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Preface to ”Applied Functional Analysis and 
Its Applications”

It is well known that applied functional analysis is very important in most applied research 
fields and its influence has grown in recent decades. Many novel works have used techniques, 
ideas, notions, and methods of applied functional analysis. Furthermore, applied functional analysis 
includes linear and nonlinear problems.

The scope of this field is so wide that it cannot be expressed in a few books. This book covers 
a limited section of this field, namely, fixed point theory and applications, nonlinear methods and 
variational inequalities, and set-valued optimization problems.

The most important application of fixed point theory is proving the existence of solutions 
for fractional integro-differential equations and, therefore, increasing our ability to model different 
kinds of phenomena. In most everyday matters, we seek to use optimization. The importance of 
optimization has attracted many researchers to this field over the past few decades and provided 
new ideas, concepts, and techniques.

              Jen-Chih Yao , Shahram Rezapour
Editors
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Abstract: The hyperspace consists of all subsets of a vector space. Owing to a lack of additive
inverse elements, the hyperspace cannot form a vector space. In this paper, we shall consider a
so-called informal norm to the hyperspace in which the axioms regarding the informal norm are
almost the same as the axioms of the conventional norm. Under this consideration, we shall propose
two different concepts of open balls. Based on the open balls, we shall also propose the different
types of open sets. In this case, the topologies generated by these different concepts of open sets
are investigated.

Keywords: hyperspace; informal open sets; informal norms; null set; open balls

1. Introduction

The topic of set-valued analysis (or multivalued analysis) has been studied for an extensive
period. A detailed discussion can refer to Aubin and Frankowska [1], and Hu and Papageorgiou [2,3].
Applications in nonlinear analysis can refer to Agarwal and O’Regan [4], Burachik and Iusem [5],
and Tarafdar and Chowdhury [6]. More specific applications in differential inclusion can also refer
to Aubin and Cellina [7]. On the other hand, the fixed point theory for set-valued mappings can
refer to Górniewicz [8], and set-valued optimization can refer to Chen et al. [9], Khan et al. [10] and
Hamel et al. [11]. Also, the set optimization that is different from the set-valued optimization can refer
to Wu [12] and the references therein.

Let P(X) be the collection of all subsets of a vector space X. The set-valued analysis usually
studies the mathematical structure in P(X) in which each element in P(X) is treated as a subset of
X. In this paper, we shall treat each element of P(X) as a “point”. In other words, each subset of X
is compressed as a point, and the family P(X) is treated as a universal set. In this case, the original
vector space X plays no role in the settings. Therefore, we want to endow a vector structure to P(X).
Although we can define the vector addition and scalar multiplication in P(X) in the usual way, owing
to lacking an additive inverse element, the family P(X) cannot form a vector space. In this paper,
we shall endow a so-called informal norm to P(X) even though P(X) is not a vector space. Then,
the conventional techniques of functional analysis and topological vector space based on the vector
space can be used by referring to the monographs [13–23]. The main purpose of this paper is to study
the topological structures of informally normed space P(X). Based on these topological structures,
the potential applications in nonlinear analysis, differential inclusion and set-valued optimization
(or set optimization) are possible after suitable formulation.

Given a (conventional) vector space X, we denote by P(X) the collection of all subsets of X.
For any A, B ∈ P(X), the set addition is defined by

A⊕ B = {a + b : a ∈ A and b ∈ B} .

Mathematics 2019, 7, 945; doi:10.3390/math7100945 www.mdpi.com/journal/mathematics1
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Given a scalar λ in R, the scalar multiplication in P(X) is defined by

λA = {λa : a ∈ A} .

The substraction between A and B is denoted and defined by

A� B ≡ A⊕ (−B) = {a− b : a ∈ A and b ∈ B} .

We denote by θX the zero element of X. Let θP(X) = {θX} be a singleton set. We see that

A⊕ θP(X) = A⊕ {θX} = A,

which says that {θX} is the zero element of P(X). It is clear to see that A� A �= {θX}, which says
that A� A cannot be the zero element of P(X). That is to say, the additive inverse element of A in
P(X) does not exist. Therefore, the hyperspace P(X) cannot form a vector space under the above set
of addition and scalar multiplication. Since A� A is not the zero element, we consider the null set of
P(X) defined by

Ω = {A� A : A ∈ P(X)} , (1)

which may be treated as a kind of “zero element” of P(X). It is clear to see that the null set is closed
under the addition.

In this paper, we shall consider the so-called informal norm in P(X). The axioms of informal
norm will be almost the same as the axioms of conventional norm. The only difference is that the
null set will be involved in the axioms of informal norm. In order to study the topological structure
of (P(X), ‖ · ‖), we need to consider the open balls. Let us recall that if (X, ‖ · ‖) is a (conventional)
normed hyperspace, then we see that

{y :‖ x− y ‖< ε} = {x + z :‖ z ‖< ε}

by taking y = x + z. However, for the space (P(X), ‖ · ‖) and A, B, C ∈ P(X), the following equality

{B :‖ A� B ‖< ε} = {A⊕ C :‖ C ‖< ε}

does not hold. The reason is that, by taking B = A⊕ C, we can just have

‖ A� B ‖=‖ A� (A⊕ C) ‖=‖ ω � C ‖�=‖ C ‖,

where ω = A � A ∈ Ω. In this case, two types of open balls will be considered in (P(X), ‖ · ‖).
Therefore, many types of open sets will also be considered. Based on the different types of openness,
we shall study the topological structure of the normed hyperspace (P(X), ‖ · ‖).

In Section 2, many interesting properties in P(X) are presented in order to study the the topology
generated by the so-called informal norm. In Section 3, we introduce the concept of informal norms
and provide many useful properties for further investigation. In Section 4, we provide the non-intuitive
properties for the open balls. In Section 5, we propose many types of informal open sets based on the
different types of open balls. Finally, in Section 6, we investigate the topologies generated by these
different types of open sets.

2. Hyperspaces

Since the null set Ω defined in (1) can be treated as a kind of “zero element”, we propose the
almost identical concept for elements in P(X) as follows.
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Definition 1. For any A, B ∈ P(X), the elements A and B are said to be almost identical if there exist

ω1, ω2 ∈ Ω satisfying A⊕ω1 = B⊕ω2. In this case, we write A Ω
= B.

For A� B = C, we cannot have A = B⊕C. However, we can obtain A Ω
= B⊕C. Let B� B ≡ ω ∈

Ω. Since A� B = C, by adding B on both sides, we have A⊕ω = B⊕ C, which says that A Ω
= B⊕ C.

Proposition 1. Given any A, B ∈ P(X), we have the following properties.

(i) Suppose that A� B ∈ Ω. Then A Ω
= B.

(ii) Suppose that A Ω
= B. Then there exists ω ∈ Ω satisfying A� B⊕ω ∈ Ω.

Proof. To prove part (i), we first note that there exists ω1 ∈ Ω such that

A� B = A⊕ (−B) = ω1.

By adding B on both sides, we obtain A⊕ (−B)⊕ B = ω1 ⊕ B. Therefore, we have A⊕ ω2 =

ω1 ⊕ B, where ω2 = B� B ∈ Ω.
To prove part (ii), since A Ω

= B, there exist ω1, ω2 ∈ Ω such that A⊕ ω2 = ω1 ⊕ B. By adding
−B on both sides, we obtain A� B⊕ω2 = ω1 ⊕ω3 ∈ Ω, where ω3 = B� B ∈ Ω. This completes the
proof.

Proposition 2. The following statements hold true.

(i) Given any subset A of P(X), we have A ⊆ A⊕Ω.
(ii) We have Ω⊕Ω = Ω. Given any subset A of P(X), let Ā = A⊕Ω. Then Ā ⊕Ω = Ā.
(iii) Given any ω = B� B ∈ Ω for some B ⊆ X, we have ω = ω1 ⊕ω2 for some ω1, ω2 ∈ Ω. If B �= {θX}

then we can take ω1 �= {θX} and ω2 �= {θX}.

Proof. To prove part (i), since θP(X) ≡ {θX} ∈ Ω, given any A ∈ A, we have

A = A⊕ {θX} = A⊕ θP(X) ∈ A⊕Ω.

To prove part (ii), given any ω1, ω2 ∈ Ω, we have ω1 = A � A and ω2 = B � B for some
A, B ∈ P(X). Therefore we obtain

ω1 ⊕ω2 = A� A⊕ B� B = (A⊕ B)� (A⊕ B) ∈ Ω,

which says that Ω⊕Ω ⊆ Ω. Now, for any ω ∈ Ω, since θP(X) ≡ {θX} ∈ Ω, we have

ω = ω ⊕ {θX} = ω ⊕ θP(X) ∈ Ω⊕Ω,

which says that Ω ⊆ Ω⊕Ω. Therefore we obtain Ω⊕Ω = Ω. On the other hand, we have

Ā ⊕Ω = A⊕Ω⊕Ω = A⊕Ω = Ā.

To prove part (iii), given any B ⊆ X, we have B = B1 ⊕ B2 for some subsets B1 and B2 of X.
For example, we can take B1 = {b} and B2 = B� {b} for some b ∈ B. Therefore we have

ω = B� B = (B1 ⊕ B2)� (B1 ⊕ B2) = (B1 � B1)⊕ (B2 � B2) ≡ ω1 ⊕ω2.

This completes the proof.

3
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The following interesting results will be used for discussing the topological structure of informal
normed hyperspace.

Proposition 3. Let A1 and A2 be subsets of P(X). Then the following inclusion is satisfied:

(A1 ∩A2)⊕Ω ⊆ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)] .

If we further assume that A1 ⊕Ω ⊆ A1 and A2 ⊕Ω ⊆ A2, then the following equality is satisfied:

[(A1 ⊕Ω) ∩ (A2 ⊕Ω)] = (A1 ∩A2)⊕Ω.

Proof. For B ∈ (A1 ∩ A2) ⊕ Ω, we have B = A ⊕ ω with A ∈ Ai for i = 1, 2 and ω ∈ Ω, which
also says that B ∈ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)], i.e., (A1 ∩A2)⊕Ω ⊆ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)]. Under the
assumption, using part (i) of Proposition 2, we have

[(A1 ⊕Ω) ∩ (A2 ⊕Ω)] ⊆ A1 ∩A2 ⊆ (A1 ∩A2)⊕Ω.

This completes the proof.

3. Informal Norms

Many kinds of informal norms on P(X) are proposed below.

Definition 2. Consider the nonnegative real-valued function ‖ · ‖: P(X)→ R+ and the following conditions:

(i) ‖ λA ‖= |λ| ‖ A ‖ for any A ∈ P(X) and λ ∈ R.
(i′) ‖ λA ‖= |λ| ‖ A ‖ for any A ∈ P(X) and λ ∈ R with λ �= 0.
(ii) ‖ A⊕ B ‖≤‖ A ‖ + ‖ B ‖ for any A, B ∈ P(X).
(iii) ‖ A ‖= 0 implies A ∈ Ω.

The informal norm ‖ · ‖ is said to satisfy the null condition when condition (iii) is replaced by ‖ A ‖= 0 if
and only if A ∈ Ω.

Different kinds of informal normed hyperspaces are defined below.

• The ordered pair (P(X), ‖ · ‖) is said to be an informal pseudo-seminormed hyperspace when conditions
(i′) and (ii) are satisfied.

• The ordered pair (P(X), ‖ · ‖) is said to be an informal seminormed hyperspace when conditions (i) and
(ii) are satisfied.

• The ordered pair (P(X), ‖ · ‖) is said to be an informal pseudo-normed hyperspace when conditions (i′),
(ii) and (iii) are satisfied.

• The ordered pair (P(X), ‖ · ‖) is said to be an informal normed hyperspace when conditions (i), (ii) and
(iii) are satisfied.

We further consider the following conditions:

• The informal norm ‖ · ‖ is said to satisfy the null super-inequality when ‖ A ⊕ ω ‖≥‖ A ‖ for any
A ∈ P(X) and ω ∈ Ω.

• The informal norm ‖ · ‖ is said to satisfy the null sub-inequality when ‖ A ⊕ ω ‖≤‖ A ‖ for any
A ∈ P(X) and ω ∈ Ω.

• The informal norm ‖ · ‖ is said to satisfy the null equality when ‖ A⊕ω ‖=‖ A ‖ for any A ∈ P(X)

and ω ∈ Ω.

Example 1. Let (X, ‖ · ‖X) be a (conventional) normed space. Given any element A ∈ P(X), we define

‖ A ‖= sup
a∈A

‖ a ‖X .

4
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We are going to claim that (P(X), ‖ · ‖) is an informal normed hyperspace.

• If A = {θ}, then we have ‖ A ‖= 0. If ‖ A ‖= 0, then also we have ‖ a ‖X= 0 for all a ∈ A,
i.e., A = {θ}. Therefore, we obtain that ‖ A ‖= 0 if and only if A = {θ} ∈ Ω.

• We have
‖ λA ‖= sup

a∈λA
‖ a ‖X= sup

b∈A
‖ λb ‖X= |λ| sup

b∈A
‖ b ‖X= |λ| ‖ A ‖ .

• We want to prove the triangle inequality ‖ A⊕ B ‖≤‖ A ‖ + ‖ B ‖. Let

ζ1 = sup
{(a,b):a∈A,b∈B}

‖ a ‖X and ζ2 = sup
{(a,b):a∈A,b∈B}

‖ b ‖X .

It is clear to see that ‖ a ‖ + ‖ b ‖≤ ζ1 + ζ2 for all a ∈ A and b ∈ B, which implies

sup
{(a,b):a∈A,b∈B}

(‖ a ‖X + ‖ b ‖X) ≤ ζ1 + ζ2 = sup
{(a,b):a∈A,b∈B}

‖ a ‖X + sup
{(a,b):a∈A,b∈B}

‖ b ‖X .

Then, we obtain

‖ A⊕ B ‖ = sup
c∈A⊕B

‖ c ‖X= sup
{(a,b):a∈A,b∈B}

‖ a + b ‖X

≤ sup
{(a,b):a∈A,b∈B}

(‖ a ‖X + ‖ b ‖X)

≤ sup
{(a,b):a∈A,b∈B}

‖ a ‖X + sup
{(a,b):a∈A,b∈B}

‖ b ‖X

= sup
a∈A

‖ a ‖X + sup
b∈B

‖ b ‖X=‖ A ‖ + ‖ B ‖ .

Therefore, we conclude that (P(X), ‖ · ‖) is indeed an informal normed hyperspace. Given any ω ∈ Ω,
there exists B ∈ P(X) satisfying ω = B� B. Therefore, we obtain

‖ ω ‖=‖ B� B ‖= sup
{(b1,b2):b1,b2∈B}

‖ b1 − b2 ‖X .

Since ‖ ω ‖ is not equal to zero in general, it means that the null condition is not satisfied.

Proposition 4. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Suppose that the informal
norm ‖ · ‖ satisfies the null super-inequality. For any A, C, B1, · · · , Bm ∈ P(X), we have

‖ A� C ‖≤‖ A� B1 ‖ + ‖ B1 � B2 ‖ + · · ·+ ‖ Bj � Bj+1 ‖ + · · ·+ ‖ Bm � C ‖ .

Proof. We have

‖ A� C ‖ ≤‖ A⊕ (−C)⊕ B1 ⊕ · · · ⊕ Bm ⊕ (−B1)⊕ · · · ⊕ (−Bm) ‖
(using the null super-inequality for m times)

=‖ [A⊕ (−B1)]⊕ [B1 ⊕ (−B2)] + · · ·+ [Bj ⊕ (−Bj+1)] + · · ·+ [Bm ⊕ (−C)] ‖
≤‖ A� B1 ‖ + ‖ B1 � B2 ‖ + · · ·+ ‖ Bj � Bj+1 ‖ + · · ·+ ‖ Bm � C ‖

(using the triangle inequality).

This completes the proof.

5
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4. Open Balls

If (X, ‖ · ‖) is a (conventional) seminormed space, then we see that

{y :‖ x− y ‖< ε} = {x + z :‖ z ‖< ε}

by taking y = x + z. Let (P(X), ‖ · ‖) be an informal seminormed hyperspace. Then the
following equality

{B :‖ A� B ‖< ε} = {A⊕ C :‖ C ‖< ε}

does not hold. The reason is that, by taking B = A⊕ C, we can just have

‖ A� B ‖=‖ A� (A⊕ C) ‖=‖ −C⊕ω ‖�=‖ C ‖,

where ω = A� A ∈ Ω. Therefore we can define two types of open ball.

Definition 3. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Two types of open balls with
radius ε are defined by

B�(A; ε) = {A⊕ C :‖ C ‖< ε}

and
B(A; ε) = {B :‖ A� B ‖=‖ B� A ‖< ε}.

Example 2. Continued from Example 1, for any A ∈ P(X), we define

‖ A ‖= sup
a∈A

‖ a ‖X .

The open balls B(A; ε) and B�(A; ε) with radius ε are given by

B(A; ε) = {B ∈ P(X) :‖ A� B ‖< ε} =
{

B ∈ P(X) : sup
a∈A�B

‖ a ‖X< ε

}

and

B�(A; ε) = {A⊕ C ∈ P(X) :‖ C ‖< ε} =
{

A⊕ C ∈ P(X) : sup
c∈C

‖ c ‖X< ε

}
.

Remark 1. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Then we have the
following observations.

• For any A ∈ P(X), the equality ‖ A� A ‖= 0 does not necessarily hold true, unless ‖ · ‖ satisfies the
null condition. In other words, the properties A ∈ B(A; ε) can only hold true when ‖ · ‖ satisfies the
null condition.

• Suppose that ‖ θP(X) ‖=‖ {θX} ‖= 0. Then A ∈ B�(A; ε), since A = A⊕ θP(X).

Proposition 5. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) For A ∈ P(X) with ωA = A� A ∈ Ω, we have B(A; ε)⊕ωA ⊆ B�(A; ε).
(ii) If ‖ · ‖ satisfies the null sub-inequality, then B�(A; ε) ⊆ B(A; ε).
(iii) If ‖ · ‖ satisfies the null sub-inequality, for any A ∈ P(X) with ωA = A� A ∈ Ω, then B(A; ε)⊕

ωA ⊆ B(A; ε) and B�(A; ε)⊕ωA ⊆ B�(A; ε).

Proof. To prove part (i), for any B ∈ B(A; ε), i.e., ‖ B� A ‖< ε, if we take C = B� A, then ‖ C ‖< ε

and B⊕ωA = A⊕ C. This shows the inclusion

B(A; ε)⊕ωA ⊆ {A⊕ C :‖ C ‖< ε} = B�(A; ε).

6
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To prove part (ii), for C ∈ P(X) with ‖ C ‖< ε, since ‖ · ‖ satisfies the null sub-inequality, it
follows that

‖ (A⊕ C)� A ‖=‖ ωA ⊕ C ‖≤‖ C ‖< ε,

which says that A⊕ C ∈ B(A; ε) and shows the inclusion

B�(A; ε) = {A⊕ C :‖ C ‖< ε} ⊆ B(A; ε).

Part (iii) follows from parts (i) and (ii) immediately. This completes the proof.

Proposition 6. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) If ‖ · ‖ satisfies the null super-inequality, then B(A⊕ω; ε) ⊆ B(A; ε) for any ω ∈ Ω.
(ii) If ‖ · ‖ satisfies the null sub-inequality, then we have the following inclusions:

• B(A; ε) ⊆ B(A⊕ω; ε) for any ω ∈ Ω.
• B�(A⊕ω; ε) ⊆ B�(A; ε) for any ω ∈ Ω.

(iii) If ‖ · ‖ satisfies the null equality, then B(A⊕ω; ε) = B(A; ε) for any ω ∈ Ω.

Proof. To prove part (i), the inclusion B(A⊕ω; ε) ⊆ B(A; ε) follows from the following expression

ε >‖ (A⊕ω)� B ‖=‖ (A� B)⊕ω ‖≥‖ A� B ‖,

and the inclusion B(A⊕ω; ε) ⊆ B(A; ε) follows from the following expression

ε >‖ B� (A⊕ω) ‖=‖ (B� A)⊕ω ‖≥‖ B� A ‖ .

To prove the first case of part (ii), the inclusion B(A; ε) ⊆ B(A⊕ω; ε) follows from the following
expression

ε >‖ A� B ‖≥‖ (A� B)⊕ω ‖=‖ (A⊕ω)� B ‖ .

To prove the second case of part (ii), for B = A ⊕ ω ⊕ C ∈ B�(A ⊕ ω; ε) with ‖ C ‖< ε, let
C̄ = ω ⊕ C. Then, using the null sub-inequality, we have

‖ C̄ ‖=‖ ω ⊕ C ‖≤‖ C ‖< ε, (2)

which says that B = A⊕ C̄ ∈ B�(A; ε). Therefore we obtain the inclusion B�(A⊕ ω; ε) ⊆ B�(A; ε).
Part (iii) follows from parts (i) and (ii) immediately. This completes the proof.

In the (conventional) normed hyperspace (X, ‖ · ‖), we have the equality

B(x; ε)⊕ x̂ = B(x⊕ x̂; ε). (3)

However, in the informal normed hyperspace (P(X), ‖ · ‖), the intuitive observation (3) will not
hold true in general. The following proposition presents the exact relationship.

Proposition 7. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) We have the equality B�(A; ε) ⊕ Â = B�(A ⊕ Â; ε). In particular, for any ω ∈ Ω, we also have
B�(A; ε)⊕ω = B�(A⊕ω; ε).

(ii) Suppose that ‖ · ‖ satisfies the null sub-inequality. Then we have the inclusion B(A; ε)⊕ Â ⊆ B(A⊕
Â; ε). We further assume that ‖ · ‖ satisfies the null equality. Then, for any ω ∈ Ω, we also have the
inclusions B(A; ε)⊕ω ⊆ B(A; ε) and B(ω; ε)⊕ Â ⊆ B(Â; ε).

(iii) Suppose that ‖ · ‖ satisfies the null sub-inequality. For any A ∈ P(X) with ωA = A� A, we have the
inclusion B(A; ε)⊕ωA ⊆ A⊕B(ωA; ε).

7
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(iv) For any Â ∈ P(X) with ωÂ = Â� Â, we have the inclusion

B(A⊕ Â; ε)⊕ωÂ ⊆ B(A; ε)⊕ Â.

Proof. Part (i) follows from the following equality

(A⊕ C)⊕ Â = (A⊕ Â)⊕ C for ‖ C ‖< ε.

To prove part (ii), for B ∈ B(A; ε)⊕ Â, we have B = B̂⊕ Â with ‖ A� B̂ ‖< ε. Then, by the null
sub-inequality, we can obtain

‖ (A⊕ Â)� B ‖=‖ (A⊕ Â)� (B̂⊕ Â) ‖=‖ (A� B̂)⊕ (Â� Â) ‖≤‖ A� B̂ ‖< ε,

which says that B ∈ B(A ⊕ Â; ε). Therefore we obtain the inclusion B(A; ε) ⊕ Â ⊆ B(A ⊕ Â; ε).
Now we take Â = ω. By part (iii) of Proposition 6, we have

B(A; ε)⊕ω ⊆ B(A⊕ω; ε) = B(A; ε).

Similarly, if we take A = ω, then we have

B(ω; ε)⊕ Â ⊆ B(ω ⊕ Â; ε) = B(Â; ε).

To prove part (iii), for Â ∈ B(A; ε), we have Â ⊕ ωA = A ⊕ (Â � A). The null
sub-inequality gives

‖ ωA � (Â� A) ‖≤‖ Â� A ‖< ε,

which says that Â� A ∈ B(ω; ε), i.e.,

Â⊕ωA = A⊕ (Â� A) ∈ A⊕B(ωA; ε).

To prove part (iv), for B ∈ B(A⊕ Â; ε), we have ‖ B� (A⊕ Â) ‖< ε. We also have

ε >‖ B� (A⊕ Â) ‖=‖ (B� Â)� A ‖ .

This shows that B� Â ∈ B(A; ε). Let ωÂ = Â� Â ∈ Ω. Since B⊕ ωÂ = (B� Â)⊕ Â, it says
that B⊕ωÂ ∈ B(A; ε)⊕ Â. In other words, we have the inclusion

B(A⊕ Â; ε)⊕ωÂ ⊆ B(A; ε)⊕ Â.

This completes the proof.

Proposition 8. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) The following statements hold true:

• Suppose that ‖ · ‖ satisfies the null super-inequality. For any ω ∈ Ω, if A⊕ω ∈ B(A0; ε), then
A ∈ B(A0; ε).

• Suppose that ‖ · ‖ satisfies the null sub-inequality. For any ω ∈ Ω, if A ∈ B(A0; ε), then
A⊕ω ∈ B(A0; ε), and if A ∈ B�(A0; ε), then A⊕ω ∈ B�(A0; ε).

• Suppose that ‖ · ‖ satisfies the null equality. Then, for any ω ∈ Ω, A⊕ω ∈ B(A0; ε) if and only if
A ∈ B(A0; ε).

(ii) We have the inclusions

B(A; ε) ⊆ B(A; ε)⊕Ω and B�(A; ε) ⊆ B�(A; ε)⊕Ω.

8
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If we further assume that ‖ · ‖ satisfies the null sub-inequality, then

B(A; ε)⊕Ω = B(A; ε) and B�(A; ε)⊕Ω = B�(A; ε).

(iii) Suppose that ‖ · ‖ satisfies the null condition. Given a fixed ω ∈ Ω, we have

Ω⊕ω ⊆ B�(ω; ε) and Ω ⊆ B(ω; ε).

(iv) Suppose that ‖ · ‖ satisfies the null equality. Given any fixed ω ∈ Ω and α �= 0, we have αB(ω; ε) ⊆
B(ω; |α|ε).

(v) Given any fixed ω ∈ Ω and α �= 0, we have

αB�(ω; ε) ⊆ B�(αω; |α|ε) and B�(αω; |α|ε) ⊆ αB�(ω; ε).

Proof. The first case of part (i) follows from the following expression

‖ A� A0 ‖≤‖ (A⊕ω)� A0 ‖< ε.

The second case of part (i) regarding the open ball B(A0; ε) follows from the following expression

‖ (A⊕ω)� A0 ‖≤‖ A� A0 ‖< ε. (4)

For the open ball B�(A0; ε), if A ∈ B�(A0; ε), then A = A0 ⊕ C with ‖ C ‖< ε. Given an ω ∈ Ω,
let C̄ = C⊕ω. Therefore we have A⊕ω = A0 ⊕ C̄, where

‖ C̄ ‖=‖ C⊕ω ‖≤‖ C ‖< ε, (5)

which says that A⊕ω ∈ B�(A0; ε). The third case of part (i) follows from the previous two cases.
To prove part (ii), since θP(X) ∈ Ω is the zero element of P(X), it follows that B = B ⊕ θP(X).

Therefore we have B(A; ε) ⊆ B(A; ε)⊕Ω and B�(A; ε) ⊆ B�(A; ε)⊕Ω. On the other hand, for A ∈
B(A0; ε) and ω ∈ Ω, from (4), we see that A⊕ ω ∈ B(A0; ε), which shows the inclusion B(A0; ε)⊕
Ω ⊆ B(A0; ε). Also, for B = A ⊕ C ∈ B�(A; ε) with ‖ C ‖< ε, let C̄ = ω ⊕ C. By (5), we have
B⊕ω = A⊕ C̄ ∈ B�(A; ε), which shows the inclusion B�(A; ε)⊕Ω ⊆ B�(A; ε). This proves part (ii).

To prove part (iii), for any ω′ ∈ Ω, we have ‖ ω′ ‖= 0, which says that ω ⊕ ω′ ∈ B�(ω; ε).
Therefore we obtain the inclusion Ω⊕ω ⊆ B�(ω; ε). On the other hand, we also have

‖ ω′ �ω ‖=‖ ω′ ⊕ (−ω) ‖≤‖ ω′ ‖ + ‖ −ω ‖=‖ ω′ ‖ + ‖ ω ‖= 0,

which shows that ω′ ∈ B(ω; ε), i.e., Ω ⊆ B(ω; ε).
To prove part (iv), for A ∈ B(ω; ε), since αω ∈ Ω, we have

‖ ω � αA ‖=‖ (ω ⊕ αω)� αA ‖=‖ αω � αA ‖=‖ α(A�ω) ‖= |α| ‖ A�ω ‖< |α|ε,

i.e., αA ∈ B(ω; |α|ε). This shows the inclusion αB(ω; ε) ⊆ B(ω; |α|ε).
To prove the first inclusion of part (v), for A ∈ B(ω; ε), we have A = ω ⊕ C with ‖ C ‖< ε. It

follows that αA = αω ⊕ αC. Let C̄ = αC. Then ‖ C̄ ‖< |α|ε, which shows the inclusion αB�(ω; ε) ⊆
B�(αω; |α|ε). To prove the second inclusion of part (v), for A ∈ B�(αω; |α|ε), we have A = αω ⊕ C
with ‖ C ‖< |α|ε. Let Ĉ = C/α. Then

A = αω ⊕ C = αω ⊕ α(C/α) = αω ⊕ αĈ = α(ω ⊕ Ĉ) with ‖ Ĉ ‖< ε,

which says that A ∈ αB�(ω; ε). This completes the proof.
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5. Informal Open Sets

Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. We are going to consider the
open subsets of P(X).

Definition 4. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace, and let A be a nonempty
subset of P(X).

• A point A0 ∈ A is said to be an informal interior point of A if there exists ε > 0 such that B(A0; ε) ⊆ A.
The collection of all informal interior points of A is called the informal interior of A and is denoted by
int(A).

• A point A0 ∈ A is said to be an informal type-I-interior point of A if there exists ε > 0 such that
B(A0; ε) ⊕ Ω ⊆ A. The collection of all informal type-I-interior points of A is called the informal
type-I-interior of A and is denoted by int(I)(A).

• A point A0 ∈ A is said to be an informal type-II-interior point of A if there exists ε > 0 such that
B(A0; ε) ⊆ A ⊕ Ω. The collection of all informal type-II-interior points of A is called the informal
type-II-interior of A and is denoted by int(II)(A).

• A point A0 ∈ A is said to be an informal type-III-interior point of A if there exists ε > 0 such that
B(A0; ε)⊕Ω ⊆ A⊕Ω. The collection of all informal type-III-interior points of A is called the informal
type-III-interior of A and is denoted by int(III)(A).

The different types of informal �-interior points based on the open ball B�(A0; ε) can be similarly defined.
For example, int(�III)(A) denotes the informal �-type-III-interior of A.

Remark 2. Recall that we cannot have the property A ∈ B(A; ε) in general by Remark 1, unless ‖ · ‖ satisfies
the null condition. Given any A ∈ I with ‖ A� A ‖�= 0, it follows that A �∈ B(A; ε∗) for ε∗ <‖ A� A ‖.
Now, given ε < ε∗, it is clear that B(A; ε) ⊆ B(A; ε∗). Let us take A = B(A; ε∗). It means that the open ball
B(A; ε) is contained in A even though the center A is not in A.

Remark 3. From Remark 2, it can happen that there exists an open ball such that B(A; ε) is contained in A
even though the center A is not in A. In this situation, we will not say that A is an informal interior point, since
A is not in A. Also, the sets B(A; ε)⊕Ω and B�(A; ε)⊕Ω will not necessarily contain the center A. In other
words, it can happen that there exists an open ball such that B(A; ε)⊕Ω is contained in A even though the
center A is not in A. In this situation, we will not say that A is an informal type-I-interior point, since A is not
in A. We also have the following observations.

• Suppose that ‖ · ‖ satisfies the null condition. Then A ∈ B(A; ε). Since A = A⊕ θP(X), we also have
A ∈ B(A; ε)⊕Ω.

• Suppose that ‖ θP(X) ‖= 0. The second observation of Remark 1 says that A ∈ B�(A; ε). Since
A = A⊕ θP(X), it follows that A ∈ B�(A; ε)⊕Ω.

According to Remark 3, we can define the different concepts of informal pseudo-interior point.

Definition 5. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace, and let A be a nonempty
subset of P(X).

• A point A0 ∈ P(X) is said to be an informal pseudo-interior point of A if there exists ε > 0 such
that B(A0; ε) ⊆ A. The collection of all informal pseudo-interior points of A is called the informal
pseudo-interior of A and is denoted by pint(A).

• A point A0 ∈ P(X) is said to be an informal type-I-pseudo-interior point of A if, and only if, there exists
ε > 0 such that B(A0; ε)⊕Ω ⊆ A. The collection of all informal type-I-pseudo-interior points of A is
called the informal type-I-pseudo-interior of A and is denoted by pint(I)(A).
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• A point A0 ∈ P(X) is said to be an informal type-II-pseudo-interior point of A if there exists ε > 0 such
that B(A0; ε) ⊆ A⊕Ω. The collection of all informal type-II-pseudo-interior points of A is called the
informal type-II-pseudo-interior of A and is denoted by pint(II)(A).

• A point A0 ∈ P(X) is said to be an informal type-III-pseudo-interior point of A if there exists ε > 0 such
that B(A0; ε)⊕Ω ⊆ A⊕Ω. The collection of all informal type-III-pseudo-interior points of A is called
the informal type-III-pseudo-interior of A and is denoted by pint(III)(A).

The different types of informal �-pseudo-interior point based on the open ball B�(A0; ε) can be
similarly defined.

Remark 4. We have to remark that the difference between Definitions 4 and 5 is that we consider A0 ∈ A
in Definition 4, and consider A0 ∈ P(X) in Definition 5. From Remark 2, if ε∗ <‖ A� A ‖, then A is a
pseudo-interior point of B(A; ε∗). We also have the following observations.

• It is clear that int(A) ⊆ pint(A), int(I)(A) ⊆ pint(I)(A), int(II)(A) ⊆ pint(II)(A) and int(III)(A) ⊆
pint(III)(A). The same inclusions can also apply to the different types of informal �-interior and
�-pseudo-interior.

• It is clear that int(A) ⊆ A, int(I)(A) ⊆ A, int(II)(A) ⊆ A and int(III)(A) ⊆ A. However, the above kinds
of inclusions cannot hold true for the informal pseudo-interior.

• From Remark 1, we have the following observations.

– Suppose that ‖ · ‖ satisfies the null condition. Then these concepts of informal interior point and
informal pseudo-interior point are equivalent, since A0 is in the open ball B(A0; ε).

– Suppose that ‖ θ ‖= 0. Then these concepts of informal �-type of interior point and informal �-type
of pseudo-interior point are equivalent, since A0 is in the open ball B�(A0; ε).

Remark 5. From part (ii) of Proposition 8, if ‖ · ‖ satisfies the null sub-inequality, then these concepts
of informal interior point and informal type-I-interior point are equivalent, and these concepts of informal
type-II-interior point and informal type-III-interior point are equivalent. The same situation also applies to the
cases of informal pseudo-interior points. We also remark that if ‖ · ‖ satisfies the null condition, then ‖ · ‖
satisfies the null sub-inequality, since we have ‖ A⊕ω ‖≤‖ A ‖ + ‖ ω ‖=‖ A ‖ for any ω ∈ Ω.

Remark 6. Suppose that ‖ · ‖ satisfies the null sub-inequality. From part (ii) of Proposition 5, we see that if
A0 is an informal interior (respectively type-I-interior, type-II-interior, type-III-interior) point then it is also
an informal �-interior (resp. �-type-I-interior, �-type-II-interior, �-type-III-interior) point. In other words,
from Remark 5, we have

int(A) = int(I)(A) ⊆ int(�I)(A) = int�(A)

and
int(II)(A) = int(III)(A) ⊆ int(�III)(A) = int(�II)(A).

Regarding the different concepts of pseudo-interior point, we also have

pint(A) = pint(I)(A) ⊆ pint(�I)(A) = pint�(A)

and
pint(II)(A) = pint(III)(A) ⊆ pint(�III)(A) = pint(�II)(A).

Remark 7. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

• Suppose that the center A0 is in the open ball B(A0; ε). Then the concepts of informal interior point and
informal pseudo-interior point are equivalent. It follows that pint(A) = int(A) ⊆ A. Similarly, if the
center A0 is in the open ball B�(A0; ε), then pint�(A) = int�(A) ⊆ A.
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• From part (ii) of Proposition 8, we have B(A; ε) ⊆ B(A; ε)⊕Ω and B�(A; ε) ⊆ B�(A; ε)⊕Ω. Suppose
that the center A0 is in the open ball B(A0; ε). Let A0 be an informal type-I-pseudo-interior point of
A. Since

A0 ∈ B(A0; ε) ⊆ B(A0; ε)⊕Ω ⊆ A,

using Remark 4, we obtain

pint(I)(A) ⊆ int(A) ⊆ A and pint(I)(A) ⊆ int(I)(A) ⊆ pint(I)(A),

which also implies pint(I)(A) = int(I)(A). Similarly, if the center A0 is in the open ball B�(A0; ε), then
pint(�I)(A) = int(�I)(A).

• Suppose that A⊕Ω ⊆ A. We have the following observations. Assume that the center A0 is in the open
ball B(A0; ε). Let A0 be an informal type-II-pseudo-interior point of A. Since

A0 ∈ B(A0; ε) ⊆ A⊕Ω ⊆ A,

we obtain
pint(II)(A) ⊆ int(A) ⊆ A and pint(II)(A) ⊆ int(II)(A) ⊆ pint(II)(A),

which also implies pint(II)(A) = int(II)(A). Similarly, if the center A0 is in the open ball B�(A0; ε), then
pint(�II)(A) = int(�II)(A).

• Suppose that A⊕Ω ⊆ A. We have the following observations. From part (ii) of Proposition 8, we have
B(A; ε) ⊆ B(A; ε)⊕Ω and B�(A; ε) ⊆ B�(A; ε)⊕Ω. Assume that the center A0 is in the open ball
B(A0; ε). Let A0 be an informal type-III-pseudo-interior point of A. Since

A0 ∈ B(A0; ε) ⊆ B(A0; ε)⊕Ω ⊆ A⊕Ω ⊆ A,

we obtain
pint(III)(A) ⊆ int(A) ⊆ A and pint(III)(A) ⊆ int(III)(A) ⊆ pint(III)(A),

which also implies pint(III)(A) = int(III)(A). Similarly, if the center A0 is in the open ball B�(A0; ε), then
pint(�III)(A) = int(�III)(A).

Definition 6. Let (I , ‖ · ‖) be an informal pseudo-seminormed hyperspace, and let A be a nonempty subset
of I . The set A is said to be informally open if A = int(A). The set A is said to be informally type-I-open
if A = int(I)(A). The set A is said to be informally type-II-open if A = int(II)(A). The set A is said to be
informally type-III-open if A = int(III)(A). We can similarly define the informal �-open set based on the informal
�-interior. Also, the informal pseudo-openness can be similarly defined.

We adopt the convention ∅⊕Ω = ∅.

Remark 8. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace, and let A be a nonempty subset
of P(X). We consider the extreme cases of the empty set ∅ and whole set P(X).

• Since the empty set ∅ contains no elements, it means that ∅ is informally open and pseudo-open (we can
regard the empty set as an open ball). It is clear that P(X) is also informally open and pseudo-open, since
A ∈ B ⊆ X for any open ball B, i.e., P(X) ⊆ int(P(X)) and P(X) ⊆ pint(P(X)).

• Since ∅⊕Ω = ∅ ⊆ ∅, the emptyset ∅ is informally type-I-open and type-I-pseudo-open. It is clear that
P(X) is also informally type-I-open and type-I-pseudo-open, since A ∈ B ⊕Ω ⊆ X for any open ball B,
i.e., P(X) ⊆ int(I)(P(X)) and P(X) ⊆ pint(I)(P(X)).

• Since ∅ ⊆ ∅ = Ω⊕∅, it means that ∅ is informally type-II-open and type-II-pseudo-open. We also see
that P(X) is an informal type-II-open and type-II-pseudo-open set, since, for any A ∈ P(X) and any open
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ball B, we have A ∈ B ⊆ P(X) ⊆ P(X)⊕Ω by part (i) of Proposition 2, i.e., P(X) ⊆ int(II)(P(X))

and P(X) ⊆ pint(II)(P(X)).
• Since ∅⊕Ω ⊆ Ω⊕∅, it means that ∅ is informally type-III-open and type-III-pseudo-open. Now for

any A ∈ P(X) and any open ball B, we have A ∈ B ⊆ X, which says that B ⊕ Ω ⊆ X ⊕ Ω, i.e.,
P(X) ⊆ int(III)(P(X)) and P(X) ⊆ pint(III)(P(X)). This shows that P(X) is informally type-III-open
and type-III-pseudo-open.

We have the above similar results for the different types of informal �-open sets.

Proposition 9. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace, and let A be a nonempty
subset of I .

• If A is informally pseudo-open, i.e., A = pint(A), then A is also informally open, i.e., A = pint(A) =

int(A). If A = pint�(A), then A = pint�(A) = int�(A).
• If A = pint(I)(A), then A = pint(I)(A) = int(I)(A). If A = pint(�I)(A), then A = pint(�I)(A) =

int(�I)(A).
• If A = pint(II)(A), then A = pint(II)(A) = int(II)(A). If A = pint(�II)(A), then A = pint(�II)(A) =

int(�II)(A).
• If A = pint(III)(A), then A = pint(III)(A) = int(III)(A). If A = pint(�III)(A), then A = pint(�III)(A) =

int(�III)(A).

Proof. If A is an informal pseudo-interior point, i.e., A ∈ pint(A) = A, then there exists ε > 0
such that B(A0; ε) ⊆ A. Since A ∈ A, it follows that A is also an informal interior point, i.e.,
pint(A) ⊆ int(A). From the first observation of Remark 4, we obtain the desired result. The remaining
cases can be similarly realized, and the proof is complete.

Proposition 10. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) Suppose that ‖ · ‖ satisfies the null super-inequality.

• If A is any type of informally pseudo-open, then A ∈ A implies A⊕ω ∈ A for any ω ∈ Ω.
• If A is informally open, then A ∈ A implies A⊕ω ∈ pint(A) for any ω ∈ Ω.
• If A is informally type-I-open, then A ∈ A implies A⊕ω ∈ pint(I)(A) for any ω ∈ Ω.
• If A is informally type-II-open, then A ∈ A implies A⊕ω ∈ pint(II)(A) for any ω ∈ Ω.
• If A is informally type-III-open, then A ∈ A implies A⊕ω ∈ pint(III)(A) for any ω ∈ Ω.

(ii) Suppose that ‖ · ‖ satisfies the null sub-inequality, and that A is any type of informally pseudo-open.
Then the following statements hold true.

• A⊕ω ∈ A implies A ∈ A for any ω ∈ Ω.
• A⊕ω ⊆ A for any ω ∈ Ω and A⊕Ω ⊆ A.
• A⊕ω ∈ A⊕ω implies A ∈ A for any ω ∈ Ω.
• We have A = A⊕Ω.

(iii) Suppose that ‖ · ‖ satisfies the null sub-inequality, and that A is any type of informal �-pseudo-open.
Then A ∈ A implies A⊕ω ∈ A for any ω ∈ Ω.

Proof. To prove part (i), suppose that A is informally type-III-pseudo-open. For A ∈ A = pint(III)(A),
by definition, there exists ε > 0 such that B(A; ε)⊕Ω ⊆ A⊕Ω. From part (i) of Proposition 6, we
also have B(A ⊕ ω; ε) ⊕ Ω ⊆ A⊕ Ω, which says that A ⊕ ω ∈ pint(III)(A) = A. Now we assume
that A is informally type-III-open. Then A ∈ A = int(III)(A) ⊆ pint(III)(A). We can also obtain
A⊕ω ∈ pint(III)(A). The other openness can be similarly obtained.

13
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To prove the first case of part (ii), we consider the informal type-III-pseudo-open sets. If A⊕ω ∈
A = pint(III)(A), there exists ε > 0 such that B(A⊕ω; ε)⊕Ω ⊆ A⊕Ω. From part (ii) of Proposition 6,
we also have B(A; ε)⊕Ω ⊆ A⊕Ω, which shows that A ∈ pint(III)(A) = A.

To prove the second case of part (ii), we consider the informal type-III-pseudo-open sets. If A ∈
A ⊕ ω, then A = Â ⊕ ω for some Â ∈ A = pint(III)(A). Therefore there exists ε > 0 such that
B(Â; ε)⊕Ω ⊆ A⊕Ω. Since B(A; ε) ⊆ B(A⊕ ω; ε) = B(Â; ε) by part (ii) of Proposition 6, we see
that B(A; ε)⊕Ω ⊆ A⊕Ω, i.e., A ∈ pint(III)(A) = A. Now, for A ∈ A⊕Ω, we see that A ∈ A⊕ω for
some ω ∈ Ω, which implies A ∈ A. Therefore we obtain A⊕Ω ⊆ A.

To prove the third case of part (ii), using the second case of part (ii), we have

A⊕ω ∈ A⊕ω ⊆ A⊕Ω ⊆ A.

Using the first case of part (ii), we obtain A ∈ A.
To prove the fourth case of part (ii), since A = A⊕{θX} and {θX} ∈ Ω, it follows thatA ⊆ A⊕Ω.

By the second case of part (ii), we obtain the desired result.
To prove part (iii), from part (ii) of Proposition 6, we have B�(A⊕ω; ε) ⊆ B�(A; ε). Therefore,

using the similar argument in the proof of part (i), we can obtain the desired results. This completes
the proof.

We remark that the results in Proposition 10 will not be true for any types of informal open
sets. For example, in the proof of part (i), the inclusion B(A⊕ ω; ε)⊕Ω ⊆ A⊕Ω can just say that
A⊕ω ∈ pint(III)(A), since we do not know whether A⊕ω is in A or not.

Proposition 11. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) Suppose that ‖ · ‖ satisfies the null condition.

• We have int(A) = int(I)(A)⊕Ω ⊆ A. In particular, if A is informally open or type-I-open, then
A⊕Ω ⊆ A.

• We have int(II)(A) = int(III)(A) ⊆ A⊕Ω.

Moreover the concept of informal (resp. type-I, type-II, type-III) open set is equivalent to the concept of
informal (resp. type-I, type-II, type-III) pseudo-open set.

(ii) Suppose that ‖ · ‖ satisfies the null sub-inequality. Then

(pint(III)(A))c ⊕Ω = (pint(II)(A))c ⊕Ω ⊆ (pint(II)(A))c = (pint(III)(A))c.

In particular, if A is informally type-II-pseudo-open or type-III-pseudo-open, then Ac ⊕Ω ⊆ Ac.

Proof. To prove the first case of part (i), for any A ∈ int(I)(A), there exists an open ball B(A; ε) such
that B(A; ε)⊕ Ω ⊆ A. Since A ∈ B(A; ε) by the first observation of Remark 1, we have A ⊕ Ω ⊆
B(A; ε)⊕Ω ⊆ A. This shows int(I)(A)⊕Ω ⊆ A. Using Remark 5, we obtain the desired results.

To prove the second case of part (i), for any A ∈ int(II)(A), there exists an open ball B(A; ε) such
that B(A; ε) ⊆ A⊕Ω. Then we have A ∈ A⊕Ω, since A ∈ B(A; ε). This shows int(II)(A) ⊆ A⊕Ω.
Using Remark 5, we obtain the desired results. From Remark 4, we see that the concept of informal
(resp. type-I, type-II, type-III) open set is equivalent to the concept of informal (resp. type-I, type-II,
type-III) pseudo-open set.

To prove part (ii), for any A ∈ (pint(II)(A))c ⊕Ω, we have A = Â⊕ ω̂ for some Â ∈ (pint(II)(A))c

and ω̂ ∈ Ω. By definition, we see that B(Â; ε) �⊆ A⊕Ω for every ε > 0. By part (ii) of Proposition 6, we
also have B(A; ε) �⊆ A ⊕Ω for every ε > 0. This says that A is not an informal type-II-pseudo-interior
point of A, i.e., A �∈ pint(II)(A). This completes the proof.

Proposition 12. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

14
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(i) B�(A0; ε) is informally �-open, �-type-II-open and �-type-III-open. We also have the inclusions
B�(A0; ε) ⊆ pint(B�(A0; ε)), B�(A0; ε) ⊆ pint(�II)(B�(A0; ε)) and B�(A0; ε) ⊆ pint(�III)(B�(A0; ε)).

(ii) B(A0; ε) is informally open, type-II-open and type-III-open. We also have the inclusions B(A0; ε) ⊆
pint(B(A0; ε)), B(A0; ε) ⊆ pint(II)(B(A0; ε)) and B(A0; ε) ⊆ pint(III)(B(A0; ε)).

(iii) Suppose that ‖ · ‖ satisfies the null sub-inequality. Then B�(A0; ε) is informally �-type-I-open,
and B(A0; ε) is informally type-I-open. We also have the inclusions B�(A0; ε) ⊆ pint(�I)(B�(A0; ε))

and B(A0; ε) ⊆ pint(I)(B(A0; ε)).

Proof. To prove part (i), for any A ∈ B�(A0; ε), we have A = A0 ⊕ C with ‖ C ‖< ε. Let ε̂ = ε− ‖
C ‖> 0. For any Â ∈ B�(A; ε̂), i.e., Â = A⊕ D with ‖ D ‖< ε̂, we obtain Â = A0 ⊕ C⊕ D and

‖ C⊕ D ‖≤‖ C ‖ + ‖ D ‖= ε− ε̂+ ‖ D ‖< ε− ε̂ + ε̂ = ε,

which means that Â ∈ B�(A0; ε), i.e.,

B�(A; ε̂) ⊆ B�(A0; ε). (6)

This shows that B�(A0; ε) ⊆ int(B�(A0; ε)). Therefore we obtain B�(A0; ε) = int(B�(A0; ε)). We
can similarly obtain the inclusion B�(A0; ε) ⊆ pint(B�(A0; ε)). However, we cannot have the equality
B�(A0; ε) = pint(B�(A0; ε)), since pint(B�(A0; ε)) is not necessarily contained in B�(A0; ε). From (6),
we have B�(x; ε̂)⊕Ω ⊆ B�(A0; ε)⊕Ω. This says that B�(A0; ε) is informally �-type-III-open. On the
other hand, from (6) and part (ii) of Proposition 8, we also have

B�(A; ε̂) ⊆ B�(A0; ε) ⊆ B�(A0; ε)⊕Ω.

This shows that B�(A0; ε) is informally �-type-II-open.
To prove part (ii), for any A ∈ B(A0; ε), we have ‖ A� A0 ‖< ε. Let ε̂ =‖ A� A0 ‖. For any

Â ∈ B(A; ε− ε̂), we have ‖ Â� A ‖< ε− ε̂. Therefore, by Proposition 4, we obtain

‖ Â� A0 ‖≤‖ Â� A ‖ + ‖ A� A0 ‖= ε̂+ ‖ Â� A ‖< ε̂ + ε− ε̂ = ε,

which means that Â ∈ B(A0; ε), i.e.,

B(A; ε− ε̂) ⊆ B(A0; ε). (7)

This shows that B(A0; ε) ⊆ int(B(A0; ε)).
Therefore we obtain B(A0; ε) = int(B(A0; ε)). We can similarly obtain the inclusion B(A0; ε) ⊆

pint(B(A0; ε)). From (7), we have B(A; ε − ε̂) ⊕ Ω ⊆ B(A0; ε) ⊕ Ω. This says that B(A0; ε) is
informally type-III-open. On the other hand, from (7) and part (ii) of Proposition 8, we also have

B(A; ε− ε̂) ⊆ B(A0; ε) ⊆ B(A0; ε)⊕Ω.

This shows that B(A0; ε) is informally type-II-open.
To prove part (iii), from (6), (7) and part (ii) of Proposition 8, we have

B�(A; ε̂)⊕Ω ⊆ B�(A0; ε)⊕Ω = B�(A0; ε)

and
B(A; ε− ε̂)⊕Ω ⊆ B(A0; ε)⊕Ω = B(A0; ε).

This shows that B�(A0; ε) is informally �-type-I-open, and that B(A0; ε) is informally type-I-open.
We complete the proof.
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Proposition 13. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Suppose that the center A0

is in the open balls B(A0; ε) and B�(A0; ε). The following statements hold true:

(i) B(A0; ε) is informally pseudo-open and �-pseudo-open.
(ii) Suppose that ‖ · ‖ satisfies the null sub-inequality. Then B(A0; ε) is informally type-I-pseudo-open,

type-II-pseudo-open and type-III-pseudo-open.
(iii) Suppose that ‖ · ‖ satisfies the null sub-inequality. Then B(A0; ε) is informally �-type-I-pseudo-open,

�-type-II-pseudo-open and �-type-III-pseudo-open.

Proof. The results follow from Proposition 12, Remark 7 and part (ii) of Proposition 8 immediately.

6. Topoloigcal Spaces

Now we are in a position to investigate the topological structure generated by the informal
pseudo-seminormed hyperspace (P(X), ‖ · ‖) based on the different kinds of openness. We denote by
τ0 and τ(�)

0 the set of all informal open and informal �-open subsets of P(X), respectively, and by pτ0

and pτ(�)

0 the set of all informal pseudo-open and informal �-pseudo-open subsets of P(X), respectively.
We denote by τ(I) and τ(�I) the set of all informal type-I-open and informal �-type-I-open subsets of
P(X), respectively, and by pτ(I) and pτ(�I) the set of all informal type-I-pseudo-open and informal
�-type-I-pseudo-open subsets of P(X), respectively. We can similarly define the families τ(II), τ(III), τ(�II),
τ(�III), pτ(II), pτ(III), pτ(�II) and pτ(�III).

Proposition 14. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) (P(X), τ(I)) and (P(X), τ(�I)) are topological spaces.
(ii) Suppose that each open ball B(A0; ε) contains the center A0. Then (P(X), pτ(I)) = (P(X), τ(I)) is a

topological space.
(iii) Suppose that each open ball B�(A0; ε) contains the center A0. Then (P(X), pτ(�I)) = (P(X), τ(�I)) is a

topological space.

Proof. To prove part (i), by the second observation of Remark 8, we see that ∅ ∈ τ(I) and P(X) ∈ τ(I).
Let A =

⋂n
i=1 Ai, where Ai are informal type-I-open sets for all i = 1, · · · , n. For A ∈ A, we have

A ∈ Ai for all i = 1, · · · , n. Then there exist εi such that B(A; εi) ⊕ Ω ⊆ Ai for all i = 1, · · · , n.
Let ε = min{ε1, · · · , εn}. Then B(A; ε)⊕Ω ⊆ B(A; εi)⊕Ω ⊆ Ai for all i = 1, · · · , n, which says that
B(A; ε)⊕Ω ⊆ ⋂n

i=1 Ai = A, i.e., A ⊆ int(I)(A). Therefore the intersection A is informally type-I-open
by Remark 4. On the other hand, let A =

⋃
δ Aδ. Then A ∈ A implies that A ∈ Aδ for some δ. This

indicates that B(A; ε)⊕ Ω ⊆ Aδ ⊆ A for some ε > 0, i.e., A ⊆ int(I)(A). Therefore the union A is
informally type-I-open. This shows that (P(X), τ(I)) is a topological space. For the case of informal
�-type-I-open subsets of P(X), we can similarly obtain the desired result. Parts (ii) and (iii) follow
from Remark 7 and part (i) immediately. This completes the proof.

