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Preface to “Selected Papers from the 14th Estuarine 
and Coastal Modeling Conference” 

This Special Issue contains selected papers from the 14th International Conference on 
Estuarine and Coastal Modeling (ECM14), held June 13–15, 2016 in Kingston, RI, USA. The 
conference brings modelers from academic institutions, government and private industry together 
to present and discuss the latest developments in the field of marine environmental modeling. 
Begun in 1989 by Dr. Malcolm Spaulding, the conference is held every other year in a retreat-like 
setting with a maximum of about 125 people to encourage interaction and help strengthen ties 
between modeling communities. A wide range of modeling issues are encouraged, including 
advances in physical understanding, numerical algorithm development, model applications, and 
better tools. A wide range of modeling topics are encouraged as well, including storm surge, 
eutrophication, larval transport, search and rescue, oil spills, fisheries’ issues, coastal erosion and 
contaminated sediment transport. The special theme of ECM14 was Coastal Flooding.  

The 21 papers presented here cover a broad spectrum of topics, including development of 
regional forecast systems, storm surge impacts, improved numerical techniques, water quality, 
methods for distributing model output, and regional modeling applications. 

Richard P. Signell 
Guest Editor 
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Abstract: This article presents the results and validation of a comprehensive, multi-decadal, hindcast
simulation performed using the New York Harbor Observing and Prediction System´s (NYHOPS)
three-dimensional hydrodynamic model. Meteorological forcing was based on three-hourly gridded
data from the North American Regional Reanalysis of the US National Centers for Environmental
Prediction. Distributed hydrologic forcing was based on daily United States Geologic Survey records.
Offshore boundary conditions for NYHOPS at the Mid-Atlantic Bight shelf break included hourly
subtidal water levels from a larger-scale model ran for the same period, tides, and temperature
and salinity profiles based on the Simple Ocean Data Assimilation datasets. The NYHOPS model’s
application to hindcast total water level and 3D water temperature and salinity conditions in its
region over three decades was validated against observations from multiple agencies. Average indices
of agreement were: 0.93 for storm surge (9 cm RMSE, 90% of errors less than 15 cm), 0.99 for water
temperature (1.1 ◦C RMSE, 99% of errors less than 3 ◦C), and 0.86 for salinity (1.8 psu RMSE, 96% of
errors less than 3.5 psu). The model’s skill in simulating bottom water temperature, validated
against historic data from the Long Island Sound bottom trawl survey, did not drift over the years,
a significant and encouraging finding for multi-decadal model applications used to identify climatic
trends, such as the warming presented here. However, the validation reveals residual biases in
some areas such as small tributaries that receive urban discharges from the NYC drainage network.
With regard to the validation of storm surge at coastal stations, both the considerable strengths
and remaining limitations of the use of North American Regional Reanalysis (NARR) to force such
a model application are discussed.

Keywords: Long Island Sound; New York/New Jersey Harbor Estuary; NYHOPS model;
multi-decadal hydrodynamic hindcast; North American Regional Reanalysis

1. Introduction

Every year since 1976 has had an average global temperature warmer than the long-term average.
Over the 1979–2013 period, global temperature warmed at an average of 0.26 ◦C per decade over land
and 0.10 ◦C per decade over the global ocean [1]. The recently signed Paris Agreement [2], adopted by
195 countries, has a long-term goal of keeping the increase in global average temperature to well below

J. Mar. Sci. Eng. 2016, 4, 48 1 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 48

2 ◦C above pre-industrial levels, and aims to limit the increase to 1.5 ◦C, as doing so is expected to
significantly reduce risks and the impacts of climate change. Yet, the Northeast US shelf waters have
experienced higher warming rates than the global ocean, deduced by the Sea Surface Temperature
(SST) satellite record. Pershing et al. [3] reported that SST rose by 0.30 ◦C per decade between 1982
and 2013 in the Gulf of Maine. The sole long-term observation record for water temperatures within
the Long Island Sound (LIS) estuary, a US Estuary of National Significance, at a location near Millstone
CT [4] has measured a much more rapid increase in LIS water temperatures than the global average:
an alarming 0.44 ◦C per decade between 1979 and 2013, over four times higher than the global average
rate. Over coastal Connecticut counties, on LIS’s northern coast, surface air temperatures for the same
time period increased by 0.33 ◦C per decade; that rate was double if only the 1992–2012 period was
considered, but has decreased somewhat since, to 0.28 ◦C per decade (1979–2015; [1]).

Over these last few decades, the LIS ecosystem has undergone profound changes. Ocean warming
is suggested to be the most important factor associated with the observed shifts in the mean center
of biomass in Northeast U.S. fisheries [3,5–7]. However, understanding what controls the observed
trends in the Northeast U.S., and how such processes affect the LIS ecosystem, has been limited due to
the paucity of available three-dimensional, physical data. In 2013, the New York and Connecticut Sea
Grants and the US EPA Long Island Sound Study joined forces to fund a multi-disciplinary project to
address this deficiency, spearheading collaborative research involving numerical modelers, climate
scientists, and fishery biologists. The work evaluated conditions and identified warming, freshening,
and estuarine circulation trends in Long Island Sound over the past three decades. This research also
explored how global climate contributes to long-term and inter-annual variability in the LIS physical
environment and its Living Marine Resources [8].

This research article, presented at the 14th Estuarine and Coastal Modeling Conference
(ECM14, http://ecm.github.io/ECM14/), focuses on the validation and results of a comprehensive,
multi-decadal, hindcast simulation performed using the New York Harbor Observing and Prediction
System (NYHOPS) hydrodynamic model that generated a continuous, three-dimensional dataset
for a coastal aquatic region that includes Long Island Sound and the New York/New Jersey Harbor
(NYNJH) Estuaries, between 1981 and 2013. Section 2 describes the data and methods used to set up the
multi-decadal hindcast and the data and methods used to validate it for LIS and NYNJH and to have
it serve as an open access dataset. Section 3 presents validation results. Section 4 puts the importance
of the validation in perspective and discusses identified or verified trends and climatologies based on
the validated model. Conclusions are outlined in the last section. Supplementary material in the form
of a comprehensive PowerPoint presentation configured in two parts is also provided.

An online THREDDS Data Server (http://colossus.dl.stevens-tech.edu/thredds/catalog.html)
was set up to serve the NYHOPS model’s results in oceanographic NetCDF format over the web using
the OPENDAP protocol, enabling open access to daily averaged or monthly averaged time series for
all the gridded hindcast physical variables in or over the NYHOPS region (including LIS and NYNJH).
Simulated climatologies (mean simulated climate conditions averaged over the three decades of the
NYHOPS hindcast period) for two- and three-dimensional fields such as water temperatures and
salinities, were also generated, and included in THREDDS. The use of the validated results of the
model to research global climate teleconnections to the LIS ecosystem and its living marine resources
will be presented in subsequent papers that are presently under preparation.

2. Materials and Methods

The completed multi-decadal high-resolution three-dimensional hindcast simulation for LIS and
NYNJH was based on a nested modeling concept utilizing two hydrodynamic domains (Figure 1):
The Stevens North Atlantic Predictions model (SNAP) [9–11] and the New York Harbor Observing
and Prediction System model (NYHOPS, www.stevens.edu/NYHOPS) [9,11–18]. Both domains were
simulated in 3D with the Stevens Estuarine and Coastal Ocean Model code (sECOM) [11,14,19],
a derivative of the Princeton Ocean Model [20]. The SNAP model was run first, in a diagnostic mode
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(clamping temperature and salinity at the initial condition), at its regular 5 km resolution grid for the
complete 1979–2013 simulation. SNAP wave and water level results, along with observation-based
temperature and salinity fields, were then used to derive NYHOPS offshore boundary conditions
and force the NYHOPS prognostic hindcast simulation on its variable-resolution grid (4 km to 25 m
horizontal resolution, 10 vertical sigma layers). This is the same nesting concept used operationally for
the ensemble-based Stevens Flood Advisory System (www.stevens.edu/SFAS [11]).

(a)

(b)

Figure 1. Hydrodynamic simulation domains used in this work: (a) The Stevens North Atlantic
Prediction model (SNAP) domain embedded within the NCEP North-American Regional Reanalysis
meteorological model; (b) The New York Harbor Observing and Prediction System model (NYHOPS)
domain, embedded within the SNAP model domain. The insert highlights NYHOPS variable grid
resolution in the NYNJH and Western LIS. Colors show bathymetry, in meters.

Surface meteorological forcing to both SNAP and NYHOPS was based on gridded data from
the North American Regional Reanalysis (NARR [21]) created for the US National Centers for
Environmental Prediction (NCEP). NARR (Figure 1) has been shown to have good skill for regional
climate studies [22], but may be deficient for strong Atlantic precipitation events and Atlantic
hurricanes [21]. Three-hourly surface meteorological variables provided by NARR at its 32 km
grid were interpolated to the SNAP and NYHOPS grids and used to force the two models throughout

3



J. Mar. Sci. Eng. 2016, 4, 48

the hindcast. Winds at 10 m above surface and barometric pressure reduced to mean sea level, total
cloud cover, relative humidity and air temperature at 2 m above ground were used to compute
locally dynamic surface heat flux terms, surface stress terms and surface wave growth terms with the
methodology described in [14] and [23] as progressed by Orton et al. [17] based on internally calculated
surface wave fields and explicit wave-steepness by Taylor and Yelland [24].

In the construction of the three dimensional NYHOPS hindcast, great care was put into creating
high-fidelity lateral and internal boundary conditions for hydrodynamic forces included in the
NYHOPS model, to complement the surface meteorological forcing provided by NARR. SNAP model
results were used to provide hourly offshore boundary conditions to NYHOPS at the Mid-Atlantic
Bight shelf break for surface waves and offshore tidal residuals (storm surge), the latter being used
to provide the subtidal part to the tidal NYHOPS water level boundary conditions as in [14,15].
An attempt was made to account for steric and mean sea level rates across the NYHOPS simulations by
adding the spatially and-seasonally averaged residual errors across SNAP coastal station predictions
within the NYHOPS domain to the NYHOPS offshore water level boundary conditions [14,15]; average
rates are listed in [25]. The observed water level records used in this step were tied to the geodetic
NAVD88 datum.

Further, to provide offshore temperature and salinity profiles at the continental shelf break to
NYHOPS for the hindcast, monthly data from the Simple Ocean Data Assimilation (SODA) climatology
for water temperature (T) and salinity (S) were acquired beginning in 1959 on a global 0.5 degree
geographic resolution grid with 40 standard depth levels in the vertical [26]. Some issues were identified
with the continuity and versioning of the available SODA datasets that required significant effort in
order to create a consistent monthly climatological dataset for the complete NYHOPS hindcast period
of 1979–2013. A unified set of NYHOPS boundary conditions was created using SODA version 2.1.6
from 1979–1999, then SODA version 2.2.4 from 2000–2010, then results from a ROMS model run [18]
generated at Rutgers University nested within a global HYCOM model for 2011–2012, and finally
HYCOM global model results for 2013 [27]. To decrease climatologically relevant discrepancies
between the last two datasets and SODA, bias correction for the last two datasets was performed both
for the T/S means and their range. The native ROMS results for 2011–2012 were bias-corrected based
on mean and range anomalies between the SODA version 2.2.4 datasets and the ROMS-with-HYCOM
datasets for the common years of 2005–2008. HYCOM for 2013 was similarly bias-corrected based
on the same debiasing factors. The assumption was that if the ROMS and HYCOM models were
biased compared to SODA years 2005–2008 (shifted and inflated/deflated), they would continue being
biased in a similar fashion in subsequent years. This assumption was validated by comparing the
debiased datasets against SODA 2.2.4 for the last two SODA years, 2009–2010. Both means and ranges
were significantly closer to SODA after debiasing (not shown). After the unified monthly T/S dataset
from 1979 to 2013 was created at SODA resolution, it was interpolated in space and time along the
NYHOPS offshore boundary, checked for vertical density stability, and used to force the NYHOPS 3D
hindcast simulation.

Distributed hydrologic forcing to the NYHOPS estuarine model was based on daily United States
Geologic Survey (USGS) records [25] with comparable but expanded results to other regional published
studies [28,29]. As part of this work, a fluvial temperature study for rivers with long temperature
time series across the Mid-Atlantic was completed to aid with the assignment of daily temperatures
to riverine discharges in the NYHOPS hindcast (NYHOPS includes an extensive hydrologic input
network [14]). That work was presented at the annual Mid-Atlantic Bight Oceanography and
Meteorology Meeting (MABPOM 2013). Results indicated that river temperatures, and associated
thermal inputs to Mid-Atlantic waters increased—similarly to, though somewhat less rapidly than,
the regional air temperature trends—with variation in the positive rate values between different MAB
watersheds (Figure 2). River flows also increased considering the 1979–2013 period as a whole. Based on
linear trends estimated from the USGS discharge data, major freshwater river inflow rates to the
LIS and NYNJH increased significantly: the Connecticut River at Thompsonville (USGS station
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ID 01184000) by 17%—the Connecticut River contributes about 75% of total freshwater flow into
LIS—the Housatonic River at Stevenson (USGS station ID 01205500) by 21%, and the Hudson River at
Green Island by 33% (USGS station ID 01358000). The completed daily time series of estimated river
flows and temperatures from 1979 to 2013 were used as distributed discharge forcing in the NYHOPS
3D hindcast. Ungauged tributaries in NYHOPS are included through basin-area scaling of observed
hydrographs from proximal gauged rivers. Finally, distributed end-of-pipe Point Source forcing is
also included in NYHOPS model runs based on monthly climatologies of waste water treatment plant
effluent and power plant intake/outfall pairs [14].

The model hindcast simulation period started in 1979 and completed in 2013. The first two years
were considered spin-up years for 3D hydrodynamics. Therefore, for consistency, results will be
presented from 1981 on. This hypothesis was tested in LIS by considering different initial conditions
updated every five years from the hindcast. It was found that the NYHOPS solution for T and S within
the LIS estuary would converge well within two years from initiation.

Figure 2. Linear temperature trends (◦C per decade) for different NYHOPS river stations between 1992
and 2012 shown in the Mid-Atlantic Region map. The trend over the same time period at the LIS basin
near Millstone, CT is also shown for comparison (“M” in the insert to the right). Also highlighted
are the Hudson River at Poughkeepsie (“H”) and the Delaware River at Trenton, NJ (“D”). Monthly
NARR-based, watershed-area-averaged, surface air temperature linear trends are also included in the
right panel as “AIRT-w” where watershed w ε [DR, HR, CR, WLIS, CLIS, ELIS] = [Delaware River,
Hudson River, Connecticut River, Western LIS, Central LIS, Eastern LIS]. 95% confidence intervals are
included as vertical bars, with central estimates shown as circles.

The NYHOPS model’s application to hindcast total water level, and 3D water temperature and
salinity conditions in its region over three decades was validated extensively against various available
observational datasets. Hourly total water levels collected by the National Ocean Service (NOS)
at 12 coastal stations within the NYHOPS domain between 1979 and 2013 were used to quantify
the model’s performance to storm surge after subtraction of the NOS-predicted astronomical tide
(Figure 3a). Near-surface and near-bottom T and S grab samples taken with variable frequency—weekly
to biweekly, and mostly during summer—from a New York City Department of Environmental
Protection (NYC DEP) boat between 1981 and 2012 were used to quantify the skill of the model for T and
S at NYC DEP stations in NYNJH (Figure 3b). Vertical CTD casts from cruise surveys conducted for the
Long Island Sound Study between 1991 and 2012 as provided by the Connecticut Department of Energy
and Environmental Protection (CT DEEP) were used to quantify the skill of the model for T and S in LIS
(Figure 3c). Near-bottom temperatures collected on a regular grid that covers most of the LIS bottom
by CT DEEP fisheries as part of the Long Island Sound Trawl Survey between 1992 and 2013 were used
to test whether the model’s skill in simulating bottom water temperature showed signs of drift over
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the years in LIS (Figure 3d). Finally, an observations-based monthly three-dimensional temperature
and salinity climatology dataset called MOCHA version-2 created at Rutgers University in New Jersey
(http://tds.marine.rutgers.edu/thredds/catalog/other/climatology/mocha/catalog.html; [30] as
updated in MOCHA’s 2nd version in 2012) was used to quantify the skill of the NYHOPS
hydrodynamic model for T and S against climatology. MOCHA is a three-dimensional climatological
analysis of the temperature and salinity, with a 0.05 degree (~5 km) grid in the horizontal and
55 standard depths in the vertical that covers the MAB, from 45◦ N to 32◦ N, 77◦ W to 64◦ W. It is
derived from all in situ data available from the NODC World Ocean Database 2005 and the NOAA
North East Fisheries Science Center database. Comparisons to MOCHA were only made in LIS as the
NYNJH is not well resolved in its grid.

(a) (b)

(c) (d)

Figure 3. Observations used to validate the model in this study. (a) 12 NOS coastal stations; (b) NYC
DEP Harbor Survey stations throughout the years; (c) Long Island Sound Study cruise stations through
the years; (d) Long Island Trawl Survey Site grid.

Adopting NOS guidelines and prior literature used for validating the operational NYHOPS
forecast model [11,15,16,31], the following metrics were used to quantify model skill in the
Results section:

• Bias or mean error, M.E.: The mean error between model and observations.
• RMSE: The square root of the average error between model and observations squared.
• R-square, R2: The square of the correlation coefficient between model and observations.
• Willmott Skill or Index of Agreement, W.I. [32]: A non-dimensional measure of how close the

model’s results are to observations. Values are between 0 and 1, with 1 being a perfect “skill core.”
• Central frequency of error, C.F.: The percent of errors that are below a given threshold that is

considered high for operational use. The larger the C.F., the better the model. NOS usually
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considers a C.F. ≥ 90% as accepted model performance against the following thresholds: 15 cm
for total water level, 3.0 ◦C for T, and 3.5 psu for S [31].

• Taylor diagram, [33]. The Taylor Diagram provides a visual statistical summary of how well the
model and observation patterns match each other in terms of their correlation coefficient (R),
their root mean square error (RMSE), and their standard deviation (σ).

• Brier Skill Score, B.S.S. [34]: The Brier Skill Score essentially compares the magnitude of the
difference between a model (NYHOPS here) and observations to that achieved by a reference
model (the monthly MOCHA climatology here). The B.S.S. is written as

BSS = 1 − 1
Ni

Ni

∑
j=1

(
di,j − pi,j

)2 /
1
Ni

Ni

∑
j=1

(
di,j − ri,j

)2 (1)

where the vector di,j contains the j = 1, 2, . . . , Nj measurements (in situ observations). Similarly, pi,j are
the model predictions at the same time and location of the data, di,j, and the vector ri,j contains the
predictions of the reference climatology (MOCHA here). BSS compares the ratio of the variance in the
observations not explained by the model to that not explained by the reference climatology. If BSS > 0,
then the model is in better agreement with the data than the reference model. Conversely, if BSS < 0,
it is not as good.

NYHOPS model results were interpolated from the native NYHOPS grid to the location and time
of individual observations, before making comparisons. It is important to note that there are always
discrepancies in the observations due not only to the precision of the instruments and analyses methods,
but also due to the difference in the property simulated (the average over a model cell’s volume and
output time step) and that measured (sometimes a few samples from a bottle). Even a perfect model,
therefore, should not be expected to have BSS = 1, (nor will W.I. and R2 be equal to unity for that
matter). Given however the comparison to average climatology, BSS for a skillful model should be
consistently higher than 0, and hopefully closer to unity. Finally, binned histograms of model errors
against observations were also used to show uncertainty in model results, and whether that uncertainty
grew or decreased over the hindcast years.

3. Results

The model’s grand-mean temperature and salinity bias against all Long Island Sound Study
observations in the Sound was found to be 0.18 ◦C warmer for water temperature, and 1.31 psu saltier
for salinity; these biases were assumed constant in time and space and were removed from all raw
NYHOPS model gridded time series results. The local tidal correction procedure described in [16]
was applied to the raw NYHOPS water level results for the 12 coastal stations. The astronomical tide
predicted by NOS at these stations was used in that correction, and then removed from the total water
level signals to calculate storm surge. The results used and shown below are after these treatments
were put into effect.

3.1. Storm Surge Validation

Figure 4 shows example storm surge results at The Battery, NY, highlighting the storm surge
validation that was performed at each of the 12 NOS stations. The highest storm surge (SS) and total
water level (TWL) values at The Battery for the 1981–2013 time period shown were simulated by
NYHOPS to have occurred during Hurricane Sandy in 2012. Although this is consistent with the
observed record, the NARR-forced NYHOPS hindcast under-predicted surge during that storm by
about 2 feet or ~20%.

Table 1 lists NYHOPS hindcast performance metrics for TWL and SS using the methods of Georgas
and Blumberg [15] against NOS observations at 12 coastal stations. RMSE varied between 5.7 cm at
Montauk, NY and 14.1 cm at Reedy Point, DE, the latter being in a region (Delaware Bay) not well
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resolved by the NYHOPS model’s horizontal grid. R2 for TWL that includes astronomical tide varied
between 0.95 at Montauk and 0.99 at New Haven, Kings Point, and Bridgeport where the tide range
is larger. Excluding astronomical tide, R2 for SS was lowest where RMSE was highest. In addition
to Delaware Bay, this relative degradation in storm surge prediction occurred in west-central LIS at
Bridgeport and Kings Point. As expected, W.I. and R2 for SS were positively correlated and showed
similar qualitative results. W.I. for TWL was higher than 0.98 everywhere (not shown). Similar to
the operational NYHOPS forecast validation [16], 8 out of the 12 stations had C.F. < 15 cm over 90%,
with one more (The Battery, NY) coming also very close at 89.9%. Overall the results of the NYHOPS
hindcast for water level and its storm surge component were good, providing confidence that the
model was able to reproduce hydrodynamics reasonably well.

Figure 4. Observed (red) and NYHOPS-simulated (blue) SS (=TWL—astronomical tide) time series
for the complete 1981–2013 series (left), as well as four regionally significant events. Correlograms,
and their statistics, for both SS and TWL within the complete 1981–2013 period, are also shown on the
bottom left.

Table 1. NYHOPS hindcast performance metrics for total water level (TWL) and storm surge (SS)
at 12 NOS stations.

Station Name Dates RMSE, cm CF ≤ 15 cm, % R2
SS R2

TWL WISS

Lewes, DE 1979–2012 8.6 91.9 0.78 0.97 0.94
Reedy Point, DE 1996–2013 14.1 71.7 0.63 0.96 0.88

Cape May, NJ 1979–2013 7.8 94.6 0.80 0.98 0.95
Atlantic City, NJ 1985–2013 6.6 97.2 0.86 0.98 0.96
Sandy Hook, NJ 1979–2013 9.0 91.1 0.76 0.97 0.93
The Battery, NY 1979–2013 9.3 89.9 0.74 0.97 0.93
Kings Point, CT 1998–2013 12.8 76.4 0.65 0.99 0.90
Bridgeport, CT 1996–2013 11.6 79.8 0.65 0.98 0.89
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Table 1. Cont.

Station Name Dates RMSE, cm CF ≤ 15 cm, % R2
SS R2

TWL WISS

New Haven, CT 1999–2013 9.1 90.6 0.75 0.99 0.93
Montauk, NY 1979–2013 5.7 98.9 0.85 0.95 0.96

New London, CT 1979–2013 7.1 96.5 0.78 0.96 0.94
Newport, RI 1979–2013 7.4 95.6 0.72 0.97 0.92

3.2. Water Temperature and Salinity Validation

3.2.1. Against New York City Department of Environmental Protection (NYC DEP) Data in the
New York/New Jersey Harbor (NYNJH) Estuary

The correlograms shown in the top row of Figure 5 summarize the comparison of the NYHOPS
hindcast results against all observations for T and S taken by NYC DEP between 1981 and 2012 at
the surface and bottom of the NYNJH at all Harbor Survey stations. For water temperatures, most
points fell along the 1:1 line. Although this was also true for S, there were several observations that
were not well-captured by the model, with most of these values being over-predicted by the model.
Thorough station-by-station and event-by-event study, summarized in the Discussion section and in the
Supplementary Material, revealed that these discrepancies are mostly associated with sewer overflow
events and other wet-weather non-point source contributions at small tidal tributaries. Nevertheless,
considering the whole estuary and NYC DEP dataset, M.E. was only −0.1 ◦C for T and 0.0 psu for S,
RMSE was 1.2 ◦C for T and 2.3 psu for S, W.I. was 0.99 for T and 0.95 for S, while the central frequency
of error was as high as 99% for T and 93% for S, revealing a very skillful hindcast. The Taylor Diagrams
on the bottom row of Figure 5 further show that correlation coefficients were higher than 0.9 for both T
and S, and reveal that the model was able to capture the range of variation both for T and S as shown
by the concentric dotted black circles of standard deviation on the diagram. Further, the model’s error
standard deviation, approximated by the RMSE (also depicted with the green circles in the Taylor
Diagram), was overall smaller than the standard deviation of the signal it simulated.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Correlograms (a and b), and Taylor Diagrams (c and d), summarizing the comparison
between the NYHOPS results and NYC DEP Harbor Survey observations for T (a,c) and S (b,d).
The Taylor Diagrams summarize RMSE (dotted green circles with the observations “OBS” as origin),
correlation coefficient (dotted blue radials with 0 origin), and standard deviation (black dotted circles
with 0 origin).

Figure 6 shows example time series for simulated surface and bottom T and S against observed
surface and bottom T and S at Harbor Survey station N5, the station nearest to The Battery, NY.
The model is seen to capture well the ranges and seasonal signals in both T and S and shows good skill
in responding to events in the record. Surface measurements taken at station N5 in the early 1980s,
mid-1990s, and 2002, revealed somewhat higher salinities during peak ocean salt intrusion summer
seasons than those simulated by the model. Higher salinities were also observed but not simulated
in 2002 near the bottom at station N5.

(a) (b)

Figure 6. Time series of observer (red) and simulated (blue) T (a) and S (b) at NYC DEP Harbor Survey
station N5 near The Battery, NY.
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3.2.2. Against Connecticut Department of Energy and Environmental Protection (CT DEEP) Data in
Long Island Sound (LIS)

Figure 7 shows correlograms summarizing the comparison of the NYHOPS hindcast results
against all CTD casts during CT DEEP Long Island Sound Study cruises between 2001 and 2012.
Results are summarized by LIS management basin. Most points fell along the 1:1 line, and the model
results throughout LIS were overall reasonable. For T, RMSE was close to 1 ◦C in all three basins, W.I.
was greater than 0.99, and model errors were less than 3 ◦C over 99% of the time (C.F. ≥ 99%, Figure 7).
Salinity RMSE was 0.5 psu in the western and central management basins, but reached 1.0 psu in the
eastern basin, largely because of a residual M.E. contribution there of 0.6 psu that was not found for
the other two basins. Although the central frequency was greater than 99% for salinity in all three
basins, the W.I. was significantly lower in the eastern basin too, at 0.77. It appears that the removal of
the grand-mean bias of 1.31 psu from all raw NYHOPS hindcast results made the eastern basin of LIS
slightly fresher than it should. This result will be discussed further in the Discussion section.

Figure 7. Correlograms, summarizing the comparison between the NYHOPS results and all CT DEEP
Long Island Sound Study observations taken between 1991 and 2012 for T and S at the three LIS
management basins.

3.2.3. Against MOCHA Climatology in LIS

Figure 8 compares the NYHOPS model’s performance to hindcast LISS water temperatures
and salinities against MOCHA monthly climatology. The top panels of the Figure compare overall
performance throughout the LISS record using Taylor Diagrams, while year-to-year relative
performance between 1991 and 2012 is depicted in the lower panel as a B.S.S. time series.

The Taylor diagrams show that the NYHOPS model (“M”) is closer to the observed conditions
(“O”) compared to the MOCHA climatology (“C”) for the correlation coefficient and the RMSE
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(Figure 8). Thus the dynamic model exhibits significantly higher correlation and lower error in
describing the data. Note that the correlation coefficient scale is logarithmic and that the correlation
between the NYHOPS model and the observations is significantly higher especially for salinity where it
grew from less than 0.7 (C) to over 0.9 (M). The standard deviation captured by the observation-based
monthly MOCHA climatology appears closer to the one based on LISS observations than the NYHOPS
model, consistently with the Taylor Diagrams for NY Harbor (Figure 5): In both the NYNJH and
LIS, the model seems to somewhat over-predict the overall observed range in water temperature and
under-predict the overall range in salinity. Even so, the NYHOPS model was overall significantly
closer to observations that the climatology: the Taylor dot for the model (M) is closer to the Taylor dot
for observations (O) than the Taylor dot for MOCHA climatology (C).

(a) (b)

Figure 8. Taylor Diagrams and time series of B.S.S., comparing the skill of the NYHOPS hydrodynamic
model (M) to the climatological MOCHA model (C) in describing CT DEEP Long Island Sound Study
observations (O) taken between 1991 and 2012 for T (a) and S (b) in LIS. Taylor Diagrams summarize
RMSE (dotted green circles with the observations “O” as origin), correlation coefficient (dotted blue
radials with 0 origin), and standard deviation (black dotted circles with 0 origin).

The lower panels in Figure 8 also show that the hydrodynamic NYHOPS model was a better
predictor of the year-to-year water temperature and salinity observed in LIS than the static
observation-based MOCHA climatology: During the whole LISS observation record from 1991 to 2012,
the relative B.S.S. was always higher than 0, meaning NYHOPS had better skill than climatology each
year. Peaks close to the optimal 1.0 value in relative BSS are seen in some years that were anomalously
cold or hot compared to climatology, such as during 1993 and 2012, respectively. During these years
the monthly mean MOCHA climatology would not have been a good descriptor of what happened in
LIS, unlike the NYHOPS model that included three-hourly heat flux forcing based on NARR. Given the
large seasonal signal in temperature causing higher correlation coefficients even between MOCHA
climatology and observations, the relative B.S.S. for water temperature ranged more from year to
year than the one for salinity, as seen in the smaller y-axis for salinity B.S.S. (Figure 8). Similarly,
the 1991–2012 mean B.S.S. for water temperature (0.48) was also smaller than the one for salinity (0.80).
For salinity, the B.S.S. ranged largely between 0.6 and 0.9, since the NYHOPS hydrodynamic model that
included daily freshwater flows was, as expected, much more able to reproduce spatiotemporal salinity
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variations compared to the monthly climatological means of MOCHA. No statistically significant trend
was found for either water temperature or salinity B.S.S. time series.

4. Discussion

The skill of the comprehensively-forced multi-decadal NYHOPS Hindcast presented in the
previous paragraph was overall excellent: across all stations considered, the average Willmott Index
of Agreement for storm surge (tidal departure) alone against NOS hourly observations was 0.93,
(9 cm Root-Mean-Square-Error, RMSE, 90% of errors less than 15 cm). For water temperature against
available NYC DEP and CTDEEP observations, W.I. was 0.99 (1.1 ◦C RMSE, 99% of errors less than
3 ◦C). For salinity against NYC DEP and CTDEEP observations, W.I. was 0.86 (1.8 psu RMSE, 96% of
all errors less than 3.5 psu).

For water levels, model results were reasonable overall, though model errors against hourly
observations increased as expected during major storm surge events and Atlantic hurricanes (Figure 9);
Figure 9 can also be compared to [16] (Figure 7) and [11] (Figure 5). This error increase with surge
magnitude is in part due to the resolution in time (3-hourly) and space (36 km) of the NARR dataset
used to provide winds and barometric pressure to the NYHOPS model. Mesinger et al. in 2006 [21]
stated expectations for relatively poorer NARR skill during Atlantic Hurricanes. This may in part
be due to a presumed increase of the number of observations fed into NARR during the reanalysis
process in later years compared to the beginning of the NARR record in 1979. Storm surges during
some early events, the Nor’Easter of March 1984 and Hurricane Gloria in 1985 being examples,
were under-predicted. The storm surge from the quick transit of Hurricane Bob that devastated
New England in 1991 was also not captured. For example, the surge built from 0 to over 5 feet in 4 h at
Newport, RI, but the 3-hourly, 36 km NARR record was not able to capture that hurricane well.

(a) (b)

Figure 9. (a) M.E. and (b) RMSE as a function of storm surge threshold for negative (−) and positive
(+) surges between different 5-year periods in the NYHOPS hindcast.

The residual water level errors during significant storm surge events appeared to decrease toward
the second half of the simulation (Figure 9), even though these later years included some of the highest
storm surge peaks in the region’s history during Hurricanes Irene and Sandy. It is also important to
note however that the NARR-forced NYHOPS still under-predicted Hurricane Sandy’s peak surge
at The Battery by ~2 feet, or ~20% of the observed ~10 feet surge (Figure 4). During the actual event
in October 2012 the NYHOPS OFS forecast forced by the deterministic North American Mesoscale
(NAM) model at 12 km resolution under-predicted Sandy’s surge at The Battery by approximately
3 feet, while it was within 1 foot when, after the fact, the same model was forced with a more accurate
forecast [9] or a high-fidelity reanalysis [10].
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Another contributing reason to the apparent increase in the model’s storm surge simulation skill
over time may be due to changes in bathymetry and coastline over time, or other morphodynamic
or anthropogenic (targeted channel dredging) changes not accounted for in the NYHOPS historic
hindcast: the model’s bathymetry is held fixed, and is based on a variety of datasets described in
Georgas [14], meant to represent the configuration of the MAB estuaries in the beginning decade of the
21st century. Blumberg and Georgas [13] showed that water levels are quite sensitive to bathymetric
uncertainties in the region. Further research is needed in creating a quantitative timeline for such
changes, so that future model run versions can account for them.

Table 2 summarizes some skill metrics of the NYHOPS historic hindcast against water temperature
and salinity datasets at different estuarine regions, and compares that skill to the overall skill of
the NYHOPS OFS forecasts from Georgas [14] and Georgas and Blumberg [15]. The multi-decadal
NYHOPS hindcast appears to have comparable or better skill than the validated NYHOPS OFS. Note
however that the periods compared and the stations used to aggregate errors are not the same, nor is
the forcing methodology: the NYHOPS Hindcast used estimates of daily river flows based on observed
hydrographs by USGS and three-hourly heat fluxes based on the 36 km NARR, while the NYHOPS
deterministic OFS used six-hourly NOAA AHPS river discharge forecasts and three-hourly heat fluxes
based on the NAM 12 km forecasts.

Table 2. NYHOPS Hindcast Performance metrics summary for water temperature (T) and salinity (S)
at regions within LIS and NYNJH.

Water Temperature Region Bias, ◦C RMSE, ◦C W.I.T CF ≤ 3 ◦C, %

Long Island Sound
CT DEEP

LISS Survey

Western Basin −0.2 1.0 0.99 99
Central Basin +0.3 1.0 0.99 99
Eastern Basin +0.0 0.9 1.00 100

New York Harbor
NYC DEP

Surface/Bottom data

Western LIS −0.4 1.1 0.99 98
Upper East River −0.3 1.1 0.99 99

Inner Harbor +0.0 1.3 0.99 98
Lower NY Bay +0.1 1.3 0.99 98

Jamaica Bay −0.2 1.2 0.99 98

NYHOPS OFS 1 NYHOPS 2 +0.0 1.4 0.98 95

Salinity Region Bias, psu RMSE, psu W.I.S CF ≤ 3.5 psu, %

Long Island Sound
CT DEEP

LISS Survey

Western Basin +0.1 0.5 0.91 100
Central Basin +0.0 0.5 0.90 100
Eastern Basin −0.6 1.0 0.77 100

New York Harbor
NYC DEP

Surface/Bottom data

Western LIS +0.5 1.3 0.77 99
Upper East River +0.8 2.2 0.94 93

Inner Harbor −0.1 2.8 0.93 89
Lower NY Bay −0.9 2.2 0.91 91

Jamaica Bay +0.0 1.8 0.71 96

NYHOPS OFS 1 NYHOPS 2 +0.0 2.8 0.77 87
1 Georgas and Blumberg [15]; 2 All stations considered within the NYHOPS model domain, 2007–2009.

Overall hindcast results are well within NOAA standards and skill metrics for T and S (CF > 90%;
Table 2). Both water temperatures and salinities were very well predicted. Given the greater seasonality
in estuarine temperature compared to that of salinity, and the three-hourly meteorological forcing
compared to the daily hydrological forcing, the relative RMSE (RMSE divided by the expected
range as in Georgas [14]), was higher for salinity than temperature, at an across-station median of
30.9% versus 4.7%, respectively (Figure 10). Figure 10 highlights spatial differences in model skill
(as described by the relative RMSE) within NYNJH, by comparing the quartiles of relative RMSE
between the hindcast time series and observed time series at NYC DEP Harbor Survey stations. Even
though the Hudson River is one of the most dynamic regions in the estuary, it is also one of the best
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predicted: larger circles in Figure 10 show that the relative RMSE is at its lowest quantile for both T and
S there. On the other hand, the model had less skill simulating T and S within some small tributaries
such as Newtown Creek and Flushing Creek in the lower and upper East River, respectively, and
several tributaries in Jamaica Bay (Figure 10), especially for salinity. These tributaries receive Storm
Water flows and occasional Combined Sewer Overflows from the NYC drainage system, non-point
sources that are presently not directly simulated by the NYHOPS model but rather estimated as
ungagged watersheds. The model’s skill there would potentially benefit greatly through coupling to
hydraulic forecast models developed for NYC DEP, although, for a multi-decadal hindcast, changes
in the City’s drainage system over time may also need to be accounted for: upgrades to two-times
dry-weather-flow by the City’s treatment plants, sewer separation in some areas, and increase in
retention storage in others, for example, affect the spatial and temporal distribution of storm water
and combined sewage discharged from the hundreds of the City’s interconnected pipes and outfalls.

(a) (b)

Figure 10. Quartiles of relative RMSE for (a) water temperature and (b) salinity in the NYNJH for the
NYHOPS hindcast at NYC DEP Harbor Survey stations between 1981 and 2012.

The model’s dynamics were able to capture more variability than the observation-based MOCHA
v2 climatology as evident in relative Brier Skill Scores (BSS) that were positive: 0.48 for temperature
and 0.8 for salinity sound-wide. The only exception was for salinity in the Sound’s eastern basin, where
the period-average relative BSS was −0.29, indicating that the MOCHA v2 climatology had higher
skill than the debiased NYHOPS model there (not shown). Even for that region’s salinity, however, the
model’s total RMSE was only 1 psu, of which the remaining bias was 0.6 psu, the average index of
agreement 0.77, and the model’s results were less than 3.5 psu away from observed more than 99% of
the time. As a comparison, the NOS C.F. standard for simulated salinity is so that errors should be
within 3.5 psu for at least 90% of the time [31]. It is important to note here that results in the Eastern LIS
basin as well as the Lower NY Bay appear to have been degraded after debiasing (Table 2). The salinity
bias correction in the NYHOPS model is consistent with, though slightly smaller than, earlier models
in the region: Both the LISS 2.0 and SWEM models used climatological boundary conditions but
subtracted 2.0 psu. It is possible that the SODA climatology is biased high for salinity, but the results
from the two regions closest to the open boundary in Table 2 may indicate otherwise. Also, like
earlier models, the NYHOPS Hindcast does not include the precipitation-evaporation imbalance over
the Sound’s waters, submarine groundwater discharge, or other aquifer-related freshwater sources.
Although these diffuse sources have been estimated to contribute a total freshwater flow over the
Sound that is an order of magnitude smaller than the Connecticut River [35,36], they may in any case
contribute somewhat to the high-salinity bias in the models. Further research is needed to quantify
these contributions, and explore the reason for that consistent bias in models of the region.
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A very important finding of the research is that the NYHOPS model’s skill in simulating water
temperature, validated against historic data from the LIS bottom trawl survey, did not drift over the
years. The error histograms and PDFs included in Figure 11 for four consecutive periods during both
the (a) spring and (b) fall survey periods, show that there was no clear indication of an earlier
period having greater error than a later one, or vice versa, unlike what was shown earlier for
storm surge. A similar analysis against NYC DEP Harbor Survey data in NYNJH for subsequent
five-year periods from 1983 to 2012 also did not indicate drift in skill for surface or bottom T nor S
(Supplementary Material, Pages 10–18). This is a significant and encouraging finding for multi-decadal
model applications used to identify and research climatic trends and causalities. Figure 11 also shows
that the median error in simulated bottom temperature in LIS was low for both the spring (+0.1 ◦C) and
the fall (−0.5 ◦C) surveys, with only few predictions being further than ±1.5 ◦C from observed samples.

The lack of model drift was further supported through comparison of the simulated water
temperature time series to the one and only long-term water temperature record for Long Island Sound
taken at a near-surface location just outside the Millstone Power Plant at Millstone, CT (Figure 12).
The central estimate for the linear trend of the observations at Millstone (0.439 ◦C/decade) was
somewhat higher than the linear trend of the NYHOPS hindcast there (0.313 ◦C/decade), and the
simulated annual range was somewhat higher than observed (Figure 12), however the two trends were
not different at the 95% confidence level. Figure 12 shows that water temperature was simulated very
well throughout the hindcast period. It also shows clearly that temperatures have been increasing at
the site and that 2012 was the warmest year in both the simulated and observed record.

(a) (b)

Figure 11. Error histograms (top) and probability density functions (bottom) between NYHOPS
Hindcast bottom temperature results and LIS Trawl Survey bottom temperature samples for
four subsequent spring (a) and fall (b) survey periods from 1992 to 2013.

16



J. Mar. Sci. Eng. 2016, 4, 48

Figure 12. Monthly mean water temperature (top) and water temperature anomaly (bottom; after
removal of seasonal signal) time series near the Millstone Nuclear Power Plant outfall location at
Millstone, CT, as observed (OBS), and simulated (MOD).

NYHOPS model results were then used to quantify linear, water temperature, salinity, and
stratification trends for LIS in the hindcast period between 1981 and 2013. Spatially averaged trends
over the three Long Island Sound management basins (east, central, west), and the Sound as a whole
are shown in Figure 13, with confidence intervals, while the spatial variation on the NYHOPS grid
cell level is seen in Figure 14. Statistically significant warming and freshening trends (Figure 13),
non-stationary trends in volumetric fluxes across the western and eastern basins of the Sound
(Figure 15), and an associated statistically significant increase in stratification (Figures 13 and 14)
have all occurred within the hindcast period. Based on the NYHOPS hindcast, in the Long Island
Sound basin, surface air temperatures, contributing river temperatures, and receiving LIS-basin-wide
water temperatures (0.34 ± 0.08 ◦C per decade) have all seen significant increases between 1981 and
2013, more so on the shallower north shore and western Sound than the south shore similar to [37].
The basin wide average is comparable to the 0.30 ◦C per decade rate reported for SST at the Gulf
of Maine [3]. The increase in major freshwater rivers mentioned in Section 2 may have led to the
Sound overall becoming somewhat fresher (a statistically significant trend of 0.12 ± 0.05 psu/decade),
especially near river mouths at the surface (Figure 14), increasing stratification and changing long-term
volumetric transport fluxes in the basin in a statistically significant, nonstationary way (Figure 15).
Further research is needed to deduce whether these trends are expected to continue into the future.
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Figure 13. Decadal-averaged linear trends in water temperature (top), salinity (middle), and stratification
(bottom), for the three LIS basins, and the whole Sound within the 1981–2013 NYHOPS Hindcast
period. Circles show central estimates while vertical bars show the 95% confidence intervals.

Figure 14. Spatial map of locally computed decadal-averaged linear trends in water temperature (left),
salinity (center), density (right), and stratification (bottom) within the 1981–2013 NYHOPS Hindcast
period. Surface and bottom are from the surface-most and bottom-most NYHOPS cells, mean is for the
vertically averaged trends, and stratification is computed from surface to local bottom.
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Figure 15. NYHOPS model transects across which linear trends in volumetric cross-channel transport
were quantified. Transects for which statistically significant trends in volumetric fluxes between 1981
and 2013 were calculated (at the 95% confidence level) are highlighted with blue squares.

5. Conclusions

The NYHOPS model’s application to hindcast storm surge and 3D water temperature and salinity
conditions in its region over three-and-a-half decades was validated against observations from multiple
agencies, as well as climatology: the average index of agreement for storm surge alone was 0.93 (9 cm
RMSE, 90% of errors less than 15 cm); for water temperature, it was 0.99 (1.1 ◦C RMSE, 99% of errors
less than 3 ◦C); and for salinity, it was 0.86 (1.8 psu RMSE, 96% of errors less than 3.5 psu). The model’s
skill in simulating bottom water temperature, validated against historic data from the Long Island
Sound bottom trawl survey, did not drift over the years, a significant and encouraging finding for
multi-decadal model applications used to identify climatic trends. However, the validation revealed
residual biases in some areas, including small tributaries that receive urban discharges from the
NYC drainage network. With regard to the validation of storm surge at coastal stations, both the
considerable strengths and remaining limitations of the use of NARR to force such a model application
were discussed.

Through the comprehensively forced, and herein extensively validated, multi-decadal simulation
for Long Island Sound’s physical environment performed using Stevens Institute of Technology’s
NYHOPS hindcast model, temperature increases in Long Island Sound over the past three-and-a-half
decades have been confirmed and have been found to be statistically significant. The linear trends
have also been found to be quite high (0.34 ± 0.08 ◦C per decade) and comparable to ones in the Gulf
of Maine [3]. Further research is needed in identifying the cause for this increase in temperatures.
Source allocation and further sensitivity runs using the NYHOPS model may aid in testing hypotheses
in the future.

After extensive model validation and debiasing, an online THREDDS Data Server
(http://colossus.dl.stevens-tech.edu/thredds/catalog.html) was set up to serve the NYHOPS model’s
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results in NetCDF format over the web using the OPENDAP protocol, enabling similar analyses
through open access to daily averaged or monthly averaged time series for all the gridded hindcast
physical variables in or over the NYHOPS region that includes NYNJH and LIS.

Fisheries management has traditionally sought to reduce harvesting levels in response to low
stock biomass, in its goal to maintain long-term fishery productivity [38]. More recently, accounting
for non-stationary environmental forcing has started being considered in stock assessment and
management ([39], pp. 131–147) with the realization that a failure to account for shifts in climate
that can alter population dynamics can lead to stock collapse as with the Gulf of Maine cod
fishery [3]. This progress has been facilitated by new population dynamics models that consider
temperature-dependencies and an improved understanding in climate-fisheries teleconnections
brought about through advances in environmental modeling.

NYHOPS Hindcast results are in demand to support this kind of fisheries research through
coupling to habitat suitability indices, population models, water quality models, or to provide
boundary conditions to higher resolution embayment or tributary circulation models. The datasets
are also presently used to inform ongoing research in climate teleconnections and ecosystem change
through exploratory statistical analyses linking regional fisheries abundance to global climate indices.
The authors are encouraged by the early interest in these datasets.

Simulated climatologies (mean simulated climate conditions averaged over the three decades of
the NYHOPS hindcast period) for two- and three-dimensional fields such as water temperatures and
salinities, were also generated, and included in THREDDS. Included on the same THREDDS server is
a “daily anomaly” dataset, comparing the latest operational forecast of the NYHOPS OFS model to the
1981–2013 debiased daily climatology, so that interested parties can see how different yesterday and
the next three days are predicted to be from the climatological average, enabling near-term tracking of
anomalous patterns in Long Island Sound. Fish-surveying strategies may also be improved through
the use of the NYHOPS model forecasts: NYSDEC and NMFS routinely already use the model’s
predictions for adaptive sampling in the Hudson River estuary and the Mid-Atlantic Bight Apex.
Visualization is easy with off-the-shelf free software, such as NASA’s Panoply, accessing the datasets
over the web.

Supplementary Materials: The following are available online at www.mdpi.com/2077-1312/4/3/48/s1,
Comprehensive Validation and LIS Trend Presentation.
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Abstract: Numerical modeling of tsunami evolution, propagation, and inundation is complicated
due to numerous parameters involved in the phenomenon. It is important to assess the performance
of numerical codes that solve tsunami motion, as well as flow and velocity patterns. NAMI DANCE
is a computational tool developed for the modeling of long waves. It provides numerical modeling
and efficient visualization of tsunami generation, propagation, and inundation mechanisms and
computes the tsunami parameters. In the theory of long waves, the vertical motion of water particles
has no effect on the pressure distribution. Based upon this approximation and neglecting vertical
acceleration, the equations of mass conservation and momentum are reduced to two-dimensional
depth-averaged equations. NAMI DANCE uses finite difference computational method to solve
linear and nonlinear forms of depth-averaged shallow water equations in long wave problems. In this
study, NAMI DANCE is applied to a benchmark problem which was discussed in the 2015 National
Tsunami Hazard Mitigation Program (NTHMP) annual meeting in Portland, USA. The benchmark
problem features a series of experiments in which a single solitary wave propagates up a triangular
shaped shelf which has an offshore island feature. The problem provides detailed free surface
elevation and velocity time series in the vicinity of the island. The comparison of the results showed
that NAMI DANCE is able to satisfactorily predict long wave evolution, propagation, amplification,
and tsunami currents.

Keywords: numerical modeling; tsunami currents; depth-averaged equation; benchmark

1. Introduction

Tsunamis are large waves that are generated by the abrupt movement of the ocean floor caused
by undersea earthquakes, underwater landslides, volcanic eruptions, or large meteorite strikes.
Tsunami waves are accepted as the most destructive parameter of this phenomenon; however, currents
that are triggered by large wave movements may be very fatal in some cases. Basin resonance and
geometric amplification are two reasonably well-understood mechanisms for local magnification of
tsunami impact in closed basins, and are generally the mechanisms investigated when estimating
the tsunami hazard potential in a port or harbor; on the other hand, the understanding of and
predictive ability for currents is lacking [1]. This study aims to investigate the sufficiency of
two-dimensional depth-averaged shallow water equations in the estimation of tsunami evolution,
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propagation, and amplification as well as tsunami currents by using a numerical tool; namely NAMI
DANCE. Since the 1970s, solitary waves have commonly been used to model tsunamis, especially
in experimental and mathematical studies [2]. In this respect, the numerical code is applied to
a benchmark problem which focuses on the evolution and propagation of a single solitary wave over
complex bathymetry. The problem describes a series of experiments that analyze the transformation
of a single solitary wave as it propagates up a triangular shaped shelf with an island feature located
at the offshore point of the shelf. The currents that are formed in the vicinity of the island are also
investigated in the experiments. The benchmark problem used in this study is Benchmark Problem
#5 of the 2015 National Tsunami Hazard Mitigation Program (NTHMP) workshop which was held
in Portland, USA [3]. By comparing the benchmark data and the numerical results, it is observed
that two-dimensional depth-averaged shallow water equations give satisfactory results regarding
tsunami wave evolution and currents and thus are sufficient tools to use while determining tsunami
mitigation strategies.

2. Materials and Methods

2.1. The Numerical Model: NAMI DANCE

Tsunami numerical modeling by NAMI DANCE is based on the solution of a nonlinear form of
long wave equations with respect to related initial and boundary conditions [4]. In general, the explicit
numerical solution of nonlinear shallow water (NSW) equations is preferred since it consumes
reasonable computer time and memory, and also provides the results in acceptable error limits [4].
NAMI DANCE is a numerical model which is able to simulate tsunami evolution, propagation and
inundation. It has been developed by the collaboration of Ocean Engineering Research Center, Middle
East Technical University, Turkey, and Special Research Bureau for Automation of Marine Researches,
Russia [5,6]. NAMI DANCE uses C++ programming language and solves NSW equations using
a staggered leapfrog numerical solution procedure. In the theory of long waves, the vertical motion
of water particles is not considered since it has a negligible effect on the pressure distribution. Based
upon this approximation, using necessary dynamic and kinematic conditions and including the bottom
friction terms, the fundamental equations of NAMI DANCE, which are given Equations (1)–(5),
are obtained and these equations are discretized by following the staggered leapfrog scheme.
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M = u (h + η) = uD (4)

N = v (h + η) = vD (5)

where x and y are the horizontal axes; t is time; h is undisturbed flow depth; η is the vertical
displacement above the undisturbed water surface; M and N are the discharge fluxes in x and y
directions; u and v are particle velocities in x and y directions, respectively; n is the Manning’s roughness
coefficient; g is the gravitational acceleration, and D is the total water depth given by h + η [6].

NAMI DANCE is able to compute (i) tsunami source from either rupture characteristics or
predetermined wave form; (ii) propagation; (iii) arrival time; (iv) coastal amplification; (v) inundation
(according to accuracy and grid size); (vi) distribution of current velocities and their directions at
selected time intervals; (vii) relative damage levels according to drag and impact forces; (viii) time
histories of water surface fluctuations; (ix) 3D plots of sea state at selected time intervals from different
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camera and light positions; and (x) animations of tsunami propagation [7]. NAMI DANCE has
been applied to analytical, experimental, and field benchmark problems [8,9] for validation and
verification [10–14] and also applied to several tsunami events [7,15–18].

2.2. The Benchmark Problem

The benchmark problem describes a series of experiments which have a single solitary wave
propagating up a triangular shaped shelf with an island feature located at the offshore point of the shelf.
The series of experiments are conducted in a large wave basin which is 48.8 m long, 26.5 m wide and
2.1 m deep [19]. The basin is equipped with a piston-type wave maker powered by an electric motor
and a wave board that consists of 29 independently functioning paddles, which is able to produce
linear and nonlinear waves up to 0.8 m in height [19]. The walls and the underlying bathymetry of the
basin are made of concrete in order to reduce the boundary effects due to friction [19]. The complex
bathymetry is constructed symmetrically along the centerline of the basin. The water depth is kept
constant at 0.78 m and hence the still water level (SWL) intersects the land at X = 25.75 m [19]. A single
solitary wave with a height of 0.39 m is generated for each trial [19]. In the experiments, resistance
and sonic wave gages are used to record the free surface elevation time series, and the velocity time
series are recorded via acoustic Doppler velocimeters (ADVs) [19]. The bathymetry provided with the
benchmark problem is given in Figure 1.

 

Figure 1. The bathymetry provided with the benchmark problem.

The free surface elevation time series are recorded at Y = 0.0 m at following X-locations: X = 7.5 m,
13.0 m, and 21.0 m; at Y = 5.0 m at following X-locations: X = 7.5 m, 13.0 m, and 21.0 m; and at
X = 25.0 m at following Y-locations: Y = 0.0 m and 5.0 m. The velocity data are recorded at two
locations: X = 13.0 m, Y = 0.0 m and z = 0.75 m and X = 21.0 m, Y = −5.0 m, and z = 0.77 m.

The input parameters that are necessary for numerical modeling are the XYZ dataset of the
bathymetry and the free surface elevation time series of the incoming wave. The dimensions of these
parameters are kept the same as the ones that are used in the experiments. Figure 2 shows the model
bathymetry and the incoming wave, which is a single solitary wave with a height of 0.39 m. The free
surface elevation time series of the incoming wave is inputted from the left border, i.e., X = 0.0 m
along Y-axis. The model bathymetry is formed using structured grids. The spatial grid size, Δx, is
selected as 0.05 m to achieve more accurate results. The time step, Δt, is selected as 0.001 s to ensure
stability with 0.05 m grid size. The duration of each simulation is 20 s, which is sufficient to observe
the maximum wave height and the effect of the island on the propagation of the solitary wave. It is
observed that it takes approximately 1 h to complete each simulation using 12-Core CPUs.
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Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.

3. Results

3.1. Free Surface Elevation Time Series

The free surface elevation is measured via wave gages which are placed offshore, near shore and
in the vicinity of the island. The gages placed in the vicinity of the island make it possible to record
and analyze the effect of the island on the propagation of the single solitary wave and wave currents.
The comparison of the results regarding the free surface elevation time series is given in Figure 3.
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Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1;
(b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and
Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6;
(g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents
benchmark data, red line represents numerical results.
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The results revealed that depth-averaged NSW equations are able to satisfactorily predict the
free surface elevation at gages 1, 4, 7, and 8. However, these equations fail to accurately estimate the
free surface elevation in the vicinity of the island, i.e., at gages 2, 3, 5, and 6. It is known from the
experimental observations that turbulence and relatively large wave currents are formed in the vicinity
of the island; these are considered to play a role in the underestimation of maximum wave amplitudes.

3.2. Velocity Time Series

The velocity time series are measured via ADVs. The effect of the island on the direction and
magnitude of wave currents is also recorded and analyzed. The comparison of the results regarding
the wave currents is given in Figure 4.

  
(a) (b) 

  
(c) (d) 

-1.5

-0.5

0.5

1.5

2.5

0 5 10 15 20

U
 (m

/s
)

Time (seconds)

-0.5

0.0

0.5

0 5 10 15 20

V
 (m

/s
)

Time (seconds)

-1.0

0.0

1.0

2.0

0 5 10 15 20

U
 (m

/s
)

Time (seconds)

-0.5

0.0

0.5

0 5 10 15 20

V
 (m

/s
)

Time (seconds)

Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m,
Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m,
Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m,
Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m,
Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents
numerical results.

The results showed that depth-averaged NSW equations are able to satisfactorily predict the
velocity components in x-direction. On the other hand, the maximum velocity values in y-direction are
underestimated even though the predicted and measured velocity components show a similar trend.

3.3. Performance Assessment of the Model

The credibility of a numerical model is directly related to its performance. Using numerical
models, it is impossible to obtain the same outcomes as those in natural systems since natural systems
are never closed and model results are not always unique. The expected outcome is an acceptable level
of agreement between analytical/experimental/field data and model prediction, as well as sufficient
accuracy of the model. The performance of numerical models can be assessed by demonstrating
the agreement between observation and prediction. Models can only be evaluated in relative terms,
and their predictive value is always debatable. There is a variety of different methods to assess the
performance of numerical models. Error statistics is one of these tools.

Different types of errors are introduced to determine the correlation between the
analytical/experimental/field data and model results. In National Oceanic and Atmospheric
Administration (NOAA), two common errors are emphasized; namely, normalized root mean square
error, NRMSE, and the error of the maximum value, MAX [20]. The percent NRMSE is applied within
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a space segment or time period to all observed data points. The main use of NRMSE is to assess the
accuracy of a model in predicting the entire set of observed data; in other words, it is used to define
the overall model performance. NRMSE deals with an error of absolute values and does not show the
bias of the code’s prediction (i.e., underprediction or overprediction). MAX is used to quantify each
model’s predictive accuracy for the maximum data point regardless of the location and time.

