t0 Dα
t V (x̃(t)), the inequality (56) becomes:

M
∑

i=1
μi (x̂(t))

[
x̃(t)T (NT

i X + XNi
)

x̃(t) + x̃(t)TXPω(t) + ω(t)T PTXx̃(t)

+x̃(t)Tx̃(t)− δ2ω(t)Tω(t)
]

.
(57)

The estimation error converges to zero and the gain L2 of the transfer from ω(t) to x̃(t) is bounded
by δ if the following inequality is verified:

M

∑
i=1

μi (x̂(t))

[
NT

i X + XNi + I XP
PTX −δ2 I

]
< 0. (58)

The convex sum property of the activation functions makes it possible to write the following
sufficient condition: [

NT
i X + XNi + I XP

PTX −δ2 I

]
< 0. (59)

Using the expression (19) of Ni and the changes of variables Mi = XKi and δ̄ = δ2 (48) becomes:[
Θi XP

PTX −δ̄I

]
< 0, ∀i = 1, ..., M (60)

where
Θi = AT

i PTX + XPAi − CT MT
i −MiC + I.

To satisfy condition (18), the equality can be solved:

XHE = 0. (61)

Using the change of variable S = XH, the linear matrix equality is obtained:

SE = 0. (62)

The conditions (21) must be satisfied simultaneously, and by using the change of variable (42) gives:

(X + SC) Ei = MiE. (63)

Since P = I + HC, replacing P in (60), the matrix inequality of Theorem 2 is obtained.
The conditions (47)–(49) of Theorem 2 are thus demonstrated.

5. Unknown Inputs Estimation

In system (11), the unknown input ū(t) appears with the influence matrix:

Φ(t) =

⎡⎣ M
∑

i=1
hi (x̂(t)) Ei

E

⎤⎦ . (64)

For the estimation of the unknown input, it is necessary that the rank of the matrix Φ(t) is verified
at each time t for the following condition:

rank (Φ(t)) = q, (65)
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where q is the dimension of ū(t). If this condition is satisfied, Φ(t) is full-rank column and
its pseudo-inverse left Φ−1(t) exists:

Φ−(t) =
(

ΦT(t)Φ(t)
)−1

ΦT(t). (66)

The unknown input can then be calculated according to the state estimated as follows:

ˆ̄u(t) = Φ−

⎡⎣ t0 Dα
t x̂(t)−

M
∑

i=1
hi (x̂(t)) [Aix̂(t) + Biu(t)]

y (t)− Cx̂ (t)

⎤⎦ , (67)

under condition (65) the asymptotic convergence from x̂(t) to x(t) results in the asymptotic
convergence of ˆ̄u(t) to ū(t).

6. Example and Comparisons

To validate the advantages of the proposed fractional order unknown input observer,
the system (68) represented by the FOTS model with UPV is considered with α = 0.8. The state
estimation is carried out by means of two fuzzy unknown input observers, the first with integer order
and the second one with fractional order. The unknown inputs considered may be noise, faults or
modeling uncertainties.

Example and Simulation Results

Consider the FOTS model (8), which is defined as follows :⎧⎨⎩ t0 Dα
t x̂(t) =

M
∑

i=1
hi (x(t)) [Aix(t) + Biu(t) + Fiū(t)] ,

y(t) =Cx (t) + Gū(t),
(68)

where: A1 =

⎡⎢⎣ −2 1 1
1 −3 0
2 1 −4

⎤⎥⎦, A2 =

⎡⎢⎣ −3 2 −2
5 −3 0

0.5 0.5 −4

⎤⎥⎦, B1 =

⎡⎢⎣ 1
0.3
0.5

⎤⎥⎦, B2 =

⎡⎢⎣ 0.5
1

0.25

⎤⎥⎦,

C =

[
1 1 1
1 0 1

]
, F1 =

⎡⎢⎣ 0.5
−1
0.25

⎤⎥⎦, F2 =

⎡⎢⎣ −1
0.52

1

⎤⎥⎦, G =

[
0.9
0.9

]
.

The activation functions are chosen in the form:{
h1 (x) = 1−tanh(x1)

2 ,
h2 (x) = 1− h1 (x) = 1+tanh(x1)

2 .
(69)

Two cases are considered for simulation, the first one in the absence of unknown inputs
(unknown inputs are null), and the second one in the presence of unknown inputs. The unknown
input considered is accompanied by an additive noise. To have a treatment close to reality, the initial
values of the system are chosen non-null, but the initial values of the two unknown input observers
are chosen equal to zero.

The outputs and the states of the FOTS system with their estimations given by the fuzzy integer
and fractional order unknown input observers, and the unknown inputs and their estimates will be
compared and analyzed.

Case 1: Absence of unknown input.

At first, the case of the absence of unknown inputs (unknown inputs are null) will be evaluated.
Figure 1 shows the two outputs of the considered FOTS system (ys1, ys2), the outputs estimated by
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the FOUIO (yo1, yo2) and the fractional order unknown input observer (FOUIO) (y f o1, y f o2) in the
absence of unknown inputs. Figure 2 shows the outputs estimation error (a and b) in the absence of
unknown inputs (ys1 − yo1, ys2 − yo2) and (ys1 − y f o1, ys2 − y f o2). The two Figures 1 and 2 show
that the FOUIO gives better output estimation for the considered system. The decreased quality of the
output estimation at the moment t = 0 is because of the choice of the initial values.

Figure 1. Outputs of the fractional-order Takagi–Sugeno (FOTS) system and its estimation by FOUIO
and fractional order unknown input observer (FOUIO) in a free of fault case.

(a) (b)
Figure 2. Output estimation Error in a free of fault case. (a) Error output estimation of the FOTS system
by FUIO in a free of fault case. (b) Error output estimation of the FOTS system by FOUIO in a free of
fault case.

Figure 3 presents the states of the FOTS system (xs1, xs2, xs3) and their estimations given
by the FUIO (xo1, xo2, xo3) and the FOUIO (x f o1, x f o2, x f o3) in the absence of unknown inputs.
Figure 4 shows the state estimation errors (a and b) in the absence of unknown inputs
(xs1 − xo1, xs2 − xo2, xs3 − xo3) and (xs1 − x f o1, xs2 − x f o2, xs3 − x f o3). The two Figures 3 and 4
show that the fuzzy observer with unknown inputs gives a better state estimation of the FOTS
system. The decreased quality of the state estimation at the moment t = 0 is because of the choice of
the initial values.
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Figure 3. State of the FOTS system and its estimation by FUIO and FOUIO in a free of fault case.

(a) (b)
Figure 4. State estimation error in free of fault case. (a) State estimation error between the FOTS system
and FUIO in a free of fault case. (b) State estimation error between the FOTS system and FOUIO in a
free of fault case.

Now, the case of the presence of unknown inputs will be evaluated.

Case 2: Presence of unknown input and measurement noise simultaneously.

Figure 5 shows the outputs of the FOTS system (ys1, ys2), and their estimations given by the
FUIO (yo1, yo2) and the fuzzy FOUIO (y f o1, y f o2) in the presence of unknown inputs. Figure 6 shows
the outputs estimation error (a and b) in the presence of unknown inputs (ys1 − yo1, ys2 − yo2) and
(ys1− y f o1, ys2− y f o2). The two Figures 5 and 6 show that the FOUIO gives a better output estimation
for the FOTS system. The decreased quality of the outputs estimation at the moment t = 0 is because
of the choice of the initial values.

Figure 5. Outputs for the FOTS system and its estimation by FUIO and FOUIO in a faulty case.
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(a) (b)
Figure 6. Output for error estimation faulty case. (a) Outputs for error estimation between the FOTS
system and FUIO in a faulty case. (b) Outputs error estimation between the FOTS system and FOUIO
in a faulty case.

Figure 7 presents the states of the FOTS system (xs1, xs2, xs3) and their estimations given by
the FUIO (xo1, xo2, xo3) and the FOUIO (x f o1, x f o2, x f o3) in the presence of unknown inputs. Figure 8
shows the state estimation errors (a and b) in the presence of unknown inputs (xs1 − xo1, xs2 − xo2,
xs3 − xo3) and (xs1 − x f o1, xs2 − x f o2, xs3 − x f o3). The two Figures 7 and 8 show that the FOUIO
gives a better state estimation for the FOTS system. The decreased quality of the state estimation
at the moment t = 0 is because of the choice of the initial values.

Analyzing the convergence conditions of the proposed FOUIO, if the condition (23) on the term
ω(t) is not satisfied or the value of the constant δ is very important (impossibility of finding a solution
with Theorem 1, Theorem 2) offers the possibility of designing the observer with unknown input.

Figure 7. State estimation for the FOTS system and its estimations by FUIO and FOUIO in a faulty case.

(a) (b)
Figure 8. Output estimation error in faulty case. (a) State estimation error between the FOTS system
and FUIO in a faulty case. (b) State estimation error between the FOTS system and FOUIO in a
faulty case.
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Figure 9 shows the considered unknown input with normal noise (ubar), their estimations
given by the FUIO (ubar FUIO), FOUIO (ubar FOUIO) and the unknown input without noise
(ubar without noise).

Figure 9. Unknown input and their estimations.

Figure 10 shows the unknown input estimation errors (ubar-ubar FUIO, ubar-ubar FOUIO).

Figure 10. Unknown input errors estimation.

The two Figures 9 and 10 show that the FOUIO gives a better unknown input estimation of
the FOTS system, but it cannot be decoupled from the noise. The decreased quality of the unknown
input estimation at the moment t = 0 is because of the choice of the initial values.

In the presence of adding random measurement noises bounded by 0.01, the unknown input
estimated based on the proposed observer is noisy. Indeed, the presence of measurement noise, at high
frequency, decreases the quality of reconstruction of the unknown input.

7. Conclusions

In this paper, a new approach is proposed for designing a fractional order Takagi–Sugeno
unknown input observer for a nonlinear system described by FOTS models with UPV. The first
step is to rewrite the FOTS system in the form of a disturbed equivalent FOTS and with measurable
premise variables. After that, two cases are considered; the first one uses the hypothesis that the
perturbation, which appears after rewriting the FOTS model, verifies a Lipschitz condition, while the
second one does not use this hypothesis. In this second case, another method is developed and based
on an L2 approach. The convergence conditions of the proposed observers are given in the form of
linear matrix inequalities (LMI) that can be easily solved with conventional digital tools.

The obtained results show that a good convergence of the outputs and the state estimation errors is
observed using the new proposed FOUIO. The state of the system can be estimated even in the presence
of an unknown input varying rapidly since it is totally decoupled from the state. An improvement in
the dynamics of the proposed observer is possible by placing the poles.

In future work, it would be interesting to study the decoupling of the noise and the estimation of
the unknown inputs using the augmented systems.
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The following abbreviations are used in this manuscript:

FOTS Fractional Order Takagi–Sugeno
FOS Fractional Order Systems
FUIO Fuzzy Unknown Input Observer
FOUIO Fractional Order Unknown Input Observer
LMI Linear Matrix Inequalities
UPV Unmeasurable Premise Variables
MPV Measurable Premise Variables
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In particular, we determine conditions on α such that 1 + α
z∂qh(z)
(h(z))n (n = 0, 1, 2, 3) are subordinated

by Janowski functions and h (z) ≺ 1 + 4
3 z + 2

3 z2. We also consider the same implications such that
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2 z2. We apply these results on analytic functions to find sufficient conditions for
q-starlikeness related with cardioid and limacon.
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1. Introduction

We recall here some basic notions from the literature of Geometric Function Theory which are
essential for clarity and understandings of the upcoming work. We start with the symbol A which
represents the family of analytic functions in D = {z : |z| < 1} and any function f in A satisfies the
conditions f (0) = 0 and f ′ (0)− 1 = 0. That is, if f in A, then it has the Taylor series expansion as:

f (z) = z +
∞

∑
n=2

anzn, z ∈ D. (1)

Also let S denote a subclass of A which contains univalent functions in D. The notion of
subordinations between analytic functions is represented by f ≺ g and is defined as; a function f is
subordinated by function g, if we can find an analytic function w with the properties w (0) = 0 and
|w (z)| < |z| such that f (z) = g(w(z)). Further, if g is univalent in D, then we have:

f (z) ≺ g(z)⇔ f (0) = g(0) & f (D) ⊂ g(D). (2)

Ma and Minda [1] studied the function ϕ which is analytic and normalized by ϕ(0) = 1 and
ϕ′(0) > 0 with Re {ϕ (z)} > 0 in D. The function ϕ maps D onto regions which is starlike with respect
to 1 and symmetric along the real axis. Further, they introduced the subclasses of starlike and convex
functions respectively as

S∗ (ϕ) =

{
f ∈ A :

z f ′ (z)
f (z)

≺ ϕ (z) , (z ∈ D)
}

,

C (ϕ) =

{
f ∈ A : 1 +

z f ′′ (z)
f ′ (z)

≺ ϕ (z) , (z ∈ D)
}

.
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If we choose ϕ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), then S∗[A, B] := S∗

(
1+Az
1+Bz

)
is the family of

Janowski starlike functions, see [2]. Further by taking A = 1− 2α with 0 ≤ α < 1 and B = −1, we get
the class S∗(α) := S∗[1− 2α,−1] of starlike functions of order α. Also, the notation S∗ := S∗(0)
represents the familiar class of starlike functions. The subclass S∗B := S∗(

√
1 + z) which motivates the

researchers was investigated by Sokół et al. [3] , containing functions f ∈ A such that z f ′(z)/ f (z) lies
in the region bounded by the right-half of the Bernoulli lemniscate given by |w2 − 1| < 1. If we choose
ϕ(z) = 1 + 4

3 z + 2
3 z2, then the class S∗(ϕ) coincides with the class S∗C studied by Sharma et al. [4],

consisting of functions f ∈ A such that z f ′(z)/ f (z) lies in the region bounded by the cardioid given by
(9x2 + 9y2− 18x + 5)2− 16(9x2 + 9y2− 6x + 1) = 0. If we choose ϕ(z) = 1 + sin z, then we get the set
S∗sin, established by Cho et al. [5]. By selecting ϕ(z) = 1 +

√
2z + 1

2 z2, we acheive an interesting class
S∗L containing starlike functions associated with limacon given by (4x2 + 4y2 − 8x − 5)2 − 8(4x2 +

4y2 − 12x− 3) = 0. The class S∗L was introduced in [6]. Further, by choosing some more particular
function ϕ(z), we get several interesting subclasses of starlike functions. For some details, see [7–10].

In some recent years, a more intensive approach has been shown by the researchers in quantum
calculus (q-calculus) because of its wide spread applications in various branches of sciences particularly
in Mathematics and Physics. Among contributors to the study, Jackson was the first who provided basic
notions and established the theory of q-calculus [11,12]. The idea of derivative in q-analogue was used
for the first time by Ismail et al. [13] to initiate and study the geometry of q-starlike functions. After that,
a comprenhensive applications of q-calculus in the field of Geometric Function Theory was contributed
by Srivastava in a book chapter (see, for details, [14] (pp. 347 et seq.)) and in the same chapter he
also given the usage of q-hypergeometric functions in function theory. The concepts of q-starlikeness
was further extended to certain subclasses of starlike functions in q-analogue by Agrawal and Sahoo
in [15] (for the recent contributions on this topic, see the work done by Srivastava et al. [16–19]).
Also, with help of Hadamard product, the q-analogue of Ruscheweyh operator has been introduced
by Kanas and Răducanu [20] and further studied in [21–24]. Many researchers contributed in the
development of the theory by introducing certain classes with the help of q-calculus. For some details
about these contributions, see [25–28].

Let q ∈ (0, 1) and z ∈ D with z �= 0. Then the q-derivative of f is defined by

∂q f (z) =
f (z)− f (qz)

z (1− q)
. (3)

By the virtue of (1) and (3) , we easily calculated that for n ∈ N and z ∈ D

∂q f (z) = 1 +
∞

∑
n=2

[n, q] anzn−1, (4)

where

[n, q] :=
1− qn

1− q
= 1 +

n−1

∑
k=1

ql , and [0, q] = 0.

Using the definition of q-derivative, Seoudy and Aouf [29] introduced the class S∗q (ϕ). Also,
for this class, the familiar Fekete-Szegö problem was obtained by the authors. This class is defined as;

S∗q (ϕ) =

{
f ∈ A :

z∂q f (z)
f (z)

≺ ϕ (z) , (z ∈ D)
}

.

By choosing particular functions instead of the function ϕ, we obtain several interesting subclasses
of starlike functions associated with different image domains. We define few of them as follows.
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S∗Bq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φB (z) , (z ∈ D)
}

,

S∗Cq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φC (z) , (z ∈ D)
}

,

S∗Lq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φL (z) , (z ∈ D)
}

,

where the particular functions φB (z) , φC (z) and φL (z) are given by

φB (z) =
√

1 + z,

φC (z) = 1 +
4
3

z +
2
3

z2,

φL (z) = 1 +
√

2z +
1
2

z2.

Recently, Ali et al. [30] have studied some differential subordinations. More precisely they
studied the differental subordination 1 + αzp′(z)/pn(z) ≺

√
1 + z and found that p (z) ≺

√
1 + z,

where n = 0, 1, 2 for some particular range of α. Similar kind of differential subordinations are
also discussed by various authors. They used these results to find sufficient conditions for starlike
functions, see [31–36]. Motivated by the above work, we introduce and investigate some q-differential

subordinations. In particular, we determine conditions on α so that 1 + α
z∂qh(z)
(h(z))n are subordinated by

Janowski functions and h (z) is subordinated by 1 + 4
3 z + 2

3 z2, where n = 0, 1, 2, 3. Similar results are
also obtained for h (z) ≺ 1 +

√
2z + 1

2 z2, z ∈ D. We use these results to find sufficient conditions for
q-starlike functions associated with cardioid and limacon.

To prove our main results we need the following.

Lemma 1 ([37] (q-Jack’s Lemma)). Let w be analytic in D with w (0) = 0. If w attains its maximum value
on the circle |z| = 1 at z0 = reiθ , for θ ∈ [−π, π] , then for 0 < q < 1

z0∂qw (z0) = mw (z0) ,

where m is real and m ≥ 1.

2. Differential Subordination Related with Cardioid

Theorem 1. Assume that

|α| ≥ 3 (A− B)
2 (1− q) (1− |B|) , −1 < B < A ≤ 1 (5)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + αz∂qh (z) ≺ 1 + Az
1 + Bz

, z ∈ D. (6)

In addition, we suppose that

1 + αz∂qh (z) =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. We define a function
p (z) = 1 + αz∂qh (z) , (7)
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where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z) . (8)

To prove our result, it will be enough to show that |w (z)| < 1. Using (7) and (8) , we obtain

p (z) = 1 +
α

3
z∂qw (z)

{
4 (1 + w (z))− 2 (1− q) z∂qw (z)

}
.

Also ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣ 1 + α
3 z∂qw (z)

{
4 + 4w (z)− 2 (1− q) z∂qw (z)

}
− 1

A− B
[
1 + α

3 z∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}] ∣∣∣∣∣

=

∣∣∣∣∣ αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}

3 (A− B) + αBz∂qw (z)
[
4 + 4w (z)− 2 (1− q) z∂qw (z)

] ∣∣∣∣∣ .
Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|w (z)| = |w (z0)| = 1.

Then by using Lemma 1, there exists a number m ≥ 1 such that z0∂qw (z0) =

mw (z0) . Suppose w (z0) = eiθ , θ ∈ [−π, π]. Then for z0 ∈ D, we have∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ = ∣∣∣∣ αmw (z0) {4 + 4w (z0)− 2 (1− q)mw (z0)}
3 (A− B) + αBmw (z0) [4 + 4w (z0)− 2 (1− q)mw (z0)]

∣∣∣∣
≥ m |α|

∣∣4 + 4eiθ − 2 (1− q)meiθ
∣∣

3 (A− B) + αm |B|
∣∣4 + 4eiθ − 2 (1− q)meiθ

∣∣
=

m |α|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

3 (A− B) + m |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ
.

Consider the function

Ψ (θ) =
m |α|

√
16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

3 (A− B) + m |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ
,

for θ ∈ [−π, π] . It is clear that Ψ is an even function, therefore we find the minimum value of Ψ when
θ ∈ [0, π] . Now

Ψ′ (θ) =
−12 |α|m (A− B) {4− 2 (1− q)m} sin θ(√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

)
(

3 (A− B) + |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

)2

.

It is easy to see that Ψ′ (θ) = 0 when θ = 0, π. Similarly, we can see that Ψ′′ (θ) > 0, when θ = π.
Hence Ψ (θ) ≥ Ψ (π) . Consider the function
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Φ (m) =
|α|m

√
16 + (4− 2 (1− q)m)2 − 8 (4− 2 (1− q)m)

3 (A− B) + |α| |B|
√

16 + (4− 2 (1− q)m)2 − 8 (4− 2 (1− q)m)

=
2 |α| (1− q)m2

3 (A− B) + 2 |α| |B| (1− q)m2

Then

Φ′ (m) =
12 |α| (1− q) (A− B)

{3 (A− B) + 2m2 |α| |B| (1− q)}2 > 0.

which shows that Φ is an increasing function and it has its minimum value at m = 1, so∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 2|α|(1−q)
3(A−B)+2|α||B|(1−q) .

Now by (5) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (6). Hence |w (z)| < 1 and so we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in Theorem 1, we get the following result.

Corollary 1. Let |α| ≥ 3(A−B)
2(1−q)(1−|B|) , −1 < B < A ≤ 1 and f ∈ A satisfy the subordination

1 + αz∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (9)

Then f ∈ S∗Cq

If we choose A = 1 and B = 0 in Corollary 1, then we obtain the following result.

Corollary 2. Let |α| ≥ 3
(1−q) , −1 < B < A ≤ 1and f ∈ A satisfy the subordination

1 + αz∂q

(
z∂q f (z)

f (z)

)
≺ 1 + z, z ∈ D. (10)

Then f ∈ S∗Cq
.

Theorem 2. Assume that

|α| ≥ (A− B)
2 (1− q) (1− |B|) , −1 < B < A ≤ 1 (11)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)

h (z)
≺ 1 + Az

1 + Bz
, z ∈ D. (12)

In addition, we suppose that

1 + α
z∂qh (z)

h (z)
=

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.
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Proof. We define a function

p (z) = 1 + α
z∂qh (z)

h (z)
, (13)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z) . (14)

Using (13) and (14), we obtain

p (z) = 1 +
αz∂qw(z){4+4w(z)−2(1−q)z∂qw(z)}

3(1+ 4
3 w(z)+ 2

3 w2(z))
.

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣ αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}(

3 + 4w (z) + 2 (w (z))2
)
(A− B) + αB

[(
4 + 4w (z)− 2 (1− q) z∂qw (z)

)
z∂qw (z)

]
∣∣∣∣∣∣ .

Hence by applying Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 2|α|(1−q)
(A−B)+2|αB|(1−q) .

By using (11) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (12). Hence we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 3. Let |α| ≥ (A−B)
2(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (15)

Then f ∈ S∗Cq
.

Theorem 3. Assume that

|α| ≥ (A− B)
6 (1− q) (1− |B|) , −1 < B < A ≤ 1 (16)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
h2 (z)

≺ 1 + Az
1 + Bz

, z ∈ D. (17)

In addition, we suppose that

1 + α
z∂qh (z)
h2 (z)

=
1 + Aw (z)
1 + Bw (z)

, z ∈ D,
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where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. We define a function

p (z) = 1 + α
z∂qh (z)

(h (z))2 , (18)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z)

After some simple calculations, we obtain

p (z) = 1 +
3αz∂qw (z)

{
4 + 4w (z)− 2 (1− q) z∂qw (z)

}
(3 + 4w (z) + 2w2 (z))2 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣ 3αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}

(3 + 4w (z) + 2w2 (z))2
(A− B)− 3αBz∂qw (z)

[(
4 + 4w (z)− 2 (1− q) z∂qw (z)

)]
∣∣∣∣∣ .

Hence by applying Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 6|α|(1−q)
(A−B)+6|αB|(1−q) .

Now by using (16) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (17). Hence we get the required result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 4. Let |α| ≥ (A−B)
6(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)2
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (19)

Then f ∈ S∗Cq
.

Theorem 4. Assume that

|α| ≥ (A− B)
18 (1− q) (1− |B|) , −1 < B < A ≤ 1 (20)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
h3 (z)

≺ 1 + Az
1 + Bz

, z ∈ D. (21)
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In addition, we suppose that

1 + α
z∂qh (z)
h3 (z)

=
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in U with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. Here we define a function

p (z) = 1 + α
z∂qh (z)

(h (z))3 , (22)

where p is analytic and p (0) = 1. Consider

h (z) = 1 + 4
3 w (z) + 2

3 w2 (z) .

After some simplifications, we obtain

p (z) = 1 +
αz∂qw(z){4+4w(z)−2(1−q)z∂qw(z)}

3(1+ 4
3 w(z)+ 2

3 w2(z))
3 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
9αz∂qw (z)

{
4 + 4w (z)− 2 (1−) z∂qw (z)

}(
3 + 4w (z) + 2 (w (z))2

)3
(A− B) + 9αBz∂qw (z)

[
4 + 4w (z)− 2 (1− q) z∂qw (z)

]
∣∣∣∣∣∣∣ .

Hence by Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 18|α|(1−q)
(A−B)+18|αB|(1−q) .

Now by using (20) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. We complete the required proof.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 5. Let |α| ≥ (A−B)
18(1−q)(1−|B|) , −1 < B < A ≤ 1 and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)3
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (23)

Then f ∈ S∗Cq
.

Theorem 5. Assume that

|α| ≥ (A− B)
2.3n−1 (1− q) (1− |B|) , −1 < B < A ≤ 1 (24)
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and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
(h (z))n ≺

1 + Az
1 + Bz

, z ∈ D. (25)

In addition, we suppose that

1 + α
z∂qh (z)
(h (z))n =

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. The proof of Theorem 5 is similar to the theorems proved above and so here we choose to omit
the details.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 6. Let |α| ≥ (A−B)
2.3n−1(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)n
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (26)

Then f ∈ S∗Cq
.

3. Differential Subordination Related with Limacon

Theorem 6. Assume

|α| ≥ 2 (A− B)√
8 + (1 + q)

(
1 + q− 4

√
2
)
(1− |B|)

, −1 < B < A ≤ 1 (27)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α∂qh (z) ≺ 1 + Az
1 + Bz

, z ∈ D. (28)

In addition, we suppose that

1 + α∂qh (z) =
1 + Aw (z)
1 + Bw (z)

, z ∈ D

with w (0) = 0, then

h (z) ≺ 1 +
√

2z +
1
2

z2, z ∈ D.

Proof. We define a function
p (z) = 1 + αz∂qh (z) , (29)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) +
1
2

w2 (z) . (30)
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To prove our result, it will be enough to show that |w (z)| < 1. Using (29) and (30) , we obtain

p (z) = 1 +
αz∂qw (z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

.

Also ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣
1 + αz∂qw(z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}
− 1

A− B
[
1 + αz∂qw(z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}]
∣∣∣∣∣∣

=

∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

2 (A− B) + αBz∂qw (z)
[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣ .

Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|w (z)| = |w (z0)| = 1.

Then by using Lemma 1, there exists a number m ≥ 1 such that z0∂qw (z0) = mw (z0).
Suppose w (z0) = eiθ , θ ∈ [−π, π]. Then for z0 ∈ D, we have

∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ =
∣∣∣∣∣∣

αmw (z0)
{

2
√

2 + 2w (z0)− (1− q)mw (z0)
}

2 (A− B) + αBmw (z0)
[
2
√

2 + 2w (z0)− (1− q)mw (z0)
]
∣∣∣∣∣∣

≥
m |α|

∣∣∣2√2 + 2eiθ − (1− q)meiθ
∣∣∣

2 (A− B) + m |αB|
∣∣∣2√2 + 2eiθ − (1− q)meiθ

∣∣∣
=

m |α|
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ

2 (A− B) + m |α| B
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ
.

Consider the function

Θ1 (θ) =
m |α|

√
8 + (2− (1− q)m)2 + 4

√
2 ((2− (1− q)m)) cos θ

2 (A− B) + m |αB|
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ
.

For θ ∈ [−π, π] . It is clear that Θ1 is an even function, therefore we find the minimum value of
Θ1 when θ ∈ [0, π] . Now

Θ′1 (θ) = −
4
√

2m |α| (A− B) a sin θ(√
8 + a2 + 4

√
2a cos θ

) (
2 (A− B) + m |αB|

√
8 + a2 + 4

√
2a cos θ

)2 ,

where a = 2− (1− q)m. It is easy to see that Θ′1 (θ) = 0 when θ = 0, π. Similarly, we can see that
Θ′′1 (θ) > 0, when θ = π. Hence Θ1 (θ) ≥ Θ1 (π) . Now consider the function

Λ1 (m) =
m |α|

√
8 + (2− (1− q)m)2 − 4

√
2 (2− (1− q)m)

2 (A− B) + m |αB|
√

8 + (2− (1− q)m)2 − 4
√

2 (2− (1− q)m)
.
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Now

Λ′1 (m) =
4 |α| (A− B)

{
6− 4

√
2 + 3bm

(√
2− 1

)
+ b2m2)

}
√

8 + (2− bm)2 + 4
√

2(bm− 2)

(
2 (A− B) +

m |αB|
√

8 + (2− bm)2 − 4
√

2(2− bm)

)2 > 0,

where b = 1− q. This shows that Λ is an increasing function and it has its minimum value at m = 1, so

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))

2(A−B)+|αB|
√

8+(2−(1−q))2−4
√

2(2−(1−q))
.

Now by (27) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (28). Hence |w (z)| < 1 and so we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 7. Let |α| ≥ 2(A−B)√
8+(1+q)(1+q−4

√
2)(1−|B|)

, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + α∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (31)

Then f ∈ S∗Lq
.

Theorem 7. Assume

|α| ≥ (A−B)
√

28−16
√

2

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (32)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh(z)

h(z) ≺ 1+Az
1+Bz . (33)

In addition, we suppose that

1 + α
z∂qh (z)

h (z)
=

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.

Proof. We define a function

p (z) = 1 + α
z∂qh (z)

h (z)
, (34)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) . (35)
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Using (34) and (35), we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(1−q)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

) .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(
2 + 2

√
2w (z) + w2 (z)

)
(A− B) + αBz∂qw (z)

[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣ .

Then using the similar method as in Theorem 7, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))√
28−16

√
2(A−B)+|αB|

√
8+(2−(1−q))2−4

√
2(2−(1−q))

.

By using (32) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (33). Hence we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 8. Let |α| ≥ (A−B)
√

28−16
√

2

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
. (36)

Then f ∈ S∗Lq
.

Theorem 8. Assume

|α| ≥ (12−8
√

2)(A−B)

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (37)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh(z)
(h(z))2 ≺ 1+Az

1+Bz .

In addition, we suppose that

1 + α
z∂qh (z)

(h (z))2 =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.

Proof. We define a function

p (z) = 1 + α
z2∂qh (z)

(h (z))2 , (38)
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where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) .

After some simple calculations, we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(1−q)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

)2 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(2+2
√

2w(z)+w2(z))
2

2 (A− B) + αBz∂qw (z)
[(

2
√

2 + 2w (z)− (1− q) z∂qw (z)
)]
∣∣∣∣∣∣∣ .

Using similar method as in Theorem 7, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))

(12−8
√

2)(A−B)+|αB|
√

8+(2−(1−q))2−4
√

2(2−(1−q))
.

Now by using (37) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. Hence we get the required result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 9. Let |α| ≥ (12−8
√

2)(A−B)

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)2
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
.

Then f ∈ S∗Lq
.

Theorem 9. Assume

|α| ≥ (28−16
√

2)
3
2 (A−B)

4(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (39)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z3∂qh(z)
(h(z))3 ≺ 1+Az

1+Bz . (40)

In addition, we suppose that

1 + α
z3∂qh (z)

(h (z))3 =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.
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Proof. Here we define a function

p (z) = 1 + α
z3∂qh (z)

(h (z))3 , (41)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) .

After some simplifications, we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(q−1)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

)3 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(2+2
√

2w(z)+w2(z))
3

4 (A− B) + αBz∂qw (z)
[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣∣ .

Therefore by using Lemma 1, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√
(12−8

√
2)+(1−q)2+4(

√
2−1)(1−q)

(28−16
√

2)
3
2

4 (A−B)+|α||B|
[√

(12−8
√

2)+(1−q)2+4(
√

2−1)(1−q)
] .

Next by using (39) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. Hence, we get the required proof.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 10. Let |α| ≥ (28−16
√

2)
3
2 (A−B)

4(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)3
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
.

Then f ∈ S∗Lq
.

4. Conclusions

In this article, we have studied some q-differential subordinations. We have determined conditions
on α and

1 + α
z∂qh (z)
(h (z))n ≺

1 + Az
1 + Bz

(n = 0, 1, 2, 3) , (42)

then h (z) ≺ 1 + 4
3 z + 2

3 z2. Similar results are also investigated involving the function 1 +
√

2z + 1
2 z2.

Further we have deduced sufficiency criterion for q-starlikeness related with cardioid and limacon
from our main results. Moreover, by choosing particular functions instead of h, sufficient conditions
for other analytic functions can be found.
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1. Introduction and Motivation

Let A(p) denote the class of functions of the form:

f (z) = zp +
∞

∑
n=1

an+pzn+p (p ∈ N = {1, 2, 3, · · · }), (1)

which are analytic and p-valent in the open unit disk:

E = {z : z ∈ C and |z| < 1}.

In particular, we write:
A(1) = A.

Furthermore, by S ⊂ A, we shall denote the class of all functions that are univalent in E.
The familiar class of p-valently starlike functions in E will be denoted by S∗(p), which consists of

functions f ∈ A(p) that satisfy the following conditions:

�
(

z f ′(z)
f (z)

)
> 0 (∀ z ∈ E).

One can easily see that:
S∗(1) = S∗,

where S∗ is the well-known class of normalized starlike functions (see [1]).

Mathematics 2019, 7, 706; doi:10.3390/math7080706 www.mdpi.com/journal/mathematics79
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We denote by K the class of close-to-convex functions, which consists of functions f ∈ A that
satisfy the following inequality:

�
(

z f ′ (z)
g (z)

)
> 0 (∀ z ∈ E)

for some g ∈ S∗.
For two functions f and g analytic in E, we say that the function f is subordinate to the function g

and write as follows:
f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w, which is analytic in E with:

w (0) = 0 and |w (z)| < 1,

such that:
f (z) = g

(
w (z)

)
.

Furthermore, if the function g is univalent in E, then it follows that:

f (z) ≺ g(z) (z ∈ E) =⇒ f (0) = g(0) and f (E) ⊂ g(E).

Next, for a function f ∈ A (p) given by (1) and another function g ∈ A (p) given by:

g(z) = zp +
∞

∑
n=2

bn+pzn+p (∀ z ∈ E) ,

the convolution (or the Hadamard product) of f and g is given by:

( f ∗ g) (z) = zp +
∞

∑
n=2

an+pbn+pzn+p = (g ∗ f ) (z).

The subclass of A consisting of all analytic functions with a positive real part in E is denoted by
P . An analytic description of P is given by:

h(z) = 1 +
∞

∑
n=1

cnzn (∀ z ∈ E).

Furthermore, if:
� {h(z)} > ρ,

then we say that h is in the class P (ρ) . Clearly, one see that:

P (0) = P .

Historically, in the year 1933, Spaček [2] introduced the β-spiral-like functions as follows.

Definition 1. A function f ∈ A is said to be in the class S∗ (β) if and only if:

�
(

eiβ z f ′ (z)
f (z)

)
> 0 (∀ z ∈ E)

for:
β ∈ R and |β| < π

2
,

where R is the set of real numbers.
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In the year 1967, Libera [3] extended this definition to the class of functions, which are spiral-like
of order ρ denoted by S∗ρ (β) as follows.

Definition 2. A function f ∈A is said to be in the class S∗ρ (β) if and only if:

�
(

eiβ z f ′ (z)
f (z)

)
> ρ (∀ z ∈ E)

(
0 � ρ < 1; β ∈ R and |β| < π

2

)
,

where R is the set of real numbers.

The above function classes S∗ (β) and S∗ρ (β) have been studied and generalized by different
viewpoints and perspectives. For example, in the year 1974, a subclass Sα

β(ρ) of spiral-like functions was
introduced by Silvia (see [4]), who gave some remarkable properties of this function class. Subsequently,
Umarani [5] defined and studied another function class SC(α, β) of spiral-like functions. Recently,
Noor et al. [6] generalized the works of Silvia [4] and Umarani [5] by defining the class M(p, α, β, ρ).
Here, in this paper, we define certain new subclasses of spiral-like close-to-convex functions by using
the idea of Noor et al. [6] and Umarani [5].

We now recall that Kanas et al. (see [7,8]; see also [9]) defined the conic domains Ωk (k � 0)
as follows:

Ωk =

{
u + iv : u > k

√
(u− 1)2 + v2

}
. (2)

By using these conic domains Ωk (k � 0), they also introduced and studied the corresponding
class k-ST of k-starlike functions (see Definition 3 below).

Moreover, for fixed k, Ωk represents the conic region bounded successively by the imaginary axis
for (k = 0) , for k = 1 a parabola, for 0 < k < 1 the right branch of a hyperbola, and for k > 1 an
ellipse. For these conic regions, the following functions pk(z), which are given by (3) , play the role of
extremal functions.

pk(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + z
1− z

= 1 + 2z + 2z2 + · · · (k = 0)

1 +
2

π2

(
log

1 +
√

z
1−√z

)2

(k = 1)

1 +
2

1− k2 sinh2
{(

2
π

arccos k
)

arctan(h
√

z)
}

(0 � k < 1)

1 +
1

k2 − 1
sin

⎛⎜⎜⎝ π

2K(κ)
∫ u(z)√

κ
0

dt√
1− t2

√
1− κ2t2

⎞⎟⎟⎠+
1

k2 − 1
(k > 1) ,

(3)

where:

u(z) =
z−√κ

1−√κz
(∀ z ∈ E)

and κ ∈ (0, 1) is chosen such that:

k = cosh
(

πK′(κ)
4K(κ)

)
.

Here, K(κ) is Legendre’s complete elliptic integral of the first kind and:
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K′(κ) = K(
√

1− κ2),

that is, K′ (κ) is the complementary integral of K (κ).
These conic regions are being studied and generalized by several authors (see, for example, [10–13]).
The class k-ST is defined as follows.

Definition 3. A function f ∈ A is said to be in the class k-ST if and only if:

z f ′ (z)
f (z)

≺ pk (z) (∀ z ∈ E; k � 0)

or, equivalently,

�
(

z f ′ (z)
f (z)

)
> k
∣∣∣∣ z f ′ (z)

f (z)
− 1
∣∣∣∣ .

The class of k-uniformly close-to-convex functions denoted by k-UK was studied by Acu [14].

Definition 4. A function f ∈ A is said to be in the class k-UK if and only if:

�
(

z f ′ (z)
g (z)

)
> k
∣∣∣∣ z f ′ (z)

g (z)
− 1
∣∣∣∣ ,

where g ∈ k-ST .

In recent years, several interesting subclasses of analytic functions were introduced and
investigated from different viewpoints (see, for example, [6,15–20]; see also [21–25]). Motivated
and inspired by the recent and current research in the above-mentioned work, we here introduce and
investigate certain new subclasses of analytic and p-valent functions by using the concept of conic
domains and spiral-like functions as follows.

Definition 5. Let f ∈ A(p). Then, f ∈ k-K(p, λ) for a real number λ with |λ| < π
2 if and only if:

�
(

eiλ

p
z f ′(z)
ψ(z)

)
> k
∣∣∣∣ z f ′(z)

ψ(z)
− p
∣∣∣∣+ ρ cos λ (k � 0; 0 � ρ < 1)

for some ψ ∈ S∗.

Definition 6. Let f ∈A(p). Then, f ∈ k-Q(p, λ) for a real λ with |λ| < π
2 if and only if:

�
(

eiλ

p
z f ′(z)
ψ′(z)

)
> k

∣∣∣∣∣ (z f ′(z))′

ψ′(z)
− p

∣∣∣∣∣+ ρ cos λ (k � 0; 0 � ρ < 1)

for some ψ ∈ C.

Definition 7. Let f ∈A(p) with:
f ′ (z) f (z)

pz
�= 0

and for some real φ and λ with |λ| < π
2 . Then, f ∈ k-Q (φ, λ, η, f , ψ) if and only if:

� (M (φ, λ, η, f , ψ)) > k |M (φ, λ, η, f , ψ)− p|+ ρ cos λ,
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where

M (φ, λ, η, f , ψ) = (eiλ − φ cos λ)
z f ′(z)
pψ(z)

+
φ cos λ

p− η

(
(z f ′(z))′

ψ′(z)
− η

) (−1
2

� η < 1
)

. (4)

2. A Set of Lemmas

Each of the following lemmas will be needed in our present investigation.

Lemma 1. (see [26] p. 70) Let h be a convex function in E and:

q : E =⇒ C and �
(
q (z)

)
> 0 (z ∈ E).

If p is analytic in E with:
p (0) = h (0) ,

then:
p (z) + q (z) zp′ (z) ≺ h (z) implies p (z) ≺ h (z) .

Lemma 2. (see [26] p. 195) Let h be a convex function in E with:

h (0) = 0 and A > 1.

Suppose that j � 4
h′(0) and that the functions B (z) , C (z) and D (z) are analytic in E and satisfy the

following inequalities:

� {B (z)} � A + |C (z)− 1| − � (C (z)− 1) + jD (z) , z ∈ E.

If p is analytic in E with:
p (z) = 1 + a1z + a2z2 + · · ·

and the following subordination relation holds true:

Az2 p′′ (z) + B (z) zp′ (z) + C (z) p (z) + D (z) ≺ h (z) ,

then:
p (z) ≺ h (z) .

3. Main Results and Their Demonstrations

In this section, we will prove our main results.

Theorem 1. A function f ∈ A is in the class k-Q (φ, λ, η, f , ψ) if:

∞

∑
n=2

Ün (p, φ, λ, η, ξ) < p2(p− η),

where:

Ün (p, φ, λ, η, ξ) = (k + 1) [(eiλ − φ cos λ)(p− η)p + p4φ cos λ

+ (eiλ − φ cos λ)(p− η)(n + p)
∣∣an+p

∣∣+ (n + p)2 ∣∣an+p
∣∣

+ [(npφ cos λ + p3(p− η)](n + p)
∣∣bn+p

∣∣+ np2φ cos λ− p3(p− η). (5)
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Proof. Let us assume that the relation (4) holds true. It now suffices to show that:

k |M (φ, λ, η, f , ψ)− p| − � |M (φ, λ, η, f , ψ)− p| < 1. (6)

We first consider:

|M (φ, λ, η, f , ψ)− p|

=

∣∣∣∣(eiλ − φ cos λ
) z f ′(z)

pψ(z)
+

φ cos λ

(p− η)

(
(z f ′(z))′

ψ′(z)
− η

)
− p
∣∣∣∣

=

∣∣∣∣∣ (eiλ − φ cos λ) (p− η) f ′(z)
p (p− η)ψ′(z)

+
pφ cos λ (z f ′(z))′

p (p− η)ψ′(z)
−

−ηpφ cos λψ′(z)
p (p− η)ψ′(z)

− p2 (p− η)ψ′(z)
p(p− η)ψ′(z)

∣∣∣∣ .
Now, by using the series form of the functions f and ψ given by:

f (z) = zp +
∞

∑
n=2

an+pzn+p

and:

ψ(z) = zp +
∞

∑
n=2

bn+pzn+p

in the above relation, we have:

|M (φ, λ, η, f , ψ)− p|

=

∣∣∣∣∣
(
eiλ − φ cos λ

)
(p− η) (pzp−1) + pφ cos λ(p2zp−1)

p(p− η)
(

pzp−1 + ∑∞
n=2(n + p)bn+pzn+p−1

)
+

∑∞
n=2(n + p)an+pzn+p−1[

(
eiλ − φ cos λ

)
(p− η) + (n + p)]

p (p− η)
(

pzp−1 + ∑∞
n=2(n + p)bn+pzn+p−1

) − nφ cos λ

(p− η)
− p

∣∣∣∣∣
�
(
eiλ − φ cos λ

)
(p− η) (p) + pφ cos λ(p2)

p (p− η)
(

p + ∑∞
n=2(n + p)

∣∣bn+p
∣∣)

+
∑∞

n=2(n + p)
∣∣an+p

∣∣ {(eiλ − φ cos λ
)
(p− η) + (n + p)

}
p (p− η)

(
p + ∑∞

n=2(n + p)
∣∣bn+p

∣∣) −
{

nφ cos λ

(p− η)
+ p
}

.

We now see that:

k |M (φ, λ, η, f , ψ)− p| − � {M (φ, λ, η, f , ψ)− p}
� (k + 1) |M (φ, λ, η, f , ψ)− p|

� (k + 1)

[(
eiλ − φ cos λ

)
(p− η) (p) + pφ cos λ(p2)

p (p− η)
(

p + ∑∞
n=2(n + p)

∣∣bn+p
∣∣)

+
∑∞

n=2(n + p)
∣∣an+p

∣∣ [(eiλ − φ cos λ
)
(p− η) + (n + p)]

p (p− η)
(

p + ∑∞
n=2(n + p)

∣∣bn+p
∣∣) −

[
nφ cos λ

(p− η)
+ p
]]

.
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The above inequality is bounded above by one, if:

(k + 1)
[(

eiλ − φ cos λ
)
(p− η)p

]
+ (pφ cos λ)p2

+

(
∞

∑
n=2

(n + p)
∣∣an+p

∣∣) {(eiλ − φ cos λ)(p− η) + (n + p)
}
−
[

nφ cos λ

(p− η)
− p
]

·
{

p (p− η)

(
p +

∞

∑
n=2

(n + p)
∣∣bn+p

∣∣)}

� p(p− η)p +
∞

∑
n=2

(n + p)
∣∣bn+p

∣∣ .
Hence:

∞

∑
n=2

Ün (p, φ, λ, η, ξ) � p2(p− η),

where Ün (p, φ, λ, η, ξ) is given by (5) , which completes the proof of Theorem 1.

Theorem 2. A function f ∈ A(p) satisfies the condition:∣∣∣∣ 1
eijF(z)

− 1
2ρ

∣∣∣∣ < 1
2ρ

(0 � ρ < 1; j ∈ R) (7)

if and only if f ∈ 0-K(p, λ), where

F(z) =
z f ′ (z)
pψ (z)

.

Proof. Suppose that f satisfies (7). We then can write:∣∣∣∣2ρ− eijF(z)
eijF(z)2ρ

∣∣∣∣ < 1
2ρ

⇐⇒
(∣∣∣∣2ρ− eijF(z)

eijF(z)2ρ

∣∣∣∣)2

<

(
1

2ρ

)2

⇐⇒
(

2ρ− eijF(z)
) (

2ρ− eijF(z)
)
< e−ijF(z)eijF(z)

⇐⇒ 4ρ2 − 2ρ
[
e−ijF(z) + eijF(z)

]
+ F(z)F(z) < F(z)F(z)

⇐⇒ 4ρ2 − 2ρ
[
e−ijF(z) + eijF(z)

]
< 0

⇐⇒ 2ρ− 2�
[
eijF(z)

]
< 0

⇐⇒ �
[
eijF (z)

]
> ρ

⇐⇒ �
(

eij z f ′ (z)
pψ (z)

)
> ρ.

This completes the proof of Theorem 2.

Theorem 3. For 0 � ϕ1 < ϕ2, it is asserted that:

k-Q (p, ϕ2, λ, η) ⊂ 0-Q (p, ϕ1, λ, η) .
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Proof. Let f (z) ∈ k-Q (p, ϕ2, λ, η) . Then:

1
p− η

[(
eiλ − φ1 cos λ

)
(p− η)

z f ′ (z)
pψ (z)

+ ϕ1 cos λ

(
(z f ′ (z))′

ψ (z)′
− η

)]

=
ϕ1

ϕ2

[(
eiλ − ϕ2 cos λ

) z f ′ (z)
pψ (z)

+
ϕ2 cos λ

(p− η)

(
(z f ′ (z))′

pψ (z)′
− η

)]

−
(

ϕ1 − ϕ2

ϕ2

)
eiλ s f ′ (z)

pψ (z)

=
ϕ1

ϕ2
H1 (z) +

(
1− ϕ1

ϕ2

)
H2 (z) = H (z) ,

where:

H1 (z) =
(

eiλ − ϕ2 cos λ
) z f ′ (z)

pψ (z)
+

ϕ2 cos λ

(p− η)

(
(z f ′z)′

ψ′ (z)
− η

)
∈ P
(

hk,ρ

)
⊂ P (ρ)

and:

H2 (z) = eiλ z f ′ (z)
pψ (z)

∈ P(ρ).

Since P(ρ) is a convex set (see [27]), we therefore have H(z) ∈ P(ρ). This implies that f ∈
0-Q (p, ϕ1, λ, η). Thus:

k-Q (p, ϕ2, λ, η) ⊂ 0-Q (p, ϕ1, λ, η) .

The proof of Theorem 3 is now completed.

Theorem 4. Let φ > 0 and λ < π
2 . Then:

k-Q(p, φ, λ, η, ξ) ⊂ k-K(p, 0, ξ).

Proof. Let f ∈ k-Q(p, φ, λ, η, ξ), and suppose that:

f ′ (z)
ψ′ (z)

= p (z) , (8)

where p (z) is analytic and p (0) = 1. Now, by differentiating both sides of (8) with respect to z,
we have:

(z f ′(z))′

ψ′(z)
= zp′(z) + p(z)ε(z), (9)

where:

ε(z) =
(zψ′ (z))′

ψ′(z)
.

By using (8) and (9) in (4), we arrive at:

M (φ, λ, η, f , ψ) =
(

eiλ − φ cos λ
) p(z)

p
+

φ cos λ

p− η

(
zp′(z) + p(z)ε(z)− η

)
=

φ cos λ

p− η
zp′(z) +

(
eiλ

p
− φ cos λ

p− ε(z)

)(
φ cos λ

p− η

)
p(z)− ηφ cos λ

p− η

= B (z) zp′ (z) + C (z) p (z) + D (z) , (10)

where:
B (z) =

φ cos λ

p− η
,
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C (z) =
eiλ (p− η)− φ cos λ (p− η) + φ cos λε(z)p

p(p− η)

and:
D (z) =

ηφ cos λ

p− η
.

Now, since f ∈ k-Q(p, φ, λ, η, ξ), we have:

B (z) zp′ (z) + C (z) p (z) + D (z) ≺ pk (z) , (11)

which, upon replacing p (z) by:
p∗ (z) = p (z)− 1,

and pk (z) by:
p∗k (z) = pk (z)− 1,

shows that the above subordination in (11) becomes as follows:

B (z) zp′x (z) + C (z) px (z) + D∗ (z) ≺ p∗k (z) , (12)

where:
D∗ (z) = C (z) + D (z)− 1.

We now apply Lemma 2 with:
A = 0

and
p∗ (z) ≺ p∗k (z) .

We thus find that:
f ′ (z)
ψ′ (z)

= p (z) ≺ p∗k (z) . (13)

This complete the proof of Theorem 4.

For f ∈ A, we next consider the integral operator defined by:

F (z) = Im [ f ] =
m + 1

zm

∫ z

0
tm−1 f (t) dt. (14)

This operator was given by Bernardi [28] in the year 1969. In particular, the operator I1 was
considered by Libera [29]. We prove the following result.

Theorem 5. Let f (z) ∈ k-Q (p, φ, λ, η, ξ) . Then, Im [ f ] ∈ K (p, 0, ξ) .

Proof. Let the function ψ (z) be such that:

M (φ, λ, η, f , ψ) =
(

eiλ − φ cos λ
) z f ′ (z)

pψ (z)
+

φ cos λ

(p− η)

(
(z f ′ (z))′

ψ′ (z)
− η

)
.

Then, according to [14], the function G = Im [ f ] ∈ CD (k, δ). Furthermore, from (14), we
deduce that:

(1 + m) f (z) = (1 + m) F (z) + z (F (z))′ (15)

and:
(1 + m) g (z) = (1 + m) G (z) + z (G (z))′ . (16)
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If we now put:

p (z) =
F′ (z)
G′ (z)

and:
q (z) =

1

(m + 1) +
(

zG′′(z)
G′(z)

) ,

then, by simple computations, we find that:

f (z)
ψ (z)

=
(1 + m) F′ (z) + zF′′ (z)
(1 + m) G′ (z) + zG′′ (z)

or, equivalently, that:
f ′ (z)
ψ′ (z)

= p (z) + zp′ (z) q (z) . (17)

We now let:
f ′ (z)
ψ′ (z)

= p (z) + zp′ (z) q (z) = h (z) , (18)

where the function h (z) is analytic in E with h (0) = 1. Then, by using (18), we have:

(z f (z))′

ψ′ (z)
= zh′ (z) + ε (z) h (z) , (19)

where:

ε (z) =
(zψ′ (z))′

ψ′ (z)
.

Furthermore, by using (18) and (19) in (4) , we obtain:

M (α, β, γ, λ, δ, f ) =
(

eiλ − θ cos λ
) z f ′ (z)

ψ′ (z)
+

φ cos λ

p− η

(
(z f ′ (z))

′

ψ′ (z)
− η

)

=
(

eiλ − θ cos λ
)
+

φ cos λ

p− η
zh′ (z) +

[
zh′ (z) + ε (z) h (z)− η

]
=

φ cos λ

p− η
zh′ (z) +

(
eiλ − φ cos λ +

φ cos λ

p− η

)
h (z)− η (φ cos λ)

p− η

= B (z) zh′ (z) + C (z) h (z) + D (z) ,

where:
B (z) =

φ cos λ

p− η
,

C (z) =
(
(p− η) eiλ − (p− η) φ cos λ + φ cos λ

)
p− η

and:

D (z) =
η (φ cos λ)

p− η
.

Now, if we apply Lemma 1 with A = 0, we get:

f ′ (z)
ψ′ (z)

= h (z) ≺ pk (z) . (20)

Furthermore, from (18), we have:

p (z) + zp′ (z) q (z) ≺ pk (z) .
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By using Lemma 2 on (20), we obtain the desired result. This completes the proof of Theorem 5.

4. Conclusions

Using the idea of spiral-like and close-to-convex functions, we have introduced Mocanu-type
functions associated with conic domains. We have derived some interesting results such as sufficiency
criteria, inclusion results, and integral-preserving properties. We have also proven that the our
newly-defined function classes are closed under the famous Libera operator.
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functions. J. Inequal. Appl. 2018, 301, 1–12. [CrossRef]

25. Rasheed, A.; Hussain, S.; Zaighum, M.A.; Darus, M. Class of analytic function related with uniformly convex
and Janowski’s functions. J. Funct. Spaces 2018, 2018. [CrossRef]

26. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker: New York, NY,
USA, 2000.

27. Kanas. S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math.
Math. Sci. 2003, 38, 2389–2400. [CrossRef]

28. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [CrossRef]
29. Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

90



mathematics

Article

Efficacy of the Post-Exposure Prophylaxis and of the
HIV Latent Reservoir in HIV Infection

Carla M. A. Pinto 1,2,*,†, Ana R. M. Carvalho 3,†, Dumitru Baleanu 4,† and Hari M. Srivastava 5,6,†

1 School of Engineering, Polytechnic of Porto, Rua Dr António Bernardino de Almeida, 431,
4200-072 Porto, Portugal

2 Centre for Mathematics, University of Porto, Rua do Campo Alegre s/n 4440-452 Porto, Portugal
3 Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4440-452 Porto, Portugal;

up200802541@fc.up.pt
4 Department of Mathematics and Computer Sciences, Cankaya University, Balgat, Ankara 0630, Turkey;

dumitru@cankaya.edu.tr
5 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada;

harimsri@math.uvic.ca
6 Department of Medical Research, China Medical University Hospital, China Medical University,

Taichung 40402, Taiwan
* Correspondence: cap@isep.ipp.pt
† The authors contributed equally to this work.

Received: 17 April 2019; Accepted: 4 June 2019; Published: 5 June 2019

Abstract: We propose a fractional order model to study the efficacy of the Post-Exposure Prophylaxis
(PEP) in human immunodeficiency virus (HIV) within-host dynamics, in the presence of the HIV
latent reservoir. Latent reservoirs harbor infected cells that contain a transcriptionally silent but
reactivatable provirus. The latter constitutes a major difficulty to the eradication of HIV in infected
patients. PEP is used as a way to prevent HIV infection after a recent possible exposure to HIV.
It consists of the in-take of antiretroviral drugs for, usually, 28 days. In this study, we focus on
the dosage and dosage intervals of antiretroviral therapy (ART) during PEP and in the role of the
latent reservoir in HIV infected patients. We thus simulate the model for immunologically important
parameters concerning the drugs and the fraction of latently infected cells. The results may add
important information to clinical practice of HIV infected patients.

Keywords: Post-Exposure Prophylaxis; latent reservoir; HIV infection; fractional order model

1. Introduction

The human immunodeficiency virus (HIV) is a retrovirus, which impairs the host immune
system, by destroying preferably the CD4+ T cells. These cells are essential to guarantee immune
protection. They do so by helping B cells produce antibodies, inducing macrophages to develop
enhanced microbicidal activity, recruiting neutrophils, eosinophils, and basophils to inflammation
and infection sites, and, by producing cytokines and chemokines. A number of CD4+ T cells below a
given threshold is a synonym of immunodeficiency. The organism is thus vulnerable to a broad set of
infections, cancers and other diseases.

HIV occurs in two types: HIV-1 and HIV-2, and is transmitted by the exchange of HIV-infected
body fluids, such as blood, semen, and genital secretions. It may also be transmitted from an
HIV-infected pregnant woman to her child, during pregnancy, birth, or breastfeeding [1].

HIV is a defying global health threat, responsible for more than 36.7 million infected people
worldwide, and more than 35 million deaths, so far. In 2016, the number of deceased from HIV-related
causes was estimated at one million. Figures are even more striking since, globally, 1.8 million people
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become newly infected each year. Access to antiretroviral therapy is crucial to control the virus and to
reduce the risk of transmission, providing HIV infected individuals and those at risk, more healthy,
long and productive lives. In 2016, nearly half of the adults and children living with HIV had access to
treatment. Effective treatment reduces the risk of HIV transmission to non-infected sexual partners by
96% [2]. Other forms of HIV prevention are the Pre-Exposure Prophylaxis (PrEP) and the Post-Exposure
Prophylaxis (PEP).

PrEP is the daily in-take of ART to prevent HIV infection in uninfected people. The usual
combination of the two HIV drugs, tenofovir and emtricitabine, sold under the name of Truvada, is
approved for daily use as PrEP. PrEP is shown to be highly effective for HIV prevention, when taken
consistently. WHO recommends PrEP as one of the prevention options, for people at substantial risk of
HIV infection (namely injecting drug users, men who have sex with men, and high-risk heterosexual
couples), and for HIV-negative women who are pregnant or breastfeeding [2].

PEP consists of the intake of ART, after possible exposure to HIV. It includes counseling, first aid
care, HIV testing, and administration of a 28-day course of ART with follow-up care. It is intended to
prevent HIV spread in the human body, protecting against being re-exposed to HIV and reducing the
chances of HIV transmission [3]. PEP was initially intended for healthcare workers, who had been
accidentally exposed to HIV-infected body fluids, through injury with a contaminated syringe, etc.
Nowadays, WHO recommends PEP for both health-worker and non-health-workers, for adults and
children [2]. PEP should be started immediately after exposure and at most 72 hours after, to enhance
the rate of success, since it is not 100% effective [3].

Latent reservoirs consist of a small proportion of resting CD4+ T cells, containing integrated
proviral DNA [4–6]. Latent reservoirs are established during the acute phase of HIV infection.
These reservoirs may hide out for years in many tissues in the body, namely lymph nodes, seminal fluid,
and cerebral spinal fluid. Latent reservoirs can, however, wake up, and release old viral variants
in the blood. The mechanism behind this activation is summarized as follows. Proviral genomes
are integrated in resting memory CD4+ T cells. Due to the quiescent state of these latent cells,
these genomes are not transcribed into mRNA (messenger ribonucleic acid) and translated in protein
to become active virus. Nevertheless, when cell activation occurs, then transcription and translation
may recommence [7]. This affects the viral dynamics of untreated patients, promoting viral load
rebounds. ART can suppress HIV load levels to undetectable values, however, it cannot eliminate the
latent reservoir. This is the main challenge to HIV cure.

Considerable research has been found in the literature to describe the effects of HIV prevention
strategies. In 2009, Lou et al. [8] study drug dynamics, drug dosages, and therapy strategies in an
impulsive model for the dynamics of HIV in the presence of PEP. Authors conclude that the best choice
for an infected individual is a safe dose of medication during PEP. Moreover, the side effects of ART
should also be taken into consideration in choosing the appropriate therapy. Conway et al. [9] present a
stochastic model for the dynamics of HIV, immediately after exposure, and apply drug prophylaxis to
understand how it reduces the risk of infection. The authors predict that a two-week PEP regimen may
be as effective as the recommended four-week treatment protocol. In 2014, Kim et al. [10] study a model
for HIV infection in men who have sex with men (MSM) in South Korea. They simulate the effects
of early ART, early diagnosis, PrEP, and combination interventions, on the incidence and prevalence
of HIV infection. The authors conclude that PrEP and early diagnosis would be effective ways in
reducing HIV incidence in MSM. In 2017, Pinto et al. [11], evaluate the impact of PrEP and screening in
the dynamics of HIV in infected patients. The proposed model incorporates condom use, the number
of sexual partners, and treatment for HIV. The basic reproduction number is extremely impacted by
the efficacy of the screening, pointing to explicit campaigns highlighting screening. The results from
the model are fitted to data on the cumulative HIV and AIDS (acquired immunodeficiency syndrome)
cases in Portugal.
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Fractional Calculus—Short Recap

Fractional Calculus has been a hot research topic in the last few decades. Researchers from distinct
scientific areas, theoretical and applied, have studied fractional order models to obtain a deeper
understanding of real world phenomena [4,12–17]. Fractional order models are characterized by a
‘memory’ property, which brings additional information to analyze the systems’ dynamical behaviors.

The classical definitions for a derivative of fractional (non-integer) order are the Caputo (C),
the Riemann-Liouville (RL) and the Grünwald-Letnikov (GL). Let (0, t) be the interval, instead of (a, t),
for simplification. The function y(τ) is smooth in every interval (0, t), t ≤ T. The RL definition reads:

Dα
RLy(t) =

{
1

Γ(m−α)
dm

dtm

∫ t
0

y(τ)
(t−τ)α+1−m , m− 1 ≤ α < m

dmy(t)
dtm α = m

where Γ is the Euler Gamma function. The Caputo definition is given by:

Dα
Cy(t) =

{
1

Γ(m−α)

∫ t
0

ym(τ)
(t−τ)α+1−m , m− 1 ≤ α < m

dmy(t)
dtm α = m

The GL definition is based on finite differences and is equivalent to the RL formula:

Dα
GLy(t) = lim

h→0
h−α ∑n

k=0(−1)k Γ(α+1)
k!Γ(α−k+1)y(x− kh), nh = x

The memory effect in biology/epidemiology/immunology is extremely important, thus the
appearance of fractional order models in the study of patterns arising in these models comes as a
natural generalization of the integer order models [18–21]. In [20], the authors generalize an integer
order model for HIV dynamics to include a fractional order derivative. In Arafa et al. [18] the
authors generalize an integer order model for HIV dynamics to include a fractional order derivative.
They conclude that the fractional order model provides a better fit to real data from 10 patients than
the integer order model. Pinto [4] studies the role of the latent reservoir in the persistence of the latent
reservoir and of the plasma viremia in a fractional-order (FO) model for HIV infection. The model
assumes that (i) the latently infected cells may undergo bystander proliferation, without active viral
production, (ii) the latent cell activation rate decreases with time on ART, and (iii) the productively
infected cells’ death rate is a function of the infected cell density. The model clarifies the role of the
latent reservoir in the persistence of the latent reservoir and of the plasma virus. The non-integer
order derivative is associated with distinct velocities in the dynamics of the latent reservoir and of
plasma virus. In [12], the authors study the effect of the HIV viral load in a coinfection fractional
order model for HIV and HCV (hepatitis C virus) coinfection. HIV has a significant impact on the
burden of the coinfection. Moreover, the order of the fractional derivative may pave the way to
a better understanding of the individuals’ compliance to treatment, the distinct responses of the
immune system. The non-integer order derivative adds another degree of freedom to the model.
In what concerns drug diffusion in tissues, there are some interesting results in the literature. In [22],
the authors propose non-integer order (fractional order) models to represent anomalous diffusion,
memory effects and power-law clearance rates, typical of drug uptake and diffusion in a case-study of
a drug used for cancer therapy. They conclude that fractional models avoid unbounded accumulation
of drugs, seen in the integer order approach, and help to prevent life-threatening side-effects on
patients. In 2017 [23], the authors provide a review on pharmacokinetic models and propose their
generalizations to fractional orders. The new models account for tissue trapping as well as short- and
long-time recirculating effects. The benefits from such approach are twofold: (i) a better understanding
of secondary effects on patients under treatment; and (ii) avoidance of unbounded drug accumulation.

With the aforementioned ideas in mind, we outline the paper as follows. In Section 2, we describe
the proposed model. We follow with the computation of the reproductive number and the stability of
the disease free equilibrium in Section 3. Then, in Section 4, we prove the global stability of the disease
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free equilibrium. The model is simulated and the corresponding results are discussed in Section 5.
Finally, in Section 6, we conclude this work.

2. The Model

The model consists of seven classes: the healthy and susceptible CD4+ T cells, T, the healthy and
non-susceptible CD4+ T cells, TR, the latently infected CD4+ T cells, L, the infected and infectious
CD4+ T cells, I, the infected and non-infectious CD4+ T cells, IR, the HIV virus, V, and the drug
concentration in the plasma, R.

CD4+ T cells are produced with rate λ and die with rate μ. These cells are infected by HIV and
by infected CD4+ T cells at rates β1 and β2, respectively. The healthy T cells are inhibited by drug at
rate q. A fraction, η, of infected CD4+ T cells becomes latently infected. The latently infected CD4+

T cells become productively infected at a rate aL and die with a rate μL. The infected CD4+ T cells
die with rate a and are inhibited by drug at rate p. The virus are produced by infected CD4+ T cells
at rate k and cleared at rate c. The dynamics of the drugs is as follows. For simplicity, we postulate
that after taking the drug, the cell, TR, inhibits infection until it dies. We further assume that drugs
are taken at times t = tk, and their effect is instantaneous. The latter results in a system of impulsive
differential equations, with condition ΔR = ΔRk, where ΔRk is the dosage. For t �= tk, the solutions
are continuous and obey system (1). The drug, R, is cleared at rate g.