Remark 1 shows the sufficient conditions for the open ball B(A; ε) containing the center A.

Proposition 15. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) (P(X), τ0) and (P(X), τ(�)

0 ) are topological spaces.
(ii) Suppose that each open ball B(A0; ε) contains the center A0. Then (P(X), τ0) = (P(X), pτ0) is a

topological space.
(iii) Suppose that each open ball B�(A0; ε) contains the center A0. Then (P(X), τ(�)

0 ) = (P(X), pτ(�)

0 ) is a
topological space.

Proof. The empty set ∅ and P(X) are informal open by the first observation of Remark 8.
The remaining proof follows from the similar argument of Proposition 14 without considering the null
set Ω.
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Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. We consider the
following families:

τ̃(II) = {A ∈ τ(II) : A⊕Ω ⊆ A}

and
τ̃(III) = {A ∈ τ(III) : A⊕Ω ⊆ A} .

We can similarly define τ̃(�II) and τ̃(�III). Then τ̃(II) ⊆ τ(II), τ̃(III) ⊆ τ(III), τ̃(�II) ⊆ τ(�II) and τ̃(�III) ⊆ τ(�III). We
can also similarly define p̃τ(II), p̃τ(III), p̃τ(�II) and p̃τ(�III) regarding the informal pseudo-openness. Then
p̃τ(II) ⊆ pτ(II), p̃τ(III) ⊆ pτ(III), p̃τ(�II) ⊆ pτ(�II) and p̃τ(�III) ⊆ pτ(�III).

Proposition 16. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Suppose that ‖ · ‖ satisfies
the null sub-inequality. Then

p̃τ(II) = pτ(II) = pτ(III) = p̃τ(III) and τ̃(II) = τ(II) = τ(III) = τ̃(III).

Proof. The results follow from Remark 5 and part (ii) of Proposition 10 immediately.

Proposition 17. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) (P(X), τ̃(II)) and (P(X), τ̃(�II)) are topological spaces.
(ii) The following statements hold true.

• Suppose that each open ball B(A; ε) contains the center A. Then (P(X), p̃τ(II)) = (P(X), τ̃(II)) is a
topological space.

• Suppose that each open ball B�(A; ε) contains the center A. Then (P(X), p̃τ(�II)) = (P(X), τ̃(�II)) is
a topological space.

Proof. To prove part (i), given A1,A2 ∈ τ̃(II), let A = A1 ∩A2. For A ∈ A, we have A ∈ Ai for i = 1, 2.
Then there exist εi such that B(A; εi) ⊆ Ai ⊕Ω for all i = 1, 2. Let ε = min{ε1, ε2}. Then

B(A; ε) ⊆ B(A; εi) ⊆ Ai ⊕Ω

for all i = 1, 2, which says that

B(A; ε) ⊆ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)] = (A1 ∩A2)⊕Ω = A⊕Ω

by Proposition 3. This shows thatA is informally type-II-open. For A ∈ A⊕Ω, we have A = Ā⊕ω for
some Ā ∈ A and ω ∈ Ω. Since Ā ∈ A1 ∩A2, it follows that A ∈ A1 ⊕Ω ⊆ A1 and A ∈ A2 ⊕Ω ⊆ A2,
which says that A ∈ A1 ∩ A2 = A, i.e., A⊕Ω ⊆ A. This shows that A is indeed in τ̃(II). Therefore,
the intersection of finitely many members of τ̃(II) is a member of τ̃(II).

Now, given a family {Aδ}δ∈Λ ⊂ τ(II), let A =
⋃

δ∈Λ Aδ. Then A ∈ A implies that A ∈ Aδ for some
δ ∈ Λ. This says that

B(A; ε) ⊆ Aδ ⊕Ω ⊆ A⊕Ω

for some ε > 0. Therefore, the union A is informally type-II-open. For A ∈ A⊕Ω, we have A = Ā⊕ω,
where Ā ∈ A, i.e., Ā ∈ Aδ for some δ ∈ Λ. It also says that A ∈ Aδ ⊕Ω ⊆ Aδ ⊆ A, i.e., A⊕Ω ⊆ A.
This shows that A is indeed in τ̃(II). By the third observation of Remark 8, we see that ∅ and P(X) are
also informal type-II-open. It is not hard to see that ∅⊕Ω = ∅ and P(X)⊕Ω ⊆ P(X), which shows
that ∅, X ∈ τ̃(II). Therefore, (P(X), τ̃(II)) is indeed a topological space. The above arguments are also
valid for τ̃(�II).

Part (ii) follows immediately from the third observation of Remark 7 and part (i). This completes
the proof.
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Proposition 18. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace.

(i) (P(X), τ̃(III)) and (P(X), τ̃(�III)) are topological spaces.
(ii) The following statements hold true.

• Suppose that each open ball B(A; ε) contains the center A. Then (P(X), p̃τ(III)) = (P(X), τ̃(III)) is a
topological space.

• Suppose that each open ball B�(A; ε) contains the center A. Then (P(X), p̃τ(�III)) = (P(X), τ̃(�III))

is a topological space.

Proof. To prove part (i), by the fourth observation of Remark 8, it is clear to see that ∅,P(X) ∈ τ(III).
Since ∅ ⊕ Ω = ∅ and P(X) ⊕ Ω ⊆ P(X), it follows that ∅,P(X) ∈ τ̃(III). Given A1,A2 ∈ τ̃(III),
let A = A1 ∩ A2. For A ∈ A, there exist εi such that B(A; εi) ⊕ Ω ⊆ Ai ⊕ Ω for all i = 1, 2.
Let ε = min{ε1, ε2}. Then

B(A; ε)⊕Ω ⊆ B(A; εi)⊕Ω ⊆ Ai ⊕Ω

for all i = 1, 2, which says that

B(A; ε)⊕Ω ⊆ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)] = (A1 ∩A2)⊕Ω = A⊕Ω

by Proposition 3. This shows that A is informally type-III-open. From the proof of Proposition 17, we
also see that A⊕Ω ⊆ A. Therefore, the intersection of finitely many members of τ̃(III) is a member
of τ̃(III).

Now, given a family {Aδ}δ∈Λ ⊂ τ̃(III), let A =
⋃

δ∈Λ Aδ. Then A ∈ A implies that A ∈ Aδ for
some δ ∈ Λ. This says that

B(A; ε)⊕Ω ⊆ Aδ ⊕Ω ⊆ A⊕Ω

for some ε > 0. Therefore, the union A is informally type-III-open. From the proof of Proposition 17,
we also see that A⊕Ω ⊆ A, i.e., A ∈ τ̃(III). This shows that (P(X), τ̃(III)) is indeed a topological space.
The above arguments are also valid for τ̃(�III).

Part (ii) follows immediately from the fourth observation of Remark 7 and part (i). This completes
the proof.

Proposition 19. Let (P(X), ‖ · ‖) be an informal pseudo-seminormed hyperspace. Suppose that ‖ · ‖ satisfies
the null sub-inequality. If each open ball B(A; ε) contains the center A, then (P(X), pτ(II)) = (P(X), pτ(III)) is
a topological space.

Proof. By the third observation of Remark 8, we see that ∅,P(X) ∈ pτ(II). Given A1,A2 ∈ pτ(II), let
A = A1 ∩A2. We want to show A = pint(II)(A). For A ∈ A, we have A ∈ Ai for i = 1, 2. There exist εi
such that B(A; εi) ⊆ Ai ⊕Ω for all i = 1, 2. Let ε = min{ε1, ε2}. Then B(A; ε) ⊆ B(A; εi) ⊆ Ai ⊕Ω
for i = 1, 2, which says that, using part (ii) of Proposition 10,

B(A; ε) ⊆ [(A1 ⊕Ω) ∩ (A2 ⊕Ω)] = A1 ∩A2 = (A1 ∩A2)⊕Ω = A⊕Ω.

This shows that A ∈ int(II)(A), i.e., A ⊆ int(II)(A) ⊆ pint(II)(A) by Remark 4. On the other hand,
for A ∈ pint(II)(A), using part (ii) of Proposition 10, we have

A ∈ B(A; ε) ⊆ A⊕Ω = (A1 ∩A2)⊕Ω ⊆ A1 ⊕Ω = A1.

We can similarly obtain A ∈ A2, i.e., A ∈ A1 ∩ A2 = A. This shows that pint(II)(A) ⊆ A.
Therefore, we conclude that the intersection of finitely many members of pτ(II) is a member of pτ(II).
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Now, given a family {Aδ}δ∈Λ ⊂ pτ(II), let A =
⋃

δ∈Λ Aδ. Then A ∈ A implies that A ∈ Aδ for
some δ ∈ Λ. This says that

B(A; ε) ⊆ Aδ ⊕Ω ⊆ A⊕Ω

for some ε > 0. Therefore we obtain A ⊆ int(II)(A) ⊆ pint(II)(A). On the other hand, for A ∈ pint(II)(A),
we have

A ∈ B(A; ε) ⊆ A⊕Ω = A

by part (ii) of Proposition 10. This shows that pint(II)(A) ⊆ A, i.e., A = pint(II)(A). Therefore,
by Remark 5, we conclude that (P(X), pτ(II)) = (P(X), pτ(III)) is a topological space. This completes
the proof.

7. Conclusions

The hyperspace denoted by P(X) is the collection of all subsets of a vector space X. Under the
set addition

A⊕ B = {a + b : a ∈ A and b ∈ B}

and the scalar multiplication
λA = {λa : a ∈ A} ,

the hyperspace P(X) cannot form a vector space. The reason is that each A ∈ P(X) cannot have the
additive inverse element. In this paper, the null set defined by

Ω = {A� A : A ∈ P(X)}

can be treated as a kind of “zero element” of P(X). Although P(X) is not a vector space, a so-called
informal norm is introduced to P(X), which will mimic the conventional norm. Using this informal
norm, two different concepts of open balls are proposed, which are used to define many types of
open sets. Therefore, we can generate many types of topologies based on these different concepts of
open sets.

As we mentioned before, the theory of set-valued analysis has been applied to nonlinear analysis,
differential inclusion, fixed point theory and set-valued optimization, which treats each element in
P(X) as a subset of X. In this paper, each element of P(X) is treated as a “point”, and the family
P(X) is treated as a universal set. The topological structures studied in this paper may provide the
potential applications in nonlinear analysis, differential inclusion, fixed point theory and set-valued
optimization (or set optimization) based on the different point of view regarding the elements of P(X),
which will be for future research.
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1. Introduction

Throughout this paper, let C denote a nonempty closed convex subset of real Hilbert spaces H with
standard inner products 〈·, ·〉 and induced norms ‖ · ‖. For all x, y ∈ C, there is ‖Tx− Ty‖ ≤ ‖x− y‖,
and the mapping T : C → C is said to be nonexpansive. We use Fix(T) := {x ∈ C : Tx = x} to
represent the set of fixed points of a mapping T : C → C. The main purpose of this paper is to
consider the following fixed point problem: Find x∗ ∈ C, such that T (x∗) = x∗, where T : C → C is
nonexpansive with Fix(T) �= ∅.

There are various specific applications for approximating fixed point problems with nonexpansive
mappings, such as monotone variational inequalities, convex optimization problems, convex feasibility
problems, and image restoration problems; see, e.g., [1–6]. It is well known that the Picard iteration
method may not converge, and an effective way to overcome this difficulty is to use Mann iterative
method, which generates sequences {xn} recursively:

xn+1 = αnxn + (1− αn) Txn , n ≥ 0 , (1)

the iterative sequence {xn} defined by (1) weakly converges to a fixed point of T when the condition
∑∞

n=1 αn (1− αn) = +∞ is satisfied, where {αn} ⊂ (0, 1).
Many practical applications, for instance, quantum physics and image reconstruction, are in

infinite dimensional spaces. To investigate these problems, norm convergence is usually preferable to
weak convergence. Therefore, modifying the Mann iteration method to obtain strong convergence
is an important research topic. For recent works, see [7–12] and the references therein. On the other
hand, the Ishikawa iterative method can strongly converge to the fixed point of nonlinear mappings.
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For more discussion, see [13–16]. In 2003, Nakajo and Takahashi [17] established strong convergence
of the Mann iteration with the aid of projections. Indeed, they considered the following algorithm:⎧⎪⎪⎪⎨⎪⎪⎪⎩

yn = αnxn + (1− αn) Txn ,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, xn − x0〉 ≤ 0} ,
xn+1 = PCn∩Qn x0 , n ∈ N ,

(2)

where {αn} ⊂ [0, 1), T is a nonexpansive mapping on C and PCn∩Qn is the metric projection from C
onto Cn ∩Qn. This method is now referred to as the hybrid projection method. Inspired by Nakajo and
Takahashi [17], Takahashi, Takeuchi, and Kubota [18] also proposed a projection-based method and
obtained strong convergence results, which is now called the shrinking projection method. In recent
years, many authors gained new algorithms based on projection method; see [10,18–23].

Generally, the Mann algorithm has a slow convergence rate. In recent years, there has been
tremendous interest in developing the fast convergence of algorithms, especially for the inertial
type extrapolation method, which was first proposed by Polyak in [24]. Recently, some researchers
have constructed different fast iterative algorithms by means of inertial extrapolation techniques,
for example, inertial Mann algorithm [25], inertial forward–backward splitting algorithm [26,27],
inertial extragradient algorithm [28,29], inertial projection algorithm [30,31], and fast iterative
shrinkage–thresholding algorithm (FISTA) [32]. The results of these algorithms and other related ones
not only theoretically analyze the convergence properties of inertial type extrapolation algorithms,
but also numerically demonstrate their computational performance on some data analysis and image
processing problems.

In 2008, Mainge [25] proposed the following inertial Mann algorithm based on the idea of the
Mann algorithm and inertial extrapolation:{

wn = xn + δn (xn − xn−1) ,
xn+1 = (1− ηn)wn + ηnTwn , n ≥ 1 .

(3)

It should be pointed out that the iteration sequence {xn} defined by (3) only obtains weak convergence
results under the following assumptions:

(C1) δn ∈ [0, 1) and 0 < infn≥1 ηn ≤ supn≥1 ηn < 1;

(C2) ∑∞
n=1 δn ‖xn − xn−1‖2 < +∞.

It should be noted that the condition (C2) is very strong, which prohibits execution of
related algorithms. Recently, Bot and Csetnek [33] got rid of the condition (C2); for more details,
see Theorem 5 in [33].

In 2014, Sakurai and Iiduka [34] introduced an algorithm to accelerate the Halpern fixed point
algorithm in Hilbert spaces by means of conjugate gradient methods that can accelerate the convergence
rate of the steepest descent method. Very recently, inspired by the work of Sakurai and Iiduka [34],
Dong et al. [35] proposed a modified inertial Mann algorithm by combining the inertial method,
the Picard algorithm and the conjugate gradient method. Their numerical results showed that
the proposed algorithm has some advantages over other algorithms. Indeed, they obtained the
following result:
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Theorem 1. Let T : C → C be a nonexpansive mapping with Fix(T) �= ∅. Set μ ∈ (0, 1], η > 0 and
x0, x1 ∈ H arbitrarily and set d0 := (Tx0 − x0) /η. Define a sequence {xn} by the following algorithm:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wn = xn + δn (xn − xn−1) ,
dn+1 = 1

η (Twn − wn) + ψndn ,
yn = wn + ηdn+1 ,
xn+1 = μνnwn + (1− μνn) yn , n ≥ 1 .

(4)

The iterative sequence {xn} defined by (4) converges weakly to a point in Fix(T) under the following conditions:

(D1) {δn} ⊂ [0, δ] is nondecreasing with δ1 = 0 and 0 ≤ δ < 1, ∑∞
n=1 ψn < ∞;

(D2) Exists ν, σ, ϕ > 0 such that ϕ > δ2(1+δ)+δσ
1−δ2 and 0 < 1− μν ≤ 1− μνn ≤ ϕ−δ[δ(1+δ)+δϕ+σ]

ϕ[1+δ(1+δ)+δϕ+σ]
;

(D3) {wn} defined in (4) assume that {Twn − wn} is bounded and {Twn − y} is bounded for any
y ∈ Fix(T).

Inspired and motivated by the above works, in this paper, based on the modified inertial Mann
algorithm (4) and the projection algorithm (2), we propose two new modified inertial hybrid and
shrinking projection algorithms, respectively. We obtain strong convergence results under some mild
conditions. Finally, our algorithms are applied to a convex feasibility problem, a variational inequality
problem, and location theory.

The structure of the paper is the following. Section 2 gives the mathematical preliminaries.
Section 3 present modified inertial hybrid and shrinking projection algorithms for nonexpansive
mappings in Hilbert spaces and analyzes their convergence. Section 4 gives some numerical
experiments to compare the convergence behavior of our proposed algorithms with previously known
algorithms. Section 5 concludes the paper with a brief summary.

2. Preliminaries

We use the notation xn → x and xn ⇀ x to denote the strong and weak convergence of a sequence

{xn} to a point x ∈ H, respectively. Let ωw {xn} :=
{

x : ∃xnj ⇀ x
}

denote the weak w-limit set of

{xn}. For any x, y ∈ H and t ∈ R, we have ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2.
For any x ∈ H, there is a unique nearest point PCx in C, such that PC(x):= argminy∈C ‖x − y‖.

PC is called the metric projection of H onto C. PCx has the following characteristics:

PCx ∈ C and 〈PCx− x, PCx− y〉 ≤ 0 , ∀y ∈ C . (5)

From this characterization, the following inequality can be obtained

‖x− PCx‖2 + ‖y− PCx‖2 ≤ ‖x− y‖2 , ∀x ∈ H, ∀y ∈ C . (6)

We give some special cases with simple analytical solutions:

(1) The Euclidean projection of x0 onto an Euclidean ball B[c, r] = {x : ‖x− c‖ ≤ r} is given by

PB[c,r](x) = c +
r

max{‖x− c‖, r} (x− c) .

(2) The Euclidean projection of x0 onto a box Box[�, u] = {x : � ≤ x ≤ u} is given by

PBox[�,u](x)i = min {max {xi, �i} , ui} .
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(3) The Euclidean projection of x0 onto a halfspace H−
a,b = {x : 〈a, x〉 ≤ b} is given by

PH−
a,b
(x) = x− [〈a, x〉 − b]+

‖a‖2 a .

Next we give some results that will be used in our main proof.

Lemma 1. [36] Let C be a nonempty closed convex subset of real Hilbert spaces H and let T : C → H be a
nonexpansive mapping with Fix(T) �= ∅. Assume that {xn} be a sequence in C and x ∈ H such that xn ⇀ x
and Txn − xn → 0 as n → ∞, then x ∈ Fix(T).

Lemma 2. [37] Let C be a nonempty closed convex subset of real Hilbert spaces H. For any x, y, z ∈ H and
a ∈ R.

{
v ∈ C : ‖y− v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a

}
is convex and closed.

Lemma 3. [38] Let C be a nonempty closed convex subset of real Hilbert spaces H. Let {xn} ⊂ H, u ∈ H and
m = PCu. If ωw {xn} ⊂ C and satisfies the condition ‖xn − u‖ ≤ ‖u−m‖, ∀n ∈ N. Then xn → m.

3. Modified Inertial Hybrid and Shrinking Projection Algorithms

In this section, we introduce two modified inertial hybrid and shrinking projection algorithms for
nonexpansive mappings in Hilbert spaces using the ideas of the inertial method, the Picard algorithm,
the conjugate gradient method, and the projection method. We prove the strong convergence of the
algorithms under suitable conditions.

Theorem 2. Let C be a bounded closed convex subset of real Hilbert spaces H and let T : C → C be a
nonexpansive mapping with Fix(T) �= ∅. Assume that the following conditions are satisfied:

η > 0, δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0, ∞), ψn ⊂ [0, ∞), lim
n→∞

ψn = 0, νn ⊂ (0, ν], 0 < ν < 1 .

Set x−1, x0 ∈ H arbitrarily and set d0 := (Tx0 − x0)/η. Define a sequence {xn} by the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + δn(xn − xn−1) ,
dn+1 = 1

η (Twn − wn) + ψndn ,
yn = wn + ηdn+1 ,
zn = νnwn + (1− νn) yn ,

Cn =
{

z ∈ H : ‖zn − z‖2 ≤ ‖wn − z‖2 − νn (1− νn) ‖wn − yn‖2 + ξn

}
,

Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0} ,
xn+1 = PCn∩Qn x0 , n ≥ 0 ,

(7)

where the sequence {ξn} is defined by ξn := ηψn M2 [ηψn M2 + 2M1], M1 := diam C = supx,y∈C ‖x− y‖
and M2 := max

{
max1≤k≤n0 ‖dk‖ , 2

η M1

}
, where n0 satisfies ψn ≤ 1

2 for all n ≥ n0. Then the iterative
sequence {xn} defined by (7) converges to PFix(T)x0 in norm.

Proof. We divided our proof in three steps.
Step 1. To begin with, we need to show that Fix(T) ⊂ Cn ∩ Qn. It is easy to check that Cn is convex
by Lemma 2. Next we prove Fix(T) ⊂ Cn for all n ≥ 0. Assume that ‖dn‖ ≤ M1 for some n ≥ n0.
The triangle inequality ensures that

‖dn+1‖ = ‖ 1
η
(Twn − wn) + ψndn‖ ≤

1
η
‖Twn − wn‖+ ψn ‖dn‖ ≤ M2 ,
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which implies that ‖dn‖ ≤ M2 for all n ≥ 0, that is, {dn} is bounded. Due to wn ∈ C, we get that
‖wn − p‖ ≤ M1 for all u ∈ Fix(T). From the definition of {yn} and nonexpansivity of T we obtain

‖yn − u‖ = ‖wn + η

(
1
η
(Twn − wn) + ψndn

)
− u‖ = ‖Twn + ηψndn − u‖

≤ ‖wn − u‖+ ηψn M2 .

Therefore,

‖zn − u‖2 = ‖νn(wn − u) + (1− νn) (yn − u)‖2

= νn ‖wn − u‖2 + (1− νn) ‖yn − u‖2 − νn (1− νn) ‖wn − yn‖2

≤ ‖wn − u‖2 + 2ηψn M2 ‖wn − u‖+ (ηψn M2)
2 − νn (1− νn) ‖wn − yn‖2

≤ ‖wn − u‖2 − νn (1− νn) ‖wn − yn‖2 + ξn ,

where ξn = ηψn M2 [ηψn M2 + 2M1]. Thus, we have u ∈ Cn for all n ≥ 0 and hence Fix(T) ⊂ Cn for
all n ≥ 0. On the other hand, it is easy to see that Fix(T) ⊂ C = Q0 when n = 0. Suppose that
Fix(T) ⊂ Qn−1, by combining the fact that xn = PCn−1∩Qn−1 x0 and (5) we obtain 〈xn − z, xn − x0〉 ≤ 0
for any z ∈ Cn−1 ∩ Qn−1. According to the induction assumption we have Fix(T) ⊂ Cn−1 ∩ Qn−1,
and it follows from the definition of Qn that Fix(T) ⊂ Qn. Therefore, we get Fix(T) ⊂ Cn ∩Qn for all
n ≥ 0.
Step 2. We prove that ‖xn+1 − xn‖ → 0 as n → ∞. Combining the definition of Qn and Fix(T) ⊂ Qn,
we obtain

‖xn − x0‖ ≤ ‖u− x0‖ , for all u ∈ Fix(T) .

We note that {xn} is bounded and

‖xn − x0‖ ≤ ‖x∗ − x0‖ , where x∗ = PFix(T)x0 . (8)

The fact xn+1 ∈ Qn, we have ‖xn − x0‖ ≤ ‖xn+1 − x0‖, which means that limn→∞ ‖xn − x0‖ exists.
Using (6), one sees that

‖xn − xn+1‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 ,

which implies that ‖xn+1 − xn‖ → 0 as n → ∞. Next, by the definition of wn, we have

‖wn − xn‖ = |δn| ‖xn − xn−1‖ ≤ δ2 ‖xn − xn−1‖ → 0 (n → ∞) ,

which further yields that

‖wn − xn+1‖ ≤ ‖wn − xn‖+ ‖xn − xn+1‖ → 0 (n → ∞) .

Step 3. It remains to show that xn → x∗, where x∗ = PFix(T)x0. From xn+1 ∈ Cn we get

‖zn − xn+1‖2 ≤ ‖wn − xn+1‖2 − νn (1− νn) ‖wn − yn‖2 + ξn .

Therefore,
‖zn − xn+1‖ ≤ ‖wn − xn+1‖+

√
ξn .
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On the other hand, since zn = νnwn + (1− νn) Twn + (1− νn) ηψndn and νn ≤ ν, we obtain

‖Twn − wn‖ =
1

1− νn
‖zn − wn − (1− νn) ηψndn‖

≤ 1
1− ν

‖zn − wn‖+ ηψn ‖dn‖

≤ 1
1− ν

(‖zn − xn+1‖+ ‖wn − xn+1‖) + ηψn M2

≤ 1
1− ν

(
2 ‖wn − xn+1‖+

√
ξn

)
+ ηψn M2 → 0 (n → ∞) .

Consequently,
‖Txn − xn‖ ≤ ‖Txn − Twn‖+ ‖Twn − wn‖+ ‖wn − xn‖

≤ 2 ‖wn − xn‖+ ‖Twn − wn‖ → 0 (n → ∞) .
(9)

In view of (9) and Lemma 1, it follows that every weak limit point of {xn} is a fixed point of T.
i.e., ωw {xn} ⊂ Fix(T). By means of Lemma 3 and the inequality (8), we get that {xn} converges to
PFix(T)x0 in norm. The proof is complete.

Theorem 3. Let C be a bounded closed convex subset of real Hilbert spaces H and let T : C → C be a
nonexpansive mapping with Fix(T) �= ∅. Assume that the following conditions are satisfied:

η > 0, δn ⊂ [δ1, δ2] , δ1 ∈ (−∞, 0], δ2 ∈ [0, ∞), ψn ⊂ [0, ∞), lim
n→∞

ψn = 0, νn ⊂ (0, ν], 0 < ν < 1 .

Set x−1, x0 ∈ H arbitrarily and set d0 := (Tx0 − x0)/η. Define a sequence {xn} by the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = xn + δn(xn − xn−1) ,
dn+1 = 1

η (Twn − wn) + ψndn ,
yn = wn + ηdn+1 ,
zn = νnwn + (1− νn) yn ,

Cn+1 =
{

z ∈ Cn : ‖zn − z‖2 ≤ ‖wn − z‖2 − νn (1− νn) ‖wn − yn‖2 + ξn

}
,

xn+1 = PCn+1 x0 , n ≥ 0 .

(10)

where the sequence {ξn} is defined by ξn := ηψn M2 [ηψn M2 + 2M1], M1 := diam C = supx,y∈C ‖x− y‖
and M2 := max

{
max1≤k≤n0 ‖dk‖ , 2

η M1

}
, where n0 satisfies ψn ≤ 1

2 for all n ≥ n0. Then the iterative
sequence {xn} defined by (10) converges to PFix(T)x0 in the norm.

Proof. We divided our proof in three steps.
Step 1. Our first goal is to show that Fix(T) ⊂ Cn+1 for all n ≥ 0. According to Step 1 in Theorem 2,
for all u ∈ Fix(T), we obtain

‖zn − u‖2 ≤ ‖wn − u‖2 − νn (1− νn) ‖wn − yn‖2 + ξn .

Therefore, u ∈ Cn+1 for each n ≥ 0 and hence Fix(T) ⊂ Cn+1 ⊂ Cn.
Step 2. As mentioned above, the next thing to do in the proof is show that ‖xn+1 − xn‖ → 0 as n → ∞.
Using the fact that xn = PCn x0 and Fix(T) ⊂ Cn, we have

‖xn − x0‖ ≤ ‖u− x0‖ , for all u ∈ Fix(T) .

It follows that {xn} is bounded, in addition, we note that

‖xn − x0‖ ≤ ‖x∗ − x0‖ , where x∗ = PFix(T)x0 . (11)
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On the other hand, since xn+1 ∈ Cn, we obtain ‖xn − x0‖ ≤ ‖xn+1 − x0‖, which implies that
limn→∞ ‖xn − x0‖ exists. In view of (6), we have

‖xn − xn+1‖2 ≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 ,

which further implies that limn→∞ ‖xn+1 − xn‖ = 0. Also, we have limn→∞ ‖wn − xn‖ = 0 and
limn→∞ ‖wn − xn+1‖ = 0.
Step 3. Finally, we have to show that xn → x∗, where x∗ = PFix(T)x0. The remainder of the argument
is analogous to that in Theorem 2 and is left to the reader.

Remark 1. We remark here that the modified inertial hybrid projection algorithm (7) (in short, MIHPA) and the
modified inertial shrinking projection algorithm (10) (in short, MISPA) contain some previously known results.
When δn = 0 and ψn = 0, the MIHPA becomes the hybrid projection algorithm (in short, HPA) proposed by
Nakajo and Takahashi [17] and the MISPA becomes the shrinking projection algorithm (in short, SPA) proposed
by Takahashi, Takeuchi, and Kubota [18]. When δn = 0 and ψn �= 0, the MIHPA becomes the modified hybrid
projection algorithm (in short, MHPA) proposed by Dong et al. [35], the MISPA becomes the modified shrinking
projection algorithm (in short, MSPA).

4. Numerical Experiments

In this section, we provide three numerical applications to demonstrate the computational
performance of our proposed algorithms and compare them with some existing ones. All the programs
are performed in MATLAB2018a on a personal computer Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
1.800 GHz, RAM 8.00 GB.

Example 1. As an example, we consider the convex feasibility problem, for any nonempty closed convex set
Ci ⊂ RN (i = 0, 1, . . . , m), we find x∗ ∈ C :=

⋂m
i=0 Ci, where one supposes that C �= ∅. A mapping

T : RN → RN is defined by T := P0

(
1
m ∑m

i=1 Pi

)
, where Pi = PCi stands for the metric projection onto Ci.

It follows from Pi being nonexpansive that the mapping T is also nonexpansive. Furthermore, we note that
Fix(T) = Fix (P0)

⋂m
i=1 Fix (Pi) = C0

⋂m
i=1 Ci = C. In this experiment, we set Ci as a closed ball with center

ci ∈ RN and radius ri > 0. Thus Pi can be computed with

Pi(x) :=

{
ci +

ri
‖ci−x‖ (x− ci), if ‖ci − x‖ > ri ;

x, if ‖ci − x‖ ≤ ri .

Choose ri = 1 (i = 0, 1, . . . , m), c0 = [0, 0, . . . , 0], c1 = [1, 0, . . . , 0], and c2 = [−1, 0, . . . , 0]. ci is randomly
selected from (−1/

√
N, 1/

√
N)N (i = 3, . . . , m). We have Fix(T) = {0} from the special choice of c1, c2

and r1, r2. In Algorithms (7) and (10), setting m = 30, N = 30, η = 1, ψn = 1
100(n+1)2 , νn = 0.1. When

the iteration error En = ‖xn − Txn‖2 < 10−2 is satisfied, the iteration stops. We test our algorithms under
different inertial parameters and initial values. Results are shown in Table 1, where “Iter." represents the number
of iterations.

Table 1. Computational results for Example 1.

Algorithm Initial Value δn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MIHPA
rand(N,1) Iter.

223 248 218 239 283 245 258 249 248 247
MISPA 127 137 148 159 169 163 167 187 186 190
MIHPA ones(N,1) Iter. 327 315 407 354 342 356 377 391 348 349
MISPA 174 189 181 199 217 208 279 250 243 256
MIHPA

10rand(N,1) Iter.
1057 1377 1522 1494 1307 1119 1261 1098 1005 1070

MISPA 549 570 704 698 845 852 987 856 1003 975
MIHPA −10rand(N,1) Iter.

445 410 574 504 657 716 729 730 659 682
MISPA 316 313 350 416 423 386 427 392 516 556
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Example 2. Our another example is to consider the following variational inequality problem (in short, VI).
For any nonempty closed convex set C ⊂ RN,

find x∗ ∈ C such that 〈 f (x∗) , x− x∗〉 ≥ 0, ∀x ∈ C , (12)

where f : RN → RN is a mapping. Take VI(C, f ) denote the solution of VI (12). T : RN → RN is defined by
T := PC(I − γ f ), where 0 < γ < 2/L, and L is the Lipschitz constant of the mapping f . In [39], Xu showed
that T is an averaged mapping, i.e., T can be seen as the average of an identity mapping I and a nonexpansive
mapping. It follows that Fix(T) = VI(C, f ), we can solve VI (12) by finding the fixed point of T. Taking
f : R2 → R2 as follows:

f (x, y) = (2x + 2y + sin(x),−2x + 2y + sin(y)), ∀x, y ∈ R .

The feasible set C is given by C =
{

x ∈ R2| − 10e ≤ x ≤ 10e
}

, where e = (1, 1)T. It is not hard to check
that f is Lipschitz continuous with constant L =

√
26 and 1-strongly monotone [40]. Therefore, VI (12) has a

unique solution x∗ = (0, 0)T.
We use the Algorithm (7) (MIHPA), the Algorithm (10) (MISPA), the modified hybrid projection algorithm

(MHPA), the modified shrinking projection algorithm (MSPA), the hybrid projection algorithm (HPA), and
the shrinking projection algorithm (SPA) to solve Example 2. Setting γ = 0.9/

√
26, η = 1, ψn = 1

100(n+1)2 ,
νn = 0 (we consider that T is an average mapping). The initial values are randomly generated by the MATLAB
function rand(2,1). We use En = ‖xn − x∗‖2 to denote the iteration error of algorithms, and the maximum
iteration 300 as the stopping criterion. Results are reported in Table 2, where “Iter." denotes the number
of iterations.

Table 2. Computational results for Example 2.

Iter.

HPA SPA MHPA MSPA MIHPA MISPA

xn En xn En xn En xn En xn En xn En

1 (0.2944,0.8061) 0.8582 (0.2944,0.8061) 0.8582 (0.4607,0.8706) 0.9850 (0.4607,0.8706) 0.9850 (0.4607,0.8706) 0.9850 (0.4607,0.8706) 0.9850
50 (0.0049,0.0164) 0.0171 (0.0000,0.0001) 0.0001 (0.0142,0.0357) 0.0384 (0.0142,0.0264) 0.0300 (0.0094,0.0357) 0.0369 (0.0142,0.0278) 0.0312

100 (0.0006,0.0017) 0.0018 (0.0000,0.0000) 0.0000 (0.0116,0.0110) 0.0159 (0.0072,0.0133) 0.0151 (0.0096,0.0144) 0.0173 (0.0067,0.0137) 0.0153
200 (-0.0003,0.0013) 0.0014 (0.0000,0.0000) 0.0000 (0.0059,0.0053) 0.0080 (0.0034,0.0068) 0.0076 (0.0061,0.0047) 0.0077 (0.0036,0.0060) 0.0070
300 (0.0007,0.0003) 0.0008 (0.0000,0.0000) 0.0000 (0.0043,0.0030) 0.0053 (0.0021,0.0045) 0.0049 (0.0045,0.0038) 0.0058 (0.0018,0.0053) 0.0056

Example 3. The Fermat–Weber problem is a famous model in location theory. It is can be formulated
mathematically as the problem of finding x ∈ Rn that solves

min
x

{
f (x) :=

m

∑
i=1

ωi ‖x− ai‖2

}
, (13)

where ωi > 0 are given weights and ai ∈ Rn are anchor points. It is easy to check that the objective function f in
(13) is convex and coercive. Therefore, the problem has a nonempty solution set. It should be noted that f is not
differentiable at the anchor points. The most famous method to solve the problem (13) is the Weiszfeld algorithm;
see [41] for more discussion. Weiszfeld proposed the following fixed point algorithm: xn+1 = T (xn) , n ∈ N.
The mapping T : Rn\A �−→ Rn is defined by T(x) := 1

∑m
i=1

ωi
‖x−ai‖

∑m
i=1

ωiai
‖x−ai‖ , where A = {a1, a2, . . . , am}.

We consider a small example with n = 2, m = 4 anchor points,

a1 =

(
0
0

)
, a2 =

(
10
0

)
, a3 =

(
0

10

)
, a4 =

(
10
10

)
,

and ωi = 1 for all i. It follows from the special selection of anchor points ai (i = 1, 2, 3, 4) that the optimal value
of (13) is x∗ = (5, 5)T.

We use the same algorithms as in Example 2, and our parameter settings are as follows, setting η = 1,
ψn = 1

100(n+1)2 , νn = 0.1. We use En = ‖xn − x∗‖2 < 10−4 or maximum iteration 300 as the stopping
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criterion. The initial values are randomly generated by the MATLAB function 10rand(2,1). Figures 1 and 2
show the convergence behavior of iterative sequence {xn} and iteration error En, respectively.

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 1. Convergence process at different initial values for Example 3.

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 2. Convergence behavior of iteration error {En} for Example 3.
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Remark 2. From Examples 1–3, we know that our proposed algorithms are effective and easy to implement.
Moreover, initial values do not affect the computational performance of our algorithms. However, it should be
mentioned that the MIHPA algorithm, the MISPA algorithm, the MHPA algorithm, and the MSPA algorithm
will slow down the speed and accuracy of the HPA algorithm and the SPA algorithm. The acceleration may be
eliminated by the projection onto the set Cn and Qn and Cn+1.

5. Conclusions

In this paper, we proposed two modified inertial hybrid and shrinking projection algorithms
based on the inertial method, the Picard algorithm, the conjugate gradient method, and the projection
method. We could then work with the strong convergence theorems under suitable conditions.
However, numerical experiments showed that our algorithms cannot accelerate some previously
known algorithms.
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Abstract: In this paper, first, we introduce a path for a convex combination of a pseudocontractive
type of mappings with a perturbed mapping and prove strong convergence of the proposed path in a
real reflexive Banach space having a weakly continuous duality mapping. Second, we propose two
modified implicit iterative methods with a perturbed mapping for a continuous pseudocontractive
mapping in the same Banach space. Strong convergence theorems for the proposed iterative methods
are established. The results in this paper substantially develop and complement the previous
well-known results in this area.

Keywords: modified implicit iterative methods with perturbed mapping; pseudocontractive
mapping; strongly pseudocontractive mapping; nonexpansive mapping; weakly continuous duality
mapping; fixed point

1. Introduction

Let E be a real Banach space, and let E∗ be the dual space of E. Let C be a nonempty closed
convex subset of E. Recall that a mapping f : C → C is called contractive if there exists k ∈ (0, 1)
such that ‖ f x − f y‖ ≤ k‖x − y‖, ∀x, y ∈ C and that a mapping S : C → C is called nonexpansive if
‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let J denote the normalized duality mapping from E into 2X∗
defined by

J(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖, ‖ f ‖ = ‖x‖}, x ∈ E,

where 〈·, ·〉 denotes the generalized duality pair between E and E∗. The mapping T : C → C is called
pseudocontractive (respectively, strong pseudocontractive), if there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, ∀x, y ∈ C,

(respectively, 〈Tx− Ty, j(x− y)〉 ≤ β‖x− y‖2 for some β ∈ (0, 1)).
The class of pseudocontractive mappings is one of the most important classes of mappings in

nonlinear analysis, and it has been attracting mathematician’s interest. Apart from them being a
generalization of nonexpansive mappings, interest in pseudocontractive mappings stems mainly from
their firm connection with the class of accretive mappings, where a mapping A with domain D(A)

and range R(A) in E is called accretive if the inequality

‖x− y‖ ≤ ‖x− y + s(Ax− Ay)‖,

holds for every x, y ∈ D(A) and for all s > 0.
Within the past 50 years or so, many authors have been devoting their study to the existence

of zeros of accretive mappings or fixed points of pseudocontractive mappings and several iterative

Mathematics 2020, 8, 72; doi:10.3390/math8010072 www.mdpi.com/journal/mathematics33



Mathematics 2020, 8, 72

methods for finding zeros of accretive mappings or fixed points of pseudocontractive mappings.
We can refer to References [1–14] and the references in therein.

In 2007, Morales [15] introduced the following viscosity iterative method for pseudocontractive
mapping:

xt = t f xt + (1− t)Txt, t ∈ (0, 1), (1)

where T : C → E is a continuous pseudocontractive mapping satisfying the weakly inward condition
and f : C → C is a bounded continuous strongly pseudocontractive mapping. In a reflexive Banach
space with a uniformly Gâteaux differentiable norm such that every closed convex bounded subset of
C has the fixed point property for nonexpansive self-mappings, he proved the strong convergence of
the sequences generated by the iterative method in Equation (1) to a point q in Fix(T) (the set of fixed
points of T), where q is the unique solution to the following variational inequality:

〈 f q− q, J(p− q)〉 ≤ 0, ∀p ∈ Fix(T). (2)

In 2009, using the method of Reference [16], Ceng et al. [17] introduced the following modified
viscosity iterative method and modified implicit viscosity iterative method with a perturbed mapping
for a pseudocontractive mapping:

xt = t f xt + rtSxt + (1− t− rt)Txt, t ∈ (0, 1), (3)

where 0 < rt < 1 − t, T : C → C is a continuous pseudocontractive mapping, S : C → C is a
nonexpansive mapping, and f : C → C is a Lipschitz strongly pseudocontractive mapping.{

yn = αnxn + (1− αn)Tyn,

xn+1 = βn f yn + γnSyn + (1− βn − γn)yn,
(4)

and {
xn = αnyn + (1− αn)Tyn,

yn = βn f xn−1 + γnSxn−1 + (1− βn − γn)xn−1,
(5)

where f : C → C is a contractive mapping , x0 ∈ C is an arbitrary initial point, and {αn}, {βn},
{γn} ⊂ (0, 1] such that limn→∞(γn/βn) = 0 and βn + γn < 1. In a reflexive and strictly convex
Banach space with a uniformly Gâteaux differentiable norm, they proved the strong convergence of
the sequences generated by the iterative methods in Equations (3)–(5) to a point q in Fix(T), where q is
the unique solution to the variational inequality in Equation (2). Their results developed and improved
the corresponding results of Song and Chen [11], Zeng and Yao [16], Xu [18], Xu and Ori [19], and
Chen et al. [20].

In this paper, as a continuation of study in this direction, in a reflexive Banach space having a
weakly sequentially continuous duality mapping Jϕ with gauge function ϕ, we consider the viscosity
iterative methods in Equations (3)–(5) for a continuous pseudocontractive mapping T, a continuous
bounded strongly pseudocontractive mapping f , and a nonexpansive mapping S. We establish strong
convergence of the sequences generated by proposed iterative methods to a fixed point of the mapping
T, which solves a variational inequality related to f . The main results develop and supplement the
corresponding results of Song and Chen [11], Morales [15], Ceng et al. [17], and Xu [18] to different
Banach space as well as Zeng and Yao [16], Xu and Ori [19], Chen et al. [20], and the references therein.

2. Preliminaries

Throughout the paper, we use the following notations: “ ⇀ ” for weak convergence, “ ∗
⇀" for

weak∗ convergence, and “ → ” for strong convergence.
Let E be a real Banach space with the norm ‖ · ‖, and let E∗ be its dual. The value of x∗ ∈ E∗ at

x ∈ E will be denoted by 〈x, x∗〉. Let C be a nonempty closed convex subset of E, and let T : C → C be
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a mapping. We denote the set of fixed points of the mapping T by Fix(T). That is, Fix(T) := {x ∈ C :
Tx = x}.

Recall that a Banach space E is said to be smooth if for each x ∈ SE = {x ∈ E : ‖x‖ = 1}, there
exists a unique functional jx ∈ E∗ such that 〈x, jx〉 = ‖x‖ and ‖jx‖ = 1 and that a Banach space E is
said to be strictly convex [21] if the following implication holds for x, y ∈ E:

‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ > 0 ⇒
∥∥∥∥ x + y

2

∥∥∥∥ < 1.

By a gauge function, we mean a continuous strictly increasing function ϕ defined on R+ := [0, ∞)

such that ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. The mapping Jϕ : E → 2E∗ defined by

Jϕ(x) = { f ∈ E∗ : 〈x, f 〉 = ‖x‖‖ f ‖, ‖ f ‖ = ϕ(‖x‖)} for all x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality mapping with gauge
function ϕ(t) = t denoted by J is referred to as the normalized duality mapping. It is known that a Banach
space E is smooth if and only if the normalized duality mapping J is single-valued. The following
property of duality mapping is also well-known:

Jϕ(λx) = sign λ

(
ϕ(|λ| · ‖x‖)

‖x‖

)
J(x) for all x ∈ E \ {0}, λ ∈ R, (6)

where R is the set of all real numbers. The following are some elementary properties of the duality
mapping J [21,22]:

(i) For x ∈ E, J(x) is nonempty, bounded, closed, and convex;
(ii) J(0) = 0;
(iii) for x ∈ E and a real α, J(αx) = αJ(x);
(iv) for x, y ∈ E, f ∈ J(x) and g ∈ J(y), 〈x− y, f − g〉 ≥ 0;
(v) for x, y ∈ E, f ∈ J(x), ‖x‖2 − ‖y‖2 ≥ 2〈x− y, f 〉.

We say that a Banach space E has a weakly continuous duality mapping if there exists a gauge
function ϕ such that the duality mapping Jϕ is single-valued and continuous from the weak topology
to the weak∗ topology, that is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn)

∗
⇀ Jϕ(x). A duality mapping Jϕ

is weakly continuous at 0 if Jϕ is single-valued and if xn ⇀ 0, Jϕ(xn)
∗
⇀ 0. For example, every lp space

(1 < p < ∞) has a weakly continuous duality mapping with gauge function ϕ(t) = tp−1 [21–23]. Set

Φ(t) =
∫ t

0
ϕ(τ)dτ for all t ∈ R+.

Then it is known that Jϕ(x) is the subdifferential of the convex functional Φ(‖ · ‖) at x. A Banach
space E that has a weakly continuous duality mapping implies that E satisfies Opial’s property.
This means that whenever xn ⇀ x and y �= x, we have lim supn→∞ ‖xn − x‖ < lim supn→∞ ‖xn −
y‖ [21,23].

The following lemma is Lemma 2.1 of Jung [24].

Lemma 1. ([24]) Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ. Let {xn} be a bounded sequence of E and f : E → E be a continuous mapping. Let g : E → R be
defined by

g(z) = lim sup
n→∞

〈z− f z, Jϕ(z− xn)〉

for z ∈ E. Then, g is a real valued continuous function on E.

We need the following well-known lemma for the proof of our main result [21,22].
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Lemma 2. Let E be a real Banach space, and let ϕ be a continuous strictly increasing function on R+ such that
ϕ(0) = 0 and limr→∞ ϕ(r) = ∞. Define

Φ(t) =
∫ t

0
ϕ(τ)dτ for all t ∈ R+.

Then, the following inequalities hold:

Φ(kt) ≤ kΦ(t), 0 < k < 1,

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x + y)〉 for all x, y ∈ E,

where jϕ(x + y) ∈ Jϕ(x + y).

The following lemma can be found in Reference [18].

Lemma 3. ([18]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnδn, n ≥ 0,

where {λn} and {δn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and ∑∞
n=0 λn = ∞ or, equivalently, ∏∞

n=0(1− λn) = 0,
(ii) lim supn→∞ δn ≤ 0 or ∑∞

n=0 λn|δn| < ∞,

Then, limn→∞ sn = 0.

Let C be a nonempty closed convex subset of a real Banach space E. Recall that S : C → C is
called accretive if I − S is pseudocontractive. If T : C → C is a pseudocontractive mapping, then
I − T is accretive. We denote A = J1 = (2I − T)−1. Then, Fix(A) = Fix(T) and the operator
A : R(2I − T)→ C is nonexpansive and single-valued, where I denotes the identity mapping.

We also need the following result which can be found in Reference [11].

Lemma 4. ([11]) Let C be a nonempty closed convex subset of a real Banach space E, and let T : C → C be a
continuous pseudocontractive mapping. We denote A = (2I − T)−1.

(i) The mapping A is nonexpansive self-mapping on C, i.e., for all x, y ∈ nC, there holds

‖Ax− Ay‖ ≤ ‖x− y‖, and Ax ∈ C.

(ii) If limn→∞ ‖xn − Txn‖ = 0, then limn→∞ ‖xn − Axn‖ = 0.

The following Lemmas, which are well-known, can be found in many books in the geometry of
Banach spaces (see References [21,23]).

Lemma 5. (Demiclosedness Principle) Let C be a nonempty closed convex subset of a Banach space E, and
let T : C → C be a nonexpansive mapping. Then, xn ⇀ x in C and (I − T)xn → y imply that (I − T)x = y.

Lemma 6. If E is a Banach space such that E∗ is strictly convex, then E is smooth and any duality mapping is
norm-to-weak∗-continuous.

Finally, we need the following result which was given by Deimling [4].

Lemma 7. ([4]) Let C be a nonempty closed convex subset of a Banach space E, and let T : C → C be a
continuous strong pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Then, T has a
unique fixed point in C.
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3. Convergence of Path with Perturbed Mapping

As we know, the path convergency plays an important role in proving the convergence of iterative
methods to approximate fixed points. In this direction, we first prove the existence of a path for
a convex combination of a pseudocontractive type of mappings with a perturbed mapping and
boundedness of the path.

Proposition 1. Let C be a nonempty closed convex subset of a real Banach space E. Let T : C → C be a
continuous pseudocontractive mapping, let S : C → C be a nonexpansive mapping, and let f : C → C be a
continuous strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1).

(i) There exists a unique path t �→ xt ∈ C, t ∈ (0, 1), satisfying

xt = t f xt + rtSxt + (1− t− rt)Txt, (7)

provided rt : (0, 1)→ [0, 1− t) is continuous and limt→0(rt/t) = 0.
(ii) In particular, if T has a fixed point in C, then the path {xt} is bounded.

Proof. (i) For each t ∈ (0, 1), define the mapping T(S, f ) : C → C as follows:

T(S, f ) = t f + rtS + (1− t− rt)T,

where 0 < rt < 1− t and limt→0(rt/t) = 0. Then, it is easy to show that the mapping T(S, f ) is a
continuous strongly pseudocontractive self-mapping of C. Therefore, by Lemma 7, T(S, f ) has a unique
fixed point in C, i.e., for each given t ∈ (0, 1), there exists xt ∈ C such that

xt = t f xt + rtSxt + (1− t− rt)Txt.

To show continuity, let t, t0 ∈ (0, 1). Then, there exists j ∈ J(xt − xt0) such that

〈xt − xt0 , j〉 = 〈t f xt + rtSxt + (1− t− rt)Txt − (t0 f xt0 + rtSxt + (1− t0 − rt0)Txt0), j〉
= t〈 f xt − f xt0 , j〉+ (t− t0)〈 f xt0 , j〉+ rt〈Sxt − Sxt0 , j〉+ (rt − rt0)〈Sxt0 , j〉

+ (1− t− rt)〈Txt − Txt0 , j〉+ ((t− t0) + (rt − rt0))〈Txt0 , j〉,

and this implies that

‖xt − xt0‖2 ≤ tβ‖xt − xt0‖2 + |t− t0|‖ f xt0‖‖xt − xt0‖
+ rt‖xt − xt0‖2 + |rt − rt0 |‖Sxt0‖‖xt − xt0‖
+ (1− t− rt)‖xt − xt0‖2 + |t− t0|‖Txt0‖‖xt − xt0‖+ |rt − rt0 |‖Txt0‖‖xt − xt0‖.

and, hence,

‖xt − xt0‖ ≤ tβ‖xt − xt0‖+ |t− t0|‖ f xt0‖+ |rt − rt0 |‖Sxt0‖
+ (1− t− rt)‖xt − xt0‖+ |t− t0|‖Txt0‖+ |rt − rt0 |‖Txt0‖

= (1− (1− β)t)‖xt − xt0‖+ (‖ f xt0‖+ ‖Txt0‖)|t− t0|+ (‖Sxt0‖+ ‖Txt0‖)|rt − rt0 |.

Therefore,

‖xt − xt0‖ ≤
‖ f xt0‖+ ‖Txt0‖

(1− β)t
|t− t0|+

‖Sxt0‖+ ‖Txt0‖
(1− β)t

|rt − rt0 |,

which guarantees continuity.
(ii) By the same argument as in the proof of Theorem 2.1 of Reference [17], we can prove that {xt}

defined by Equation (7) is bounded for t ∈ (0, t0) for some t0 ∈ (0, 1), and so we omit its proof.

37



Mathematics 2020, 8, 72

The above path of Equation (7) is called the modified viscosity iterative method with perturbed mapping,
where S is called the perturbed mapping.

The following result gives conditions for existence of a solution of a variational inequality:

〈(I − f )q, Jϕ(q− p)〉 ≤ 0, ∀p ∈ Fix(T). (8)

Theorem 1. Let E be a Banach space such that E∗ is strictly convex. Let C be a nonempty closed convex subset
of a real Banach space E. Let T : C → C be a continuous pseudocontractive mapping with Fix(T) �= ∅, let
S : C → C be a nonexpansive mapping, and let f : C → C be a continuous strongly pseudocontractive mapping
with a pseudocontractive coefficient β ∈ (0, 1). Suppose that {xt} defined by Equation (7) converges strongly to
a point in Fix(T). If we define q := limt→0 xt, then q is a solution of the variational inequality in Equation (8).

Proof. First, from Lemma 6, we note that E is smooth and Jϕ is norm-to-weak∗-continuous.
Since

(I − f )xt = −1− t− rt

t
(I − T)xt −

rt

t
(I − S)xt,

we have for p ∈ Fix(T)

〈(I − f )xt, Jϕ(xt − p)〉 = − 1− t− rt

t
〈(I − T)xt − (I − T)p, Jϕ(xt − p)〉

+
rt

t
〈(S− I)xt, Jϕ(xt − p)〉.

(9)

Since I − T is accretive and J(xt − p) is a positive-scalar multiple of Jϕ(xt − p) (see Equation (6)),
it follow from Equation (9) that

〈(I − f )xt, Jϕ(xt − p)〉 ≤ rt

t
〈(S− I)xt, Jϕ(xt − p)〉

≤ rt

t
‖(S− I)xt‖ϕ(‖xt − p‖).

(10)

Taking the limit as t → 0, by limt→0
rt
t = 0, we obtain

〈(I − f )q, Jϕ(q− p)〉 ≤ 0, ∀p ∈ Fix(T).

This completes the proof.

The following lemma provides conditions under which {xt} defined by Equation (7) converges
strongly to a point in Fix(T).

Lemma 8. Let E be a reflexive smooth Banach space having Opial’s property and having some duality mapping
Jϕ weakly continuous at 0. Let C be a nonempty closed convex subset of E. Let T : C → C be a continuous
pseudocontractive mapping with Fix(T) �= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C
be a continuous bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1).
Then, {xt} defined by Equation (7) converges strongly to a point in Fix(T) as t → 0.