The formulas to evaluate percent NRMSE and MAX error values are given in Equations (6) and (7):

NRMSE = 100 × 1
f (xi)max − f (xi)min

√
∑ ( f (xi)− yi)

2

n
(6)

MAX = 100 × | f (xi)max − yi max|
f (xi)max

(7)

where f (xi) represents the observed data and yi represents the predicted data.
The benchmark problem discussed in this study features a series of experiments collecting free

surface elevation and velocity data. The velocity computations in numerical models differ at shallow
water depths because of the nature and limit of two-dimensional depth-averaged shallow water
equations. Therefore, larger error limits are accepted for velocity comparisons in shallow water depths.
The NRMSE and MAX error limits for velocity values for experimental benchmarks can be selected as
15% and 25%, respectively [20]. For free surface elevation time series, NRMSE and MAX error limits
may be reduced to 15% and 10%, respectively [20]. Statistical error analysis is applied to the results
given in Sections 3.1 and 3.2. The results are listed separately for the free surface elevation time series,
and velocity time series and are given in Tables 1 and 2.

Table 1. Error statistics of numerical results for free surface elevation time series recorded at each gage.

Free Surface Elevation (FSE) % NRMSE % MAX

Gage 1 0.60 0.02
Gage 2 7.30 19.30
Gage 3 15.00 17.60
Gage 4 2.60 2.60
Gage 5 7.20 18.80
Gage 6 8.70 8.20
Gage 7 4.50 7.30
Gage 8 5.00 6.80

Table 2. Error statistics of numerical results for horizontal velocity time series recorded at each gage.

Horizontal Velocity % NRMSE % MAX

Gage 2, U 8.25 18.90
Gage 2, V 16.00 27.90
Gage 9, U 10.75 15.00
Gage 9, V 16.00 28.60

4. Discussion

Nonlinear depth-averaged shallow water equations are commonly used to simulate the evolution
and propagation of long waves offshore, near shore, and on the ground. These equations are solved
using an explicit numerical scheme in which the staggered grid method in space and the leapfrog
method in time are adopted. NAMI DANCE is one of many numerical tools that solve two-dimensional
depth-averaged nonlinear shallow water equations to estimate the long wave behavior depending on
bathymetry and topography. It is still controversial whether these equations predict tsunami currents
accurately or not. In this study, the competence of depth-averaged NSW equations was tested using
a benchmark problem. The results were analyzed in two aspects; free surface elevation and velocity
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time series. It is revealed that depth-averaged NSW equations satisfactorily predict the evolution,
propagation, and amplification of long waves over complex bathymetry when turbulence effect is
negligible. In the opposite case, the numerical results and observed data show a similar trend; however,
the propagation and amplification of long waves are not accurately predicted. The turbulence and
shoaling effects in the vicinity of the island, as well as the limitations of depth-averaged NSW equations,
are considered to play a role in the underestimation of maximum wave amplitudes. The predicted
and measured velocity components in x-direction are in good agreement with each other. The maxima
of the velocity components in x-direction are reached. On the other hand, even though the predicted
and measured velocity components in y-direction show a similar trend, the maximum velocity
values are underestimated. Therefore, the prediction of the velocity components in y-direction needs
improvement. Depth-averaged NSW equations may be a sufficient tool while developing tsunami
mitigation strategies. However, long wave currents need further analysis in closed basins such as
harbors and ports where they become a prominent parameter for the impact and drag on marine
vessels, and also the resilience and endurance of coastal structures.

5. Conclusions

Numerical modeling of coastal hydrodynamics constantly gains importance in the world of coastal
engineering due to the rapid development in computing technology. The modeling techniques have
become more sophisticated and a large number of models can now be employed in a variety of coastal
hydrodynamic problems. Accordingly, the performance assessment of numerical codes becomes
crucial. The credibility of a numerical model has a direct relationship with its performance, which can
be evaluated by indicating the level of agreement between observation and prediction. NAMI DANCE
is one of many coastal models that solve two-dimensional depth-averaged NSW equations. This study
investigated the performance of these equations in the estimation of long wave evolution, propagation,
amplification, and long wave currents using NAMI DANCE. In this respect, the numerical code
was applied to a benchmark problem which describes a series of experiments that analyze the
transformation of a single solitary wave as it propagates up a triangular shaped shelf with an island
feature located at the offshore point of the shelf. The results of this study indicate that depth-averaged
NSW equations satisfactorily predict the evolution, propagation, and amplification of long waves over
complex bathymetry when turbulence effect is negligible. On the other hand, NSW equations are not
able to produce accurate results when the turbulence effects become dominant. Depth-averaged NSW
equations may still be preferred while developing tsunami mitigation strategies. However, further
studies on different benchmark problems are necessary to identify the performance and validity of
depth-averaged NSW equations when the current behavior of long waves is investigated.
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Abstract: To provide insightful information on water quality management, it is crucial to improve the
understanding of the complex biogeochemical cycles of Chesapeake Bay (CB), so a three-dimensional
unstructured grid-based water quality model (ICM based on the finite-volume coastal ocean model
(FVCOM)) was configured for CB. To fully accommodate the CB study, the water quality simulations
were evaluated by using different horizontal and vertical model resolutions, various wind sources
and other hydrodynamic and boundary settings. It was found that sufficient horizontal and vertical
resolution favored simulating material transport efficiently and that winds from North American
Regional Reanalysis (NARR) generated stronger mixing and higher model skill for dissolved oxygen
simulation relative to observed winds. Additionally, simulated turbulent mixing was more influential
on water quality dynamics than that of bottom friction: the former considerably influenced the
summer oxygen ventilation and new primary production, while the latter was found to have little
effect on the vertical oxygen exchange. Finally, uncertainties in riverine loading led to larger deviation
in nutrient and phytoplankton simulation than that of benthic flux, open boundary loading and
predation. Considering these factors, the model showed reasonable skill in simulating water quality
dynamics in a 10-year (2003–2012) period and captured the seasonal chlorophyll-a distribution
patterns. Overall, this coupled modeling system could be utilized to analyze the spatiotemporal
variation of water quality dynamics and to predict their key biophysical drivers in the future.

Keywords: FVCOM-ICM; Chesapeake Bay; water quality; nutrient; phytoplankton; dissolved oxygen

1. Introduction

As the largest and most biologically-diverse coastal plain estuary in North America [1],
Chesapeake Bay (CB) is highly influenced by its vast watershed with a land-to-water ratio of 14.3 [2].
Following the population growth, industrial and agricultural development, CB has undergone severe
eutrophication with symptoms of excessive nutrient loading, nuisance algal blooms, extensive summer
hypoxia and declined seagrass coverage since the mid-1900s [3,4]. Typically, the overloading of cultural
nutrients into CB directly drives its water quality deterioration, including bottom hypoxia/anoxia,
overwhelming phytoplankton growth and diminished water clarity [2].

Biogeochemical cycles in CB and similar water bodies have been investigated using field
investigation [5–7], retrospective long-term data analysis [8,9], remote sensing images [10], and
numerical simulations [11,12]. Intra-seasonal and inter-annual observed data can effectively detect
the dominant environmental factors driving water quality variations, but is usually limited by
sparse spatiotemporal resolution [13]. Satellite imagery provides synoptic surface phytoplankton and
suspended material distribution while it is incapable of exhibiting vertical variation [10]. Statistical
empirical models and simplified oxygen models omitting nutrient cycles have been developed
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as substitutes for specific research goals, but it is impossible to reproduce the detailed internal
spatiotemporal water quality variation and comparatively evaluate biophysical drivers [14]. In contrast,
the three-dimensional physical-biogeochemical model could better resolve the biophysical interactions
between circulation and water quality kinetics [11,12] and facilitate mechanistic analysis of internal
water-column dynamics [15–17], making it an ideal tool to investigate nutrient dynamics and algal
variability in eutrophic estuaries [18], synoptically assess estuarine biophysical processes and project
future scenarios [19,20].

However, there exist several challenges and limitations in developing and applying sophisticated
biophysical models [20]. For example, low-resolution models have difficulty following the coastline or
investigating the tributary-estuary exchange very well. Unstructured grid models have the advantage
of flexibility reaching fine resolution at areas of interest (e.g., nearshore, sills, deep channels and fronts)
over the structured grid models [21]. Other key challenges and sources of uncertainty in configuring
biophysical models lay in meteorological forcing, hydrodynamic simulation and nutrient loading [20].
For example, turbulent mixing and bottom roughness are key factors for the bay circulation [22], while
their effects on the water quality dynamics are less investigated. In addition, uncertainties and errors
originating from these processes have been poorly compared and discussed in any biophysical model
application, and these limitations could be magnified when modeling a biologically-diverse estuary
(e.g., CB) and cause biases when interpreting the model simulations and providing management
suggestions [12,23].

Since high resolution would potentially benefit the water quality simulation, a three-dimensional
biophysical model was configured for CB, its tributaries and adjacent coastal ocean based on the
unstructured grid modeling framework FVCOM-ICM [24], which comprises the hydrodynamic model,
the finite-volume coastal ocean model (FVCOM) and a water quality component, the modified Corps
of Engineers Integrated Compartment Water Quality Model (FVCOM-ICM, [24]). During the model
development, we tried to achieve a comprehensive understanding of various uncertainties for the
model development and answer the following questions: (1) how will increased model resolution
improve the simulation of water quality variables; (2) how sensitive is the model to different wind
sources; and (3) what is the most significant physical and biological sources of uncertainty in our
model? Sections 2 and 3 introduce the model frame and sensitivity experiments; model calibration
results are depicted in Section 4; Section 5 lists the major conclusions.

2. Material and Methods

2.1. Study Site

CB, located adjacent to the Mid-Atlantic Bight on the east coast of United States (Figure 1), is a
partially-mixed drowned river valley with a residence time of 90–300 days depending on the river
flux [2,25]. A deep channel in the middle and shoals on both flanks (Figure 1 [2]) characterize the
main stem of this large estuary with an area of 11,600 km2 (323 km long, 48 km wide and 6.5 m deep
on average), where the salinity typically ranges from 0–30 from the northern to the southern end.
A two-layer estuarine circulation is subject to variation in river flux, local/remote winds, semidiurnal
tides and other forces [26,27]. Receiving 337.3 kt/year (kt = thousand tons) nitrogen and 23.7 kt/year
phosphorus inputs by 2010 [28], CB generates 2–12 km3 bottom hypoxic waters every summer [29] and
witnesses frequent occurrence of harmful algal blooms [30], which threatens the bay’s living resources
and ecological service to its recreational and commercial users.
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Figure 1. Model grid and bathymetry of Chesapeake Bay (CB) and its adjacent coastal ocean with river
nodes, data sites and three transects. The bottom right panels are the zoom-in of the boxed area from
two sets of grids generated for sensitivity experiments on spatial resolution. Sus, Susquehanna River;
Ptp, Patapsco River; Che, Chester River; Pat, Patuxent River; Cho, Choptank River; Pot, Potomac River;
Nan, Nanticoke River; Rap, Rappahannock River; Yor, York River; Jam, James River.

2.2. Model Description

An unstructured grid FVCOM-based hydrodynamic model was used to simulate the water
level, temperature, salinity, circulation, eddy viscosity and other hydrodynamic information at an
external and internal time step of 3 s and 12 s, respectively [31]. This work adopted this existing
hydrodynamic model with the grid size ranging from 270 m–20.9 km (Figure 1). The major external
forcing was comprised of daily river discharge, atmospheric forcing and open boundary conditions.
The hydrodynamic data sources, calibration and validation processes and the justification of model
settings could be retrieved in detail from [31].

The water quality kinetics, including nutrient cycles, sediment diagenesis and plankton growth,
was simulated in the FVCOM-based water quality model FVCOM-ICM [24]. Integrated Compartment
Model (ICM) was originally developed for the CB restoration and now works as part of the predictive
model package CBEMP for the total maximum daily load plan [11,28]. A primary difference between
CBEMP and FVCOM-ICM is our use of the unstructured grid and the sigma coordinate to accommodate
the complex bay coastline and bathymetry. The mass balance of state variables in each control
volume/cell [11] is solved as follows.

∂VC
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n
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n
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AkDk
∂C
∂x

+ VS (1)

In Equation, V is the volume of a cell (m3), C is the concentration or biomass in the cell (mg/L),
t is the temporal coordinate (s), Qk is the flux across the interface with the k-th neighbor cell (m3/s),
Ck is the concentration or biomass across the interface between two cells (mg/L), Ak is the interface
area (m2), Dk is the diffusion coefficient at the interface (m2/s), n is the number of neighbor cells, i.e.,
the number of interfaces, x is the spatial coordinate (m) and S is the changing rate due to external loads
and kinetic reaction in the cell (mg·L−1·s−1). To adapt to the sigma (σ) coordinate system, the transport
of each state variable is modified as below [24].
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In the equation, D is total depth (H + ζ, m), where H is the mean water depth and ζ is the water
elevation, Ah is the horizontal diffusivity (m2/s), Av is the vertical diffusivity (m2/s), u, v and ω are
velocity components (m/s) in the directions of x, y and σ, respectively, and S is the biogeochemical
changing rate (mg·L−1·s−1).

We simulated a total of 26 state variables in carbon, nitrogen, phosphorus, silicon and
dissolved oxygen (DO) cycles (Figure 2), including total suspended solids (TSS), cyanobacteria,
diatoms, dinoflagellates, microzooplankton (20–200 μm), mesozooplankton (0.2–20 mm), ammonia
(NH4), nitrite and nitrate (NO23), phosphate (PO4), particulate inorganic phosphorus (PIP),
labile/refractory dissolved/particulate organic carbon (LDOC, RDOC, LPOC, RPOC), labile/refractory
dissolved/particulate organic nitrogen (LDON, RDON, LPON, RPON), labile/refractory
dissolved/particulate organic phosphorus (LDOP, RDOP, LPOP, RPOP), chemical oxygen demand
(COD), DO and particulate/dissolved silica (PSi/DSi). The sub-models of sediment diagenesis [32] and
bivalve filtration [33] were turned on. ICM in CBEMP showed considerable model skills in representing
the water quality variables for decades [11], so most of their model settings and parameters were
followed (Table 1).

Figure 2. Schematic flow diagram of ICM set up for Chesapeake Bay. LDOC, RDOC, LPOC,
RPOC, labile/refractory dissolved/particulate organic carbon; LDON, RDON, LPON, RPON,
labile/refractory dissolved/particulate organic nitrogen; LDOP, RDOP, LPOP, RPOP, labile/refractory
dissolved/particulate organic phosphorus; PSi/DSi, particulate/dissolved silica; COD, chemical
oxygen demand; DO, dissolved oxygen; NO23, nitrite and nitrate; NH4, ammonia; PO4, phosphate;
DIN, dissolved inorganic nitrogen.

Table 1. Key kinetic parameters used for the ICM for Chesapeake Bay. CHLA, chlorophyll = a.

Parameters Value Literature Range

Settling velocity W (CYN, m/day) 0 0–0.1 [11,14,34]
Settling velocity W (DIA, m/day) 0.2 0–0.5 [11,14,21,34]

Settling velocity W (DINO, m/day) 0.1 0–0.2 [21,34]
Max photosynthetic rate Pm (CYN, day−1) 150 100–270 [11,14,34]
Max photosynthetic rate Pm (DIA, day−1) 300 200–400 [11,14,21,34]

Max photosynthetic rate Pm (DINO, day−1) 200 200–350 [21,34]
C:CHLA ratio CChl (CYN) 50 30–143 [11,14,34,35]
C:CHLA ratio CChl (DIA) 37 30–143 [11,14,21,34,35]

C:CHLA ratio CChl (DINO) 50 30–143 [21,34,35]
Half-saturation KH-DIN (CYN, mg/L) 0.02 0.01–0.03 [11,14,34]
Half-saturation KH-DIN (DIA, mg/L) 0.025 0.003–0.923 [11,14,21,34]

Half-saturation KH-DIN (DINO, mg/L) 0.025 0.003–0.923 [21]
Half-saturation KH-DIP (all, mg/L) 0.0025 0.001–0.195 [11,14,21,34]

Half-saturation KH-DSi (DIA, mg/L) 0.03 0.01–0.05 [11,14,21,34]
Photosynthesis Topt (CYN, ◦C) 25 22–30 [11,14,34]
Photosynthesis Topt (DIA, ◦C) 16 12–35 [11,14,21,34]

Photosynthesis Topt (DINO, ◦C) 24 18–35 [21]
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Table 1. Cont.

Parameters Value Literature Range

Respiration Tref (◦C) 20 20 [11,34]
Percentage of active respiration Pres 0.25 0.25 [11,14,21,34]

Basal metabolic rate M (CYN, day−1) 0.03 0.03–0.05 [11,14,34]
Basal metabolic rate M (DIA, day−1) 0.01 0.01–0.1 [11,14,21,34]

Basal metabolic rate M (DINO, day−1) 0.02 0.01–0.1 [21,34]
Herbivore predation rate F (CYN, day−1) 0.03 0.01–0.05 [14,34]
Herbivore predation rate F (DIA, day−1) 0.1 0.05–1 [14,21,34]

Herbivore predation rate F (DINO, day−1) 0.5 0.05–1 [21]
Max zooplankton predation ration (SZ, day−1) 2.25 0.8–2.25 [11,14]
Max zooplankton predation ration (LZ, day−1) 1.75 0.8–1.75 [11,14]

Settling velocity of particles (m/day) 0.25 0.03–0.8 [11,14,21,34]
Max nitrification rate (g·m−3·day−1) 0.075 0.01–0.75 [11,14,21,34]

Optimal nitrification temperature (◦C) 30 25–35 [11,14,21,34]

We simulated three major phytoplankton groups in CB [6]: diatoms (including other winter/spring
groups), dinoflagellates (including other summer species) and cyanobacteria. Dinoflagellates were
treated as autotrophs with their grazing capability not modeled. The time-dependent phytoplankton
biomass governing equation [11] is given below.

∂B
∂t

= (G − R)B − W
∂B
∂z

− FzBZ − FB (3)

In the equation, B is the biomass of a phytoplankton taxon (mg/L), G and R are the growth and
respiration rate, respectively (day−1), W is the settling velocity (m/day), z is the vertical coordinate
converted from σ levels (m), Fz (L·mg−1·day−1) and F (day−1) are the predation rate of zooplankton
and other herbivores, respectively, and Z is the zooplankton biomass (mg/L). The growth rate is
a function of temperature, nutrients and light, while the respiration rate is simply dependent on
temperature. Equation (4) [11] is the depth-integrated net primary production (NPP) to manifest the
detailed growth and respiration calculations.

NPP =
�

((
Pm

CChl
I√

I2 + I2
k

N
Kh + N

e−KT(T−TOPT)
2
)(1 − Pres)− Me−KT(T−Tre f ))Gdzdt (4)

In the equation, Pm is the maximum photosynthetic rate (day−1), CChl is the carbon to chlorophyll
ratio, I and Ik are the instantaneous and reference radiation (mol·photons·m−2·day−1), N is the
concentration of each nutrient (nitrogen, phosphorus and diatom-only silicon, mg/L), Kh is the
half-saturation concentration in the Michaelis–Menten nutrient limitation function (mg/L), KT (◦C−2)
and KT

’ (◦C−1) are the temperature coefficients on photosynthesis and basal respiration, respectively,
Topt and Tref are their corresponding optimal and reference temperature (◦C), Pres is the percentage of
active respiration in gross primary production and M is the basal respiration/metabolism rate (day−1).

The light attenuation process is calculated with a subroutine computing the coefficient of diffuse
light attenuation Ke (m−1), which is controlled by the scattering and absorption to suspended solids
and chlorophyll in the water column. In FVCOM-ICM, a look-up table along the visible spectrum
(400–700 nm), derived based on field measurements in CB, is created to determine the six independent
parameters, which feeds the subroutine for Ke calculation. The formulation and description of the light
attenuation subroutine are detailed in [11,21].

2.3. Model Settings

For the simulation period 2003–2012, FVCOM-ICM off-line reads hourly hydrodynamic
information from FVCOM. When the 30-min time interval in the water quality model was applied,
simulated water quality variables reached over 90% correlations with those with a 5-min interval,
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while the computational time is only 22.4%; so we conducted water quality simulations at a
time step of 30 min. We included 10 major riverine boundaries (Figure 1) for nutrient and TSS
loading. The monitoring nutrients, TSS and phytoplankton maintained by the EPA Chesapeake Bay
Program (CBP [36]) were the main data source of our model initialization, calibration and validation.
The point-source and nonpoint-source loading of carbon, nitrogen, phosphorus and TSS were from
the CBP’s watershed model, Hydrological Simulation Program in Fortran (HSPF) in Phase 5.3.2 [36].
The deposition of nitrogen and phosphorus from the air-sea surface were estimated based on the
observations (Stations MD13, MD15, MD99, VA10 and VA98) from National Atmospheric Deposition
Program [37]. We referred to the monthly World Ocean Atlas 2005 data [38] for setting open boundary
conditions. Meteorological data were downloaded from the National Center for Environmental
Prediction (NCEP), North America Regional Reanalysis (NARR [39]). After model setup, major
parameters were calibrated among literature ranges (Table 1) with data of 2010 to achieve the most
reasonable and reliable model performance and verified with the other nine years’ data. In order to
validate our eutrophication model, we also compared our simulated chlorophyll-a (CHLA) distribution
with the remote sensing images from the Chesapeake Bay Remote Sensing Program [40].

As suggested by Fitzpatrick, we computed the correlation coefficient (CC; Equation (5)) and
the root mean squared error (RMSE; Equation (6)) to evaluate the fit between predicted (Pi) and
observational (Oi) dissolved inorganic nitrogen (DIN) and phosphorus (DIP), TSS, DO and CHLA.

CC =

n
∑

i=1
(Oi − O)(Pi − P)√

n
∑

i=1
(Oi − O)

2 n
∑

i=1
(Pi − P)2

(5)

RMSE =

√√√√√ n
∑

i=1
(Pi − Oi)

2

n
(6)

2.4. Design of Numerical Experiments

In order to quantify the uncertainties in both hydrodynamic and water quality sub-models,
we performed a variety of sensitivity tests along with the model calibration process (Table 2).
These experiments were designed using the year 2010, which has been calibrated and has normal
meteorological and hydrological conditions [31,41]. The effects of grid resolution on water quality
simulation were examined using two model experiments with different spatial resolutions (the average
grid size inside the bay is 1.43 km versus 1.74 km, respectively; see Figure 1). We also compared the
water quality simulations with six, 11 and 21 sigma levels to determine the optimal vertical resolution.
Given that the water quality simulation is sensitive to vertical mixing and bottom shear [20], the impacts
of varied vertical eddy viscosity and bottom roughness length scale (Table 2) were discussed based on
the calibrated hydrodynamic model [31]. We also examined the controls of two spatially-varying wind
sources, NARR (spatial resolution of 30 km) and observation (data from 39 stations from National
Data Buoy Center [42] and the National Centers for Environmental Information [43]), on DO variation.
For the boundary loading, we altered the nutrient input from various sources (riverine, benthic and
open boundary) to understand their influence on primary production. Additionally, the predation of
zooplankton and suspension feeders was turned on and off to examine their controls on phytoplankton
prey, respectively.
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Table 2. A list of model sensitivity experiments.

Scenarios Treatment

baseline Described in Section 2 and [31]

coarse Using a low-resolution model grid a (Figure 1)

sigma06, sigma20 Using 6 and 21 uniform sigma levels; i.e., each sigma layer represents 1/5 and 1/20
of the water depth, respectively

obs Using wind data from National Data Buoy Center and National Centers for
Environmental Information

obs + narr Using observed wind to drive mixing and NARR wind to drive reaeration

az1, az2, az3, az4
Vertical eddy viscosity (az) computed in the hydrodynamic model was roughly 25%,
50%, 200% and 400% of the baseline scenario. The adjustment of vertical eddy
viscosity is achieved by altering the Prandtl number

z01, z02, z03, z04 The bottom roughness length scale (z0) was 25%, 50%, 200% and 300% of the
baseline scenario

r0.25, r0.50, r0.75, r0.80, r0.90, r0.95, r1.05,
r1.10, r1.20

The riverine nutrient loading was 25%, 50%, 75%, 80%, 90%, 95%, 105%, 110% and
120% of the baseline scenario

bf0.25, bf0.50, bf0.75, bf0.8, bf0.9, bf1.1, bf1.2 The benthic nutrient flux was 80%, 90%, 110% and 120% of the baseline scenario

o0.25, o0.50, o0.75, o1.5, o2.0 The open boundary nutrient concentration was 25%, 50%, 75%, 150% and 200% of the
baseline scenario

nzp and nsf Predation of zooplankton (nzp) and suspension feeder (nsf) on phytoplankton was
switched off, respectively

Note: a: the fine and coarse grid is presented in Figure 1 with the average inner-bay grid size of 1.43 km and
1.74 km, respectively.

3. Sensitivity Experiments

3.1. Sensitivity of Main Water Quality Variables to Grid Resolution

3.1.1. Effect of Horizontal Resolution

Two sets of model grids using different resolutions were applied in order to compare their
performance and determine the optimal grid size. In the water quality simulation of 2010, both
simulations represented the seasonal variation of nutrients, TSS, DO and CHLA at three stations
located at the upper, middle and lower bay (Figures 1 and 3). Nitrogen, TSS and CHLA peaks appeared
to be associated with the high-flow period in spring, and the concentration/biomass decreased with
the distance from the northern end. Strong water-column and sediment respiration, as well as the
low solubility in summer lowered the oxygen level at both the surface and bottom, and the lack of
strong mixing ventilation contributed to the depletion of bottom oxygen at the upper and middle
bay. Hypoxic conditions at the sediment-water interface favored the release of regenerated ammonia
and phosphate, causing the “bump-ups” of their concentrations. The annual cycles of simulated
nutrients, TSS, DO and CHLA by both models are in line with what were previously observed in CB
(e.g., [5,29,35,44]).

However, there was discrepancy between them. For instance, the nitrate concentration in the
low-resolution model was higher than that of the high-resolution one at the upper-bay and mid-bay
stations, particularly in late spring and summer; the difference in phosphate concentration reached
around 0.003 mg/L at the mid-bay station in summer; TSS simulation was also impacted by the model
resolution at the upper and middle bay. It was found that the model performance of all water quality
variables was better in the fine-grid model, as revealed by higher correlation coefficients and lower
root mean squared errors, and that DIN and TSS were among the variables with a large deviation
between the two models (Figure 4 and Table 3). Given that model resolution impacted simulating
circulation [31], the discrepancy in these two variables with a strong axial gradient along the bay was
probably attributable to the along-bay transport processes, which was substantiated subsequently.
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Figure 3. Time series of observed (open dots) and simulated (black solid line, fine-grid results; red dash
line, coarse-grid results) water quality and phytoplankton state variables at three sampling sites in
Chesapeake Bay (Figure 1) in 2010: NH4 (ammonia), NO23 (nitrite and nitrate), PO4 (phosphate), TSS
(total suspended solids), DO (dissolved oxygen) and CHLA (chlorophyll-a).

Table 3. Model observation statistics with two sets of model grids in 2010.

Grid Variable n CC p RMSE

Fine

DIN 105 0.895 <0.001 0.141
DIP 105 0.410 <0.001 0.016
TSS 105 0.801 <0.001 2.209
DO 210 0.892 <0.001 1.525

CHLA 104 0.480 <0.001 7.516

Coarse

DIN 105 0.765 <0.001 0.259
DIP 105 0.400 <0.001 0.016
TSS 105 0.610 <0.001 3.686
DO 210 0.872 <0.001 1.700

CHLA 104 0.455 <0.001 7.548

Note: n: sample size; CC and p: correlation coefficient and its p-value; RMSE: root mean squared error.

Figure 4. Standardized difference of CC and RMSE in the coarse-grid model compared to the
fine-grid model. Standardized score are calculated as follows: ZCC = (CCcoarse − CCfine)/CCfine,
ZRMSE = (RMSEcoasrse − RMSEfine)/RMSEfine. CC and RMSE denote the correlation coefficient and
root mean squared error between the model simulation and the observation, respectively. The raw
data of CC and RMSE are shown in Table 3. The five variables are DIN (dissolved inorganic nitrogen,
including ammonia, nitrite and nitrate), DIP (dissolved inorganic phosphorus), TSS (total suspended
solids), DO (dissolved oxygen) and CHLA (chlorophyll-a).
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Thus, we calculated the freshwater delivery (Equation (7)) across transects at the upper, middle,
and lower bay, which, not influenced by the biological processes, represented the downstream transport
capacity of the riverine source at these portions of the estuary.

Q f v =
�

v
ΔS
S0

dA (7)

In the equation, v is the southward velocity, S0 is the density of ambient water, ΔS is the
density difference with the ambient water and A is the cross-sectional area. Time series of the
freshwater transport at the upper bay resembled that of nitrate and TSS (Figures 1, 3 and 5), which
supported our conclusion that circulation was responsible for improved water quality simulation in the
high-resolution model. During the relatively dry summer, the freshwater transport of the coarse-grid
model was higher across the upper-bay transect than the fine-grid model, but slightly lower across the
mid-bay transect (Figures 1 and 5). That is, more riverine nutrients and TSS were retained between
these two transects (e.g., the station CB4.3C), which further supported the relationship between
the physical transport and water quality simulation. In addition, the freshwater transport through
the lower-bay section calculated in the coarse-grid model fell short of that in the refined model
(Figures 1 and 5), and as a result, the nitrate and TSS, whose major sources were the upstream riverine
inputs, were lower at the lower-bay station CB6.4 in the low-resolution model (Figure 3).

Figure 5. Freshwater transport across the (a) upper-, (b) middle-, and (c) lower-Bay transects (Figure 1)
in the fine-gird (blue solid line) and coarse-grid (red dash line) models.

Therefore, the refinement of spatial resolution improved the simulation of axial material transport
along CB and the corresponding water quality variability. Using the high-resolution model, the CCs
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of DIN and TSS could increase by 10%–25%, and the RMSEs decrease by over 60% (Figure 4), so we
adopted the refined model to conduct the following sensitivity tests.

Even though not quantified, the previous findings [14,45] were similar pertaining to model
resolution. Namely, more realistic physical processes were resolved in higher-resolution model, which
will in turn improve the model performance of water quality variables in both freshwater and coastal
systems [14,46]. When a finer model grid is necessary, a structured-grid model usually requires
increasing the spatial resolution of the whole domain or applying the sometimes problematic model
nesting methods [24]. Thereby, the extensive application of high-resolution unstructured grid water
quality models is highly recommended given their flexibility in regional model refinement at relatively
low computational cost. However, many other factors should be taken into consideration when refining
the regional mesh size; for example, high resolution may lead to errors in sub-grid-scale processes,
alteration of parameterization [45] and declined computational efficiency (e.g., the computational time
decreased ~28% when the coarse grid was used).

3.1.2. Sensitivity to Vertical Resolution

We applied six, 11 and 21 sigma levels to examine the response of water quality variables to
vertical resolution. The sensitivity of vertical resolution was not as high as that of the horizontal
resolution, and DIP and CHLA are among the most sensitive variables in comparison with the
observational data. For example, at the productive mid-bay station CB4.3C, the model with six sigma
levels underestimated the phosphate concentration by up to 0.005 mg/L in summer (Figure 6a) and
overestimated the peak CHLA by up to 10 μg/L during the spring bloom compared to the model
with 11 sigma levels (Figure 6b); in contrast, the difference between models with 11 and 21 sigma levels
was not as significant (Figure 6c,d). The model with 21 sigma levels has the highest model-observation
agreement for DIP (CC = 0.642 and RMSE = 0.014), while the model performance of CHLA simulation
was highest in the 11-sigma-level model (CC = 0.480 and RMSE = 7.516).

Figure 6. Time series of observed (open dots) and simulated (black solid line, results of 11 sigma levels;
black dash line, results of six (a,b) or 21 (c,d) sigma levels) phosphate (a,c) and CHLA (b,d) at Station
CB4.3C in Chesapeake Bay (Figure 1) in 2010.
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The simulated hydrodynamic and water quality differences between the 11-sigma-level and
21-sigma-level model were quantified along and across the bay. The difference of salinity in the
highly-productive May was mostly within one; the DIN discrepancy was maximized on the western
flank and was mostly within 0.2 mg/L; phytoplankton biomass with 21 sigma levels exceeded that
of the 11-sigma-level model by up to 0.1 mg/L, especially in the lower bay and on the eastern
flank; the DO difference was around 0.4 mg/L throughout the water column (Figure 7). Thus,
the overall model results of 11 sigma levels were similar to that of 21 sigma levels, while the difference
from the six-sigma-level model was relatively large, which was also found in the CB hydrodynamic
simulation [31]. In addition, the computational time of the models with six and 21 sigma levels
was 54.6% and 194.0% that of the 11-sigma-level model, respectively. In consideration of the above
results and the relative computational efficiency, we applied 11 sigma levels for further analyses.

When determining the vertical resolution in water quality models, it is essential to consider,
but not be confined to, the overall depth, vertical circulation of the system, purpose of study and
the acceptable computational expense. For instance, ten sigma layers were sufficient to simulate the
seasonal nutrient cycle in Puget Sound whose maximum depth was over 200 m [21]. Conducting
sensitivity tests on sigma levels could help detect the potential problems of low resolution and save
the unnecessary computational time running high-resolution models.

Figure 7. Difference in simulated (a) along-bay and (b) across-bay salinity in May; (c) along-bay and
(d) across-bay dissolved inorganic nitrogen in May; (e) along-bay and (f) across-bay phytoplankton
biomass in May and (g) along-bay and (h) across-bay dissolved oxygen in July between the
11-sigma-level and 21-sigma-level models. The along-bay and across-bay transects are shown on
the rightmost panel.
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3.2. Uncertainties Associated with the Hydrodynamic Simulation

3.2.1. Sensitivity to Different Wind Datasets

Two main sources of winds over the study area are the NARR and observed data, which were
applied to several studies of DO simulation [12,15,47,48]. Scully [48] claimed that the usage of
measured wind displayed asymmetry in strength (strongest from the south and weakest from the
west) in summer. The wind rose diagrams from May–August in 2010 revealed that both winds showed
the aforementioned asymmetry, while the southerly wind was more frequent in the NARR simulation
(Figure 8). The model performance of DO simulation under the observed winds (CC = 0.823 and
RMSE = 1.957) was close, but inferior to that driven by the NARR winds (CC = 0.892 and RMSE = 1.525,
Table 3).

Figure 8. Wind rose plot in the hypoxia season (from May–August) in 2010: (a) spatially-averaged
NARR data; and (b) observation from National Data Buoy Center and National Centers for
Environmental Information.

At the upper- and mid-bay stations CB2.2 and CB4.3C, simulations forced by both winds exhibited
similar DO reproduction, except that the DO concentration under the observed winds was slightly
overestimated, particularly at the surface (Figure 9). In addition, the scenario under the observed
wind underestimated DO by 2–3 mg/L in spring and fall at CB4.3C (Figure 9d). In the scenario with
the mixing process driven by the observed winds and the reaeration process driven by the NARR
winds, DO time series at both stations were similar to that under the observed winds (Figure 9), which
indicated that the difference of two wind sources was primarily attributable to the mixing process
instead of the wind-driven reaeration. Namely, the lower vertical mixing due to less frequent southerly
winds accounted for the overestimation of surface DO in summer and the lower overall model skill of
DO simulation. Thus, we adopted the NARR wind data for the 10-year simulation and sensitivity tests.

Winds can exert a substantial control on the onset, development and elimination of summer
hypoxia in CB, and wind-driven lateral circulation and mixing may induce the ventilation of the bottom
waters [49]. In other systems, wind could modulate the DO advection by direct entrainment [17,18].
Increasing the spatial resolution of observed winds and reducing data gaps might improve the DO
simulation in water quality models.
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Figure 9. Time series of observed (open dots) and simulated (black solid line, results driven by the
NARR wind data; black dashed line, results driven by the observed wind data (Table 2); blue dashed
line, results using NARR wind-driven mixing and observed wind-driven reaeration) dissolved oxygen
at two sampling sites in Chesapeake Bay (Figure 1) in 2010: Station CB2.2 at (a) the surface and (b) the
bottom; Station CB4.3C at (a) the surface and (b) the bottom.

3.2.2. Sensitivity to Vertical Eddy Viscosity

Since FVCOM-ICM used the turbulence closure process from the hydrodynamic model, vertical
eddy viscosity was a key coupling parameter between hydrodynamic and water quality models [24].
In our sensitivity experiments, we adjusted the vertical eddy viscosity by altering the Prandtl number.
The baseline scenario was from the calibrated hydrodynamic model [31], and four other scenarios
showed roughly 25%, 50%, 200% and 400% of the eddy viscosity in the baseline case (Table 2 and
Figure 10a).

With enhanced mixing, the vertical DO difference in summer steadily declined at the inner bay,
indicating an enhanced vertical exchange of oxygen (Figure 10b). When turbulent mixing was reduced
from the baseline case, i.e., under the az1 and az2 scenarios (Table 2), the vertical difference was
more sensitive to eddy viscosity, as revealed by a larger DO difference, than the two other scenarios
(Figure 10b). Of all of the cases, the baseline scenario rendered the highest correlation with the observed
DO and lowest deviation (Figure 10d). Therefore, the appropriate representation of turbulent mixing
could improve the simulation of DO vertical exchange, as also suggested by Irby et al. [23].

Besides vertical ventilation of oxygen, the surface phytoplankton biomass was positively related
to the eddy viscosity in summer (Figure 10c), which implied that the algal growth was limited
by the amount of regenerated nutrients delivered to the surface. The nutrient cycling should be
largely influenced by the extent of turbulent mixing, and this finding was consistent with the field
study by Malone et al. [35]. Similarly to DO results, the baseline scenario exhibited the best model
performance of CHLA simulation; CHLA responded even more sensitively than DO in terms of CCs
and RMSEs (Figure 10e). According to previous studies, turbulence intensity and nutrient availability
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are dominant environmental factors controlling phytoplankton patchiness [50,51]; our results indicated
that simulation of eddy mixing in physically-complex estuaries like CB was crucial to modeling the
spatial heterogeneity of phytoplankton, especially during summer when most primary production was
supported by the remineralized nutrient. Adjusting mixing parameters with caution is recommended,
and field investigations of turbulent mixing in CB are necessary to validate the model performance,
as well as to decipher its interplay with phytoplankton distribution.

Figure 10. (a) The average eddy viscosity; (b) the surface-to-bottom difference of dissolved
oxygen in the hypoxia season (from May–August); (c) surface phytoplankton biomass in summer
(from June–August); CC and RMSE of (d) dissolved oxygen and (e) chlorophyll-a in 2010 in the
five scenarios of varying eddy viscosity (az1, az2, baseline, az3 and az4 in Table 2). CC and RMSE
denote the correlation coefficient and root mean squared error between the model simulation and the
observation, respectively.
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3.2.3. Sensitivity to Bottom Roughness Length Scale

Another uncertainty originating from the hydrodynamic simulation was the bottom stress, and
the input of the spatially-non-uniform bottom roughness length scale regulated the drag coefficient
and the bottom friction. Compared to the calibrated model [31], the bottom roughness length scale was
scaled to 25%, 50%, 200% and 300% to investigate its impacts on nutrient transport and DO variation
(Table 2).

Along the gradient of bottom roughness, the vertical eddy viscosity did not vary much among
these scenarios (Figure 11a). Moreover, the differences in CCs and RMSEs of DIN in these five
scenarios were below 0.005 and 0.004 (mg/L), respectively (Figure 11b). The minimal variation among
the nitrogen simulation from these scenarios indicated that bottom roughness was hardly a main
uncertainty source for nitrogen simulation. In contrast, the discrepancy in DO simulation was slightly
larger than that in DIN, and the range of differences in CCs and RMSEs among cases could exceed
0.01 and 0.07 (mg/L), respectively (Figure 11c). This phenomenon was likely related to the horizontal
oxygen exchange near the bottom since the vertical mixing was not prominently affected (Figure 11a).
The baseline case achieved the highest correlation with the DO observation and the lowest error, even
though it did not perform the best in DIN simulation (Figure 11b,c). Based on the model skills of
DIN and DO, the two variables responded relatively strongly to bottom roughness compared with
the others.

Figure 11. (a) The average eddy viscosity; CC and RMSE of (b) dissolved inorganic nitrogen and
(c) dissolved oxygen in 2010 in five scenarios of varying bottom roughness length scale (z01, z02,
baseline, z03 and z04 in Table 2). CC and RMSE denote the correlation coefficient and root mean
squared error between the model simulation and the observation, respectively.
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3.3. Uncertainties Associated with the Model Inputs

3.3.1. Sensitivity to Boundary Nutrient Loading

Boundary nutrient loading has been rated as an important driver in water quality models, and
the accuracy of nutrient loading from riverine, benthic and other sources in a water quality model
is fundamental to guide and advise the nutrient reduction plan [28]. It is essential to test how the
variations in nutrient loading act on the water quality modeling results in the modeling framework.
As many previous studies concentrated on the effect of nutrient loading on hypoxia in CB [3,4], we
placed an emphasis on the response of phytoplankton production to complement previous studies.

The riverine nitrogen, phosphorus and silicon loading were scaled at the same time by 25%, 50%,
75%, 80%, 90%, 95%, 105%, 110% and 120% in order to maintain the stoichiometry in nutrient sources
(Table 2), and the freshwater discharge was not adjusted to avoid changes in the physical environment
(e.g., stratification field). We examined the surface DIN concentration and phytoplankton biomass in
May, the period of peak spring bloom in 2010. With nutrient enrichment, the surface DIN concentration
and phytoplankton biomass displayed a near linear increase (Figure 12). Based on our estimation, the
5%, 10% and 20% variation in nutrient loading could result in 2.9%–3.4%, 5.9%–6.8% and 11.2%–14.0%
fluctuation in inner-bay nutrient concentration and phytoplankton biomass. In comparison, the benthic
nutrient loading from the sediment diagenesis sub-model had a less significant control on the nutrient
concentration and phytoplankton biomass in the water column, since up to 20% variation in benthic
nutrient inputs could cause only 2.4%–2.9% alteration in surface DIN concentration and 4.2%–5.0%
changes in surface phytoplankton biomass (Figure 12). Our model responded insensitively to the
nutrient concentration at the open boundary, where nutrients and phytoplankton are flushed out of the
model domain (Figure 1), since up to a 100% alteration in open boundary nutrient concentration led
to a negligible (0.7%–0.9%) decrease of inner-bay nutrient concentration and phytoplankton biomass
(Figure 12).

Figure 12. The relationship between the enlargement factor of riverine, benthic and open boundary
nutrient loading (see Table 2) and the (a) surface dissolved inorganic nitrogen concentration and
(b) phytoplankton biomass in May 2010.

Therefore, the riverine nutrient loading or nutrients from the watershed accounted for the largest
uncertainty in the water quality simulation among all of the loading sources. The little contribution
of open boundary loading was probably due to the low nutrient concentration on the continental
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shelf compared to in the estuary [52]. These results are similar to those in the CBEMP [53]. Thus,
the loading estimation in the watershed model was critical to the biogeochemical simulation in the
estuary, and the anthropogenic nutrient reduction in the CB watershed is the most effective way of
alleviating eutrophication in the water column.

3.3.2. Sensitivity of Predation Terms to Phytoplankton Simulation

There are two major predation sources of phytoplankton in the model, zooplankton and
suspension feeders (e.g., Corbicula fluminea, Rangia cuneata and Crassostrea virginica). We switched off
these two modules to examine their controls on the phytoplankton biomass. When the zooplankton
predation was eliminated, the surface phytoplankton biomass in May increased by 3.8%. When we
turned off the filtration on the benthos, the surface phytoplankton biomass in May increased by 1.6%.
That is, zooplankton predation on phytoplankton was more significant than suspension feeding;
however, neither of them could result in a large (>5%) biomass loss during the peak spring bloom
in CB, and their sensitivity was not as high as the nutrient loading. Extensive observation of the
suspension feeder density and zooplankton spatial distribution is still necessary because they could
exert a large influence on the spatial heterogeneity of algal distribution [45].

4. Model Calibration and Validation

4.1. A 10-Year (2003–2012) Model Simulation

To further validate the model settings, we ran the model in a 10-year (2003–2012) period and
evaluated the overall model performance using the CBP mooring data. During this period, modeled
DIN, DIP, DO, TSS and CHLA showed significant correlations with observational data (p < 0.001),
and their RMSEs were relatively small (Figure 13). Robson [54] reviewed that most reliable aquatic
water quality models could simulate nutrients and phytoplankton with CC of 0.632–0.775 and relative
error of ~40%. In comparison, our model showed even higher agreement of DIN (CC = 0.925) and
DO (CC = 0.922) with empirical data than the above criteria, while the correlations with observed
DIP (CC = 0.705) and TSS (CC = 0.684) were within the average range of typical water quality models
(Figure 13). However, the CHLA (CC = 0.477) simulated by our model tended to overestimate in
low-production periods and was below the criteria (Figure 13).

The desirable modeling confidence of DO and CHLA, two principal water quality criteria for
CB [28,55], for the purpose of water quality management was primarily as follows: CC, 0.707 for DO
and 0.447 for CHLA; standard deviation, 50% for DO and 300% for CHLA [56]. The RMSEs of both
DO and CHLA in our model, whose values were close to the corresponding standard deviation, were
less than these criteria; the corresponding correlation coefficients of DO and CHLA also exceeded
those in the criteria (Figure 13). Therefore, this modeling package generated reasonably well the
representation of the main water quality variables in the 10-year simulation, and the model skill
ensured the confidence in utilizing this model in assisting water quality management and studying
the complex biophysical interactions driving the CB biogeochemical cycles.

In terms of model calibration to the empirical data, another noteworthy fact is that this modeling
system exhibited the best performance in surface CHLA and the second best in bottom CHLA
among the five current complex eutrophication models for CB [23], although the simulation skill
of CHLA was not as good as other simulated variables in our model (Figure 13). In order to further
corroborate the spatial CHLA distribution and figure out the challenges underlying in modeling
phytoplankton, we then compared our simulated surface CHLA to that measured by remote sensing
in the following subsection.

47



J. Mar. Sci. Eng. 2016, 4, 52

Figure 13. Comparison between modeled and observed dissolved inorganic nitrogen (DIN) and
phosphorus (DIP), dissolved oxygen (DO), total suspended solids (TSS) and chlorophyll-a (CHLA)
from 2003–2012. CC and p denote the correlation coefficient and its p-value, and RMSE is the root mean
squared error.

4.2. Comparison of Simulated CHLA with Remote Sensing Images

During the spring bloom (usually peaking in May), the lower-bay and mid-bay areas in both
modeled and remote sensing images were characterized by a high CHLA concentration (Figure 14a,b),
in which diatoms dominated [6]. In a wet year (e.g., 2011), the magnitude and extent of the spring
bloom were greater than other years (Figure 14b). In summer, the entire phytoplankton biomass, with
dinoflagellates and cyanobacteria the dominant groups [6], became lower than that in spring, and the
chlorophyll maxima were generally shifted northwards due to reduced stream flow (Figure 14c) or
even disappeared for lack of nutrient input (Figure 14d). These results were consistent with many
previous field observations in CB [5,6,10,26,57,58], which suggested that our model followed the
general seasonal and inter-annual patterns of phytoplankton distribution.
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Figure 14. Remote sensing and simulated surface chlorophyll-a of Chesapeake Bay on: (a) 9 May 2005;
(b) 6 May 2011; (c) 11 July 2005; (d) 7 July 2006; (e) 26 July 2011; and (f) 12 August 2012. Remote sensing
data source: Chesapeake Bay Remote Sensing Program.

Except for the major seasonal pattern, phytoplankton usually appeared in patches (Figure 14a,e,f).
These “hot spots” of chlorophyll generally included the eastern embayment (Figure 14a,f), littoral
zones (Figure 14e), areas near the Patapsco River (Figures 1 and 14f) and specific mid-bay regions
(Figure 14e). Spatial heterogeneity of phytoplankton, probably regulated by the regional nutrient
enrichment, grazing, advection, stratification and the balance of various biophysical mechanisms,
was a phenomenon frequently observed, but far from well understood [45,59,60]. Our model was
capable of capturing most of the realistic CHLA patches, but might slightly deviate in location, extent
or magnitude (Figure 14), which partially accounted for the low model skills of CHLA relative to
other variables.

The difficulty in accurately simulating the localized and sporadic phytoplankton bloom was one
major source of error in CHLA simulation, and it was also noticed in other models [45]. One possible
explanation for the inaccuracy in primary production simulation was that phytoplankton growth,
an unsteady state, accumulated the errors from processes, such as hydrodynamic conditions, nutrient
transport, light attenuation, interspecific competition and predator-prey interaction [60]. Pertaining to
our modeling effort, the potential improvement in CHLA simulation desired both field observation
and model development from at least the following aspects: investigating vertical migration of
phytoplankton, formulating the heterotrophic capability of dinoflagellates, considering sufficient
phytoplankton groups and quantifying the grazing pressure by herbivores besides zooplankton.
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5. Conclusions

A three-dimensional unstructured grid biophysical model (FVCOM-ICM) was applied to CB and
its adjacent coastal ocean to investigate the biophysical controls on the main water quality variables.
In the process of model calibration, a series of sensitivity experiments was conducted on major sources
of uncertainties. The model showed reasonable agreement with observed water quality variables, such
as DIN, DIP, TSS, DO and CHLA during a 10-year simulation period (2003–2012), and the simulated
surface CHLA could represent the seasonal and spatial distribution patterns revealed by remote
sensing images. The main conclusions based on the sensitivity tests are summarized below.

(1) Grid refinement improved the model performance of most variables, particularly for DIN and
TSS. The finer grid favored modeling the realistic material transport from the Susquehanna
River to the bay mouth, especially in the mid-bay portion. Eleven sigma levels were applied in
consideration of the balance between computational accuracy and efficiency. The unstructured
grid-based water quality models made it feasible to reach high resolution in biologically-active
regions (e.g., littoral zones and the main channel) without significantly adding to the overall
computational burden.

(2) The effects of wind source on DO simulation were compared between the NARR modeled and
observed winds. Both winds represented directional asymmetry in summer (southerly winds
strongest and westerly weakest), while the observed winds showed lower frequency in southerly
winds. The DO simulation forced by these two wind sources had good agreement with empirical
data, except that the surface DO was overestimated under the observed winds. Due to stronger
mixing from the more frequent southerly winds, the NARR winds were preferred in our water
quality model.

(3) Turbulent mixing and bottom stress were two potential sources of uncertainties in water quality
simulation. Appropriate representation of vertical eddy viscosity was propitious to model the
vertical oxygen ventilation and the new primary production fueled with recycled nutrients.
Bottom friction exerted a moderate impact only on the horizontal oxygen mixing. In terms of
water quality simulation, the vertical mixing process was more influential than bottom roughness.

(4) Uncertainties in the riverine source could exert a relatively larger influence on the inner-bay
nutrient concentration and phytoplankton biomass during the spring bloom than those in benthic
nutrient flux and open boundary loading. Zooplankton predation on phytoplankton was more
significant than that of the filtration of suspension feeders.

As a simplification of the real-world systems, all water quality models rely on assumptions and
have limitations, including ours. For instance, in addition to those mentioned in Section 4.2, we did not
consider the tidal marshes surrounding CB. However, our calibration efforts and sensitivity tests have
displayed the feasibility and reliability of such a holistic modeling approach in simulating the main
environmental indicators in CB and discerning complex internal biophysical interactions on the lower
estuarine-coastal food web. Our biophysical approach will be further utilized to decipher the potential
response of water quality cycles in the context of climate change and investigate the estuarine-shelf
nutrient exchange.
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Abstract: Tsunamis in shallow water zones lead to sea water level rise and fall, strong currents, forces
(drag, impact, uplift, etc.), morphological changes (erosion, deposition), dynamic water pressure, as
well as resonant oscillations. As a result, ground materials under the tsunami motion move, and
scour/erosion/deposition patterns can be observed in the region. Ports and harbors as enclosed
basins are the main examples of coastal structures that usually encounter natural hazards with small
or huge damaging scales. Morphological changes are one of the important phenomena in the basins
under short and long wave attack. Tsunamis as long waves lead to sedimentation in the basins, and
therefore, in this study, the relation to the current pattern is noticed to determine sedimentation
modes. Accordingly, we present a methodology based on the computation of the instantaneous
Rouse number to investigate the tsunami motion and to calculate the respective sedimentation. This
study aims to investigate the effects of the incident wave period on an L-type harbor sedimentation
with a flat bathymetry using a numerical tool, NAMI DANCE, which solves non-linear shallow water
equations. The results showed that the corner points on the bending part of the basin are always the
critical points where water surface elevation and current velocity amplify in the exterior and interior
corners, respectively.

Keywords: numerical modeling; amplification; L-type basin; Rouse number

1. Introduction

Ocean waves cannot generate enough energy to affect open coasts by resonance amplification, yet
they can cause hazardous oscillations as they enter the enclosed or semi-enclosed basins and harbors.
Tsunamis are known to be a very destructive phenomenon in shallow water, leading to sea water
level rise and fall, strong currents, scour and morphological changes (erosion, deposition), resonant
oscillations and seiches [1,2]. Wave radiation via the semi-enclosed basins is an important factor in
decaying energy. Nonetheless, making the harbor entrance narrower results in the amplification of
arriving wave. In fact, both harbor resonance period and harbor damage parameters can be related by
harbor structures’ design determining the harbor geometry [3]. Generally, wave disturbance is a major
factor in harbor design assumptions [4]. Breakwaters are capable of protecting the harbors against
short waves [5], but the ability of long waves (with 25–300-s periods) in entering the harbors makes it
often beyond control and causes oscillation problems [6–8]. Periods of oscillations can be in the range
of a few seconds to a few minutes depending on the harbor geometry [9,10]. Several regular-shaped
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basins have been simulated to determine the first and the second mode of free oscillations of the
basins, such as the L-type basin in [11]. The current study investigates the effect of wave period on
the estimation of tsunami evolution, propagation and amplification, as well as tsunami currents and
morphology changes in L-type basins with flat bathymetry. Here, a methodology is presented based on
the computation of the instantaneous Rouse number [12] during tsunami simulation to investigate the
tsunami motion and to determine the mode of the sediment transport. This is by computing the spatial
and temporal change of the Rouse number under tsunami inundation according to the approach given
in [13]. Accordingly, the numerical model NAMI DANCE [14] is employed to study the oscillations
and amplification of waves and currents, as well as sediment motions in a harbor of the L shape with a
flat bathymetry. This numerical tool has been developed by the C++ programming language using
the leap-frog scheme numerical solution procedure. It utilizes the finite difference computational
method to solve linear and nonlinear forms of depth-averaged shallow water equations in long wave
problems. Since some natural harbors can be in the L shape after smoothing, here we investigate the
current amplification and sediment movement in L-type basins for several free oscillation periods. It is
observed that the corner points in the bending part of L-type basins are the critical points where the
wave amplitude and current velocity amplify in basin free oscillation wave periods. Furthermore, the
exposed sediment motion can be categorized according to the Rouse number values.

2. Materials and Methods

2.1. Rouse Number

The sediment motion can be observed by monitoring the spatial and temporal changes of the
Rouse number. The Rouse number is a dimensionless number for classifying the modes of sediment
transport [13]. It is defined as the ratio of particle settling velocity to the shear velocity:

R0 =
ws

βκu∗
(1)

where u∗ is the shear velocity, β denotes the ratio of sediment diffusion to momentum diffusion
coefficients (approximately equal to 1), κ is the von Karman constant (equal to 0.4) and settling velocity
ws is given by [13]:

ws =
8ν

d

(√
1 +

(s − 1)gd3

72ν2 − 1

)
(2)

where s is the density of sand in water, i.e., the ratio of sediment density to water density (ρs/ρ), d
represents the mean grain size, g is gravitational acceleration, ν denotes kinematic viscosity and u∗ is
the shear velocity and can be written according to Equation (3) [13].

u∗ = u

√
f
8

(3)

where f is the Darcy friction factor in the range of (0.006–0.039), and it is generally assumed to be
equal to 0.01 in tsunami cases [13]. The mean grain size (d) for the entire domain is assumed 0.3 mm,
which is a close value to the real cases (i.e., Belek area [15,16]). The values for the constants required
for settling velocity and shear velocity calculations are listed in Table 1.

Table 1. Typical constants.

ν, Kinematic Viscosity 1.0 × 10−6 m2/s
g, Gravitational Acceleration 9.81 m/s2

ρ, Density of Water 1025 kg/m3

ρs, Density of Sediment Particles 2650 kg/m3
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Modes of the sediment transport can be determined according to the Rouse number values.
Sediment transport modes are in the form of bed load, suspended load and wash load (Table 2). Rouse
number values greater than 2.5 represent the bed load form of sediment motion, while a value less
than 0.8 is the mode of wash load sediment motion fully supported by the flow. Large values of the
Rouse number indicate slower sediment motion and less severe erosion or deposition. On the other
hand, smaller values of the Rouse number show more severe erosion in the topography.

Table 2. Modes of transport according to the Rouse number [13].

Mode of Transport Rouse Number

Initiation of Motion (Deposition) R0 > 7
Bed Load 2.5 < R0 < 7.5
Suspended Load: (50% Suspended), Density of Water 1.2 < R0 < 2.5
Suspended Load: (100% Suspended) 0.8 < R0 < 1.2
Wash Load R0 < 0.8

2.2. Numerical Model

The effect of wave period on tsunami-induced sedimentation in the L-type basins is investigated
using NAMI DANCE code. The governing equations of NAMI DANCE are the nonlinear form of
shallow water equations. The schematic form of the basin in the simulations and 10 selected gauge
points is illustrated in Figure 1. Depicted in Figure 1a are the metric dimensions of the basin, while
Figure 1b shows the dimensions in the geographical outline (longitude-latitude) used in NAMI DANCE
simulations. Initially, 100 gauge points are selected out of which 10 points are presented here. The
bathymetry is flat, and the water depth is 20 m. LA in Figure 1a is the vertical dimension, and LB is
the horizontal dimension of the basin. In half of the simulations, LA and LB are both used as 1000 m
and another half of LA is 800 m (by placing the input source 200 m from the border), while LB is kept
constant as 1000 m. The bending side is used as 400 m, and the grid size (Δx) and time step (Δt) are
selected as 2 m and 0.005 s, respectively in all simulations. The input waves are in the form of several
sinusoidal functions. They are sinusoidal crest lines entering parallel to the horizontal side (B side)
from the basin entrance (400 m opening in the A side). The input waves are considered to have a 1-m
amplitude with several random periods (16 s, 46 s, 90 s, 146 s and 328 s). Among those, 328 s, 146 s
and 90 s are the second, fourth and seventh modes of the basin free oscillations [17], respectively. The
differences of harbor modes for LA/LB = 0.8 and LA/LB = 1 are negligible (less than 5 s), and hence,
they are only presented for the L-type basin with LA/LB = 1 dimensions in [17]. The boundaries are
set with a 20-m wall; therefore, they perform as reflective, where their effects are considered in the
next waves during the simulations after the first wave reaches the boundaries. It is worth mentioning
that all simulations are performed for 40 min.