The nonlinear system of fractional differential equations describing the model is given by:

dαT
dtα = λα − μαT − βα

1TV − βα
2TI − qαTR

dα L
dtα = ηβα

1TV + ηβα
2TI − aα

LL− μα
LL

dα I
dtα = (1− η)βα

1TV + (1− η)βα
2TI + aα

LL− aα I − pα IR

dαV
dtα = kα I − cαV

dαTR
dtα = qαTR− dαTR

dα IR
dtα = pα IR− aα IR

dαR
dtα = Rα

k − gαR

(1)

where the parameter α ∈ (0, 1] is the order of the fractional derivative. The fractional derivative of the
proposed model is used in the Caputo sense.

3. Reproduction Number

In this section, we compute the reproduction number of model (1) in the cases of no drug, R0,
and of drug therapy, Rd

c , and the local stability of its disease-free equilibrium. The basic reproduction
number is defined as the number of secondary CD4+ T cells infections due to a single infected cell in a
completely susceptible population. We start with R0. We use the next generation method [24].

The disease-free equilibrium of model (1) is given by:

P0 =
(
T0, L0, I0, V0, TR0 , IR0 , R0) = ( λα

μα , 0, 0, 0, 0, 0, 0
)

(2)

Using the notation in [24] on system (1), matrices for the new infection terms, F1, and the other
terms, V1, are given as follows. The chosen variables of the model are L, I and V and the procedure is
identical to [24].
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F1 =

⎛⎜⎝ 0 ηβα
2T0 ηβα

1T0

0 (1− η)βα
2T0 (1− η)βα

1T0

0 0 0

⎞⎟⎠

V1 =

⎛⎜⎝ aα
L + μα

L 0 0
−aα

L aα 0
0 −kα cα

⎞⎟⎠
The associative basic reproduction number R0 is written as:

R0 = ρ(F1V−1
1 ) =

T0(βα
1kα+βα

2cα)[(1−η)μα
L+aα

L]
aαcα(aα

L+μα
L)

(3)

where ρ indicates the spectral radius of F1V−1
1 . The local stability of P0 can be determined using

Lemmas 1 and 2.

Lemma 1. [25] The disease-free equilibrium P0 of the system (1) is locally asymptotically stable iff all
eigenvalues λi of the linearization matrix of model (1), satisfy |arg(λi)| > α π

2 .

Lemma 2. The disease-free equilibrium P0 of the system (1) is unstable if R0 > 1.

Proof. Let M1 be given by:

M1 =

⎛⎜⎜⎜⎝
−μα 0 −βα

2T0 −βα
1T0

0 −(aα
L + μα

L) ηβα
2T0 ηβα

1T0

0 aα
L (1− η)βα

2T0 − aα (1− η)βα
1T0

0 0 kα −cα

⎞⎟⎟⎟⎠
Expanding, det (λpI4 −M1) = 0, where I4 is the 4× 4 identity matrix, we have the following equation
in terms of λ:

(λp + μα)
[
λ3p +

(
aα

L + μα
L + aα + cα − (1− η)βα

2T0
)

λ2p +
(
cα(aα

L + μα
L + aα) + (aα

L + μα
L)aα

−(1− η)βα
2T0(cα + μα

L)− aα
Lβα

2T0 − kα(1− η)βα
1T0
)

λp + (aα
L + μα

L) + cαaα

−βα
2T0cα(μα

L(1− η) + aα
L)− βα

1T0kα
(
1− η)μα

L + aα
L
)]

= 0

(4)

Now, the arguments of the roots of the equation, λp + μα = 0, are given by:

arg(λj) =
π

p
+ j

2π

p
>

π

M
>

π

2M

where j = 0, 1, .., (p− 1).
Using Descartes’ rule of signs, we find that there is exactly one sign change of the equation:

λ3p +
(
aα

L + μα
L + aα + cα − (1− η)βα

2T0
)

λ2p +
(
cα(aα

L + μα
L + aα) + (aα

L + μα
L)aα

−(1− η)βα
2T0(cα + μα

L)− aα
Lβα

2T0 − kα(1− η)βα
1T0
)

λp + (aα
L + μα

L) + cαaα [1− R0] = 0
(5)
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for R0 > 1. Thus, there is exactly one positive real root of the aforesaid equation for which the
argument is less than π

2M . As such, we conclude that if R0 > 1 the disease-free equilibrium P0 of the
system (1) is unstable.

Now, we discuss the dynamics of system (1) with drugs. The disease-free equilibrium of model (1)
with drugs is given by:

P1 =
(
T1, L1, I1, V1, TR1 , IR1 , R1

)
=
(

λα

μα+qαR� , 0, 0, 0, qαT1R�

dα , 0, R�
)

(6)

Using the notation in [24] on system (1), matrices for the new infection terms, F2, and the other
terms, V2, are given by:

F2 =

⎛⎜⎜⎜⎜⎝
0 ηβα

2λα

μα+qαR�
ηβα

1λα

μα+qαR� 0

0 (1−η)βα
2λα

μα+qαR�
(1−η)βα

1λα

μα+qαR� 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

V2 =

⎛⎜⎜⎜⎝
aα

L + μα
L 0 0 0

−aα
L aα + pαR� 0 0

0 −kα cα 0
0 0 0 aα

⎞⎟⎟⎟⎠
In this case, the basic reproduction number Rd

c is computed to be:

Rd
c = ρ(F2V−1

2 ) =
λα(βα

1kα+βα
2cα)[(1−η)μα

L+aα
L]

(μα+qαR�)(aα+pαR�)cα(aα
L+μα

L)
(7)

where ρ indicates the spectral radius of F2V−1
2 . The stability of disease-free equilibrium in the case of

the drug therapy, P1, can be determined using the following lemmas:

Lemma 3. [25] The disease-free equilibrium P1 of the system (1) is locally asymptotically stable iff all
eigenvalues λi of the linearization matrix of model (1), satisfy |arg(λi)| > α π

2 .

Lemma 4. The disease-free equilibrium P1 of the system (1) is unstable if Rd
c > 1.

Proof. Let M2 be given by:

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μα − qαR� 0 − βα
2λα

μα+qαR� − βα
1λα

μα+qαR� 0 0 0

0 −(aα
L + μα

L)
ηβα

2λα

μα+qαR�
ηβα

1λα

μα+qαR� 0 0 0

0 aα
L

(1−η)βα
2λα

μα+qαR� − aα − pαR� (1−η)βα
1λα

μα+qαR� 0 0 0
0 0 kα −cα 0 0 0

qαR� 0 0 0 −dα 0 qαλα

μα+qαR�

0 0 pαR� 0 0 −aα 0
0 0 0 0 0 0 −gα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Expanding, det (λpI7 −M2) = 0, where I7 is the 7× 7 identity matrix, we have the following equation
in terms of λ:
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(λp + μα + qαR�) (λp + dα) (λp + aα) (λp + gα)[
λ3p +

(
aα

L + μα
L + aα + pαR� + cα − (1− η)βα

2
λα

μα+qαR�

)
λ2p+

(
cα(aα

L + μα
L + aα + pαR�) + (aα

L + μα
L)(aα + pαR�)

−(1− η)βα
2

λα

μα+qαR� (cα + μα
L)− aα

Lβα
2

λα

μα+qαR� − kα(1− η)βα
1

λα

μα+qαR�

)
λp

+(aα
L + μα

L) + cα (aα + pαR�)

−βα
2

λα

μα+qαR� cα(μα
L(1− η) + aα

L)− βα
1

λα

μα+qαR� kα
(
(1− η)μα

L + aα
L
)]

= 0

(8)

Now, the arguments of the roots of the equation, λp + μα + qαR� = 0, λp + dα = 0, λp + aα = 0,
and λp + gα = 0, are given by:

arg(λj) =
π

p
+ j

2π

p
>

π

M
>

π

2M

where j = 0, 1, .., (p− 1).
Using Descartes’ rule of signs, we find that there is exactly one sign change of the equation:

λ3p +
(

aα
L + μα

L + aα + pαR� + cα − (1− η)βα
2

λα

μα+qαR�

)
λ2p

+
(
cα(aα

L + μα
L + aα + pαR�) + (aα

L + μα
L) (aα + pαR�)

−(1− η)βα
2

λα

μα+qαR� (cα + μα
L)− aα

Lβα
2

λα

μα+qαR� − kα(1− η)βα
1

λα

μα+qαR�

)
λp

+(aα
L + μα

L) + cα (aα + pαR�)
[
1− Rd

c

]
= 0

(9)

for Rd
c > 1. Thus, there is exactly one positive real root of the aforesaid equation for which the

argument is less than π
2M . As such, we conclude that, if Rd

c > 1, the disease-free equilibrium P1 of the
system (1) is unstable.

4. Global Stability of the Disease-Free Equilibrium

In this section, we compute the global stability of the disease-free equilibrium P1 of the model (1).
Following Castillo & Chavéz [26], we rewrite model (1) as:

dαX
dtα = F(X, Z)

dαZ
dtα = G(X, Z), G(X, 0) = 0

(10)

where X = (T, TR, R) and Z = (L, I, V, IR), with X ∈ R3
+ being the number of uninfected and

non-susceptible CD4+ T cells and drugs, and Z ∈ R4
+ denoting the number of latent and infected

CD4+ T cells, virus, and non-infectious CD4+ T cells.
The disease-free equilibrium is written as U = (X�, 0), where X� =

(
T1, TR1 , R1

)
=(

λα

μα+qαR� , qαT1R�

dα , R�
)

.
The conditions (H1) and (H2) must be met to guarantee the global asymptotic stability of the

disease-free equilibrium of the model (1):

97



Mathematics 2019, 7, 515

(H1) : For dαX
dtα = F(X, 0), X� is globally asymptotically stable

(H2) : G(X, Z) = AZ− Ĝ(X, Z), Ĝ ≥ 0, for (X, Z) ∈ Υ1

(11)

where A = DZG(X�, 0) can be written in the form A = M− D, where M ≥ 0 (mij ≥ 0) and D > 0 is a
diagonal matrix. Υ1 is the region where the model makes biological sense. If the system (10) satisfies
the conditions in (11) the following theorem holds [26].

Theorem 1. The fixed point U = (X�, 0) is a globally asymptotically stable equilibrium of the system (10)
provided that Rd

c < 1 and that the assumptions in (11) are satisfied.

Proof. Let

F(X, 0) =

⎡⎢⎣ λα − μαT − qαTR
qαTR− dαTR

Rα
k − gαR

⎤⎥⎦ (12)

and

A =

⎛⎜⎜⎜⎝
−(aα

L + μα
L) ηβα

2T1 ηβα
1T1 0

aα
L (1− η)βα

2T1 − (aα + pαR�) (1− η)βα
1T1 0

0 kα −cα 0
0 pαR� 0 −aα

⎞⎟⎟⎟⎠ (13)

and

Ĝ(X, Z) =

⎛⎜⎜⎜⎝
Ĝ1(X, Z)
Ĝ2(X, Z)
Ĝ3(X, Z)
Ĝ4(X, Z)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
ηβα

1VT1

(
1− T

T1

)
+ ηβα

2 IT1

(
1− T

T1

)
(1− η)βα

1VT1

(
1− T

T1

)
+ (1− η)βα

2 IT1

(
1− T

T1

)
0
0

⎞⎟⎟⎟⎟⎠ (14)

All conditions are satisfied, thus U0 is globally asymptotically stable.

5. Numerical Results

We simulate the model (1) for different values of the order of the fractional derivative, α and
for clinically relevant parameters. We have applied the Predictor–Evaluator–Corrector–Evaluator
PECE method of Adams–Bashford–Moulton type [27]. The parameters used in the simulations,
based on [8,28], are: λ = 100 μL−1 day−α, μ = 0.1 day−α, a = 0.3 day−α, c = 3 day−α, k = 210
day−α, β1 = 1.5× 10−5 day−α, β2 = 1.5× 10−4 day−α, p = 0.1 μM−1 day−α, q = 0.1 μM−1 day−α,
g = 2.7726 day−α, η = 0.03, aL = 0.1 day−α, μL = 4× 10−3 day−α, Rk = 2.5, τ = 0.5 dayα, and the
initial conditions are: T(0) = 1000, L(0) = I(0) = TR(0) = IR(0) = 0, V(0) = 50 and R(0) = 2.5.

In Figures 1 and 2, we consider model (1) without PEP, for different values of the order of
the fractional derivative, α. The concentration of CD4+ T cells decreases over time and with α.
This suggests that the infection is more severe as α is lowered. This pattern is supported by the graphs
in Figure 2, where it is observed a ratio of healthy T cells to total T cells starting with 0.5 for α = 1.0,
and decreasing for α = 0.9 and α = 0.7. Moreover, this ratio points to chronic infection, as the disease
evolves, for all α.
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Figure 1. Dynamics of the CD4+ T cells, T, of system (1) without PEP for α = 1 (top left), α = 0.9
(top right) and α = 0.7 (bottom). Parameter values and initial conditions in the text.
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Figure 2. Ratio of healthy CD4+ T cells, T, to total CD4+ T cells, T + L + I, of system (1) without PEP
for α = 1 (top left), α = 0.9 (top right) and α = 0.7 (bottom). Parameter values and initial conditions
in the text.

In Figures 3 and 4, we plot the dynamics of the drug R and of the basic reproduction number Rd
c ,

for different values of the order of the fractional derivative, α. These figures show that the dosage of the
drug is important for controlling HIV infection, since Rd

c varies with R. As R increases, smaller values
of Rd

c are observed, which indicate less infection. Moreover, the value of the fractional derivative, α,
may also contribute to controlling the severity of the infection, since smaller values of Rd

c are observed
with decreasing α.
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Figure 3. Drug concentration in the plasma, R, given by system (1) for α = 1 (top left), α = 0.9 (top

right) and α = 0.7 (bottom). Parameter values and initial conditions in the text.
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Figure 4. Basic reproduction number Rd
c of system (1) for α = 1 (top left), α = 0.9 (top right) and

α = 0.7 (bottom). Parameter values and initial conditions in the text.

Figure 5 depicts the HIV viral load for a dosage Rk = 5 and dosing interval τ = 0.5 day,
for different values of the order of the fractional derivative, α. As it is shown, the dosage of the drug
and the dosing interval are sufficient to control the infection, with the viral load going asymptotically
to zero. Similar patterns are seen for all values of α, with higher initial viral load for smaller α, but faster
velocity of convergence.
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Figure 5. HIV viral-load, V, of the system (1) for α = 1 (top left), α = 0.9 (top right) and α = 0.7
(bottom). Parameter values and initial conditions in the text, except Rk = 5.

Figure 6 shows the ratio of the infected CD4+ T cells to total CD4+ T cells in the presence and
absence of PEP, with low drug dosage, for different values of the order of the fractional derivative,
α. The ratio of infected to total CD4+ T cells is always smaller when patients are under PEP,
when compared to the case without treatment.
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Figure 6. Ratio of infected CD4+ T cells, I + IR, to total CD4+ T cells, T + L + I + TR + IR of system (1)
for α = 1 (top left), α = 0.9 (top right) and α = 0.7 (bottom). Parameter values and initial conditions
in the text, except Rk = 1.
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In the next figures, we study the effect of different treatment strategies in the dynamics of HIV.
We start in Figure 7 with two different treatment strategies: drug perfect adherence and drug therapy
breaks. The last strategy consists of intervals (days) in which the therapy is stopped (ΔRk = 0)
followed by intervals where there is perfect drug adherence. Perfect adherence therapy consists of
taking a dosage ΔRk = Rk for all t = tk. In Figure 7, the drug therapy breaks consist of stopping drug
application for two days, followed by drug perfect adherence strategy for five days. It is observed
that the elimination of HIV from the body takes longer for drug therapy breaks. This is seen for all α.
Moreover, despite a higher initial peak, the asymptotic HIV viral load is reached faster for smaller α.
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Figure 7. HIV viral load of system (1) for two different therapy strategies and α = 1 (top left), α = 0.9
(top right) and α = 0.7 (bottom). Parameter values and initial conditions are in the text, except Rk = 4.5.
For more information, see text.

Figure 8 shows another example of the dynamics of the HIV, this time for three distinct treatment
strategies: without treatment, drug perfect adherence, and drug therapy breaks. The intervals for the
drug therapy breaks are in this case as follows. Five days of no drug administration, which are followed
by five more days of perfect drug adherence strategy. The model provides oscillating solutions for the
case of drug therapy breaks, as is seen in the figure.

In Figure 9 we show the dynamics of HIV for increasing values of the cell to cell transmission
rate, β2, for three treatment strategies: no treatment, drug perfect adherence and drug therapy breaks,
and for varying α. The drug therapy breaks strategy stops drug application for 15 days, followed by
another 15 days of perfect drug adherence strategy. We observe higher peaks of the viral load and the
corresponding curve, in the case of drug therapy breaks, is between the curves of no treatment and
drug perfect adherence. This behaviour is repeated for all α.

The simulations of the model reveal that a combination of sufficient drug dosage and drug
frequency may induce better efficacy of PEP. Drug perfect adherence strategy is always better than the
other two. Nevertheless, one must think about the side effects of ART, though their toxicity has been
reduced as medicine evolves and new treatment options appear.

We now proceed with the simulation of the effect of the latent reservoir in the dynamics of HIV
infection, under the conditions of Figure 8. We consider three treatment strategies: without treatment,
drug perfect adherence, and drug therapy breaks. The intervals for the drug therapy breaks consist
of 10 days. In the first five days, the drug is halted, whereas for the last five days, the perfect drug
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adherence strategy is applied. The difference from Figure 8 is in the value of η, which represents the
proportion of latently infected CD4+ T cells. The value of η is reduced from 0.03 to 0.01. Figure 10
shows slight higher peaks of HIV for η = 0.01, in particular, for smaller values of α.
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Figure 8. HIV, viral load, V, of system (1) for three different therapy strategies and for α = 1 (top

left), α = 0.9 (top right) and α = 0.7 (bottom). Parameter values and initial conditions in the text,
except Rk = 1. For more information, see text.
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Figure 9. HIV, viral load, V, of system (1) for three different therapy strategies and for α = 1 (top

left), α = 0.9 (top right) and α = 0.7 (bottom). Parameter values and initial conditions in the text,
except Rk = 1 and β2 = 0.0015.
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In Figure 11, we plot the viral load for two values of η, the fraction of latent infected cells. We note
that the asymptotic value of the virus is the same for all α. Nevertheless, there are subtle changes in
the dynamics of the virus. In the transient are observed smaller values of HIV viral load for η = 0.03,
whereas in the asymptotic value there is a switch in this behaviour, and higher values of HIV are seen
for η = 0.03. This may be explained as follows. When η = 0.03 > η = 0.01, there are more latently
infected cells in the body. If these cells encounter an antigen or are exposed to specific cytokines or
chemokines, they become actively infected by proviral transcription. The latter causes viral rebound if
a patient stops ART. This happens earlier for smaller values of α.
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Figure 10. HIV, viral load, V, of system (1) for different therapy strategies and for α = 1 (top left), α =

0.9 (top right) and α = 0.7 (bottom). Parameter values and initial conditions in the text, except Rk = 1
and η = 0.01. For more information, see text.
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Figure 11. HIV, viral load, V, of system (1) for two values of η, the proportion of latently infected
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6. Conclusions

We propose a model to study the effect of PEP and of the latent reservoir in the dynamics of HIV
infection. We find that specific dosages and intervals are extremely important to control the infection.
Moreover, we find that the latent reservoir may influence the dynamics of HIV, though slightly. This is
understandable from a clinical point of view since the effect of the latent reservoir takes time to be felt
and PEP is considered only in the first 28 days after exposure. After that, the person must be evaluated
clinically to assess the adequacy of the treatment. The order of the fractional derivative, α, seems to
help control the infection in the presence of PEP and increases the severity of infection when there is
no PEP. We observe a somewhat ‘synergistic’ relation between PEP and α. The FO derivative may also
help to distinguish other traits (age, immune system response, genetic profile), and this may help to
devise better therapeutic regimens, that could improve patients’ quality of life, either by diminishing
the burden of the therapy or increasing the life span. Moreover, since HIV anti-retroviral therapy (ART)
is extremely expensive, an ‘optimal’ (in the sense of more adjusted to each patient) therapy could
also imply a reduction in the economic burden of HIV, especially in poor countries, such as the ones
included in sub-Saharan Africa. Future work will focus on deepening these and other issues arising
from the model.
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Abstract: As the level of potassium can interfere with the normal circulation process of biosphere
materials, the available potassium is an important index to measure the ability of soil to supply
potassium to crops. There are rarely studies on the inversion of available potassium content using
ground hyperspectral remote sensing and Landsat 8 multispectral satellite data. Pretreatment of
saline soil field hyperspectral data based on fractional differential has rarely been reported, and the
corresponding relationship between spectrum and available potassium content has not yet been
reported. Because traditional integer-order differential preprocessing methods ignore important
spectral information at fractional-order, it is easy to reduce the accuracy of inversion model. This paper
explores spectral preprocessing effect based on Grünwald–Letnikov fractional differential (order
interval is 0.2) between zero-order and second-order. Field spectra of saline soil were collected
in Fukang City of Xinjiang. The maximum absolute of correlation coefficient between ground
hyperspectral reflectance and available potassium content for five mathematical transformations
appears in the fractional-order. We also studied the tendency of correlation coefficient under different
fractional-order based on seven bands corresponding to the Landsat 8 image. We found that fractional
derivative can significantly improve the correlation, and the maximum absolute of correlation
coefficient under five spectral transformations is in Band 2, which is 0.715766 for the band at 467 nm.
This study deeply mined the potential information of spectra and made up for the gap of fractional
differential for field hyperspectral data, providing a new perspective for field hyperspectral technology
to monitor the content of soil available potassium.

Keywords: field spectrum; fractional calculus; desert soil; available potassium; correlation analysis

1. Introduction

Precision agricultural variable fertilizer depends on the understanding of soil nutrient distribution in
farmland. Acquiring soil nutrient is the basis for implementing precision agriculture. Available potassium
plays an important role in supplying potassium for crops, and it is a necessary nutrient for plant growth
and development [1,2]. Excessive potassium content in the soil can result in waste of resources, soil
environmental pollution, water pollution, and imbalance of soil nutrient distribution [3]. The rapid and
accurate nondestructive determination of soil available potassium content is of great significance for the
development of agriculture [4–7]. Traditional laboratory chemical detection methods have the problems
of being expensive and time-consuming, while hyperspectral analysis technology has the advantages
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of convenience, speed, and high precision [8–10]. Visible, near-infrared and mid-infrared spectroscopy
technologies have been widely applied in soil science.

In recent years, domestic and foreign scholars have conducted extensive research on soil salinity,
moisture, organic matter, and total nitrogen in different types of ecosystems, such as wetlands, forests,
grasslands, and farmlands in arid and semi-arid regions [11–15]. There is less research on available
potassium content [16]. Liu et al. [17] adopted visible/short-wave near-infrared spectroscopy to measure
soil available nitrogen and available potassium. They introduced first-order differential algorithm for
spectral pretreatment, and their simulation showed that the model built by least squares support vector
machine (LS-SVM) combined with 1-order differential has higher precision. However, the hyperspectral
inversion models established for available potassium are mainly constructed based on 1-order or
2-order derivative for spectral reflectance, reciprocal, and logarithm. However, related research points
out that traditional integer-order differential transformation ignores the gradual fractional differential
information [18,19], especially for high-dimensional data sources such as hyperspectral images with
massive information, which may cause some information to be lost or be difficult to extract, and restrict
the modeling accuracy.

Fractional calculus theory is a mathematical problem for studying the properties of differential
and integral operators of any order and its application. First proposed in 1695, its development is
almost in synchronization with the theory of integer-order calculus. However, theoretical research
is limited to pure mathematics, and it is not closely related to real life. At the end of last century,
with the rapid development of science and technology and the increasing complexity of research
issues, fractional calculus has been rapidly developed and applied to many fields [20–23], such as fluid
mechanics, viscoelastic mechanics, electrical conduction in biological systems, robot control, chaos
phenomena, molecular spectroscopy, etc. At the same time, research in these application fields has also
accelerated the development of fractional calculus theory.

In the field of spectral analysis, Schmitt [24] introduced fractional derivative into diffuse reflectance
spectroscopy processing and found that it can effectively eliminate baseline drift, shift, etc., and separate
overlapping peaks. At the same time, order choice of fractional derivative is more flexible, providing
a broader space for band selection. Zheng et al. [25] used Savitzky–Golay (SG) fractional derivative
to preprocess near infrared spectra based on corn, wheat, and diesel, and conducted quantitative
regression analysis of corresponding properties. They found that fractional prediction effect of
non-concentration indicators such as viscosity, density, and hardness was better than that of integer
derivatives. Zhang et al. [26] applied fractional differentials to the pretreatment of hyperspectral
data and used partial least squares regression (PLSR) to verify the model accuracy of saline soils.
The logarithm reciprocal transformation at 1.2-order was an optimal model, showing that fractional
differentials could improve model inversion accuracy.

However, these fractional differential studies measure spectral reflectance in an ideal indoor
environment, focusing on the research of salinity and organic matter content, and failing to consider
field spectrum tests that are in line with actual conditions. At present, the application of fractional
differential algorithm in the field of available potassium content is still lacking. Thus, this study collected
desert soils located in Fukang City of Xinjiang as research target, and measured field hyperspectral
data of soil samples. We explored the effect of Grünwald–Letnikov fractional differential on the
pretreatment of field hyperspectral data, and studied the correlation coefficient between available
potassium and soil reflectance spectra. The methods used in this study could enrich soil hyperspectral
data preprocessing methods, and provide scientific support for local precision agriculture.

2. Experiment Procedure

2.1. Study Area

The research area belongs to middle temperate continental arid climate, which is located in the
northern part of the Tianshan Mountains and the southern margin of Junggar Basin (87◦44′–88◦46′ E,
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43◦29′–45◦45′ N), with an average elevation of 452 nm. The selected research area is not developed and
utilized because it is far from the place where people live. It basically maintains the original ecological
style. In this study, soil sample data collection was conducted from 9 to 23 May 2017. Five east–west
sampling transects with a spacing of 600–800 m were installed from south to north in the study area.
Five representative points were selected for each sampling line with a spacing of 300–500 m, collecting
a total of 25 soil samples. The location of sample point is shown in Figure 1.

Figure 1. Location of sample point.

2.2. Field Hyperspectral Data Collection

The soil ground spectrum was measured using a portable Field Spec®3Hi-Res spectrometer
(Analytica Spectra Devices., Inc., Boulder, CO, USA) with a spectral range of 350–2500 nm. To avoid
the adverse effects of weather (e.g., poor sunlight, heavy cloud cover and strong wind, the experiment
was conducted at 11:00–15:00 (local time), with little clouds and no wind. Soil sample data collection
was conducted from 9 to 23 May 2017. The spectrometer was calibrated on the white board before
each acquisition to remove the dark current. The probe with 25◦ field-of-view was used for spectral
measurement, and it was 15 cm vertically above the soil sample. At about 1 cm around each sampling
point, five representative sites were selected to collect the surface soil spectrum, and each position was
repeatedly measured 10 times. The average of the 50 spectral curves was the measured spectral value
of this sampling point. The spectra curves for 25 sampling points were measured in the study area.

2.3. Soil Sample Collection

Hyperspectral data testing and soil sample collection were conducted simultaneously in the
same area at locations with flat topography and representative features around sampling point were
selected as sampling units. Soil samples were acquired at 0–10 cm depth for the 25 sampling points.
The latitude and longitude of the sample points were recorded by a handheld GPS, and they were
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numbered into bags for the laboratory. The soil available potassium content was tested by chemical
professionals at Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

3. Spectral Data Preprocessing Method

Before the qualitative and quantitative analysis, proper pretreatment of spectrum reduces or even
eliminates the impact of various non-target factors on the spectrum, and cleans the spectral information.
Spectral preprocessing is very important method to establish a good and robust predictive model,
and sometimes even plays a decisive role. Common spectral preprocessing methods include removing
interference bands, smoothing algorithms, mathematical transformations, and differential algorithms.

3.1. Remove Interference Bands

In this study, the 350–399 nm and 2401–2500 nm bands with low signal-to-noise ratio were
removed. At the same time, the bands located in the moisture absorption band have a great influence
on the accuracy of spectral inversion, thus the bands of 1355–1410 nm and 1820–1942 nm also needed
to be removed.

3.2. Savitzky–Golay Convolution Smoothing

Savitzky–Golay (SG) convolutional smoothing, also known as polynomial smoothing [27],
was proposed by Savitzky and Golay. The SG convolution smoothing method is currently a relatively
widely used spectral filtering method. The smoothing method combines a least-squares fitting with
a moving window. First, a window with an odd number of points is taken. Then, each point of the
spectrum in the window is taken as a polynomial. Finally, least square method is used to fit the
polynomial coefficient value. The formula is defined as follows:

Xk,smooth =
1
H

+w∑
i=−w

xk+ihi, (1)

where hi is a smooth coefficient and can be obtained by polynomial fitting. H is a normalization factor

and the calculation method is H =
+w∑

i=−w
hi.

3.3. Fractional Calculus

Gamma function, also called generalized factorial, is often used in the definition and operation of
fractional calculus. The integral form defined by the Gamma function is described as

Γ(z) =
∫ ∞

0
e−ttz−1dt, Re(z) > 0. (2)

The limit of the definition of gamma function can be expressed as follows

Γ(z) = lim
x→∞

n!nz

z(z + 1) · · · (z + n)
. (3)

Grünwald–Letnikov fractional derivative has been generalized from the definition of integer-order
derivative. For any real number p, suppose that function f(x) has continuous derivative of m + 1 in the
interval [a,t]. Then, p-order derivative for f(x) can be defined as follows:

aDp
t f(x) = lim

h→0

1
hp

[(t−p)/h]∑
j=0

(−1)j
(

p
j

)
f(x− jh), (4)
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where h is the step size and [(t−p)/h] represents the integer part of (t−p)/h. When p is a positive
real number, Equation (4) represents p-order derivative. If p is a negative real number, Equation (4)
represents p-order integral.

1-order derivative of function f(x) is defined as

f′ (x) = lim
h→0

f(x + h) − f(x)
h

. (5)

2-order derivative of function f(x) is described as

f′′ (x) = lim
h→0

f′ (x + h) − f′ (x)
h

= lim
h→0

f(x + 2h) − 2f(x + h) + f(x)

h2 . (6)

If the derivative order of function f(x) is raised to higher order of p, then the p-order derivative of
function f(x) is expressed as

f(p)(x) = lim
h→0

1
hp

p∑
m=0

(−1)m
(

p
m

)
f(x−mh). (7)

If we use Gamma function to replace the binomial coefficient of Equation (7) and extend the
derivative order to a non-integer order, we can get the Grünwald–Letnikov fractional derivative in
Equation (4). Since the re-sampling interval of ASD (Analytica Spectra Devices) spectrometer was
1 nm, in Equation (4), let h = 1, and then the derivative expression of v-order derivative for function
f(x) can be deduced as follows:

dvf(x)
dxv ≈ f(x) + (−v)f(x− 1) + (−v)(−v+1)

2 f(x− 2) + (−v)(−v+1)(−v+2)
6 f(x− 3) + . . .+ Γ(−v+1)

n!Γ(−v+n+1) f(x− n). (8)

In particular, when v = 1, 2, it is consistent with first-order and second-order derivative formulas
of spectrum, respectively. From Equation (8), we can see that fractional derivatives have global and
memory characteristics.

3.4. Spectral Mathematical Transformation

Before estimation model of surface parameters based on spectral reflectance is established, it is
often necessary to perform nonlinear mathematical transformation for original spectral reflectance
(R). The commonly used non-linear mathematical transformations include: root mean square
transform (

√
R), reciprocal transform (1/R), logarithmic transformation (lgR), and logarithm reciprocal

transformation (1/lgR). The main purpose is that linear relationship between spectral reflectance and
surface parameters is transformed into a nonlinear relationship, a relatively simple linear regression
analysis is performed to obtain approximately nonlinear results, and various forms of estimation
models are established to improve the recognition accuracy. In addition, non-linear transformation can
enhance spectral difference to some extent; it is convenient to distinguish the influence on spectrum
caused by the difference of surface parameters. Spectral reflectance R and its four kinds of spectral
transformation curves are shown in Figure 2.
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(a) (b) 

 
(c) 

(d) 

 
(e) 

Figure 2. Spectral reflectance of soil and its four mathematical transformation forms: (a) R; (b)
√

R;
(c) 1/R; (d) lgR; and (e) 1/lgR.

4. Simulation Results

4.1. Differential Calculation of Root Mean Square and Logarithm Reciprocal

To study the effects on spectral data by fractional differentials in detail, starting differential order
is 0, termination differential order is 2, and order interval is 0.2. The results of differential calculation in
the bands 1450 nm and 1650 nm of soil ground hyperspectral curve for root mean square transformation
and logarithm reciprocal transformation are shown in Figure 3. Differential values of two spectral
transformations gradually approach 0, as the order slowly ascends from 0-order to 1-order, fractional
differential curve gradually approximates the first-order differential curve. When the order is gradually
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increased from 1-order to 2-order, fractional derivative curve slowly approaches the 2-order differential
curve, which verifies the sensitivity of fractional derivative to some extent. In addition, it can be also
seen in Figure 3c,d that the derivative value in the band 1450–1550 nm fluctuates greatly, while the
derivative value in the band 1550–1650 nm is less fluctuating.

 
(a) (b) 

 
(c) 

(d) 

Figure 3. Fractional differential calculation of
√

R and 1/lgR reflectance at 1450–1650 nm: (a) 0-order to
1-order of root mean square; (b) 0-order to 1-order of logarithm reciprocal; (c) 1-order to 2-order of root
mean square; and (d) 1-order to 2-order of logarithm reciprocal.

4.2. Trends of Correlation Coefficients for Root Mean Square and Logarithm Reciprocal

Correlation analysis is a key step in spectral data preprocessing. When the correlation coefficient
between available potassium and spectral signal passes the significance test, the corresponding band is
likely to become the sensitive band, and the band reflectance can be used as the independent variable
in the model to establish a reliable predictive model of available potassium content. In this paper,
the significance test was carried out at 0.05 level, and the calculus was programmed in Matlab software
(MathWorks, Natick, MA, USA) to calculate the correlation between the spectral reflectance and the
available potassium content after root mean square and logarithmic inverse transformation, and the
differential results between 0-order and 2-order were calculated (at intervals of 0.2). The simulation
results are shown in Figures 4 and 5. When differential order gradually increases from zero-order to
first-order, the curve of correlation coefficient shows a certain gradual change trend. When the order
is increased from 1-order to 2-order, correlation coefficient curve fluctuates greatly, and the gradual
change trend is not obvious.
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Figure 4. Trends of correlation coefficient for root mean square: (a) 0-order to 0.4-order; (b) 0.6-order to
1-order; (c) 1.2-order to 1.4-order; and (d) 1.6-order to 2-order.
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Figure 5. Trends of correlation coefficient for logarithm reciprocal: (a) 0-order to 0.4-order; (b) 0.6-order
to 1-order; (c) 1.2-order to 1.4-order; and (d) 1.6-order to 2-order.
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4.3. Number of Bands that Passed 0.05 Significance Level Test

The number of spectral bands that passed the 0.05 significance level of the correlation coefficient
between spectrum and available potassium is shown in Figure 6. There are hundreds of spectral bands
passed the 0.05 significance level for these five spectral transformations. Compared with more than
2000 full-band spectra in the range of 350–2500 nm, Figure 6 shows that the preprocessing operation
of fractional calculus can reduce the dimensionality of soil hyperspectral data. Overall, the trend of
the number for logarithm reciprocal, original spectrum and root mean square is gradually decreasing,
and the trend increases first and then decreases for reciprocal and logarithm.

Figure 6. Number of bands that passed the 0.05 test.

4.4. Absolute Maximum Band of Correlation Coefficient under Five Spectral Transformations

Maximum absolute values of correlation coefficients under five different spectral transformations
in the 0-order to 2-order range and the corresponding band information are shown in Table 1.
The maximum absolute values of correlation coefficients appear in fractional order: when R and 1/lgR
are in the 1.6 order, the corresponding band is 416 nm, and the largest absolute of R and 1/lgR are
0.763605 and 0.76218, respectively; when 1/R and

√
R are in the 1.4-order, the corresponding bands are

494 and 430 nm, and the largest absolute of 1/R and
√

R are 0.741574 and 0.750124, respectively; and
when lgR is in the 1.2-order, the corresponding band is 495 nm, and the largest absolute is 0.747359.
For first-order differential transformation,

√
R, 1/R, lgR, and 1/lgR increase the correlation between

spectral reflectance of R and available potassium content to some extent. For 0-order and 2-order
differential transformation, 1/lgR improves the correlation, while the others reduce the correlation.
In addition, the absolute values of correlation coefficients of 1.2-, 1.4-, 1.6-, and 1.8-order for R,

√
R, lgR,

and 1/lgR are all greater than 0.7.
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Table 1. Bands with the largest absolute values of correlation coefficients under five spectral transformation.

Order

R
√

R 1/R lgR 1/lgR

Largest
Absolute

Band
Largest

Absolute
Band

Largest
Absolute

Band
Largest

Absolute
Band

Largest
Absolute

Band

0 0.560973 405 0.547695 405 0.499854 400 0.532827 405 0.562356 405
0.2 0.570438 2391 0.559709 2391 0.521992 2392 0.547824 2392 0.586224 2391
0.4 0.700301 2390 0.690903 2391 0.655011 2391 0.680045 2391 0.719717 2390
0.6 0.712129 2371 0.697076 2371 0.645772 2390 0.680265 2371 0.734104 2371
0.8 0.632373 2100 0.62877 2100 0.663153 2006 0.623198 2100 0.645372 2371
1 0.668786 1547 0.675601 1547 0.674436 2006 0.674577 1547 0.67265 404

1.2 0.707065 416 0.746563 430 0.674899 495 0.747359 495 0.705747 416
1.4 0.722362 416 0.750124 430 0.741574 494 0.739563 430 0.730641 497
1.6 0.763605 416 0.746466 416 0.689794 1207 0.725154 416 0.762187 416
1.8 0.74986 1207 0.739655 1207 0.701802 416 0.726421 1207 0.75847 1207
2 0.678462 1206 0.664644 1206 0.621093 1740 0.648568 1206 0.69792 1206

4.5. Fractional Derivative Impact on Correlation Coefficient of Landsat 8 Image Bands

To further explain the influence of correlation on partial bands by fractional derivative, seven
bands corresponding to Landsat 8 image [28,29] were selected to study the variation trend of the
correlation coefficient under different fractional order. The band ranges of Landsat 8 image are shown
in Table 2. The seven wavelength bands selected from Landsat 8 are 442 nm in Band 1, 467 nm in Band
2, 587 nm in Band 3, 675 nm in Band 4, 851 nm in Band 5, 1597 nm in Band 6, and 2247 nm in Band 7.
The trend of correlation coefficient for the seven selected wavelength bands is shown in Figure 7.

Table 2. Spectral ranges of Landsat 8 image bands.

Band name Band range (nm)

Band 1 Coastal 433–453

Band 2 Blue 450–515

Band 3 Green 525–600

Band 4 Red 630–680

Band 5 NIR 845–885

Band 6 SWIR1 1560–1660

Band 7 SWIR2 2100–2300

It can be seen in Figure 7 that the correlation coefficient change of R and 1/lgR is opposite to the
other three transformations. In Band 7, the correlation coefficients of 1/R and 1/lgR are negative at
0-order to 2-order, and the remaining transformations are positive. In the range of Band 1, Band 2,
Band 4, Band 5 and Band 6, the correlation coefficients of 1/R and 1/lgR are negative at 0-order to
0.6-order, and the remaining transformations are positive at 0.0–0.6 order. The correlation coefficients
of 1/R and 1/lgR are positive at 1.2-order to 1.8-order, and the remaining transformations are negative
at 1.2-order to 1.8-order. In addition, the maximum absolute correlation coefficient of five spectral
transformations is in Band 2, which is 0.715766 of 467 nm.
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Figure 7. The trend of correlation coefficient for partial bands of Landsat 8 image in each order
differential: (a) 442 nm; (b) 467 nm; (c) 587 nm; (d) 675 nm ; (e) 851 nm ; (f) 1597 nm; and (g) 2247 nm.
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5. Discussion

The integer-order derivative method is widely used in soil spectral signal pretreatment, but its
description of the physical model is only an approximation [30,31]. This traditional preprocessing
method based on integer-order derivative has obvious shortcomings. One of the main reasons is
the defect of integer-order derivative in the numerical calculation process, that is, the integer-order
derivative is only related to the information of the points in the differential window. Another main
reason is that the fractional derivative has the advantage of “memory” and “non-locality”, that is,
the fractional order is not only related to the value of the point, but also related to the value of all
points before this point. It has been proved that the fractional-order system is more in line with the
laws of nature and engineering physics, which can better reflect the performance of the dynamic
system, and has a unique historical memory function. Therefore, the fractional derivative model is
more accurate than the integer-order derivative model.

In addition to the pretreatment of hyperspectral signals for saline soil between spectral reflectance
and salt content, fractional derivatives can also be used to pretreat other types of soil hyperspectral
signals between spectral reflectance and nutrient content. For example, Xia et al. [32] used fractional
derivative to preprocess the spectrum collected in Ebinur Lake of Xinjiang, China, and the correlation
coefficient between electricity conductivity and soil reflectance spectra was analyzed. Results show
that fractional derivative details the varying trends of soil reflectance spectra among 0-order to 2-order.
Fractional derivative also raises the correlation coefficient between electricity conductivity and soil
reflectance spectra for some bands. Hong et al. [33] applied the fractional derivative to analyze the
relationship of soil organic matter content and visible and near-infrared spectroscopy. The results
show that the highest validation model appears in the 1.5-order derivative combined genetic algorithm.
Wang et al. [34] collected 168 sample of soil taken from the coalmine in Eastern Junggar Basin, China.
They used fractional derivative to preprocess the hyperspectral data of coalmine soil and PLSR to
estimate the soil chromium content. The results show that 1.8-order derivative is the best predictive
model, and the ratio of performance to deviation (PRD) is 2.14. Wang et al. [35] used the soil of the
Ebinur Lake Wetland National Nature Reserve in Xinjiang as the research object, and used the fractional
differential and grey correlation analysis-BP neural network to quantitatively estimate the soil organic
matter content. The results show that the 1.2-order model has the highest accuracy and the PRD value
is 2.26.

In addition, fractional derivatives are also used to preprocess hyperspectral signals from rubber
trees, diesel, tobacco, wheat, corn, and so on. For example, Chen et al. [36] adopted fractional derivative
to analyze the near-infrared spectroscopy of nitrogen concentration for natural rubber. The results
show that the 0.6-order has the optimal prediction result. Tong et al. [37] adopted SG derivation to
analyze the near-infrared spectroscopy of diesel dataset and tobacco dataset. The results show that this
method can improve the spectral resolution, and SG derivation combined with competitive adaptive
reweighted sampling is the optimal model.

6. Conclusions

Fractional derivative in the field of hyperspectral studies are rarely reported, especially for
field-measured ground hyperspectral data. We collected soil samples and hyperspectral data in May
2017. Grünwald–Letnikov fractional derivative was used to analyze the correlation coefficient between
the available potassium content and the soil ground hyperspectral data and Landsat 8 multispectral
satellite data. Simulation results display that the small difference between spectrum data was
clearly described by fractional derivative. The maximum absolute correlation coefficient appeared
in the fractional order for the ground hyperspectral data and Landsat 8 multispectral satellite data.
Therefore, fractional derivative enriches the pre-processing method of spectral data, provides potential
spectrum information, increases the correlation coefficient between spectral reflectance and available
potassium content, and provides scientific support for local precision agriculture.
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Abstract: We consider the well-known Mittag–Leffler functions of one, two and three parameters,
and establish some new connections between them using fractional calculus. In particular, we
express the three-parameter Mittag–Leffler function as a fractional derivative of the two-parameter
Mittag–Leffler function, which is in turn a fractional integral of the one-parameter Mittag–Leffler
function. Hence, we derive an integral expression for the three-parameter one in terms of the
one-parameter one. We discuss the importance and applications of all three Mittag–Leffler functions,
with a view to potential applications of our results in making certain types of experimental data
much easier to analyse.
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1. Introduction

In fractional calculus, the standard calculus operations of differentiation and integration are
generalised to orders beyond the integers: rational, real, and even complex numbers can be used for
the order of differintegration [1–3]. This area of research is four centuries old, but it has expanded rapidly
only in the last fifty years, discovering applications in many fields of science and engineering [4–6].
The most commonly used definition of fractional derivatives and integrals is the Riemann–Liouville
one, where fractional integrals are defined by

RL
aDα

x f (x) =
1

Γ(−α)

∫ x

a
(x− y)−α−1 f (y)dy, Re(α) < 0, (1)

and fractional derivatives are defined by

RL
aDα

x f (x) =
dm

dxm

(
RL

aDα−m
x f (x)

)
, Re(α) ≥ 0, m := �Re(α)�+ 1. (2)

Here, Dα f denotes the derivative to order α of a function f , and a is a constant of differintegration.
It is important to note that in fractional calculus, derivatives as well as integrals rely on the choice of
an arbitrary constant a. This constant is usually set to be either a = 0 or a = −∞. To see why both
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choices are useful, we present the following Lemma which provides two “‘natural” differintegration
formulae, one requiring a = 0 and the other requiring a = −∞. Neither option can be eliminated
from the range of possible values for a, if we wish to retain natural expressions for differintegrals of
elementary functions.

Lemma 1. The Riemann–Liouville (RL) differintegrals of power functions and exponential functions,
with constant of differintegration a = 0 and a = −∞, respectively, are as follows.

RL
0Dα

x(xβ) =
Γ(β + 1)

Γ(β− α + 1)
xβ−α, α, β ∈ C, Re(β) > −1; (3)

RL
−∞Dα

x

(
eβx
)
= βαeβx, α, β ∈ C, β �∈ R

−
0 . (4)

In both cases, we define complex power functions using the principal branch with arguments between −π

and π.

Proof. In both cases, the proof for fractional integrals follows from manipulation and substitution in
the integral formula in Equation (1), and then the proof for fractional derivatives is immediate from
the definition in Equation (2). For more details, we refer the reader to [1,3].

In recent years, many alternative definitions of fractional differintegrals have been proposed.
Some of these were motivated by the different real-world systems which can be modelled by different
fractional-calculus structures: for example, replacing the power function in Equation (1) by another
function to better describe certain types of processes in dynamical systems [7,8]. Others were created
by adding extra parameters and levels of generalisation into functions and formulae [9–11].

One particular function which frequently appears in the study of fractional derivatives and
integrals [12–14] is the Mittag–Leffler function, which in its simplest form is defined by

Eα(z) =
∞

∑
n=0

zn

Γ(nα + 1)
, z ∈ C. (5)

The above function with a single parameter α has also been extended to more general functions
defined with two or more parameters, such as the following [15,16].

Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
, z ∈ C; (6)

Eρ
α,β(z) =

∞

∑
n=0

Γ(ρ + n)zn

Γ(ρ)Γ(nα + β)n!
, z ∈ C; (7)

Eρ,κ
α,β(z) =

∞

∑
n=0

Γ(ρ + κn)zn

Γ(ρ)Γ(nα + β)n!
, z ∈ C. (8)

It is clear that the following interrelations hold between the above functions:

Eρ,1
α,β(z) = Eρ

α,β(z), E1
α,β(z) = Eα,β(z), Eα,1(z) = Eα(z).

Several new models of fractional calculus have used such functions in their definitions, and we
mention two of these in particular.
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The AB model, formulated by Atangana and Baleanu [7] and further studied in [17–20], is defined
by replacing the power function in Equation (1) by a one-parameter Mittag–Leffler function of the type
in Equation (5):

ABR
aDα

x f (x) =
B(α)
1− α

· d
dx

∫ x

a
Eα

( −α

1− α
(x− y)α

)
f (y)dy, 0 < α < 1, (9)

AB
a Iα

x f (x) =
1− α

B(α)
f (x) +

α

B(α)
RL

a Iα
x f (x), 0 < α < 1. (10)

We note that here α is a real variable and not a complex one. All discussion of the AB model in
the literature so far has assumed the order of differentiation to be real. The first paper to consider
complex-order AB differintegrals is currently in press [21].

The Prabhakar model, based on an integral operator defined in 1971 [22] but only later formulated
as part of fractional calculus [23,24], is defined by replacing the power function in Equation (1) by
a three-parameter Mittag–Leffler function of the type in Equation (7). This model has also been
generalised [16] to use a 4-parameter Mittag–Leffler function of the type in Equation (8), and its
properties have been explored in many papers (e.g., [25–27]).

One useful application of fractional calculus in pure mathematics has been to find new functional
equations and interrelations between various important functions. For example, fractional versions of
the product rule and chain rule have given rise to new formulae for assorted special functions [28,29],
and fractional differintegration of infinite series has yielded new identities on the Riemann zeta
function and its generalisations [30–32].

In the current work, we use these techniques to prove new relationships between the several
Mittag–Leffler functions defined above. It is possible to write the three-parameter Mittag–Leffler
function as a fractional differintegral of the two-parameter one, as well as writing the two-parameter
one as a fractional differintegral of the one-parameter one, and thence to deduce an integral
relationship between the one-parameter and three-parameter Mittag–Leffler functions, which suggests
a relationship between the AB and Prabhakar models of fractional calculus. Throughout all of
this, we use only the classical Riemann–Liouville fractional integrals and derivatives. We also
examine the possibility of applications of these results in fields of science such as bioengineering
and dielectric relaxation.

This paper is structured as follows. In Section 2, through a number of theorems and propositions,
we state the main results concerning relationships between Mittag–Leffler functions. In Section 3,
we discuss applications, and, in Section 4, we conclude the article.

2. The Main Results

We first state an important result about fractional differintegration of series, which we need to
use in the proofs below.

Lemma 2. Consider a function S defined by an infinite series

S(x) =
∞

∑
n=1

Sn(x)

which is uniformly convergent on the set |x− a| ≤ K for some fixed constants a ∈ C, K > 0. Let α ∈ C be a
fixed order of differintegration.

1. If Re(α) < 0 (fractional integration), then we have

RL
aDα

xS(x) =
∞

∑
n=1

RL
aDα

xSn(x), |x− a| ≤ K,
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and the series on the right-hand side is uniformly convergent on the given region.
2. If Re(α) ≥ 0 (fractional differentiation) and the series ∑∞

n=1
RL

aDα
xSn(x) is uniformly convergent on the

region |x− a| ≤ K, then we have

RL
aDα

xS(x) =
∞

∑
n=1

RL
aDα

xSn(x), |x− a| ≤ K.

Proof. This is Theorem VIII in [31].

Since our work involves analytic functions defined on the complex plane, we find it useful to
define the domain

D := C\R−0 , (11)

namely the complex plane slit along a branch cut from the origin. This is used as a domain for various
complex power functions and other related functions.

Our first main result is a fractional identity between the Mittag–Leffler functions with two and
three parameters as defined by Equations (6) and (7). This is motivated by previous work (e.g., [32]),
in which gamma functions that appear in infinite power series can be interpreted as arising from
fractional differintegrals. After submitting the paper, we realised that this result was previously proved
in [33]. However, our original proof is preserved below.

Proposition 1. For any α, β, ρ ∈ C with Re(α), Re(β) > 0, we have:

Eρ
α,β(z) =

1
Γ(ρ)

RL
0Dρ−1

z

[
zρ−1Eα,β(z)

]
, z ∈ D. (12)

Proof. First, Lemma 1 tells us that a quotient of gamma functions can very often be interpreted as
arising from a fractional differintegral of a power function. In this case, the expression Γ(ρ+n)

n! appearing
in the coefficients of the series in Equation (7) gives rise to the following:

Eρ
α,β(z) =

∞

∑
n=0

Γ(ρ + n)zn

Γ(ρ)Γ(nα + β)n!
=

∞

∑
n=0

1
Γ(nα + β)Γ(ρ)

· Γ(ρ + n)
Γ(n + 1)

zn

=
∞

∑
n=0

1
Γ(nα + β)Γ(ρ)

· RL
0Dρ−1

z

[
zn+ρ−1

]
=

1
Γ(ρ)

∞

∑
n=0

RL
0Dρ−1

z

[
zn+ρ−1

Γ(nα + β)

]
.

Since the series here is uniformly convergent, we can use the result of Lemma 2 to swap the summation
with the fractional differintegration. This gives:

Eρ
α,β(z) =

1
Γ(ρ)

∞

∑
n=0

RL
0Dρ−1

z

[
zn+ρ−1

Γ(nα + β)

]
=

1
Γ(ρ)

RL
0Dρ−1

z

[
∞

∑
n=0

zn+ρ−1

Γ(nα + β)

]

=
1

Γ(ρ)
RL

0Dρ−1
z

[
zρ−1

∞

∑
n=0

zn

Γ(nα + β)

]
=

1
Γ(ρ)

RL
0Dρ−1

z

[
zρ−1Eα,β(z)

]
,

and we have the result desired.

Note that, by setting ρ = 1 in Equation (12), we recover the trivial identity E1
α,β(z) = Eα,β(z).

Corollary 1. For any α, ρ ∈ C with Re(α) > 0, we have:

Eρ
α,1(z) =

1
Γ(ρ)

RL
0Dρ−1

z

[
zρ−1Eα(z)

]
, z ∈ D. (13)

Proof. This follows immediately by setting β = 1 in Proposition 1.
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Remark 1. By exactly the same argument as in Proposition 1, we can show that

Eρ
α,β(γz) =

1
Γ(ρ)

RL
0Dρ−1

z

[
zρ−1Eα,β(γz)

]
, z ∈ D, (14)

for any α, β, γ, ρ ∈ C with Re(α), Re(β) > 0. The proof is as above with an extra factor of γn included in each
term of the sum.

We have now established a relation between the Mittag–Leffler functions of two and three
parameters, and hence a relation between the Mittag–Leffler function of one parameter and the
function Eρ

α,1(z). However, in order to find a connection with the AB model, we need to consider not
the function Eα(x) but rather the function Eα

( −α
1−α xα

)
, which appears in the kernel of the definition

in Equation (9). To this end, we note the following result, which is seen in (Equation (7.1), [12]) but
without reference to fractional calculus.

Proposition 2. For any α, β, γ ∈ C with Re(α), Re(β) > 0, we have:

Eα,β (γzα) = z1−β RL
0D1−β

z [Eα (γzα)] , z ∈ D. (15)

Proof. This time we start from the right-hand side of the desired identity, and use the definition in
Equation (5) of the function Eα:

z1−β RL
0D1−β

z [Eα (γzα)] = z1−β RL
0D1−β

z

[
∞

∑
n=0

γnzαn

Γ(nα + 1)

]
.

This series is uniformly convergent, thus, by Lemma 2, we can swap the summation and fractional
differintegration provided that (at least in the case 0 < Re(β) < 1) the resulting series also converges
uniformly. We swap the operations now and justify this assumption at the end.

z1−β RL
0D1−β

z [Eα (γzα)] = z1−β
∞

∑
n=0

RL
0D1−β

z

[
γnzαn

Γ(nα + 1)

]
= z1−β

∞

∑
n=0

Γ(αn + 1)
Γ(αn + β)

· γnzαn+β−1

Γ(nα + 1)

=
∞

∑
n=0

γnzαn

Γ(αn + β)
.

This series converges uniformly, being precisely the series expression in Equation (6) for Eα,β (γzα).
Thus, our swapping of operations above was justified, and the proof is complete.

The key point here is that the dependence of the Mittag–Leffler function in Equation (7) on the
parameters ρ and β can be encoded by fractional differintegrals. Proposition 1 enables us to interpret
the parameter ρ as merely the order of a differintegral, and Proposition 2 enables us to do the same
with β.

By combining the results of Proposition 1 and Proposition 2, it is possible to obtain a composite
expression for the three-parameter Mittag–Leffler function in Equation (7) in terms of fractional-type
integrals, as described by the following theorem.

Theorem 1. For any α, β, γ, ρ ∈ C with Re(α), Re(β) > 0 and Re(ρ) < 1, we have:

Eρ
α,β(γzα) =

α sin(πρ)

π

∫ z

0
(zα − uα)−ρ uαρ−β RL

0D1−β
u [Eα (γuα)] du, z ∈ D. (16)
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Proof. For Re(ρ) < 1, the fractional differintegrals appearing in Proposition 1 and Corollary 1 are
integrals (because Re(ρ− 1) < 0), and so Equation (14) can be rewritten as follows:

Eρ
α,β(γz) =

1
Γ(ρ)

RL
0 I1−ρ

z

[
zρ−1Eα,β(γz)

]
=

1
Γ(ρ)Γ(1− ρ)

∫ z

0
(z− y)−ρyρ−1Eα,β(γy)dy.

Making the change of variables u = y1/α, and using the reflection formula for the gamma function:

Eρ
α,β(γz) =

sin(πρ)

π

∫ z1/α

0
(z− uα)−ρ uα(ρ−1)Eα,β(γuα)αuα−1 du

=
α sin(πρ)

π

∫ z1/α

0
(z− uα)−ρ uαρ−1Eα,β(γuα)du.

Now, we can apply the result of Proposition 2 to the two-parameter Mittag–Leffler function appearing
in the integrand of this expression:

Eρ
α,β(γz) =

α sin(πρ)

π

∫ z1/α

0
(z− uα)−ρ uαρ−1

[
u1−β RL

0D1−β
u [Eα (γuα)]

]
du

=
α sin(πρ)

π

∫ z1/α

0
(z− uα)−ρ uαρ−β RL

0D1−β
u [Eα (γuα)] du.

Substituting zα for z:

Eρ
α,β(γzα) =

α sin(πρ)

π

∫ z

0
(zα − uα)−ρ uαρ−β RL

0D1−β
u [Eα (γuα)] du.

Note that this can almost, but not quite, be expressed as a composition of two fractional
differintegrals.

Corollary 2. For any α, β, γ, ρ ∈ C with Re(α) > 0, Re(β) > 1, and Re(ρ) < 1, we have:

Eρ
α,β(γzα) =

α sin(πρ)

πΓ(β− 1)

∫ z

0
(zα − uα)−ρ uαρ−β

∫ u

0
(u− t)β−2Eα (γtα) dt du, z ∈ D. (17)

Proof. In this case, we have Re(1− β) < 0 and so the fractional differintegral which appears in the
integrand of Equation (16) is an integral. Thus, we can write

RL
0 Iβ−1

u [Eα (γuα)] =
1

Γ(β− 1)

∫ u

0
(u− t)β−2Eα (γtα) dt,

and substitute this into Equation (16) to find:

Eρ
α,β(γzα) =

α sin(πρ)

π

∫ z

0
(zα − uα)−ρ uαρ−β

[
1

Γ(β− 1)

∫ u

0
(u− t)β−2Eα (γtα) dt

]
du,

which rearranges to the required result.

Theorem 2. The three-parameter Mittag–Leffler function in Equation (7) can be written as an integral transform
of the one-parameter Mittag–Leffler function in Equation (5) in the following way:

Eρ
α,β(γzα) =

α sin(πρ)

πΓ(β− 1)

∫ z

0
Fα,β,ρ(t; z)Eα (γtα) dt z ∈ D, (18)
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where we assume α, β, γ, ρ ∈ C with Re(α) > 0, Re(β) > 1, and Re(ρ) < 1, and where the function F is
defined as

Fα,β,ρ(t; z) :=
∫ z

t
(zα − uα)−ρ uαρ−β(u− t)β−2 du. (19)

Proof. By Fubini’s theorem, it is possible to swap the order of the integrals in Equation (17). We have
0 ≤ u ≤ z and 0 ≤ t ≤ u, which after swapping is equivalent to 0 ≤ t ≤ z and t ≤ u ≤ z. We have
from Equation (17):

Eρ
α,β(γzα) =

α sin(πρ)

πΓ(β− 1)

∫ z

0

∫ u

0
(zα − uα)−ρ uαρ−β(u− t)β−2Eα (γtα) dt du

=
α sin(πρ)

πΓ(β− 1)

∫ z

0

∫ z

t
(zα − uα)−ρ uαρ−β(u− t)β−2Eα (γtα) du dt

=
α sin(πρ)

πΓ(β− 1)

∫ z

0
Eα (γtα)

∫ z

t
(zα − uα)−ρ uαρ−β(u− t)β−2 du dt

=
α sin(πρ)

πΓ(β− 1)

∫ z

0
Eα (γtα) Fα,β,ρ(t; z)dt,

as required.

Thus, using Riemann–Liouville fractional calculus, we have forged new connections between
the Mittag–Leffler functions of one, two and three parameters. The connection between those of one
and three parameters, in particular, may give rise to new formulae linking AB fractional calculus with
Prabhakar fractional calculus, in a way more profound than simply writing one as a special case of
the other.

3. Applications

As we have already discussed, the various Mittag–Leffler functions are interesting from the point
of view of pure mathematical analysis and fractional calculus [34–37] (see also the correction [16,36,38]).
However, it is also important to discuss the motivation for studying these functions from the point of
view of real-world applications in science and engineering.

The one-parameter Mittag–Leffler function has already discovered many applications via the AB
model, and also previously in relaxation models which involve interpolation between exponential and
power-law behaviours [39]. In recent years, the two-parameter and three-parameter Mittag–Leffler
functions have also been emerging from real experimental data.

A group of biologists and engineers in Cambridge and London have been experimenting with
models for cells and tissues, and discovered that their data fit most closely to an operator involving
two-parameter Mittag–Leffler functions [40].

The three-parameter Mittag–Leffler function, sometimes called the Prabhakar function, is closely
connected with the phenomenon of Havriliak–Negami relaxation [41], and this has been studied also
in the context of fractional relaxation [26,42].

In view of these manifold applications of the Mittag–Leffler functions of one, two and three
parameters, we believe that our results herein may also discover applications. The one-parameter
Mittag–Leffler function is much more elementary and easier to handle than the two- and
three-parameter Mittag–Leffler functions. Thus, reducing the latter to the former should mark a
major step forward. The physical processes which are modelled using two- and three-parameter
Mittag–Leffler functions may now be more easily analysed using only the one-parameter
Mittag–Leffler function.

In particular, we note that numerical computation of Mittag–Leffler functions has been
a challenging problem for researchers in recent years [43–45]. Naturally, the one-parameter
Mittag–Leffler function is the most straightforward to handle. If we can use relations such as those
proved in this paper to express the more advanced Mittag–Leffler functions purely in terms of the most

129



Mathematics 2019, 7, 485

basic one, then it may enable much easier computation of the two- and three-parameter Mittag–Leffler
functions than before.

4. Conclusions

In this article, we have established new relations between the Mittag–Leffler functions
of one, two and three parameters by using Riemann–Liouville fractional calculus. The main
results are Proposition 1 (three-parameter Mittag–Leffler in terms of two-parameter Mittag–Leffler),
and Theorem 2 (three-parameter Mittag–Leffler in terms of one-parameter Mittag–Leffler), which
come from combining Proposition 1 with Proposition 2 (two-parameter Mittag–Leffler in terms of
one-parameter Mittag–Leffler). We believe that these results can be applied in the future, to simplify
some important physical models that use two- or three-parameter Mittag–Leffler functions, or to
provide more efficient computational models for these functions, since the original one-parameter
Mittag–Leffler function is much better known and more deeply studied.
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11. Özarslan, M.A.; Ustaoğlu, C. Incomplete Caputo fractional derivative operators. Adv. Differ. Equ. 2018,
2018, 209. [CrossRef]

12. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math.
2011, 2011, 298628. [CrossRef]

13. Mainardi, F.; Gorenflo, R. On Mittag-Leffler-type functions in fractional evolution processes. J. Comput.
Appl. Math. 2000, 118, 283–299. [CrossRef]

14. Mathai, A.M.; Haubold, H.J. Mittag-Leffler functions and fractional calculus. In Special Functions for Applied
Scientists; Springer: New York, NY, USA, 2008; pp. 79–134.

15. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications;
Springer: Berlin, Germany, 2016.

16. Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized
Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [CrossRef]

130



Mathematics 2019, 7, 485

17. Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative
with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 2017, 10, 1098–1107. [CrossRef]

18. Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel.
Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [CrossRef]

19. Djida, J.-D.; Atangana, A.; Area, I. Numerical Computation of a Fractional Derivative with Non-Local and
Non-Singular Kernel. Math. Model. Nat. Phenom. 2017, 12, 4–13. [CrossRef]

20. Fernandez, A.; Baleanu, D. The mean value theorem and Taylor’s theorem for fractional derivatives with
Mittag-Leffler kernel. Adv. Differ. Equ. 2018, 2018, 86. [CrossRef]

21. Fernandez, A. A complex analysis approach to Atangana–Baleanu fractional calculus. Math. Model. Appl. Sci.
2019. [CrossRef]

22. Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel.
Yokohama Math. J. 1971, 19, 7–15.

23. Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Ž. Hilfer–Prabhakar derivatives and some applications.
Appl. Math. Comput. 2014, 242, 576–589. [CrossRef]

24. Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus
operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [CrossRef]

25. Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for models of fractional calculus involving
generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [CrossRef]

26. Garra, R.; Garrappa, R. The Prabhakar or three parameter Mittag-Leffler function: Theory and application.
Commun. Nonlinear Sci. Numer. Simul. 2018, 56, 314–329. [CrossRef]

27. Sandev, T. Generalized Langevin Equation and the Prabhakar Derivative. Mathematics 2017, 5, 66. [CrossRef]
28. Osler, T.J. Leibniz rule for fractional derivatives generalised and an application to infinite series. SIAM J.

Appl. Math. 1970, 18, 658–674. [CrossRef]
29. Osler, T.J. The fractional derivative of a composite function. SIAM J. Math. Anal. 1970, 1, 288–293. [CrossRef]
30. Fernandez, A. The Lerch zeta function as a fractional derivative. arXiv 2018, arXiv:1804.07936.
31. Keiper, J.B. Fractional Calculus and Its Relationship to Riemann’s Zeta Function. Master’s Thesis, Ohio State

University, Columbus, OH, USA, 1975; 37p.
32. Lin, S.-D.; Srivastava, H.M. Some families of the Hurwitz–Lerch zeta functions and associated fractional

derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [CrossRef]
33. Paneva-Konovska, J. Differential and integral relations in the class of multi-index Mittag-Leffler functions.