Proof. First, from Proposition 1 (ii), we know that {xt : t ∈ (0, t0)} is bounded for t ∈ (0, t0) for some
t0 ∈ (0, 1).

Since f is a bounded mapping and S is a nonexpansive mapping, { f xt : t ∈ (0, t0)} and{Sxt : t ∈
(0, t0)} are bounded. Moreover, noting that xt = t f xt + rtSxt + (1− t− rt)Txt, we have

Txt =
1

1− t− rt
xt −

t
1− t− rt

f xt −
rt

1− t− rt
Sxt,
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which implies that

‖Txt‖ ≤
1

1− t− rt
‖xt‖+

t
1− t− rt

‖ f xt‖+
rt

1− t− rt
‖Sxt‖.

Thus, we obtain
‖Txt‖ ≤ 2‖xt‖+ 2t‖ f xt‖+ 2rt‖Sxt‖, ∀t ∈ (0, t0)

and so {Txt : t ∈ (0, t0)} is bounded. This implies that

lim
t→0

‖xt − Txt‖ ≤ lim
t→0

t‖ f xt − Txt‖+ lim
t→0

rt‖Sxt − Txt‖ = 0. (11)

Now, let tm ∈ (0, t0) for some t0 ∈ (0, 1) be such that tm → 0, and let {xm} := {xtm} be a
subsequence of {xt}. Then,

xm = tm f xm + rmSm + (1− tm − rm)Txm.

Let p ∈ Fix(T). Then, we have

xm − p = tm( f xm − p) + rm(Sxm − p) + (1− tm − rm)(Txm − Tp)

and
‖xm − p‖ϕ(‖xm − p‖) = 〈xm − p, Jϕ(xm − p)〉

≤ tm〈 f xm − p, Jϕ(xm − p)〉+ rm〈Sxm − p, Jϕ(xm − p)〉
+ (1− tm − rm)‖xm − p‖ϕ(‖xm − p‖).

Thus, it follows that

‖xm − p‖ϕ(‖xm − p‖) ≤ tm

tm + rm
〈 f xm − p, Jϕ(xm − p)〉+ rm

tm + rm
〈Sxm − p, Jϕ(xm − p)〉. (12)

Hence, we get

〈p− f xm, Jϕ(xm − p)〉 ≤ − tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈Sxm − p, Jϕ(xm − p)〉,

that is,

〈p− f xm, Jϕ(p− xm)〉 ≥
tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈p− Sxm, Jϕ(xm − p)〉.

Therefore, we have

〈xm − f xm, Jϕ(p− xm)〉 = 〈xm − p, Jϕ(p− xm)〉+ 〈p− f xm, Jϕ(p− xm)〉

≥ − ‖xm − p‖ϕ(‖xm − p‖) + tm + rm

tm
‖xm − p‖ϕ(‖xm − p‖)

+
rm

tm
〈p− Sxm, Jϕ(xm − p)〉

=
rm

tm
‖xm − p‖ϕ(‖xm − p‖) + rm

tm
〈p− Sxm, Jϕ(xm − p)〉.

On the other hand, since {xm} is bounded and E is reflexive, {xm} has a weakly convergent
subsequence {xmk}, say, xmk ⇀ u ∈ E. From Equation (11), it follows that

‖xm − Txm‖ ≤ tm‖ f xm − Txm‖+ rm‖Sxm − Txm‖ → 0.
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From Lemma 4, we know that the mapping A = (2I − T)−1 : C → C is nonexpansive, that
Fix(A) = Fix(T), and that ‖xm − Axm‖ → 0. Thus, by Lemma 5, u ∈ Fix(A) = Fix(T). Therefore,
by Equation (12) and the assumption that Jϕ is weakly continuous at 0, we obtain

‖xmk − u‖ϕ(‖xmk − u‖) ≤ tmk

tmk + rmk

〈 f xmk − u, Jϕ(xmk − u)〉+ rmk

tmk + rmk

〈Sxmk − u, Jϕ(xmk − u)〉

≤ |〈 f xmk − u, Jϕ(xmk − u)〉|+ rmk

tmk

|〈Sxmk − u, Jϕ(xmk − u)〉| → 0.

Since ϕ is continuous and strictly increasing, we must have xmk → u.
Now, we will show that every weakly convergent subsequence of {xm} has the same limit.

Suppose that xmk ⇀ u and xmj ⇀ v. Then, by the above proof, we have u, v ∈ Fix(T) and xmk → u
and xmj → v. By Equation (12), we have the following for all p ∈ Fix(T):

‖xmk − p‖ϕ(‖xmk − p‖) ≤ tmk

tmk + rmk

〈 f xmk − p, Jϕ(xmk − p)〉+ rmk

tmk + rmk

〈Sxmk − p, Jϕ(xmk − p)〉

≤ tmk

tmk + rmk

〈 f xmk − p, Jϕ(xmk − p)〉+ rmk

tmk

|〈Sxmk − p, Jϕ(xmk − p)〉|

and

‖xmj − p‖ϕ(‖xmj − p‖) ≤
tmj

tmj + rmj

〈 f xmj − p, Jϕ(xmj − p)〉+
rmj

tmj + rmj

〈Sxmj − p, Jϕ(xmj − p)〉

≤
tmj

tmj + rmk

〈 f xmj − p, Jϕ(xmk − p)〉+ rmk

tmk

|〈Sxmk − p, Jϕ(xmk − p)〉|.

Taking limits, we get

Φ(‖u− v‖) = ‖u− v‖ϕ(‖u− v‖) ≤ 〈 f u− v, Jϕ(u− v)〉 (13)

and
Φ(‖v− u‖) = ‖v− u‖ϕ(‖v− u‖) ≤ 〈 f v− u, Jϕ(v− u)〉. (14)

Adding up Equations (13) and (14) yields

2Φ(‖u− v‖) = 2‖u− v‖ϕ(‖u− v‖) ≤ ‖u− v‖ϕ(‖u− v‖) + 〈 f u− f v, Jϕ(u− v)〉
≤ (1 + β)‖u− v‖ϕ(‖u− v‖) = (1 + β)Φ(‖u− v‖).

Since β ∈ (0, 1), this implies Φ(‖u− v‖) ≤ 0, that is, u = v. Hence, {xm} is strongly convergent
to a point in Fix(T) as tm → 0.

The same argument shows that, if tl → 0, then the subsequence {xl} := {xtl} of {xt : t ∈ (0, t0)}
for some t0 ∈ (0, 1) is strongly convergent to the same limit. Thus, as t → 0, {xt} converges strongly
to a point in Fix(T).

Using Theorem 1 and Lemma 8, we show the existence of a unique solution of the variational
inequality in Equation (8) in a reflexive Banach space having a weakly continuous duality mapping.

Theorem 2. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) �= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a continuous
bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Then, there exists
the unique solution in q ∈ Fix(T) of the variational inequality in Equation (8), where q := limt→∞ xt with xt

being defined by Equation (7).
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Proof. We notice that the definition of the weak continuity of the duality mapping Jϕ implies that E
is smooth. Thus, E∗ is strictly convex for reflexivity of E. By Lemma 8, {xt} defined by Equation (7)
converges strongly to a point q in Fix(T) as t → 0. Hence, by Theorem 1, q is the unique solution of
the variational inequality in Equation (8). In fact, suppose that q, p ∈ Fix(T) satisfy the variational
inequality in Equation (8). Then, we have

〈(I − f )q, Jϕ(q− p)〉 ≤ 0 and 〈(I − f )p, Jϕ(p− q)〉 ≤ 0.

Adding these two inequalities, we have

(1− β)Φ(‖q− p‖) = (1− β)‖q− p‖ϕ(‖q− p‖) ≤ 〈(I − f )q− (I − f )p, Jϕ(q− p)〉 ≤ 0,

and so q = p.

As a direct consequence of Theorem 2, we have the following result.

Corollary 1. ([20, Theorem 3.2]) Let E be a reflexive Banach space having a weakly continuous duality
mapping Jϕ with gauge function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a
continuous pseudocontractive mapping such that Fix(T) �= ∅, and let f : C → C be a continuous bounded
strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Let {xt} be defined by

xt = t f xt + (1− t)Txt, ∀t ∈ (0, 1).

Then, as t → 0, xt converges strongly to a some point of T such that q is the unique solution of the
variational inequality in Equation (8).

Proof. Put S = I and rt = 0 for all t ∈ (0, 1). Then, the result follows immediately from Theorem 2.

Remark 1. (1) Theorem 2 develops and supplements Theorem 2.1 of Ceng et al. [17] in the following aspects:

(i) The space is replaced by the space having a weakly continuous duality mapping Jϕ with gauge
function ϕ.

(ii) The Lipischiz strongly pseudocontractive mapping f in Theorem 2.1 in Reference [17] is replaced by
a bounded continuous strongly pseudocontractive mapping f in Theorem 2.

(2) Corollary 1 complements Theorem 2.1 of Song and Chen [11] and Corollary 2.2 of Cent et al. [17]
by replacing the Lipischiz strongly pseudocontractive mapping f in References [11,17] by the bounded
continuous strongly pseudocontractive mapping f in Corollary 3.5 in a reflexive Banach space having a
weakly continuous duality mapping Jϕ with gauge function ϕ.

(3) Corollary 1 also develops Theorem 2 of Morales [15] to a reflexive Banach space having a weakly continuous
duality mapping Jϕ with gauge function ϕ.

4. Modified Implicit Iterative Methods with Perturbed Mapping

First, we prepare the following result.

Theorem 3. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) �= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a continuous
bounded strongly pseudocontractive mapping with a pseudocontractive coefficient β ∈ (0, 1). Let {xt} be
defined by Equation (7). If there exists a bounded sequence {xn} such that limn→∞ ‖xn − Txn‖ = 0 and
q = limt→0 xt, then

lim sup
n→∞

〈 f q− q, Jϕ(xn − q)〉 ≤ 0.
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Proof. Using the equality

xt − xn = (1− t− rt)(Txt − xn) + t( f xt − xn) + rt(Sxt − xn)

and the inequality

〈Tx− Ty, Jϕ(x− y)〉 ≤ ‖x− y‖ϕ(‖x− y‖), ∀x, y ∈ C,

we derive

‖xt − xn‖ϕ(‖xt − xn‖) = (1− t− rt)〈Txt − xn, Jϕ(xt − xn)〉+ t〈 f xt − xn, Jϕ(xt − xn)〉
+ rt〈Sxt − xn, Jϕ(xt − xn)〉

= (1− t− rt)(〈Txt − Txn, Jϕ(xt − xn)〉+ 〈Txn − xn, Jϕ(xt − xn)〉
t〈 f xt − xt, Jϕ(xt − xn)〉+ t‖xt − xn‖ϕ(‖xt − xn‖)
+ rt〈Sxt − xt, Jϕ(xt − xn)〉+ rt‖xt − xn‖ϕ(‖xt − xn‖)

≤ ‖xt − xn‖ϕ(‖xt − xn‖) + ‖Txn − xn‖ϕ(‖xt − xn‖)
t〈 f xt − xt, Jϕ(xt − xn)〉+ rt‖Sxt − xn‖ϕ(‖xt − xn‖)

and, hence,

〈xt − f xt, Jϕ(xt − xn)〉 ≤
‖Txn − xn‖

t
ϕ(‖xt − xn‖) +

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖).

Therefore, by lim supn→∞ ϕ(‖xt − xn‖) < ∞, we have

lim sup
n→∞

〈xt − f xt, Jϕ(xt − xn)〉 ≤ lim sup
n→∞

‖Txn − xn‖
t

ϕ(‖xt − xn‖)

+ lim sup
n→∞

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖)

= lim sup
n→∞

rt

t
‖Sxt − xt‖ϕ(‖xt − xn‖)

=
rt

t
‖Sxt − xt‖ lim sup

n→∞
ϕ(‖xt − xn‖).

Thus, noting that limt→0 lim supn→∞ ϕ(‖xt − xn‖) < ∞, by Lemma 1, we conclude

lim sup
n→∞

〈 f q− q, Jϕ(xn − q)〉 = lim
t→0

lim sup
n→∞

〈 f xt − xt, Jϕ(xn − xt)〉

≤ lim
t→0

[
rt

t
‖Sxt − xt‖

]
lim
t→0

lim sup
n→∞

ϕ(‖xt − xn‖)

= 0× lim
t→0

lim sup
n→∞

ϕ(‖xt − xn‖) = 0.

This completes the proof.

Theorem 4. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) �= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a contractive
mapping with a contractive coefficient k ∈ (0, 1). For x0 ∈ C, let {xn} be defined by the following iterative
scheme: {

yn = αnxn + (1− αn)Tyn

xn+1 = βn f yn + γnSyn + (1− βn − γn)yn, ∀n ≥ 0,
(15)

where {αn}, {βn}, and {γn} are three sequences in (0, 1] satisfying the following conditions:
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(i) limn→∞ αn = 0;
(ii) limn→∞ βn = 0, ∑∞

n=0 βn = ∞;
(iii) limn→∞(γn/βn) = 0, βn + γn ≤ 1, ∀n ≥ 0.

Then, {xn} converges strongly to a fixed point x∗ of T, which is the unique solution of the following
variational inequality

〈(I − f )x∗, Jϕ(x∗ − p)〉 ≤ 0, ∀p ∈ Fix(T). (16)

Proof. First, put zt = t f zt + rtSzt + (1− t− rt)Tzt. Then, it follows from Theorem 2 that, as t → 0,
zt converges strongly to some fixed point x∗ of T such that x∗ is the unique solution in Fix(T) to the
variational inequality in Equation (16).

Now, we divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Fix(T). Then, we have

‖yn − p‖ϕ(‖yn − p‖) = 〈αnxn + (1− αn)Tyn − p, Jϕ(yn − p)〉
≤ (1− αn)〈Tyn − Tp, Jϕ(yn − p)〉+ αn‖xn − p‖ϕ(‖yn − p‖)
≤ (1− αn)‖yn − p‖ϕ(‖yn − p‖) + αn‖xn − p‖ϕ(‖yn − p‖)

and, hence,
‖yn − p‖ ≤ ‖xn − p‖, ∀n ≥ 0.

Thus, we obtain

‖xn+1 − p‖ ≤ βn‖ f yn − p‖+ γn‖Syn − p‖+ (1− βn − γn)‖yn − p‖
≤ βn(‖ f yn − f p‖+ ‖ f p− p‖) + γn(‖Syn − Sp‖+ ‖Sp− p‖)

+ (1− βn − γn)‖xn − p‖
≤ βnk‖yn − p‖+ βn‖ f p− p‖+ γn‖yn − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn − p‖
≤ βnk‖xn − p‖+ βn‖ f p− p‖+ γn‖xn − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn − p‖
= (1− (1− k)βn)‖xn − p‖+ βn‖ f p− p‖+ γn‖Sp− p‖.

(17)

Since limn→∞(γn/βn) = 0, we may assume without loss of generality that γn ≤ βn for all n > 0.
Therefore, it follows from Equation (17) that

‖xn+1 − p‖ ≤ (1− (1− k)βn)‖xn − p‖+ (1− k)βn ·
1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

≤ max
{
‖xn − p‖,

1
1− k

(‖ f p− p‖+ ‖Sp− p‖)
}

.

By induction, we derive

‖xn − p‖ ≤ max
{
‖x0 − p‖,

1
1− k

(‖ f p− p‖+ ‖Sp− p‖)
}

, ∀n ≥ 0.

This show that {xn} is bounded and so is {yn}.
Step 2. We show that { f yn}, {Syn}, and {Tyn} are bounded. Indeed, observe that

‖ f yn‖ ≤ ‖ f yn − f p‖+ ‖ f p‖ ≤ k‖yn − p‖+ ‖ f p‖

and
‖Syn‖ ≤ ‖Syn − Sp‖+ ‖Sp‖ ≤ ‖yn − p‖+ ‖Sp‖.
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Thus, { f yn} and {Syn} are bounded. Since limn→∞ αn = 0, there exist n0 ≥ 0 and a ∈ (0, 1) such
that αn ≤ a for all n ≥ n0. Noting that yn = αnxn + (1− αn)Tyn, we have

Tyn =
1

1− αn
yn −

αn

1− αn
xn

and so
‖Tyn‖ ≤

1
1− αn

‖yn‖+
αn

1− αn
‖xn‖ ≤

1
1− a

‖yn‖+
a

1− a
‖xn‖.

Consequently, the sequence {Tyn} is also bounded.
Step 3. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0. In fact, from condition (i) and
boundedness of {xn} and {Tyn}, we get

‖yn − Tyn‖ = αn‖xn − Tyn‖ → 0 (n → ∞). (18)

Thus, it follows from Equation (18) and Theorem 3 that lim supn→∞〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0.
Step 4. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉 ≤ 0. Indeed, by Equations (15) and (18),
we have

‖xn+1 − yn‖ = ‖βn f yn + γnSyn + (1− βn − γn)yn − (αnxn + (1− αn)Tyn)‖
≤ αn‖xn − Tyn‖+ βn‖ f yn − yn‖+ γn‖Syn − yn‖+ ‖yn − Tyn‖ → 0 (n → ∞).

Since the duality mapping Jϕ is single-valued and weakly continuous, we have

lim
n→∞

〈 f x∗ − x∗, Jϕ(xn+1 − x∗)− Jϕ(yn − x∗)〉 = 0.

Therefore, we obtain from step 3 that

lim sup
n→∞

〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉 ≤ lim sup
n→∞

〈 f x∗ − x∗, Jϕ(yn − x∗)〉

+ lim sup
n→∞

〈 f x∗ − x∗, Jϕ(xn+1 − x∗)− Jϕ(yn − x∗)〉

= lim sup
n→∞

〈 f x∗ − x∗, Jϕ(yn − x∗)〉 ≤ 0.

Step 5. We show that limn→∞ ‖xn − x∗‖ = 0. In fact, it follows from Equation (15) that

xn+1 − x∗ = βn( f yn − f x∗) + γn(Syn − Sx∗) + (1− βn − γn)(yn − x∗)

+ βn( f x∗ − x∗) + γn(Sx∗ − x∗).

Therefore, using inequalities ‖yn − x∗‖ ≤ ‖xn − x∗‖, ‖ f x − f y‖ ≤ k‖x − y‖, and ‖Sx − Sy‖ ≤
‖x− y‖ and using Lemma 2, we have

Φ(‖xn+1 − x∗‖) ≤ Φ(‖βn( f yn − f x∗) + γn(Syn − Sx∗) + (1− βn − γn)(yn − x∗)‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉

≤Φ(βnk‖yn − x∗‖+ γn‖yn − x∗‖+ (1− βn − γn)‖yn − x∗‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉

≤Φ((1− (1− k)βn)‖xn − x∗‖)
+ βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉+ γn〈Sx∗ − x∗, Jϕ(xn+1 − x∗)〉

≤(1− (1− k)βn)Φ(‖xn − x∗‖) + βn〈 f x∗ − x∗, Jϕ(xn+1 − x∗)〉
+ γn‖Sx∗ − x∗‖ϕ(‖xn+1 − x∗‖)

≤ (1− λn)Φ(‖xn − x∗‖) + λnδn,

(19)
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where λn = (1− k)βn and

δn =
1

1− k

[
〈 f x∗ − x∗, Jϕ(xn+1 − x∗〉+ γn

βn
‖Sx∗ − x∗‖ϕ(‖xn+1 − x∗‖)

]
.

From conditions (ii) and (iii) and from step 4, it is easily seen that ∑∞
n=0 λn = ∞ and

lim supn→∞ δn ≤ 0. Thus, applying Lemma 3 to Equation (19), we conclude that limn→∞ Φ(‖xn −
x∗‖) = 0 and, hence, limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Theorem 5. Let E be a reflexive Banach space having a weakly continuous duality mapping Jϕ with gauge
function ϕ, and let C be a nonempty closed convex subset of E. Let T : C → C be a continuous pseudocontractive
mapping such that Fix(T) �= ∅, let S : C → C be a nonexpansive mapping, and let f : C → C be a contractive
mapping with a contractive coefficient k ∈ (0, 1). For x0 ∈ C, let {xn} be defined by the following iterative
scheme: {

xn = αnyn + (1− αn)Txn

yn = βn f xn−1 + γnSxn−1 + (1− βn − γn)xn−1, ∀n ≥ 0,
(20)

where {αn}, {βn}, and {γn} are three sequences in (0, 1] satisfying the following conditions:

(i) limn→∞ αn = 0;
(ii) ∑∞

n=1 βn = ∞;
(iii) limn→∞(γn/βn) = 0, βn + γn ≤ 1, ∀n ≥ 0.

Then, {xn} converges strongly to a fixed point x∗ of T, which is the unique solution of the variational inequality
in Equation (16).

Proof. First, as in Theorem 4, we put zt = t f zt + rtSzt + (1 − t − rt)Tzt. Then, from Theorem 2,
it follows that, as t → 0, zt converges strongly to some fixed point x∗ of T such that x∗ is the unique
solution in Fix(T) to the variational inequality in Equation (16).

Now, we divide the proof into several steps.
Step 1. We show that {xn} is bounded. To this end, let p ∈ Fix(T). Then, by Equation (20), we have

‖xn − p‖ϕ(‖xn − p‖) = 〈αnyn + (1− αn)Txn − p, Jϕ(xn − p)〉
≤ (1− αn)〈Txn − Tp, Jϕ(xn − p)〉+ αn‖yn − p‖ϕ(‖xn − p‖)
≤ (1− αn)‖xn − p‖ϕ(‖xn − p‖) + αn‖yn − p‖ϕ(‖yn − p‖)

and, hence,
‖xn − p‖ ≤ ‖yn − p‖, ∀n ≥ 0.

Thus, we obtain

‖xn − p‖ ≤ ‖yn − p‖
≤ βn‖ f xn−1 − p‖+ γn‖Sxn−1 − p‖+ (1− βn − γn)‖xn−1 − p‖
≤ βn(‖ f xn−1 − f p‖+ ‖ f p− p‖) + γn(‖Sxn−1 − Sp‖+ ‖Sp− p‖)

+ (1− βn − γn)‖xn−1 − p‖
≤ βnk‖xn−1 − p‖+ βn‖ f p− p‖+ γn‖xn−1 − p‖+ γn‖Sp− p‖

+ (1− βn − γn)‖xn−1 − p‖
= (1− (1− k)βn)‖xn−1 − p‖+ βn‖ f p− p‖+ γn‖Sp− p‖.

(21)
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Since limn→∞(γn/βn) = 0, we may assume without loss of generality that γn ≤ βn for all n > 0.
Therefore, it follows from Equation (21) that

‖xn − p‖ ≤ (1− (1− k)βn)‖xn−1 − p‖+ (1− k)βn ·
1

1− k
(‖ f p− p‖+ ‖Sp− p‖)

≤ max
{
‖xn−1 − p‖,

1
1− k

(‖ f p− p‖+ ‖Sp− p‖)
}

.

By induction, we derive

‖xn − p‖ ≤ max
{
‖x0 − p‖,

1
1− k

(‖ f p− p‖+ ‖Sp− p‖)
}

, ∀n ≥ 0.

This show that {xn} is bounded and so is {yn}.
Step 2. We show that { f xn}, {Sxn}, and {Txn} are bounded. Indeed, observe that

‖ f xn‖ ≤ ‖ f xn − f p‖+ ‖ f p‖ ≤ k‖xn − p‖+ ‖ f p‖

and
‖Sxn‖ ≤ ‖Sxn − Sp‖+ ‖Sp‖ ≤ ‖xn − p‖+ ‖Sp‖.

Thus, { f xn} and {Sxn} are bounded. Since limn→∞ αn = 0, there exist n0 ≥ 0 and a ∈ (0, 1) such
that αn ≤ a for all n ≥ n0. Noting that xn = αnyn + (1− αn)Txn, we have

Txn =
1

1− αn
xn −

αn

1− αn
yn

and so
‖Txn‖ ≤

1
1− αn

‖xn‖+
αn

1− αn
‖yn‖ ≤

1
1− a

‖xn‖+
a

1− a
‖yn‖.

Consequently, the sequence {Txn} is also bounded.
Step 3. We show that lim supn→∞〈 f x∗ − x∗, Jϕ(xn − x∗)〉 ≤ 0. In fact, from condition (i) and
boundedness of {xn} and {Txn}, we get

‖xn − Txn‖ = αn‖yn − Txn‖ → 0 (n → ∞). (22)

Thus, it follows from Equation (22) and Theorem 3 that lim supn→∞〈 f x∗ − x∗, Jϕ(xn − x∗)〉 ≤ 0.
Step 4. We show that limn→∞ ‖xn − x∗‖ = 0. In fact, using the equality

xn − x∗ = αn[βn( f xn−1 − f x∗) + γn(Sxn−1 − Sx∗) + (1− βn − γn)(xn−1 − x∗)]

+ αn[βn( f x∗ − x∗) + γn(Sx∗ − x∗)] + (1− αn)(Txn − x∗)

by Equation (20) and the inequalities 〈Tx − Ty, Jϕ(x − y)〉 ≤ ‖x − y‖ϕ(‖x − y‖) = Φ(‖x − y‖),
‖ f x− f y‖ ≤ k‖x− y‖, and ‖Sx− Sy‖ ≤ ‖x− y‖, from Lemma 2, we derive
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Φ(‖xn − x∗‖) = Φ(αn‖βn( f xn−1 − f x∗) + γn(Sxn−1 − Sx∗) + (1− βn − γn)(xn−1 − x∗)‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn〈Sx∗ − x∗, Jϕ(xn − x∗)〉
+ (1− αn)〈Txn − x∗, Jϕ(xn − x∗)〉

≤ αnΦ(βnk‖xn−1 − x∗‖+ γn‖xn−1 − x∗‖+ (1− βn − γn)‖xn−1 − x∗‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn〈Sx∗ − x∗, Jϕ(xn − x∗)〉
+ (1− αn)‖xn − x∗‖ϕ(‖xn − x∗‖)

≤ αn(1− (1− k)βn)Φ(‖xn−1 − x∗‖)
+ αnβn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ αnγn‖Sx∗ − x∗‖ϕ(‖xn − x∗‖)
+ (1− αn)Φ(‖xn − x∗‖).

(23)

By Equation (23), we obtain

Φ(‖xn − x∗‖) ≤ (1− (1− k)βn)Φ(‖xn−1 − x∗‖) + βn〈 f x∗ − x∗, Jϕ(xn − x∗)〉
+ γn‖Sx∗ − x∗‖ϕ(‖xn − x∗‖)

≤ (1− (1− k)βn)‖xn−1 − x∗‖+ βn〈 f x∗ − x∗, Jϕ(xn − x∗)〉+ γn‖Sx∗ − x∗‖M,

(24)

where M > 0 is a constant such that ϕ(‖xn − x∗‖) ≤ M for all n ≥ 1. Put λn = (1− k)βn and

δn =
1

1− k

[
〈 f x∗ − x∗, Jϕ(xn − x∗〉+ γn

βn
‖Sx∗ − x∗‖M

]
.

From conditions (ii) and (iii) and from step 3, it easily seen that ∑∞
n=0 λn = ∞ and lim supn→∞ δn ≤

0. Since Equation (24) reduces to

Φ(‖xn − x∗‖) ≤ (1− λn)Φ(‖xn−1 − x∗‖) + λnδn, (25)

applying Lemma 3 to Equation (25), we conclude that limn→∞ Φ(‖xn − x∗‖) = 0 and, hence,
limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Remark 2. (1) Theorem 3 develops Theorem 2.3 of Ceng et al. [17] in the following aspects:

(i) The space is replaced by the space having a weakly continuous duality mapping Jϕ with gauge
function ϕ.

(ii) The Lipischiz strongly pseudocontractive mapping f in Theorem 2.3 in Reference [17] is replaced by
a bounded continuous strongly pseudocontractive mapping f in Theorem 3.

(2) Theorem 4 complements Theorem 3.1 as well as Theorem 3.4 of Ceng et al. [17] in a reflexive Banach space
having a weakly continuous duality mapping Jϕ with gauge function ϕ.

(3) Theorem 5 also means that Theorem 3.2 as well as Theorem 3.5 of Ceng et al. [17] hold in a reflexive
Banach space having a weakly continuous duality mapping Jϕ with gauge function ϕ.

(4) Whenever S = I and γn = 0 for all n ≥ 0 in Theorem 5, it is easily seen that Theorem 3.1 Theorem 3.4 of
Song and Chen [11] hold in a reflexive Banach space which has a weakly continuous duality mapping Jϕ

with gauge function ϕ.
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Abstract: In this paper, we are concerned with the ψ-fractional integrals, which is a generalization
of the well-known Riemann–Liouville fractional integrals and the Hadamard fractional integrals,
and are useful in the study of various fractional integral equations, fractional differential equations,
and fractional integrodifferential equations. Our main goal is to present some new properties for
ψ-fractional integrals involving a general function ψ by establishing several new equalities for the
ψ-fractional integrals. We also give two applications of our new equalities.

Keywords: fractional calculus; ψ-fractional integrals; fractional differential equations

1. Introduction

Fractional integrals and fractional derivatives are generalizations of classical integer-order
integrals and integer-order derivatives, respectively, which have been found to be more adequate in
the study of a lot of real world problems. In recent decades, various fractional-order models have been
used in plasma physics, automatic control, robotics, and many other branches of science (cf., [1–24]
and the references therein).

It is known that the ψ-fractional derivative operator, which was introduced in [22], extends the
well-known Riemann–Liouville fractional derivative operator. Moreover, it is also easy to see that
the ψ-fractional integral operator [14] extends the well-known Riemann–Liouville fractional integral
operator and the Hadamard fractional integral operator (see Remark 1 below). Both the ψ-fractional
derivative operator and the ψ-fractional integral operator are useful in the study of various fractional
integral equations, fractional differential equations, and fractional integrodifferential equations.

The following known definitions about fractional integrals are used later.

Definition 1. [14] Let [t1, t2] ∈ R and α > 0. The Riemann–Liouville fractional integrals (left-sided and
right-sided) of order α are defined by

J α
t1+

f (μ) :=
1

Γ(α)

∫ μ

t1

f (s)
(μ− s)1−α

ds, μ > t1

and

J α
t2− f (μ) :=

1
Γ(α)

∫ t2

μ

f (s)
(s− μ)1−α

ds, μ < t2,

respectively, where

Γ(t) =
∫ ∞

0
st−1e−sds,

is the Euler’s gamma function.
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Definition 2. [23] Let [t1, t2] ∈ R and α > 0. The Hadamard fractional integrals (left-sided and right-sided)
of order α are defined by

Hα
t1+

f (μ) :=
1

Γ(α)

∫ μ

t1

(
ln

μ

s

)α−1 f (s)
s

ds, μ > t1

and

Hα
t2− f (μ) :=

1
Γ(α)

∫ t2

μ

(
ln

s
μ

)α−1 f (s)
s

ds, μ < t2,

respectively.

Definition 3. [14] Let [t1, t2] ∈ R and α > 0. Suppose that ψ(μ) > 0 is an increasing function on (t1, t2], and
ψ
′
(μ) is continuous on (t1, t2). The ψ-fractional integrals (left-sided and right-sided) of order α are defined by

Iα;ψ
t1+

f (μ) =
1

Γ(α)

∫ μ

t1

ψ
′
(s)(ψ(μ)− ψ(s))α−1 f (s)ds, μ > t1 (1)

and

Iα;ψ
t2− f (μ) =

1
Γ(α)

∫ t2

μ
ψ
′
(s)(ψ(s)− ψ(μ))α−1 f (s)ds, μ < t2, (2)

respectively.

Remark 1.

(i) From [14], we know that, for a function f , the right-sided and left-sided Riemann–Liouville fractional integral
of order α are defined by

J α
a+ f (x) :=

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt, x > a

and

J α
b− f (x) :=

1
Γ(α)

∫ b

x

f (t)
(t− x)1−α

dt, x < b,

respectively. If we take ψ(x) = x, then it follows from (1) that

Iα;x
a+ f (x) =

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt = J α

a+ f (x),

which is the right-sided Riemann–Liouville fractional integral.
(ii) From [23], we know that, for a function f , the right-sided and left-sided Hadamard fractional integral of

order α are defined by

Hα
a+ f (x) :=

1
Γ(α)

∫ x

a

(
ln

x
t

)α−1 f (t)
t

dt, x > a

and

Hα
b− f (x) :=

1
Γ(α)

∫ b

x

(
ln

t
x

)α−1 f (t)
t

dt, x < b,

respectively. Hence, taking ψ(x) = lnx in (1), we have

Iα;lnx
a+ f (x) =

1
Γ(α)

∫ x

a

1
t
(lnx− lnt)α−1 f (t)dt

=
1

Γ(α)

∫ x

a

(
ln

x
t

)α−1
f (t)

dt
t

= Hα
a+ f (x),

which is the right-sided Hadamard fractional integral.
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Throughout this paper, we suppose that ψ(μ) is a strictly increasing function on (0, ∞) and ψ
′
(μ)

is continuous, 0 ≤ t1 < t2. ζ(μ) is the inverse function of ψ(μ) and

φ(μ) := f (μ) + f (t1 + t2 − μ).

The rest of the paper is organized as follows. In Section 2, we give some new equalities for
ψ-fractional integrals involving a general function ψ. To illustrate the applicability of our new equalities,
we give two examples in Section 3 by introducing the ψ-means and presenting relationships between
the arithmetic mean and the ψ-means, and by establishing a prior estimate for a class of fractional
differential equations in view of the equalities established in Section 2.

2. Equalities for ψ-Fractional Integrals

Theorem 1. Let the function f : [t1, t2] → R be differentiable. Then, for the ψ-fractional integrals in (1)
and (2), we have

f (t1) + f (t2)

2
− Γ(α + 1)

2(ψ(t2)− ψ(t1))α
[Iα;ψ

t1+
f (t2) + Iα;ψ

t2− f (t1)]

=
ψ(t2)− ψ(t1)

2

∫ 1

0
[(1− μ)α − μα] f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))

·ζ ′((1− μ)ψ(t2) + μψ(t1))dμ. (3)

Proof. Write

I =
∫ 1

0
[(1− μ)α − μα] f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

= I1 + I2, (4)

where

I1 =
∫ 1

0
(1− μ)α f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ,

I2 = −
∫ 1

0
μα f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ.

Then, for I1, we have

I1 =
∫ 1

0
(1− μ)α f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

= (1− μ)α f (ζ(μψ(t1) + (1− μ)ψ(t2)))

ψ(t1)− ψ(t2)

∣∣∣∣∣
1

0

− α

ψ(t2)− ψ(t1)

∫ 1

0
(1− μ)α−1 f (ζ(μψ(t1) + (1− μ)ψ(t2)))dμ

=
f (t2)

ψ(t2)− ψ(t1)
− α

(ψ(t2)− ψ(t1))α+1

∫ t2

t1

(ψ(μ)− ψ(t1))
α−1 f (μ)ψ

′
(μ)dμ

=
f (t2)

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 Iα;ψ
t2− f (t1). (5)
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For I2, we obtain

I2 = −
∫ 1

0
μα f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

= μα f (ζ(μψ(t1) + (1− μ)ψ(t2)))

ψ(t2)− ψ(t1)

∣∣∣∣∣
1

0

− α

ψ(t2)− ψ(t1)

∫ 1

0
μα−1 f (ζ(μψ(t1) + (1− μ)ψ(t2)))dμ

=
f (t1)

ψ(t2)− ψ(t1)
− α

(ψ(t2)− ψ(t1))α+1

∫ t2

t1

(ψ(t2)− ψ(μ))α−1 f (μ)ψ
′
(μ)dμ

=
f (t1)

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 Iα;ψ
t1+

f (t2). (6)

Thus, by (4)–(6), we get

I =
f (t1) + f (t2)

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 [I
α;ψ
t1+

f (t2) + Iα;ψ
t2− f (t1)]. (7)

This implies that equality (3) is true.

Based on Theorem 1, we can obtain the following Theorems 2 and 3.

Theorem 2. If the function f : [t1, t2]→ R is differentiable, then for the ψ-fractional integrals in (1) and (2),
we have

Γ(α + 1)
2(ψ(t2)− ψ(t1))α

[Iα;ψ
t1+

f (t2) + Iα;ψ
t2− f (t1)]− f

(
t1 + t2

2

)

=
t2 − t1

2

∫ 1

0
g(μ) f

′
(μt1 + (1− μ)t2)dμ

−ψ(t2)− ψ(t1)

2

∫ 1

0
[(1− μ)α − μα] f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))

·ζ ′((1− μ)ψ(t2) + μψ(t1))dμ, (8)

where

g(μ) =

{
1, μ ∈ [0, 1

2 ),
−1, μ ∈ [ 1

2 , 1].

Proof. Notice that

t2 − t1

2

∫ 1

0
g(μ) f

′
(μt1 + (1− μ)t2)dμ

=
t2 − t1

2

∫ 1
2

0
f
′
(μt1 + (1− μ)t2)dμ− t2 − t1

2

∫ 1

1
2

f
′
(μt1 + (1− μ)t2)dμ

= −1
2

f (μt1 + (1− μ)t2)
∣∣∣ 1

2

0
+

1
2

f (μt1 + (1− μ)t2)
∣∣∣1

1
2

=
f (t1) + f (t2)

2
− f

(
t1 + t2

2

)
. (9)

Combining (3) from Theorem 1 and (9), we get (8).
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Theorem 3. Let the function f : [t1, t2]→ R be differentiable. Then,

Γ(α + 1)
2(ψ(t2)− ψ(t1))α

[Iα;ψ
t1+

f (t2) + Iα;ψ
t2− f (t1)]− f

(
ζ
(ψ(t1) + ψ(t2)

2

))

=
ψ(t2)− ψ(t1)

2

∫ 1

0
g(μ) f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

−
∫ 1

0
[(1− μ)α − μα] f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t2))dμ, (10)

where

g(μ) =

{
1, μ ∈ [0, 1

2 ),
−1, μ ∈ [ 1

2 , 1].

Proof. Observe

ψ(t2)− ψ(t1)

2

∫ 1

0
g(μ) f

′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

=
ψ(t2)− ψ(t1)

2

∫ 1
2

0
f
′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

−ψ(t2)− ψ(t1)

2

∫ 1

1
2

f
′
(ζ((1− μ)ψ(t2) + μψ(t1)))ζ

′
((1− μ)ψ(t2) + μψ(t1))dμ

= −1
2

f (ζ(μψ(t1) + (1− μ)ψ(t2)))
∣∣∣ 1

2

0
+

1
2

f (ζ(μψ(t1) + (1− μ)ψ(t2)))
∣∣∣1

1
2

=
f (t1) + f (t2)

2
− f

(
ζ
(ψ(t1) + ψ(t2)

2

))
. (11)

Combining (11) of Theorem 1 and (3), we get the equality (10).

The following result involves a point μ between t1 and t2.

Theorem 4. If the function f : [t1, t2]→ R is differentiable, then we have

Γ(α + 1)[Iα;ψ
t− f (t1) + Iα;ψ

t+ f (t2)]− [ f (t1)(ψ(μ)− ψ(t1))
α + f (t2)(ψ(t2)− ψ(μ))α]

= (ψ(t2)− ψ(μ))α+1
∫ 1

0
(sα − 1) f

′
(ζ((1− s)ψ(t2) + sψ(μ)))ζ

′
((1− s)ψ(t2) + sψ(μ))ds

−(ψ(μ)− ψ(t1))
α+1

∫ 1

0
(sα − 1) f

′
(ζ((1− s)ψ(t1) + sψ(μ)))

·ζ ′((1− s)ψ(t1) + sψ(μ))ds, (12)

where μ ∈ (t1, t2).
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Proof. Observe ∫ 1

0
(sα − 1) f

′
(ζ((1− s)ψ(t2) + sψ(μ)))ζ

′
((1− s)ψ(t2) + sψ(μ))ds

=
1

ψ(μ)− ψ(t2)
(sα − 1) f (ζ(sψ(μ) + (1− s)ψ(t2)))

∣∣∣1
0

+
α

ψ(t2)− ψ(μ)

∫ 1

0
sα−1 f (ζ(sψ(μ) + (1− s)ψ(t2)))ds

= − f (t2)

ψ(t2)− ψ(μ)
+

α

(ψ(t2)− ψ(μ))α+1

∫ t2

t
(ψ(t2)− ψ(s))α−1 f (s)ψ

′
(s)ds

= − f (t2)

ψ(t2)− ψ(μ)
+

Γ(α + 1)
(ψ(t2)− ψ(μ))α+1 Iα;ψ

t+ f (t2), (13)

and ∫ 1

0
(sα − 1) f

′
(ζ((1− s)ψ(t1) + sψ(μ)))ζ

′
((1− s)ψ(t1) + sψ(μ))ds

=
1

ψ(μ)− ψ(t1)
(sα − 1) f (ζ(sψ(μ) + (1− s)ψ(t1)))

∣∣∣1
0

− α

ψ(μ)− ψ(t1)

∫ 1

0
sα−1 f (ζ(sψ(μ) + (1− s)ψ(t1)))ds

=
f (t1)

ψ(μ)− ψ(t1)
− α

(ψ(μ)− ψ(t1))α+1

∫ t

t1

(ψ(s)− ψ(t1)
α−1 f (s)ψ

′
(s)ds

=
f (t1)

ψ(μ)− ψ(t1)
− Γ(α + 1)

(ψ(μ)− ψ(t1))α+1 Iα;ψ
t− f (t1). (14)

Combining (13) and (14), we get the result (12).

Next, we will give two equalities involving function φ.

Theorem 5. Let the function f : [t1, t2]→ R be differentiable. If f ∈ L[t1, t2], then

φ(t1) + φ(t2)

2
− Γ(α + 1)

2(ψ(t2)− ψ(t1))α
[Iα;ψ

t1+
φ(t2) + Iα;ψ

t2−φ(t1)]

=
t2 − t1

2(ψ(t2)− ψ(t1))α

∫ 1

0
g(s)φ

′
((1− s)t1 + t2s)ds, (15)

where
g(μ) = (ψ((1− μ)t1 + t2μ)− ψ(t1))

α − (ψ(t2)− ψ((1− μ)t1 + t2μ))α.

Proof. Write

I =
∫ 1

0
g(s)φ

′
((1− s)t1 + t2s)ds

=
∫ 1

0
(ψ((1− s)t1 + t2s)− ψ(t1))

αφ
′
((1− s)t1 + t2s)ds

−
∫ 1

0
(ψ(t2)− ψ((1− s)t1 + t2s))αφ

′
((1− s)t1 + t2s)ds

= I1 + I2.
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Then, for I1, we have

I1 =
∫ 1

0
(ψ((1− s)t1 + t2s)− ψ(t1))

αφ
′
((1− s)t1 + t2s)ds

=
1

t2 − t1

∫ t2

t1

(ψ(s)− ψ(t1))
αdφ(s)

=
(ψ(s)− ψ(t1))

αφ(s)
t2 − t1

∣∣∣∣∣
t2

t1

− α

t2 − t1

∫ t2

t1

ψ
′
(s)

(ψ(s)− ψ(t1))1−α
φ(s)ds

=
(ψ(t2)− ψ(t1))

α

t2 − t1
φ(t2)−

Γ(α + 1)
t2 − t1

Iα;ψ
t2−φ(t1). (16)

For I2, we obtain

I2 = −
∫ 1

0
(ψ(t2)− ψ((1− s)t1 + t2s))αφ

′
((1− s)t1 + t2s)ds

= − 1
t2 − t1

∫ t2

t1

(ψ(t2)− ψ(s))αdφ(s)

= − (ψ(t2)− ψ(s))αφ(s)
t2 − t1

∣∣∣∣∣
t2

t1

− α

t2 − t1

∫ t2

t1

ψ
′
(s)

(ψ(t2)− ψ(s))1−α
φ(s)ds

=
(ψ(t2)− ψ(t1))

α

t2 − t1
φ(t1)−

Γ(α + 1)
t2 − t1

Iα;ψ
t1+

φ(t2). (17)

By adding (16) and (17), we get

I =
(ψ(t2)− ψ(t1))

α

t2 − t1
[φ(t1) + φ(t2)]−

Γ(α + 1)
t2 − t1

[Iα;ψ
t2−φ(t1) + Iα;ψ

t1+
φ(t2)].

This implies that the equality (15) is true.

Theorem 6. Let f : [t1, t2]→ R be a differentiable function and f
′ ∈ L[t1, t2]. If h : [t1, t2]→ R is integrable,

then

φ(t1) + φ(t2)

2
[Iα;ψ

t1+
h(t2) + Iα;ψ

t2−h(t1)]− [Iα;ψ
t1+

(hφ)(t2) + Iα;ψ
t2−(hφ)(t1)]

=
1

2Γ(α)

∫ t2

t1

[ ∫ t

t1

p(s)h(s)ds−
∫ t2

t
p(s)h(s)ds

]
φ
′
(μ)dμ, (18)

where

p(μ) =
ψ
′
(μ)

(ψ(t2)− ψ(μ))1−α
+

ψ
′
(μ)

(ψ(μ)− ψ(t1))1−α
.

Proof. Write

I =
∫ t2

t1

[ ∫ t

t1

p(s)h(s)ds−
∫ t2

t
p(s)h(s)ds

]
φ
′
(μ)dμ

=
∫ t2

t1

∫ t

t1

p(s)h(s)dsφ
′
(μ)dμ−

∫ t2

t1

∫ t2

t
p(s)h(s)dsφ

′
(μ)dμ

= I1 + I2.
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Then, for I1, we have

I1 =
∫ t2

t1

∫ t

t1

p(s)h(s)dsφ
′
(μ)dμ

=
∫ t

t1

p(s)h(s)dsφ(μ)
∣∣∣t2

t1
−

∫ t2

t1

p(μ)h(μ)φ(μ)dμ

=
∫ t2

t1

p(s)h(s)dsφ(t2)−
∫ t2

t1

p(μ)h(μ)φ(μ)dμ

= Γ(α)[Iα;ψ
t1+

h(t2) + Iα;ψ
t2−h(t1)]φ(t2)

−Γ(α)[Iα;ψ
t1+

(hφ)(t2) + Iα;ψ
t2−(hφ)(t1)]. (19)

For I2, we obtain

I2 = −
∫ t2

t1

∫ t2

t
p(s)h(s)dsφ

′
(μ)dμ

= −
∫ t2

t
p(s)h(s)dsφ(μ)

∣∣∣t2

t1
−

∫ t2

t1

p(μ)h(μ)φ(μ)dμ

=
∫ t2

t1

p(s)h(s)dsφ(t1)−
∫ t2

t1

p(μ)h(μ)φ(μ)dμ

= Γ(α)[Iα;ψ
t1+

h(t2) + Iα;ψ
t1−h(t1)]φ(t1)

−Γ(α)[Iα;ψ
t1+

(hφ)(t2) + Iα;ψ
t2−(hφ)(t1)]. (20)

Combining (19) and (20), we get

I = Γ(α)[Iα;ψ
t1+

h(t2) + Iα;ψ
t2−h(t1)](φ(t1) + φ(t2))− 2Γ(α)[Iα;ψ

t1+
(hφ)(t2) + Iα;ψ

t2−(hφ)(t1)].

This implies the equality (18).

For the last result of this section, we suppose that ψ(0) = 0 and ψ(1) = 1.

Theorem 7. Let the function f : [ψ(t1), ψ(t2)]→ R be differentiable. Then, the following equality holds:

f (ψ(t1)) + f (ψ(t2))

2
− Γ(α + 1)

2(ψ(t2)− ψ(t1))α
[Iα;ψ

t1+
f ◦ ψ(t2) + Iα;ψ

t2− f ◦ ψ(t1)]

=
ψ(t2)− ψ(t1)

2

∫ 1

0
[(1− ψ(μ))α − ψα(μ)]ψ

′
(μ)

· f ′((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ, (21)

where f ◦ ψ(μ) = f (ψ(μ)).

Proof. Write

I =
∫ 1

0
[(1− ψ(μ))α − ψα(μ)]ψ

′
(μ) f

′
((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

=
∫ 1

0
(1− ψ(μ))αψ

′
(μ) f

′
((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

−
∫ 1

0
ψα(μ)ψ

′
(μ) f

′
((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

= I1 + I2.
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Then, for I1, we get

I1 =
∫ 1

0
(1− ψ(μ))αψ

′
(μ) f

′
((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

=
(1− ψ(μ))α

ψ(t1)− ψ(t2)
f ((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))

∣∣∣1
0

+
∫ 1

0

α(1− ψ(μ))α−1ψ
′
(μ)

ψ(t1)− ψ(t2)
f ((1− ψ(t)y)ψ(t2) + ψ(μ)ψ(t1))dμ

=
f (ψ(t2))

ψ(t2)− ψ(t1)
− α

ψ(t2)− ψ(t1)

∫ t2

t1

( ψ(μ)− ψ(t1)

ψ(t2)− ψ(t1)

)α−1 ψ
′
(t)y

ψ(t2)− ψ(t1)
f (ψ(μ))dμ

=
f (ψ(t2))

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 Iα;ψ
t2− f ◦ ψ(t1). (22)

For I2, we have

I2 = −
∫ 1

0
ψα(μ)ψ

′
(μ) f

′
((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

=
ψα(μ)

ψ(t2)− ψ(t1)
f ((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))

∣∣∣1
0

−
∫ 1

0

αψα−1(μ)ψ
′
(μ)

ψ(t2)− ψ(t1)
f ((1− ψ(μ))ψ(t2) + ψ(μ)ψ(t1))dμ

=
f (ψ(t1))

ψ(t2)− ψ(t1)
− α

ψ(t2)− ψ(t1)

∫ t2

t1

( ψ(t2)− ψ(μ)

ψ(t2)− ψ(t1)

)α−1 ψ
′
(μ)

ψ(t2)− ψ(t1)
f (ψ(μ))dμ

=
f (ψ(t1))

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 Iα;ψ
t1+

f ◦ ψ(t2). (23)

By (22) and (23), we see that

I =
f (ψ(t1)) + f (ψ(t2))

ψ(t2)− ψ(t1)
− Γ(α + 1)

(ψ(t2)− ψ(t1))α+1 [I
α;ψ
t1+

f ◦ ψ(t2) + Iα;ψ
t2− f ◦ ψ(t1)],

which means that equality (21) is true.

3. Applications

To illustrate the applicability of the new equalities established in previous section, we give two
examples in this section.

Example 1. The arithmetic mean A is defined by

A(t1, t2) :=
t1 + t2

2
, t1, t2 > 0.

Now, we introduce the following ψ-means Mψ and Mψ,n:

Mψ(t1, t2) :=

∫ t2
t1

μψ
′
(μ)dμ

ψ(t2)− ψ(t1)
, t1 �= t2, (24)

and

Mψ,n(t1, t2) :=
ψn+1(t2)− ψn+1(t1)

(n + 1)(ψ(t2)− ψ(t1))
, t1 �= t2, n ∈ N.
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As we can see from (24) that the ψ-mean Mψ(t1, t2) is just the following logarithmic mean [25] when
ψ(μ) = ln μ:

L(t1, t2) :=
t2 − t1

ln t2 − ln t1
, t1 �= t2.

Moreover, we see that, when ψ(μ) = μ, the ψ-mean Mψ(t1, t2) is just the arithmetic mean A(t1, t2).
The following two results, which are deduced by virtue of our new equalities in the last section, show new

relationships between the arithmetic mean A and the two ψ-means above.

Theorem 8. Let 0 < t1 < t2. Then,

|A(t1, t2)− Mψ(t1, t2)| ≤
ψ(t2)− ψ(t1)

2(q + 1)1/q

(∫ 1

0
[ζ
′
(μψ(t1) + (1− μ)ψ(t2))]

q
′
dμ

)1/q
′

,

where q > 1 and 1
q +

1
q′

= 1.

Proof. Taking α = 1 and f (μ) = μ in Theorem 1 and using the Hölder inequality, we obtain

|A(t1, t2)− Mψ(t1, t2)|

≤ ψ(t2)− ψ(t1)

2

∫ 1

0
|1− 2μ|ζ ′(μψ(t1) + (1− μ)ψ(t2))dμ

≤ ψ(t2)− ψ(t1)

2

(∫ 1

0
|1− 2μ|qdμ

)1/q(∫ 1

0
[ζ
′
(μψ(t1) + (1− μ)ψ(t2))]

q
′
dμ

)1/q
′

.

Noticing that (∫ 1

0
|1− 2μ|qdμ

)1/q

=
1

(q + 1)1/q ,

we get the desired result.

Theorem 9. Let 0 < t1 < t2, ψ(0) = 0 and ψ(1) = 1. Then,

|A(ψn(t1), ψn(t2))− Mψ,n(t1, t2)|

≤ n(ψ(t2)− ψ(t1))
1−1/q

′

2(q + 1)1/q(q′(n− 1) + 1)1/q′

(
ψq

′
(n−1)+1(t2)− ψq

′
(n−1)+1(t1)

)1/q
′

,

where q > 1 and 1
q +

1
q′

= 1.

Proof. Taking α = 1 and f (μ) = μn in Theorem 7 and using the Hölder inequality, we obtain

|A(ψn(t1), ψn(t2))− Mψ,n(t1, t2)|

≤ n(ψ(t2)− ψ(t1))

2

∫ 1

0
|1− 2ψ(μ)|ψ′

(μ)(ψ(μ)ψ(t1) + (1− ψ(μ))ψ(t2))
n−1dμ

≤ n(ψ(t2)− ψ(t1))

2

(∫ 1

0
|1− 2ψ(μ)|qψ

′
(μ)dμ

)1/q

·
(∫ 1

0
[ψ(μ)ψ(t1) + (1− ψ(μ))ψ(t2)]

q
′
(n−1)ψ

′
(μ)dμ

)1/q
′

.
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Observing that

(∫ 1

0
[ψ(μ)ψ(t1) + (1− ψ(μ))ψ(t2)]

q
′
(n−1)ψ

′
(μ)dμ

)1/q
′

=

(
ψq

′
(n−1)+1(t2)− ψq

′
(n−1)+1(t1)

)1/q
′

(q′(n− 1) + 1)1/q′ (ψ(t2)− ψ(t1))1/q′
,

we get the desired result.

Example 2. Consider the following fractional integrodifferential equations of Sobolev type with nonlocal
conditions in R: ⎧⎨⎩ cDψ;αu(t) = f

(
t, u(t),

∫ t

a
ρ(t, s)h(t, s, u(s))ds

)
, t ∈ J := [a, T],

u(a) = ua − g(u),
(25)

where cDψ;α, α ∈ (0, 1), is the ψ-Caputo fractional derivative of order α with the lower limit a > 0, ua ∈ R and
g : C(J,R)→ R, f : J×R×R→ R, ρ : Δ → R and h : Δ×R→ R (Δ = {(t, s) ∈ [a, T]× [a, T] : t ≥ s})
are given functions.