(a) (b)

Figure 1. L-type basin used in the simulations. (a) LA is the vertical dimension and LB the horizontal
dimension of the L-type basin. (b) Dimensions are in the geographical outline. Red stars represent the
gauge points.
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3. Results

3.1. Free Surface Elevation

The spatial distribution of maximum water elevation, maximum current velocity and the
minimum Rouse number are computed at each grid in the domain during the 40-min simulations.
Shown in Figure 2 is the maximum water surface elevation for a sinusoidal line crest long wave
pertaining to a 1-m wave amplitude LA/LB = 0.8 in the left column and LA/LB = 1 in the right column.
The time history of the free surface elevations in two corner points of the basin, Gauge 57 (g57, interior
corner) and Gauge 63 (g63, exterior corner), is also shown for the first 30 min in Figure 3.

The results of the maximum water surface elevation in Figure 2 show that the corner points on
the bending part of the basin are always the critical points where water surface elevation amplifies in
the exterior corner (Gauge 63). Therefore, the time series of free surface elevations are also represented
in Figure 3 to evaluate their behavior during the simulation. The seventh mode of the basin free
oscillation period (90 s) is a very critical wave period, and there are approximate wave and current
amplifications in the entire basin.

(a) T = 16 s (b) T = 16 s

(c) T = 46 s (d) T = 46 s

Figure 2. Cont.
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(e) T = 90 s (f) T = 90 s

(g) T = 146 s (h) T = 146 s

(i) T = 328 s (j) T = 328 s

Figure 2. The spatial distribution of the maximum water surface elevation (m) computed by the
simulation of the sinusoidal line crest long wave with a 1-m wave amplitude with T = 16 s, T = 46 s,
T = 90 s, T = 146 s, T = 328 s for LA/LB = 0.8 in the left column and LA/LB = 1 in the right column.

3.2. Current Velocity

The maximum current velocities for the sinusoidal line crest long wave are shown in Figure 4.
The results pertain to a 1-m wave amplitude where the conditions with LA/LB = 0.8 and LA/LB = 1
are depicted in the left and the right columns, respectively. The time history of the current velocity in
two corner points of the basin, Gauge 57 and Gauge 63, are shown in Figure 5.
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(a)

(c)

(b)

(d)

Figure 3. Time history of water surface elevation computed by the simulation of the sinusoidal line
crest long wave with a 1-m wave amplitude with T = 16 s, T = 46 s, T = 90 s, T = 146 s, T = 328 s for
LA/LB = 1 (left column), for LA/LB = 0.8 (right column) in Gauge 57 (a,b) and Gauge 63 (c,d).

(a) T = 16 s (b) T = 16 s

(c) T = 46 s (d) T = 46 s

Figure 4. Cont.
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(e) T = 90 s (f) T = 90 s

(g) T = 146 s (h) T = 146 s

(i) T = 328 s (j) T = 328 s

Figure 4. The spatial distribution of the maximum current velocity (m/s) computed by the simulation
of the sinusoidal line crest long wave with a 1-m wave amplitude with T = 16 s, T = 46 s, T = 90 s,
T = 146 s, T = 328 s for LA/LB = 0.8 in the left column and LA/LB = 1 in the right column (a–j).

The results presented in Figure 4 demonstrate that the corner points on the bending part of the
basin are always the critical points where current velocity amplifies in the interior corners (Gauge 57).
Therefore, similar to the previous case, the time series of the current velocity are also represented in
Figure 5 to see their behavior during the simulation. Briefly, Gauge 63 in the exterior corner of the
L-type basin is the location in which the water surface elevation amplifies extremely, but there is no
current amplification. Furthermore, the current velocity amplifies extremely in Gauge 57 in the interior
corner of the L-type basin, however with no wave amplification.

Comparing Figure 2 and Figure 4, it can be inferred that in shorter wave periods, the vertical
side of the basin (A side) is more exposed to the wave and current amplifications, but in larger wave
periods, the maximum values occur in the horizontal side of the L (B side).
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(a)

(c)

(b)

(d)

Figure 5. Time history of the current velocity computed by the simulation of the sinusoidal line crest
long wave with a 1-m wave amplitude with T = 16 s, T = 46 s, T = 90 s, T = 146 s, T = 328 s for LA/LB = 1
(left column), for LA/LB = 0.8 (right column) in Gauge 57 (a,b) and Gauge 63 (c,d).

3.3. Rouse Number

The minimum Rouse number distribution, as well as the maximum velocity vectors are shown
in Figure 6. According to the range of the Rouse number values, the sediment motion in the exterior
corner (Gauge 63) is in bed load mode for larger wave periods (T 146 s and 328 s). In the end side of
the basin, sediments move in the form of bed load in larger wave periods, as well. This indicates that
these areas in the basin have high potential to be exposed by the material deposition.

(a) T = 16 s (b) T = 16 s

Figure 6. Cont.
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(c) T = 46 s (d) T = 46 s

(e) T = 90 s (f) T = 90 s

(g) T = 146 s (h) T = 146 s

(i) T = 328 s (j) T = 328 s

Figure 6. The spatial distribution of the minimum Rouse number computed by the simulation of the
sinusoidal line crest long wave with a 1-m wave amplitude with T = 16 s, T = 46 s, T = 90 s, T = 146 s,
T = 328 s for LA/LB = 0.8 in the left column and LA/LB = 1 in the right column (a–j), respectively. The
maximum velocity vectors are also shown for each case.

4. Discussion

The behavior of an L-type basin with a flat depth is studied for wave and current amplification.
Furthermore, the sediment motion as a morphological change pattern is investigated via 10 selected
gauge points. The results of the maximum water surface elevation, maximum current velocity and
minimum Rouse number show that the corner points on the bending side of the basin are always
the critical points where water surface elevation and current velocity amplify in the exterior corner
point (Gauge 57) and interior corner point (Gauge 63), respectively. Therefore, the time series of free
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surface elevation and current velocity are also examined to see their behavior during the simulation.
According to the time history results of the water surface elevation and current velocity, it is evident
that when the vertical side is shorter (LA/LB = 0.8), the amplification magnitude of the free surface
elevation and current velocity in the interior corner point of the basin (Gauge 57) is larger than the
case with the longer side (LA/LB = 1); however, the opposite holds for the exterior corner point
(Gauge 63). Besides, the simulation results show that in the same L-type basin, in shorter wave periods,
the wave and current amplifications mostly occur in the vertical side of the basin (A side), where
the input source wave begins to propagate. Nevertheless, in larger wave periods, the amplifications
take place in the horizontal side of the L-type basin (B side). Therefore, we can conclude that the
dimensions of the L-type basin do not affect the occurrence region of the critical points for maximum
water surface elevation and maximum current velocity. In all gauge points (except corner points), the
wave and current amplify simultaneously if the wave period meets the free oscillation period in the
basin. However, it is noticeable that in the interior (smaller) side of L-type basins, the amplification
is higher than the exterior (larger) side of it. Furthermore, large periods affect the end parts of the
basin more than the smaller wave periods. This phenomenon is more obvious in wave amplification.
Comparing the maximum current velocity results with the minimum Rouse number results, one can
conclude that the pattern of sediment motion in the mentioned two critical corner points and in the
whole basin depends on both the current pattern and magnitude. In large wave periods, the sediment
motion in the exterior corner (Gauge 63) is often in the bed load form, while in the interior corner
(Gauge 57) in the wash load form. This indicates that, in higher periods, the interior and exterior
corners can be exposed to the sediment erosion and deposition, respectively. However, sediment
motion in long wave conditions needs further analysis in closed basins, where it becomes a prominent
problem for harbors and ports. Further studies on sediment motion seem necessary to determine
the performance and validity of NLSWEwhen the volume of the transmitted sediments needs to be
measured under the current behavior of the long waves. Furthermore, more investigations should
be performed to analyze the behavior of L-type basins with varying depths and then applied to real
harbors of this type.
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Abstract: As hurricanes continue to threaten coastal communities, accurate storm surge forecasting
remains a global priority. Achieving a reliable storm surge prediction necessitates accurate
hurricane intensity and wind field information. The wind field must be converted to wind stress,
which represents the air-sea momentum flux component required in storm surge and other oceanic
models. This conversion requires a multiplicative drag coefficient for the air density and wind speed
to represent the air-sea momentum exchange at a given location. Air density is a known parameter
and wind speed is a forecasted variable, whereas the drag coefficient is calculated using an empirical
correlation. The correlation’s accuracy has brewed a controversy of its own for more than half a
century. This review paper examines the lineage of drag coefficient correlations and their acceptance
among scientists.

Keywords: drag coefficient; wind stress; storm surge; estuarine and coastal modeling; hydrodynamic
modeling; wave modeling; air-sea interaction; air-sea momentum flux; hurricane intensity;
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1. Introduction

Hurricanes, also referred to as tropical cyclones or typhoons, transfer vast amounts of heat from
tropical areas to cooler climates, while bringing rain to dry lands, to maintain global atmospheric
balance [1–7]. Along the way, they can be exceedingly destructive, and at times turn into very
expensive natural disasters. In many unfortunate cases, fatalities have occurred through storm surges
and flooding that follow the hurricane’s landfall. In 1970, a cyclone in the Bay of Bengal claimed
approximately 300,000 lives [8–10]. In 2005, Hurricane Katrina in the Gulf of Mexico claimed an
estimated 1833 lives [11,12] and cost over $100 billion in damages [13–16]. The magnitude of these
catastrophes is driven by hurricane wind, which serves a vital role in the development and behavior of
associated storm surge and wave propagation. As evidence points to a future of more intense storms
due to an increasing sea surface temperature [4,17–20], the need for a high-performing forecasting
model is now a global priority. Hurricane track forecasting has improved significantly over the years,
but forecasting hurricane intensity remains fraught with uncertainty [21].

Hurricane wind interacts with the ocean to create air-sea momentum fluxes or wind stress.
This wind stress drives oceanic circulation and serves as a vital surface forcing for waves and
storm surges, which lead to flooding once a hurricane makes landfall [22–27]. The momentum
transfer between the atmosphere and sea interface is described as the air–sea momentum exchange.
Modeling reliable surface wave fields and oceanic circulation requires an accurate estimate of the
momentum exchange for wind stress formulation [26,28].
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Since 1916, wind stress has traditionally been calculated from the product of air density, a drag
coefficient, and the quantity wind speed squared [29]. Unlike wind density and speed, which are
measurable quantities, the drag coefficient must be approximated as a function of speed, offering ample
room for flexibility. This flexibility has baffled scientists since its inception, stimulating decades of
debate [24,30–32]. Since hurricane wind data was limited in earlier decades due to insufficient
technology [33], investigators were often forced to extrapolate drag coefficients from lower wind
speeds to higher wind speeds, typically from 25 m/s to extreme high winds [24,25]. As technology
progressed, data eventually revealed a significant difference in the drag coefficients between low
and high wind speeds. Observations indicated a reduced drag coefficient for wind speeds above
33 m/s [26]. Yet, some prediction models to-date still utilize the outdated correlations [28,34–36],
while others have incorporated ad hoc modifications, such as capping [37].

This review study chronologically explores the evolution of various drag coefficient correlations.
It provides their derivations and unravels historic origins rarely discussed in open literature.
Drag coefficient correlations from 1959 to 2015 are examined. In addition, the breakthrough of
dropwindsondes in the late 1990s is examined along with its effect on the drag coefficient.

2. Historical Theory: Early Wind Stress Formulations (1687–1955)

2.1. Newton (1687)–Bermoulli, d’Alembert, Euler, Navier (1700s)–Cauchy, Poisson, Saint-Venant,
Stokes (1800s)–Prandtl (1904)

Wind stress signifies the shear stress exerted by the wind on the surface of the earth and ocean.
The concept of fluid flow and shear stress was first postulated by Sir Isaac Newton in 1687 [38].
In his second book of the Principia, in Section IX, “The circular motion of fluids”, he published an
extraordinary hypothesis in Latin. The hypothesis was translated into English by Andrew Motte
in 1729 as, “The resistance arising from the want of lubricity in the parts of a fluid, is, other things
being equal, proportional to the velocity with which the parts of the fluid are separated from
one other.” Here, the resistance is the shear stress (τ), the lubricity in the parts of a fluid is the
viscosity, (μ), and the velocity with which the parts of the fluid are separated from one another is the
velocity gradient

(
du
dy

)
[39]. After Newton, the Swiss mathematician and physicist Daniel Bernouilli

published his famous work Hydrodynamica in 1738 about the conservation of energy [40]. In 1752,
French mathematician Jean le Rond d’Alembert proved that for incompressible and inviscid potential
flow, the drag force is zero on a body moving with a constant velocity relative to the fluid [41]. In 1757,
the famous Swiss mathematician Leonhard Euler published an important set of equations for inviscid
flow called the Euler equations [42]. To account for viscosity, the equations of motion were developed
independently by four Frenchmen—Navier in 1822, Cauchy in 1823, Poisson in 1829, and Saint-Venant
in 1837, and one Irishman—Stokes in 1845. The well-known Navier-Stokes equations became a
universal basis for fluid mechanics analysis [43]. In August 1904, Ludwig Prandtl, a 29-year-old
professor from the Technische Hochschule in Hanover, Germany, gave a ten minute presentation [38],
introducing the boundary layer theory to explain the flow of a slightly viscous fluid near a solid
surface. He showed that the flow past a body can be divided into two regions: a very thin layer, where
the viscosity is important, and the remaining region outside this layer, where the viscosity can be
neglected. This theory turned out to be exceptionally useful [44,45]. The skin-friction drag force next
to the surface negated previous beliefs that viscosity in water and air was negligible [46]. He also
introduced the shear (friction) velocity to explain the boundary layer phenomena [45,47]:

U∗ =
√

τb
ρ

(1)

where U∗ is the shear velocity, τb, is the shear stress at the boundary layer, and ρ is the air density.
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2.2. Ekman (1905)

It is worth mentioning that while studying the slope of the Baltic sea during a storm in 1872,
Ekman produced a relation that is strikingly similar to the traditional wind stress formula developed
a decade later (presented in the next sub-section). Around 1905, he combined his results with the
field measurements of Colding (1876) and obtained the following formula for wind stress at the water
surface [48,49]:

τb = 2.6 × 10−3ρW2 (2)

where W and ρ are wind the wind speed and density, respectively.

2.3. Taylor (1915)

After wind observations conducted in 1915, British physicist G.I. Taylor theorized the presence of
a nondimensional skin friction coefficient to characterize the drag exerted from a solid surface onto a
passing flow [29]. He proposed the following equation to depict this skin friction on the earth’s surface:

τb = ρCU2
s (3a)

where Us is the velocity near the surface and C is a constant skin friction coefficient with an approximate
value between 0.002 and 0.003 for the ground at Salisbury Plain, where the wind observations were
made [29,50]. These approximations match Ekman’s formula, given as Equation (2).

To resolve the disparity between field and laboratory results, the surface wind stress formula
eventually evolved to be [51]:

τ = ρCdU2 (3b)

where τ is wind stress, Cd is the drag coefficient, and U is the mean wind speed most often denoted as
U10 for the neutral-stability wind speed at 10 m height [52]. This equation became the general practice
for estimating the interfacial stress with a wind-speed dependent drag coefficient [53]. By comparing
Equations (1) and (3b), one can deduce

U2∗ = CdU2
10 (4)

Last of all, Taylor also introduced the mixing length concept [54], though Prandtl is traditionally
credited for it since he fully used the concept.

2.4. Prandtl (1925)

By 1925, Prandtl merged theory and experimental data, which previously showed great
discrepancies [55]. One such achievement is the mixing length model, which resulted from his
attempt to convey eddy viscosity, previously introduced by Boussinesq, in terms of flow conditions.
The model theorized turbulent flow by accounting for the variability of turbulent mixing [56,57].
In terms of the mixing length, l, he is translated as stating it “may be considered as the diameter of
the masses of fluid moving as a whole in each individual case; or again, as the distance traversed
by a mass of this type before it becomes blended in with neighboring masses. . . ” and this is “only a
rough approximation” [58–61]. In simple terms, it is the distance a fluid element or eddy retains its
identity as it strays from the mean streamline. This concept led to Prandtl’s mixing length formula for
turbulent shear stress [62],

τ = ρl2
∣∣∣∣dU

dz

∣∣∣∣ dU
dz

(5)

where U and z are the mean velocity and distance from the wall, respectively. The Mixing Length
Theory became a successful method for calculating turbulent flow, leading to one of the greatest
oceanographic applications [49].
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2.5. Von Kármán (1930) and Prandtl (1932)

Five years later, Prandtl’s doctoral student from the University of Göttingen in Germany,
Theodore von Kármán, studied the behavior of turbulence close to a boundary, or wall.
Prandtl assumed that l is proportional to the distance, z, (l ∝ z), such that

l = kz (6)

where k is a constant [62–65]. This simple proportionality suggests that turbulent fluctuations must
vanish at z = 0, making l = 0. Inversely, l must increase with z [64]. Substituting Equations (1) and (6)
into Equation (5) yields

dU
dz

=
U∗
k

1
z

(7)

Integrating Equation (7) once with respect to z reduces to the following:

U (z) =
U∗
k

ln (z) + C (8)

When solved, Equation (8) results into the von Kármán-Prandtl logarithmic velocity profile law
for a neutrally stratified atmosphere [65],

U =
U∗
k

ln
(

z
z0

)
(9)

where z0 is the surface roughness length. Von Kármán published Equation (9) as the Law of the Wall
in 1930 [66], while Prandtl published it in 1932 [67]. Laboratory studies have since found k to be
between 0.40 and 0.41, and it is often referred to as the von Kármán constant.

For neutral atmospheric stability [68], this equation became the usual law for wind
profiles, which suggests that wind speed increases logarithmically with height [69,70]. From
Equations (4) and (9), a relationship of z0 and Cd can be derived as

kC− 1
2

d = ln
(

z10

z0

)
(10)

2.6. Charnock (1955)

In 1955, Charnock exercised Equation (9) while conducting a laboratory experiment over a
1.6-km × 1-km reservoir [69]. He used anemometers to measure the mean wind speed in the lowest
8 m over the reservoir. Wind profiles were created using U∗

k as slope and z0 as the intercept from
Equation (9) for comparison with profiles from other researchers. The comparisons resulted in a better
agreement than expected and confirmed z0’s dependence on U∗. He characterized their relationship
using the following equation:

α =
gz0

U2∗
(11)

where α is the proportionality constant and g is gravitational acceleration. Charnock originally
proposed 0.012 as the value for α.

Charnock’s discovery of the proportionality constant became a turning point in wind stress
dialogue. The drag coefficient, Cd, can be obtained using Equations (4), (10), and (11). If z0 is
mainly dependent on U∗ and wind velocity follows a logarithmic profile, then the drag coefficient
must also increase with the wind velocity. Charnock’s constant has long been used as a basis for
many forthcoming studies. However, the proportionality constant does not account for the sea state,
which may refer to wind wave fields or swell systems [71], limiting its accuracy and usability [68,72,73].
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3. Historical Correlations: Early Drag Coefficient Formulations (1959–1997)

3.1. Wilson (1959, 1960)

During a severe storm in the northern Atlantic Ocean of 15–18 December 1959, numerous weather
ships reported very high seas [51]. The threat of storm tides developing in the New York Bay
from hurricanes moving through the Atlantic Ocean stimulated an urgent need for a dependable
surface wind stress value. In return, investigators hoped to predict such hurricane storm tides.
Wilson summarized 47 previous studies as having the following 10-m neutral values for the drag
coefficient, C10, and wind speed [51,73]:

C10 × 103 =

{
1.49, 1 m

s < U10 < 10 m
s ,

2.37, U10 > 10 m
s .

(12)

Wilson denoted wind speeds above 10 m/s as high winds. While both, laboratory and field studies,
were considered, this era depended on limited data at hurricane wind speeds and premature technology.
Meteorological observations for remote and inaccessible ocean areas were simply nonexistent [33].

3.2. Wu (1967)

In 1967, Wu collected 12 laboratory and 30 oceanic observations, concluding that the drag
coefficient reached a saturated value and remained constant for wind speeds greater than 15 m/s [73].
This claim supported the speculation that waves cannot grow forever with wind velocity, as Charnock’s
relation implies. The following formulae were his original proposed methods for finding the
drag coefficient:

C10 × 103 =

⎧⎨⎩ 0.5 × U
1
2
10, 1 m

s < U10 < 15 m
s ,

2.6, U10 > 15 m
s .

(13)

This parameterization leaves a noticeable gap at U10 = 15 m/s. For U10 = 14.9 m/s,
C10 × 103 = 1.9. For U10 = 15.1 m/s, C10 × 103 = 2.6. Wu attributes this discontinuity to the
intersection of wind velocity and phase velocity. He states that for wind velocities below 15 m/s,
waves pull the air mass. Conversely, the air mass pushes waves for wind velocities above 15 m/s.
He noted U10 = 15 m/s as the critical wind velocity.

Wu would later alter his perspective of a constant drag coefficient at high winds, but this early
work displays significance as it is one of the earliest published studies to doubt the idea of an increasing
drag coefficient by proposing a saturated drag coefficient for strong winds. Of course, merely increasing
critical wind speeds from 10 m/s to 15 m/s does not account for even the weakest Category I hurricane,
but like Wilson, Wu was forced to rely on narrow datasets.

3.3. Garratt (1967)

A decade later, Garratt addressed the following four major methods used to measure wind
stress: surface water tilting, geostrophic flow departure, wind profile, and eddy correlation
(Reynolds flux) [50]. He explained each technique and included their individual limitations. He then
compiled data from 1967 to 1975 (Dataset 1), which were collected using the wind profile and
eddy correlation methods. Wind speeds varied from 2 m/s to 21 m/s. Additionally, he assembled
hurricane data from 1957 to 1975 (Dataset 2), which had been inferred using the geostrophic flow
departure method with wind speeds ranging from 7.5 to 52 m/s. Garratt attributed data scatter among
Dataset 1 as a result of insufficiently long averaging periods and calibration uncertainties from the
field technology over the sea.

After analyzing the data collections, Garratt proposed two options for calculating the neutral
drag coefficient. They consisted of a power law relation
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C10 × 103 = 0.51U0.46
10 , 4

m
s
< U10 < 21

m
s

(14)

and a linear relation

C10 × 103 = 0.75 + 0.067U10, 4
m
s
< U10 < 21

m
s

(15)

Equation (14) closely resembles Wu’s Equation (13), but Garratt opposed Wu’s proposal of a
constant drag coefficient above 15 m/s. He validated Charnock’s relation with the data collections,
producing a Charnock constant, α, of 0.0144 and a von Kármán constant, k, of 0.41 ± 0.025.

Garratt’s results have been published in a multitude of textbooks, and his review analysis
influenced numerous other investigators. Modified and unmodified versions of Garratt’s linear
law for the drag coefficient, Equation (15), are used in the ADvanced CIRCulation (ADCIRC) storm
surge model [37], CALifornia METeorological model (CALMET) [74], Curvilinear Hydrodynamics in
Three-Dimensions-Waterways Experiment Station (CH3D-WES) [75], NOAA’s Hurricane Research
Division Wind Analysis System (H*WIND)/Interactive Objective Kinematic Analysis (IOKA) [76],
and presumably more.

3.4. Smith (1980)

According to Smith, the sea state is determined by fetch, duration, water depth, and surface
slick conditions [32] from natural oils and impurities, which reduce the surface roughness [77].
He anticipated higher drag coefficients at short fetches, due to growing waves absorbing momentum
from the wind. Smith applied the eddy correlation method to analyze direct measurements collected
offshore, onshore, and alongshore from thrust, Gill, and Aerovane anemometers on an offshore
platform. He notes that the Smith and Banke [78] portion of data was potentially affected by breaking
waves due to shoaling and being collected at limited fetch, which falsely represents the open ocean.
He observed that as Charnock predicted, the drag coefficient measured for long fetch increased with
increasing wind speeds up to 22 m/s as follows:

C10 × 103 = 0.61 + 0.063U10, 6
m
s
< U10 < 22

m
s

(16)

This correlation is slightly lower than those proposed by Smith and Banke [78] and Garratt [50].
During periods of alongshore winds, he was surprised to find the drag coefficient to be much lower
than during offshore or onshore winds. Smith speculated oil from numerous sources along the
shoreline as a possible reason. This would affect the surface slick conditions and reduce the surface
roughness, but observing slicks was not included in the experiment. He also concluded that a stronger
correlation existed between the drag coefficient and wind speed rather than wave height.

3.5. Wu (1980, 1982)

In 1980, Wu revisited the drag coefficient debate, arguing that Charnock’s relation, which most
studies revolved around, offered a basic correlation between the drag coefficient and wind velocity
and fetch, but Charnock constant values continued to be scattered [79]. More specifically, the relation
tended to work well in the laboratory but was inconsistent in the field. Even though the logarithmic
wind profile and Charnock relation had generally been accepted, he questioned whether or not the drag
coefficient depended exclusively on wind velocity, while its dependency on fetch had sparsely been
explored. Wu (1) reasoned that the drag coefficient increases with wind velocity and decreases with
fetch; (2) offered a refined Charnock relation including surface tension and viscosity; and (3) generated
a single, linear law empirical formula for estimating oceanic drag coefficients at all wind velocities to
replace his previous correlation from Equation (13).

He used his previous laboratory and oceanic data to verify Equation (10) at exceptionally diverse
fetches. The value of the Charnock constant, α, was chosen to be 0.0156 to provide the best correlation
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between laboratory and oceanic data, which fell in the typical range of other studies, 0.012–0.035.
After exploring different Charnock constants and wind velocities at 10-m heights and fetches at
U10 = 10 m

s , Wu found that short fetches yield greater drag coefficients. This study of fetch verified
Wu’s claim that the drag coefficient decreases with fetch.

Wu reasoned that scattered Charnock values found in various studies were due to how the
roughness length was defined, how the drag coefficient was calculated, and how the Charnock
values were obtained through curve fitting. He suggested that the roughness length increased with
wind friction velocity at a faster rate than the Charnock relation implies. To remedy these errors,
he offered a refined Charnock relation which included roughness length, wind-friction velocity, gravity,
surface tension, and viscosity. While viscosity and surface tension are minor parameters, Wu disputed
they were far from negligible. He recommended future studies to consider other parameters, such as,
wind gustiness, swells, currents, and sea spray at high wind velocities.

Lastly, Wu realized that his 1967 study failed to consider data collection methods used to measure
wind stress. Nine data sets were collected using the surface tilting method, a technique found to be
grossly affected by wave setup and susceptible to errors from horizontal temperature gradients [50],
tidal and seiche movements, and near-shore wave effects [80]. In contrast, the wind profile method
faces limitations only at low heights of 1-m and low winds of 3 m/s, while the eddy correlation method
requires a fixed and stable platform. Therefore, these sets were eliminated and replaced with 12 newer
data sets collected by wind profile and eddy correlation methods, similar to the remaining original
data sets. Upon closer examination, the following linear formula resulted in a better fit of the modified
data than his previously proposed correlation, Equation (13):

C10 × 103 = 0.8 + 0.065U10, U10 > 1
m
s

(17)

This equation closely resembles Garratt’s Equation (15). Two years later, he proclaimed this
empirical formula to be applicable in hurricane wind speeds as well [81]. This well-known linear
parameterization can be seen in the source code of the third generation wave model, Simulating WAves
Nearshore (SWAN) [82].

3.6. Large & Pond (1981, 1982)

During this time, Large and Pond introduced the dissipation method for measuring wind
stress [83]. While the eddy correlation method provided the most direct measurement, it worked best
on stable platforms, making its application during storms, in remote ocean areas, unfeasible due to
instrument sensitivity. The dissipation method, on the other hand, was capable of operating on moving
platforms. Between September 1976 and April 1977, measurements were taken on a 59-m deep water
stable tower off the harbor of Halifax, Nova Scotia. Using a modified Gill propeller-vane anemometer,
196 runs were completed using the eddy correlation method to measure velocity. The results were
nearly identical to measurements taken by the Bedford Institute of Oceanography. During the eddy
correlation runs, 192 dissipation runs were recorded almost concurrently, totaling 1086 h worth of
momentum flux data. For wind speed under 20 m/s, each method produced similar results. Between
July 1977 and April 1978, 505 h of measurements were taken from the CCGS Quadra in more open
sea conditions with higher wind speeds using the dissipation method. Their analysis revealed that
the hourly averaged C10 is constant for wind speed between 4 and 10 m/s, but linear for wind speeds
between 10 and 26 m/s, as follows:

C10 × 103 =

{
1.14, 4 m

s < U10 ≤ 10 m
s ,

0.49 + 0.065U10, 10 m
s < U10 < 26 m

s .
(18)

The duo continued their study for the following two years. Recognizing that extrapolated
parameterization from near-shore observations to high wind speeds in the ocean were insufficient,
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and direct measurements were too arduous and expensive at the time, they resumed their experimental
dissipation program. The investigators deeply explored the concept of a bulk aerodynamic method
intended for larger scale studies over long periods of oceanic and atmospheric circulation [84].
The concept originates from the hypothesis that the drag coefficient, Stanton number (dimensionless
heat transfer coefficient), and Dalton number (dimensionless moisture transfer coefficient), referred to
as the bulk aerodynamic (exchange) coefficients [85], are approximately equal [70]. This method yields
heat flux estimations based on the bulk transfer coefficients of momentum, sensible heat, and water
vapor [86]. When parameterizing the kinematic fluxes in bulk quantity, Large and Pond calculated
the drag coefficient using Equation (10) [87]. Overall, their work is heavily cited in textbooks [88] and
almost always included when comparing multiple linear drag formulas.

The studies presented above are among the most notable drag coefficient formulae from 1948
to 1997. However, there are many more formulae available in the open literature. Table 1 depicts a
cumulative synopsis of the most popular published drag coefficient correlations of this era.

Table 1. Early Drag Coefficient Formulations (1948–1997).

Date Author Drag Coefficient Formula

1948 * Neumann [73] C10×103=0.9×U
− 1

2
10 , 1 m

s <U10<30 m
s .

1951 * Francis [73,89] C10×103=1.3U10 , 1 m
s <U10<25 m

s .

1958 * Sheppard [73,90] C10×103=0.8+0.114U10 , 1 m
s <U10<20 m

s .

1960 Wilson [51,73] C10×103=

{
1.49, 1 m

s <U10<10 m
s ,

2.37, U10 > 10 m
s .

(12)

1962 * Deacon & Webb [73,91] C10×103=1.0+0.07U10, 1 m
s <U10<14 m

s .

1967 Wu [73] C10×103=

⎧⎨⎩ 0.5×U
1
2
10 , 1 m

s <U10<15 m
s .

2.6, U10 > 15 m
s .

(13)

1975 * Smith & Banke [78] C10×103=0.61+0.075U10, 6 m
s <U10<21 m

s .

1977 Garratt [50]
C10×103=0.51U0.46

10 . 4 m
s <U10<21 m

s , (14)

C10×103=0.75+0.067U10. 4 m
s <U10<21 m

s . (15)

1980 Smith [32] C10×103=0.61+0.063U10, 6 m
s <U10<22 m

s . (16)

1980, 1982 Wu [79,81] C10×103=0.8+0.065U10, U10 > 1 m
s . (17)

1981 Large & Pond [83] C10×103=

{
1.14, 4 m

s <U10 ≤ 10 m
s ,

0.49+0.065U10, 10 m
s <U10<26 m

s .
(18)

1992 * Anderson [92] C10×103=0.49+0.071U10, 4.5 m
s <U10<21 m

s .

1995 * Yelland & Taylor [93] C10×103=0.60+0.070U10, 6 m
s <U10<26 m

s .

1997 * Yelland et al. [27] C10×103=0.50+0.071U10, 6 m
s <U10<26 m

s .

* Popular parameterizations not discussed in detail here.

4. Saturated Drag Coefficient

4.1. GPS Dropwindsondes

From the late 1960s through the 1990s, investigators felt confident that a positive linear relationship
between the drag coefficient and wind speed existed. Multiple studies, mentioned previously,
verified this logic, although it only held true for wind speeds under 26 m/s. As for higher wind
speeds, data had been unavailable at the time, especially in regions over the deep ocean.
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In the early 1970s, the National Center for Atmospheric Research’s (NCAR’s) Atmospheric
Technology Division developed the first Omega-based dropwindsonde [94]. Nearly 26 years later,
NCAR developed the Airborne Vertical Atmospheric Profiling System and began testing by fall [95].
Simultaneously, the National Oceanic and Atmospheric Administration’s (NOAA’s) Aircraft Operation
Center acquired the Gulfstream IV-SP (G-IV) for weather reconnaissance research missions to foster
meteorological data from impending hurricanes. In 1997, the Tropical Prediction Center, currently the
U.S. National Hurricane Center (NHC), released almost 200 of NCAR’s enhanced Global Positioning
System-based dropwindsondes (GPS sondes) from the G-IV in the vicinity of three hurricanes
(Figure 1).

(a) (b)

Figure 1. (a) Gulfstream IV-SP (G-IV) [96]; (b) GPS Sonde and Launch [97].

The square-coned parachuted GPS sonde weighed 400-g. As it fell 10–15 m/s, it measured vertical
profiles of ambient temperature, pressure, humidity, wind speed, and wind direction every half second
from altitudes up to 24 km. The GPS receiver could derive winds, providing ±0.5 m/s wind accuracies
with a 0.1 m/s resolution [97].

Ten to fifteen missions were anticipated for its inaugural year, but only three were completed in the
Atlantic and two in the east Pacific during 1997 due to minimal hurricane activity. In addition, only one
mission attained complete data samples in all quadrants. Undeterred by the debut’s undersized
activity (22 of 200 sondes), mean track forecasts improved 32% and intensity forecasts improved 20%,
which was equivalent to the previous 20–25 years of accumulated progress [98]. By 1999, 331 high
resolution wind profile measurements existed near hurricane eyewalls. GPS sondes, alongside mooring
systems, extended data collection beyond gale force winds into extreme conditions, while embarking
into locations previously considered unfeasible.

4.2. Powell et al. (2003)

In 2003, the 331 wind profiles from the 1997–1999 GPS sondes data collection were analyzed [26].
The mean boundary layer analysis consisted of the following five groups below 500 m: 30–39 m/s
(72 profiles), 40–49 m/s (105 profiles), 50–59 m/s (55 profiles), 60–69 m/s (61 profiles), and 70–85 m/s
(38 profiles). The lowest 100–150 m of each group was fitted by a least squares line to determine the
intercept on a natural log height scale. The strongest wind speed group contained insufficient low-level
samples. Rearranging Equation (9) yields

ln (z) =
k

U∗
U + ln (z0) (9a)

Thus, the slope is k
U∗ and the intercept is z0 on a natural log height scale. Since k = 0.4,

shear velocity, U∗, can be determined with the slope value. Substituting the shear velocity into
Equation (1) along with density yields the wind stress, τ. Finally, the drag coefficient can be found by
substituting the wind stress, density, and wind speed at 10-m into Equation (3b). Other estimates of
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shear velocity, the surface roughness length, and the drag coefficient were calculated using the eddy
correlation method and dissipation method.

Their results exposed a much lower surface momentum flux above hurricane force (U10 > 33 m/s).
Rather than incessant escalation, it leveled off. Cd and z0 increased until U10 = 33 m/s.
At U10 > 33 m/s, Cd decreased, and at U10 > 40 m/s, z0 leveled off. Friction velocity also increased
until U10 = 40 m/s and leveled off. The most notable discovery was the decline in Cd and z0 from 40
to 51 m/s. This was the first observational data collected at such wind speeds, and it contradicted
the previous proposition that velocity and the drag coefficient increase linearly endlessly. The team
hypothetically attributed the reduction to sea foam, spray, and bubbles resulting from steep wave
faces breaking and forming a slip surface. In conclusion, they suggested more GPS sonde studies to
examine the effects of shallow water shoaling, azimuth-dependent sea state and wind-shear-induced
asymmetries, and heat and moisture transfer.

4.3. Donelan et al. (2004)

The following year in 2004, the analyzed results from the GPS sonde data collection was
corroborated with an experiment at the Air–Sea Interaction Facility at the University of Miami [53].
Using a 15-m × 1-m × 1-m tank divided between air and water, the stress was measured by hot-film
anemometry, and the water surface elevation was measured by digital particle image velocimetry
and laser/line scan cameras. When using hot-film anemometry at high wind speeds with a direct
stress measurement, such as eddy correlation or Reynolds, spray droplets landing on the film alters
the measurements. Therefore, an x-film anemometer was used to measure the Reynolds stress for
0–26 m/s wind speeds and corrected at the surface with the measured horizontal pressure gradient.
The surface stress at high wind speeds was measured using a momentum budget of tank sections,
called the surface slope method. All-in-all, three data sets from the facility were used consisting of
the eddy correlation method, profile method, and surface slope method. A fourth set of data from
Ocampo-Torres et al. (1994) [99], obtained using the profile method, was also used for comparison.

Wind speed measurements at 30-cm were extrapolated to 10-m, and all four data set results were
congruent. This confirmed the surface slope method as a valid technique for stress measurements at
high wind speeds. The drag coefficient increased with wind speeds between 3 and 33 m/s, similar to
previously mentioned correlations. Yet, the results were lower than those of Large and Pond (1981) [83],
although the general trend was the same. In accordance with Powell et al. (2003) [26], Donelan and
his team observed a saturated drag coefficient for speeds above 33 m/s. The investigators concluded
that beyond wind speeds of 33 m/s, the aerodynamic roughness reaches its limit. As the open ocean
moves from gale to hurricane force, continuous intense wave-breaking occurs and high wind speeds
blow away crests. This fills the air with sea spray and the surface with spume, altering its frictional
and roughness characteristics.

As technology upgrades ensued, progress in obtaining measurements at high wind speeds
followed. A general consensus had been established regarding the drag coefficient’s nature at low to
moderate wind speeds (<26 m/s). Vis-à-vis high wind speeds, a study analyzing field measurements
and a study examining laboratory data both concluded the drag coefficient ceases to increase after
33 m/s and instead, saturates. This would require a significant shift in wind stress calculations for
high wind speeds. What was previously believed would need to be unlearned and rediscovered.

5. Latest Drag Coefficient Formulations (2006–2015)

5.1. Powell (2006)

Beginning in 2005, Powell analyzed 2664 GPS sonde profiles from 1997 to 2005 [100] captured
in the Northern hemisphere. The dataset included 2003 Hurricanes Fabian and Isabel from the
Coupled Boundary Layer Air-Sea Transfer (CBLAST) experiment (explored further in Section 5.4),
2004 Hurricanes Frances, Ivan, and Jeanne, and 2005 Hurricanes Katrina, Rita, and Wilma.
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The composite group was narrowed down to 1270 profiles within 2–200-km of each hurricane’s center
with wind speeds greater than 20 m/s. Using the profile method, Powell observed that Cd linearly
increases with U10 to a maximum value of 0.002 at 41 m/s. As U10 approached 61 m/s, Cd decreased
to a minimum of 0.0006. However, this increasing-decreasing behavior of Cd was restricted to the
front left sector of the storm and for a radial distance more than 30-km from the center. Profiles less
than 30-km from the storm’s center resulted in drag coefficients around 0.001 with minimal disparity,
which supports Donelan’s continuous wave-breaking hypothesis [53].

Powell explored the drag coefficients azimuthal dependence. A previous study used radar
altimeter wave data, in conjunction with a wind analysis of Hurricane Bonnie (1998), to create three
sectors of the storm [101,102]. Assuming the storm is moving towards 0◦, the right sector is 21◦–150◦

clockwise, the rear sector is 151◦–240◦ clockwise, and the front left sector is 241◦–020◦ clockwise
(see Black et al. 2007 [102] and Holthuijsen et al. 2012 [103] for a more detailed account). For the right
sector in regions beyond 30 km of the storm’s center, Cd was observed to be nearly constant until
U10 = 45 m/s, in which it began to increase linearly. For the rear sector, Cd was also nearly constant
until U10 = 34 m/s, in which it began to decrease. For the front left sector, Cd increased linearly up to
values as high as 0.0047 for U10 = 36 m/s. For higher wind speeds, Cd steadily and quickly decreased.

The initial GPS sonde analysis [26] contained insufficient samples for extreme wind speeds.
In contrast, this study reviewed an ample amount of profiles to conclude that Cd decreases in extreme
winds. Powell’s study argues that radial distance and storm relative azimuth carry weight in Cd
calculations. As a result, ADCIRC offers a formulation based on Powell’s findings as an alternative
to Garratt’s correlation [50] for tropical cyclones. This formulation divides the storm into the three
sectors and calculates Cd accordingly [37].

Right Sector : Cd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.75 + 0.067U10)× 10−3, U10 ≤ 35 m

s ,

0.0020 + (0.0030−0.0020)
(45.0−35.0) (U10 − 35.0) , 35 m

s ≤ U10 ≤ 45 m
s ,

0.0030, U10 > 45 m
s .

(19a)

Rear Sector : Cd =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.75 + 0.067U10)× 10−3, U10 ≤ 35 m

s ,

0.0020 + (0.0010−0.0020)
(45.0−35.0) (U10 − 35.0) , 35 m

s ≤ U10 ≤ 45 m
s ,

0.0010, U10 > 45 m
s .

(19b)

Left Front Sector : Cd =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.0018, U10 ≤ 25 m
s ,

0.0018 + (0.0045−0.0018)
(30.0−25.0) (U10 − 25.0) , 25 m

s ≤ U10 ≤ 30 m
s ,

0.0045 + (0.0010−0.0045)
(45.0−30.0) (U10 − 35.0) , 30 m

s ≤ U10 ≤ 45 m
s ,

0.0010, U10 > 45 m
s .

(19c)

Powell encourages the modeling community to further experiment with radial distance and storm
relative azimuth when calculating Cd.

5.2. Moon et al. (2006)

In 2004, 10 Atlantic Ocean hurricanes from 1998 to 2003, simulated from a coupled wave-wind
(CWW) model, were post-processed. At low wind speeds, typically U10 ≤ 12.5 m/s, the bulk
parameterization used in NHC’s Geophysical Fluid Dynamics Laboratory (GFDL) hurricane
model matches with the observational data. However, the same could not be claimed for z0 at
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U10 > 12.5 m/s [24,104]. Therefore, the authors derived new parameterizations for U10 > 12.5 m/s.
The following empirical relationship between z0 and U10 was established in 2006 [104]:

z0 =
0.0185

g

(
0.001U2

10 + 0.028U10

)2
, U10 ≤ 12.5

m
s

, (20a)

using polynomial fitting, and

z0 = (0.085U10 − 0.58)× 10−3, U10 > 12.5
m
s

. (20b)

using a linear fitting regression of the CWW results, with a 0.87 regression coefficient.
Substituting Equation (20b) into Equation (9) using polynomial fitting, with a regression coefficient of
0.99, yields U10 as a function of U∗ as follows:

U10 = −0.56U2∗ + 20.255U∗ + 2.458 (20c)

Combining Equation (20a–c) yields

z0 =

⎧⎨⎩
0.0185

g U2∗ , U10 ≤ 12.5 m
s ,[

0.085
(−0.56U2∗ + 20.255U∗ + 2.458

)− 0.58
]× 10−3, U10 > 12.5 m

s .
(20d)

This physics-based parameterization can be used in combination with Equation (10) to estimate
the drag coefficient. Here, the drag coefficient levels off between 0.002 ≤ Cd ≤ 0.003 from high wind
speeds between 20 and 77 m/s.

A previous study indicated that the operational GFDL hurricane prediction model tends
to under-predict the surface wind speeds for strong hurricanes [105]. Thus, this proposed
parameterization was tested on five Atlantic Ocean hurricanes in 11 forecasts using the GFDL hurricane
prediction model. The results showed an increase in maximum wind speed prediction and no
substantial change in central pressure prediction, improving pressure-wind relationship predictions
for strong hurricanes. Yet the investigators noted that other numerical prediction models may not
underpredict maximum wind speeds, warranting simulations with various models for validation.
In conclusion, the authors noted intentions of further exploring the theory of sea state affecting the
air-sea momentum flux, in addition to wind speed [106,107], since a hurricane storm’s center greatly
affects the sea state in various areas [24,108].

5.3. Jarosz et al. (2007)

The following year, an entirely different method for estimating the drag coefficient was introduced
by Jarosz et al. [28]. The investigators revealed that all previous techniques are based on measurements
from the atmospheric side of the air-sea interface, which they coined as “top down”. This practice
produces tainted results near the ocean surface due to intense wave-breaking and sea spray [53].
Instead, they recommend a “bottom up” technique, which uses ocean currents from the full
water-column to determine the air-sea momentum exchange. It requires measurements to be taken
from the ocean side of the interface with full water-column ocean current observations. The observed
data is utilized in the momentum equation to calculate the drag coefficient. They argue that using
the ocean-side of the air-sea interface generates a reliable and accurate determination of the air–sea
momentum exchange.

To calculate this momentum transfer in terms of the drag coefficient, they substitute their variation
of Equation (3b) into the along-shelf momentum equation as follows:

τ = ρCd |W|Wx (3c)

∂U
∂t

− f V =
τ

ρr H
− rU

H
(21a)
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Cd =
ρr H

ρ |W|Wx

(
∂U
∂t

− f V +
rU
H

)
(21b)

where |W| is the wind velocity magnitude at 10 m, Wx is the along-shelf velocity component, U is the
depth-integrated along-shelf velocity component, f is the Coriolis parameter

(
0.71 × 10−4·s−1), V is

the depth-integrated cross-shelf velocity component, ρr is the reference density
(
1025 kg·m−3), H is

the water depth, and r is the resistance coefficient constant at the sea floor. The authors parametrically
used r-values between 0.001 and 0.1 cm/s.

Six gauge moorings measured the ocean current and wave/tide during Hurricane Ivan (2004) as
the storm passed directly over them on the outer continental shelf in the northeastern Gulf of Mexico.
The data was analyzed using Equation (21b). Results below 30 m/s were scattered, but their study
illustrated that the drag coefficient reaches a peak wind speed of 32 m/s and then decreases as wind
speed increases. While the results above 32 m/s matched previous studies [26,53], the technique
renders a few limitations. The authors pointed out that a bottom-up approach imposes the almost
impossible requirement of deploying the sensors in the ocean under the highly unpredictable path of
a hurricane. Moreover, the sensors must survive the enormous forces of the hurricane.

5.4. Black et al. (2007)

From 2000 to 2005, the Office of Naval Research funded 17 investigators from a number
of academic and government laboratories to undergo the CBLAST hurricane experiment [102].
The project’s primary purpose was to advance comprehension of the physical processes at the
air–sea interface to improve hurricane intensity forecasting. To accomplish this, airborne remote,
in situ, and expendable probe sensors were combined with air-deployed ocean platforms to increase
understanding of high-wind air-sea fluxes by expanding the observation range of the exchange
coefficients to hurricane-force winds and above. The Air Force Reserve Command’s 53rd Weather
Reconnaissance Squadron assisted in the air deployment.

In 2003, a total of 12 flights, including 12 stepped-descent patterns, were flown on 6 days in
Hurricane Fabian and Isabela. An additional 10 flights and three surveillance flights were flown during
that period. An array of 16 drifting buoys and six floats were deployed. In 2004, CBLAST flights
were flown in Hurricane Frances on 4 days, Ivan on 5 days, and Jeanne on 3 days. The key success in
that year was the air deployment of 38 drifting buoys and 14 floats ahead of Hurricane Frances on
August 31. All drifters and floats deployed were successful.

The deployments and experiments developed an extensive dataset, resulting in a huge success for
air–sea flux measurements during actual hurricanes. They concluded that the drag coefficient levels
off at 22–23 m/s, which is appreciably lower than the threshold value previous studies reported to be
at 33 m/s [26,28,53]. The drag coefficient value in hurricane conditions above 33 m/s was found to be
under 0.002, which is slightly lower than reported values from earlier studies. The study was stated to
be ongoing, utilizing and investing in the most recent advancements in airborne technology to advance
coupled models. Their overall goal continues to strive for improvements in hurricane intensity and
track prediction.

5.5. Moon et al. (2009)

In 2009, three wind stress formulations were tested for Typhoon Maemi [25]. Three Cd
parameterizations at high winds speeds were tested in this surge simulation as follows: (Case 1) the
linear relationship by Wu [81], (Case 2) the fast-increasing Cd by the Wavewatch III (WW3) model [109],
and (Case 3) the leveling-off Cd by Moon et al. (2004) [110], which is based on the CWW model. Case 1
revisited Equation (17). Case 2 was an internal Cd parameterization of the WW3 using the following:

Cd × 103 =

(
0.021 +

10.4
R1.23 + 1.85

)
(22)
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R = ln

⎛⎝ 10g

x
√

∝ U2
e10

⎞⎠ (23)

α = 0.57
(

cp

U∗

)− 3
2

(24)

where Ue is the effective wind speed at high frequencies and cp is the wave phase speed at peak
frequency. Case 3 was a leveling-off Cd from CWW, incorporating the WW3 spectrum combined with
the spectral tail, which calculates a wave-induced stress vector, a mean wind profile, and cp. The results
showed that for a high resolution model, Case 1 overestimated the drag coefficient at high winds,
Case 2 overestimated it even more, and Case 3 matched closest to the GPS sonde data analysis [26].
The trend was reversed for a model with coarse resolution. A higher resolution mesh produced a higher
surge if other conditions were the same. The authors argued this was attributed to the higher resolution
surge model averaging the surge height over a smaller area, and the fact that the coastal geography
and topography were better resolved. According to these results, incorporating wave parameters with
the drag coefficient, along with a high resolution storm surge model, yields better results.

5.6. Foreman & Emeis (2010)

In an attempt to address the enigma surrounding Cd, Foreman and Emeis chose to return to the
fundamental definition of the neutral drag coefficient [111]. The authors indicate that the traditional
drag coefficient definition, as shown in Equation (4), implies that U∗ is directly proportional to U10.
According to Equation (4), the square root of Cd is the slope of U∗ vs. U10. Yet, when the authors plot
the data collected from several studies between 1975 and 2009, the Cd illustrated is not constant.

In order to properly describe the data, the investigators theorize a constant must be included in
the definition as follow:

U∗ = Cm (U10 − U0) + b (25)

where Cm is the revised drag coefficient and b is a constant. According to the large compilation of
data collected in other studies, Cm = 0.051, U0 = 8 m/s, and b = −0.14 m/s for U10 ≥8 m/s and
U∗ ≥0.27 m/s. The authors suggest that U∗ and U10 are proportional but not directly proportional due
to the transition to rough flow at low wind speeds, necessitating a constant. This new drag coefficient
definition is said to be applicable for a range of locations including the open ocean, limited-fetch cases,
and even lakes. This new definition is particularly useful at high wind speeds. However, it is expected
to be less valid in limited water depth areas.

5.7. Andreas et al. (2012)

Inspired by the new definition presented by Foreman and Emeis (2010) [111], Andreas and his
team decided to test its validity. By including the definition, they deduced the following transformation
of Equation (4) [52]:

C10 =

(
U∗
U10

)2
= Cm

2
(

1 +
b

CmU10

)2
(26)

According to this parameterization, C10 increases monotonically with increasing wind speeds,
then rolls off and asymptotes at C2

m in high wind speeds, creating a natural limit. To test its
soundness, the authors used 778 measurements from over the sea with wind speeds up to 21.8 m/s.
For Equation (26), they found Cm = 0.0581 and b = −0.214 m/s for U10 ≥ 9 m/s, with a correlation
coefficient of 0.929.

For further validation, the authors added ~6858 additional near-surface eddy-covariance flux
measurements collected from low-flying aircrafts with a 1-m to 49-m altitude range, with wind speeds
up 27 m/s. Due to the rough flow at low wind speeds, the investigators chose to use only data for
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U10 ≥ 9 m/s. For Equation (26), they concluded Cm = 0.0583 and b = −0.243 m/s for wind speeds
between 9 and 24 m/s, and corroborated the theory that U∗ increases linearly with U10 although
the slopes and intercepts are different at different wind speeds. Andreas and his team concluded by
offering the following unified drag parameterization for weak-to-strong winds:

U∗ = 0.239 + 0.0433{(U10 − 8.271) + [0.120(U10 − 8.271)2 + 0.181]
1/2} (27)

This equation can be incorporated into Equation (4) to obtain the neutral drag coefficient.
In 2014, Equation (27) was incorporated into a fast bulk flux algorithm, which the authors named
Version 4.0 [112].

5.8. Zijlema et al. (2012)

In 2012, the JOint North Sea WAve Project (JONSWAP) formulation for bottom friction for
spectral wave models was re-examined [113]. They noticed that lower wind drag and lower bottom
friction provide essentially the same hindcast results in a storm. Therefore, they reviewed a
large number of published Cd observations. The Cd values from nine authoritative studies were
analyzed [26,28,50,78,81,83,100,102,114–116]. Analysis of these studies revealed (1) an almost linear
increase in Cd with wind speeds up to 20 m/s; (2) a leveling off of Cd at wind speeds of 35 m/s; and (3)
very low Cd values by 60 m/s.

The investigators provide the following alternative parameterization for the wind drag coefficient:

C10 × 103 =
(

0.55 + 2.97Ũ − 1.49Ũ2
)

(28a)

Ũ =
U10

Ure f
(28b)

Ure f = 31.5
m
s

(28c)

This parameterization was found by fitting a 2nd order polynomial to the data with the number of
independent observations in each data set as a weight, adding emphasis to [50,83,116]. When possible,
duplicate datasets were removed from newer studies if they were previously included in an older study.
The reference wind, Ure f , is the wind speed where the drag coefficient is highest in Equation (26).

Using Equation (28a) results in 10%–30% lower Cd values for high winds (15 m/s ≤ U10 ≤ 32.6 m/s)
and more than 30% lower Cd values for hurricane winds (U10 ≥ 32.6 m/s) when compared to
Equation (17). The investigators state that the leveling off and decrease seen in their analysis
is supported by field data [73,117], lab observations [53], inverse modeling of hurricane wave
hindcasts [118], and theory [35,119–123]. With the exception of [28], they indicated that airside
observation of energy transfer to waves underestimates wave growth [124,125]. This is important
as it nullifies wave growth scaling with a Cd-based friction velocity. It was noted that this discovery
must be addressed in a future study. This new drag equation, Equation (28a), replaced the original
parameterization of Wu (1982) [81] in SWAN [82]. However, since the new parameterization estimates
a lower drag coefficient, accurate wave and storm surge estimates require using a lower bottom friction
coefficient of 0.038 m2/s3 than the original value of 0.067 m2/s3. SWAN has incorporated Equation
(28a) as an alternative to Equation (17) since version 41.01. Their recommended bottom friction was
also integrated into SWAN [82].

5.9. Holthuijsen et al. (2012)

Holthuijsen and his collaborators mixed vintage data with modern data to investigate the effects of
white caps and streaks on the drag coefficient [103]. The data consisted of unique aerial reconnaissance
films from a collection of hurricanes between 1966 and 1980. Frames of these storms were originally
captured from the nadir point of aerial cameras during low-level flights, as opposed to typical oblique
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images. The authors noted that such low-level flights are dangerous and have been terminated due to
safety concerns. Additionally, 1149 high-resolution wind profiles were used from NOAA’s 1998–2005
GPS sonde collection over the Atlantic. They compared their drag coefficient results to those from
eight authoritative studies [26,28,50,78,81,83,102,116].

Their study indicated that the wind speed dependence of the drag coefficient varies spatially
due to the wind-swell sea state. The authors defined three distinct swell conditions near the
radius-to-maximum-wind (i.e., near field)—following swell occurs in the right-front sector, cross swell
occurs in the left-front sector, and opposing swell occurs in the rear sector. This general pattern
coincides with the azimuthal sectors observed in Hurricane Bonnie (1998) [100–102]. For lower wind
speeds in the far field, cross swell dominates everywhere except to the right of the eye.

The frames from the film illustrate the ocean’s surface spotted with white caps and streaks.
As wind speed increases, the white caps, streaks, and sea spray progressively multiply and join
together to create a white out or slip layer, and surface roughness begins to decrease. This results in
low drag coefficient values to the right and rear sectors near the eye. Yet the region to the left of the
eye and far rear of the eye produce very high drag coefficient values. These characteristics disprove
the idea of a uniform drag coefficient and increasing roughness for high winds. In their study, the drag
coefficient leveled off to approximately 0.002 for wind speeds between 30 and 35 m/s for following
and opposing swell conditions. On the other hand, the drag coefficient peaked near 0.005 for cross
swell conditions before decreasing, based on 38 wind profiles. This implies that cross swell delays the
drag reduction, perhaps by delaying the foam-spray slip layer production. For wind speeds between
60 and 79 m/s, at a radial distance less than 30-km from the center, the drag coefficient was as low
as 0.0007, indicating a smooth surface in the most extreme winds. This might be attributed to foam
generated near the eye wall from continuous wave-breaking [53] and fetch-limited waves.

The following equation is not a formal fit of the data, but rather presented by the authors as a
preliminary assessment of the data to approximate the drag coefficient with and without cross swell:

Cd × 103 = min

{[
a + b

(
U10

Ure f ,1

)c]
, d

[
1−

(
U10

Ure f ,2

)e]}
(29)

where Ure f ,1 is 27.5 m/s and Ure f ,2 is 54 m/s. For no swell, opposing swell, and following swell,
the authors listed a = 1.05, b = 1.25, c = 1.4, d = 2.3, and e = 10. For cross well, a = 0.7, b = 1.1, c = 6,
d = 8.2, and e = 2.5. The lower limit is Cd = 0.7× 10−3.

5.10. Edson et al. (2013)

In 1996, Fairall and his colleagues had developed a drag coefficient algorithm for low to moderate
winds [126] for the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response
Experiment (COARE) [127]. By 2002, this popular bulk parameterization was upgraded to include
winds between 0 and 20 m/s and named COARE 3.0 [128]. The modifications were based on 2777 1-h
direct flux measurements and approximately 100-h of wind speed data above 10 m/s. Unlike other
parameterizations, the COARE drag coefficient is a function of surface roughness, atmospheric stability,
and gustiness [129].

In 2013, Edson and his team worked to improve the surface roughness and drag coefficient
of COARE 3.0 using four different oceanic datasets. Three of the datasets contained wind profiles,
and all four had direct covariance estimates of momentum flux. Using the direct covariance method,
the surface stress is calculated as

τ = −ρuw = ρCdUr
2 (3d)

where Ur is the wind speed relative to the water. The effect of surface waves on momentum exchange
through surface roughness was investigated and the drag coefficient is calculated using Equation (10).
However, the COARE algorithm calculates the surface roughness as z0 = zsmooth

0 + zrough
0 , to distinguish

between aerodynamically smooth roughness and roughness elements from wind stress in surface
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gravity waves. The smooth component is calculated as γ ν
u∗ , where γ is the roughness Reynolds

number for smooth flow (0.11–determined from experiments) and ν is kinematic viscosity. The rough

component is typically found from the scaling proposed by Charnock given in Equation (11), αU2∗
g .