Fract. Calc. Appl. Anal. 2018, 21, 254–265. [CrossRef]
34. Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88.
35. Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional

calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145.
36. Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional

derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814.
[CrossRef]

37. Tomovski, Ž.; Pogány, T.K.; Srivastava, H.M. Laplace type integral expressions for a certain three-parameter
family of generalized Mittag-Leffler functions with applications involving complete monotonicity.
J. Frankl. Inst. 2014, 351, 5437–5454. [CrossRef]

38. Srivastava, H.M. Remarks on some families of fractional-order differential equations. Integral Transform.
Spec. Funct. 2017, 28, 560–564. [CrossRef]

39. Metzler, R.; Klafter, J. From stretched exponential to inverse power-law: Fractional dynamics, Cole–Cole
relaxation processes, and beyond. J. Non-Cryst. Solids 2002, 305, 81–87. [CrossRef]

40. Bonfanti, A.; Fouchard, J.; Khalilgharibi, N.; Charras, G.; Kabla, A. A unified rheological model for cells and
cellularised materials. 2019, under review. [CrossRef]

41. Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes
in some polymers. Polymer 1967, 8, 161–210. [CrossRef]

42. Garrappa, R. Grünwald–Letnikov operators for fractional relaxation in Havriliak–Negami models. Commun.
Nonlinear Sci. Numer. Simul. 2016, 38, 178–191. [CrossRef]

43. Garrappa, R. Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions. SIAM J.
Numer. Anal. 2015, 53, 1350–1369.[CrossRef]

131



Mathematics 2019, 7, 485

44. Seybold, H.; Hilfer, R. Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function. SIAM J.
Numer. Anal. 2008, 47, 69–88. [CrossRef]

45. Valério, D.; Machado, J.T. On the numerical computation of the Mittag-Leffler function. Commun. Nonlinear
Sci. Numer. Simul. 2014, 19, 3419–3424. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

132



mathematics

Article

Some Incomplete Hypergeometric Functions and
Incomplete Riemann-Liouville Fractional
Integral Operators

Mehmet Ali Özarslan 1 and Ceren Ustaoğlu 2,*
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Abstract: Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete
beta function By(x, z). With the help of these incomplete Pochhammer ratios, we introduce new
incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties
of them such as integral representations, derivative formulas, transformation formulas, and recurrence
relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This
definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss
hypergeometric functions.

Keywords: Gauss hypergeometric function; confluent hypergeometric function; Appell’s functions;
incomplete fractional calculus; Riemann-Liouville fractional integral; generating functions

1. Introduction and Preliminaries

In recent years, some extensions of the well-known special functions have been considered by
several authors (see, for example, [1–9]). The familiar incomplete gamma functions γ(s, x) and Γ(s, x) are
defined by:

γ(s, x) :=
∫ x

0
ts−1e−tdt (Re(s) > 0; x � 0)

and
Γ(s, x) :=

∫ ∞

x
ts−1e−tdt (x � 0; Re(s) > 0 when x = 0),

respectively. They satisfy the following decomposition formula:

γ(s, x) + Γ(s, x) = Γ(s) (Re(s) > 0) . (1)

The function Γ(s) and its incomplete versions γ(s, x) and Γ(s, x) play important roles in the study of
analytical solutions of a variety of problems in diverse areas of science and engineering.

The widely-used Pochhammer symbol (λ)ν (λ, ν ∈ C) is defined, in general, by:

(λ)ν :=
Γ (λ + ν)

Γ (λ)
=

{
1 (ν = 0; λ ∈ C\ {0})
λ (λ + 1) ... (λ + ν− 1) (ν ∈ N; λ ∈ C)

}
(2)
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In terms of the incomplete gamma functions γ(s, x) and Γ(s, x), the incomplete Pochhammer symbols
(λ; x)ν and [λ; x]ν (λ; ν ∈ C; x � 0) were defined as follows [10]:

(λ; x)ν :=
γ(λ + ν, x)

Γ (λ)
(λ, ν ∈ C; x � 0) (3)

and:

[λ; x]ν :=
Γ (λ + ν, x)

Γ (λ)
(λ, ν ∈ C; x � 0) . (4)

In view of (1), these incomplete Pochhammer symbols (λ; x)ν and [λ; x]ν satisfy the following
decomposition relation:

(λ; x)ν + [λ; x]ν = (λ)ν (λ, ν ∈ C; x � 0) , (5)

where (λ)ν is the Pochhammer symbol given by (2).
The incomplete Gauss hypergeometric functions were defined by means of the incomplete gamma

functions as follows [10]:

2γ1

[
(a, x) . b ;

c ;
z

]
:=

∞

∑
n=0

(a; x)n(b)n

(c)n

zn

n!
(6)

and:

2Γ1

[
(a, x) . b ;

c ;
z

]
:=

∞

∑
n=0

[a; x]n(b)n

(c)n

zn

n!
. (7)

After this work, incomplete hypergeometric functions have become a fruitful topic of research in
recent years [4,5,9,11–20].

Fractional derivative and integral operators are another important topic of research in recent years.
They have found applications in many diverse areas of mathematical, physical, and engineering problems;
good summaries of these applications may be found in [21–26] and recently in [27]. The use of fractional
derivative operators in obtaining generating relations for some special functions can be found in [6,9,28–30].

In fractional calculus, there are two important differential operators: the Riemann-Liouville and
Liouville-Caputo fractional derivatives. In a recent paper [12], which covered work done after the work
herein, we introduced incomplete Liouville-Caputo fractional derivative operators and focused on their use
in special function theory. For the definitions in [12], we considered the same incomplete Riemann-Liouville
integral as in (60) and (61) of this paper, but the operators introduced there were of the Liouville-Caputo
type and not of the Riemann-Liouville type like those in the current work. The difference between
Liouville-Caputo and Riemann-Liouville is very important for applications to differential equations,
because the required initial conditions are of different types between these two cases.

In the present paper, we introduce new incomplete hypergeometric functions with the aid of
incomplete Pochhammer ratios and investigate certain properties of them. Moreover, we introduce
incomplete Riemann-Liouville fractional integral operators, and we obtain some generating relations
for these new incomplete hypergeometric functions with the aid of these new defined operators.
The organization of the paper is as follows.

In Section 2, the incomplete Pochhammer ratios are introduced by using the incomplete beta function,
and some derivative formulas involving these new incomplete Pochhammer ratios are investigated.
In Section 3, new incomplete Gauss hypergeometric functions and confluent hypergeometric functions are
introduced with the help of these incomplete Pochhammer ratios, and integral representations, derivative
formulas, transformation formulas, and recurrence relations are obtained for them. In Section 4, we
define new incomplete Appell’s functions F1[a, b, c; d; x, z; y], F1{a, b, c; d; x, z; y}, F2[a, b, c; d, e; x, z; y], and
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F2{a, b, c; d, e; x, z; y} and obtain their integral representations. In Section 5, we introduce incomplete
Riemann-Liouville fractional integral operators and show that the incomplete Riemann-Liouville fractional
integrals of some elementary functions give the new incomplete functions defined in Sections 3 and 4.
Finally, in the last section, we obtain linear and bilinear generating relations for the incomplete
hypergeometric functions.

2. The Incomplete Pochhammer Ratio

The incomplete beta function is defined by:

By(x, z) :=
∫ y

0
tx−1(1− t)z−1dt, Re(x) > Re(z) > 0, 0 ≤ y < 1 (8)

and can be expressed in terms of the Gauss hypergeometric function:

By(x, z) :=
yx

x 2F1(x, 1− z; 1 + x; y). (9)

The incomplete Pochhammer ratios [b, c; y]n and {b, c; y}n are introduced in terms of the incomplete
beta function By(x, z) as follows [12]:

[b, c; y]n :=
By (b + n, c− b)

B (b, c− b)
(10)

and:

{b, c; y}n :=
B1−y(c− b, b + n)

B(b, c− b)
(11)

where 0 ≤ y < 1. They satisfy the following relation:

[b, c; y]n + {b, c; y}n =
(b)n
(c)n

. (12)

In view of (9), we have the following relations:

[b, c; y]n :=
1

B(b, c− b)
yb+n

b + n 2F1(b + n, 1− c + b; b + n + 1; y) (13)

and:

{b, c; y}n :=
1

B(b, c− b)
(1− y)c−b

c− b 2F1(c− b, 1− b− n; 1 + c− b; 1− y). (14)

In the following theorem, we investigate the nth derivatives of the incomplete beta function by means
of incomplete Pochhammer ratios.

Theorem 1. The following derivative formulas hold true:

[b, c; y]n =
(−1)n Γ (c)

Γ (c− b + n) Γ (b)
yb+n dn

dyn

[
y−bBy(b, c− b + n)

]
, (15)

and:

{b, c; y}n =
Γ(b + n)

Γ(b + 2n)
1

B(b, c− b)
(1− y)c−b dn

dyn ((1− y)−c+b+nB1−y(c− b− n, b + 2n)). (16)
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Proof. Using (8) and (10), we immediately obtain the following equation:

[b, c; y]n =
yb+n

B(b, c− b)

∫ 1

0
ub+n−1(1− uy)c−b−1du.

On the other hand, we have:

y−bBy(b, c− b + n) =
∫ 1

0
ub−1(1− uy)c−b+n−1du. (17)

Taking derivatives n times on both sides of (17) with respect to y, we can obtain a derivative formula for
the incomplete beta function [b, c; y]n asserted by (15). Formula (16) can be proven in a similar way.

3. The New Incomplete Gauss and Confluent Hypergeometric Functions

In this section, we introduce new incomplete Gauss and confluent hypergeometric functions by:

2F1(a, [b, c; y]; x) :=
∞

∑
n=0

(a)n[b, c; y]n
xn

n!
, (18)

2F1(a, {b, c; y} ; x) :=
∞

∑
n=0

(a)n {b, c; y}n
xn

n!
, (19)

1F1([a, b; y]; x) :=
∞

∑
n=0

[a, b; y]n
xn

n!
, (20)

and:

1F1({a, b; y} ; x) :=
∞

∑
n=0
{a, b; y}n

xn

n!
(21)

where 0 ≤ y < 1.
An immediate consequence of (12) and the definitions (18), (19), (20), and (21) is the following

decomposition formulas:

2F1(a, [b, c; y]; x) + 2F1(a, {b, c; y} ; x) = 2F1(a, b; c; x) (22)

and:

1F1([a, b; y]; x) + 1F1({a, b; y} ; x) = 1F1(a; b; x). (23)

Theorem 2. The following integral representation holds true:

2F1(a, [b, c; y], x) =
yb

B(b, c− b)

∫ 1

0
ub−1(1− uy)c−b−1(1− xuy)−adu, (24)

Re(c) > Re(b) > 0, |arg(1− x)| < π).

Proof. Replacing the incomplete Pochhammer ratio [b, c; y]n in the definition (18) by its integral
representation given by (8) and interchanging the order of summation and integral, which is permissible
under the conditions given in the hypothesis of the Theorem, we find:

2F1(a, [b, c; y], x) =
1

B(b, c− b)

∫ y

0
tb−1(1− t)c−b−1(1− xt)−adt, (25)
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which can be written as follows:

2F1(a, [b, c; y], x) =
yb

B(b, c− b)

∫ 1

0
ub−1(1− uy)c−b−1(1− xuy)−adu. (26)

In a similar way, we have the following theorem:

Theorem 3. The following integral representation holds true:

2F1(a, {b, c; y} , x) =
(1− y)c−b

B(b, c− b)

∫ 1

0
uc−b−1(1− u(1− y))b−1(1− x + xu(1− y))−adu,

Re(c) > Re(b) > 0, |arg(1− x)| < π. (27)

Theorem 4. The following result holds true:

2F1(a, [b, c; y], 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)(c− a− b) 2F1(c− a, 1; 1 + c− b− a; 1− y). (28)

Proof. Putting x = 1 in (22), we obtain:

2F1(a, [b, c; y], 1) = 2F1(a, b; c; 1)− 2F1(a, {b, c; 1− y} , 1) (29)

=
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−a

B(b, c− b)

∫ 1

0
uc−b−a−1(1− u(1− y))b−1du.

Using Euler’s integral representation for (29), we have:

2F1(a, [b, c; y], 1) = Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) −

(1−y)c−b−a

B(b,c−b)(c−b−a) 2F1(1− b, c− b− a; 1 + c− b− a; 1− y). (30)

Using transformation formula:

2F1(α, β; γ; z) = (1− z)γ−β−α
2F1(γ− α, γ− β; γ; z), (31)

in (30), we obtain:

2F1(1− b, c− b− a; 1 + c− b− a; 1− y) = yb
2F1(c− a, 1; 1 + c− b− a; 1− y). (32)

Considering (32) in (30), we get:

2F1(a, [b, c; y], 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)(c− b− a) 2F1(c− a, 1; 1 + c− b− a; 1− y). (33)

Theorem 5. The following result holds true:

2F1(a, {b, c; y} , 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

− (1− y)c−b−ayb

B(b, c− b)b 2F1(c− a, 1; b + 1; y). (34)
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Theorem 6. The following integral representations hold true:

1F1([a, b; y], x) =
ya

B(a, b− a)

∫ 1

0
ua−1(1− uy)b−a−1exuydu, Re(b) > Re(a) > 0 (35)

and:

1F1({a, b; y} , x) =
(1− y)b−a

B(a, b− a)

∫ 1

0
ub−a−1(1− u(1− y))a−1e(1−u(1−y))xdu, Re(b) > Re(a) > 0. (36)

Proof. Replacing the incomplete Pochhammer ratio [a, b; y]n in the definition (20) by its integral
representation given by (8), we are led to the desired result (35). Formula (36) can be proven in a
similar way.

Theorem 7. The following integral representation holds true:

∫ 1

0
yk−1

2F1(a, [b, c− k; y]; x)dy =
1
k

[
2F1(a, b; c− k; x)− Γ (c− k) Γ (b + k)

Γ (b) Γ (c) 2F1(a, b + k; c; x)
]

, k ∈ N.

(37)

Proof. It is known that from Euler’s formula that:

2F1(a, b + k; c; x) =
1

B(b + k, c− b− k)

∫ 1

0
yb+k−1(1− y)c−b−k−1(1− xy)−ady, k ∈ N.

Taking u = yk and the remaining part as dv and applying the integration by parts, we get:

2F1(a, b + k; c; x) =
Γ (b) Γ (c)

Γ (c− k) Γ (b + k)

[
2F1(a, b; c− k; x)− k

∫ 1

0
yk−1

2F1(a, [b, c− k; y], x)dy
]

.

By rearranging the terms, we get the result.

Corollary 1. Taking k = 1 in Theorem 7, we get the following result:

∫ 1

0
2F1(a, [b, c− 1; y], x)dy = 2F1(a, b; c− 1; x)− b

c− 1 2F1(a, b + 1; c; x). (38)

Theorem 8. The following integral representation holds true:

∫ 1

0
yk−1

2F1(a, [b, c; y], x)dy =
1
k

Γ (c) Γ (c− b + k)
Γ (c− b) Γ (c + k) 2F1(a, b; c + k; x). (39)

Proof. It is known that:

2F1(a, b; c + k; x) =
1

B(b, c− b + k)

∫ 1

0
yb−1(1− y)c−b+k−1(1− xy)−ady.

Taking u = (1− y)k and the rest as dv and using integration by parts, we get the result.

Corollary 2. Taking k = 1 in Theorem 9, we get the following result:

2F1(a, b; c + 1; x) =
c

c− b

∫ 1

0
2F1(a, [b, c; y], x)dy. (40)
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Theorem 9. The following derivative formula holds true:

dn

dxn (2F1(a, [b, c; y]; x)) =
(a)n(b)n

(c)n
2F1(a + n, [b + n, c + n; y]; x). (41)

Proof. Using (25), differentiating on both sides with respect to x, we obtain:

d
dx

(2F1(a, [b, c; y]; x)) =
a

B(b, c− b)

∫ y

0
tb(1− t)c−b−1(1− xt)−a−1dt

=
a

B(b, c− b)

∫ y

0
t(b+1)−1(1− t)(c+1)−(b+1)−1(1− xt)−(a+1)dt

=
ab
c

1
B(b + 1, c− b)

∫ y

0
t(b+1)−1(1− t)(c+1)−(b+1)−1(1− xt)−(a+1)dt

=
ab
c 2F1(a + 1, [b + 1, c + 1; y]; x

which is (41) for n = 1. The general result follows by the principle of mathematical induction on n.

Theorem 10. The following derivative formula holds true:

dn

dxn (1F1([a, b; y]; x)) =
(a)n

(b)n
1F1([a + n, b + n; y]; x). (42)

Theorem 11. We have the following difference formula for 2F1(a, [b, b + h; y]; x):

b + h− 1
B(b, h)

yb−1(1− y)h−1(1− xy)−a = 2F1(a, [b, b + h− 1; y]; x) + (43)

2F1(a, [b− 1, b + h− 1; y]; x)− ax(b + h− 1) 2F1(a + 1, [b, b + h; y]; x).

Proof. Recalling that the Mellin transform operator is defined by:

M { f (t) : s} :=
∫ ∞

0
ts−1 f (t)dt, Re(s) > 0,

we observe that 2F1(a, [b, b + h; y]; x) is the Mellin transform of the function:

f (t : x; y, a; h) = H(y− t)(1− t)h−1(1− xt)−a,

where:

H(t) =

{
1 if t > 0
0 if t < 0

,

is the Heaviside unit function. Observing the fact that:

2F1(a, [b, b + h; y]; x) :=
M { f (t : x; y, a; h) : b}

B(b, h)
, (44)

we can write that:

∂

∂t
( f (t : x; y, a; h)) = −[(y− t)(1− t)h−1(1− xt)−a + (h− 1)H(y− t)(1− t)h−2(1− xt)−a] (45)

+ ax(1− xt)−a−1H(y− t)(1− t)h−1,
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where ∂
∂t (H(t)) = δ(t− t0),

δ(t− t0) =

{
∞ if t = t0

0 if t �= t0
,

is the Dirac delta function. Applying the Mellin transform on both sides (45) and using (44) and the
fact that:

M
{

f ′(t) : x
}
= (1− x)M { f (t) : x− 1} ,

we have:

b + h− 1
B(b, h)

yb−1(1− y)h−1(1− xy)−a = 2F1(a, [b, b + h− 1; y]; x)

+ 2F1(a, [b− 1, b + h− 1; y]; x)− ax(b + h− 1) 2F1(a + 1, [b, b + h; y]; x).

This completes the proof.

In the following theorems, we give transformation formulas:

Theorem 12. The following transformation formula holds true:

2F1(a, [β, γ; y]; z) = (1− z)−a
2F1(a, {γ− β, γ; 1− y} ;

z
z− 1

), |arg(1− z)| < π. (46)

Proof. Using (25), we obtain:

2F1(a, [β, γ; y]; z) =
(1− z)−a

B(β, γ− β)

∫ 1

1−y
(1− s)β−1sγ−β−1

(
1− z

z− 1
s
)−a

ds. (47)

The substitution s = 1− t in (47) leads to:

2F1(a, [β, γ; y]; z) =
(1− z)−a

B(β, γ− β)

∫ y

0
tβ−1(1− t)γ−β−1

(
1− z(1− t)

z− 1

)−a
dt

= (1− z)−a
2F1(a, {γ− β, γ; 1− y} ;

z
z− 1

).

Theorem 13. The following transformation formula holds true:

2F1(a, {β, γ; y} ; z) = (1− z)−a
2F1(a, [γ− β, γ; 1− y];

z
z− 1

), |arg(1− z)| < π. (48)

Theorem 14. The following transformation formulas hold true:

1F1({α, β; 1− y} ; z) = ez
1F1([β− α, β; y] ;−z) (49)

and:
1F1([α, β; y] ; z) = ez

1F1 ({β− α, β; 1− y} ;−z) . (50)

Proof. The proofs of (49) and (50) are direct consequences of Theorem 6.
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4. The Incomplete Appell’s Functions

In this section, we introduce the incomplete Appell’s functions F1[a, b, c; d; x, z; y], F1{a, b, c; d; x, z; y},
F2[a, b, c; d, e; x, z; y], and F2{a, b, c; d, e; x, z; y} by:

F1[a, b, c; d; x, z; y] :=
∞

∑
m,n=0

[a, d; y]m+n(b)m(c)n
xm

m!
zn

n!
, max{|x| , |z|} < 1 (51)

and:

F1{a, b, c; d; x, z; y} :=
∞

∑
m,n=0

{a, d; y}m+n(b)m(c)n
xm

m!
zn

n!
, max{|x| , |z|} < 1 (52)

and:

F2[a, b, c; d, e; x, z; y] :=
∞

∑
m,n=0

(a)m+n[b, d; y]m[c, e; y]n
xm

m!
zn

n!
, |x|+ |z| < 1 (53)

and:

F2{a, b, c; d, e; x, z; y} :=
∞

∑
m,n=0

(a)m+n{b, d; y}m{c, e; y}n
xm

m!
zn

n!
, |x|+ |z| < 1. (54)

Remark 1. For the reader’s convenience, we show how the convergence domains are obtained for the functions
defined in (51)–(54). We just give the proof of (51). The other three definitions can be proven in a similar manner.
Considering the absolute value:

∣∣∣F1[a, b, c; d; x, z; y]
∣∣∣ ≤ ∞

∑
m,n=0

∣∣∣∣[a, d; y]m+n(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
≤

∞

∑
m,n=0

∣∣∣[a, d; y]m+n

∣∣∣ ∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
=

∞

∑
m,n=0

∣∣∣∣ 1
B(a, d− a)

∫ y

0
ta+m+n−1(1− t)d−a−1dt

∣∣∣∣ ∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣
≤

∞

∑
m,n=0

1
B(a, d− a)

∫ 1

0

∣∣∣ta+m+n−1(1− t)d−a−1dt
∣∣∣ ∣∣∣∣(b)m(c)n

xm

m!
zn

n!

∣∣∣∣
=

∞

∑
m,n=0

B(a + m + n, d− a)
B(a, d− a)

∣∣∣∣(b)m(c)n
xm

m!
zn

n!

∣∣∣∣ ,
where the final series is the one corresponding to absolute convergence of the series for F1(a, b, c; d; x, z). Therefore,
the series for F1[a, b, c; d; x, z; y] is absolutely convergent under the same conditions as the one for F1(a, b, c; d; x, z).

We proceed by obtaining the integral representations of the functions F1[a, b, c; d; x, z; y],
F1{a, b, c; d; x, z; y}, F2[a, b, c; d, e; x, z; y], and F2{a, b, c; d, e; x, z; y}.

Theorem 15. For the incomplete Appell’s functions F1[a, b, c; d; x, z; y] and F1{a, b, c; d; x, z; y}, we have the
following integral representation:

F1[a, b, c; d; x, z; y] =
ya

B(a, d− a)

∫ 1

0
ua−1(1− uy)d−a−1(1− xuy)−b(1− zuy)−cdu, (55)

Re(d) > 0, Re(a) > 0, Re(b) > 0, Re(c) > 0, |arg (1− x)| < π, |arg (1− z)| < π.
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and:

F1{a, b, c; d; x, z; y} =
(1− y)d−a

B(a, d− a)
×
∫ 1

0
ud−a−1(1− u(1− y))a−1

(1− x(1− u(1− y)))−b(1− z(1− u(1− y)))−cdu, Re(d) > 0,

Re(a) > 0, Re(b) > 0, Re(c) > 0, |arg (1− x)| < π, |arg (1− z)| < π. (56)

Proof. Replacing the integral representation for the incomplete beta function, which is given by (8),
we find that:

F1[a, b, c; d; x, z; y] =
1

B(a, d− a)

∫ y

0
ta−1(1− t)d−a−1(1− xt)−b(1− zt)−cdt,

which can be written as:

F1[a, b, c; d; x, z; y] =
ya

B(a, d− a)

∫ 1

0
ua−1(1− uy)d−a−1(1− xuy)−b(1− zuy)−cdu;

whence the result. Formula (56) can be proven in a similar way.

Theorem 16. For the incomplete Appell’s functions F2[a, b, c; d, e; x, z; y] and F2{a, b, c; d, e; x, z; y}, we have the
following integral representation:

F2[a, b, c; d, e; x, z; y] =
yb+c

B(b, d− b)B(c, e− c)

×
∫ 1

0

∫ 1

0
ub−1(1− uy)d−b−1vc−1(1− vy)e−c−1(1− xuy− zvy)−adudv,

Re(d) > Re(a) > Re(b) > Re(c) > Re(m) > 0, |arg (1− x− z)| < π. (57)

and:

F2{a, b, c; d, e; x, z; y}

=
(1− y)d−b+e−c

B(b, d− b)B(c, e− c)

∫ 1

0

∫ 1

0
ud−b−1(1− u(1− y))b−1ve−c−1(1− v(1− y))c−1

(1− x(1− u(1− y))− z(1− v(1− y)))−adudv,

Re(d) > 0, Re(a) > 0, Re(b) > 0, Re(c) > 0, Re(e) > 0, |arg (1− x− z)| < π. (58)

Proof. Replacing the integral representation for the incomplete beta function, which is given by (8), we get:

F2[a, b, c; d, e; x, z; y] =
1

B(b, d− b)B(c, e− c)

×
∞

∑
m,n=0

∫ y

0

∫ y

0
(a)m+ntb+m−1(1− t)d−b−1sc+n−1(1− s)e−c−1 xm

m!
zn

n!
dtds.

Considering the fact that the series involved are uniformly convergent and we have a right to interchange
the order of summation and integration, we get:
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F2[a, b, c; d, e; x, z; y] =
1

B(b, d− b)B(c, e− c)

×
∫ y

0

∫ y

0
tb−1(1− t)d−b−1sc−1(1− s)e−c−1(1− xt− zs)−adtds,

=
yb+c

B(b, d− b)B(c, e− c)

×
∫ 1

0

∫ 1

0
ub−1(1− uy)d−b−1vc−1(1− vy)e−c−1(1− xuy− zvy)−adudv.

Formula (58) can be proven in a similar way.

5. Incomplete Riemann-Liouville Fractional Integral Operators

In this section, we introduce and investigate the incomplete Riemann-Liouville fractional integral
operators. The Riemann-Liouville fractional integral of order μ is defined by:

Dμ
z { f (z)} :=

1
Γ (−μ)

∫ z

0
f (t)(z− t)−μ−1dt, Re(μ) < 0. (59)

Now, we define the incomplete Riemann-Liouville fractional integral operators Dμ
z [ f (z); y] and

Dμ
z { f (z); y} by:

Dμ
z [ f (z); y] : =

z−μ

Γ (−μ)

∫ y

0
f (uz)(1− u)−μ−1du (60)

: =
z−μy

Γ (−μ)

∫ 1

0
f (ywz)(1− wy)−μ−1dw, Re(μ) < 0.

and its counterpart is by:

Dμ
z { f (z); y} : =

z−μ

Γ (−μ)

∫ 1

y
f (uz)(1− u)−μ−1du (61)

: =
z−μ

Γ (−μ)

∫ 1−y

0
f ((1− t)z)t−μ−1dt, Re(μ) < 0.

Remark 2. If y = 1, then (60) is equivalent to the standard Riemann-Liouville fractional integral (59). If y = 0,
then (61) is equivalent to the standard Riemann-Liouville fractional integral (59). Thus, the original definition (59)
is a particular case of both types of the incomplete Riemann-Liouville fractional integral.

We start our investigation by calculating the incomplete fractional integrals of some
elementary functions.

Theorem 17. Let Re(λ) > −1, Re(μ) < 0. Then:

Dμ
z [zλ; y] =

By(λ + 1,−μ)

Γ (−μ)
zλ−μ. (62)
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Proof. Using (60) and (8), we get:

Dμ
z [zλ; y] =

z−μ

Γ (−μ)

∫ y

0
(uz)λ(1− u)−μ−1du

=
By(λ + 1,−μ)

Γ (−μ)
zλ−μ;

whence the result.

Theorem 18. Let Re(λ) > −1, Re(μ) < 0. Then:

Dμ
z {zλ; y} = B1−y(−μ, λ + 1)

Γ (−μ)
z−μ+λ. (63)

Theorem 19. Let Re(λ) > 0, Re(α) > 0, Re(μ) < 0 and |z| < 1. Then:

Dλ−μ
z [zλ−1(1− z)−α; y] =

Γ (λ)

Γ (μ)
zμ−1

2F1(α, [λ, μ; y] ; z), (64)

and:

Dλ−μ
z {zλ−1(1− z)−α; y} = Γ (λ)

Γ (μ)
zμ−1

2F1(α, {λ, μ; y}; z). (65)

Proof. Direct calculations yield:

Dλ−μ
z [zλ−1(1− z)−α; y] =

zμ−λ

Γ (μ− λ)

∫ y

0
(uz)λ−1(1− uz)−α(1− u)μ−λ−1du

=
zμ−λy

Γ (μ− λ)

∫ 1

0
(yz)λ−1wλ−1(1− ywz)−α(1− wy)μ−λ−1dw

=
zμ−1yλ

Γ (μ− λ)

∫ 1

0
wλ−1(1− ywz)−α(1− wy)μ−λ−1dw.

By (24), we can write:

Dλ−μ
z [zλ−1(1− z)−α; y] =

zμ−1

Γ (μ− λ)
B(λ, μ− λ)2F1(α, [λ, μ; y] ; z)

=
Γ (λ)

Γ (μ)
zμ−1

2F1(α, [λ, μ; y] ; z).

Hence, the proof is completed. Formula (65) can be proven in a similar way.

Theorem 20. Let Re(λ) > Re(μ) > 0, Re(α) > 0, Re(β) > 0; |az| < 1 and |bz| < 1. Then:

Dλ−μ
z [zλ−1(1− az)−α(1− bz)−β; y] =

Γ (λ)

Γ (μ)
zμ−1F1[λ, α, β; μ; az, bz; y], (66)

and:

Dλ−μ
z {zλ−1(1− az)−α(1− bz)−β; y} = Γ (λ)

Γ (μ)
zμ−1F1{λ, α, β; μ; az, bz; y}. (67)
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Proof. We have:

Dλ−μ
z [zλ−1(1− az)−α(1− bz)−β; y]

=
zμ−λ

Γ (μ− λ)

∫ y

0
(uz)λ−1(1− auz)−α(1− buz)−β(1− u)μ−λ−1du

=
zμ−λy

Γ (μ− λ)

∫ 1

0
(yw)λ−1(z)λ−1(1− aywz)−α(1− bywz)−β(1− wy)μ−λ−1dw

=
zμ−1yλ

Γ (μ− λ)

∫ 1

0
wλ−1(1− aywz)−α(1− bywz)−β(1− wy)μ−λ−1dw.

By (55), we can write:

Dλ−μ
z [zλ−1(1− az)−α(1− bz)−β; y] =

zμ−1

Γ (μ− λ)
B(λ, μ− λ)F1[λ, α, β; μ; az, bz; y]

=
Γ (λ)

Γ (μ)
zμ−1F1[λ, α, β; μ; az, bz; y];

whence the result. Formula (67) can be proven in a similar way.

Theorem 21. Let Re(λ) > Re(μ) > 0, Re(α) > 0, Re(β) > 0, Re(γ) > 0;
∣∣ t

1−z

∣∣ < 1and |t| + |z| < 1.
We have:

Dλ−μ
z [zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y] =

Γ (λ)

Γ (μ)
zμ−1F2[α, β, λ; γ, μ; t, z; y], (68)

and:

Dλ−μ
z {zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y} = Γ (λ)

Γ (μ)
zμ−1F2{α, β, λ; γ, μ; t, z; y}. (69)

Proof. Using Theorem 19 and (53), we get:

Dλ−μ
z [zλ−1(1− z)−α

2F1(α. [β, γ; y] ;
t

1− z
); y]

= Dλ−μ
z [zλ−1(1− z)−α 1

B(β, γ− β)

∞

∑
n=0

(α)n By(β + n, γ− β)

n!

(
t

1− z

)n
; y]

=
1

B(β, γ− β)
Dλ−μ

z [zλ−1
∞

∑
n=0

(α)n By(β + n, γ− β)
tn

n!
(1− z)−α−n; y]

=
1

B(β, γ− β)

∞

∑
m,n=0

By(β + n, γ− β)
tn

n!
(α)n (α + n)m

m!
Dλ−μ

z [zλ−1+m; y]

=
1

B(β, γ− β)

∞

∑
m,n=0

By(β + n, γ− β)
tn

n!
(α)n+m

m!
By(λ + m, μ− λ)

Γ(μ− λ)
zμ+m−1

=
Γ (λ)

Γ (μ)
zμ−1F2[α, β, λ; γ, μ; t, z; y].

Hence, the proof is complete. Formula (69) can be proven in a similar way.
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6. Generating Functions

Now, we obtain linear and bilinear generating relations for the incomplete hypergeometric functions
2F1(a, [b, c; y] ; x) by following the methods described in [2]. We start with the following theorem:

Theorem 22. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(λ + n, [α, β; y] ; z)tn = (1− t)−λ
2F1(λ, [α, β; y] ;

z
1− t

) (70)

and:
∞

∑
n=0

(λ)n

n! 2F1(λ + n, {α, β; y}; z)tn = (1− t)−λ
2F1(λ, {α, β; y}; z

1− t
) (71)

where |z| < min{1, |1− t|} and Re(λ) > 0, Re(β) > Re(α) > 0.

Proof. Considering the elementary identity:

[(1− z)− t]−λ = (1− t)−λ

[
1− z

1− t

]−λ

and expanding the left-hand side, we have for |t| < |1− z| that:

(1− z)−λ
∞

∑
n=0

(λ)n

n!

(
t

1− z

)n
= (1− t)−λ

[
1− z

1− t

]−λ

.

Now, multiplying both sides of the above equality by zα−1 and applying the incomplete fractional integral
operator Dα−β

z [ f (z); y] on both sides, we can write:

Dα−β
z

[
∞

∑
n=0

(λ)n

n!
(1− z)−λ

(
t

1− z

)n
zα−1; y

]
= (1− t)−λDα−β

z

[
zα−1

[
1− z

1− t

]−λ

; y

]
.

Interchanging the order, which is valid for Re(α) > 0 and |t| < |1− z| , we get:

∞

∑
n=0

(λ)n

n!
Dα−β

z

[
zα−1(1− z)−λ−n; y

]
tn = (1− t)−λDα−β

z

[
zα−1

[
1− z

1− t

]−λ

; y

]
.

Using Theorem 21, we get the desired result. Formula (71) can be proven in a similar way.

The following theorem gives another linear generating relation for the incomplete
hypergeometric functions.

Theorem 23. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(ρ− n, [α, β; y] ; z)tn = (1− t)−λF1[α, ρ, λ; β; z;
−zt
1− t

; y] (72)

and:
∞

∑
n=0

(λ)n

n! 2F1(ρ− n, {α, β; y} ; z)tn = (1− t)−λF1{α, ρ, λ; β; z;
−zt
1− t

; y} (73)
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where Re(λ) > 0, Re(ρ) > 0, Re(β) > Re(α) > 0; |t| < 1
1+|z| .

Proof. Considering:

[1− (1− z)t]−λ = (1− t)−λ

[
1 +

zt
1− t

]−λ

and expanding the left-hand side, we have for |t| < |1− z| that:

∞

∑
n=0

(λ)n

n!
(1− z)ntn = (1− t)−λ

[
1− −zt

1− t

]−λ

.

Now, multiplying both sides of the above equality by zα−1(1− z)−ρ and applying the fractional integral
operator Dα−β

z [ f (z); y] on both sides, we get:

Dα−β
z

[
∞

∑
n=0

(λ)n

n!
zα−1(1− z)−ρ+ntn; y

]
= (1− t)−λDα−β

z

[
zα−1(1− z)−ρ

[
1− −zt

1− t

]−λ

; y

]
.

Interchanging the order, which is valid for Re(α) > 0 and |zt| < |1− t| , we get:

∞

∑
n=0

(λ)n

n!
Dα−β

z

[
zα−1(1− z)−(ρ−n); y

]
tn = (1− t)−λDα−β

z

[
zα−1(1− z)−ρ

[
1− −zt

1− t

]−λ

; y

]
.

Using Theorem 21 and 22, we get the desired result. The generating relation (73) can be proven in a
similar way.

Finally, we have the following bilinear generating relation for the incomplete
hypergeometric functions.

Theorem 24. For the incomplete hypergeometric functions, we have:

∞

∑
n=0

(λ)n

n! 2F1(γ, [−n, δ; y] ; x) 2F1(γ, [λ + n, β; y] ; z)tn = (1− t)−λF2[λ, α, γ; β, δ;
z

1− t
;
−xt
1− t

; y] (74)

and:

∞

∑
n=0

(λ)n

n! 2F1(γ, {−n, δ; y} ; x) 2F1(γ, {λ + n, β; y}; z)tn = (1− t)−λF2{λ, α, γ; β, δ;
z

1− t
;
−xt
1− t

; y} (75)

where Re(λ) > 0, Re(γ) > 0, Re(β) > 0, Re(δ) > 0, Re(α) > 0; |t| < 1−|z|
1+|x| , and |z| < 1.

Proof. Replacing t by (1− x)t in (70), multiplying the resulting equality by xγ−1, and then applying the
incomplete fractional integral operator Dγ−δ

x [ f (x); y], we get:

Dγ−δ
x

[
∞

∑
n=0

(λ)n

n!
xγ−1

2F1(λ + n, [α, β; y] ; z)(1− x)ntn; y

]

= Dγ−δ
x

[
(1− (1− x)t)−λxγ−1

2F1(λ, [α, β; y] ;
z

1− (1− x)t
); y
]

.
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Interchanging the order, which is valid for |z| < 1,
∣∣∣ 1−x

1−z t
∣∣∣ < 1 and

∣∣ z
1−t

∣∣+ ∣∣ xt
1−t

∣∣ < 1, we can write that:

∞

∑
n=0

(λ)n

n!
Dγ−δ

x

[
xγ−1(1− x)n; y

]
2F1(λ + n, [α, β; y] ; z)

= (1− t)−λDγ−δ
x

[
xγ−1(1− −xt

1− t
) 2F1(λ, [α, β; y] ;

z
1−t

1− −xt
1−t

); y

]
.

Using Theorems 21 and 23, we get (74). The generating relation (75) can be proven in a similar way.

In the following remark, first of all, we obtained a series formula for the Gauss hypergeometric
functions as an application of Theorem 22. Similar results can be obtained for Theorem 23 and 24.
Furthermore, we showed that the result obtained in (70) coincides with usual case when y → 1−.

Remark 3. Using the relation that is given by (13) in Equation (70), we have:

1
B(α, β− α)

∞

∑
n,k=0

(λ)n (λ + n)k
yα+k

α + k 2F1 (α + k, 1− β + α; α + k + 1; y)
zk

k!
tn

n!
(76)

=
(1− t)−λ

B(α, β− α)

∞

∑
m=0

(λ)m
m!

(
z

1− t

)m yα+m

α + m 2
F1 (α + m, 1− β + α; α + m + 1; y) (77)

which is a series identity between the Gauss hypergeometric functions. If we take y = 1 in the above identity and use
the following relation:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

we obtain:

∞

∑
n=0

(λ)n

n! 2F1(λ + n, α, β; z)tn = (1− t)−λ
2F1(λ, α, β;

z
1− t

) (78)

7. Conclusions

Recently, in [27], various applications of fractional calculus were exhibited in areas ranging from
engineering to life sciences. For the applications of fractional calculus, we should also recommend the
references of the paper [27] and, in particular, the book [21].

In the present paper, we introduced the incomplete versions of Riemann-Liouville integral operators.
Approaching the problems mentioned in [27] using these incomplete operators may give rise to interesting
perspectives on solving these problems. For instance, in a nonlocal fractional process, which occurs on an
interval, but whose behavior changes in the middle, it may be useful to consider splitting the domain into
subintervals and integrating from both sides separately using incomplete fractional operators.

These operators have already been used to define Liouville-Caputo-type incomplete fractional
derivatives in [12]. Furthermore, for the incomplete Riemann-Liouville fractional integrals defined here,
their analyticity properties have been investigated in [31]. Some of these, such as a transformation property
on the domains of the functions concerned, may also lend themselves well to applications.

Incomplete Pochhammer ratios were defined in (10) and (11) by using the incomplete beta functions.
Several properties of these functions were obtained. Incomplete hypergeometric functions were
introduced with the help of these incomplete Pochhammer ratios, and certain properties such as integral
representations, derivative formulas, transformation formulas, and recurrence relations were investigated.

148



Mathematics 2019, 7, 483

Furthermore, incomplete Riemann-Liouville fractional integral operators were defined. The incomplete
Riemann-Liouville fractional integrals for the some elementary functions were given. Linear and bilinear
generating relations for incomplete hypergeometric functions were obtained.
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1. Introduction

Let H denote the class of analytic functions in the open unit disk U := {z ∈ C : |z| < 1} and A
denote the subclass ofH consisting of functions of the form

f (z) = z +
∞

∑
n=2

anzn. (1)

Also, let S be the subclass of A consisting of all univalent functions in U. Then the logarithmic
coefficients γn of f ∈ S are defined with the following series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γn( f )zn, z ∈ U. (2)

These coefficients play an important role for various estimates in the theory of univalent functions.
Note that we use γn instead of γn( f ). The idea of studying the logarithmic coefficients helped
Kayumov [1] to solve Brennan’s conjecture for conformal mappings.

Recall that we can rewrite (2) in the series form as follows:

2
∞

∑
n=1

γnzn =a2z + a3z2 + a4z3 + · · · − 1
2
[a2z + a3z2 + a4z3 + · · · ]2

+
1
3
[a2z + a3z2 + a4z3 + · · · ]3 + · · · .
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Mathematics 2019, 7, 408

Now, considering the coefficients of zn for n = 1, 2, 3, it follows that⎧⎪⎪⎪⎨⎪⎪⎪⎩
2γ1 = a2,

2γ2 = a3 −
1
2

a2
2,

2γ3 = a4 − a2a3 +
1
3

a3
2.

(3)

For two functions f and g that are analytic in U, we say that the function f is subordinate to g in
U and write f (z) ≺ g (z) if there exists a Schwarz function ω that is analytic in U with ω (0) = 0 and
|ω (z)| < 1 such that

f (z) = g (ω (z)) (z ∈ U) .

In particular, if the function g is univalent in U, then f ≺ g if and only if f (0) = g(0) and
f (U) ⊆ g(U).

Using subordination, different subclasses of starlike and convex functions were introduced by
Ma and Minda [2], in which either of the quantity z f ′(z)

f (z) or 1 + z f ′′(z)
f ′(z) is subordinate to a more general

superordinate function. To this aim, they considered an analytic univalent function ϕ with positive real
part in U. ϕ(U) is symmetric respecting the real axis and starlike considering ϕ(0) = 1 and ϕ′(0) > 0.
They defined the classes consisting of several well-known classes as follows:

S∗(ϕ) :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ϕ(z), z ∈ U

}
,

and

K(ϕ) :=
{

f ∈ S : 1 +
z f ′′(z)
f ′(z)

≺ ϕ(z), z ∈ U

}
.

For example, the classes S∗(ϕ) andK(ϕ) reduce to the classes S∗[A, B] :=
1 + Az
1 + Bz

andK[A, B] :=

1 + Az
1 + Bz

of the well-known Janowski starlike and Janowski convex functions for −1 ≤ B < A ≤ 1,

respectively. By replacing A = 1− 2α and B = −1 where 0 ≤ α < 1, we conclude the classes S∗(α)
andK(α) of the starlike functions of order α and convex functions of order α, respectively. In particular,
S∗ := S∗(0) and K := K(0) are the class of starlike functions and of convex functions in the unit
disk U, respectively. The Koebe function k(z) = z/(1− z)2 is starlike but not convex in U. Thus,
every convex function is starlike but not conversely; however, each starlike function is convex in the
disk of radius 2−

√
3.

Lately, several researchers have subsequently investigated similar problems in the direction of the
logarithmic coefficients, the coefficient problems, and differential subordination [3–11], to mention
a few. For example, the rotation of Koebe function k(z) = z(1− eiθ)−2 for each θ has logarithmic
coefficients γn = eiθn/n, n ≥ 1. If f ∈ S , then by using the Bieberbach inequality for the first equation
of (3) it concludes |γ1| ≤ 1 and by utilizing the Fekete–Szegö inequality for the second equation of (3),
(see [12] (Theorem 3.8)),

|γ2| =
1
2

∣∣a3 −
1
2

a2
2
∣∣ ≤ 1

2
(
1 + 2e−2) = 0.635 · · · .

It was shown in [12] (Theorem 4) that the logarithmic coefficients γn of every function f ∈ S satisfy

∞

∑
n=1
|γn|2 ≤

π2

6
,

and the equality is attained for the Koebe function. For f ∈ S∗, the inequality |γn| ≤ 1/n holds but
is not true for the full class S , even in order of magnitude (see [12] (Theorem 8.4)). In 2018, Ali and
Vasudevarao [3] and Pranav Kumar and Vasudevarao [6] obtained the logarithmic coefficients γn for
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certain subclasses of close-to-convex functions. Nevertheless, the problem of the best upper bounds
for the logarithmic coefficients of univalent functions for n ≥ 3 is presumably still a concern.

Based on the results presented in previous research, in the current study, the bounds for the
logarithmic coefficients γn of the general classes S∗(ϕ) and K(ϕ) were estimated. It is worthwhile
mentioning that the given bounds in this paper would generalize some of the previous papers and
that many new results are obtained, noting that our method is more general than those used by others.
The following lemmas will be used in the proofs of our main results.

For this work, let Ω represent the class of all analytic functions ω in U that equips with conditions
ω(0) = 0 and |ω(z)| < 1 for z ∈ U. Such functions are called Schwarz functions.

Lemma 1. [13] (p. 172) Assume that ω is a Schwarz function so that ω(z) = ∑∞
n=1 pnzn. Then

|p1| ≤ 1, |pn| ≤ 1− |p1|2 n = 2, 3, . . ..

Lemma 2. [14] Let ψ, � ∈ H be any convex univalent functions in U. If f (z) ≺ ψ(z) and g(z) ≺ �(z),
then f (z) ∗ g(z) ≺ ψ(z) ∗�(z) where f , g ∈ H.

We observe that in the above lemma, nothing is assumed about the normalization of ψ and �,
and “∗” represents the Hadamard (or convolution) product.

Lemma 3. [12,15] (Theorem 6.3, p. 192; Rogosinski’s Theorem II (i)) Let f (z) =
∞
∑

n=1
anzn and g(z) =

∞
∑

n=1
bnzn be analytic in U, and suppose that f ≺ g where g is univalent in U. Then

n

∑
k=1
|ak|2 ≤

n

∑
k=1
|bk|2, n = 1, 2, . . ..

Lemma 4. [12,15] (Theorem 6.4 (i), p. 195; Rogosinski’s Theorem X) Let f (z) =
∞
∑

n=1
anzn and g(z) =

∞
∑

n=1
bnzn be analytic in U, and suppose that f ≺ g where g is univalent in U. Then

(i) If g is convex, then |an| ≤ |g′(0)| = |b1|, n = 1, 2, . . ..
(ii) If g is starlike (starlike with respect to 0), then |an| ≤ n|g′(0)| = n|b1|, n = 2, 3, . . ..

Lemma 5. [16] If ω(z) = ∑∞
n=1 pnzn ∈ Ω, then for any real numbers q1 and q2, the following sharp

estimate holds:
|p3 + q1 p1 p2 + q2 p3

1| ≤ H(q1; q2),

where

H(q1; q2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (q1, q2) ∈ D1 ∪ D2 ∪ {(2, 1)},
|q2| if (q1, q2) ∈ ∪7

k=3Dk,

2
3 (|q1|+ 1)

( |q1|+1
3(|q1|+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪ D9,

q2
3

(
q2

1−4
q2

1−4q2

)(
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪ D11 \{(2, 1)},

2
3 (|q1| − 1)

( |q1|−1
3(|q1|−1−q2)

) 1
2 if (q1, q2) ∈ D12.
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While the sets Dk, k = 1, 2, . . . , 12 are defined as follows:

D1 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ 1
}

,

D2 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1) ≤ |q2| ≤ 1

}
,

D3 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ −1
}

,

D4 =

{
(q1, q2) : |q1| ≥

1
2

, |q2| ≤ −
2
3
(|q1|+ 1)

}
,

D5 = {(q1, q2) : |q1| ≤ 2, |q2| ≥ 1} ,

D6 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4, |q2| ≥

1
12

(q2
1 + 8)

}
,

D7 =

{
(q1, q2) : |q1| ≥ 4, |q2| ≥

2
3
(|q1| − 1)

}
,

D8 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1)

}
,

D9 =

{
(q1, q2) : |q1| ≥ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4

}
,

D10 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4,

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4
≤ q2 ≤

1
12

(q2
1 + 8)

}
,

D11 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4
≤ q2 ≤

2|q1|(|q1 − 1|)
q2

1 − 2|q1|+ 4

}
,

D12 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1 − 1|)
q2

1 − 2|q1|+ 4
≤ q2 ≤

2
3
(|q1| − 1)

}
.

2. Main Results

Throughout this paper, we assume that ϕ is an analytic univalent function in the unit disk U

satisfying ϕ(0) = 1 such that it has series expansion of the form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · , B1 �= 0. (4)

Theorem 1. Let the function f ∈ S∗(ϕ). Then the logarithmic coefficients of f satisfy the inequalities:

(i) If ϕ is convex, then

|γn| ≤
|B1|
2n

, n ∈ N, (5)

k

∑
n=1
|γn|2 ≤

1
4

k

∑
n=1

|Bn|2
n2 , k ∈ N, (6)

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

|Bn|2
n2 . (7)

(ii) If ϕ is starlike with respect to 1, then

|γn| ≤
|B1|

2
, n ∈ N. (8)

All inequalities in (5), (7), and (8) are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= ϕ(zn) and the function f given by
z f ′(z)

f (z)
= ϕ(z), respectively.
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Proof. Suppose that f ∈ S∗(ϕ). Then considering the definition of S∗(ϕ), it follows that

z
d
dz

(
log
(

f (z)
z

))
=

z f ′(z)
f (z)

− 1 ≺ ϕ(z)− 1 =: φ(z), z ∈ U,

which according to the logarithmic coefficients γn of f given by (1), concludes

∞

∑
n=1

2nγnzn ≺ φ(z), z ∈ U.

Now, for the proof of inequality (5), we assume that ϕ is convex in U. This implies that φ(z) is
convex with φ′(0) = B1, and so by Lemma 4(i) we get

2n|γn| ≤ |φ′(0)| = |B1|, n ∈ N,

and concluding the result.

Next, for the proof of inequality (6), we define h(z) :=
f (z)

z
, which is an analytic function, and it

satisfies the relation
zh′(z)
h(z)

=
z f ′(z)

f (z)
− 1 ≺ φ(z), z ∈ U, (9)

as φ is convex in U with φ(0) = 0.
On the other hand, it is well known that the function (see [17])

b0(z) = log
(

1
1− z

)
=

∞

∑
n=1

zn

n

belongs to the class K, and for f ∈ H,

f (z) ∗ b0(z) =
∫ z

0

f (t)
t

dt. (10)

Now, by Lemma 2 and from (9), we obtain

zh′(z)
h(z)

∗ b0(z) ≺ φ(z) ∗ b0(z).

Considering (10), the above relation becomes

log
(

f (z)
z

)
≺
∫ z

0

φ(t)
t

dt.

In addition, it has been proved in [18] that the class of convex univalent functions is closed under

convolution. Therefore, the function
∫ z

0

φ(t)
t

dt is convex univalent. In addition, the above relation

considering the logarithmic coefficients γn of f given by (1) is equivalent to

∞

∑
n=1

2γnzn ≺
∞

∑
n=1

Bnzn

n
.

Applying Lemma 3, from the above subordination this gives

4
k

∑
n=1
|γn|2 ≤

k

∑
n=1

|Bn|2
n2 ,
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which yields the inequality in (6). Supposing that k → ∞, we deduce that

4
∞

∑
n=1
|γn|2 ≤

∞

∑
n=1

|Bn|2
n2 ,

and it concludes the inequality (7).
Finally, we suppose that ϕ is starlike with respect to 1 in U, which implies φ(z) is starlike, and thus

by Lemma 4(ii), we obtain
2n|γn| ≤ n|φ′(0)| = n|B1|, n ∈ N,

This implies the inequality in (8).
For the sharp bounds, it suffices to use the equality

z
d
dz

(
log
(

f (z)
z

))
=

z f ′(z)
f (z)

− 1,

and so these results are sharp in inequalities (5), (6), and (8) such that for any n ∈ N, there is the function

fn given by
z f ′n(z)
fn(z)

= ϕ(zn) and the function f given by
z f ′(z)

f (z)
= ϕ(z), respectively. This completes

the proof.

In the following corollaries, we obtain the logarithmic coefficients γn for two subclasses S∗(α +

(1− α)ez) and S∗(α + (1− α)
√

1 + z), which were defined by Khatter et al. in [19], and α + (1− α)ez

and α + (1− α)
√

1 + z are the convex univalent functions in U. For α = 0, these results reduce to the
logarithmic coefficients γn for the subclasses S∗(ez) and S∗(

√
1 + z) (see [20,21]).

Corollary 1. For 0 ≤ α < 1, let the function f ∈ S∗(α + (1− α)ez). Then the logarithmic coefficients of f
satisfy the inequalities

|γn| ≤
1− α

2n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

(1− α)2/(n!)2

n2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= α + (1− α)ezn

and the function f given by
z f ′(z)

f (z)
= α + (1− α)ez.

Corollary 2. For 0 ≤ α < 1, let the function f ∈ S∗(α + (1− α)
√

1 + z). Then the logarithmic coefficients
of f satisfy the inequalities

|γn| ≤
1− α

4n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

(
(1− α)(

1
2
n)
)2

n2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= α + (1−

α)
√

1 + zn and the function f given by
z f ′(z)

f (z)
= α + (1− α)

√
1 + z.

The following corollary concludes the logarithmic coefficients γn for a subclass S∗(1 + sin z)
defined by Cho et al. in [22], in which considering the proof of Theorem 1 and Corollary 1, the convexity
radius for q0(z) = 1 + sin z is given by r0 ≈ 0.345.
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Corollary 3. Let the function f ∈ S∗(1 + sin z) where q0(z) is a convex univalent function for r0 ≈ 0.345 in
U. Then the logarithmic coefficients of f satisfy the inequalities

|γn| ≤
1

2n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

1
((2n + 1)!n)2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= q0(zn) and

the function f given by
z f ′(z)

f (z)
= q0(z).

In the following result, we get the logarithmic coefficients γn for a subclass S∗(pk(z)) defined by
Kanas and Wisniowska in [23] (see also [24,25]), in which

pk(z) = 1 + P1(k)z + P2(k)z2 + · · · ,

where pk(z) is a convex univalent function in U and

P1(k) =

⎧⎪⎪⎨⎪⎪⎩
2A2

1−k2 if 0 ≤ k < 1,
8

π2 if k = 1,
π2

4κ2(t)(k2−1)(1+t)
√

t
if k > 1.

A = 2
π arccos k and κ(t) is the complete elliptic integral of the first kind.

Corollary 4. For 0 ≤ k < ∞, let the function f ∈ S∗(pk(z)). Then the logarithmic coefficients of f satisfy
the inequalities

|γn| ≤
P1(k)

2n
, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= pk(zn).

The following result concludes the logarithmic coefficients γn for a subclass S∗
(√

2− (
√

2−

1)
√

1−z
1+2(

√
2−1)z

)
defined by Mendiratta et al. in [26], in which

ϕ0(z) =
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z
= 1 +

5− 3
√

2
2

z +
71− 51

√
2

8
z2 + · · · ,

where ϕ0 is a convex univalent function in U.

Corollary 5. Let the function f ∈ S∗
(√

2− (
√

2− 1)
√

1−z
1+2(

√
2−1)z

)
. Then the logarithmic coefficients of f

satisfy the inequalities

|γn| ≤
5− 3

√
2

4n
, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= ϕ0(zn).
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The following results conclude the logarithmic coefficients γn for two subclasses S∗(z +
√

1 + z2)

and S∗
(
1 + z

(1−αz2)

)
defined by Krishna Raina and Sokół in [27] and Kargar et al. in [28], where

z +
√

1 + z2 = 1 + z +
∞

∑
n=1

( 1
2
n

)2

z2n,

and

1 +
z

(1− αz2)
= 1 + z +

∞

∑
n=1

αnz2n+1, (0 ≤ α < 1),

respectively. These functions are univalent and starlike with respect to 1 in U.

Corollary 6. Let the function f ∈ S∗(z +
√

1 + z2). Then the logarithmic coefficients of f satisfy
the inequalities

|γn| ≤
1
2

, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= zn +
√

1 + z2n.

Corollary 7. Let the function f ∈ S∗
(
1 + z

(1−αz2)

)
, where 0 ≤ α < 1. Then the logarithmic coefficients of f

satisfy the inequalities

|γn| ≤
1
2

, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= 1 +
z

(1− αz2n)
.

Remark 1. 1. Letting

ϕ(z) =
1 + Az
1 + Bz

=1 + (A− B)z− B(A− B)z2 + B2(A− B)z3 + · · ·

=1 +

⎧⎨⎩
A− B

B

∞
∑

n=1
(−1)n−1Bnzn, if B �= 0

Az, if B = 0,
(−1 ≤ B < A ≤ 1),

which is convex univalent in U in Theorem 1, then we get the results obtained by Ponnusamy et al. [7] (Theorem
2.1 and Corollary 2.3).

2. For A = eiα(eiα − 2β cos α), where β ∈ [0, 1) and α ∈ (−π/2, π/2) in the above expression, then we
get the results obtained by Ponnusamy et al. [7] (Theorem 2.5).

3. Taking

ϕ(z) =
(

1 + z
1− z

)α

=1 + 2αz + 2α2z2 +
8α3 + 4α

6
z3 + . . .

=1 +
∞

∑
n=1

An(α)zn, (0 < α ≤ 1),

which is convex univalent in U, and An(α) =
n
∑

k=1
(n−1

k−1)(
α
k)2

k in Theorem 1, then we get the results obtained by

Ponnusamy et al. [7] (Theorem 2.6).
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4. Setting

ϕ(z) = 1 +
β− α

π
i log
(

1− e2πi 1−α
β−α z

1− z

)
=1 +

∞

∑
n=1

Cnzn, (α > 1, β < 1),

which is convex univalent in U, and Cn =
β− α

nπ
i
(
1− e2nπi 1−α

β−α
)

in Theorem 1, then we get the results obtained
by Kargar [5] (Theorems 2.2 and 2.3).

5. Letting

ϕ(z) = 1 +
1

2i sin δ
log
(

1 + zeiδ

1 + ze−iδ

)
=1 +

∞

∑
n=1

Dnzn, (π/2 ≤ δ < π),

which is convex univalent in U, and Dn =
(−1)n−1 sin nδ

n sin δ
in Theorem 1, then we get the results obtained by

Kargar [5] (Theorems 2.5 and 2.6).
6. Letting

ϕ(z) =
(

1 + cz
1− z

)(α1+α2)/2

=1 +
∞

∑
n=1

λnzn,
(

0 < α1, α2 ≤ 1, c = eπiθ , θ =
α2 − α1

α2 + α1

)
,

which is convex univalent in U, and

λn =
n

∑
k=1

(
n− 1
k− 1

)(
(α1 + α2)/2

k

)
(1 + c)k

in Theorem 1, then we get the results obtained for |γn| by Kargar et al. [29] (Theorem 3.1). Moreover,
for α1 = α2 = β, we get the result presented by Thomas in [30] (Theorem 1).

7. Let the function f ∈ K
(

1− cz
1− z

)
= K(1 − cz − cz2 − cz3 + . . .), where c ∈ (0, 1]. It is

equivalent to

Re
(

1 +
z f ′′(z)
f ′(z)

)
< 1 +

c
2

.

Then we have (see e.g., [31] (Theorem 1))

z f ′(z)
f (z)

≺ (1 + c)(1− z)
1 + c− z

,

where
(1 + c)(1− z)

1 + c− z
is a convex univalent function in U, and

(1 + c)(1− z)
1 + c− z

= 1− c
c + 1

z− c
(c + 1)2 z2 + · · · = 1− c

∞

∑
n=1

zn

(1 + c)n .

Thus, applying Theorem 1, we get the results obtained by Obradović et al. [4] (Theorem 2 and Corollary 2).

Theorem 2. Let the function f ∈ K(ϕ). Then the logarithmic coefficients of f satisfy the inequalities

|γ1| ≤
|B1|

4
, (11)
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|γ2| ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|B1|
12

if |4B2 + B2
1 | ≤ 4|B1|

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|
, (12)

and if B1, B2, and B3 are real values,

|γ3| ≤
|B1|
24

H(q1; q2), (13)

where H(q1; q2) is given by Lemma 5, q1 =
B1+

4B2
B1

2 , and q2 =
B2+

2B3
B1

2 . The bounds (11) and (12) are sharp.

Proof. Let f ∈ K(ϕ). Then by the definition of the subordination, there is a ω ∈ Ω with ω(z) =

∑∞
n=1 cnzn so that

1 +
z f ′′(z)
f ′(z)

=ϕ(ω(z))

=1 + B1c1z + (B1c2 + B2c2
1)z

2 + (B1c3 + 2c1c2B2 + B3c3
1)z

3 + · · · .

From the above equation, we get that⎧⎪⎨⎪⎩
2a2 = B1c1

6a3 − 4a2
2 = B1c2 + B2c2

1
12a4 − 18a2a3 + 8a3

2 = B1c3 + 2c1c2B2 + B3c3
1.

(14)

By substituting values an (n = 1, 2, 3) from (14) in (3), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2γ1 =
B1c1

2

2γ2 =
8B1c2 + (8B2 + 2B2

1)c
2
1

48

2γ3 =
B1

12

[
c3 +

B1 +
4B2

B1
2

c1c2 +
B2 +

2B3

B1
2

c3
1

]
.

Firstly, for γ1, by applying Lemma 1 we get |γ1| ≤
|B1|

4
, and this bound is sharp for |c1| = 1.

Next, applying Lemma 1 for γ2, we have

|γ2| ≤
4|B1|(1− |c1|2) + |4B2 + B2

1 ||c1|2
48

=
4|B1|+

[
|4B2 + B2

1 | − 4|B1|
]
|c1|2

48

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4|B1|

48
if |4B2 + B2

1 | ≤ 4|B1|

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|.

These bounds are sharp for c1 = 0 and |c1| = 1, respectively.
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Finally, using Lemma 5 for γ3, we obtain

2|γ3| ≤
|B1|
12

∣∣∣∣c3 +
B1 +

4B2

B1
2

c1c2 +
B2 +

2B3

B1
2

c3
1

∣∣∣∣ ≤ H(q1; q2),

where q1 =
B1+

4B2
B1

2 and q2 =
B2+

2B3
B1

2 . Therefore, this completes the proof.

Remark 2. 1. Letting

ϕ(z) =1 +
cz

1− z
=1 + cz + cz2 + cz3 + . . . (c ∈ (0, 3])

in Theorem 2, (for |γ3| with respect to D6) then we get the results obtained by Ponnusamy et al. [7] (Theorem
2.7 and Corollary 2.8).

2. Taking

ϕ(z) =1− cz
1− z

=1− cz− cz2 − cz3 + . . . (c ∈ (0, 1])

in Theorem 2, (for |γ3| respect to D2) then we get the results obtained by Ponnusamy et al. [7] (Theorem 2.10).

Author Contributions: All authors contributed equally.

Funding: The authors would like to express their gratitude to the referees for many valuable suggestions regarding
the previous version of this paper. This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology
(No. 2016R1D1A1A09916450).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kayumov, I.R. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502.
[CrossRef]

2. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the
Conference on Complex Analysis (Tianjin, 1992); Internat Press: Cambridge, MA, USA, 1992; pp. 157–169.

3. Ali, M.F.; Vasudevarao, A. On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc.
2018, 146, 1131–1142. [CrossRef]
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Abstract: Let S∗s be the class of normalized functions f defined in the open unit disk D = {z : |z| < 1}
such that the quantity z f ′(z)

f (z) lies in an eight-shaped region in the right-half plane and satisfying the

condition z f ′(z)
f (z) ≺ 1 + sin z (z ∈ D). In this paper, we aim to investigate the third-order Hankel

determinant H3(1) and Toeplitz determinant T3(2) for this function class S∗s associated with sine
function and obtain the upper bounds of the determinants H3(1) and T3(2).
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk D = {z : |z| < 1} of
the form

f (z) = z + a2z2 + a3z3 + · · · (z ∈ D) (1)

and let S denote the subclass of A consisting of univalent functions.
Suppose that P denotes the class of analytic functions p normalized by

p(z) = 1 + c1z + c2z2 + c3z3 + · · ·

and satisfying the condition
�(p(z)) > 0 (z ∈ D).

We easily see that, if p(z) ∈ P , then a Schwarz function ω(z) exists with ω(0) = 0 and |ω(z)| < 1,
such that (see [1])

p(z) =
1 + w(z)
1− w(z)

(z ∈ D).

Very recently, Cho et al. [2] introduced the following function class S∗s , which are associated with
sine function:

S∗s :=
{

f ∈ A :
z f ′(z)

f (z)
≺ 1 + sin z (z ∈ D)

}
, (2)

where “≺” stands for the subordination symbol (for details, see [3]) and also implies that the quantity
z f ′(z)

f (z) lies in an eight-shaped region in the right-half plane.

Mathematics 2019, 7, 404; doi:10.3390/math7050404 www.mdpi.com/journal/mathematics163
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The qth Hankel determinant for q ≥ 1 and n ≥ 1 of functions f was stated by Noonan and
Thomas [4] as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣∣∣∣
(a1 = 1).

This determinant has been considered by several authors, for example, Noor [5] determined the
rate of growth of Hq(n) as n → ∞ for functions f (z) given by Equation (1) with bounded boundary
and Ehrenborg [6] studied the Hankel determinant of exponential polynomials.

In particular, we have

H3(1) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a2 a3

a2 a3 a4

a3 a4 a5

∣∣∣∣∣∣∣∣∣∣∣
(n = 1, q = 3).

Since f ∈ S , a1 = 1,

H3(1) = a3(a2a4 − a2
3)− a4(a4 − a2a3) + a5(a3 − a2

2).

We note that |H2(1)| = |a3 − a2
2| is the well-known Fekete-Szego functional (see, for

example, [7–9]).
On the other hand, Thomas and Halim [10] defined the symmetric Toeplitz determinant Tq(n)

as follows:

Tq(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 · · · an+q−1

an+1 an · · · an+q
...