Applying the operator Iα;ψ
a+ to the first equation of the problem (25), we get for each t ∈ (a, T],

u(t) = u(a) +
1

Γ(α)

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 f

(
s, u(s),

∫ s

a
ρ(s, τ)h(s, τ, u(τ))dτ

)
ds

= ua − g(u) +
1

Γ(α)

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1

f
(

s, u(s),
∫ s

a
ρ(s, τ)h(s, τ, u(τ))dτ

)
ds. (26)

Substituting (26) into (3) of Theorem 1 with f = u, t1 = a and t2 = t, we can obtain

ua − g(u) +
1

2Γ(α)

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1 f

(
s, u(s),

∫ s

a
ρ(s, τ)h(s, τ, u(τ))dτ

)
ds

− α

2(ψ(t)− ψ(a))α

[ ∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1u(s)ds +

∫ t

a
ψ
′
(s)(ψ(s)− ψ(a))α−1u(s)ds

]

=
ψ(t)− ψ(a)

2

∫ 1

0
[(1− s)α − sα]ζ

′
(sψ(a) + (1− s)ψ(t))u

′
(ζ(sψ(a) + (1− s)ψ(t)))ds.

Therefore, we have

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1u(s)ds +

∫ t

a
ψ
′
(s)(ψ(s)− ψ(a))α−1u(s)ds

=
2(ψ(t)− ψ(a))α

α
(ua − g(u)) +

(ψ(t)− ψ(a))α

Γ(α + 1)

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1

f
(

s, u(s),
∫ s

a
ρ(s, τ)h(s, τ, u(τ))dτ

)
ds− (ψ(t)− ψ(a))α+1

α

∫ 1

0
[(1− s)α − sα]

ζ
′
(sψ(a) + (1− s)ψ(t))u

′
(ζ(sψ(a) + (1− s)ψ(t)))ds. (27)

Using the fact that |aα − bα| ≤ |a− b|α (a, b > 0; 0 < α < 1) and Hölder inequality to (27), we obtain
the following result.
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Theorem 10. For each solution u(t) ∈ C1[a, T] of the problem (25), if |u′(t)| ≤ M, then we have the following
prior estimate:∣∣∣∣∣

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1u(s)ds +

∫ t

a
ψ
′
(s)(ψ(s)− ψ(a))α−1u(s)ds

∣∣∣∣∣
≤ 2(ψ(t)− ψ(a))α

α
|ua − g(u)|

+
(ψ(t)− ψ(a))α

Γ(α + 1)

∫ t

a
ψ
′
(s)(ψ(t)− ψ(s))α−1

∣∣∣∣∣ f
(

s, u(s),
∫ s

a
ρ(s, τ)h(s, τ, u(τ))dτ

) ∣∣∣∣∣ds

+
M(ψ(t)− ψ(a))α+1

q1/qα1+1/q

(∫ 1

0
[ζ
′
(sψ(a) + (1− s)ψ(t))]q

′
ds

)1/q
′

, ∀t ∈ [a, T],

where q > 1 and 1
q +

1
q′

= 1.

4. Conclusions

In this paper, we present new properties for ψ-fractional integrals involving a general function
ψ by establishing several new equalities for the ψ-fractional integrals. The ψ-fractional integrals are
generalizations of Riemann–Liouville fractional integrals and Hadamard fractional integrals, and our
equalities are more general and new. To illustrate the applicability of our new equalities, we introduce
the ψ-means and explore the relationships between the arithmetic mean and the ψ-means with the aid
of our equalities. Moreover, we use our equalities to obtain an prior estimate for a class of fractional
differential equations. How to study the properties of solutions to fractional equations involving
ψ-Caputo fractional derivative? How to reveal other new properties about ψ-fractional integrals?
How to find more applications of these properties? We will pay our attention to these problems in our
future research.
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point theorems that were formulated by linear and nonlinear contractions.

Keywords: contraction; hybrid contractions; volterra fractional integral equations; fixed point

JEL Classification: 47H10; 54H25; 46J10

1. Introduction and Preliminaries

In the last few decades, one of the most attractive research topics in nonlinear functional analysis is
to solve fractional differential and fractional integral equations that can be reduced properly to standard
differential equations and integral equations, respectively. In this paper, we aim to get a proper solution
for Volterra type fractional integral equations by using a hybrid type contraction. For this purpose, we
first initialize the new hybrid type contractions that combine linear and nonlinear inequalities.

We first recall the auxiliary functions that we shall use effectively: Let Ψ be the set of all
nondecreasing functions Λ : [0, ∞)→ [0, ∞) in a way that

(ΛΣ) there are k0 ∈ N and δ ∈ (0, 1) and a convergent series ∑∞
i=1 vi such that vi ≥ 0 and

Λi+1 (t) ≤ δΛk (t) + vi, (1)

for i ≥ i0 and t ≥ 0.

Each Λ ∈ Φ is called a (c)-comparison function (see [1,2]).
The following lemma demonstrate the usability and power of such auxiliary functions:

Lemma 1 ([2]). If Λ ∈ Φ, then

(i) The series ∑∞
k=1 Λk (σ) is convergent for σ ≥ 0.

(ii) (Λn (σ))n∈N converges to 0 as n → ∞ for σ ≥ 0;
(iii) Λ is continuous at 0;
(iv) Λ (σ) < σ, for any σ ∈ (0, ∞).

All the way through the paper, a pair (X, d) presents a complete metric space if it is not mentioned
otherwise. In addition, the letter T presents a self-mapping on (X, d).

Mathematics 2019, 7, 694; doi:10.3390/math7080694 www.mdpi.com/journal/mathematics63
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In what follows, we shall state the definition of a new hybrid contraction:

Definition 1. A mapping T : (X, d) → (X, d) is called a hybrid contraction of type A, if there is Λ in Φ
so that

d(TΩ, Tω) ≤ Λ
(
Ap

T(Ω, ω)
)

, (2)

where p ≥ 0 and σi ≥ 0, i = 1, 2, 3, 4, such that
4

∑
i=1

σi = 1 and

Ap
T(Ω, ω) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[σ1(d(Ω, ω))p + σ2(d(Ω, TΩ))p + σ3(d(ω, Tω))p + σ4

(
d(ω,TΩ)+d(Ω,Tω)

2

)p
]1/p,

for p > 0, Ω, ω ∈ X

(d(Ω, ω))σ1(d(Ω, TΩ))σ2(d(ω, Tω))σ3 ,
for p = 0, Ω, ω ∈ X\�T(X),

(3)

where �T(X) = {� ∈ X : T� = �}.

Leu us underline some particular cases from Definition 1.

1. For p = 1, σ4 = 0 and μi = κσi, for i = 1, 2, 3, we get a contraction of Reich-Rus-Ćirić type:

d(TΩ, Tω) ≤ μ1d(Ω, ω) + μ2d(Ω, TΩ) + μ3d(ω, Tω),

for Ω, ω ∈ X, where κ ∈ [0, 1) , see [2–4].

2. In the statement above, for μi =
1
3 , we find particular form Reich–Rus–Ćirić type contraction,

d(TΩ, Tω) ≤ 1
3
[d(Ω, ω) + d(Ω, TΩ) + d(ω, Tω)] ,

for Ω, ω ∈ X.
3. If p = 2, and σ1 = σ2 = σ3 = 1

3 , σ4 = 0, we find the following condition,

d(TΩ, Tω) ≤ κ√
3
[d2(Ω, ω) + d2(Ω, TΩ) + d2(ω, Tω)]1/2

for all Ω, ω ∈ X, where κ ∈ [0, 1).

4. If p = 1 and σ2 = σ3 = 1
2 , σ1 = σ4 = 0, we have a Kannan type contraction,

d(TΩ, Tω) ≤ κ

2
[d(Ω, TΩ) + d(ω, Tω)],

for all Ω, ω ∈ X, see [5].

5. If p = 2 and σ2 = σ3 = 1
2 , σ1 = σ4 = 0, we have

d(TΩ, Tω) ≤ κ√
2
[d2(Ω, TΩ) + d2(ω, Tω)]1/2

for all Ω, ω ∈ X.
6. If p = 0 and σ1 = 0, σ2 = δ, σ3 = 1 − δ, σ4 = 0, we get an interpolative contraction of

Kannan type:
d(TΩ, Tω) ≤ κ(d(Ω, TΩ))δ(d(ω, Tω))1−δ,
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for all Ω, ω ∈ X\�T(X), where κ ∈ [0, 1), see [6].

7. If p = 0 and σ1 = α, σ2 = β, σ3 = 1− β− α, σ4 = 0 with α, β ∈ (0, 1), then

d(TΩ, Tω) ≤ κ(d(Ω, ω))α(d(Ω, TΩ))β(d(ω, Tω))1−β−α,

for all Ω, ω ∈ X\�T(X). It is an interpolative contraction of Reich–Rus–Ćirić type [7] (for other
related interpolate contraction type mappings, see [8–11]).

In this paper, we provide some fixed point results involving the hybrid contraction (18). At the
end, we give a concrete example and we resolve a Volterra fractional type integral equation.

2. Main Results

Our essential result is

Theorem 1. Suppose that a self-mapping T on (X, d) is a hybrid contraction of type A. Then, T possesses a
fixed point ρ and, for any ς0 ∈ X, the sequence {Tnς0} converges to ρ if either

(C1) T is continuous at ρ;

(C2) or, [σ1/p
2 + σ4

2
1/p

] < 1;

(C2) or, [σ1/p
3 + σ4

2
1/p

] < 1.

Proof. We shall use the standard Picard algorithm to prove the claims in the theorem. Let {ςn} be
defined by the recursive relation ςn+1 = Tςn, n ≥ 0, by taking an arbitrary point x ∈ X and renaming
it as x = ς0. Hereafter, we shall assume that

ςn �= ςn+1 ⇔ d(ςn, ςn+1) > 0 for all n ∈ N0.

Indeed, it is easy that the converse case is trivial and terminate the proof. More precisely, if there is n0

so that ςn0 = ςn0+1 = Tςn0 , then ςn0 turns to be a fixed point of T.
Now, we shall examine the cases p = 0 and p > 0, separately. We first consider the case p > 0.
On account of the given condition (18), we find

d(ςn+1, ςn) ≤ Λ
(
Ap

T(ςn, ςn−1)
)

, (4)

where
Ap

T(ςn, ςn−1) = [σ1(d(ςn, ςn−1))
p + σ2(d(ςn, ςn+1))

p + σ3(d(ςn−1, ςn))p

+σ4

(
d(ςn−1,ςn+1)+d(ςn ,ςn)

2

)p]1/p

= [σ1(d(ςn, ςn−1))
p + σ2(d(ςn, ςn+1))

p + σ3(d(ςn−1, ςn))p

+σ4
(

2 [d(ςn−1, ςn) + d(ςn, ςn+1)]
)p

]1/p
.

Suppose that d(ςn, ςn+1) ≥ d(ςn−1, ςn). With an elementary estimation in Label (4) from the right-hand
side and keeping ∑4

i=1 σi = 1 in mind, we find that

d(ςn+1, ςn) ≤ Λ

⎛⎝d(ςn+1, ςn)
p

√√√√ 4

∑
i=1

σi

⎞⎠ = Λ (d(ςn+1, ςn)) < d(ςn+1, ςn), (5)

a contradiction. Attendantly, we find that d(ςn, ςn+1) < d(ςn−1, ςn) and further

d(ςn+1, ςn) ≤ Λ (d(ςn−1, ςn)) < d(ςn−1, ςn). (6)
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Inductively, from the inequalities above, we deduce

d(ςn+1, ςn) ≤ Λn(d(ς1, ς0)), for all n ∈ N. (7)

From Label (7) and using the triangular inequality, for all k ≥ 1, we have

d(ςn, ςn+k) ≤ d(ςn, ςn+1) + . . . + d(ςn+k−1, ςn+k)

≤
n+k−1

∑
r=n

Λr(d(ς1, ς0))

≤
+∞

∑
r=n

Λr(d(ς1, ς0))→ 0 as n → ∞.

Thus, the constructive sequence {ςn} is Cauchy in (X, d). Taking the completeness of the metric space
(X, d) into account, we conclude the existence of ρ ∈ X such that

lim
n→∞

d(ςn, ρ) = 0. (8)

Now, we shall indicate that ρ is the requested fixed point of T under the given assumptions.
Suppose that (C1) holds, that is, T is continuous. Then,

ρ = lim
n→∞

ςn+1 = lim
n→∞

Tςn = T( lim
n→∞

ςn) = Tρ.

Now, we suppose that (C2) holds, that is, [σ1/p
2 + σ4

2
1/p

] < 1.

0 < d(Tρ, ρ) ≤ d(Tρ, ςn+1) + d(ςn+1, ρ) (9)

= d(Tρ, Tςn+1) + d(ςn+1, ρ)

≤ Λ
(
Ap

T(ρ, ςn)
)
+ d(ςn+1, ρ),

< Ap
T(ρ, ςn) + d(ςn+1, ρ),

where

Ap
T(ρ, ςn) =

[
σ1(d(ρ, ςn))p + σ2(d(ρ, Tρ))p + σ3(d(ςn, ςn+1))

p + σ4

(
d(ςn ,Tρ)+d(ρ,ςn+1)

2

)p]1/p
.

As n → ∞, we have
0 < d(Tρ, ρ) ≤ Δd(Tρ, ρ),

where Δ := [σ
1/p
2 + σ4

2
1/p

]. Since Δ := [σ
1/p
2 + σ4

2
1/p

] < 1, which is a contradiction, that is, Tρ = ρ.

We skip the details of the case (C3) since it is verbatim of the proof of the case (C2). Indeed, the
only the difference follows from the fact that Ap

T(ρ, ςn) �= Ap
T(ςn, ρ) since σ2 not need to be equal to σ3.

As a last step, we shall consider the case p = 0. Here, Label (18) and Label (3) become

d(TΩ, Tω) ≤ Λ
(
(d(Ω, ω))σ1(d(Ω, TΩ))σ2(d(ω, Tω))σ3 [

d(TΩ, ω) + d(Ω, Tω)

2
]1−σ1−σ2−σ3

)
(10)

for all Ω, ω ∈ X\�T(X), where κ ∈ [0, 1) and σ1, σ2, σ3 ∈ (0, 1). Set Ω = θn and ω = θn−1 in the
inequality (10), we find that
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d (θn+1, θn) = d (Tθn, Tθn−1) ≤ Λ
(
[d (θn, θn−1)]

σ1 [d (θn, Tθn)]
σ2 · [d (θn−1, Tθn−1)]

σ3

·
[

1
2 (d (θn, θn) + d (θn−1, θn+1))

]1−σ1−σ2−σ3
)

≤ Λ
(
[d (θn, θn−1)]

σ1 · [d (θn, θn+1)]
σ2 · [d (θn−1, θn)]

σ3

·
[

1
2 (d (θn−1, θn) + d (θn, θn+1))

]1−σ1−σ2−σ3
)

.

(11)

Suppose that d (θn−1, θn) < d (θn, θn+1) for some n ≥ 1. Thus,

1
2
(d (θn−1, θn) + d (θn, θn+1)) ≤ d (θn, θn+1) .

Consequently, inequality (11) yields that

[d (θn, θn+1)]
σ1+σ3 ≤ Λ

(
[d (θn−1, θn)]

σ1+σ3
)
< [d (θn−1, θn)]

σ1+σ3 . (12)

Thus, we conclude that d (θn−1, θn) ≥ d (θn, θn+1), which is a contradiction. Thus, we have

d (θn, θn+1) ≤ d (θn−1, θn) for all n ≥ 1.

Hence, {d (θn−1, θn)} is a non-increasing sequence with positive terms. On account of the simple
observation below,

1
2
(d (θn−1, θn) + d (θn, θn+1)) ≤ d (θn−1, θn) , for all n ≥ 1

together with an elementary elimination, the inequality (11) implies that

d (θn, θn+1) ≤ Λ(d (θn−1, θn)) < d (θn−1, θn) (13)

for all n ∈ N. Since the inequality (13) is equivalent to Label (6), by following the corresponding lines,
we derive that the iterated sequence {θn} is Cauchy and converges to θ∗ ∈ X that is, lim

n→∞
d (θn, θ∗) = 0.

Suppose that θ∗ �= Tθ∗. Since θn �= Tθn for each n ≥ 0, by letting x = θn and y = θ∗ in (18), we have

d (θn+1, Tθ∗) = d (Tθn, Tθ∗) ≤ Λ
(
[d (θn, θ∗)]σ1 · [d (θn, Tθn)]

σ2 · [d (θ∗, Tθ∗)]σ3

·
[

1
2
(d (θn+1, Tθ∗) + d (θ∗, Tθn+1))

]1−σ2−σ1−σ3
)

.
(14)

Letting n → ∞ in the inequality (14), we get d(θ∗, Tθ∗) = 0, which is a contradiction. That is,
Tθ∗ = θ∗.

Corollary 1. Let T be a self-mapping on (X, d). Suppose that there is κ ∈ [0, 1) such that

d(TΩ, Tω) ≤ κAp
T(Ω, ω), (15)

where p ≥ 0. Then, there is a fixed point ρ of T if either

(C1) T is continuous at such point ρ;

(C2) or, [σ1/p
2 + σ4

2
1/p

] < 1;

(C2) or, [σ1/p
3 + σ4

2
1/p

] < 1;
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Definition 2. A self-mapping T is called on (X, d) a hybrid contraction of type B, if there is Λ ∈ Φ such that

d(TΩ, Tω) ≤ Λ
(
W p

T(Ω, ω)
)

, (16)

where p ≥ 0, a = (σ1, σ2, σ3), σi ≥ 0, i = 1, 2, 3 such that σ1 + σ2 + σ3 = 1 and

W p
T(Ω, ω) =

{
[σ1(d(Ω, ω))p + σ2(d(Ω, TΩ))p + σ3(d(ω, Tω))p]1/p, p > 0, Ω, ω ∈ X,

(d(Ω, ω))σ1(d(Ω, TΩ))σ2(d(ω, Tω))σ3 , p = 0, Ω, ω ∈ X\�T(X).
(17)

Notice that a hybrid contraction of type A and a hybrid contraction of type B are also called a
weighted contraction of type A and type B, respectively.

As corollaries of Theorem 1, we also have the following.

Corollary 2. Let T be a self-mapping on (X, d). Suppose that either T is a hybrid contraction of type B, or
there is κ ∈ [0, 1) so that

d(TΩ, Tω) ≤ κW p
T(Ω, ω), (18)

where p ≥ 0. Then, there is a fixed point ρ of T if either

(i) T is continuous at such point ρ;
(ii) or, σ2 < 1;

(iii) or, σ3 < 1.

Corollary 3. Let T be a self-mapping on (X, d). Suppose that:

d(TΩ, Tω) ≤ κdσ1(Ω, ω) · dσ2(Ω, TΩ) · dσ3(ω, Tω), (19)

for all Ω, ω ∈ X\�T(X), where κ ∈ [0, 1) , σ1, σ2, σ3 ≥ 0 and σ1 + σ2 + σ3 = 1. Then, there is a fixed point ρ

of T.

Proof. Put in Corollary 2, p = 0 and a = (σ1, σ2, σ3).

Remark 1. Using Corollary 3, we get Theorem 2 in [7] (for metric spaces).

Corollary 4. Let T be a self-mapping on (X, d) such that

d(TΩ, Tω) ≤ κ 3
√

d(Ω, ω) · d(Ω, TΩ) · d(ω, Tω), (20)

for all Ω, ω ∈ X\�T(X), where κ ∈ [0, 1) . Then, there is a fixed point ρ of T.

Proof. Put in Corollary 2, p = 0 and a = ( 1
3 , 1

3 , 1
3 ).

Corollary 5. Let T be a self-mapping on (X, d) such that

d(TΩ, Tω) ≤ κ

3
[d(Ω, ω) + d(Ω, TΩ) + d(ω, Tω)], (21)

for all Ω, ω ∈ X, where κ ∈ [0, 1).
Then, there is a fixed point ρ of T.

(i) T is continuous at such point ρ ∈ X;
(ii) or, b < 3.

Proof. Put in Corollary 2, p = 1 and a = ( 1
3 , 1

3 , 1
3 ).
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Corollary 6. Let T be a self-mapping on (X, d) such that

d(TΩ, Tω) ≤ κ√
3
[d2(Ω, ω) + d2(Ω, TΩ) + d2(ω, Tω)]1/2, (22)

for all Ω, ω ∈ X, where κ ∈ [0, 1) , then T has a fixed point in X. The sequence {Tnς0} converges to ρ.

(i) T is continuous at such point ρ ∈ X;
(ii) or, b2 < 3.

Proof. Put in Corollary 2, p = 2 and a = ( 1
3 , 1

3 , 1
3 ).

Corollary 2 is illustrated by the following.

Example 1. Choose X = {τ1, τ2, τ3, τ4} ∪ [0, ∞) (where τ1, τ2, τ3 and τ4 are negative reals). Take

1. d(Ω, ω) = |Ω−ω| for (Ω, ω) ∈ [0, ∞)× [0, ∞);
2. d(Ω, ω) = 0 for (Ω, ω) ∈ {a, b, c, d} × [0, ∞) or (Ω, ω) ∈ [0, ∞)× {τ1, τ2, τ3, τ4};
3. for (Ω, ω) ∈ {τ1, τ2, τ3, τ4} × {τ1, τ2, τ3, τ4},

d(Ω, ω) τ1 τ2 τ3 τ4

τ1 0 1 2 4
τ2 1 0 1 3
τ3 2 1 0 2
τ4 4 3 2 0

Consider T :

(
τ1 τ2 τ3 τ4

τ3 τ4 τ3 τ4

)
and TΩ = Ω

8 for Ω ∈ [0, ∞).

For Ω ∈ [0, ∞), the main theorem is satisfied straightforwardly. Thus, we examine the case Ω ∈ {a, b, c, d}.
Note that there is no κ ∈ [0, 1) such that

d(Tτ1, Tτ2) ≤
κ

3
[d(τ1, τ2) + d(τ1, Tτ1) + d(τ2, Tτ2)] ,

namely, we have,
2 ≤ κ

3
[1 + 2 + 3] .

Thus, Corollary 5 is not applicable.
Using (20), we have

d(Tτ1, Tτ2) ≤ κ 3
√

d(τ1, τ2) · d(τ1, Tτ1) · d(τ2, Tτ2),

i.e., 2 ≤ κ 3
√

1 · 2 · 3, so κ ≥ 2
3√6
> 1. Hence, Corollary 4 is not applicable.

Corollary 6 is applicable. In fact, for Ω, ω ∈ X, we have for κ =
√

6
7 ,

d(TΩ, Tω) ≤ κ√
3
[d2(Ω, ω) + d2(Ω, TΩ) + d2(ω, Tω)]1/2.

Here, {0, τ3, τ4} is the set of fixed points of T.

3. Application on Volterra Fractional Integral Equations

The fractional Schrodinger equation (FSE) is known as the fundamental equation of the fractional
quantum mechanics. As compared to the standard Schrodinger equation, it contains the fractional
Laplacian operator instead of the usual one. This change brings profound differences in the behavior
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of wave function. Zhang et al. [12] investigated analytically and numerically the propagation of optical
beams in the FSE with a harmonic potential. In addition, Zhang et al. [13] suggested a real physical
system (the honeycomb lattice ) as a possible realization of the FSE system, through utilization of the
Dirac–Weyl equation, while Zhang et al. [14] investigated the dynamics of waves in the FSE with a
PT -symmetric potential. Still in fractional calculus, in this section, we study a nonlinear Volterra
fractional integral equation.

Set 0 < τ < 1 and J = [σ0, σ0 + a] in R (a > 0). Denote by X = C(J,R) the set of continuous
real-valued functions on J.

Now, particularly, we cosnider the following nonlinear Volterra fractional integral equation (in
short, VFIE)

ξ(t) = F (t) +
1

Γ(τ)

∫ t

σ0

(t− s)τ−1h(s, ξ(s))ds, (23)

for all t ∈ J, where Γ is the gamma function, F : J → R and h : J ×R→ R are continuous functions.
The VFIE (23) has been investigated in the literature on fractional calculus and its applications,
see [15–17].

In the following result, under some assumptions, we ensure the existence of a solution for the
VFIE (23).

Theorem 2. Suppose that

(H1) There are constants M > 0 and N > 0 such that

|h(t, u)− h(t, v)| ≤ M|u− v|
N + |u− v| (24)

for all u, v ∈ R;
(H2) Such M and N verify that

Ma
Γ(τ + 1)

≤ N. (25)

Then, the VFIE (23) has a solution in X.

Proof. For ξ, η ∈ X, consider the metric

d(ξ, η) = sup
t∈J

|ξ(t)− η(t)|.

Take the operator

Tξ(t) = F (t) +
1

Γ(τ)

∫ t

σ0

(t− s)τ−1h(s, ξ(s))ds, t ∈ J. (26)

Clearly, T is well defined. Let ξ, η ∈ X, then for each t ∈ J,

|Tξ(t)− Tη(t)| = 1
Γ(τ)

∫ t

σ0

(t− s)τ−1(h(s, ξ(s))− h(s, η(s)))ds

≤ 1
Γ(τ)

∫ t

σ0

(t− s)τ−1|h(s, ξ(s))− h(s, η(s))|ds

≤ Ma
Γ(τ + 1)

M|ξ(s)− η(s)|
N + |ξ(s)− η(s))‖

≤ Ma
Γ(τ + 1)

M‖ξ − η‖
N + ‖ξ − η)‖ .

70



Mathematics 2019, 7, 694

We deduce that

‖Tξ − Tη‖ ≤ Ma
Γ(τ + 1)

M‖ξ − η‖
N + ‖ξ − η)‖ = Λ(‖ξ − η)‖), (27)

where Λ(t) = La
Γ(τ+1)

Mt
N+t for t ≥ 0. By hypothesis (H2), Λ ∈ Φ. Then,

d(Tξ, Tη) ≤ Λ
(
F p

T (ξ, η)
)

, (28)

for p > 0, with σ2 = σ2 = σ4 = 0 and σ1 = 1. Applying Theorem 1, T has a fixed point in X, so the
VFIE (23) has a solution in X.

4. Conclusions

The obtained results unify several existing results in a single theorem. We list some of the
consequences, but it is clear that there are more consequences of our main results. Regarding the
length of the paper, we skip them.
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1. Introduction

In this paper, H denotes real Hilbert spaces with inner product 〈·, ·〉 and norm ‖ · ‖. We denote
the set of fixed points of an operator T by Fix(T), more precisely, Fix(T) := {x ∈ H : Tx = x}.

Recall that a mapping T : H → H is said to be an η-strict pseudo-contraction if ‖Tx − Ty‖2 −
η‖(I − T)x − (I − T)y‖2 ≤ ‖x − y‖2, ∀x, y ∈ H, where η ∈ [0, 1) is a real number. A mapping
T : H → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ H. It is evident that the class
of η-strict pseudo-contractions includes the class of nonexpansive mappings, as T is nonexpansive
if and only if T is 0-strict pseudo-contractive. Many classical mathematical problems can be casted
into the fixed-point problem of nonexpansive mappings, such as, inclusion problem, equilibrium
problem, variational inequality problem, saddle point problem, and split feasibility problem, see [1–3].
Approximating fixed points of nonexpansive mappings is an important field in many areas of pure
and applied mathematics. One of the most well-known algorithms for solving such a problem is the
Mann iterative algorithm [4]:

xn+1 = (1− θn)Txn + θnxn,

where θn is a sequence in (0, 1). One knows that the iterative sequence {xn} converges weakly to a
fixed point of T provided that ∑∞

n=0 θn(1− θn) = +∞. This algorithm is slow in terms of convergence
speed. Moreover, this algorithm converges is weak. To obtain more effective methods, many authors
have done a lot of works in this area, see [5–8]. A mapping f : H → H is called a contraction if
there exists a constant in [0, 1) such that ‖ f (x) − f (y)‖ ≤ τ‖x − y‖, ∀x, y ∈ H. One of celebrated
ways to study nonexpansive operators is to use a contractive operator, which is a convex combination
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of the previous contractive operator and the nonexpansive operator. The viscosity type method for
nonexpansive mappings is defined as follows,

xn+1 = (1− αn)Txn + αn f (xn), (1)

where αn is a sequence in (0, 1), T is the nonexpansive operator, and f is the contractive operator.
In this method, a special fixed point of the nonexpansive operator is obtained by regularizing the
nonexpansive operator via the contraction. This method was proposed by Attouch [9] in 1996 and
further promoted by Moudafi [10] in 2000. Motivated by Moudafi, Takahashi and Takahashi [11]
introduced a strong convergence theorem by the viscosity type approximation method for finding
the fixed point of nonexpansive mappings in Hilbert spaces. In 2019, Qin and Yao [12] introduced
a viscosity iterative method for solving a split feasibility problem. For viscosity approximation
methods, one refers to [13,14]. In practical applications, one not only studies different algorithms,
but also pursues the speed of these algorithms. To obtain faster convergence algorithms, many
scholars have given various acceleration techniques, see, e.g., [15–19]. One of the most commonly
used methods is the inertial method. In [20], Polyak introduced an inertial extrapolation based on the
heavy ball method for solving the smooth convex minimization problem. Shehu et al. [21] introduced a
Halpern-type algorithm with inertial terms for approximating fixed points of a nonexpansive mapping.
They obtained strong convergence in real Hilbert spaces under some assumptions on the sequence of
parameters. To get a more general inertial Mann algorithm for nonexpansive mappings, Dong et al. [22]
introduced a general inertial Mann algorithm which includes some classical algorithms as its special
cases; however, they only got the weak convergence results.

Inspired by the above works, we give two algorithms for solving fixed point problems of
nonexpansive mappings via viscosity and inertial techniques in this paper. One highlight is that
our algorithms, which are more consistent and efficient, are accelerated via the inertial technique
and the viscosity technique. In addition, the solution also uniquely solves a monotone variational
inequality. Another highlight is that we consider two different inertial parameter sequences comparing
with the existing results. We establish strong convergence results in infinite dimensional Hilbert spaces
without compactness. We also investigate the applications of the two proposed algorithms to variational
inequality problems and inclusion problems. Furthermore, we give some numerical experiments to
illustrate the convergence efficiency of our algorithms. The proposed numerical experiments show that
our algorithms are superior to some related algorithms.

In this paper, Section 2 is devoted to some required prior knowledge, which will be used in
this paper. In Section 3, based on viscosity type method, we propose an algorithm for solving
fixed point problems of nonexpansive mappings and give an algorithm for strict pseudo-contractive
mappings. In Section 4, some applications of our algorithms in real Hilbert spaces are given. Finally,
some numerical experiments of our algorithms and its comparisons with other algorithms in signal
processing are given in Section 5. Section 6, the last section, is the final conclusion.

2. Toolbox

In this section, we give some essential lemmas for our main convergence theorems.

Lemma 1 ([23]). Let {an} be a non-negative real sequence and {bn} a real sequence and {αn} a real sequence
in (0, 1) such that ∑∞

n=1 αn = ∞. Assume that an+1 ≤ αnbn + an(1− αn), ∀n ≥ 1. If, for every subsequence
{ank} of {an} satisfying lim infk→∞(ank+1 − ank ) ≥ 0, lim supk→∞ bnk ≤ 0 holds, then limn→∞ an = 0.

Lemma 2 ([24]). Suppose that T : H → H is a nonexpansive mapping. Let {xn} be a vector sequence in H
and let p be a vector in H. If xn ⇀ p and xn − Txn → 0. Then p ∈ Fix(T).

Lemma 3 ([14]). Let {σn} be a non-negative real sequence such that there exists a subsequence {σni} of
{σn} satisfying σni < σni+1 for all i ∈ N. Then, there exists a nondecreasing sequence {mk} of N such
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that limk→∞ mk = ∞ and the following properties are satisfied for all (sufficiently large) number k ∈ N:
σmk ≤ σmk+1 and σk ≤ σmk+1.

It is known that mk is the largest number in the set {1, 2, · · · , k} such that σmk < σmk+1.

Lemma 4 ([25]). Let {sn} be a sequence of non-negative real numbers such that sn+1 = (1− βn)sn + δn,
∀ ≥ 0, where {βn} is a sequence in (0, 1) with ∑∞

n=0 βn = ∞ and {δn} satisfies lim supn→∞
δn
βn
≤ 0 or

∑∞
n=0 |δn| < ∞. Then, limn→∞ sn = 0.

3. Main Results

In this section, we give two strong convergence theorems for approximating the fixed points of
nonexpansive mappings and strict pseudo-contractive mappings. First, we propose some assumptions
which will be used in our statements.

Condition 1. Suppose that {αn}, {βn} and {γn} are three real sequences in (0, 1) satisfying the following
conditions.

(1) ∑∞
n=1 αn = ∞ and limn→∞ αn = 0;

(2) limn→∞
θn
αn
‖xn − xn−1‖ = limn→∞

εn
αn
‖xn − xn−1‖ = 0;

(3) αn + βn + γn = 1 and lim infn→∞ γnβn > 0;

Remark 1. (1) If θn = εn = 0, i.e., xn = yn = zn, Algorithm 1 is the classical viscosity type algorithm
without the inertial technique.

(2) Algorithm 1 is a generalization of Shehu et al. [21]. If f (x) = u and θn = εn, i.e., yn = zn, then it becomes
the Shehu et al. Algorithm 1 with en = 0.

Algorithm 1 The viscosity type algorithm for nonexpansive mappings

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows:
Step 1. Compute {

yn = θn(xn − xn−1) + xn,
zn = εn(xn − xn−1) + xn.

(2)

Step 2. Compute

xn+1 = αn f (xn) + βnyn + γnTzn. (3)
Step 3. Set n ← n + 1 and go to Step 1.

Remark 2. The (2) of Condition 1 is well defined, as the inertial parameters θn and εn in (3) can be chosen such
that 0 ≤ θn ≤ θ∗n and 0 ≤ εn ≤ ε∗n, where

θ∗n =

⎧⎨⎩min
{

θ, δn
‖xn−xn−1‖

}
, xn �= xn−1,

θ, otherwise,
ε∗n =

⎧⎨⎩min
{

ε, δn
‖xn−xn−1‖

}
, xn �= xn−1,

ε, otherwise,
(4)

and {δn} is a positive sequence such that limn→∞
δn
αn

= 0. It is easy to verify that limn→∞ θn‖xn − xn−1‖ = 0

and limn→∞
θn

αn
‖xn − xn−1‖ = 0.

Theorem 1. Let T : H → H be a nonexpansive mapping with Fix(T) �= ∅ and let f : H → H be a contraction
with constant k ∈ [0, 1). Suppose that {xn} is any sequence generated by Algorithm 1 and Condition 1 holds.
Then, {xn} converges strongly to p = PFix(T) ◦ f (p).
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Proof. The proof is divided into three steps.
Step 1. One claims that {xn} is bounded.
Let p ∈ Fix(T). As yn = θn(xn − xn−1) + xn, one concludes

‖yn − p‖ ≤ θn‖xn − xn−1‖+ ‖xn − p‖. (5)

Similarly, one gets
‖zn − p‖ ≤ ‖xn − p‖+ εn‖xn − xn−1‖. (6)

From (3), one obtains

‖xn+1 − p‖ ≤ γn‖p− Tzn‖+ βn‖p− yn‖+ αn‖p− f (xn)‖
≤ γn‖p− zn‖+ βn‖p− yn‖+ αn‖ f (xn)− f (p) + f (p)− p‖
≤ (1− αn(1− k))‖xn − p‖

+ αn(1− k)(
‖ f (p)− p‖+ βn

θn
αn
‖xn − xn−1‖+ γn

εn
αn
‖xn − xn−1‖

1− k
).

(7)

In view of Condition 1 (2), one sees that supn≥1
θn
αn
‖xn − xn−1‖ and supn≥1

εn
αn
‖xn − xn−1‖ exist. Taking

M := 3 max
{
‖ f (p)− p‖, supn≥1

θn
αn
‖xn − xn−1‖, supn≥1

εn
αn
‖xn − xn−1‖

}
, one gets from (7) that

‖xn+1 − p‖ ≤ (1− αn(1− k))‖xn − p‖+ αn(1− k)M

≤ max{‖xn − p‖, M} ≤ · · · ≤ max{‖x1 − p‖, M}.

This implies that {xn} is bounded.
Step 2. One claims that if {xn} converges weakly to z ∈ H, then z ∈ Fix(T). Letting wn+1 =

αn f (wn) + βnwn + γnTwn, from (1), one arrives at

‖wn − yn‖ ≤ θn|‖xn − xn−1‖+ ‖wn − xn‖ (8)

and
‖wn − zn‖ ≤ εn|‖xn − xn−1‖+ ‖wn − xn‖. (9)

By the definition of wn+1, (8) and (9), one obtains

‖wn+1 − xn+1‖ ≤ αn‖ f (wn)− f (xn)‖+ βn‖wn − yn‖+ γn‖Twn − Tzn‖
≤ kαn‖wn − xn‖+ βn‖wn − yn‖+ γn‖wn − zn‖
≤ (1− αn(1− k))‖wn − xn‖+ (θn‖xn − xn−1‖+ εn‖xn − xn−1‖).

(10)

From Condition 1 and Lemma 4, one sees that (10) implies limn→∞ ‖wn+1 − xn+1‖ = 0. Therefore,
it follows from Step 1 that {wn} is bounded. By the definition of wn+1, one also obtains

‖wn+1 − p‖2 ≤ ‖αn( f (wn)− f (p)) + βn(yn − p) + γn(Tyn − p)‖2 + 2αn〈 f (p)− p, wn+1 − p〉
≤ αnk2‖wn − p‖2 + βn‖wn − p‖2 + γn‖Twn − p‖2 − βnγn‖wn − Twn‖2

+ 2αn〈 f (p)− p, wn+1 − p〉
= (1− αn(1− k2))‖wn − p‖2 + 2αn〈 f (p)− p, wn+1 − p〉 − βnγn‖wn − Twn‖2.

(11)

Taking sn = ‖wn − p‖2, one sees that (11) is equivalent to

sn+1 ≤ (1− αn(1− k2))sn − βnγn‖wn − Twn‖2 + 2αn〈 f (p)− p, wn+1 − p〉. (12)

Now, we show z ∈ Fix(T) by considering two possible cases on sequence {sn}.
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Case 1. Suppose that there exists a n0 ∈ N such that sn+1 ≤ sn for all n ≥ n0. This implies that
limn→∞ sn exists. From (12), one has

βnγn‖wn − Twn‖2 ≤ (1− αn(1− k2))sn + 2αn〈 f (p)− p, wn+1 − p〉 − sn+1. (13)

As {wn} is bounded, from Condition 1 and (13), one deduces that

lim
n→∞

βnγn‖wn − Twn‖2 = 0. (14)

As lim infn→∞ βnγn > 0, (14) implies that

lim
n→∞

‖wn − Twn‖2 = 0. (15)

As xn ⇀ z and limn→∞ ‖wn+1 − xn+1‖ = 0, one has wn ⇀ z. By using Lemma 2, one gets z ∈ Fix(T).
Case 2. There exists a subsequence {snj} of such {sn} that snj < snj+1 for all j ∈ N. In this case,

it follows from Lemma 3 that there is a nondecreasing subsequence {mk} of N such that limk→∞ mk →
∞ and the following inequalities hold for all k ∈ N:

smk ≤ smk+1 and sk ≤ smk+1. (16)

Using a similar argument as Case 1, it is easy to get that limk→∞ ‖Twmk − wmk‖ = 0. It is known that
xn ⇀ z, which implies xmk ⇀ z. Therefore, z ∈ Fix(T).

Step 3. One claims that {xn} converges strongly to p = PFix(T) ◦ f (p). From (11), we deduce that

‖wn+1 − p‖2 ≤ (1− αn(1− k2))‖wn − p‖2 + 2αn〈 f (p)− p, wn+1 − p〉. (17)

In the following, we show that the sequence {‖wn − p‖} converges strongly to zero. As {wn} is
bounded, in view of Condition 1 and Lemma 1, we only need to show that for each subsequence
{‖wnk − p‖} of {‖wn − p‖} such that lim infk→∞(‖wnk+1 − p‖ − ‖wnk − p‖) ≥ 0, lim supk→∞〈 f (p)−
p, wnk+1 − p〉 ≤ 0. For this purpose, one assumes that {‖wnk − p‖} is a subsequence of {‖wn − p‖}
such that lim infk→∞(‖wnk+1 − p‖ − ‖wnk − p‖) ≥ 0. This implies that

lim inf
k→∞

(‖wnk+1 − p‖2 − ‖wnk − p‖2) = lim inf
k→∞

((‖wnk+1 − p‖ − ‖wnk − p‖)

× (‖wnk+1 + p‖+ ‖wnk − p‖)) ≥ 0.
(18)

From the definition of wn, we obtain

‖wnk+1 − wnk‖ ≤ ‖αnk ( f (wnk )− wnk ) + γnk (Twnk − wnk )‖
≤ αnk‖ f (wnk )− wnk‖+ γnk‖Twnk − wnk‖
≤ αnk (k‖wnk − p‖+ ‖ f (p)− wnk‖) + γnk‖Twnk − wnk‖.

(19)

Using the argument of Case 1 and Case 2 in Step 2, there exists a subsequence of {wnk}, still denoted
by {wnk}, such that

lim
k→∞

‖Twnk − wnk‖ = 0. (20)

By the boundedness of {wn}, one deduces from Condition 1, (19), and (20) that

lim
n→∞

‖wnk+1 − wnk‖ = 0. (21)

As {wnk} is bounded, there exists a subsequence {wnkj
} of {wnk} converges weakly to some z ∈ H.

This implies that
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lim sup
k→∞

〈 f (p)− p, wnk − p〉 = lim sup
j→∞

〈 f (p)− p, wnkj
− p〉 = 〈 f (p)− p, z− p〉.

From Step 2, one gets z ∈ Fix(T). Since p = PFix(T) ◦ f (p), one arrives at

lim sup
k→∞

〈 f (p)− p, wnk − p〉 = 〈 f (p)− p, z− p〉 ≤ 0.

From (21), one obtains

lim sup
k→∞

〈 f (p)− p, wnk+1 − p〉 = lim sup
k→∞

〈 f (p)− p, wnk − p〉+ lim sup
k→∞

〈 f (p)− p, wnk+1 − wnk 〉

= 〈 f (p)− p, z− p〉 ≤ 0.
(22)

Therefore, one has ‖wn − p‖ → 0. Since limn→∞ ‖wn − xn‖ = 0, one gets ‖xn − p‖ → 0.

In the following, we give a strong convergent theorem for strict pseudo-contractions.

Theorem 2. Let T : H → H be a η-strict pseudo-contraction with Fix(T) �= ∅ and let f : H → H be a
contraction with constant k ∈ [0, 1). Suppose that {xn} is a vector sequence generated by Algorithm 2 and
Condition 1 holds. Then, {xn} converges strongly to p = PFix(T) ◦ f (p).

Algorithm 2 The viscosity type algorithm for strict pseudo-contractions

Initialization: Let x0, x1 ∈ H be arbitrary and let δ ∈ [η, 1).
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = θn(xn − xn−1) + xn,
zn = εn(xn − xn−1) + xn.

(23)

Step 2. Compute

xn+1 = αn f (xn) + βnyn + γn(δzn + (1− δ)Tzn). (24)
Step 3. Set n ← n + 1 and go to Step 1.

Proof. Define Q : H → H by Qx = δx + (1− δ)Tx. It is easy to verify that Fix(T) = Fix(Q). By the
definition of strict pseudo-contraction, one has

‖Qx−Qy‖2 = δ‖x− y‖+ (1− δ)‖Tx− Ty‖2 − δ(1− δ)‖(x− y)− (Tx− Ty)‖2

= δ‖x− y‖+ (1− δ)‖x− y‖2 + η(1− δ)‖(x− y)− (Tx− Ty)‖2

− δ(1− δ)‖(x− y)− (Tx− Ty)‖2

≤ ‖x− y‖2 − (δ− η)(1− δ)‖(x− y)− (Tx− Ty)‖2

≤ ‖x− y‖2.

Therefore, Q is nonexpansive. Then, we get the conclusions from Theorem 1 immediately.

In the following, we give some corollaries for Theorem 1.
Recall that T is called a ρ-averaged mapping if and only if it can be written as the average of the

identity mapping I and a nonexpansive mapping, that is, T := (1− ρ)I + ρS, where ρ ∈ (0, 1) and
S : H → H is a nonexpansive mapping. It is known that every ρ-averaged mapping is nonexpansive
and Fix(T) = Fix(S). A mapping T : H → H is said to be quasi-nonexpansive if, for all p ∈ Fix(T),
‖Tx − Tp‖ ≤ ‖x − p‖, ∀x ∈ H. T is said to be strongly nonexpansive if xn − yn − (Txn − Tyn) → 0,
whenever {xn} and {yn} are two sequences in H such that {xn − yn} is bounded and ‖xn − yn‖ −
‖Txn − Tyn‖ → 0. T is said to be strongly quasi-nonexpansive if T is quasi-nonexpansive and
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xn − Txn → 0 whenever {xn} is a bounded sequence in H such that ‖xn − p‖ − ‖Txn − Tp‖ → 0 for
all p ∈ Fix(T). By using Theorem 1, we obtain the following corollaries easily.

Corollary 1. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let T : H → H be a ρ-average mapping with Fix(T) �= ∅. Suppose that Conditions 1 holds. Then, the sequence
{xn} generated by Algorithm 1 converges to p = PFix(T) ◦ f (p) in norm.

Corollary 2. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1). Let
T : H → H be a quasi-nonexpansive mapping with Fix(T) �= ∅ and I − T be demiclosed at the origin. Suppose
that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 1 converges to p = PFix(T) ◦ f (p)
in norm.

Corollary 3. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let T : H → H be a strongly quasi-nonexpansive mapping with Fix(T) �= ∅ and I − T be demiclosed at
the origin. Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 1 converges to
p = PFix(T) ◦ f (p) in norm.

4. Applications

In this section, we will give some applications of our algorithms to variational equality problems,
inclusion problems and corresponding convex minimization problems.

4.1. Variational Inequality Problems

In this subsection, we consider the following variational inequality problem (for short, VIP): find
x ∈ C such that

〈Ax, y− x〉 ≥ 0, ∀y ∈ C, (25)

where A : H → H is a single-valued operator and C is a nonempty convex closed set in H. The solutions
of VIP 25 is denoted by Ω. It is known that x∗ is a solution of VIP (25) if and only if x∗ = PC(x∗ −λAx∗),
where λ is an arbitrary positive constant. In recent decades, the VIP has received a lot of attention.
In order to solve the VIP, various methods have been proposed, see, e.g., [26–28]. In this subsection,
we will give some applications of our algorithms to the VIP (25). For this purpose, we introduce a
lemma proposed by Shehu et al. [21].

Lemma 5. Let H be a Hilbert space and let C be a nonempty convex and closed set in H. Suppose that A : H → H
is a monotone L-Lipschitz operator on C and that λ is a positive number. Let V := PC(I − λA) and let S :=
V − λ(AV − A). Then, I −V is demi-closed at the origin. Moreover, if λL < 1, S is a strongly quasi-nonexpansive
operator and Fix(S) = Fix(V) = Ω.

By using Lemma 5 and Corollary 3, we obtain the following corollary for VIP (25) immediately.

Corollary 4. Let H be a Hilbert space and let C be a nonempty convex closed set in H. Let f : H → H be a
contraction with constant k ∈ [0, 1). Let A : H → H be a monotone L-Lipschitz operator and let τ ∈

(
0, 1

L

)
.

Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 3 converges to p = PΩ ◦ f (p)
in norm.

Proof. Let S := PC(I − τA) − τ(A(PC(I − τA)) − A). We see from Lemma 5 that S is strongly
quasi-nonexpansive and Fix(S) = Ω. Then, we get the conclusions from Corollary 3 immediately.
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Algorithm 3 The viscosity type algorithm for solving variational inequality problems

Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(26)

Step 2. Compute {
wn = PC(I − λA)zn,

xn+1 = αn f (xn) + βnyn + γn (wn − λ (Awn − Azn)) .
(27)

Step 3. Set n ← n + 1 and go to Step 1.

4.2. Inclusion Problems

Let H denote the Hilbert spaces and let A : H → H be a single-valued mapping. Then, A is
said to be monotone if 〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ H; A is said to be α-inverse strongly monotone
if 〈Ax − Ay, x − y〉 ≥ α‖A(x)− A(y)‖2, ∀x, y ∈ H. A set-valued operator A : H → 2H is said to be
monotone if 〈x − y, u − v〉 ≥ 0, ∀x, y ∈ H, where u ∈ Ax and v ∈ Ay. Furthermore, A said to be
maximal monotone if, for all (y, v) ∈ Graph(A) and each (x, u) ∈ H × H, 〈x− y, u− v〉 ≥ 0 implies
that u ∈ Ax. Recall that the resolvent operator JA

r : H → H associated operator A is defined by
JA
r = (I + rA)−1x, where r > 0 and I denotes the identity operator on H. If A is a maximal monotone

mapping, JA
r is a single-valued and firmly nonexpansive mapping. Consider the following simple

inclusion problem: find x∗ ∈ H such that

0 ∈ Ax∗, (28)

where A : H → H is a maximal monotone operator. It is know that 0 ∈ A(x) if and only if x ∈ Fix(JA
r ).

By using Theorem 1, we obtain the following corollary.

Corollary 5. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let A : H → H be a maximal monotone operator such that A−1(0) �= ∅. Suppose that Conditions 1 holds.
Then, the sequence {xn} generated by Algorithm 4 converges strongly to p = PA−1(0) ◦ f (p).

Algorithm 4 The viscosity type algorithm for solving inclusion problem (28)

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(29)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn JA

r (zn). (30)
Step 3. Set n ← n + 1 and go to Step 1.

Proof. As Fix(JA
r ) = A−1(0) and JA

r is firmly nonexpansive, one has that JA
r is 1

2 -averaged. Therefore,
there exists a nonexpansive mapping S such that JA

r = 1
2 I + 1

2 S and Fix(JA
r ) = Fix(S). By using

Corollary 1, we obtain the conclusions immediately.

Now, we solve the following convex minimization problem.

min
x∈H

h(x), (31)
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where h : H → (−∞,+∞] is a proper lower semi-continuous closed convex function. The subdifferential
operator ∂h(x) of h(x) is defined by ∂h(x) = {u ∈ H : h(y) ≥ h(x) + 〈u, y− x〉,∀y ∈ H}. It is known
that ∂h(x) is maximal monotone, and x∗ is a solution of problem (31) if and only if 0 ∈ ∂h(x∗). Taking
A = ∂h(x), we have JA

r = proxrh, where r > 0 and proxrh is defined by

proxrh(u) = arg min
x∈H

{
1
2r
‖x− u‖2 + h(x)

}
.

Corollary 6. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let h : H → (−∞,+∞] be a proper closed lower semi-continuous convex function such that arg min h �= ∅.
Suppose that Conditions 1 holds. Then, the sequence {xn} generated by Algorithm 5 converges to a solution of
convex minimization problem (31) in norm.

Algorithm 5 The viscosity type algorithm for solving convex minimization problems

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows.
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(32)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn proxrh(zn). (33)

Step 3. Set n ← n + 1 and go to Step 1.

Proof. It is known that the subdifferential operator ∂h is maximal monotone since h is a proper, closed
lower semi-continuous, convex function. Therefore, proxrh = J∂h

r . Then, we get the conclusions from
Corollary 5 immediately.

In the following, we consider the following inclusion problem: find x∗ ∈ H such that

0 ∈ A(x∗) + B(x∗), (34)

where A : H → H be an α-inverse strongly monotone mapping and let B : H → 2H be a set-valued
maximal monotone operator. It is known that Fix(JB

r (I − rA)) = (A + B)−1(0). Many problems can
be modelled as the inclusion problem, such as, convex programming problems, inverse problems,
split feasibility problems, and minimization problems, see [29–32]. Moreover, this problem is also
widely applied in machine learning, signal processing, statistical regression, and image restoration,
see [33–35]. By using Theorem 1, we obtain the following corollary.

Corollary 7. Let H be a Hilbert space and let f : H → H be a contraction with constant k ∈ [0, 1).
Let A : H → H be a α-inverse strongly monotone mapping with 0 < r = 2α and let B : H → 2H be a
maximal monotone operator. Suppose that (A + B)−1(0) �= ∅ and Conditions 1 holds. Then, the sequence
{xn} generated by Algorithm 3 converges to p = P(A+B)−1(0) ◦ f (p) in norm.

Proof. As A is inverse strongly monotone, one has that (I − rA) is nonexpansive. Therefore, the
operator JB

r (I − rA) is nonexpansive. Then, we get the conclusions from Theorem 1 immediately.

5. Numerical Results

In this section, we give three numerical examples to illustrate the computational performance of
our proposed algorithms. All the programs are performed in MATLAB2018a on a PC Desktop Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.800 GHz, RAM 8.00 GB.
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Example 1. In this example, we consider the following case that the usual gradient method is not convergent.
Take the feasible set as C := {−5 ≤ xi ≤ 5, i = 1, 2, · · · , m} and an m×m square matrix A :=

(
aij

)
1≤i,j≤m

whose terms are given by

aij =

⎧⎪⎨⎪⎩
1, if j = m + 1− i and j < i,
−1, if j = m + 1− i and j > i,
0, otherwise.

One knows that zero vector x∗ = (0, . . . , 0) is a solution of this problem. First, one tests the Algorithm 3
with different choices of inertial parameter θn and εn. Setting f (x) = 0.5x, δn = 1

(n+1)2 , αn = n
(n+1)1.1 ,

βn = γn = 1−αn
2 , λ = 0.7, the numerical results are shown in Tables 1 and 2.

To compare the efficiency between algorithms, we consider our proposed Algorithm 3, the extragradient
method (EGM) in [36], the subgradient extragradient method (SEGM) in [26], and the new inertial subgradient
extragradient method (NISEGM) in [27]. The parameters are selected as follows. The initial points x0, x1 ∈ Rm

are generated randomly in MATLAB and we take different values of m into consideration. In EGM, SEGM,
we take λ = 0.7. In Algorithm 3, we take f (x) = 0.5x, λ = 0.7, δn = 1

(n+1)2 , θ = 0.7 and ε = 0.8 in (4),

αn = n
(n+1)1.1 , βn = γn = 1−αn

2 . We set αn = 0.1, τn = n
(n+1)1.1 , λn = 0.8 in NISEGM. The stopping

criterion is En = ‖xn − x∗‖2 < 10−4. The results are proposed in Table 3 and Figure 1.

Table 1. Number of iterations of Algorithm 3 with θ = 0.5, m = 100

Initial Value ε 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 × rand(m,1) Iter. 24 23 23 23 22 22 22 21 21 21 21
100 × rand(m,1) Iter. 27 27 26 26 26 25 25 25 25 25 25

1000 × rand(m,1) Iter. 31 31 30 30 30 29 29 29 29 29 29

Table 2. Number of iterations of Algorithm 3 with ε = 0.7, m = 100

Initial Value θ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 × rand(m,1) Iter. 24 23 23 22 22 21 21 21 21 21 22
100 × rand(m,1) Iter. 27 27 26 26 25 25 25 25 25 25 25

1000 × rand(m,1) Iter. 30 30 30 29 29 29 28 28 28 28 28

Remark 3. By Table 1 and Table 2, one concludes that the number of the iteration is small for the Algorithm 3
with θ ∈ [0.5, 1] and ε ∈ [0.5, 1].