For this study [129], they determined that COARE 3.0 overestimated the drag at the lowest wind
speeds and underestimated it at the highest wind speeds. In addition, it overestimated surface stress
and Charnock values at low winds and underestimated them at high winds. To remedy this problem,
the average data between 7 and 18 m/s was fit using α = mU10 + b, where m is 0.017 m/s and b
is −0.005. As a result, COARE 3.5 was created which eradicated these flaws.

The resulting drag coefficients for high winds were larger than previous studies in the literature.
To avoid flow distortion which results from direct covariance and mean wind measurements taken
from shipboard observations, the investigators used data from fixed towers and low-profile platforms.
While data above 22 m/s was limited, the increasing drag coefficient rate slowed above 19 m/s.
For Equation (26), they found Cm = 0.062 and b = −0.28 m/s for U10 ≥ 8.5 m/s, which is relatively
close to the values reported by Andreas et al. (2012) [52]. Their function naturally asymptotes at
0.0038, whereas the value was 0.0034 for Andreas et al. (2012). The team admitted the formula was
inappropriate for tropical cyclones, but their results advocate a slower rate of increase for the drag
coefficient between 20 and 25 m/s.

Wave age- and wave slope-dependent parameterizations were additionally investigated for
surface roughness, but the resulting COARE 3.5 wind speed-dependent formula, which withheld wave
information, was in agreement with the wide range of data consisting of wind speeds up to 25 m/s
and a variety of wave conditions. They concluded that there is a linear relationship between wind
speed and inverse wave age for wind speeds up to 25 m/s in long-fetch conditions, and the wave
age data would not further improve COARE 3.5 wind speed-dependent drag coefficient calculation.
They pointed out that this linear relationship between wind speed and inverse wave age breaks down
in the fetch-limited and shallow water environments.

5.11. Zachary et al. (2013)

During Hurricane Ike (2008), Texas Tech University deployed a portable surface weather
observing station, called a StickNet platform, created by their Wind Science and Engineering Research
Center [130]. The device collected onshore wind measurements on the Bolivar Peninsula near
Galveston, Texas, 90-m from the 3-km Houston ship channel, allowing researchers to estimate Cd values
near the coastal shore [131]. The team used the coupled wave and circulation model, SWAN+ADCIRC,
to simulate a hindcast representing the wave and surge conditions.

The model used Equations (19a–c) to estimate Cd and found the value to increase to a maximum
value of 0.0022 at U10 = 28 m/s. After wind speed correction, they observed Cd level off at
U10 = 22 m/s. The investigators reported substantial differences in Cd values in the deep ocean versus
alongshore at slow wind speeds. Their study resulted in higher Cd values than those reported in any of
the comparison deep water studies at slower wind speeds. This is potentially attributed to the complex
bathymetry and wave conditions due to sea spray and skimming flow within the channel. They fear
storm surge models may underestimate the surge if using a deep water wind speed-dependent Cd for
shallow water coastal regions and commented that additional forcing parameterizations are needed in
such complex roughness situations.

5.12. Vickers et al. (2013)

From 1992 to 2008, four aircraft datasets from 11 experiments resulted in 5800 eddy-covariance
turbulence flux measurements [132]. Vickers and his team examined the sensitivity of the neutral
drag coefficient to six different bin averaging analysis methods. Bin averaging the 10-m neutral drag
coefficient, C10, in weak winds led to overestimation of the coefficient. They stated the error stemmed
from the conversion of random flux sampling errors into systematic errors.
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A major development in the study was the classification of four discrete wind regimes.
Weak winds, under 4 m/s, were ill-posed, as they were highly sensitive to the method of analysis.
Moderate winds between 4 and 10 m/s held a constant C10. Strong winds between 10 and 20 m/s had
a linearly increasing C10 with wind speed. Very strong winds, greater than 20 m/s, had a decreasing
C10 with increasing wind speed. The onset of enhanced drag at C10 = 10 m/s is most likely due to
wave breaking and transition to fully aerodynamically rough flow. The authors disclosed that the very
strong wind regime was developed from only one experiment, and more data is needed to confirm
those results.

5.13. Peng & Li (2015)

After an extensive review of constant, linear, and non-linear Cd parameterizations, Peng and Li
hypothesized that Cd is a parabolic function in 2015 [133]. They assert Cd is underestimated in
intermediate wind speeds using a linearly-increasing formula and overestimated in very high wind
speeds using non-decreasing formulae. They proposed that a parabolic Cd for intermediate to high
wind speeds could alleviate these flaws.

Using a 4-Dimensional Variational Data Assimilation (4DVAR) technique, the investigators
determined Cd values for the South China Sea by assimilating the observed water levels into a storm
surge model. Employing [26,28] as a basis, which deduces the maximum Cd to occur at 32–33 m/s,
they propose the following parabolic parameterization of Cd:

Cd = −a (U10 − 33)2 + c (30)

where a and c are initially set at (a0, c0) = (2.0× 10−6, 2.34× 10−3). Eighteen relatively strong typhoons,
which passed through the South China Sea from 2006 to 2011, with a minimum 0.2-m storm surge,
were utilized to define and validate Equation (30). Values a and c were optimized for 10 of the typhoons
by improving the disparity between the modeled and observed storm surges. This resulted in the
mean values of a = 0.00215 and c = 2.797. Both values were inserted in Equation (30) and utilized in
a storm surge model for the remaining eight typhoons.

Overall, their parabolic parameterization improved the storm surge simulations and lowered the
root-mean-squared-errors when compared to the results simulated using seven other authoritative
correlations [53,83,128,134–136]. The authors noted that the values found are specific to the South
China Sea region. While the model is valid in other regions, the values of a and c must be established
in a similar manner using observations for that particular area.

5.14. Zhao et al. (2015)

In 2015, Zhao and his team of investigators explored Cd’s behavior in the South China Sea.
They studied typhoon measurements, collected from wind propeller anemometers stationed on a
coastal observation tower, to observe the effect of water depth on Cd [137]. The coastal observation
tower stands 6.5-km from the shore in 14-m deep water anchored by concrete tanks. One minute mean
wind profiles for Typhoons Hagupit (2008) and Chanthu (2010) were examined, and 289 of the 1441
nearshore samples were used.

The team concluded that water depth unequivocally affects the drag coefficient when compared
to deep open ocean results. Although the Cd against wind speed plot is similar to that of open ocean
conditions, the curve shifts towards a regime of lower wind speed. In other words, the Cd maximum
occurs approximately at 24 m/s, which is 5–15 m/s lower than that of the open sea. This is prospectively
due to shoaling and wave conditions pertaining to the shallow water. They proposed a Cd formulation
as a function of wind speed and water depth. Their numerical tests showed that the proposed Cd
improves the prediction of the typhoon track, U10, and central pressure results. Their results indicated
that coastal wave, sea spray, hurricane, and storm surge models may need to consider the sea state in
the drag coefficient calculation to improve predictions.
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5.15. Bi et al. (2015)

Bi and her team investigated Cd from seven typhoons in the South China Sea from 2008 to
2014 [138]. Data collected from two towers in varying water depths along the shore were examined.
One tower was positioned 6.5-km from the coastline on a platform in 15-m of water over the South
China Sea. The second tower was located on a 90-m × 40-m island, 10-m above mean sea level.
Anemometers and sensors collected data from the east side of the towers, facing the sea.

This group found that Cd first decreases as wind speed increases to 10 m/s. After that, Cd increases
to 0.002 until wind speeds reach 18 m/s. Between 18 and 27 m/s wind speeds, the drag coefficient
decreases. When compared between the two towers, the drag coefficient was higher in shallow water
by 40% for U10 < 10 m/s. The drag coefficient difference disappears between the two towers at wind
speeds higher than 10 m/s. This was possibly due to the wave conditions and local bathymetry
along the shore in shallow water. The investigators declared no Cd-dependence on the typhoon
quadrant. Last, they verified that the eddy covariance and inertial dissipation methods for estimating
the momentum fluxes produced similar results. In contrast, the momentum flux values derived from
the flux profile method are larger over the sea than those from the other two methods. They urge other
investigators to practice prudence when using this method on a heterogeneous surface.

Table 2 offers a list of drag coefficient parameterizations following the development of GPS sondes.
Figure 2 illustrates many of the drag coefficient correlations from 1958 to 2015.

Figure 2. Drag Coefficient Correlations (1958–2015).
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Table 2. Drag Coefficient Formulations following the Development of GPS Sondes (2006–2015).

Date Author Drag Coefficient Formula

2006
ADCIRC, adapted
from Powell [37]

Right Sector: Cd=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.75+0.067U10)×10−3, U10≤35 m

s ,

0.0020+(0.0030−0.0020)
(45.0−35.0)

(U10−35.0), 35 m
s ≤U10≤45 m

s ,

0.0030, U10>45 m
s .

(19a)

Rear Sector:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0.75+0.067U10)×10−3, U10≤35 m

s ,

0.0020+(0.0010−0.0020)
(45.0−35.0)

(U10−35.0), 35 m
s ≤U10≤45 m

s ,

0.0010, U10>45 m
s .

(19b)

Left Front Sector: Cd=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.0018, U10≤25 m
s ,

0.0018+(0.0045−0.0018)
(30.0−25.0)

(U10−25.0), 25 m
s ≤U10≤30 m

s ,

0.0045+(0.0010−0.0045)
(45.0−30.0)

(U10−35.0), 30 m
s ≤U10≤45 m

s ,

0.0010, U10>45 m
s .

(19c)

2006 Moon et al. [104] z0=

⎧⎨⎩
0.0185

g U2∗, U10≤12.5 m
s ,

[0.085(−0.56U2∗+20.255U∗+2.458)−0.58]×10−3, U10>12.5 m
s .

(20d)

2007 Jarosz et al. [28]

τ=ρCd|W|Wx, (3c)
∂U
∂t −fV= τ

ρrH
− rU

H , (21a)

Cd=
ρH

ρ|W|Wx
( ∂U

∂t −fV+ rU
H ). (21b)

2010 Foreman & Emeis
[111] U∗=Cm(U10−U0)+b. (25)

2012 Andreas et al. [52] u∗=0.239+0.0433

{
(U10−8.271)+[0.120(U10−8.271)2+0.181]

1/2} . (27)

2012 Zijlema et al. [113]

C10×103=(0.55+2.97Ũ−1.49Ũ
2
), (28a)

Ũ= U10
Uref

. (28b)

Uref=31.5 m
s . (28c)

2012 Holthuijsen et al.
[103] Cd×103=min

{
[a+b( U10

Uref,1
)

C
], d[1−( U10

Uref,2
)

e
]} , (29)

2013 Edson et al. [129] τ=−ρuw=ρCdUr. (3d)

2015 Peng & Li [133] Cd=−a(U10−33)2+C. (30)

6. Concluding Remarks

As hurricane storm surges became a recognizable threat to coastal communities, investigators grew
anxious to estimate the surface wind stress correctly. The classical wind stress calculation requires an
appropriate representation of the drag coefficient, which depends on the air and sea conditions at a
given time and place. Charnock’s proportionality constant was the turning point in approximating
the drag coefficient, which implies that as wind speed increases, the drag coefficient must increase.
Contemporary researchers performed laboratory and oceanic observations to relate the drag coefficient
with the measured wind speed. Some proposed constant drag coefficients, especially at high wind
velocities. Others proposed linearly varying drag coefficients for a range of wind speeds. Some even
suggested there are other sea conditions, such as fetch, air–sea surface tension, viscosity, etc. that
must be considered to estimate the drag coefficient correctly. However, the notion of ‘high’ wind
speeds was too limited, not even reaching the range of Category I hurricane values. With the limited
technology available at that time, researchers were able to exhaust four methods of determining
wind stress, two of which are still prevalent today (wind profile and eddy correlation). Yet, as long
as data observation in extreme conditions remained impossible, examiners approached a stalemate
and were forced to extrapolate their positive linear correlation to strong hurricane winds. As the
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computer age approached, hurricane and oceanic forecasting models quickly followed. By default,
modelers accepted linear drag coefficient correlations with no other obvious options available.

By the late 1990s, the GPS sonde emerged, allowing storm hunters to do something once believed
impossible: collect data in and around the eye of a hurricane. Just as the scientific community accepted
a linear drag coefficient, evidence gave investigators no choice but to accept a lower drag coefficient at
extreme high winds. On the other hand, literature argues that some forecasting models continue to
use a linear drag coefficient, which is apt to overestimate the value in very high winds. One simple
modification to remedy a modeling program consisting of a linear drag coefficient is to embed a cap
whenever it exceeds a specific value. Yet, some studies indicate a leveling-off of Cd at 32–33 m/s,
while others state it happens even sooner at 22–23 m/s.

Despite the influx of progressive technology, hurricane intensity forecasting remains a dawdling
advancement, as opposed to hurricane track forecasting. Historically, Cd has been calculated as a
function of wind speed. New information suggests other factors, such as wave-breaking, sea spray,
and sea foam might contribute to the reduction of Cd. Research already shows Cd values near
shore vary far more than its value offshore due to shoaling, local bathymetry, and water depth.
Additionally, Cd is potentially related to the sea state of the ocean, relative to a storm’s center. All of
these aspects must be taken into account, which leaves future investigators with an ambitious agenda.
The sooner advancements are achieved in forecasting hurricane intensity, regardless of the avenue,
the faster authorities can better serve coastal communities in danger.

Acknowledgments: This study was supported by an HBCU-UP Research Initiation Award (HRD-1401062)
granted from the National Science Foundation to Muhammad Akbar. The authors are grateful to M.A. Donelan
for his valuable suggestions in improving the content of the paper.

Author Contributions: K.B. performed the literature review and wrote the draft. M.A. conceived the critical
review and modified the manuscript.

Conflicts of Interest: The authors declare sole responsibility of the research results. Authors and programs
mentioned and the founding sponsors had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of data; in the writing of the manuscript, and in the decision to publish the
results. The authors recognize the abundance of research surrounding this topic and were incapable of including
all available studies.

References

1. Barry, R.G.; Chorley, R.J. Atmosphere, Weather, and Climate; Routledge: London, UK, 2003.
2. Caso, M.; González-Abraham, C.; Ezcurra, E. Divergent ecological effects of oceanographic anomalies on

terrestrial ecosystems of the Mexican Pacific coast. Proc. Natl. Acad. Sic. USA 2007, 104, 10530–10535.
[CrossRef] [PubMed]

3. Emanuel, K. The contribution of tropical cyclones to the oceans’ meridional heat transport. J. Geophys.
Res. Atmos. 2001, 106, 14771–14782. [CrossRef]

4. Emanuel, K. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [CrossRef]
5. Neely, W. The Great Bahamian Hurricanes of 1899 and 1932: The Story of Two of the Greatest and Deadliest

Hurricanes to Impact the Bahamas; iUniverse Inc.: Bloomington, IN, USA, 2012.
6. Nicholson, S.E. Dryland Climatology; Cambridge University Press: New York, NY, USA, 2011.
7. Saha, P. Modern Climatology; Allied Publishers Pvt. Ltd.: New Delhi, India, 2012.
8. Murty, T.S.; Flather, R.A.; Henry, R.F. The storm surge problem in the bay of Bengal. Prog. Oceanogr. 1986, 16,

195–233. [CrossRef]
9. Shamsuddoha, M.; Chowdhury, R.K. Climate Change Impact and Disaster Vunerablities in the Coastal Areas of

Bangladesh; Coastal Association for Social Transformation Trust (COAST Trust): Dhaka, Bangladesh, 2007.
10. Shultz, J.M.; Russell, J.; Espinel, Z. Epidemiology of tropical cyclones: The dynamics of disaster, disease,

and development. Epidemiol. Rev. 2005, 27, 21–35. [CrossRef] [PubMed]
11. Beven, J.L.; Avila, L.A.; Blake, E.S.; Brown, D.P.; Franklin, J.L.; Knabb, R.D.; Pasch, R.J.; Rhome, J.R.;

Stewart, S.R. Atlantic Hurricane Season of 2005. Mon. Weather Rev. 2008, 136, 1109–1173. [CrossRef]
12. Knabb, R.D.; Rhome, J.R.; Brown, D.P. Tropical Cyclone Report for Hurricane Katrina. Available online:

http://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf (accessed on 1 September 2016).

85



J. Mar. Sci. Eng. 2016, 4, 58

13. Baade, R.A.; Baumann, R.; Matheson, V. Estimating the Economic Impact of Natural and Social Disasters,
with an Application to Hurricane Katrina. Urban Stud. 2007, 44, 2061–2076. [CrossRef]

14. Burton, M.; Hicks, M. Hurricane Katrina: Preliminary Estimates of Commercial and Public Sector Damages;
Marshall University Center Business and Economy Reseach: Huntington, WV, USA, 2005; pp. 1–13.

15. Curry, J.A.; Webster, P.J.; Holland, G.J. Mixing politics and science in testing the hypothesis that greenhouse
warming is causing a global increase in hurricane intensity. Bull. Am. Meteorol. Soc. 2006, 87, 1025–1037.
[CrossRef]

16. Lott, N.; Ross, T. Tracking and Evaluating US Billion Dollar Weather Disasters, 1980–2005; NOAA National
Climatic Data Center: Asheville, NC, USA, 2015.

17. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688.
[CrossRef] [PubMed]

18. Knutson, T.R.; Tuleya, R.E. Impact of CO2-induced warming on simulated hurricane intensity and
precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim. 2004, 17,
3477–3495. [CrossRef]

19. Trenberth, K. Uncertainty in Hurricanes and Global Warming. Science 2005, 308, 1753–1754. [CrossRef]
[PubMed]

20. Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.-R. Changes in tropical cyclone number, duration,
and intensity in a warming environment. Science 2005, 309, 1844–1846. [CrossRef] [PubMed]

21. Willoughby, H.E. Hurricane heat engines. Nature 1999, 401, 649–650. [CrossRef]
22. Donelan, M.A.; Drennan, W.M.; Katsaros, K.B. The Air–Sea Momentum Flux in Conditions of Wind Sea and

Swell. J. Phys. Oceanogr. 1997, 27, 2087–2099. [CrossRef]
23. Fan, Y.; Ginis, I.; Hara, T. The Effect of Wind-Wave-Current Interaction on Air–Sea Momentum Fluxes and

Ocean Response in Tropical Cyclones. J. Phys. Oceanogr. 2009, 39, 1019–1034. [CrossRef]
24. Moon, I.-J.; Ginis, I.; Hara, T. Effect of Surface Waves on Air–Sea Momentum Exchange. Part II: Behavior of

Drag Coefficient under Tropical Cyclones. J. Atmos. Sci. 2004, 61, 2334–2348. [CrossRef]
25. Moon, I.-J.; Kwon, J.-I.; Lee, J.-C.; Shim, J.-S.; Kang, S.K.; Oh, I.S.; Kwon, S.J. Effect of the surface wind stress

parameterization on the storm surge modeling. Ocean Model. 2009, 29, 115–127. [CrossRef]
26. Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones.

Nature 2003, 422, 279–283. [CrossRef] [PubMed]
27. Yelland, M.J.; Moat, B.I.; Taylor, P.K.; Pascal, R.W.; Hutchings, J.; Cornell, V.C. Wind Stress Measurements

from the Open Ocean Corrected for Airflow Distortion by the Ship. J. Phys. Oceanogr. 1998, 28, 1511–1526.
[CrossRef]

28. Jarosz, E.; Mitchell, D.A.; Wang, D.W.; Teague, W.J. Major Tropical Cyclone. 2007, 557, 2005–2007.
29. Taylor, G.I. Skin friction of the wind on the earth’s surface. Proc. R. Soc. Lond. Ser. A 1916, 92, 196–199.

[CrossRef]
30. Masuda, T.; Kusaba, A. On the local equilibrium of winds and wind-waves in relation to surface drag.

J. Oceanogr. Soc. Jpn. 1987, 43, 28–36. [CrossRef]
31. Mellor, G.L. Users Guide for a Three Dimensional, Primitive Equation, Numberical Ocean Model; Program in

Atmospheric and Ocean Sciences, Princeton University: Princeton, NJ, USA, 1998.
32. Smith, S.D. Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr. 1980, 10, 709–726.

[CrossRef]
33. Govind, P.K. Omega windfinding systems. J. Appl. Meteorol. 1975, 14, 1503–1511. [CrossRef]
34. Chen, X.; Yu, Y. Enhancement of wind stress evaluation method under storm conditions. Clim. Dyn. 2016.

[CrossRef]
35. Makin, V.K. A note on the drag of the sea surface at hurricane winds. Bound. Layer Meteorol. 2005, 115,

169–176. [CrossRef]
36. Peng, S.; Li, Y.; Xie, L. Adjusting the wind stress drag coefficient in storm surge forecasting using an adjoint

technique. J. Atmos. Ocean. Technol. 2013, 30, 590–608. [CrossRef]
37. Luettich, R.; Westerink, J. ADCIRC: A (Parallel) ADvanced CIRCulation Model for Oceanic, Coastal and Estuarine

Waters; ADCIRC: Morehead, NC, USA, 2015.
38. Anderson, J.D. Ludwig Prandtl’s Boundary Layer. Phys. Today 2005, 58, 42–48. [CrossRef]
39. Franco, J.M.; Partal, P. RHEOLOGY—The Newtonian Fluid. Eolss 2000, I, 74–77.

86



J. Mar. Sci. Eng. 2016, 4, 58

40. Ball, W.W.R. A Short Account of The History of Mathematics; Dover Publications, Inc.: Queens County, NY,
USA, 1960.

41. Grimberg, G.; Pauls, W.; Frisch, U. Genesis of d’Alembert’s paradox and analytical elaboration of the drag
problem. Phys. D Nonlinear Phenom. 2008, 237, 1878–1886. [CrossRef]

42. Frisch, U. Translation of Leonhard Euler’s: General Principles of the Motion of Fluids. Available online:
https://arxiv.org/abs/0802.2383 (accessed on 2 September 2016).

43. Darrigol, O. Between Hydrodynamics and Elasticity Theory: The First Five Births of the Navier-Stokes
Equation. Arch. Hist. Exact Sci. 2016, 56, 95–150. [CrossRef]

44. Tani, I. History of Boundary Layer Theory. Annu. Rev. Fluid Mech. 1977, 9, 87–111. [CrossRef]
45. Schlichting, H.; Gersten, K. Boundary Layer Theory; Springer: New York, NY, USA, 1999.
46. Arakeri, F.; Shankar, P. Ludwig Prandtl and Boundary Layers in Fluid Flow How a Small Viscosity can Cause

Large Effects. Resonance 2000, 5, 48–63. [CrossRef]
47. Weber, R.O. Remarks on the Definition and Estimation of Friction Velocity. Bound. Layer Meteorol. 1999, 93,

197–209. [CrossRef]
48. Ekman, V.W. On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys. 1905, 2, 1–53.
49. Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H. The Oceans: Their Physics, Chemistry, and General Biology;

Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1942.
50. Garratt, J.R. Review of Drag Coefficients over Oceans and Continents. Mon. Weather Rev. 1977, 105, 915–929.

[CrossRef]
51. Wilson, B.W. Note on surface wind stress over water at low and high wind speeds. J. Geophys. Res. 1960, 65,

3377–3382. [CrossRef]
52. Andreas, E.L.; Mahrt, L.; Vickers, D. A New Drag Relation for Aerodynamically Rough Flow over the Ocean.

J. Atmos. Sci. 2012, 69, 2520–2537. [CrossRef]
53. Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzman, E.S.

On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31, 1–5.
[CrossRef]

54. Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: New York, NY, USA, 2012.
55. Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer Science & Business Media: Berlin, Germany, 2003.
56. McDonough, J.M. Introductory Lectures on Turbulence: Physics, Mathematics and Modeling. 2007. Avaliable

online: https://www.engr.uky.edu/~acfd/lctr-notes634.pdf (accessed on 1 September 2016).
57. Ting, D. Basics of Engineering Turbulence; Academic Press: New York, NY, USA, 2016.
58. Bradshaw, P. Possible origin of Prandt’s mixing-length theory. Nature 1974, 249, 135–136. [CrossRef]
59. Prandtl, L. Über die ausgebildete Turbulenz. In Proceedings of the 2nd International Congress Applied

Mechanics, Zurich, Switzerland, 12–17 September 1926; pp. 62–74.
60. Tollmien, W.; Schlichting, H.; Görtler, H.; Riegels, F.W. Chronologische Folge der Veröffentilchungen.

In Ludwig Prandtl Gesammelte Abhandlungen; Springer-Verlag: Berlin-Heidelberg, Germany, 1961; pp. 1–9.
61. Vos, R.; Farokhi, S. Introduction to Transonic Aerodynamics; Springer Netherlands: Dordrecht, The Netherlands, 2015.
62. Schlichting, H. Lecture Series ‘Boundary Layer Theory’ Part II—Turbulent Flows; National Advisory Committee

for Aeronautics (NACA): Washington, DC, USA, 1949.
63. Fowler, A. Mathematical Geoscience; Springer Science & Business Media: London, UK, 2011.
64. Furbish, D.J. Fluid Physics in Geology: An Introduction to Fluid Motions on Earth’s Surface and within Its Crust;

Oxford University Press: Oxford, UK, 1996.
65. Pye, K.; Tsoar, H. Aeolian Sand and sand Dunes; Springer-Verlag: Berlin, Germany, 2008.
66. Von Kármán, T. Mechanische änlichkeit und turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu

Göttingen, Math. Klasse 1930, 1930, 58–76.
67. Kantha, L.H.; Clayson, C.A. Small Scale Processes in Geophysical Fluid Flows; Academic Press: New York, NY,

USA, 2000.
68. Guan, C.; Xie, L. On the Linear Parameterization of Drag Coefficient over Sea Surface. J. Phys. Oceanogr.

2004, 34, 2847–2851. [CrossRef]
69. Charnock, H. Wind stress on a water surface. Q. J. R. Meteorol. Soc. 1955, 81, 639–640. [CrossRef]
70. Roll, H. Physics of the Marine Atmosphere; Academic Press: New York, NY, USA, 1965.
71. Mansour, A.E.; Ertekin, R.C. Proceedings of the 15th International Ship and Offshore Structures Congress:

3-Volume Set; Elsevier: Amsterdam, The Netherlands, 2003; p. 23.

87



J. Mar. Sci. Eng. 2016, 4, 58

72. Takagaki, N.; Komori, S.; Suzuki, N.; Iwano, K.; Kuramoto, T.; Shimada, S.; Kurose, R.; Takahashi, K. Strong
correlation between the drag coefficient and the shape of the wind sea spectrum over a broad range of wind
speeds. Geophys. Res. Lett. 2012, 39, 1–6. [CrossRef]

73. Wu, J. Wind Stress and Surface Roughness at Air-Sea Interface; HYRDRONAUTICS, Inc.: Laurel, MD, USA, 1967.
74. Scire, J.S.; Robe, F.R.; Fernau, M.; Yamartino, R.J. A User’s Guide for the CALMET Meteorological Model;

Earth Tech. Inc.: Land O Lakes, FL, USA, 2000.
75. Johnson, B.H.; Heath, R.E.; Hsieh, B.B.; Kim, K.W.; Butler, L. User’s Guide for a Three-Dimensional Numerical

Hydrodynamic, Salinity, and Temperature Model of Chesapeake Bay (No. WES/TR/HL-91-20); US Army Engineer
Waterways Experiment Station: Vicksburg, MS, USA, 1991.

76. Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.;
Luettich, R.A.; Dawson, C.; et al. A high-resolution coupled riverine flow, tide, wind, wind wave, and storm
surge model for southern louisiana and mississippi. Part II: Synoptic description and analysis of hurricanes
katrina and rita. Mon. Weather Rev. 2010, 138, 378–404. [CrossRef]

77. Wright, L.D. Beaches and coastal geology: Sea slick. Encycl. Earth Sci. 1982. [CrossRef]
78. Smith, S.D.; Banke, E.G. Variation of the sea surface drag coefficient with wind speed. Q. J. R. Meteorol. Soc.

1975, 101, 665–673. [CrossRef]
79. Wu, J. Wind-Stress coefficients over Sea surface near Neutral Conditions—A Revisit. J. Phys. Oceanogr. 1980,

10, 727–740. [CrossRef]
80. Roll, H.U. Physics of the Marine Atmosphere: International Geophysics Series Volume 7; Academic Press: New York,

NY, USA, 2016.
81. Wu, J. Wind stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Oceans 1982, 87,

9704–9706. [CrossRef]
82. SWAN: Scientific and Technical Documentation. Available online: http://swanmodel.sourceforge.net/

download/zip/swantech.pdf (accessed on 2 September 2016).
83. Large, W.G.; Pond, S. Open Ocean Momentum Flux Measurements in Moderate to Strong Winds.

J. Phys. Oceanogr. 1981, 11, 324–336. [CrossRef]
84. Pond, S.; Fissel, B.; Paulson, C.A. A note no bulk aerodynamic coefficients for sensible heat and moisture

fluxes. Bound. Layer Meteorol. 1974, 6, 333–339. [CrossRef]
85. Friehe, C.A.; Schmitt, K.F. Parameterization of Air-Sea Interface Fluxes of Sensible Heat and Moisture by the

Bulk Aerodynamic Formulas. J. Phys. Oceanogr. 1976, 6, 801–809. [CrossRef]
86. Kondo, J. Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol. 1975, 9, 91–112.

[CrossRef]
87. Large, W.G.; Pond, S. Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr. 1982, 12,

464–482. [CrossRef]
88. Liss, P.S.; Duce, R.A. The Sea Surface and Global Change; Cambridge University Press: Cambridge, UK, 2005.
89. Francis, J.R. The aerodynamic drag of a free water surface. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1951,

206, 387–406. [CrossRef]
90. Sheppard, P.A. Transfer across the earth’s surface and through the air above. Q. J. R. Meteorol. Soc. 1958, 84,

205–224. [CrossRef]
91. Deacon, E.L.; Webb, E.K. Physical Oceanography: II. Interchange of Properties between Sea and Air; Commonwealth

Scientific and Industrial Research Organization: Perth, Australia, 1962.
92. Anderson, R.J. A Study of Wind Stress and Heat Flux over the Open Ocean by the Inertial-Dissipation

Method. J. Phys. Oceanogr. 1993, 23, 2153–2161. [CrossRef]
93. Yelland, M.; Taylor, P.K. Wind stress measurements from the open ocean. Am. Meteorol. Soc. 1996, 26, 541–558.

[CrossRef]
94. Cole, H.L.; Rossby, S.; Govind, P.K. The NCAR windfinding dropsonde. Atmos. Technol. 1973, 2, 19–24.
95. Hock, T.F.; Franklin, J.L. The NCAR GPS Dropwindsonde. Bull. Am. Meteorol. Soc. 1999, 80, 407–420.

[CrossRef]
96. NOAA. Aircraft operation center. Gulfstream IV-SP (G-IV). Available online: https://upload.wikimedia.

org/wikipedia/commons/archive/2/2a/20151001222423%21G4-1_%28Gulfstream%29.jpg (accessed on
5 September 2016).

97. NCAR. NCAR UCAR EOL: AVAPS dropsonde. Available online: https://www.eol.ucar.edu/content/
gallery-2 (accessed on 5 September 2016).

88



J. Mar. Sci. Eng. 2016, 4, 58

98. Aberson, S.D.; Franklin, J.L. Impact on hurricane track and intensity forecasts of GPS dropwindsonde
observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bull. Am. Meteorol. Soc.
1999, 80, 421–427. [CrossRef]

99. Ocampo-Torres, F.J.; Donelan, M.A. Laboratory measurements of mass transfer of carbon dioxide and water
vapour for smooth and rough flow conditions. Tellus 1994, 46, 16–32. [CrossRef]

100. Powell, M.D. Final Report on the NOAA Joint Hurricane Testbed: Drag Coefficient Distribution and Wind Speed
Dependence in Tropical Cyclones; NOAA/AOML: Miami, FL, USA, 2007.

101. Wright, C.W.; Walsh, E.J.; Vandemark, D.; Krabill, W.B.; Garcia, A.W.; Houston, S.H.; Powell, M.D.; Black, P.G.;
Marks, F.D. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean. J. Phys. Oceanogr.
2001, 31, 2472–2488. [CrossRef]

102. Black, P.G.; D’Asaro, E.A.; Drennan, W.M.; French, J.R.; Niller, P.P.; Sanford, T.B.; Terrill, E.J.; Walsh, E.J.;
Zhang, J.A. Air–sea exchange in hurricanes: synthesis of observations from the coupled boundary layer
air–sea transfer experiment. Am. Meteorol. Soc. 2007, 88, 359–374. [CrossRef]

103. Holthuijsen, L.H.; Powell, M.D.; Pietrzak, J.D. Wind and waves in extreme hurricanes. J. Geophys. Res. Oceans
2012, 117. [CrossRef]

104. Moon, I.-J.; Ginis, I.; Hara, T.; Thomas, B. A physics-based parameterization of air–sea momentum flux at
high wind speeds and its impact on hurricane intensity predictions. Mon. Weather Rev. 2007, 135, 2869–2878.
[CrossRef]

105. Ginis, I.; Khain, A.P.; Morozovsky, E. Effects of large eddies on the structure of the marine boundary layer
under strong wind conditions. J. Atmos. Sci. 2004, 72, 3049–3063. [CrossRef]

106. Smith, S.D.; Anderson, R.J.; Oost, W.A.; Kraan, C.; Maat, N.; de Cosmo, J.; Katsaros, K.B.; Davidson, K.L.;
Bumke, K.; Hasse, L.; et al. Sea surface wind stress and drag coefficients: The HEXOS results.
Bound. Layer Meteorol. 1992, 60, 109–142. [CrossRef]

107. Toba, Y.; Iida, N.; Kawamura, H.; Ebuchi, N.; Jones, I.S. Wave dependence of sea-surface wind stress.
J. Phys. Oceanogr. 1990, 20, 705–721. [CrossRef]

108. Moon, I.-J.; Ginis, I.; Hara, T.; Tolman, H.; Wright, C.W.; Walsh, E.J. Numerical simulation of sea surface
directional wave spectra under hurricane wind forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [CrossRef]

109. Tolman, H.L. User Manual and System Documentation of WAVEWATCH-IIITM Version 3.14. Available
online: http://nopp.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf (accessed on 2 September 2016).

110. Moon, I.-J.; Hara, T.; Ginis, I.; Belcher, S.E.; Tolman, H.L. Effect of surface waves on air sea momentum
exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci. 2004, 61, 2321–2333. [CrossRef]

111. Foreman, R.J.; Emeis, S. Revisiting the definition of the drag coefficient in the marine atmospheric boundary
layer. J. Phys. Oceanogr. 2010, 40, 2325–2332. [CrossRef]

112. Andreas, E.L.; Mahrt, L.; Vickers, D. An improved bulk air-sea surface flux algorithm, including
spray-mediated transfer. Q. J. R. Meteorol. Soc. 2015, 141, 642–654. [CrossRef]

113. Zijlema, M.; van Vledder, G.P.; Holthuijsen, L.H. Bottom friction and wind drag for wave models. Coast. Eng.
2012, 65, 19–26. [CrossRef]

114. Powell, M.D. New findings on hurricane intensity, wind field extent and surface drag coefficient behavior.
In Proceedings of the Tenth International Workshop on Wave Hindcasting and Forecasting and Coastal
Hazard Symposium, Oahu, HI, USA, 11–16 November 2007.

115. Powell, M.D. New findings on Cd behavior in tropical cyclones. In Proceedings of the 28th Conference on
Hurricanes and Tropical Meteorology, Orlando, FL, USA, 28 April 2008.

116. Petersen, G.N.; Renfrew, I.A. Aircraft-based observations of air–sea fluxes over Denmark Strait and the
Irminger Sea during high wind speed conditions. Q. J. R. Meteorol. Soc. 2009, 135, 2030–2045. [CrossRef]

117. Amorocho, J.; DeVries, J.J. A new evaluation of the wind stress coefficient over water surfaces. J. Geophys.
Res. Oceans 1980, 85, 433–442. [CrossRef]

118. Yokota, M.; Hashimoto, N.; Kawaguchi, K.; Kawai, H. Development of an inverse estimation method of sea
surface drag coefficient under strong wind conditions. Coast. Eng. 2009, 65, 181–185. [CrossRef]

119. Bye, J.A.T.; Jenkins, A.D. Drag coefficient reduction at very high wind speeds. J. Geophys. Res. 2006, 111, 1–9.
[CrossRef]

120. Bye, J.A.; Wolff, J.-O. Charnock dynamics: A model for the velocity structure in the wave boundary layer of
the air–sea interface. Ocean Dyn. 2008, 58, 31–42. [CrossRef]

89



J. Mar. Sci. Eng. 2016, 4, 58

121. Kudryavtsev, V.N. On the effect of sea drops on the atmospheric boundary layer. J. Geophys. Res. Oceans
2006, 111, 1–18. [CrossRef]

122. Kudryavtsev, V.N.; Makin, V.K. Aerodynamic roughness of the sea surface at high winds.
Bound. Layer Meteorol. 2007, 125, 289–303. [CrossRef]

123. Soloviev, A.; Lukas, R. Effects of bubbles and sea spray on air–sea exchange in hurricane conditions.
Bound. Layer Meteorol. 2010, 136, 365–376. [CrossRef]

124. Belcher, S.E.; Hunt, J.C.R. Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 1998, 30, 507–538.
[CrossRef]

125. Peirson, W.L.; Garcia, A.W. On the wind-induced growth of slow water waves of finite steepness.
J. Fluid Mech. 2008, 608, 243–274. [CrossRef]

126. Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for
Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. 1996,
101, 3747–3764. [CrossRef]

127. Webster, P.; Lukas, R. TOGA COARE: The coupled ocean-atmosphere response experiment. Bull. Am.
Meteorol. Soc. 1992, 73, 1377–1416. [CrossRef]

128. Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes:
Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [CrossRef]

129. Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.;
Vickers, D.; Hersbach, H. On the exchange of momentum over the open ocean. J. Phys. Oceanogr. 2013, 43,
1589–1610. [CrossRef]

130. Weiss, C.C.; Schroeder, J.L. StickNet: A new portable, rapidly deployable surface observation system.
Bull. Am. Meteorol. Soc. 2008, 89, 1502–1503.

131. Zachry, B.C.; Schroeder, J.L.; Kennedy, A.B.; Westerink, J.J.; Letchford, C.W.; Hope, M.E. A case study
of nearshore drag coefficient behavior during hurricane ike (2008). J. Appl. Meteorol. Climatol. 2013, 52,
2139–2146. [CrossRef]

132. Vickers, D.; Mahrt, L.; Andreas, E.L. Estimates of the 10-m neutral sea surface drag coefficient from aircraft
eddy-covariance measurements. J. Phys. Oceanogr. 2013, 43, 301–310. [CrossRef]

133. Peng, S.; Li, Y. A parabolic model of drag coefficient for storm surge simulation in the South China Sea.
Sci. Rep. 2015, 5. [CrossRef] [PubMed]

134. Large, W.G.; Yeager, S.G. The global climatology of an interannually varying air-sea flux data set.
Clim. Dyn. Dyn. 2008, 33, 341–364. [CrossRef]

135. Mueller, J.A.; Veron, F. Nonlinear formulation of the bulk surface stress over breaking waves: Feedback
mechanisms from air-flow separation. Bound. Layer Meteorol. 2009, 130, 117–134. [CrossRef]

136. Hersbach, H. Sea-surface roughness and drag coefficient as function of neutral wind speed. J. Phys. Oceanogr.
2011, 41, 247–251. [CrossRef]

137. Zhao, W.; Liu, Z.; Dai, C.; Song, G.; Lv, Q. Typhoon air-sea drag coefficient in coastal regions. J. Geophys.
Res. Oceans 2015, 120, 716–727. [CrossRef]

138. Bi, X.; Gao, Z.; Liu, Y.; Liu, F.; Song, Q.; Huang, J.; Huang, H.; Mao, W.; Liu, C. Observed drag coefficients
in high winds in the near offshore of the South China Sea. J. Geophys. Res. Atmos. 2015, 120, 6444–6459.
[CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

90



Journal of

Marine Science 
and Engineering

Article

Influence of Wind Strength and Duration on Relative
Hypoxia Reductions by Opposite Wind Directions in
an Estuary with an Asymmetric Channel

Ping Wang 1,*, Harry Wang 2, Lewis Linker 3 and Kyle Hinson 4

1 Virginia Institute of Marine Science, Chesapeake Bay Office, 410 Severn Avenue, Annapolis, MD 21403, USA
2 Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA; wang@vims.edu
3 USEPA Chesapeake Bay Program Office, 410 Severn Avenue, Annapolis, MD 21403, USA;

linker.lewis@epa.gov
4 Chesapeake Research Consortium, 645 Contees Wharf Road, Edgewater, MD 21037, USA;

khinson@chesapeakebay.net
* Correspondence: pwang@chesapeakebay.net; Tel.: +1-410-267-5744

Academic Editor: Richard P. Signell
Received: 8 July 2016; Accepted: 9 September 2016; Published: 19 September 2016

Abstract: Computer model experiments are applied to analyze hypoxia reductions for opposing
wind directions under various speeds and durations in the north–south oriented, two-layer-circulated
Chesapeake estuary. Wind’s role in destratification is the main mechanism in short-term reduction of
hypoxia. Hypoxia can also be reduced by wind-enhanced estuarine circulation associated with winds
that have down-estuary straining components that promote bottom-returned oxygen-rich seawater
intrusion. The up-bay-ward along-channel component of straining by the southerly or easterly wind
induces greater destratification than the down-bay-ward straining by the opposite wind direction,
i.e., northerly or westerly winds. While under the modulation of the west-skewed asymmetric
cross-channel bathymetry in the Bay’s hypoxic zone, the westward cross-channel straining by easterly
or northerly winds causes greater destratification than its opposite wind direction. The wind-induced
cross-channel circulation can be completed much more rapidly than the wind-induced along-channel
circulation, and the former is usually more effective than the latter in destratification and hypoxia
reduction in an early wind period. The relative importance of cross-channel versus along-channel
circulation for a particular wind direction can change with wind speed and duration. The existence of
month-long prevailing unidirectional winds in the Chesapeake is explored, and the relative hypoxia
reductions among different prevailing directions are analyzed. Scenarios of wind with intermittent
calm or reversing directions on an hourly scale are also simulated and compared.

Keywords: summer hypoxia/anoxia; wind speeds and directions; prolonged unidirectional wind

1. Introduction

Excessive nutrient and organic matter loads from the watershed and nutrient-driven algal blooms
in the spring and summer are the main drivers of summer hypoxia and anoxia in the Chesapeake Bay
estuary [1,2]. On the other hand, destratification by wind can increase dissolved oxygen (DO) in deep
water and reduce hypoxia [3–5]. With the north-south oriented (Bay head to mouth) Chesapeake
Bay main channel, different wind directions cause different degrees of destratification and associated
reduction in hypoxia [6–10]. Hypoxia describes a condition of depressed dissolved oxygen, defined
as concentrations less than 2 mg/L [11,12], and is a primary concern for Chesapeake water quality
management [13]. The lower bound of hypoxia (DO ≤ 0.2 mg/L) is referred to as anoxia. This study
uses anoxic volume (the volume of water with DO levels ≤ 0.2 mg/L) to measure the extent of the

J. Mar. Sci. Eng. 2016, 4, 62 91 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 62

hypoxic condition and provide a reference for relative hypoxia reductions between opposite wind
directions when wind speed or duration changes.

There are three ways by which wind can effect destratification and mixing [6]: (a) direct wind
mixing; (b) along channel straining; and (c) cross channel straining. Direct wind mixing agitates
the water surface and transmits energy downwards to disturb lower layers and effect stratification.
Destratification is stronger in southerly (S) and northerly (N) winds than in easterly (E) and westerly (W)
winds in most locations in the Chesapeake Bay, because the northerly and southerly winds have
longer fetches along the main channel’s orientation [6]. Cross channel straining by westward or
eastward components of the wind-induced flow generates counterclockwise or clockwise (looking
to the north) circulation and disturbs the stratified layers. The cross-channel bathymetry along the
Bay’s hypoxic/anoxic zone in the northerly Bay is dominant with a steeper and narrower slope on the
eastern shoal (Figure 1). Such a bathymetry shown from a vertical cross-channel Profile in the Northern
Bay is abbreviated the PN-type bathymetry or cross section. The asymmetric bathymetry modifies
wind-induced cross-channel circulation differently among varying wind directions. In the strongly
stratified summer in the Chesapeake Bay, circulation by easterly winds promotes greater destratification
and hypoxia reduction than that caused by westerly winds [10,14]. Along-channel straining by the
up-Bay-ward southerly winds pushes surface water to the Bay head, whereby water levels are elevated
and downwelling is induced. This then creates a return down-Bay-ward bottom current, generating
along-channel circulation. In the exact opposite manner, down-Bay-ward northerly winds push surface
water to the Bay mouth, generating along-channel circulation via a return up-Bay-ward bottom current,
in a reverse spin-direction to that produced by the southerly wind. Southerly winds blow against
the net direction of surface flow and can reduce stratification significantly. Although along-channel
straining by northerly winds point in the same direction as net surface flow, which could promote
stratification, wind-induced cross-channel circulation and direct wind mixing can still cause significant
mixing and destratification at speeds greater than 4 m/s [6,10].
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Figure 1. Flow velocity and lateral circulation pattern at a PN-type cross section in two opposite wind
directions: (A) Easterly wind; and (B) westerly wind (after Wang et al. [10]). Note: The velocities were
averaged from the first 12 h of the wind event of 8 m/s. The long dashed arrow indicates the tilt of the
free surface when surface water is flushed from the upwind site to the downwind site. The dark arrow
along the slope shows the direction of downwelling due to elevated water level.

Due to the Coriolis effect, the wind-induced surface water flow by all four idealized wind
directions have both along-channel and cross-channel components (Table 1). The wind-induced
along-channel circulation by the northerly and southerly winds is much stronger than the
wind-induced cross-channel circulation by the easterly and westerly winds, because of the longer
fetches associated with northerly and southerly winds. Indeed, the east- or west- components of the
northerly and southerly winds are as strong as the east- or west-components of easterly and westerly
winds at the same speeds, and are even greater in narrow channels.
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Table 1. Directions of along-channel and cross-channel components of wind-induced surface flow in
the Chesapeake Bay main channel 1.

Wind direction
Direction of surface flux of
along-channel circulation

Direction of surface flux of
cross-channel circulation

Northerly To S (down-Bay-ward), principal To W, secondary
Southerly To N, (up-Bay-ward), principal To E, secondary
Easterly To N, secondary To W, principal
Westerly To S, secondary To E, principal

1 After Table 2 of Wang et al. [10].

Model experiments of 2–3 day winds at 6–8 m/s in the Chesapeake Bay indicated that the
southerly wind reduced more hypoxic volume than the northerly wind during their respective periods
of peak hypoxia reduction [7,14], illustrated in Figure 2. This is due to greater destratification by the
along-channel straining in the southerly wind. After analyzing time-series development of stratification
and bottom DO, Wang et al. [10] found that, under the modulation of asymmetric cross-channel
bathymetry on wind-induced cross-channel circulation, northerly winds caused greater destratification
and hypoxia reduction than southerly winds in the early wind period (i.e., before Hour 24 of an 8 m/s
wind event) when the wind-induced along-channel circulation does not strongly influence the Bay’s
hypoxic/anoxic center.
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Figure 2. Time series of predicted anoxic volume (defined as the volume of water with DO ≤ 0.2 mg/L)
in the mainstem Bay for 4 idealized wind directions at 8 m/s for 2 days. From Wang et al. [14].

Destratification by wind promotes the mixing of bottom and surface waters thereby oxygenating
lower layers and reducing hypoxia, which has been studied extensively [4,7,15–17]. Besides the
destratification-related hypoxia reduction, there is another mechanism that reduces hypoxia by
wind, which is related to an enhanced estuarine circulation. This is mainly influenced by the wind
directions that induce a down-Bay-ward component of surface-flow, e.g., the northerly or westerly
wind. Down-Bay-ward along-channel straining generates a returned up-Bay-ward force at the bottom,
thereby enhancing estuarine circulation. The promoted seawater intrusion along the lower layer can
bring in oxygen-rich water to the Bay’s hypoxic zone and reduce hypoxia, and this effect could be
more prominent under a prolonged period of northerly wind [14].

The overall destratification by wind direction is dependent on the aforementioned three types of
mixing processes. The overall hypoxia reduction is dependent on the amount of oxygen-rich water
intruding into the lower level of the hypoxic zone, where destratification plays an important role,
and potentially enhanced bottom seawater intrusion. The two processes can also differ as to which
wind direction produces a greater hypoxia reduction, and the strengths of the effects can vary with
wind speed and duration. Thus, complicated phenomena can occur in winds of different durations
and speeds. Most studies of relative influences on destratification or hypoxia reduction by two
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opposite wind directions were based on relatively short duration wind events, equal to or less than
three days [6–8,10]. The relative hypoxia reductions among wind directions could differ among
prolonged, e.g., months long, unidirectional winds compared to short period wind events (hours
to three days). This paper explores such a range of model experiments, including various wind
speeds and durations, and analyses the temporal development of anoxic volume to better assess
wind’s influence on hypoxia and anoxia. The hydrodynamics and mechanisms that explain the
differential destratification and hypoxia reduction by different wind directions have been described
previously [6,8,10] and this analysis will primarily focus on model simulated anoxic volumes.

Because wind direction can change frequently this work also conducted model experiments on
winds with directions changing hourly or four-hourly, with or without intermittent periods of no wind
velocity, to compare against unidirectional winds of constant speed. Despite frequent changes in wind
direction, the phenomena of unidirectional prevailing winds in some seasons have been observed in
the Chesapeake. It is therefore of interest to study how anoxia is affected by different month-long
prevailing unidirectional winds. This work will establish additional model scenarios involving both
the observed and modified wind fields that have prevailing directions in certain months to analyze the
impacts on anoxia and hypoxia. Because the surface flow direction could change with tidal stages,
the influence of tides is also briefly studied.

2. Methods

The coupled CH3D hydrodynamic model and CE-QUAL-ICM water quality model, which compose
the Chesapeake Bay Water Quality and Sediment Transport Model (WQSTM) [18], is used. The WQSTM
is peer reviewed and was applied in the development of the Chesapeake Total Maximum Daily Load
(TMDL) [13]. The hydrodynamic module simulates estuarine circulation considering factors of wind,
freshwater inputs, tides, and Coriolis effects [19]. The water quality module simulates 36 state variables
including various species of nutrients, 3 types of phytoplankton, and related biochemical processes.
The errors of estimated DO in the mainstem are 0.3 mg/L and −0.45 mg/L at depths of 6.7–12.8 m and
depths greater than 12.8 m, respectively [18]. Hourly anoxic volume of the Bay is calculated by adding
volumes of the model cells that have hourly DO ≤ 0.2 mg/L. Several sets of model scenarios were
designed to analyze the effects of wind speed, direction, and duration. Appendix A further describes
the model.

2.1. Scenario Sets of Winds at a Fixed Speed and Fixed Direction

In this category of scenarios at fixed speed and fixed direction, three scenario sets were designed.
Scenario Sets A, B, and C model wind durations of two days, 1 h, and 20 days, respectively.
Within a scenario set, an individual scenario has either no speed or a fixed wind speed and direction
from the north (N), south (S), east (E), or west (W). All wind events began (labeled as Hour 0) at
4:00 a.m. on Day 222 of Year 1996 after a spin-up of 221 days under a no-wind condition. The wind
speed was also set to zero after the wind event. Daily nutrient inputs comparable to those observed
in 1996 were estimated from a watershed model [20]. The scenario of no-wind throughout year 1996
is used as a reference to quantify the extent of anoxia reduction. Year 1996 had high winter-spring
nutrient load that yielded higher summer anoxia compared to most other years.

A subset of Scenario Set A (Scenario Set A_8) of 8 m/s winds over two days is defined as
the Core Scenario Set, and is used as a baseline to compare to other scenarios. This is because the
mechanisms leading to differences in destratification and changes in bottom DO for opposite wind
directions, including the cross-channel versus along-channel circulation and the effect of cross-channel
bathymetry, have been analyzed comprehensively [10].

2.2. Scenario Set D: Fixed Wind Direction with Intermittent No-Wind at Every Odd Hour

Similar to the Core Scenario Set, Scenario Set D lasts for two days in a fixed direction with
speeds of 8 m/s. However, wind speeds of 8 m/s occur only at even hours, and there is no wind
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speed at odd hours. The scenarios are labeled d_0_d, where d will be substituted by N, S, E, or W to
indicate the central direction from which the wind blows (at 8 m/s) and 0 implies the intermittent
no-wind condition.

2.3. Scenario Set E: Reversing Direction at Every Even Hour, and No-Wind at Every Odd Hour

Scenario Set E is a modification of Scenario Set D wherein there are no wind speeds at odd hours
and speeds of 8 m/s during even hours. However, the direction of the 8 m/s winds reverses every
even hour, switching between S and N, or E and W. A scenario would be labeled, for example, S_0_N
if the direction of the wind switches between southerly and northerly.

2.4. Scenario Set F: Reversing Wind Direction Every One Hour

Scenario Set F is similar to the Core Scenario Set; speeds are constant at 8 m/s, but direction
reverses every hour, switching between S and N, or E and W and are labeled S_N or E_W.

2.5. Scenario Set G: Wind Direction Rotates ± 90 Degrees Every 4 h from a Central Direction

Most wind conditions in Scenario Set G are the same as those in the Core Scenario Set, i.e., wind
speeds of 8 m/s lasting approximately 2 days starting at 4:00 a.m. on Day 222 of 1996, with difference
being a rotation of ± 90 degrees about a central wind direction (N, S, E, or W) every 4 h (Table 2).
The scenarios are labeled d ± 90, where d represents the central wind direction. A fifth scenario, S_360,
rotates 8 m/s winds clockwise every 4 h, starting from the south.

Table 2. Scenario Set G: Direction rotates ± 90 degree every 4 h from a central direction 1.

Hour
Wind direction at hours since wind starts Prevail

direction0–4 4 8 12 16 20 24 28 32 36 40

Scenario
name

S ± 90 S W S E S W S E S W W S
N ± 90 N E N W N E N W N E E N
E ± 90 E N E S E N E S E N N E
W ± 90 W S W N W S W N W S S W
S_360 2 S W N E S W N E S W W Non

1 Wind speed = 8 m/s throughout the wind event. 2 There is no central direction for Scenario S_360, which begins
with southerly winds.

2.6. Scenario Set H: Year-Long Winds at a Fixed Direction

This set of scenarios preserved observed 1996 wind speeds, but the directions were fixed to only
N, S, E, or W. The fixed unidirectional wind began at Day 1 of 1996 after a five-year (1991–1995) spin-up
using observed wind conditions. Daily freshwater and nutrient inputs were based on the calibrated
watershed model. The scenario set is labeled Y96_d (Table 3), where d specifies the wind direction.
Two other scenarios are also conducted for reference. Scenario Y96_0 has no-wind in 1996, and Scenario
Y96_obs uses the observed wind direction and speed.

Table 3. Scenario Set H: Using observed wind speeds in 1996, but are fixed to one direction for a year.

Scenario name Wind speeds Wind direction Watershed inputs Note

Y96_N 1996 obs Northerly 1996 obs
Wind directions are modified
starting on 1 January for the

entire year

Y96_S 1996 obs Southerly 1996 obs
Y96_E 1996 obs Easterly 1996 obs
Y96_W 1996 obs Westerly 1996 obs
Y96_0 0 m/s N/A 1996 obs

Y96_obs 1996 obs 1996 obs 1996 obs Equals 1996 calibration run
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2.7. Scenario Set I: Rotating Direction Based on Observed Wind

June 1996 and July 2004 had especially dominant southerly winds (Figure 3). In Scenario Set I,
the observed wind directions are rotated clockwise 90, 180, or 270 degrees (Table 4). They are labeled
as Yyy_cw90, Yyy_cw180, and Yyy_cw270, respectively, where yy represents either 1996 or 2004 to
indicate the year of base-data for wind and watershed inputs. Only the winds in a specified summer
month, i.e., June 1996 or July 2004, were rotated. The prevailing directions of these scenarios are
listed in Table 4. The scenario without rotation is labeled Yyy_cw00, which is also labeled Yyy_obs,
as a non-rotation scenario is equivalent to the observed wind condition.

June, 1996 July, 2004

<=2Speed (m/s) >2 &<=4 >4 &<=8 >8

A) B)(A) (B)

Figure 3. Wind roses of: (A) June 1996; and (B) July 2004.

Table 4. Scenarios Set I: Rotating wind directions from the observed wind fields that had a month-long
prevailing direction.

Scenario names for modification on Angles of wind dir
rotated

Prevailing wind dir
after rotate1996, June wind 2004, July wind

Y96_obs Y04_obs No rotate S
Y96_cw90 Y04_cw90 90◦ c.w. W
Y96_cw180 Y04_cw180 180◦ c.w. N
Y96_cw270 Y04_cw270 270◦ c.w. E

Table 5 summarizes the above nine scenario sets. Note: The scenario labeled Y96_obs in all
scenarios sets (Tables 3 and 4) is identical in each.

Table 5. Summary of scenario sets.

Wind direction Speed (m/s) Duration Notes
Symbol for
Scenario *

A Fixed, (blowing from N,
S, E, W)

Constant
(e.g., at 8, 4, 2, etc., m/s) 2 days

Start at 4:00 a.m.
8 August 1996,

with 7-month spin up.

A_8 is specifically
for speed = 8 m/s

B Fixed Constant
(e.g., at 8, 4, 2, etc., m/s) 1 h

C Fixed Constant
(e.g., at 8, 4, 2, etc. m/s) 20 days

D Fixed 8 m/s at even hours,
0 at odd hours ~2 days d_0_d

E Reverse at every even
hour

8 m/s at even hours,
0 at odd hours ~2 days S_0_N or E_0_W

F Reverse every 1-h Constant 8 m/s ~2 days S_N or E_W

G Rotating ± 90◦ every 4 h
from a central direction. Constant 8 m/s ~2 days d ± 90. See Table 2.

H Fixed Observed Year-long 1996 Y96_d. See Table 3.

I
Rotating 90◦, 180◦,
and 270◦ from the
observed direction

Observed June or July 1996, 2004 See Table 4

* Note: d is to be substituted with N, S, E or W to represent the central wind direction. 0 indicates intermittent
no wind.
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3. Results and Discussions

The analyses are based on model simulated anoxic volumes, mainly the reduction of anoxic
volume from the no-wind scenario. The anoxic volumes are only compared at or before the peak
reduction, while the post-peak recovery of anoxic volume is not covered in this paper.