...
...

an+q−1 an+q · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
(n ≥ 1, q ≥ 1).

The Toeplitz determinants are closely related to Hankel determinants. Hankel matrices have
constant entries along the reverse diagonal, whereas Toeplitz matrices have constant entries along the
diagonal. For a good summary of the applications of Toeplitz matrices to the wide range of areas of
pure and applied mathematics, we can refer to [11].

As a special case, when n = 2 and q = 3, we have

T3(2) =

∣∣∣∣∣∣∣∣∣∣∣

a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣∣∣∣∣
.

In recent years, many authors studied the second-order Hankel determinant H2(2) and the
third-order Hankel determinant H3(1) for various classes of functions (the interested readers can
see, for instance, [12–25]). However, apart from the work in [10,21,26,27], there appears to be little
literature dealing with Toeplitz determinants. Inspired by the aforementioned works, in this paper,
we aim to investigate the third-order Hankel determinant H3(1) and Toeplitz determinant T3(2)
for the above function class S∗s associated with sine function, and obtain the upper bounds of the
above determinants.
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2. Main Results

To prove our desired results, we need the following lemmas.

Lemma 1. If p(z) ∈ P , then exists some x, z with |x| ≤ 1(see [28]), |z| ≤ 1, such that

2c2 = c2
1 + x(4− c2

1),

4c3 = c3
1 + 2c1x(4− c2

1)− (4− c2
1)c1x2 + 2(4− c2

1)(1− |x|2)z.

Lemma 2. Let p(z) ∈ P (see [29]), then

|cn| ≤ 2, n = 1, 2, · · · .

We now state and prove the main results of our present investigation.

Theorem 1. If the function f (z) ∈ S∗s and of the form Equation (1), then

|a2| ≤ 1, |a3| ≤
1
2

, |a4| ≤
5
9

, |a5| ≤
47
72

. (3)

Proof. Since f (z) ∈ S∗s , according to subordination relationship, so there exists a Schwarz function
ω(z) with ω(0) = 0 and |ω(z)| < 1, such that

z f ′(z)
f (z)

= 1 + sin(ω(z)).

Now,
z f ′(z)

f (z)
=

z + ∑∞
n=2 nanzn

z + ∑∞
n=2 anzn

= (1 +
∞

∑
n=2

nanzn−1)[1− a2z + (a2
2 − a3)z2 − (a3

2 − 2a2a3 + a4)z3

+(a4
2 − 3a2

2a3 + 2a2a4 + a2
3 − a5)z4 + · · · ]

= 1 + a2z + (2a3 − a2
2)z

2 + (a3
2 − 3a2a3 + 3a4)z3

+(4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3)z

4 + · · · . (4)

Define a function

p(z) =
1 + ω(z)
1−ω(z)

= 1 + c1z + c2z2 + · · · .

Clearly, we have p(z) ∈ P and

ω(z) =
p(z)− 1
1 + p(z)

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · . (5)

On the other hand,

1 + sin(ω(z)) = 1 +
1
2

c1z + (
c2

2
− c2

1
4
)z2 + (

5c3
1

48
+

c3 − c1c2

2
)z3

+(
c4

2
+

5c2
1c2

16
− c2

2
4
− c1c3

2
− c4

1
32

)z4 + · · · . (6)
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Comparing the coefficients of z, z2, z3, z4 between Equations (4) and (6), we obtain

a2 =
c1

2
, a3 =

c2

4
, a4 =

c3

6
− c1c2

24
− c3

1
144

, a5 =
c4

8
− c1c3

24
+

5c4
1

1152
− c2

1c2

192
− c2

2
32

. (7)

By using Lemma 2, we thus know that

|a2| ≤ 1, |a3| ≤
1
2

, |a4| ≤
5
9

, |a5| ≤
47
72

.

The proof of Theorem 1 is completed.

Theorem 2. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a3 − a2
2| ≤

1
2

. (8)

Proof. According to Equation (7), we have

|a3 − a2
2| =

∣∣∣∣∣ c2

4
− c2

1
4

∣∣∣∣∣ .
By applying Lemma 1, we get

|a3 − a2
2| =

∣∣∣∣∣ x(4− c2
1)

8
− c2

1
8

∣∣∣∣∣ .
Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we obtain

|a3 − a2
2| ≤

t(4− c2)

8
+

c2

8
.

Suppose that

F(c, t) =
t(4− c2)

8
+

c2

8
,

then ∀t ∈ (0, 1), ∀c ∈ (0, 2),
∂F
∂t

=
4− c2

8
> 0,

which shows that F(c, t) is an increasing function on the closed interval [0,1] about t. Therefore, the
function F(c, t) can get the maximum value at t = 1, that is, that

max F(c, t) = F(c, 1) =
(4− c2)

8
+

c2

8
=

1
2

.

Thus, obviously,

|a3 − a2
2| ≤

1
2

.

The proof of Theorem 2 is thus completed.

Theorem 3. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a3 − a4| ≤
1
3

. (9)
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Proof. From Equation (7), we have

|a2a3 − a4| = | c1c2
8 +

c3
1

144 −
c3
6 + c1c2

24 |
= | c1c2

6 −
c3
6 +

c3
1

144 |.

Now, in view of Lemma 1, we get

|a2a3 − a4| =
∣∣∣∣∣ 7c3

1
144

+
(4− c2

1)c1x2

24
− (4− c2

1)(1− |x|2)z
12

∣∣∣∣∣ .
Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we deduce that

|a2a3 − a4| ≤
7c3

144
+

(4− c2)ct2

24
+

(4− c2)(1− t2)

12
.

Assume that

F(c, t) =
7c3

144
+

(4− c2)ct2

24
+

(4− c2)(1− t2)

12
.

Therefore, we have, ∀t ∈ (0, 1), ∀c ∈ (0, 2)

∂F
∂t

=
(4− c2)t(c− 2)

12
< 0,

namely, F(c, t) is an decreasing function on the closed interval [0,1] about t. This implies that the
maximum value of F(c, t) occurs at t = 0, which is

max F(c, t) = F(c, 0) =
(4− c2)

12
+

7c3

144
.

Define

G(c) =
(4− c2)

12
+

7c3

144
,

clearly, the function G(c) has a maximum value attained at c = 0, also which is

|a2a3 − a4| ≤ G(0) =
1
3

.

The proof of Theorem 3 is completed.

Theorem 4. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a4 − a2
3| ≤

1
4

. (10)

Proof. Suppose that f (z) ∈ S∗s , then from Equation (7), we have

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 −

c2
1c2
48 +

c4
1

48 −
c2

2
16

∣∣∣∣ .
Now, in terms of Lemma 1, we obtain

|a2a4 − a2
3| =

∣∣∣∣ c1c3
12 −

c2
1c2
48 −

c4
1

288 −
c2

2
16

∣∣∣∣
=

∣∣∣∣− 5c4
1

576 −
x2c2

1(4−c2
1)

48 − x2(4−c2
1)

2

64 +
c1(4−c2

1)(1−|x|2)z
24

∣∣∣∣ .
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Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, using the triangle inequality, we get

|a2a4 − a2
3| ≤

t2c2(4− c2)

48
+

(1− t2)c(4− c2)

24
+

t2(4− c2)2

64
+

5c4

576
.

Putting

F(c, t) =
t2c2(4− c2)

48
+

(1− t2)c(4− c2)

24
+

t2(4− c2)2

64
+

5c4

576
,

then, ∀t ∈ (0, 1), ∀c ∈ (0, 2), we have

∂F
∂t

=
t(c2 − 8c + 12)(4− c2)

96
> 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. That is, that F(c, t) have a
maximum value at t = 1, which is

max F(c, t) = F(c, 1) =
c2(4− c2)

48
+

(4− c2)2

64
+

5c4

576
.

Setting

G(c) =
c2(4− c2)

48
+

(4− c2)2

64
+

5c4

576
,

then we have

G′(c) =
c(4− c2)

24
− c3

24
− c(4− c2)

16
+

5c3

144
.

If G′(c) = 0, then the root is c = 0. In addition, since G′′(0) = − 1
12 < 0, so the function G(c) can

take the maximum value at c = 0, which is

|a2a4 − a2
3| ≤ G(0) =

1
4

.

The proof of Theorem 4 is completed.

Theorem 5. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2
2 − a2

3| ≤
5
4

. (11)

Proof. Suppose that f (z) ∈ S∗s , then, by using Equation (7), we have

|a2
2 − a2

3| = |
c2

1
4 −

c2
2

16 |.

Next, according to Lemma 1, we obtain

|a2
2 − a2

3| =
∣∣∣∣ c2

1
4 −

c2
2

16

∣∣∣∣

=

∣∣∣∣ c2
1
4 −

c4
1

64 −
xc2

1(4−c2
1)

32 − x2(4−c2
1)

2

64

∣∣∣∣ .
Let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2]. Then, by applying the triangle inequality, we get

|a2
2 − a2

3| ≤
c2

4
+

c4

64
+

tc2(4− c2)

32
+

t2(4− c2)2

64
.
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Taking

F(c, t) =
c2

4
+

c4

64
+

tc2(4− c2)

32
+

t2(4− c2)2

64
.

Then, ∀t ∈ (0, 1), ∀c ∈ (0, 2), we have

∂F
∂t

=
c2(4− c2)

32
+

t(4− c2)2

32
> 0,

which implies that F(c, t) increases on the closed interval [0,1] about t. Namely, the maximum value of
F(c, t) attains at t = 1, which is

max F(c, t) = F(c, 1) =
c2

4
+

c4

64
+

c2(4− c2)

32
+

(4− c2)2

64
.

Let

G(c) =
c2

4
+

c4

64
+

c2(4− c2)

32
+

(4− c2)2

64
,

then

G′(c) = c
2 > 0, ∀c ∈ (0, 2).

Therefore, the function G(c) is an increasing function on the closed interval [0,2] about c, and thus
G(c) has a maximum value attained at c = 2, which is

|a2
2 − a2

3| ≤ G(2) =
5
4

.

The proof of Theorem 5 is completed.

Theorem 6. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|a2a3 − a3a4| ≤
13
12

. (12)

Proof. Assume that f (z) ∈ S∗s , then from Equation (7), we obtain

|a2a3 − a3a4| = | c1c2
8 +

c3
1c2

576 −
c2c3
24 +

c1c2
2

96 |.

Now, by using Lemma 1, we see that

|a2a3 − a3a4| =
∣∣∣∣ c1c2

8 +
c3

1c2
576 −

c2c3
24 +

c1c2
2

96

∣∣∣∣
=

∣∣∣∣ c3
1

16 −
c5

1
576 −

11xc3
1(4−c2

1)
1152 +

xc1(4−c2
1)

16 +
x2c1(4−c2

1)[c
2
1+x(4−c2

1)]
192 +

c1x2(4−c2
1)

2

128 +
(1−|x|2)z(4−c2

1)[x(4−c2
1)+c2

1]
96

∣∣∣∣ .
If we let |x| = t, t ∈ [0, 1], c1 = c, c ∈ [0, 2], then, using the triangle inequality, we have

|a2a3 − a3a4| ≤ c3

16 + c5

576 + 11tc3(4−c2)
1152 + t(4−c2)

8 + t2[c2+t(4−c2)](4−c2)
96 + t2(4−c2)2

64 + (4−c2)[t(4−c2)+c2]
96 .

Setting

F(c, t) = c3

16 + c5

576 + 11tc3(4−c2)
1152 + t(4−c2)

8 + t2[c2+t(4−c2)](4−c2)
96 + t2(4−c2)2

64 + (4−c2)[t(4−c2)+c2]
96 .

Then, we easily see that, ∀t ∈ (0, 1), ∀c ∈ (0, 2),

∂F
∂t = 11c3(4−c2)

1152 + (4−c2)
8 + t[c2+t(4−c2)](4−c2)

48 + t2(4−c2)2

96 + t(4−c2)2

32 + (4−c2)2

96 > 0,
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which implies that F(c, t) is an increasing function on the closed interval [0,1] about t. That is, that the
maximum value of F(c, t) occurs at t = 1, which is

max F(c, t) = F(c, 1) =
c3

16
+

c5

576
+

11c3(4− c2)

1152
+

(4− c2)

8
+

(4− c2)

24
+

(4− c2)2

64
+

(4− c2)

24
.

Taking

G(c) =
c3

16
+

c5

576
+

11c3(4− c2)

1152
+

(4− c2)

8
+

(4− c2)

24
+

(4− c2)2

64
+

(4− c2)

24
,

then

G′(c) =
3c2

16
+

5c4

576
+

11c2(4− c2)

384
− 11c4

576
− c(4− c2)

16
− c

12
,

G′′(c) =
3c
8

+
5c3

144
+

11c(4− 2c2)

192
− 11c3

144
− (4− c2)

16
+

c2

8
− 1

12
.

We easily find that c = 0 is the root of the function G′(c) = 0, sinceG′′(0) < 0, which implies that
the function G(c) can reach the maximum value at c = 0, also which is

|a2a3 − a3a4| ≤ G(0) =
13
12

.

The proof of Theorem 6 is completed.

Theorem 7. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|H3(1)| ≤
275
432

≈ 0.637. (13)

Proof. Since
H3(1) = a3(a2a4 − a2

3)− a4(a4 − a2a3) + a5(a3 − a2
2),

by applying the triangle inequality, we get

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|. (14)

Now, substituting Equations (3), (8), (9) and (10) into Equation (14), we easily obtain the desired
assertion (Equation (13)).

Theorem 8. If the function f (z) ∈ S∗s and of the form in Equation (1), then we have

|T3(2)| ≤
139
72
≈ 1.931. (15)

Proof. Because
T3(2) = a2(a2

2 − a2
3)− a3(a2a3 − a3a4) + a4(a2

3 − a2a4),

by using the triangle inequality, we obtain

|T3(2)| ≤ |a2||a2
2 − a2

3|+ |a3||a2a3 − a3a4|+ |a4||a2
3 − a2a4|. (16)

Next, from Equations (3), (10), (11) and (12), we immediately get the desired assertion
(Equation (15)).

Finally, we give two examples to illustrate our results obtained.
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Example 1. If we take the function f (z) = ez − 1 = z + ∑∞
n=2

zn

n! ∈ S∗s , then we obtain

|H3(1)| ≤ |a3||a2a4 − a2
3|+ |a4||a4 − a2a3|+ |a5||a3 − a2

2|

=
1
3!
× | 1

2!
× 1

4!
− 1

3!
× 1

3!
|+ 1

4!
× | 1

4!
− 1

2!
× 1

3!
|+ 1

5!
× | 1

3!
− 1

2!
× 1

2!
|

≈ 0.004 < 0.637.

Example 2. If we set the function f (z) = − log(1− z) = z + ∑∞
n=2

zn

n ∈ S∗s , then we get

|T3(2)| ≤ |a2||a2
2 − a2

3|+ |a3||a2a3 − a3a4|+ |a4||a2
3 − a2a4|

=
1
2
× |1

2
× 1

2
− 1

3
× 1

3
|+ 1

3
× |1

2
× 1

3
− 1

3
× 1

4
|+ 1

4
× |1

3
× 1

3
− 1

2
× 1

4
|

≈ 0.107 < 1.931.
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Abstract: The semigroup properties of the Riemann–Liouville fractional integral have played a key
role in dealing with the existence of solutions to differential equations of fractional order. Based on
some results of some experts’, we know that the Riemann–Liouville variable order fractional integral
does not have semigroup property, thus the transform between the variable order fractional integral
and derivative is not clear. These judgments bring us extreme difficulties in considering the existence
of solutions of variable order fractional differential equations. In this work, we will introduce the
concept of approximate solution to an initial value problem for differential equations of variable order
involving the derivative argument on half-axis. Then, by our discussion and analysis, we investigate
the unique existence of approximate solution to this initial value problem for differential equation of
variable order involving the derivative argument on half-axis. Finally, we give examples to illustrate
our results.

Keywords: variable order fractional derivative; initial value problem; fractional differential equations;
piecewise constant functions; approximate solution

1. Introduction

In this paper, we will observe and study the unique existence of approximate solution to the
following initial value problem of variable order{

Dp(t)
0+ x(t) = f (t, x, Dq(t)

0+ x), 0 < t < +∞,

x(0) = 0,
(1)

where 0 < q(t) < p(t) < 1, f (t, x, Dq(t)
0+ x) are given real functions, and Dp(t)

0+ , Dq(t)
0+ denote derivatives

of variable order p(t) and q(t) defined by

Dp(t)
0+ x(t) =

d
dt

∫ t

0

(t− s)−p(t)

Γ(1− p(t))
x(s)ds, t > 0. (2)

Dq(t)
0+ x(t) =

d
dt

∫ t

0

(t− s)−q(t)

Γ(1− q(t))
x(s)ds, t > 0,

and 1
Γ(1−p(t))

∫ t
0 (t− s)−p(t)x(s)ds is integral of variable order 1− p(t) for function x(t), for details,

please refer to [1].
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The operators of variable order, which fall into a more complex category, are the derivatives
and integrals whose orders are the functions of certain variables. There are several definitions of
variable order fractional integrals and derivatives. The following are several definitions of variable
order fractional integrals and derivatives, which can be found in [2]. Let −∞ < a < b < ∞.

Definition 1. Let p : [a, b]→ (0,+∞), the left Riemann–Liouville fractional integral of order α(t) for function
x(t) are defined as the following two types

Iα(t)
a+ x(t) =

∫ t

a

(t− s)α(t)−1

Γ(α(t))
x(s)ds, t > a, (3)

Iα(t)
a+ x(t) =

∫ t

a

(t− s)α(s)−1

Γ(α(s))
x(s)ds, t > a. (4)

Definition 2. Let α : [a, b] → (n − 1, n] (n is a natural number), the left Riemann–Liouville fractional
derivative of order α(t) for function x(t) are defined as the following two types

Dα(t)
a+ x(t) =

(
d
dt

)n ∫ t

a

(t− s)n−α(t)−1

Γ(n− α(t))
x(s)ds, t > a, (5)

Dα(t)
a+ x(t) =

(
d
dt

)n ∫ t

a

(t− s)n−α(s)−1

Γ(n− α(s))
x(s)ds, t > a. (6)

Definition 3. Let α : [a, b]→ (n− 1, n](n is a natural number), the left Caputo fractional derivative of order
α(t) for function x(t) are defined as the following two types

CDα(t)
a+ x(t) =

∫ t

a

(t− s)n−α(t)−1

Γ(n− α(t))
x(n)(s)ds, t > a, (7)

CDα(t)
a+ x(t) =

∫ t

a

(t− s)n−α(s)−1

Γ(n− α(s))
x(n)(s)ds, t > a. (8)

The problems denoted by the operator of variable order are apparently more complicated than
the ones denoted by the operator of constant order. Recently, some authors have considered the
applications of derivatives of variable order in various sciences such as anomalous diffusion modeling,
mechanical applications, multi-fractional Gaussian noises. Among these, there have been many works
dealing with numerical methods for some class of variable order fractional differential equations,
for instance, [1–20].

We notice that, if the order p(t) is a constant function q, then the Riemann–Liouville variable
order fractional derivatives and integrals are the Riemann–Liouville fractional derivative and integral,
respectively [21]. We know there are some important properties as following. Let −∞ < b < ∞.

Lemma 1. [21] The Riemann–Liouville fractional integral defined for function x(t) ∈ L(0, b) exists almost
everywhere.

Lemma 2. [21] The equality Iγ
0+ Iδ

0+x(t) = Iδ
0+ Iγ

0+x(t) = Iγ+δ
0+ x(t), 0 < γ < 1, 0 < δ < 1 holds for

x ∈ L(0, b).

Lemma 2 is semigroup property for the Riemann–Liouville fractional integral, which is very
crucial in obtaining the following Lemmas 3–5. In other words, without Lemma 2, one could not have
Lemmas 3–5, for details, please refer to [21].

Lemma 3. [21] The equality Dγ
0+ Iγ

0+x(t) = x(t), 0 < γ < 1 holds for x ∈ L(0, b).
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Lemma 4. [21] Let 0 < α < 1, then the differential equation

Dα
0+x = 0, t > 0

has solution
x(t) = ctα−1, c ∈ R.

Lemma 5. [21] Let 0 < α < 1, x ∈ L(0, b), Dα
0+x ∈ L(0, b). Then the following equality holds

Iα
0+Dα

0+x(t) = x(t) + ctα−1, c ∈ R.

These properties play a very important role in considering the existence of the solutions of
differential equations for the Riemann–Liouville fractional derivative, for details, please refer to [22–26].
However, from [15–18], for general functions h(t), g(t), we notice that the semigroup property does
not hold, i.e., Ih(t)

a+ Ig(t)
a+ �= Ih(t)+g(t)

a+ . Thus, it brings us extreme difficulties, that we cannot get these
properties like Lemmas 3–5 for the variable order fractional operators (integral and derivative). Without
these properties for variable order fractional derivative and integral, we can hardly consider the
existence of solutions of differential equations for variable order derivative by means of nonlinear
functional analysis (for instance, some fixed point theorems).

In [18], by means of Banach contraction principle, we considered the uniqueness result of solutions
to initial value problems of differential equations of variable order{

Dq(t)
0+ x(t) = f (t, x), 0 < t ≤ T,

x(0) = 0,
(9)

where 0 < T < +∞, Dq(t)
0+ denotes derivative of variable order defined by (2), and q : [0, T] → (0, 1]

is a piecewise constant function with partition P = {[0, T1], (T1, T2], (T2, T3], · · · , (TN∗−1, T]} (N∗ is a
given natural number) of the finite interval [0, T], i.e.,

q(t) =
N∗

∑
k=1

qk Ik(t), t ∈ [0, T],

where 0 < qk ≤ 1, k = 1, 2, · · · , N∗ are constants, and Ik is the indicator of the interval [Tk−1, Tk],
k = 1, 2, · · · , N∗(here T0 = 0, TN∗ = T), that is Ik = 1 for t ∈ [Tk−1, Tk], Ik = 0 for elsewhere.

In this paper, we will consider the existence of solutions to the problem (1) for variable orders
p(t), q(t) are not piecewise constants. Based on some analysis, we will introduce the concept of
approximate solution to the problem (1). Then, according to our discussion and analysis, we explore
the unique existence of the approximate solution of the problem (1).

This paper is organized as follows. In Section 2, we provide some facts to the variable order
integral and derivative through several examples. Also, we state some results which will play
a very important role in obtaining our main results. In Section 3, we set forth our main result.
Finally, two examples are given.

2. Some Preliminaries on Approximate Solution

In this section, we give some preliminaries on approximate solutions to the initial value problem (1).
First of all, we use an example to illustrate the claim: for general function p(t), q(t), the Riemann–Liouville
variable order fractional integral does not have the semigroup property.

Example 1. Let p(t) = t
6 + 1

3 , q(t) = t
4 + 1

4 , f (t) = 1, 0 ≤ t ≤ 3. Now, we calculate Ip(t)
0+ Iq(t)

0+ f (t)|t=1 and

Ip(t)+q(t)
0+ f (t)|t=1 which are defined in (3).
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For 1 ≤ t ≤ 3, we have

Ip(t)
0+ Iq(t)

0+ f (t) =
∫ t

0

(t− s)
t
6+

1
3−1

Γ( t
6 + 1

3 )

∫ s

0

(s− τ)
s
4+

1
4−1

Γ( s
4 + 1

4 )
dτds

=
∫ t

0

(t− s)
t
6− 2

3 s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds

=
∫ 1

0

(t− s)
t
6− 2

3 s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds +

∫ t

1

(t− s)
t
6− 2

3 s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds.

We set M1 = max1≤t≤3 | 1
Γ(p(t)) | and M2 = max1≤s≤3 | 1

Γ( 5
4+

s
4 )
|. For 1 ≤ t ≤ 3, it holds

|
∫ t

1

(t− s)
t
6− 2

3 s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds| = |

∫ t

1
3

t
6− 2

3 (
t− s

3
)

t
6− 2

3
s

1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds|

≤ M1M2

∫ t

1
3

1
2− 2

3 (
t− s

3
)

1
6− 2

3 sds

≤ M1M2

∫ t

1
3

1
3 (t− s)−

1
2 3ds

= 2× 3
4
3 M1M2(t− 1)

1
2 ,

hence, we have [ ∫ t

1

(t− s)
t
6− 2

3 s
1
4+

s
4

Γ( t
6 + 1

3 )Γ(
5
4 + s

4 )
ds
]

t=1
= 0.

So, we get

Ip(t)
0+ Iq(t)

0+ f (t)|t=1 =
∫ 1

0

(1− s)−
1
2 s

1
4+

s
4

Γ( 1
2 )Γ(

5
4 + s

4 )
ds ≈ 1.063

and

Ip(t)+q(t)
0+ f (t)|t=1 =

∫ 1

0

(1− s)p(1)+q(1)−1

Γ(p(1) + q(1))
ds =

∫ 1

0
ds = 1.

Therefore,
Ip(t)
0+ Iq(t)

0+ f (t)|t=1 �= Ip(t)+q(t)
0+ f (t)|t=1.

Without the semigroup property of the Riemann–Liouville variable order fractional integral,
we can assure that the variable order fractional integration operator of non-constant continuous
functions p(t) for x(t) does not have the properties like Lemmas 3–5. Consequently, we cannot
transform differential equations of variable order into an integral equation.

Let L[x(t); s], L[Ip(t)
0+ x(t); s], L[Dp(t)

0+ x(t); s] denote the Laplace transforms of functions x(t),

Ip(t)
0+ x(t) and Dp(t)

0+ x(t). We have not found out the explicit connection between L[x(t); s] and

L[Ip(t)
0+ x(t); s], as a result, we have not found out the explicit connection between L[x(t); s] and

L[Dp(t)
0+ x(t); s].

Example 2. Let p(t) = 1√
t+1 , t ≥ 0. We consider the Laplace transforms of functions t(t ≥ 0) and Ip(t)

0+ t(t ≥
0) defined in (3). We can know that

L[t; s] =
∫ ∞

0
e−sttdt =

1
s2 , (10)
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L[I(t+1)−
1
2

0+ t; s] =
∫ ∞

0
e−st
∫ t

0

(t− τ)(t+1)−
1
2−1

Γ((t + 1)−
1
2 )

τdτdt

=
∫ ∞

0
e−st
∫ ∞

τ

(t− τ)(t+1)−
1
2−1

Γ((t + 1)−
1
2 )

τdtdτ

=
∫ ∞

0
e−s(τ+r)

∫ ∞

0

r(τ+r+1)−
1
2−1

Γ((τ + r + 1)−
1
2 )

τdrdτ

=
∫ ∞

0
e−sττ

∫ ∞

0
e−sr r(τ+r+1)−

1
2−1

Γ((τ + r + 1)−
1
2 )

drdτ. (11)

By (10) or (11), we do not get the explicit connection between L[t; s] and L[I(t+1)−
1
2

0+ t; s].
In view of this example, the definition of variable order fractional derivative and the connection

between the Laplace transforms of function x(t) and its derivative x′(t), we cannot obtain the Laplace
transform formula for variable order fractional derivatives (2). Based on these facts, we cannot get the
explicit expression of the solutions for the problem (1).

Throughout this paper, we assume that

(A1) Let p : [0,+∞) → (0, 1) and q : [0,+∞) → (0, 1) be continuous functions, q(t) < p(t) for all
t ∈ [0,+∞), and that p(t), q(t) satisfy

lim
t→+∞

p(t) = ρ1, lim
t→+∞

q(t) = ρ2, 0 < ρ1, ρ2 < 1. (12)

The following result is necessary in our next analysis of main result.

Lemma 6. Let condition (A1) hold. Then there exist positive constant T, natural number n∗ and intervals
[0, T1], (T1, T2], · · · , (Tn∗−1, T] (T,+∞)(n∗ ∈ N) and functions α : [0,+∞) → (0, 1) and β : [0,+∞) →
(0, 1) defined by

α(t) =
n∗

∑
k=1

pkIk(t) + ρ1IT(t), t ∈ [0,+∞), (13)

β(t) =
n∗

∑
k=1

qkIk(t) + ρ2IT(t), t ∈ [0,+∞), (14)

where pk, qk ∈ (0, 1), Ik(t) is the indicator of the interval [Tk−1, Tk] (k = 1, 2, · · · , n∗, here T0 = 0, Tn∗ = T),
i.e., Ik(t) = 1 for t ∈ [Tk−1, Tk], Ik(t) = 0 for t lying in elsewhere; IT(t) is the indicator of interval (T,+∞),
i.e., IT(t) = 1 for t ∈ (T,+∞), IT(t) = 0 for t lying in elsewhere, such that for arbitrary small ε > 0,

|p(t)− α(t)| < ε, |q(t)− β(t)| < ε, 0 ≤ t < +∞. (15)

Proof. By (12), for ∀ ε > 0, there exist T1, T2 > 0, such that

|p(t)− ρ1| < ε, t > T1; |p(t)− ρ2| < ε, t > T2.

Let T = max{T1, T2}, then, for ∀ ε > 0, we have that

|p(t)− ρ1| < ε, |p(t)− ρ2| < ε, t > T. (16)

We know that p : [0, T] → (0, 1), q : [0, T] → (0, 1) are continuous functions. Since p(t) is right
continuous at point 0, then, for arbitrary small ε > 0, there is δ01 > 0 such that

|p(t)− p(0)| < ε, for 0 ≤ t ≤ δ01.
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Since q(t) is right continuous at point 0, then, for arbitrary small ε > 0, there is δ02 > 0 such that

|q(t)− q(0)| < ε, for 0 ≤ t ≤ δ02.

Then for arbitrary small ε > 0, takeing δ0 = min{δ01, δ02}, it holds

|p(t)− p(0)| < ε, |q(t)− q(0)| < ε, for 0 ≤ t ≤ δ0. (17)

We take point δ0
.
= T1 (if T1 < T, we consider continuities of p(t), q(t) at point T1, otherwise,

we end this procedure). Since p(t) is right continuous at point T1, so, for arbitrary small ε > 0, there is
δ11 > 0 such that

|p(t)− p(T1)| < ε, for T1 ≤ t ≤ T1 + δ11,

Since q(t) is right continuous at point T1, then, for arbitrary small ε > 0, there is δ12 > 0 such that

|q(t)− q(T1)| < ε, for T1 ≤ t ≤ T1 + δ12.

Hence, for arbitrary small ε > 0, taking δ1 = min{δ11, δ12}, it holds

|p(t)− p(T1)| < ε, |q(t)− q(T1)| < ε, for T1 ≤ t ≤ T1 + δ1. (18)

We take point T1 + δ1
.
= T2 (if T2 < T, we consider continuities of p(t), q(t) at point T2, otherwise,

we end this procedure). Since p(t) is right continuous at point T2, so, for arbitrary small ε > 0, there is
δ21 > 0 such that

|p(t)− p(T2)| < ε, for T2 ≤ t ≤ T2 + δ21.

Since q(t) is right continuous at point T2, so, for arbitrary small ε > 0, there is δ22 > 0 such that

|q(t)− q(T2)| < ε, for T2 ≤ t ≤ T2 + δ22.

Thus, for arbitrary small ε > 0, taking δ2 = min{δ21, δ22}, it holds

|p(t)− p(T2)| < ε, |q(t)− q(T2)| < ε, for T2 ≤ t ≤ T2 + δ2. (19)

We take point T2 + δ2
.
= T3 (if T3 < T, we consider continuities of p(t), q(t) at point T3, otherwise,

we end this procedure). Since p(t) is right continuous at point T3, so, for arbitrary small ε > 0, there is
δ31 > 0 such that

|p(t)− p(T3)| < ε, for T3 ≤ t ≤ T3 + δ31,

Since q(t) is right continuous at point T3, so, for arbitrary small ε > 0, there is δ32 > 0 such that

|q(t)− q(T3)| < ε, for T3 ≤ t ≤ T3 + δ32.

Therefore, for arbitrary small ε > 0, taking δ3 = min{δ31, δ32}, it holds

|p(t)− p(T3)| < ε, |q(t)− q(T3)| < ε, for T3 ≤ t ≤ T3 + δ3. (20)

Since [0, T] is a finite interval, then, continuing this analysis procedure, we could obtain that
there exist δn∗−2 > 0, δn∗−1 > 0 (n∗ ∈ N) such that Tn∗−2 + δn∗−2

.
= Tn∗−1 < T, Tn∗−1 + δn∗−1 ≥ T,

such that for arbitrary small ε > 0, it holds

|p(t)− p(Tn∗−1)| < ε, |q(t)− q(Tn∗−1)| < ε for Tn∗−1 ≤ t ≤ T, (21)
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From (16)–(21), we could let

p(0) .
= p1, p(T1)

.
= p2, p(T2)

.
= p3, p(T3)

.
= p4, · · · , p(Tn∗−1)

.
= pn∗ ,

q(0) .
= q1, q(T1)

.
= q2, q(T2)

.
= q3, q(T3)

.
= q4, · · · , q(Tn∗−1)

.
= qn∗ .

Thus, we define functions α, β : [0,+∞)→ (0, 1) as following

α(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1, t ∈ [0, T1],

p2, t ∈ (T1, T2],
...
pn∗ , t ∈ (Tn∗−1, T],

ρ1, t ∈ (T,+∞),

β(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1, t ∈ [0, T1],

q2, t ∈ (T1, T2],
...
qn∗ , t ∈ (Tn∗−1, T],

ρ2, t ∈ (T,+∞).

Hence, from the previous arguments, for arbitrary small ε > 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|p(t)− p1| < ε, |q(t)− q1| < ε, for t ∈ [0, T1],

|p(t)− p2| < ε, |q(t)− q2| < ε, for t ∈ (T1, T2],
...

|p(t)− pn∗ | < ε, |q(t)− qn∗ | < ε, for t ∈ (Tn∗−1, T],

|p(t)− ρ1| < ε, |q(t)− ρ2| < ε, for t ∈ (T,+∞).

(22)

Thus, we complete this proof.

The following example illustrates that the semigroup property of the variable order fractional
integral does not holds for the piecewise constant functions p(t) and q(t) defined in the same partition
of finite interval [a, b].

Example 3. Let p(t) =

{
4, 0 ≤ t ≤ 1,
3, 1 < t ≤ 4,

q(t) =

{
3, 0 ≤ t ≤ 1,
2, 1 < t ≤ 4,

and f (t) = 1, 0 ≤ t ≤ 4. We’ll

verify Ip(t)
0+ Iq(t)

0+ f (t)|t=3 �= Ip(t)+q(t)
0+ f (t)|t=3, here, the variable order fractional integral is defined in (3).

For 1 ≤ t ≤ 4, we have

Ip(t)
0+ Iq(t)

0+ f (t)

=
∫ 1

0

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)3−1

Γ(3)
dτds +

∫ t

1

(t− s)p(t)−1

Γ(p(t))

∫ s

0

(s− τ)2−1

Γ(2)
dτds

=
∫ 1

0

(t− s)p(t)−1s3

6Γ(p(t))
ds +

∫ t

1

(t− s)p(t)−1s2

2Γ(2)Γ(p(t))
ds,

thus, we have

Ip(t)
0+ Iq(t)

0+ f (t)|t=3 =
∫ 1

0

(3− s)2s3

6Γ(3)
ds +

∫ 3

1

(3− s)2s2

2Γ(2)Γ(3)
ds =

245
144

.
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Ip(t)+q(t)
0+ f (t)|t=3 =

∫ 3

0

(3− s)p(3)+q(3)−1

Γ(p(3) + q(3))
ds =

33+2

Γ(1 + 3 + 2)
=

81
40

.

Therefore, we obtain
Ip(t)
0+ Iq(t)

0+ f (t)|t=3 �= Ip(t)+q(t)
0+ f (t)|t=3,

which implies that the semigroup property of the variable order fractional integral does not hold for the piecewise
constant functions p(t) and q(t) defined in the same partition [0, 1], (1, 4] of finite interval [0, 4].

Lemma 7. [10] Suppose β > 0, a(t) is a nonnegative nondecreasing function locally integrable on 0 ≤ t < L
(some L ≤ +∞) and g(t) is a nonnegative nondecreasing continuous function defined on 0 ≤ t < L, g(t) ≤ M
(constant), and suppose u(t) is nonnegative and locally integrable on 0 ≤ t < L with

u(t) ≤ a(t) + g(t)
∫ t

0
(t− s)β−1u(s)ds

on this interval. Then
u(t) ≤ a(t)Eβ(g(t)Γ(β)tβ), 0 ≤ t < L,

where Eβ is the Mittag–Leffler function defined by Eβ(z) = ∑∞
k=0

zk

Γ(kβ+1) .

3. Existence of Approximate Solution

According to the previous arguments, we do not transform the problem (1) into an integral
equation. Here, we consider the unique existence of approximate solution of the problem (1). In this
section, we present our main results.

Now we make the following assumptions:

(A2) f : [0,+∞)× R2 → R be a continuous function, and there exist positive constants λ > {ρ1, ρ2},
c1, c2 > 0 satisfying

c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)
< 1,

such that

| f (t, (1 + tλ)x1, (1 + tλ)y1)− f (t, (1 + tλ)x2, (1 + tλ)y2)| ≤ c1|x1 − x2|+ c2|y1 − y2|, (23)

where ρ1, ρ2 are the constants in (A1).

(A3) f (t, 0, 0)(t ∈ (0,+∞)) satisfies

lim
t→+∞

1
1 + tλ

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds = 0.

Let Bi denote the Banach spaces defined as

Bi = {x|x ∈ C[0, Ti]}

with the norm
‖x‖Bi = max

t∈[0,Ti ]
|x(t)|, (24)

where Ti is the constant obtained in Lemma 6, i = 1, · · · , n∗(Tn∗ = T). Let

E =

{
x
∣∣∣∣x ∈ C[0,+∞), sup

t≥0

|x(t)|
1 + tλ

< ∞
}
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with the norm

‖x‖E = sup
t≥0

|x(t)|
1 + tλ

, (25)

where λ > {ρ1, ρ2}. Then, by the same arguments as in Lemma 2.2 of [22], we know that (E, ‖ · ‖E) is
a Banach space, here we omit this proof.

Now, we consider the following initial value problem{
Dα(t)

0+ x(t) = f (t, x, Dβ(t)
0+ x), 0 < t < +∞,

x(0) = 0,
(26)

where α(t), β(t) are defined in (13) and (14).
In order to obtain our main results, we start off by carrying on essential analysis to the equation

of (26).
By (13) and (14), we get

∫ t

0

(t− s)−α(t)

Γ(1− α(t))
x(s)ds =

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−pk

Γ(1− pk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds,

∫ t

0

(t− s)−β(t)

Γ(1− β(t))
x(s)ds =

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−qk

Γ(1− qk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ2

Γ(1− ρ2)
x(s)ds .

= hβ,x(t),

So, the equation of (26) can be written by

d
dt
(

n∗

∑
k=1

Ik(t)
∫ t

0

(t− s)−pk

Γ(1− pk)
x(s)ds + IT(t)

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds) = f (t, x,

d
dt

hβ,x(t)), 0 < t < +∞. (27)

Then, Equation (27) in the interval (0, T1] can be written by

d
dt

∫ t

0

(t− s)−p1

Γ(1− p1)
x(s)ds = Dp1

0+x(t) = f (t, x, Dq1
0+x), 0 < t ≤ T1. (28)

The Equation (27) in the interval (T1, T2] can be written by

d
dt

∫ t

0

(t− s)−p2

Γ(1− p2)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−q2

Γ(1− q2)
x(s)ds), T1 < t ≤ T2. (29)

The Equation (27) in the interval (T2, T3] can be written by

d
dt

∫ t

0

(t− s)−p3

Γ(1− p3)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−q3

Γ(1− q3)
x(s)ds), T2 < t ≤ T3. (30)

The Equation (27) in the interval (Ti−1, Ti], i = 4, 5, · · · , n∗ (Tn∗ = T) can be written by

d
dt

∫ t

0

(t− s)−pi

Γ(1− pi)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−qi

Γ(1− qi)
x(s)ds), Ti−1 < t ≤ Ti. (31)

The Equation (27) in the interval (T,+∞) can be written by

d
dt

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds = f (t, x,

d
dt

∫ t

0

(t− s)−ρ2

Γ(1− ρ2)
x(s)ds), T < t < +∞. (32)

Now, we present the definition of a solution to the problem (26), which is crucial in our work.
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Definition 4. We say the problem (26) exists one unique solution, if there are unique functions ui(t),
i = 1, 2, · · · , n∗, such that u1 ∈ C[0, T1] satisfying Equation (28) and u1(0) = 0; u2 ∈ C[0, T2] satisfying
Equation (29) and u2(0) = 0; u3 ∈ C[0, T3] satisfying Equation (30) and u3(0) = 0; ui ∈ C[0, Ti] satisfying
Equation (31) and ui(0) = 0 (i = 4, 5, · · · , n∗)(Tn∗ = T); uT ∈ C[0,+∞) satisfying Equation (32) and
uT(0) = 0.

The following is the definition of approximate solution of the problem (1).

Definition 5. If there exist T > 0, natural number n∗ ∈ N and intervals [0, T1], (T1, T2], · · · , (Tn∗−1, T],
(T,+∞) and functions defined in Equations (13) and (14), such that the problem (26) exists one unique solution,
then, we say this solution of the problem (26) is one unique approximate solution of the problem (1).

Our main result is as follows.

Theorem 1. Let conditions (A1), (A2), (A3) hold, then the problem (1) exists one unique approximate solution.

Proof of Theorem 1. From Definitions 4 and 5 and Lemma 6, we only need to consider the unique
existence of solution of the problem (26). According to the above analysis, equation of problem (26)
can be written as the Equation (27). So Equation (26) in the interval (0, T1] can be written as (28).
Applying operator Ip1

0+ to both sides of (28), by Lemma 5, we have

x(t) = ctp1−1 +
1

Γ(p1)

∫ t

0
(t− s)p1−1 f (s, x(s), Dq1

0+x(s))ds, 0 < t ≤ T1.

By x(0) = 0 and the assumption of function f , we get c = 0, that is

x(t) =
1

Γ(p1)

∫ t

0
(t− s)p1−1 f (s, x(s), Dq1

0+x(s))ds, 0 ≤ t ≤ T1. (33)

Let Dq1
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = Iq1
0+y(t),

hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1 f (s, Iq1

0+y(s), y(s))ds, 0 ≤ t ≤ T1. (34)

Obviously, if y∗ ∈ B1 = C[0, T1] is a solution of (34), then, applying operator Iq1
0+ on both sides

of (34), from Lemma 2, it holds

Iq1
0+y∗(t) = Iq1

0+ Ip1−q1
0+ f (t, Iq1

0+y∗(t), y∗(t)) = Ip1
0+ f (t, Iq1

0+y∗(t), y∗(t)), 0 ≤ t ≤ T1,

let
Iq1
0+y∗(t) = x∗(t), 0 ≤ t ≤ T,

as a result, we have that

x∗(t) = Ip1
0+ f (t, x∗(t), Dq1

0+x∗(t)), 0 ≤ t ≤ T1,

that is, x∗ ∈ B1 = C[0, T1] is a solution of (33), thus, we know that x∗ ∈ B1 = C[0, T1] is a solution of
Equation (28) with zero initial value condition.
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Define operator F : B1 → B1 by

Fy(t) =
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1 f (s, Iq1

0+y(s), y(s))ds, 0 ≤ t ≤ T1. (35)

From the continuity of function f and the standard arguments, we know that the operator
F : B1 → B1 is well defined. Let M = max0≤t≤T | f (t, 0, 0)|. Let Ω1 be a bounded, convex and closed
subset of B1 defined by

Ω1 = {y|y ∈ B1; |y(t)| ≤ K1eR2
1tp1−q1 , 0 ≤ t ≤ T1},

where

K1 =
2MTp1−q1

1
Γ(1 + p1 − q1)

,

R1 ∈ N satisfying

R1 > {1, (
2d1(1 + Tp1−q1

1 )

p1 − q1
)

1
p1−q1 },

here d1 = 1
Γ(p1−q1)

[
c1T

q1
1

Γ(1+q1)
+ c2

]
(c1, c2 are the constants appearing in condition (A2)).

By the analogy way as in [23], we could verify that F : Ω1 → Ω1 is well defined. In fact, for
y ∈ Ω1, since

|Iq1
0+y(s)| ≤ 1

Γ(q1)

∫ s

0
(s− τ)q1−1|y(τ)|dτ

≤ K1

Γ(q1)

∫ s

0
(s− τ)q1−1eR2

1τp1−q1 dτ

≤ K1

Γ(q1)

∫ s

0
(s− τ)q1−1eR2

1sp1−q1 dτ

=
K1

Γ(1 + q1)
sq1 eR2

1sp1−q1

≤ K1Tq1
1

Γ(1 + q1)
eR2

1sp1−q1 .

Now, y ∈ Ω1, by estimations above and (A2), we get

|Fy(t)|

≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1| f (s, Iq1

0+y(s), y(s))|ds

=
1

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1| f (s, Iq1

0+y(s), y(s))− f (s, 0, 0) + f (s, 0, 0)|ds

≤ MTp1−q1
1

Γ(1 + p1 − q1)
+

1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1

|Iq1
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

≤ K1

2
+

1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1|Iq1

0+y(s)|+ c2|y(s)|)ds
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≤ K1

2
+

1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1

(
K1c1Tq1

1
Γ(1 + q1)

eR2
1sp1−q1 + c2K1eR2

1sp1−q1
)

ds

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

(t− s)p1−q1−1eR2
1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1sp1−q1 ds

]

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

R1−p1+q1
1 (R1 − i)p1−q1−1tp1−q1−1eR2

1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1tp1−q1 ds

]

≤ K1

2
+ K1d1

[ R1−1

∑
i=1

∫ it
R1

(i−1)t
R1

R1−p1+q1
1 tp1−q1−1eR2

1sp1−q1 ds

+
∫ t

(R1−1)t
R1

(t− s)p1−q1−1eR2
1tp1−q1 ds

]

=
K1

2
+ K1d1R1−p1+q1

1

∫ (R1−1)t
R1

0
tp1−q1−1eR2

1sp1−q1 ds +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
+ K1d1R1−p1+q1

1

∫ (R1−1)t
R1

0
sp1−q1−1eR2

1sp1−q1 ds +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
+

K1d1R1−p1+q1
1

R2
1(p1 − q1)

eR2
1(

(R1−1)t
R1

)p1−q1
+

K1d1Rq1−p1
1 Tp1−q1

1
p1 − q1

eR2
1tp1−q1

≤ K1

2
+

K1d1R−1−p1+q1
1

p1 − q1
eR2

1tp1−q1 +
K1d1Rq1−p1

1 Tp1−q1
1

p1 − q1
eR2

1tp1−q1

≤ K1

2
eR2

1tp1−q1 +
K1d1(1 + Tp1−q1

1 )

p1 − q1
Rq1−p1

1 eR2
1tp1−q1

≤ K1

2
eR2

1tp1−q1 +
K1

2
eR2

1tp1−q1 = K1eR2
1tp1−q1 ,

which implies that F : Ω1 → Ω1 is well defined. By the standard arguments, we could know that
F : Ω1 → Ω1 is a completely operator. Hence, the Schauder fixed point theorem assures that operator
F has at least one fixed point y1(t) ∈ Ω1. Obviously, y1(0) = 0. Now, we will verify the uniqueness
of solution to the integral Equation (34). We notice that: for 0 ≤ s ≤ t ≤ T1, if 0 ≤ t− s ≤ 1, then
(t− s)p1−1 ≤ (t− s)p1−q1−1; if t− s ≥ 1, then (t− s)p1−q1−1 ≤ (t− s)p1−1. As a result, we take

max{(t− s)p1−1, (t− s)p1−q1−1} .
= (t− s)α−1,

where α denotes p1 or p1 − q1. Now, let u1(t), u2(t) zre two solutions of the integral Equation (34),
by expression above and (A2), we get

|u1(t)− u2(t)|

≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1

|Iq1
0+(u1(s)− u2(s))|

1 + sλ
+ c2

|u1(s)− u2(s)|
1 + sλ

)ds
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≤ 1
Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1(c1|Iq1

0+(u1(s)− u2(s))|+ c2|u1(s)− u2(s)|)ds

≤ c1

Γ(p1 − q1)Γ(q1)

∫ t

0
(t− s)p1−q1−1

∫ s

0
(s− τ)q1−1|u1(τ)− u2(τ)|dτds

+
c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

=
c1

Γ(p1 − q1)Γ(q1)

∫ t

0

∫ t

τ
(t− s)p1−q1−1(s− τ)q1−1|u1(τ)− u2(τ)|dsdτ

+
c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

=
c1

Γ(p1)

∫ t

0
(t− τ)p1−1|u1(τ)− u2(τ)|dτ +

c2

Γ(p1 − q1)

∫ t

0
(t− s)p1−q1−1|u1(s)− u2(s)|ds

≤ c1

Γ(p1)

∫ t

0
(t− τ)α−1|u1(τ)− u2(τ)|dτ +

c2

Γ(p1 − q1)

∫ t

0
(t− s)α−1|u1(s)− u2(s)|ds

= [
c1

Γ(p1)
+

c2

Γ(p1 − q1)
]
∫ t

0
(t− τ)α−1|u1(τ)− u2(τ)|dτ,

by Lemma 7, we obtain that u1(t) = u2(t), 0 ≤ t ≤ T1, this assures the uniqueness of solution of (34).
As a result, by some arguments above, x1(t) = Iq1

0+y1(t) is one unique solution of the Equation (28)
with zero initial value condition.

Also, we have obtained that the Equation (27) in the interval (T1, T2] can be written by (29).
In order to consider the existence result of solutions to (29), we may discuss the following equation
defined on interval (0, T2]

d
dt

∫ t

0

(t− s)−p2 x(s)
Γ(1− p2)

ds = Dp2
0+x(t) = f (t, x,

d
dt

∫ t

0

(t− s)−q2 x(s)
Γ(1− q2)

ds) = f (t, x, Dq2
0+x). (36)

It is clear that if function x ∈ C[0, T2] satisfies the Equation (36), then x(t) must satisfy the
Equation (29). In fact, if x∗ ∈ C[0, T2] with x∗(0) = 0 is a solution of the Equation (36) with initial value
condition x(0) = 0, that is

Dp2
0+x∗(t)

=
d
dt

∫ t

0

(t− s)−p2 x∗(s)
Γ(1− p2)

ds

= f (t, x∗(t), Dq2
0+x∗(t)) = f (t, x∗(t),

d
dt

∫ t

0

(t− s)−q2 x∗(s)
Γ(1− q2)

ds), 0 < t ≤ T2; x∗(0) = 0.

Hence, from the equality above, we have that x∗ ∈ C[0, T2] with x∗(0) = 0 satisfies the equation

d
dt

∫ t

0

(t− s)−p2 x∗(s)
Γ(1− p2)

ds = f (t, x∗(t),
d
dt

∫ t

0

(t− s)−q2 x∗(s)
Γ(1− q2)

ds), T1 ≤ t ≤ T2,

which means the function x∗ ∈ C[0, T2] with x∗(0) = 0 is a solution of the Equation (29).
Based on this fact, we consider the existence of solutions to the Equation (36) with initial value

condition x(0) = 0.
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Now, applying operator Ip2
0+ on both sides of (36), by Lemma 5, we have

x(t) = ctp2−1 +
1

Γ(p2)

∫ t

0
(t− s)p2−1 f (s, x(s), Dq2

0+x(s))ds, 0 < t ≤ T2.

By initial value condition x(0) = 0, we have c = 0, that is

x(t) =
1

Γ(p2)

∫ t

0
(t− s)p2−1 f (s, x(s), Dq2

0+x(s))ds, 0 ≤ t ≤ T2. (37)

Let Dq2
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5, we get that

x(t) = Iq2
0+y(t),

hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(p2 − q2)

∫ t

0
(t− s)p2−q2−1 f (s, Iq2

0+y(s), y(s))ds, 0 ≤ t ≤ T2. (38)

Obviously, if y∗ ∈ B2 = C[0, T2] is a solution of (38), then, by (38) and Lemma 2, it holds

Iq2
0+y∗(t) = Iq2

0+ Ip2−q2
0+ f (t, Iq2

0+y∗(t), y∗(t)) = Ip2
0+ f (t, Iq2

0+y∗(t), y∗(t)), 0 ≤ t ≤ T2,

let
Iq2
0+y∗(t) = x∗(t), 0 ≤ t ≤ T2,

as a result, we have that

x∗(t) = Ip2
0+ f (t, x∗(t), Dq2

0+x∗(t)), 0 ≤ t ≤ T2,

that is, x∗ ∈ B2 = C[0, T2] is a solution of (37), hence, x∗ ∈ B2 = C[0, T2] is a solution of Equation (29)
with zero initial value condition.

Define operator F : B2 → B2 by

Fy(t) =
1

Γ(p2 − q2)

∫ t

0
(t− s)p2−q2−1 f (s, Iq2

0+y(s), y(s))ds, 0 ≤ t ≤ T2.

From the continuity of function f and the standard arguments, we know that the operator
F : B1 → B2 is well defined. Let Ω2 be a bounded, convex and closed subset of B2 defined by

Ω2 = {y|y ∈ B2; |y(t)| ≤ K2eR2
2tp2−q2 , 0 ≤ t ≤ T2},

where

K2 =
2MTp2−q2

2
Γ(1 + p2 − q2)

,

R2 ∈ N satisfying

R2 > {1, (
2d2(1 + Tp2−q2

2 )

p2 − q2
)

1
p2−q2 },

here d2 = 1
Γ(p2−q2)

[
c1Tq2

2
Γ(1+q2)

+ c2

]
(c1, c2 are the constants appearing in condition (A2)). By the same

arguments above, there exists y2 ∈ Ω2 such that x2(t) = Iq2
0+y2(t) is one unique solution of the

Equation (29) with zero initial value condition.
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In a similar way, for i = 3, · · · , n∗, we get that the Equation (31) defined on (Ti−1, Ti] (Tn∗ = T)
has one solution xi(t) ∈ Ωi ⊂ Bi with xi(0) = 0 , where

Ωi = {y|y ∈ Bi; |y(t)| ≤ KieR2
i tpi−qi , 0 ≤ t ≤ Ti},

Ki =
2MTpi−qi

i
Γ(1 + pi − qi)

,

Ri ∈ N satisfying

Ri >

{
1, (

2di(1 + Tpi−qi
i )

pi − qi
)

1
pi−qi

}
,

here di =
1

Γ(pi−qi)

[
c1T

qi
i

Γ(1+qi)
+ c2

]
(c1, c2 are the constants appearing in condition (A2)), i = 3, 4, · · · , n∗,

Tn∗ = T.
Finally, we get that the Equation (27) in the interval (T,+∞) can be written by (32). In order to

consider the existence result of solutions to (32), we may discuss the following equation defined on
interval (0,+∞)

d
dt

∫ t

0

(t− s)−ρ1

Γ(1− ρ1)
x(s)ds = Dρ1

0+x(t) = f (t, x, Dρ2
0+x), 0 < t < +∞. (39)

We see that, if function x ∈ C[0,+∞) satisfies the Equation (39), then x(t) must satisfy the
Equation (32). In fact, if x∗ ∈ C[0,+∞) with x∗(0) = 0 is a solution of the Equation (39) with initial
value condition x(0) = 0, that is

Dρ1
0+x∗(t) =

d
dt

∫ t

0

(t− s)−ρ1 x∗(s)
Γ(1− ρ1)

ds = f (t, x∗(t), Dρ2
0+x∗)

= f (t, x∗(t),
d
dt

∫ t

0

(t− s)−ρ2 x∗(s)
Γ(1− ρ2)

ds), 0 < t < +∞; x∗(0) = 0.

Hence, from the equality above, we have x∗ ∈ C[0,+∞) with x∗(0) = 0 satisfying the equation

d
dt

∫ t

0

(t− s)−ρ1 x(s)
Γ(1− ρ1)

ds = f (t, x(t),
d
dt

∫ t

0

(t− s)−ρ2 x(s)
Γ(1− ρ2)

ds), T < t < +∞,

which means the function x∗ ∈ C[0,+∞) with x∗(0) = 0 is a solution of the Equation (32).
Based on this fact, we will consider the existence of solutions to the Equation (39) with initial

value condition x(0) = 0.
Now, applying operator Iρ1

0+ on both sides of (39), by Lemma 5, we have that

x(t) = ctρ1−1 +
1

Γ(ρ1)

∫ t

0
(t− s)ρ1−1 f (s, x(s), Dρ2

0+x(s))ds, 0 < t < +∞.

By initial value condition x(0) = 0, we have c = 0, that is

x(t) =
1

Γ(ρ1)

∫ t

0
(t− s)ρ1−1 f (s, x(s), Dρ2

0+x(s))ds, 0 ≤ t < +∞. (40)

Similar to arguments above, we let Dρ2
0+x(t) = y(t), then, according to x(0) = 0 and Lemma 5,

we get that
x(t) = Iρ2

0+y(t),
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hence we will consider existence of solution to integral equation as following

y(t) =
1

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds, 0 ≤ t < +∞. (41)

Obviously, if y∗ ∈ E is a solution of (41), then, by (41) and Lemma 2, it holds

Iρ2
0+y∗(t) = Iρ2

0+ Iρ1−ρ2
0+ f (t, Iρ2

0+y∗(t), y∗(t)) = Iρ1
0+ f (t, Iρ2

0+y∗(t), y∗(t)), 0 ≤ t < +∞.

Let
Iρ2
0+y∗(t) = x∗(t), 0 ≤ t < +∞.

As a result, we have that

x∗(t) = Iρ1
0+ f (t, x∗(t), Dρ2

0+x∗(t)), 0 ≤ t < +∞,

that is, x∗ ∈ E is a solution of (40), hence, x∗ ∈ E is a solution of Equation (32) with zero initial
value condition.

Defining operator F : E → E as follows

Fy(t) =
1

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds, 0 ≤ t < +∞.

To get the operator F : E → E is well defined. First, we verify that Fy ∈ C[0,+∞) for x ∈ E.
In fact, for the case of t0 ∈ (0,+∞), take t > t0, t− t0 < 1, then

(t0 − s)ρ1−1 > (t− s)ρ1−1, 0 ≤ s < t0.

Now, for y ∈ E, it holds

|Iρ2
0+y(s)|
1 + sλ

≤
∫ s

0 (s− τ)ρ2−1|y(τ)|dτ

Γ(ρ2)(1 + sλ)

≤
∫ s

0 (s− τ)ρ2−1(1 + τλ)‖y‖Edτ

Γ(ρ2)(1 + sλ)

≤
∫ s

0 (s− τ)ρ2−1(1 + sλ)‖y‖Edτ

Γ(ρ2)(1 + sλ)

=
‖y‖Esρ2

Γ(1 + ρ2)
,

thus, for y ∈ E, we have

|Fy(t)| ≤ 1
Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)(c1

|Iρ2
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1(c1
|Iρ2

0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)| f (s, 0, 0)|ds

+
1

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds
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≤ ‖y‖E
Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)

(
c1

sρ2

Γ(1 + ρ2)
+ c2

)
ds

+
‖y‖E

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1
(

c1
sρ2

Γ(1 + ρ2)
+ c2

)
ds

+
max0≤t≤t0+1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds

+
max0≤t≤t0+1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t

t0

(t− s)ρ1−ρ2−1ds.

We will consider the four terms above, respectively. For 0 < η < ρ1 − ρ2, it is easy to show that

∫ t

0
(t− s)ρ1−ρ2−1sηds =

Γ(1 + η)Γ(ρ1 − ρ2)tρ1−ρ2+η

Γ(1 + ρ1 − ρ2 + η)
.

Hence, for any given ε > 0, there exists a δ1 > 0, such that, when 0 ≤ t0 ≤ δ1, it holds that

c1‖y‖E
Γ(ρ1 − ρ2)Γ(1 + ρ2)

∫ t0

0
(t0 − s)ρ1−ρ2−1sρ2 ds <

ε

4
,

c2‖y‖E
Γ(ρ2 − ρ2)

∫ t0

0
(t0 − s)ρ1−ρ2−1ds <

ε

4
. (42)

Moreover, we get

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)sρ2 ds

≤ tρ2
0

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds

=
tρ2
0

ρ1 − ρ2
((t0 − δ1)

ρ1−ρ2 − (t− δ1)
ρ1−ρ2 + (t− t0)

ρ1−ρ2)

≤ tρ2
0

ρ1 − ρ2
(t− t0)

ρ1−ρ2 ,

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds ≤ 1
ρ1 − ρ2

(t− t0)
ρ1−ρ2 ,

hence, we know that there exists δ2 > 0 such that for 0 < t− t0 < δ2, we have

c1‖y‖E
Γ(ρ1 − ρ2)Γ(1 + ρ2)

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)sρ2 ds <
ε

4
,

c2‖y‖E
Γ(ρ2 − ρ2)

∫ t0

δ1

((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)ds <
ε

4
,

together with (42), it leads to

∫ t0

0
((t0 − s)ρ1−ρ2−1 − (t− s)ρ1−ρ2−1)(

c1‖y‖Esρ2

Γ(ρ1 − ρ2)Γ(1 + ρ2)
+

c2‖y‖E
Γ(ρ2 − ρ2)

)ds < ε.

By the direct calculation, we have

∫ t

t0

(t− s)ρ1−ρ2−1sρ2 ds ≤ (t0 + 1)ρ2
(t− t0)

ρ1−ρ2

ρ1 − ρ2
,
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∫ t

t0

(t− s)ρ1−ρ2−1ds ≤ (t− t0)
ρ1−ρ2

ρ1 − ρ2
,

which implies that there exists δ3 > 0 such that for 0 < t− t0 < δ3, we get

∫ t

t0

(t− s)ρ1−ρ2−1(
c1‖y‖Esρ2

Γ(ρ1 − ρ2)Γ(1 + ρ2)
+

c2‖y‖E
Γ(ρ2 − ρ2)

)ds < ε.

By the same arguments, we get that these estimations still hold for the last two terms above. Hence,
we obtain Fx(t) is continuous on point t0. In view of the arbitrariness of t0, we have Fx ∈ C(0,+∞).

For the case of t0 = 0, by (A2), for y ∈ E, take t < 1, then

|Fy(t)| = | 1
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1 f (s, Iρ2

0+y(s), y(s))ds|

≤ ‖y‖E
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1)(c1

sρ2

Γ(1 + ρ2)
+ c2)ds

+
max0≤t≤1 | f (t, 0, 0)|

Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1ds,

From the previous arguments, we could know that Fy(t) is continuous on point 0. As a result,
we have Fy ∈ C[0,+∞) for x ∈ E.

By the similar arguments, for y ∈ E, by (A2), we have

| Fy(t)
1 + tλ

| ≤ 1
Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1(c1

|Iρ2
0+y(s)|
1 + sλ

+ c2
|y(s)|
1 + sλ

)ds

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds

≤ ‖y‖E

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1(c1

sρ2

Γ(1 + ρ2)
+ c2)ds

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds

=
‖y‖E

1 + tλ
[

c1tρ1

Γ(1 + ρ1)
+

c2tρ1−ρ2

Γ(1 + ρ1 − ρ2)
]

+
1

Γ(ρ1 − ρ2)(1 + tλ)

∫ t

0
(t− s)ρ1−ρ2−1| f (s, 0, 0)|ds,

according to these estimations and (A2), we ge that limt→+∞
Fy(t)
1+tλ = 0. Hence, F : E→ E is well defined.

Now, for x, y ∈ E, by a similar way, we get

|Fx(t)− Fy(t)|
1 + tλ

≤ 1
Γ(ρ1 − ρ2)

∫ t

0
(t− s)ρ1−ρ2−1(c1

Iρ2
0+|x(s)− y(s)|

1 + sλ
+ c2

|x(s)− y(s)|
1 + sλ

)ds

≤ ‖x− y‖E

1 + tλ
[

c1tρ1

Γ(1 + ρ1)
+

c2tρ1−ρ2

Γ(1 + ρ1 − ρ2)
]

≤ [
c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)
]‖x− y‖E,
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which implies that the operator F : E → E is a contraction operator, so the Banach contraction principle
assures that the operator F has a unique fixed point yT(t) ∈ E. According to some arguments above,
we obtain that xT(t) = Iρ2

0+yT(t) is one unique solution of the Equation (32) with zero initial value
condition. Thus, according to Definition 5, we obtain that the problem (1) has one unique approximate
solution.

Example 4. Now, we consider the initial value problem as following⎧⎪⎪⎪⎨⎪⎪⎪⎩
D

1
2+

t
200(1+t2)

0+ x(t) = Γ( 3
2 )x4

12(1+t2)4(1+x4)
+

Γ( 7
6 )(D

1
3 +

t
600(1+t2+t3)

0+ x)2

12(1+t2)2(1+(D
1
3 +

t
600(1+t2+t3)

0+ x)2)

, 0 < t < +∞,

x(0) = 0.

(43)

We let
p(t) =

1
2
+

t
200(1 + t2)

, q(t) =
1
3
+

t
600(1 + t2 + t3)

, 0 ≤ t < +∞,

f (t, x(t), y(t)) =
Γ( 3

2 )x4(t)
12(1 + t2)4(1 + x4(t))

+
Γ( 7

6 )y
2(t)

12(1 + t2)2(1 + y2(t))
, 0 < t < +∞, x(t), y(t) ∈ R.

Obviously, we get limt→+∞ p(t) = 1
2 and limt→+∞ q(t) = 1

3 , thus, p satisfies (A1) with ρ1 = 1
2 ,

ρ2 = 1
3 . That f (t, 0, 0) = 0. In addition, for all 0 ≤ t < +∞, x(t), y(t) ∈ R, from the differentiation mean

theorem, we get

| f (t, (1 + t2)x1, (1 + t2)y1)− f (t, (1 + t2)x2, (1 + t2)y2)|

≤ Γ( 3
2 )

12
| x4

1
1 + (1 + t2)4x4

1
− x4

2
1 + (1 + t2)4x4

2
|

+
Γ( 7

6 )

12
| y2

1(t)
1 + (1 + t2)2y2

1
− y2

2
1 + (1 + t2)2y2

2
)|

≤ Γ( 3
2 )

3
|x1 − x2|+

Γ( 7
6 )

3
|y1 − y1|,

which implies that f satisfies (A2) with c1 =
Γ( 3

2 )
3 , c2 =

Γ( 7
6 )

3 , which satisfies

c1

Γ(1 + ρ1)
+

c2

Γ(1 + ρ1 − ρ2)

=
Γ( 3

2 )

3
1

Γ(1 + 1
2 )

+
Γ( 7

6 )

3
1

Γ(1 + 1
2 − 1

3 )

=
2
3
< 1.