Remark 4. (1) By numerical results of Example 1, we find that our Algorithm 3 is efficient, easy to implement
and fast. Moreover, dimensions do not affect the computational performance of our algorithm.

(2) Obviously, by Example 1, we also find that our proposed Algorithm 3 outperforms the extragradient method
(EGM), the subgradient extragradient method (SEGM) and the new inertial subgradient extragradient
method (NISEGM) in both CPU time and number of iterations.

Table 3. Comparison between Algorithm 3, EGM, SEGM, and NISEGM in Example 1.

Algorithm 3 Algorithm EGM Algorithm SEGM Algorithm NISEGM

m Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

100 24 0.0102 91 0.0147 93 0.0194 84 0.0121
1000 27 0.0548 99 0.1265 101 0.1376 92 0.1136
2000 28 0.3007 101 0.7852 104 0.7018 94 0.6516
5000 29 1.6582 105 4.2879 107 4.4691 97 4.0239
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(a) m = 100 (b) m = 1000

(c) m = 2000 (d) m = 5000

Figure 1. Convergence behavior of iteration error {En} with different dimension in Example 1.

Algorithm 6 The viscosity type algorithm for solving inclusion problem (34)

Initialization: Let x0, x1 ∈ H be arbitrary.
Iterative Steps: Given the current iterator xn, calculate xn+1 as follows:
Step 1. Compute {

yn = xn + θn(xn − xn−1),
zn = xn + εn(xn − xn−1).

(35)

Step 2. Compute
xn+1 = αn f (xn) + βnyn + γn JB

r (I − rA)zn. (36)
Step 3. Set n ← n + 1 and go to Step 1.

Example 2. In this example, we consider H = L2([0, 2π]) and the following half-space,

C =

{
x ∈ L2([0, 2π])|

∫ 2π

0
x(t)dt ≤ 1

}
, and Q =

{
x ∈ L2([0, 2π])|

∫ 2π

0
|x(t)− sin(t)|2 dt ≤ 16

}
.

Define a linear continuous operator T : L2([0, 2π])→ L2([0, 2π]), where (Tx)(t) := x(t). Then (T∗x) (t) =
x(t) and ‖T‖ = 1. Now, we solve the following problem,

find x∗ ∈ C such that Tx∗ ∈ Q. (37)
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As (Tx)(t) = x(t), (37) is actually a convex feasibility problem: find x∗ ∈ C ∩Q. Moreover, it is evident that
x(t) = 0 is a solution. Therefore, the solution set of (37) is nonempty. Take Ax = ∇

(
1
2

∥∥Tx− PQTx
∥∥2

)
=

T∗
(

I − PQ
)

Tx and B = ∂iC. Then (37) can be written in the form (34). It is clear that A is 1-Lipschitz
continuous and B is maximal monotone. For our numerical computation, we can also write the projections onto
set C and the projections onto set Q as follows, see [37].

PC(z) =

{
1−

∫ 2π
0 z(t)dt
4π2 + z,

∫ 2π
0 z(t)dt > 1,

z,
∫ 2π

0 z(t)dt ≤ 1.

and

PQ(w) =

⎧⎨⎩ sin+ 4√∫ 2π
0 |w(t)−sin(t)|2dt

(w− sin),
∫ 2π

0 |w(t)− sin(t)|2dt > 16,

w,
∫ 2π

0 |w(t)− sin(t)|2dt ≤ 16.

In this numerical experiment, we consider different initial values x0 and x1. The error of the iterative algorithms
is denoted by

En =
1
2
‖PC (xn)− xn‖2

2 +
1
2

∥∥PQ (T (xn))− T (xn)
∥∥2

2 .

Now, we give some numerical experiment comparisons between our Algorithm 6 and the Algorithm 5.2 proposed
by Shehu et al. [21]. We denote this algorithm by Shehu et al. Algorithm 5.2. In the Shehu et al. Algorithm 5.2,
one sets λ = 0.25, εn = 1

(n+1)2 , θ = 0.5, αn = 1
n+1 , βn = γn = n

2(n+1) , en = 1
(n+1)2 . In Algorithm 6, one

sets f (x) = 0.5x, r = 0.25, δn = 1
(n+1)2 , θ = 0.5, ε = 0.7, αn = 1

n+1 , and βn = γn = n
2(n+1) . Our stopping

criterion is maximum iteration 200 or En < 10−3. The results are proposed in Table 4 and Figure 2.

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 2. Convergence behavior of iteration error {En} with different initial values in Example 2.

84



Mathematics 2020, 8, 288

Table 4. Comparison between our Algorithm 6 and Shehu et al.’s Algorithm 5.2 in Example 2.

Algorithm 6 Shehu et al.’s Algorithm 5.2

Cases Initial Values Iter. Time (s) Iter. Time (s)

I x0 = t2

10 x1 = t2

10 9 3.4690 151 45.7379
II x0 = t2

10 x1 = 2t

16 7 2.9629 124 38.3933
III x0 = t2

10 x1 = et/2

2 18 7.0002 200 61.6568
IV x0 = t2

10 x1 = 5 sin(2t)2 15 5.8423 200 62.5465

Remark 5. (1) Also, by observing numerical results of Example 2, we find that our Algorithm 6 is more efficient
and faster than the Shehu et al.’s Algorithm 5.2.

(2) Our Algorithm 6 is consistent since the choice of initial value does not affect the number of iterations needed
to achieve the expected results.

Example 3. In this example, we consider a linear inverse problem: b = Ax0 + w, where x0 ∈ RN is the
(unknown) signal to recover, w ∈ RM is a noise vector, and A ∈ RM×N models the acquisition device. To
recover an approximation of the signal x0, we use the Basis Pursuit denoising method. That is, one uses the �1

norm as a sparsity enforcing penalty.

min
x∈RN

Φ(x) =
1
2
‖b− Ax‖2 + λ‖x‖1, (38)

where ‖x‖1 = ∑i |xi| and λ is a parameter that is relate to noise w. It is known that (38) is referred as the least
absolute selection and shrinkage operator problem, that is, the LASSO problem. The LASSO problem (38) is a
special case of minimizing F + G, where

F(x) =
1
2
‖b− Ax‖2, and G(x) = λ‖x‖1.

It is easy to see that F is a smooth function with L-Lipschitz continuous gradient ∇F(x) = A∗(Ax− b), where
L = ‖A∗A‖. The �1-norm is “simple", as its proximal operator is a soft thresholding:

proxγG(xk) = max
(

0, 1− λγ

|xk|

)
xk.

In our experiment, we want to recover a sparse signal x0 ∈ RN with k (k � N) non-zero elements. A simple
linearized model of signal processing is to consider a linear operator, that is, a filtering Ax = ϕ � x, where ϕ

is a second derivative of Gaussian. We wish to solve b = Ax0 + w, where w is a realization of Gaussian white
noise with variance 10−2. Therefore, we need to solve the (38). We compare our Algorithm 6 with another strong
convergence algorithm, which was proposed by Gibali and Thong in [38]. We denote this algorithm by G-T
Algorithm 1. In addition, we also compare the algorithms with the classic Forward–Backward algorithm in [33].
Our parameter settings are as follows. In all algorithms, we set regularization parameter λ = 1

2 in (38). In the
Forward–Backward algorithm, we set step size γ = 1.9/L. In G-T Algorithm 1, we set step size γ = 1.9/L,
αn = 1

n+1 , βn = n
2(n+1) and μ = 0.5. In Algorithm 6, we set step size r = 1.9/L, f (x) = 0.1x, θ = ε = 0.9,

δn = 1
(n+1)2 , αn = 1

n+1 , βn = 1
1000(n+1)3 , γn = 1− αn − βn. We take the maximum number of iterations

5× 104 as a common stopping criterion. In addition, we use the signal-to-noise ratio (SNR) to measure the
quality of recovery, and a larger SNR means a better recovery quality. Numerical results are proposed in Table 5
and Figures 3–5. We tested the computational performance of the above algorithms in different dimension N
and different sparsity k (Case I: N = 400, k = 12; Case II: N = 400, k = 20; Case III: N = 1000, k = 30;
Case IV: N = 1000, k = 50). Figure 3 shows the original and noise signals in different dimension N and different
sparsity k. Figure 4 shows the recovery results of different algorithms under different situation, the corresponding
numerical results are shown in Table 5. Figure 5 shows the convergence behavior of Φ(x) in (38) with the number
of iterations.
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Table 5. Comparison the SNR between Algorithm 6, G-T Algorithm 1, and Forward–Backward in
Example 3.

Cases N k G-T Algorithm 1 Algorithm 6 Forward–Backward

I 400 12 16.2421 16.3742 16.3930
II 400 20 5.3994 5.4377 5.4418
III 1000 30 6.7419 6.7749 6.7792
IV 1000 50 3.2493 3.2553 3.2561

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3. Original signals and noise signals at different N and k in Example 3.
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(a) Case I (b) Case I (c) Case I

(d) Case II (e) Case II (f) Case II

(g) Case III (h) Case III (i) Case III

(j) Case IV (k) Case IV (l) Case IV

Figure 4. Recovery results under different algorithms in Example 3.
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 5. Convergence behavior of {Φ(x)} with different N and k in Example 3.

Remark 6. (1) The LASSO problem in Example 3 also shows that our proposed algorithm is consistent and
more efficient. Furthermore, dimensions and sparsity do not affect the computational performance of our
proposed Algorithm 6, see Table 5 and Figures 4 and 5.

(2) The numerical results also show that our Algorithm 6 is superior than the algorithm proposed by Gibali
and Thong [38] in terms of computational performance and accuracy.

(3) In addition, there is little difference between our Algorithm 6 and the classical Forward–Backward
algorithm in computational performance and precision. Note that the Forward–Backward algorithm
is weak convergence in the infinite dimensional Hilbert spaces; however, our proposed algorithms is strongly
convergent (see Corollary 7 and Example 2).

6. Conclusions

In this paper, we proposed a viscosity algorithm with two different inertia parameters for
solving fixed-point problem of nonexpansive mappings. We also established a strong convergence
theorem for strict pseudo-contractive mappings. By choosing different parameter values in inertial
sequences, we analyzed the convergence behavior of our proposed algorithms. One highlight is that
our algorithms are based on two different inertial parameter sequences comparing with the exiting
ones. accelerated via the inertial technique and the viscosity technique. Another highlight is that, to
show the effectiveness of our algorithms, we compare our algorithms with other existing algorithms
in the convergence rate and applications in signal processing. Numerical experiments show that our
algorithms are consistent and efficient. Finally, we remark that the framework of the space is a Hilbert
space, it is of interest to further our results to the framework of Banach spaces or Hadamard manifolds.
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operator and let CFPP denote the common fixed-point problem of an asymptotically nonexpansive
mapping and a strictly pseudocontractive mapping in a real Hilbert space. Our object in this article
is to establish strong convergence results for solving the VIP and CFPP by utilizing an inertial-like
gradient-like extragradient method with line-search process. Via suitable assumptions, it is shown that
the sequences generated by such a method converge strongly to a common solution of the VIP and CFPP,
which also solves a hierarchical variational inequality (HVI).
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1. Introduction

Throughout this paper we assume that C is a nonempty, convex and closed subset of a real Hilbert
space (H, ‖ · ‖), whose inner product is denoted by 〈·, ·〉. Moreover, let PC denote the metric projection of
H onto C.

Suppose A : H → H is a mapping. In this paper, we shall consider the following variational inequality
(VI) of finding x∗ ∈ C such that

〈x− x∗, Ax∗〉 ≥ 0, ∀x ∈ C. (1)

Mathematics 2019, 7, 860; doi:10.3390/math7090860 www.mdpi.com/journal/mathematics
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The set of solutions to Equation (1) is denoted by VI(C, A). In 1976, Korpelevich [1] first introduced
an extragradient method, which is one of the most popular approximation ones for solving Equation (1)
till now. That is, for any initial u0 ∈ C, the sequence {un} is generated by{

vn = PC(un − τAun),
un+1 = PC(un − τAvn), ∀n ≥ 0,

(2)

where τ is a constant in (0, 1
L ) for L > 0 the Lipschitz constant of mapping A. In the case where

VI(C, A) �= ∅, the sequence {un} constructed by Equation (2) is weakly convergent to a point in VI(C, A).
Recently, light has been shed on approximation methods for solving problem Equation (1) by many
researchers; see, e.g., [2–11] and references therein, to name but a few.

Let T : C → C be a mapping. We denote by Fix(T) the set of fixed points of T, i.e., Fix(T) = {x ∈ C :
x = Tx}. T is said to be asymptotically nonexpansive if ∃{θn} ⊂ [0,+∞) such that limn→∞ θn = 0 and
‖Tnu− Tnv‖ ≤ ‖u− v‖+ θn‖u− v‖, ∀n ≥ 1, u, v ∈ C. If θn ≡ 0, then T is nonexpansive. Also, T is said to
be strictly pseudocontractive if ∃ζ ∈ [0, 1) s.t. ‖Tu−Tv‖2 ≤ ‖u− v‖2 + ζ‖(I−T)u− (I−T)v‖2, ∀u, v ∈ C.
If ζ = 0, then T reduces to a nonexpansive mapping. One knows that the class of strict pseudocontractions
strictly includes the class of nonexpansive mappings. Both strict pseudocontractions and nonexpansive
mappings have been studied extensively by a large number of authors via iteration approximation methods;
see, e.g., [12–18] and references therein.

Let the mappings A, B : C → H be both inverse-strongly monotone and let the mapping T : C → C
be asymptotically nonexpansive one with a sequence {θn}. Let f : C → C be a δ-contraction with δ ∈ [0, 1).
By using a modified extragradient method, Cai et al. [19] designed a viscosity implicit rule for finding
a point in the common solution set Ω of the VIs for A and B and the FPP of T, i.e., for arbitrarily given
x1 ∈ C, {xn} is the sequence constructed by⎧⎪⎨⎪⎩

un = snxn + (1− sn)yn,
yn = PC(I − λA)PC(un − μBun),
xn+1 = PC[(Tnyn − αnρFTnyn) + αn f (xn)],

where {αn}, {sn} ⊂ (0, 1]. Under appropriate conditions imposed on {αn}, {sn}, they proved that {xn} is
convergent strongly to an element x∗ ∈ Ω provided ∑∞

n=1 ‖Tn+1yn − Tnyn‖ < ∞.
In the context of extragradient techniques, one has to compute metric projections two times for

each computational step. Without doubt, if C is a general convex and closed set, the computation of
the projection onto C might be quite consuming-time. In 2011, inspired by Korpelevich’s extragradient
method, Censor et al. [20] first designed the subgradient extragradient method, where a projection onto
a half-space is used in place of the second projection onto C. In 2014, Kraikaew and Saejung [21] proposed
the Halpern subgradient extragradient method for solving Equation (1), and proved strong convergence
of the proposed method to a solution of Equation (1).

In 2018, via the inertial technique, Thong and Hieu [22] studied the inertial subgradient extragradient
method, and proved weak convergence of their method to a solution of Equation (1). Very recently, they [23]
constructed two inertial subgradient extragradient algorithms with linear-search process for finding
a common solution of problem Equation (1) with operator A and the FPP of operator T with demiclosedness
property in a real Hilbert space, where A is Lipschitzian and monotone, and T is quasi-nonexpansive.
The constructed inertial subgradient extragradient algorithms (Algorithms 1 and 2) are as below:
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Algorithm 1: Inertial subgradient extragradient algorithm (I) (see [[23], Algorithm 1]).

Initialization: Given u0, u1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Compute un+1 in what follows:
Step 1. Put vn = αn(un − un−1) + un and calculate yn = PC(vn − τn Avn), where τn is chosen to be
the largest τ ∈ {γ, γl, γl2, ...} satisfying τ‖Avn − Ayn‖ ≤ μ‖vn − yn‖.

Step 2. Calculate zn = PTn(vn − τn Ayn) with Tn := {x ∈ H : 〈x− yn, vn − τn Avn − yn〉 ≤ 0}.
Step 3. Calculate un+1 = βnTzn + (1− βn)vn. If vn = zn = un+1 then vn ∈ Fix(T) ∩VI(C, A).
Set n := n + 1 and go to Step 1.

Algorithm 2: Inertial subgradient extragradient algorithm (II) (see [[23], Algorithm 2]).

Initialization: Given u0, u1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Calculate un+1 as follows:
Step 1. Put vn = αn(un − un−1) + un and calculate yn = PC(vn − τn Avn), where τn is chosen to be
the largest τ ∈ {γ, γl, γl2, ...} satisfying τ‖Avn − Ayn‖ ≤ μ‖vn − yn‖.

Step 2. Calculate zn = PTn(vn − τn Ayn) with Tn := {x ∈ H : 〈x− yn, vn − τn Avn − yn〉 ≤ 0}.
Step 3. Calculate un+1 = βnTzn + (1− βn)un. If vn = zn = un = un+1 then

un ∈ Fix(T) ∩VI(C, A). Set n := n + 1 and go to Step 1.

Under mild assumptions, they proved that the sequences generated by the proposed algorithms are
weakly convergent to a point in Fix(T) ∩ VI(C, A). Recently, gradient-like methods have been studied
extensively by many authors; see, e.g., [24–38].

Inspired by the research work of [23], we introduce two inertial-like subgradient algorithms with
line-search process for solving Equation (1) with a Lipschitzian and pseudomonotone operator and
the common fixed point problem (CFPP) of an asymptotically nonexpansive operator and a strictly
pseudocontractive operator in H. The proposed algorithms comprehensively adopt inertial subgradient
extragradient method with line-search process, viscosity approximation method, Mann iteration method
and asymptotically nonexpansive mapping. Via suitable assumptions, it is shown that the sequences
generated by the suggested algorithms converge strongly to a common solution of the VIP and CFPP,
which also solves a hierarchical variational inequality (HVI).

2. Preliminaries

Let x ∈ H and {xn} ⊂ H. We use the notation xn → x (resp., xn ⇀ x) to indicate the strong (resp.,
weak) convergence of {xn} to x. Recall that a mapping T : C → H is said to be:

(i) L-Lipschitzian (or L-Lipschitz continuous) if ‖Tx− Ty‖ ≤ L‖x− y‖, ∀x, y ∈ C for some L > 0;
(ii) monotone if 〈Tu− Tv, u− v〉 ≥ 0, ∀u, v ∈ C;

(iii) pseudomonotone if 〈Tu, v− u〉 ≥ 0 ⇒ 〈Tv, v− u〉 ≥ 0, ∀u, v ∈ C;
(iv) β-strongly monotone if 〈Tu− Tv, u− v〉 ≥ β‖u− v‖2, ∀u, v ∈ C for some β > 0;
(v) sequentially weakly continuous if ∀{un} ⊂ C, the relation holds: un ⇀ u ⇒ Tun ⇀ Tu.

For metric projections, it is well known that the following assertions hold:

(i) 〈PCu− PCv, u− v〉 ≥ ‖PCu− PCv‖2, ∀u, v ∈ H;
(ii) 〈u− PCu, v− PCu〉 ≤ 0, ∀u ∈ H, v ∈ C;

(iii) ‖u− v‖2 ≥ ‖u− PCu‖2 + ‖v− PCu‖2, ∀u ∈ H, v ∈ C;
(iv) ‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉, ∀u, v ∈ H;
(v) ‖τx + (1− τ)y‖2 = τ‖x‖2 + (1− τ)‖y‖2 − τ(1− τ)‖x− y‖2, ∀x, y ∈ H, τ ∈ [0, 1].
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Lemma 1. [39] Assume that A : C → H is a continuous pseudomonotone mapping. Then u∗ ∈ C is a solution to
the VI 〈Au∗, v− u∗〉 ≥ 0, ∀v ∈ C, iff 〈Av, v− u∗〉 ≥ 0, ∀v ∈ C.

Lemma 2. [40] Let the real sequence {tn} ⊂ [0, ∞) satisfy the conditions: tn+1 ≤ (1− sn)tn + snbn, ∀n ≥
1, where {sn} and {bn} are sequences in (−∞, ∞) such that (i) {sn} ⊂ [0, 1] and ∑∞

n=1 sn = ∞, and (ii)
lim supn→∞ bn ≤ 0 or ∑∞

n=1 |snbn| < ∞. Then limn→∞ tn = 0.

Lemma 3. [33] Let T : C → C be a ζ-strict pseudocontraction. If the sequence {un} ⊂ C satisfies un ⇀ u ∈ C
and (I − T)un → 0, then u ∈ Fix(T), where I is the identity operator of H.

Lemma 4. [33] Let T : C → C be a ζ-strictly pseudocontractive mapping. Let the real numbers γ, δ ≥ 0 satisfy
(γ + δ)ζ ≤ γ. Then ‖γ(x− y) + δ(Tx− Ty)‖ ≤ (γ + δ)‖x− y‖, ∀x, y ∈ C.

Lemma 5. [41] Let the Banach space X admit a weakly continuous duality mapping, the subset C ⊂ X be nonempty,
convex and closed, and the asymptotically nonexpansive mapping T : C → C have a fixed point, i.e., Fix(T) �= ∅.
Then I − T is demiclosed at zero, i.e., if the sequence {un} ⊂ C satisfies un ⇀ u ∈ C and (I − T)un → 0,
then (I − T)u = 0, where I is the identity mapping of X.

3. Main Results

Unless otherwise stated, we suppose the following.

• T : H → H is an asymptotically nonexpansive operator with {θn} and S : H → H is a ζ-strictly
pseudocontractive mapping.

• A : H → H is sequentially weakly continuous on C, L-Lipschitzian pseudomonotone on H, and A(C)
is bounded.

• f : H → C is a δ-contraction with δ ∈ [0, 1
2 ).

• Ω = Fix(T) ∩ Fix(S) ∩VI(C, A) �= ∅.
• {σn} ⊂ [0, 1] and {αn}, {βn}, {γn}, {δn} ⊂ (0, 1) such that

(i) supn≥1
σn
αn
< ∞ and βn + γn + δn = 1, ∀n ≥ 1;

(ii) ∑∞
n=1 αn = ∞, limn→∞ αn = limn→∞

θn
αn

= 0;
(iii) (γn + δn)ζ ≤ γn < (1− 2δ)δn, ∀n ≥ 1 and lim infn→∞((1− 2δ)δn − γn) > 0;
(iv) lim supn→∞ βn < 1, lim infn→∞ βn > 0 and lim infn→∞ δn > 0.

We first introduce an inertial-like subgradient extragradient algorithm (Algorithm 3) with line-search
process as follows:

Algorithm 3: Inertial-like subgradient extragradient algorithm (I).

Initialization: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Compute xn+1 in what follows:
Step 1. Put wn = σn(xn − xn−1) + Tnxn and calculate yn = PC(I − τn A)wn, where τn is chosen to
be the largest τ ∈ {γ, γl, γl2, ...} such that

τ‖Awn − Ayn‖ ≤ μ‖wn − yn‖.

Step 2. Calculate zn = (1− αn)PCn(wn − τn Ayn) + αn f (xn) with
Cn := {x ∈ H : 〈wn − τn Awn − yn, x− yn〉 ≤ 0}.

Step 3. Calculate
xn+1 = γnPCn(wn − τn Ayn) + δnSzn + βnTnxn.

Again set n := n + 1 and return to Step 1.

94



Mathematics 2019, 7, 860

Lemma 6. In Step 1 of Algorithm 3, the Armijo-like search rule

τ‖Awn − Ayn‖ ≤ μ‖wn − yn‖ (3)

is well defined, and the inequality holds: min{γ, μl
L } ≤ τn ≤ γ.

Proof. Since A is L-Lipschitzian, we know that Equation (3) holds for all γlm ≤ μ
L and so τn is well defined.

It is clear that τn ≤ γ. Next we discuss two cases. In the case where τn = γ, the inequality is valid.
In the case where τn < γ, from Equation (3) we derive ‖Awn − APC(wn − τn

l Awn)‖ > μ
τn
l
‖wn − PC(wn −

τn
l Awn)‖. Also, since A is L-Lipschitzian, we get τn >

μl
L . Therefore the inequality is true.

Lemma 7. Assume that {wn}, {yn}, {zn} are the sequences constructed by Algorithm 3. Then

‖zn − p‖2 ≤ [1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn − (1− αn)(1− μ)×
× [‖wn − yn‖2 + ‖un − yn‖2] + 2αn〈( f − I)p, zn − p〉 ∀p ∈ Ω,

(4)

where un := PCn(wn − τn Ayn) and Λn := σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖ + σn‖xn − xn−1‖] + θn(2 +

θn)‖xn − p‖2 for all n ≥ 1.

Proof. We observe that

2‖un − p‖2 = 2‖PCn(wn − τn Ayn)− PCn p‖2 ≤ 2〈un − p, wn − τn Ayn − p〉
= ‖un − p‖2 + ‖wn − p‖2 − ‖un − wn‖2 − 2〈un − p, τn Ayn〉.

So, it follows that ‖wn − p‖2 − ‖un − wn‖2 − 2〈un − p, τn Ayn〉 ≥ ‖un − p‖2. Since A is
pseudomonotone, we deduce from Equation (3) that 〈Ayn, yn − p〉 ≥ 0 and

‖un − p‖2 ≤ ‖wn − p‖2 + 2τn(〈Ayn, p− yn〉+ 〈Ayn, yn − un〉)− ‖un − wn‖2

≤ ‖wn − p‖2 + 2τn〈Ayn, yn − un〉 − ‖un − wn‖2

= ‖wn − p‖2 − ‖yn − wn‖2 + 2〈wn − τn Ayn − yn, un − yn〉 − ‖un − yn‖2.
(5)

Since un = PCn(wn − τn Ayn) with Cn := {x ∈ H : 0 ≥ 〈τn Awn − wn + yn, yn − x〉}, we have
〈un − yn, wn − τn Awn − yn〉 ≤ 0, which together with Equation (3), implies that

2〈wn − τn Ayn − yn, un − yn〉 = 2〈wn − τn Awn − yn, un − yn〉+ 2τn〈Awn − Ayn, un − yn〉
≤ 2μ‖wn − yn‖‖un − yn‖ ≤ μ(‖wn − yn‖2 + ‖un − yn‖2).

Also, from wn = σn(xn − xn−1) + Tnxn we get

‖wn − p‖2 = ‖σn(xn − xn−1) + Tnxn − p‖2

≤ [(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]2
= (1 + θn)2‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]
= ‖xn − p‖2 + θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]
= ‖xn − p‖2 + Λn,
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where Λn := θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖ + σn‖xn − xn−1‖]. Therefore,
substituting the last two inequalities for Equation (5), we infer that

‖un − p‖2 ≤ ‖wn − p‖2 − (1− μ)‖wn − yn‖2 − (1− μ)‖un − yn‖2

≤ Λn − (1− μ)‖wn − yn‖2 − (1− μ)‖un − yn‖2 + ‖xn − p‖2, ∀p ∈ Ω.
(6)

In addition, from Algorithm 3 we have

zn − p = (1− αn)(un − p) + αn( f − I)p + αn( f (xn)− f (p)).

Since the function h(t) = t2, ∀t ∈ R is convex, from Equation (6) we have

‖zn − p‖2

≤ [αnδ‖xn − p‖+ (1− αn)‖un − p‖]2 + 2αn〈( f − I)p, zn − p〉
≤ αnδ‖xn − p‖2 + (1− αn)[‖xn − p‖2 + Λn − (1− μ)‖wn − yn‖2 − (1− μ)‖un − yn‖2]

+ 2αn〈( f − I)p, zn − p〉
= [1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn − (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2]

+ 2αn〈( f − I)p, zn − p〉.

This completes the proof.

Lemma 8. Assume that {xn}, {yn}, {zn} are bounded vector sequences constructed by Algorithm 3. If Tnxn −
Tn+1xn → 0, xn − xn+1 → 0, wn − xn → 0, wn − zn → 0 and ∃{wnk} ⊂ {wn} such that wnk ⇀ z ∈ H, then
z ∈ Ω.

Proof. In terms of Algorithm 3, we deduce wn − xn = Tnxn − xn + σn(xn − xn−1), ∀n ≥ 1, and hence
‖Tnxn − xn‖ ≤ ‖wn − xn‖ + σn‖xn − xn−1‖ ≤ ‖wn − xn‖ + ‖xn − xn−1‖. Using the conditions xn −
xn+1 → 0 and wn − xn → 0, we get

lim
n→∞

‖Tnxn − xn‖ = 0. (7)

Combining the assumptions wn − xn → 0 and wn − zn → 0 yields

‖zn − xn‖ ≤ ‖wn − zn‖+ ‖wn − xn‖ → 0, (n → ∞).

Then, from Equation (4) it follows that

(1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ [1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn − ‖zn − p‖2 + 2αn〈( f − I)p, zn − p〉
≤ ‖xn − p‖2 − ‖zn − p‖2 + Λn + 2αn‖( f − I)p‖‖zn − p‖
≤ ‖xn − zn‖(‖xn − p‖+ ‖zn − p‖) + Λn + 2αn‖( f − I)p‖‖zn − p‖,

where Λn := θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖ + σn‖xn − xn−1‖]. Since αn →
0, Λn → 0 and xn − zn → 0, from the boundedness of {xn}, {zn} we get

lim
n→∞

‖wn − yn‖ = 0 and lim
n→∞

‖un − yn‖ = 0.

Thus as n → ∞,

‖wn − un‖ ≤ ‖wn − yn‖+ ‖yn − un‖ → 0 and ‖xn − un‖ ≤ ‖xn − wn‖+ ‖wn − un‖ → 0.
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Furthermore, using Algorithm 3 we have xn+1 − zn = γn(un − zn) + δn(Szn − zn) + βn(Tnxn − zn),
which hence implies

δn‖Szn − zn‖ = ‖xn+1 − zn − βn(Tnxn − zn)− γn(un − zn)‖
= ‖xn+1 − xn + δn(xn − zn)− γn(un − xn)− βn(Tnxn − xn)‖
≤ ‖xn+1 − xn‖+ ‖xn − zn‖+ ‖un − xn‖+ ‖Tnxn − xn‖.

Note that xn − xn+1 → 0, zn − xn → 0, xn − un → 0, xn − Tnxn → 0 and lim infn→∞ δn > 0.
So we obtain

lim
n→∞

‖zn − Szn‖ = 0. (8)

Noticing yn = PC(I − τn A)wn, we have 〈x− yn, wn − τn Awn − yn〉 ≤ 0, ∀x ∈ C, and hence

〈wn − yn, x− yn〉+ τn〈Awn, yn − wn〉 ≤ τn〈Awn, x− wn〉, ∀x ∈ C. (9)

Since A is Lipschitzian, we infer from the boundedness of {wnk} that {Awnk} is bounded. From wn −
yn → 0, we get the boundedness of {ynk}. Taking into account τn ≥ min{γ, μl

L }, from Equation (9) we
have lim infk→∞〈Awnk , x−wnk 〉 ≥ 0, ∀x ∈ C. Moreover, note that 〈Ayn, x− yn〉 = 〈Ayn − Awn, x−wn〉+
〈Awn, x − wn〉+ 〈Ayn, wn − yn〉. Since A is L-Lipschitzian, from wn − yn → 0 we get Awn − Ayn → 0.
According to Equation (9) we have lim infk→∞〈Aynk , x− ynk 〉 ≥ 0, ∀x ∈ C.

We claim xn − Txn → 0 below. Indeed, note that

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn − Tnxn‖+ ‖Tnxn − xn‖
≤ (2 + θ1)‖xn − Tnxn‖+ ‖Tn+1xn − Tnxn‖.

Hence from Equation (7) and the assumption Tnxn − Tn+1xn → 0 we get

lim
n→∞

‖xn − Txn‖ = 0. (10)

We now choose a sequence {εk} ⊂ (0, 1) such that εk ↓ 0 as k → ∞. For each k ≥ 1, we denote by mk
the smallest natural number satisfying

〈Aynj , x− ynj〉+ εk ≥ 0, ∀j ≥ mk.

From the decreasing property of {εk}, it is easy to see that {mk} is increasing. Considering that
{ymk} ⊂ C implies Aymk �= 0, ∀k ≥ 1, we put

μmk =
Aymk

‖Aymk‖2 .

So we have 〈Aymk , μmk 〉 = 1, ∀k ≥ 1. Thus, from Equation (9), we have 〈x + εkμmk − ymk , Aymk 〉 ≥ 0,
∀k ≥ 1. Also, since A is pseudomonotone, we get

〈A(x + εkμmk ), x + εkμmk − ymk 〉 ≥ 0, ∀k ≥ 1.

Consequently,

〈x− ymk , Ax〉 ≥ 〈x + εkμmk − ymk , Ax− A(x + εkμmk )〉 − εk〈μmk , Ax〉, ∀k ≥ 1. (11)
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We show limk→∞ εkμmk = 0. In fact, since wnk ⇀ z and wn − yn → 0, we get ynk ⇀ z. So, {yn} ⊂ C
guarantees z ∈ C. Also, since A is sequentially weakly continuous on C, we deduce that Aynk ⇀ Az. So,
we get Az �= 0. It follows that 0 < ‖Az‖ ≤ lim infk→∞ ‖Aynk‖. Since {ymk} ⊂ {ynk} and εk ↓ 0 as k → ∞,
we obtain that

0 ≤ lim sup
k→∞

‖εkμmk‖ = lim sup
k→∞

εk
‖Aymk‖

≤ lim supk→∞ εk

lim infk→∞ ‖Aynk‖
= 0.

Thus εkμmk → 0.
The last step is to show z ∈ Ω. Indeed, we have xnk ⇀ z. From Equation (10) we also have

xnk − Txnk → 0. Note that Lemma 5 yields the demiclosedness of I − T at zero. Thus z ∈ Fix(T).
Moreover, since wn − zn → 0 and wnk ⇀ z, we have znk ⇀ z. From Equation (8) we get znk − Sznk → 0.
By Lemma 5 we know that I − S is demiclosed at zero, and hence we have (I − S)z = 0, i.e., z ∈ Fix(S).
In addition, taking k → ∞, we infer that the right hand side of Equation (11) converges to zero by the
Lipschitzian property of A, the boundedness of {ymk}, {μmk}, and the limit limk→∞ εkμmk = 0. Therefore,
〈Ax, x − z〉 = lim infk→∞〈Ax, x − ymk 〉 ≥ 0, ∀x ∈ C. From Lemma 3 we get z ∈ VI(C, A), and hence
z ∈ Ω. This completes the proof.

Theorem 1. Let {xn} be the sequence constructed by Algorithm 3. Suppose that Tnxn − Tn+1xn → 0. Then

xn → x∗ ∈ Ω ⇔

⎧⎪⎨⎪⎩
xn − xn+1 → 0,
xn − Tnxn → 0,
supn≥1 ‖(Tn − f )xn‖ < ∞,

where x∗ ∈ Ω is only a solution of the HVI: 〈( f − I)x∗, p− x∗〉 ≤ 0, ∀p ∈ Ω.

Proof. Without loss of generality, we may assume that {βn} ⊂ [a, b] ⊂ (0, 1). We can claim that PΩ ◦ f is
a contractive map. Banach’s Contraction Principle ensures that it has a unique fixed point, i.e., PΩ f (x∗) =
x∗. So, there exists a unique solution x∗ ∈ Ω to the HVI

〈(I − f )x∗, p− x∗〉 ≥ 0, ∀p ∈ Ω. (12)

It is clear that the necessity of the theorem is valid. In fact, if xn → x∗ ∈ Ω, then as n → ∞, we obtain
that ‖xn − xn+1‖ → 0, ‖xn − Tnxn‖ ≤ ‖xn − x∗‖+ ‖x∗ − Tnxn‖ ≤ (2 + θn)‖xn − x∗‖ → 0, and

sup
n≥1

‖Tnxn − f (xn)‖ ≤ sup
n≥1

(‖Tnxn − x∗‖+ ‖x∗ − f (x∗)‖+ ‖ f (x∗)− f (xn)‖)

≤ sup
n≥1

[(1 + θn)‖xn − x∗‖+ ‖x∗ − f (x∗)‖+ δ‖x∗ − xn‖]

≤ sup
n≥1

[(2 + θn)‖xn − x∗‖+ ‖x∗ − f (x∗)‖] < ∞.

We now assume that limn→∞(‖xn − xn+1‖ + ‖xn − Tnxn‖) = 0 and supn≥1 ‖(Tn − f )xn‖ < ∞,
and prove the sufficiency by the following steps.

Step 1. We claim the boundedness of {xn}. In fact, take a fixed p ∈ Ω arbitrarily. From Equation (6)
we get

‖wn − p‖2 − (1− μ)‖wn − yn‖2 − (1− μ)‖un − yn‖2 ≥ ‖un − p‖2, (13)

which hence yields
‖wn − p‖ ≥ ‖un − p‖, ∀n ≥ 1. (14)

98



Mathematics 2019, 7, 860

By the definition of wn, we have

‖wn − p‖ ≤ (1 + θn)‖xn − p‖+ σn‖xn − xn−1‖
= (1 + θn)‖xn − p‖+ αn · σn

αn
‖xn − xn−1‖.

(15)

From supn≥1
σn
αn

< ∞ and supn≥1 ‖xn − xn−1‖ < ∞, we deduce that supn≥1
σn
αn
‖xn − xn−1‖ < ∞,

which immediately implies that ∃M1 > 0 s.t.

M1 ≥
σn

αn
‖xn − xn−1‖, ∀n ≥ 1. (16)

From Equations (14)–(16), we obtain

‖un − p‖ ≤ ‖wn − p‖ ≤ (1 + θn)‖xn − p‖+ αn M1, ∀n ≥ 1. (17)

Note that A(C) is bounded, yn = PC(I − τn)Awn, f (H) ⊂ C ⊂ Cn and un = PCn(wn − τn Ayn).
Hence, we know that {Ayn} is a bounded sequence. So, from supn≥1 ‖(Tn − f )xn‖ < ∞, it follows that

‖un − f (xn)‖ = ‖PCn(wn − τn Ayn)− PCn f (xn)‖ ≤ ‖wn − τn Ayn − f (xn)‖
≤ ‖wn − Tnxn‖+ ‖Tnxn − f (xn)‖+ τn‖Ayn‖
≤ ‖xn − xn−1‖+ ‖(Tn − f )xn‖+ γ‖Ayn‖ ≤ M0,

where supn≥1(‖xn − xn−1‖ + ‖(Tn − f )xn‖ + γ‖Ayn‖) ≤ M0 for some M0 > 0. Taking into account

limn→∞
θn(2+θn)
αn(1−βn)

= 0, we know that ∃n0 ≥ 1 such that

θn(2 + θn) ≤
αn(1− βn)(1− δ)

2
(≤ αn(1− δ)

2
), ∀n ≥ n0.

So, from Algorithm 3 and Equation (17) it follows that for all n ≥ n0,

‖zn − p‖ ≤ αnδ‖xn − p‖+ (1− αn)‖un − p‖+ αn‖( f − I)p‖
≤ [1− αn(1− δ) + θn]‖xn − p‖+ αn(M1 + ‖( f − I)p‖)
≤ [1− αn(1−δ)

2 ]‖xn − p‖+ αn(M1 + ‖( f − I)p‖),

which together with Lemma 4 and (γn + δn)ζ ≤ γn, implies that for all n ≥ n0,

‖xn+1 − p‖ = ‖βn(Tnxn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖
≤ βn(1 + θn)‖xn − p‖+ (1− βn)‖zn − p‖+ γnαn‖un − f (xn)‖
≤ βn(1 + θn)‖xn − p‖+ (1− βn)[(1− αn(1−δ)

2 )‖xn − p‖+ αn(M0 + M1 + ‖( f − I)p‖)]
≤ [1− αn(1−βn)(1−δ)

2 + βn
αn(1−βn)(1−δ)

2 ]‖xn − p‖+ αn(1− βn)(M0 + M1 + ‖( f − I)p‖)
= [1− αn(1−βn)2(1−δ)

2 ]‖xn − p‖+ αn(1−βn)2(1−δ)
2 · 2(M0+M1+‖( f−I)p‖)

(1−δ)(1−βn)
.

By induction, we obtain ‖xn − p‖ ≤ max{‖xn0 − p‖, 2(M0+M1+‖( f−I)p‖)
(1−δ)(1−b) }, ∀n ≥

n0. Therefore, we derive the boundedness of {xn} and hence the one of sequences
{un}, {wn}, {yn}, {zn}, { f (xn)}, {Szn}, {Tnxn}.

Step 2. We claim that ∃M4 > 0 s.t.

(1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4, ∀n ≥ n0.
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In fact, using Lemmas 4 and 7 and the convexity of ‖ · ‖2, we get

‖xn+1 − p‖2 = ‖βn(Tnxn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖2

≤ βn‖Tnxn − p‖2 + (1− βn)‖ 1
1−βn

[γn(zn − p) + δn(Szn − p)]‖2

+ 2(1− βn)αn‖un − f (xn)‖‖xn+1 − p‖
≤ βn‖Tnxn − p‖2 + (1− βn){[1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn

− (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + 2αn〈( f − I)p, zn − p〉}
+ 2(1− βn)αn‖un − f (xn)‖‖xn+1 − p‖

≤ βn‖Tnxn − p‖2 + (1− βn){[1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn

− (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M2},

(18)

where
Λn := θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖],

and
sup
n≥1

2(‖( f − I)p‖‖zn − p‖+ ‖un − f (xn)‖‖xn+1 − p‖) ≤ M2

for some M2 > 0. Also, from Equation (16) we have

Λn = θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]
≤ θn(2 + θn)‖xn − p‖2 + αn M1‖[2(1 + θn)‖xn − p‖+ αn M1]

= αn{ θn
αn
(2 + θn)‖xn − p‖2 + M1‖[2(1 + θn)‖xn − p‖+ αn M1]} ≤ αn M3,

(19)

where
sup
n≥1

{ θn

αn
(2 + θn)‖xn − p‖2 + M1‖[2(1 + θn)‖xn − p‖+ αn M1]} ≤ M3

for some M3 > 0. Note that

θn(2 + θn) ≤
αn(1− βn)(1− δ)

2
, ∀n ≥ n0.

Substituting Equation (19) for Equation (18), we obtain that for all n ≥ n0,

‖xn+1 − p‖2 ≤ βn(1 + θn)2‖xn − p‖2 + (1− βn){[1− αn(1− δ)]‖xn − p‖2 + (1− αn)αn M3

− (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M2}
≤ [1− αn(1−βn)(1−δ)

2 ]‖xn − p‖2 + αn M3

− (1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M2

≤ ‖xn − p‖2 − (1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M4,

where M4 := M2 + M3. This immediately implies that for all n ≥ n0,

(1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4. (20)

Step 3. We claim that ∃M > 0 s.t.

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ γn+δn
(1−2δ)δn−γn

( θn
αn
· 2M2

1−b + σn
αn
‖xn − xn−1‖3M)}.
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In fact, we get

‖wn − p‖2 ≤ [(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]2
= ‖xn − p‖2 + θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]
≤ ‖xn − p‖2 + θn2M2 + σn‖xn − xn−1‖3M,

(21)

where M ≥ supn≥1{(1 + θn)‖xn − p‖, σn‖xn − xn−1‖} for some M > 0. From Algorithm 3 and the
convexity of ‖ · ‖2, we have

‖xn+1 − p‖2 = ‖βn(Tnxn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖2

≤ ‖βn(Tnxn − p) + γn(zn − p) + δn(Szn − p)‖2 + 2γnαn〈un − f (xn), xn+1 − p〉
≤ βn‖Tnxn − p‖2 + (1− βn)‖ 1

1−βn
[γn(zn − p) + δn(Szn − p)]‖2

+ 2γnαn〈un − p, xn+1 − p〉+ 2γnαn〈p− f (xn), xn+1 − p〉,

which together with Lemma 4, leads to

‖xn+1 − p‖2 ≤ βn(1 + θn)2‖xn − p‖2 + (1− βn)‖zn − p‖2 + 2γnαn‖un − p‖‖xn+1 − p‖
+ 2γnαn〈p− f (xn), xn+1 − p〉

≤ βn(1 + θn)2‖xn − p‖2 + (1− βn)[(1− αn)‖un − p‖2 + 2αn〈 f (xn)− p, zn − p〉]
+ γnαn(‖un − p‖2 + ‖xn+1 − p‖2) + 2γnαn〈p− f (xn), xn+1 − p〉.

From Equations (17) and (21) we know that

‖un − p‖2 ≤ ‖xn − p‖2 + θn2M2 + σn‖xn − xn−1‖3M.

Hence, we have

‖xn+1 − p‖2 ≤ [1− αn(1− βn)]‖xn − p‖2 + βnθn2M2 + (1− βn)(1− αn)(θn2M2

+ σn‖xn − xn−1‖3M) + 2αnδn〈 f (xn)− p, zn − p〉+ γnαn(‖xn − p‖2

+ ‖xn+1 − p‖2) + (1− βn)αn(θn2M2 + σn‖xn − xn−1‖3M)

+ 2γnαn〈 f (xn)− p, zn − xn+1〉
≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδnδ‖xn − p‖2 + 2αnδn〈 f (p)− p, xn − p〉+ 2αnδn‖ f (xn)− p‖‖zn − xn‖
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + (1− βn)(

θn2M2

1−βn
+ σn‖xn − xn−1‖3M),

which immediately yields

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ γn+δn
(1−2δ)δn−γn

( θn
αn
· 2M2

1−b + σn
αn
‖xn − xn−1‖3M)}.

(22)
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Step 4. We claim the strong convergence of {xn} to a unique solution x∗ ∈ Ω to the HVI Equation (12).
In fact, setting p = x∗, from Equation (22) we know that

‖xn+1 − x∗‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − x∗‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− x∗‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (x∗)− x∗, xn − x∗〉

+ γn+δn
(1−2δ)δn−γn

( θn
αn
· 2M2

1−b + σn
αn
‖xn − xn−1‖3M)}.

According to Lemma 4, it is sufficient to prove that lim supn→∞〈( f − I)x∗, xn − x∗〉 ≤ 0. Since xn −
xn+1 → 0, αn → 0 and {βn} ⊂ [a, b] ⊂ (0, 1), from Equation (20) we get

lim sup
n→∞

(1− αn)(1− b)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2]

≤ lim sup
n→∞

[‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4]

≤ lim sup
n→∞

(‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖ = 0,

which hence leads to
lim

n→∞
‖wn − yn‖ = lim

n→∞
‖un − yn‖ = 0. (23)

Obviously, the assumptions ‖xn − xn+1‖ → 0 and ‖xn − Tnxn‖ → 0 guarantee that ‖wn − xn‖ ≤
‖Tnxn − xn‖+ ‖xn − xn−1‖ → 0 (n → ∞). Thus,

‖xn − yn‖ ≤ ‖xn − wn‖+ ‖wn − yn‖ → 0, (n → ∞).

Since zn = (1 − αn)un + αn f (xn) with un := PCn(wn − τn Ayn), from Equation (23) and the
boundedness of {xn}, {un}, we get

‖zn − yn‖ ≤ αn(‖ f (xn)‖+ ‖un‖) + ‖un − yn‖ → 0, (n → ∞), (24)

and hence
‖zn − xn‖ ≤ ‖zn − yn‖+ ‖yn − xn‖ → 0, (n → ∞).

Obviously, combining Equations (23) and (24) guarantees that

‖wn − zn‖ ≤ ‖wn − yn‖+ ‖yn − zn‖ → 0, (n → ∞).

Since {xn} is bounded, we know that ∃{xnk} ⊂ {xn} s.t.

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = lim
k→∞

〈( f − I)x∗, xnk − x∗〉. (25)

Next, we may suppose that xnk ⇀ x̃. Hence from Equation (25) we get

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = lim
k→∞

〈( f − I)x∗, xnk − x∗〉 = 〈( f − I)x∗, x̃− x∗〉. (26)

From wn − xn → 0 and xnk ⇀ x̃ it follows that wnk ⇀ x̃.
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Since Tnxn − Tn+1xn → 0, xn − xn+1 → 0, wn − xn → 0, wn − zn → 0 and wnk ⇀ x̃, from Lemma 8
we conclude that x̃ ∈ Ω. Therefore, from Equations (12) and (26) we infer that

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = 〈( f − I)x∗, x̃− x∗〉 ≤ 0.

Note that
∞

∑
n=0

(1− 2δ)δn − γn

1− αnγn
αn = ∞.

It is clear that

lim sup
n→∞

{ 2γn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn+1‖+ 2δn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn‖

+ 2δn
(1−2δ)δn−γn

〈 f (x∗)− x∗, xn − x∗〉+ γn+δn
(1−2δ)δn−γn

( θn
αn
· 2M2

1−b + σn
αn
‖xn − xn−1‖3M)} ≤ 0.

Consequently, all conditions of Lemma 4 are satisfied, and hence we immediately deduce that xn → x∗.
This completes the proof.

Next, we introduce another inertial-like subgradient extragradient algorithm (Algorithm 4) with
line-search process as the following.

It is remarkable that Lemmas 6–8 are still valid for Algorithm 4.

Algorithm 4: Inertial-like subgradient extragradient algorithm (II).

Initialization: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iterative Steps: Compute xn+1 in what follows:
Step 1. Put wn = σn(xn − xn−1) + Tnxn and calculate yn = PC(wn − τn Awn), where τn is chosen to
be the largest τ ∈ {γ, γl, γl2, ...} such that

τ‖Awn − Ayn‖ ≤ μ‖wn − yn‖.

Step 2. Calculate zn = (1− αn)PCn(wn − τn Ayn) + αn f (xn) with
Cn := {x ∈ H : 〈wn − τn Awn − yn, x− yn〉 ≤ 0}.

Step 3. Calculate
xn+1 = γnPCn(wn − τn Ayn) + δnSzn + βnTnwn.

Again set n := n + 1 and return to Step 1.

Theorem 2. Let {xn} be the sequence constructed by Algorithm 4. Suppose that Tnxn − Tn+1xn → 0. Then

xn → x∗ ∈ Ω ⇔

⎧⎪⎨⎪⎩
xn − xn+1 → 0,
xn − Tnxn → 0,
supn≥1 ‖(Tn − f )xn‖ < ∞,

where x∗ ∈ Ω is only a solution of the HVI: 〈(I − f )x∗, p− x∗〉 ≥ 0, ∀p ∈ Ω.

Proof. Using the same reasoning as in the proof of Theorem 1, we know that there is only a solution
x∗ ∈ Ω of Equation (12), and that the necessity of the theorem is true.

103



Mathematics 2019, 7, 860

We claim the sufficiency of the theorem below. For the purpose, we suppose that limn→∞(‖xn −
xn+1‖ + ‖xn − Tnxn‖) = 0 and supn≥1 ‖(Tn − f )xn‖ < ∞. Then we prove the sufficiency by the
following steps.

Step 1. We claim the boundedness of {xn}. In fact, using the same reasoning as in Step 1 of the
proof of Theorem 1, we obtain that inequalities Equations (13)–(17) hold. Noticing limn→∞

θn(2+θn)
αn(1−βn)

= 0,
we infer that ∃n0 ≥ 1 s.t.

θn(2 + θn) ≤
αn(1− βn)(1− δ)

2
(≤ αn(1− δ)

2
), ∀n ≥ n0.

So, from Algorithm 4 and Equation (17) it follows that for all n ≥ n0,

‖zn − p‖ ≤ αnδ‖xn − p‖+ (1− αn)[(1 + θn)‖xn − p‖+ αn M1] + αn‖( f − I)p‖
≤ [1− αn(1−δ)

2 ]‖xn − p‖+ αn(M1 + ‖( f − I)p‖),

which together with Lemma 4 and (γn + δn)ζ ≤ γn, implies that for all n ≥ n0,

‖xn+1 − p‖ = ‖βn(Tnwn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖
≤ βn(1 + θn)‖wn − p‖+ (1− βn)‖zn − p‖+ γnαn‖un − f (xn)‖
≤ [1− αn(1−βn)(1−δ)

2 + βnθn(2 + θn)]‖xn − p‖+ βn(1 + θn)αn M1

+ αn(1− βn)(M0 + M1 + ‖( f − I)p‖)
≤ [1− αn(1−βn)(1−δ)

2 + βn
αn(1−βn)(1−δ)

2 ]‖xn − p‖+ αn(1− βn)(M0 + M1
1+θn
1−βn

+ ‖( f − I)p‖)

= [1− αn(1−βn)2(1−δ)
2 ]‖xn − p‖+ αn(1−βn)2(1−δ)

2 · 2(M0+M1
1+θn
1−βn +‖( f−I)p‖)

(1−δ)(1−βn)
.

Hence,

‖xn − p‖ ≤ max{‖xn0 − p‖,
2(M0 + M1

2
1−b + ‖( f − I)p‖)

(1− δ)(1− b)
}, ∀n ≥ n0.

Thus, sequence {xn} is bounded.

Step 2. We claim that for all n ≥ n0,

‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4 ≥ (1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2],

with constant M4 > 0. Indeed, utilizing Lemmas 4 and 7 and the convexity of ‖ · ‖2, one reaches

‖xn+1 − p‖2 = ‖βn(Tnwn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖2

≤ βn‖Tnwn − p‖2 + (1− βn)‖ 1
1−βn

[γn(zn − p) + δn(Szn − p)]‖2

+ 2(1− βn)αn‖un − f (xn)‖‖xn+1 − p‖
≤ βn(1 + θn)2‖wn − p‖2 + (1− βn){[1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn

− (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + 2αn〈( f − I)p, zn − p〉}
+ 2(1− βn)αn‖un − f (xn)‖‖xn+1 − p‖

≤ βn(1 + θn)2(‖xn − p‖2 + Λn) + (1− βn){[1− αn(1− δ)]‖xn − p‖2 + (1− αn)Λn

− (1− αn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M2},

(27)
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where Λn := θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖ + σn‖xn − xn−1‖],
and supn≥1 2(‖( f − I)p‖‖zn − p‖ + ‖un − f (xn)‖‖xn+1 − p‖) ≤ M2 for some M2 > 0. Also,
from Equation (16) we have

Λn = θn(2 + θn)‖xn − p‖2 + σn‖xn − xn−1‖[2(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]
≤ αn{ θn

αn
(2 + θn)‖xn − p‖2 + M1‖[2(1 + θn)‖xn − p‖+ αn M1]} ≤ αn M3,

(28)

where supn≥1{ θn
αn
(2+ θn)‖xn − p‖2 + M1‖[2(1+ θn)‖xn − p‖+ αn M1]} ≤ M3 for some M3 > 0. Note that

θn(2 + θn) ≤ αn(1−βn)(1−δ)
2 , ∀n ≥ n0. Substituting Equation (28) for Equation (27), we obtain that for all

n ≥ n0,

‖xn+1 − p‖2 ≤ [1− αn(1− βn)(1− δ) + βnθn(2 + θn)]‖xn − p‖2 + βn(1 + θn)2αn M3

+ (1− βn)(1− αn)αn M3 − (1− αn)(1− βn)(1− μ)[‖wn − yn‖2

+ ‖un − yn‖2] + (1− βn)αn M2

≤ ‖xn − p‖2 − (1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] + αn M4,

where M4 := M2 + 4M3. This immediately implies that for all n ≥ n0,

(1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4.