3.1. Relative Anoxia Reduction by Wind Directions in Two-Day Wind Events

The core scenario A_8 (wind speeds of 8 m/s for two days, Figure 4D) is the same as the key
scenario used in Wang et al. [10]. Here it is used as a reference to compare the results from other
scenarios. Thus, it is useful to review the key findings by Wang et al. [10]. The minimum point of
the curves in Figure 4D represents the maximum anoxic volume reduction. The dominant PN-type
cross-channel bathymetry in the Bay’s anoxic center provides a favorable condition for the easterly
wind to have a greater destratification than the westerly wind under the wind-induced cross-channel
circulation [10]. Thus, the easterly wind reduces more anoxia than the westerly wind. The direction of
the southerly and northerly wind travel, respectively, against and along with the net transport direction
of the surface fresher water, resulting in stronger destratification and greater reduction of anoxia by
the southerly wind [6,7]. Notably, before Hour 24 of the wind event, northerly winds reduced anoxia
more than southerly winds, also due to the effects of the PN-type bathymetry that modulates the
wind-induced cross-channel circulation [10]. The northerly wind has westward straining component
as the easterly wind, and the southerly wind has eastward straining component as the westerly wind.
Thus, under the modulation of the PN-type bathymetry on the wind-induced cross-channel circulation,
the northerly wind promotes greater destratification. Cross-channel circulation under the simulated
wind speeds could be completed in a couple of hours, while a timeline of 1–2 days is necessary for the
wind-induced along-channel circulation to effectively influence the anoxic center [21]. Before Hour 24,
the northerly wind reduces more anoxic volume than the southerly wind, when the wind-induced
cross-channel circulation plays a more important role. Following this period, however, the southerly
wind-induced along-channel circulation (via downwelling from the Bay head) influences a wider area
of the anoxic zone, leading to an overall greater anoxia reduction. The rest of this section will discuss
anoxia reduction by winds at speeds different than the Core Scenario.

Northerly versus southerly wind. At a speed of 10 m/s, the transition point of greater anoxia
reduction from northerly winds to southerly winds occurs one hour earlier (at Hour 23, Figure 4E) than
the Core Scenario (Figure 4D), because the influence of the wind-induced along-channel circulation by
the southerly wind is greater at higher speeds.

At speeds of 6 m/s, the maximum anoxic volume reduction by northerly winds becomes closer to
that produced by southerly winds, and the transition to greater anoxia reduction by southerly winds is
delayed to Hour 32 (Figure 4C). This is due to a slower influence exercised upon the anoxic center by
the wind-induced along-channel circulation at lower wind speeds.

At 2 or 4 m/s wind speeds, destratification is weak and the influence of wind-induced
along-channel circulation by southerly winds is weak and slow. The aforementioned transition
does not occur, and northerly winds reduce anoxia more than southerly winds across the entire time
period (Figure 4A,B). Again, this is primarily controlled by the wind-induced cross-channel circulation
under the modulation of the PN-type cross-channel bathymetry.
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Figure 4. Hourly anoxic volume reduction in the mainstem Bay compared to the no-wind condition
forfour idealized wind directions in Scenario Set A (two-day duration) at five speed settings: (A) 2 m/s;
(B) 4 m/s; (C) 6 m/s; (D) 8 m/s; and (E) 10 m/s. The initial anoxic volume was approximately 10 km3

before the wind event, which began at 4:00 a.m. of 10 August 1996 (i.e., Hour 0), and is the origin
(i.e., 0) of the x-axis.

It should also be noted that the promoted up-Bay-ward bottom seawater intrusion promoted by
northerly winds also plays a certain role, which can be seen in DO contours of along-channel sections
in Figures 5 and 6. Figure 5 represents Hour 24 of the two-day wind scenario at 8 m/s, while Figure 6
shows Hour 48 of a two-day wind scenario at 2 m/s. The symbol X by the x-axis marks the southern
end of the 0 mg/L DO isopleths that intersect with the bottom bathymetry. Compared to the no-wind
scenarios in Figures 5A and 6A, the X retreats northwards for northerly winds (Figures 5B and 6B)
and extends further south in southerly winds (Figures 5C and 6C). The role of the enhanced bottom
seawater intrusion in anoxia reduction is difficult to quantitatively separate from other mechanisms.
In 8 m/s wind velocities, the bulk anoxia reduction are mainly controlled by wind’s mixing and
destratification, while the contribution of oxygenation by enhanced bottom seawater intrusion from
northerly (or westerly) winds is relatively small (Figure 5). In 2 m/s wind velocities, mixing or
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destratification is weak, the initial stratification is well maintained, and the DO isopleths in the four
winds are similar to those in the no-wind condition (Figure 6), exhibiting virtually no difference.
The intrusion of oxygen-rich seawater via enhanced estuarine circulation by northerly winds caused
the 0 mg/L DO isopleths to shrink and reduced overall anoxic volume. This can be further seen in
Figure 7 where bottom DO concentrations are plotted, northerly winds produce higher bottom DO
than southerly winds, consistent with the anoxic volume reduction by northerly versus southerly
winds shown in Figure 4A.

Figure 5. Contours of DO concentration (mg/L) along the main channel from mid lower Bay (south) to
mid upper Bay (north) at Hour 24 of a two-day wind scenario at 8 m/s.

Figure 6. Contours of DO concentration (mg/L) along the main channel from mid lower Bay (south) to
mid upper Bay (north) at Hour 48 of a two-day wind scenario at 2 m/s.
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Figure 7. Bottom DO concentrations (mg/L) along the main channel near the south boundary of the
anoxic zone for the two-day scenario at 2 m/s. The traverse is approximate at the locations from 50 km
to 100 km in Figure 5 or Figure 6: (A) Hour 24 of the wind event; and (B) Hour 48 of the wind event.

Easterly versus westerly winds. In easterly and westerly winds, the wind-induced cross-channel
circulation is the dominant component that causes mixing and anoxia reduction. The PN-type
cross-channel bathymetry provides favorable conditions for easterly winds over westerly winds
to effect destratification by cross-channel circulation to a greater extent. Additionally, easterly winds
have an up-Bay-ward component of along-channel straining, like southerly winds. Thus, at speeds of
6 m/s and greater in the two-day winds, easterly winds reduced more anoxia than westerly winds
throughout the entire two-day wind event (Figure 4C–E).

At wind speeds of 2 or 4 m/s, destratification induced by easterly and westerly winds was weak
and the enhanced estuarine circulation due to westerly winds became relatively important in reducing
anoxia, especially in the late wind period. Before Day 1, the hypoxia reduction was mainly controlled
by the bathymetry-modulated wind-induced cross-channel circulation; therefore, easterly winds had
a greater anoxia reduction than westerly winds. After about 24 h, westerly winds had a greater
anoxia reduction than easterly winds, including the point of peak anoxia reduction (Figure 4A,B),
which is mainly due to the enhanced estuarine circulation by the westerly wind. The influence of
bottom seawater intrusion on anoxia by westerly versus easterly winds can also be seen in Figure 6
by the direction in which the symbol X moves. At wind speeds of 2 m/s, westerly winds caused
the 0 mg/L DO isopleths to retreat northwards, reducing anoxia (Figure 6E), and westerly winds
produced higher bottom DO than easterly winds (Figure 7). During most times after Hour 24 in the
scenarios of wind speeds equal to 2 or 4 m/s, westerly winds reduced anoxia to a greater extent than
easterly winds (Figure 4A,B). Before Hour 24, easterly winds reduced more anoxic volume because this
period was still primarily controlled by the bathymetry-modulated cross-channel circulation, while
the enhanced estuarine circulation effected by westerly winds had not yet reached the anoxic center to
a significant extent.

The above processes help to explain the summary figure (Figure 8) of maximum anoxia reduction
among wind directions at different speeds of the two-day winds, as seen in Figure 4.

Assessing the influence of tide. The stages of tide (ebb versus flood) at the moment when the wind
event starts can also influence the responses of destratification to wind’s longitudinal straining [22,23].
Figure 9b shows simulated hourly anoxic volume on 10 and 11 August 1996 from a no-wind scenario.
The average daily anoxic volume increased from Day 1 to Day 2 due to strong oxygen consumption in
early August. The two peaks and two valleys of anoxic volume in one day (Figure 9b) were associated
with the M2 tide (Figure 9a). The peaks of the anoxic volume (lower DO) were associated with the
stage of low-water after ebb tide, and the valleys of the anoxic volume (higher DO) were associated
with the stage of high-water after flood tide. The flood tide brought oxygen-rich seawater to the anoxic
zone and reduced anoxic volume. The influence of tides on the fluctuation of anoxic volume reached
approximately 0.3 km3 in this simulated high anoxic period.
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Figure 8. Peak anoxic volume reduction in the mainstem Bay from the no-wind condition by four wind
directions in Scenario Set A (i.e., two-day duration) at five speed settings. Greater negative values
correspond to greater anoxia reductions.
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Figure 9. Tidal stage and simulated annoxic volume in 10 and 11 August 1996: (A) Water elevation at
the Bay mouth; and (B) simulated anoxic volume in the no wind scenario. The M2 tide contributes
significantly to the fluctuation of anoxic volume.

The first arrow in Figure 9A,B indicates the wind starting time in scenario set A_8 (Figure 4d).
It started at 4:00 a.m. on 10 August 1996, near high-tide as ebbing began at the Bay mouth. The second
arrow indicates the wind’s starting time for another scenario set of 8 m/s winds, but the wind event
began 6 hours later, at 10:00 a.m., near low-tide when flooding began at the Bay mouth. Figure 10 plots
the simulated anoxic volume reductions by the latter scenario set of 8 m/s winds.
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Figure 10. Hourly anoxic volume reduction in the mainstem Bay from four idealized wind directions
(compared to no wind) over a two-day duration at 8 m/s that began 6 hours later at a different tidal
stage than that in Scenario Set A-8. The initial anoxic volume was about 10 km3 before the wind
event started. To better compare Figure 4d in temporal development, the origin of the x-axis in both
Figures 10 and 4d is at 4:00 a.m. on 10 August 1996. Here, Hour 0 (wind starts) lies at 10:00 a.m.,
6 hours past the origin point.

For a better comparison of Figures 10 and 4d in temporal development, the origin of the x-axis in
both figures is set to 4:00 a.m. on 10 August 1996. The wind events for the scenarios in Figure 10 began
6 hours later, delineated in the graph. There is no significant difference in relative anoxia reduction
among wind directions between Figures 10 and 4d. In Figure 10, the northerly wind reduced slightly
more anoxia, and the time transitioning from greater anoxia reductions between northerly winds
and southerly winds was delayed 2 hours, to Hour 26 of the wind event. Northerly winds can have
certain advantages in destratification/anoxia reduction in flood tide versus ebb tide. It is difficult
to determine a reference location for tidal stages that relate to wind-induced destratification in the
anoxic center, because the time difference of the co-tidal lines is approximately 6–8 hours between
the Bay mouth and the anoxic center in the mid-Bay and approximately 12 hours between the Bay
mouth and the Bay head [24]. The Bay mouth is used as reference location for tidal stages where the
tidal changes are forced. Further analysis of this point lies beyond the scope of this work. The model
experiments presented in Figures 10 and 4d indicate that greater anoxia reduction by northerly winds
than southerly winds before Hour 24 is not due to tidal stages during the wind events, and both
experiments confirmed the argument of Wang et al. [10] regarding the modulation of wind-induced
cross-channel circulation by the PN-type bathymetry.

3.2. Relative Anoxia Reduction by Wind Directions in One-Hour Wind Events

Although there rarely exists a continuous calm period for a few days with only one hour of wind,
it is worthwhile to conduct model experiments to assess the response of anoxia to one-hour wind
events. In the model experiments of one-hour winds, the post-wind recovery of anoxia appeared soon
after the wind event stopped. The peak anoxia reduction occurred about 4–5 h after the end of the wind
event for wind speeds at 4–8 m/s, and occurred sooner at lower wind speeds. The maximum reduction
of anoxic volume was less than 0.3 km3 at wind speeds of 6 m/s or lower (Figure 11), near the same
magnitude of the tidal influence on anoxic volume (Figure 9). The differences in anoxia reduction
among wind directions in wind speeds less than 4 m/s were not prominent, most are less than 0.1 km3.

The wind-induced along-channel circulation in one-hour wind events did not significantly
influence the center of anoxia, while the cross-channel circulation became more important in reducing
the peak anoxic volume (Figure 11). The modulation of the PN-type bathymetry caused easterly
winds to reduce more anoxia than westerly winds, and northerly winds to reduce more anoxia than
southerly winds.
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Figure 11. Peak anoxic volume reduction in the mainstem Bay compared to a no-wind condition by
four wind directions in Scenario Set B (i.e., one-hour duration) at five speed settings. Greater negative
values correspond to greater anoxia reductions.

In two-day wind events, northerly and southerly winds reduced more anoxia than easterly
and westerly winds, but in most cases of one-hour winds easterly (or westerly) winds reduced
more anoxia than northerly (or southerly) winds, as explained in the following using Figure 12.
In Figure 12, the dashed arrow approximates the returned flow along the bed from the downwind
shore. The wind-induced cross-channel circulation can complete its cycle in an hour, and the deepest
bottom was influenced to a certain degree, to a greater extent by easterly winds than by northerly
winds, because the travel distance of the returned bottom current was shorter in easterly winds.
Thus, in the one-hour wind events easterly winds had greater anoxia reduction than northerly winds.
However, if the wind event continued for several hours, the wind-induced cross-channel circulation
by northerly and easterly winds would involve several cycles. Because the bottom was constantly
influenced by the wind-induced circulation, and not by travel distances, the anoxia reduction by
wind-induced cross-channel circulation by northerly and easterly winds became similar. The northerly
wind had stronger direct wind mixing (due to a longer fetch) and stronger longitudinal straining
than the easterly wind, and the influence of longitudinal straining was stronger later in the wind
period than the first hour of the wind event. Overall, northerly winds caused greater destratification
and anoxia reduction than easterly winds in the later period of two-day wind events. Similarly,
westerly winds reduced more anoxia than southerly winds if the wind event only lasted for one hour.
This phenomenon is more prominent for greater wind speeds (8 or 10 m/s).

In summary, the peak anoxia reductions between opposite wind directions in the one-hour wind
events (Figure 11) are comparable to the anoxia reduction in the first 2–6 h of two-day wind events
(Figure 4) that are mainly controlled by wind-induced cross-channel circulation and wind induced
direct mixing. These are different from the peak anoxia reductions in two-day wind scenarios (Figure 8),
since the latter generates more influence by wind-induced along-channel circulation. Generally,
in one-hour wind events, the northerly winds effected a greater anoxia reduction than southerly winds,
easterly winds had greater anoxia reduction than westerly winds (Figure 11), and easterly (or westerly)
winds had greater anoxia reduction than northerly (or southerly) winds.
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Figure 12. Schematic flow directions of the bottom returned current by winds: (A) easterly wind;
and (B) northerly wind.

3.3. Relative Anoxia Reduction among Wind Directions during Prolonged Unidirectional Winds

3.3.1. Anoxia Reduction by Wind Directions in 20-Day Wind Events

When a unidirectional wind event is extended to 20 days, the peak anoxia reduction occurs at
a later time, between Day 21 and 23 or 1–3 days after the end of the wind event (Figure 13). As the wind
event continues past two days, the roles of wind-induced along-channel circulation can play a greater
role in destratification and anoxia reduction. In addition, the enhanced estuarine circulation in
the northerly or westerly winds would contribute more to anoxia reduction. The combination of
wind-induced along and cross-channel circulation would be expected to produce more complicated
phenomena related to anoxia reduction.

At wind speeds of 2 m/s, the influence of anoxia reduction by wind-induced along-channel
circulation is insignificant and occurs later than winds of greater speeds, while the bathymetry-modulated
wind-induced cross-channel circulation becomes more important, which favors greater destratification
by northerly over southerly winds. On the other hand, the enhanced estuarine circulation by northerly
winds also plays a role in hypoxia reduction. Thus, northerly winds reduce more anoxia than southerly
winds during the entire wind period for both the two-day (Figure 4a) and 20-day (Figure 13a) wind
events. For easterly versus westerly winds in both two-day and 20-day wind events, prior to the end
of Day 1, the easterly wind reduced more anoxic volume than the westerly wind. This is because
during the early part of the wind event, the returned bottom current by wind-induced longitudinal
circulation had not influenced the Bay center, while the wind-induced cross-channel circulation was
dominant. With the modulation of the cross-channel bathymetry, easterly winds caused a greater
hypoxia reduction than westerly winds. From Day 2 onwards, westerly winds caused greater hypoxia
reduction than easterly winds in both the two-day (Figure 4a) and 20-day (Figure 13a) wind events
due to enhanced estuarine circulation by westerly winds.
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Figure 13. Model simulated anoxic volume reduction in the mainstem Bay compared to a no-wind
condition by four idealized wind directions in Scenario Set C (i.e., 20-day duration) at four wind speed
settings: (A) 2 m/s; (B) 4 m/s; (C) 6 m/s; and (D) 8 m/s. The initial anoxic volume was approximately
10 km3 prior to the wind event.

At wind speeds of 4 m/s (Figure 13B), wind’s destratification began to play a greater role in
anoxia reduction. After Day 3, southerly winds reduced more anoxia than northerly winds because of
a greater influence by wind-induced along-channel circulation. This transition was not observed in
the two-day wind event (Figure 4B) since wind stopped prior to Day 3. On easterly versus westerly
winds, in both the 20-day wind and two-day wind events there was a transition from more anoxia
reduction by easterly winds to westerly winds at approximate the end of Day 1 (Figures 13B and 4B).
Prior to the end of Day 1, the bathymetry-modulated wind-induced cross-channel circulation played
a greater role in anoxia reduction; after Day 1, the enhanced estuarine circulation by the westerly
wind began to play a greater role. The returned bottom currents by wind’s along-channel straining
are due to downwelling at the Bay head or mouth region. Since this response is a Bay-wide process,
it could take an extended period, e.g., 8–31 h to influence the bottom of the mid-Bay [25]. Extended
travel time is needed for the down-bay-ward returned bottom current induced by southerly or easterly
winds, because the current direction is against the seawater intrusion. It was estimated to be about
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0.5–1 day for the returned bottom current in 8 m/s southerly winds to effectively influence the anoxic
center in the mid Bay [10]. Compared to northerly or southerly winds, under the same wind speeds
in easterly or westerly winds, there was much weaker along-channel straining. For 4 m/s easterly
winds, it was estimated to take more than five days for the returned bottom current (from the Bay
head) to show an effective influence on the anoxic center. Figure 13B shows that a 20-day wind event
at 4 m/s, the easterly wind begins to reduce more anoxic volume than the westerly wind on Day 7.5.
This is potentially due to the returned bottom current, because at this time the returned bottom current
associated with the easterly wind gradually plays its role. The overall response of DO is a combined
effect of bathymetry modulated cross-channel circulation and the returned bottom flow that favors
easterly winds a greater anoxia reduction over westerly winds after Day 7.5, although the influence of
enhanced estuarine circulation by westerly winds can be more effective as the unidirectional wind
prolonged. In the 20-day wind scenarios, the second transition to greater anoxia reduction from
westerly to easterly winds modeled at speed of 4 m/s (Figure 13B) did not exist at speeds of 2 m/s
(Figure 13A) because of weak destratification that reduced easterly winds’ effectiveness. This transition
is also absent from the scenarios of two-day wind at speeds of 4 m/s (Figure 4B), because wind stopped
after Day 2.

At wind speed of 8 m/s, wind’s destratification was strong, and was the main factor in reducing
anoxia. Similar to a two-day wind event at the same speed (Figure 4D), after Day 1 in the 20 day wind
scenario, southerly winds reduced more anoxia than northerly winds (Figure 13D) as wind-induced
along-channel circulation outweighed the effects of wind-induced cross-channel circulation. As winds
continued after Day 2, relative anoxia reductions between opposite wind directions changed. In this
prolonged unidirectional wind event northerly winds’ addition of oxygen-rich seawater by enhanced
estuarine circulation factored more heavily. After Day 4, the rate of anoxia reduction (by referring to the
slope of the curves, Figure 13D) was greater by northerly winds than by southerly winds, and the two
curves intersected on Day 11.5. From this point onwards, northerly winds reduced anoxia more than
southerly winds. Of the two transitions seen in Figure 13D, only the first at Hour 24 from northerly to
southerly winds was present in the two day wind event.

In the 8 m/s two-day wind scenarios, easterly winds had greater maximum anoxia reduction
than westerly winds (Figure 4D) throughout the entire period. In 20-day wind scenarios, easterly
winds still had greater maximum anoxia reduction than westerly winds (Figure 13D), but underwent
two transitions (at Day 4 and Day 14) in relative anoxia reduction between the two wind directions.
In the first few hours, the PN-type bathymetry modulated cross-channel circulation caused easterly
winds to reduce more anoxia than westerly winds. This was controlled by the destratification-related
anoxia reduction, in which easterly winds caused a greater destratification than westerly winds.
After Day 2, the rate of anoxia reduction was greater for westerly than easterly winds (referring to
the slope of the curves, Figure 13D), again mainly due to enhanced estuarine circulation, but the
anoxic volume was still lower in the easterly winds. At Day 5, westerly winds began to yield
lower anoxic volume, but the rate of anoxia reduction began to slow down to a point that yielded
similar amount anoxic volume as the easterly winds did. During this time following the transition,
the up-Bay-ward component of longitudinal straining by easterly winds induced downwelling at the
Bay head and a return down-Bay-ward bottom current bringing fresher water to the Bay’s anoxic
area. Combined with PN-type bathymetry modulated cross-channel circulation, on Day 16, easterly
winds then began to exercise greater anoxia reduction. These were controlled by multiple mechanisms
including wind’s along-channel straining, cross-channel straining, the modulation of bathymetry,
the supply of oxygen-rich water by returned bottom flow from the Bay mouth or head, the influence of
tide, etc. A detailed hydrodynamic analysis and quantification of these multiple effects are needed to
explain the detailed phenomena, but they are beyond the scope of this work. Besides destratification,
the up-Bay-ward along-channel straining by southerly or easterly winds can cause downwelling of
oxygen-rich freshwater at the Bay head and be transported down-Bay-ward by the bottom return force.
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Since the direction goes against the bottom current of the estuarine circulation, its influence could be
less significant compared to other factors influencing anoxia.

At wind speeds of 6 m/s, the wind-induced destratification among all wind directions and
wind-enhanced estuarine circulation by northerly and westerly winds are moderately strong in 20-day
wind events. The differential responses of anoxia reduction among wind directions (Figure 13C) are in
between the scenarios with velocities of 4 and 8 m/s (Figure 13B,D).

3.3.2. Anoxia Reduction by Wind Directions in Year-Long Unidirectional Winds

Figure 14 plots simulated daily anoxic volumes from Scenario Set H, which models year-long
unidirectional winds. Here, the wind speeds were the same as the observed in all scenarios
except zero for Scenario Y96_0. Southerly and northerly winds resulted in lower anoxic volume
than easterly and westerly winds (Figure 14) because of the longer fetch and greater potential for
destratification. The anoxic volume simulated using the observed wind (obs wind) lies in between
the northerly-southerly winds and the easterly-westerly winds (Figure 14), as the observed wind
directions varied with time. The sum of anoxic volume-day over the year (487 km3) was less than
that affected by northerly-southerly winds, and greater than that affected by easterly-westerly winds.
The no-wind scenario yielded the highest anoxic volume, two times greater than that observed.
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Figure 14. Scenario Set H: Daily anoxic volume for year-long unidirectional wind events. Note: Lower
anoxic volume corresponds to a greater reduction of anoxia compared to the no-wind condition.

In two-day wind scenarios at 8 m/s, southerly winds reduced more anoxia than northerly winds
(Figure 4D). This relationship was reversed for year-long winds, in which northerly winds had a
lesser anoxic volume (Figure 14). For the short two-day wind period, the promoted bottom seawater
intrusion in the northerly wind was insignificant, while the stronger destratification by the southerly
wind could effectively influence the Bay’s anoxic center and increase bottom DO. Under longer periods
of unidirectional wind, promoted seawater intrusion by northerly winds became prominent, reducing
anoxia significantly.

The relative strengths of anoxia reduction by easterly and westerly winds for the two scenario
sets of contrasting durations (Figures 4D and 14) were also opposite. The PN-type bathymetry in the
anoxic center provided favorable conditions for greater destratification by easterly winds [10]. In short
wind events, easterly winds caused greater destratification and reduced more anoxia. However,
under a prolonged westerly wind, its southward component of straining promoted the intrusion of
oxygen-rich seawater. During year-long unidirectional winds westerly winds’ anoxia reduction could
supersede the easterly winds’ destratification-related anoxia reduction.

The relatively weak winds in 1996 could be another factor. The winds in the summer of 1996
were relatively weak, mostly (>80%) below 4 m/s, with wind velocities only exceeding 8 m/s for
a few hours (≤5%). Therefore, the mechanisms of anoxia reduction in the 20-day winds of 2 or
4 m/s (Figure 13A,B) can be more useful to explain the simulated phenomena in the year-long wind
scenarios. In weak winds, the destratification-related anoxia reduction by southerly or easterly winds
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becomes less significant, while enhanced seawater intrusion under prolonged unidirectional northerly
or westerly winds becomes more important in reducing anoxia.

The Bay mouth lies at the south of the Bay, facing east. A prolonged southerly wind could
extend the estuarine residence time, which could promote eutrophication process. The easterly wind
has westward and northward straining components on the surface water movement, and could also
extend the residence time. Notably for easterly winds, anoxia occurred earlier and produced greater
anoxic volume than the no-wind condition in the late spring and early summer (Figure 14). This was
mainly due to the trapping of nutrients in the Bay and weaker destratification than southerly or
northerly winds. Although westerly winds caused even weaker destratification than easterly winds,
prolonged westerly winds effected more seawater intrusion and shorter residence times yielding lower
anoxic volumes. The unidirectional wind event began on 1 January in this set of scenarios and the
retarded residence times could significantly affect the biochemical processes in the spring and oxygen
consumption in the summer. Because the two-day wind scenarios began in August and only lasted
for a short period, the differential hypoxia reduction between wind directions was mainly controlled
by wind’s mixing and estuarine circulation, while the differences in biological processes’ associated
residence times were negligible.

3.4. Intermittent Hourly Winds: Scenario Set D

In contrast with the Core Scenario set of constant wind speeds, in Scenario Set D the wind
intermittently stopped for every odd-hour and blew at 8 m/s during even hours. Scenario Set D yielded
a 1.5–2 km3 smaller reduction in anoxic volume than the counterpart wind directions of the Core
Scenario (Figure 15). Still, the anoxia reductions by Scenario Set D were greater than their counterpart
wind directions at constant speeds of 6 m/s (Figure 8), suggesting that intermittent winds can still
strongly reduce anoxia as long as the speed reaches a certain threshold that causes destratification.
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anoxia reductions.

3.5. Winds of Hourly Reversing Directions: Scenario Sets F and E

Scenario S_N of Scenario Set F switches between southerly and northerly wind directions every
hour, and is used to compare the southerly and northerly winds of Scenario A_8 (Figure 15). Similarly,
Scenario E_W is used to compare the easterly and westerly winds of Scenario A_8. All have speeds of
8 m/s over a two-day period. The frequent switching seemed to negate the effects of the preceding
wind direction. The anoxia reduction by Scenario E_W was 4–5 km3 less than the reduction by
constant westerly or easterly winds, and the anoxia reduction by Scenario S_N was 6–7 km3 less
than the reduction by constant northerly or southerly winds (Figure 15). With intermittent no wind
between reversing wind directions (e.g., Scenario S_0_N or E_0_W) the reduction of anoxic volume
was approximately 2 km3 more than the S_N or E_W scenarios. Nevertheless, Scenario S_0_N and
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E_0_W still had a reduction in anoxic volume of 3–4 km3 less than the constant unidirectional southerly
or northerly winds and easterly or westerly winds, respectively.

The anoxic volume reduction by Scenario E_0_W lies in between reductions modeled in Scenarios
E_0_E and W_0_W. Scenario E_0_E had more frequent easterly winds than the other two scenarios,
and yielded more anoxia reduction. The intermittent no wind between switching directions in Scenario
E_0_W weakened the cancellation of anoxia reduction processes by the two switching wind directions,
therefore, still had a greater anoxia reduction than Scenario W_0_W. Cross-channel circulation was
important in destratification by easterly and westerly winds. The widths of cross channel around
the anoxic center were narrow. The wind’s effect could be effectively realized within the one-hour
period of calm. The next phase of wind in opposite direction generated the next round of reduction.
Because of more frequencies in easterly wind, Scenario E_0_W had a greater anoxia reduction than
Scenario W_0_W. While, Scenario E_W had no calm period between changing directions, significantly
reducing destratification.

Compared to Scenario N_0_N and S_0_S, Scenario S_0_N had an approximately 3 km3 lesser
reduction of anoxic volume. The wind-induced circulation of along-channel transport by northerly or
southerly winds could not be completed within a single hour. Reversing wind directions weakened
the actions of the preceding wind direction. Therefore, Scenario S_0_N had weaker anoxia reduction
than both Scenarios S_0_S and N_0_N. Scenario S_N switched wind directions between southerly and
northerly each hour without a calm period, and yielded even weaker anoxia reduction. This model
experiment confirms that wind-induced along-channel circulation affects the anoxic center much more
slowly than wind-induced cross-channel circulation.

3.6. Winds with Rotating Directions at Fixed Speeds of 8 m/s: Scenario G

A comparison of anoxia reduction among scenarios with ± 90 degrees rotation about a central
direction every 4 h (Scenario Set G) and the Core Scenario was also completed. For a scenario rotating
about a southerly or northerly central direction (S ± 90 or N ± 90), the anoxic volume reduction was
about 0.6 km3 less than that caused by the winds of fixed southerly or northerly direction (Figure 15).
This can be attributed to the addition of easterly and westerly winds (Table 2), which had shorter
fetch and generated weaker destratification than southerly or northerly winds. For scenarios rotating
about an easterly or westerly central direction (i.e., E ± 90 or W ± 90), anoxia reductions were slightly
increased than the corresponding easterly (E) wind or westerly (W) wind of Core Scenario A_8, because
of the inclusion of southerly and northerly winds.

Scenario S_360 had a decreased reduction in anoxia than the wind in a constant southerly direction
did, as expected. Surprisingly, it also reduced more anoxia than Scenario S ± 90 did, and the causes
are unclear. It is hypothesized that a continuous rotating direction is more effective in destratification
and anoxia reduction than a rotation backwards along an already traversed path that could weaken
the anoxia reduction effects of a prior wind direction.

These scenarios indicate that turbulence induced by winds of gradual changing directions at a
similar speed generally can continue to weaken stratification. In many cases, directional change of
90 degrees does not significantly cancel out wind induced circulations. It is more likely that conditions
in the Chesapeake Bay often lie somewhere in between scenarios G and D. For time scales of a few
days, in most cases a prevailing southerly wind would cause greater anoxia reduction than a prevailing
northerly wind, and would also hold true for prevailing easterly versus westerly winds. However,
for month-long prevailing unidirectional wind the relative anoxia reductions between opposite wind
directions can exhibit different anoxia reduction patterns, which will be discussed in the next section.

3.7. Scenarios Based on Naturally Occurred Month-Long Prevailing Winds: Scenario I

June 1996 and July 2004 both had observed prevailing southerly winds, although other directions
were included intermittently (Figure 3). Southerly prevailing winds in Scenario Y96_obs were flipped
in Scenario Y96_cw180 (Table 6) becoming northerly prevailing winds, which yielded lower anoxic
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volume than Scenario Y96_obs. Scenario Y96_cw90’s prevailing westerly winds yielded lower anoxic
volume than the scenario of prevailing easterly winds (Y96_cw270). Scenarios with prevailing northerly
or southerly wind also yielded lower anoxic volumes than either the scenario of prevailing easterly
or westerly wind. The results are comparable to the relative anoxia reductions by scenarios with low
wind speeds (e.g., 2 or 4 m/s) of two-day winds (Figure 4A,B), and year-long unidirectional wind
scenarios (i.e., Scenario Set H, Figure 14).

Table 6. Anoxic volume in June 1996 and July 2004 for Scenario Set I (rotating wind direction).

Wind field
modified

1996 nutrient load and June Wind 2004 nutrient load and July Wind

Scenario
name

Dominate
wind dir

June AV
Scenario

name
Dominate
wind dir

July AV

No-rotation Y96_obs S 1.504 Y04_obs S + some W 1.336
90◦ c rotate Y96_cw90 W 1.899 Y04_cw90 W + some N 1.249

180◦ c rotate Y96_cw180 N 1.018 Y04_cw180 N + some E 0.828
270◦ c rotate Y96_cw270 E 2.052 Y04_cw270 E + some S 1.709

Similar phenomena were also found from scenarios of rotating wind direction in July 2004.
The same patterns held in this instance, although westerly prevailing winds (Y04_cw90) also yielded
slightly lower model estimated anoxic volume than southerly prevailing winds (Y04_obs). This was
due to a greater frequency of westerly (and easterly) winds with the prevalent southerly winds in the
July 2004 condition (Figure 3B) than in the June 1996 condition (Figure 3A). When rotating 90 degrees to
prevail westerly in scenario Y04_cw90, there were considerable frequencies in northerly (and southerly)
winds. Superposed by the influence of northerly winds to the promoted saline water intrusion by the
month-long westerly prevailing winds, slightly lower simulated anoxia was generated, in contrast
with the original prevailing southerly wind field.

Besides the prevailing wind directions, the wind-rose (Figure 3) also shows relative frequency of
other wind directions in June 1996 and July 2004. However, it cannot determine whether the prevailing
wind events were frequently interlayered by events of other wind directions, or whether the events of
prevailing direction and the other directions were aggregated separately in two periods. The impact
on anoxia reduction could differ between the two cases. The initial anoxia intensities and wind speeds
and directions prior to the time period of model analysis could affect. These questions can be studied
further through more model experimentation, but are beyond the scope of this work.

4. Conclusions

The model experiments in this work analyzed the impact of wind speed and duration on relative
hypoxia reductions for opposite wind directions within the north-south oriented Chesapeake Bay.
Besides presenting the reduction of summer hypoxia by wind’s mixing and destratification-related
processes, this study further explores another process of hypoxia reduction by wind; this process is
primarily associated with enhanced estuarine circulation bringing oxygen-rich seawater to the Bay
via winds with down-estuary straining components, i.e., northerly and westerly winds. In strong
wind events equal to or greater than 6 m/s, model experiments showed that destratification processes
are the main mechanisms by which wind can reduce anoxia. At low wind speeds (e.g., 2 m/s) or
in prolonged unidirectional wind events, an enhanced estuarine circulation-related process plays a
greater role in hypoxia reduction.

For two-day wind events of speeds equal to 8 m/s, easterly winds cause greater hypoxia reduction
than westerly winds because of greater destratification (Wang et al., 2016) [10]. This is primarily due
to the modulation of the PN-type bathymetry to wind-induced cross-channel circulation, where the
easterly wind causes a greater destratification and hypoxia reduction than the westerly wind in the
strongly stratified Chesapeake summer. The second reason is that easterly winds have an up-Bay-ward
component of straining that cause greater destratification than westerly winds. However, at low wind

110



J. Mar. Sci. Eng. 2016, 4, 62

speeds, e.g., 2 m/s, when stratification is well preserved or in prolonged unidirectional wind events,
westerly winds yield a greater reduction of hypoxia because enhanced estuarine circulation brings
oxygen-rich seawater to the hypoxic zone.

In the first 24 hours of a two-day wind event at speeds of 8 m/s, the PN-type bathymetry causes
northerly winds to reduce more hypoxia than southerly winds because of greater destratification by
wind-induced cross-channel circulation. In later wind periods, i.e., after Hour 24, southerly winds
cause a greater hypoxia reduction because the influence of wind-induced along-channel circulation
becomes dominant in the Bay’s hypoxic zone [10]. If the unidirectional wind events continue for
more than 12 days, there is a second transition, and northerly winds begin to reduce hypoxia further
once more, as the enhanced estuarine circulation begins to play a significant role in reducing hypoxia.
This study shows that the timing of these transitions varies with wind speeds, and that there is no
second transition if the wind event is short. In weaker wind events (e.g., wind speeds of 2 m/s),
wind’s destratification is weak and the enhanced estuarine circulation by northerly winds becomes an
important factor in reducing hypoxia. Therefore, at all of the times of the simulated 2-day or 20-day
wind events, northerly winds reduce more hypoxia than southerly winds.

Most natural wind events are episodic and are subject to frequent changes in wind direction.
The relative influences on hypoxia by wind directions might then be characterized by short-period
wind events. On the other hand, it is also unlikely that wind events will occur for only one hour
over a period of a few days. Thus, the model experiments of two-day wind as well as their modified
scenarios can be more useful in analyzing relative hypoxia reduction among observed wind directions.
The model experiments demonstrated that if an 8 m/s hourly intermittent wind maintains the same
direction, and then it can still strongly reduce hypoxia approximately equal to 75% of the anoxia
reductions by nonstop winds over two days. Reductions in hypoxia by winds that reverse directions
hourly are largely negated by the previous phase of wind direction. If there is an intermittent calm
period between reversing directions, the cancellation effect is lessened, and the hypoxia reduction
is approximately 50% of the reduction produced by constant winds. If the wind direction rotates
up to ± 90 degrees about a central direction, it can still yield high hypoxia reduction, equivalent to
approximately 90%–100% of the reduction induced by constant winds. These results were derived
from model simulations under specific initial stratification and hypoxia conditions, and the percent
anoxia/hypoxia reductions should be expected to differ under altered conditions. This paper describes
differences in hypoxia reduction for wind directions. In general, change of wind speeds could have
more influence on hypoxia than the change of wind directions. Indicated from Figures 8 and 11,
in the model experimental setting of speeds at 4 to 10 m/s over short time periods, e.g., one hour or
two days, a change in speed of 10%–20% results in a greater hypoxic volume change than switching
wind direction.

Month-long unidirectional prevailing winds can exist, during which period the relative influences
on hypoxia reduction by wind directions could be differ from the model experiments of short-period
wind events.

Relative effectiveness of destratification in the hypoxic zone between opposite wind directions
varies with wind speed and duration, as do the subsequent relative reductions of hypoxia.
These responses are associated with changes in relative destratification by wind-induced cross-channel
circulation and along-channel circulation, as well as enhanced estuarine circulation for different wind
speeds and durations. The model experiments in this work provide additional supportive evidence on
the modulation of PN-type bathymetry that provide favorable conditions for greater destratification by
easterly winds compared to westerly winds, and northerly winds compared to southerly winds [10,14].
The strengths of initial stratification, tidal stages, and some other factors can also affect these results,
and further detailed analyses are needed to obtain a more complete picture. Note that the above
conclusions were drawn from model experiments. Although this model can simulate reasonable
responses of anoxic volume to altered wind strengths and directions, care should be taken when
applied to management analysis.
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Appendix A. Description of Computer Model That Is Used in the Study

The Chesapeake Bay Water Quality and Sediment Transport Model (WQSTM) is a coupled CH3D
hydrodynamic model and ICM water quality model [18]. The CH3D model was first developed
for the US Army Engineer Waterways Experiment Station [25] and has been extensively modified
since [19]. The model computes numerical solutions for the basic equations of continuity, motion,
and mass conservation. It simulates physical processes controlling Bay-wide circulation and mixing,
such as tides, wind, temperature and density effects, freshwater inflows, turbulence, and the effect of
the earth’s rotation. The vertical diffusivity is computed by a turbulent kinetic energy (t-k-ε) closure
model [26,27]. Details of the solution scheme are provided by Johnson et al. [19]. The horizontal
resolution of model cells is approximately 1 km × 1 km, and are reduced to 0.5 km at the deep channel
area. The physical transport of materials, for example, the salinity (Sa) fields, are computed thusly:

∂(Sa)
∂t = −RO(

∂(uSa)
∂x + ∂(vSa)

∂y + ∂(wSa)
∂z ) + EkH

PrH
( ∂(KH∂(Sa)/∂x)

∂x +
∂(KH∂(Sa)/∂y)

∂y ) + EkV
PrV

∂(KV ∂Sa/∂z)
∂z

(A1)

where, u, v, and w represent the x (W->E), y (S->N), and z (down->up) velocity components,
respectively; t = time; Ro = Rossby number; K = turbulent eddy coefficients; Ek = Ekman number;
Pr = Prandtl number; and the subscript H (horizontal) or V (vertical) for the K, Ek and Pr variables
indicates their horizontal or vertical component, respectively. The model was calibrated for 10 years
using a 1991–2000 hydrology. In the mainstem Bay, compared against the observed data on the same
date, the mean difference and the relative difference of the model for salinity are −0.01 ppt and 10%,
respectively.

The ICM water quality model simulates 36 state variables including various forms of nitrogen,
phosphorus and carbon, three generalized groups of algae, dissolved oxygen, sediment diagenesis and
other state variables relevant to Chesapeake water quality. The time rate change of a state variable (C)
within a control volume is:

F(C) =
� ∂C

∂t
dV (A2)

where V is a control volume.
For each control volume, i, and for each state variable, transport and kinetics are calculated based

on the mass-conservation equation:

δVi · Ci
δt

=
n

∑
k=1

QkCk +
n

∑
k=1

AkDk
δCk
δxk

+ Si (A3)

where, Vi = volume of ith control volume (m3); Ci = concentration in ith control volume (g·m−3);
t, x = temporal and spatial coordinates; n = number of flow faces attached to ith control volume;
Qk = volumetric flow across flow face k of ith control volume (m3·s−1); Ck = concentration in flow
across face k (g·m−3); Ak = area of flow face k (m2); Dk = diffusion coefficient at flow face k (m2·s−1);
and Si = sum of external loads and kinetic sources and sinks in ith control volume (g·s−1).

The WQSTM simulates nutrient transport and dynamics in the estuary in variable time steps of
approximately 2–5 minutes. The oxygen kinetics consists of an air-sea exchange, algal photosynthesis
and respiration, heterotrophic respiration, and various oxidation and reduction reactions of the
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simulated substances, with a full carbon based DO simulation. The model was calibrated with
observed data for 10 years (1991–2000). In the mainstem DO estimates, at depths less than 6.7 meters,
the model mean error (ME) and relative error (RE) are 0.14 g/m3 and 11.2%; at depths between
6.7−12.8 meters, the ME and RE are 0.30 g/m3 and 19.4%; and at depths greater than 12.8 meters,
the ME and RE are −0.45 g/m3 and 28.7% [18], respectively.

Figure A1 presents an example of multi-year model calibration in salinity and bottom DO in a deep
monitoring station, CB4.1C. Although model simulated dissolved oxygen can have an approximate
30% deviation from observed values, generally the model performed well in producing proportional
responses of anoxic volume to changes in wind, and had much lower relative errors (less than 10%)
among scenarios in regards to proportional changes in wind strength.
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Figure A1. Model simulated versus observed for year 1991−2000: (A) surface salinity; (B) bottom salinity;
and (C) bottom dissolved oxygen at Chesapeake Bay monitoring station CB4.1C (from Wang et al. [10]).
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Abstract: Tidal datums are key components in NOAA’s Vertical Datum transformation project
(VDatum). In this paper, we propose a statistical interpolation method, derived from the variational
principle, to calculate tidal datums by blending the modeled and the observed tidal datums.
Through the implementation of this statistical interpolation method in the Chesapeake and Delaware
Bays, we conclude that the statistical interpolation method for tidal datums has great advantages
over the currently used deterministic interpolation method. The foremost, and inherent, advantage
of the statistical interpolation is its capability to integrate data from different sources and with
different accuracies without concern for their relative spatial locations. The second advantage is that
it provides a spatially varying uncertainty for the entire domain in which data is being integrated.
The latter is especially helpful for the decision-making process of where new instruments would be
most effectively placed. Lastly, the test case results show that the statistical interpolation reduced the
bias, maximum absolute error, mean absolute error, and root mean square error in comparison to the
current deterministic approach.

Keywords: tides; tidal datum; uncertainty; VDatum; variational method; statistical interpolation;
optimal interpolation; Chesapeake Bay; Delaware Bay

1. Introduction

A vertical datum is a base elevation used as a reference from which to reckon heights or depths.
It is called a tidal datum when defined in terms of a certain phase of the tide. For marine applications,
tidal datums are the reference planes from which measurements of height and depth are made [1] and
from which marine boundaries are determined. To determine the tidal datum as the reference plane
is a challenge. Tidal datum data derived from observed tidal elevation time series are only available
in limited locations, where there are at least two to three months or longer of water level time series
records. Practically, various deterministic spatial interpolations [2,3] can be used to generate a spatially
continuous tidal datum distribution over the water. If a hydrodynamic tidal model exists in that region,
tidal datums derived from the tidal model can be used as the first estimate field, which is subsequently
corrected by adding the correction field interpolated from observation and model discrepancies at
the stations.

NOAA’s National Ocean Service (NOS) has developed a software tool called VDatum that
provides vertical datum transformations between tidal, orthometric and ellipsoid-based vertical
datums [4]. Over the years, customers and developers of VDatum have raised questions about the
uncertainty associated with the VDatum conversions between different vertical datums. Initial efforts
were made to quantify uncertainty in both datum transformations and the datums themselves, leading
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to estimates that could be used for each geographic region represented in VDatum. However, the
approach presented here to estimate uncertainties in the tidal datums will provide a path forward in
VDatum to eventually be able to provide a more continuous, spatially varying estimate of the uncertainty.

An important part of VDatum’s vertical datum transformations is that the values returned by
the VDatum software need to be equivalent to values determined through observations at tide gauge
locations. The NOAA/NOS’ Center for Operational Oceanographic Products and Services (CO-OPS)
is commissioned to set up the national tidal station network for water level measurements, as well
as the establishment of the tidal datum bench marks. The measured tidal datum values at 19 year
National Tidal Datum Epoch (NTDE) stations are published in CO-OPS publications and on their
website. For consistency, the vertical datum relationships in VDatum need to match the published
tidal datum values at the CO-OPS NTDE stations. It is also desirable that the analysis field be close to
observed data at CO-OPS non-NTDE stations. This requirement has been one of the guiding principles
in the development of the statistical interpolation presented here.

As mentioned, the current tidal datums in the VDatum transformation are computed by
integrating modeled and observed tidal datums through a prediction and correction procedure,
the latter of which uses a deterministic spatial interpolation method. A solver based on Laplace’s
equation is currently used for the spatial interpolation of modeled tidal datum and observed
tidal datum discrepancies over the water. The inherent drawback of this spatial interpolation
approach is the apparent lack of any physical or statistical principle governing the tidal datums [3].
Laplace’s interpolation is a low-order interpolation scheme, and the interpolated surface becomes
singular at the data points. As a deterministic interpolation method, it is also unable to provide
spatially varying uncertainty estimates of the tidal datum product. One alternative for estimating
the uncertainty in the tidal datums is to use the delete-one jackknifing method [3,5]. Jackknifing has
a tendency to overestimate the error and is more appropriate in providing a single-value average
estimate of the uncertainty over the whole domain [3]. The delete-one jackknifing method can provide
a good estimate of the uncertainty of the tidal datum product over a large domain, under the condition
that the sample size is very large and samples are randomly distributed spatially. However, these
conditions are rarely met. As VDatum currently provides single-value uncertainty estimates in the
tidal datums for each regional application, the next goal to improve the uncertainty estimates is
to provide a spatially varying uncertainty field for each tidal datum. We propose here a statistical
interpolation and uncertainty estimation methodology that would provide such a product with
spatially varying uncertainty. The interpolation method is derived from the variational principle in data
assimilation [6,7] by minimizing a cost function, similar to the three-dimensional variational method
(3DVAR). The construction of the cost function is such that the discrepancy between (1) the analysis
solution that minimizes the cost function and (2) the CO-OPS’ observation values at the observation
stations satisfies the constraint that is prescribed by the user. This is achieved by introducing a diagonal
weight matrix that regulates the weight of the observed tidal datum error of a particular station in
the cost function, therefore also regulating the analysis results. In Section 2, we will first review
the mathematical formulation of the statistical interpolation method and its uncertainty calculation,
followed by a description of input matrices in our test case region and the calculation of the error
covariance matrices. Results from the test case are presented in Section 3, followed by a discussion in
Section 4 and the conclusions and recommendations in Section 5.

2. Method and Data Input

2.1. Method and Mathematical Formulation

Assume that we have a size n × 1 discrete modeled tidal datum field f m at model mesh nodes
and a size m × 1 observed tidal datum data set f o at CO-OPS station locations. Both f m and f o follow
a normal distribution, and Var(f m) = P, Var(f o) = R respectively. How do we determine a new n × 1
tidal datum analysis field f at the model mesh nodes by blending f m and f o using a certain criterion?
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In line with the conventional variational method, we first define a cost function J(f ), and then solve f
by minimizing the cost function J(f ). The cost function J(f ) is defined as

J( f ) =
1
2
( f − fm)T P−1( f − fm) +

1
2
( fo − H f )T(W− 1

2 )
T

R−1W− 1
2 ( fo − H f ) (1)

where H (size m × n) is the interpolation matrix projecting the modeled field to the observed data
locations, W (size m × m) is a diagonal weight matrix that adjusts how much the final product f differs
from the observed values at the station locations. It is assumed the model and observation fields are
unbiased. The analysis field f that minimizes the cost function J(f ) is

f = fm + G( fo − H fm) (2)

where G = PHT [W
1
2 R(W

1
2 )

T
+ HPHT ]

−1
is called the gain matrix; f is the unbiased estimate of the

true tidal datum field, and the posterior error covariance matrix Pa is given by

Pa = Var( f ) = (I − GH)P(I − GH)T + GRGT (3)

where I is the identity matrix.
The weight matrix W provides flexibility and an option if we want the analysis field f to match or

be close to the observed values at the observation locations. For a uniform weight distribution W = I,
the method is identical to the optimal interpolation (OI) method. The analysis field f at the observed
locations can be different from the observed values. If a diagonal element W(i,i) = 0 (i ∈ [1, 2, ..., m]),
then the interpolated values f are forced to match the observed values at the station i, independent of
the observed error covariance matrix R.

2.2. Test Case and Input Data

The Chesapeake Bay, Delaware Bay and adjacent coastal ocean (Figure 1) are used as our test
domain to apply the statistical interpolation method to calculate the the Mean Higher High Water
(MHHW) tidal datum field and its associated uncertainty field. The Mean High Water (MHW),
Mean Low Water (MLW) and Mean Lower Low Water (MLLW) tidal datums are also calculated
similarly, but the results will not be presented in this paper. The hydrodynamic tidal model had been
developed for the area by Yang et al. [8] in a previous VDatum tidal model development project. In this
section, we will give a detailed description of input matrices in our test case, and the calculation of the
error covariance matrices.

2.2.1. Observed Tidal Datums f o and Determination of the Observed Error Covariance R

The observed tidal datums f o are derived from water level time series collected at the CO-OPS’
tidal gauges. NOS has a standard method to process the time series and calculate the tidal datums [9].
The observed error covariance matrix R is a size m × m diagonal matrix. The individual diagonal
element of R is the variance, or the square of the standard deviation, of the observed tidal datum errors.
Both the observed tidal datums and the error standard deviations are provided by CO-OPS [10,11]
following Swanson [12] and Bodnar’s [13] formulation.
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Figure 1. Hydrodynamic tidal model domain (Yang et al. (2008)) and observed tidal datum MHHW
(m) shown in color-coded dots at tidal station locations.

2.2.2. Tidal Datums Derived from the Hydrodynamic Model Time Series f m

If we have a hydrodynamic tidal model, then the tidal datums can be derived from the modeled
water level time series using the same process as that used for the observed water level time series [9].
The biggest advantage of the tidal model is that it provides continuous spatial coverage for coastal and
estuarine waters where the navigational safety is mostly of concern. It provides a perfect background
tidal datum field (Figure 2) for model-observation data integration. The hydrodynamic model
employed in the tidal simulation to compute the tidal datums here is the ADvanced CIRCulation
(ADCIRC) finite element model [14,15] in its barotropic two-dimensional depth-integrated (2DDI)
mode. The bias of all station model errors is relatively small at 0.41 cm, the maximum absolute error
(MAXE) for MHHW is 25.37 cm, the mean absolute error (MAE) is 4.48 cm, and the root mean square
error (RMSE) is 6.33 cm (Table 1).

Table 1. Error statistics (cm) for the model, Laplace’s interpolation, and statistical interpolation of the
tidal datum MHHW.

Data Field Bias MAXE MAE RMSE

Model 0.41 25.37 4.48 6.33
Laplace’s −0.22 12.31 2.06 2.94
Statistical −0.12 10.68 1.62 2.51
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Figure 2. MHHW field (m) from the hydrodynamic model.

2.2.3. Model Error Covariance Matrix P

The model error covariance matrix is defined as Pij = var(f n1,f n2) = σn1σn2corr(f n1,f n2), (1 ≤ i, j ≤ n,
unit: m−2), σn1, σn2 are standard deviations of the model errors at nodes n1 and n2. The correlation
between two points is calculated using a three-day moving average tidal datum time series.
The underlying assumption is that the magnitude of the error signal in the tidal datum time series is
proportional to the tidal datum signal. Here we give a constant value to σn1 and σn2, calculated by
comparing observed and modeled tidal datum discrepancies over the model domain (Figure 3). For the
Chesapeake and Delaware Bays model, the model error standard deviation is 6.33 cm. The covariance
matrix is not related to the distance between node points n1 and n2. In an idealized case, it may be
true, but in reality the model is not perfect. To limit observation stations far away from the station of
interest from interfering with the results, the covariance is adjusted and decreases exponentially over
the distance between nodes n1 and n2. The relaxation spatial scale for this is 200 km in our application.
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Figure 3. Observed tidal datum MHHW uncertainties from CO-OPS in standard deviation (cm) at
station locations (colored dots) and modeled tidal datum MHHW uncertainty expressed as error
standard deviation (background) before the interpolation.

2.2.4. Interpolation Matrix, H

The interpolation matrix H is a size m × n matrix projecting the modeled field to the observed
data locations; hij (1 ≤ i ≤ m, 1 ≤ j ≤ n, unit: non-dimensional) is the weight of the model nodes j in
determining model values at the observation locations i. In our application, we use a linear triangular
interpolation to project the model value to the observation location. H is solely determined by the
spatial location of the model mesh nodes and observation locations.

2.2.5. Weight Matrix, W

The weight matrix W is a size m × m diagonal matrix determining the weight of R in the
computation of the analysis field f. The diagonal element wii (0 ≤ wii ≤ 1, 1 ≤ i ≤ m) is the weight of the
observation error variance rii at station i in the determination of analysis field f. If wii = 0, the analysis
results will be independent of the observation error at station i. Analysis field f will be the same as the
observed value at that station, and the uncertainty will be the same as the CO-OPS assigned value.
If wii = 1, then the analysis field will take full account of the error covariance R at station i. The analysis
field f will be the local optimal combination of the model results and observations that minimizes
the cost function. The posterior uncertainty/error at the station will be reduced, less than both the
CO-OPS assigned error and the background model error.
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2.2.6. Constraint and Determination of Weight Matrix, W

The constraint that the VDatum technical team adopted for statistical interpolation is simple: the
discrepancy between the analysis field and the observations at all subordinate stations should be equal
to or less than 1 cm or the CO-OPS’s uncertainty value, whichever is less. The weight matrix W will be
determined through iteration following this predetermined constraint.

3. Results

While Equations (2) and (3) provide the general framework of the statistical interpolation, the
results can vary depending on the estimation of the observation and model error covariance matrices,
as well as on the weight matrix (and constraint) that decides the impact of observed error covariance
on the final tidal datum product.

Tidal Datum Analysis Field

The statistical interpolation produces the spatially distributed properties, in this case, MHHW
(Figure 4). The interpolation adjusts the background model values over the whole domain. It corrects
apparent discrepancies between observations and model results for MHHW (Figure 2) at the
observation locations by statistically blending the observations and model results. Unless the observed
value is 100% accurate (e.g., zero error), the adjusted values will be different from the observed
values. The results indicate that the adjustments to MHHW at the stations are very small. The average
magnitude of an adjustment is 1 cm, and the maximum adjustment is around 5 cm.

Figure 4. Tidal datum MHHW (m) after statistical interpolation.

121



J. Mar. Sci. Eng. 2016, 4, 64

The error statistics, shown in Table 1, indicate that the statistically interpolated tidal datum
MHHW consistently improved all the error measures (bias, MAXE, MAE, and RMSE) in comparison
with the modeled and Laplace’s interpolated MHHW.

The statistical interpolation not only provides us with the product, but it also produces uncertainty
estimates (Figure 5). The background model uncertainty had been improved dramatically in comparison
with the model uncertainty (Figure 3). The statistical interpolation reduces the uncertainty of the tidal
datum product in Chesapeake Bay (which is indicated from the color change under the same color
bar), Delaware Bay and the associated coastal areas, and to a lesser extent in the offshore area in the
southeast corner of the domain away from the coast where tidal gauge stations are located (Figure 5).

Figure 5. The posterior uncertainty (cm) of the interpolated tidal datum product (MHHW, Figure 4).

4. Discussion

The constraint that we adopted is a compromise between an analysis field that matches (W = 0)
CO-OPS’ observed values and a statistically optimal analysis field (W = I, statistically optimal implies
a lowest overall uncertainty). When we force the analysis field to match all of the observations (W = 0),
the uncertainty at 24 out of 117 total observed data locations is at its highest within the vicinity of
those stations (local maxima). That raises a question of whether the inclusion of one particular station
into the data assimilation improves the overall results by reducing the uncertainty. The difference
between the inclusion and non-inclusion of one particular station into the data assimilation under all
matching (W = 0) and OI cases (W = I) can be best illustrated by a simple numerical test to evaluate
the differences in the uncertainty fields before and after removing one station in the data assimilation.
Here we present the test results for Cove Point (Figures 6 and 7), where the CO-OPS’ tidal datum
uncertainty is 2.74 cm. Cove Point is one of 24 locations (out of 117) for which the uncertainty at the
observed point is at its highest within its vicinity for all matching cases (W = 0).
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(a) (b)

Figure 6. Comparison of spatially varying uncertainty (cm) of the interpolated tidal datums with
and without Cove Point data in the OI case. (a) Interpolation with the Cove Point observed data;
(b) interpolation without the Cove Point observed data.

(a) (b)

Figure 7. Comparison of spatially varying uncertainty (cm) of the interpolated tidal datums with and
without Cove Point data in the matching case. (a) Interpolation with the observed data; (b) interpolation
without the observed data.