For given arbitrary small ε = 1.1
100 , there exists T = 22

ε = 2000, such that

|p(t)− 1
2
| = t

200(1 + t2)
<

1
t
≤ 1

T
=

ε

22
< ε, t ≥ T,

|q(t)− 1
3
| = t

600(1 + t2 + t3)
<

1
t
≤ 1

T
=

ε

22
< ε, t ≥ T.
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Now, we consider function p(t) restricted on interval [0, T] = [0, 2000]. By the right continuity of function
p(t) at point 0, for ε = 1.1

100 , taking δ0 = 2, when 0 ≤ t ≤ δ0 = 2, we have

|p(t)− p(0)| = | t
200(1 + t2)

| ≤ t
200

<
δ0

200
=

1
100

<
1.1
100

= ε.

|q(t)− q(0)| = | t
600(1 + t2 + t3)

| ≤ t
600

<
δ0

200
=

1
100

<
1.1
100

= ε.

We get t1 = δ0 = 2. By the right continuity of functions p(t), q(t) at the point t1, for ε = 1.1
100 , taking

δ1 = 2, when 0 ≤ t− t1 ≤ δ1, by differential mean value theorem, we have

|p(t)− p(t1)| = | t
200(1 + t2)

− t1

200(1 + t2
1)
|

≤ | 1− ξ2

200(1 + ξ2)2 ||t− t1|

≤ 1 + ξ2

200(1 + ξ2)2 |t− t1|

≤ 1
200
|t− t1|

<
δ1

200
=

1
100

<
1.1
100

= ε,

|q(t)− q(t1)| = | t
600(1 + t2 + t3)

− t1

600(1 + t2
1 + t3

1)
|

≤ | 1− η2 − 2η3

600(1 + η2 + η3)2 ||t− t1|

≤ | 1 + η2 + 2η3

600(1 + η2 + η3)2 ||t− t1|

≤ 3
600
|t− t1|

<
δ1

200
=

1
100

<
1.1
100

= ε,

where t1 < ξ < t, t1 < η < t. We let t2 = t1 + δ1 = 4. By the right continuity of function p(t) at point t2,
for ε = 1.1

100 , taking δ2 = 2, when 0 ≤ t− t1 ≤ δ2, by the same reasons above, we have

|p(t)− p(t1)| = | t
200(1 + t2)

− t2

20(1 + t2
2)
| < δ2

200
=

1
100

<
1.1
100

= ε,

|q(t)− q(t1)| = | t
600(1 + t2 + t3)

− t2

600(1 + t2
2 + t3)

| < δ2

200
=

1
100

<
1.1
100

= ε,

Continuing this procession, from tn−1 = 2(n− 1) < 2000, tn = tn−1 + δn−1 = 2(n− 1) + 2 = 2000,
we get n = 1000. Thus, let

p1
.
= p(0) =

1
2

, p2
.
= p(t1) = p(2) =

1
2
+

2
200(1 + 4)

,
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p3
.
= p(t2) = p(4) =

1
2
+

4
200× (1 + 16)

, · · · , p1000 = p(t999) = p(1998) =
1
2
+

1998
200× (1 + 19982)

.

q1
.
= q(0) =

1
3

, q2
.
= q(t1) = q(2) =

1
3
+

2
600(1 + 4 + 8)

,

q3
.
= q(t2) = q(4) =

1
3
+

4
600× (1 + 16 + 64)

, · · · ,

q1000 = q(t999) = q(1998) =
1
3
+

1998
600× (1 + 19982 + 19983)

.

As a result, we get intervals [0, 2], (2, 4], · · · , (1998, 2000], (2000,+∞) and function α(t) defined by

α(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = 1
2 , for t ∈ [0, 2],

p2 = 1
2 + 2

200×(1+4) , for t ∈ (2, 4],

p3 = 1
2 + 4

200×(1+16) , for t ∈ (4, 6],

· · · ,

p1000 = 1
2 + 1998

200×(1+19982)
, for t ∈ (1998, 2000]

ρ1 = 1
2 , for t ∈ (2000,+∞).

(44)

β(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 1
3 , for t ∈ [0, 2],

q2 = 1
3 + 2

600×(1+4+8) , for t ∈ (2, 4],

q3 = 1
3 + 4

600×(1+16+64) , for t ∈ (4, 6],

· · · ,

q1000 = 1
3 + 1998

6000×(1+19982+19983)
, for t ∈ (1998, 2000]

ρ2 = 1
3 , for t ∈ (2000,+∞).

By Definitions 4 and 5 and the arguments of Theorem 1, the problem (43) has one unique
approximate solution.

Remark 1. From Lemma 6 and Definition 5, we may take arbitrary small ε, such that the problem (43) has one
unique approximate solution. This means that the proximity is very high.

Example 5. Finally, we calculate the approximate solution of the following initial value problem for linear equation

D
1
2+

t
200(1+t2)

0+ x(t) = t
1
4 , x(0) = 0, 0 < t < +∞, (45)

According to analysis in Example 4, we get intervals [0, 2], (2, 4], · · · , (1998, 2000], (2000,+∞) and
function α(t) defined in (44). By Definitions 4 and 5, we calculate out the approximate solution of the problem (45)
as following
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) =
Γ( 5

4 )

Γ( 7
4 )

t
3
4 ∈ C[0, 2],

x2(t) =
Γ( 5

4 )

Γ( 7
4+

2
200×(1+4) )

t
3
4+

2
200×(1+4) ∈ C[0, 4],

x3(t) =
Γ( 5

4 )

Γ( 7
4+

4
200×(1+16) )

t
3
4+

4
200×(1+16) ∈ C[0, 6],

· · · ,

x1000 =
Γ( 5

4 )

Γ( 7
4+

1998
200×(1+19982)

)
t

3
4+

1998
200×(1+19982) ∈ C[0, 2000],

x2000(t) =
Γ( 5

4 )

Γ( 7
4 )

t
3
4 ∈ C[0,+∞).

Remark 2. By the characters of variable order derivative, we cannot get accurate solution of the problem (45).
Hence, the approximate solution given by us is significative.

4. Conclusions

In this paper, we have obtained the unique existence result of approximate solution of initial
value problem for fractional differential equation of variable order involving with the variable
order derivative defined on the half-axis. Through discussing the characters of variable order
calculus(integral and derivative), we introduce the concept of approximate solution to the problem.
Based on our discussion and analysis, using the fixed point theorem, we have found the unique
existence results. As applications, two examples are presented to illustrate the main results. The issue
of the existence and qualitative analysis of approximate solution of initial value problems for fractional
differential equation of variable order is interesting. In the future, we will consider the existence and
qualitative analysis of approximate solution of initial value problem for singular fractional differential
equation of variable order.
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Abstract: This article deals with some existence and uniqueness result of random solutions for
some coupled systems of Hilfer and Hilfer–Hadamard fractional differential equations with random
effects. Some applications are made of generalizations of classical random fixed point theorems on
generalized Banach spaces.
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1. Introduction

Fractional calculus is an extension of the ordinary differentiation and integration to arbitrary
non-integer order. In recent years, this theory has become an important object of investigations due to
its demonstrated applications in different areas of physics and engineering (see, for example, [1,2] and
the references therein). In particular, time fractional differential equations are used when attempting
to describe transport processes with long memory. Recently, the study of time fractional ordinary
and partial differential equations has received great attention from many researchers, both in theory
and in applications; we refer the reader to the monographs of Abbas et al. [3–5], Samko et al. [6],
and Kilbas et al. [7], and the papers [8–14] and the references therein. On the other hand, the existence
of solutions of initial and boundary value problems for fractional differential equations with the Hilfer
fractional derivative have started to draw attention. For the related works, see for example [1,15–20]
and the references therein.

Functional differential equations with random effects are differential equations with a stochastic
process in their vector field [21–25]. They play a fundamental role in the theory of random
dynamical systems.

Mathematics 2019, 7, 285; doi:10.3390/math7030285 www.mdpi.com/journal/mathematics197
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Consider the following coupled system of Hilfer fractional differential equations:{
(Dα1,β1

0 u)(t, w) = f1(t, u(t, w), v(t, w), w)

(Dα2,β2
0 v)(t, w) = f2(t, u(t, w), v(t, w), w)

; t ∈ I := [0, T], w ∈ Ω, (1)

with the following initial conditions:{
(I1−γ1

0 u)(0, w) = φ1(w)

(I1−γ2
0 v)(0, w) = φ2(w)

; w ∈ Ω, (2)

where T > 0, αi ∈ (0, 1), βi ∈ [0, 1], (Ω,A) is a measurable space, γi = αi + βi− αiβi, φi : Ω → Rm, fi :
I ×Rm ×Rm ×Ω → Rm; i = 1, 2, are given functions, I1−γi

0 is the left-sided mixed Riemann–Liouville

integral of order 1− γi, and Dαi ,βi
0 is the generalized Riemann–Liouville derivative (Hilfer) operator of

order αi and type βi : i = 1, 2. Next, we discuss the following coupled system of Hilfer–Hadamard
fractional differential equations:{

(H Dα1,β1
1 u)(t, w) = g1(t, u(t, w), v(t, w), w)

(H Dα2,β2
1 v)(t, w) = g2(t, u(t, w), v(t, w), w)

; t ∈ [1, T], w ∈ Ω, (3)

with the following initial conditions:{
(H I1−γ1

1 u)(1, w) = ψ1(w)

(H I1−γ2
1 v)(1, w) = ψ2(w)

; w ∈ Ω, (4)

where T > 1, αi ∈ (0, 1), βi ∈ [0, 1], γi = αi + βi − αiβi, ψi : Ω → Rm, gi : [1, T]×Rm ×Rm ×Ω →
Rm; i = 1, 2 are given functions, Rm; m ∈ N∗, H I1−γi

1 is the left-sided mixed Hadamard integral of

order 1− γi, and H Dαi ,βi
1 is the Hilfer–Hadamard fractional derivative of order αi and type βi; i = 1, 2.

2. Preliminaries

We denote by C; the Banach space of all continuous functions from I into Rm with the supremum
(uniform) norm ‖ · ‖∞. As usual, AC(I) denotes the space of absolutely continuous functions from I
into Rm. By L1(I), we denote the space of Lebesgue-integrable functions v : I → Rm with the norm:

‖v‖1 =
∫ T

0
‖v(t)‖dt.

By Cγ(I) and C1
γ(I), we denote the weighted spaces of continuous functions defined by:

Cγ(I) = {w : (0, T]→ R
m : t1−γw(t) ∈ C},

with the norm:
‖w‖Cγ

:= sup
t∈I
‖t1−γw(t)‖,

and:
C1

γ(I) = {w ∈ C :
dw
dt
∈ Cγ},

with the norm:
‖w‖C1

γ
:= ‖w‖∞ + ‖w′‖Cγ

.

Furthermore, by C := Cγ1 × Cγ2 , we denote the product weighted space with the norm:

‖(u, v)‖C = ‖u‖Cγ1
+ ‖v‖Cγ2

.
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Now, we give some definitions and properties of fractional calculus.

Definition 1. [4,6,7] The left-sided mixed Riemann–Liouville integral of order r > 0 of a function w ∈ L1(I)
is defined by:

(Ir
0w)(t) =

1
Γ(r)

∫ t

0
(t− s)r−1w(s)ds; f or a.e. t ∈ I,

where Γ(·) is the (Euler’s) Gamma function.

Notice that for all r, r1, r2 > 0 and each w ∈ C, we have Ir
0w ∈ C, and:

(Ir1
0 Ir2

0 w)(t) = (Ir1+r2
0 w)(t); f or a.e. t ∈ I.

Definition 2. [4,6,7] The Riemann–Liouville fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I)
is defined by:

(Dr
0w)(t) =

(
d
dt

I1−r
0 w

)
(t)

=
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−rw(s)ds; f or a.e. t ∈ I.

Let r ∈ (0, 1], γ ∈ [0, 1) and w ∈ C1−γ(I). Then, the following expression leads to the left inverse
operator as follows.

(Dr
0 Ir

0w)(t) = w(t); f or all t ∈ (0, T].

Moreover, if I1−r
0 w ∈ C1

1−γ(I), then the following composition is proven in [6]:

(Ir
0Dr

0w)(t) = w(t)− (I1−r
0 w)(0+)

Γ(r)
tr−1; f or all t ∈ (0, T].

Definition 3. [4,6,7] The Caputo fractional derivative of order r ∈ (0, 1] of a function w ∈ L1(I) is defined by:

(cDr
0w)(t) =

(
I1−r
0

d
dt

w
)
(t)

=
1

Γ(1− r)

∫ t

0
(t− s)−r d

ds
w(s)ds; f or a.e. t ∈ I.

In [1], R.Hilfer studied applications of a generalized fractional operator having the
Riemann–Liouville and the Caputo derivatives as specific cases (see also [17,19]).

Definition 4. (Hilfer derivative). Let α ∈ (0, 1), β ∈ [0, 1], w ∈ L1(I), and I(1−α)(1−β)
0 w ∈ AC(I). The

Hilfer fractional derivative of order α and type β of w is defined as:

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I(1−α)(1−β)
0 w

)
(t); f or a.e. t ∈ I. (5)

Property 1. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β− αβ, and w ∈ L1(I).

1. The operator (Dα,β
0 w)(t) can be written as:

(Dα,β
0 w)(t) =

(
Iβ(1−α)
0

d
dt

I1−γ
0 w

)
(t) =

(
Iβ(1−α)
0 Dγ

0 w
)
(t); f or a.e. t ∈ I.
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Moreover, the parameter γ satisfies:

γ ∈ (0, 1], γ ≥ α, γ > β, 1− γ < 1− β(1− α).

2. The generalization (5) for β = 0, coincides with the Riemann–Liouville derivative and for β = 1
with the Caputo derivative.

Dα,0
0 = Dα

0 , and Dα,1
0 = cDα

0 .

3. If Dβ(1−α)
0 w exists and is in L1(I), then:

(Dα,β
0 Iα

0 w)(t) = (Iβ(1−α)
0 Dβ(1−α)

0 w)(t); f or a.e. t ∈ I.

Furthermore, if w ∈ Cγ(I) and I1−β(1−α)
0 w ∈ C1

γ(I), then:

(Dα,β
0 Iα

0 w)(t) = w(t); f or a.e. t ∈ I.

4. If Dγ
0 w exists and is in L1(I), then:

(Iα
0 Dα,β

0 w)(t) = (Iγ
0 Dγ

0 w)(t) = w(t)− I1−γ
0 (0+)

Γ(γ)
tγ−1; f or a.e. t ∈ I.

Corollary 1. Let h ∈ Cγ(I). Then, the Cauchy problem:⎧⎪⎪⎨⎪⎪⎩
(Dα,β

0 u)(t) = h(t); t ∈ I,

(I1−γ
0 u)(t)|t=0 = φ,

has the following unique solution:

u(t) =
φ

Γ(γ)
tγ−1 + (Iα

0 h)(t).

Let βRm be the σ-algebra of Borel subsets of Rm. A mapping v : Ω → Rm is said to be measurable
if for any B ∈ βRm ; one has:

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

Definition 5. Let A× βRm be the direct product of the σ-algebras A and βRm those defined in Ω and Rm,
respectively. A mapping T : Ω×Rm → Rm is called jointly measurable if for any B ∈ βRm , one has:

T−1(B) = {(w, v) ∈ Ω× E : T(w, v) ∈ B} ⊂ A× βRm .

Definition 6. A function T : Ω × Rm → Rm is called jointly measurable if T(·, u) is measurable for all
u ∈ Rm and T(w, ·) is continuous for all: w ∈ Ω.

A random operator is a mapping T : Ω× Rm → Rm such that T(w, u) is measurable in w for
all u ∈ Rm, and it expressed as T(w)u = T(w, u); we also say that T(w) is a random operator on Rm.
The random operator T(w) on E is called continuous (resp. compact, totally bounded, and completely
continuous) if T(w, u) is continuous (resp. compact, totally bounded, and completely continuous) in
u for all w ∈ Ω. The details of completely continuous random operators in Banach spaces and their
properties appear in Itoh [26].

Definition 7. [27] Let P(Y) be the family of all nonempty subsets of Y and C be a mapping from Ω into P(Y).
A mapping T : {(w, y) : w ∈ Ω, y ∈ C(w)} → Y is called a random operator with stochastic domain C if C
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is measurable (i.e., for all closed A ⊂ Y, {w ∈ Ω, C(w) ∩ A �= ∅} is measurable), and for all open D ⊂ Y
and all y ∈ Y, {w ∈ Ω : y ∈ C(w), T(w, y) ∈ D} is measurable. T will be called continuous if every T(w) is
continuous. For a random operator T, a mapping y : Ω → Y is called a random (stochastic) fixed point of T if for
P-almost all w ∈ Ω, y(w) ∈ C(w) and T(w)y(w) = y(w), and for all open D ⊂ Y, {w ∈ Ω : y(w) ∈ D}
is measurable.

Definition 8. A function f : I ×Rm ×Ω → Rm is called random Carathéodory if the following conditions
are satisfied:

(i) The map (t, w)→ f (x, y, u, w) is jointly measurable for all u ∈ Rm and
(ii) The map u → f (t, u, w) is continuous for all t ∈ I and w ∈ Ω.

Let x, , y ∈ Rm with x = (x1, x2, . . . , xm), y = (y1, y2, . . . , ym).
By x ≤ y, we mean xi ≤ yi; i = 1, . . . , m. Also |x| = (|x1|, |x2|, . . . , |xm|), max(x, y) =

(max(x1, y1), max(x2, y2), . . . , max(xm, ym)), and Rm
+ = {x ∈ Rm : xi ∈ R+, i = 1, . . . , m}. If c ∈ R,

then x ≤ c means xi ≤ c; i = 1, . . . , m.

Definition 9. Let X be a nonempty set. By a vector-valued metric on X, we mean a map d : X × X → Rm

with the following properties:

(i) d(x, y) ≥ 0 for all x, y ∈ X, and if d(x, y) = 0, then x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We call the pair (X, d) a generalized metric space with d(x, y) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1(x, y)
d2(x, y)
·
·
·

dm(x, y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Notice that d is a generalized metric space on X if and only if di; i = 1, . . . , m are metrics on X.
For r = (r1, . . . , rm) ∈ Rm and x0 ∈ X, we will denote by:

Br(x0) := {x ∈ X : d(x0, x) < r} = {x ∈ X : di(x0, x) < ri; i = 1, . . . , m}

the open ball centered in x0 with radius r and:

Br(x0) := {x ∈ X : d(x0, x) ≤ r} = {x ∈ X : di(x0, x) ≤ ri; i = 1, . . . , m}

the closed ball centered in x0 with radius r. We mention that for generalized metric spaces, the notations
of open, closed, compact, convex sets, convergence, and Cauchy sequence are similar to those in usual
metric spaces.

Definition 10. [28,29] A square matrix of real numbers is said to be convergent to zero if and only if its spectral
radius ρ(M) is strictly less than one. In other words, this means that all the eigenvalues of M are in the open
unit disc, i.e., |λ| < 1; for every λ ∈ C with det(M− λI) = 0; where I denotes the unit matrix of Mm×m(R).

Example 1. The matrix A ∈ M2×2(R) defined by:

A =

(
a b
c d

)
,

converges to zero in the following cases:

201



Mathematics 2019, 7, 285

(1) b = c = 0, a, d > 0, and max{a, d} < 1.
(2) c = 0, a, d > 0, a + d < 1, and −1 < b < 0.
(3) a + b = c + d = 0, a > 1, c > 0, and |a− c| < 1.

In the sequel, we will make use of the following random fixed point theorems:

Theorem 1. [23–25] Let (Ω,F ) be a measurable space, X a real separable generalized Banach space, and
F : Ω× X → X a continuous random operator, and let M(w) ∈ Mn×n(R+) be a random variable matrix
such that for every w ∈ Ω, the matrix M(w) converges to zero and:

d(F(w, x1), F(w, x2)) ≤ M(w)d(x1, x2); f or each x1, x2 ∈ X and w ∈ Ω,

then there exists a random variable x : Ω → X that is the unique random fixed point of F.

Theorem 2. [23–25] Let (Ω,F ) be a measurable space, X be a real separable generalized Banach space, and
F : Ω× X → X be a completely continuous random operator. Then, either:

(i) the random equation F(w, x) = x has a random solution, i.e., there is a measurable function x : Ω → X
such that F(w, x(w)) = x(w) for all w ∈ Ω or

(ii) the set M = {x : Ω → X is measurable : λ(w)F(w, x) = x} is unbounded for some measurable
function λ : Ω → X with 0 < λ(w) < 1 on Ω.

Furthermore, we will use the following Gronwall lemma:

Lemma 1. [23] Let u : I → [0, ∞) be a real function and u(·) a nonnegative, locally-integrable function on I.
Assume that there exist constants c > 0 and r < 1 such that:

u(t) ≤ v(t) + c
∫ t

0

u(s)
(t− s)r ds,

then, there exists a constant K := K(r) such that:

u(t) ≤ v(t) + cK
∫ t

0

v(s)
(t− s)r ds,

for every t ∈ I.

3. Coupled Hilfer Fractional Differential Systems

In this section, we are concerned with the existence and uniqueness results of the system (1)
and (2).

Definition 11. By a solution of the problem (1) and (2), we mean coupled measurable functions (u, v) ∈ Cγ1 ×
Cγ2 , which satisfy the Equation (1) on I, and the conditions (I1−γ1

0 u)(0+) = φ1, and (I1−γ2
0 v)(0+) = φ2.

The following hypotheses will be used in the sequel.

(H1) The functions fi; i = 1, 2 are Carathéodory.
(H2) There exist measurable functions pi, qi : Ω → (0, ∞); i = 1, 2 such that:

‖ fi(t, u1, v1)− fi(t, u2, v2)‖ ≤ pi(w)‖u1 − u2‖+ qi(w)‖v1 − v2‖;

f or a.e. t ∈ I, and each ui, vi ∈ Rm, i = 1, 2.
(H3) There exist measurable functions ai, bi : Ω → (0, ∞); i = 1, 2 such that:

‖ fi(t, u, v)‖ ≤ ai(w)‖u‖+ bi(w)‖v‖; f or a.e. t ∈ I, and each u, v ∈ R
m.
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First, we prove an existence and uniqueness result for the coupled system (1)–(2) by using
Banach’s random fixed point theorem in generalized Banach spaces.

Theorem 3. Assume that the hypotheses (H1) and (H2) hold. If for every w ∈ Ω, the matrix:

M(w) :=

( Tα1
Γ(1+α1)

p1(w) Tα1
Γ(1+α1)

q1(w)
Tα2

Γ(1+α2)
p2(w) Tα2

Γ(1+α2)
q2(w)

)

converges to zero, then the coupled system (1) and (2) has a unique random solution.

Proof. Define the operators N1 : C ×Ω → Cγ1 and N2 : C ×Ω → Cγ2 by:

(N1(u, v))(t, w) =
φ1(w)

Γ(γ1)
tγ1−1 +

∫ t

0
(t− s)α1−1 f (s, u(s, w), v(s, w), w)

Γ(α1)
ds, (6)

and:

(N2(u, v))(t, w) =
φ2(w)

Γ(γ2)
tγ2−1 +

∫ t

0
(t− s)α2−1 f (s, u(s, w), v(s, w), w)

Γ(α2)
ds. (7)

Consider the operator N : C ×Ω → C defined by:

(N(u, v))(t, w) = ((N1(u, v))(t, w), (N2(u, v))(t, w)). (8)

Clearly, the fixed points of the operator N are random solutions of the system (1) and (2).
Let us show that N is a random operator on C. Since fi; i = 1, 2 are Carathéodory functions, then

w → fi(t, u, v, w) are measurable maps. We concluded that the maps:

w → (N1(u, v))(t, w) and w → (N2(u, v))(t, w),

are measurable. As a result, N is a random operator on C ×Ω into C. We show that N satisfies all
conditions of Theorem 1.

For any w ∈ Ω and each (u1, v1), (u2, v2) ∈ C, and t ∈ I, we have:

‖t1−γ1(N1(u1, v1))(t, w)− t1−γ1(N1(u2, v2))(t, w)‖

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u1(s, w), v1(s, w), w)− f1(s, u2(s, w), v2(s, w), w)‖ds

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)‖u1(s, w)− v1(s, w)‖

+ q1(w)‖u2(s, w)− v2(s, w)‖)ds

≤ 1
Γ(α1)

∫ t

0
(t− s)α1−1(p1(w)s1−γ1‖u1(s, w)− v1(s, w)‖

+ q1(w)s1−γ1‖u2(s, w)− v2(s, w)‖)ds

≤
p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2

Γ(α1)

×
∫ t

0
(t− s)α1−1ds

≤ Tα1

Γ(1 + α1)
(p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Then,

‖(N1(u1, v1))(·, w)− (N1(u2, v2))(·, w)‖Cγ1
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≤ Tα1

Γ(1 + α1)
(p1(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q1(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Furthermore, for any w ∈ Ω and each (u1, v1), (u2, v2) ∈ C, and t ∈ I, we get:

‖(N2(u1, v1))(·, w)− (N2(u2, v2))(·, w)‖Cγ2

≤ Tα2

Γ(1 + α2)
(p2(w)‖u1(·, w)− v1(·, w)‖Cγ1

+ q2(w)‖u2(·, w)− v2(·, w)‖Cγ2
).

Thus,

d((N(u1, v1))(·, w), (N(u2, v2))(·, w)) ≤ M(w)d((u1(·, w), v1(·, w)), (u2(·, w), v2(·, w))),

where:

d((u1(·, w), v1(·, w)), (u2(·, w), v2(·, w))) =

(
‖u1(·, w)− v1(·, w)‖Cγ1

‖u2(·, w)− v2(·, w)‖Cγ2

)
.

Since for every w ∈ Ω, the matrix M(w) converges to zero, then Theorem 1 implies that the
operator N has a unique fixed point, which is a random solution of system (1) and (2).

Now, we prove an existence result for the coupled system (1) and (2) by using the random
nonlinear alternative of the Leray–Schauder type in generalized Banach space.

Theorem 4. Assume that the hypotheses (H1) and (H3) hold. Then, the coupled system (1) and (2) has at least
one random solution.

Proof. We show that the operator N : C ×Ω → C defined in (8) satisfies all conditions of Theorem 2.
The proof will be given in four steps.

Step 1. N(·, ·, w) is continuous.

Let (un, vn)n be a sequence such that (un, vn) → (u, v) ∈ C as n → ∞. For any w ∈ Ω and each
t ∈ I, we have:

‖t1−γ1(N1(un, vn))(t, w)− t1−γ1(N1(u, v))(t, w)‖

≤ t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, un(s, w), vn(s, w), w)− f1(s, u(s, w), v(s, w), w)‖ds

≤ 1
Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1‖ f1(s, un(s, w), vn(s, w), w)− f1(s, u(s, w), v(s, w), w)‖ds

≤ Tα1

Γ(1 + α1)
‖ f1(·, un(·, w), vn(·, w), w)− f1(·, u(·, w), v(·, w), w)‖Cγ1

.

Since f1 is Carathéodory, we have:

‖(N1(un, vn))(·, w)− (N1(u, v))(·, w)‖Cγ1
→ 0 as n → ∞.

On the other hand, for any w ∈ Ω and each t ∈ I, we obtain:

‖t1−γ2(N2(un, vn))(t, w)− t1−γ2(N2(u, v))(t, w)‖

≤ Tα2

Γ(1 + α2)
‖ f2(·, un(·, w), vn(·, w), w)− f2(·, u(·, w), v(·, w), w)‖Cγ2

.

Furthermore, from the fact that f2 is Carathéodory, we get:

‖(N2(un, vn))(·, w)− (N2(u, v))(·, w)‖Cγ2
→ 0 as n → ∞.
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Hence, N(·, ·, w) is continuous.

Step 2. N(·, ·, w) maps bounded sets into bounded sets in C.

Let R > 0, and set:

BR := {(μ, ν) ∈ C : ‖μ‖Cγ1
≤ R, ‖ν‖Cγ2

≤ R}.

For any w ∈ Ω and each (u, v) ∈ BR and t ∈ I, we have:

‖t1−γ1(N1(u, v))(t, w)‖ ≤ ‖φ1(w)‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ ‖φ1(w)‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w)‖u(s, w‖+ b1(w)‖v(s, w‖)ds

≤ ‖φ1(w)‖
Γ(γ1)

+
R

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w) + b1(w))ds

≤ ‖φ1(w)‖
Γ(γ1)

+
(a1(w) + b1(w)Tα1

Γ(1 + α1)

:= �1.

Thus,
‖(N1(u, v))(·, w)‖Cγ1

≤ �1.

Furthermore, for any w ∈ Ω and each (u, v) ∈ BR and t ∈ I, we get:

‖(N2(u, v))(·, w)‖Cγ2
≤ ‖φ2(w)‖

Γ(γ2)
+

(a2(w) + b2(w)Tα2

Γ(1 + α)

:= �2.

Hence,
‖(N(u, v))(·, w)‖C ≤ (�1, �2) := �.

Step 3. N(·, ·, w) maps bounded sets into equicontinuous sets in C.

Let BR be the ball defined in Step 2. For each t1, t2 ∈ I with t1 ≤ t2 and any (u, v) ∈ BR and
w ∈ Ω, we have:

‖t1−γ1
1 (N1(u, v))(t1, w)− t1−γ1

2 (N1(u, v))(t2, w)‖

≤ t1−γ1
2

Γ(α1)

∫ t2

t−1
(t2 − s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ Tα1

Γ(1 + α1)
(t2 − t1)

α1(a1(w)‖u(·, w)‖Cγ1
+ b1(w)‖v(·, w)‖Cγ2

)

≤ RTα1(a1(w) + b1(w))

Γ(1 + α1)
(t2 − t1)

α1

→ 0 as t1 → t2.

Furthermore, we get:

‖t1−γ2
1 (N2(u, v))(t1, w)− t1−γ2

2 (N2(u, v))(t2, w)‖

≤ RTα12(a2(w) + b2(w))

Γ(1 + α2)
(t2 − t1)

α2
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→ 0 as t1 → t2.

As a consequence of Steps 1–3, with the Arzela–Ascoli theorem, we conclude that N(·, ·, w) maps
BR into a precompact set in C.

Step 4. The set E(w) consisting of (u(·, w), v(·, w)) ∈ C such that (u(·, w), v(·, w)) = λ(w)(N((u, v))(·, w)

for some measurable function λ : Ω → (0, 1) is bounded in C.

Let (u(·, w), v(·, w)) ∈ C such that (u(·, w), v(·, w)) = λ(w)(N((u, v))(·, w). Then, u(·, w) =

λ(w)(N1((u, v))(·, w) and v(·, w) = λ(w)(N2((u, v))(·, w). Thus, for any w ∈ Ω and each t ∈ I,
we have:

‖t1−γ1 u(t, w)‖ ≤ ‖φ1(w)‖
Γ(γ1)

+
t1−γ1

Γ(α1)

∫ t

0
(t− s)α1−1‖ f1(s, u(s, w), v(s, w), w)‖ds

≤ ‖φ1(w)‖
Γ(γ1)

+
1

Γ(α1)

∫ t

0
(t− s)α1−1s1−γ1(a1(w)‖u(s, w‖+ b1(w)‖v(s, w‖)ds.

Furthermore, we get:

‖t1−γ2 v(t, w)‖ ≤ ‖φ2(w)‖
Γ(γ2)

+
1

Γ(α2)

∫ t

0
(t− s)α2−1s1−γ2(a2(w)‖u(s, w‖+ b2(w)‖v(s, w‖)ds.

Hence, we obtain:

‖t1−γ1 u(t, w)‖+ ‖t1−γ2 v(t, w)‖ ≤ a + bc
∫ t

0
(t− s)α−1(‖s1−γ1 u(s, w‖+ ‖s1−γ2 v(s, w‖)ds,

where:

a :=
‖φ1(w)‖

Γ(γ1)
+
‖φ2(w)‖

Γ(γ2)
, b :=

1
Γ(α1)

+
1

Γ(α2)
,

c := max{a1(w) + a2(w), b1(w) + b2(w)}, α := max{α1, α2}.

Lemma 1 implies that there exists ρ := ρ(α) > 0 such that:

‖t1−γ1 u(t, w)‖+ ‖t1−γ2 v(t, w)‖ ≤ a + abcρ
∫ t

0
(t− s)α−1ds

≤ a + abcρTα

α
= L.

This gives:
‖u(·, w)‖Cγ1

+ ‖v(·, w)‖Cγ2
≤ L.

Hence:
‖(u(·, w), v(·, w))‖C ≤ L.

This shows that the set E(w) is bounded. As a consequence of Steps 1–4 together with Theorem 2,
we can conclude that N has at least one fixed point in BR, which is a solution for the system (1)
and (2).
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4. Coupled Hilfer–Hadamard Fractional Differential Systems

Now, we are concerned with the coupled system (3) and (4). Set C := C([1, T]), and denote the
weighted space of continuous functions defined by:

Cγ,ln([1, T]) = {w(t) : (ln t)1−γw(t) ∈ C},

with the norm:
‖w‖Cγ,ln := sup

t∈[1,T]
|(ln t)1−rw(t)|.

Furthermore, by Cγ1,γ2,ln([1, T]) := Cγ1,ln([1, T])× Cγ2,ln([1, T]), we denote the product weighted
space with the norm:

‖(u, v)‖Cγ1,γ2,ln([1,T]) = ‖u‖Cγ1,ln + ‖v‖Cγ2,ln .

Let us recall some definitions and properties of Hadamard fractional integration and
differentiation. We refer to [7] for a more detailed analysis.

Definition 12. [7] (Hadamard fractional integral) The Hadamard fractional integral of order q > 0 for a
function g ∈ L1([1, T]) is defined as:

(H Iq
1 g)(x) =

1
Γ(q)

∫ x

1

(
ln

x
s

)q−1 g(s)
s

ds,

provided the integral exists.

Example 2. Let 0 < q < 1. Let g(x) = ln x, x ∈ [0, e]. Then:

(H Iq
1 g)(x) =

1
Γ(2 + q)

(ln x)1+q; f or a.e. x ∈ [0, e].

Set:
δ = x

d
dx

, q > 0, n = [q] + 1,

and:
ACn

δ := {u : [1, T]→ E : δn−1[u(x)] ∈ AC(I)}.

Definition 13. [7] The Hadamard fractional derivative of order q > 0 applied to the function w ∈ ACn
δ is

defined as:
(H Dq

1w)(x) = δn(H In−q
1 w)(x).

In particular, if q ∈ (0, 1], then:

(H Dq
1w)(x) = δ(H I1−q

1 w)(x).

Example 3. Let 0 < q < 1. Let w(x) = ln x, x ∈ [0, e]. Then:

(H Dq
1w)(x) =

1
Γ(2− q)

(ln x)1−q, f or a.e. x ∈ [0, e].

It has been proven (see, e.g., Kilbas [30], Theorem 4.8) that in the space L1(I), the Hadamard
fractional derivative is the left-inverse operator to the Hadamard fractional integral, i.e.:

(H Dq
1)(

H Iq
1 w)(x) = w(x).
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From [7], we have:

(H Iq
1)(

H Dq
1w)(x) = w(x)− (H I1−q

1 w)(1)
Γ(q)

(ln x)q−1.

The Caputo–Hadamard fractional derivative is defined in the following way:

Definition 14. The Caputo–Hadamard fractional derivative of order q > 0 applied to the function w ∈ ACn
δ is

defined as:
(HcDq

1w)(x) = (H In−q
1 δnw)(x).

In particular, if q ∈ (0, 1], then:

(HcDq
1w)(x) = (H I1−q

1 δw)(x).

Definition 15. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β − αβ, w ∈ L1(I), and H I(1−α)(1−β)
1 w ∈ AC(I).

The Hilfer–Hadamard fractional derivative of order α and type β applied to the function w is defined as:

(H Dα,β
1 w)(t) =

(
H Iβ(1−α)

1 (H Dγ
1 w)
)
(t)

=
(

H Iβ(1−α)
1 δ(H I1−γ

1 w)
)
(t); f or a.e. t ∈ [1, T].

(9)

This new fractional derivative (9) may be viewed as interpolating the Hadamard fractional
derivative and the Caputo–Hadamard fractional derivative. Indeed, for β = 0, this derivative
reduces to the Hadamard fractional derivative, and when β = 1, we recover the Caputo–Hadamard
fractional derivative.

H Dα,0
1 = H Dα

1 , and H Dα,1
1 = HcDα

1 .

From [31], we conclude the following lemma.

Lemma 2. Let g : [1, T]× E → E be such that g(·, u(·)) ∈ Cγ,ln([1, T]) for any u ∈ Cγ,ln([1, T]). Then,
Problem (3) is equivalent to the following Volterra integral equation:

u(t) =
φ0

Γ(γ)
(ln t)γ−1 + (H Iα

1 g(·, u(·)))(t).

Definition 16. By a random solution of the coupled system (3) and (4), we mean a coupled measurable function
(u, v) ∈ Cγ1,ln × Cγ2,ln that satisfies the conditions (4) and Equation (3) on [1, T].

Now, we give (without proof) similar existence and uniqueness results for the system (3) and (4).
Let us introduce the following hypotheses:

(H′1) The functions gi; i = 1, 2 are Carathéodory.
(H′2) There exist measurable functions pi, qi : Ω → (0, ∞); i = 1, 2 such that:

‖gi(t, u1, v1)− gi(t, u2, v2)‖ ≤ pi(w)‖u1 − u2‖+ qi(w)‖v1 − v2‖;

f or a.e. t ∈ [1, T], and each ui, vi ∈ Rm, i = 1, 2.
(H′3) There exist measurable functions ai, bi : Ω → (0, ∞); i = 1, 2 such that:

‖gi(t, u, v)‖ ≤ ai(w)‖u‖+ bi(w)‖v‖; f or a.e. t ∈ [1, T], and each u, v ∈ R
m.
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Theorem 5. Assume that the hypotheses (H′1) and (H′2) hold. If for every w ∈ Ω, the matrix:⎛⎝ (ln T)α1

Γ(1+α1)
p1(w) (ln T)α1

Γ(1+α1)
q1(w)

(ln T)α2

Γ(1+α2)
p2(w) (ln T)α2

Γ(1+α2)
q2(w)

⎞⎠
converges to zero, then the coupled system (3) and (4) has a unique random solution.

Theorem 6. Assume that the hypotheses (H′1) and (H′3) hold. Then, the coupled system (3) and (4) has at at
least a random solution.

5. An Example

We equip the space R∗− := (−∞, 0) with the usual σ-algebra consisting of Lebesgue measurable
subsets of R∗−. Consider the following random coupled Hilfer fractional differential system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(D
1
2 , 1

2
0 u)(t, w) = f (t, u(t, w), v(t, w), w);

(D
1
2 , 1

2
0 v)(t) = g(t, u(t, w), v(t, w), w);

(I
1
4
0 u)(0, w) = cos w,

(I
1
4
0 vn)(0, w) = sin w,

; w ∈ R
∗
−, t ∈ [0, 1], (10)

where:

f (t, u, v, w) =
t
−1
4 w2(u(t) + v(t)) sin t

64(1 + w2 +
√

t)(1 + |u|+ |v|)
; t ∈ [0, 1],

g(t, u, v) =
w2(u(t) + v(t)) cos t

64(1 + |u|+ |v|) ; w ∈ R
∗
−, t ∈ [0, 1].

Set αi = βi =
1
2 ; i = 1, 2, then γi =

3
4 ; i = 1, 2. The hypothesis (H2) is satisfied with:

p1(w) = p2(w) = q1(w) = q2(w) =
w2

64(1 + w2)
.

Furthermore, if for every w ∈ R∗−, the matrix:

w2

64(1 + w2)Γ( 1
2 )

(
1 1
1 1

)

converges to zero, hence, Theorem 3 implies that the system (10) has a unique random solution defined
on [0, 1].
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1. Introduction

The spectral theory of operators finds numerous uses in various fields of mathematics and
their applications.

An important part of the spectral theory of differential operators is the distribution of
their eigenvalues. This classical question was studied for a second-order operator on a finite interval by
Liouville and Sturm. Later, G.D. Birkhoff [1–3] studied the distribution of eigenvalues for an ordinary
differential operator of arbitrary order on a finite interval with regular boundary conditions.

For quantum mechanics, it is especially interesting to distribute the eigenvalues of operators
defined throughout the space and having a discrete spectrum. E.C. Titchmarsh [4–9] was the first to
rigorously establish the formula for the distribution of the number of eigenvalues for a one-dimensional
Sturm-Liouville operator on the whole axis with potential growing at infinity. He also first strictly
established the distribution formula for the Schrödinger operator. B.M. Levitan [10–12] deserves much
credit for the improvement of E.C. Titchmarsh’s method.

In solving many mathematical physics problems, the need arises for the expansion of an arbitrary
function in a Fourier series with respect to Sturm-Liouville eigenvalues. The so-called regular case
of the Sturm-Liouville problem corresponding to a finite interval and a continuous coefficient of the
equation has been studied for a relatively long time and is usually described in detail in the manuals
on the equations of mathematical physics and integral equations.

Mathematics 2019, 7, 235; doi:10.3390/math7030235 www.mdpi.com/journal/mathematics213



Mathematics 2019, 7, 235

The Sturm-Liouville problem for the so-called singular case, as well as with nonlocal boundary
conditions, is much less known.

As it is known, so-called fractal media are studied in solid-state physics and, in particular,
diffusion phenomena in them. In one of the models studied in [13], diffusion in a strongly porous
(fractal) medium is described by an equation of the type of heat-conduction equation, but with a
fractional derivative with respect to time coordinate

D(α)
t u(x, t) =

∂2(u(x, t)
∂x2 , 0 < α < 1. (1)

The formulation of initial-boundary value problems for Equation (1), similar to the problems for
parabolic differential equations, makes sense if by a regularized fractional derivative:

D(α)ϕ(t) =
1

Γ(1− α)

⎡⎣ d
dt

1∫
0

(t− τ)−α ϕ(τ)dτ − t−α ϕ(0)

⎤⎦ , t ≥ 0 (2)

Study of the form equations

D(α)
t u = Au (3)

where A is an elliptic operator (in [14–16]). In recent years, many authors studied fractional differential
equations in [17–34].

2. Problem Formulation

In this work, we consider the equation of the form

Dα
0tu(x, t) + (−Δ)νu(x, t) = f (x, t), (x, t) ∈ Π× (0, ∞), l − 1 < α ≤ l, l, ν ∈ N (4)

with initial conditions
lim
t→0

Dα−k
0t u(x, t) = ϕk(x), k = 1, 2, . . . , l (5)

and boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj · (−Δ)iu(x1, ..., xj, ..., xN , t) |xj=0 +β j · (−Δ)iu(x1, ..., xj, ..., xN , t) |xj=π= 0,
1 ≤ j ≤ p,

β j ·
∂(−Δ)iu(x1,...,xj ,...,xN ,t)

∂xj
|xj=0 +αj ·

∂(−Δ)iu(x1,...,xj ,...,xN ,t)
∂xj

|xj=π= 0, 1 ≤ j ≤ p,

(−Δ)iu(x1, ..., xj, ..., xN , t) |xj=0= (−Δ)iu(x1, ..., xj, ..., xN , t) |xj=π , p + 1 ≤ j ≤ q,
∂(−Δ)iu(x1,...,xj ,...,xN ,t)

∂xj
|xj=0=

∂(−Δ)iu(x1,...,xj ,...,xN ,t)
∂xj

|xj=π , p + 1 ≤ j ≤ q,

(−Δ)iu(x1, ..., xj, ..., xN , t) |xj=0= 0, q + 1 ≤ j ≤ N,
(−Δ)iu(x1, ..., xj, ..., xN , t) |xj=π= 0, q + 1 ≤ j ≤ N,
1 ≤ p ≤ q ≤ N, i = 0, 1, . . . , ν− 1,

(6)

where (x, t) = (x1, . . . , xj, . . . , xN , t) ∈ Π× (0, ∞), Π = (0, π)× · · · × (0, π), αj = const, β j = const,
and f (x, t), ϕk(x), k = 1, 2, . . . , l are functions that can be expanded in terms of the system of
eigenfunctions {vn(x), n ∈ ZN} of the spectral problem:

(−Δ)νv(x) = μv(x), (7)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj · (−Δ)iv(x1, . . . , xj, . . . , xN) |xj=0 +β j · (−Δ)iv(x1, . . . , xj, . . . , xN) |xj=π= 0,
1 ≤ j ≤ p,

β j ·
∂(−Δ)iv(x1,...,xj ,...,xN)

∂xj
|xj=0 +αj ·

∂(−Δ)iv(x1,...,xj ,...,xN)

∂xj
|xj=π= 0, 1 ≤ j ≤ p,

(−Δ)iv(x1, . . . , xj, . . . , xN) |xj=0= (−Δ)iv(x1, . . . , xj, . . . , xN) |xj=π , p + 1 ≤ j ≤ q,
∂(−Δ)iv(x1,...,xj ,...,xN)

∂xj
|xj=0=

∂(−Δ)iv(x1,...,xj ,...,xN)

∂xj
|xj=π , p + 1 ≤ j ≤ q,

(−Δ)iv(x1, . . . , xj, . . . , xN) |xj=0= 0, q + 1 ≤ j ≤ N,
(−Δ)iv(x1, . . . , xj, . . . , xN) |xj=π= 0, q + 1 ≤ j ≤ N,
1 ≤ p ≤ q ≤ N, i = 0, 1, . . . , ν− 1.

(8)

Here, for α < 0,, fractional integral Dα has the form

Dα
atu(x, t) =

sign(t− a)
Γ(−α)

t∫
a

u(x, τ) · dτ

|t− τ|α+1 ,

Dα
atu(x, t) = u(x, t) for α = 0, and for l − 1 < α ≤ l, l ∈ N, the fractional derivative has the form

Dα
atu(x, t) = signl(t− a)

dl

dtl Dα−l
at u(x, t) =

=
signl+1(t− a)

Γ(l − α)

dl

dtl

t∫
a

u(x, τ) · dτ

|t− τ|α−l+1 .

In [17], Problems (4)–(6) and, accordingly, spectral Problems (7) and (8) in the case ν = 1,
were considered.

3. Preliminaries

More detailed information for this section can be found in [17]. We look for eigenfunctions of
spectral Problems (7) and (8) in the form of the product v(x) = y1(x1) · · · · · yN(xN). Then, we obtain,
instead of spectral Problems (7) and (8), the following spectral problem:

− y′′(x) = μy(x), μ = λ2 (9){
αy(0) + βy(π) = 0,
βy′(0) + αy′(π) = 0.

(10)

In the case of |α| = |β|, i.e., with boundary conditions y(0) = y(π), y′(0) = y′(π) or
y(0) = −y(π), y′(0) = −y′(π), spectral Problems (7) and (8) were investigated by many authors
(see, for example, [35–41]). In order to simplify calculations, we confined ourselves to the case of
|α| �= |β|, α �= 0, β �= 0. It is not difficult to see that μ = 0 is not an eigenvalue of Problems (9) and (10).
In fact, if μ = 0 is the eigenvalue, then y′′ = 0, y = ax + b, αb + β(aπ + b) = 0, βa + αa = 0.
We obtained from here a = 0, b = 0, i.e., y ≡ 0. Similarly, for μ < 0, Problems (9) and (10) have no
nontrivial solutions.

For μ > 0, the general solution of Problem (9) has the form

y(x) = Acosλx + Bsinλx.

From boundary conditions, we have:

αy(0) + βy(π) = αA + β(Acosλπ + Bsinλπ) = 0,
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βy′(0) + αy′(π) = β(λB) + α(λBcosλπ − λAsinλπ) = 0,

i.e., {
(α + βcosλπ)A + βsinλπB = 0,
αsinλπA− (β + αcosλπ)B = 0.

Hence, the nontrivial solutions of Problems (9) and (10) are only possible in the case of

(α + βcosλπ)(−β− αcosλπ)− αβsin2(λπ) = 0.

Furthermore,

−αβ− α2cosλπ − β2cosλπ − αβcos2λπ − αβsin2λπ = 0,

i.e., −(α2 + β2)cosλπ = 2αβ or cosλπ =
−2αβ

α2 + β2 .

Therefore, λπ = arccos
−2αβ

α2 + β2 or

λπ = ± arccos
−2αβ

α2 + β2 + 2nπ, n ∈ Z.

Further,

μ±n = (2n + εn ϕ)2 = (−2n− εn ϕ)2 = μ∓−n, εn = ±1, ϕ =
1
π

arccos
−2αβ

α2 + β2 , n ∈ Z.

That’s why μ±n �= μ±−n means that ε−n �= −εn, i.e., ε−n = εn, n ∈ Z. Thus, the eigenvalues and
eigenfunctions of Problems (9) and (10) are

μn = λ2
n = (2n + εn ϕ)2, ϕ =

1
π

arccos
−2αβ

α2 + β2 , εn = ±1, ε−n = εn, n ∈ Z

and

yn(x) = Bn

(
β + α cos λnπ

α sin λnπ
cos λnx + sin λnx

)
,

respectively, where

β + α cos λnπ

α sin λnπ
=

β− 2α2β

α2+β2

εnα

√
1− 4α2β2

(α2+β2)2

=
β(β2 − α2)

εnα | β2 − α2 | = εnsign(β2 − α2)
β

α
,

hence, yn(x) = Bn

(
εnsign(β2 − α2) β

α cos λnx + sinλnx
)

. Choosing

Bn = εnsign(β2 − α2)
α√

α2 + β2

√
2
π

1√
1 + (2n)2s

we obtain

yn(x) =

√
2
π

1√
α2 + β2

1√
1 + (2n)2s

(
β cos λnx + εnsign(β2 − α2)α sin λnx

)
.
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Denote ωn =
√

2
π

1√
α2+β2

1√
1+(2n)2s

. Then,

yn(x) = ωn

(
β cos λnx + εnsign(β2 − α2)α sin λnx

)
.

The norm in space Ws
2(0, π) is introduced as follows:∥∥∥ f

∥∥∥2

Ws
2(0,π)

=
∥∥∥ f
∥∥∥2

L2(0,π)
+
∥∥∥Ds f

∥∥∥2

L2(0,π)
.

Let εn = ε−n. Then, system of vectors

zn(x) = ωn

(
β cos 2nx + εnsign(β2 − α2)α sin 2nx

)
forms the complete orthonormal system in Ws

2(0, π). The following lemma holds.

Lemma 1. Let {an} be a finite system of complex numbers. Then, inequalities

∥∥∥∥∥ N

∑
−N

an(yn(x)− zn(x))

∥∥∥∥∥
L2(0,π)

≤
√

2 · max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣ ·
√√√√ N

∑
−N
| an · cn |2

are valid where
cn =

1√
1 + (2n)2s

, s = 1, 2, 3, ....

Proof. Calculating the difference of yn(x)− zn(x), we obtain

yn(x)− zn(x) =

ωn[β(cos λnx− cos 2nx) + εnsign(β2 − α2)α(sin λnx− sin 2nx)] =

= ωn[(εnsign(β2 − α2)α + βi)
eiεn ϕx − 1

2i
e2nix+

+(εnsign(β2 − α2)α− βi)
1− e−iεn ϕx

2i
e−2nix].

Then,
N

∑
−N

an(yn − zn) =
N

∑
−N

anωn

[
(εnsign(β2 − α2)α + βi)

eiεn ϕx − 1
2i

e2nix+

+(εnsign(β2 − α2)α− βi)
1− e−iεn ϕx

2i
e−2nix

]
.

Using properties of the norm, we have∥∥∥∥∥ N

∑
−N

an(yn − zn)

∥∥∥∥∥
L2(0,π)

=

=

∥∥∥∥∥ sign(β2 − α2)α + βi
2i

(eiϕx − 1)
N

∑
−N,εn=1

anωne2nix+

+
−sign(β2 − α2)α + βi

2i
(e−iϕx − 1)

N

∑
−N,εn=−1

anωne2nix+
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+
sign(β2 − α2)α− βi

2i
(1− e−iϕx)

N

∑
−N,εn=1

anωne−2nix+

+
−sign(β2 − α2)α− βi

2i
(1− eiϕx)

N

∑
−N,εn=−1

anωne−2nix

∥∥∥∥∥
L2(0,π)

=

=

∥∥∥∥ sign(β2 − α2)α + βi
2i

(eiϕx − 1)×

×
(

N

∑
−N,εn=1

anωne2nix +
N

∑
−N,εn=−1

anωne−2nix

)
+

+
−sign(β2 − α2)α + βi

2i
(e−iϕx − 1)×

×
(

N

∑
−N,εn=−1

anωne2nix +
N

∑
−N,εn=1

anωne−2nix

)∥∥∥∥∥
L2(0,π)

≤

≤
√

α2 + β2

2
· max

x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣×

×

⎛⎝∥∥∥∥∥ N

∑
−N,εn=1

anωne2nix +
N

∑
−N,εn=−1

anωne−2nix

∥∥∥∥∥
L2(0,π)

+

+

∥∥∥∥∥ N

∑
−N,εn=−1

anωne2nix +
N

∑
−N,εn=1

anωne−2nix

∥∥∥∥∥
L2(0,π)

⎞⎠ =

=

√
α2 + β2

2
max

x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣
⎛⎝√√√√ N

∑
−N,εn=1

| anωn |2 +
N

∑
−N,εn=−1

| anωn |2+

+

√√√√ N

∑
−N,εn=−1

| anωn |2 +
N

∑
−N,εn=1

| anωn |2
⎞⎠ · √π =

=
√

α2 + β2 · max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣ · √π ·

√√√√ N

∑
−N
| anωn |2.

Thus, denoting cn = 1√
1+(2n)2s

, we obtain

∥∥∥∥∥ N

∑
−N

an(yn(x)− zn(x))

∥∥∥∥∥
L2(0,π)

≤
√

2 · max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣ ·
√√√√ N

∑
−N
|an · cn|2.

Lemma 2. Let {an} be a finite system of complex numbers. Then, inequalities

∥∥∥Ds
N

∑
−N

an(yn(x)− zn(x))
∥∥∥

L2(0,π)
≤

≤
√

2
[

max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣+ (ϕ + 1)s − 1

]
·

√√√√ N

∑
−N
|an · cn · (2n)s|2

218



Mathematics 2019, 7, 235

are valid at s = 1, 2, 3, . . . .

Proof. Denote
θ =

√
2 · max

x∈[0,π]
|eiϕx − 1|,

since
N

∑
−N

an(yn − zn) =
sign(β2 − α2)α + βi

2i
· (eiϕx − 1)·

·
( N

∑
−N,εn=1

an ·ωn · e2nix +
N

∑
−N,εn=−1

an ·ωn · e−2nix
)
+

+
−sign(β2 − α2)α + βi

2i
·
(

e−iϕx − 1
)
·

·
( N

∑
−N,εn=−1

an ·ωn · e2nix +
N

∑
−N,εn=1

an ·ωn · e−2nix
)

,

using properties of the norm, we have∥∥∥∥∥Ds
N

∑
−N

an(yn − zn)

∥∥∥∥∥
L2(0,π)

≤
√

α2 + β2

2
·
(∥∥∥∥∥ s

∑
k=0

Ck
s · Dk(eiϕx − 1)·

·Ds−k

(
N

∑
−N,εn=1

an ·ωn · e2nix +
N

∑
−N,εn=−1

an ·ωn · e−2nix

)∥∥∥∥∥
L2(0,π)

+

+

∥∥∥∥∥ s

∑
k=0

Ck
s · Dk(e−iϕx − 1)·

·Ds−k

(
N

∑
−N,εn=−1

an ·ωn · e2nix +
N

∑
−N,εn=1

an ·ωn · e−2nix

) ∥∥∥∥∥
L2(0,π)

)
≤

≤
√

α2 + β2

2
·
(

max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣×

×
∥∥∥∥∥ N

∑
−N,εn=1

an ·ωn · (2n)se2nix +
N

∑
−N,εn=−1

an ·ωn · (−2n)se−2nix

∥∥∥∥∥
L2(0,π)

+

+
s

∑
k=1

Ck
s · ϕk ·

∥∥∥∥∥ N

∑
−N,εn=1

an ·ωn · (2n)s−ke2nix+

+
N

∑
−N,εn=−1

an ·ωn · (−2n)s−ke−2nix

∥∥∥∥∥
L2(0,π)

+ max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣×

×
∥∥∥∥∥ N

∑
−N,εn=−1

an ·ωn · (2n)s · e2nix +
N

∑
−N,εn=1

an ·ωn · (−2n)s · e−2nix

∥∥∥∥∥
L2(0,π)

+

+
s

∑
k=1

Ck
s · ϕk ·

∥∥∥∥∥ N

∑
−N,εn=−1

an ·ωn · (2n)s−k · e2nix+

+
N

∑
−N,εn=1

an ·ωn · (−2n)s−k · e−2nix

∥∥∥∥∥
L2(0,π)

⎞⎠ ≤ √α2 + β2×
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×

⎛⎝ max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣
√√√√ N

∑
−N
|anωn(2n)s|2 +

s

∑
k=1

Ck
s ϕk

√√√√ N

∑
−N
|anωn(2n)s−k|2

⎞⎠×
×
√

π =
√

2

⎛⎝ max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣ ·
√√√√ N

∑
−N
|an · cn · (2n)s|2+

+
s

∑
k=1

Ck
s · ϕk ·

√√√√ N

∑
−N
|an · cn · (2n)s−k|2

⎞⎠ ≤
≤
√

2
[

max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣+ (ϕ + 1)s − 1

]
·

√√√√ N

∑
−N
|an · cn · (2n)s|2.

Thus, inequalities ∥∥∥∥∥Ds
N

∑
−N

an(yn(x)− zn(x))

∥∥∥∥∥
L2(0,π)

≤

≤
√

2
[

max
x∈[0,π]

∣∣∣eiϕx − 1
∣∣∣+ (ϕ + 1)s − 1

]
·

√√√√ N

∑
−N
|an · cn · (2n)s|2

hold at s = 1, 2, 3, . . . .

Using Lemmas 1 and 2, we obtain

Lemma 3. Let {an} be a finite system of complex numbers. Then the following inequality∥∥∥∥∥ N

∑
−N

an(yn(x)− zn(x))

∥∥∥∥∥
Ws

2(0,π)

≤

≤
√

θ2 + 2
( θ√

2
+ (ϕ + 1)s − 1

)2 · σ(s) ·
√√√√ N

∑
−N
|an|2

is valid where σ(0) =
1√
2

, σ(s) = 1 at s > 0.

Lemma 4. Let α �= 0, β �= 0, |α| �= |β| be real numbers, and

ρ =

√
θ2 + 2

(
θ√
2
+ (ϕ + 1)s − 1

)2
· σ(s) < 1

where σ(0) =
1√
2

, σ(s) = 1 at s > 0, θ =
√

2 · max
x∈[0,π]

∣∣eiϕx − 1
∣∣, λn = 2n + εn · ϕ, ϕ =

1
π

arccos
−2αβ

α2 + β2 ,

εn = ε−n = ±1 at n ∈ Z.
Then, eigenfunction system

yn(x) =

√
2
π
· β cos λnx + εn · sign(β2 − α2) · α sin λnx√

α2 + β2 ·
√

1 + (2n)2s
, n ∈ Z,

of spectral Problems (9) and (10) forms the Riesz basis in the space Ws
2(0, π).
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Proof. Vector system

zn(x) =

√
2
π
· β cos 2nx + εn · sign(β2 − α2) · α sin 2nx√

α2 + β2 ·
√

1 + (2n)2s
, n ∈ Z

forms the complete orthonormal system in Hilbert space Ws
2(0, π),, and vector system

yn(x) =

√
2
π
· β cos λnx + εn · sign(β2 − α2) · α sin λnx√

α2 + β2 ·
√

1 + (2n)2s
, n ∈ Z

by virtue of Lemma 3 satisfying the theorem conditions by R. Paley and N. Wiener (see p. 224, [39]).
This theorem implies that system of vectors {yn(x)}n∈Z forms the Riesz basis in space Ws

2(0, π).

Lemma 5. Operator
Ly = −y′′

with domain
D(L) = {y(x) : y(x) ∈ C2(0, π) ∩ C1[0, π], y′′ ∈ L2(0, π),

αy(0) + βy(π) = 0, βy′(0) + αy′(0) = 0}

is a symmetric operator in class L2(0, π).

Proof. Indeed, since functions f and g belong to domain D(L), we have L f ∈ L2(0, π), Lg = Lg ∈
L2(0, π), and the second Green formula

∫
G

(Lu · v− u · Lv)dx = −
∫

∂G

(
∂u
∂n
· v− u · ∂v

∂n

)
ds

at u = f and v = g takes the form

π∫
0

(L f · g− f · Lg)dx = −
(

f ′(x)g(x)− f (x)g′(x)
) ∣∣∣π

0
.

Further, functions f and g satisfy the boundary conditions:

α f (0) + β f (π) = 0, β f ′(0) + α f ′(π) = 0, αg(0) + βg(π) = 0, βg′(0) + αg′(π) = 0.

By assumption, α �= 0, β �= 0. Therefore,

f (0) · g(π)− f (π) · g(0) = 0

and
f ′(0) · g′(π)− f ′(π) · g′(0) = 0,

i.e., f (0) · g(π) = f (π) · g(0) and f ′(0) · g′(π) = f ′(π) · g′(0). For here, we obtain

f (π)

f (0)
=

g(π)

g(0)
= k0 = − α

β

and
f ′(π)

f ′(0)
=

g′(π)

g′(0)
= k1 = − β

α
, k0 · k1 = 1.
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So, f (π) = k0 f (0), g(π) = k0g(0) è f ′(π) = k1 f ′(0), g′(π) = k1g′(0). Thus,

π∫
0

(
L f · g− f · Lg

)
dx = −

(
f ′(x) · g(x)− f (x) · g′(x)

) ∣∣∣π
0
=

= −
(

f ′(π) · g(π)− f (π) · g′(π)
)
+
(

f ′(0) · g(0)− f (0) · g′(0)
)
=

= −
(

f ′(0) · g(0)− f (0) · g′(0)
)
+
(

f ′(0) · g(0)− f (0) · g′(0)
)
= 0.

Thereby, (L f , g) = ( f , Lg), ∀ f , g ∈ D(L).

Theorem 1. Let α �= 0, β �= 0, |α| �= |β| be real number, and

ρ =

√
θ2 + 2

( θ√
2
+ (ϕ + 1)s − 1

)2 · σ(s) < 1

where σ(0) =
1√
2

, σ(s) = 1 at s > 0, θ =
√

2 · max
x∈[0,π]

∣∣eiϕx − 1
∣∣, λn = 2n + εn · ϕ, ϕ =

1
π

arccos
−2αβ

α2 + β2 ,

εn = ε−n = ±1 at n ∈ Z. Then the system of eigenfunctions

yn(x) =

√
2
π
· β cos λnx + εn · sign(β2 − α2) · α sin λnx√

α2 + β2 ·
√

1+ | λn |2s
, n ∈ Z,

of spectral Problems (9) and (10) form the complete orthonormal system in Sobolev classes Ws
2(0, π).

Proof. Symmetry of operator L implies that eigenfunctions {yn(x)}n∈Z of operator L, corresponding
to the different eigenvalues, are orthogonal in classes L2(0, π).

System of functions {Dαyn(x)}n∈Z is also the system of eigenfunctions of a similar operator
corresponding to different eigenvalues, which implies that functions of system {Dαyn(x)}n∈Z are
orthogonal in classes L2(0, π).

As a result, we see that system of eigenfunctions {yn(x)}n∈Z of operator L, corresponding to
different eigenvalues, are orthogonal in the Sobolev classes Ws

2(0, π). It is known that, if a sequence of
vectors {ψn(x)}n∈Z forms the Riesz basis in a Hilbert space H, then system of vectors

{
ψ̂n(x)

}
n∈Z

(
ψ̂n(x) =

ψn(x)
‖ψn(x)‖ , n ∈ Z

)
also forms the Riesz basis in H (see p. 374, [42]).

By virtue of Lemma 4, system of eigenvectors {yn(x)}n∈Z forms the Riesz basis in space Ws
2(0, π).

The orthogonality of this system implies that {yn(x)}n∈Z is a complete orthonormal system in the
Sobolev classes Ws

2(0, π).

Theorem 1 and the Sobolev embedding theorem imply the following corollaries.

Corollary 1. Let α �= 0, β �= 0, |α| �= |β| be real numbers, and

ρ =

√
θ2 + 2

(
θ√
2
+ ϕ

)2
< 1
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where θ =
√

2 · max
x∈[0,π]

∣∣eiϕx − 1
∣∣, λn = 2n + εn · ϕ, ϕ = 1

π arccos −2αβ

α2+β2 , εn = ε−n = ±1 at n ∈ Z. Then,

the Fourier series for function f (x) ∈W1
2 (0, π) ∩ C[0, π] in orthonormal eigenfunctions

yn(x) =

√
2
π
· β cos λnx + εn · sign(β2 − α2) · α sin λnx√

α2 + β2 ·
√

1+ | λn |2
, n ∈ Z

of spectral Problems (9) and (10) uniformly converges on segment [0, π] to function f (x).

Corollary 2. Let α �= 0, β �= 0, |α| �= |β| be real numbers, and

ρ =

√
θ2 + 2

(
θ√
2
+ (ϕ + 1)s − 1

)2
< 1

where s > k, θ =
√

2 · max
x∈[0,π]

∣∣eiϕx − 1
∣∣, λn = 2n + εn · ϕ, ϕ =

1
π

arccos
−2αβ

α2 + β2 , εn = ε−n = ±1 at

n ∈ Z. Then the Fourier series for function f (x) ∈Ws
2(0, π) ∩ Ck[0, π] in orthonormal eigenfunctions

yn(x) =

√
2
π
· β cos λnx + εn · sign(β2 − α2) · α sin λnx√

α2 + β2 ·
√

1+ | λn |2
, n ∈ Z,

of spectral Problems (9) and (10) converges in the norm of space Ck[0, π] to function f (x).

The scalar product in space Ws1,s2
2 ((0, π)× (0, π)) is introduced in the following way:

( f (x, y), g(x, y))W
s1,s2
2 ((0,π)×(0,π))

= ( f (x, y), g(x, y))L2((0,π)×(0,π))+

+(Ds1
x f (x, y), Ds1

x g(x, y))L2((0,π)×(0,π)) + (Ds2
y f (x, y), Ds2

y g(x, y))L2((0,π)×(0,π))+

+(Ds1,s2
x,y f (x, y), Ds1,s2

x,y g(x, y))L2((0,π)×(0,π)).