Step 3. We claim that ∃M > 0 s.t.

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ γn+δn
(1−2δ)δn−γn

( θn
αn
· 2M2(1+b(1+θn)2)

1−b + σn
αn
‖xn − xn−1‖ 3M(1+bθn(2+θn))

1−b )}.

(29)

In fact, we get

‖wn − p‖2 ≤ [(1 + θn)‖xn − p‖+ σn‖xn − xn−1‖]2 ≤ ‖xn − p‖2 + θn2M2 + σn‖xn − xn−1‖3M, (30)

where ∃M > 0 s.t. supn≥1{(1 + θn)‖xn − p‖, σn‖xn − xn−1‖} ≤ M. From Algorithm 4 and the convexity
of ‖ · ‖2, we have

‖xn+1 − p‖2 = ‖βn(Tnwn − p) + γn(zn − p) + δn(Szn − p) + γn(un − zn)‖2

≤ βn‖Tnwn − p‖2 + (1− βn)‖ 1
1−βn

[γn(zn − p) + δn(Szn − p)]‖2

+ 2γnαn〈un − p, xn+1 − p〉+ 2γnαn〈p− f (xn), xn+1 − p〉,

which together with Lemma 4, leads to

‖xn+1 − p‖2 ≤ βn(1 + θn)2‖wn − p‖2 + (1− βn)‖zn − p‖2 + 2γnαn‖un − p‖‖xn+1 − p‖
+ 2γnαn〈p− f (xn), xn+1 − p〉

≤ βn(1 + θn)2(‖xn − p‖2 + θn2M2 + σn‖xn − xn−1‖3M) + (1− βn)[(1− αn)‖un − p‖2

+ 2αn〈 f (xn)− p, zn − p〉] + γnαn(‖un − p‖2 + ‖xn+1 − p‖2)

+ 2γnαn〈p− f (xn), xn+1 − p〉.
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By Step 3 of Algorithm 4, and from Equation (30) we know that ‖un − p‖2 ≤ ‖xn − p‖2 + θn2M2 +

σn‖xn − xn−1‖3M. Hence, we have

‖xn+1 − p‖2 ≤ [1− αn(1− βn)]‖xn − p‖2 + βnθn2M2 + (1− βn)(1− αn)(θn2M2

+ σn‖xn − xn−1‖3M) + 2αnδn〈 f (xn)− p, zn − p〉+ γnαn(‖xn − p‖2

+ ‖xn+1 − p‖2) + (1− βn)αn(θn2M2 + σn‖xn − xn−1‖3M)

+ 2γnαn〈 f (xn)− p, zn − xn+1〉+ βn(1 + θn)2(θn2M2 + σn‖xn − xn−1‖3M)

≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδn〈 f (xn)− p, xn − p〉+ 2αnδn〈 f (xn)− p, zn − xn〉
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + (1− βn)[θn

2M2(1+βn(1+θn)2)
1−βn

+ σn‖xn − xn−1‖ 3M(1+βnθn(2+θn))
1−βn

]

≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδnδ‖xn − p‖2 + 2αnδn〈 f (p)− p, xn − p〉+ 2αnδn‖ f (xn)− p‖‖zn − xn‖
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + (1− βn)[θn

2M2(1+b(1+θn)2)
1−b

+ σn‖xn − xn−1‖ 3M(1+bθn(2+θn))
1−b ],

which immediately yields Equation (29).
Step 4. We claim the strong convergence of {xn} to a unique solution x∗ ∈ Ω of HVI Equation (12).

In fact, using the same reasoning as in Step 4 of the proof of Theorem 1, we derive the desired conclusion.
This completes the proof.

Next, we shall show how to solve the VIP and CFPP in the following illustrating example.
The initial point x0 = x1 is randomly chosen in R = (−∞, ∞). Take f (x) = 1

4 sin x, γ = l = μ =
1
2 , σn = αn = 1

n+1 , βn = 1
3 , γn = 1

6 , and δn = 1
2 . Then we know that δ = 1

4 and f (R) ⊂ [− 1
4 , 1

4 ].
We first provide an example of Lipschitz continuous and pseudomonotone mapping A, asymptotically

nonexpansive mapping T and strictly pseudocontractive mapping S with Ω = Fix(T) ∩ Fix(S) ∩
VI(C, A) �= ∅. Let C = [−1.5, 1] and H = R with the inner product 〈a, b〉 = ab and induced norm
‖ · ‖ = | · |. Let A, T, S : H → H be defined as Ax := 1

1+| sin x| −
1

1+|x| , Tx := 4
5 sin x and Sx := 1

3 x + 1
2 sin x

for all x ∈ H. Now, we first show that A is pseudomonotone and Lipschitz continuous with L = 2 such
that A(C) is bounded. Indeed, it is clear that A(C) is bounded. Moreover, for all x, y ∈ H we have

‖Ax− Ay‖ = | 1
1+‖ sin x‖ −

1
1+‖x‖ −

1
1+‖ sin y‖ +

1
1+‖y‖ |

≤ | ‖ sin y‖−‖ sin x‖
(1+‖ sin x‖)(1+‖ sin y‖) |+ | ‖y‖−‖x‖

(1+‖x‖)(1+‖y‖) |
≤ ‖ sin x− sin y‖+ ‖x− y‖ ≤ 2‖x− y‖.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseudomonotone.
For any given x, y ∈ H, it is clear that the relation holds:

〈Ax, y− x〉 = (
1

1 + | sin x| −
1

1 + |x| )(y− x) ≥ 0 ⇒ 〈Ay, y− x〉 = (
1

1 + | sin y| −
1

1 + |y| )(y− x) ≥ 0.

Furthermore, it is easy to see that T is asymptotically nonexpansive with θn = ( 4
5 )

n, ∀n ≥ 1, such
that ‖Tn+1xn − Tnxn‖ → 0 as n → ∞. Indeed, we observe that

‖Tnx− Tny‖ ≤ 4
5
‖Tn−1x− Tn−1y‖ ≤ · · · ≤ (

4
5
)n‖x− y‖ ≤ (1 + θn)‖x− y‖,
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and

‖Tn+1xn − Tnxn‖ ≤ (
4
5
)n−1‖T2xn − Txn‖ = (

4
5
)n−1‖4

5
sin(Txn)−

4
5

sin xn‖ ≤ 2(
4
5
)n → 0, (n → ∞).

It is clear that Fix(T) = {0} and

lim
n→∞

θn

αn
= lim

n→∞

(4/5)n

1/(n + 1)
= 0.

Moreover, it is readily seen that supn≥1 |(Tn − f )xn| = supn≥1 | 4
5 sin(Tn−1xn)− 1

4 sin xn| ≤ 21
20 < ∞.

In addition, it is clear that S is strictly pseudocontractive with constant ζ = 1
4 . Indeed, we observe that for

all x, y ∈ H,

‖Sx− Sy‖2 ≤ [
1
3
‖x− y‖+ 1

2
‖ sin x− sin y‖]2 ≤ ‖x− y‖2 +

1
4
‖(I − S)x− (I − S)y‖2.

It is clear that (γn + δn)ζ = ( 1
6 + 1

2 ) · 1
4 ≤ 1

6 = γn < (1− 2δ)δn = (1− 2 · 1
4 ) · 1

2 = 1
4 for all n ≥ 1.

Therefore, Ω = Fix(T) ∩ Fix(S) ∩ VI(C, A) = {0} �= ∅. In this case, Algorithm 3 can be rewritten as
follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

wn = Tnxn +
1

n+1 (xn − xn−1),
yn = PC(wn − τn Awn),
zn = 1

n+1 f (xn) +
n

n+1 PCn(wn − τn Ayn),
xn+1 = 1

3 Tnxn +
1
6 PCn(wn − τn Ayn) +

1
2 Szn, ∀n ≥ 1,

where Cn and τn are picked up as in Algorithm 3. Thus, by Theorem 1, we know that {xn} converges to
0 ∈ Ω if and only if |xn − xn+1|+ |xn − Tnxn| → 0, (n → ∞).

On the other hand, Algorithm 4 can be rewritten as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
wn = Tnxn +

1
n+1 (xn − xn−1),

yn = PC(wn − τn Awn),
zn = 1

n+1 f (xn) +
n

n+1 PCn(wn − τn Ayn),
xn+1 = 1

3 Tnwn +
1
6 PCn(wn − τn Ayn) +

1
2 Szn, ∀n ≥ 1,

where Cn and τn are picked up as in Algorithm 4. Thus, by Theorem 2, we know that {xn} converges to
0 ∈ Ω if and only if |xn − xn+1|+ |xn − Tnxn| → 0, (n → ∞).
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Abstract: In a real Hilbert space, we denote CFPP and VIP as common fixed point problem
of finitely many strict pseudocontractions and a variational inequality problem for Lipschitzian,
pseudomonotone operator, respectively. This paper is devoted to explore how to find a common
solution of the CFPP and VIP. To this end, we propose Mann viscosity algorithms with line-search
process by virtue of subgradient extragradient techniques. The designed algorithms fully assimilate
Mann approximation approach, viscosity iteration algorithm and inertial subgradient extragradient
technique with line-search process. Under suitable assumptions, it is proven that the sequences
generated by the designed algorithms converge strongly to a common solution of the CFPP and VIP,
which is the unique solution to a hierarchical variational inequality (HVI).

Keywords: method with line-search process; pseudomonotone variational inequality; strictly
pseudocontractive mappings; common fixed point; sequentially weak continuity

MSC: 47H05; 47H09; 47H10; 90C52

1. Introduction and Preliminaries

Throughout this article, we suppose that the real vector space H is a Hilbert one and the nonempty
subset C of H is a convex and closed one. An operator S : C → H is called:

(i) L-Lipschitzian if there exists L > 0 such that ‖Su− Sv‖ ≤ L‖u− v‖ ∀u, v ∈ C;
(ii) sequentially weakly continuous if for any {wn} ⊂ C, the following implication holds: wn ⇀

w ⇒ Swn ⇀ Sw;
(iii) pseudomonotone if 〈Su, u− v〉 ≤ 0 ⇒ 〈Sv, u− v〉 ≤ 0 ∀u, v ∈ C;
(iv) monotone if 〈Su− Sv, v− u〉 ≤ 0 ∀u, v ∈ C;
(v) γ-strongly monotone if ∃γ > 0 s.t. 〈Su− Sw, u− w〉 ≥ γ‖u− w‖2 ∀u, w ∈ C.
It is not difficult to observe that monotonicity ensures the pseudomonotonicity. A self-mapping

S : C → C is called a η-strict pseudocontraction if the relation holds: 〈Su− Sv, u− v〉 ≤ ‖u− v‖2 −
1−η

2 ‖(I − S)u − (I − S)v‖2 ∀u, v ∈ C for some η ∈ [0, 1). By [1] we know that, in the case where
S is η-strictly pseudocontractive, S is Lipschitzian, i.e., ‖Su − Sv‖ ≤ 1+η

1−η ‖u − v‖ ∀u, v ∈ C. It is
clear that the class of strict pseudocontractions includes the class of nonexpansive operators, i.e.,
‖Su− Sv‖ ≤ ‖u− v‖ ∀u, v ∈ C. Both classes of nonlinear operators received much attention and many
numerical algorithms were designed for calculating their fixed points in Hilbert or Banach spaces; see
e.g., [2–11].

Mathematics 2019, 7, 925; doi:10.3390/math7100925 www.mdpi.com/journal/mathematics111
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Let A be a self-mapping on H. The classical variational inequality problem (VIP) is to find z ∈ C
such that 〈Az, y− z〉 ≥ 0 ∀y ∈ C. The solution set of such a VIP is indicated by VI(C, A). To the best
of our knowledge, one of the most effective methods for solving the VIP is the gradient-projection
method. Recently, many authors numerically investigated the VIP in finite dimensional spaces, Hilbert
spaces or Banach spaces; see e.g., [12–20].

In 2014, Kraikaew and Saejung [21] suggested a Halpern-type gradient-like algorithm to deal
with the VIP ⎧⎪⎪⎪⎨⎪⎪⎪⎩

vk = PC(uk − �Auk),
Ck = {v ∈ H : 〈uk − �Auk − vk, vk − v〉 ≥ 0},
wk = PCk (un − �Avk),
uk+1 = �ku0 + (1− �k)wk ∀k ≥ 0,

where � ∈ (0, 1
L ), {�k} ⊂ (0, 1), limk→∞ �k = 0, ∑∞

k=1 �k = +∞, and established strong convergence
theorems for approximation solutions in Hilbert spaces. Later, Thong and Hieu [22] designed an
inertial algorithm, i.e., for arbitrarily given u0, u1 ∈ H, the sequence {uk} is constructed by⎧⎪⎪⎪⎨⎪⎪⎪⎩

zk = uk + �k(uk − uk−1),
vk = PC(zk − �Azk),
Ck = {v ∈ H : 〈zk − �Azk − vk, vk − v〉 ≥ 0},
uk+1 = PCk (zn − �Avk) ∀k ≥ 1,

with � ∈ (0, 1
L ). Under mild assumptions, they proved that {uk} converge weakly to a point of VI(C, A).

Very recently, Thong and Hieu [23] suggested two inertial algorithms with linear-search process, to
solve the VIP for Lipschitzian, monotone operator A and the FPP for a quasi-nonexpansive operator
S satisfying a demiclosedness property in H. Under appropriate assumptions, they proved that the
sequences constructed by the suggested algorithms converge weakly to a point of Fix(S) ∩VI(C, A).
Further research on common solutions problems, we refer the readers to [24–38].

In this paper, we first introduce Mann viscosity algorithms via subgradient extragradient
techniques, and then establish some strong convergence theorems in Hilbert spaces. It is remarkable
that our algorithms involve line-search process.

The following lemmas are useful for the convergence analysis of our algorithms in the sequel.

Lemma 1. [39] Let the operator A be pseudomonotone and continuous on C. Given a point w ∈ C. Then the
relation holds: 〈Aw, w− y〉 ≤ 0 ∀y ∈ C ⇔ 〈Ay, w− y〉 ≤ 0 ∀y ∈ C.

Lemma 2. [40] Suppose that {sk} is a sequence in [0,+∞) such that sk+1 ≤ tkbk + (1− tk)sk ∀k ≥ 1, where
{tk} and {bk} lie in real line R := (−∞, ∞), such that:

(a) {tk} ⊂ [0, 1] and ∑∞
k=1 tk = ∞;

(b) lim supk→∞ bk ≤ 0 or ∑∞
k=1 |tkbk| < ∞. Then sk → 0 as k → ∞.

From Ceng et al. [2] it is not difficult to find that the following lemmas hold.

Lemma 3. Let Γ be an η-strictly pseudocontractive self-mapping on C. Then I − Γ is demiclosed at zero.

Lemma 4. For l = 1, ..., N, let Γl be an ηl -strictly pseudocontractive self-mapping on C. Then for l = 1, ..., N,
the mapping Γl is an η-strict pseudocontraction with η = max{ηl : 1 ≤ l ≤ N}, such that

‖Γlu− Γlv‖ ≤
1 + η

1− η
‖u− v‖ ∀u, v ∈ C.

Lemma 5. Let Γ be an η-strictly pseudocontractive self-mapping on C. Given two reals γ, β ∈ [0,+∞).
If (γ + β)η ≤ γ, then ‖γ(u− v) + β(Γu− Γv)‖ ≤ (γ + β)‖u− v‖ ∀u, v ∈ C.
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2. Main Results

Our first algorithm is specified below.

Algorithm 1

Initial Step: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iteration Steps: Compute xn+1 below:
Step 1. Put vn = xn − σn(xn−1 − xn) and calculate un = PC(vn − �n Avn), where �n is picked to be the
largest � ∈ {γ, γl, γl2, ...} s.t.

�‖Avn − Aun‖ ≤ μ‖vn − un‖. (1)

Step 2. Calculate zn = (1 − αn)PCn(vn − �n Aun) + αn f (xn) with Cn := {v ∈ H : 〈vn − �n Avn −
un, un − v〉 ≥ 0}.
Step 3. Calculate

xn+1 = γnPCn(vn − �n Aun) + δnTnzn + βnxn. (2)

Update n := n + 1 and return to Step 1.
In this section, we always suppose that the following hypotheses hold:
Tk is a ζk-strictly pseudocontractive self-mapping on H for k = 1, ..., N s.t. ζ ∈ [0, 1) with ζ = max{ζk :
1 ≤ k ≤ N}.
A is L-Lipschitzian, pseudomonotone self-mapping on H, and sequentially weakly continuous on C,
such that Ω := ∩N

k=1Fix(Tk) ∩VI(C, A) �= ∅.
f : H → C is a δ-contraction with δ ∈ [0, 1

2 ).
{σn} ⊂ [0, 1] and {αn}, {βn}, {γn}, {δn} ⊂ (0, 1) are such that:
(i) βn + γn + δn = 1 and supn≥1

σn
αn
< ∞;

(ii) (1− 2δ)δn > γn ≥ (γn + δn)ζ ∀n ≥ 1 and lim infn→∞((1− 2δ)δn − γn) > 0;
(iii) limn→∞ αn = 0 and ∑∞

n=1 αn = ∞;
(iv) lim infn→∞ βn > 0, lim infn→∞ δn > 0 and lim supn→∞ βn < 1.
Following Xu and Kim [40], we denote Tn := TnmodN , ∀n ≥ 1, where the mod function takes values in
{1, 2, ..., N}, i.e., whenever n = jN + q for some j ≥ 0 and 0 ≤ q < N, we obtain that Tn = TN in the
case of q = 0 and Tn = Tq in the case of 0 < q < N.

Lemma 6. The Armijo-like search rule (1) is well defined, and min{γ, μl
L } ≤ �n ≤ γ.

Proof. Obviously, (1) holds for all γlm ≤ μ
L . So, �n is well defined and �n ≤ γ. In the case of

�n = γ, the inequality is true. In the case of �n < γ, (1) ensures ‖Avn − APC(vn − �n
l Avn)‖ >

μ
�n
l
‖vn − PC(vn − �n

l Avn)‖. The L-Lipschitzian property of A yields �n >
μl
L .

Lemma 7. Let {vn}, {un} and {zn} be the sequences constructed by Algorithm 1. Then

‖zn −ω‖2 ≤ (1− αn)‖vn −ω‖2 + αnδ‖xn −ω‖2 − (1− αn)(1− μ)[‖vn − un‖2

+ ‖hn − un‖2] + 2αn〈 f ω −ω, zn −ω〉 ∀ω ∈ Ω,
(3)

where hn := PCn(vn − �n Aun) ∀n ≥ 1.

Proof. First, taking an arbitrary p ∈ Ω ⊂ C ⊂ Cn, we observe that

2‖hn − p‖2 ≤ 2〈hn − p, vn − �n Aun − p〉
= ‖hn − p‖2 + ‖vn − p‖2 − ‖hn − vn‖2 − 2〈�n Aun, hn − p〉.

So, it follows that ‖vn − p‖2 − 2〈hn − p, �n Aun〉 − ‖hn − vn‖2 ≥ ‖hn − p‖2, which together with (1),
we deduce that 0 ≥ 〈p− un, Aun〉 and

‖hn − p‖2 ≤ ‖vn − p‖2 − ‖hn − vn‖2 + 2�n(〈Aun, p− un〉+ 〈Aun, un − hn〉)
≤ ‖vn − p‖2 − ‖un − hn‖2 − ‖vn − un‖2 + 2〈un − vn + �n Aun, un − hn〉.

(4)
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Since hn = PCn(vn − �n Aun) with Cn := {v ∈ H : 〈un − vn + �n Avn, un − v〉 ≤ 0}, we have 〈un − vn +

�n Avn, un − hn〉 ≤ 0, which together with (1), implies that

2〈un − vn + �n Aun, un − hn〉 = 2〈un − vn + �n Avn, un − hn〉+ 2�n〈Avn − Aun, hn − un〉
≤ 2μ‖un − vn‖‖un − hn‖ ≤ μ(‖vn − un‖2 + ‖hn − un‖2).

Therefore, substituting the last inequality for (4), we infer that

‖hn − p‖2 ≤ ‖vn − p‖2 − (1− μ)‖vn − un‖2 − (1− μ)‖hn − un‖2 ∀p ∈ Ω. (5)

In addition, we have

zn − p = (1− αn)(hn − p) + αn( f − I)p + αn( f (xn)− f (p)).

Using the convexity of the function h(t) = t2 ∀t ∈ R, from (5) we get

‖zn − p‖2 ≤ [αnδ‖xn − p‖+ (1− αn)‖hn − p‖]2 + 2αn〈( f − I)p, zn − p〉
≤ αnδ‖xn − p‖2 + (1− αn)‖hn − p‖2 + 2αn〈( f − I)p, zn − p〉
≤ αnδ‖xn − p‖2 + (1− αn)‖vn − p‖2 − (1− αn)(1− μ)[‖vn − un‖2

+ ‖hn − un‖2] + 2αn〈( f − I)p, zn − p〉.

Lemma 8. Let {xn}, {un}, and {zn} be bounded sequences constructed by Algorithm 1. If xn − xn+1 →
0, vn − un → 0, vn − zn → 0 and ∃{vni} ⊂ {vn} s.t. vni ⇀ z ∈ H, then z ∈ Ω.

Proof. According to Algorithm 1, we get σn(xn − xn−1) = vn − xn ∀n ≥ 1, and hence ‖xn − xn−1‖ ≥
‖vn − xn‖. Using the assumption xn − xn+1 → 0, we have

lim
n→∞

‖vn − xn‖ = 0. (6)

So,
‖zn − xn‖ ≤ ‖vn − zn‖+ ‖vn − xn‖ → 0.

Since {xn} is bounded, from vn = xn − σn(xn−1 − xn) we know that {vn} is a bounded vector
sequence. According to (5), we obtain that hn := PCn(vn − �n Aun) is a bounded vector sequence.
Also, by Algorithm 1 we get αn f (xn) + hn − xn − αnhn = zn − xn. So, the boundedness of {xn}, {hn}
guarantees that as n → ∞,

‖hn − xn‖ = ‖zn − xn − αn f (xn) + αnhn‖ ≤ ‖zn − xn‖+ αn(‖ f (xn)‖+ ‖hn‖)→ 0.

It follows that
xn+1 − zn = γn(hn − xn) + δn(Tnzn − zn) + (1− δn)(xn − zn),

which immediately yields

δn‖Tnzn − zn‖ = ‖xn+1 − xn + xn − zn − (1− δn)(xn − zn)− γn(hn − xn)‖
= ‖xn+1 − xn + δn(xn − zn)− γn(hn − xn)‖
≤ ‖xn+1 − xn‖+ ‖xn − zn‖+ ‖hn − xn‖.
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Since xn − xn+1 → 0, zn − xn → 0, hn − xn → 0 and lim infn→∞ δn > 0, we obtain ‖zn − Tnzn‖ → 0 as
n → ∞. This further implies that

‖xn − Tnxn‖ ≤ ‖xn − zn‖+ ‖zn − Tnzn‖+ 1+ζ
1−ζ ‖zn − xn‖

≤ 2
1−ζ ‖xn − zn‖+ ‖zn − Tnzn‖ → 0 (n → ∞).

(7)

We have 〈vn − �n Avn − un, v− un〉 ≤ 0 ∀v ∈ C, and

〈vn − un, v− un〉+ �n〈Avn, un − vn〉 ≤ �n〈Avn, v− vn〉 ∀v ∈ C. (8)

Note that �n ≥ min{γ, μl
L }. So, lim infi→∞〈Avni , v− vni 〉 ≥ 0 ∀v ∈ C. This yields lim infi→∞〈Auni , v−

uni 〉 ≥ 0 ∀v ∈ C. Since vn − xn → 0 and vni ⇀ z, we get xni ⇀ z. We may assume k = nimodN for all
i. By the assumption xn − xn+k → 0, we have xni+j ⇀ z for all j ≥ 1. Hence, ‖xni+j − Tk+jxni+j‖ =

‖xni+j − Tni+jxni+j‖ → 0. Then the demiclosedness principle implies that z ∈ Fix(Tk+j) for all j. This
ensures that

z ∈
N⋂

k=1

Fix(Tk). (9)

We now take a sequence {ςi} ⊂ (0, 1) satisfying ςi ↓ 0 as i → ∞. For all i ≥ 1, we denote by mi
the smallest natural number satisfying

〈Aunj , v− unj〉+ ςi ≥ 0 ∀j ≥ mi. (10)

Since {ςi} is decreasing, it is clear that {mi} is increasing. Noticing that {umi} ⊂ C ensures Aumi �=
0 ∀i ≥ 1, we set emi =

Aumi
‖Aumi ‖2 , we get 〈Aumi , emi 〉 = 1 ∀i ≥ 1. So, from (10) we get 〈Aumi , v + ςiemi −

umi 〉 ≥ 0 ∀i ≥ 1. Also, the pseudomonotonicity of A implies 〈A(v + ςiemi ), v + ςiemi − umi 〉 ≥ 0 ∀i ≥ 1.
This immediately leads to

〈Av− A(v + ςihmi ), v + ςiemi − umi 〉 − ςi〈Av, hmi 〉 ≤ 〈Av, v− umi 〉 ∀i ≥ 1. (11)

We claim limi→∞ ςiemi = 0. Indeed, from vni ⇀ z and vn − un → 0, we obtain uni ⇀ z. So,
{un} ⊂ C ensures z ∈ C. Also, the sequentially weak continuity of A guarantees that Auni ⇀ Az. Thus,
we have Az �= 0 (otherwise, z is a solution). Moreover, the sequentially weak lower semicontinuity
of ‖ · ‖ ensures 0 < ‖Az‖ ≤ lim infi→∞ ‖Auni‖. Since {umi} ⊂ {uni} and ςi ↓ 0 as i → ∞, we deduce

that 0 ≤ lim supi→∞ ‖ςiemi‖ = lim supi→∞
ςi

‖Aumi ‖
≤ lim supi→∞ ςi

lim infi→∞ ‖Auni ‖
= 0. Hence we get ςiemi → 0.

Finally we claim z ∈ Ω. In fact, letting i → ∞, we conclude that the right hand side of (11) tends to
zero by the Lipschitzian property of A, the boundedness of {umi}, {hmi} and the limit limi→∞ ςiemi = 0.
Thus, we get 〈Av, v− z〉 = lim infi→∞〈Av, v− umi 〉 ≥ 0 ∀v ∈ C. So, z ∈ VI(C, A). Therefore, from (9)
we have z ∈ ∩N

k=1Fix(Tk) ∩VI(C, A) = Ω.

Theorem 1. Assume A(C) is bounded. Let {xn} be constructed by Algorithm 1. Then

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
supn≥1 ‖xn − f xn‖ < ∞

where x∗ ∈ Ω is the unique solution to the hierarchical variational inequality (HVI): 〈(I − f )x∗, x∗ −ω〉 ≤
0, ∀ω ∈ Ω.
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Proof. Taking into account condition (iv) on {γn}, we may suppose that {βn} ⊂ [a, b] ⊂ (0, 1).
Applying Banach’s Contraction Principle, we obtain existence and uniqueness of a fixed point x∗ ∈ H
for the mapping PΩ ◦ f , which means that x∗ = PΩ f (x∗). Hence, the HVI

〈(I − f )x∗, x∗ −ω〉 ≤ 0, ∀ω ∈ Ω (12)

has a unique solution x∗ ∈ Ω := ∩N
k=1Fix(Tk) ∩VI(C, A)

It is now obvious that the necessity of the theorem is true. In fact, if xn → x∗ ∈ Ω, then we get
supn≥1 ‖xn − f (xn)‖ ≤ supn≥1(‖xn − x∗‖+ ‖x∗ − f (x∗)‖+ ‖ f (x∗)− f (xn)‖) < ∞ and

‖xn − xn+1‖ ≤ ‖xn − x∗‖+ ‖xn+1 − x∗‖ → 0 (n → ∞).

For the sufficient condition, let us suppose xn − xn+1 → 0 and supn≥1 ‖(I − f )xn‖ < ∞. The
sufficiency of our conclusion is proved in the following steps.

Step 1. We show the boundedness of {xn}. In fact, let p be an arbitrary point in Ω. Then
Tn p = p ∀n ≥ 1, and

‖vn − p‖2 − (1− μ)‖hn − un‖2 − (1− μ)‖vn − un‖2 ≥ ‖hn − p‖2, (13)

which hence leads to
‖vn − p‖ ≥ ‖hn − p‖ ∀n ≥ 1. (14)

By the definition of vn, we have

‖vn − p‖ ≤ ‖xn − p‖+ σn‖xn − xn−1‖ ≤ ‖xn − p‖+ αn ·
σn

αn
‖xn − xn−1‖. (15)

Noticing supn≥1
σn
αn
< ∞ and supn≥1 ‖xn − xn−1‖ < ∞, we obtain that supn≥1

σn
αn
‖xn − xn−1‖ < ∞.

This ensures that ∃M1 > 0 s.t.
σn

αn
‖xn − xn−1‖ ≤ M1 ∀n ≥ 1. (16)

Combining (14)–(16), we get

‖hn − p‖ ≤ ‖vn − p‖ ≤ ‖xn − p‖+ αn M1 ∀n ≥ 1. (17)

Note that A(C) is bounded, un = PC(vn − �n Avn), f (H) ⊂ C ⊂ Cn and hn = PCn(vn − �n Aun). Hence
we know that {Aun} is bounded. So, from supn≥1 ‖(I − f )xn‖ < ∞, it follows that

‖hn − f (xn)‖ ≤ ‖vn − �n Aun − f (xn)‖
≤ ‖xn − xn−1‖+ ‖xn − f (xn)‖+ γ‖Aun‖ ≤ M0,

where ∃M0 > 0 s.t. M0 ≥ supn≥1(‖xn − xn−1‖+ ‖xn − f (xn)‖+ γ‖Aun‖) (due to the assumption
xn − xn+1 → 0). Consequently,

‖zn − p‖ ≤ αnδ‖xn − p‖+ (1− αn)‖hn − p‖+ αn‖( f − I)p‖
≤ (1− αn(1− δ))‖xn − p‖+ αn(M1 + ‖( f − I)p‖),

which together with (γn + δn)ζ ≤ γn, yields

‖xn+1 − p‖ ≤ βn‖xn − p‖+ (1− βn)‖ 1
1−βn

[γn(zn − p) + δn(Tnzn − p)]‖+ γn‖hn − zn‖
≤ βn‖xn − p‖+ (1− βn)[(1− αn(1− δ))‖xn − p‖+ αn(M0 + M1 + ‖( f − I)p‖)]
= [1− αn(1− βn)(1− δ)]‖xn − p‖+ αn(1− βn)(1− δ)M0+M1+‖( f−I)p‖

1−δ .
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This shows that ‖xn − p‖ ≤ max{‖x1 − p‖, M0+M1+‖(I− f )p‖
1−δ } ∀n ≥ 1. Thus, {xn} is bounded, and so

are the sequences {hn}, {vn}, {un}, {zn}, {Tnzn}.

Step 2. We show that ∃M4 > 0 s.t.

(1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4.

In fact, using Lemma 7 and the convexity of ‖ · ‖2, we get

‖xn+1 − p‖2 ≤ ‖βn(xn − p) + γn(zn − p) + δn(Tnzn − p)‖2 + 2γnαn〈hn − f (xn), xn+1 − p〉
≤ βn‖xn − p‖2 + (1− βn)‖zn − p‖2 + 2(1− βn)αn‖hn − f (xn)‖‖xn+1 − p‖
≤ βn‖xn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αn)‖vn − p‖2

− (1− αn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M2},

(18)

where ∃M2 > 0 s.t. M2 ≥ supn≥1 2(‖( f − I)p‖‖zn − p‖+ ‖un − f (xn)‖‖xn+1 − p‖). Also,

‖vn − p‖2 ≤ ‖xn − p‖2 + αn(2M1‖xn − p‖+ αn M2
1)

≤ ‖xn − p‖2 + αn M3,
(19)

where ∃M3 > 0 s.t. M3 ≥ supn≥1(2M1‖xn − p‖+ βn M2
1). Substituting (19) for (18), we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn){(1− αn(1− δ))‖xn − p‖2 + (1− αn)αn M3

− (1− αn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M2}
≤ ‖xn − p‖2 − (1− αn)(1− βn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M4,

(20)

where M4 := M2 + M3. This immediately implies that

(1− αn)(1− βn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4. (21)

Step 3. We show that ∃M > 0 s.t.

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ γn+δn
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M}.

In fact, we get

‖vn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖(2‖xn − p‖+ σn‖xn − xn−1‖)
≤ ‖xn − p‖2 + σn‖xn − xn−1‖3M,

(22)

where ∃M > 0 s.t. M ≥ supn≥1{‖xn − p‖, σn‖xn − xn−1‖}. By Algorithm 1 and the convexity of ‖ · ‖2,
we have

‖xn+1 − p‖2 ≤ ‖βn(xn − p) + γn(zn − p) + δn(Tnzn − p)‖2 + 2γnαn〈hn − f (xn), xn+1 − p〉
≤ βn‖xn − p‖2 + (1− βn)‖ 1

1−βn
[γn(zn − p) + δn(Tnzn − p)]‖2

+ 2γnαn〈hn − p, xn+1 − p〉+ 2γnαn〈p− f (xn), xn+1 − p〉,

which leads to

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn)[(1− αn)‖hn − p‖2 + 2αn〈 f (xn)− p, zn − p〉]
+ γnαn(‖hn − p‖2 + ‖xn+1 − p‖2) + 2γnαn〈p− f (xn), xn+1 − p〉.
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Using (17) and (22) we obtain that ‖hn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖3M. Hence,

‖xn+1 − p‖2 ≤ [1− αn(1− βn)]‖xn − p‖2 + (1− βn)(1− αn)σn‖xn − xn−1‖3M
+ 2αnδn〈 f (xn)− p, zn − p〉+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2)

+ (1− βn)αnσn‖xn − xn−1‖3M + 2γnαn〈 f (xn)− p, zn − xn+1〉
≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδn〈 f (xn)− p, xn − p〉+ 2αnδn〈 f (xn)− p, zn − xn〉
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + (1− βn)σn‖xn − xn−1‖3M

≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδnδ‖xn − p‖2 + 2αnδn〈 f (p)− p, xn − p〉+ 2αnδn‖ f (xn)− p‖‖zn − xn‖
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + (1− βn)σn‖xn − xn−1‖3M,

which immediately yields

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ γn+δn
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M}.

(23)

Step 4. We show that xn → x∗ ∈ Ω, where x∗ is the unique solution of (12). Indeed, putting
p = x∗, we infer from (23) that

‖xn+1 − x∗‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − x∗‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− x∗‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (x∗)− x∗, xn − x∗〉

+ γn+δn
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M}.

(24)

It is sufficient to show that lim supn→∞〈( f − I)x∗, xn − x∗〉 ≤ 0. From (21), xn − xn+1 → 0, αn → 0
and {βn} ⊂ [a, b] ⊂ (0, 1), we get

lim sup
n→∞

(1− αn)(1− b)(1− μ)[‖vn − un‖2 + ‖hn − un‖2]

≤ lim sup
n→∞

[(‖xn − p‖+ ‖xn+1 − p‖)‖xn − xn+1‖+ αn M4] = 0.

This ensures that
lim

n→∞
‖vn − un‖ = 0 and lim

n→∞
‖hn − un‖ = 0. (25)

Consequently,
‖xn − un‖ ≤ ‖xn − vn‖+ ‖vn − un‖ → 0 (n → ∞).

Since zn = αn f (xn) + (1− αn)hn with hn := PCn(vn − �n Aun), we get

‖zn − un‖ = ‖αn f (xn)− αnhn + hn − un‖
≤ αn(‖ f (xn)‖+ ‖hn‖) + ‖hn − un‖ → 0 (n → ∞),

(26)

and hence
‖zn − xn‖ ≤ ‖zn − un‖+ ‖un − xn‖ → 0 (n → ∞). (27)

Obviously, combining (25) and (26), guarantees that

‖vn − zn‖ ≤ ‖vn − un‖+ ‖un − zn‖ → 0 (n → ∞).
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From the boundedness of {xn}, it follows that ∃{xni} ⊂ {xn} s.t.

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = lim
i→∞

〈( f − I)x∗, xni − x∗〉. (28)

Since {xn} is bounded, we may suppose that xni ⇀ x̃. Hence from (28) we get

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = lim
i→∞

〈( f − I)x∗, xni − x∗〉 = 〈( f − I)x∗, x̃− x∗〉. (29)

It is easy to see from vn − xn → 0 and xni ⇀ x̃ that vni ⇀ x̃. Since xn − xn+1 → 0, vn − un →
0, vn − zn → 0 and vni ⇀ x̃, by Lemma 8 we infer that x̃ ∈ Ω. Therefore, from (12) and (29) we
conclude that

lim sup
n→∞

〈( f − I)x∗, xn − x∗〉 = 〈( f − I)x∗, x̃− x∗〉 ≤ 0. (30)

Note that lim infn→∞
(1−2δ)δn−γn

1−αnγn
> 0. It follows that ∑∞

n=0
(1−2δ)δn−γn

1−αnγn
αn = ∞. It is clear that

lim sup
n→∞

{ 2γn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn+1‖+ 2δn
(1−2δ)δn−γn

‖ f (xn)− x∗‖‖zn − xn‖

+ 2δn
(1−2δ)δn−γn

〈 f (x∗)− x∗, xn − x∗〉+ γn+δn
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M} ≤ 0.

(31)

Therefore, by Lemma 2 we immediately deduce that xn → x∗.

Next, we introduce another Mann viscosity algorithm with line-search process by the subgradient
extragradient technique.

Algorithm 2

Initial Step: Given x0, x1 ∈ H arbitrarily. Let γ > 0, l ∈ (0, 1), μ ∈ (0, 1).
Iteration Steps: Compute xn+1 below:
Step 1. Put vn = xn − σn(xn−1 − xn) and calculate un = PC(vn − �n Avn), where �n is picked to be the
largest � ∈ {γ, γl, γl2, ...} s.t.

�‖Avn − Aun‖ ≤ μ‖vn − un‖. (32)

Step 2. Calculate zn = (1 − αn)PCn(vn − �n Aun) + αn f (xn) with Cn := {v ∈ H : 〈vn − �n Avn −
un, un − v〉 ≥ 0}.
Step 3. Calculate

xn+1 = γnPCn(vn − �n Aun) + δnTnzn + βnvn. (33)

Update n := n + 1 and return to Step 1.

It is remarkable that Lemmas 6, 7 and 8 remain true for Algorithm 2.

Theorem 2. Assume A(C) is bounded. Let {xn} be constructed by Algorithm 2. Then

xn → x∗ ∈ Ω ⇔
{

xn − xn+1 → 0,
supn≥1 ‖(I − f )xn‖ < ∞

where x∗ ∈ Ω is the unique solution of the HVI: 〈(I − f )x∗, x∗ −ω〉 ≤ 0, ∀ω ∈ Ω.

Proof. For the necessity of our proof, we can observe that, by a similar approach to that in the proof of
Theorem 1, we obtain that there is a unique solution x∗ ∈ Ω of (12).

We show the sufficiency below. To this aim, we suppose xn − xn+1 → 0 and supn≥1 ‖(I− f )xn‖ <
∞, and prove the sufficiency by the following steps.
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Step 1. We show the boundedness of {xn}. In fact, by the similar inference to that in Step 1 for
the proof of Theorem 1, we obtain that (13)–(17) hold. So, using Algorithm 2 and (17) we obtain

‖zn − p‖ ≤ (1− αn(1− δ))‖xn − p‖+ αn(M1 + ‖( f − I)p‖),

which together with (γn + δn)ζ ≤ γn, yields

‖xn+1 − p‖ ≤ βn‖vn − p‖+ (1− βn)‖ 1
1−βn

[γn(zn − p) + δn(Tnzn − p)]‖+ γn‖hn − zn‖
≤ βn(‖xn − p‖+ αn M1) + (1− βn)[(1− αn(1− δ))‖xn − p‖
+ αn(M0 + M1 + ‖( f − I)p‖)]

= [1− αn(1− βn)(1− δ)]‖xn − p‖+ αn(1− βn)(1− δ)
M0+

1
1−βn M1+‖( f−I)p‖

1−δ .

Therefore, we get the boundedness of {xn} and hence the one of sequences {hn}, {vn}, {un}, {zn}, {Tnzn}.
Step 2. We show that ∃M4 > 0 s.t.

(1− αn)(1− βn)(1− μ)[‖wn − yn‖2 + ‖un − yn‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4.

In fact, by Lemma 7 and the convexity of ‖ · ‖2, we get

‖xn+1 − p‖2 ≤ ‖βn(vn − p) + γn(zn − p) + δn(Tnzn − p)‖2 + 2γnαn〈hn − f (xn), xn+1 − p〉
≤ βn‖vn − p‖2 + (1− βn)‖zn − p‖2 + 2(1− βn)αn‖hn − f (xn)‖‖xn+1 − p‖
≤ βn‖vn − p‖2 + (1− βn){αnδ‖xn − p‖2 + (1− αn)‖vn − p‖2

− (1− αn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M2},

(34)

where ∃M2 > 0 s.t. M2 ≥ supn≥1 2(‖( f − I)p‖‖zn − p‖+ ‖un − f (xn)‖‖xn+1 − p‖). Also,

‖vn − p‖2 ≤ ‖xn − p‖2 + αn(2M1‖xn − p‖+ αn M2
1)

≤ ‖xn − p‖2 + αn M3,
(35)

where ∃M3 > 0 s.t. M3 ≥ supn≥1(2M1‖xn − p‖+ βn M2
1). Substituting (35) for (34), we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1− βn){(1− αn(1− δ))‖xn − p‖2 + (1− αn)αn M3

− (1− αn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M2}+ βnαn M3

= ‖xn − p‖2 − (1− αn)(1− βn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] + αn M4,
(36)

where M4 := M2 + M3. This ensures that

(1− αn)(1− βn)(1− μ)[‖vn − un‖2 + ‖hn − un‖2] ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn M4. (37)

Step 3. We show that ∃M > 0 s.t.

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ 1
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M}.

In fact, we get

‖vn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖(2‖xn − p‖+ σn‖xn − xn−1‖)
≤ ‖xn − p‖2 + σn‖xn − xn−1‖3M,

(38)
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where ∃M > 0 s.t. M ≥ supn≥1{‖xn − p‖, σn‖xn − xn−1‖}. Using Algorithm 1 and the convexity of
‖ · ‖2, we get

‖xn+1 − p‖2 ≤ ‖βn(vn − p) + γn(zn − p) + δn(Tnzn − p)‖2 + 2γnαn〈hn − f (xn), xn+1 − p〉
≤ βn‖vn − p‖2 + (1− βn)‖ 1

1−βn
[γn(zn − p) + δn(Tnzn − p)]‖2

+ 2γnαn〈hn − p, xn+1 − p〉+ 2γnαn〈p− f (xn), xn+1 − p〉,

which leads to

‖xn+1 − p‖2 βn‖vn − p‖2 + (1− βn)[(1− αn)‖hn − p‖2 + 2αn〈 f (xn)− p, zn − p〉]
+ γnαn(‖hn − p‖2 + ‖xn+1 − p‖2) + 2γnαn〈p− f (xn), xn+1 − p〉.

Using (17) and (38) we deduce that ‖hn − p‖2 ≤ ‖vn − p‖2 ≤ ‖xn − p‖2 + σn‖xn − xn−1‖3M. Hence,

‖xn+1 − p‖2 ≤ [1− αn(1− βn)]‖xn − p‖2 + [1− αn(1− βn)]σn‖xn − xn−1‖3M
+ 2αnδn〈 f (xn)− p, zn − p〉+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2)

+ (1− βn)αnσn‖xn − xn−1‖3M + 2γnαn〈 f (xn)− p, zn − xn+1〉
≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδn〈 f (xn)− p, xn − p〉+ 2αnδn〈 f (xn)− p, zn − xn〉
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + σn‖xn − xn−1‖3M

≤ [1− αn(1− βn)]‖xn − p‖2 + 2γnαn‖ f (xn)− p‖‖zn − xn+1‖
+ 2αnδnδ‖xn − p‖2 + 2αnδn〈 f (p)− p, xn − p〉+ 2αnδn‖ f (xn)− p‖‖zn − xn‖
+ γnαn(‖xn − p‖2 + ‖xn+1 − p‖2) + σn‖xn − xn−1‖3M,

which immediately yields

‖xn+1 − p‖2

≤ [1− (1−2δ)δn−γn
1−αnγn

αn]‖xn − p‖2 + [(1−2δ)δn−γn ]αn
1−αnγn

· { 2γn
(1−2δ)δn−γn

‖ f (xn)− p‖‖zn − xn+1‖
+ 2δn

(1−2δ)δn−γn
‖ f (xn)− p‖‖zn − xn‖+ 2δn

(1−2δ)δn−γn
〈 f (p)− p, xn − p〉

+ 1
(1−2δ)δn−γn

· σn
αn
‖xn − xn−1‖3M}.

(39)

Step 4. In order to show that xn → x∗ ∈ Ω, which is the unique solution of (12), we can follow a
similar method to that in Step 4 for the proof of Theorem 1.

Finally, we apply our main results to solve the VIP and common fixed point problem (CFPP) in
the following illustrating example.

The starting point x0 = x1 is randomly picked in the real line. Put f (u) = 1
8 sin u, γ = l = μ =

1
2 , σn = αn = 1

n+1 , βn = 1
3 , γn = 1

6 and δn = 1
2 .

We first provide an example of Lipschitzian, pseudomonotone self-mapping A satisfying the
boundedness of A(C) and strictly pseudocontractive self-mapping T1 with Ω = Fix(T1) ∩VI(C, A) �=
∅. Let C = [−1, 2] and H be the real line with the inner product 〈a, b〉 = ab and induced norm
‖ · ‖ = | · |. Then f is a δ-contractive map with δ = 1

8 ∈ [0, 1
2 ) and f (H) ⊂ C because ‖ f (u)− f (v)‖ =

1
8‖ sin u− sin v‖ ≤ 1

8‖u− v‖ for all u, v ∈ H.
Let A : H → H and T1 : H → H be defined as Au := 1

1+| sin u| −
1

1+|u| , and T1u := 1
2 u− 3

8 sin u for
all u ∈ H. Now, we first show that A is L-Lipschitzian, pseudomonotone operator with L = 2, such
that A(C) is bounded. In fact, for all u, v ∈ H we get

‖Au− Av‖ ≤ | 1
1+‖u‖ −

1
1+‖v‖ |+ | 1

1+‖ sin u‖ −
1

1+‖ sin v‖ |
= | ‖v‖−‖u‖

(1+‖u‖)(1+‖v‖) |+ | ‖ sin v‖−‖ sin u‖
(1+‖ sin u‖)(1+‖ sin v‖) |

≤ ‖u−v‖
(1+‖u‖)(1+‖v‖) +

‖ sin u−sin v‖
(1+‖ sin u‖)(1+‖ sin v‖)

≤ 2‖u− v‖.
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This implies that A is 2-Lipschitzian. Next, we show that A is pseudomonotone. For any given
u, v ∈ H, it is clear that the relation holds:

〈Au, u− v〉 = (
1

1 + | sin u| −
1

1 + |u| )(u− v) ≤ 0 ⇒ 〈Av, u− v〉 = (
1

1 + | sin v| −
1

1 + |v| )(u− v) ≤ 0.

Furthermore, it is easy to see that T1 is strictly pseudocontractive with constant ζ1 = 1
4 . In fact, we

observe that for all u, v ∈ H,

‖T1u− T1v‖ ≤ 1
2
‖u− v‖+ 3

8
‖ sin u− sin v‖ ≤ ‖u− v‖+ 1

4
‖(I − T1)u− (I − T1)v‖.

It is clear that (γn + δn)ζ1 = ( 1
6 + 1

2 ) · 1
4 ≤ 1

6 = γn < (1− 2δ)δn = (1− 2 · 1
8 )

1
2 = 3

8 for all n ≥ 1. In
addition, it is clear that Fix(T1) = {0} and A0 = 0 because the derivative d(T1u)/du = 1

2 − 3
8 cos u > 0.

Therefore, Ω = {0} �= ∅. In this case, Algorithm 1 can be rewritten below:⎧⎪⎪⎪⎨⎪⎪⎪⎩
vn = xn − 1

n+1 (xn−1 − xn),
un = PC(vn − �n Avn),
zn = 1

n+1 f (xn) +
n

n+1 PCn(vn − �n Aun),
xn+1 = 1

3 xn +
1
6 PCn(vn − �n Aun) +

1
2 T1zn ∀n ≥ 1,

with {Cn} and {�n}, selected as in Algorithm 1. Then, by Theorem 1, we know that xn → 0 ∈ Ω iff
xn − xn+1 → 0 (n → ∞) and supn≥1 |xn − 1

8 sin xn| < ∞.
On the other hand, Algorithm 2 can be rewritten below:⎧⎪⎪⎪⎨⎪⎪⎪⎩

vn = xn − 1
n+1 (xn−1 − xn),

un = PC(vn − �n Avn),
zn = 1

n+1 f (xn) +
n

n+1 PCn(vn − �n Aun),
xn+1 = 1

3 vn +
1
6 PCn(vn − �n Aun) +

1
2 T1zn ∀n ≥ 1,

with {Cn} and {�n}, selected as in Algorithm 2. Then, by Theorem 2 , we know that xn → 0 ∈ Ω iff
xn − xn+1 → 0 (n → ∞) and supn≥1 |xn − 1

8 sin xn| < ∞.
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Abstract: The aim of this article is to study new types of generalized nonsmooth exponential
type vector variational-like inequality problems involving Mordukhovich limiting subdifferential
operator. We establish some relationships between generalized nonsmooth exponential type
vector variational-like inequality problems and vector optimization problems under some invexity
assumptions. The celebrated Fan-KKM theorem is used to obtain the existence of solution of
generalized nonsmooth exponential-type vector variational like inequality problems. In support of
our main result, some examples are given. Our results presented in this article improve, extend, and
generalize some known results offer in the literature.

Keywords: vector variational-like inequalities; vector optimization problems; limiting
(p, r)-α-(η, θ)-invexity; Lipschitz continuity; Fan-KKM theorem

1. Introduction

The vector variational inequality has been introduced and studied in [1] in finite-dimensional
Euclidean spaces. Vector variational inequalities have emerged as an efficient tool to provide imperative
requirements for the solution of vector optimization problems. Vector variational-like inequalities for
nonsmooth mappings are useful generalizations of vector variational inequalities. For more details on
vector variational inequalities and their generalizations, see the references [2–8]. In 1998, Giannessi
[9] proved a necessary and sufficient condition for the existence of an efficient solution of a vector
optimization problem for differentiable and convex mappings by using a Minty type vector variational
inequality problem. Under different assumptions, many researchers have studied vector optimization
problems by using different types of Minty type vector variational inequality problems. Yang et al. [8]
generalized the result of Giannessi [9] for differentiable but pseudoconvex mappings.

On the other hand, Yang and Yang [10] considered vector variational-like inequality problem
and showed relationships between vector variational-like inequality and vector optimization problem
under the assumptions of pseudoinvexity or invariant pseudomonotonicity. Later, some researchers
extended above problems in the direction of nonsmooth mappings. Rezaie and Zafarani [11]
established a correspondence between a solution of the generalized vector variational-like inequality
problem and the nonsmooth vector optimization problem under the same assumptions of Yang and
Yang [10] in the setting of Clarke’s subdifferentiability. Due to the fact that Clarke’s subdifferentiability
is bigger class than Mordukhovich limiting subdifferentiability, many authors studied the vector
variational-like inequality problems and vector optimization problems by means of Mordukhovich
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limiting subdifferential. Later, Long et al. [12] and Oveisiha and Zafarani [13] studied generalized
vector variational-like inequality problem and discussed the relationships between generalized vector
variational-like inequality problem and nonsmooth vector optimization problem for pseudoinvex
mappings, whereas Chen and Huang [14] obtained similar results for invex mappings by means of
Mordukhovich limiting subdifferential.

Due to several applications of invex sets and exponential mappings in engineering, economics,
population growth, mathematical modelling problems, Antczak [15] introduced exponential
(p, r)-invex sets and mappings. After that, Mandal and Nahak [16] introduced (p, r)-ρ-(η, θ)-invexity
mapping which is the generalization of the result of Antczak [15]. By using (p, r)-invexity, Jayaswal
and Choudhury [17] introduced exponential type vector variational-like inequality problem involving
locally Lipschitz mappings.

In this paper, we introduce generalized nonsmooth exponential-type vector variational like
inequality problems involving Mordukhovich limiting subdifferential in Asplund spaces. We obtain
some relationships between an efficient solution of nonsmooth vector optimization problems and this
generalized nonsmooth exponential-type vector variational like inequality problems using limiting
(p, r)-α-(η, θ)-invexity mapping. Employing the Fan-KKM theorem, we establish an existence result
for our problem in Asplund spaces.

2. Preliminaries

Suppose that X is a real Banach space with dual space X∗ and 〈·, ·〉 is duality pairing between
them. Assume that K ⊆ X is a nonempty subset, C ⊂ Rn is a pointed, closed, convex cone with
nonempty interior, i.e., intC �= ∅ and f : K −→ R is a non-differentiable mapping. When the mappings
are non-differentiable, many authors used the concept of subdifferential such as Fréchet subdifferential,
Mordukhovich limiting subdifferential, and Clarke subdifferential operators. Now, we mention some
notions and results already known in the literature.

Definition 1. Suppose that f : X −→ R is a proper lower semicontinuous mapping on Banach space X. Then,
the mapping f is said to be Fréchet subdifferentiable and ξ∗ is Fréchet subderivative of f at x (i.e., ξ∗ ∈ ∂F f (x))
if, x ∈ dom f and

lim inf
‖h‖→0

f (x + h)− f (x)− 〈ξ∗, h〉
‖h‖ ≥ 0.

Definition 2 ([18]). Suppose that Ω is a nonempty subset of a normed vector space X. Then, for any x ∈ X
and ε ≥ 0, the set of ε-normals to Ω at x is defined as

N̂ε(x; Ω) =

⎧⎨⎩x∗ ∈ X∗ : lim sup
u

Ω−→x

〈x∗, u− x〉
‖u− x‖ ≤ ε

⎫⎬⎭ .