Table 2 shows the results from this simple test. For the OI case (Figure 6), the uncertainty by
assimilating the Cove Point data is 1.21 cm, much better than the CO-OPS 2.47 cm uncertainty from
the observations (Figure 6a). Without assimilation, the uncertainty is 1.39 cm (Figure 6b). For the
matching case with the Cove Point data assimilated, the uncertainty at the observed location of Cove
Point is given by CO-OPS as 2.47 cm, which is relatively high if compared with its neighboring stations
Long Beach and Barren Island (Figure 7a). Without assimilating the Cove Point data, the uncertainty
at that location is 1.40 cm (Figure 7b). The uncertainty also decreases in the vicinity of Cove Point.
Excluding the Cove Point data from assimilation/interpolation is the best option for the matching case.
Mathematically/statistically speaking, for the OI case, it can be shown that any data is good data to
reduce the uncertainty as long as we know its quality. For the matching case, it is sometimes better to
discard a bad data point (although it is still valuable using OI) without assimilation if a neighboring
observation is close and good enough to bridge the gap and produce a better result (as shown in the
Cove Point case, Figure 7a,b). If all points match except Cove Point, but Cove Point is still assimilated
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with (0 ≤ wii ≤ 1), the uncertainty is 1.32 cm. This is lower than the uncertainty (1.40 cm) when Cove
Point is not assimilated, and much lower than the CO-OPS uncertainty from the observations (2.74 cm).

Table 2. Uncertainty (cm) at the observation station (Cove Point, Chesapeake Bay) with and without
assimilation of the data in the OI and matching cases. Also presented is the uncertainty in a case where
all stations are forced to match except Cove Point, which is assimilated but not forced to match.

Data Field Observed Data Assimilated Observed Data Not Assimilated

OI (W = I) 1.21 1.39
Matching (W = 0) 2.47 1.40

Matching, except Cove Point 1.32 1.40

The results from further tests of all CO-OPS stations are very clear. For OI, any inclusion of
an additional data point will reduce the uncertainty. For the matching case, while for the majority of
the data locations the inclusion of data reduces the uncertainty, some do not. The current constraint for
statistical interpolation is the compromise reached to minimize the discrepancy between the final tidal
datum product and the CO-OPS values. It also provides flexibility in producing a better uncertainty
estimate even though it is no longer optimal.

5. Conclusions

In this paper, we propose a generalized statistical interpolation method to integrate modeled
tidal datums and observed tidal datums. The interpolation method is derived from the variational
method by minimizing a cost function, similar to 3D variational data assimilation. A diagonal weight
matrix is introduced to regulate the weight of the observed tidal datum error of a particular station
in the cost function, and therefore also in the analysis results. The mathematical formulation of the
method derived is more general than Optimal Interpolation (OI) or 3D variational method (3DVAR),
but follows very closely the framework of OI and 3DVAR, which is widely used in meteorological
and oceanographic applications for model and observation data integration. In a special case, when the
weight matrix is an identity matrix, the results are statistically optimal, and the method is identical to OI.

In this application, the setting of the weight matrix follows the constraint that the discrepancy
at all stations is less than 1 cm or the CO-OPS’ uncertainty value, whichever is less, and is calculated
through an iterative process. The obvious advantage of the statistical interpolation is that the method
provides a spatially varying uncertainty of the tidal datum products. Considering that the tidal datum
itself is a statistical result from data processing of a long time series, the statistical property calculated
from the modeled time series for interpolation is more plausible than any deterministic interpolation.
The spatially varying uncertainty can pinpoint regions with low uncertainty levels and help with
decision-making on the number and locations of new tidal gauge installations in a geographic area.

From a data assimilation point of view, the statistical interpolation is capable of incorporating all
kinds of observed or modeled data with different degrees of uncertainty. The ingestion of additional
data will improve the quality and reduce the uncertainty of the product/results.

Our proposed method satisfies our goal to have the tidal datum products be as close to the
CO-OPS observations as possible. While it is statistically sub-optimal, it will generally allow the
inclusion of any data that will reduce the uncertainty. In our application in the Chesapeake and
Delaware Bays, the statistical interpolation in comparison with the raw model output and Laplace’s
interpolation reduces the bias, MAXE, MAE, and RMSE. We would strongly recommend statistical
interpolation under constraint for tidal datum interpolation in VDatum production. NOAA’s VDatum
team has approved this recommendation and accepted the method as the standard procedure for
future tidal datum product development.

In the future, the capability of data integration from various sources is probably the most important
feature of the statistical interpolation. We expect a steady accumulation of data from various sources
(third party observations, different model results). The statistical interpolation or data assimilation
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provides a perfect framework for data integration. Overall, the statistical interpolation is a better data
processing and management tool, and it produces a better tidal datum product with lower uncertainty.
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Abstract: The primary focus of this study is to apply a two-dimensional (2-D) coupled
flow-wave-sediment modeling system to simulate the development and growth of idealized barrier
island tidal inlets. The idealized systems are drawn from nine U.S. coastal inlets representing Pacific
Coast, Gulf Coast and Atlantic Coast geographical and climatological environments. A morphological
factor is used to effectively model 100 years of inlet evolution and the resulting morphological state
is gauged in terms of the driving hydrodynamic processes. Overall, the model performs within
the range of established theoretically predicted inlet cross-sectional area. The model compares
favorably to theoretical models of maximum inlet currents, which serve as a measure of inlet stability.
Major morphological differences are linked to inlet geometry and tidal forcing. Narrower inlets
develop channels that are more aligned with the inlet axis while wider inlets develop channels
that appear as immature braided channel networks similar to tidal flats in regions with abundant
sediment supply. Ebb shoals with strong tidal forcing extend further from shore and spread laterally,
promoting multi-lobe development bisected by ebb shoal channels. Ebb shoals with moderate tidal
forcing form crescent bars bracketing a single shore-normal channel. Longshore transport contributes
to ebb shoal asymmetry and provides bed material to help maintain the sediment balance in the bay.

Keywords: hydrodynamic modeling; tidal inlets; long-term morphological change; sediment transport;
morphodynamic modeling; coastal inlet evolution

1. Introduction

Tidal inlets are some of the most dynamically active systems in coastal zones [1]. Inlets connect the
continents to the sea and are primary pathways for terrestrial sediments to the ocean. Coastline evolution
and stability are tied to inlet processes, as inlets function as both sources and sinks of sediment and
can disrupt longshore transport pathways modulating the growth, migration and erosion of adjacent
shorelines. The processes governing inlet behavior present complex engineering challenges that affect
the global economy and quality of life for coastal communities.

Long-term behavior of tidal inlets in barrier island systems is controlled by a number of
dynamically complex and competing physical processes [1,2]. Tidal currents concentrated in the
inlet throat mobilize sediment and maintain an open connection between the coastal ocean and
bay. Longshore transport introduces sediment into the system that modulates the mass balance by
contributing to the development of the ebb shoal delta and bypassing to the down-drift beach [2].

J. Mar. Sci. Eng. 2016, 4, 65 126 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 65

Within this conceptual framework, sediments are continually reworked through complex interactions
between local waves, ebb shoal morphology and reversing tidal currents.

Numerical models produce quantitative predictions and have been widely used to study the
morphodynamics of tidal inlet systems on long time scales. Cayocca [3] used a two-dimensional (2-D)
coupled wave, hydrodynamic, and sediment transport model to investigate the stability and potential
evolution of the Arcachon Lagoon on the French Atlantic coast. In addition to simulating the lagoon
with present-day bathymetry, Cayocca [3] conducted idealized simulations with an initial constant
bathymetry to study long-term bay and inlet evolution. The results were consistent with historical
observations and provided evidence that the lagoon was likely a stable feature under the present wave
and tidal regime.

Using a 2-D morphodynamic model, Dissanayake et al. [4] set up an idealized inlet system
with dimensions similar to the Ameland Inlet in the Dutch Wadden Sea to simulate inlet evolution
for periods of 50, 100, and 300 years. The model did not include wave forcing or Coriolis force, as
the primary focus was to investigate inlet-cross-section growth rates and ebb shoal delta evolution.
The results showed rapid ebb shoal growth and inlet channel deepening during the first 20 years
followed by a longer period of weaker development, eventually stabilizing to an equilibrium asymptote.
The ebb shoal lobe and main channel orientation were rotated from a shore-normal direction in
agreement with the long-shore tidal circulation patterns in the area.

Yu et al. [5] used a 2-D hydrodynamic and sediment transport model to predict inlet and
bay evolution over a 60-year timeframe. Their domain consisted of nine idealized multiple-inlet
barrier island configurations on a rectilinear grid with an initially uniform bathymetry in the bay and
inlet. Each configuration had different spatial scales but with similar tidal forcing and non-cohesive
sediments with a common grain size. They did not consider winds, waves or Coriolis force on
the assumption that tides were the primary factors contributing to bay area development and inlet
cross-sectional area growth. They derived theoretically a power law relating inlet cross-sectional area
to total bay area, which was confirmed by the numerical simulations.

Van der Wegen and Roelvink [6] conducted idealized 2-D simulations to investigate the long-term
(8000 years) evolution of an idealized rectangular basin (2.5 km by 80 km) to understand pattern
formation in an elongated bay. They noted rapid morphological development in the first few decades
followed by moderate deepening of the bay over the remaining timeframe.

Nahon et al. [7] used a 2-D morphodynamic model to examine the effects of varying tide and
wave regimes on tidal inlet evolution. The model comprised a single idealized lagoon/inlet system
without Coriolis force and was driven by a single M2 tidal constituent. The simulations included
nine wave and hydrodynamic scenarios encompassing the range of energy conditions as classified by
Hayes [2]. Model performance was measured in terms of goodness of fit between the model results
and tidal prism relationship with the data of Jarrett [8].

In addition to long-term evolution of the system as a whole, other studies have focused on the
evolution of the ebb shoal. Van Leeuwen et al. [9] developed a 2-D hydrodynamic model to investigate
morphological characteristics of ebb tidal deltas. The model was driven by tidal forcing only and
was first set up for an inlet/bay system with substantial inlet and alongshore tidal flow. They noted
that residual currents and tidal asymmetry were the two major mechanisms controlling sediment
transport. The process of ebb shoal evolution led to two asymmetric channels that were skewed in
the downdrift direction owing to strong longshore tidal currents. In addition to the idealized model
runs, they conducted long-term (500 years) simulations of the Frisian Inlet in the Dutch Wadden Sea.
During the first 100 years, the channel deepened rapidly, producing two asymmetric ebb shoals on the
eastern and western side offshore of the wide inlet throat. Ebb shoal growth proceeded more slowly
after about 200 years but remained asymmetric. Channel deepening continued, yet slowed during the
last 100 years of the simulation indicating that the system had not reached equilibrium. They noted
that the general characteristics including the two ebb shoals were similar to the present configuration
of the Frisian Inlet.
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Van Der Vegt et al. [10] investigated the mechanisms responsible for creating symmetric ebb
tidal deltas. To simplify the analysis they restricted their model domain to parallel depth contours
and drove the model with symmetric forcing. The inlet axis was oriented normal to the coastline
and the system was forced with a shore-normal wave field and no directly forced along-shore flow
or Coriolis force. The resulting morphological evolution led to an ebb channel centered in the inlet
that branched offshore producing two symmetric channels. Flow divergence led to shoaling at the
end of the ebb channel producing an ebb shoal. Sensitivity studies under varying tidal prism, inlet
width, wave height, and sediment transport formulations did not produce any significant qualitative
changes. Model results were used to evaluate existing power law formulas relating shoal volume to
tidal prism and correctly predicted the slope when scaled against previous measurements. The model
underestimated the total sand volume, which may be a function of the sediment transport or wave
transformation formulations.

These previous studies focused on the morphodynamics of both existing and idealized inlets
with and without wave forcing or Coriolis force for varying simulation timeframes (decades to
centuries). Robust numerical models are needed to investigate long-term climatological impacts to
tidal inlet systems in a regime of global sea level change. This study aims to explore how idealized
immature inlets develop and evolve toward a long-term (100 years) equilibrium or quasi-equilibrium
state. To place the results in the context of real-world systems and to assess model confidence,
the forcing conditions are derived from nine U.S. inlets representing a range of wave and tidal
climates. Model performance is gauged in terms of established empirical methodologies that describe
the equilibrium and stability characteristics of barrier island tidal inlets. The results focus on inlet
morphology, hydrodynamics and equilibrium characteristics. The discussion addresses the varying
morphological patterns and how they relate to the forcing conditions.

2. Materials and Methods

2.1. Numerical Model

The Coastal Modeling System (CMS) is an integrated suite of numerical models for simulating
water surface elevation, current, waves, sediment transport, and morphology change [11]. The system
includes relevant nearshore processes, such as wave-current interactions, wetting/drying, sediment
avalanching, and wind stresses. The CMS consists of a hydrodynamic and sediment transport model,
CMS-Flow, and a spectral wave model, CMS-Wave.

CMS-Flow is a 2-D finite-volume model that solves the depth-integrated mass conservation and
shallow-water momentum equations on a non-uniform Cartesian grid. The wave radiation stress and
wave field information calculated by CMS-Wave are supplied to CMS-Flow for the flow and sediment
transport calculations. Currents, water level, and morphology changes are fed into CMS-Wave to
increase the accuracy of the wave transformation predictions [12–14].

CMS-Wave is a two-dimensional finite-difference spectral wave transformation model that solves
the steady-state wave-action balance and diffraction equation on a non-uniform Cartesian grid [15,16].
The model can simulate important nearshore wave processes including diffraction, refraction, reflection,
wave breaking and dissipation mechanisms, wave-wave and wave-current interactions, and wave
generation and growth. It is a full-plane model with primary waves propagating from open boundaries
toward the inner domain. Additional model features include a grid nesting capability, wave run-up on
the beach face, wave transmission through structures, wave overtopping, and storm wave generation.

The CMS modeling system has been developed specifically for coastal applications for both long
and short term studies [12]. The modeling system has been validated for the hydrodynamics, waves
and sediment transport with analytical solutions, laboratory data and field measurements [11,17,18].
Previous applications relevant to the present study include navigation, tidal inlets, coastal erosion,
shoreline change, and sediment budgets.
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2.2. Morphology Acceleration Factor

Using a process-based morphodynamic model to conduct long-term simulations requires intensive
computational time. Considering the difference in time scales between hydrodynamic and transport
processes and morphological changes, a morphological acceleration factor (MAF) is used for CMS
simulations, in which the morphological time step is a constant multiplier of a morphological factor
and a much smaller hydrodynamic time step to simulate morphology change at an accelerated rate [19].
For example, a simulation of 5 years and an acceleration factor of 20 would produce 100 years of
effective sediment transport and morphology change with the computational time associated with
only 5 years of simulation time. The MAF is applied after all hydrodynamic and sediment transport
processes have been computed for that time step. The calculated changes are then multiplied by
the selected MAF and updates to the grid bathymetry are made. This approach is repeated at each time step.

Sensitivity testing was conducted on one of the model setups to determine the largest MAF which
produced qualitatively comparable results to using no acceleration. Test cases were simulated for
an effective ten-year period depending on the assigned MAF values of 1, 2, 5, 10, and 20. For example,
for a MAF value of one, the test case was run for ten years and for a MAF value of 10, the test case was
run for one year. A comparison for MAF values of 1, 10 and 20 is shown in Figure 1. Examining the
morphology at the end of each run and comparing with the initial case with no acceleration, it was
determined that a MAF value of 20 was an acceptable value. Since the MAF value would be applied to
all nine model setups, a more conservative MAF value of 10 was selected.

MAF = 1 MAF = 10 MAF = 20

Figure 1. Comparison of morphologic change for Morphology Acceleration Factor (MAF) values of 1,
10, and 20. Blue and red colors represent morphology change over the morphology change contours
(black lines) from MAF value of 1, and red ovals indicate areas of observed qualitative change.

2.3. Inlet Geometry

Nine idealized inlet geometries are chosen using characteristic basin dimensions derived from
coastal inlets along the U.S. Pacific, Atlantic and Gulf coasts (Table 1). Three inlet types are chosen from
each of the three coastal regions in order to obtain a representation of natural inlet types and to define
input parameter values and boundary conditions using realistic tide and wave forcing. The three
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coasts represent different energy regimes in terms of wave and tidal energy flux with the Pacific Coast
denoted as ‘highly exposed’, the Atlantic Coast as ‘moderately exposed’ and the Gulf Coast as ‘mildly
exposed’ [20]. For clarity and to distinguish the different model results, the idealized inlets are referred
to by the names of their real inlet counterparts, which are shown in Figure 2. It should be noted
that other than the initial and boundary conditions specified here, the idealized simulations are not
intended to represent the morphology of the real inlets. Rather, the inlet characteristics are used to
represent a range of possible isolated barrier island tidal inlets that could exist.

Figure 2. Map of the nine selected inlets modeled in this study.

The bay area is rectangular with the width and length chosen to approximate its natural inlet
counterpart. Cusps, spits, headlands and other morphologic characteristics cause natural bays to
differ from a simple rectangular shape. However, the degree to which the model is producing results
consistent with the long-term evolution of tidal inlets is gauged in terms of the O’Brien relationship
and the Escoffier analysis. These simplified approaches assume a featureless bay with simplified
dimensions, so the detailed geometry is less important than the volume capacity of the system.
Idealized inlets have simplified boundary conditions making it easier to evaluate the effects of varying
wave, tide and basin geometry on inlet evolution [7]. However, bay storage is critical to the hydraulics
and the idealized systems are constructed with the same area and thus storage capacity as their natural
inlet counterparts.

Table 1. Geometric characteristics and selected model parameter settings for the 9 simulated inlets.

West Coast Gulf Coast East Coast

Grays
Harbor

MCR * Humboldt
East
Pass

Johns
Pass

Galveston
Oregon

Inlet
Shinnecock Newburyport

Inlet Length (m) 2000 5700 6600 700 600 7500 1500 680 1500
Inlet Width (m) 550 2200 3600 500 190 2800 1100 310 500
Inlet Depth (m) 11.9 15.6 13.5 3.5 5.3 3.5 2.5 7.7 7.0

Bay Length (km) 22 15 10 47 5 30 80 13 6
Bay Width (km) 3 15 38 7.4 3 42 38 3.2 3

Initial Bay Depth (m) 3.4 3.4 5.6 3.5 1.8 3.5 2.5 2.2 1.8
Offshore Length (km) 12 32 44 15 6 50 36 13 12
Offshore Width (km) 6 15 19 7 4 24 12 5 5

Grain Size (mm) 0.20 0.35 0.35 0.35 0.20 0.14 0.35 0.25 0.30

Grid Cells (Active)
17876

(16936)
17948

(17128)
25788

(24842)
25246

(24236)
19482

(18636)
16960

(16108)
29068

(28078)
19714

(18864)
16678

(15878)
Avg. Latitude

(degrees)
40.7 46.9 46.2 30.4 27.7 29.5 35.8 40.8 42.8

Run Time
5 days,

5 h
4 days,

12 h
7 days,

20 h
7 days,

12 h
6 days,

15 h
3 days,

20 h
11 days,

12 h 6 days, 10 h 5 days, 6 h

* Mouth of the Columbia River.
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The initial bathymetry is uniform within the bay and inlet throat and deepens offshore following
an equilibrium beach profile [21]. A single sediment grain size is used in each model domain.
Initial depths and grain sizes are characteristic of their associated natural inlet. Bay metrics including ebb
shoal volume, inlet length, inlet width, and tidal prism are derived from the inlet morphological database
maintained at the Coastal and Hydraulics Laboratory (http://cirp.usace.army.mil). The model includes
a constant Coriolis parameter, which is chosen as the average latitude of the corresponding inlet.

2.4. Model Input and Boundary Conditions

Amplitude and phase of tidal constituents are extracted from the National Oceanic and
Atmospheric Administration tide database for the nine inlet areas. A total of thirteen tidal constituents
are used to reconstruct the tidal time series for each region (Table 2). Tidal characteristics vary
widely between study sites in amplitude, phase and dominant constituents. The thirteen constituents
represent some of the largest tidal amplitudes for each given inlet area. The water surface elevation
time series generated from these constituents does not include the 18.6 year lunar nodal cycle, which
produces an average 4% change in mean tidal range and can affect velocities in an inlet throat as the
larger tidal range increases tidal prism [22]. The 100-year simulation timeframe exceeds the nodal
frequency so the potentially larger tidal prism is regarded as a finite perturbation and is not expected
to significantly affect the results. Furthermore, the initial bathymetry is comprised of a flat featureless
bottom, which evolves into deep channels separated by shoals, so the net morphological change is
very large compared to perturbations potentially induced by nodal tide fluctuations.

Table 2. Tidal Constituents.

West Coast Gulf Coast East Coast

Grays
Harbor

MCR * Humboldt Galveston
East
Pass

Johns
Pass

Oregon
Inlet

Shinnecock Newburyport

M2
Amp 0.985 0.929 0.700 0.116 0.032 0.246 0.138 0.440 1.169
Phase 240.7 250.6 215.1 282.1 90.3 123.1 16.2 353.6 115.7

S2
Amp 0.270 0.249 0.175 0.029 0.016 0.096 0.023 0.090 0.165
Phase 271.3 278.5 236.6 297.5 97.3 141.0 37.1 22.7 153.0

N2
Amp 0.203 0.188 0.148 0.032 0.006 0.046 0.030 0.099 0.239
Phase 217.9 226.8 190.5 257.7 105.6 120.3 358.5 338.9 85.6

K1
Amp 0.425 0.415 0.401 0.142 0.142 0.158 0.030 0.065 0.130
Phase 244.0 248.4 233.4 37.3 19.1 12.4 188.7 172.0 211.2

M4
Amp 0.026 0.015 0.012 0.003 0.0 0.009 0.0 0.0 0.010
Phase 210.0 245.9 200.6 277.0 318.1 76.0 344.8 46.0 133.0

O1
Amp 0.259 0.260 0.249 0.128 0.137 0.151 0.018 0.039 0.104
Phase 228.4 232.5 217.2 36.9 10.7 3.6 193.3 174.7 194.2

NU2
Amp 0.041 0.032 0.029 0.006 0.001 0.010 0.006 0.019 0.046
Phase 218.6 230.0 194.5 260.9 103.5 121.6 8.1 340.9 89.6

SSA
Amp 0.000 0.052 0.038 0.086 0.050 0.037 0.026 0.028 0.018
Phase 0.0 184.1 264.1 55.6 70.1 48.2 10.5 42.9 89.8

SA
Amp 0.126 0.111 0.065 0.066 0.095 0.091 0.046 0.067 0.032
Phase 289.6 307.2 255.0 155.7 160.1 151.9 158.9 129.1 126.3

Q1
Amp 0.045 0.044 0.044 0.025 0.030 0.032 0.007 0.007 0.020
Phase 222.4 225.0 211.3 36.7 357.8 348.0 200.4 175.6 185.8

P1
Amp 0.131 0.124 0.126 0.047 0.045 0.053 0.013 0.021 0.043
Phase 239.9 246.8 231.2 37.3 20.0 12.5 216.6 172.2 209.9

L2
Amp 0.030 0.027 0.016 0.003 0.001 0.007 0.005 0.012 0.033
Phase 243.1 267.5 225.2 306.5 75.0 143.1 35.6 8.3 145.9

K2
Amp 0.072 0.070 0.047 0.008 0.004 0.027 0.005 0.025 0.045
Phase 264.3 271.2 228.3 298.7 97.2 134.6 33.5 25.0 156.1

* Mouth of the Columbia River.

Wave data are derived from the Wave Information Studies (WIS) database maintained by the
Coastal and Hydraulics Laboratory (CHL), U.S. Army Corps of Engineers [23]. The WIS data are
comprised of a network of virtual buoys located along all U.S. coasts, the Great Lakes and other
U.S. island territories. The program maintains long-term (~35 years) hindcast model predictions of
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wave conditions including directional spectra, significant wave height, peak period, average period
and direction.

Without 100 years of data to force CMS-Wave, a representative sub-sample is chosen that
characterizes the long-term wave climate but does not require wave data from a specific timeframe.
Given that the purpose of this study is to investigate the morphological evolution of tidal inlets, it is
more important for the model to capture the average sediment transport processes as opposed to the
details of long-term, variable wave conditions. As such, the WIS data are used to drive a longshore
sediment transport model and the wave conditions that produce the average long-term transport rate
are used to drive CMS-Wave.

Longshore sediment transport rate (Q) is predicted using the CERC formula:

Q = k

(
ρ
√

g
16
√

γ (ρs − ρ)
(
1 − p′

m
))H2.5

br sin (2θbr) (1)

where k is a constant (=0.39), γ is the breaker index (=0.78), ρ is fluid density, ρs is sediment density,
g is acceleration due to gravity, Hbr is the wave height at breaking, and θbr is the wave angle at
breaking [24]. The transport rate is computed using hourly WIS hindcast wave height and direction
hindcasts between 1 January, 1980 and 31 December, 2011 (32 years). The average yearly transport
rate that is in closest agreement with the transport rate for the full record is used in the CMS-Wave
simulations. In this way, the CMS-Wave model can be run by repeating only a single year wave
time series, which reduces the input file size yet produces an average longshore transport rate that is
consistent with the 32-year record.

Wave roses depicting the average directional wave conditions from the WIS record are depicted
in Figure 3. The Pacific Coast inlets (Grays Harbor, Mouth of the Columbia River, and Humboldt) have
the highest average wave conditions. The integrated half-plane spectra subdivided into 10 degree
bins indicate that the largest waves approach from the west and northwest with maximum heights
exceeding 8 m at MCR and Greys Harbor. The Atlantic Coast inlets (Oregon, Shinnecock and
Newburyport) show medium wave height conditions and greater directional spreading. Waves are
primarily from the southeast at all stations with maximum wave heights around 6 m at Oregon
Inlet. The Gulf Coast inlets (Galveston, East Pass and Johns Pass) have the lowest average wave
heights. Wave direction varies between sites owing to the difference in shore orientation, limited fetch,
and other factors. At Galveston and East Pass, waves are generally from the southeast and south,
respectively, with greater spreading at East Pass. Wave direction at Johns Pass is skewed towards the
shore parallel direction and average wave height is lower. Many extra-tropical storms are centered well
north of the Gulf of Mexico. These “nor’easters” are typically preceded by strong southerly pre-frontal
wind, and following the passage of the front, the winds switch to the north-northeast leading to the
observed pattern.

Open boundary conditions are prescribed along the three offshore boundaries and closed
boundary conditions along the shoreline, inlet and bay. All three of the offshore boundaries are
forced by water surface elevation derived from the tidal constituents. The offshore water surface
elevation is adjusted to account for wave forcing [13]. The waves are applied on a separate grid with
identical spatial coverage as the flow grid. The wave directional spectra characteristics are prescribed
at the offshore boundary and generate a wave field across the entire offshore boundary for each time
step. The closed boundaries are rigid and do not deform during the simulation. The interior region
includes wetting and drying so that shoals can become exposed during low tide. Morphological
patterns that develop adjacent to the closed boundaries are influenced by the zero flux condition
normal to the boundaries. The degree to which the closed boundaries produce morphological features
that are more an artifact of the boundary conditions as opposed to the dynamics of the system are
addressed where appropriate.
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Figure 3. Wave conditions at the nine inlets. Dashed line denotes shoreline orientation and wave height
is in meters.

2.5. Model Validation

Long-term wave, current and inlet morphological evolution data are not available, so model
calibration is conducted using established empirical formulations that describe the long-term
equilibrium and stability characteristics of barrier island tidal inlets. The simulations are designed
to predict inlet stability including equilibrium inlet cross-sectional area, so one of the factors used to
assess model performance is the tidal prism relationship, originally theorized by O’Brien [25],

A = CPn (2)

where A is the inlet cross-sectional area, P is tidal prism, and C and n are the empirically derived
constants. The scarcity of field data at that time encouraged later studies that included a greater
number of inlets with more accurate tide measurements [26]. The collective results confirm the basic
tidal prism relationship with C and n showing some sensitivity to wave energy, bay area, tidal regime,
and the presence of jetties [8,26,27]. Empirically derived values for C and n vary between 4.0 × 10−5 to
2.0 × 10−6 and 0.85 to 1.1, respectively.

Inlet stability is determined by the redistribution of sediment by tidal and wave forces.
Escoffier [28] theorized that stable inlets form when the maximum flow equals an equilibrium value
resulting in a stable cross-sectional area (A) due to sediment transport processes. If the maximum
flow in the inlet (U) exceeds the equilibrium value then A increases. If the maximum flow is less than
the equilibrium value the inlet will contract and may eventually close. Escoffier [28,29] constructed
a theoretical framework to quantify the equilibrium approach using simplified momentum and
continuity arguments for single inlet systems. His approach is used to construct maximum velocity
curves as a function of A for the idealized inlets and compare the results to the model.
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The tidal prism relationship and Escoffier analysis can be used to evaluate inlet equilibrium and
stability, but they do not provide metrics to gauge the sediment transport processes and associated
morphological evolution. Walton and Adams [20] theorized that the tidal prism is a measure of
the water volume flux through the inlet and should correlate with the ebb shoal storage capacity.
Using data from 44 U.S. inlets, they developed an empirical relationship for ebb shoal volume with
a similar functional form as the tidal prism relationship:

Vs = aPb (3)

where Vs is the shoal volume and a and b are the empirically derived constants. Equations (2) and (3)
are used to gauge the degree to which model predictions adhere to the equilibrium tidal inlet theory.

3. Results

3.1. Morphology

The final morphology for the nine inlets is depicted in Figure 4. In all cases, the bed features
are indicative of barrier island systems including well developed ebb shoal deltas, deepening and
channelization of the inlet throat, and development of dendritic channel networks in the bay (for
some cases).

Figure 4. Final bed morphology. The top three inlets are along the West Coast of the United States, the
middle three inlets are along the Gulf Coast, and the bottom three inlets are along the Eastern Coast.
White areas shown inside the bays denote areas that were considered dry (above the water level) at the
end of the simulation. For clarity, color scale and map legend vary between inlets.

The ebb shoal morphological characteristics vary between the different coastal settings. In some
cases (Johns Pass and Newburyport), the terminal lobe is skewed and elongated in the alongshore
direction. In other cases (Humboldt, East Pass, Shinnecock), the lobe is more symmetrical with respect
to the inlet axis, with an ebb shoal channel that terminates at a crescent bar. For these cases, marginal
flood channels form on either side of the lobe separating the ebb shoal from the adjacent beaches.

134



J. Mar. Sci. Eng. 2016, 4, 65

The two largest ebb shoals (Grays Harbor and MCR) have more complex morphology including
multiple lobes with varying degrees of width and offshore extent. The lobes are dissected by ebb
channels that are in proportion to the width and length of the associated bars. Galveston and Oregon
have shoals that extend laterally similar to Grays Harbor but the lobes are less pronounced and the
overall scale is smaller.

There are two major inlet types based on inlet width. The three inlets (Grays Harbor, MCR
and Galveston) with widths >2000 m show a complex channel structure within the inlet throat.
These systems tend to form alternating scour depressions on opposite ends of the inlet separated
by a shallower region in the middle. The deepest sections are near the inlet edges as opposed to
the centerline. This has the effect of producing a sinuous thalweg that is not only deeper on either
end but meanders as it traverses the inlet throat. Inlets with widths <2000 m tend to form more
pronounced channels that are nearer to the centerline of the inlet throat. Shallow banks form on the
sides of the inlet separated by a deeper mid-section. There is some lateral displacement of the thalweg
from the centerline especially at the inlet entrance for cases with relatively strong longshore transport
(Johns Pass and Newburyport) as implied by the orientation of the ebb shoal channel.

The bays likewise have developed into two distinct geomorphological types. Bays with strong
tidal forcing evolve into a series of incised channels distributed into random patterns of elongated
fingers. Initially, the channels form near the landward end of the inlet as the alternating tidal currents
erode sediment forming depressions. Once an initial scour depression has formed, the tidal flow
concentrates along the depression parallel to the inlet axis. This, in turn, widens and lengthens the
depression into a series of dendritic channels that extend deep into the bay. The degree of lateral
spreading is more pronounced in bays that are elongated in the shore parallel direction. Overall,
the channels resemble tidal creek networks, which are common to barrier island systems with
abundant sediment supply. The Gulf Coast inlets and Oregon Inlet on the Atlantic Coast do not
show a pronounced channel network system. Tidal forcing at the Gulf Coast inlets is weak so there is
less likelihood of channel network development. However, channel network formation in the bay is
apparent for East Pass and Johns Pass. At Oregon Inlet, the bay is very large and tidal currents decay
rapidly upon entering the bay. The weak currents are insufficient to erode sediment to the point where
scour depressions, and ultimately channels, could develop in the 100 year timeframe of this study.
Instead, the bay forms a wide shallow depression that spreads radially from the inlet terminating at
a crescent flood shoal.

The net sediment volume change in the bay, inlet and ebb shoal is depicted in Figure 5. In all
cases except Galveston, ebb shoal volume increases more rapidly at first but then at a reduced rate
for the remainder of the simulation. The inlet shows an inverse trend in which the ebb shoal volume
increases at a faster rate at the beginning of the simulation and then the rate of growth increases more
gradually. The bay volume decreases for all cases except Humboldt Bay and the three Atlantic Coast
inlets. The results indicate that all inlets are approaching an equilibrium configuration, at which point
the temporal change in sediment volume would vanish. Treating the three locations as a semi-closed
sedimentary system, the total increase in ebb shoal volume nearly balances bay and inlet losses for
Grays Harbor, MCR, Galveston and East Pass. The mass balance for Johns Pass suggests the ebb
shoal accumulation exceeds inlet and bay losses. For the three Atlantic Coast inlets and Humboldt
Bay, the ebb shoal and bay show net gains that exceed inlet losses suggesting sediment supply from
littoral transport.
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Figure 5. Change in sediment volume during the 100-year simulation. Units are millions of cubic meters.

3.2. Longshore Sediment Transport

Longshore transport is computed by defining ten equally spaced shore-normal transects
bracketing the centerline of the inlet axis and integrating the transport vector from the shoreline
to two km offshore (Figure 6). Each group of five transects below (negative y-axis) and above (positive
y-axis) the origin is averaged over the full record giving the net longshore transport across the inlet
entrance. The locations are expressed in terms of the Cartesian coordinate system as opposed to
earth coordinates since the orientation of the real inlets varies between coasts. The convention is that
positive values denote transport in the positive y-direction. Net longshore transport is negative at
all inlets except Humboldt, East Pass and Shinnecock (Figure 7). Transport direction at Humboldt
and Shinnecock is convergent, meaning the longshore transport on both sides of the inlet entrance is
directed towards the inlet. Transport at East Pass is positive on both sides of the inlet. Transport is
greatest for the Pacific Coast, followed by the Atlantic Coast and then the Gulf Coast (except Galveston)
in general agreement with the wave conditions for each coastal type. The gross and net longshore
sediment transport magnitudes were not quantitatively analyzed in this study, yet they do provide
a qualitative assessment of the volume of material that is entering the inlet system in addition to
inlet/bay equilibrium adjustments.
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Figure 6. Humboldt model grid illustrating the location of the cross-shore transect placements.
Similar transects were defined on all nine model grids to computer long-shore transport values.

Figure 7. Average longshore sediment transport bracketing the inlet entrance. The legend signifies
the location where the transport is computed, i.e., positive-y axis is above or on the upside of the inlet
entrance referenced to plan view (Figure 4).

3.3. Hydrodynamics

The maximum flood currents near the end of the 100-year simulation are depicted in Figure 8.
Flood currents enter radially and strengthen in the inlet throat with the largest flows in the deeper
sections. Maximum flows in the three widest inlets (Grays Harbor, MCR, Galveston) are not uniform
along the inlet nor are they oriented along the centerline but occur in the deeper areas. In fact, the
strongest currents at Galveston occur along the side of the inlet. Within the bay, currents align with
the channels or spread radially for systems without well-defined channel networks. Maximum tidal
currents are lowest for the three Gulf Coast inlets as a result of the lower tidal range and associated
weaker forcing.
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Figure 8. Maximum flood currents near the end of the simulation. For clarity, the color scale varies
between inlets. White areas shown inside the bays denote areas that were considered dry (above the
water level) at the time chosen for the plot.

The maximum ebb currents near the end of the 100-year simulation are depicted in Figure 9.
All inlets show an ebb flow jet that extends offshore. The three widest inlets (Grays Harbor, MCR and
Galveston) show more lateral spreading indicating greater dispersion of tidal energy. Currents are
highest in the inlet throat and the spatial distribution varies such that higher speeds coincide with the
deeper sections. Ebb currents in the bay follow established channels and accelerate upon approach to
the inlet. Gulf Coast bays without well-defined channel networks show radial ebb currents.

Time series of depth averaged currents extracted from the inlet throat midway between the ocean
and bay are depicted in Figure 10. The figure also includes individual plots depicting the last year of the
simulation to elucidate tidal current asymmetry. Except for Galveston, in which the current amplitude
increases slightly during the first half of the simulation, the tidal current envelope shows a decrease
in amplitude during the simulation. The rate of contraction varies between inlets, but generally is
faster near the beginning of the simulation and then more gradual. With the exception of Oregon Inlet
and the three Gulf Coast inlets, peak currents are on the order of 1 m/s at 100 years. Maximum ebb
currents at Grays Harbor, MCR and the three Gulf Coast inlets are higher than maximum flood currents
indicating ebb dominated conditions. All the other inlets have higher flood currents and, therefore, are
flood dominated.
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Figure 9. Maximum ebb currents near the end of the simulation. For clarity, the color scale varies
between inlets. White areas shown inside the bays denote areas that were considered dry (above the
water level) at the time chosen for the plot.

Figure 10. Time series of along-channel currents in the inlet throat.

3.4. Comparison to Empirical Formulas

The tidal prism relationship (Equation (2)) expresses the cross-sectional area as a function of tidal
prism and is an intrinsic metric used to characterize the morphology of quasi-stable inlet systems.
In practice, the tidal prism is associated with spring tide conditions when the currents have the
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potential to mobilize the greatest volume of sediment. In order to gauge the numerical simulations in
terms of equilibrium inlet theory, the tidal prism is calculated at the end of the simulation along
with the associated cross-sectional area. The resulting tidal prism is input into the tidal prism
relationship to predict the theoretical cross-sectional area, which is compared to the model prediction.
Because several authors have reported different values for the fitting parameters (C, n) that define the
tidal prism relationship the results present the maximum and minimum bounds. These are further
subdivided between maximum and minimum reported for the three different coasts as referenced
above. Shoal volume is compared to the Walton and Adams formula, with the fitting parameters
further subdivided based on their classification for the three different coastal areas.

Cross-sectional area as a function of tidal prism for the nine idealized inlets tends to fall within
the theoretical range previously reported (Figure 11). The model overpredicts Johns Pass and generally
lies closer to either the middle range or the minimum for the other inlets. As sediment transport is
associated with the strongest currents the empirical predicted shoal volume is theorized to correlate
with the spring tides at equilibrium. The model tends to underpredict shoal volume compared to the
Walton and Adams empirical relationship (Figure 12).

Figure 11. Model predicted cross-sectional area at the end of the simulation. Minimum and maximum
denote the empirical tidal prism relationship [8].

Figure 12. Shoal volume at the end of the simulation derived from the model and the empirical formula
of Walton and Adams.

The Escoffier analysis provides criteria to gauge inlet stability. The solid curves (Figure 13) denote
the theoretically predicted maximum tidal current as a function of cross-sectional area. The input
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parameters (e.g., bay area, inlet dimensions, water surface elevation) are derived from the model.
Points that lie to the right of the peak denote stable inlet conditions. The minimal cross sectional
area for the real inlet counterparts are also noted for comparison. The model results are based on
the minimal inlet cross-sectional area and maximum flow speed over a tidal cycle. The record is
low-pass filtered using a 30-day window to delineate the overall trend. The model results reveal inlet
area growth and a net reduction in the maximum current that trends with the theoretical predictions.
As the simulation progresses the change in cross-sectional area and associated maximum flow speed
diminishes, leading to the grouping of data points for the larger cross-sections.

Figure 13. Escoffier curve for the idealized inlets. CMS denotes model estimates and plus symbols
denote the cross-sectional area of the real inlets. Open circles are the model predicted maximum flow
versus inlet cross-sectional area.

4. Discussion

4.1. Morphology

In all cases morphological evolution of an initial featureless system includes channel formation
in the inlet, and ebb shoal formation offshore of the entrance. Well defined channel networks form
in bays with stronger tidal flows, in particular the Pacific and two Atlantic Coast cases. In systems
with weaker tidal flows, the bays do not develop channel networks but rather form flood deltas and
truncated depressions adjacent to the inlet. Longshore transport, in some cases, shifts the terminal
lobe and ebb channel in the direction of net transport.

4.1.1. Inlet Morphology

Morphological evolution in the inlet consists of two primary types. The first type is characterized
by rapid channel growth in the first 20 to 40 years followed by slower deepening for the remainder
of the simulation and in some cases migration of the thalweg from the centerline. Shoal formation
along the sides of the inlet near the entrance and exit results from flow separation around the 90◦
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corners as the tidal current converges. This inlet type is associated with smaller bays and smaller
inlet cross-sections. The narrower width constricts the flow allowing the inlet to develop a single
deeper channel.

The second type includes multiple channel formation in the inlet with widely varying
morphological patterns. This inlet type consists of deeper channels forming on the sides of the
inlet near the entrance and exit separated by a shallower section in the middle. The deepest sections
occur off center of the inlet axis, such that the thalweg crosses from one side of the inlet near the
entrance to the other side near the bay. The channel is wider and shallower in the middle section.
This inlet type is associated with inlets wider than 2000 m and larger bays (MCR, Grays Harbor and
Galveston). The pattern is indicative of an immature channel network typical of tidal flats and low
lying coastal wetlands such as salt marshes [30]. Variations in depth along the thalweg also occur in
unmanaged natural inlets and some of this variability is linked to sediment transport processes [31].

The wider inlet permits the development of instabilities in the flow field and sediment transport
conditions that lead to bifurcated networks. Confinement due to the finite inlet width prohibits channel
network lateral expansion. Instead, the channel forms incised sections along the sides to compensate
for the restrictive lateral boundary. Overall, the wider inlets exhibit morphological patterns similar to
coastal wetlands, which are defined by random channel networks similar to terrestrial watersheds [32].

4.1.2. Bay Morphology

Bay morphology includes dendritic channel network formation for systems with strong tidal flow.
Bay channels form in random bifurcated networks that decrease in depth and width as a function of
distance from the inlet. For systems in which the shore parallel bay length is greater than the shore
normal length, channels tend to align with the bay upon exiting the inlet and then branch into smaller
and shallower secondary channels that extend in the cross-shore direction. The channels are separated
by shoals that in some instances are exposed during low tide indicating that the model is producing
bars. The pattern is very typical of coastal plain salt marshes and other tidal flat areas with an abundant
sediment supply [30].

Systems characterized by weak tidal flow do not form channel networks and the majority of
channel deepening is confined near the inlet. In these cases the bay may accumulate sediment over
the course of the simulation resulting in sedimentation, e.g., flood shoal development in the form of
a crescent bar in the case of Johns Pass. The absence of channel network development is tied to the
weak forcing, which is further reduced through the inlet and in the expansion zone as the flow enters
the bay. Channels formed in the inlet end abruptly at the edge of the bay signifying the reduction in
current speed and associated weak sediment mobilization capacity.

For real systems, weak tidal flows may prohibit expansive tidal flat formation or at least confine
it to the back side of the barrier island near the inlet where the scouring capacity of tidal currents to
produce and grow channels is greatest. Creek network expansion would be slow for a stable inlet
system, but could be more active in systems with inlet migration [33].

Inlets showing ebb dominance include the three Gulf Coast inlets, MCR and Grays Harbor.
Bay sediment volume decreases throughout the simulation indicating net erosion and export of
sediment. Ebb dominance is associated with generally lower tidal range [34] as is the case for the
three Gulf Coast inlets. Grays Harbor and MCR have relatively large tidal ranges but their actual
inlet counterparts are located on an active continental margin and are not classified as barrier island
systems, but rather as river mouth estuaries [35]. Therefore, the bay dimensions are less controlled by
local sediment redistribution and more by the underlying geology. Long-term deepening of the bay
changes the hypsometry and can increase exchange via flow routing through deeper channels. This, in
turn, can increase the capacity of the bay and associated tidal prism [36]. Channel deepening without
similar sediment loss on the tidal flats reduces the tidal phase speed difference between flood and ebb
and can favor ebb dominance [30].
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4.1.3. Ebb Shoal Morphology

Ebb shoals develop into different patterns as a function of tide and wave forcing. For Humboldt,
East Pass and Shinnecock the channel is fairly symmetric with respect to the inlet axis and extends
offshore forming a crescent bar. The ebb shoal is bisected by the ebb channel, which helps transport
sediment further offshore, thereby extending the shoal. The shoal is detached from the adjacent beach
by near-symmetric, yet much narrower, marginal flood channels. These attributes are associated
with tide-dominated inlets, which can form large crescent shoals and associated marginal flood
channels [37]. The longshore sediment transport at Humboldt and Shinnecock is convergent delivering
sediment to the inlet from both the updrift and downdrift littoral zones. This aids in maintaining
the quasi-symmetric bar by supplying sediment that can be reworked by cross-shore tidal forcing at
the inlet entrance. Transport at East Pass is positive and non-convergent at the inlet. However, the
longshore transport is weakest of all inlets and the slight rotation of the crescent bar is in agreement
with the positive longshore transport.

For cases with significant longshore transport, the channel forms an acute angle to the shoreline
rotated in the down-drift direction and the shoal consists of a series of elongated bars. Up- and
down-drift bars attached to the shoreline are separated by bypassing bars that form the outer cusp
of the ebb shoal. This is most pronounced for Johns Pass and Newburyport, which show clear up-
and down-drift bars bracketing the ebb channel. In both cases, the longshore transport is negative in
agreement with the angle of the bars and ebb channel. Down-drift rotation of the ebb channel and
a mature bar complex are associated with wave-dominant or mixed-energy inlets [37], such as the Gulf
Coast and central New England [38], respectively.

Grays Harbor and MCR, which have the strongest tidal forcing, develop large ebb delta complexes
with multiple lobes each dissected by respective ebb shoal channels. These ebb shoals form under the
action of strong tidal forcing that redistributes sediment offshore and laterally to produce the broad
bifurcated ebb delta pattern. The larger inlet width produces a wider exiting jet that can develop
instabilities producing lateral shear patterns that favor multiple flow pathways [9]. In turn, sediment
transport varies laterally across the inlet to effect the development of multi-lobe deltas as characterized
by Grays Harbor and MCR. Longshore transport is negative at both inlets, but varies in terms of
longshore convergence, i.e., Grays Harbor receives more sediment from the updrift side compared to
losses at the downdrift side while MCR is the opposite. The largest lobe at Grays Harbor is slightly
skewed downdrift while the opposite is true for MCR. Galveston and Oregon show similar longshore
transport patterns as Grays Harbor but reduced in magnitude, and also possess similarly skewed
downdrift ebb shoals.

Similar patterns as seen at MCR in which the orientation of the ebb shoal is opposite to the
longshore drift has been attributed to the interaction of nearshore tidal currents and inlet tidal
currents [39]. However in the present case, the increased transport downdrift of the inlet leads
to greater erosion of MCR’s ebb shoal. As the net longshore sediment transport delivers sediment to
the shoal from the updrift side, the greater loss on the downdrift side produces asymmetric erosion
and the associated skewed delta morphology.

4.1.4. Sediment Budget

In all cases, the ebb shoal and the inlet initially increase and decrease in volume, respectively.
The bay either increases or decreases due to hydrodynamic conditions and the dominant sediment
transport. In cases with flood dominance, the bay accumulates sediment forming flood shoals with
varying degrees of channel development. In some cases, ebb shoal accumulation approximately
balances inlet and bay losses suggesting that sediment is redistributed locally and longshore transport
primarily bypasses the system [40]. For the cases in which the bay accumulates sediment (Humboldt
Bay, Oregon, Newburyport, and Shinnecock), bay and ebb shoal gains far exceed inlet losses implying
that the majority of sediment supply is derived from coastal transport. For the case of Humboldt Bay
and Shinnecock sediment transport converges at the inlet, which can be redistributed by tidal currents
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to supply the bay. For Oregon and Newburyport, the transport is directed in the negative y-direction
but the net transport at the inlet throat is convergent (i.e., larger flux on the updrift side and smaller
flux on the downdrift side). The net flux towards the inlet can likewise be carried by the tidal currents
to the bay.

These systems are initially sediment starved and rely on an abundant sediment supply derived
from the littoral zone to establish long-term equilibrium. The majority of the longshore transport is
primarily due to waves as the tidal currents decay rapidly away from the inlet entrance. As waves
deliver sediment to the inlet via longshore transport, the tidal currents then redistribute it to the ebb
shoal and bay. Without the wave contribution, the ebb shoal and bay would remain sediment starved
and would likely not approach equilibrium as suggested by the asymptotic relaxation of the sediment
volume curves near the end of the simulation. Insufficient sediment supply can have a destabilizing
effect such that the inlet, bay, and ebb shoal are unable to obey established stability theory [36].

4.2. Inlet Stability

The dominant flow is driven by tides and includes semi-diurnal, diurnal, and fortnightly
components as representative of tidal conditions at the nine inlets. Tidal currents at the beginning of
the simulations are generally largest and then decay as the inlet cross-section expands. Usually after
about 20 years, the tidal current envelope becomes more uniform with the exception of spring/neap
and seasonal variations. As such, the currents that occur during spring tide, which are responsible
for the greatest sediment transport, become fairly uniform through the remainder of the simulation.
Near the end of the simulation, spring tidal current speeds for the Pacific and Atlantic Coast inlets are
~1 m/s and lower for the Gulf Coast inlets (~0.5 m/s).

Escoffier [29] theorized that the equilibrium cross-sectional area occurs at the point where the
Escoffier curve intersects an equilibrium velocity, which he assumed is constant. Without direct
measurements he and others [41] speculated this to be about 1 m/s, based on the depth averaged flow
required to mobilize newly deposited sediment but unable to erode the channel bed further. With the
exception of Oregon and Galveston inlets, the modeled currents at the beginning of the simulation
are >1 m/s and asymptotically approach, or at a minimum follow the curvature of, the Escoffier
solution (Figure 13). The initial velocity for Oregon and Galveston is <1 m/s and fall well below the
theoretical curve.

These are the two largest bays and according to the Escoffier theory should have equilibrium
velocities that are greater than those calculated. The predicted cross-sectional area lies to the left of
the peak in the Escoffier curve signifying unstable conditions. If the velocity predicted by the model
near the end of the simulation (about 0.5 m/s for Galveston and Oregon) is projected to intersect with
the Escoffier solution, then the equilibrium cross-sectional areas would be 2.0 × 105 m2 for Galveston
and 2.5 × 105 m2 for Oregon. This is more than ten times the cross-sectional area produced by the
model. For the same tidal forcing, a much larger cross-sectional area will produce smaller velocities to
preserve continuity. Weaker flows will reduce sediment transport capacity and be unable to maintain
a large inlet cross-section. The relatively weak initial forcing is sufficient to deepen the channel but
insufficient to establish equilibrium within the simulated 100 years.

One of the underlying assumptions in Escoffier’s theory is that the water surface elevation in
the bay remains horizontal such that the bay oscillates uniformly [29]. The phase lag between the
entrance and furthest reaches of long shallow bays combined with friction can lead to nonlinearities
that modulate volume flux and water surface elevations through the system [42,43]. In these cases,
the dynamics are inherently more complex and the basic Escoffier theory is less applicable because
co-oscillations and other factors distort the phase lag between ocean and bay. While all inlets show
some degree of variable surface elevation, the assumptions imposed by Escoffier are strained the most
for Oregon and Galveston. Using the phase speed for shallow-water waves, CT =

√
gh, where g is the

acceleration due to gravity and h is the average depth in the bay, it takes 4 (Oregon) and 2 (Galveston)
hours for the tide to propagate to the furthest reaches of the bay. With the exception of East Pass, this
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is greater than the other inlets by a factor of two illustrating the larger phase lag, and associated water
surface elevation difference, between the furthest reaches of the bay and the inlet. However, East Pass’s
bay area is three times smaller than Galveston and nine times smaller than Oregon so bay filling is
faster through continuity. Straining the limits of the Escoffier assumptions is likely a contributing
factor to the lack of agreement between model predictions and the Escoffier theory for these larger
shallow bays.

4.3. Long-Term Model Predictions

The results are compared to the tidal prism relationship and the empirical formulas for ebb shoal
volume. All of the inlets fall within the empirical range of the tidal prism relationship from previous
studies with the exception of Johns Pass, which overpredicts the cross-sectional area. Galveston and
Oregon are near the middle of the empirically derived range and the others are closer to the lower
limit. However, all of the inlets are still deepening after 100 years so the cross-sectional areas would
increase somewhat before reaching equilibrium.

The model tends to under-predict the ebb shoal volume compared to the Walton and Adams [21]
empirical formula. In most cases, the ebb shoal volume is still growing at the end of the simulation so
the comparison would likely improve if the simulations are run longer. It is possible that the shoal
is underpredicted because the modeled offshore slope is steeper in the vicinity of the inlet. In this
case, shoal growth may be incomplete as the strong ebb jet seen at some inlets has the capacity to
transport sediment further from shore into deeper regions [44], where it cannot be recovered by tide
and wave-riven transport to supply the ebb shoal. Walton and Adams [20] noted smaller ebb shoals
with increasing wave energy. The increased wave power prohibits the maintenance of shoals that
otherwise would be in equilibrium with the tidal forcing [39]. The waves used in the study show
high angles to the shoreline for most cases. The high angle may increase erosion leading to smaller
ebb shoals than would be expected based on empirical models that are formulated using only the
tidal prism. Because of the power law dependence on tidal prism to predict ebb shoal volume, the
empirical solutions are very sensitive to changes in the exponent. As such, small changes in the fitting
parameters can result in large differences in predicted shoal volume. More field data could help refine
the exponent and coefficient values for specific coastal regions and improve shoal volume predictions.

The maximum inlet velocity decays over time in agreement with the Escoffier solution in
which U ~1/A for stable inlets [45]. The modeled maximum velocity is less than predicted by the
Escoffier formula signifying that the modeled inlets are within the equilibrium regime and that further
simulation will reduce the maximum current to the threshold for the initiation of sediment motion
and prohibit further cross-sectional area growth. Oregon and Galveston are notable exceptions and
potential reasons for the lack of agreement with the theory are discussed above. In most cases, the
predicted cross-sectional area is greater than the corresponding inlet; however, given that the inlets are
idealized direct comparisons serve only as a guide to gauge overall model performance and deviations
are conceivable. Even so, there are a few specific explanations why idealized inlet modeling studies
may overpredict channel deepening. Previous work has shown that a single grain size class can lead to
over-deepening due to misrepresentation of bed composition by excluding larger particles that require
greater bed stress for mobilization [3]. MCR showed the greatest erosion rate and sensitivity studies
to grain size were conducted including increasing the grain size from 0.35 to 0.80 mm. The erosion
rate was slower initially but the final depth did not change. Natural tidal inlets consist of varying
degrees of cross-bedding and mixed sediments that contribute to armoring, which are not captured in
the model leading to greater erosion of the simulated channel [46]. In addition, the idealized inlets
have fixed boundaries and constrict the flow so that the tendency is to generate faster currents that
deepen the inlet as opposed to wider inlets with slower currents.
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5. Conclusions

This study focused on the long-term morphological evolution of idealized barrier island tidal
inlets. The study was motivated by the need to develop tools that could be used to investigate long-term
change in support of engineering projects focused on environmental and other issues affected by sea
level rise. The numerical modeling system (CMS) included coupled wave-flow-sediment transport
models that were applied to nine idealized inlet/bay systems typical of the U.S. Pacific, Gulf and
Atlantic coasts. Starting with a featureless surface, the model generated the major morphological
characteristics typical of barrier island inlets for simulations spanning 100 years. In all cases morphological
evolution included channel formation in the inlet, and ebb shoal formation offshore of the entrance.

Well defined channel networks similar to salt marshes and other tidal flat areas formed in bays
with stronger tidal flows. In systems with weaker tidal flows, the bays did not develop channel
networks but rather formed flood deltas and truncated depressions adjacent to the inlet. In the inlet
throat, channel formation and morphology were linked to inlet width. Inlets with widths <2000 m
tended to form more pronounced channels that were nearer to the centerline. Inlets with widths
>2000 m were more complex and formed depressions and scour holes similar to immature channel
networks associated with salt marshes or deltas. Ebb delta formation included large multi-lobe shoals
for the larger inlets with strong tidal forcing and crescent bars bracketing well-defined ebb channels
for smaller inlets with weaker tidal forcing. Longshore transport contributed to ebb shoal asymmetry
by shifting the main lobe in the direction of net transport. The degree of ebb shoal asymmetry was
controlled by the relative longshore transport both in magnitude and convergence near the inlet.

Modeled inlet cross-sectional area was in general agreement with the tidal prism relationship.
Shoal volume did not show as good agreement and was underpredicted. Other factors such as incident
wave angle, local beach slope, fixed lateral boundaries, and sensitivity to the fitting parameters for the
empirical shoal volume formula were not as well constrained and may contribute to the bias towards
smaller shoals predicted by the model.
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Abstract: This paper presents an evaluation of inundation, erosion, and wave damage for a coastal
community in Rhode Island, USA. A methodology called the Coastal Environmental Risk Index (CERI)
was used that incorporates levels of inundation including sea level rise, wave heights using STWAVE,
and detailed information about individual structures from an E911 database. This information
was input into damage functions developed by the U.S. Army Corps of Engineers following
Hurricane Sandy. Damage from erosion was evaluated separately from local published erosion
rates. Using CERI, two different adaptation strategies were evaluated that included a combination of
dune restoration, protective berms, and a tide gate. A total of 151 out of 708 structures were estimated
to be protected from inundation and wave action by the combined measures. More importantly,
the use of CERI allowed for the assessment of the impact of different adaptation strategies on
both individual structures and an entire community in a Geographical Information Systems (GIS)
environment. This tool shows promise for use by coastal managers to assess damage and mitigate
risk to coastal communities.

Keywords: inundation damage; wave damage; sea level rise; damage functions; coastal resilience

1. Introduction

Matunuck, Rhode Island is a coastal community in the northeast United States that is vulnerable
to the effects of storm surge, sea level rise, and erosion. As such, it is representative of many small
communities that are facing these challenges without the resources of large urban cities. The Matunuck
Beach community (Figure 1) has only one evacuation route, which is a coastal road that runs parallel
to the shore and is highly susceptible to flooding. Erosion rates in this area are among the highest in
Rhode Island [1], ranging from 0.8 to 3.5 ft/year (Figure 2). Figure 3 shows photographs of a local
restaurant in the study area taken in the 1950s and 2012, clearly showing the loss of shoreline [2].
The evacuation route for the community can be seen in Figures 1 and 2 directly behind the restaurant.
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Sea level is also increasing at this site, and estimates of sea level rise by 2100 range from 0.5 ft
assuming a linear increase from historical records to almost 7 ft using the National Oceanic and
Atmospheric Administration’s (NOAA) most conservative projections (Figure 4) [3]. The Rhode
Island Coastal Resources Management Council (RI CRMC), which is the state agency responsible
for preservation, protection, and development of the coast, has adopted NOAA’s most conservative
projections of sea level rise (1 ft by 2025, 2 ft by 2050, and 7 ft by 2100) in their regulatory guidelines.