Respectively, the norm in this space is introduced as follows:∥∥∥ f (x, y)
∥∥∥2

W
s1,s2
2 ((0,π)×(0,π))

=

=
∥∥∥ f (x, y)

∥∥∥2

L2((0,π)×(0,π))
+
∥∥∥Ds1

x f (x, y)
∥∥∥2

L2((0,π)×(0,π))
+

+
∥∥∥Ds2

y f (x, y)
∥∥∥2

L2((0,π)×(0,π))
+
∥∥∥Ds1,s2

x,y f (x, y)
∥∥∥2

L2((0,π)×(0,π))
.

Lemma 6. If {ψ
(1)
m (x)} and {ψ

(2)
n (y)} are complete orthonormal systems in Ws1

2 (0, π) and Ws2
2 (0, π),,

respectively, then the system of all products

fmn(x, y) = ψ
(1)
m (x) · ψ(2)

n (y)

is a complete orthonormal system in Ws1,s2
2 ((0, π)× (0, π)), where s1, s2 = 1, 2, 3, ... and x, y ∈ (0, π)

Proof. By virtue of the Fubini theorem,∥∥∥ fmn(x, y)
∥∥∥2

W
s1,s2
2 ((0,π)×(0,π))

=
∥∥∥ψ

(1)
m (x)

∥∥∥2

L2(0,π)
·
∥∥∥ψ

(2)
n (y)

∥∥∥2

L2(0,π)
+
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+
∥∥∥Ds1

x ψ
(1)
m (x)

∥∥∥2

L2(0,π)
·
∥∥∥ψ

(2)
n (y)

∥∥∥2

L2(0,π)
+
∥∥∥ψ

(1)
m (x)

∥∥∥2

L2(0,π)
·
∥∥∥Ds2

y ψ
(2)
n (y)

∥∥∥2

L2(0,π)
+

+
∥∥∥Ds1

x ψ
(1)
m (x)

∥∥∥2

L2(0,π)
·
∥∥∥Ds2

y ψ
(2)
n (y)

∥∥∥2

L2(0,π)
=

=

(∥∥∥ψ
(1)
m (x)

∥∥∥2

L2(0,π)
+
∥∥∥Ds1

x ψ
(1)
m (x)

∥∥∥2

L2(0,π)

)
·
∥∥∥ψ

(2)
n (y)

∥∥∥2

L2(0,π)
+

+

(∥∥∥ψ
(1)
m (x)

∥∥∥2

L2(0,π)
+
∥∥∥Ds1

x ψ
(1)
m (x)

∥∥∥2

L2(0,π)

)
·
∥∥∥Ds2

y ψ
(2)
n (y)

∥∥∥2

L2(0,π)
=

=

(∥∥∥ψ
(1)
m (x)

∥∥∥2

L2(0,π)
+
∥∥∥Ds1

x ψ
(1)
m (x)

∥∥∥2

L2(0,π)

)
·

·
(∥∥∥ψ

(2)
n (y)

∥∥∥2

L2(0,π)
+
∥∥∥Ds2

y ψ
(2)
n (y)

∥∥∥2

L2(0,π)

)
= 1.

If m �= m1 or n �= n1, by the same theorem

( fmn(x, y), fm1n1(x, y))W
s1,s2
2 ((0,π)×(0,π))

=

= ( fmn(x, y), fm1n1(x, y))L2((0,π)×(0,π))+

+(Ds1
x fmn(x, y), Ds1

x fm1n1(x, y))L2((0,π)×(0,π))+

+(Ds2
y fmn(x, y), Ds2

y fm1n1(x, y))L2((0,π)×(0,π))+

+(Ds1,s2
x,y fmn(x, y), Ds1,s2

x,y fm1n1(x, y))L2((0,π)×(0,π)) =

= (ψ
(1)
m (x), ψ

(1)
m1 (x))L2(0,π) · (ψ

(2)
n (y), ψ

(2)
n1 (y))L2(0,π)+

+(Ds1
x ψ

(1)
m (x), Ds1

x ψ
(1)
m1 (x))L2(0,π) · (ψ

(2)
n (y), ψ

(2)
n1 (y))L2(0,π)+

+(ψ
(1)
m (x), ψ

(1)
m1 (x))L2(0,π) · (Ds2

y ψ
(2)
n (y), Ds2

y ψ
(2)
n1 (y))L2(0,π)+

+(Ds1
x ψ

(1)
m (x), Ds1

x ψ
(1)
m1 (x))L2(0,π) · (Ds2

y ψ
(2)
n (y), Ds2

y ψ
(2)
n1 (y))L2(0,π) =

= ((ψ
(1)
m (x), ψ

(1)
m1 (x))L2(0,π) + (Ds1

x ψ
(1)
m (x), Ds1

x ψ
(1)
m1 (x))L2(0,π))·

·(ψ(2)
n (y), ψ

(2)
n1 (y))L2(0,π)+

+((ψ
(1)
m (x), ψ

(1)
m1 (x))L2(0,π) + (Ds1

x ψ
(1)
m (x), Ds1

x ψ
(1)
m1 (x))L2(0,π))·

·(Ds2
y ψ

(2)
n (y), Ds2

y ψ
(2)
n1 (y))L2(0,π) =

= ((ψ
(1)
m (x), ψ

(1)
m1 (x))L2(0,π) + (Ds1

x ψ
(1)
m (x), Ds1

x ψ
(1)
m1 (x))L2(0,π))·

·((ψ(2)
n (y), ψ

(2)
n1 (y))L2(0,π) + (Ds2

y ψ
(2)
n (y), Ds2

y ψ
(2)
n1 (y))L2(0,π)) = 0

since scalar product ( fmn(x, y), fm1n1(x, y))W
s1,s2
2 ((0,π)×(0,π))

of two variables exist on Π = (0, π) ×
(0, π). Let us prove the completeness of system { fmn(x, y)}. Assume that there exists a function f (x, y)
in Ws1,s2

2 ((0, π)× (0, π)) that is orthogonal to all functions fmn(x, y). Set

Fm(y) = ( f (x, y), ψ
(1)
m (x))W

s1
2 (0,π)

.
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It is easy to see, that function Fm(y) belongs to class Ws2
2 (0, π). That’s why for any n,m

again applying the Fubini theorem, we obtain

(Fm(y), ψ
(2)
n (y))Ws2

2 (0,π)
= ( f (x, y), fmn(x, y))W

s1,s2
2 ((0,π)×(0,π))

= 0.

By completeness of system ψ
(2)
n (y), for almost all y

Fm(y) = 0.

But then, for almost every y,, equalities

( f (x, y), ψ
(1)
m (x))W

s1
2 (0,π)

= 0

hold for all m. Completeness of system ψ
(1)
m (x) implies that, for almost all y, the set of those x, for which

f (x, y) �= 0,

has the measure zero. By virtue of the Fubini theorem, this means that, on Π = (0, π)× (0, π), function
f (x, y) is zero almost everywhere.

The scalar product in space Ws1,s2,...,sN
2 (Π) is introduced in the following way:

( f (x), g(x))W
s1,s2,...,sN
2 (Π)

= ( f (x), g(x))L2(Π)+

+
N

∑
j1=1

(D
sj1
xj1

f (x), D
sj1
xj1

g(x))L2(Π)+

+ ∑
1≤j1<j2≤N

(D
sj1
xj1

D
sj2
xj2

f (x), D
sj1
xj1

D
sj2
xj2

g(x))L2(Π) + · · ·+

+ ∑
1≤j1<j2<···<jN≤N

(D
sj1
xj1

D
sj2
xj2

. . . D
sjN
xjN

f (x), D
sj1
xj1

D
sj2
xj2

. . . D
sjN
xjN

g(x))L2(Π).

Respectively, the norm in this space is introduced as follows:

∥∥∥ f (x)
∥∥∥2

W
s1,s2,...,sN
2 (Π)

=
∥∥∥ f (x)

∥∥∥2

L2(Π)
+

N

∑
j1=1

∥∥∥D
sj1
xj1

f (x)
∥∥∥2

L2(Π)
+

+ ∑
1≤j1<j2≤N

∥∥∥D
sj1
xj1

D
sj2
xj2

f (x)
∥∥∥2

L2(Π)
+

+ · · ·+ ∑
1≤j1<j2<···<jN≤N

∥∥∥D
sj1
xj1

D
sj2
xj2

. . . D
sjN
xjN

f (x)
∥∥∥2

L2(Π)
.

Using the method of mathematical induction and Lemma 6, we obtain the following:

Lemma 7. If {ψ
(1)
m1 (x1)}, . . . , {ψ

(N)
mN (xN)} are complete orthonormal systems in spaces Ws1

2 (0, π), . . . ,
WsN

2 (0, π), respectively, then system of all products

fm(x) = fm1...mN (x1, . . . , xN) = ψ
(1)
m1 (x1) · · · · · ψ(N)

mN (xN)

is a complete orthonormal system in Ws1,s2,...,sN
2 (Π).
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Let us apply Lemma 7 to our orthonormal systems. In space Ws1,s2,...,sN
2 (Π) of functions of N

variables f (x) = f (x1, . . . , xN) all products

vm1...mN (x1, . . . , xN) = y(1)m1
(x1) · · · · · y(N)

mN
(xN)

form the complete orthonormal system. Here,

y(j)
mj (xj) =

√
2
π
·

β j cos λmj xj + εmj
· sign(β2

j − α2
j ) · αj sin λmj xj√

α2
j + β2

j ·
√

1+ | λmj |2sj
, mj ∈ Z

at 1 ≤ j ≤ p,

y(j)
mj (xj) =

1√
π

1√
1+ | 2mj |2sj

exp(i2mjxj), mj ∈ Z

at p + 1 ≤ j ≤ q,

y(j)
mj (xj) =

√
2
π

1√
1+ | mj |2sj

sin(mjxj), mj ∈ N

at q + 1 ≤ j ≤ N.
Thus, the following statement is valid:

Theorem 2. Let αj �= 0, β j �= 0, |αj| �= |β j| be real numbers at every 1 ≤ j ≤ p, and

ρ = max
1≤j≤p

√
θ2

j + 2
( θj√

2
+ (ϕj + 1)sj − 1

)2 · σ(sj) < 1

where σ(0) =
1√
2

, σ(sj) = 1, at sj > 0, θj =
√

2 · max
x∈[0,π]

∣∣eiϕjx − 1
∣∣, λmj = 2mj + εmj · ϕj, ϕj =

1
π

arccos
−2αjβ j

α2
j + β2

j
, εmj = ε−mj = ±1 at mj ∈ Z. Then, system of eigenfunctions

{vm1...mN (x1, . . . , xN)}(m1,...,mp)∈Zp ,(mp+1,...,mq)∈Zq−p ,(mq+1,...,mN)∈NN−q =

=

⎧⎪⎨⎪⎩
p

∏
j=1

√
2
π

β j cos λmj xj + εmj
sign(β2

j − α2
j ) · αj sin λmj xj√

α2
j + β2

j ·
√

1+ | λmj |2sj

⎫⎪⎬⎪⎭
(m1,...,mp)∈Zp

×

×

⎧⎨⎩ q

∏
j=p+1

1√
π

1√
1+ | 2mj |2sj

exp(i2mjxj)

⎫⎬⎭
(mp+1,...,mq)∈Zq−p

×

×

⎧⎨⎩ N

∏
j=q+1

√
2
π

1√
1+ | mj |2sj

sin(mjxj)

⎫⎬⎭
(mq+1,...,mN)∈NN−q

of spectral Problems (7) and (8) forms the complete orthonormal system in Sobolev classes Ws1,s2,...,sN
2 (Π).

Corollary 3. Let αj �= 0, β j �= 0, |αj| �= |β j| be real numbers at every 1 ≤ j ≤ p, and

ρ = max
1≤j≤p

√
θ2

j + 2
(

θj√
2
+ (ϕj + 1)sj − 1

)2

· σ(sj) < 1
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where σ(0) =
1√
2

, σ(sj) = 1 at sj > 0, θj =
√

2 · max
x∈[0,π]

∣∣eiϕjx − 1
∣∣, λmj = 2mj + εmj · ϕj, ϕj =

1
π

arccos
−2αjβ j

α2
j + β2

j
, εmj = ε−mj = ±1 at mj ∈ Z, sj > k +

N
2

, k ≥ 0, k ∈ Z. Then, the Fourier series for

function f (x) ∈Ws1,s2,...,sN
2 (Π) ∩ Ck(Π) in orthonormal eigenfunctions

{vm1...mN (x1, . . . , xN)} (m1,...,mp)∈Zp ,(mp+1,...,mq)∈Zq−p ,(mq+1,...,mN)∈NN−q =

=

⎧⎪⎨⎪⎩
p

∏
j=1

√
2
π

β j cos λmj xj + εmj
sign(β2

j − α2
j ) · αj sin λmj xj√

α2
j + β2

j ·
√

1+ | λmj |2sj

⎫⎪⎬⎪⎭
(m1,...,mp)∈Zp

×

×

⎧⎨⎩ q

∏
j=p+1

1√
π

1√
1+ | 2mj |2sj

exp(i2mjxj)

⎫⎬⎭
(mp+1,...,mq)∈Zq−p

×

×

⎧⎨⎩ N

∏
j=q+1

√
2
π

1√
1+ | mj |2sj

sin(mjxj)

⎫⎬⎭
(mq+1,...,mN)∈NN−q

of spectral Problems (7) and (8) converges in the norm of space Ck(Π) to function f (x).

The proof of Corollary 3 is carried out using Theorem 2 and the Sobolev embedding theorem.
The following are true:

4. Main Results

In this section, we give the most general case of the works done in [17].

Theorem 3. Let αj �= 0, β j �= 0, |αj| �= |β j| be real numbers at every 1 ≤ j ≤ p, and

ρ = max
1≤j≤p

√
θ2

j + 2
( θj√

2
+ (ϕj + 1)sj − 1

)2 · σ(sj) < 1

where σ(0) =
1√
2

, σ(sj) = 1 at sj > 0, θj =
√

2 · max
x∈[0,π]

∣∣eiϕjx − 1
∣∣, λmj = 2mj + εmj · ϕj,

ϕj =
1
π

arccos
−2αjβ j

α2
j + β2

j
, εmj = ε−mj = ±1 at mj ∈ Z, sj > k + N

2 , k ≥ 0, k ∈ Z and ϕj(x) ∈

Ws1+j− N
2 ,s2+j− N

2 ,...,sN+j− N
2

2 (Π), f (x, t) ∈ Ws1,s2,...,sN ,sN+1
2 (Π × (0,+∞)). Then, the solution of problems

(4)–(6) exists, it is unique, and is represented in the form of series

u(x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

n

∑
j=1

ϕj,(m1...mN)t
α−jEα,α−j+1(−μm1...mN · tα) +

+

t∫
0

(t− τ)α−1 · Eα,α[−μm1...mN (t− τ)α] fm1...mN (τ)dτ · vm1...mN (x1, . . . , xN) (11)

where coefficients are determined in the following way :

Eα,α−j+1(−μm1...mN · tα) =
∞

∑
i=0

(−μm1...mN · tα)i

Γ(αi + α− j + 1)
,
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Eα,α

(
− μm1...mN · (t− τ)α

)
=

∞

∑
i=1

(−μm1...mN )
i−1 · (t− τ)α(i−1)

Γ(α · i) ,

f (x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

fm1...mN (t) · vm1...mN (x1, . . . , xN),

ϕj(x) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

ϕj,(m1...mN) · vm1...mN (x1, . . . , xN),

j = 1, 2, . . . , n, μm1...mN = λ2
m1

+ · · ·+ λ2
mN

.

Proof. Since system of eigenfunctions

{vm1...mN (x1, . . . , xN)}(m1,...,mp)∈Zp ,(mp+1,...,mq)∈Zq−p ,(mq+1,...,mN)∈NN−q

of spectral Problems (7) and (8) forms the complete orthonormal system in Sobolev classes
Ws1,s2,...,sN

2 (Π), any function from class Ws1,s2,...,sN
2 (Π) can be represented as a convergent Fourier

series in this system. For any t > 0, expand solution u(x, t) of Problems (4)–(6) into the Fourier series
in eigenfunctions

{vm1...mN (x1, . . . , xN)}(m1,...,mp)∈Zp ,(mp+1,...,mq)∈Zq−p ,(mq+1,...,mN)∈NN−q

of spectral Problems (4) and (5):

u(x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

Tm1...mN (t) · vm1...mN (x), (12)

Tm1...mN (t) = (u(x, t), vm1...mN (x)).

By virtue of Problems (4) and (5), unknown functions Tm1...mN (t) must satisfy equation

Dα
0tTm1...mN (t) + μm1...mN Tm1...mN (t) = fm1...mN (t), l − 1 < α ≤ l, l ∈ N (13)

with initial conditions

lim
t→0

Dα−k
0t Tm1...mN (t) = ϕk,m1...mN , k = 1, 2, . . . , l, μm1...mN = λ2

m1
+ · · ·+ λ2

mN
. (14)

The solution of Cauchy Problems (13) and (14) has the form

Tm1...mN (t) =
n

∑
j=1

ϕj,(m1...mN)t
α−jEα,α−j+1(−μm1...mN · tα)+

+

t∫
0

(t− τ)α−1 · Eα,α[−μm1...mN (t− τ)α] fm1...mN (τ)dτ (15)

where coefficients are determined as follows:

Eα,α−j+1(−μm1...mN · tα) =
∞

∑
i=0

(−μm1...mN · tα)i

Γ(αi + α− j + 1)
,
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Eα,α

(
− μm1...mN · (t− τ)α

)
=

∞

∑
i=1

(−μm1...mN )
i−1 · (t− τ)α(i−1)

Γ(α · i) ,

f (x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

fm1...mN (t) · vm1...mN (x1, . . . , xN),

ϕj(x) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

ϕj,(m1...mN) · vm1...mN (x1, . . . , xN), j = 1, 2, . . . , n.

After substituting Problem (15) into Problem (12), we obtain the unique solution of Problems
(4)–(6) in the form of Series (8).

Let ν > 1. Consider mixed Problems (4)–(6). If we look for a solution u(x, t) to Problems (4)–(6) in
the form of Fourier series expansion

u(x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

Tm1...mN (t) · vm1...mN (x),

where are Tm1...mN (t) = (u(x, t), vm1...mN (x)) are the coefficients of the series, {vm1...mN} is the system
of eigenfunctions of spectral Problems (7) and (8).

Differential operator (−Δ)ν, generated by a differential expression l(ν)(v(x)) = (−Δ)νv(x) with
domain definition

D
(
(−Δ)ν

)
= {v(x) : v(x) ∈ C2ν(Π) ∩ C2ν−1(Π), l(ν)(v(x)) ∈ L2(Π)}

satisfies Condition (8).
Similarly, as Lemma 5, it can be shown that operator (−Δ)ν, is a symmetric and positive

operator in space L2(Π). The eigenvalues of Problems (7) and (8) μm1...mN ≥ 0, and each

μμm1...mN
=
(

λ2
m1

+ · · · λ2
m1

)ν
corresponds to an eigenvalue of Problems (9) and (10), and the

eigenfunctions {vm1...mN (x)} of Problems (7) and (8) and eigenfunctions {ym1...mN (x)} of Problems
(9) and (10) coincide, i.e.,

vm1...mN (x) ≡ ym1...mN (x).

Therefore, the following theorem is valid:

Theorem 4. Let αj �= 0, β j �= 0, |αj| �= |β j| be real numbers at every 1 ≤ j ≤ p, and

ρ = max
1≤j≤p

√
θ2

j + 2
( θj√

2
+ (ϕj + 1)sj − 1

)2 · σ(sj) < 1

where σ(0) =
1√
2

, σ(sj) = 1 at sj > 0, θj =
√

2 · max
x∈[0,π]

∣∣eiϕjx − 1
∣∣, λmj = 2mj + εmj · ϕj,

ϕj =
1
π

arccos
−2αjβ j

α2
j + β2

j
, εmj = ε−mj = ±1 at mj ∈ Z, sj > (k + N

2 )ν, k ≥ 0, k ∈ Z and
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ϕj(x) ∈W(s1+j− N
2 )ν,(s2+j− N

2 )ν,...,(sN+j− N
2 )ν

2 (Π), f (x, t) ∈Ws1,s2,...,sN ,sN+1
2 (Π× (0,+∞)). Then the solution

of Problems (4)–(6) exists, it is unique, and is represented in the form of series

u(x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

n

∑
j=1

ϕj,(m1...mN)t
α−jEα,α−j+1(−μm1...mN · tα) +

+

t∫
0

(t− τ)α−1 · Eα,α[−μm1...mN (t− τ)α] fm1...mN (τ)dτ · vm1...mN (x1, . . . , xN)

where coefficients are determined in the following way:

Eα,α−j+1(−μm1...mN · tα) =
∞

∑
i=0

(−μm1...mN · tα)i

Γ(αi + α− j + 1)
,

Eα,α

(
− μm1...mN · (t− τ)α

)
=

∞

∑
i=1

(−μm1...mN )
i−1 · (t− τ)α(i−1)

Γ(α · i) ,

f (x, t) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

fm1...mN (t) · vm1...mN (x1, . . . , xN),

ϕj(x) =
∞

∑
m1=−∞

· · ·
∞

∑
mq=−∞

∞

∑
mq+1=1

· · ·
∞

∑
mN=1

ϕj,(m1...mN) · vm1...mN (x1, . . . , xN), j = 1, 2, . . . , n,

μm1...mN =
(

λ2
m1

+ · · ·+ λ2
mN

)ν
.

5. Conclusions

In this paper, we considered questions on the unique solvability of a mixed problem for a partial
differential equation of high order with fractional Riemann-Liouville derivatives with respect to
time, and with Laplace operators with spatial variables and with nonlocal boundary conditions in
Sobolev classes. The solution was found in the form of a series of expansions in eigenfunctions of the
Laplace operator with nonlocal boundary conditions. Initial and boundary problems with fractional
Riemann-Liouville derivatives with respect to time have many applications [13]. In connection to
this, we chose the fractional Riemann-Liouville derivative, although we could consider other types of
fractional derivatives.
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Abstract: The aim of this paper is to solve a class of non-linear fractional variational problems
(NLFVPs) using the Ritz method and to perform a comparative study on the choice of different
polynomials in the method. The Ritz method has allowed many researchers to solve different
forms of fractional variational problems in recent years. The NLFVP is solved by applying the
Ritz method using different orthogonal polynomials. Further, the approximate solution is obtained
by solving a system of nonlinear algebraic equations. Error and convergence analysis of the discussed
method is also provided. Numerical simulations are performed on illustrative examples to test the
accuracy and applicability of the method. For comparison purposes, different polynomials such
as 1) Shifted Legendre polynomials, 2) Shifted Chebyshev polynomials of the first kind, 3) Shifted
Chebyshev polynomials of the third kind, 4) Shifted Chebyshev polynomials of the fourth kind,
and 5) Gegenbauer polynomials are considered to perform the numerical investigations in the test
examples. Further, the obtained results are presented in the form of tables and figures. The numerical
results are also compared with some known methods from the literature.

Keywords: non-linear fractional variational problems; orthogonal polynomials; Rayleigh-Ritz
method; error analysis; convergence analysis

1. Introduction

It is necessary to determine the maxima and minima of certain functionals in study problems
in analysis, mechanics, and geometry. These problems are known as variational problems in
calculus of variations. Variational problems have many applications in various fields like physics [1],
engineering [2], and areas in which energy principles are applicable [3–5].

Nowadays, fractional calculus is a very interesting branch of mathematics. Fractional calculus
has many real applications in science and engineering, such as fluid dynamics [6], biology [7],
chemistry [8], viscoelasticity [9,10], signal processing [11], bioengineering [12], control theory [13],
and physics [14]. Due to the importance of the fractional derivatives established through real-life
applications, several authors have considered problems in calculus of variations by replacing the
integer-order derivative with fractional orders in objective functionals, and this is thus known as
fractional calculus of variations. Some of these studies are of a fractionally damped system [15],
energy control for a fractional linear control system [16], a fractional model of a vibrating string [17],

Mathematics 2019, 7, 224; doi:10.3390/math7030224 www.mdpi.com/journal/mathematics233



Mathematics 2019, 7, 224

and an optimal control problem [18]. In this paper, our aim is to minimize non-linear fractional
variational problems (NLFVPs) [19] of the following form:

J(y) =
∫ 1

0

(
g(x)Dαy(x) + g′(x)I1−αy(x) + h′(x)

)2
dx (1)

under the constraints
y(0) = a, I1−αy(1) = ε, (2)

where g and h are two functions of class C1 with g(x) �= 0 on [0, 1], α and ε are real numbers with
α ∈ (0, 1), and a is a constant.

The pioneer approach for solving the fractional variational problems originates in reference [20]
where Agrawal derived the formulation of the Euler-Langrage equation for fractional variational
problems. Further, in reference [4], he gave a general formulation for fractional variational problems.
In reference [5], the authors used an analytical algorithm based on the Adomian decomposition method
(ADM) for solving problems in calculus of variations. In [21,22], Legendre orthonormal polynomials
and Jacobi orthonormal polynomials, respectively, were used to obtain an approximate numerical
solution of fractional optimum control problems. In [23], the Haar wavelet method was used to obtain
numerical solution of these problems. Some other numerical methods for the approximate solution
of fractional variational problems are given in [24–34]. Recently, in [19], the authors gave a new class
of fractional variational problems and solved this using a decomposition formula based on Jacobi
polynomials. The operational matrix methods (see [35–41]) have been found to be useful for solving
problems in fractional calculus.

In present paper, we extend the Rayleigh-Ritz method together with operational matrices
of different orthogonal polynomials such as Shifted Legendre polynomials, Shifted Chebyshev
polynomials of the first kind, Shifted Chebyshev polynomials of the third kind, Shifted Chebyshev
polynomials of the fourth kind, and Gegenbauer polynomials to solve a special class of NLFVPs.
The Rayleigh-Ritz methods have been discussed by many researchers in the literature for different
kinds of variational problems, i.e., fractional optimal control problems [18,21,22,32,33]; here we cite only
few, and many more can be found in the literature. In this method, first we take a finite-dimensional
approximation of the unknown function. Further, using an operational matrix of integration and the
Rayleigh-Ritz method in the variational problem, we obtain a system of non-linear algebraic equations
whose solution gives an approximate solution for the non-linear variational problem. Error analysis
of the method for different orthogonal polynomials is given, and convergence of the approximate
numerical solution to the exact solution is shown. A comparative study using absolute error and
root-mean-square error tables for all five kinds of polynomials is analyzed. Numerical results are
discussed in terms of the different values of fractional order involved in the problem and are shown
through tables and figures.

2. Basic Preliminaries

The definition of fractional order integration in the Riemann-Liouville sense is defined as follows.

Definition 1. The Riemann-Liouville fractional order integral operator is given by

Iα f (x) =

⎧⎨⎩ 1
Γ(α)

x∫
0
(x− t)α−1 f (t)dt, α > 0, x > 0,

f (x), α = 0.
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The analytical form of the shifted Jacobi polynomial of degree i on [0, 1] is given as

Ψi(x) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i− k)!k!

xk (3)

where a and b are certain constants. Jacobi polynomials are orthogonal in the interval [0, 1] with respect
to the weight function w(a,b)(x) = (1− x)axb and have the orthogonality property

∫ 1

0
Ψn(x)Ψm(x)w(a,b)(x)dx = va,b

n δmn (4)

where δmn is the Kronecker delta function and

va,b
n =

Γ(n + a + 1)Γ(n + b + 1)
(2n + a + b + 1)n!Γ(n + a + b + 1)

. (5)

For certain values of the constants a and b, the Jacobi polynomials take the form of some
well-known polynomials, defined as follows.
Case 1: Legendre polynomials (S1) For a = 0, b = 0 in Equation (3), we get Legendre polynomials.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ(i + 1)Γ(i + k + 1)
Γ(k + 1)Γ(i + 1)(i− k)!k!

xk (6)

Case 2: Chebyshev polynomials of the first kind (S2) For a = 1
2 , b = 1

2 in Equation (3), we get
Chebyshev polynomials of the first kind.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ
(
i + 3

2
)
Γ(i + k + 2)

Γ
(
k + 3

2
)
Γ(i + 2)(i− k)!k!

xk (7)

Case 3: Chebyshev polynomials of the third kind (S3) For a = 1
2 , b = − 1

2 in Equation (3), we get
Chebyshev polynomials of the third kind.

Ψi(x) =
i

∑
k=0

(−1)i−k
Γ
(

i + 1
2

)
Γ(i + k + 1)

Γ
(

k + 1
2

)
Γ(i + 1)(i− k)!k!

xk (8)

Case 4: Chebyshev polynomials of the fourth kind (S4) For a = − 1
2 , b = 1

2 in Equation (3), we get
Chebyshev polynomials of the fourth kind.

Ψi(x) =
i

∑
k=0

(−1)i−k Γ
(
i + 3

2
)
Γ(i + k + 1)

Γ
(
k + 3

2
)
Γ(i + 1)(i− k)!k!

xk (9)

Case 5: Gegenbauer polynomials (S5) For a = b = a− 1
2 in Equation (3), we get Gegenbauer polynomials.

Ψi(x) =
i

∑
k=0

(−1)i−k
Γ
(

i + a + 1
2

)
Γ(i + k + 2a)

Γ
(

k + a + 1
2

)
Γ(i + 2a)(i− k)!k!

xk (10)

A function f ∈ L2[0, 1] with | f ′′ (t)| ≤ K can be expanded as

f (t) = lim
n→∞

n

∑
i=0

ciΨi(t), (11)

where ci = 〈 f (t), Ψi(t)〉 and 〈−,−〉 is the usual inner product space.
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Equation (11) for finite-dimensional approximation is written as

f ∼=
m

∑
i=0

ciΨi(t) = CTφm(t), (12)

where C and φm(t) are (m + 1) × 1 matrices given by C = [c0, c1, . . . , cm]
T and φm(t) =

[Ψ0, Ψ1, . . . , Ψm]
T .

Theorem 1. Let H be a Hilbert space and Z be a closed subspace of H with dim Z < ∞; let {z1, z2, . . . , zN} be
any basis for Z. Suppose that y is an arbitrary element in H and z0 is the unique best approximation to y out
of Z. Then

‖y− z0‖2
2 =

T(y; z1, z2, . . . , zN)

T(z1, z2, . . . , zN)
,

where

T(y; z1, z2, . . . , zN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈y, y〉 〈y, Z1〉 · · · 〈y, ZN〉
〈Z1, ZN〉 〈Z1, Z1〉 · · · 〈Z1, ZN〉
· ·

... ·
· ·

... ·
· ·

... ·
〈ZN , y〉 〈ZN , Z1〉 · · · 〈ZN , ZN〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof . Please see references [42,43]. �

Theorem 2. Suppose that fN(x) is the Nth approximation of the function f ∈ L2
w(a, b) [0, 1], and suppose

SN( f ) =
∫ 1

0
[ f (x)− fN(x)]2w(a, b)(x)dx;

then we have
lim

N→∞
SN( f ) = 0.

Proof . Please see Appendix A. �

3. Operational Matrices

Theorem 3. Let φn = [Ψ0(x), Ψ1(x), . . . , Ψn(x)]T be a Shifted Jacobi vector and suppose v > 0; then

IvΨi(x) = I(v)φn(x)

where I(v) = (μ(i, j)) is an (n + 1)× (n + 1) operational matrix of the fractional integral of order v and its
(i, j)th entry is given by

μ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ(a+1)Γ(i+b+1)Γ(i+k+a+b+1)Γ(j+l+a+b+1)Γ(v+k+l+a+b+1)(2j+a+b+1)j!

(i−k)!(j−l)!(l)! Γ(k+b+1)Γ(i+a+b+1)Γ(v+k+1)Γ(j+a+1)Γ(l+b+1)Γ(k+l+v+a+b+1) . (13)

Proof . We refer to reference [44] for the proof. �
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Now, in particular cases, the operational matrix of integration for various polynomials is given
as follows.

For Shifted Legendre polynomials (S1), the (i, j)th entry of the operational matrix of integration is
given as

μ(i, j) =
i

∑
k=0

j

∑
l=0

(−1)i+j+k+l (i + k)!(j + l)!

(i− k)!(j− l)!(k)!(l!)2(α + k + l + 1)Γ(α + k + l)
. (14)

For Shifted Chebyshev polynomials of the first kind (S2), the (i, j)th entry of the operational
matrix of integration is given as:

μ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 3

2 )Γ(i+ 3
2 )Γ(i+k+2)Γ(j+l+2)Γ(α+k+l+ 3

2 )(2j+2)j!
(i−k)!(j−l)!(l)! Γ(k+ 3

2 )Γ(i+2)Γ(α+k+1)Γ(j+ 3
2 )Γ(l+ 3

2 )Γ(k+l+α+3)
. (15)

For Shifted Chebyshev polynomials of the third kind (S3), the (i, j)th entry of the operational
matrix of integration is given as

μ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 3

2 )Γ(i+ 1
2 )Γ(i+k+1)Γ(j+l+1)Γ(α+k+l+ 1

2 )(2j+1)j!
(i−k)!(j−l)!(l)! Γ(k+ 1

2 )Γ(i+1)Γ(α+k+1)Γ(j+ 3
2 )Γ(l+ 1

2 )Γ(k+l+α+2)
. (16)

For Shifted Chebyshev polynomials of the fourth kind (S4), the (i, j)th entry of the operational
matrix of integration is given as

μ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ( 1

2 )Γ(i+ 3
2 )Γ(i+k+1)Γ(j+l+1)Γ(α+k+l+ 3

2 )(2j+1)j!
(i−k)!(j−l)!(l)! Γ(k+ 3

2 )Γ(i+1)Γ(α+k+1)Γ(j+ 1
2 )Γ(l+ 3

2 )Γ(k+l+α+2)
. (17)

For Shifted Gegenbauer polynomials (S5), the (i, j)th entry of the operational matrix of integration
is given as

μ(i, j) =
i

∑
k=0

j
∑

l=0
(−1)i+j−k−l Γ(i+a+ 1

2 )Γ(i+k+2a)Γ(j+l+2a)Γ(a+ 1
2 )Γ(α+k+l+a+ 1

2 )(2j+2a)j!
(i−k)!(j−l)!(l)! Γ(k+a+ 1

2 )Γ(i+2a)Γ(α+k+1)Γ(j+a+ 1
2 )Γ(l+a+ 1

2 )Γ(2a+k+l+α+1)
. (18)

4. Method of Solution

Approximating the unknown function in terms of orthogonal polynomials has been practiced in
several papers in recent years [18,21,22,32,33] for different types of problems. Here, for solving the
problem in Equation (1), we approximate

Dαy(x) = CTΦn(x). (19)

We are approximating the derivative first because we want to use the initial condition. Taking the
integral of order α on both sides of Equation (19), we get

y(x) = CT IαΦn(x) + y(0). (20)

Using the operational matrix of integration, Equation (20) can be written as
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y(x) ∼= CT I(α)Φn(x) + ATΦn(x) (21)

where y(0) = a ∼= ATΦn(x) and I(α) is the operational matrix of integration of order α.
Using Equation (19), we can write

I1−αy(x) = IDαy(x) = CT IΦn(x) ∼= CT I(1)Φn(x). (22)

Using Equations (19) and (22) in Equation (1), we obtain

J (c0, c1, . . . , cn) =
∫ 1

0

(
g(x)CTΦn(x) + g′(x)CT IΦn(x) + h′(x)

)2
dx. (23)

Equation (23) can then be written as

J (c0, c1, . . . , cn) =
∫ 1

0

(
CT g(x)Φn(x) + CT I(1)g′(x)Φn(x) + h′(x)

)2
dx. (24)

We further take the following approximations:

g(x)Φi(x) ∼= Ei,T
1 Φn(x) (25)

g′(x)Φi(x) ∼= Ei,T
2 Φn(x) (26)

h′(x) ∼= ET
3 Φn(x) (27)

where Ei,T
1 = [ei

1,0, ei
1,1, . . . , ei

1,n], Ei,T
2 = [ei

2,0, ei
2,1, . . . , ei

2,n], ET
3 = [e3,0, e3,1, . . . , e3,n], and

ei
1,j = 〈g(x)Φi(x), Ψj(x)〉, ei

2,j = 〈g′(x)Φi(x), Ψj(x)〉, e3,j = 〈h′(x), Ψj(x)〉, 0 ≤ i, j ≤ n, and 〈−,−〉 is
the usual inner product space.

Using Equations (25) and (26) we can write

g(x)Φn(x) ∼= ET
1 Φn(x) (28)

g′(x)Φn(x) ∼= ET
2 Φn(x) (29)

where
ET

1 =
(

Ei,T
1

)
0≤i≤n

and ET
2 =
(

Ei,T
2

)
0≤i≤n

. (30)

From Equations (24) and (27)–(29), we get

J (c0, c1, . . . , cn) =
∫ 1

0

(
CTET

1 Φn(x) + CT I(1)ET
2 Φn(x) + ET

3 Φn(x)
)2

dx. (31)

Let
ET = CT

(
ET

1 + I(1)ET
2

)
+ ET

3 . (32)

From Equations (31) and (32), we get

J (c0, c1, . . . , cn) =
∫ 1

0

(
ETΦn(x)

)2dx
=
∫ 1

0 ETΦn(x)Φn(x)TE dx,
= ET PE

(33)

where P is a square matrix given by P =
∫ 1

0 Φn(x)Φn(x)T dx.
Using Equation (22), the boundary condition can be written as

I1−αy(1) ∼= CT I(1)Φn(1) = ε. (34)
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Using the Lagrange multiplier method [18,20–22,32,33], the necessary extremal condition for the
functional in Equation (33) becomes

∂J
∂c0

= 0,
∂J
∂c1

= 0, . . . ,
∂J

∂cn−1
= 0. (35)

From Equations (34) and (35), we get a set of n + 1 equations. Solving these n + 1 equations, we
get unknown parameters c0, c1, . . . , cn. Using these unknown parameters in Equation (21), we get the
unknown function’s extreme values of the non-linear fractional functional.

5. Error Analysis

The upper bound of error for the operational matrix of fractional integration of a Jacobi polynomial
of the ith degree is given as

eα
i = I(α)Ψi(x)− IαΨi(x). (36)

From Equation (36), we can write

‖eα
i ‖2 =

∣∣∣∣∣∣∣∣IαΨi(x)−
n

∑
j=0

μ(i, j)Ψj(x)
∣∣∣∣∣∣∣∣

2
. (37)

Taking the integral operator of order α on both sides of Equation (3), we get

IαΨi(x) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
(i− k)! Γ(k + b + 1)Γ(i + a + b + 1)Γ(α + k + 1)

xα+k. (38)

From the construction of the operational matrix we can write

μ(i, j) =
i

∑
k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
(i− k)! Γ(k + b + 1)Γ(i + a + b + 1)Γ(α + k + 1)

cj,k, j = 0, 1, . . . , n. (39)

Using Theorem 1 we can write

∣∣∣∣∣
∣∣∣∣∣xα+k −

n

∑
j=0

cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

=

⎛⎝T
(

xα+k; Ψ0(x), Ψ1(x), . . . , Ψn(x)
)

T(Ψ0(x), Ψ1(x), . . . , Ψn(x))

⎞⎠2

. (40)

From Equations (37)–(39), we get

‖eα
i ‖2 =

∣∣∣∣∣
∣∣∣∣∣

i
∑

k=0
(−1)i−k Γ(i+b+1)Γ(i+k+a+b+1)

(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1) xα+k

−
n
∑

j=0

i
∑

k=0
(−1)i−k Γ(i+b+1)Γ(i+k+a+b+1)

(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1) cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

≤
i

∑
k=0

∣∣∣ Γ(i+b+1)Γ(i+k+a+b+1)
(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1)

∣∣∣ ∣∣∣∣∣
∣∣∣∣∣xα+k −

n
∑

j=0
cj,kΨj(x)

∣∣∣∣∣
∣∣∣∣∣
2

.

(41)

Using Equation (40) in Equation (41), we obtain the error bound for the operational matrix of
integration of an ith-degree polynomial, which is given as

‖eα
i ‖2

≤
i

∑
k=0

∣∣∣ Γ(i+b+1)Γ(i+k+a+b+1)
(i−k)! Γ(k+b+1)Γ(i+a+b+1)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n.

(42)
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Now, in particular cases, the error bounds for different orthogonal polynomials are given
as follows.
Case 1: For Legendre polynomials (S1) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣ Γ(i+1)Γ(i+k+1)
(i−k)! Γ(k+1)Γ(i+1)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
, i = 0, 1, 2, . . . , n. (43)

Case 2: For Chebyshev polynomials of the first kind (S2) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 3
2 )Γ(i+k+2)

(i−k)! Γ(k+ 3
2 )Γ(i+2)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (44)

Case 3: For Chebyshev polynomials of the third kind (S3) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 1
2 )Γ(i+k+1)

(i−k)! Γ(k+ 1
2 )Γ(i+1)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (45)

Case 4: For Chebyshev polynomials (S4) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣∣ Γ(i+ 3
2 )Γ(i+k1)

(i−k)! Γ(k+ 3
2 )Γ(i+1)Γ(α+k+1)

∣∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (46)

Case 5: For Gegenbauer polynomials (S5) the error bound is given as

‖eα
i ‖2≤

i
∑

k=0

∣∣∣ Γ(i+2)Γ(i+k+3)
(i−k)! Γ(k+2)Γ(i+3)Γ(α+k+1)

∣∣∣( T(xα+k ;Ψ0(x),Ψ1(x),...,Ψn(x))
T(Ψ0(x),Ψ1(x),...,Ψn(x))

)2
,i = 0, 1, 2, . . . , n. (47)

Let eα,w
I,n denote the error vector for the operational matrix of integration of order α obtained by

using (n + 1) orthogonal polynomials in L2
w[0, 1]; then

eα,w
I,n = I(α)Φn(x)− IαΦn(x). (48)

From Theorems 1 and 2 and from Equations (43)–(47), it is clear that as n → ∞ the error vector in
Equation (48) tends to zero.

6. Convergence Analysis

A set of orthogonal polynomials on [0, 1] forms a basis for L2
w[0, 1]. Let Sn be the n-dimensional

subspace of L2
w[0, 1] generated by (Φi)0≤i≤n. Thus, every functional on Sn can be written as a linear

combination of orthogonal polynomials (Φi)0≤i≤n. The scalars in the linear combinations can be
chosen in such a way that the functional minimizes. Let the minimum value of a functional on space
Sn be denoted by mn. From the construction of Sn and mn, it is clear that Sn ⊂ Sn+1 and mn+1 ≥ mn.

Theorem 4. Consider the functional J, then

lim
n→∞

mn = m = in f︸︷︷︸
xεL2

w [0,1]

J[x].

Proof . Using Equation (48) in Equation (23), we have

J (c0, c1, . . . , cn) =
∫ 1

0

(
CT g(x)Φn(x) + CT I(1)g′(x)Φn(x) + CTe1

I,ng′(x) + h′(x)
)2

dx. (49)

240



Mathematics 2019, 7, 224

Taking n → ∞ and using Equations (25)–(27) and (48) in Equation (49), we get

Je (c0, c1, . . . , cn) =
∫ 1

0

(
CT
(

n
∑

i=0
(Ei,T

1 Φn(x) + ew
Ei

1,n
)

)
+CT I(1)

(
n
∑

i=0

(
Ei,T

2 Φn(x) + ew
Ei

2,n

))
+ ET

3 Φn(x) + ew
E3,n

)2
dx

(50)

where
ew

Ei
1,n

= Ei,T
1 Φ(x)− Ei,T

1 Φn(x),

ew
Ei

2,n
= Ei,T

2 Φ(x)− Ei,T
2 Φn(x),

ew
E3,n = ET

3 Φ(x)− ET
3 Φn(x),

and Je is the error term of the functional.
Using Equations (30) and (32) in Equation (50), we get

Je (c0, c1, . . . , cn) =
∫ 1

0

(
ETΦn(x) + ew

n

)2
dx (51)

where

ew
n = CT

n

∑
i=0

ew
Ei

1,n + CT I(1)
n

∑
i=0

ew
Ei

2,n. (52)

Solving Equation (51) similarly to the original functional, Equation (51) reduces to the
following form:

Je (c0, c1, . . . , cn) = ET PE + ew
n (Je). (53)

Using Equation (48) in Equation (34), we get

CT I(1)Φn(1) + CTe1,w
I,n = ε. (54)

Similar to above, by using the Rayleigh-Ritz method on Equation (53) with the boundary condition
in Equation (54) we obtain the extreme value of the functional defined in Equation (53). Let this extreme
value be denoted by m∗n(t).

Now, from Equation (48), it is obvious that ew
Ei

1,n
, ew

Ei
2,n

, ew
E3,n → 0 as n → ∞, which implies that

ew
n (Je)→ 0 as n → ∞. So, it is clear that as n → ∞ , the functional Je in Equation (53) comes close to the

functional J in Equation (23) and the boundary condition in Equation (54) comes close to Equation (34).
So, for large values of n,

m∗n(t)→ mn(t). (55)

From Theorem 4 and Equation (55), we conclude that

lim
n→∞

m∗n(t) = m(t).

Proof completed. �

7. Numerical Results and Discussions

In this section, we investigate the accuracy of the method by testing it on some numerical examples.
We apply the numerical algorithm to two test problems using different orthogonal polynomials as a
basis. The results for the test problems are shown through the figures and tables.
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Example 1. Consider a non-linear fractional variational problem as in Equation (1) with g(x) = h(x) = 1
1+xβ ;

we then have the following non-linear fractional variational problem [19]:

J (y) =
∫ 1

0

(
1

1 + xβ
Dαy(x)−

(
I1−αy(x) + 1

) βxβ−1(
1 + xβ

)2
)2

dx (56)

under the constraints
y(0) = 0, I1−αy(1) = ε.

The exact solution of the above equation is given as

yexact(x) =
(

1
2
(1 + ε)− 1

)(
Γ(β+ 2)

Γ(β+ α+ 1)
xβ+α +

1
Γ(α+ 1)

xα

)
+

Γ(β+ 1)
Γ(α+ β)

xβ+α−1.

We discuss this example for different values of α = 0.5, 0.6, 0.7, 0.8, 0.9, or 1, β = 5, and ε = 1.
In Figures 1–5, it is shown that the solutions for the two different values of α = 0.8 and α = 1

coincide with the exact solutions for different orthogonal polynomials at n = 5.

Figure 1. Comparison of exact and numerical solutions using S1 for α = 0.8 and α = 1, Example 1.
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Figure 2. Comparison of exact and numerical solutions using S2 for α = 0.8 and α = 1, Example 1.

Figure 3. Comparison of exact and numerical solutions using S3 for α = 0.8 and α = 1, Example 1.
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Figure 4. Comparison of exact and numerical solutions using S4 for α = 0.8 and α = 1, Example 1.

Figure 5. Comparison of exact and numerical solutions using S5 for α = 0.8 and α = 1, Example 1.

In Figures 6–10, it is shown that the solution varies continuously for Shifted Legendre polynomials,
Shifted Chebyshev polynomials of the second kind, Shifted Chebyshev polynomials of the third
kind, Shifted Chebyshev polynomials of the fourth kind, and Gegenbauer polynomials, respectively,
with different values of fractional order.
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Figure 6. The behavior of solutions using S1 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 1.

Figure 7. The behavior of solutions using S2 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 1.
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Figure 8. The behavior of solutions using S3 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 1.

Figure 9. The behavior of solutions using S4 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 1.
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Figure 10. The behavior of solutions using S5 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 1.

In Table 1, we have listed the maximum absolute errors (MAE) and root-mean-square errors
(RMSE) for Example 1 for the two different n values of 2 and 6.

Table 1. Result comparison of Example 1 for different orthogonal polynomials at different values of n.

Polynomials
Maximum Absolute Errors Root-Mean-Square Errors

n = 2 n = 6 n = 2 n = 6

S1 1.4584 × 10−1 1.8326 × 10−7 1.3923 × 10−2 2.4900 × 10−8

S2 1.6154 × 10−1 4.2127 × 10−7 2.0960 × 10−2 7.1127 × 10−8

S3 2.2296 × 10−1 3.6897 × 10−7 1.3179 × 10−2 3.3726 × 10−8

S4 4.1764 × 10−1 1.0973 × 10−6 3.2039 × 10−2 1.7307 × 10−7

S5 1.9055 × 10−1 3.1593 × 10−7 2.2138 × 10−2 4.2368 × 10−8

In Table 1, we have compared results for different polynomials, and it is observed that the results
for Shifted Legendre polynomials and Gegenbauer polynomials are better than those for the other
polynomials. It is also observed that the MAE and RMSE decrease with increasing n.

Example 2. Consider a non-linear fractional variational problem as in Equation (1) with g(x) = h(x) = e−vx;
we then have the following non-linear fractional variational problem [19]:

J (y) =
∫ 1

0

(
e−vxDαy(x)− v

(
I1−αy(x) + 1

)
e−vx
)2

dx (57)

under the constraints
y(0) = 0, I1−αy(1) = ε.

The exact solution of the above equation is given as

yexact(x) =
(

e−1(1 + ε)− 1
)

v−α

(
∞

∑
k=0

(k + 1)
Γ(k + α + 1)

(vx)k+α

)
+ xα−1E1,α(vx)− xα−1

Γ(α)
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where Ea,b(x) is the Mittag-Leffler function of order a and b and is defined as

Ea,b(x) =
∞

∑
k=0

xk

Γ(ak + b)
.

We discuss Example 2 for different α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1 and ε = 2.
In Figures 11–15, it is shown that the solutions for the two different values of α = 0.8 and α = 1

coincide with the exact solutions for different orthogonal polynomials at n = 5.

Figure 11. Comparison of exact and numerical solutions using S1 for α = 0.8 and α = 1, Example 2.

Figure 12. Comparison of exact and numerical solutions using S2 for α = 0.8 and α = 1, Example 2.
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Figure 13. Comparison of exact and numerical solutions using S3 for α = 0.8 and α = 1, Example 2.

Figure 14. Comparison of exact and numerical solutions using S4 for α = 0.8 and α = 1, Example 2.
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Figure 15. Comparison of exact and numerical solutions using S5 for α = 0.8 and α = 1, Example 2.

Figures 16–20 reflect that the approximate solution varies continuously for Shifted Legendre
polynomials, Shifted Chebyshev polynomials of the second kind, Shifted Chebyshev polynomials
of the third kind, Shifted Chebyshev polynomials of the fourth kind, and Gegenbauer polynomials,
respectively, with different values of fractional order.

Figure 16. The behavior of solutions using S1 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 2.
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Figure 17. The behavior of solutions using S2 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 2.

Figure 18. The behavior of solutions using S3 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 2.
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Figure 19. The behavior of solutions using S4 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 2.

Figure 20. The behavior of solutions using S5 for α values of 0.5, 0.6, 0.7, 0.8, 0.9, and 1, Example 2.

In Table 2, we have listed the maximum absolute errors (MAE) and root-mean-square errors
(RMSE) for Example 2 for the two n values 2 and 6.
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Table 2. Result comparison of Example 2 for different orthogonal polynomials at different values of n.

Polynomials
Maximum Absolute Errors Root-Mean-Square Errors

n = 2 n = 6 n = 2 n = 6

S1 2.0407 × 10−2 1.4819 × 10−7 2.7038 × 10−3 1.5021 × 10−8

S2 2.4295 × 10−2 1.3713 × 10−2 3.1356 × 10−3 1.6490 × 10−3

S3 8.0010 × 10−2 4.8371 × 10−2 1.2590 × 10−2 8.3236 × 10−3

S4 1.1193 × 10−1 5.0558 × 10−2 9.8251 × 10−3 6.8594 × 10−3

S5 2.5349 × 10−2 1.9316 × 10−2 3.2343 × 10−3 2.4746 × 10−3

In Table 2, we have compared results for different polynomials, and it is observed that the results
for the Shifted Legendre polynomial are better than those for the other polynomials. It is also observed
that the MAE and RMSE decrease as n increases.

8. Conclusions

We extended the Ritz method [18,20–22,32,33] for solving a class of NLFVPs using different
orthogonal polynomials such as shifted Legendre polynomials, shifted Chebyshev polynomials of
the first kind, shifted Chebyshev polynomials of the third kind, shifted Chebyshev polynomials of
the fourth kind, and Gegenbauer polynomials. These polynomials were used to approximate the
unknown function in the NLFVP. The advantage of the method is that it converts the given NLFVPs
into a set of non-linear algebraic equations which are then solved numerically. The error bound of
the approximation method for NLFVP was established. It was also shown that the approximate
numerical solution converges to the exact solution as we increase the number of basis functions in
the approximation. At the end, numerical results were provided by applying the method to two
test examples, and it was observed that the results showed good agreement with the exact solution.
Numerical results obtained using different orthogonal polynomials were compared. A comparative
study showed that the shifted Legendre polynomials were more accurate in approximating the
numerical solution.
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Appendix A

Theorem A1. Let f : [0, 1]→ R be a function such that f ∈ C(N+1)[0, 1] and let fN(x) be the Nth
approximation of the function from P(a, b)

N (x) = span {Ψ0(x), Ψ1(x), . . . , ΨN(x)}; then [45]

‖ f (x)− fN(x)‖2
w(a, b) ≤

K
(N + 1)!

√
Γ(1 + a)Γ(3 + 2N + b)

Γ(4 + 2N + a + b)
,

where K = max︸︷︷︸
x∈[0,1]

∣∣∣ f (N+1)(x)
∣∣∣.

Proof . Since f ∈ C(N+1)[0, 1], the Taylor polynomial of f at x = 0, is given as

g1(x) = f (0) + f ′(0)x + · · ·+ f N(0)
xN

N!
.
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The upper bound of the error of the Taylor polynomial is given as

| f (x)− g1(x)| ≤ KxN+1

(N + 1)!
,

where K = max︸︷︷︸
x∈[0,1]

∣∣∣ f (N+1)(x)
∣∣∣.

Since fN(x) and g1(x) ∈ P(a, b)
N (x), we have

‖ f (x)− fN(x)‖2
w(a, b) ≤ ‖ f (x)− g1(x)‖2

w(a, b) ≤
(

K
(N+1)!

)2 ∫ 1
0 x2N+2+b(1− x)adx

=
(

K
(N+1)!

)2 Γ(1+a)Γ(3+2N+b)
Γ(4+2N+a+b) ,

‖ f (x)− fN(x)‖2
w(a, b) ≤ K

(N+1)!

√
Γ(1+a)Γ(3+2N+b)

Γ(4+2N+a+b) ,

which shows that lim
N→∞

‖ f (x)− fN(x)‖2
w(a, b) = 0. �
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1. Introduction

1.1. Fractional Diffusion Equations

A fractional diffusion equation of order α ∈ (0, 1) is obtained by rewriting a normal diffusion
equation in integral form as

u(x, t) +
∫ t

0
Au(x, t)dt = u0 +

∫ t

0
f (x, t)dt, (x, t) ∈ Ω× (0, T). (1)

Then, replacing the first of right-hand side (RHS) integral of Equation (1) by a Riemann-Liouville
fractional integral, Iα of order 0 < α < 1, we get

u(x, t) +
∫ t

0

(t− s)α−1

Γ(α)
Au(x, t)dt = u0 +

∫ t

0
f (x, t)dt, (x, t) ∈ Ω× (0, T).

Now, differentiating the above equation on both sides with respect to t, we get the following
fractional diffusion equation:

∂tu + ∂1−α
t Au = f (x, t) in Ω× (0, T),

u = 0 on (Γ = ∂Ω)× (0, T),

u(·, 0) = u0 in Ω. (2)

If α = 1, then Equation (2) is a classical diffusion equation. Equation (2) with 0 < α < 1 is called
the fractional diffusion equation. These equations appear in the model of anomalous diffusion in
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heterogeneous media. Anomalous diffusion is one of the most ubiquitous phenomena in nature; it
has been observed in various fields of physical sciences, for example, surface growth, transport of
fluid in porous media, two-dimensional rotating flow and diffusion of plasma. Because of such
anomalies, the classical diffusion models can not be used to study the dynamics of such systems.
In this situation, fractional derivatives extend the help and play a crucial role in characterizing such
diffusion. The model corresponding to such derivative is called a fractional partial differential equation.
From the continuous time random walk (CTRW) model, Metzler and Klafter [1] derived Equation (3)
with 0 < α < 1 as a macroscopic model.

1.2. Impulsive Partial Differential Equations

Impulsive partial differential equations are a very important class of differential equations.
These equations arise from the modelling of various real world processes having memory and are
subject to short time fluctuations. The theory of impulsive differential equation is very rich and
wide. It is mainly due to the fact that the it inherit intrinsic difficulties of the problems. These
kinds of equations have lots of applications in different branches of Science and Engineering. These
kinds of equations arise naturally from several physical and natural processes like earthquakes and
pulse vaccination strategy. For more information, we refer to [2–4] and references therein. For more
theoretical work, one can see the interesting book by Bainov and Simeonov [5]. The authors Shun et al.
in [6] consider second-order impulsive Hamiltonian systems and established the existence of infinitely
many solutions.

1.3. Controllability

In mathematical control theory, controllability and optimal control are two important concepts.
In controllability, one studies the steering of a dynamical system from a given initial state to any other
state or in the neighborhood of the state under some admissible control input. The cases where target
states are defined in a given subregion are particularly very important; this situation arises in many real
world applications. The last few decades have seen tremendous work in the controllability problems
for integer order systems. Several techniques have been developed for solving such problems [7,8].
It has been seen that mostly authors worked on the problems with hard constraints on the state or
control. This is mainly due to its applicability and importance in various applications in optimal
control. Moreover, many authors have studied controllability of the semilinear, partial evolution
equations, we refer to [9–17] and references therein. In a very interesting paper [14], Kenichi Fujishiro
and Masahiro Yamamoto consider a partial differential equations with fractional order time derivatives
and established approximate controllability by interior control.

1.4. The Problem under Consideration

Let Ω be a bounded domain of Rd with C2 boundary Γ = ∂Ω. We consider the following initial
value/boundary value problem of an impulsive sub-diffusion equation of order α ∈ (0, 1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu + ∂1−α
t Au = f (x, t) in Ω× (0, T),

Δu(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,

u = 0 on Γ× (0, T),

u(·, 0) = u0 in Ω.

(3)
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In Equation (3), u = u(x, t) is the state to be controlled and f = f (x, t) is the control which is
localized in a subdomain ω of Ω. We will act by f to drive the initial state u0 = u0(x) to some target
function u1 = u1(x). The operator A is a symmetric and uniformly elliptic operator. The details will
be specified later; T > 0 is also a constant. Several problems in applications can be modeled by the
above equation. Some of them are: thermal diffusion in media with fractional geometry, underground
environmental problems, highly heterogeneous aquifer, etc. [18]. In this paper, we study approximate
controllability for fractional partial differential equations with impulses. We say that Equation (3) is
approximately controllable if, for any u1 ∈ L2(Ω) and ε > 0, there exists a control f such that the
solution u of (3) satisfies

‖u(·, T)− u1‖L2(Ω) ≤ ε. (4)

This paper is divided into four sections. In Section 2, we study requisite function spaces and
some important basic results. In Section 3, we analyse the mild solutions of the Equation (3) by
eigenfunction expansion. Section 4 is devoted to the study of a dual system of (3) and to establish a
unique continuation property. In the last section, we establish the proof of approximate controllability.

2. Preliminaries

In this section, we state a few function spaces, notations and results in order to establish our
main results. For the smooth reading of the manuscript, we first define the following class of spaces
(for more details, we refer to Adams [19], Mahto [12]):

Lp[a, b] =
{

f : [a, b]→ R| f is Lebesgue measurable and
∫ b

a
| f (t)|pdt < ∞

}
,

AC[a, b] =
{

f : [0, T]→ R| f is absolutely continuous on [a, b]
}

,

C[a, b] =
{

f : [0, T]→ R| f is continuous on [a, b]
}

,

Lp(Ω) =
{

f : Ω → R| f is Lebesgue measurable and
∫

Ω
| f (x)|pdx < ∞

}
,

H1(Ω) =
{

f : f ,
∂ f
∂x1

, · · · ,
∂ f
∂xd

∈ L2(Ω)
}

,

H1
0(Ω) =

{
f : f ∈ H1(Ω) and f = 0 on Γ

}
,

AC(0, T; L2(Ω)) =
{

f : [0, T]→ L2(Ω)| f ∈ AC([t0, t1]; L2(Ω)) ∪ AC((ti, ti+1], L2(Ω), i = 1,

2, · · · , P, x(t+i ), x(t−i ) exist and x(ti) = x(t−i )
}

,

PC(0, T; L2(Ω)) =
{

f : [0, T]→ L2(Ω)| f ∈ C([t0, t1]; L2(Ω)) ∪ C((ti, ti+1], L2(Ω), i = 1, 2,

· · · , P, x(t+i ), x(t−i ) exist andx(ti) = x(t−i )
}

.

The functions and operators defined below are very standard in the fractional calculus. For more
details, we refer to [20]:

1. Mittag-Leffler function by

Eα,β(z) :=
∞

∑
k=0

zk

Γ(αk + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants. We can directly verify that Eα,β(z) is an entire
function of z ∈ C. As for the Mittag–Leffler functions, we have the following lemma.

259



Mathematics 2019, 7, 190

Lemma 1. Let 0 < α < 2 and β ∈ R be arbitrary and μ satisfy πα/2 < μ < min{π, πα}. Then,
there exists a constant C = C(α, β, μ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z| , μ ≤ | arg(z)| ≤ π. (5)

2. Reimann-Liouville integrals: For α > 0 and f ∈ L1(0, T), we define α-th order forward and
backward integrals of f by

Iα
0+ f (t) :=

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ,

Iα
T− f (t) :=

1
Γ(α)

∫ T

t
(τ − t)α−1 f (τ)dτ.

In other words, the forward integral operators of α-th order is the convolution with tα−1/Γ(α)
and consequently Iα

0+ f also belongs to L1(0, T). The same argument is also valid for the
backward integrals.

3. The Riemann-Liouvill fractional derivatives: For α ∈ (0, 1), we define the forward and backward
fractional derivatives of f ∈ AC[0, T] by

∂α
t f (t) : =

d
dt

I1−αh(t) =
1

Γ(1− α)

d
dt

∫ t

0
(t− τ)−αh(τ)dτ, (6)

Dα
t f (t) : =

1
Γ(1− α)

(
− d

dt

) ∫ T

t
(τ − t)−αh(τ)dτ. (7)

We also have the following lemmas for fractional integration by parts.

Lemma 2. Let α > 0. If f , g ∈ PC([0, T], L2(Ω)), then

∫ T

0
Iα
0+ f (t)g(t)dt =

∫ T

0
f (t)Iα

T−g(t)dt.

Proof. ∫ T

0
g(t)Iα

0+ f (t)dt =
∫ T

0
g(t)

∫ t

0

(t− s)α−1

Γ(α)
f (s)dsdt

=
∫ T

0
f (t)
∫ T

t

(s− t)α−1

Γ(α)
g(s)dsdt

(using Fubini theorem for change of order of integration.)

=
∫ T

0
f (t)Iα

T−g(t)dt.

Lemma 3. Let f ∈ PC(0, T), g ∈ C∞
0 (0, T). Then, we have the following identity:

∫ T

0
g(t)∂α

t f (t)dt =
∫ T

0
f (t)Dα

t g(t)dt. (8)
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Proof. By substituing the value of R-L fractional derivative, we obtain

∫ T

0
g(t)∂α

t f (t)dt

=
∫ T

0
g(t)

d
dt

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

=

(
g(t)

Γ(1− α)

∫ t

0
(t− s)−α f (s)ds

)t=T

t=0
−
∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

(using integration by parts.)

=
g(T)

Γ(1− α)

∫ T

0
(t− s)−α f (s)ds−

∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt

= −
∫ T

0
g′(t)

∫ t

0

(t− s)−α

Γ(1− α)
f (s)dsdt (∵ g(T) = 0.)

= −
∫ T

0
f (t)
∫ T

t

(s− t)−α

Γ(1− α)
g′(s)dsdt

(using Fubini theorem for change of order of integration.)

= −
∫ T

0
f (t)

d
dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)dsdt

(using Leibnitz theorem for differentiation under integration.)

=
∫ T

0
f (t)
(

g(T)(T − t)−α

Γ(1− α)
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

(∵ g(T) = 0.)

=
∫ T

0
f (t)
(

d
dt

(
g(T)(T − t)1−α

Γ(2− α)

)
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

=
∫ T

0
f (t)

(
d
dt

(
g(s)(s− t)1−α

Γ(2− α)

)s=T

s=t
− d

dt

∫ T

t

(s− t)1−α

Γ(2− α)
g′(s)ds

)
dt

= −
∫ T

0
f (t)

d
dt

∫ T

t

(t− s)−α

Γ(1− α)
g(s)dsdt

(using integration by parts.)

=
∫ T

0
f (t)Dα

t g(t)dt.

3. Solution of Primal System

3.1. Representation of the Solution

To derive the representation, we first focus on t ∈ [0, t1]. We can rewrite (3) as

∂tu + (β ∗ Au)t = f (·, t), u(0) = u0, (9)

where β(t) = tα−1

Γ(α) and Au = −∇2u is a symmetric, self-adjoint, uniformly elliptic operator with

domain D(A) = H2(Ω) ∩ H1
0(Ω), the spectrum of A is entirely composed of a countable number of

eigenvalues and we can set with finite multiplicities:

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
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By ϕn ∈ H2(Ω) ∩ H1
0(Ω), we denote the orthonormal eigenfunction corresponding to λn:

Aϕn = λn ϕn, n = 1, 2, · · · .

Then, the sequence {ϕn}n∈N is an orthonormal basis in L2(Ω). Since u(t) ∈ L2(Ω), we have

u(t) =
∞

∑
j=1

uj(t)ϕj,

where uj(t) = (u(t), ϕj) is the jth Fourier coefficient. Taking an inner product between (9) and ϕj,
we have an infinite number of linear integro-differential equations:

∂tuj(t) + λj(β ∗ uj)t = f j(·, t), (10)

where f j(·, t) = ( f (·, t), ϕj) and uj0 = (u0, ϕj).
Taking Laplace Transform both sides of (10), we get

zûj(z)− uj0 + λjz1−αûj(z) = f̂ j,

where ĥj(z) =
∫ ∞

0 e−ztuj(t)dt is the Laplace Transform of uj. Simplifying, we get

ûj =
(uj0 + f̂ j(z)

z + λjz1−α

)
.