For x̃ ∈ Ω, the limiting normal cone to Ω at x̃ is

N(x̃; Ω) = lim sup
x

Ω−→x̃,ε↓0

N̂ε(x; Ω).

Consider a mapping f : X −→ R∪ {±∞} and a finite point x̃ ∈ X. Then, the limiting subdifferential of
f at x̃ is the following set

∂L f (x̃) = {x∗ ∈ X∗ : (x∗,−1) ∈ N((x̃, f (x̃)); epi f )} ,

where epi f is defined as epi f = {(x, a) ∈ X ×R : f (x) ≤ a}. If | f (x̃)| = ∞, then we put ∂L f (x̃) = ∅.
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Remark 1 ([18]). It is noted that the Clarke subdifferential is larger class than the Fréchet subdifferential and
the limiting subdifferential with the relation ∂F f (x) ⊆ ∂L f (x) ⊆ ∂C f (x).

Definition 3. A Banach space X is said to be Asplund space if K is any open subset of X and f : K −→ R is
continuous convex mapping, then f is Fréchet subdifferentiable at any point of a dense subset of K.

Remark 2. It is remarked that a Banach space X has the Asplundity property if every separable subspace of
X has separable dual. The concept of Asplund space depicts the differentiability characteristics of continuous
convex mappings on Euclidean space. All the spaces which are reflexive Banach spaces are Asplund. The space of
convergent real sequences c0 (whose limit is 0) is non-reflexive separable Banach space, but its is an Asplund
space. For more details, we refer to [19].

Definition 4. A bi-mapping η : K× K −→ K is said to be affine with respect to the first argument if, for any
λ ∈ [0, 1] and u1, u2 ∈ K with u = λu1 + (1− λ)u2 ∈ K such that

η(λu1 + (1− λ)u2, v) = λη(u1, v) + (1− λ)η(u2, v), ∀v ∈ K.

Definition 5. A bi-mapping η : K× K −→ X is said to be continuous in the first argument if,

‖η(u, z)− η(v, z)‖ → 0 as ‖u− v‖ → 0, ∀u, v ∈ K, z is fixed.

Definition 6 ([20]). Suppose that K is a subset of a topological vector space Y. A set-valued mapping T :
K −→ 2Y is called a KKM-mapping if, for each nonempty finite subset {y1, y2, · · · , yn} ⊂ K, we have

Co{y1, y2, · · · , yn} ⊆
n⋃

i=1

T(yi),

where Co denotes the convex hull.

Theorem 1 (Fan-KKM Theorem [20]). Suppose that K is a subset of a topological vector space Y and
T : K −→ 2Y is a KKM-mapping. If, for each y ∈ K, T(y) is closed and for at least one y ∈ K, T(y) is
compact, then ⋂

y∈K
T(y) �= ∅.

Definition 7. A mapping f : X −→ Rn is called locally Lipschitz continuous at x0 if, there exists a L > 0 and
a neighbourhood N of x0 such that

‖ f (y)− f (z)‖ ≤ L‖y− z‖, ∀y, z ∈ N(x0).

If f is locally Lipschitz continuous for each x0 in X, then f is locally Lipschitz continuous mapping on X.

Slightly changing the structure of definition of (p, r)-α-(η, θ)-invexity defined in [16], we have the
following definition.
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Definition 8. Suppose that f : X −→ Rn is a locally Lipschitz continuous mapping, e = (1, 1, · · · , 1) ∈ Rn

and p, r are arbitrary real numbers. If there exist the mappings η, θ : X × X −→ X and a constant α ∈ R such
that one of the following relations

1
r

{
expr( f (x)− f (u))−1

}
≥ 1

p

〈
ξ;
(

exppη(x,u)−e
)〉

+ α‖θ(x, u)‖2e (> i f x �= u) f or p �= 0, r �= 0,

1
r

{
expr( f (x)− f (u))−1

}
≥ 〈ξ; η(x, u)〉+ α‖θ(x, u)‖2e (> i f x �= u) f or p = 0, r �= 0,

f (x)− f (u) ≥ 1
p

〈
ξ;
(

exppη(x,u)−e
)〉

+ α‖θ(x, u)‖2e (> i f x �= u) f or p �= 0, r = 0,

f (x)− f (u) ≥ 〈ξ; η(x, u)〉+ α‖θ(x, u)‖2e (> i f x �= u) f or p = 0, r = 0,

holds for each ξ ∈ ∂L f (u), then f is called limiting (p, r)-α-(η, θ)-invex (strictly limiting (p, r)-α-(η, θ)-invex)
with respect to η and θ at the point u on X. If f is limiting (p, r)-α-(η, θ)-invex with respect to η and θ at each
u ∈ X, then f is limiting (p, r)-α-(η, θ)-invex with respect to the same η and θ on X.

Remark 3. We only consider the case when p �= 0, r �= 0 to prove the results. We exclude other cases as it
is straightforward in terms of altering inequality. Throughout the proof of the results, we assume that r > 0.
Under other condition r < 0, the direction in the proof will be reversed.

Problem 1. Suppose that f = ( f1, f2, · · · , fn) : K −→ Rn is a vector-valued mapping such that each
fi : K −→ R (i = 1, 2, · · · , n) is locally Lipschitz continuous mapping. The nonsmooth vector optimization
problem is to

Maximize
C

f (x) = ( f1(x), f2(x), · · · , fn(x)) (P1)

subject to x ∈ K,

where C ∈ Rn is a pointed, closed and convex cone with intC �= ∅.

Definition 9. Suppose that f : K −→ Rn is a vector-valued mapping. A point x̄ ∈ K is called

(i) an efficient solution (Pareto solution) of (P1) if and only if

f (y)− f (x̄) /∈ −C \ {0}, ∀y ∈ K;

(ii) a weak efficient solution (weak Pareto solution) of (P1) if and only if

f (y)− f (x̄) /∈ −intC, ∀y ∈ K.

Now, we introduce following two kinds of generalized nonsmooth exponential-type vector
variational-like inequality problems. Suppose that K �= ∅ is a subset of an Asplund space X and C ⊂ Rn

is a pointed, closed and convex cone such that intC �= ∅. Assume that f = ( f1, f2, · · · , fn) : K −→ Rn

is a non-differentiable locally Lipschitz continuous mapping, η, θ : K × K −→ X are the continuous
mappings, β, p is an arbitrary real number and e = (1, 1, · · · , 1) ∈ Rn.

Problem 2. Generalized nonsmooth exponential-type strong vector variational like inequality problem is to find
a vector x̄ ∈ K such that

1
p

〈
ξ;
(

exppη(y,x̄)−e
)〉

+ β‖θ(y, x̄)‖2e /∈ −C \ {0}, for p �= 0,

〈ξ; η(y, x̄)〉+ β‖θ(y, x̄)‖2e /∈ −C \ {0}, for p = 0,

}
∀ξ ∈ ∂L f (x̄), y ∈ K; (P2)
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Problem 3. Generalized nonsmooth exponential-type weak vector variational like inequality problem is to find
a vector x̄ ∈ K such that

1
p

〈
ξ;
(

exppη(y,x̄)−e
)〉

+ β‖θ(y, x̄)‖2e /∈ −intC, for p �= 0,

〈ξ; η(y, x̄)〉+ β‖θ(y, x̄)‖2e /∈ −intC, for p = 0,

}
∀ξ ∈ ∂L f (x̄), y ∈ K. (P3)

Special Cases:

(i) If θ ≡ 0 and ∂L f (·) = ∂ f (·), i.e., the Clarke subdifferential operator, then (P2) and (P3) reduces
to nonsmooth exponential-type vector variational like inequality problem and nonsmooth
exponential-type weak vector variational like inequality problem considered and studied by
Jayswal and Choudhury [17].

(ii) For p = 0, a similar analogue of problems (P2) and (P3) was introduced and studied by Oveisiha
and Zafarani [13].

Apparently, it shows that the solution of (P2) is also a solution of (P3). We construct the following
example in support of (P2).

Example 1. Let us consider X = R, K = [−1, 1], C = R2
+, p = 1 and the mapping f be defined as

f = ( f1, f2) by

f1(x) =

{
x, if x ≥ 0,

0, if x < 0,
and f2(x) =

{
x2 + 2x, if x ≥ 0,

0, if x < 0.

Now, the limiting subdifferential of f is

∂L f (x) =

⎧⎪⎪⎨⎪⎪⎩
(1, 2x + 2), if x > 0,

{(s, t) : s ∈ [0, 1], t ∈ [0, 2]} , if x = 0,

(0, 0), if x < 0.

Define the mappings η, θ : K× K −→ X by

η(y, x) = ln (|y− x|+ 1) and θ(y, x) =
y− x

2
, ∀y, x ∈ K.

Then, the problem (P2) is to find a point x̄ ∈ K such that〈
ξ;
(

expη(y,x̄)−e
)〉

+ β‖θ(y, x̄)‖2e /∈ −C \ {0}, ∀ξ ∈ ∂L f (x), y ∈ K,

which is equivalent to say that〈
∂L f (x̄);

(
expη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e � −C \ {0}, ∀ξ ∈ ∂L f (x), y ∈ K.

For x̄ = 0 and β ≥ 4, we can see that〈
∂L f (x̄);

(
expη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e

=
{(

s
(

expln(|y−x|+1)−e
)

, t
(

expln(|y−x|+1)−e
))

: s ∈ [0, 1], t ∈ [0, 2]
}
+ β

∥∥∥∥y− x̄
2

∥∥∥∥2
e

= {(s (|y− x|) , t (|y− x|)) : s ∈ [0, 1], t ∈ [0, 2]}+ β

4
‖y− x̄‖2e

= {(s|y|, t|y|) : s ∈ [0, 1], t ∈ [0, 2]}+ β

4
|y|2e

� −C \ {0}.
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Hence, x̄ = 0 is the solution of the problem (P2).

3. Main Results

Now, we prove a result which ensures that the solution of (P2) is an efficient solution of (P1).

Theorem 2. Suppose that K �= ∅ is a subset of Asplund space X, C = Rn
+ and f = ( f1, f2, · · · , fn) : K −→

Rn is a locally Lipschitz continous mapping on K. Let η, θ : K × K −→ X be the mappings such that each
fi (i = 1, 2, · · · , n) is limiting (p, r)-αi-(η, θ)-invex mapping with respect to η and θ. If x̄ ∈ K is a solution
of (P2), then x̄ is an efficient solution of (P1).

Proof. Assume that x̄ ∈ K is a solution of (P2). We will prove that x̄ ∈ K is an efficient solution of (P1).
Indeed, let us assume that x̄ ∈ K is not an efficient solution of (P1). Then, ∃y ∈ K such that

( f1(y)− f1(x̄), f2(y)− f2(x̄), · · · , fn(y)− fn(x̄)) = fi(y)− fi(x̄) ∈ −C \ {0},

which implies that
fi(y)− fi(x̄) ≤ 0, ∀i = 1, 2, · · · , n, (1)

and strict inequality holds for some 1 ≤ k ≤ n.
Since C = Rn

+, exponential mapping is monotonic and r > 0, then from (1), we have

1
r

(
expr( fi(y)− fi(x̄))−1

)
≤ 0, ∀i = 1, 2, · · · , n. (2)

Since each fi is limiting (p, r)-αi-(η, θ)-invex mapping with respect to η and θ at x̄, therefore for
all ξi ∈ ∂L fi(x̄), we have

1
r

(
expr( fi(y)− fi(x̄))−1

)
≥ 1

p

〈
ξi;

(
exppη(y,x̄)−e

)〉
+ αi‖θ(y, x̄)‖2e. (3)

Set β = min{α1, α2, · · · , αn}, therefore from (3), we have

1
r

(
expr( fi(y)− fi(x̄))−1

)
≥ 1

p

〈
ξi;

(
exppη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e. (4)

Now by using (2) and (4), we get

1
p

〈
ξi;

(
exppη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e ≤ 0,

which implies that for all ξi ∈ ∂L fi(x̄)

1
p

〈
ξi;

(
exppη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e ∈ −C \ {0},

which counteracts the hypothesis that x̄ is a solution of (P2). Hence, x̄ is an efficient solution of (P1).
This completes the proof.

Next, we show the converse of the above conclusion.

Theorem 3. Suppose that f = ( f1, f2, · · · , fn) : K −→ Rn is a locally Lipschitz continuous mapping on K. If
each − fi is limiting (p, r)-αi-(η, θ)-invex mapping with respect to η and θ, and x̄ is an efficient solution of (P1),
then x̄ is a solution of (P2).
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Proof. Assume that x̄ is an efficient solution of (P1). On contrary suppose that x̄ is not a solution
of (P2). Then, each β ensures the existence of xβ satisfying

1
p

〈
ξi;

(
exppη(xβ ,x̄)−e

)〉
+ β‖θ(xβ, x̄)‖2e ∈ −C \ {0},

for all ξi ∈ ∂L fi(xβ). Since C = Rn
+, from above relation, we have

1
p

〈
ξi;

(
exppη(xβ ,x̄)−e

)〉
+ β‖θ(xβ, x̄)‖2e ≤ 0, (5)

and strict inequality holds for some 1 ≤ k ≤ n.

As each − fi is limiting (p, r)-αi-(η, θ)-invex mapping with respect to η and θ with constants αi,
therefore for any y ∈ K, ∃ξi ∈ ∂L fi(y) such that

1
r

(
expr(− fi(y)+ fi(x̄))−1

)
≥ 1

p

〈
(−ξi);

(
exppη(y,x̄)−e

)〉
+ αi‖θ(y, x̄)‖2e,

which implies that

1
r

(
expr(− fi(y)+ fi(x̄))−1

)
≥ 1

p

〈
(−ξi);

(
exppη(y,x̄)−e

)〉
+ β‖θ(y, x̄)‖2e, (6)

where β = min{α1, α2, · · · , αn}.

Using (5), (6) and monotonic property of exponential mapping, it is easy to deduce that ∃y ∈ K
such that

fi(x̄)− fi(y) ≥ 0,

and strict inequality holds for i = k and equivalently

fi(x̄)− fi(y) ∈ C \ {0},

which counteracts the hypothesis that x̄ is an efficient solution of (P1). Therefore, x̄ is a solution of (P2).
This completes the proof.

Based on equivalent arguments as used in Theorems 2 and 3, we have the following theorem
which associates the problems (P1) and (P3).

Theorem 4. Suppose that K �= ∅ is a subset of Asplund space X, C = Rn
+ and f = ( f1, f2, · · · , fn) :

K −→ Rn a locally Lipschitz continuous mapping on K. If each − fi (1 ≤ i ≤ n) is strictly limiting
(p, r)-αi-(η, θ)-invex mapping with respect to η and θ and x̄ ∈ K is a weak efficient solution of (P1), then x̄ ∈ K
is also a solution of (P3). Conversely, if each fi (1 ≤ i ≤ n) is limiting (p, r)-αi-(η, θ)-invex mapping with
respect to η and θ and x̄ ∈ K is the solution of (P3), then x̄ ∈ K is also a weak efficient solution of (P1).

We contrive the following example in support of Theorem 4.

Example 2. Let us consider X = R, K = [0, 1], C = R2
+ and p = 1. Define the nonsmooth vector

optimization problem
min

C
f (x) = ( f1(x), f2(x))

subject to x ∈ K,
(7)
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where f1(x) = ln
(
x2 +

√
x + 1

)
and f2(x) = ln

(
x2 +

√
x

2

)
. Clearly, f is locally Lipschitz mapping at x = 0.

Now, the limiting subdifferential of f is as follows:

∂L f (x) =

⎧⎪⎨⎪⎩
(

2x+ 1
2
√

x
x2+

√
x+1 ,

4x+ 1
2
√

x
2x2+

√
x

)
, if x > 0,

{(s, t) : s, t ∈ [0, ∞)} , if x = 0.

Define the mappings θ, η : K× K −→ X by

η(y, x) = ln
(
−
√

y
2

+ x + 1
)

and θ(y, x) = y− x, ∀y, x ∈ K.

For r = 1, we can see that for α = 1 at x̄ = 0(
exp f1(y)− f1(x̄)−1

)
−

〈
ξ1;

(
expη(y,x̄)−e

)〉
− α‖θ(y, x̄)‖2

=

⎛⎝exp
ln
(

y2+
√

y+1
x̄2+

√
x̄+1

)
−1

⎞⎠−
〈

ξ1;
(

expln
(
−
√

y
2 +x̄+1

)
−e

)〉
− ‖y− x̄‖2

=

(
y2 +

√
y + 1

x̄2 +
√

x̄ + 1
− 1

)
−

〈
ξ1;

(
−
√

y
2

+ x̄ + 1
)
− e

〉
− ‖y− x̄‖2

=
(

y2 +
√

y
)
+ ξ1

(√
y

2

)
− |y|2

= y2 +
√

y
(

1 +
ξ1

2

)
− |y|2 ≥ 0.

Similarly, we can show that(
exp f2(y)− f2(x̄)−1

)
−

〈
ξ2;

(
expη(y,x̄)−e

)〉
− α‖θ(y, x̄)‖2 ≥ 0.

Therefore, f is (1, 1)-1-(η, θ)-invex mapping at x̄ = 0.

Now, problem (P3) is to find x̄ ∈ [0, 1] such that

1
p

〈
ξ;
(

exppη(y,x̄)−e
)〉

+ α‖θ(y, x̄)‖2e /∈ −intC, ∀ξ ∈ ∂L f (x), y ∈ K,

which is analogous to the following problem

1
p

〈
∂L f (x̄);

(
exppη(y,x̄)−e

)〉
+ α‖θ(y, x̄)‖2e � −intC, ∀ξ ∈ ∂L f (x), y ∈ K.

Now, for α = p = 1, we deduce that〈
∂L f (x̄);

(
expη(y,x̄)−e

)〉
+ α‖θ(y, x̄)‖2e

=
{(

s
(

expln(−√y−x̄+1)−e
)

, t
(

expln(−√y−x̄+1)−e
))

: s, t ∈ [0, ∞)
}
+ ‖y− x̄‖2e

= {(s(−√y− x̄), t(−√y− x̄)) : s, t ∈ [0, ∞)}+ ‖y‖2e

� −intC.

Therefore, x̄ = 0 is the solution of the problem (P3). One can easily show that x̄ = 0 is a weakly efficient
solution of vector optimization problem (7) by using Theorem 4.
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Following is the existence theorem for the solution of generalized nonsmooth exponential-type
weak vector variational like inequality problem (P3) by employing the Fan-KKM Theorem.

Theorem 5. Suppose that K �= ∅ is a convex subset of Asplund space X, C is a pointed, closed and convex cone,
and f = ( f1, f2, · · · , fn) : K −→ Rn is a locally Lipschitz mapping such that each fi (1 ≤ i ≤ n) is limiting
(p, r)-αi-(η, θ)-invex mapping with respect to η and θ with constants αi. Suppose that η, θ : K× K −→ X are
the continuous mappings which are affine in the first argument, respectively and η(x, x) = 0 = θ(x, x), for all
x ∈ K. For any compact subset B �= ∅ of K and y0 ∈ B with the property

1
p

〈
ξ;
(

exppη(y0,x)−e
)〉

+ β‖θ(y0, x)‖2e ∈ −intC, ∀x ∈ K \ B, ξ ∈ ∂L f (x), (8)

where β = min{α1, α2, · · · , αn}, then generalized nonsmooth exponential-type weak vector variational like
inequality problem (P3) admits a solution.

Proof. For any y ∈ K, consider the mapping F : K −→ 2K define by

F(y) =
{

x ∈ K :
1
p

〈
ξ;
(

exppη(y,x)−e
)〉

+ β‖θ(y, x)‖2e /∈ −intC, ∀ξ ∈ ∂L f (x)
}

,

Since y ∈ F(y), therefore F is nonempty.

Now, we will prove that F is a KKM-mapping on K. On contrary, assume that F is not a
KKM-mapping. Therefore, we can find a finite set {x1, x2, · · · , xn} and ti ≥ 0, i = 1, 2, · · · , n with
∑n

i=1 ti = 1 such that

x0 =
n

∑
i=1

tixi /∈
n⋃

i=1

F(xi),

which implies that x0 /∈ F(xi), ∀i = 1, 2, · · · , n, i.e.,

1
p

〈
ξ;
(

exppη(xi ,x0)−e
)〉

+ β‖θ(xi, x0)‖2e ∈ −intC, ∀i = 1, 2, · · · , n.

In view of convexity of
(
expλx −e

)
, for all x ∈ R and for any λ > 0, and affinity of η and θ in the

first argument with the property η(x, x) = 0 = θ(x, x), we obtain

0 =
1
p

〈
ξ;
(

exppη(x0,x0)−e
)〉

+

(
β

∑n
i=1 ti

)
‖θ(x0, x0)‖2e

=
1
p

〈
ξ;

⎛⎝exp
pη

(
n
∑

i=1
tixi ,x0

)
−e

⎞⎠〉
+

(
β

∑n
i=1 ti

)∥∥∥∥∥θ

(
n

∑
i=1

tixi, x0

)∥∥∥∥∥
2

e

=
1
p

〈
ξ;

⎛⎝exp
p

n
∑

i=1
tiη(xi ,x0)−e

⎞⎠〉
+

(
β

∑n
i=1 ti

)∥∥∥∥∥ n

∑
i=1

tiθ (xi, x0)

∥∥∥∥∥
2

e

≤C
1
p

〈
ξ;

n

∑
i=1

ti

(
exppη(xi ,x0)−e

)〉
+ β

(
n

∑
i=1

ti

)
‖θ (xi, x0)‖2 e

=
1
p

n

∑
i=1

ti

〈
ξ;
(

exppη(xi ,x0)−e
)〉

+ β

(
n

∑
i=1

ti

)
‖θ (xi, x0)‖2 e

∈ −intC,

which implies that 0 ∈ −intC and hence, a contradiction. Therefore, F is a KKM-mapping.
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Next, to show that F(y) is closed set, for each y ∈ K, consider any sequence {xn} in F(y) which
converges to x̄. This implies that

zn =
1
p

〈
ξn;

(
exppη(y,xn)−e

)〉
+ β‖θ(y, xn)‖2e /∈ −intC, ∀ξn ∈ ∂L f (xn). (9)

Using locally Lipschitz continuity property of f , we have

‖ f (x)− f (y)‖ ≤ L‖x− y‖, ∀x, y ∈ N(x̄),

where L > 0 is a constant and N(x̄) is the neighbourhood of x̄. Then, we can find any x ∈ N(x̄) and
ξ ∈ ∂L f (x) such that

‖ξ‖ ≤ L.

Since ∂L f (xn) is w∗-compact, then the sequence {ξn} has a convergent subsequence, say {ξm} in
∂L f (xn) such that ξm → ξ̄ ∈ ∂L f (x̄). Since η and θ are continuous mappings, we have

z̄ = lim
m

zm =
1
p

〈
ξ̄;
(

exppη(y,x̄)−e
)〉

+ β‖θ(y, x̄)‖2e.

From (9), it follows that z̄ ∈ intC and therefore, we have

1
p

〈
ξ̄;
(

exppη(y,x̄)−e
)〉

+ β‖θ(y, x̄)‖2e /∈ intC.

Hence x̄ ∈ F(y), and thus F(y) is closed set.
Using the hypothesis (8), for any compact subset B �= ∅ of K and y0 ∈ B, we have

1
p

〈
ξ;
(

exppη(y0,x)−e
)〉

+ β‖θ(y0, x)‖2e ∈ −intC, ∀x ∈ K \ B, ξ ∈ ∂L f (x),

which shows that F(y0) ∈ B. Due to compactness of B, we have F(y0) is also compact. Therefore, by
applying the Fan-KKM Theorem 1, we obtain⋂

y∈K
F(y) �= ∅.

Therefore, ∃x̃ ∈ K such that

1
p

〈
ξ̄;
(

exppη(y,x̃)−e
)〉

+ β‖θ(y, x̃)‖2e /∈ −intC, ∀ξ ∈ ∂L f (x̃).

Thus, generalized nonsmooth exponential-type weak vector variational like inequality
problem (P3) has a solution. This completes the proof.

4. Conclusions

We have introduced and studied a new type of generalized nonsmooth exponential type
vector variational-like inequality problem involving Mordukhovich limiting subdifferential operator
in Asplund spaces. We proved the relationships between our considered problems with vector
optimization problems using the generalized concept of invexity, which we called limiting
(p, r)-α-(η, θ)-invexity of mappings. We also derived the existence of a result for our considered
problem using the Fan-KKM theorem. It is remarked that our problems and related results are more
general than the previously known results.
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Abstract: In this paper, we introduce the notion of higher-order weak adjacent epiderivative for
a set-valued map without lower-order approximating directions and obtain existence theorem
and some properties of the epiderivative. Then by virtue of the epiderivative and Benson
proper efficiency, we establish the higher-order Mond-Weir type dual problem for a set-valued
optimization problem and obtain the corresponding weak duality, strong duality and converse
duality theorems, respectively.
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higher-order mond-weir type dual; benson proper efficiency

1. Introduction

The theory of duality and optimality conditions for optimization problems has received
considerable attention (see [1–10]). The derivative (epiderivative) plays an important role in
studying duality and optimality conditions for set-valued optimization problems. The contingent
derivatives [1], the contingent epiderivatives [11] and the generalized contingent epiderivatives [12]
for set-valued maps are employed by different authors to investigate necessary or/and sufficient
optimality conditions for set-valued optimization problems. Later, the second-order epiderivatives [13],
higher-order generalized contingent (adjacent) epiderivatives [14] and generalized higher-order
contingent (adjacent) derivatives [15] for set-valued maps are used to study the second (or high) order
necessary or/and sufficient optimality conditions for set-valued optimization problems. Chen et al. [2]
utilized the weak efficiency to introduce higher-order weak adjacent (contingent) epiderivative for a
set-valued map, they then investigate higher-order Mond-Weir (Wolfe) type duality and higher-order
Kuhn-Tucker type optimality conditions for constrained set-valued optimization problems. Li et al. [3]
used the higher-order contingent derivatives to discuss the weak duality, strong duality and converse
duality of a higher-order Mond-Weir type dual for a set-valued optimization problem. Wang et al. [4]
used the higher-order generalized adjacent derivative to extend the main results of [3] from convexity
to non-convexity. Anh [6] used the higher-order radial derivatives [16] to discuss mixed duality of
set-valued optimization problems.

It is well known that the lower-order approximating directions are very important to define the
higher-order derivatives (epiderivatives) in [2–4,6,14,15]. This limits their practical applications when the
lower-order approximating directions are unknown. So, it is necessary to introduce some higher-order
derivatives (epiderivatives) without lower-order approximating directions. As we know, a few paper
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are devoted to this topic. Motivated by [17], Li et al. [7] proposed the higher-order upper and lower
Studniarski derivatives of a set-valued map to establish necessary and sufficient conditions for a strict local
minimizer of a constrained set-valued optimization problem. Anh [8] introduced the higher-order radial
epiderivative to establish mixed type duality in constrained set-valued optimization problems. Anh [18]
proposed the higher-order upper and lower Studniarski derivatives of a set-valued map to establish
Fritz John type and Kuhn-Tucker type conditions, and discussed the higher-order Mond-Weir type dual
for constrained set-valued optimization problems. Anh [19] further defined the notion of higher-order
Studniarski epiderivative and established higher-order optimality conditions for a generalized set-valued
optimization problems. Anh [20] noted that the epiderivatives in [8,19] is singleton, they proposed a
notion of the higher-order generalized Studniarski epiderivative which is set-valued, and discussed its
applications in optimality conditions and duality of set-valued optimization problems.

As we know that the existence conditions of weak efficient point are weaker than ones of efficient
point for a set. Inspired by [2,8,18–20], we introduce the higher-order weak adjacent set without the
lower-order approximating directions for set-valued maps. Furthermore, we use the higher-order
weak adjacent set and weak efficiency to introduce the higher-order weak adjacent epiderivative for a
set-valued map, we use it and Benson proper efficiency to discuss higher-order Mond-Weir type dual
for a constrained set-valued optimization problem, and then obtain the corresponding weak duality,
strong duality and converse duality, respectively.

The rest of the article is as follows. In Section 2, we recall some of definitions and notations
to be needed in the paper, and so define the higher-order adjacent set of a set-valued map without
lower-order approximating directions, which has some nice properties. In Section 3, we use the
higher-order adjacent set of Section 2 to define the higher-order weak adjacent epiderivative for
a set-valued map, and discuss its properties, such as existence and subdifferential. In Section 4,
we introduce a higher-order Mond-Weir type dual for a constrained set-valued optimization problem
and establish the corresponding weak duality, strong duality and converse duality, respectively.

2. Preliminaries

Throughout the paper, let X , Y and Z be three real normed linear spaces. The spaces Y and Z
are partially ordered by nontrivial pointed closed convex cones C ⊆ Y and D ⊆ Z with nonempty
interior, respectively. By 0Y we denote the zero vector of Y. Y∗ stands for the topological dual space of
Y. The dual cone C+ of C is defined as

C+ := { f ∈ Y∗| f (c) ≥ 0, ∀c ∈ C}.

Its quasi-interior C+i is defined as

C+i := { f ∈ Y∗| f (c) > 0, ∀c ∈ C \ {0Y}}.

Let M be a nonempty subset of Y. We denote the closure, the interior and the cone hull of M
by clM, intM and coneM, respectively. We denote by B(c, r) the open ball of radius r centered at c.
A nonempty subset B of C is called a base of C if and only if C = coneB and 0Y /∈ clB.

Let E ⊆ X be a nonempty subset and F : E → 2Y be a set-valued map. The domain, graph and
epigraph of F are, respectively, defined as

domF := {x ∈ E|F(x) �= ∅}, imF := {y ∈ Y|y ∈ F(x)},

grF := {(x, y) ∈ E×Y|y ∈ F(x), x ∈ E}

and
epiF := {(x, y) ∈ E×Y|y ∈ F(x) + C, x ∈ E}.
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Definition 1. [9] Let M ⊆ Y and y0 ∈ M.
(i) y0 is said to be a Pareto efficient point of M (y0 ∈ MinC M) if

(M− {y0}) ∩ (−C \ {0Y}) = ∅.

(ii) Let intC �= ∅. y0 is said to be a weakly efficient point of M (y0 ∈ WMinC M) if

(M− {y0}) ∩ (−intC) = ∅.

Definition 2. [10,21,22] (i) The cone C is called Daniell if any decreasing sequence in Y that has a lower bound
converges to its infimum.

(ii) A subset M of Y is said to be minorized if there is a y ∈ Y such that

M ⊆ {y}+ C.

(iii) The weak domination property is said to hold for a subset M of Y if

M ⊆ WMinC M + intC ∪ {0Y}.

Definition 3. Let A ⊆ X ×Y, (x0, y0) ∈ clA and m ∈ N \ {0}.
(i) [9] The mth-order adjacent set of A at (x, v1, · · · , vm−1) is defined by

T�(m)
A (x, v1, · · · , vm−1) :={y ∈ A|∀tn → 0+, ∃yn → y, s.t.

x0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n yn ∈ A},

where vi ∈ X(i = 1, · · · , m− 1).
(ii) [19] The mth-order Studniarski set of A at (x0, y0) is defined by

Sm
A(x0, y0) := {(x, y) ∈ X ×Y|∃tn → 0+, ∃(xn, yn)→ (x, y),

s.t.(x0 + tnxn, y0 + tm
n yn) ∈ A}.

Definition 4. Let K ⊆ X ×Y, (x0, y0) ∈ clK and m ∈ N \ {0}. The mth-order adjacent set of K at (x0, y0)

is defined by
T�(m)

K (x0, y0) := {(x, y) ∈ X ×Y|∀tn → 0+, ∃(xn, yn)→ (x, y),

s.t.(x0 + tnxn, y0 + tm
n yn) ∈ K}.

We can obtain the equivalent characterization of T�(m)
K (x0, y0) in terms of sequences:

(x, y) ∈ T�(m)
K (x0, y0) if and only if ∀{tn} → 0+, ∃{(x′n, y′n)} ⊆ K such that

lim
n→∞

(
x′n − x0

tn
,

y′n − y0

tm
n

) = (x, y).

Now, we establish a few properties of T�(m)
K (x0, y0).

Proposition 1. Let K ⊆ X ×Y, (x0, y0) ∈ K and (x, y) ∈ T�(m)
K (x0, y0). Then

(λx, λmy) ∈ T�(m)
K (x0, y0), ∀λ ≥ 0.

Proof. We divide λ into two cases to show the proposition.
Case 1: λ = 0. Note that (x0, y0) ∈ K; for any sequence {tn} with tn → 0+, we choose (xn, yn) =

(0X , 0Y) such that (x0 + tnxn, y0 + tm
n yn) ∈ K. This means that (0X , 0Y) ∈ T�(m)

K (x0, y0).
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Case 2:λ > 0. Let (x, y) ∈ T�(m)
K (x0, y0). Then for any sequence {tn} with tn → 0+, there exists a

sequence {(xn, yn)} ⊆ K with (xn, yn)→ (x, y) such that

K  (x0 + tnxn, y0 + tm
n yn) = (x0 + (

tn

λ
)λxn, y0 + (

tn

λ
)mλmyn).

Naturally, tn
λ → 0+ and (λxn, λmyn)→ (λx, λmy) ∈ T�(m)

K (x0, y0). It completes the proof. �

Remark 1. Let K ⊆ X×Y and (x0, y0) ∈ clK. The mth-order adjacent set T�(m)
K (x0, y0) of K at (x0, y0) may

not be a cone; see Example 1.

Example 1. Let K = {(x, y) ∈ R2|y ≥ x4, x ∈ R}, (x0, y0) = (0, 0) and m = 4. A simple calculation shows
that

T�(4)K (0, 0) = {(x, y) ∈ R2|y ≥ x4}.

Take (x, y) = (1, 1) ∈ T�(4)K (0, 0) and λ = 2. Then λ(x, y) = (2, 2) /∈ T�(4)K (0, 0), i.e., T�(4)k (0, 0) is not
a cone here.

Proposition 2. Let F : E → 2Y be a set-valued map and (x0, y0) ∈ grF. Then,
(i) T�(m)

epiF (x0, y0) = T�(m)
epiF (x0, y0) + {0X} × C;

(ii) {y ∈ Y|(x, y) ∈ T�(m)
epiF (x0, y0)} = {y ∈ Y|(x, y) ∈ T�(m)

epiF (x0, y0)}+ C, ∀x ∈ X.

Proof. Since 0Y ∈ C, it is clearly that T�(m)
epiF (x0, y0) ⊆ Tb(m)

epiF (x0, y0) + {0X} ×C. Therefore we only need

to prove T�(m)
epiF (x0, y0) + {0X} × C ⊆ T�(m)

epiF (x0, y0).

Let (u, v) ∈ T�(m)
epiF (x0, y0) and c ∈ C. Then for any sequence {tn} with tn → 0+, there exists a

sequence {(un, vn)} ⊆ X ×Y with (un, vn)→ (u, v) such that

(x0 + tnun, y0 + tm
n vn) ∈ epiF,

namely,
y0 + tm

n vn ∈ F(x0 + tnun) + C.

Since c ∈ C, tn → 0+ and C + C ⊆ C, one has

y0 + tm
n (vn + c) ∈ F(x0 + tnun) + C + {tm

n c} ⊆ F(x0 + tnun) + C.

Thus
(x0 + tnun, y0 + tm

n (vn + c)) ∈ epiF.

This together with (un, vn + c) → (u, v + c) implies (u, v + c) ∈ T�(m)
epiF (x0, y0), and so T�(m)

epiF +

{0X} × C ⊆ T�(m)
epiF .

(ii) Obviously, (ii) follows from (i). The proof is complete. �

Proposition 3. Let K ⊆ X ×Y and (x0, y0) ∈ clK. If K is a convex set, then T�(m)
K (x0, y0) is a convex set.

Proof. Let (xi, yi) ∈ T�(m)
K (x0, y0) (i = 1, 2) and λ ∈ [0, 1]. Then for any tn → 0+, there exist

(xi
n, yi

n)→ (xi, yi) (i = 1, 2) such that

(x0 + tnxi
n, y0 + tm

n yi
n) ∈ K (i = 1, 2).
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From the convexity of K, we have

(x0 + tn[(1− λ)x1
n + λx2

n], y0 + tm
n [(1− λ)y1

n + λy2
n]) ∈ K.

It is obvious that

((1− λ)x1
n + λx2

n, (1− λ)y1
n + λy2

n)→ ((1− λ)x1 + λx2, (1− λ)y1 + λy2).

It follows from the definition of T�(m)
K (x0, y0) that

(1− λ)(x1, y1) + λ(x2, y2) = ((1− λ)x1 + λx2, (1− λ)y1 + λy2) ∈ T�(m)
K (x0, y0).

Thus, T�(m)
K (x0, y0) is a convex set and the proof is complete. �

3. Higher-Order Weak Adjacent Epiderivatives

In this section, we introduce the notion of higher-order weak adjacent epiderivative of a set-valued
map without lower-order approximating directions, and obtain some properties of the epiderivative.

Firstly, we recall the notions of mth-order weak adjacent epiderivative with lower-order
approximating directions and generalized Studniarski epiderivative without lower-order
approximating directions.

Definition 5. [2] Let F : X → 2Y, (x0, y0) ∈ grF and (ui, vi) ∈ X × Y(i = 1, · · · , m− 1). The mth-order
weak adjacent epiderivative D�(m)

w F(x0, y0, u1, v1 · · · , um−1, vm−1) of F at (x0, y0) for vectors (u1, v1), · · · ,
(um−1, vm−1) is the set-valued map from X to Y defined by

D�(m)
w F(x0, y0, u1, v1, · · · , um−1, vm−1)(x)

:=WMinC{y ∈ Y | (x, y) ∈ T�(m)
epiF (x0, y0, u1, v1, · · · , um−1, vm−1)}.

Definition 6. [20] Let F : X → 2Y and (x0, y0) ∈ grF. The mth-order generalized Studniarski epiderivative
G-EDm

S F(x0, y0) of F at (x0, y0) is the set-valued map from X to Y defined by

G-EDm
S F(x0, y0)(x) :=MinC{y ∈ Y | (x, y) ∈ Sm

epiF(x0, y0)}.

Motivated by Definitions 5 and 6, we introduce the higher-order epiderivative without lower-order
approximating directions.

Definition 7. Let F : E → 2Y and (x0, y0) ∈ grF. The mth-order weak adjacent epiderivative of F at (x0, y0)

is a set-valued map ED�(m)
w F(x0, y0) : E → 2Y defined by

ED�(m)
w F(x0, y0)(x) := WMinC{y ∈ Y | (x, y) ∈ T�(m)

epiF (x0, y0)}.

Remark 2. There are many examples show that ED�(m)
w F(x0, y0) possibly exists even if D�(m)

w F(x0, y0, u1, v1,
· · · , um−1, vm−1) and G-EDm

S F(x0, y0) do not; see Examples 2 and 3. Therefore it is interesting to study this
derivative and employ it to investigate the Mond-Weir duality for set-valued optimization problems.

Example 2. Let E = X = Y = R, C = R+ and F : E → 2Y be defined by F(x) := {y ∈ Y | y ≥ x2}. Take
(x0, y0) = (0, 0) ∈ grF and (u, v) = (1,−1). Then, simple calculations show that

T�(2)epiF((0, 0), (1,−1)) = ∅
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and
T�(2)epiF(0, 0) = {(x, y) ∈ R×R | x ∈ R, y ≥ x2}.

So, for any x ∈ E, ED�(2)
w F

(
(0, 0), (1,−1)

)
(x) = ∅, but ED�(2)

w F(0, 0)(x) = {x2}.

Example 3. Let E = X = R, Y = R2, C = R2
+ and F : E → 2Y be defined by F(x) := {(y1, y2) ∈ Y | y1 ∈

R, y2 ≥ x2}. Take (x0, y0) = (0X , 0Y) ∈ grF. Then

S2
epiF(0X , 0Y) = T�(2)epiF(0X , 0Y) = {(x, (y1, y2)) ∈ R×R2 | x ∈ R, y1 ∈ R, y2 ≥ x2}.

Therefore, for any x ∈ E, ED�(2)
w F(0X, 0Y)(x) = {(y1, y2) ∈ R2 | y1 ∈ R, y2 = x2}, but

G-ED2
SF(0X , 0Y)(x) = ∅.

Theorem 1. Let F : E → 2Y and (x0, y0) ∈ grF. Let C be a pointed closed convex cone and Daniell.
If P(x) := {y ∈ Y | (x, y) ∈ T�(m)

epiF (x0, y0)} is minorized for all x ∈ domP, then ED�(m)
w F(x0, y0) exists.

Proof. The proof is similar to that of Theorem 3.1 in [2]. �

Definition 8. [23] Let M ⊆ Rn be a nonempty set and x0 ∈ M. M is called star-shaped at x0, if for any
point x ∈ M with x �= x0, the segment

[x, x0] := {y ∈ M | y = (1− λ)x0 + λx, 0 ≤ λ ≤ 1} ⊆ M.

Definition 9. [10] Let E be a nonempty convex set. The map F is said to be C-convex on E, if for any x1, x2 ∈ E
and λ ∈ [0, 1],

λF(x1) + (1− λ)F(x2) ⊆ F(λx1 + (1− λ)x2) + C.

Motivated by Definition 9, we introduce the following concept.

Definition 10. Let E be a star-shaped set at x0 ∈ E. The map F is said to be generalized C-convex at x0 on E,
if for any x ∈ E and λ ∈ [0, 1],

(1− λ)F(x0) + λF(x) ⊆ F((1− λ)x0 + λx) + C.

Remark 3. Let E be a convex set and x0 ∈ E. If F is C-convex on E, then F is generalized C-convex at x0 on E.
However, the converse implication is not true.

To understand Remark 3, we give the following example.

Example 4. Let E1 = (−∞,−1] ⊆ R, E2 = (−1, 1] ⊆ R, E = X = E1 ∪ E2 ⊆ R, Y = R, C = R+ and
F : E → 2Y be defined by

F(x) =

{
{y ∈ Y | y ≥ 1}, x ∈ E1,

{y ∈ Y | y ≥ x2}, x ∈ E2.

Take x0 = −1 ∈ E. Then E is a convex set, and F is generalized C-convex at x0 on E.
Take x1 = −4 ∈ E1 ⊆ E, x2 = 0 ∈ E2 ⊆ E and λ = 1

2 , then

1
2

F(x1) +
1
2

F(x2) = {y|y ≥ 1
2
}

and
F(

1
2

x1 +
1
2

x2) = {y|y ≥ 1}.
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Thus
1
2

F(x1) + (1− 1
2
)F(x2) �⊆ F(

1
2

x1 + (1− 1
2
)x2) + C.

Therefore F is not C-convex on E.

Definition 11. [24] Let U ⊆ X be a star-shaped set at x0 ∈ U. A set-valued map F : U → 2Y is said to be
decreasing-along-rays at x0 if for any x ∈ U and 0 ≤ t1 ≤ t2 with tix + (1− ti)x0 ∈ U(i = 1, 2), one has

F(t1x + (1− t1)x0) ⊆ F(t2x + (1− t2)x0) + C.

Next, we give an important property of the mth-order weak adjacent epiderivative.

Proposition 4. Let E be a star-shaped set at x0 ∈ E. Let F : E → 2Y be a set-valued map and (x0, y0) ∈ grF.
Suppose that the following conditions are satisfied:

(i) F is decreasing-along-rays at x0 ;
(ii) F is generalized C-convex at x0 on E;
(iii) the set P(x) := {y ∈ Y | (x, y) ∈ T�(m)

epiF (x0, y0)} fulfills the weak domination property for all
x ∈ domP.
Then for all x ∈ E, one has x− x0 ∈ Ω := domED�(m)

w F(x0, y0) and

F(x)− {y0} ⊆ ED�(m)
w F(x0, y0)(x− x0) + C.

Proof. Let x ∈ E and y ∈ F(x). For any λn ∈ (0, 1) with λn → 0+, ( λn
2 )m ≤ λn

2 . Since E is a star-shaped
set at x0,

xn := x0 +
λn

2
(x− x0) = (1− λn

2
)x0 +

λn

2
x ∈ E

and
x0 + (

λn

2
)m(x− x0) = (1− (

λn

2
)m)x0 + (

λn

2
)mx ∈ E.

Together this with conditions (i) and (ii) implies

yn : = y0 + (
λn

2
)m(y− y0) = (1− (

λn

2
)m)y0 + (

λn

2
)my

∈ (1− (
λn

2
)m)F(x0) + (

λn

2
)mF(x) ⊆ F((1− (

λn

2
)m)x0 + (

λn

2
)mx) + C

⊆ F(xn) + C + C ⊆ F(xn) + C.

Hence, (xn, yn) ∈ epiF. It follows from the definition of T�(m)
K (x0, y0) that (x − x0, y − y0) ∈

T�(m)
epiF (x0, y0). Replacing x− x0 ∈ domP with x of condition (iii), from the definition of ED�(m)

w F(x0, y0),
we have

P(x− x0) ⊆ ED�(m)
w F(x0, y0)(x− x0) + intC ∪ {0Y}

⊆ ED�(m)
w F(x0, y0)(x− x0) + C.

Thus x− x0 ∈ Ω and

F(x)− {y0} ⊆ ED�(m)
w F(x0, y0)(x− x0) + C.

This completes the proof. �
We now give an example to explain Proposition 4.

143



Mathematics 2019, 7, 372

Example 5. Let E = [0,+∞) ⊆ R, Y = R, C = R+ and F : E → 2Y be defined as F(x) = {y ∈ Y | y ≥ 0}.
Take (x0, y0) = (0, 0) ∈ grF. Then, simple calculations show that T�(2)epiF(0, 0) = R2

+ and

ED�(2)
w F(0, 0)(x− x0) = {0}, ∀x ≥ 0.

We can easily see that all conditions of Proposition 4 are satisfied. For any x ∈ E, one has x− 0 ∈ Ω :=
domED�(2)

w F(0, 0) = {x | x ≥ 0} and

F(x)− {y0} ⊆ ED�(2)
w F(0, 0)(x− x0) + C.

Therefore Proposition 4 is applicable here.

The following examples show that every condition of Proposition 4 is necessary.

Example 6. Let E = [0,+∞) ⊆ R, Y = R, C = R+ and F : E → 2Y be a set-valued map satisfing
F(x) = {y ∈ Y | y ≥ x}. Take (x0, y0) = (0, 0) ∈ grF. By a simple calculation, we obtain

T�(2)epiF(0, 0) = {(0, y) ∈ R×R|y ≥ 0}

and

ED�(2)
w F(0, 0)(x) =

{
{0}, x = 0,

∅ , x �= 0.

Thus x− 0 �∈ Ω := domED�(2)
w F(0, 0) = {0}, for any x ∈ (0,+∞).

Obviously, the conditions (ii) and (iii) of Proposition 4 are satisfied except condition (i), and

F(x)− {y0} �⊆ ED�(2)
w F(x0, y0)(x− x0) + C, x ∈ (0,+∞).

Thus Proposition 4 does not hold here and the condition (i) of Proposition 4 is essential.

Example 7. Let E1 = [0, 1] ⊆ R, E2 = (1,+∞) ⊆ R, E = X = E1 ∪ E2 ⊆ R, Y = R, C = R+ and
F : E → 2Y be given by

F(x) =

{
{y ∈ R | y ≥ −x2}, x ∈ E1,

{y ∈ R | y ≥ −x3}, x ∈ E2.

Take (x0, y0) = (0, 0) ∈ grF = epiF. Then,

T�(2)epiF(0, 0) = {(x, y) ∈ R×R|y ≥ −x2, x ≥ 0}

and
ED�(2)

w F(0, 0)(x− x0) = {y ∈ R | y = −x2}, ∀x ≥ 0.

Clearly, the conditions (i) and (iii) of Proposition 4 are satisfied except condition (ii), and for any x ∈ E2,

F(x)− {y0} �⊆ ED�(2)
w F(x0, y0)(x− x0) + C.

Therefore Proposition 4 does not hold here and the condition (ii) of Proposition 4 is essential.

Example 8. Let E = X = R, Y = R2, C = R2
+ and F : E → 2Y be defined by F(x) := {(y1, y2) ∈ Y | y1 ∈

R, y2 ≥ 0}. Take (x0, y0) = (0, (0, 1)) ∈ grF. Then a simple calculation shows that

T�(2)epiF(0, (0, 1)) = R×R2.
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This means that: (i) domP = R and P(x) = R2, ∀x ∈ domP; (ii) ED�(2)
w F(0, (0, 1)) = ∅ for each

x ∈ R. Obviously, P(x) := {y ∈ Y | (x, y) ∈ R×R2} does not fulfill the weak domination property for each
x ∈ R and Ω = ∅. Thus Proposition 4 does not hold here and the condition (iii) of Proposition 4 is essential.

4. Higher-Order Mond-Weir Type Duality

In this section, by virtue of the higher-order weak adjacent epiderivative of a set-valued map,
we establish Mond-Weir duality theorems for a constrained optimization problem under Benson
proper efficiency.

Let E ⊆ X, F : E → 2Y and G : E → 2Z be two set-valued maps. We consider the following
constrained set-valued optimization problem:

(SOP)

{
MinC F(x),

s.t. x ∈ E, G(x) ∩ (−D) �= ∅.

Let M := {x ∈ E | G(x) ∩ (−D) �= ∅} and F(M) := ∪x∈MF(x). We denote F(x) × G(x) by
(F, G)(x). The point (x0, y0) ∈ E×Y is said to be a feasible solution of (SOP) if x0 ∈ M and y0 ∈ F(x0).

Definition 12. [25] The feasible solution (x0, y0) is called a Benson proper efficient solution of (SOP) if

clcone(F(M) + C− {y0}) ∩ (−C) = {0Y}.

Let (x̃, ỹ, z̃) ∈ gr(F, G), ν ∈ Y∗, ω ∈ Z∗ and x ∈ Θ := domED�(m)
w (F, G)(x̃, ỹ, z̃). Inspired by [2],

We establish a new higher-order Mond-Weir type dual problem (DSOP) of (SOP) as follows:

max ỹ

s.t. ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED�(m)
w (F, G)(x̃, ỹ, z̃)(x), x ∈ Θ, (1)

ω(z̃) � 0, (2)

ν ∈ C+i, (3)

ω ∈ D+. (4)

The point (x̃, ỹ, z̃, ν, ω) is called a feasible solution of (DSOP) if (x̃, ỹ, z̃, ν, ω) satisfies conditions (1),
(2), (3) and (4) of (DSOP). A feasible solution (x0, y0, z0, ν0, ω0) is called a maximal solution of (DSOP)
if for all ỹ ∈ MD, ({ỹ} − {y0}) ∩ (C \ {0Y}) = ∅, where MD := {ỹ ∈ F(x̃) | (x̃, ỹ, z̃) ∈ gr(F, G), ν ∈
C+i, ω ∈ D+, and (x̃, ỹ, z̃, ν, ω) is the feasible solution of (DSOP)}.

Definition 13. [26] Let K ⊆ X, the interior tangent cone of K at x0 is defined by

ITK(x0) := {μ ∈ X | ∃λ > 0, ∀t ∈ (0, λ), ∀μ′ ∈ BX(μ, λ), x0 + tμ′ ∈ K},

where BX(μ, λ) stands for the closed ball centered at μ ∈ X and of radius λ.

Theorem 2. (Weak Duality) Let E be a star-shaped set at x̃ ∈ E and (x̃, ỹ, z̃) ∈ gr(F, G). Let (x0, y0) and
(x̃, ỹ, z̃, ν, ω) be the feasible solution of (SOP) and (DSOP), respectively. Then the weak duality: ν(y0) ≥ ν(ỹ)
holds if the following conditions are satisfied:

(i) (F, G) is decreasing-along-rays at x̃;
(ii) (F, G) is generalized C× D-convex at x̃ on E;
(iii) the set P(F,G)(x0 − x̃) := {y ∈ Y|(x0 − x̃, y, z) ∈ T�(m)

epi(F,G)
(x̃, ỹ, z̃)} fulfills the weak

domination property.
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Proof. Since (x0, y0) is a feasible solution of (SOP), G(x0) ∩ (−D) �= ∅. Take z0 ∈ G(x0) ∩ (−D).
It follows from (2) and (4) that

ω(z0 − z̃) � 0. (5)

From Proposition 4 it follows that x0 − x̃ ∈ S := domED�(m)
w (F, G)(x̃, ỹ, z̃) and

(y0, z0)− (ỹ, z̃) ∈ ED�(m)
w (F, G)(x̃, ỹ, z̃)(x0 − x̃) + C× D. (6)

Noting that ν ∈ C+i and ω ∈ D+, we have by (1) and (6) that ν(y0 − ỹ) + ω(z0 − z̃) � 0.
Combining this with (5), one has

ν(y0 − ỹ) � 0.

Thus ν(y0) ≥ ν(ỹ) and the proof is complete. �
Theorem 2 is an extension of [2], Theorem 4.1 from cone convexity to generalized cone convexity.

Now, we give an example to illustrate that Theorem 2 can apply but [2], Theorem 4.1 dose not.

Example 9. Let X = Y = Z = R, C = D = R+, F : E → 2Y be given as F(x) = {y ∈ Y | y ≥ 0} and
G : E → 2Z be defined by

G(x) =

{
{z ∈ Z | z ≥ 0}, x ≤ 0,

R, x > 0.

Then sets of the feasible solutions for (DSOP) and (SOP) are {(x̃, ỹ, z̃, ν, ω) | x̃ = 0, ỹ = 0, z̃ ≥ 0, ν ∈
C+i, ω = 0} and {(x0, y0) | x0 ∈ R, y0 ≥ 0}, respectively. Thus ν(y0) ≥ ν(ỹ) = ν(0) and Theorem 2 holds
here. However, [2], Theorem 4.1 is not applicable here because G is not C-convex on E.

Lemma 1. [27] Let x0 ∈ K ⊆ X and intK �= ∅. If K is convex, then

ITintK(x0) = intcone(K− {x0}).

The inclusion relation between the generalized second-order adjacent epiderivative and convex
cone C and D is established by Wang and Yu in [28], Theorem 5.2. Inspired by [28] , Theorem 5.2,
we next introduce the equality of the higher-order weak adjacent epiderivative and convex cone C and
D to the proof of the strong duality theory.