Given these challenges facing the Matunuck Beach community, the objectives of this study were
the following:

• Estimate the inundation, wave attack, and erosion damage to the existing structures and
infrastructure caused by a 100-year storm event, with and without 7 ft of sea level rise, and
estimate the total damage;

• Identify adaptation strategies to reduce the damage from inundation, wave attack, and erosion; and
• Determine the impact associated with each adaptation strategy.

Fig. 2 

Figure 1. Site map of the coastal community of Matunuck, Rhode Island that was chosen for this study.

Figure 2. Shoreline change rates for the study area [1].
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This was accomplished using a Geographical Information Systems (GIS) tool called the Coastal
Environmental Risk Index (CERI) [4]. CERI is designed as an objective, quantitative tool to assess the
risk that structures and infrastructure face from storm surges, including flooding and the associated
wave environment, in the presence of sea level rise (SLR), and shoreline erosion/accretion. Additional
details on CERI are provided in [4] including information on other assessment and index tools
designed for this purpose. CERI can readily be extended to include hydrological flooding (e.g., rivers
and streams). This feature was not, however, implemented in the present analysis since there are no
substantial hydrological sources of flooding in the study area.

(a) (b)

Figure 3. Photographs of a local restaurant in the study area from: (a) the 1950s; and (b) 2012, showing
the loss of shoreline due to erosion [2].

Figure 4. Sea level change projections for the southern coast of Rhode Island [3]. USACE, US Army
Corps of Engineers; NOAA, National Oceanic and Atmospheric Administration.

2. Methods

Figure 5 shows a flow chart of the organization of CERI. Inputs into CERI include detailed
information about the structures within the study area, topography and bathymetry, and levels of
inundation, wave heights, and erosion for different storm events. The level of damage for each
structure was estimated using damage functions developed by the U.S. Army Corps of Engineers as
part of the North Atlantic Coast Comprehensive Study (NACCS) [5]. The results were presented in
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terms of probability and cumulative distribution functions and graphically in a GIS. Based on these
estimates of damage, different adaptation strategies were evaluated based on the reduction in damage
to structures for different storm events with and without sea level rise.

Figure 5. Flow chart showing the methodology used to estimate damage from storm surge and sea
level rise in this study (See [3]). CERI, Coastal Environmental Risk Index; NACCS, North Atlantic
Coast Comprehensive Study.

A Digital Elevation Model (DEM) of the study area was obtained from a combination of NOAA
bathymetry and a 2011 Light Detection And Ranging (LIDAR) topographic survey [6]. All elevations
are referenced to the North American Vertical Datum of 1988 (NAVD 88). The accuracy of the DEM
was evaluated using three approaches. In the first approach, values from the DEM at selected locations
in Charlestown and South Kingstown, Rhode Island (adjacent to the study area) were compared to
publically available Letters of Mapping Amendment (LOMAs), which document the lowest grade
elevation at a particular structure. Elevations from fifteen LOMAs were used for the comparison.
The second approach involved a comparison of elevations from three LIDAR control points near the
study area with the corresponding values from the DEM. The third approach involved a comparison
of elevations reported on building plans for several properties in South Kingstown with values from
the DEM. Values of root mean square error for these three approaches were 0.78 ft, 0.04 ft, and 0.67 ft,
respectively, which were considered to be reasonable.

2.1. Classification of Structures

As part of the NACCS, the U.S. Army Corps of Engineers created a classification system of coastal
infrastructure to be able to differentiate damage from inundation and wave attack between different
structures. Seven structural prototypes were presented: (1) apartments; (2) and (3) commercial; (4) high
rise; (5) single and two story residences with no basement; (6) single and two-story residences with
basements; and (7) elevated or stilted buildings on pile foundations. In some cases prototypes were
further sub-divided; for example, prototype 5A is a single story residence with no basement and 5B is
a two story residence with no basement.

The study area consisted of 359 single story residences without basements (5A), 104 two story
residences without basements (5B), 83 single story residences with basements (6A), 139 two story
residences with basements (6B), 7 open stilted structures, and 16 enclosed stilted structures (7B).
There was a total of 708 structures in the study area, and their distribution is shown in Figure 6.
The structures in the study area were classified visually during visits to the site.
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Figure 6. Distribution of structure type (i.e., prototypes) within the study area.

The NACCS damage functions require information about both the type of structure being
impacted and the Furnished Floor Elevation (FFE), as the majority of damage occurs when inundation
and waves exceeds the FFE. Values of FFE were obtained during site visits, and Figure 7 shows the
values of FFE above grade for each structure. Included in the figure is the topography referenced to
NAVD 88. Of particular interest in Figure 7 is the southwest corner of the study area, which shows
both the main road (and evacuation route) and a collection of mobile homes at the ground surface
(FFE < 1 ft) at very low elevations (< 5 ft above NAVD 88).

Figure 7. Values of Furnished Floor Elevation (FFE) for each structure and topography within the
study area.

2.2. Inundation, Waves, and Erosion

Figure 8 illustrates how the U.S. Federal Emergency Management Agency (FEMA) defines the
coastal zone in terms of flooding from both inundation and wave action. Inundation from storm surge
is defined by a still water elevation (SWEL), and the impact of waves is added to the SWEL to define
a Base Flood Elevation (BFE).
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Figure 8. The U.S. Federal Emergency Management Agency’s (FEMA) designation of Special Flood
Hazard Areas (SFHA) showing the base flood elevation (BFE) as the sum of the still water elevation
from storm surge inundation and wave action [7].

Levels of inundation were estimated using an on-line tool developed for Rhode Island called
STORMTOOLS [4,8]. Water levels for events of various return periods were obtained from NOAA’s
gauge station in Newport, RI. The values were scaled based on storm models from the NACCS
study [9] to obtain levels of inundation for 25, 50, and 100 year storm events that included 1, 3 and
7 feet of sea level rise, respectively. The NACCS water levels were derived from their surge plus tide
(96 random tides) simulation case at the upper 95% confidence limit. This confidence interval was
selected to account for uncertainties in the analysis. The results also included wave induced set up
since the simulations were based on a fully coupled surge-wave model system. Values of inundation
within the study area were provided on a 1 m grid, and Figure 9 shows the estimated inundation of
the study area from a 100-year storm event [10].

Figure 9. Extent of inundation within the study area from a 100-year storm event using the online tool
STORMTOOLS [9].

Significant offshore wave heights (Hmo) were obtained using two approaches from the US Army
Corps of Engineers (USACE): the Coastal Storm Modeling System (CSTORM-MS) and the Wave
Information Studies (WIS) dataset. CSTORM-MS is a suite of modeling tools that includes a deep
water wave model (WAM), a nearshore wave model (STWAVE), and an advanced circulation model
(ADCIRC). As part of the NACCS, 1030 separate synthetic tropical storms were modeled. Using these
synthetic storms along with extratropical storms modeled from 100 historical storms, wave heights
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and wind and water levels were estimated for the northeast U.S. The second approach involved the
Wave Information Studies (WIS), which provide modeled wave estimates from hindcast data (1980 to
2010) at discrete locations offshore.

Different probability distributions from both data sets were used to identify the significant wave
height with a probability of exceedance of 1%. Values ranged from 30 to 33 ft (9 to 10 m) and 30 ft (9 m)
was used as the input to nearshore wave modeling. Nearshore wave heights were modeled using
the 2-D wave modeling program STeady State Spectral WAVE (STWAVE). Inputs included the DEM,
bottom friction, and offshore significant wave height. STWAVE includes refraction, shoaling, and both
depth-induced and steepness-induced breaking. Importantly, wave run-up is not included since it is
not allowed in the USACE damage assessment methodology.

The NACCS uses controlling wave crest heights above FFE to determine wave damage at each
structure. Values of significant wave height from STWAVE were multiplied by 1.12 to convert them to
a controlling wave crest height.

Erosion within the study area was estimated using shoreline change maps as shown in Figure 2.
Based on the historical position of the shoreline from 1938 to 2014 [1], future erosion rates were
projected using the historical rates and also two exponentially increasing erosion rates (an upper and
lower estimate) that account qualitatively for the effects of increasing sea level rise. Figure 10 shows
estimates of the shoreline position within the study area in 100 years. The projected shoreline erosion
would clearly impact a number of structures, ranging from 59 for the historical rates up to 349 using
the more conservative exponentially increasing rate.

Figure 10. Estimated positions of the shoreline in the study area after 100 years using the historical
erosion rate and two exponentially increasing erosion rates.

2.3. NACCS Damage Functions

The NACCS was conducted in the wake of Superstorm Sandy by the US Army Corps of Engineers
(USACE) North Atlantic Division. The overall goal of the study was to develop a framework for
managing risk in coastal communities. A tiered approach was proposed including characterizing
environmental conditions, analyzing risk and vulnerability, and identifying and comparing possible
solutions [10]. A key part of the study was the Physical Depth Damage Function Report [5], in
which relationships between amounts of damage from inundation, wave action, and erosion for
different coastal structures were proposed. Water level measurements at specific locations were
measured following Superstorm Sandy and compared to the amount of damage caused to structures
at those locations. A panel of coastal experts was convened to review the available data and damage
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functions were developed to estimate the minimum, most likely, and maximum damage to a structure
based on the structure type and water level (from inundation and waves) at the structure. It was
recommended [5] to evaluate each damage function separately and use the function that yields the
largest estimate of damage as the measure of total damage from the storm.

Figure 11 shows examples of damage functions from the NACCS. Figure 11a,b show the
relationship between the percent damage and elevation from inundation and wave attack for a single
story residence with no basement (prototype 5A). The flood depth relative to FFE is used in the
inundation damage function and the controlling wave crest height relative to FFE is used for the
wave damage function. Figure 11c shows the inundation damage function for a single story structure
with a basement (prototype 6A). This function reflects the damage that can occur from inundation of
basements even if the flood depth is below the FFE.

(a) (b)

(c)

Figure 11. Examples of damage functions proposed by the NACCS: (a) inundation damage to
single story residences with no basement (prototype 5A); (b) wave damage to single story residences
with no basement (5A); and (c) inundation damage to single story residences with a basement (6A).
Inset photographs show 5A and 6A structures within the study area.

3. Results and Discussion

3.1. Assessment of Damage from Inundation and Waves

The estimated water levels from inundation and wave action were combined with the FFE at
each structure and input into the appropriate damage functions for each prototype. Water levels

156



J. Mar. Sci. Eng. 2016, 4, 67

were determined for two storm scenarios, a 100 year event, with and without 7 feet of sea level rise.
As described above, the damage was calculated separately for inundation and waves and the larger of
the two was used as the total damage. Damage from erosion was assessed directly from local erosion
rates rather than from damage functions.

Figure 12 shows the estimated inundation damage for the study area from a 100 year event with
no sea level rise using the “most likely” damage curves. The main sources of damage (>20%) occur in
the low lying area in the southwest corner of the study area where the coastal road turns inland, a low
barrier beach in the southeast corner of the study area, and from the wetlands within the coastal pond
due to back flooding.

Figure 13 shows the estimated wave damage from a 100 year storm with no sea level rise.
Maximum estimated wave heights along the coastline were 6.5–10 ft (2–3 m), however, most of the
wave heights were <1 m. A comparison of Figures 12 and 13 suggests that waves are present at locations
where there is no inundation. This is the result of different resolutions of the wave and inundation
estimates; the STWAVE results had a resolution of 10 m while the results from STORMTOOLS had
a resolution of 1 m. This was resolved by setting the wave heights to zero wherever there was
no inundation.

* Path of Inundation *

*
*

Figure 12. Estimated inundation damage to each structure from a 100 year storm event with no sea level
rise using the “most likely” damage curves. Inundation depths from STORMTOOLS are also shown.

Figure 13. Estimated wave damage to each structure from a 100 year storm event with no sea level rise
using the “most likely” damage curves. Wave height estimates from STWAVE are also shown.
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Figure 14 shows the total damage estimated for each structure within the study area.
Close inspection of these figures shows that, as expected, wave damage dominates along the coastline
and transitions to inundation damage dominating further inland and along the coastal pond. For this
storm event, 253 of the 708 structures were estimated to have suffered some amount of damage.

Figure 15 shows the total damage from inundation and waves for a 100 year storm event with
7 feet of sea level rise (SLR). The extent of inundation is included, which clearly shows the increase in
flooded areas. With sea level rise, the entire coastal road parallel to the shore is flooded. The estimated
damage for the majority of the structures along the coastal road ranged from 80% to 100%, and wave
damage dominated for most of these structures. In this case 578 of the 708 structures were estimated to
have damage, which was 324 more than from the 100 year storm event with no sea level rise.

Figure 14. Total estimated damage to each structure from a 100 year storm event with no sea level rise.
The extent of inundation is also shown.

18% 
 99% 

See 
Inset 

Figure 15. Total estimated damage to each structure from a 100 year storm event with 7 feet of sea level
rise. The extent of inundation is also shown.
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Two adjacent structures at the eastern end of the study area (shown in the yellow circle and the
inset photograph in Figure 15) illustrate the obvious importance of elevation in mitigating inundation
and wave damage. Damage to the elevated structure (Prototype 7A) is estimated to be 18% for
a 100 year storm event with 7 feet of sea level rise while the adjacent single story home with a basement
(Prototype 5B) is completely destroyed.

Table 1 summarizes the results in terms of both the number and percentage of structures that are
damaged for each prototype. Columns (a) and (c) (in green) summarize the results from a 100 year
storm event and columns (b) and (d) (in blue) show the results from a 100 year storm event with
7 feet of sea level rise. Approximately 35% of the one and two story structures (prototypes 5A, 5B,
6A, and 6B) are expected to be damaged from a 100 year storm event with no sea level rise. However,
only 12% of these structures are estimated to be damaged more than 50%. It should be noted that
50% damage is a critical threshold for the RI CRMC, the states principal coastal regulatory agency;
above this amount homeowners must rebuild to current building codes (i.e., increased loads, elevation
of FFE, etc.). For the 100 year storm event with 7 feet of sea level rise, 75% of one and two story
structures are expected to suffer some damage, and almost 60% of the structures would suffer more
than 50% damage.

The performance of the elevated structures (prototypes 7A and 7B) is markedly different
(in orange). Of the 23 elevated structures, approximately 60% (14 structures) are expected to suffer some
damage during a 100 year storm event, however 13% have more than 50% damage. For a 100 year
storm event with 7 feet of sea level rise, the percentage of elevated structures with more than 50%
damage increased to approximately 52%. This suggests that at least half of the structures in the study
area that are currently elevated on piles may still be vulnerable to damage when the effects of sea level
rise are considered.

Table 1. Summary of the total damage estimates by prototype for a 100 year storm event with and
without 7 feet of sea level rise.

Prototype
(Number of
Structures)

Structures with Damage
(Number/%)

Structures with >50% Damage
(Number/%)

(a)
100 Year Storm with

No SLR

(b)
100 Year Storm
with 7′ SLR 1

(c)
100 Year Storm with

No SLR

(d)
100 Year Storm

with 7′ SLR

5A, Single story
with no basement
(359 Structures)

128 (36%) 336 (94%) 48 (13%) 314 (87%)

5B, Two story with
no basement

(104 Structures)
33 (32%) 79 (76%) 7 (7%) 56 (54%)

6A, Single story
with basement
(83 Structures)

31 (37%) 56 (67%) 12 (15%) 43 (52%)

6B, Two story with
basement

(139 Structures)
48 (35%) 89 (64%) 13 (9%) 68 (49%)

7A, Elevated
building with open

pile foundation
(7 Structures)

6 (86%) 7 (100%) 2 (29%) 5 (71%)

7B, Elevated
building with
enclosed pile
foundation

(16 Structures)

8 (50%) 11 (69%) 1 (6%) 7 (44%)

Total Number of
Structures (708) 254 (36%) 578 (82%) 83 (12%) 493 (70%)

1 SLR = Sea Level Rise
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3.2. Evaluation of Adaptation Strategies

After using CERI to analyze damage from inundation and waves within the study area,
two adaptation measures were evaluated. Although these measures are in the conceptual design stage,
they can be evaluated based on the estimated reduction in damage to structures and infrastructure.
As such, CERI can be used as a tool to aid planners, local governments, and emergency managers in
evaluating different strategies to mitigate damage from storm events.

The two adaptation measures that were evaluated are shown in Figure 16. The first involved
restoration of a dune and a coastal pond/wetland in the southwest corner of the study area.
The primary function of this measure is to protect a collection of low-lying single story homes (see
Figure 14) and the coastal road/evacuation route. The second adaptation measure is a combination
of berms, a tide gate, and a restored dune along the eastern end of the study area, with the primary
function of mitigating back flooding from the coastal pond.

Figure 16. Two adaptation measures proposed and analyzed for the study area.

3.2.1. Dune Restoration

Figure 17a shows a series of photographs of the southwest corner of the study area from 2004 to
2015. Over the past 11 years there has been significant erosion at this location which has impacted the
coastal pond and is currently (2016) encroaching on the coastal road. This area is the path of inundation
for up to a 100 year storm event without sea level rise (Figure 17b) and is therefore a good location for
a coastal protection system. Figure 18 shows a cross section across which a restored dune is proposed.
At this location approximately 9000 ft3 of fill would be required to raise the elevation to above the level
of inundation from a 100 year event.

One potential solution would be to design and build a reinforced dune with a core of geotextile
sand containers (GSC), such as the recently completed Montauk Stabilization Project in Long Island,
New York [11]. Potential advantages of using reinforced dunes included the added stability over dunes
without GSCs (particularly during the first five years while dune grass plantings are maturing) and
reduced costs and permitting restrictions relative to hardened structures. Additionally, “soft” solutions
such as reinforced dunes are typically designed for events with lower return periods than 100 years
(e.g., 25 or 50 years), and as such they can provide a cost-effective solution that gives decision makers
more time to assess the actual impacts of sea level rise on coastal communities.
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(a)

(b)

Figure 17. (a) Photographs showing significant erosion in the southwest corner of the study area since
2004; and (b) estimates of inundation for different storm events and levels of sea level rise.

C D

Figure 18. Cross section of southwest corner of the study area where a reinforced dune is proposed to
mitigate damage from a 100 year storm event.

It is estimated that construction of a reinforced dune at this location would protect 81 structures
(Table 2) and would also protect the coastal road and evacuation route from storm surge and wave
action up to a 100 year event (without sea level rise).

3.2.2. Mitigation of Back Flooding

Much of the inundation in the study area comes from back flooding of the coastal pond north
of the Matunuck Beach community. Mitigation of this flooding requires a combination of measures
in the southeast corner and east of the study area. These include a tidal gate at the inlet of the pond
(Figure 16), berms along sections of a shore-perpendicular road, and a restored dune in the southeast
corner of the study area. A review of inundation levels with STORMTOOLS indicated that, even with
these measures, storm events with 25 year return periods would still flood the coastal pond through
numerous low-lying areas east of the study area. Therefore, only a 25 year storm event was evaluated
for possible mitigation. Table 2 shows that, using these measures, mitigation of flooding of the coastal
pond from a 25 year storm event would protect 70 structures from damage.
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Table 2. Effects of different adaptation measures in terms of structures protected for a given storm event.

(a) Restoration of
Dunes and Coastal Pond/Wetland

(b) Mitigation of Back Flooding

Design Event 100 year storm event 25 year storm event
Number of Structures Protected 81 70

Additional Impacts of Adaptation Also protects evacuation route
for community

Protects inland structures outside
the study area

3.3. Benefits and Limitations of CERI

The ability to assess damage from inundation and wave action is a powerful tool for coastal
planners, state agencies, and emergency managers. It is particularly useful for identifying structures
and infrastructure that are most vulnerable from storm events and can be used to evaluate the impact
or benefits of adaptation measures. This approach is also flexible enough to incorporate different storm
scenarios and levels of sea level rise into the analysis. Wave run up and wind damage are currently
not included, however, these could be addressed in the future using more advanced models (e.g.,
FUNWAVE) and additional damage functions.

4. Conclusions

Matunuck is a coastal village in South Kingstown, RI that has one of the highest erosion rates in
the state, and the structures and infrastructure are at risk from inundation and wave damage from
storms. The only evacuation route for much of the community is highly susceptible to flooding.
Sea level rise is predicted by NOAA to be as high as 7 feet by 2100. Given these issues, the objective
of this paper was to estimate inundation, wave, and erosion damage to the existing structures and
infrastructure in this community caused by a 100 year storm with and without 7 feet of sea level
rise. Adaptation strategies were identified to reduce the damage from inundation, wave, and erosion
due to both storm scenarios and the reduction of damage associated with each adaptation strategy
was determined.

A methodology called the Coastal Environmental Risk Index (CERI) was used to estimate the
amount of damage relative to the first floor elevation of every structure in the study area. This can be
generalized for any coastal community and it is unique because it gives information on damage to
individual structures in a particular area. In order to create this tool, a GIS environment was utilized
with STORMTOOLS inundation layers to find the estimated inundation depths, and Steady State
Spectral Wave Model (STWAVE) modeling was used to find the estimated wave heights for the area
of interest. This information was input into damage functions proposed by the U.S. Army Corps of
Engineers’ NACCS. The total damage to each structure was considered to be the maximum of the
estimated inundation and wave damage.

The level of estimated damage was heavily dependent on the local topography and structure type.
Approximately 35% of the one and two story structures (prototypes 5A, 5B, 6A, and 6B) are expected to
be damaged from a 100 year storm event with no sea level rise. However, only 12% of these structures
are estimated to be damaged more than 50%. This is notable, as 50% damage represents a critical
threshold for the RICRMC; above this amount homeowners must rebuild to current building codes.
In Rhode Island, this includes elevation of the rebuilt structure above the BFE +1 ft., maintenance of
a 50 ft. setback from the shoreline (or movement of the structure in the case of significant erosion),
and compliance with the American Society of Civil Engineers’ standard ASCE 24-05 Flood Resistant
Design and Construction. For the 100 year storm event with 7 feet of sea level rise, 75% of one and two
story structures are expected to suffer some damage, and almost 60% of the structures would suffer
more than 50% damage.

Shoreline erosion within the study area was estimated using local rates developed from historical
positions of the shoreline and extrapolated while incorporating sea level rise and local effects. It is
estimated that, by 2100, 59 to 349 structures within the study area will be impacted by erosion.
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Two adaptation measures were evaluated: restoration of a dune in the southwest corner of the
study area, and a combination of berms, a tidal gate, and a restored dune along the eastern end of the
study area. A total of 151 of 708 structures are estimated to be protected from inundation and wave
action using these measures.

Most importantly, this paper illustrates the benefits of using CERI to evaluate damage on
a structure-by-structure basis and for its evaluation of different storm scenarios and adaptation measures.
As such, this tool shows promise for use by coastal managers to manage risk to coastal communities.
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Abstract: Digital catalogs of ocean data have been available for decades, but advances in standardized
services and software for catalog searches and data access now make it possible to create
catalog-driven workflows that automate—end-to-end—data search, analysis, and visualization of
data from multiple distributed sources. Further, these workflows may be shared, reused, and adapted
with ease. Here we describe a workflow developed within the US Integrated Ocean Observing
System (IOOS) which automates the skill assessment of water temperature forecasts from multiple
ocean forecast models, allowing improved forecast products to be delivered for an open water swim
event. A series of Jupyter Notebooks are used to capture and document the end-to-end workflow
using a collection of Python tools that facilitate working with standardized catalog and data services.
The workflow first searches a catalog of metadata using the Open Geospatial Consortium (OGC)
Catalog Service for the Web (CSW), then accesses data service endpoints found in the metadata
records using the OGC Sensor Observation Service (SOS) for in situ sensor data and OPeNDAP
services for remotely-sensed and model data. Skill metrics are computed and time series comparisons
of forecast model and observed data are displayed interactively, leveraging the capabilities of modern
web browsers. The resulting workflow not only solves a challenging specific problem, but highlights
the benefits of dynamic, reusable workflows in general. These workflows adapt as new data enter the
data system, facilitate reproducible science, provide templates from which new scientific workflows
can be developed, and encourage data providers to use standardized services. As applied to the
ocean swim event, the workflow exposed problems with two of the ocean forecast products which led
to improved regional forecasts once errors were corrected. While the example is specific, the approach
is general, and we hope to see increased use of dynamic notebooks across geoscience domains.

Keywords: numerical modeling; reproducibility; catalog services; data services; web services;
metadata; ocean forecasting; ocean modeling; data management; data system; interoperability;
OPeNDAP; THREDDS; CSW; Jupyter Notebooks

1. Introduction

1.1. Motivation

When tackling a scientific or engineering problem that requires integrating information from
a large number of data providers, a challenging issue can be simply finding and acquiring the data.
While digital systems for cataloging scientific data have existed for decades (e.g., NASA GCMD [1]
and GEOSS Portal [2]) these systems have typically been used to conduct geospatial, temporal, and
keyword searches that return links to web sites or documents containing data in a variety of forms
and formats, requiring significant work on the part of the would-be user to determine how to access,
download, and decode the data they require.
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However, with the increasing availability of standardized, varied, and powerful web-based data
services, users can now employ catalog services to not only find data across multiple providers,
but then to acquire these data in a programmatic way, so that both search and access are automated.

This approach is being supported by organizations worldwide (for example, the national catalogs
data.gov, data.gov.uk, data.gov.au, geodata.gov.gr). Here we describe support and use within the
US Integrated Ocean Observing system (IOOS) [3,4], a partnership between 17 federal agencies and
11 regional associations (Figure 1). IOOS partners use a wide range of different sensors and models,
but are required to supply data using approved web services: for example, OGC-SOS [5] and/or
ERDDAP [6] for sensor data, OPeNDAP [7] with CF-Conventions [8] for model data. They are also
required to provide ISO 19115-2 metadata [9] for each dataset. The use of both standardized web
services and standardized metadata enables a high degree of interoperability [10,11].

Figure 1. IOOS is a NOAA-led partnership between 11 Regional Associations (shown here) and
17 federal agencies with a wide range of observed and modeled data products distributed via a system
of web service providers and a centralized catalog of metadata.

Demonstrating how to effectively use these catalogs and data services can be challenging.
Fortunately, with the rise of interactive, scientific notebooks that use modern browsers as a client
to communicate with back-end servers, end-to-end workflows for scientific data discovery, access,
analysis, and visualization can be constructed that embed code, descriptions, and results into
documents that can be shared, reused, and adapted by others [12].

We demonstrate here a specific application of this approach to assessing the predictive skills of
water temperature forecasts from multiple ocean models within the US Integrated Ocean Observing
System (US-IOOS).

1.2. The Boston Light Swim Problem

The Boston Light Swim (“Granddaddy of American Open Water Swims”) is an eight-mile swim
that has been held every August since 1907. With a no-wet-suit requirement and water temperatures
as low as 58 degrees F, swimmers are monitored carefully and pulled from the water if they do not
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make specified waypoints in required times (swimmers must finish the entire race within 5 h). Since
water temperatures can fluctuate substantially with wind events, such as upwelling, race organizers
are interested in forecast water temperatures so they can inform swimmers and their support teams of
how hazardous conditions are likely to be.

On 13 August 2015, two days before the race, swim organizers expressed concern that the
highest-resolution IOOS forecast model was predicting very cold temperatures for race day (Figure 2)
and they inquired about the degree they should believe the model. To address this issue, we realized we
could simply reuse an existing workflow developed for the IOOS System Test [13], which automated
the assessment of predicted water levels at coastal tide gauge locations. What if we just deployed the
same notebook to assess the quality of predicted water temperatures, but changed the search criteria
to look for water temperatures rather than water levels? This simple modification was successful and
allowed us to respond to the swimmers’ issue with improved forecast products, demonstrating the
power of the dynamic, reusable workflow approach.

Figure 2. Screenshot from a web browser, displaying the original prediction of surface currents and
forecast water temperatures in the Boston Harbor region from the IOOS NECOFS-MassBay model.
This snapshot is at 00:00 UTC on the day of the Boston Light Swim, and is shown as embedded in
a Jupyter Notebook given to the swim organizers. The magenta line indicates the eight-mile race route.
The swimmers start offshore in colder water, and swim into the harbor following the incoming tide.
The model is predicting 52–53 ◦F water temperatures at the race start, dangerously cold for a no-wet
suit swim.

2. Methods

2.1. Approach

We constructed the workflow as a series of Jupyter Notebooks (Supplementary Materials),
web applications that combine live code, equations, visualizations, and explanatory text [14]. Although
the workflow could have been constructed as a single notebook, we split the tasks into three notebooks
to allow users to more easily re-run certain sections of the workflow. The first notebook performs
queries on a catalog service (or services), then retrieves data using discovered data services and
saves the results to disk. The second notebook loads the retrieved data and creates skill assessment
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products, writing those products to disk. The third notebook loads the products and displays them on
an interactive map in the browser. In the following sections, we describe the components that make
this workflow possible, and then describe the function of each notebook in more detail.

2.2. Standard Web Services

As previously mentioned, data providers in IOOS are required to provide web data services
from an approved list of international and community standards. For sensor data, one of the most
commonly-supported services is OGC-SOS and for model output, OPeNDAP with CF Conventions.
These services are designed to allow time series and model output from diverse sensors and modeling
systems to be treated in a common way, without model- or sensor-specific code required for access and
use. Typically in IOOS these services are provided by the Unidata THREDDS Data Server (TDS) [15],
free open-source software which allows collections of NetCDF [16] files to be virtually aggregated and
supplemented with metadata via NcML [17] (Figure 3). For more information on the benefits of the
TDS approach and how data providers can establish standard services, see [18–22].

Figure 3. IOOS data interoperability approach using the Unidata THREDDS Data Server. Collections
of non-CF compliant NetCDF, GRIB, and HDF files can be aggregated and made CF compliant via
the NetCDF Markup Language (NCML). This allows datasets to be represented using a common data
model, which then may be delivered via a variety of standardized web services, and consumed by
a variety of clients and applications. In this paper we focus on accessing web services using Python.

In addition to requiring standardized data services, IOOS also requires that standardized
ISO metadata (ISO 19115-2) be created for each dataset. This is easily generated using the ncISO
software [23], which automatically converts attributes from NetCDF, NcML, and the TDS into ISO
metadata documents. Each region of IOOS maintains a web-accessible folder of ISO metadata
that is harvested daily into a centralized database, which can then be searched using a GUI or
programmatically using the OGC-CSW service. These capabilities are provided by the free open-source
CKAN [24] and pycsw [25] software packages.

With these services in place, we used a series of Jupyter Notebooks to (1) search and acquire data;
(2) compute skill assessment metrics; and (3) show the skill assessment results on an interactive map.
The Jupyter Notebooks combine the ability to document the workflow, show actual code used for
search, access, analysis, and visualization, as well as the results, in a single reproducible document
format. Although Jupyter Notebooks can be constructed using many languages, including MATLAB,
R, and Julia, here we use Python due to the availability of packages that facilitate working with the
web services used in IOOS.
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2.3. Fetch Data Notebook

This notebook searches for data by querying a CSW service to extract metadata records from
the IOOS that meet the user-specified criteria, then extracts data from the SOS and OPeNDAP+CF
data service endpoints discovered in the returned records. First, data are extracted from sensor
datasets using SOS, then the time series from the model dataset are interpolated to the sensor locations
using OPeNDAP.

The user (someone who knows how to run a Notebook, but who does not necessarily know
Python) specifies the following information:

• One or more CSW catalog service endpoints [URL1, URL2, . . . ];
• A geographic bounding box [lon_min, lat_min, lon_max, lat_max];
• A time extent [time_min, time_max]; and
• Variable of interest [identified by one or more standard names].

The specific example used in the Boston Light Swim is shown in Figure 4.
The notebook uses this information and the OWSLib package [26] to construct the CSW query

and parse the CSW responses. The CSW query used here is quite sophisticated: we search records
that contain any of our list of CF standard names, eliminate records that contain the string Averages,
and then select only those records that contain data within the bounding box and time extent window
(Figure 5).

From these records we then search for OPeNDAP and SOS service URLs, since our workflow
knows how to extract data from these two data service endpoints. Then using the IOOS-developed
pyoos package [27], observed data are extracted from the SOS data URLs using high level routines from
both NOAA NDBC and NOAA CO-OPS SOS services. The data are then interpolated onto a common
hourly time base to facilitate comparison.

With the observed data extracted, we loop through the OPeNDAP URLs, opening the URLs
using the British Met Office-developed iris package [28], which uses the CF conventions to allow
model-independent extraction of simulation data together with corresponding temporal and geospatial
coordinate information. This allows model-independent extraction of simulated time series at the grid
cell closest to the observed data. The extracted model time series is then interpolated onto the same
one-hour time base to facilitate model-data comparison. The observed and modeled time series data
are then saved to disk, ready to be loaded into the Skill Score notebook.

Figure 4. Screenshot from the beginning of the Fetch Data notebook, where the user specifies the date
range, region, parameter of interest, and CSW catalog endpoint to search for data.
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Figure 5. Screenshot from a section of the Fetch Data notebook, illustrating the complex construction
of filters used to search only for datasets with specific variable names, bounding box, and temporal
extent. Here we additionally exclude datasets that contain the text “Averages” because previous query
attempts returned ROMS Averages files that turned out to be versions of ROMS History files that had
the tide filtered out. This illustrates the type of customization that many dynamic workflows may
require, as catalogs can contain extraneous or duplicate datasets that need be filtered out to effectively
use a given workflow.

2.4. Skill Score Notebook

This notebook loads the time series data from observations and models from the Fetch Data
notebook and computes a variety of skill metrics, including model bias, central root mean squared
error, and correlation (Figure 6). It makes use of the scikit-learn package [29] for skill metrics, and the
pandas [30] package for reading and manipulating time series and data frames. The skill metrics are
stored on disk for use in the Map Display notebook.

Figure 6. Screenshot from a section of the Skill Score notebook, illustrating the computation of skill
score metrics using pandas data frames. Here we see the mean bias calculation, with the results showing
significant bias in the NECOFS MassBay Forecast at all locations, and in the COAWST model forecast
in Boston Harbor.
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2.5. Map Display Notebook

This notebook loads the previously-saved time series data and skill metrics and displays them on
an interactive map (Figure 7). The bokeh package [31] is used to automatically create JavaScript plots
that are embedded in the notebook, allowing the user to see data locations on a map and click on them
to see interactive plots of the time series comparison, along with certain skill metrics. The user can
also see the locations of the nearest model grid cells where the time series were extracted to compare
with data.

Figure 7. Screenshot from a section of the Map Display notebook, showing the region searched,
the observational station locations, and the number of model datasets found at each station location.
Clicking on the plot icon at each station location displays an interactive time series plot of the type
shown in Figures 8 and 9.

3. Results

The workflow executed with the 2015 Boston Light Swim input parameters discovered in situ
temperature data from NOAA NDBC buoys and University of Maine buoys offshore in Massachusetts
Bay, and from NOAA CO-OPS tide stations inshore in Boston Harbor (Figure 7). The workflow also
discovered temperature data from a remotely-sensed dataset and from four different forecast models
that cover the region.

The remotely-sensed data was a daily global product derived from multiple sensors and gap-filled
via interpolation over cloudy regions (G1_SST_GLOBAL), while the forecast products discovered were:

• The HYCOM global model run by NCEP, a regular grid model with 9.25 km resolution that
assimilates temperature data (HYCOM);

• The COAWST East and Gulf Coast model run by the U.S. Geological Survey, a regular grid model
with 5 km resolution that does not directly assimilate data, but indirectly assimilates data by
nudging the temperature field toward the HYCOM model (COAWST);

• The NECOFS Gulf of Maine model run by UMASS Dartmouth, a triangular mesh model with
variable resolution from 1500 m offshore in Massachusetts Bay to 500 m in Boston Harbor, that
assimilates temperature data (NECOFS-GOM)
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• The NECOFS Massachusetts Bay model run by UMASS Dartmouth, a triangular mesh model
with variable resolution from 1500 m offshore in Massachusetts Bay to 100 m in Boston Harbor,
that does not assimilate temperature data (NECOFS-MassBay)

The results showed that two models had significant biases with respect to the data. The COAWST
model was too warm in Boston Harbor by about 6 ◦C (Figure 8), and the highest resolution
NECOFS-MassBay model was too cold at all three locations—nearly 8 ◦C off at the Boston Buoy
(Figure 9) and at the NERACOOS Buoy A (not shown, as similar to the Boston Buoy). The lowest
resolution HYCOM model and the NECOFS-GOM model were relatively close at all three locations,
with average biases less than 2 ◦C.

To further investigate the issues with the COAWST and NECOFS-MassBay models, we extracted
the simulated temperature fields over the entire domain from both models.

Figure 8. Screenshot from the Map Display notebook, showing the NECOFS_MassBay model
about 4 ◦C colder than observations, and the COAWST model 6 ◦C warmer than observations.
The NECOFS_GOM3 model is within a degree of the in situ observations (as is the G1_SST_GLOBAL
global SST product derived from remote sensing).

Figure 9. Screenshot from the Map Display notebook, showing the NECOFS_MassBay model about
8 ◦C colder than observations, and the COAWST model is now within a degree of observations.
The global HYCOM model appears here also, and is within a few degrees of the observations.
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The COAWST temperature field showed multiple hot spots along the coast, including Boston
Harbor (not shown). Further investigation with the COAWST forecast modelers revealed that these
hot spots were regions outside the domain of the HYCOM model from which temperatures were
being nudged. Within these regions, temperatures were getting assigned to 25 ◦C, instead of using the
nearest HYCOM values. This issue was promptly corrected by the modelers.

The NECOFS-MassBay temperature field showed uniformly cold temperatures throughout
the domain, with the exception of a thin band of water along the open boundary (not shown).
Further investigation with the NECOFS-MassBay modelers revealed that the NECOFS-MassBay
model temperature field is forced by the NECOFS-GOM model along the open boundary, and that
the atmospheric model used to drive both the NECOFS-GOM and NECOFS-MassBay model has
too many clouds, and therefore underrepresents, the amount of short-wave radiation into the ocean.
In the NECOFS-GOM model, this problem is masked because the model assimilates remotely-sensed
SST data, but in the NECOFS-MassBay model, the modelers assumed the domain was small enough
that the NECOFS-GOM forcing along the boundary would be sufficient to control the temperature
field and, therefore, no temperature data was assimilated. The findings here showed this assumption
needs reevaluation.

With confidence that the bias in the NECOFS-MassBay model was consistent over the region
of the Boston Light Swim, we provided the swimmers with bias-corrected forecast maps from the
NECOFS-MassBay model for each hour of the race. The swimmers reported that these corrected maps
were very useful and were within 1–2 ◦C of temperatures observed during the swim.

4. Discussion

The use of dynamic, reusable workflows has a number of technological and scientific benefits.
The use of the catalog allows data to be discovered dynamically, and the reproducible workflow means
the results can be verified by others and used to create entirely new workflows. In fact, the set of
sea surface temperature skill-assessment notebooks used here was derived from a set of water level
skill-assessment notebooks developed for the IOOS System Test [13]. We simply changed the CF
Standard Names from specifying sea surface height to specifying sea water temperature.

The fact that the notebook is driven by a catalog search means that it dynamically discovers new
data that are available (and drops data that are no longer available!). When one of the authors (R.S.)
was testing the notebook before a presentation, he was surprised (and delighted) to find a new model
appearing in the skill assessment plot because another modeling group had registered their data with
the catalog service. It is also not necessary to limit the search to one catalog service endpoint. Although
we only used the IOOS CSW service for this 2015 Boston Light Swim example, a list of endpoints can
be used, and we now include the data.gov CSW service as well.

To reproduce the workflow, the notebook must be shared, but also the environment necessary to
run the notebook must be shared. This has traditionally been challenging, as sets of notebooks, like
the one discussed here, depend on many packages, some with binary dependencies that can be tricky
to build on all major platforms. Luckily, with the rise of technologies like GitHub [32], docker [33],
Anaconda Python [34], conda [35], and conda-forge [36], services like binder [37] can now allow
users to view a rendered notebook on GitHub, complete with embedded code, output, and graphics,
and then click a button that starts up a notebook server on the Cloud, provisioned with the appropriate
environment to run that notebook. Users can just click “run all” to execute the workflow, without
installing anything locally, and without leaving their web browser.

Making it easy to conduct automated skill assessments has a number of other benefits as well.
For modelers, it means they can spend more time on science, and less time performing mundane
data tasks. For users, it means they can conduct their own skill assessment of existing models,
instead of relying only on the modelers themselves. This is particularly important now that there are
realistic regional and global simulations that are far beyond the ability of the modelers to test for all
possible uses.
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The success of this dynamic, reusable workflow shows what can happen when a community
agrees on a common set of web services and a common vocabulary. In this case the participants did not
already have an established vocabulary or established custom services, so IOOS provided best-practice
suggestions for both software and service configuration to enable their approved services. IOOS
data providers who wish to have their data plugged into the system can either follow the procedures
described in [22] or see if one of the regional associations or Federal backbone partners can host
their data and provide services. To enable workflows like this across communities with a variety
of established services and vocabularies, brokering approaches for web services [38] and semantic
approaches [39] will be necessary.

This workflow demonstrates the power of the dynamic, reusable workflow approach, but there
are caveats and room for future improvements:

• Notebooks allow rich documentation, but it is still up to the developer to describe the workflow,
use clear variable names and produce well-structured, readable code.

• While the software in dynamic workflows is always reproducible, the results of a specific workflow
may not be reproducible if the data sources no longer exist or have changed.

• Workflow developers cannot expect standardized services and metadata to solve all
data-wrangling problems. Some time and expertise is typically still needed to adapt discovered
data sources to a specific workflow.

• Tools for standardized catalog and data service access need to be developed beyond Python,
to support other major scientific analysis languages and environments used by scientists and
developers (e.g., MATLAB, R, JavaScript, Julia, ArcGIS).

• Better documentation and support is needed to document how users can take advantage of
workflows like this, and also for providers to connect their data to standardized services

• As data and catalog services become more heavily used, the software supporting these services
needs to be made more robust and scalable. Requests to the THREDDS Data Server, for example,
are single-threaded, and many simultaneous requests can overwhelm the server.

• The examples in this paper used nearest-neighbor lookup to extract time series from models.
For more sophisticated interpolation schemes, tools that work with the topology of unstructured
and staggered grid model output are required, taking advantage of the UGRID [40] and SGRID [41]
conventions the community has developed.

• While it is possible to run the notebooks without understanding the details of the coding,
it currently does require understanding of how to run a notebook (e.g., launch the binder service,
navigate to the notebook, click on “run all” under the “cell” drop-down menu). Tools for deploying
notebooks as simple web apps that hide this complexity from users are in development by the
Jupyter team.

5. Conclusions

There are a number of benefits to developing dynamic, reusable workflows. Through catalog
searches and use of interoperable web services they enable more effective assessment of large,
distributed collections of data, such as numerical model results. More eyes on the model results
means more feedback to modelers, resulting in better models. Complex data analysis from a variety
of sources can be automated and dynamically respond as new data enter (or leave) the system.
The notebook approach allows rich documentation of the workflow, and automatic generation of
software environments allow users to easily run specific notebooks on local computers, on remote
machines, or in the Cloud. The workflows also serve as training by example for potential users
of standardized catalogs and data services, as well as demonstrating the type of custom workflow
elements typically required for success. The workflows can also be easily modified to form the basis for
new scientific applications. Often a new application will highlight issues that need fixing before it can
function. Sometimes these are minor metadata or service issues that can easily be fixed by providers,
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and sometimes these are more major issues that require further research and development of standards,
services, or tools. Regardless of the issue, fixing it for a specific workflow not only enables success
for that workflow, but for an entire class of workflows and, thus, the larger geoscience community.
With their numerous benefits demonstrated here, we anticipate dynamic, reusable workflows will
become more common and expanded to more applications, services, and geoscience domains.

To reproduce the Boston Light Swim notebooks, visit IOOS Notebooks Demos on GitHub [42]
and follow the instructions to install and run locally, or click the run “launch binder” button to run
remotely on the Cloud.

Supplementary Materials: The Jupyter Notebooks described here are available online at: https://github.com/
ioos/notebooks_demos.
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Abstract: Poquoson River is a tidal coastal embayment located along the Western Shore of the
Chesapeake Bay about 4 km south of the York River mouth in the City of Poquoson and in York County,
Virginia. Its drainage area has diversified land uses, including high densities of residence, agricultural,
salt marsh land uses, as well as a National Wildlife Refuge. This embayment experiences elevated
bacterial concentration due to excess bacterial inputs from storm water runoff, nonpoint sources,
and wash off from marshes due to tide and wind-induced set-up and set-down. Bacteria can also
grow in the marsh and small tributaries. It is difficult to use a traditional watershed model to simulate
bacterial loading, especially in this low-lying marsh area with abundant wildlife, while runoff is
not solely driven by precipitation. An inverse approach is introduced to estimate loading from
unknown sources based on observations in the embayment. The estimated loadings were combined
with loadings estimated from different sources (human, wildlife, agriculture, pets, etc.) and input
to the watershed model. The watershed model simulated long-term flow and bacterial loading and
discharged to a three-dimensional transport model driven by tide, wind, and freshwater discharge.
The transport model efficiently simulates the transport and fate of the bacterial concentration in
the embayment and is capable of determining the loading reduction needed to improve the water
quality condition of the embayment. Combining inverse, watershed, and transport models is a
sound approach for simulating bacterial transport correctly in the coastal embayment with complex
unknown bacterial sources, which are not solely driven by precipitation.

Keywords: transport modeling; inverse modeling; bacterial loading estimation; traditional
watershed modeling

1. Introduction

Fecal pathogens of lakes, rivers, and estuaries are hazardous to public health through water
contact recreation, and ingestion of contaminated fish and shellfish. Bacterial levels are elevated in
many Virginia waters and hundreds of waterbodies are listed as contaminated bacterially. To provide
the basis for States to establish water quality-based pollution control, the development of fecal coliform
total maximum daily loads (TMDLs) has been mandated to establish the allowable loading for the
pollutant that a waterbody can receive without exceeding water quality standards.

Deterministic models have been widely used to simulate bacterial transport. These models are
linked to watershed models that provide bacterial loadings discharged to estuaries and lakes [1–4].
For a relatively small coastal embayment, the tidal prism model has often been used for simulating
bacterial transport and fate [3,5,6]. The accuracy of the model simulation depends highly on the correct
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estimation of daily bacterial loading from the watershed. The watershed models, such as HSPF [7],
SWAT [8,9], and LSPC [10], simulate nonpoint source freshwater flow and its associated nonpoint
source pollutants. The bacterial loading inputs to the watershed are estimated based on land-use
categories and bacterial source distribution including livestock, bio-solids application, wildlife, failing
of septic systems, and pets. The advantage of using a watershed model is that it can directly link
watershed bacterial sources to the bacterial concentration in the estuaries. It will be extremely useful
for understanding the contribution of each bacterial source and to design a management plan to control
bacterial loadings. One of the difficulties of using a watershed model is providing bacterial loading to
the watershed. These loadings are determined based on the estimation of annual mean results such
as wildlife density with consideration of seasonal variation. Because of large variations of watershed
land uses and land-use practices, the accurate estimation of bacterial loading is difficult. There are
several approaches that have been applied to improve the estimation of bacterial sources based on
inverse modeling [11–14]. However, these applications are for estimating an annual mean loading. It is
difficult to use them for estimating long-term seasonal and daily loadings. In this study, we propose
to use a combined watershed and inverse modeling approach to simulate bacterial loading in the
watershed. For those familiar with agricultural bacterial sources, such as bio-solid application and
livestock, the watershed model provides a good estimation of sources. For these sources with large
variations or unknown sources, such as wildlife and migration birds, the inverse model can be used to
estimate seasonal loading and can be used to adjust the bacterial loading for the watershed to improve
the watershed model simulations.

The Poquoson River watershed has diversified land uses, including high-density residential,
agricultural, and salt marsh land uses, as well as a National Wildlife Refuge. This embayment
experiences elevated bacterial concentration due to excess bacterial inputs from stormwater runoff,
nonpoint sources, and wash off from marsh areas due to tide and wind-induced set-up and set-down.
The bacteria can also grow in the marshes and small tributaries. It is difficult to use a traditional
watershed model to simulate bacterial loading, especially in this low-lying marsh area with abundant
wildlife, while runoff is not solely driven by precipitation. We combine inverse modeling, watershed
modeling (HSPC), and transport modeling (EFDC) to simulate the bacterial transport, which provides
a sound approach for simulating bacterial transport correctly in the coastal embayment with complex
unknown bacterial sources.

2. Study Area

The Poquoson River watershed is located along the Western Shore of the Chesapeake Bay about
4 km south of the York River mouth (Figure 1). The Poquoson River drains northeast to the main
stem of the Bay. The tide range of the embayment is about 0.71 m and mean water depth is about
2 m. A total of 12 segments of the Poquoson River are listed on the 2006 Virginia 305(b)/303(d) Water
Quality Assessment Integrated Report [15] as impaired waterbodies due to violations of the State’s
water quality standards for fecal coliform and enterococcus.

The Poquoson River watershed has diversified land uses, including high densities of residential,
agricultural, and salt marshes, as well as a National Wildlife Refuge. The land-use characterization
for the entire Poquoson River watershed was based on land cover 2006 data from the NOAA Coastal
Change Analysis Program (C-CAP) (http://www.csc.noaa.gov/digitalcoast/data/ccapregional/).
Dominant land uses in the watershed were found to be forest (32%), wetlands (31%), and urban and
open space (30%), which account for 93% of the total area in the watershed. For the adjacent Back
Creek, the dominant land uses are wetland (48%), forest (19%), and urban (16%). A large portion of
the watershed is either tidal wetlands or marshes. The surface water runs off from the watershed
and discharges to the embayment through stormwater and point sources. The Virginia Division of
Health, Department of Shellfish Sanitation (VDH-DSS) is a state agency that has occupied 64 fecal
coliform measurement stations (Figure 2) in the Poquoson River during the period 1990–2012. Routine
measurements are conducted monthly. Figure 3 shows the annual mean fecal coliform concentration
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from 1990 to 2012. It can be seen that fecal coliform concentrations varied from year to year. High
concentrations often occurred in wet hydrological years of 1998, 1999, and 2004, but not always
following the precipitation variation. Monthly bacterial distribution is also shown in Figure 3 for the
years 1990–2012.

 

Figure 1. A map of Poquoson River and listed impairment segments (original color).

Figure 2. Spatial distribution of mean bacterial concentrations at VDH-DSS stations.
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Figure 3. Mean and standard deviation of monthly bacteria distribution (upper panel) and annual
mean concentration of fecal bacteria (lower panel) (1990–2012).

Mean daily high concentrations occur in spring (March to May) and fall (August to November).
Large variations occur in March, August, and September. The bacteria can also grow in the marsh and
small tributaries and be washed off due to tide and wind-induced set-up and set-down. A distribution
of average fecal bacterial concentration is shown in Figure 3. It shows that high concentrations
are located in the upstream of the tributaries and concentrations decrease gradually toward the
downstream due to tidal flushing and decay.

3. Modeling Approach

3.1. Watershed Model

There are many watershed models that have been used for simulating watershed processes,
which include the Hydrologic Simulation Program in FORTRAN (HSPF) [7] and the Soil and Water
Assessment Tool (SWART) [8,9]. The watershed model LSPC and hydrodynamics models are used for
this study. The LSPC model is a stand-alone, personal computer-based watershed modeling program
developed in Microsoft C++ [10]. It includes selected HSPF algorithms for simulating hydrology, sediment,
and general water quality on land, as well as a simplified stream transport model [7,10,16,17]. Like other
watershed models, LSPC is a precipitation-driven model and requires necessary meteorological
data as model input. The watershed is segmented into 56 hydrologically connected subwatersheds
(Figure 1). The land-use input to the model for characterization for the entire Poquoson River watershed
was based on land cover 2006 data from the NOAA Coastal Change Analysis Program (C-CAP)
(http://www.csc.noaa.gov/digitalcoast/data/ccapregional/). The classification matches part of the
National Land Cover Database (NLCD) with more detailed land use for wetlands. The uniqueness
of this land use is that it has more detailed land use for wetlands. For modeling purposes, the land
uses are grouped by urban pervious and impervious, forest, cropland, wetland, and open space.
The pervious and impervious forms of urban land use are obtained from high and median intensity
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residential land uses. The model input to drive the model simulation of runoff is hourly precipitation.
The nonpoint source simulation uses a traditional buildup and wash-off approach. Pollutants from
various sources (livestock, wildlife, septic systems, bio-solids application, stormwater, etc.) accumulate
on the land surface and are subject to runoff during rain events. Different land uses are associated
with various anthropogenic and natural processes that determine the potential pollutant load [3].
The human impact is estimated based on failure of septic systems, human population and pets,
and point sources. The wildlife population is estimated based on statistical values of the wildlife
density for different habitats in this region as shown in Table 1. The pollutants that are contributed by
interflow and groundwater are also modeled in LSPC for each land use category. Pollutant loadings
from surface runoff, interflow, and groundwater outflow are combined to form the final loading output
from LSPC.

Table 1. Typical Wildlife Densities and Wildlife Habitat.

Wildlife Type Population Density Habitat Requirements

Deer 0.094 animals/acre Entire watershed, except open water and urban development
Raccoon 0.078 animals/acre Forest and Wetland within 600 feet of streams and ponds
Raccoon 0.016 animals/acre Upland Forest
Muskrat 50/mile Streams and Rivers
Nutria 18.5/mile Streams and Rivers

Duck/birds 1.53 animals/acre * Entire Watershed

* 0.77 animals/acre is applied to Plum Tree Island National Wildlife Refuge and 25% of this density is applied
to the rest of the Poquoson River watershed based on tidal prism model.

3.2. Three-Dimensional Transport Model

The Environmental Fluid Dynamics Code (EFDC) model is selected to simulate hydrodynamics.
EFDC is a general purpose modeling package for simulating 1D, 2D, and 3D flow and transport in
surface water systems including: rivers, lakes, estuaries, reservoirs, wetlands, and oceanic coastal
regions. It was originally developed at the Virginia Institute of Marine Science for estuarine and coastal
applications and is considered public domain software [18,19]. The EFDC model has been integrated
into the EPA’s TMDL Modeling Toolbox for supporting TMDL development (http://www.epa.gov/
athens/wwqtsc/html/hydrodynamic_models.html). The model grid includes 1593 water cells that
cover many tributaries and small embayments (Figure 4). Three layers were used in the vertical for
this shallow system, which can simulate stratification in this shallow estuary adequately. The model
was forced by hourly tide and salinity at the mouth. The inputs are based on a large Chesapeake
Bay model simulation [20]. The surface wind is obtained at Gloucester Point. Temperature is not
simulated. A constant decay of 1.0 per day was used for the bacterial loss in the stream [13,21–23].
Numerical model calibration of fecal coliform was conducted for the period of 2008–2012. Daily flow
and loading from watershed model simulation is discharged to the 3D model to the grid cells adjacent
to the watershed or small creeks of the adjacent watershed. For a watershed that connects to more than
one 3D model grid cell, the flow and loading are evenly distributed to the 3D model grids. Because the
flow from Harwood Mills Reservoir mainly overflows from the spillway and bacterial concentration
inside the reservoir meets the water quality standard, it has a minor influence on the downstream.
Therefore, the loading from the watershed of Harwood Mills Reservoir was estimated based on the
observation flow and mean bacterial concentration of measurements instead of using output from the
watershed model. The 3D model is calibrated for surface elevation and salinity. As there are no NOAA
tide observations, the model is calibrated to the predicted tide. A constant roughness height of 0.3 cm
is used for the model. The timestep for the model simulation is 30 s.
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Figure 4. Locations of observation stations and the EFDC numerical model grid.

3.3. Inverse Tidal Prism Model

In order to estimate unknown bacterial sources, we used the tidal prism model approach to
estimate loading based on observation. Using monthly observations data, the seasonal variation of
unknown sources can be estimated. The tidal prism model has been used for the coastal embayment [5,6].
In the model, the governing mass-balance equation expressed in the change of mass in a model segment
over one tidal cycle, Δm, is:

Δm = [mass in] − [mass out] + [sources] + [kinetics] (1)

where [mass in] and [mass out] account for the mass transport due to the water movement (referred to
as “physical transport processes”), [sources] includes point and nonpoint source inputs over one tidal
cycle, and [kinetics] represents the biogeochemical kinetic processes (referred to as “kinetic processes”),
which may cause an increase or a decrease of a particular substance within a segment of the water
body. Without any loss of generality, three-connection segments including a side tributary segment
can be illustrated as shown in Figure 5. The mass balance can be written as:

d
(
Vi,jCi,j

)
dt

= Q(i+1,j),(i,j)Ci+1,j − Q(i,j),(i+1,j)Ci,j + Q(i−1,j),(i,j)Ci−1,j − Q(i,j),(i−1,j)Ci,j+

Q(i,j+1),(i,j)Ci,j+1 − Q(i,j),(i,j+1)Ci,j − kijVCi,j + Li,j

(2)

where Ci,j is the bacterial concentration at segment (i,j), Q(i,j),(m,n) is the flux from segment (i,j) to
segment (m,n), Vi,j is the volume, Ri,j is the freshwater upstream of segment of segment (i,j) that
includes discharge to segment (i,j), and ki,j is the decay rate. Q(i,j),(m,n) can be computed based on the
tidal prism method. For example, the flood flux Q(i,j),(i−1,j) is the tidal prism upstream of the segment
(I − 1,j), which equals (1 − α)Ti-1,j. Where Ti-1,j is the tidal prism upstream of the segment (including)
of (I − 1,j), that is the volume between high tide and low tide in a tidal cycle. α is the return ratio.
Since water brought into the basin on flood tide mixes with the water inside, a portion of the pollutant
mass in the basin is flushed out on the following ebb tide. A portion of clean water will flood into the
estuary during the next flood tide. The returning ratio ranges from 0 to 1, and is used to represent
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the fraction of water volume that leaves the basin at falling tide and returns at the following rising
tide [5,6]. If α exceeds zero, this indicates that a portion equal to (1 − α) of the flood water is clean
water from downstream. The ebb tide volume Q(i−1,j),(i,j) = Q(i,j),(i−1,j) + Ri−1,j is the inflow during the
flood phase of tide plus the revised discharge. For Poquoson, the value α = 0.45 was applied [6].

 

Figure 5. A diagram of tidal model segments.