By taking the inverse Laplace Transform, we get

L−1
( 1

z + λjz1−α

)
= Eα(−λjtα). (11)

Now, the representation for uj of (10) is given by

uj = Eα(−λjtα)uj0 +
∫ ∞

0
Eα(−λj(t− s)α) f j(·, s)ds. (12)

Thus, a formal solution of (9) is given by

u(t) = E(t)u0 +
∫ t

0
E(t− s) f (·, s)ds, (13)

where

E(t)u0 =
∞

∑
j=1

Eα(−λjtα)(u0, ϕj)ϕj, (14)

u(·, t) =

⎧⎪⎪⎨⎪⎪⎩
E(t)u0 +

∫ t

0
E(t− s) f (·, s)ds, t ∈ [0, t1],

E(t)u0 + ∑
ti<t
E(t− ti)Ii(u(·, ti)) +

∫ t

0
E(t− s) f (·, s)ds, t ∈ (ti, ti+1], i = 1, · · · , P.

(15)
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3.2. Weak Formulation

Rewriting the (3) in unified form, we get⎧⎪⎪⎨⎪⎪⎩
∂tu + ∂1−α

t Au = f (x, t) + ∑1≤i≤P Ii(u(·, ti))δ(t− ti) in Ω× (0, T),

u = 0 on Γ× (0, T),

u(·, 0) = u0 in Ω.

(16)

A weak formulation of (16) is to find a u ∈ PC(0, T; H1
0(Ω)) such that

(∂tu, v) + (∂1−α
t Au, v) = ( f , v) + ∑

i
(Ii(u(·, ti))δ(t− ti), v), v ∈ H1

0(Ω). (17)

Thus, we have a variational form of (16) as follows:

(∂tu, v)dt + a(u, v) = l(v), (18)

where,

a(u, v) = (∂1−α
t Au, v) =

∫
Ω

∂1−α
t ∇u · ∇vdx,

l(v) = ( f , v)dt +
P

∑
i=1

(Ii(u(ti))δ(t− ti), v),

with the following conditions:

1. a(·, ·) is bounded or continuous i.e.|a(u, v)|H1
0 (Ω) ≤ C1‖u‖H1

0 (Ω)‖v‖H1
0 (Ω),

2. a(·, ·) is coercive i.e.A(u, u) ≥ C2‖u‖H1
0 (Ω),

3. l is continuous.

Definition 1. A function u : [0, T]→ H1
0(Ω) is called a weak solution of (3) if :

(1) u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) and ∂tu ∈ L2(0, T; H−1(Ω)) ∩ PC(0, T; H−1(Ω)),
(2) For every v ∈ H1

0(Ω), u satisfies (18),
(3) u(0) = u0.

Based on the above analysis, we can now formulate the following two theorems.

Theorem 1. For every f ∈ L2(0, T; H−1(Ω)) and u0 ∈ H1
0(Ω), there exists a unique weak solution

u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) of (3).

Proof. Existence and uniqueness of weak solution is followed by the Lax-Milgram theorem.

Theorem 2. For every f ∈ L2(0, T; H−1(Ω)) and u0 ∈ H1
0(Ω), there exists a unique mild solution

u ∈ L2(0, T; H1
0(Ω)) ∩ PC(0, T; H1

0(Ω)) of (3) and given by (15).

4. Dual System

In order to establish approximate controllability, we also need to consider the dual system for (3),
a similar strategy for partial differential equations of integer order (see Section 8 in [21] or Chapters 2
and 3 in [22] for example). The dual system for (3), which runs backward in time, is given by;
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂tv + D1−α

t Av = 0 in Ω× (0, T),

Δv(·, ti) = I∗i (v(·, ti)), i = 1, 2, 3, · · · , P,

v = 0 on Γ× (0, T),

v(·, T) = v0 in Ω.

(19)

4.1. Solution of Dual System

Proposition 1. Let v0 ∈ L2(Ω). Then, there exists a unique solution of (19) and the solution is given by

v(x, t) =
∞

∑
n=1

(T − t)α−1Eα,α(−λn(T − t)α)(v0, ϕn)ϕn(x)

+ ∑
t<T−ti

∞

∑
n=1

(T − t− ti)
α−1Eα,α(−λn(T − t− ti)

α)(I∗i (v(·, ti)), ϕn)ϕn(x) (20)

and has the following estimate:

‖v(·, t)‖L2(Ω) ≤ C

⎛⎝(T − t)α−1‖v0‖L2(Ω) + P‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2
⎞⎠ , (21)

where ‖Iim‖L2(Ω) = sup1≤i≤P{‖Ii‖L2(Ω)}.
Moreover, the mapping v : [0, T]→ L2(Ω) is analytically extended to ST := {z ∈ C; Re z < T}.

Proof. Here, we establish existence and uniqueness of solution of (19) for v0 = 0.
Multiplying (19) with ϕn and setting vn(t) = (v(·, t), ϕn), we get

∂tvn(t) + λn∂1−α
t vn(t) + ∑

t<T−ti

(I∗i (v(ti), ϕn) = 0. (22)

Since
|vn(t)|2 ≤∑ |vn(t)|2 = ‖v(·, t)‖2

L2(Ω) → 0 as t → T,

we have
vn(T) = 0. (23)

From existence and uniqueness of the solution of the fractional differential equation (see [12]),
we get

vn(t) = 0, n = 1, 2, 3, · · · .

As {ϕn} is a complete orthonormal system, we have

v = 0 in Ω× (0, T).

Thus, Equation (19) has a unique solution.
Now, we show the estimate (21).

264



Mathematics 2019, 7, 190

By (20), we have

‖v(·, t)‖2
L2(Ω)

≤
∥∥∥∥∥ ∞

∑
n=1

(v0, ϕn)(T − t)α−1Eα,α(−λn(T − t)α)ϕn

∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥∑ ∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕn)ϕn(x)

)
(T − t− ti)

α−1Eα,α(−λn(T − t− ti)
α)

∥∥∥∥∥
2

L2(Γ)

=
∞

∑
n=1

∣∣∣(v0, ϕn)(T − t)α−1Eα,α(−μk(T − t)α)
∣∣∣2

+
∞

∑
n=1

∣∣∣∣∣ ∑
t<T−ti

(I∗i (v(·, ti)), ϕn)(T − t− ti)
α−1Eα,α(−μk(T − t− ti)

α)

∣∣∣∣∣
2

= C2

(
∞

∑
n=1
|(v0, ϕn)|2

)
(T − t)2α−2 + C2 ∑

t<T−ti

(T − t− ti)
2α−2

(
∞

∑
n=1
|(I∗i (v(·, ti)), ϕn)|2

)
.

Therefore,

‖v(·, t)‖L2(Ω) ≤ C

⎛⎝(T − t)α−1‖v0‖L2(Ω) + P‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2
⎞⎠ .

Next, we show the analyticity of v(·, t) in t ∈ ST .
We note that Eα,α(−λnz) is an entire function (see [20] for example) and consequently each

(T − z)α−1Eα,α(−λn(T − z)α) is analytic in z ∈ ST . Therefore, ∑N
n=1(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)ϕn

in ST .
If we fix δ > 0 arbitrarily, then, for z ∈ C with Re z ≤ T − δ, we have∥∥∥∥∥ N

∑
n=M

(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)ϕn

∥∥∥∥∥
2

L2(Ω)

=
N

∑
n=M

∣∣∣(v0, ϕn)(T − z)α−1Eα,α(−λn(T − z)α)
∣∣∣2

≤ C
N

∑
n=M

|(v0, ϕn)|2|T − z|2α−2

≤ Cδ2α−2
N

∑
n=M

|(v0, ϕn)|2 → 0 as M, N → ∞.

That is, (20) is uniformly convergent in {z ∈ C; Re z ≤ T − δ}. Hence, v(·, t) is also analytic in
t ∈ ST .

4.2. Unique Continuation Property

Proposition 2. Let ω be open in Ω and v0 ∈ L2(Ω). If a solution v ∈ PC(0, T; H2(Ω) ∩ H1
0(Ω)) be the

solution of (19) vanishing in ω× (0, T), then v = 0 in Ω× (0, T).
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Proof. Since v(x, t) = 0 in ω × (0, T) and v : [0, T) → L2(Γ) can be analytically extended to
ST := {z ∈ C; Re z < T}, we have

v(x, t) = ∑∞
n=1(v0, ϕn)(T − t)α−1Eα,α(−λn(T − t)α)ϕn(x)

+∑t<T−ti ∑∞
n=1(I∗i (v(·, ti)), ϕn)(T − t− ti)

α−1Eα,α(−λn(T − t− ti)
α)ϕn(x)

= 0, x ∈ ω, t ∈ (−∞, T).

(24)

Let {μk}k∈N be all spectra of L without multiplicities and we denote by {ϕkj}1≤j≤mk an
orthonormal basis of Ker(μk − L). By using these notations, we can rewrite (24) by

v(x, t) = ∑∞
k=1

(
∑mk

j=1(v0, ϕkj)ϕkj(x)
)
(T − t)α−1Eα,α(−μk(T − t)α)

+∑t<T−ti ∑∞
k=1

(
∑mk

j=1(I∗i (v(·, ti)), ϕkj)ϕkj(x)
)
(T − t− ti)

α−1Eα,α(−μk(T − t− ti)
α)

= 0, x ∈ ω, t ∈ (−∞, T).

(25)

Then, for any z ∈ C with Re z = ξ > 0 and N ∈ N, we have∥∥∥∥∥ N

∑
k=1

(
mk

∑
j=1

(v0, ϕkj)ϕkj(x)

)
ez(t−T)(T − t)α−1Eα,α(−μk(T − t)α)

∥∥∥∥∥
2

L2(Γ)

=
N

∑
k=1

(
mk

∑
j=1
|(v0, ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t)α−1Eα,α(−μk(T − t)α)
∣∣∣2

≤ C2e2ξ(t−T)(T − t)2α−2‖v0‖L2(Ω)

and ∥∥∥∥∥ N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕkj)ϕkj(x)

)
(T − t− ti)

α−1Eα,α(−μk(T − t− ti)
α)

∥∥∥∥∥
2

L2(Γ)

=
N

∑
k=1

∑
t<ti

(
mk

∑
j=1
|(I∗i (v(·, ti)), ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t− ti)
α−1Eα,α(−μk(T − t− ti)

α)
∣∣∣2

≤
N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1
|(I∗i (v(·, ti)), ϕkj)|2

)
e2ξ(t−T)

∣∣∣(T − t− t)α−1Eα,α(−μk(T − t− ti)
α)
∣∣∣2

≤ PC2e2ξ(t−T)‖I∗im‖
2
L2(Ω) ∑

t<T−ti

(T − t− ti)
2α−2,

where ‖Iim‖L2(Ω) = sup1≤i≤P{‖Ii‖L2(Ω)}.
Therefore, ∥∥∥∥∥ N

∑
k=1

(
mk

∑
j=1

(v0, ϕkj)ϕkj(x)

)
ez(t−T)(T − t)α−1Eα,α(−μk(T − t)α)

∥∥∥∥∥
L2(Γ)

≤ Ceξ(t−T)(T − t)α−1‖v0‖L2(Ω)
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and ∥∥∥∥∥ N

∑
k=1

∑
t<T−ti

(
mk

∑
j=1

(I∗i (v(·, ti)), ϕkj)ϕkj(x)

)
(T − t− ti)

α−1Eα,α(−μk(T − t− ti)
α)

∥∥∥∥∥
L2(Γ)

≤ PCeξ(t−T)‖I∗im‖L2(Ω)

(
∑

t<T−ti

(T − t− ti)
2α−2

) 1
2

.

The right-hand sides of the two inequalities above are integrable on (−∞, T):

∫ T

−∞
eξ(t−T)(T − t)α−1dt =

Γ(α)
ξα

and ∫ T−ti

−∞
eξ(ti+t−T)(T − t− ti)

α−1dt =
∫ ∞

0
e−ξttα−1dt =

Γ(α)
ξα

.

Hence, the Lebesgue theorem yields that∫ T
−∞ ez(t−T)

(
∑∞

n=1

(
∑mk

j=1(v0, ϕkj)ϕkj(x)
)
(T − t)α−1Eα,α(−μk(T − t)α)

)
dt +
∫ T−ti
−∞ ez(ti+t−T)

×
(

∑t<T−ti ∑∞
n=1

(
∑mk

j=1(I∗i (v(·, ti)), ϕkj)ϕkj(x)
)
(T − t− ti)

α−1Eα,α(−μk(T − t− ti)
α)
)

dt

= ∑∞
k=1 ∑mk

j=1
(v0+∑t<T−ti

I∗i (v(·,ti)),ϕkj)

zα+μk
ϕkj(x), a. e. x ∈ Ω, Re z > 0,

(26)

where we have used the Laplace transform formula;∫ ∞

0
e−zttα−1Eα,α(−μktα)dt =

1
zα + μk

, Re z > 0

(see (1.80) in p. 21 of [20]). By (25) and (26), we have

∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

zα + μk
ϕkj(x) = 0, a. e. x ∈ ω, Re z > 0,

that is,
∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

η + μk
ϕkj(x) = 0, a. e. x ∈ ω, Re η > 0.

By using analytic continuation in η, we have

∞

∑
k=1

mk

∑
j=1

(v0 + ∑t<T−ti
I∗i (v(·, ti)), ϕkj)

η + μk
ϕkj(x) = 0, a. e. x ∈ ω, η ∈ C \ {−μk}k∈N. (27)

Then, we can take a suitable disk which includes −μ� and does not include {−μk}k �=�.
By integrating (27) in the disk, we have

m�

∑
j=1

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ�j)ϕ�j(x) = 0, a. e. x ∈ ω.

By setting ṽ� := ∑m�
j=1(v0 + ∑t<T−ti

I∗i (v(·, ti)), ϕ�j)ϕ�j(x), we have

(A− μ�)ṽ� = 0 in Ω and ṽ� = 0 on ω.
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Therefore, the unique continuation result for eigenvalue problem of elliptic operator
(see [23,24]) implies

ṽ�(x) =
m�

∑
j=1

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ�j)ϕ�j(x) = 0, x ∈ Ω

for each � ∈ N. Since {ϕ�j}1≤j≤m�
is linearly independent in Ω, we see that

(v0 + ∑
t<T−ti

I∗i (v(·, ti)), ϕ�j) = 0, 1 ≤ j ≤ m�, � ∈ N.

This implies v = 0 in Ω× (0, T).

5. Approximate Controllability

In this section, we complete the proof of our main theorems.

Theorem 3. Let 0 < α < 1 and ω be an open set in Ω. Then, Equation (3) is approximately controllable for
arbitrarily given T > 0. That is,

{u(·, T); f ∈ C∞
0 (ω× (0, T))} = L2(Ω), (28)

where u is the solution to (3) and the closure on the left-hand side is taken in L2(Ω).

We start the proof with a lemma.

Lemma 4. If the conclusion of Theorem (3) is true for u0 ≡ 0, then it is true for any u0 ∈ H1
0 (Ω).

Proof. Let u0 ∈ H1
0(Ω) and uT ∈ L2(Ω). Let ε > 0. Let us introduce ū the (mild) solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩

ūt + ∂1−α
t Aū = 0 (x, t) ∈ Ω× (0, T),

Δu(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,
ū (x, t) = 0, t ∈ Γ× (0, T),
ū (x, 0) = u0(x), x ∈ Ω.

Then, ū(T) ∈ L2(Ω). Therefore, using the assumption of Lemma 4, there exists f ∈ C∞
0 (ω× (0, T))

such that the solution w of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tw + ∂1−α

t Aw = f (x, t) (x, t) ∈ Ω× (0, T),
Δu(·, ti) = Ii(u(·, ti)), i = 1, 2, 3, · · · , P,
w (1, t) = 0, t ∈ Γ× (0, T),
w (x, 0) = 0, x ∈ Ω,

satisfies
‖w(T)− (uT − ū(T))‖L2(Ω) ≤ ε.

One can easily see that u(T) = w(T) + ū(T), so that the proof of Lemma 4 is achieved.

We now assume that u0 ≡ 0.
In order to complete the proof of Theorem 3, we will see that the unique continuation property

for (19) is equivalent to the approximate controllability for (3) stated in Theorem 3.
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Proof. Let u be a solution of (3) for f ∈ C∞
0 (ω× (0, T)) and let v be a solution of (19) for v0 ∈ L2(Ω).

Then, we see that

0 =
∫ T

0

∫
Ω

(
∂tu + ∂1−α

t Au− f
)
vdxdt

=
∫ T

0

∫
Ω
(∂tu)vdxdt +

∫ T

0

∫
Ω
(∂1−α

t Au)vdxdt

−
∫ T

0

∫
Ω

f vdxdt−
∫ T

0

∫
Ω

∑
1≤i≤P

Ii(u(ti))δ(t− ti)vdxdt.

In the above equation, the first term is calculated as follows:

∫ T−δ

0

∫
Ω
(∂tu)vdxdt =

∫ T−δ

0

∫
Ω
(∂tu)vdxdt

=
∫

Ω
uv
∣∣∣∣t=T−δ

t=0
dx−

∫ T−δ

0

∫
Ω

u(∂tv)dxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u(∂tv)dxdt.

Here, we have used the integration in t by parts and the initial conditions in (3) and (19).
In terms of u ∈ PC(0, T; H2(Ω)) and v ∈ PC(0, T; H2(Ω) ∩ H1

0(Ω)), we apply the
Green formula to the second term, we have∫ T−δ

0

∫
Ω
(∂1−α

t Au)vdxdt =
∫ T−δ

0

∫
Ω
(∂1−α

t u)(Av)dxdt +
∫ T−δ

0

∫
Γ

(
u

∂v
∂νA

− ∂u
∂νA

v
)

dσxdt

= −
∫ T−δ

0

∫
Ω

u(D1−α
t Av)dxdt.

In the above calculation, we have used boundary conditions in (3) and (19).
Therefore, we have

0 =
∫ T−δ

0

∫
Ω
(∂tu)vdxdt +

∫ T−δ

0

∫
Ω
(∂1−α

t Au)vdxdt−
∫ T−δ

0

∫
Ω

f vdxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u(Dtv)dxdt−
∫ T−δ

0

∫
Ω

u(D1−α
t Av)dxdt

−
∫ T−δ

0

∫
Ω

f vdxdt−
∫ T

0

∫
Ω

∑
1≤i≤P

Ii(u(ti))δ(t− ti)vdxdt

=
∫

Ω
u(·, T − δ)v0dx +

∫ T−δ

0

∫
Ω

u
(
∂tv− D1−α

t Av
)
dxdt

−
∫ T−δ

0

∫
Ω

f vdxdt−
∫

Ω
∑

1≤i≤P
Ii(u(ti))vdx

=
∫

Ω
u(·, T − δ)v0dx−

∫ T−δ

0

∫
Ω

f vdxdt− ∑
1≤i≤P

∫
O

Ii(u(ti))vdx.

Since u ∈ PC([0, T], L2(Ω)) and v(·, T) = v0 and taking δ → 0, we get

∫
Ω

u(·, T)v0dx− ∑
1≤i≤P

∫
O

Ii(u(ti))vdx =
∫ T

0

∫
Ω

f vdxdt. (29)
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In order to prove density of {u(·, T); f ∈ C∞
0 (ω× (0, T))} in L2(Ω), we have to show that,

if v0 ∈ L2(Ω) satisfies

(u(·, T), v0) =
∫

Ω
u(·, T)v0dx = 0 (30)

for any f ∈ C∞
0 (ω× (0, T)), then v0 ≡ 0. This can be shown as follows: we have

∫ T

0

∫
Ω

f vdxdt = 0

for any f ∈ C∞
0 (ω× (0, T)). Then, by the fundamental theorem of the calculus of variations. we have

v(x, t) = 0, (x, t) ∈ ω× (0, T).

By proposition (2), we have

v(x, t) = 0, (x, t) ∈ Ω× (0, T).

By uniqueness of the solution of (1),

v0(x) = 0, x ∈ Ω,

which gives {u(·, T); f ∈ C∞
0 (ω× (0, T))}⊥ = {0}. Hence, {u(·, T); f ∈ C∞

0 (ω × (0, T))} is dense
in L2(Ω).

Thus, the proof of Theorem (3) is completed.

6. Example

Example 1. Consider the following relaxations’ oscillation equation with fractional order given by

∂

∂t
u(x, t) =

∂1−α

∂t1−α

∂2

∂x2 u(x, t) + f (x, t), t ∈ I = (0, T), x ∈ Ω = (0, π),

u(0, t) = u(π, t) = 0 t ∈ (0, T),

u(x, 0) = u0, x ∈ (0, π),

Δu(x, tk) = −u(x, tk) k = 1, 2, · · · , N. (31)

Now, consider the corresponding system Let u(t)x = u(x, t) and assume f (x(t), t) to be a
continuous function with respect to t that satisfies the Lipschitz condition in x. Define the operator
Au = ∂2u

∂x2 with domain

D(A) = {x ∈ L2(0, π) : x, x
′

are absolutely continuous and x, x
′
, x
′′ ∈ L2(0, π)}.

It is well known that for α = 1, sectorial operator, A = ∂2

∂x2 generates an analytic semigroup and

for α = 2, sectorial operator, A = ∂2

∂x2 generates a cosine family of operators.
Using the above notation, now consider the following system

∂u
∂t

=
∂1−α

∂t1−α
Au, t ∈ I = (0, T), x ∈ Ω = (0, π),

u(0, t) = u(π, t) = 0 t ∈ (0, T),

u(x, 0) = 0, x ∈ (0, π),

Δu(x, tk) = −u(x, tk) k = 1, 2, · · · , N. (32)
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The above problem can be posed as an abstract problem on X = L2(0, π) = U, and hence it has a
unique solution. Hence under the assumption of Theorem, the problem is approximately controllable.

Example 2. By choosing the function cos(t2)exp(−t), we get the following relaxations oscillation equation
with fractional order given by

∂1.8
t u(t) + Au(t) = cos(t2)exp(−t), u(0) = 1, u′(0) = 1, (33)

where A is the operator mentioned above.

The graphical illustration of Example 2 is depicted in the Figure 1.

Figure 1. Comparison of solution of (33) with varied relaxation coefficients, A = 1, 2 and 3.

7. Discussion

This paper presents a fractional sub-diffusion equation of an impulsive system (3) and its dual (19).
The unique continuation Property 2 of the dual system plays a crucial role in the proof of our main
result, approximate controllability Theorem 3 of the primal system with an interior control acts on
a sub-domain. As an example, the approximate controllability of a fractional relaxation-oscillation
equation is discussed and simulated for different relaxation coefficients.
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Abstract: In this article, by using the monotone iterative technique coupled with the method of upper
and lower solution, we obtain the existence of extremal iteration solutions to conformable fractional
differential equations involving Riemann-Stieltjes integral boundary conditions. At the same time,
the comparison principle of solving such problems is investigated. Finally, an example is given to
illustrate our main results. It should be noted that the conformal fractional derivative is essentially
a modified version of the first-order derivative. Our results show that such known results can be
translated and stated in the setting of the so-called conformal fractional derivative.

Keywords: fractional differential equations; Riemann-stieltjes integral; monotone iterative method;
upper and lower solutions

1. Introduction

Fractional calculus is an excellent tool for the description of the process of mathematical analysis
in various areas of finance, physical systems, control systems and mechanics, and so forth [1–5]. Many
methods are used to study various fractional differential equations, such as fixed point index theory [6],
iterative method [7–9], theory of linear operator [10,11] sequential techniques, and regularization [12],
fixed point theorems [13–17], the Mawhin continuation theorem for resonance [18–22], the variational
method [23]. The definition of the fractional order derivative used in the aforementioned results is
either the Caputo or the Riemann-Liouville fractional order derivative. Recently, Khalil et al. [24] gave
a new simple fractional derivative called “the conformable fractional derivative” depending on the
familiar limit definition of the derivative of a function and that break with other definitions. This new
fractional derivative is called “the conformable fractional derivative” and this new theory is improved
by Abdeljawad [25]. However, a conformal fractional derivative is not a fractional derivative, it is
simply a first derivative multiplied by an additional simple factor. Therefore, this new definition
seems to be a natural extension of the classical derivative. However, it has the advantage of being
different from other fractional differentials. Firstly, it can integrate the standard properties of fractional
derivatives. It is suitable for many extensions to the classical theorem of calculus, such as the derivative
of the product and compound of two functions, the Rolle’s and the mean value theorem, conformable
integration by parts, fractional power series expansion and many more. Secondly, the conformal
fractional derivative of the real function is zero, and the Riemann-Liouville fractional derivative
does not satisfy this property. For the two iterative conformal differentials, the semigroup property
is not satisfied, and the Caputo differential satisfies this. In particular, for functions that are not
differentiable, in conformal sense; however, the function is differentiable. Some functions are not
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infinitely differentiable at some points; where there is no Taylor power series expansion, in conformal
calculus theory, they do exist. This led many people wanting to explore it. Please see [26–34] for recent
developments on conformable differentiation. For example, a mean value theorem of the conformable
fractional calculus on arbitrary time scales is proved in [33], and whose results reconciled with familiar
classical results when the operator Tα is of order α = 1 and the time scale coincides with the set of
real numbers. In [34], Asawasamrit and Ntoutas introduced a new definition of exponential notations
and by employing the method of lower and upper solution combined with the monotone iterative
technique, some new conditions for the existence of solutions are presented.

Motivated by the above works, we consider the existence of solutions for the following nonlinear
conformable fractional differential equation involving integral boundary condition, using the method
of upper and lower solutions and its associated monotone iterative technique⎧⎨⎩ Dαx(t) = f (t, x(t)), t ∈ [0, 1],

x(0) =
∫ 1

0
x(t)dμ(t),

(1)

where f ∈ C([0, 1]×R,R),
∫ 1

0 x(t)dμ(t) denotes the Riemann-Stieltjes integral with positive Stieltjes
measure of μ, and Dα f (t) stands for the conformable fractional derivative. Based on a comparison
result, two monotone iterative sequences are obtained using the upper and lower solutions, and these
two sequences approximate the extremal solutions of the given problem. For applications of the
method of upper and lower solutions and monotone iterative technique to differential equations and
differential systems such as ordinary differential equations [35–37], ordinary differential systems [38],
fractional differential equations [39–42], fractional differential systems [43].

2. Preliminaries

In this section, we briefly show some necessary definitions and results which will be used in our
main results.

Definition 1. [24] Let f : [0,+∞)→ R and t > 0. The conformable fractional derivative of order 0 < α ≤ 1
is defined by

Dα f (t) = lim
ρ→0

f (t + ρt1−α)− f (t)
ρ

for t > 0 and the conformable fractional derivative at 0 is defined as Dα f (0) = lim
t→0+

(Dα f )(t). If f is

differentiable then Dα f (t) = t1−α f ′(t).

Definition 2. [24] Let α ∈ (0, 1]. The conformable fractional integral of a function f : [0,+∞)→ R of order
α is denoted by Iα f (t) and is defined as

Iα f (t) =
∫ t

0
sα−1 f (s)ds.

Lemma 1. [25] Let f : (0,+∞)→ R be differentiable and 0 < α ≤ 1. Then, for all t > 0 we have

IαDα f (t) = f (t)− f (0).

Lemma 2. [24] Let α ∈ (0, 1], l1, l2, q, k ∈ R, and the functions f , h be α-differentiable on [0,+∞). Then

(i) Dαk = 0 for all constant functions f (t) = k;
(ii) Dα(l1 f + l2 f ) = l1Dα f (t) + l2Dαh(t);
(iii) Dαtq = qtq−α;
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(iv) Dα( f h) = f (t)Dαh(t) + h(t)Dα f (t);

(v) Dα(
f
h ) =

hDα f− f Dαh
h2 when h(t) �= 0.

Theorem 1. [24] (Mean value theorem) Let [a, b] ⊂ [0,+∞), and let f : [0,+∞)→ R. Suppose that

(1) f is continuous on [a, b];
(2) f is α-differentiable for some α ∈ (0, 1] on [a, b].

Then there exists a constant ξ ∈ (a, b), such that Dα f (ξ) = f (b)− f (a)
1
α bα− 1

α aα
.

Definition 3. A function u ∈ C([0, 1],R) is known as a lower solution of (1), if it satisfies

Dαu(t) ≤ f (t, u(t)), t ∈ [0, 1], (2)

u(0) ≤
∫ 1

0
u(t)dμ(t). (3)

If inequalities (2), (3) are reversed, then u is an upper solution of problem (1).

Next, we present the following existence and uniqueness results for linear equations.

Lemma 3. Let 0 < α ≤ 1, a ∈ R and M, N ∈ C([0, 1],R). Then linear fractional differential equation
involving integral boundary problem:⎧⎨⎩ Dαu(t) = −M(t)u(t) + N(t), t ∈ [0, 1],

u(0) =
∫ 1

0
u(t)dμ(t) + a

(4)

has a unique solution provided α = 1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdμ(t) �= 0.

Proof. Multiplying both sides of the first equation of the problem (4) by e
∫ t

0 sα−1 M(s)ds and using
Lemma 2, we can get

e
∫ t

0 sα−1 M(s)dsDαu(t) + M(t)u(t)e
∫ t

0 sα−1 M(s)ds = N(t)e
∫ t

0 sα−1 M(s)ds.

In other words, by means of the product rule (item (iv) of Lemma 2), the above equality turns to

Dα[e
∫ t

0 sα−1 M(s)dsu(t)] = N(t)e
∫ t

0 sα−1 M(s)ds. (5)

Applying the conformable fractional integral of order α to both side of (5), we have

e
∫ t

0 sα−1 M(s)dsu(t)− u(0) = Iα[N(t)e
∫ t

0 sα−1 M(s)ds]

=
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτds.

Then

u(t) = e−
∫ t

0 sα−1 M(s)ds[u(0) +
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτds]. (6)

From the boundary condition of (4), we have(
1−
∫ 1

0
e−
∫ t

0 sα−1 M(s)dsdμ(t)
)

u(0)

=
∫ 1

0
e−
∫ t

0 sα−1 M(s)ds
∫ t

0
sα−1N(s)e

∫ s
0 τα−1 M(τ)dτdsdμ(t) + a.
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On account of condition α �= 0, then

u(0) =

∫ 1
0 e−

∫ t
0 sα−1 M(s)ds ∫ t

0 sα−1N(s)e
∫ s

0 τα−1 M(τ)dτdsdμ(t) + a

1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdμ(t)
,

thus problem (4) has a unique solution. The proof is finished.

In the next Lemma, we discuss comparison results for the linear problem which play a key role in
the proof of the main result.

Lemma 4. Let 0 < α ≤ 1. Suppose that M, u ∈ C([0, 1],R) satisfies⎧⎨⎩ Dαu(t) ≤ −M(t)u(t), t ∈ [0, 1],

u(0) ≤
∫ 1

0
u(t)dμ(t).

Then u(t) ≤ 0 on [0, 1] provided α > 0.

Proof. Let N(t) = Dαu(t) + M(t)u(t) and a = u(0)−
∫ 1

0 u(t)dμ(t), we know that N(t) ≤ 0, a ≤ 0 and⎧⎨⎩ Dαu(t) = −M(t)u(t) + N(t), t ∈ [0, 1],

u(0) =
∫ 1

0
u(t)dμ(t) + a

Using α > 0, we have

u(0) =

∫ 1
0 e−

∫ t
0 sα−1 M(s)ds ∫ t

0 sα−1N(s)e
∫ s

0 τα−1 M(τ)dτdsdμ(t) + a

1−
∫ 1

0 e−
∫ t

0 sα−1 M(s)dsdμ(t)
≤ 0.

Then by (6), we can conclude that

u(t) ≤ e−
∫ t

0 sα−1 M(s)dsu(0) ≤ 0.

The proof is complete.

3. Main Results

In this section, we prove the existence of extremal solutions for conformable fractional differential
equations involving integral boundary condition. For convenience, we list some assumptions.

(H1): f : [0, 1]×R→ R is continuous.
(H2): Assume that v0, w0 ∈ E = C[0, 1] is lower and upper solution of problem (1), and

v0(t) ≤ w0(t).
(H3): There exists a function M ∈ E with α > 0 which satisfies

f (t, x)− f (t, x) ≤ M(t)(x− x),

for v0(t) ≤ x ≤ x ≤ w0(t).

Theorem 2. Assume that (H1), (H2), (H3) hold. Then there exist monotone iterative sequences
{vn}∞

n=0, {wn}∞
n=0 ⊂ E such that

lim
n→∞

vn = v, lim
n→∞

wn = w

uniformly on [0, 1], and v, w are the extremal solutions of problem (1) in the sector [v0, w0] = {g ∈ E : v0(t) ≤
g(t) ≤ w0(t), 0 ≤ t ≤ 1}.
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Proof. For all vn, wn ∈ E, let⎧⎪⎪⎨⎪⎪⎩
Dαvn+1(t) = f (t, vn(t))−M(t)(vn+1(t)− vn(t)), t ∈ [0, 1],
Dαwn+1(t) = f (t, wn(t))−M(t)(wn+1(t)− wn(t)), t ∈ [0, 1],

vn+1(0) =
∫ 1

0
vn+1(t)dμ(t), wn+1(0) =

∫ 1

0
wn+1(t)dμ(t).

(7)

Thus, the iterative sequences {vn} and {wn} can be constructed by Lemma 3.
Firstly, we shall prove that

vn ≤ vn+1 ≤ wn+1 ≤ wn, n = 0, 1, 2, . . . .

Let p = v0 − v1. According to (7) and Definition 3, we have⎧⎨⎩ Dα p(t) = Dαv0(t)− Dαv1(t) ≤ f (t, v0(t))− f (t, v0(t)) + M(t)(v1(t)− v0(t)), t ∈ [0, 1],

p(0) ≤
∫ 1

0
v0(t)dμ(t)−

∫ 1

0
v1(t)dμ(t),

i.e., ⎧⎨⎩ Dα p(t) ≤ −M(t)p(t), t ∈ [0, 1],

p(0) ≤
∫ 1

0
p(t)dμ(t).

Therefore, by Lemma 4, we have v0(t) ≤ v1(t). Similarly, we can prove that w1(t) ≤ w0(t), t ∈ [0, 1].
Now, let r = v1 − w1, according to (7) and (H3), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dαr(t) = f (t, v0(t))− f (t, w0(t))−M(t)(v1(t)− v0(t)− w1(t) + w0(t))
≤ M(t)(w0(t)− v0(t))−M(t)(v1(t)− v0(t)− w1(t) + w0(t))
= −M(t)r(t),

r(0) =
∫ 1

0 r(t)dμ(t).

By Lemma 4, we have v1(t) ≤ w1(t), t ∈ [0, 1].
Secondly, we show that v1, w1 are lower and upper solutions of (1), respectively.⎧⎪⎪⎪⎨⎪⎪⎪⎩

Dαv1(t) = f (t, v0(t))−M(t)(v1(t)− v0(t))− f (t, v1(t)) + f (t, v1(t))
≤ M(t)(v1(t)− v0(t))−M(t)(v1(t)− v0(t)) + f (t, v1(t))
= f (t, v1(t)),

v1(0) =
∫ 1

0 v1(t)dμ(t).

According to (H3) and Definition 3, we deduce that v1 is a lower solution of (1). Similarly, w1 is a
upper solutions of (1). By the above arguments and mathematical induction, it is clear that

v0 ≤ · · · ≤ vn ≤ vn+1 ≤ wn+1 ≤ wn ≤ · · · ≤ w0, n = 0, 1, 2, . . . . (8)

Thirdly, we show that lim
n→∞

vn = v, lim
n→∞

wn = w. Hence, we need to conclude that vn, wn are uniformly

bounded and equicontinuous on [0, 1]. Obviously, the uniform boundedness of sequences vn, wn

follows from (8). Thus, there exists L > 0 such that

| f (t, vn(t))−M(t)(vn+1(t)− vn(t))| ≤ L

and
| f (t, wn(t))−M(t)(wn+1(t)− wn(t))| ≤ L.
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Using Theorem 1, we get

|vn(t1)− vn(t2)| =
1
α
|Dαvn(ξ)||tα

1 − tα
2 |

=
1
α
| f (ξ, vn−1(ξ))−M(ξ)(vn(ξ)− vn−1(ξ))||tα

1 − tα
2 |.

Therefore, {vn} are equicontinuous. Similarly, we obtain that {wn} are equicontinuous too.
By Arzela-Ascoli Theorems, we conclude that {vn}, {wn} have subsequences {vnk}, {wnk} such
that {vnk} → v, and {wnk} → w when k → ∞. This together with the monotonicity of sequences {vn}
and {wn} implies

lim
n→∞

vn(t) = v(t), lim
n→∞

wn(t) = w(t)

uniformly on [0, 1]. Please note that the sequence {vn} satisfies⎧⎨⎩ vn(t) = e−
∫ t

0 sα−1 M(s)ds[vn−1(0) + Rvn−1(t)], t ∈ [0, 1],

vn(0) =
∫ 1

0
vn(t)dμ(t), n = 1, 2, . . . ,

(9)

where

Rvn−1(t) =
∫ t

0
sα−1[ f (t, vn−1(s)) + M(s)vn−1(s)]e

∫ s
0 τα−1 M(τ)dτds.

Let n → ∞ in (9) . We have⎧⎨⎩ v(t) = e−
∫ t

0 sα−1 M(s)ds[v(0) + Rv(t)], t ∈ [0, 1],

v(0) =
∫ 1

0
v(t)dμ(t).

This shows that v is a solution of the nonlinear problem (1). Similarly, we obtain w is a solution of the
nonlinear problem (1) too. And

v0(t) ≤ v(t) ≤ w(t) ≤ w0(t), t ∈ [0, 1].

Finally, we are going to prove that v, w are minimal and maximal solutions of (1) in the sector
[v0, w0]. In the following, we show this using induction arguments. Suppose that g(t) is any solution
of (1) in the [v0, w0] that is

v0(t) ≤ g(t) ≤ w0(t), t ∈ [0, 1].

Assume that vn(t) ≤ g(t) ≤ wn(t) hold. Let p(t) = vn+1(t)− g(t), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Dα p(t) = Dαvn+1(t)− Dαg(t)
= f (t, vn(t))−M(t)(vn+1(t)− vn(t))− f (t, g(t))
≤ M(t)(g(t)− vn(t))−M(t)(vn+1(t)− vn(t))
= −M(t)p(t),

p(0) =
∫ 1

0 p(t)dμ(t).

Then, by Lemma 4, we have vn+1(t) ≤ g(t), t ∈ [0, 1]. By similar method, we can show that g(t) ≤
wn+1(t), t ∈ [0, 1]. Therefore,

vn ≤ g ≤ wn, n = 1, 2, . . . .

By taking n → ∞ in the above inequalities, we get that v ≤ g ≤ w. That is v, w are extremal solutions
of problem (1) in [v0, w0]. Thus, the proof is finished.
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Example 1. Consider the following nonlinear problem:⎧⎪⎪⎨⎪⎪⎩
D 1

2
x(t) = −2

9
(1 + x(t))3 + 9 sin

x2(t)
4

, t ∈ [0, 1],

x(0) =
1
3

x(
1
4
) +

1
6

x(
1
2
).

(10)

Let

μ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, t ∈ [0,
1
4
),

1
3

, t ∈ [
1
4

,
1
2
),

1
2

, t ∈ [
1
2

, 1].

Obviously, α = 1
2 , f (t, x) = − 2

9 (1 + x)3 + 9 sin x2

4 and

∫ 1

0
x(t)dμ(t) =

1
3

x(
1
4
) +

1
6

x(
1
2
).

We can get ∫ 1

0
dμ(t) =

1
2

.

Take
v0(t) = −2, w0(t) = 0,

then, ⎧⎪⎪⎨⎪⎪⎩
D 1

2
v0(t) = 0 <

2
9
+ 9 sin 1 = f (t, v0(t)),

v0(0) = −2 < −1 =
∫ 1

0
v0(t)dμ(t),

and ⎧⎪⎪⎨⎪⎪⎩
D 1

2
w0(t) = 0 > −2

9
= f (t, w0(t)),

w0(0) = 0 =
∫ 1

0
w0(t)dμ(t).

Then v0, w0 are lower and upper solutions of (10). When M(t) = 1, it is easy to verify that assumption (H3)

holds. In addition, ∫ 1

0
e−
∫ t

0 sα−1 M(s)dsdμ(t) =
∫ 1

0
e−t

1
2 dμ(t) <

∫ 1

0
dμ(t) =

1
2
< 1.

By Theorem 2, problem (10) has an extremal iterative solution in [v0, w0].

4. Conclusions

In this article, on the integral boundary value problem for conformable fractional differential
equations, we use the monotone iterative technique to investigate the existence results for extremal
solutions for Equation (1). At the same time, two sequences are obtained using the upper and lower
solutions, and these two sequences approximate the extremal solutions of nonlinear differential
equations. It is clear that the method of using the upper and lower solutions is a very effective method
for studying the solvability of conformable fractional differential equations. However, almost all the
results derived in the paper are more-or-less straightforward extensions of well-known results from the
theory of the first-order differential equations, since the conformal fractional derivative is essentially a
modified version of the first-order derivative.
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1. Introduction and Definitions

Let the class of functions, which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} ,

be denoted by L (U). Also let A denote the class of all functions f , which are analytic in the open unit
disk U and normalized by

f (0) = 0 and f ′ (0) = 1.

Then, clearly, each f ∈ A has a Taylor–Maclaurin series representation as follows:

f (z) = z +
∞

∑
n=2

anzn (z ∈ U) . (1)

Suppose that S is the subclass of the analytic function class A, which consists of all functions
which are also univalent in U.

A function f ∈ A is said to be starlike in U if it satisfies the following inequality:

�
(

z f ′ (z)
f (z)

)
> 0 (z ∈ U) .

We denote by S∗ the class of all such starlike functions in U.
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For two functions f and g, analytic in U, we say that the function f is subordinate to the function
g and write this subordination as follows:

f ≺ g or f (z) ≺ g (z) ,

if there exists a Schwarz function w which is analytic in U, with

w (0) = 0 and |w (z)| < 1,

such that
f (z) = g

(
w (z)

)
.

In the case when the function g is univalent in U, then we have the following equivalence (see, for
example, [1]; see also [2]):

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

Next, for a function f ∈ A given by (1) and another function g ∈ A given by

g(z) = z +
∞

∑
n=2

bnzn (z ∈ U) ,

the convolution (or the Hadamard product) of f and g is defined here by

( f ∗ g) (z) := z +
∞

∑
n=2

anbnzn =: (g ∗ f ) (z) . (2)

Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk U,
which are normalized by

p (z) = 1 +
∞

∑
n=1

cnzn, (3)

such that
�
(

p (z)
)
> 0 (z ∈ U) .

Following the works of Kanas et al. (see [3,4]; see also [5]), we introduce the conic domain Ωk
(k � 0) as follows:

Ωk =

{
u + iv : u > k

√
(u− 1)2 + v2

}
. (4)

In fact, subjected to the conic domain Ωk (k � 0), Kanas and Wiśniowska (see [3,4]; see also [6])
studied the corresponding class k-ST of k-starlike functions in U (see Definition 1 below). For fixed
k, Ωk represents the conic region bounded successively by the imaginary axis (k = 0), by a parabola
(k = 1), by the right branch of a hyperbola (0 < k < 1), and by an ellipse (k > 1).

For these conic regions, the following functions play the role of extremal functions.
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pk(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + z
1− z

= 1 + 2z + 2z2 + · · · (k = 0)

1 +
2

π2

[
log
(

1 +
√

z
1−√z

)]2

(k = 1)

1 +
2

1− k2 sinh2
[(

2
π

arccos k
)

arctan
(
h
√

z
)]

(0 � k < 1)

1 +
1

k2 − 1

[
1 + sin

(
π

2K(κ)

∫ u(z)√
κ

0

dt√
(1− t2)(1− κ2t2)

)]
(k > 1) ,

(5)

where

u(z) =
z−√κ

1−√κz
(z ∈ U) ,

and κ ∈ (0, 1) is so chosen that

k = cosh
(

πK′(κ)
4K(κ)

)
.

Here K(κ) is Legendre’s complete elliptic integral of first kind and

K′(κ) = K
(√

1− κ2
)

,

that is, K′ (κ) is the complementary integral of K (κ) (see, for example, ([7], p. 326, Equation 9.4 (209))).
Indeed, from (5), we have

pk(z) = 1 + p1z + p2z2 + p3z3 + · · · . (6)

The class k-ST is defined as follows.

Definition 1. A function f ∈ A is said to be in the class k-ST if and only if

z f ′ (z)
f (z)

≺ pk (z) (∀ z ∈ U; k � 0) .

We now recall some basic definitions and concept details of the q-calculus which will be used in
this paper (see, for example, ([7], p. 346 et seq.)). Throughout the paper, unless otherwise mentioned,
we suppose that 0 < q < 1 and

N = {1, 2, 3 · · · } = N0 \ {0} (N0 := {0, 1, 2, · · · }) .

Definition 2. Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1− qλ

1− q
(λ ∈ C)

n−1
∑

k=0
qk = 1 + q + q2 + · · ·+ qn−1 (λ = n ∈ N) .

Definition 3. Let q ∈ (0, 1) and define the q-factorial [n]q! by

[n]q! =

⎧⎪⎪⎨⎪⎪⎩
1 (n = 0)

n
∏

k=1
[k]q (n ∈ N) .
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Definition 4 (see [8,9]). The q-derivative (or q-difference) operator Dq of a function f defined, in a given
subset of C, by

(
Dq f
)
(z) =

⎧⎪⎪⎨⎪⎪⎩
f (z)− f (qz)
(1− q) z

(z �= 0)

f ′ (0) (z = 0) ,

(7)

provided that f ′ (0) exists.

From Definition 4, we can observe that

lim
q→1−

(
Dq f
)
(z) = lim

q→1−
f (z)− f (qz)
(1− q) z

= f ′ (z)

for a differentiable function f in a given subset of C. It is also known from (1) and (7) that

(
Dq f
)
(z) = 1 +

∞

∑
n=2

[n]q anzn−1. (8)

Definition 5. The q-Pochhammer symbol [ξ]n,q (ξ ∈ C; n ∈ N0) is defined as follows:

[ξ]n,q =

(
qξ ; q
)

n
(1− q)n =

⎧⎪⎨⎪⎩
1 (n = 0)

[ξ]q [ξ + 1]q [ξ + 2]q · · · [ξ + n− 1]q (n ∈ N) .

Moreover, the q-gamma function is defined by the following recurrence relation:

Γq (z + 1) = [z]q Γq (z) and Γq (1) = 1.

Definition 6 (see [10]). For f ∈ A, let the q-Ruscheweyh derivative operatorRλ
q be defined, in terms of the

Hadamard product (or convolution) given by (2), as follows:

Rλ
q f (z) = f (z) ∗ Fq,λ+1 (z) (z ∈ U; λ > −1) ,

where

Fq,λ+1 (z) = z +
∞

∑
n=2

Γq (λ + n)
[n− 1]q!Γq (λ + 1)

zn = z +
∞

∑
n=2

[λ + 1]q,n−1

[n− 1]q!
zn.

We next define a certain q-integral operator by using the same technique as that used by Noor [11].

Definition 7. For f ∈ A, let the q-integral operator Fq,λ be defined by

F−1
q,λ+1 (z) ∗ Fq,λ+1 (z) = z

(
Dq f
)
(z) .

Then

Iλ
q f (z) = f (z) ∗ F−1

q,λ+1 (z)

= z +
∞

∑
n=2

ψn−1anzn (z ∈ U; λ > −1) , (9)

where

F−1
q,λ+1 (z) = z +

∞

∑
n=2

ψn−1zn
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and

ψn−1 =
[n]q!Γq (λ + 1)

Γq (λ + n)
=

[n]q!

[λ + 1]q,n−1
.

Clearly, we have
I0

q f (z) = z
(

Dq f
)
(z) and I1

q f (z) = f (z) .

We note also that, in the limit case when q → 1−, the q-integral operator Fq,λ given by Definition 7
would reduce to the integral operator which was studied by Noor [11].

The following identity can be easily verified:

zDq

(
Iλ+1

q f (z)
)
=

(
1 +

[λ]q

qλ

)
Iλ

q f (z)−
[λ]q

qλ
Iλ+1

q f (z) . (10)

When q → 1−, this last identity in (10) implies that

z
(
Iλ+1 f (z)

)′
= (1 + λ) Iλ f (z)− λIλ+1 f (z) ,

which is the well-known recurrence relation for the above-mentioned integral operator which was
studied by Noor [11].

In geometric function theory, several subclasses belonging to the class of normalized analytic
functions class A have already been investigated in different aspects. The above-defined q-calculus
gives valuable tools that have been extensively used in order to investigate several subclasses of
A. Ismail et al. [12] were the first who used the q-derivative operator Dq to study the q-calculus
analogous of the class S∗ of starlike functions in U (see Definition 8 below). However, a firm footing
of the q-calculus in the context of geometric function theory was presented mainly and basic (or q-)
hypergeometric functions were first used in geometric function theory in a book chapter by Srivastava
(see, for details, ([13], p. 347 et seq.); see also [14]).

Definition 8 (see [12]). A function f ∈ A is said to belong to the class S∗q if

f (0) = f ′ (0)− 1 = 0 (11)

and ∣∣∣∣ z
f (z)

(
Dq f
)

z− 1
1− q

∣∣∣∣ � 1
1− q

. (12)

It is readily observed that, as q → 1−, the closed disk:∣∣∣∣w− 1
1− q

∣∣∣∣ � 1
1− q

becomes the right-half plane and the class S∗q of q-starlike functions reduces to the familiar class S∗
of normalized starlike functions in U with respect to the origin (z = 0). Equivalently, by using the
principle of subordination between analytic functions, we can rewrite the conditions in (11) and (12) as
follows (see [15]):

z
f (z)

(
Dq f
)
(z) ≺ p̂ (z)

(
p̂ (z) =

1 + z
1− qz

)
. (13)

The notation S∗q was used by Sahoo and Sharma [16].
Now, making use of the principle of subordination between analytic functions and the

above-mentioned q-calculus, we present the following definition.
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Definition 9. A function p is said to be in the class k-Pq if and only if

p (z) ≺ 2pk (z)
(1 + q) + (1− q) pk (z)

,

where pk (z) is defined by (5).

Geometrically, the function p (z) ∈ k-Pq takes on all values from the domain Ωk,q (k � 0) which
is defined as follows:

Ωk,q =

{
w : �

(
(1 + q)w

(q− 1)w + 2

)
> k
∣∣∣∣ (1 + q)w
(q− 1)w + 2

− 1
∣∣∣∣} .

The domain Ωk,q represents a generalized conic region.
It can be seen that

lim
q→1−

Ωk,q = Ωk,

where Ωk is the conic domain considered by Kanas and Wiśniowska [3]. Below, we give some basic
facts about the class k-Pq.

Remark 1. First of all, we see that

k-Pq ⊆ P
[

2k
2k + 1 + q

]
,

where P
[

2k
2k+1+q

]
is the well-known class of functions with real part greater than 2k

2k+1+q . Secondly, we have

lim
q→1−

k-Pq = P (pk) ,

where P (pk) is the well-known function class introduced by Kanas and Wiśniowska [3]. Thirdly, we have

lim
q→1−

0-Pq = P ,

where P is the well-known class of analytic functions with positive real part.

Definition 10. A function f is said to be in the class ST (k, λ, q) if and only if

z
(

DqIλ
q f
)
(z)

f (z)
∈ k-Pq (k � 0; λ � 0) ,

or, equivalently,

�

⎛⎜⎝ (1 + q)
z(DqIλ

q f )(z)
f (z)

(q− 1)
z(DqIλ

q f )(z)
f (z) + 2

⎞⎟⎠ > k

∣∣∣∣∣∣∣
(1 + q)

z(DqIλ
q f )(z)

f (z)

(q− 1)
z(DqIλ

q f )(z)
f (z) + 2

− 1

∣∣∣∣∣∣∣ .
Remark 2. First of all, it is easily seen that

ST (0, 1, q) = S∗q ,

where S∗q is the function class introduced and studied by Ismail et al. [12]. Secondly, we have

lim
q→1−

ST (k, 1, q) = k-ST ,
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where k-ST is a function class introduced and studied by Kanas and Wiśniowska [4]. Finally, we have

lim
q→1−

ST (0, 1, q) = S∗,

where S∗ is the well-known class of starlike functions in U with respect to the origin (z = 0).

Remark 3. Further studies of the new q-starlike function class ST (k, λ, q) , as well as of its more consequences,
can next be determined and investigated in future papers.

Let n ∈ N0 and j ∈ N. The following jth Hankel determinant was considered by Noonan and
Thomas [17]:

Hj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an+2(j−1)

∣∣∣∣∣∣∣∣∣∣∣∣
,

where a1 = 1. In fact, this determinant has been studied by several authors, and sharp upper bounds on
H2 (2) were obtained by several authors (see [18–20]) for various classes of functions. It is well-known
that the Fekete–Szegö functional

∣∣a3 − a2
2

∣∣ can be represented in terms of the Hankel determinant
as H2 (1). This functional has been further generalized as

∣∣a3 − μa2
2

∣∣ for some real or complex μ.
Fekete and Szegö gave sharp estimates of

∣∣a3 − μa2
2

∣∣ for μ real and f ∈ S , the class of normalized
univalent functions in U. It is also known that the functional

∣∣a2a4 − a2
3

∣∣ is equivalent to H2 (2)
(see [18]). Babalola [21] studied the Hankel determinant H3 (1) for some subclasses of normalized
analytic functions in U. The symmetric Toeplitz determinant Tj (n) is defined by

Tj (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+j−1
an+1 . .
. . .
. . .
. . .
an+j−1 . . . . an

∣∣∣∣∣∣∣∣∣∣∣∣
,

so that

T2 (2) =

∣∣∣∣∣∣∣
a2 a3

a3 a2

∣∣∣∣∣∣∣ , T2 (3) =

∣∣∣∣∣∣∣
a3 a4

a4 a3

∣∣∣∣∣∣∣ , T3 (2) =

∣∣∣∣∣∣∣∣∣∣∣

a2 a3 a4

a3 a2 a3

a4 a3 a2

∣∣∣∣∣∣∣∣∣∣∣
,

and so on.
For f ∈ S , the problem of finding the best possible bounds for ||an+1| − |an|| has a long history

(see, for details, [22]). It is a known fact from [22] that∣∣ |an+1| − |an|
∣∣ < c

for a constant c. However, the problem of finding exact values of the constant c for S and its various
subclasses has proved to be difficult. In a very recent investigation, Thomas and Abdul-Halim [23]
succeeded in obtaining some sharp estimates for Tj (n) for the first few values of n and j involving
symmetric Toeplitz determinants whose entries are the coefficients an of starlike and close-to-
convex functions.
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In the present investigation, our focus is on the Hankel determinant and the Toeplitz matrices for
the function class ST (k, λ, q) given by Definition 10.

2. A Set of Lemmas

In order to prove our main results in this paper, we need each of the following lemmas.

Lemma 1 (see [20]). If the function p (z) given by (3) is in the Carathéodory class P of analytic functions with
positive real part in U, then

2c2 = c2
1 + x

(
4− c2

1

)
and

4c3 = c3
1 + 2

(
4− c2

1

)
c1x− c1

(
4− c2

1

)
x2 + 2

(
4− c2

1

) (
1−
∣∣∣x2
∣∣∣) z

for some x, z ∈ C with |x| � 1 and |z| � 1.

Lemma 2 (see [24]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Also let μ ∈ C. Then

|cn − μckcn−k| � 2 max (1, |2μ− 1|) (1 � k � n− 1) .

Lemma 3 (see [22]). Let the function p(z) given by (3) be in the Carathéodory class P of analytic functions
with positive real part in U. Then

|cn| � 2 (n ∈ N) .

This last inequality is sharp.

3. Main Results

Throughout this section, unless otherwise mentioned, we suppose that

q ∈ (0, 1) , λ > −1 and k ∈ [0, 1] .

Theorem 1. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , where k ∈ [0, 1] , then

|a2| �
(1 + q) p1

2qψ1
,

a3 � 1
2qψ2

(
p1 +

∣∣∣∣∣p2 − p1 +

(
q2 + 1

)
p2

1
2q

∣∣∣∣∣
)

and

a4 � (1 + q)
4 (q + q2 + q3)ψ3

(
2p1 + 4

∣∣∣∣∣p2 − p1 +

(
2 + q2) p2

1
4q

∣∣∣∣∣
+

∣∣∣∣∣2p3 + 2p1 − 4p2 −
(
2
(
1 + q2)− q

)
p2

1
q

+

(
4q2 − 3q + 2

)
q

p1 p2

+

(
q2 + 2q− 1

)
2q2 p3

1

∣∣∣∣∣
)

, (14)

where pj (j = 1, 2, 3) are positive and are the coefficients of the functions pk (z) defined by (6). Each of the above
results is sharp for the function g (z) given by

g (z) =
2pk (z)

(1 + q) + (1− q) pk (z)
.

290



Mathematics 2019, 7, 181

Proof. Let f (z) ∈ ST (k, λ, q). Then, we have

z
(

Dq f
)
(z)

f (z)
= q (z) ≺ Sk (z) , (15)

where

Sk (z) =
2pk (z)

(1 + q) + (1− q) pk (z)
,

and the functions pk (z) are defined by (6).
We now define the function p (z) with p (0) = 1 and with a positive real part in U as follows:

p (z) =
1 + S−1

k
(
q (z)

)
1− S−1

k
(
q (z)

) = 1 + c1z + c2z2 + · · · . (16)

After some simple computation involving (16), we get

q (z) = Sk

(
p (z) + 1
p (z)− 1

)
.

We thus find that

Sk

(
p (z) + 1
p (z)− 1

)
= 1 +

(
q + 1

2

)[
p1c1

2
z +

{
p1c2

2
+

(
p2

4
− p1

4
+

(
(q− 1) p2

1
8

))
c2

1

}
z2

+

{
p1c3

2
+

(
p2

2
− p1

2
+

(
(q− 1) p2

1
4

))
c1c2

+

(
p1

8
− p2

4
− (q− 1) p2

1
8

+
p3

8
− (q− 1) p1 p2

8
+

(q− 1)2 p3
1

32

)
c3

1

}
z3

]
+ · · · . (17)

Now, upon expanding the left-hand side of (15), we have

z
(

DqIλ
q f
)
(z)

f (z)
= 1 + qψ1a2z +

{(
q + q2

)
ψ2a3 − qψ2

1a2
2

}
z2

+
{(

q + q2 + q3
)

ψ3a4 −
(

2q + q2
)

ψ1ψ2a2a3 + qψ3
1a3

2

}
z3 + · · · . (18)

Finally, by comparing the corresponding coefficients in (17) and (18) along with Lemma 3, we
obtain the result asserted by Theorem 1.

Theorem 2. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , then

T3 (2) �
[(

1 + q
2qψ1

)
p2

1 +

(
1 + q

4 (q + q2 + q3)ψ3

)
[Ω1 + Ω2]

]
·
[

4

(
(1 + q)2

16q2ψ2
1

)
p2

1 + 16 |Ω3|+
p2

1
4q2ψ2

2
+ 2Ω5 p2

1

∣∣∣∣∣2− Ω4

Ω5 p2
1

∣∣∣∣∣
]

,
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where

Ω1 = 2p1 + 4

∣∣∣∣∣p2 − p1 +

(
2 + q2)

4q
p2

1

∣∣∣∣∣ ,
Ω2 =

∣∣∣∣∣2p3 + 2p1 − 4p2 −
(

2
(

1 + q2
)
− q
)

p2
1

+

(
4q2 − 3q + 2

q

)
p1 p2 +

(
q2 + q + 1

2q2 p3
1

) ∣∣∣∣∣,
Ω3 =

1
2q2ψ2

2

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)2

−Ω5 ·
[

p3

4
+

p1

4
− p2

2

−
[
2
(
1 + q2)− q

]
p2

1
8q

+
4q2 − 3q + 2

8q
p1 p2 +

(
q2 + 2q− 1

16q2

)
p3

1

]
,

Ω4 =
p1

2q2ψ2
2

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)
−Ω5 p1

(
p2 − p1 +

(
2 + q2) p2

1
4q

)
,

Ω5 =
(1 + q)2

16q2 (1 + q + q2)ψ1ψ3

and pj (j = 1, 2) are positive and are the coefficients of the functions pk (z) defined by (6).

Proof. Upon comparing the corresponding coefficients in (17) and (18), we find that

a2 =
(1 + q) p1c1

4qψ1
, (19)

a3 =
1

2qψ2

[
p1c2

2
+

(
p2

4
− p1

4
+

(
q2 + 1

)
p2

1
8q

)
c2

1

]
, (20)

a4 =
(1 + q)

4 (q + q2 + q3)ψ3

[
p1c3 +

(
p2 − p1 +

(
2 + q2) p2

1
4q

)
c1c2

+

(
p3

4
+

p1

4
− p2

2
−
(
2
(
1 + q2)− q

)
p2

1
8q

+

(
4q2 − 3q + 2

)
8q

p1 p2

+

(
q2 + 2q− 1

)
16q2 p3

1

)
c3

1

]
. (21)

By a simple computation, T3 (2) can be written as follows:

T3 (2) = (a2 − a4)
(

a2
2 − 2a2

3 + a2a4

)
.

Now, if f ∈ ST (k, λ, q) , then it is clearly seen that

|a2 − a4| � |a2|+ |a4|

�
(

1 + q
2qψ1

)
p2

1 +

(
1 + q

4 (q + q2 + q3)ψ3

)
(Ω1 + Ω2) .
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We need to maximize
∣∣a2

2 − 2a2
3 + a2a4

∣∣ for a function f ∈ ST (k, λ, q). So, by writing a2, a3, and
a4 in terms of c1, c2, and c3, with the help of (19)–(21), we get∣∣∣a2

2 − 2a2
3 + a2a4

∣∣∣
=

∣∣∣∣∣
(
(1 + q)2

16q2ψ2
1

)
p2

1c2
1 −Ω3c4

1 −Ω4c2
1c2 −

p2
1

8q2ψ2
2

c2
2 + Ω5 p2

1c1c3

∣∣∣∣∣ . (22)

Finally, by applying the trigonometric inequalities, Lemmas 2 and 3 along with (22), we obtain
the result asserted by Theorem 2.

As an application of Theorem 2, we first set ψn−1 = 1 and k = 0 and then let q → 1− . We thus
arrive at the following known result.

Corollary 1 (see [25]). If the function f (z) given by (1) belongs to the class S∗, then

T3 (2) � 84.

Theorem 3. If the function f (z) given by (1) belongs to the class ST (k, λ, q) , then∣∣∣a2a4 − a2
3

∣∣∣ � 1
4q2ψ2

2
p2

1, (23)

where k ∈ [0, 1] and pj (j = 1, 2, 3) are positive and are the coefficients of the functions pk (z) defined by (6).

Proof. Making use of (19)–(21), we find that

a2a4 − a2
3 =

A (q)
16q2ψ1ψ3

p2
1c1c3 +

(
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ2
2ψ3

p1 p2 −
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ2
2ψ3

p2
1

+
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

64q2ψ1ψ3
p3

1

)
c2

1c2 +
1

16q2ψ2
2

p2
1c2

2

+

[
A (q)

64q2ψ1ψ3
p1 p3 +

(
A (q)ψ2

2 − ψ1ψ3

64q2ψ1ψ2
2ψ3

)
p2

1 +

(
ψ1ψ3 − A (q)ψ2

2
32q2ψ1ψ2

2ψ3

)
p1 p2

+

(
2
(
1 + q2)ψ1ψ3 −

(
2
(
1 + q2)− q

)
A (q)ψ2

2

128q3ψ1ψ2
2ψ3

)
p3

1

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2 ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

]
c4

1, (24)

where

A (q) =
(1 + q)2

1 + q + q2 .
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We substitute the values of c2 and c3 from the above Lemma and, for simplicity, take Y = 4− c2
1

and Z = (1− |x|2)z. Without loss of generality, we assume that c = c1 (0 � c � 2), so that

a2a4 − a2
3 =

[
q (1− q) A (q)ψ2

2
128q2ψ1ψ3

p3
1 +

A (q)
64q2ψ1ψ3

p1 p3

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2 ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

]
c4

+

[
A (q)ψ2

2 − ψ1ψ3

32q2ψ1ψ2
2ψ3

p1 p2 +
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q2ψ1ψ3
p3

1

]
c2xY

·
[
− A (q)

64q2ψ1ψ3
p2

1c2Yx2 − 1
64q2ψ2

2
p2

1x2Y2 +
A (q)

32q2ψ1ψ3
p2

1cYZ

]
. (25)

Upon setting Z = (1− |x|2)z and taking the moduli in (25) and using trigonometric inequality,
we find that ∣∣∣a2a4 − a2

3

∣∣∣ � |λ1| c4 + |λ2| |x|Yc2 +
A (q)

64q2ψ1ψ3
p2

1Y |x|2 c2

+
1

64q2ψ2
2

p2
1 |x|2 Y2 +

A (q)
32q2ψ1ψ3

p2
1c2Y

(
1− |x|2

)
= Λ (c, |x|) , (26)

where

λ1 =
q (1− q) A (q)ψ2

2
128q2ψ1ψ3

p3
1 +

A (q)
64q2ψ1ψ3

p1 p3

+

(
A (q)

(
4q2 − 3q + 2

)
ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q3ψ1ψ2
2ψ3

)
p2

1 p2

+

(
A (q)

(
q2 + 2q− 1

)
ψ2

2 −
(
1 + q2)2 ψ1ψ3

256q4ψ1ψ2
2ψ3

)
p4

1 −
1

64q2ψ2
2

p2
2

λ2 =
A (q)ψ2

2 − ψ1ψ3

32q2ψ1ψ2
2ψ3

; p1 p2 +
A (q)

(
2 + q2)ψ2

2 − 2
(
1 + q2)ψ1ψ3

128q2ψ1ψ3
p3

1.

Now, trivially, we have
Λ′ (|x|) > 0

on [0, 1], and so
Λ (|x|) � Λ (1) .

Hence, by puting Y = 4− c2
1 and after some simplification, we have

∣∣∣a2a4 − a2
3

∣∣∣ = (|λ1| − |λ2|+
ψ1ψ3 − A (q)ψ2

2
64q2ψ1ψ3

p2
1

)
c4

+

(
4 |λ2|+

(
A (q)ψ2

2 − ψ1ψ3

16q2ψ1ψ3
p2

1

))
c2 +

1
4q2ψ2

2
p2

1

= G (c) . (27)
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For optimum value of G (c), we consider G′ (c) = 0, which implies that c = 0. So G (c) has a
maximum value at c = 0. We therefore conclude that the maximum value of G (c) is given by

1
4q2ψ2

2
p2

1,

which occurs at c = 0 or

c2 = − 128 |λ2| q2ψ1ψ3 + 4A (q)ψ2
2 − 2ψ1ψ3 p2

1(
64q2 (|λ1| − |λ2|)ψ1ψ3 + ψ1ψ3 − A (q)ψ2

2 p2
1
) .