Lemma 2. Let (x0, y0, z0) ∈ gr(F, G) and z0 ∈ −D. If (x0, y0) is a Benson proper efficient solution of (SOP),
then for all x ∈ Θ := domED�(m)

w (F, G)(x0, y0, z0),

[ED�(m)
w (F, G)(x0, y0, z0)(x) + C× D + {(0Y, z0)}] ∩ (−((C \ {0Y})× intD)) = ∅. (7)

Proof. We can easily see that (7) is equivalent to

[ED�(m)
w (F, G)(x0, y0, z0)(x) + C× D] ∩ (−((C \ {0Y})× (intD + {z0}))) = ∅. (8)

Thus we only need to prove that (8) holds. Suppose on the contrary that there exist x ∈ Θ,
(y, z) ∈ ED�(m)

w (F, G) (x0, y0, z0)(x) and (c0, d0) ∈ C× D such that

z + d0 ∈ −(intD + {z0}) (9)

and
y + c0 ∈ −(C \ {0Y}). (10)
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It follows from (y, z) ∈ ED�(m)
w (F, G)(x0, y0, z0)(x) that (x, y, z) ∈ T�(m)

epi(F,G)
(x0, y0, z0). Then for

any sequence {tn} with tn → 0+, there exists {(xn, yn, zn)} ⊆ epi(F, G) such that

(
xn − x0

tn
,
(yn, zn)− (y0, z0)

tm
n

)→ (x, y, z). (11)

From (9) and (11), there exists a sufficiently large natural number N1 such that

z̄n :=
zn − z0 + tm

n d0

tm
n

∈ −(intD + {z0}) ⊆ −intcone(D + {z0})

⊆ −ITintD(−z0), ∀n > N1,
(12)

where the last inclusion follows from Lemma 1. According to Definition 13, there exists λ > 0 such that

− z0 + tnμ′ ∈ intD, ∀tn ∈ (0, λ), μ′ ∈ BY(−z̄n, λ), n > N1. (13)

Since tn → 0+, there exists a sufficiently large natural number N2 with N2 ≥ N1 such that
tm
n ∈ (0, λ). Combining this with (13), one has

− z0 + tm
n (−z̄n) ∈ intD, ∀n > N2. (14)

From (12) and (14), we have

−z0 − (zn − z0 + tm
n d0) = −zn − tm

n d0 ∈ intD, ∀n > N2.

It follows from d0 ∈ D, tm
n → 0+ and intD + D ⊆ intD that

zn ∈ −intD, ∀n > N2. (15)

Noting that {(xn, yn, zn)} ⊆ epi(F, G), there exist xn ∈ E, ẑn ∈ G(xn), ŷn ∈ F(xn) and (cn, dn) ∈
C×D such that yn = ŷn + cn and zn = ẑn + dn. By (15), ẑn ∈ −intD− {dn} ⊆ −intD ⊆ −D, ∀n > N2.
Therefore

xn ∈ M, ∀n > N2. (16)

Clearly, we have

yn − y0

tm
n

+ c0 =
yn + tm

n c0 − y0

tm
n

∈ F(xn) + C− {y0}
tm
n

⊆ F(M) + C− {y0}
tm
n

⊆ clcone(F(M) + C− {y0}).

It follows from (11) and (16) that y + c0 ∈ clcone(F(M) + C− {y0}). Combining this with (10),
one has

y + c0 ∈ clcone(F(M) + C− {y0}) ∩ (−(C \ {0Y})),

which contradicts that (x0, y0) is a Benson proper efficient solution of (SOP). Thus (7) holds and the
proof is complete. �

According to Theorem 2.3 of [29], we have the following lemma.

Lemma 3. [29] Let W be a locally convex space, H and Q be cones in W. If H is closed, Q have a compact base
and H ∩Q = {0W}, then there is a pointed convex cone Ã such that Q \ {0W} ⊆ intÃ and Ã ∩ H = {0W}.
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Theorem 3. (Strong Duality) Let E be a convex subset of X, (x0, y0, z0) ∈ gr(F, G) and z0 ∈ −D. Suppose
that the following conditions are satisfied:

(i) (F, G) is C× D-convex on E;
(ii) P(x) := {(y, z) ∈ Y × Z | (x, y, z) ∈ T�(m)

epi(F,G)
(x0, y0, z0)} fulfills the weak domination property for

all x ∈ domP;
(iii) C has a compact base;
(iv) (x0, y0) be a Benson proper efficient solution of (SOP);
(v) for any x ∈ E, G(x) ∩ (−D) �= ∅.
Then there exist ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a maximal solution of (DSOP).

Proof. Define
Ψ := ED�(m)

w (F, G)(x0, y0, z0)(Θ) + C× D + {(0Y, z0)},

where Θ := domED�(m)
w (F, G)(x0, y0, z0).

Step 1. We firstly prove that Ψ is a convex set. Indeed, it is sufficient to show the convexity of
Ψ0 := Ψ− {(0Y, z0)}.

Let (yi, zi) ∈ Ψ0 (i = 1, 2). Then there exist xi ∈ Θ, (y′i, z′i) ∈ ED�(m)
w (F, G)(x0, y0, z0)(xi) and

(ci, di) ∈ C× D (i = 1, 2) such that

(yi, zi) = (y′i, z′i) + (ci, di) (i = 1, 2). (17)

According to the definition of ED�(m)
w (F, G)(x0, y0, z0), one has (xi, y′i, z′i) ∈

T�(m)
epi(F,G)

(x0, y0, z0) (i = 1, 2).

Since (F, G) is C×D-convex on E, epi(F, G) is a convex set. From Proposition 3, T�(m)
epi(F,G)

(x0, y0, z0)

is a convex set. So for any t ∈ [0, 1],

t(x1, y′1, z′1) + (1− t)(x2, y′2, z′2) ∈ T�(m)
epi(F,G)

(x0, y0, z0).

By (ii), we have

t(y′1, z′1) + (1− t)(y′2, z′2) ∈ ED�(m)
w (F, G)(x0, y0, z0)(tx1 + (1− t)x2) + int(C× D) ∪ {(0Y, 0Z)}

⊆ ED�(m)
w (F, G)(x0, y0, z0)(tx1 + (1− t)x2) + C× D.

Combining this with (17), one has

t(y1, z1) + (1− t)(y2, z2) ∈ Ψ0 + C× D = Ψ0.

Therefore Ψ0 is a convex set and so Ψ = Ψ0 + {(0Y, z0)} is a convex set.
Step 2. We prove that there exist ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a feasible

solution of (DSOP).
Define

Φ := clconeΨ.

Since Ψ is a convex set, Φ is a convex cone. According to Lemma 2, we have

Φ ∩ (−((C \ {0Y})× intD)) = ∅. (18)

Hence, we can conclude
Φ ∩ (−(C× {0Z})) = {(0Y, 0Z)}. (19)
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In fact, assume that (19) does not hold. Since Φ is a cone, there exists b ∈ −C \ {0Y} such that

(b, 0Z) ∈ Φ ∩ (−((C \ {0Y})× {0Z})).

Then there exist xn ∈ Θ, (yn, zn) ∈ ED�(m)
w (F, G)(x0, y0, z0)(xn), (cn, dn) ∈ C × D and λn ≥ 0

such that
b = lim

n→∞
λn(yn + cn). (20)

According to the definition of ED�(m)
w (F, G)(x0, y0, z0), for any tk → 0+, there exists (xn

k , yn
k , zn

k ) ∈
epi(F, G) such that

lim
k→∞

(
xn

k − x0

tk
,

yn
k − y0 + tm

k cn

tm
k

,
zn

k − z0 + tm
k dn

tm
k

) = (xn, yn + cn, zn + dn). (21)

This together with condition (v) implies

λn
yn

k − y0 + tm
k cn

tm
k

∈ λn
F(xn

k ) + C− {y0}+ tm
k cn

tm
k

⊆ clcone[F(E) + C− {y0}]
⊆ clcone[F(M) + C− {y0}].

(22)

It follows from (20), (21), (22) and b ∈ −(C \ {0Y}) that

b ∈ clcone(F(M) + C− {y0}) ∩ (−(C \ {0Y})),

which contradicts that (x0, y0) is a Benson proper efficient solution of (SOP). Thus (19) holds.
Since C has a compact base, −(C× {0Z}) also has a compact base. Combining this with (19) and

Lemma 3, replacing H and Q with Φ and −(C× {0Z}), there exists a pointed convex cone Ã such that

− (C× {0Z})\(0Y, 0Z) ⊆ intÃ (23)

and
Φ ∩ Ã = {(0Y, 0Z)}. (24)

Let B̃ := A∪{(0Y, 0Z)}, where A := −((C \ {0Y})× (intD∪{0Z}))+ Ã. Thus B̃ is a convex cone.
Next, we further prove that B̃ is a pointed cone. According to Proposition 1, we get (0X , 0Y, 0Z) ∈

T�(m)
epi(F,G)

(x0, y0, z0). Combining this with the weak domination property of P, we get

(0Y, 0Z) ∈ ED�(m)
w (F, G)(x0, y0, z0)(0X) + C× D. (25)

For z0 ∈ G(x0) ∩ (−D) and (c, d) ∈ C× D, we have

(c, d) = (0Y, 0Z) + (c, d− z0) + (0Y, z0)

∈ ED�(m)
w (F, G)(x0, y0, z0)(0X) + C× D + {(0Y, z0)}

⊆ Φ,

and so
C× D ⊆ Φ. (26)

It follows from (24) and (26) that (C× D) ∩ Ã = {(0Y, 0Z)}. Hence,

((C \ {0Y})× (intD ∪ {0Z})) ∩ Ã = ∅.
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Combining with the definition of A, one has

(0Y, 0Z) /∈ A. (27)

Thus
A ∩ (−A) = ∅. (28)

To obtain this result, we suppose on the contrary that there exists (c, d) ∈ A ∩ (−A). Then there
exist (ci, di) ∈ (C \ {0Y})× (intD ∪ {0Z}) (i = 1, 2) and (c′i, d′i) ∈ Ã (i = 1, 2) such that

(c, d) = −(c1, d1) + (c′1, d′1)

and
(c, d) = (c2, d2)− (c′2, d′2).

So
(−(c1, d1) + (c′1, d′1))− ((c2, d2)− (c′2, d′2))

=− (c1 + c2, d1 + d2) + (c′1 + c′2, d′1 + d′2)

=(0Y, 0Z) ∈ A,

which contradicts (27). Therefore (28) holds. Then B̃ is a pointed convex cone and (0Y, 0Z) �∈ intB̃.
Now, we can conclude

Φ ∩ B̃ = {(0Y, 0Z)}. (29)

To see the conclusion, we suppose on the contrary that there exists (y, z) �= (0Y, 0Z) such that

(y, z) ∈ Φ ∩ B̃, (30)

because B̃ is a pointed convex cone and Φ is a convex cone. From the definition of B̃, there exist
(y1, z1) ∈ −((C \ {0Y})× (intD ∪ {0Z})) and (y2, z2) ∈ Ã such that

(y, z) = (y1, z1) + (y2, z2).

According to the definition of Φ, there exist x′n ∈ Θ, (y′n, z′n) ∈ ED�(m)
w (F, G)(x0, y0, z0)(x′n),

(c′n, d′n) ∈ C× D and λ′n ≥ 0 such that

(y, z) = lim
n→∞

λ′n(y
′
n + c′n, z′n + d′n + z0).

Since (y, z) �= (0Y, 0Z), without loss of generality, we may assume that λ′n > 0. It follows from the
definition of Φ that

(y, z)− (y1, z1) = lim
n→∞

λ′n(y
′
n + c′n, z′n + d′n + z0)− (y1, z1)

= lim
n→∞

λ′n(y
′
n + c′n −

y1

λ′n
, z′n + d′n −

z1

λ′n
+ z0)

∈ Φ,

and so
(y2, z2) = (y, z)− (y1, z1) ∈ Φ ∩ Ã = {(0Y, 0Z)}.

Thus
(y, z) = (y1, z1) ∈ −((C \ {0Y})× intD). (31)
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By (30) and (31), we have

(y, z) ∈ Φ ∩ (−((C \ {0Y})× intD)),

which contradicts (18).
We claim that

− ((C \ {0Y})× (intD ∪ {0Z})) ⊆ intB̃. (32)

To obtain this conclusion, we replace B and C in [30], Theorem 2.2 with −((C \ {0Y})× (intD ∪
{0Z})) and intÃ, respectively, which together with the fact: (0Y, 0Z) �∈ intB̃ yields that

intB̃ = −(C \ {0Y})× (intD ∪ {0Z}) + intÃ. (33)

Let c ∈ C \ {0Y} and d ∈ intD ∪ {0Z}. Then by (23) and (33), one has

−(c, d) = −(
c
2

, d)− (
c
2

, 0Z) ∈ −((C \ {0Y})× (intD ∪ {0Z})) + intÃ = intB̃,

and so (32) holds.
According to the separation theorem for convex set and (29), there exist ν ∈ Y∗ and ω ∈ Z∗

such that
ν(ȳ) + ω(z̄) < 0, ∀(ȳ, z̄) ∈ intB̃ (34)

and
ν(y̌) + ω(ž) ≥ 0, ∀(y̌, ž) ∈ Φ. (35)

By (32) and (34), we have

ν(ȳ) + ω(z̄) > 0, ∀(ȳ, z̄) ∈ (C \ {0Y})× (intD ∪ {0Z}). (36)

Taking z̄ = 0Z in (36), one has ν(ȳ) > 0, ∀ȳ ∈ C \ {0Y}, thus ν ∈ C+i. For any ε > 0, take
ȳ ∈ (C \ {0Y}) ∩ B(0Y, ε) in (36). Then we can observe that ω(z̄) ≥ 0, ∀z̄ ∈ intD, which implies
ω ∈ D+.

It follows from (35) that

ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED�(m)
w (F, G)(x0, y0, z0)(Θ) + C× D + {(0Y, z0)}. (37)

Together with (25), we get ω(z0) ≥ 0. It follows from z0 ∈ −D and ω ∈ D+ that ω(z0) ≤ 0. Thus,

ω(z0) = 0.

Combining this with (37), one has

ν(y′) + ω(z′) ≥ 0, ∀(y′, z′) ∈ ED�(m)
w (F, G)(x0, y0, z0)(Θ) + C× D,

and so
ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED�(m)

w (F, G)(x0, y0, z0)(Θ).

Thus (x0, y0, z0, ν, ω) is a feasible solution of (DSOP).
Step 3. We prove that (x0, y0, z0, ν, ω) is a maximal solution of (DSOP).
Suppose on the contrary that there exists a feasible solution (x̂, ŷ, ẑ, ν′, ω′) such that ŷ − y0 ∈

C \ {0Y}. By ν′ ∈ C+i, we have
ν′(ŷ) > ν′(y0) (38)

Since (x0, y0) is a feasible solution of (SOP), it follows from Theorem 2 that ν′(y0) � ν′(ŷ), which
contradicts (38). The proof is complete. �
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Theorem 4. (Converse Duality) Let E be a star-shaped set at x0 ∈ E. Let y0 ∈ F(x0), z0 ∈ G(x0) ∩ (−D),
ν ∈ C+i and ω ∈ D+ such that (x0, y0, z0, ν, ω) is a feasible solution of (DSOP). Then (x0, y0) is a Benson
proper efficient solution of (SOP) if the following conditions are satisfied:

(i) (F, G) is decreasing-along-rays at x0;
(ii) (F, G) is a generalized C× D-convex at x0 on E;
(iii) the set P(F,G)(x − x0) := {y ∈ Y | (x − x0, y, z) ∈ T�(m)

epi(F,G)
(x0, y0, z0)} fulfills the weak

domination property for all x ∈ domP(F,G).

Proof. It follows from (1), (3) and (4) that

ν(y) + ω(z) ≥ 0, ∀(y, z) ∈ ED�(m)
w (F, G)(x0, y0, z0)(x) + C× D,

∀x ∈ Θ := domED�(m)
w (F, G)(x0, y0, z0).

(39)

According to Proposition 4, we get

(y− y0, z− z0) ∈ ED�(m)
w (F, G)(x0, y0, z0)(x− x0) + C× D,

∀x ∈ M, y ∈ F(x), z ∈ G(x) ∩ (−D).
(40)

By (2), we have ω(z0) ≥ 0. It follows from z0 ∈ G(x0) ∩ (−D) and ω ∈ D+ that ω(z0) � 0, thus
ω(z0) = 0. Then

ω(z− z0) = ω(z)−ω(z0) = ω(z) � 0, ∀z ∈ G(x) ∩ (−D), x ∈ M. (41)

It follows from (39), (40) and (41) that

ν(y− y0) ≥ 0, ∀y ∈ F(x), x ∈ M.

Further more, we can get

ν(y + c− y0) ≥ 0, ∀y ∈ F(x), x ∈ M,

and so
ν(y) ≥ 0, ∀y ∈ clcone(F(M) + C− {y0}). (42)

Assume that the feasible solution (x0, y0) is not a Benson proper efficient solution of (SOP).
Then there exists y′ ∈ −(C \ {0Y}) such that y′ ∈ clcone(F(M) + C− {y0}). This together with (42)
implies that

ν(y′) ≥ 0. (43)

It follows from ν ∈ C+i and y′ ∈ −(C \ {0Y}) that ν(y′) < 0, which contradicts (43). Thus (x0, y0)

is a Benson proper efficient of (SOP) and the proof is complete. �

Remark 4. Example 9 also illustrates that Theorem 4 extends [2], Theorem 4.3 from the cone convexity to
generalized cone convexity. Indeed, take (x0, y0, z0) = (0, 0, 0). Then simple calculations show that

T�(2)epi(F,G)
(0, 0, 0) ={(x, y, z) ∈ X ×Y × Z | x ≤ 0, y ≥ 0, z ≥ 0}∪

{(x, y, z) ∈ X ×Y × Z | x > 0, y ≥ 0, z ∈ R}

and

ED�(2)
w (F, G)(0, 0, 0)(x) =

{
{(y, z) ∈ Y × Z | y = 0, z ≥ 0} ∪ {(y, z) ∈ Y × Z | y ≥ 0, z = 0}, x ≤ 0,

{(y, z) ∈ Y × Z | y = 0, z ∈ R}, x > 0.
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Then we can choose ν = 1 and ω = 0 such that (x0, y0, z0, ν, ω) = (0, 0, 0, 1, 0) is a feasible solution of
(DSOP). It is easy to show that the all conditions of Theorem 4 are fulfilled and (0, 0) is a Benson proper efficient
solution of (SOP). Thus Theorem 4 holds here. However, [2], Theorem 4.3 is not applicable here because G is not
C-convex on E.
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Abstract: This paper explores new notions of approximate minimality in set optimization using a
set approach. We propose characterizations of several approximate minimal elements of families
of sets in real linear spaces by means of general functionals, which can be unified in an inequality
approach. As particular cases, we investigate the use of the prominent Tammer–Weidner nonlinear
scalarizing functionals, without assuming any topology, in our context. We also derive numerical
methods to obtain approximate minimal elements of families of finitely many sets by means of our
obtained results.
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1. Introduction

Set optimization has become an important research area and has gained tremendous interest
within the optimization community due to its wide and important applications; see, e.g., [1–4]. There
exist various research fields that directly lead to problems which can most satisfactorily be modeled
and solved in the unified framework provided by set optimization. For example, duality in vector
optimization, gap functions for vector variational inequalities, fuzzy optimization, as well as many
problems in image processing, viability theory, economics etc. all lead to optimization problems that
can be modeled as set-valued optimization problems. For an introduction to set optimization and its
applications, we refer to [5].

For example, it is well known that uncertain optimization problems can be modeled by means of
set optimization. Uncertainty here means that some parameters are not known. Instead, possibly only
an estimated value or a set of possible values can be determined. As inaccurate data can have severe
impacts on the model and therefore on the computed solution, it is important to take such uncertainty
into account when modeling an optimization problem. If uncertainty is included in the optimization
model, one is left with not only one objective function value, but possibly a whole set of values.
This leads to a set-valued optimization problem, where the objective map is set-valued.

Recently, it has been shown that certain concepts of robustness for dealing with uncertainties
in vector optimization can be described using approaches from set-valued optimization (see [2,3]
and a practical application in the context of layout optimization of photovoltaic powerplants in [6]).

Mathematics 2020, 8, 143; doi:10.3390/math8010143 www.mdpi.com/journal/mathematics155
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The concept of interval arithmetic for computations with strict error bounds [7] is also a special case of
dealing with set-valued mappings.

To obtain minimal solutions of a set-valued optimization problem, one must analyze whether
one set dominates another set in a certain sense, i.e., by means of a given set relation. As it turns out,
however, (depending on the chosen set relation), this intuitive and natural mathematical modeling
framework often reaches its limitations and leads to very large or—even worse—empty solution
sets. This is especially important throughout the design and implementation process of numerical
algorithms for set optimization problems: The criteria involved in the definition of the set relations
are usually based on set inclusions which for continuous problems are very sensitive to numerical
inaccuracies or even just round-off errors.

A simple way to remedy this is to use approximate solution concepts: Here, the strict set inclusions
are in a way relaxed by extending (enlarging/translating) the quantities that are to be compared such
that one obtains more robust results for the involved inclusion tests.

The goal of this paper lies in the characterization of several well-known set relations by means of
a very broad, manageable and easy-to-compute functional in the context of approximate solutions to
set optimization problems using the set approach. In contrast to recent results in this area (for example
see [8–11]), we assume that the spaces in which the sets are compared are not endowed with a particular
topology. Therefore, our results generalize those found in the literature by dismissing topological
properties. Please note that the references [10,11] present results on scalarizing functionals, but the
functional acts on a real linear topological space and no relation to approximate solutions is presented
there. Moreover, in [8,9], the oriented distance functional (which implicitly requires a topology) is used
to derive characterizations of set relations. To the best of our knowledge, our approach of combining
algebraic tools with approximate minimality notions in set optimization is original. That way, our
results are not only valid in a broader mathematical setting but also provide some further insight into
the purely algebraic tools and theoretical requirements necessary to acquire our findings. This is not
only mathematically interesting, but deepens the theoretical understanding of approximate minimality
in set optimization. It is furthermore in line with the recent increased interest in studying optimality
conditions and separation concepts in spaces without a particular topology underneath it, see [12–21]
and the references therein.

2. Preliminaries

Throughout this work, let Y be a real linear space. Following the nomenclature of [22], for a
nonempty set F ⊆ Y, we denote by

core F := {y ∈ Y | ∀v ∈ Y ∃λ > 0 s.t. y + [0, λ]v ⊆ F}

the algebraic interior of F and for any given k ∈ Y, let

vclk F := {y ∈ Y | ∀λ > 0 ∃λ′ ∈ [0, λ] s.t. y + λ′k ∈ F}.

We say that F is k-vectorially closed if vclk F = F. Obviously, it holds F ⊆ vclk F for all k ∈ Y.
We denote by P(Y) := {A ⊆ Y | A is nonempty} the power set of Y without the empty set.

For two elements A, B of P(Y), we denote the sum of sets by

A + B := {a + b | a ∈ A, b ∈ B}.

The set F ⊆ Y is a cone if for all f ∈ F and λ ≥ 0, λ f ∈ F holds true. The cone F is convex if F + F ⊆ F.
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Now let ∅ �= C ⊆ Y and k ∈ Y \ {0}. We recall the functional zC,k : Y → R∪ {+∞} ∪ {−∞} =: R̄
from Gerstewitz [23] (which has very recently been extended to the space Y without assuming any
topology, see [24] and the references therein)

zC,k(y) :=

{
+∞ if y /∈ Rk− C,

inf{t ∈ R | y ∈ tk− C} otherwise .
(1)

The functional zC,k was originally introduced as scalarizing functional in vector optimization. Please
note that the construction of zC,k was mentioned by Krasnosel’skiĭ [25] (see Rubinov [26]) in the context
of operator theory. Figure 1 visualizes the functional zC,k, where C = R2

+ has been taken as the natural
ordering cone in R2 and k ∈ core C. We can see that the set −C is moved along the line R · k up until y
belongs to tk− C. The functional zC,k assigns the smallest value t such that the property y ∈ tk− C
is fulfilled.

C
k

y

tk− C

t · k

Figure 1. Illustration of the functional zC,k(y) := inf{t ∈ R|y ∈ tk− C}.

The functional zC,k plays an important role as nonlinear separation functional for not necessarily
convex sets. Applications of zC,k include coherent risk measures in financial mathematics (see,
for instance, [27]) and uncertain programming (see [2,3]). Several important properties of zC,k (in the
case that Y is endowed with a topology) were studied in [28,29]. Now let us recall the definition of
E-monotonicity of a functional.

Definition 1. Let E ∈ P(Y). A functional z : Y → R̄ is called E-monotone if

y1, y2 ∈ Y : y1 ∈ y2 − E ⇒ z(y1) ≤ z(y2) .

Below we provide some properties of the functional zC,k introduced in (1).

Proposition 1 ([22]). Let C and E be nonempty subsets of Y, and let k ∈ Y \ {0}. Then the following
properties hold.

(a) ∀ y ∈ Y : zC,k(y) ≤ 0 ⇐⇒ y ∈ (−∞, 0]k− vclk C.
(b) ∀ y ∈ Y : zC,k(y) < 0 ⇐⇒ y ∈ (−∞, 0)k− vclk C.
(c) zC,k is E-monotone if and only if E + C ⊂ [0,+∞)k + vclk C.
(d) ∀ y ∈ Y, ∀ r ∈ R : zC,k(y + rk) = zC,k(y) + r.

The set relations to be defined below rely on set inclusions where the set C is attached pointwise
to the considered sets A, B ∈ P(Y). The following corollary relates A + C and A− C respectively by
means of the functional zC,k in the case that C is a convex cone.
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Corollary 1 ([14], Corollary 2.3). Let C ⊆ Y be a convex cone, A ∈ P(Y) and k ∈ Y \ {0}. Then it holds

sup
a∈A

zC,k(a) = sup
y∈A−C

zC,k(y) and inf
a∈A

zC,k(a) = inf
y∈A+C

zC,k(y) .

A well-known set relation is the upper set less order relation introduced by Kuroiwa [30,31].
We recall a generalized version of this relation here, where the underlying set C is not necessarily a
convex cone and thus the resulting relation is not necessarily an order.

Definition 2 (Upper Set Less Relation, [32]). Let C ⊆ Y. The upper set less relation "u
C is defined for two

sets A, B ∈ P(Y) by
A "u

C B :⇐⇒ A ⊆ B− C.

The following theorem shows a first connection between the upper set less relation and the
nonlinear scalarizing functional zC,k.

Theorem 1 ([14], Theorem 3.2). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A "u
C B =⇒ sup

a∈A
zC,k(a) ≤ sup

b∈B
zC,k(b).

The converse implication in Theorem 1 is not generally fulfilled, even if the underlying sets are
convex, see ([33], Example 3.2). However, we have the following result.

Theorem 2 ([14], Theorem 3.3). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A "u
C B =⇒ sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B zC,k0(a − b) is attained for all
a ∈ A, C is k0-vectorially closed and [0,+∞)k0 + C ⊆ C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 =⇒ A "u
C B .

Remark 1. (1) Please note that for any A, B ∈ P(Y), the set relation A "u
C B by Theorem 2 also implies

supk∈Y\{0} supa∈A infb∈B zC,k(a− b) ≤ 0.
(2) Let A, B ∈ P(Y) and C ⊆ Y. If there exists an element k0 ∈ C \ {0} such that infb∈B zC,k0(a − b)

is attained for all a ∈ A, C is k0-vectorially closed and [0,+∞)k0 + C = C, then it follows from
Theorem 2 that

A "u
C B ⇐⇒ sup

a∈A
inf
b∈B

zC,k0(a− b) ≤ 0

⇐⇒ sup
k∈Y\{0}

sup
a∈A

inf
b∈B

zC,k(a− b) ≤ 0.

In the second part of Theorem 2, we need the assumption that there exists a k0 ∈ Y \ {0}
such that infb∈B zC,k0(a − b) is attained for all a ∈ A. Sufficient conditions for such an attainment
property, i.e., assertions concerning the existence of solutions of the corresponding optimization
problems (extremal principles) are given in the literature. The well-known Theorem of Weierstrass says
that a lower semi-continuous function on a nonempty weakly compact set in a reflexive Banach
space has a minimum. An extension of the Theorem of Weierstrass is given by Zeidler ([34],
Proposition 9.13): A proper lower semi-continuous and quasi-convex function on a nonempty closed
bounded convex subset of a reflexive Banach space has a minimum. Since the functional zC,k0 is
studied here in the context of real linear spaces that are not endowed with a particular topology,
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we cannot rely on continuity assumptions. Therefore, we propose the following theorem without any
attainment property.

Theorem 3 ([14], Theorem 3.6). Let C ⊆ Y, A, B ∈ P(Y) and k0 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C and vcl−k0(B− C) ⊆ B− C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 =⇒ A "u
C B .

We also consider the following set relation, which compares sets based on their lower bounds
(compare [30,31] for the according definition for orders).

Definition 3 (Lower Set Less Relation, [32]). Let C ⊆ Y. The lower set less relation "l
C is defined for

two sets A, B ∈ P(Y) by
A "l

C B :⇐⇒ B ⊆ A + C.

Because A "u
C B is equivalent to−B "l

C −A, we obtain the following corollaries from Theorems 1,
2 and 3.

Corollary 2 ([14], Corollary 3.9). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A "l
C B =⇒ inf

a∈A
zC,k(a) ≤ inf

b∈B
zC,k(b).

Corollary 3 ([14], Corollary 3.10). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A "l
C B =⇒ sup

b∈B
inf
a∈A

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infa∈A zC,k0(a − b) is attained for all
b ∈ B, C is k0-vectorially closed and [0,+∞)k0 + C ⊆ C. Then

sup
b∈B

inf
a∈A

zC,k0(a− b) ≤ 0 =⇒ A "l
C B .

Corollary 4 ([14], Corollary 3.11). Let C ⊆ Y, A, B ∈ P(Y) and k0 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C and vcl−k0(A− C) ⊆ −A− C. Then

sup
b∈B

inf
a∈A

zC,k0(a− b) ≤ 0 =⇒ A "l
C B .

We also study the so-called set less relation (see [35,36] for the case where the underlying set C is a
convex cone).

Definition 4 (Set Less Relation, [32]). Let C ⊆ Y. The set less relation "s
C is defined for two sets

A, B ∈ P(Y) by
A "s

C B :⇐⇒ A "u
C B and A "l

C B.

We immediately obtain the following results.

Corollary 5 ([14], Corollary 3.13). Let C ⊆ Y be a convex cone, A, B ∈ P(Y) and k ∈ Y \ {0}. Then

A "s
C B =⇒ sup

a∈A
zC,k(a) ≤ sup

b∈B
zC,k(b) and inf

a∈A
zC,k(a) ≤ inf

b∈B
zC,k(b).
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Corollary 6 ([14], Corollary 3.14). Let C ⊆ Y. For two sets A, B ∈ P(Y) and k ∈ Y \ {0}, it holds

A "s
C B =⇒ sup

a∈A
inf
b∈B

zC,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B zC,k0(a − b) is attained for all
a ∈ A, and there exists k1 ∈ Y \ {0} such that infa∈A zC,k1(a− b) is attained for all b ∈ B, C is both k0- and
k1-vectorially closed, [0,+∞)k0 + C ⊆ C and [0,+∞)k1 + C ⊆ C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k1(a− b) ≤ 0 =⇒ A "s
C B .

Corollary 7 ([14], Corollary 3.15). Let C ⊆ Y, A, B ∈ P(Y) and k0, k1 ∈ Y \ {0} such that (−∞, 0)k0 −
vclk0 C ⊆ −C, (−∞, 0)k1 − vclk1 C ⊆ −C, vcl−k0(B− C) ⊆ B− C and vcl−k1(A− C) ⊆ A− C. Then

sup
a∈A

inf
b∈B

zC,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zC,k1(a− b) ≤ 0 =⇒ A "s
C B .

3. Approximate Minimal Elements of Set Optimization Problems

The following definition describes minimality in the setting of a family of sets (see ([5],
Definition 2.6.19) for the corresponding definition for preorders).

Definition 5 (Minimal Elements). Let A be a family of elements of P(Y). A ∈ A is called a minimal
element of A w. r. t. " if

A " A, A ∈ A =⇒ A " A .

The set of all minimal elements of A w. r. t. " will be denoted by Amin.

Please note that if the elements of A are single-valued and A " A :⇐⇒ A ∈ A − C with
C ⊆ Y being a convex cone, then Definition 5 reduces to the standard notion of minimality in vector
optimization (compare, for example, ([15], Definition 4.1)). From vector optimization, it is well known
that usually, the existence of minimal elements can only be guaranteed under additional assumptions
(for an existence result of minimal elements in set optimization, see, for example, [37]). Since the set
Amin may be empty, it is common practice to use a weaker notion of minimality, so-called approximate
minimality. For this reason, we extend three notions of approximate minimality that were originally
introduced in [38]. In [38], the following definitions are given for " = "l

C (see Definition 3). In order to
stay as general as possible, we define approximate minimality using set relations that are not required
to possess any ordering structure.

Definition 6. Let A be a family of elements of P(Y), H ∈ P(Y), H �= Y and " be a binary relation on A.

(a) A ∈ A is called an H1–approximate minimal element of A w. r. t. " if

A " A, A ∈ A =⇒ A " A + H .

(b) A ∈ A is called an H2–approximate minimal element of A w. r. t. " if

A + H " A, A ∈ A =⇒ A " A + H .

(c) A ∈ A is called an H3–approximate minimal element ofA w. r. t." if A+ H �" A, for all A ∈ A\ A.

The set of all Hi–approximate minimal elements of A w. r. t. " (i = 1, 2, 3) will be denoted by AHi .

Please note that Definition 6 (a) is a natural formulation for approximate minimality,
while Definition 6 (b) is derived from the standard notion of approximate efficiency for vector-valued
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maps (see ([38], Remark 2.5)). Definition 6 (c) represents an approximate version of the well-known
nondomination concept of vector optimization.

Here we consider a set-valued optimization problem in the following setting: Let S ⊆ Rn,
a set-valued mapping F : S ⇒ Y and a set relation " be given. We are looking for approximate

minimal elements w. r. t. the order relation " in the sense of Definition 6 of the problem

min
x∈S

F(x) . (2)

We say that x ∈ S is an Hi–approximate minimal solution (i = 1, 2, 3) of (2) w. r. t. " if F(x) is an
Hi–approximate minimal element of the family of sets F(x), x ∈ S w. r. t. ". The family of sets F(x),
x ∈ S, is denoted by A.

Now we will present characterizations of approximate minimal solutions of (2) w. r. t. ". In what
follows, we will use the following notation. For some x ∈ S, let us denote

[F(x)]H
1

" := {x ∈ S | F(x) " F(x), F(x) " F(x) + H}

and
[F(x)]H

2

" := {x ∈ S | F(x) + H " F(x), F(x) " F(x) + H} .

The following proposition will be useful in the theorem below.

Proposition 2. x ∈ S is an H1-approximate minimal solution of the problem (2) w. r. t. " if and only if for any
x ∈ S \ [F(x)]H

1

" , we have F(x) �" F(x).

Proof. First note that x ∈ S \ [F(x)]H
1

" means that x ∈ S such that F(x) �" F(x) or F(x) �" F(x) + H.
Let x ∈ S be an H1-approximate minimal solution of the problem (2) w. r. t. ". Then we must consider
two cases:
Case 1: For x ∈ S and F(x) �" F(x), there is nothing left to show.
Case 2: For x ∈ S and F(x) �" F(x) + H, we obtain F(x) �" F(x) due to x’s H1-approximate minimality,
as desired.

Conversely, assume that for all x ∈ S \ [F(x)]H
1

" , F(x) �" F(x) holds true. Suppose,
by contradiction, that x is not an H1-approximate minimal solution of the problem (2) w. r. t. ".
This implies the existence of some x ∈ S with the properties F(x) " F(x) and F(x) �" F(x),
in contradiction to the assumption.

Now we consider a functional gH1
: S× S → R∪ {±∞} with the property

∀ x, x ∈ S : gH1
(x, x) ≤ 0 ⇐⇒ F(x) " F(x).

Then we have the following characterization for H1-approximate minimal solution of the problem (2)
w. r. t. ".

Theorem 4. x ∈ S is an H1-approximate minimal solution of the problem (2) w. r. t. " if and only if the
following system (in the unknown x)

gH1
(x, x) ≤ 0, x ∈ S \ [F(x)]H

1

" ,

is impossible.
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Proof. First note that due to Proposition 2, x ∈ S is an H1-approximate minimal solution of the
problem (2) w. r. t. " if and only if for x ∈ S \ [F(x)]H

1

" , we have F(x) �" F(x). Furthermore, we have

gH1
(x, x) ≤ 0, x ∈ S \ [F(x)]H

1

" is impossible

⇐⇒ �x ∈ S \ [F(x)]H
1

" : gH1
(x, x) ≤ 0

⇐⇒ ∀x ∈ S \ [F(x)]H
1

" : gH1
(x, x) > 0

⇐⇒ ∀x ∈ S \ [F(x)]H
1

" : F(x) �" F(x).

In a similar manner as Proposition 2 and Theorem 4, one can verify the following results. For this,
we assume that we are given a functional gH2

: S× S → R∪ {±∞} with the property

∀ x, x ∈ S : gH2
(x, x) ≤ 0 ⇐⇒ F(x) + H " F(x).

Proposition 3. x ∈ S is an H2-approximate minimal solution of the problem (2) w. r. t. " if and only if for any
x ∈ S \ [F(x)]H

2

" , we have F(x) + H �" F(x).

Theorem 5. x ∈ S is an H2-approximate minimal solution of the problem (2) w. r. t. " if and only if the
following system (in the unknown x)

gH2
(x, x) ≤ 0, x ∈ S \ [F(x)]H

2

" ,

is impossible.

Let us now consider problem (2) with the set relation " = "u
C. Motivated by Theorem 3 and

Corollary 4 above, we consider the functionals gHi
u : S× S → R∪ {±∞} (i = 1, 2) defined by

gH1

u (x, x) := sup
y∈F(x)

inf
y∈F(x)

zC,k(y− y),

gH2

u (x, x) := sup
y∈F(x)+H

inf
y∈F(x)

zC,k(y− y).

Assumption 1. For C ⊆ Y, k ∈ Y \ {0}, and x ∈ S we assume that

(a-H1) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H
1

"u
C

and y ∈ F(x), the infimum

infy∈F(x) zC,k(y− y) is attained;
(a-H2) C is k-vectorially closed, [0,+∞)k + C ⊆ C, and for all x ∈ S \ [F(x)]H

2

"u
C

and y ∈ F(x) + H,

the infimum infy∈F(x) zC,k(y− y) is attained;
(b) (−∞, 0)k− vclk C ⊆ −C and vcl−k(F(x)− C) ⊆ F(x)− C.

We next present a sufficient and necessary condition for H1-approximate minimal solutions of the
problem (2) w. r. t. the relation "u

C.

Corollary 8. Let Assumption 1 (a-Hi) or (b) be satisfied. Then x ∈ S is an Hi-approximate minimal solution
(i = 1, 2) of the problem (2) w. r. t. "u

C if and only if the following system (in the unknown x)

gHi

u (x, x) ≤ 0, x ∈ S \ [F(x)]H
i

"u
C

,

is impossible.

162



Mathematics 2020, 8, 143

Proof. The proof follows by Theorems 2, 3, 4 and 5.

Furthermore, let us consider problem (2) with " = "l
C. We define the functions gHi

l : S× S →
R∪ {±∞} for i = 1, 2 by

gH1

l (x, x) := sup
y∈F(x)

inf
y∈F(x)

zC,k(y− y)

gH2

l (x, x) := sup
y∈F(x)

inf
y∈F(x)+H

zC,k(y− y).

Assumption 2. For C ⊆ Y, k ∈ Y \ {0}, and x ∈ S we assume that

(a-H1) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H
1

"l
C

and y ∈ F(x), the infimum

infy∈F(x) zC,k(y− y) is attained;
(a-H2) C is k-vectorially closed, [0,+∞)k +C ⊆ C, and for all x ∈ S \ [F(x)]H

2

"l
C

and y ∈ F(x), the infimum

infy∈F(x)+H zC,k(y− y) is attained;
(b) (−∞, 0)k− vclk C ⊆ −C and for all x ∈ S : vcl−k(−F(x)− C) = −F(x)− C.

In the following, we present a sufficient and necessary condition for Hi-approximate minimal
solutions of the problem (2) w. r. t. "l

C.

Corollary 9. Let Assumption 2 (a-Hi) or (b) be satisfied. Then x is an Hi-approximate minimal solution
(i = 1, 2) of the problem (2) w. r. t. "l

C if and only if the following system (in the unknown x)

gH1

l (x, x) ≤ 0, x ∈ S \ [F(x)]H
i

"l
C

,

is impossible.

Proof. The proof follows by Corollaries 3 and 4 as well as Theorems 4 and 5.

Finally, we have the following result for Hi-approximate minimal solutions of the problem (2)
w. r. t. "s

C.

Corollary 10. Let i ∈ {1, 2} and suppose that Assumptions 1 (a-Hi) and 2 (a-Hi) or Assumptions 1 (b) and
2 (b) are satisfied for the same k ∈ Y \ {0}. Then x is an Hi-approximate minimal solution of the problem (2)
w. r. t. "s

C if and only if the following system (in the unknown x):

gHi

u (x, x) ≤ 0 and gHi

l (x, x) ≤ 0, x ∈ S \
(
[F(x)]H

i

"u
C
∪ [F(x)]H

i

"l
C

)
,

is impossible.

4. Numerical Procedure for Computing Hi-Approximate Minimal Elements of a Family of
Finitely Many Elements

Finding Hi-approximate minimal elements of a family of finitely many elements of P(Y) is
very important. A first approach to deriving and implementing numerical methods for obtaining
Hi-approximate minimal elements has been presented in [38] for the lower set less relation "l

C.
The assumption that the given family is finitely valued is oftentimes not a restriction, as many
continuous set optimization problem can be appropriately discretized, see the discussion in [39] and
the theoretical investigations for linear programs [40] as well as the numerical studies in [41]. In this
section, we propose numerical methods for obtaining approximate minimal elements as proposed in
Definition 5 for general set relations under suitable assumptions.
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Please note that the following algorithms can be found in [38] for the specific case that the set
relation is equal to "l

C. We present them here for general set relations ". The following algorithm is
an extension of the so-called Graef-Younes method [42,43] and it is useful for sorting out elements which
do not belong to the set of Hi–approximate minimal elements.

Algorithm 1: (Method for sorting out elements of a family of finitely many sets which are not
H1- (H2-, H3-, respectively) approximate minimal elements).

Input: A := {A1, . . . , Am}, set relation ", H ∈ P(Y)
% initialization
T := {A1},
% iteration loop
for j = 2 : 1 : m do

if
(

A " Aj, A ∈ T =⇒ Aj " A + H
)((

A + H " Aj, A ∈ T =⇒ Aj " A + H
)
, respectively

)
,(

A + H �" A, A ∈ T , respectively
)

, then

T := T ∪ {Aj}
end if

end for
Output: T

Remark 2. 1. Please note that the if-condition in Algorithm 1 is usually not implemented straightforwardly
but instead an additional loop over the elements of the set T is performed. We nevertheless use the above
notation of this step to be consistent with the literature on algorithms of Graef-Younes type.

2. Note also that the if-condition describes approximate minimality in the set T . Therefore, Definition 6 does
not have to be applied to the whole set A, but to a smaller set T , which can drastically reduce the numerical
effort. In this way, non-approximate minimal elements can be eliminated from the set A, as the following
theorem shows.

Theorem 6. 1. Algorithm 1 is well-defined.
2. Algorithm 1 generates a nonempty set T ⊆ A.
3. Every H1- (H2-, H3-, respectively) approximate minimal element of A w. r. t. " also belongs to the set T

generated by Algorithm 1.

Proof. The statements 1 and 2 are easily checked (We loop over a finite number of elements, all the
necessary comparisons are well-defined and after the first step, the set T already consists of an element.)
and therefore, their proofs are omitted. Now let Aj be an H1- (H2-, H3-, respectively) approximate
minimal element of A. Then we have

A " Aj, A ∈ A =⇒ Aj " A + H

(A + H " Aj, A ∈ A =⇒ Aj " A + H, respectively),

(A + H �" A, A ∈ A, respectively).

Because of T ⊆ A, by the above implications we directly obtain

A " Aj, A ∈ T =⇒ Aj " A + H

(A + H " Aj, A ∈ T =⇒ Aj " A + H, respectively),

(A + H �" Aj, A ∈ T , respectively).

which verifies that the if-condition in Algorithm 1 is satisfied and Aj is added to T .
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After the application of Algorithm 1 we have only created a smaller set T containing all the
approximate minimal elements of the original family of sets. To filter out solely the approximate
minimal elements, another step is required which we handle in the following algorithm:

Algorithm 2: (Method for finding H1- (H2-, H3-, respectively) approximate minimal elements
of a family A of finitely many sets).

Input: A∗ := {A1, . . . , Am}, set relation ", H ∈ P(Y)
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if
(

A " Aj, A ∈ T =⇒ Aj " A + H
)((

A + H " Aj, A ∈ T =⇒ Aj " A + H
)
,(

A + H �" Aj, A ∈ T , respectively
)

, then

T := T ∪ {Aj}
end if

end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if
(

A " Aj, A ∈ U =⇒ Aj " A + H
)((

A + H " Aj, A ∈ U =⇒ Aj " A + H
)
,(

A + H �" Aj, A ∈ U , respectively
)

, then

U := U ∪ {Aj}
end if

end for
Output: U
{A1, . . . , Aq} := U
V := ∅
% final comparison
for j = 1 : 1 : q do

if
(

A " Aj, A ∈ A \ U =⇒ Aj " A + H
)((

A + H " Aj, A ∈ A \ U =⇒ Aj " A + H
)
, respectively

)
,(

A + H �" Aj, A ∈ A \ U , respectively
)

, then

V := V ∪ {Aj}
end if

end for
Output: V

Remark 3. 1. Again, for determining whether the implications in the definition of minimality are fulfilled,
one must loop over the elements of the sets of T , U and A \ U , resp.

2. Please note that we formulated Algorithm 2 to have two outputs U and V . For practical purposes it would
suffice to use V which in fact contains all the approximate minimal elements and no more. However,
the theoretical investigations below show that the set U is in its own right interesting to be examined
further.
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We start the investigation of the above algorithms for the (arguably simplest) case of
H3-approximate minimality. The following result shows that every element of the set U is an
H3-approximate minimal element of U w. r. t. " (but not necessarily an H3-approximate minimal
element of the set A).

Lemma 1. Every element of U generated by Algorithm 2 after the backward iteration is also an H3-approximate
minimal element of U w. r. t. ".

Proof. Let Aj ∈ U = {A1, . . . , Aq}. By the forward iteration, we obtain

∀ i < j (i ≥ 1) : Ai + H �" Aj.

The backward iteration yields

∀ i > j (i ≤ q) : Ai + H �" Aj.

This means that

∀ i �= j (1 ≤ i ≤ q) : Ai + H �" Aj,

which is equivalent to

∀ Ai ∈ U \ {Aj} : Ai + H �" Aj.

This is the definition of an H3-approximate minimal element of U w. r. t. ".

Theorem 7. Algorithm 2 generates exactly all H3-approximate minimal elements of A w. r. t. " within the
set V .

Proof. Let Aj be an arbitrary element in V . Then Aj ∈ U , as V ⊆ U , and due to the third if-statement
in Algorithm 2

A + H �" Aj, A ∈ A \ U . (3)

Suppose that Aj is not H3-approximate minimal in A. Then there exists some A ∈ A \ Aj such that

A + H " Aj. (4)

If A /∈ U , then this is a contradiction to (3). If A ∈ U , then due to the H3-approximate minimality of Aj
in U (see Lemma 1), we obtain A + H �" Aj, a contradiction to (4).

Conversely, let Aj be H3-approximate minimal in A. This means, by definition that

A + H �" Aj, A ∈ A \ Aj.

Now let us assume, by contradiction, that Aj /∈ V . Then, there exists some A ∈ A\U with A+ H " Aj,
a contradiction.

To obtain similar results as in Lemma 1 and Theorem 7 for H1- (H2-, respectively) approximate
minimal elements of U w. r. t. ", we need the following assumption.

Assumption 3. Suppose that one of the following conditions holds:

1. The set relation " is irreflexive.
2. The set relation " is reflexive and for every A ∈ A, A " A + H.
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Assumption 4. Suppose that for all A ∈ A, it we have A + H �" A or A " A + H.

Below we give some examples of set relations that fulfill the above assumptions.

Example 1. 1. Consider the certainly less relation, which is defined as (see ([32], Definition 3.12))

A "cert
C B ⇐⇒ ∀ a ∈ A, ∀ b ∈ B : a ∈ b− C,

where C ∈ P(Y). Then "cert
C is irreflexive if C is pointed, i.e., C ∩ (−C) = ∅ (hence, 0 /∈ C).

2. Let us recall the possibly less relation, given as (compare [32,37,44])

A "p
C B ⇐⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b− C,

where C ∈ P(Y) such that 0 ∈ C. Then "p
C is reflexive. If C is a convex cone with H ⊆ C, then A "p

C
A + H for all A ∈ A.

3. If C is a convex cone with 0 ∈ C and H ⊆ −C, then A "u
C A + H holds true for all A ∈ A.

Lemma 2. Let Assumption 3 (Assumption 4, respectively) be fulfilled. Then every element of U generated by
Algorithm 2 is also an H1- (H2-, respectively) approximate minimal element of U w. r. t. ".

Proof. Let Aj ∈ U = {A1, . . . , Aq}. By the forward iteration, we obtain

∀ i < j (i ≥ 1) : Ai " Aj =⇒ Aj " Ai + H, (5)(
∀ i < j (i ≥ 1) : Ai + H " Aj =⇒ Aj " Ai + H, respectively

)
. (6)

The backward iteration yields (5) ((6), respectively) for every i > j (i ≤ q). Together, this means that

∀ i �= j : Ai " Aj =⇒ Aj " Ai + H, (7)(
∀ i �= j : Ai + H " Aj =⇒ Aj " Ai + H, respectively

)
. (8)

Since the set relation is, due to Assumption 3 either irreflexive or reflexive and for every A ∈ A, A "
A+ H, (7) is equivalent to the implication given in Definition 6 (a), and hence, Aj is an H1–approximate
minimal element of U w. r. t.". Similarly, according to Assumption 4, it holds for all A ∈ A A+ H �" A
or A " A + H. With this in mind, the implication (8) coincides with Definition 6 (b), and hence,
Aj ∈ UH2 .

Theorem 8. Let Assumption 3 (Assumption 4, respectively) be fulfilled. Then Algorithm 2 generates exactly
all H1- (H2-, respectively) approximate minimal elements of A w. r. t. ".

Proof. Let Aj be an arbitrary element in V . Then Aj ∈ U , as V ⊆ U , and due to the third if-statement
in Algorithm 2

A " Aj, A ∈ A \ U =⇒ Aj " A + H, (9)(
A + H " Aj, A ∈ A \ U =⇒ Aj " A + H, respectively

)
. (10)

Suppose that Aj is not H1- (H2-, respectively) approximate minimal in A. Then there exists some
A ∈ A such that

A " Aj and Aj �" A + H, (11)(
A + H " Aj and Aj �" A + H, respectively

)
(12)
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If A /∈ U , then this is a contradiction to (9) ((10), respectively). If A ∈ U , then Aj " A + H, as Aj is
H1- (H2-, respectively) approximate minimal in U according to Lemma 2. But this contradicts the
implication (11) ((12), respectively).

Conversely, let Aj be an H1- (H2-, respectively) approximate minimal element in the set A, i.e.,

A " Aj, A ∈ A =⇒ Aj " A + H,(
A + H " Aj, A ∈ A =⇒ Aj " A + H, respectively

)
.

(13)

Now let us assume, by contradiction, that Aj /∈ V . Then, there exists some A ∈ A \ U with A " Aj
(A + H " Aj, respectively), but Aj �" A + H, a contradiction to (13).

To illustrate the algorithms, we will apply the forward and backward iteration for a rather
academic example in R2. Note, however, that its (even computerized) application is not limited to
these finite-dimensional structures as the algorithms are based on elementary finite iteration loops.
So, once a way has been established to numerically assert the relation A " B for two sets A and B out
of a certain family of sets, the algorithms can directly be applied. For the case of polyhedral sets, such a
comparison principle has, for example, been established in [45] and similar computational approaches
were developed in [46].

Example 2. For this example, let C := R2
+, ":="cert

C and H = {(1, 1)T}. As the family of sets A, we have
randomly computed 1000 sets, for easy comparison each set is a ball of radius one in R2. We are interested in
the H2-approximate minimal elements of the set A and make use of Algorithm 2 to obtain those. Notice that
Assumption 4 is trivially fulfilled. Out of the 1000 sets, a total number of 177 are H2-approximate minimal
w. r. t. to ". Algorithm 2 generates at first 189 sets in T ; then, 177 sets are collected within the set U and
V . We used the same data as in Example 4.7 and 4.14 from [32], and according to our earlier results, a total
number of 93 elements are minimal. In Figure 2, the sets within T are the lightly and darkly filled circles,
while the H2-approximate minimal elements of the set A (that is, the sets in U and V) are the darkly filled circles.
For comparison, Algorithm 2 is also used on the same family of sets with H = {(0, 0)T} (see ([32], Example 4.7
and 4.14)), with 103 sets within T and 93 sets within U and V , see Figure 3. Let us note that this example is
chosen to illustrate the efficiency of Algorithm 2 as it is to be expected for problems with relatively homogeneous
distribution of set size and structure, see the according discussion in the vector-valued case [15,43].
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Figure 2. A randomly generated family of sets. The lightly and darkly filled circles belong to the set T
generated by Algorithm 2, while the H2-approximate minimal elements of the set A are exactly the
darkly filled circles (see Example 2).
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Of course, the notion of approximate minimality makes sense when minimal elements do not exist (in the
vector-valued case, this can happen when the set of feasible elements in the objective space is open). In the future,
we will study continuity notions of set-valued mappings that appear in set optimization problems and investigate
existence results.
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Figure 3. The randomly generated family of sets from Example 2 with H = {(0, 0)T}, i.e., we do not
consider approximate minimal elements here, but look for the minimal elements of the family of sets A.
The lightly and darkly filled circles belong to the set T generated by Algorithm 2, while the minimal
elements of the set A are the darkly filled circles.

5. Conclusions

This paper investigates different kinds of approximate minimal solutions of set optimization
problems. In particular, we present an inequality approach to characterize these approximate minimal
solutions by means of a prominent scalarizing functional. To be as general as possible, our analysis
is developed in real linear spaces without assuming any topology on the spaces and therefore bases
only on algebraic relations and set inclusions between all the involved quantities. It would be
interesting to study whether different scalarizing functionals may be used for a similar analysis
as the separation functionals of Tammer–Weidner type have recently been embedded into a larger class
of functionals [47]. We have proposed effective algorithms that select approximate minimal elements
out of a family of finitely many sets. As a next step, it will be necessary to test our algorithms on
practical examples.
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29. Göpfert, A.; Tammer, C.; Riahi, H.; Zǎlinescu, C. Variational Methods in Partially Ordered Spaces; Springer:

Berlin, Germany, 2003.

170



Mathematics 2020, 8, 143

30. Kuroiwa, D. The natural criteria in set-valued optimization, Sūrikaisekikenkyūsho Kōkyūroku. Res. Nonlinear
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