This completes the proof of Theorem 3.

If we put ψn−1 = 1 and let q → 1− in Theorem 3, we have the following known result.

Corollary 2 (see [26]). If the function f (z) given by (1) belongs to the class k-ST , where k ∈ [0, 1] , then

∣∣∣a2a4 − a2
3

∣∣∣ � p2
1

4
.

If we put
p1 = 2 and ψn−1 = 1,

by letting q → 1− in Theorem 3, we have the following known result.

Corollary 3 (see [18]). If f ∈ S∗, then ∣∣∣a2a4 − a2
3

∣∣∣ � 1.

By letting k = 1, ψn−1 = 1, q → 1− and

p1 =
8

π2 , p2 =
16

3π2 and p3 =
184

45π2

in Theorem 3, we have the following known result.

Corollary 4 (see [27]). If the function f (z) given by (1) belong to the class SP , then∣∣∣a2a4 − a2
3

∣∣∣ � 16
π4 .

4. Concluding Remarks and Observations

Motivated significantly by a number of recent works, we have made use of a certain general
conic domain and the quantum (or q-) calculus in order to define and investigate a new subclass of
normalized analytic functions in the open unit disk U, which we have referred to as q-starlike functions.
For this q-starlike function class, we have successfully derived several properties and characteristics.
In particular, we have found the Hankel determinant and the Toeplitz matrices for this newly-defined
class of q-starlike functions. We also highlight some known consequences of our main results which
are stated and proved as theorems and corollaries.
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Abstract: In this paper, the problem of the spread of a non-fatal disease in a population is solved
by using the Hermite collocation method. Mathematical modeling of the problem corresponds to
a three-dimensional system of nonlinear ODEs. The presented scheme reduces the problem to a
nonlinear algebraic equation system by expanding the approximate solutions by using Hermite
polynomials with unknown coefficients. These coefficients of the Hermite polynomials are computed
by using the matrix operations of derivatives together with the collocation method. Maple software
is used to carry out the computations. In addition, comparison of our method with the Homotopy
perturbation method (HPM) and Laplece-Adomian decomposition method (LADM) proves accuracy
of solution.

Keywords: SIR model; Hermite collocation method; approximate solution; Hermite polynomials and
series; collocation points

1. Introduction

Systems of ordinary differential equations are useful in representing some real life problems in
terms of the mathematical expressions, which abound in the fields of biological, physical, engineering,
financial or sociological fields. It is well known that many nonlinear problems in these fields can
be well modeled by systems of ordinary differential equations. However, finding exact solutions of
systems of ordinary differential equations involving nonlinear terms can be extremely difficult in
most of the situations. In addition, we know that exact solutions of most realistic systems of ordinary
differential equations cannot be found, so we need numerical and approximate methods for finding
approximate solutions.There are a lot of methods that have been studied by many researchers to solve
the systems of ordinary differential equations. Some of these methods are the multi-step method
proposed by Hojjati et al. [1], the collocation method presented by Mastorakis [2], the Adomian
decomposition method improves [3], the exponential Galerkin method introduced by Yüzbaşı and
Karaçayır [4], the exponential collocation method proposed by Yüzbaşı [5], the Galerkin finite element
method given by Al-Omari et al. [6].

In this study, we are interested in the SIR model, a model of an epidemic of an infectious disease
in a population. This model comprises three types of individuals: those who might be susceptible to
the disease, those who might be infected with the disease , and those who might have recovered or be
immune from the disease. The model thus has three classes or states.

The following system determines the progress of the disease [7]:
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dS
dt

= −βS(t)I(t)

dI
dt

= βS(t)I(t)− γI(t) (1)

dR
dt

= γI(t)

with initial conditions

S(0) = NS, I(0) = NI , R(0) = NR. (2)

NS = the number of susceptible individuals in the population at time t.
NI = the number of infected individuals in the population at time t.
NR = the number of recovered individuals in the population at time t.
N = the population size.
β = the transmissivity rate.
γ = is the recovery rate. Note that, at any given time, an individual can only be in one of the three
groups. Thus, NS + NI + NR = N.

Finding exact solutions of SIR models is important because biologists could use it to design and
run experiments to observe the spread of infectious diseases by introducing natural initial conditions.
Through these experiments, as well as through mathematical modelling, one can learn the ways on
how to control the spread of epidemics. It is extremely difficulty to obtain the exact solutions for
such problems that actually represented such phenomena. It is a big task for scientific community to
search for appropriate methods. Within two decades, to obtain approximate solutions of Equation (1),
some authors have studied this model using different methods. For Equation (1), Argub and El-Ajou
used Homotopy Analysis Method for different parameter values [7], Awawdeh et al. used Homotopy
Analysis Method [8], Biazar used the Adomian decomposition method [9], Rafei et al. applied
homotopy perturbation method [10], Ibrahim et al. applied Differential Transformation Approach [11].
In [12], this system was solved using Laplace-Adomian decomposition method. In [13], Harman
and Johnston solved the epidemic model using stochastic Galerkin method. Equation (1) was solved
using 4th order Runge-Kutta method by Kousar et al. [14] and using Euler, Runge Kutta-2 and Runge-
Kutta-4 methods by Hussain et al. [15].

The collocation method has become progressively favourite to solve differential equations.
This method can reduce the complexity of solving the systems of ordinary differential equations for
epidemic models with high dimensions and it is very useful in contributing highly accurate solutions
to differential equations. In this study, Hermite polynomials, a class of the orthogonal polynomials
{H0(t), H1(t), . . . , HL(t)} that are orthogonol on (−∞, ∞), are used. Hermite polynomials have
advantages over other orthogonal polynomials. Hermite collocation method (HCM) has been used to
solve systems of nonlinear ordinary differential equations with special initial conditions. The most
important advantage of the presented method is that it transforms this system (1) into a nonlinear
system of algebraic equations which can be easily solved. Until recently, HCM has been used to
obtain solutions to a higher-order linear Fredholm integro differential equations in [16], to linear
fractional order Systems of differential equations in [17], to differential difference equations in [18],
to fractional order differential equations in [19] and to the neutral functional-differential equations
with proportional delays in [20].

2. The Hermite Collocation Method (HCM)

In this section, we present the Hermite collocation method to obtain approximate solutions to
Equation (1) in the truncated Hermite series form
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S(t) =
L

∑
l=0

c1,l Hl(t), I(t) =
L

∑
l=0

c2,l Hl(t) and R(t) =
L

∑
l=0

c3,l Hl(t). (3)

Here, c1,l , c2,l , and c3,l (l = 0, 1, 2, . . . , L) are the unknown Hermite coefficients, L is any positive
number where L ≥ m (m is the number of equations in the system), and Hl(t), l = 0, 1, 2, . . . , L are the
Hermite polynomials. The Hermite polynomials are identified by

Hl(t) = l!
L

∑
m=0

(−1)m

m!(l − 2m)!
(2t)l−2m, l ∈ N, 0 ≤ t ≤ ∞ (4)

where L = l/2 if l is even and L = (l − 1)/2 if l is odd.
We represent Equation (1) in the form of matrices. Firstly, we write the approximate solutions of

Equation (1):

S(t) = H(t)C1

I(t) = H(t)C2 (5)

R(t) = H(t)C3

where

H(t) =
[

H0(t) H1(t) . . . HL−1(t) HL(t)
]

, C1 =
[
c1,0 c1,1 . . . c1,L

]T

C2 =
[
c2,0 c2,1 . . . c2,L

]T
, C3 =

[
c3,0 c3,1 . . . c3,L

]T

If L is an odd number,

⎡⎢⎢⎢⎢⎢⎢⎣
H0(t)
H1(t)

...
HL−1(t)

HL(t)

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

HT(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 0 . . . 0 0
0 21 . . . 0 0
...

...
. . .

...
...

(−1)(
L−5

2 ) 20

0!
(L−1)
( L−1

2 )!
. . . 2L−1 0

0 (−1)(
L−1

2 ) 21

1!
(L)

( L−1
2 )!

0 . . . 0 2L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

F

⎡⎢⎢⎢⎢⎢⎢⎣
1
t
...

tL−1

tL

⎤⎥⎥⎥⎥⎥⎥⎦ .

︸ ︷︷ ︸
XT(t)

(6)

If L is an even number,

⎡⎢⎢⎢⎢⎢⎢⎣
H0(t)
H1(t)

...
HL−1(t)

HL(t)

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

HT(t)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 0 . . . 0 0
0 21 . . . 0 0
...

...
. . .

...
...

0 (−1)(
L−2

2 ) 21

1!
(L−1)
( L−2

2 )!
. . . 2L−1 0

(−1)(
L−4

2 ) 20

0!
(L)
( L

2 )!
0 . . . 0 2L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

F

⎡⎢⎢⎢⎢⎢⎢⎣
1
t
...

tL−1

tL

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

XT(t)

(7)

where X(t) =
[
1 t t2 . . . tL

]
.
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Therefore, we can write the following equations:

S(t) = X(t)FTC1

I(t) = X(t)FTC3 (8)

R(t) = X(t)FTC3.

The relation between the matrix X(t) and its derivative X(1)(t) is

X(1)(t) = X(t)BT (9)

where

BT =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . L
0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

From Equations (8) and (9), we obtain the following equations:

S(1)(t) = X(t)BT FTC1, I(1)(t) = X(t)BT FTC2, R(1)(t) = X(t)BT FTC3. (10)

Thus, we can construct the matrices v(t) and v(1)(t) as follows:

v(t) = X FC and v(1)(t) = X B FC (11)

where

v(t) =

⎡⎢⎣S(t)
I(t)
R(t)

⎤⎥⎦ , v(1)(t) =

⎡⎢⎣S(1)(t)
I(1)(t)
R(1)(t)

⎤⎥⎦ , X(t) =

⎡⎢⎣X(t) 0
0 X(t) 0
0 0 X(t)

⎤⎥⎦ , F =

⎡⎢⎣FT 0
0 FT 0
0 0 FT

⎤⎥⎦
and

B =

⎡⎢⎣BT 0 0
0 BT 0
0 0 BT

⎤⎥⎦ , C =

⎡⎢⎣C1

C2

C3

⎤⎥⎦ .

We can express Equation (1) in the matrix form

v(1)(t)− Kv(t)−Mv1,2(t) = g (12)

where

g =

⎡⎢⎣0
0
0

⎤⎥⎦ , K =

⎡⎢⎣0 0 0
0 −γ 0
0 γ 0

⎤⎥⎦ , M =

⎡⎢⎣−β

β

0

⎤⎥⎦ , v1,2 =
[
S(t)I(t)

]
.

Now let us determine the unknown coefficients c1,l , c2,l , and c3,l . We can use the collocation points
defined by

ti = a +
b− a

L
i, i = 0, 1, . . . , L (13)

for an interval a ≤ t ≤ b.
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By using the collocation points in Equation (12), we obtain the following system of
matrix equations:

v(1)(ti)− Kv(ti)−Mv1,2(ti) = g. (14)

V(1) =

⎡⎢⎢⎢⎢⎣
v(1)(t0)

v(1)(t1)
...

v(1)(tL)

⎤⎥⎥⎥⎥⎦ , K =

⎡⎢⎢⎢⎢⎣
K 0 · · · 0
0 K · · · 0
...

...
. . .

...
0 0 · · · K

⎤⎥⎥⎥⎥⎦
(L+1)×(L+1)

, v =

⎡⎢⎢⎢⎢⎣
v(t0)

v(t1)
...

v(tL)

⎤⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎣
g
g
...
g

⎤⎥⎥⎥⎥⎦
(L+1)×1

Ṽ =

⎡⎢⎢⎢⎢⎣
v1,2(t0)

v1,2(t1)
...

v1,2(tL)

⎤⎥⎥⎥⎥⎦ , M =

⎡⎢⎢⎢⎢⎣
M 0 · · · 0
0 M · · · 0
...

...
. . .

...
0 0 · · · M

⎤⎥⎥⎥⎥⎦
(L+1)×(L+1)

.

By aid of the upper matrices, Equation (1) can be written in the following matrix form:

V(1) − KV −M V = G. (15)

By putting the collocation points of Equation (13) in Equation (11), because we can write
recurrence relations

v(ti) = X(ti)FC and v(1)(ti) = X(ti) B FC,

we can write

V = XFC and V(1) = XBFC (16)

so that

X =
[

X(t0) X(t1) · · · X(tL)
]T

, X(ti) =

⎡⎢⎣X(ti) 0 0
0 X(ti) 0
0 0 X(ti)

⎤⎥⎦ .

Let us put the collocation points into the v1,2(t). We then obtain the matrix form

Ṽ =

⎡⎢⎢⎢⎢⎣
v1,2(t0)

v1,2(t1)
...

v1,2(tL)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
I(t0) 0 · · · 0

0 I(t1) · · · 0
...

...
. . .

...
0 0 · · · I(tL)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

S(t0)

S(t1)
...

S(tL)

⎤⎥⎥⎥⎥⎦ = I S (17)

where

I = X̃ F̃ C2, and S = ˜̃T˜̃FC (18)

so that
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X̃ =

⎡⎢⎢⎢⎢⎣
X(t0) 0 · · · 0

0 X(t1) · · · 0
...

...
. . .

...
0 0 · · · X(tL)

⎤⎥⎥⎥⎥⎦ , C2 =

⎡⎢⎢⎢⎢⎣
C2 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · C2

⎤⎥⎥⎥⎥⎦
(L+1)×(L+1)

F̃ =

⎡⎢⎢⎢⎢⎣
FT 0 · · · 0
0 FT · · · 0
...

...
. . .

...
0 0 · · · FT

⎤⎥⎥⎥⎥⎦
(L+1)×(L+1)

˜̃X =

⎡⎢⎢⎢⎢⎣
X(t0)

X(t1)
...

X(tL)

⎤⎥⎥⎥⎥⎦ , ˜̃F =
[

FT S S
]

, S =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤⎥⎥⎥⎥⎦
(L+1)×(L+1)

.

From Equations (16)–(18), we obtain the fundamental matrix equation

{XB F− KXF−MX̃ F̃C2
˜̃X ˜̃F}C = G. (19)

Shortly, Equation (19) can be written as

WC = G or [W; G] (20)

W = XB F− KXF−MX̃ F̃C2
˜̃X ˜̃F. (21)

Equation (21) subtends a system of 3(L + 1) nonlinear algebraic equations with the unknown
Hermite coefficients c1,l , c2,l , and c3,l . By placing t → 0 in Equation (5), the matrix forms of the initial
conditions can be expressed by

S(t) = H(0)C1 = [NS]

I(t) = H(0)C2 = [NI ] (22)

R(t) = H(0)C3 = [NR].

That is, these matrix forms can be expressed by

U1 = S(0) =
[
c1,0 c1,1 · · · c1,L

]
U2 = I(0) =

[
c2,0 c2,1 · · · c2,L

]
(23)

U3 = R(0) =
[
c3,0 c3,1 · · · c3,L

]
.

When the rows in the matrices in Equation (23) are replaced with any three rows of the matrix
in Equation (20), we obtain the solution to Equation (1) under initial conditions. Thereby, we get the
augmented matrix

W̃C = G̃, (24)
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which is an algebraic system. To determine the coefficients, this system must be solved. The determined
coefficients ci,0, ci,1, · · · , ci,L, (i = 1, 2, 3) are substituted into Equation (3), and we can then obtain
approximate solutions.

3. Error Estimate for the Solution

We can here check the accuracy of the proposed method. Since the SL(t), IL(t), RL(t) is an
approximate solution to Equation (1), once these functions and their first derivative are substituted
into Equation (1), the obtained equations should satisfied approximately, in short, for t = tr ∈
[0, R], r = 0, 1, ...

E1,L(tr) = |S′(tr) + βS(tr)I(tr)|=̃0

E2,L(tr) = |I′(tr)− βS(tr)I(tr) + γI(tr)|=̃0 (25)

E3,L(tr) = |R′(tr)− γI(tr)|=̃0,

and Ei,L ≤ 10−kr , i = 1, 2, 3 (kr any positive contant). If max10−kr = 10−k is prescribed, the truncation
limit L is increased until the difference Ei,L(tr), (i = 1, 2, 3) at each of the points becomes smaller than
the prescribed 10−k [21,22].

4. Illustrative Example

In this section, to show the accuracy and efficiency of the presented method, the SIR model of
epidemics, given in Equation (1), is solved with it. For the SIR model, the following parameter values
that given in [9] are used. Numerical calculations were performed using Maple software.

NS = 20, NI = 15, NR = 10, β = 0.01, γ = 0.02.

In interval 0 ≤ t ≤ 1, we obtain approximate solutions for L = 5 using the presented method;
in turn, approximate solutions with five terms:

S(t) = 20.00000000− 2.999999999t− 0.04499957685t2 + 0.02804671200t3

+ 0.0008058035642t4 − 0.0003329149155t5

I(t) = 15.00000000 + 2.699999999t + 0.01799970470t2 − 0.02816759777t3 − 0.0006626352597t4

+ 0.0003329022387t5

R(t) = 10.00000000 + 0.3000000000t + 0.2699987216t2 + 0.0001208857706t3 − 0.0001431683045t4

+ 0.126768711610−7t5.

The approximate solutions of this system were presented by Rafei et al. using the homotopy
perturbation method (HPM) [10]. The homotopy perturbation method is a efficient method for
finding solutions of ordinary/partial differential equations without the need for a linearization process.
The obtained approximate solutions with five terms:

S(t) = 20− 3t− 0.045t2 + 0.02805t3 + 0.0007953750t4 − 0.0003165502t5

I(t) = 15 + 2.7t + 0.018t2 − 0.02817t3 − 0.0006545250t4 + 0.0003191683t5

R(t) = 10 + 0.3t + 0.027t2 + 0.00012t3 − 0.0001408500t4 − 0.0000021681t5.

305



Mathematics 2018, 6, 305

The approximate solutions of this system were also presented by Dogan and Akin using
Laplace-Adomian decomposition method (LADM) [12]. The LADM provides us with an approximate
solution in the form of infinite series. The obtained approximate solutions with five terms:

S(t) = 20− 3t− 0.045t2 + 0.02805t3 + 0.000795375t4 − 0.00031655t5

I(t) = 15 + 2.7t + 0.018t2 − 0.02817t3 − 0.000654525t4 + 0.000319168t5

R(t) = 10 + 0.3t + 0.027t2 + 0.00012t3 − 0.00014085t4 − 0.000002168t5.

We know that Equation (1) has no exact solution. So, we compared the obtained results using
Hermite collocation method with the obtained results using HPM presented [10] and the obtained
results using LADM presented [12].

From Figures 1–3, it is clear that the results obtained using HCM is very efficient.

Figure 1. Comparison of the error function E1,5(t) for S(t).

Figure 2. Comparison of the error function E2,5(t) for I(t).
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Figure 3. Comparison of the error function E3,5(t) for R(t).

5. Conclusions

In this study, the Hermite Collocation Method was applied to obtain the approximate solutions of
SIR model. We showed the accuracy and efficiency of the presented method with an example. To show
the correctness of the obtained approximate solutions, we put the obtained approximate solutions
back into Equation (1) with the aid of Maple software. Thus, it gives extra measure for confidence
of the obtained approximate solutions. The obtained approximate results and the error values are
compared with the error values and the approximate solutions obtained with homotopy perturbation
method (HPM) [10] and Laplace-Adomian decomposition method [12]. These comparisons reveal
that our method is more efficient and useful to find approximate solution the SIR model of epidemics.
From Tables 1–3, it is seen that the numerical solutions of the HPM [10] and the LADM [12] are almost
same. Therefore, it is observed that the presented method is an alternative way for the solution of
nonlinear ODEs system that have no analytic solution. The greatest advantage of the presented method
is that all of above computations can be computed easily in very shorter time by using the computer
code written in Maple software.

Table 1. The values of S(t), and the residual errors ERS for HPM, HCM and LADM.

t S(t) (HPM) ERS (HPM) S(t) (HCM for L = 5) ERS (HCM for L = 5) S(t) (LADM) ERS (LADM)

0.2 19.39842557 2.241556564× 10−8 19.39842556 1.007967528× 10−9 19.39842557 2.241715696× 10−8

0.3 19.09671302 1.639339936× 10−7 19.09671301 5.224692456× 10−9 19.09671302 1.639420311× 10−7

0.4 18.79461232 6.642448998× 10−7 18.79461227 1.020070225× 10−9 18.79461232 6.642702518× 10−7

0.5 18.49229607 1.945779417× 10−6 18.49229590 4.808788220× 10−9 18.49229607 1.945841205× 10−6

0.6 18.18993727 4.638804798× 10−6 18.18993677 1.036285111× 10−9 18.18993727 4.638932739× 10−6

0.7 17.88770892 9.586736659× 10−6 17.88770774 2.046575227× 10−9 17.88770892 9.586973403× 10−6

0.8 17.58578366 1.783241468× 10−5 17.58578115 1.056548098× 10−9 17.58578366 1.783281825× 10−5

0.9 17.28433338 3.058543511× 10−5 17.28432849 2.255631029× 10−8 17.28433338 3.058608116× 10−5

1.0 16.98352883 4.917070631× 10−5 16.98352001 1.991812037× 10−7 16.98352883 4.917169073× 10−5

Table 2. The values of I(t), and the residual errors ERI for HPM, HCM and LADM.

t I(t) (HPM) ERI (HPM) I(t) (HCM for L = 5) ERI (HCM for L = 5) I(t) (LADM) ERI (LADM)

0.2 15.54049369 2.037288852× 10−8 15.54049370 1.007967528× 10−9 15.54049369 2.037528176× 10−8

0.3 15.81085489 1.484224142× 10−7 15.81085488 5.224692456× 10−9 15.81085489 1.484345163× 10−7

0.4 16.08106363 5.988792320× 10−7 16.08106367 1.020070225× 10−9 16.08106363 5.989174454× 10−7

0.5 16.35094781 1.746299230× 10−6 16.35094797 4.808788220× 10−9 16.35094781 1.746392455× 10−6

0.6 16.62033527 4.142434258× 10−6 16.62033570 1.036285111× 10−9 16.62033527 4.142627465× 10−6

0.7 16.88905418 8.513884329× 10−6 16.88905522 2.046575227× 10−9 16.88905418 8.514242143× 10−6

0.8 17.15693346 1.574071331× 10−5 17.15693567 1.056548098× 10−9 17.15693345 1.574132364× 10−5

0.9 17.42380311 2.681612132× 10−5 17.42380741 2.255631029× 10−8 17.42380310 2.681709896× 10−5

1.0 17.68949465 4.278734031× 10−5 17.68950236 1.991812037× 10−7 17.68949464 4.278883073× 10−5
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Table 3. The values of R(t), and the residual errors ERR for HPM, HCM and LADM.

t R(t) (HPM) ERR (HPM) R(t) (HCM for L = 5) ERR (HCM for L = 5) R(t) (LADM) ERR (LADM)

0.2 10.06108073 1.55732288× 10−9 10.06108073 1.780152× 10−12 10.06108073 1.5573248× 10−9

0.3 10.09243209 2.71342062× 10−9 10.09243209 2.99878840× 10−9 10.09243209 2.7134352× 10−9

0.4 10.12432405 7.76566784× 10−9 10.12432405 3.55561× 10−12 10.12432405 7.7656064× 10−9

0.5 10.15675613 5.88551875× 10−8 10.15675613 2.9916773× 10−9 10.15675613 5.88550000× 10−8

0.6 10.18972750 2.047705402× 10−7 10.18972751 5.3304× 10−12 10.18972750 2.047700736× 10−7

0.7 10.22323698 5.326273240× 10−7 10.22323703 6.997166× 10−9 10.22323698 5.32626315× 10−7

0.8 10.25728304 1.170101371× 10−6 10.25728317 7.109× 10−12 10.25728304 1.170099405× 10−6

0.9 10.29186379 2.293088789× 10−6 10.29186411 6.2910522× 10−8 10.29186379 2.293085246× 10−6

1.0 10.32697698 4.133366× 10−6 10.32697760 4.548599737× 10−7 10.32697698 4.13336× 10−6
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1. Introduction

Let A be the family of functions of the form

g(z) = z +
∞

∑
n=2

anzn (1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1}. Let S denote the subfamily of A
consisting of all univalent functions in D.

Let C(r) denote the image curve of the |z| = r < 1 under the function g ∈ A which bound the
area A(r). Furthermore, let L(r) be the length of C(r) and M(r) = max|z|=r<1 |g(z)|.

If g ∈ A satisfies

Re

{
zg′(z)
g(z)

}
> 0, z ∈ D,

then g is said to be starlike with respect to the origin in D and we write g ∈ S∗. It is known (for details,
see [1,2]) that S∗ ⊂ S .

The aim of the present paper is to prove, using a modified methodology, that in the following
implication

g ∈ S∗ ⇒ L(r) = O
(

M(r) log
1

1− r

)
as r → 1, (2)

where O denotes the Landau’s symbol, the assumption that g is starlike univalent can be changed by a
weaker one. Result (2) was proved by Keogh [3]. Moreover, some other length problems for analytic
functions are investigated. Several interesting developments related to length problems for univalent
functions were considered in [4–15].

Mathematics 2018, 6, 266; doi:10.3390/math6110266 www.mdpi.com/journal/mathematics311
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2. Main Results

Theorem 1. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z
1− z

∣∣∣∣ , z ∈ D. (3)

Then

L(r) = O
(

M(r) log
1

1− r

)
as r → 1,

where
M(r) = max

|z|=r<1
|g(z)|

and O means Landau’s symbol.

Proof. Let z = reiν. We have g �= 0 in D \ {0}. In fact, if g = 0 in D, it contradicts hypothesis (3).
Applying [3] (Theorem 1) and the hypothesis of Theorem 1, we have

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≤ M(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν ≤ M(r)
∫ 2π

0

∣∣∣∣1 + reiν

1− reiν

∣∣∣∣dν

≤ M(r)
(

2π + 4 log
1 + r
1− r

)
as r → 1.

Remark 1. If g satisfies the condition of Theorem 1, then g is not necessary univalent in D. It is well known
that if g ∈ S , then it follows that

1− |z|
1 + |z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D

(for details, see [1] (Vol. 1, p. 69)).
If g ∈ A satisfies

Re

{
zg′(z)

g1−γ(z)hγ(z)

}
> 0, z ∈ D

for some h ∈ S∗ and some γ ∈ (0, ∞), then g is said to be a Bazilevic̆ function of type γ [13]. The class of
Bazilevic̆ functions of type γ is denoted by g ∈ B(γ) . We note that Theorem 1 improves the implication (2) by
Keogh [3] and it is also related to Theorem 3 given by Thomas [13].

We will need the following Tsuji’s result.

Lemma 1 ([16] (p. 226)). (Theorem 3) If 0 ≤ r < R and z = eiν, then

R− r
R + r

≤ Re

{
Reiφ + z
Reiφ − z

}
=

R2 − r2

R2 − 2Rr cos(φ− ν) + r2 ≤
R + r
R− r

. (4)

Moreover,
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(φ− ν) + r2 dν = 1. (5)
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Theorem 2. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ ∣∣∣∣1 + z
1− z

∣∣∣∣ , z ∈ D (6)

and

M(r, β) = max
|z|=r<1

|g(z)| ≤
∣∣∣∣1 + z
1− z

∣∣∣∣β , (7)

where 1 < β. Then

L(r) = O
(

1
(1− r)β

)
as r → 1,

where O means Landau’s symbol.

Proof. From the hypotheses (6) and (7), it follows that

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≤
∫ 2π

0

∣∣∣∣1 + z
1− z

∣∣∣∣ ∣∣∣∣1 + z
1− z

∣∣∣∣β dν ≤ 21+β
∫ 2π

0

1
|1− z|1+β

dν

=
21+β

(1− r)β−1

∫ 2π

0

1
1− 2r cos ν + r2 dν.

From (5), we have ∫ 2π

0

1
1− 2r cos ν + r2 dν =

2π

1− r2 .

Hence, we obtain

L(r) ≤ 21+β

(1− r)β−1
2π

1− r2

= O
(

1
(1− r)β

)
as r → 1.

Therefore, we complete the proof of Theorem 2.

Let us recall the following Fejér-Riesz’s result.

Lemma 2 ([16]). Let h be analytic in D and continuous on D. Then

∫ 1

−1
|h(z)|p|dz| ≤ 1

2

∫
|z|=1

|h(z)|p|dz|,

where p > 0.

Theorem 3. Let g be of the form (1) and suppose that

1− |z|
1 + |z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D. (8)

Then

O
(

m(r) log
1

1− r

)
≤ L(r) ≤ O

(
M(r)
1− r

)
as r → 1,

where
m(r) = min

|z|=r<1
|g(z)|, M(r) = max

|z|=r<1
|g(z)| (9)
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and O means Landau’s symbol.

Proof. From the assumption, we have

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

≥ m(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν

because g(z) �= 0 in D \ {0}. In fact, if g(z) = 0 in D, it contradicts hypothesis (8).
Applying Fejér-Riesz’s Lemma 2, we have

L(r) ≥ m(r)
∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣dν ≥ 2m(r)
∫ r

−r

1− ρ

1 + ρ
dρ

≥ 2m(r) log
1 + r
1− r

− 2r

= O
(

m(r) log
1

(1− r)

)
as r → 1.

While, we obtain

L(r) =
∫ 2π

0
|zg′(z)|dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

= M(r)
∫ 2π

0

1 + |z|
1− |z|dν = 2πM(r)

1 + r
1− r

= O
(

M(r)
1− r

)
as r → 1.

Therefore, we complete the proof of Theorem 3.

From Theorem 3, we have the following result.

Corollary 1. Let g be of the form (1) and suppose that g is univalent in D. Then we have

O
(

m(r) log
1

1− r

)
≤ L(r) ≤ O

(
M(r)
1− r

)
as r → 1,

where m(r) and M(r) are given by (9), respectively.

Proof. From the hypothesis, we have

1− |z|
1 + z| ≤

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ D,

which completes the proof.

Lemma 3 ([17] (p. 280) and [18] (p. 491)).

∫ 2π

0

dν

|1− reiν|β =

⎧⎪⎨⎪⎩
O
(
(1− r)1−β

)
f or the case 1 < β,

O
(

log 1
1−r

)
f or the case β = 1,

O (1) f or the case 0 ≤ β < 1,
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where 0 < r < 1, 0 ≤ ν ≤ 2π, 0 ≤ β and O means Landau’s symbol.

Theorem 4. Let g be of the form (1) and suppose that∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ ≤ 1
1− |z| , z ∈ D (10)

and
|g(z)| ≤ 1

|1− z|β , z ∈ D. (11)

Then

L(r) ≤

⎧⎪⎪⎨⎪⎪⎩
O
(
(1− r)−3/2

)
f or 1 < β ≤ 3/2,

O
(
(1− r)−3/2 log 1

1−r

)
f or the case β = 3/2,

O
(
(1− r)−β

)
f or the case 3/2 < β,

where 0 < |z| = r < 1 and O means Landau’s symbol.

Proof. From the hypothesis (10), it follows that g(z) �= 0 in D \ {0}. Then we have

L(r) =
∫ 2π

0

∣∣∣reiνg′(reiν)
∣∣∣dν =

∫ 2π

0

∣∣∣∣ zg′(z)
g(z)

∣∣∣∣ |g(z)|dν

<
∫ 2π

0

(
1

1− |z|

)(
1

|1− z|β
)

dν

=
∫ 2π

0

(
1

|1− z|

)(
1

|1− z|β−1

)(
1

1− |z|

)
dν

≤
(∫ 2π

0

1
|1− z|2 dν

)1/2 (∫ 2π

0

(
1

|1− z|2β−2

)
1

(1− |z|)2 dν

)1/2

.

Applying Hayman’s Lemma 3, we have

L(r) ≤
(

1
1− r2

)1/2 ( 1
1− r

)
O(1)

= O
(

1
(1− r)3/2

)
as r → 1

for the case 1 < β < 3/2,

L(r) ≤
(

1
1− r2

)1/2 ( 1
1− r

)
O
(

log
1

1− r

)
= O

(
1

(1− r)3/2 log
1

1− r

)
as r → 1

for the case β = 3/2 and

L(r) =
(

1
1− r2

)1/2 ( 1
1− r

)(
1

1− r

)(2β−3)/2
as r → 1

for the case 3/2 < β.

Lemma 4 ([16] (p. 227)). If g(z) = u(z) + iv(z) is analytic in |z| ≤ R, then

g(z) =
1

2π

∫ 2π

0
u(Reiφ)

Reiφ + z
Reiφ − z

dφ + iv(0). (12)
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Moreover, if |z| < R and v(0) = 0, then

|g(z)| = 1
2π

∫ 2π

0
|u(Reiφ)|

∣∣∣∣Reiφ + z
Reiφ − z

∣∣∣∣dφ.

Theorem 5. Let g be of the form (1). Then

M(r) = O
(

A(r) log
1

1− r

)
as r → 1, (13)

where 0 < |z| = r < 1 and O means Landau’s symbol.

Proof. It follows that

M(r) = max
|z|=r<1

∣∣∣∣∫ z

0
g′(s)ds

∣∣∣∣ = max
|z|=r<1

∣∣∣∣∫ r

0
g′(ρeiν)dρ

∣∣∣∣ .
Applying (12), we have

M(r) = max
|z|=r<1

∣∣∣∣ 1
2π

∫ r

0

∫ 2π

0
Reg′(teiν)

teiφ + ρeiν

teiφ − ρeiν dφdρ

∣∣∣∣
≤ max

|z|=r<1

1
2π

∫ r

0

∫ 2π

0

∣∣∣g′(teiν)
∣∣∣ ∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣dφdρ,

where 0 ≤ ρ ≤ r < t < 1. Then, applying Schwarz’s lemma, we have

M(r) ≤ max
|z|=r<1

(
1

2π

∫ r

0

∫ 2π

0

∣∣∣g′(teiν)
∣∣∣2 dφdρ

)1/2
(∫ r

0

∫ 2π

0

∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣2 dφdρ

)1/2

≤ max
|z|=r<1

(I1)
1/2(I2)

1/2, say.

Putting 0 < r1 < r and t =
√
(1 + ρ2)/2, we have

ρdρ = 2

√
1 + ρ2

2
dt < 2dt.

Then we have

I1 =
1

2π

∫ r1

0

∫ 2π

0

∣∣∣g′(teiφ)
∣∣∣2 dφdρ +

1
2πr2

1

∫ √(1+r2)/2
√

(1+r2
1)/2

∫ 2π

0
t
∣∣∣g′(teiφ)

∣∣∣2 dφdt

≤ C +
1

2πr2
1

A

(√
1 + r2

2

)

= C +
1

2πr2
1

A

(√
1 + r2

2r2 r

)
= O(A(r)) as r → 1,
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where C is a bounded positive constant. On the other hand, putting t → 1−, we have

I2 =
∫ r

0

∫ 2π

0

∣∣∣∣ teiφ + ρeiν

teiφ − ρeiν

∣∣∣∣2 dφdρ

≤
∫ r

0

∫ 2π

0

4∣∣teiφ − ρeiν
∣∣2 dφdρ

=
∫ r

0

∫ 2π

0

4
t2 − 2ρt cos(φ− ν) + ρ2 dφdρ.

Using (5), we have

I2 ≤ 8π
∫ r

0

1
t2 − ρ2 dρ

=
4π

t

∫ r

0

(
1

t + ρ
+

1
t− ρ

)
dρ

=
4π

t
log

t + r
t− r

→ O
(

log
1

1− r

)
as r → 1.

Therefore we complete the proof of (13).

Remark 2. In Theorem 5, we do not suppose that g is univalent in |z| < 1 and therefore, it improves the result
by Pommerenke [2].
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Abstract: This paper introduces a new numerical approach to solving a system of fractional differential
equations (FDEs) using the Legendre wavelet operational matrix method (LWOMM). We first
formulated the operational matrix of fractional derivatives in some special conditions using some
notable characteristics of Legendre wavelets and shifted Legendre polynomials. Then, the system
of fractional differential equations was transformed into a system of algebraic equations by using
these operational matrices. At the end of this paper, several examples are presented to illustrate
the effectivity and correctness of the proposed approach. Comparing the methodology with several
recognized methods demonstrates that the advantages of the Legendre wavelet operational matrix
method are its accuracy and the understandability of the calculations.

Keywords: Legendre wavelet; operational matrix; systems of fractional order differential equations;
Liouville_Caputo sense

1. Introduction

Differential and integral operators are the basis of mathematical models, and they are also used as a
means of understanding the working principles of natural and artificial systems. Therefore, differential
and integral equations are of great importance both theoretically and practically. Such equations have
a wide range of applications, including in the physical sciences (such as in physics and engineering) as
well as in social science. Systems of differential equations, as differential equations, are often used in
issues such as theories of elasticity, dynamics, fluid mechanics, oscillation, and quantum dynamics.

Interest in differential and integral operators has led to the exploration of fractional differential
and integral operators by examining these issues further in depth. Owing to a question, the origin
of fractional calculus arose in a message from Leibniz to L’Hôpital in 1695. Fractional calculus has
received attention in recent years due to its ability to simplify numerous physical, engineering,
and economics phenomena such as the fluid dynamic traffic model, damping laws, continuum and
statistical mechanics, diffusion processes, solid mechanics, control theory, colored noise, viscoelasticity,
electrochemistry, and electromagnetism, among others.

Because a variety of solutions of fractional differential equations (FDEs) cannot be found analytically,
numerical and approximate methods are needed. There are a lot of techniques that have been studied
by many researchers in solving FDEs and the system of such equations numerically. Some of these
techniques are the Adomian decomposition method presented by Song and Wang [1], the collocation
method, the improved operational matrix method [2–4], the perturbation iteration method introduced by
Şenol and Dolapçı [5], the computational matrix method illustrated by Khader et al. [6], the differential
transform method demonstrated by Ertürk and Momani [7], the variational iteration method, the Laplace
transform method given by Gupta et al. [8], and the fractional complex transform method studied by

Mathematics 2018, 6, 238; doi:10.3390/math6110238 www.mdpi.com/journal/mathematics319
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Ghazanfari and Ghazanfari [9], among others. Kilbas et al. [10] inclusively examined fractional differential
and fractional integro-differential equations. In addition, numerical solutions of FDEs and the system
of such equations have been presented using the Legendre polynomial operational matrix method [11],
Bernstein operational matrix method [12], Genocchi operational matrix method [13], Jacobi operational
matrix method [14], Chebyshev wavelet operational matrix method [15], polynomial least squares method
(PLSM) [16], Legendre wavelet-like operational matrix method (LWPT) [17], and the Genocchi wavelet-like
operational matrix method [18].

This paper focuses on the numerical analysis of a system of fractional order differential equations
using the Legendre wavelet operational matrix method. The most important advantage of the proposed
method is that it presents an understandable procedure to reduce FDEs and the system of such
equations to a system of algebraic equations. First, we begin by presenting some basic definitions and
fundamental relations in Sections 2 and 3, respectively. Then, in Section 4, the operational matrix of
the fractional derivate is natively formulated to linear and nonlinear systems of fractional differential
equations. Section 5 presents five illustrative examples that were tested with the introduced method.
Finally, the last section includes the conclusions.

2. Basic Definitions

The Liouville_Caputo fractional_order derivative, shifted Legendre polynomials, and Legendre
wavelets are defined below [19,20].

Definition 1. The Liouville_Caputo fractional derivative of u is defined as [19]

Dαu(t) =
1

Γ(n− α)

t∫
0

u(n)(ξ)

(t− ξ)α+1−n dξ, n− 1 < α ≤ n, n ∈ N. (1)

Some characteristics of the Liouville_Caputo fractional derivative are as follows:

DαC = 0, (2)

where C is a constant. In addition, there is

Dαtβ =

⎧⎨⎩ 0, β ∈ N0 and β < !α"
Γ(β+1)

Γ(β+1−α)
xβ−α, β ∈ N0 and β ≥ !α" or β /∈ N and β > �α�

, (3)

in which �α� and !α" respectively imply that the largest integer is less than or equal to α, and the
smallest integer is greater than or equal to α.

The Liouville_Caputo fractional order derivative is a linear operation of the integer order derivative

Dα(ηu(t) + ζv(t)) = ηDαu(t) + ζDαv(t), (4)

where η and ζ are constant.

Definition 2. Let a and b respectively be the parameters of dilation and translation of a single function
called the mother wavelet. If a and b change continuously, then we obtain the following family of continuous
wavelets [21,22]:

ψab(t) = |a|−1/2ψ

(
t− b

a

)
, a, b ∈ R, a �= 0. (5)
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Definition 3. Let Pm(t) imply the shifted Legendre polynomials of order m. Then Pm(t) can be formulated
as [21]

Pm(t) =
m

∑
k=0

(−1)m+k (m + k)!
(m− k)!

tk

(k!)2 , (6)

and the orthogonality condition is

1∫
0

Pm(t)Pn(t)dt =

{
1

2m+1 , f or m = n

0, f or m �= n
. (7)

Definition 4. Let n and k be any positive integer, m be the order of shifted Legendre polynomials, and t be
the normalized time. Then the Legendre wavelets ψnm(t) = ψ(k, n, m, t) are defined on the interval [0, 1]
by [21,22].

ψnm(t) =

⎧⎨⎩2
k+1

2

√
m + 1

2 Pm

(
2kt− n

)
, n

2k ≤ t ≤ n+1
2k

0, otherwise
, (8)

where m = 0, 1, . . . , M; n = 0, 1, . . . , (2k − 1). The coefficient
√

m+1
2 is for orthonormality.

Definition 5. Let u(t) and v(t) be functions defined over [0, 1] and then expanded in the terms of the Legendre
wavelet as [21,22]

u(t) =
∞

∑
n=0

∞

∑
m=0

cnmψnm(t), (9)

where cnm = (u(t), ψnm(t)), in which (., .) implies the inner product. If the infinite series in Equation (9) is
truncated, then it can be expressed as

u(t) ∼=
2k−1

∑
n=0

M

∑
m=0

cnmψnm(t) = CTψ(t), (10)

where C and ψ(t) are matrices, as presented by

C =
[
c0,0, c0,1, . . . , c0,M, . . . , c2,M, . . . , c2k−1,0, c2k−1,1, . . . , c2k−1,M

]T

ψ =
[
ψ0,0, ψ0,1, . . . , ψ0,M, . . . , ψ2,M, . . . , ψ2k−1,0, ψ2k−1,1, . . . , ψ2k−1,M

]T . (11)

3. Fundamental Relations

Saadatmandi and Dehghan [11] derived the operational matrix of a fractional derivative by
using shifted Legendre polynomials. In this section, we show how we derived the Legendre wavelet
operational matrix of fractional derivatives in some special conditions by drawing from Saadatmandi
and Dehghan [11]. Additionally, the theorem and corollary related to the Legendre wavelet operational
matrix of derivatives illustrated by Mohammadi [21] are cited here as follows.

Theorem 1. Let ψ(t) be the Legendre wavelet vector introduced in Equation (8). Then ψ(t) is expressed
as [21,22]

dψ(t)
dt

= Dψ(t), (12)

321



Mathematics 2018, 6, 238

where D is the 2k(M + 1) operational matrix of the derivative, which can be stated as

D =

⎡⎢⎢⎢⎢⎣
U O · · · O
O U · · · O
...

...
. . .

...
O O · · · U

⎤⎥⎥⎥⎥⎦, (13)

where U is an (M + 1)(M + 1) matrix and its (r, s)th element is written as

Ur,s =

{
2k+1
√
(2r− 1)(2s− 1), r = 2, . . . , (M + 1), s = 1, . . . , r− 1 and (r + s) odd

0, otherwise
. (14)

Corollary 1. Using Equation (12), the operational matrix for the nth derivative can be stated as [21]

dnψ(t)
dtn = Dnψ(t), (15)

where Dn is the nth power of matrix D.

Lemma 1. Let ψ(t) be the Legendre wavelets vector introduced in Equation (8). Assuming that k = 0, then

Dαψr(t) = 0, r = 0, 1, . . . , !α" − 1, α > 0. (16)

Proof. The desired result can be obtained by using Equations (2) and (4) in Equation (8). �

Theorem 2. Let ψ(t) be the Legendre wavelets vector introduced in Equation (8). Supposing that k = 0 and
α > 0, then

Dαψ(t) ∼= D(α)ψ(t), (17)

where D(α) is the (M + 1)x(M + 1) operational matrix of the fractional derivative of the order α > 0, N− 1 <

α ≤ N in the Liouville_Caputo sense and can be stated as

D(α) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
!α"
∑

h=!α"
ξ!α",0,h

!α"
∑

h=!α"
ξ!α",1,h · · ·

!α"
∑

h=!α"
ξ!α",m,h

...
... · · ·

...
r
∑

h=!α"
ξr,0,h

r
∑

h=!α"
ξr,1,h · · ·

r
∑

h=!α"
ξr,m,h

...
... · · ·

...
m
∑

h=!α"
ξm,0,h

m
∑

h=!α"
ξm,1,h · · ·

m
∑

h=!α"
ξm,m,h

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where ξr,s,h is written as

ξr,s,h =
√

2r + 1
√

2s + 1
s

∑
l=0

(−1)r+s+h+l(r + h)!(s + l)!

(r− h)!h!Γ(h− α + 1)(s− l)!(l!)2(h + l − α + 1)
. (19)

Consider in D(α) that the first !α" rows are all zero.
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Proof. Presume that ψr(t) is the rth element of the vector ψ(t) introduced in Equation (11), where
r = nM + (m + 1), m = 0, 1, . . . , M, n = 0, 1, . . . , (2k − 1). Then ψr(t) can be stated as

ψr(t) = 2
k+1

2

√
r +

1
2

Pr(2kt− n)χ[ n
2k , n+1

2k ]. (20)

Accepting that k = 0, and by using the shifted Legendre polynomial, we obtain

ψr(t) =
√

2

√
r +

1
2

r

∑
h=0

(−1)r+h(r + h)!

(r− h)!(h!)2 thχ[0,1]. (21)

If we use Equations (3), (4), and (21), then we have

D(α)ψr(t) =
√

2
√

r + 1
2

r
∑

h=0

(−1)r+h(r+h)!
(r−h)!(h!)2 Dα(th)χ[0,1]

=
√

2r + 1
r
∑

h=!α"
(−1)r+h(r+h)!

(r−h)!(h!)Γ(h−α+1) th−αχ[0,1], r = !α", . . . , m.
(22)

Approximating th−α by (m + 1) terms of the Legendre wavelets, then we obtain

th−α ∼=
m

∑
s

bh,sψs(t), (23)

where

bh,s =
1∫

0
th−αψs(t)dt =

√
2
√

s + 1
2

s
∑

l=0

(−1)s+l(s+l)!
(s−l)!(l!)2

1∫
0

th+l−αdt

=
√

2s + 1
s
∑

l=0

(−1)s+l(s+l)!
(s−l)!(l!)2(h+l−α+1)

. (24)

Utilizing Equations (22) and (24), we get

Dαψr(t) ∼=
√

2r + 1
r
∑

h=!α"

m
∑

s=0

(−1)r+h(r+h)!
(r−h)!(h!)Γ(h−α+1) bh,sψs(t)χ[0,1]

=
m
∑

s=0

(
r
∑

h=!α"
ξr,s,h

)
ψs(t)χ[0,1], r = !α", . . . , m

, (25)

in which ξr,s,h is presented in Equation (19). In addition, if we use Lemma 1, then we can write

Dαψr(t) = 0, r = 0, 1, . . . , !α" − 1, α > 0. (26)

Combining Equations (25) and (27), the result can be obtained. �

4. Solving Systems of Fractional Order Differential Equations

In this section, the Legendre wavelet operational matrix method was implemented to obtain
the numerical solution of the system of fractional order differential equations. Consider a system of
fractional differential equations as follows:

Dη1 u1(t) = U1(t, u1, u2, . . . , um),
Dη2 u2(t) = U2(t, u1, u2, . . . , um),

...
Dηn um(t) = Um(t, u1, u2, . . . , um),

(27)
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where Ui is a linear/nonlinear function of t, u1, u2, . . . , um, Dηi is the derivative of ui with the order of
ηi in the Liouville–Caputo sense and N − 1 ≤ ηi < N, and they are subjected to the initial conditions

u1(t0) = u10, du1
dt (t0) = u11, d2u1

dt2 (t0) = u12, . . . , dn−1u1
dtn−1 (t0) = u1(n−1)

u2(t0) = u20, du2
dt (t0) = u21, d2u2

dt2 (t0) = u22, . . . , dn−1u2
dtn−1 (t0) = u2(n−1)

...
...

...
...

um(t0) = um0, dum
dt (t0) = um1, d2um

dt2 (t0) = um2, . . . , dn−1um
dtn−1 (t0) = um(n−1)

. (28)

First of all, approximating u1(t), u2(t), . . . , um(t) and Dη1 u1(t), Dη2 u2(t), . . . , Dηn um(t), we obtain

u1(t) ≈
2k−1
∑

n=0

M
∑

m=0
c1n,mψn,m = C1

Tψ(t)

u2(t) ≈
2k−1
∑

n=0

M
∑

m=0
c2n,mψn,m = C2

Tψ(t)

...

um(t) ≈
2k−1
∑

n=0

M
∑

m=0
cnn,mψn,m = Cm

Tψ(t)

, (29)

where Ci, i = 1, 2, . . . , m is an unknown vector and ψ(t) is the vector introduced in Equation (8). If we
utilize Equation (17), then we have

Dη1 u1(t) ≈ C1
T D(η1)ψ(t)

Dη2 u2(t) ≈ C2
T D(η2)ψ(t)

...
Dηn um(t) ≈ Cm

T D(ηn)ψ(t)

. (30)

Substituting Equations (29) and (30) into Equation (27), we obtain

R1(t) = C1
T D(η1)ψ(t)−U1(t, C1

Tψ(t), C2
Tψ(t), . . . , Cm

Tψ(t))
R2(t) = C2

T D(η2)ψ(t)−U2(t, C1
Tψ(t), C2

Tψ(t), . . . , Cm
Tψ(t))

...
Rm(t) = Cm

T D(ηn)ψ(t)−Um(t, C1
Tψ(t), C2

Tψ(t), . . . , Cm
Tψ(t))

(31)

If Ui is a linear function of t, u1, u2, . . . , um, then we produce 2k(M + 1)− mn linear equations
by implementing

1∫
0

ψj(t)Ri(t)dt = 0, j = 1, . . . , 2k(M + 1)−mn, i = 1, 2, . . . , m. (32)

Also, by substituting the initial conditions in Equation (28) into Equation (30), then we obtain

u1(t0) ≈ C1
Tψ(t0) = u10, du1

dt (t0) ≈ C1
T Dψ(t0) = u11, . . . , dn−1u1

dtn−1 (t0) ≈ C1
T Dn−1ψ(t0) = u1(n−1)

u2(t0) ≈ C2
Tψ(t0) = u20, du2

dt (t0) ≈ C2
T Dψ(t0) = u21, . . . , dn−1u2

dtn−1 (t0) ≈ C2
T Dn−1ψ(t0) = u2(n−1)

...
...

...
...

...
...

um(t0) ≈ Cm
Tψ(t0) = um0, dum

dt (t0) ≈ Cm
T Dψ(t0) = um1, . . . , dn−1um

dtn−1 (t0) ≈ Cm
T Dn−1ψ(t0) = um(n−1)

. (33)

A 2k(M + 1) set of linear equations is generated by combining Equations (32) and (33). The solution
of these linear equations can be obtained for unknown coefficients of the vector C. Consequently,
u1(t), u2(t), . . . , um(t), introduced in Equation (27), can be computed.
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If Ui is a nonlinear function of t, u1, u2, . . . , um, then we first compute R1(t), R2(t), . . . , Rm(t) at
2k(M + 1)−mn points and, for a better result, use the first 2k(M + 1)−mn roots of shifted Legendre
P2k(M+1)(t). Then these equations, collectively with Equation (33), produce 2k(M + 1) nonlinear
equations. The solution of these nonlinear equations can be obtained by employing Newton’s iterative
method. Consequently, u1(t), u2(t), . . . , um(t), introduced in Equation (27), can be computed.

5. Illustrative Examples

In this section, to show the applicability and powerfulness of the introduced method, we present
the solutions to five linear and nonlinear systems of fractional order differential equations.

Example 1. We first considered the following linear system of fractional differential equations [7,8]:

Dαu(t) = u(t) + v(t)
Dαv(t) = −u(t) + v(t)

,

subject to
u(0) = 0, v(0) = 1.

The exact solution of this system when α = 1 is known to be

u(t) = et sin t, v(t) = et cos t.

This example was examined for M = 2, k = 0, and α = 0.9, 0.7, 0.5. When the obtained results
were matched against the exact solution when α = 1, as demonstrated in Figure 1, we can clearly
observe that when α approached 1, our results approached the exact solution. We also solved this
problem by using Legendre polynomial operational matrix method (LPOMM), and we compared the
results with the LWOMM. The numerical computations for u(t) and v(t) when α = 0.9 are revealed in
Tables 1 and 2.

Table 1. Numerical solutions of u(t) when α = 0.9 attained by the introduced method and the LPOMM
for Example 1.

t uLWOMM uLPOMM Absolute Error

0.0 0.3 × 10−9 0.0000000000 0.3 × 10−9

0.1 0.1483784330 0.1483784325 0.12 × 10−9

0.2 0.3217645283 0.3217645277 0.633 × 10−9

0.3 0.5201582862 0.5201582855 0.65 × 10−9

0.4 0.7435597067 0.7435597059 0.83 × 10−9

0.5 0.9919687898 0.9919687890 0.8 × 10−9

0.6 1.265385536 1.265385535 0.53 × 10−9

0.7 1.563809944 1.563809943 0.95 × 10−9

0.8 1.887242014 1.887242014 0.733 × 10−9

0.9 2.235681748 2.235681748 0.62 × 10−9

1.0 2.609129144 2.609129144 0.3 × 10−9
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Table 2. Numerical solutions of v(t) when α = 0.9 attained by the introduced method and the LPOMM
for Example 1.

t vLWOMM vLPOMM Absolute Error

0.0 1.000000000 1.000000000 0.2 × 10−9

0.1 1.152270899 1.152270900 −0.5 × 10−9

0.2 1.274801858 1.274801858 0.599 × 10−9

0.3 1.367592877 1.367592878 −0.67 × 10−9

0.4 1.430643956 1.430643957 −0.13 × 10−8

0.5 1.463955094 1.463955094 −0.1 × 10−8

0.6 1.467526291 1.467526293 −0.13 × 10−8

0.7 1.441357549 1.441357551 −0.171 × 10−8

0.8 1.385448866 1.385448868 −0.1461 × 10−8

0.9 1.299800244 1.299800245 −0.15 × 10−8

1.0 1.184411680 1.184411682 −0.18 × 10−8

(a) 

Figure 1. Cont.
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(b) 

Figure 1. Comparison of our solutions and the exact solution when α = 0.9, 0.7, 0.5 in Example 1:
(a) Our solution u(t); and (b) Our solution v(t).

Example 2. We considered the following nonlinear system of fractional differential equations [13]:

D
3
2 u(t) = −8u(t) + v2(t)− 4t6 + 4t3 + 8t

3
2√
π
− 1

D
1
2 v(t) = t2Du(t) + v(t)− 3t4 − 2t3 + 32t

5
2

5
√

π
− 1

u(0) = 0, v(0) = 1, u(1) = 1, v(1) = 3, u′(0) = 0, u′(1) = 3.

The exact solution of this system is known to be

u(t) = t3, v(t) = 2t3 + 1

Using the parameters M = 3 and k = 0, we applied both the proposed method and the LPOMM
to solve this problem and show that our approach is more efficient and useful. Our numerical results
supported the idea that our solution approaches the exact solution more than the approximate solution
LPOMM. Comparisons of the approximate and exact solutions are presented in Tables 3 and 4.

327



Mathematics 2018, 6, 238

Table 3. The numerical results attained by using the introduced method in comparison to the approximate
solution LPOMM and the exact solution u(t) in Example 2.

t Exact Solution uLWOMM uLPOMM

0.0 0.000 −0.12 × 10−9 0.000000000000
0.1 0.001 0.01000000005 0.001000000000
0.2 0.008 0.02000000016 0.008000000000
0.3 0.027 0.03750000021 0.027000000000
0.4 0.064 0.07000000020 0.064000000000
0.5 0.125 0.12500000001 0.125000000000
0.6 0.216 0.21000000000 0.216000000000
0.7 0.343 0.33249999998 0.343000000000
0.8 0.512 0.49999999996 0.512000000000
0.9 0.729 0.71999999993 0.729000000000
1.0 1.000 0.99999999989 1.000000000000

Table 4. The numerical results attained by using the introduced method in comparison with the
approximate solution LPOMM and exact solution v(t) in Example 2.

t Exact Solution vLWOMM vLPOMM

0.0 1.000 1.000000000 0.9999999998
0.1 1.002 1.034841367 1.165803114
0.2 1.016 1.057587628 1.283854751
0.3 1.054 1.086537668 1.374911456
0.4 1.128 1.139990370 1.459729770
0.5 1.250 1.236244618 1.559066242
0.6 1.432 1.393599296 1.693677414
0.7 1.686 1.630353290 1.884319831
0.8 2.024 1.964805482 2.151750038
0.9 2.458 2.415254758 2.516724579
1.0 3.000 3.000000000 3.000000000

Example 3. We considered the following nonlinear system of fractional differential equations with the initial
conditions [8]

Dαu(t) = u(t)
2

Dαv(t) = u2(t) + v(t)
,

u(0) = 1, v(0) = 0.

The exact solution of this system when α = 1 is known to be

u(t) = e(
t
2 ), v(t) = tet.

The parameters M = 2, k = 0, and α = 0.5, 0.7, 0.9 were utilized. A comparison of our results and
the exact solution when α = 1 is displayed in Figure 2. The figures support that when α approximated
1, our results approximated the exact solution. We also solved this problem by using the LPOMM,
and compared the results to the LWOMM. Finally, we present the numerical computations for u(t) and
v(t) when α = 0.9 in Tables 5 and 6.
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Table 5. Our solutions u(t) when α = 0.9 attained by the presented method and the LPOMM for
Example 3.

t uLWOMM uLPOMM Absolute Error

0.0 1.000000000 1.000000000 −0.37 × 10−10

0.1 1.064816320 1.064816320 −0.132 × 10−9

0.2 1.130248588 1.130248589 −0.1375 × 10−9

0.3 1.196296807 1.196296807 0.44 × 10−10

0.4 1.262960974 1.262960975 −0.808 × 10−9

0.5 1.330241090 1.330241091 −0.532 × 10−9

0.6 1.398137156 1.398137156 −0.168 × 10−9

0.7 1.466649171 1.466649171 −0.756 × 10−9

0.8 1.535777134 1.535777134 −0.1375 × 10−9

0.9 1.605521046 1.605521046 0.468 × 10−9

1.0 1.675880908 1.675880908 0.163 × 10−9

  
(a) (b) 

Figure 2. Comparison of our solutions to the exact solution when α = 0.9, 0.7, 0.5 for Example 3: (a) Our
solution u(t); and (b) Our solution v(t).

Table 6. Our solutions v(t) when α = 0.9 attained by the presented method and the LPOMM for
Example 3.

t vLWOMM vLPOMM Absolute Error

0.0 −0.1 × 10−9 0.0000000000 −0.1 × 10−9

0.1 0.1381762603 0.1381762609 −0.7 × 10−9

0.2 0.3133603361 0.3133603363 −0.2 × 10−9

0.3 0.5255522259 0.5255522263 −0.37 × 10−9

0.4 0.7747519304 0.7747519309 −0.5 × 10−9

0.5 1.060959450 1.060959450 −0.5 × 10−9

0.6 1.384174783 1.384174784 −0.8 × 10−9

0.7 1.744397932 1.744397932 −0.47 × 10−9

0.8 2.141628894 2.141628895 −0.7 × 10−9

0.9 2.575867672 2.575867672 0.3 × 10−9

1.0 3.047114264 3.047114264 −0.1 × 10−9
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Example 4. We considered the following nonlinear system of FDEs with initial conditions [13]

Dαu(t) = −1002u(t) + 1000v2(t)
Dαv(t) = u(t)− v(t)− v2(t)

u(0) = 1, v(0) = 1

The exact solution of this system when α = 1 is known to be

u(t) = e−2t, v(t) = e−t

This example was analyzed for M = 3, k = 0, and α = 0.9, 0.7, 0.5. When the obtained results were
matched against the exact solution when α = 1, as demonstrated in Figure 3, we can clearly observe
that when α approached 1, our results approached the exact solution. We also solved this problem by
using the LPOMM, and compared the results with the LWOMM. The numerical computations for u(t)
and v(t) when α = 0.99 are also revealed in Tables 7 and 8.

Table 7. Numerical solutions of u(t) when α = 0.99 for Example 4.

t uLWOMM uLPOMM Absolute Error

0.0 1.000000000 1.000000000 −0.4 × 10−10

0.1 0.8144351529 0.8144351528 −0.21 × 10−10

0.2 0.6639425233 0.6639425233 −0.15 × 10−9

0.3 0.5429947229 0.5429947230 −0.34 × 10−9

0.4 0.4460643636 0.4460643636 −0.42 × 10−9

0.5 0.3676240568 0.3676240568 0
0.6 0.3021464142 0.3021464147 −0.68 × 10−9

0.7 0.2441040487 0.2441040481 −0.24 × 10−9

0.8 0.1879695699 0.1879695690 0.53 × 10−9

0.9 0.1282155920 0.1282155905 0.461 × 10−9

1.0 0.0593147248 0.0593147222 0.144 × 10−8

Table 8. Numerical solutions of v(t) when α = 0.99 for Example 4.

t vLWOMM vLPOMM Absolute Error

0.0 1.000000000 0.9999999999 0.79 × 10−10

0.1 0.9025601837 0.9025601837 0.1498 × 10−9

0.2 0.8152646487 0.8152646488 −0.119 × 10−9

0.3 0.7371116577 0.7371116578 −0.8 × 10−10

0.4 0.6670994737 0.6670994739 −0.11 × 10−9

0.5 0.6042263597 0.6042263600 −0.24 × 10−9

0.6 0.5474905785 0.5474905788 −0.19 × 10−9

0.7 0.4958903932 0.4958903935 −0.26 × 10−9

0.8 0.4484240664 0.4484240670 −0.443 × 10−9

0.9 0.4040898614 0.4040898620 −0.5898 × 10−9

1.0 0.3618860408 0.3618860417 −0.719 × 10−9
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(a) (b) 

Figure 3. Comparison of our solutions to the exact solution when α = 0.9, 0.7, 0.5 for Example 4: (a) Our
solution u(t); and (b) Our solution v(t).

Example 5. We considered the following fractional order Brusselator system [16,17]:

Dαu(t) = −2u(t) + u2(t)v(t)
Dαv(t) = u(t)− u2(t)v(t)

u(0) = 1, v(0) = 1.

The approximate solutions of this system when α = 1 and α = 0.98 were presented by Chang and
Isah using the LWPT [17] and by Bota and Caruntu using the PLSM [16]. These solutions when α = 98
are given by

uLWPT(t) = 1− 1.0791t + 0.2711t2 − 0.0638t3, vLWPT(t) = 1 + 0.0151t + 0.4185t2 − 0.2624t3

uPLSM(t) = 1− 1.08655t + 0.311138t2 + 0.0243682t3, vPLSM(t) = 1 + 0.0349127t + 0.333424t2 − 0.184414t3 .

The parameters M = 2, k = 0, and α = 0.98 were used. A comparison of our results to the
approximate solutions introduced by Bota and Caruntu [16] and Chang and Isah [17] when α = 0.98
is displayed in Figure 4. Finally, we also present the numerical computations for u(t) and v(t) when
α = 0.98 in Tables 9 and 10.

Table 9. Numerical solutions of u(t) when α = 0.98 obtained by the introduced method, the LWPT,
and the PLSM for Example 5.

t uLWOMM uLWPT uPLSM

0.0 1.000000000 1.0000000 1.0000000000
0.1 0.8942024826 0.8947372 0.8944807482
0.2 0.7950696916 0.7945136 0.7953304656
0.3 0.7026016268 0.6989464 0.7026953614
0.4 0.6167982883 0.6076528 0.6167216448
0.5 0.5376596761 0.5202500 0.5375555250
0.6 0.4651857902 0.4363552 0.4653432112
0.7 0.3993766306 0.3555856 0.4002309126
0.8 0.3402321973 0.2775584 0.3423648384
0.9 0.2877524902 0.2018908 0.2918911978
1.0 0.2419375095 0.1282000 0.2489562000
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Table 10. Numerical solutions of v(t) when α = 0.98 obtained by the introduced method, the LWPT,
and the PLSM for Example 5.

t vLWOMM vLWPT vPLSM

0.0 1.000000000 1.0000000 1.000000000
0.1 1.008069307 1.0054326 1.006641096
0.2 1.019479961 1.0176608 1.018844188
0.3 1.034231959 1.0351102 1.035502792
0.4 1.052325304 1.0562064 1.055510424
0.5 1.073759995 1.0793750 1.077760600
0.6 1.098536032 1.1030416 1.101146836
0.7 1.126653415 1.1256318 1.124562648
0.8 1.158112143 1.1455712 1.146901552
0.9 1.192912217 1.1612854 1.167057064
1.0 1.231053638 1.1712000 1.183922700

 
(a) 

 
(b) 

Figure 4. Comparison of our solutions to the approximate solution LWPT and the approximate solution
PLSM when α = 0.98 for Example 5: (a) Our solution u(t); and (b) Our solution v(t).
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6. Conclusions

In this paper, a system of fractional_order differential equations was examined by drawing
from a new operational matrix of the fractional derivative in some special conditions. We also
systematized a very operational algorithm in order to attain the solution of the linear and nonlinear
systems of fractional differential equations in Maple. All numerical results and graphical presentations
generated by Maple affirmed that the Legendre wavelet operational matrix method is very effective
and applicable. As the next step, the method introduced in this paper can be applied to fractional
partial differential equations and the system of such equations, fractional integral equations and the
system of such equations, and fractional integro-differential equations. These equations are at least
as important as fractional differential equations and they are very significant in science, engineering,
and technology.
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