If we assume that the transport reaches steady state during the measurement period and also
assume that all the concentration Ci,j and a decay constant are known, the loading Li,j can conveniently
be computed from this set of algebraic equations based on Equation (2). The decay rate ranges from 0.7
to 3.0 per day in saltwater [21,22]. A constant decay rate of 1.0/day is used as a conservative approach.
The return ratio can be estimated based on the salinity. An average value of 0.4 was applied, which is
suitable for Virginia estuaries based on previous study [6]. The segmentation of the tidal prism model
is shown in Figure 6. There are 51 segments for the estuary.

 

Figure 6. Segmentation and tidal prism model of Poquoson River.
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4. Model Results and Discussion

4.1. Watershed Model

The hourly precipitation at Gloucester Point is used to drive the model. The calibration process
involved adjustment of the model parameters used to represent the hydrologic processes until
acceptable agreement between simulated flows and field measurements was achieved. Since there is no
USGS gage or any other continuous flow data available in the Poquoson River watershed, a reference
watershed was used for calibration. The USGS Gage 01670000 in Beaverdam Swamp near Ark, VA,
located approximately 20 miles north of the Poquoson River watershed, is used to calibrate the model
parameters for hydrology simulation. This is the only gauge station in this region. The observation
period was from 1980 to 1989. The land uses of forest and wetland and soil types are similar to those of
the Poquoson River watershed, but it has less urban land. The USGS flow is used mainly for calibration
of non-urban land. The US-EPA conducted a watershed simulation for the tidal water region. The EPA
model results are also used for the model calibration as the LSPC and the EPA models are similar
watershed models. Figure 7 shows the time series comparison of daily stream flow for years 1985 and
1987 for the watershed of Beaverdam Swamp using USGS data and a selected urban subwatershed
in the Poquoson River watershed using EPA data. It can be seen that model results match the EPA
model results very well as the precipitation data used for this watershed are similar. Based on this
comparison, it can be seen that the LSPC model has reasonably reproduced the observations. The key
model parameters for the hydrological simulation are listed in Table 2.

Figure 7. Time Series Comparison of the Daily Stream Flow between Model Simulation and Observed
Data from USGS Stream Gage 01670000 in 1985 and 1987 (panels (a,b) show unit acreage flow,
panels (c,d) show comparisons to USGS gage).
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Table 2. Key parameters used for hydrological simulation.

Name Units Possible Range * Calibrated Value Note

LZSN in 2.0–15 6.93 lower zone nominal soil moisture storage

INFILT in/h 0.001–0.50 0.036–0.09 index to the infiltration capacity of the soil

KVARY 1/in 0.85–0.999 1 variable groundwater recession

AGWRC 0.0–0.5 0.97 base groundwater recession

BASETP 0.0–0.2 0.02 fraction of remaining potential e–t that can be
satisfied from base flow

INFTW 1.0–10.0 8 interflow inflow parameter

IRC 1/day 0.3–0.85 0.6 nterflow recession parameter

NON-INTERCEPT in 0.01–0.40 0.058–0.165 interception storage capacity

MON-UZSB in 0.05–2.0 0.35–0.90 upper zone nominal storage

MON-LZETP 0.1–0.9 0.10–0.60 lower zone evapotranspiration parameter

* http://pubs.usgs.gov/sir/2005/5099/.

4.2. Tidal Prism Model

Because a large portion of the watershed is tidal wetlands and marshes, both migratory birds
and local residence birds are dominant. The watershed model is set up based on the estimated annual
bird population and seasonal variation. However, accurate population and seasonal variations are
unknown. The bacteria can also grow in the wetland and marsh areas. To better simulate the loading,
the inverse tidal prism model is applied. The estuary was segmented into 51 tidal segments including
tributaries. Monthly observation data are averaged for each segment if more than one observation
station were found to be located inside the segment. The linear interpolation of bacteria concentration
was obtained for the segment without observations. The decay constant used for the tidal prism model
is 1.0 per day. Figure 8 shows a comparison of the model simulation of the inverse tidal prism model
and the watershed model for four segments in the tidal marsh area. It can be seen that the watershed
model under-predicted the loading by one to two orders of magnitude. The average difference of
the watershed model prediction of loading and that of the tidal prism model is shown in Figure 9.
Large differences often occurred in the marsh and wetland areas. For some urban land uses, the large
differences are due to estimations of stormwater. For example, although we can estimate the pet
population, it is difficult to estimate the distribution of pet wastes. With the use of loading estimated
by the watershed model, we are able to correct the watershed loading input seasonally. We only use a
multi-year seasonal average value to correct the watershed loading. Because wildlife is the dominant
source, we compute the ratio of the TP model and watershed model and use the ratio to correct the
wildlife for forest, wetland, and marsh land-use areas. For urban land use, the correction ratio is also
applied to pets. With the use of corrected loading for the watershed, the watershed model was used
to simulate the daily flow and bacterial loading. The computed loading for each watershed is fed to
the 3D model.
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Figure 8. Comparison of bacterial loading simulation between the watershed model and the inverse
tidal prism model.

 

Figure 9. Comparison of model mean loading from 2008 to 2013 between the watershed model (HSPC)
and the inverse tidal prism model.

4.3. Simulation of Bacterial Transport

The 3D model simulation is conducted from 2008 to 2012. Model results at four selected stations
(one in each major region) are shown in Figures 10 and 11, respectively, for the bacterial concentration
at stations located at the upstream of Poquoson River, the tributary of Chisman Creek, the tidal marsh
area, and the middle of the Poquoson River. It can be seen that the model simulated the observed data
quite well. As bacterial concentrations in the River are highly driven by events, i.e., SSOs and boating
activities, as well as the direct access of wildlife, some discrepancies can be expected. In particular,
the model can miss some observations of high concentration, as the causes of these events are unknown.
Overall, model simulations are satisfactory.

It can be seen that the model simulates well for bacterial variation in the estuary. Because many
random events are unknown, the model calibration focuses on matching the general seasonal variation
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rather than matching individual events. Another method of comparison of the model results and
observations is to view the accumulative fecal coliform concentrations at all observation stations to
ensure that the 90th percentile concentration is correctly modeled. Figure 12 shows the comparison of
the cumulative distributions of modeled and observed concentrations. It can be seen that the model
matches observations very well. These results suggest that there is good agreement between observed
data and simulated data during the calibration period, indicating that the model has the ability to
simulate bacteria in the Poquoson River and can be applied in the development of the TMDL. Bacteria
variations over an eight-year period are consistent.

 

Figure 10. Comparison of model simulation of bacterial concentration and observation for the upstream
of Poquoson River and Chisman Creek.
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Figure 11. Comparison of model simulation of bacterial concentrations and observations in the tidal
marsh area and the middle of the Poquoson River.

 
Figure 12. Comparison of cumulative distribution of modeled and observed fecal coliform
concentrations at all stations from 2008 to 2012.
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5. Conclusions

An approach using a combined watershed model, inverse tidal prism model, and 3D estuary
transport model to simulate bacterial concentration in the Poquoson is presented. We introduce the
inverse tidal prism model to estimate seasonal bacterial loading. Because the tidal prism model
is very efficient in terms of computation, it is feasible to estimate loading, although the spatial
resolution is not high enough. The estimated loadings are used to correct the loading input to the
watershed model, which is based on the statistical estimation of bacterial loadings for difference
bacterial sources, including human, wildlife, agriculture, pets, etc. The watershed model simulates
long-term flow and bacterial loading and discharged to a three-dimensional transport model driven by
tide, wind, and freshwater discharge. The transport model efficiently simulates the transport and fate
of the bacterial concentration in the embayment and is capable of determining the loading reduction
needed to improve the water quality condition of the embayment. With the use of inverse modeling,
the bacterial loading simulated by the watershed model can be adequately adjusted, which improves
both the loading simulation and the 3D model simulation of bacterial transport.
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Abstract: This research details the development and validation of an updated constituent tidal
database for the Western North Atlantic, Caribbean and Gulf of Mexico (WNAT) region, referred to as
the EC2015 database. Regional databases, such as EC2015, provide much higher resolution than global
databases allowing users to more accurately define the tidal forcing on smaller sub-region domains.
The database last underwent major updates in 2001 and was developed using the two-dimensional,
depth-integrated form of the coastal hydrodynamic model, ADvanced CIRCulation (ADCIRC),
which solves the shallow-water equations in the generalized wave continuity equation form. Six
main areas of improvement are examined: (1) placement of the open ocean boundary; (2) higher
coastal resolution using Vertical Datum (VDatum) models; (3) updated bathymetry from global
databases; (4) updated boundary forcing compared using two global tidal databases; (5) updated
bottom friction formulations; and (6) improved model physics by incorporating the advective
terms in ADCIRC. The skill of the improved database is compared to that of its predecessor and
is calculated using harmonic data from the National Oceanic and Atmospheric Administration
Center for Operational Oceanographic Products and Services (NOAA CO-OPS) stations and historic
International Hydrographic Organization (IHO) data. Overall, the EC2015 database significantly
reduces errors realized in the EC2001 database and improves the quality of coastal tidal constituents
available for smaller sub-regional models in the Western North Atlantic, Caribbean and Gulf of
Mexico (WNAT) region.

Keywords: tidal constituent database; WNAT region; ADCIRC

1. Introduction

Small-scale regional hydrodynamic models are widely used to study many varied physical
processes such as sediment transport [1–3]; storm surge inundation [4–6]; real-time surge forecast
systems [7–10]; sea level rise [11–14]; passive fish and larval transport, as well as coupled ecological
behavior [15–17]; combined hydrologic and hydrodynamic processes [9,18]; passive transport of oil
spills [19] and coupled hydrodynamic-marsh interactions with biological feedback [20]. Each of these
complex applications requires reliable tidal boundary forcing in order to provide accurate results.
In particular, many coastal ocean models utilize tidal databases in order to specify the tidal boundary
conditions in these regional studies. When no other data is available, the boundary conditions are
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often selected from global tidal databases. However, while global tidal databases are highly accurate in
the deep ocean, they often lack the resolution over continental shelves and in the shallower near-shore
regions to adequately resolve the astronomical and associated nonlinear tides in the immediate coastal
regions [21]. Therefore, it is necessary to create smaller-scale tidal databases that are able to resolve the
near-shore environment. Over the past 25 years, three such databases have been developed for the
eastern coast of the United States [22–24]. These regional databases use the finite element ADvanced
CIRCulation model (ADCIRC) forced with a global tidal database at the open ocean boundary to
develop the tidal profile within the domain.

Historically, the eastern (and gulf) coast of the United States has been modeled with a large
domain that encompasses the entire Western North Atlantic, Gulf of Mexico and Caribbean Sea,
herein referred to as the WNAT domain, and has traditionally had the open ocean boundary located
at the 60◦ W meridian [22,25,26]. This larger domain provides easier forcing as the boundary lies
mostly in the deeper Atlantic Ocean and includes only a small portion of the continental shelves near
the coastline.

The first tidal database for the WNAT region, EC1991, was state of the art for its time and
had 19,858 nodes and 36,653 elements with elements ranging from 7 km at the coastline to about
140 km in the deeper ocean. The bathymetry was extracted from the Earth Topography 5 min gridded
resolution (ETOPO5) global bathymetric database. The EC1991 database included elevation and
velocity harmonics for the O1, K1, Q1, M2, S2, N2 and K2 constituents [22].

An updated version, EC1995, was created in order to take advantage of the National Ocean Service
(NOS) hydrographic survey database for nearshore bathymetry, which has since been digitized [27].
The NOS bathymetric database includes raw sounding tracks from ship surveys and typically covers
coastal areas out to the continental shelf in U.S. coastal waters. This updated version had 31,435 nodes
and 58,369 elements and a minimum element size of 750 m in Perdido Bay between Alabama and
Florida and a maximum element size of 105 km. The average coastal element size was about 5 km
with regions of the Florida peninsula and the Gulf Coast west of the Mississippi River typically having
10 km resolution. The EC1995 database included elevation and velocity harmonics for the steady,
O1, K1, M2, S2, N2, M4 and M6 constituents.

The next generation, EC2001, database utilized a grid with 254,565 nodes and 492,179 elements
and had a minimum element size of 200 m in the Mississippi River Delta region and a maximum
element size of 29 km. The New Orleans area was the most highly resolved with average element sizes
of 1 km and some areas of finer 500 m resolution. However, the remainder of the domain had typical
coastal element sizes closer to 2–3 km. The original EC2001 database included elevation and velocity
harmonics for the O1, K1, Q1, M2, S2, N2 and K2 constituents [23]. As an intermediate update, a longer
run of 410 days with additional P1 tidal boundary forcing was recomputed in 2008, ec2001_v2e [24],
to provide the NOS suite of 37 tidal constituents [28] for both species.

In comparison, the latest version, EC2015, database has 2,066,216 nodes and 3,770,720 elements
with a minimum element size of 13 m in the Puerto Rico and Long Island Sound regions (as well
as some small Florida channels) and a maximum element size of 46 km near the open boundary.
With a few exceptions, the entire WNAT coastline (United States water only) has typical resolutions
of 250–500 m with even more detail in inland channels and inlets. As per the 2008 update to the EC2001
database, the EC2015 database provides the computed amplitude and phase of elevation and velocity
for the 37 standard NOS tidal constituents. Table 1 summarizes the grid features of the WNAT domain
tidal databases.
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Table 1. Summary of grid features for Western North Atlantic, Caribbean and Gulf of Mexico (WNAT)
domain ADvanced CIRCulation model (ADCIRC) tidal databases.

Database
Name

# of Mesh
Nodes

# of Mesh
Elements

Avg. Coastal
Resolution (km)

Min. Coastal
Resolution (m)

Max. Deep Ocean
Resolution (km)

EC1991 19,858 36,653 7 1000 140
EC1995 31,435 58,369 5 750 105
EC2001 254,565 492,179 1 to 3 200 29
EC2015 2,066,216 3,770,720 0.25 to 0.5 13 46

In the next sections, we present the improvements that have been incorporated into this latest
generation tidal database and the remaining challenges. We summarize the development of the EC2015
tidal constituent database; present a skill assessment for global, regional and site specific locations;
and discuss how the database can and should be used. Limitations of the database are also discussed.
In the interest of brevity, we will only present the skill assessment for these 8 primary constituents:
M2, S2, N2, K2, O1, K1, P1 and Q1.

2. Materials and Methods

2.1. ADCIRC Computational Model

2.1.1. General Model Details

As mentioned before, the enhancements to this database will employ the ADCIRC regional
hydrodynamic model. ADCIRC utilizes the full non-linear St. Venant (shallow water) equations, using
the traditional hydrostatic pressure and Boussinesq approximations. The depth-averaged generalized
wave continuity equation is used to solve for the free surface elevation, along with the non-conservative
form of the momentum equation for the velocity components. The equations are discretized
horizontally in space using continuous Galerkin, linear finite elements with equal-order interpolating
functions (linear C0), while time is discretized using an efficient, split-step, Crank-Nicholson algorithm
with the nonlinear terms evaluated explicitly. There have been many papers written about the
development and usage of the ADCIRC computational model, but basic details for the equations of
ADCIRC can be found in [29–31].

One of the advances within ADCIRC since the East Coast database was last updated in 2001 is the
addition of Manning’s n friction representations. Users are able to specify specific quadratic friction
coefficients, Chezy friction coefficients or Manning’s n values throughout the domain [32]. For the
Manning’s n implementation, the n values are converted to an equivalent quadratic friction coefficient
within ADCIRC before the bottom stress is calculated [30]. This equivalent quadratic friction coefficient
is calculated for each node at every time step as

CF (t) =
gn2

3
√

depth + eta (t)
(1)

where g is the gravitational constant (9.81 m/s2), n is the Manning’s coefficient, depth is bathymetric
depth (m) and eta(t) is the water surface elevation at time t (m). Note that the computed quadratic
friction coefficient, CF(t), can also be limited on the lower end by specifying the minimum CF value in
the input file. Otherwise, the values can become quite small as the depth becomes large.

2.1.2. Model Input Parameters

Unless otherwise noted in the appropriate methods and results subsections, all of the ADCIRC
model runs used the parameters in the following descriptions. The EC2015 tidal database was
developed from a 410-day simulation run in order to capture the long-period non-linear tides. A smooth
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hyperbolic tangent ramp function is applied to both the boundary forcing and the tidal potential forcing
functions for the first 25 days. Then the model is allowed to run for another 20 days before the internal
ADCIRC harmonic analysis is started for the final 365 days of the simulation. A one-minute interval
is used for the internal harmonic decomposition. Tidal potential forcing is applied to the interior of
the domain for the O1, K1, Q1 and P1 diurnal constituents and the M2, N2, S2 and K2 semidiurnal
constituents. In addition to these eight constituents, the open ocean boundary is also forced with the
Mm, Mf, M4, MN4 and MS4 constituents. Nodal factors and equilibrium arguments were set for a
410-day run starting on November 17, 1991; this translates to the harmonic analysis occurring over the
entire year of 1992, which is the middle of the current National Tidal Datum Epoch from 1983 to 2001.
Unless otherwise noted, tidal forcing was extracted from the TPXO7.2 global tidal database [33].

A time-step of 1.0 s was used yielding a maximum Courant number of 0.76 in the U.S. Virgin
Islands and of 0.3 along the Atlantic and Gulf coasts. The time weighting factors for the three-level
implicit scheme in the GWCE form of the momentum equation are 0.35, 0.30 and 0.35 for the future,
present and past time levels respectively. A two-level Crank-Nicholson scheme is used for the
momentum equations. The lateral eddy viscosity coefficient was set equal to 5.0 m2/s and a non-linear
quadratic bottom friction scheme with a constant value of 0.0025 was used for all runs except for the
variable bottom-friction comparisons. Specific friction settings for the Manning’s n formulation and
the variable CF runs are detailed in Section 2.2.5 below; for all variable friction tests, a lower limit of
0.0025 was used. A spatially variable but temporally constant GWCE, G or τ0, parameter was used
such that G is dependent upon the local depth and is set as follows: if the depth is ≥10, G is set to
0.005, if the depth is <10, G is set to 0.020.

Due to the large overall mesh domain, variable Coriolis forces were enabled. The non-linear finite
amplitude option was utilized with wetting and drying enabled. With the newly expanded open ocean
boundary, it was possible to enable the advective terms, as detailed in Section 2.2.6 below.

2.2. Improvements for the ADCIRC Tidal Database

The WNAT domain has been improved upon bit by bit over the past 25 years. As technology
has progressed in that time, larger computational domains have been possible. Additionally, with
advances in remote data collection methods, more accurate and plentiful data is now available for the
bathymetric profile of the world’s oceans and the location of coastlines. For the latest generation East
Coast tidal database, six areas of improvement were examined:

1. Move the open ocean boundary out away from the Lesser Antilles
2. Improve the coastal resolution using the NOAA VDATUM product grids
3. Update the deep water bathymetry
4. Use the latest global tidal database products for forcing on the open ocean boundary
5. Compare three bottom friction schemes for improved accuracy
6. Improve the model physics by enabling the advective terms within ADCIRC

In the following subsections, we detail the methods used for each of these areas. Improvements
realized in the harmonic constituent accuracy, as compared with CO-OPS and IHO field measurements,
will be presented in the results section.

2.2.1. Open Ocean Boundary Placement

The open ocean boundary has been moved out from the traditional 60◦ W meridian that has
been used for the past 25 years. Figure 1 shows the new extended model domain with the traditional
boundary shown in red as a vertical line near the new boundary. The purpose of this expanded
domain was to improve model stability by moving the open ocean boundary further away from the
complexities of the Lesser Antilles island chain that separates the Caribbean Sea from the Atlantic
Ocean. The traditional EC2001 domain becomes unstable near these islands when the quarter-diurnal
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constituents (M4, MS4, and MN4) are included in the boundary forcing. The EC2001_extended mesh
was created at NOAA and has the same coastline and bathymetry in the interior as the EC2001 domain,
but with a different boundary location.

There were two guiding principles for choosing this new open ocean boundary location: (1) to
avoid any nearby amphidromic regions of the principal tidal constituents—M2, S2, N2, K1 and O1;
and (2) to create a smooth boundary with gradually changing element size. For elements closer to the
coast, the element size was chosen to be smaller and then to gradually increase in size away from the
coast. The new boundary curves to the west near Nova Scotia in order to create a smooth transition,
without sharp corners, from the ocean boundary to the land boundary. It also prevents the introduction
of the Gulf of St. Lawrence into the model domain. One other important design feature was to avoid
having too small of elements across shelf breaks, particularly in the southern part of the boundary near
the Lesser Antilles.

After a suitable boundary location was found, a one-year fully non-linear tidal simulation was
performed to confirm the stability and robustness of the new boundary location. All thirteen of the
TPXO7.2 global tidal model constituents were used to force the open boundary (M2, S2, N2, K2, K1, O1,
P1, Q1, Mf, Mm, M4, MS4, and MN4) during this stability test.

Figure 1. Location of new EC2001_extended model domain (shown in gray) compared to the traditional
EC2001 boundary at the 60◦ W meridian (shown in red—remainder of shoreline is same as gray);
and location of the nine VDatum domains (shown in black) used to update the coastal resolution
and bathymetry in the EC2015 model. Note that the coarser gray shoreline is not visible underneath
the black.

2.2.2. Increased Coastal Resolution

Each of the WNAT predecessors has gradually added more resolution along the coastline as data
and computation capabilities were more readily available. However, this version marks a substantially
increased level of coastal resolution for such a large study region. Recall from Table 1 that there are
nearly 8 times the number of nodes in the EC2015 mesh when compared to the EC2001 mesh.

194



J. Mar. Sci. Eng. 2016, 4, 72

Over the past 15 plus years, NOAA has undertaken an ambitious study of the United States
coastline to create a tool for transformation between different vertical datums. The VDatum
(Vertical Datum) tool provides a single source for accurately and easily transforming geospatial
data among different tidal, orthometric and ellipsoidal vertical datums along the United States coast.
It allows the user to combine data from different horizontal and vertical reference systems into a
common system in order to create integrated digital elevation models. The interested reader is
referred to the VDatum website for more general information about the VDatum tool and for regional
publications [34].

In order to create accurate tidal datum fields for the coastal regions, a series of highly resolved
coastal grids were developed for each region of the East and Gulf Coast for the United States, as well as
Puerto Rico and the U.S. Virgin Islands. Figure 1 shows the boundaries of the nine VDatum grids that
are presently available in the WNAT domain, with the remainder of the EC2001_extended boundary
shown to clearly illustrate the regions where VDatum meshes were used. Individual reports [35–43]
for each of these domains are available on the VDatum website.

Notice that there are several areas of overlap between these regional VDatum subdomains.
For each of these overlaps, the individual grids were carefully pieced together in such a way as to
preserve the source grid with the highest coastal resolution. For the shelf regions within these overlaps,
a transitional mesh was created at an appropriate distance from the shoreline that smoothly blended
the triangulations of the two VDatum meshes. Finally, the bathymetry from the highest resolution
source was reapplied onto the new triangulation. This process was repeated for each of the overlapping
areas. A comparison of the East Coast of the United States from North Carolina to Maine in the EC2015
model and the previous EC2001 model is shown in Figure 2. Notice the inclusion of more inland
channels, rivers and islands; as well as a more detailed shoreline.

 
Figure 2. Comparison of coastal resolution in the EC2001 (left) and EC2015 (right) models from
North Carolina to Maine.

It is important to note that the high-resolution meshes created for the VDatum project are in a
Model Zero (MZ) vertical datum. The interested reader is referred to the VDatum Standard Operating
Procedure manual [44]; but the basic idea is that small corrections are added/subtracted from the
original charted bathymetry in an iterative manner until the simulation converges to a solution.
The converged solution is verified against harmonic constituent data available within the region.
This was necessary since the original bathymetric sources were all in different tidal datums and no
tool existed to transform them into a unified vertical datum. The resulting vertical datum of the high
resolution coastline is MZ. Although, model zero is not necessarily the same as mean sea level (MSL)
due to non-linear dynamic effects, for our purposes, we have to assume that the VDatum coastline is
approximately relative to MSL.

The next step was to replace the coastline of the newly created EC2001_extended mesh with this
higher resolved coastline. During this step, we also compared localized truncation error analysis
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(LTEA) meshes of various resolution for the Florida South Atlantic Bight region as we transitioned
from the VDatum coastline into the deeper waters [45]. While exploring the various options, it was
discovered that several smaller channels along the Georgia and Carolina coasts had not been included
in the original VDatum mesh. We decided not to pursue the LTEA meshing at this time, due to
the large grid size and time involved to process the size functions. Instead, any hydrologically
significant channels were added using NOAA National Ocean Service (NOS) charts and sounding data.
However, because these areas were outside of the original VDatum “wet” area, the proper conversion
from the NOS sounding datum (usually MLLW or MLW) to the common MSL datum was estimated
from the nearest wet conversion points output from the VDatum tool, typically at the mouth of the
channel. In order to extrapolate the conversions up the length of the new channels, the slope of the
surrounding channel topography was examined and average slope values (for each stream reach)
were used to “march” the sounding datum to MSL conversions upstream from the channel mouth.
At points in the channel where the surrounding topographic slope changed, a new reach slope value
was used to continue marching upstream.

2.2.3. Updated Global Bathymetry

Once the improved coastline was merged into the EC2001_extended model, the next task was
to update the bathymetry of all the non-coastal U.S. waters, which had last been updated in 2001.
Two different global bathymetry sources were examined: the ETOPO1 Global Relief Model from
the National Geophysical Data Center and the SRTM30_PLUS model from the Scripps Institute
of Oceanography.

The ETOPO1 product is a 1 arc-minute global relief model of the Earth’s surface. It integrates
land topography and ocean bathymetry and was built from numerous regional and global data sets.
Older two arc-minute and 5 arc-minute products are still available, although they have been deprecated
by the latest model. The horizontal datum of ETOPO1 is WGS84 geographic and the vertical datum
is sea level. “More specific vertical datums, such as mean sea level, mean high water, and mean
low water, differ by less than the vertical accuracy of ETOPO1 (~10 m at best), and are therefore
effectively equivalent” [46]. Various methods are available for obtaining the ETOPO1 product from
their website [47].

The SRTM30_PLUS product is a 30 arc-second global relief model of the Earth’s surface, also
derived from a wide variety of sources. However, rather than only being a compilation of existing
bathymetric data sources, it also uses these data sources to modify global satellite bathymetry based on
the latest altimeter-derived gravity models [48,49]. Depths are reported in meters and negative values
indicate data points that are below sea level. Additionally, catalogs of the data sources and estimated
errors in the depth and navigation for each point are available. Various methods of obtaining the data
are available at their website [50].

After data was downloaded for each of these sources, the procedure was to create a bounding
polygon of all water that was included in the various VDatum regional grids and only update the
water that was outside of that polygon, see Figure 1 (all regions that are within the gray boundary
but outside of the black boundaries were updated). This meant that most of the Gulf of Mexico and
Caribbean coastline, including the southern coast of Cuba, Haiti and Jamaica had to be updated with
global sources that were not necessarily meant to be used in shallow coastal regions. We compared
both of the global sources and noticed that the ETOPO1 product resulted in a great deal of oscillations
in shallower regions (checkerboard type pattern from one point to the next), particularly along the
southern coast of Cuba. In comparison, the SRTM30_PLUS product did not suffer as much with this
issue, although it did exhibit occasional oscillations in shallower regions. In general, both products
were developed for deeper water not coastal areas and the resolution and depth accuracy is not high
enough to adequately resolve shallow coastal waters—with average errors in the 10 m range, all depths
below 10 m are suspect. Overall, it was decided to use a single source for the updated bathymetry and
the SRTM30_PLUS database was used as it exhibited fewer oscillations in the shallower, near-shore
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regions. However, after interpolation of the global data set, there were nodes within the grid that were
suspect—e.g., sharp change in bathymetry relative to surrounding nodes. The bathymetry at these
suspect grid nodes was then hand-cleaned by interpolating from surrounding values in the mesh itself
instead of directly from the global source. This removed most sharp oscillations along the non-US
coastlines between topographic and bathymetric values, however, further inspection may reveal that
some errors still exist.

2.2.4. Updated Open Ocean Forcing

Once an updated physical model had been developed for the entire WNAT region, it was necessary
to extract tidal forcing information from available global tidal models at the open-ocean boundary.
Since the last version of the East Coast ADCIRC tidal database in 2001, significant improvements have
been made in the global tidal modeling community as well. Therefore, we compared two different
choices for the boundary conditions: the TPXO7.2 model obtained from the Oregon State University
Tidal Inversion Software (OTIS) and the Finite Element Solution FES2012 model from the French Tidal
Group [33,51].

OTIS implements an efficient representer scheme for the general inversion calculation for tidal
processing of TOPEX/Poseidon altimeter data going back to 2002. TPXO7.2 is a more recent version
of a global model of ocean tides obtained from OTIS. The solution best fits, in a least-squares sense,
the Laplace Tidal Equations and along-track averaged altimetry data [52,53]. TPXO products are
updated as more altimetry and bathymetry data becomes available; since the beginning of the EC2001
project, they have since updated to TPXO8, but for consistency we wanted all of the model runs to
have the same forcing so we continued to use TPXO7.2. Tides are provided as complex amplitudes of
earth-relative sea-surface elevation for 13 constituents at a 1/4 degree resolution for the global ocean;
software and accompanying data can be downloaded from their website [33].

Similarly, the French Tidal Group utilizes a global unstructured grid to model the tidal barotropic
equations in a spectral configuration and then employs representer data assimilation from long-term
satellite altimetry data to correct the tidal signals. FES products are provided on a 1/16 degree
resolution for 32 tidal constituents over the global ocean. The most recent version is FES2012, which was
produced by Noveltis, Legos and CLS Space Oceanography Division and is distributed by Aviso [51,54].

After extracting the tidal constituent information from each of these databases, a visual
comparison was made of the amplitude and phase information that would be used as input into
the ADCIRC model. Since the TPXO products only have information for 13 constituents, it was
decided to use these same thirteen harmonic constituents to force the ocean boundary (diurnal—O1 K1

P1 Q1; semi-diurnal—M2 S2 N2 K2; quarter-diurnal—M4 MS4 MN4; and long term—Mf Mm) in order
to maintain a comparable forcing suite. In general, there were very few visual differences between these
two models, particularly for the diurnal, semi-diurnal and long term constituents. What differences
did exist were typically concentrated at the northern boundary near Nova Scotia (refer to Figure 1 for
geographic locations within the WNAT domain). Similarly, among the quarter-diurnal constituents,
most of the amplitude differences were focused along the boundary as it approached the coast of
Nova Scotia. However, the phasing of the quarter-diurnal constituents was significantly different all
along the boundary; note that the amplitudes of these constituents are often on the order of 10−3 to
10−2 m. Additionally, the phasing of the Q1 constituent in each of the global products departed rapidly
from each other as the boundary neared the Nova Scotia coast. A more quantitative comparison was
made by calculating the maximum absolute difference in amplitude and phase over all 187 open ocean
boundary nodes; these results are given in Table 2.
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Table 2. Maximum absolute differences along the entire EC2015 boundary between the TPXO7.2 and
FES2012 global tidal database products.

Constituent Amplitude (cm) Phase (Degrees)

O1 1.28 20.20
K1 2.26 10.95
P1 1.25 34.62
Q1 0.55 122.14

M2 2.03 1.10
N2 0.44 6.39
S2 1.31 7.95
K2 1.00 10.01

M4 0.86 34.49
MS4 0.95 58.66
MN4 0.11 16.22
Mf 0.21 39.85

Mm 0.06 6.67

While interesting, this was not enough information to determine if one global model was better
than the other. In the results section, we will present the actual ADCIRC harmonic differences due to
the boundary forcing.

2.2.5. Bottom Friction Assignment

Finally, we examined three variations of the quadratic friction formulation for the EC2015 database:
a constant CF version and two variable friction formulations. For the variable formulations, we used a
merged combination of the CF values that had been developed for each of the VDatum regions and we
also used the collaborative United States Geological Survey (USGS) usSEABED [55] database of core
samples to assign appropriate Manning’s n friction values.

Of the nine VDatum grids that fall within the EC2015 model domain, five had a variable quadratic
bottom friction scheme. It was not necessary to be as rigorous in combining these friction values, as the
areas of grid overlap did not have any conflicting friction values. Therefore, each VDatum region was
simply mapped onto the EC2015 model and then combined canonically.

The usSEABED database contains three files for each region: “EXT—numeric data extracted
from lab-based investigations, PRS—numeric data parsed from word-based data and CLC—numeric
data calculated from the application of models or empirical relationship files” [55]. Each of these
datasets has limitations and describes the data in different ways; they can be combined to create a more
extensive coverage of the seafloor characteristics. For the EC2015 study, we had to limit the richness
of the dataset in order to make it tractable for such a large study area. Therefore a relatively simple
approach wherein the grain distributions within the “Gravel”, “Sand”, “Mud” and “Clay” columns of
the original usSEABEDS data were aggregated into a single description based upon percentages in
each class. This created a verbal distinction only between gravel, sand and silt that did not worry about
actual grainsize distributions. Each larger coastal area was then assigned a descriptive designation
with an associated shelf Manning’s n value: muddy/silty: n = 0.015, sandy: n = 0.022 (upon visual
examination, there were no large areas that were entirely gravel, just independent data points so no
gravel appropriate Manning’s n values were assigned in this stage). After a region was classified by
bed type, depth-dependent linear interpolation was used to assign Manning’s n values over each
section of the coastal/shelf. For water depths between 5 m and 200 m, the shelf value was assigned;
for depths greater than 200 m the post-Ike “deep ocean” value of 0.012 was assigned; finally, for depths
less than 5 m, values were linearly interpolated from a value of 0.025 at zero depth to the shelf value
at 5 m depth. This slightly larger zero-depth Manning’s n value is meant to take into account the
impeded flow characteristics due to extremely shallow water. After this process was completed, smaller
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sub-regions were assigned estuary specific “shelf” values and very coarse sub-grids were defined over
the sub-regions, then these sub-grids went through the linear depth interpolation process again with
these new values. Only a few estuaries were assigned values different than their surrounding shelves.
Table 3 provides the rough geographical shelf regions and specific estuaries that were used in this
process, as well as the assigned shelf Manning’s n values.

Table 3. Geographic regions used for Manning’s n assignment from usSEABEDS data.

Geographic Region Bed Description Assigned Shelf Value

Louisiana/Texas muddy/silty 0.015
Florida sandy 0.022

Mexico/South America/Caribbean 1 sandy 0.022
Atlantic Coast sandy 0.022

Delaware/Chesapeake Bays silty 0.015
Westernmost New York Sound silty 0.015

1 No data was available for these regions, so a general assumption was made.

This is a very simplified approach to assigning friction values given the rich dataset available.
However, in the time available for the project, it was impossible to interpolate between each of the
usSEABEDS data points and “smooth” the ensuing profile since there could be distances on the order of
kilometers from a boulder site that was surrounded by sand. Without knowing the physical extents of
the boulders, it is a judgement call how to transition from the one or two boulder indicated grainsizes
to the surrounding sand bed. An area of future work would be an efficient interpolation scheme for
such a diverse and scattered data set. Depending upon the water depth at an area of interest, it may
not be as important as one might think however. If we look again at Equation (1) and note that initially
eta(t) = 0, then we can compute the equivalent quadratic friction coefficient, as ADCIRC does internally.
This allows a visual comparison between the Manning’s n friction representation and the assigned
VDatum friction representation. Figures 3 and 4 show regional views for the Gulf of Maine/New York
Sound area and the Mississippi River delta area. For both Figures, panel (a) shows the bathymetric
depth profile, panel (b) shows the assigned VDatum quadratic friction coefficients, panel (c) shows the
simplified Manning’s n assignment, and panel (d) shows the computed equivalent quadratic friction
coefficient associated with (a) and (c).

Note that in both figures, the scales for panels (b) through (d) are the same. However, owing to
the difference in regional bathymetry, the bathymetry scales for panel (a) in each figure are different.
For the deeper Atlantic coast region, notice that although there is some variation in the Manning’s n
profile itself, the computed quadratic friction values do not show as much detail due to the overall
deep bathymetry. Meanwhile, for the Louisiana region, the bathymetry scale is more abbreviated
(from 0 m to 500 m with more detail in the first hundred meters) and there is more detail to the coastal
CF values due to the shallower nature of that region.

Due to the inherent simplifications in the Manning’s n assignments, a sensitivity study of the
computed harmonic constituents to the assigned Manning’s n values was conducted. The originally
assigned Manning’s n values were multiplied by factors of 90% and 110% and the resulting harmonic
responses were compared. More details of this sensitivity study are given in the results section.

2.2.6. Inclusion of ADCIRC Non-linear Advective Terms

The final effort was to include the non-linear advective terms in the ADCIRC formulation; the
interested reader is referred to [56] for details about the development of these terms and equations.
In practice, these terms enter in by activating two flags in the input file. In past versions of the East
Coast tidal database, the location of the open ocean boundary near the Lesser Antilles island chain
caused instabilities if these terms were activated. Therefore, until the boundary was moved as part
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of this study, it was not possible to include fully non-linear advection and compare how the tidal
response varied due to these terms.

 
Figure 3. Comparison of bottom friction assignment for the Atlantic coastline from North Carolina
to Maine: (a) bathymetry—scale from 0 m to 2500 m, (b) assigned Vertical Datum (VDatum) friction
coefficient (CF) values, (c) assigned Manning’s n values and (d) computed CF values from bathymetry
and assigned Manning’s n values.

Figure 4. Comparison of bottom friction assignment for the Louisiana coastline: (a) bathymetry—scale
from 0 m to 500 m, (b) assigned VDatum CF values, (c) assigned Manning’s n values and (d) computed
equivalent CF values from bathymetry and assigned Manning’s n values.

2.2.7. Summary of Tidal Database Improvements

Six different areas of improvement have been presented for the EC2015 tidal database.
Where possible, each model improvement was isolated to determine the accuracy improvement
that was due only to that component of the project. However, the improved coastal resolution and
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updated bathymetry were lumped into the final EC2015 release and were not studied individually.
Table 4 provides a summary of the simulations that were completed for this study; including the
run designation, description, mesh domain, inclusion of the advection terms, friction scheme and
boundary forcing. For the boundary forcing, the textual label indicates which global tidal database
was used and the number indicates how many constituents were used (e.g., TPXO-10 indicates that
the TPXO7.2 global database was used with only 10 constituents—recall that the quarter-diurnal
constituents create instability in the EC2001 domain for long-term simulations). For clarity, when
reporting results, labeling figures and during the discussion, the results will be referred to by their
run designation.

Table 4. Summary of model parameters for the model simulations completed in this study.

Run
Designation

Description Grid Advection
Friction
Scheme

Boundary
Forcing 1

EC2001 EC2001 extracted EC2001 Off 0.0025 TPXO-10
EC2001-ext EC2001 extended mesh EC2001_ext Off 0.0025 TPXO-10

FES1 FES 2012 EC2015 On 0.0025 FES-13
OTIS1 TPXO 7.2 EC2015 On 0.0025 TPXO-13
OTIS3 EC2015 release version EC2015 On VDatum TPXO-13

OTIS3noadv EC2015 advection off EC2015 Off VDatum TPXO-13
OTIS4 Manning n EC2015 On Manning’s n TPXO-13
OTIS5 90% Manning n EC2015 On 90% Manning TPXO-13
OTIS6 110% Manning n EC2015 On 110% Manning TPXO-13
1 The textual part of the label indicates which global tidal database was used, while the number indicates how
many constituents were included.

The EC2001 tidal database was rerun with the most recent version of ADCIRC to ensure that we
could expect a fair comparison with the EC2015 results. Error analysis confirmed that the new version
of ADCIRC was recreating the harmonic constituents from the 2008 updated tidal database [23].
In subsequent sections, all reference to the EC2001 model indicate that constituents were directly
extracted from the previous version of the database at the same locations as the recent improvements.
In order to test the affects due solely to the boundary location, a new input file that mimicked the
2008 update, but used the new expanded boundary, was created; this run designation is given by
EC2001-ext. The only difference in the input file is that boundary forcing was extracted from the
TPXO7.2 global tidal database at the new boundary node locations.

A series of runs using the final EC2015 model domain (boundary placement, updated bathymetry
and improved coastal resolution all lumped together) were conducted; all seven of these used the full
thirteen-constituent suite of boundary forcing and six of them include the advective terms. The OTIS1
and FES1 simulations differ only in whether the TPXO7.2 or FES 2012 global tidal databases were used
for the boundary conditions; a constant bottom friction was utilized in order to isolate the boundary
forcing. Additionally, four variable bottom friction runs were conducted to compare the harmonic
response to various friction schemes; OTIS3 used the merged VDatum friction, OTIS4 used the original
Manning’s n assignments, OTIS5 used the OTIS4 Manning’s n values scaled by 90%, and OTIS6 scaled
these by 110%. Finally, in order to test the advective terms, the OTIS3noadv simulation mimics the
OTIS3 simulation but with the advective terms turned off.

2.3. Validation of the Improved ADCIRC Tidal Database

Two sources of harmonic constituent data were used to validate the new EC2015 tidal database.
The analysis techniques used to compute model errors are also discussed in this section.
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2.3.1. Validation Data

The Center for Operational Oceanographic Products and Services (CO-OPS) keeps a record of
tidal benchmarks and harmonic data at stations throughout the United States [57]. Tidal harmonic
data was available at 404 such stations in the EC2015 domain. Additionally, historical data from the
International Hydrographic Organization (IHO) was used to provide wider coverage, specifically in
the deeper regions beyond the continental shelves [58]. There is a higher measure of uncertainty in
the IHO data, as information about the source of the constituents (e.g., length of analysis and data
records) is not available; furthermore, the three-decimal digits precision of longitude and latitude
coordinates used to locate the stations are sometimes insufficient to determine the physical location of
the data collection. At the request of some of the participating countries, the bank was removed from
public distribution in about 2002 [59]. Of the about 4190 IHO stations available worldwide, 277 fall
within the EC2015 domain. For skill assessment purposes, all 681 stations (404 from CO-OPS and
277 from IHO) were classified by regional location (Atlantic, Gulf of Mexico, Caribbean Sea), as well
as coastal proximity versus deep ocean.

The overall locations of the available 681 data stations are shown in Figure 5a; while Figure 5b,c
and Figure 6 show zoomed views of the various regions. In all of these figures, the gray boundary
depicts the new EC2015 model domain while the green boundary depicts the old EC2001 model
domain; the data locations from CO-OPS are shown in blue while IHO data locations are shown in red;
data locations shown with a cyan circle surrounding them are not wet in the EC2001 domain and are
excluded from any error comparisons that specifically say that only wet stations were used; finally,
sample regional scatter plots are provided in Appendix B for the 10 stations that are shown with a
black X and indicated by station number.

Of these 681 stations, only 367 were considered wet in the EC2001 model, where by wet we
mean that they are either within the domain itself (280) or were near enough to the boundary in the
main water bodies that nearest neighbor data extraction (87) was valid. Stations that were far inland
or within small channels are not extracted from the EC2001 database as they were not physically
represented in the older database. All stations shown in Figures 5 and 6 without a cyan circle denote
the location of these 367 stations where harmonics were extracted from the EC2001 database for
comparison with the new EC2015 database. Appendix A provides a list of all 681 stations with the
CO-OPS station designation (when applicable), lon/lat location, station name and assigned region
(Table A1). Station numbers indicated with a single * are close enough to the boundary to use nearest
element approximations within the EC2001 model, while those with a double ** are not located
within the extents of the EC2001 model and are not used for statistics or station scatter plots when
comparing results. Actual longitude and latitude coordinates were not shifted when extracting from
the EC2001 database, as the nearest element is most likely where the station would have been manually
shifted anyway.

2.3.2. Validation Methods

In order to determine which model best captured the tidal harmonic data at the available data
stations, we looked at a variety of error measures. For each station, we examined scatter plots
of measured and computed amplitude and phase for the eight primary tidal constituents (M2, S2,
N2, K2, O1, K1, P1 and Q1). Ideally, the computed and measured values would have a one-to-one
correspondence. Scatter plots were also made that included all 681 stations for each of these eight
constituents and a least-squares linear regression was computed. Additionally, comparison scatters
showing both the EC2001 and EC2015 models for these eight constituents were created using the
367 wet stations in the EC2001 tidal database.
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Figure 5. Locations for the stations available for validating the WNAT tidal databases: (a) global;
(b) New York and Maine coast; and (c) Delaware down to Georgia. Blue points are from NOAA,
red points are from IHO, cyan circles indicate stations that are in EC2015 (gray boundaries) but are not
wet in EC2001 (green boundaries). Scatterplots are shown in Appendix B for points shown by an X.
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Figure 6. Locations for the stations available for validating the WNAT tidal databases: (a) Florida,
(b) Gulf of Mexico and (c) Caribbean Sea. Blue points are from NOAA, red points are from IHO,
cyan circles indicate stations that are in EC2015 (gray boundaries) but are not wet in EC2001 (green
boundaries). Scatterplots are shown in Appendix B for points shown by an X.

In addition to these qualitative measures, three different error measures were calculated to
quantify the skill of each model. For the phase, the mean absolute error was computed as

MAE =
1

8np

np

∑
e=1

8

∑
k=1

∣∣datae,k − modele,k
∣∣ (2)
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where errors are summed over the number of data points for a particular region (e) as well as the
number of constituents (k). To calculate the mean errors for an individual constituent, the second sum
would only be computed for k = 1 and the 8 is removed from the denominator.

Due to some constituents having very small amplitudes, the mean relative error was computed
for amplitudes only as

MRE =
1

8np

np

∑
e=1

8

∑
k=1

∣∣datae,k − modele,k
∣∣

datae,k
(3)

where the same summation rules apply. Note that if the errors are on the same order of magnitude as
the data, the relative errors will be close to 100%. Additionally, a composite root mean square (RMS)
error, combining the phase and amplitude error for each constituent into a single error metric, was
calculated at each station as

AE =
√

0.5 (A2
m + A2

o)− Am Aocos (π (hm − ho) /180) (4)

where Am is the modeled amplitude in meters, Ao is the observed amplitude in meters, hm is the
modeled phase (degrees GMT) and ho is the observed phase (degrees GMT). As before, the mean errors
are calculated by summing over the number of data points for any particular region as well as the
number of constituents,

MeanRMSE =
1

8np

np

∑
e=1

8

∑
k=1

(AE)
e,k

(5)

In order to compare the skill of the new EC2015 model versus the previous EC2001 database,
harmonic constituents were extracted from the 2001 database (2008 updated) at the stations that were
within (or close enough to) the bounds of the EC2001 model. Mean errors were then computed for
both databases at those 367 locations. However, mean errors were also calculated at all 681 stations
for the new EC2015 database. Table 5 provides the total number of stations in each region that were
used for statistics for each model; parenthetical numbers include only the stations that were physically
within the EC2001 domain, not the nearest neighbors.

Table 5. Total number of validation stations available in each region for the most recent East
Coast models.

Model Atlantic Ocean Deep Stations 2 Gulf of Mexico Caribbean Global

EC2001 204 (151) 1 31 90 (74) 73 (55) 367 (280)
EC2015 414 31 178 89 681
1 Numbers in parentheses indicate how many were actually within the EC2001 domain while the first number
includes those stations approximated with nearest neighbors. 2 The deep stations are also included in the
Atlantic and Gulf of Mexico regional numbers.

3. Results

3.1. Results for the Various Improvements

In this section some of the model improvements are examined independently to determine how
effective they are at increasing the tidal constituent accuracy. For brevity, only the regional mean
RMS error comparisons are provided here. Full error analysis, as described in Section 2.3.2, will be
provided in Section 3.2 when the EC2001 model is compared to the final release EC2015 model. Figure 7
presents the regional mean RMS errors for all nine simulations that were previously presented in
Table 4. These mean errors were computed using only the 367 wet stations that are common to all
model domains.

205



J. Mar. Sci. Eng. 2016, 4, 72

Figure 7. Comparison of regional root mean square (RMS) errors using the 367 wet stations for all nine
study simulations summarized in Table 4.

3.1.1. Boundary Placement

As described in Section 2.2.1, the open ocean boundary has been moved out away from the Lesser
Antilles Islands and the historical 60◦ W meridian that has been used for over 25 years. In order to
test how much of an affect the new boundary placement has on the extracted harmonic constituents,
the new EC2001_extended model was run with an identical input file as was used for the 2008 updates
to the EC2001 tidal database, ec2001_v2e, [23]: a larger time step of 5.0 s is possible with these coarser
meshes, the non-linear advective terms were turned off and only 10 forcing frequencies were used
on the open boundary—the three quarter-diurnal constituents were not used in order to match the
EC2001 simulation. All other parameters are as described in Section 2.1.2.

Concentrating only on the EC2001 and EC2001-ext results in Figure 7, we note that simply moving
the boundary out away from the Lesser Antilles does not significantly improve the overall accuracy,
although it does help the stability of the model. The Atlantic and Caribbean regional errors are
unchanged, while the global errors are only slightly reduced. A moderate error reduction is realized in
the Gulf of Mexico region and the deep stations actually have slightly higher mean errors.

3.1.2. Comparison of Open Ocean Boundary Forcing

Two different global tidal databases have been examined as input to the EC2015 model: FES12
and TPXO7.2. Looking at the FES1 and OTIS1 bars in Figure 7, we note that for all regions the OTIS1
simulation has less error than the FES1 simulation; these error reductions are most significant in the
Atlantic region and deep water stations. Although the differences are rather small, it is obvious that
the TPXO global database is providing more accurate results than the FES12 database.

3.1.3. Comparison of Bottom Friction Schemes

In this study, three different bottom friction schemes are compared: constant CF = 0.0025, VDatum
quadratic friction coefficients and Manning’s n formulation with n values estimated using the USGS
usSEABEDS data. Due to the simplified assignment of the Manning’s n values, sensitivity to the actual
Manning’s n specification was also examined.

Looking at the mean RMS errors for the OTIS1 through OTIS6 simulations (ignoring OTIS3noadv)
in Figure 7, we note that there is actually very little difference in the mean errors for the Gulf of Mexico,
Caribbean and Deep stations for any of the five friction simulations. Furthermore, we see that there is
also little difference in the three Manning’s n simulations (OTIS4 through OTIS6) in any of the regions.
This is encouraging as it means that there is very little to no model sensitivity to small perturbations
in the Manning’s n values. Although a rather simplified approach for assigning these values was
used, we should not be too concerned with the approach, assuming that representative values for each
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region were chosen carefully. Finally, we note that the VDatum friction scheme (OTIS3) has slightly
higher mean errors in the Atlantic region.

Examination of the individual constituents indicate that there is very little difference in the mean
errors for the various friction simulations. The exception is the M2 constituent which has slightly higher
errors of about 0.3 cm for the OTIS3 simulation than all of the others. If one were to look at scatter
plots of individual stations, then more substantial differences could be detected; however, on average,
most constituents are insensitive to small changes in the bottom friction. Given the simplifications of the
Manning’s n assignments and the prior validation of the VDatum CF values during the VDatum model
development, for this release (EC2015) we have chosen to implement the VDatum friction values.

3.1.4. Inclusion of Advective Terms

Finally, when examining the OTIS3 and OTIS3noadv error bars, we note that very little difference
can be seen between the errors in the Gulf of Mexico and Caribbean regions. However, there are
noticeable differences in the Atlantic Ocean and Deep stations, with the OTIS3noadv bars having
slightly higher error than their counterpart. From this, we conclude that the addition of the advective
terms does reduce the mean errors in the tidal constituent harmonics, particularly in the Atlantic
coastal regions. While not shown here, it is noteworthy that these differences are more significant when
all 681 stations are used to calculate the mean errors; this is due to the higher percentage of stations in
the shallower coastal regions and narrow channels where the advective processes are more dominant.

3.2. Comparison of EC2015 and EC2001

For the EC2015 tidal database release, the VDatum friction formulation and TPXO7.2 boundary
forcing with all 13 constituents was used; all other model input parameters are as given above
in Section 2.1.2. For results and discussion, when we refer to EC2001 we mean the updated 2008
version [24]. Scatter plots of computed versus measured amplitudes and phases (and their linear
best-fit) for the EC2001 and EC2015 databases are shown in Figure 8 for the dominant diurnal and
semi-diurnal tidal signals: K1 and M2. Additionally, Table 6 provides the best fit statistics for all eight
primary constituents at the 367 validation stations that are common to both databases.

Table 6. Summary of best-fit linear statistics for the 367 common validation stations in the EC2001 and
EC2015 tidal databases.

Harmonic Amplitudes

Model Best-fit O1 K1 P1 Q1 M2 S2 N2 K2

EC2001
Slope 1.082 1.053 0.989 1.065 1.025 0.938 0.916 1.013

R2 0.973 0.964 0.956 0.959 0.989 0.959 0.971 0.943

EC2015
Slope 1.054 1.024 1.014 1.106 1.010 0.946 0.911 1.027

R2 0.984 0.978 0.964 0.960 0.996 0.975 0.980 0.964

Harmonic Phases

Model Best-fit O1 K1 P1 Q1 M2 S2 N2 K2

EC2001
Slope 0.988 0.995 0.981 0.967 0.980 0.959 0.976 0.960

R2 0.994 0.995 0.995 0.992 0.972 0.963 0.979 0.946

EC2015
Slope 0.983 0.975 0.988 0.955 0.986 0.951 0.986 0.964

R2 0.997 0.997 0.997 0.993 0.984 0.974 0.987 0.962

For a perfect fit of the validation data, both the slope and R2 values would have a value of unity.
Notice that although the slope may not be improved for all eight constituents, the R2 value is closer
to unity for all of them, indicating a tighter distribution. The larger apparent scatter in the diurnal
amplitudes is due to their much smaller magnitudes, while the scatter in the semi-diurnal phases
resides mostly in the Caribbean and Gulf of Mexico stations where the predominant constituents are
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diurnal. Additionally, many of the CO-OPS validation stations on Puerto Rico have data records that
are significantly less than one year.

Similarly, if we look at scatter plots of individual stations, we can compare how each of the
databases performs for that point. Since there are 681 validation stations, only a few representative
stations are provided herein. Figures B1–B5 in Appendix B provide plots for the 10 stations that
were shown by a black X in Figures 6 and 7; plots are grouped together by region: Atlantic coast,
Florida coast, Gulf of Mexico, Caribbean Sea and deep ocean stations. In order to illustrate the
station differences due to the friction formulation, results for both the VDatum and Manning’s n
friction formulations are shown in these plots. Other than the bottom friction itself, all other ADCIRC
parameters are the same for these two data sets. First, note that the different friction formulations
typically affect the amplitude response of the model more than the phase (with the exception of station
313 at Pilottown, LA and station 645 at Curacao Willemstad). Recall that there are no river boundary
conditions in these simulations, they are purely tidally driven. Therefore, stations such as Pilottown,
LA that are located on a major river will not exhibit the proper harmonic response as they do not
include the effects of riverine flow. Generally, the new EC2015 model is within the 5%–10% error
bars for amplitudes and 10◦–20◦ error bars for phase. For stations that are not, such as station 348 at
Galveston Bay Entrance, where some constituents are overestimated while others are underestimated,
a thorough examination of the nearby bathymetry may be warranted. While every effort was made to
use the most recent bathymetry data available by incorporating the VDatum models, for some regions
the only available NOS charts can be around 100 years old.

 

Figure 8. Comparison of scatter plots for the dominant constituents (K1, M2) for the EC2001 and
EC2015 tidal databases using the 367 common validation data stations.
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It is also instructive to see if there are sub-regional patterns in the errors (at the individual water
body scale), which can help to guide future efforts at improving the tidal database. Plots of relative
amplitude and absolute phase errors for the EC2015 model at each of the 681 stations are provided in
Figures C1–C7 in Appendix C for the M2 and K1 constituents (same zoom views given in Figures 5
and 6). Plots are only provided for the dominant constituent in the sub regions: Gulf of Maine,
Atlantic coast and Florida–M2 and Gulf of Mexico and Caribbean Sea—K1. Points shown in blue are
underestimating the amplitudes (or exhibit a phase lag), while points shown in red are overestimating
(exhibit a phase lead). The symbol shapes indicate to what degree the model is over/under estimating;
we would like to see amplitude errors less than 10% and phase errors less than 20◦. Several general
trends can be gleaned from these plots:

• The M2 amplitudes in the Gulf of Maine are slightly overestimated (generally less than 5%
but a few as high as 20%) while those at the east end of Long Island Sound are overestimated
about 10%–20%. Meanwhile stations along the remainder of the Atlantic coast down through
Florida are underestimated by 5%–10% on average, with a few isolated stations overestimating.
The Chesapeake Bay and Florida Key regions have several stations that are underestimated by
more than 10%. For the 681 stations, 309 or roughly 45% of them have relative amplitude errors
above the desired 10% threshold; most of these lie within the Gulf Coast and Caribbean regions
where the semi-diurnal amplitudes are small and the remaining are fairly evenly distributed
throughout the domain.

• The M2 phases are generally lagged for the entire Atlantic coast and Florida region, with the
exception of the Gulf of Maine (which exhibits slight 0%–5% phase leads). The most severe phase
lags are often in the upper reaches of the estuaries, embayments and rivers. Of the 404 stations,
only 111 (or 16%) have absolute phase errors greater than the desired 20◦; most of these lie within
the Chesapeake Bay, Gulf Coast and Caribbean regions.

• The amplitudes for the diurnal K1 constituent are generally overestimated along the Gulf coasts
and the Caribbean, although there are a few stations that are underestimated. While many of
the Gulf of Mexico stations are outside of the desired 10% range, the majority of the Caribbean
Sea stations are below this threshold. A higher number of the 681 stations (57%) fall outside of
the desired 10% relative amplitude error range—of these stations, 60% are along the Atlantic
coast where the semi-diurnal tides usually dominate and 30% are in the Gulf of Mexico with the
remainder in the Caribbean Sea.

• Meanwhile, the phases for the K1 constituent generally exhibit a phase lag in the Gulf of Mexico
and Caribbean Sea basins and are typically more accurate. However, the stations along the
northern Texas coast often exhibit phase leads. Only 8% fall outside of the desired 20◦ error range
and two-thirds of those are along the Atlantic coast.

Finally, mean RMS errors for regions are shown in Figure 9, while mean absolute phase errors
and mean relative amplitude errors are provided in Table 7. Looking primarily at the 367 validation
stations that are common to both databases (blue diamonds for EC2001 and red circles for EC2015),
we can draw several general conclusions.

• Globally, the greatest overall RMS improvement is realized in the M2 constituent
(1.1 cm reduction). All of the constituents (except Q1) exhibit 2◦–4◦ reductions in mean absolute
phase error and 1%–7% reductions in mean relative amplitude errors. Overall, there is a 4%
reduction in amplitude errors and about 2◦ in phase errors.

• For the Atlantic region, RMS error reductions of about 0.3 cm are gained in the O1, K1 and
N2 constituents and 1.4 cm for the M2 constituent. In general, all of the constituents have
2◦–3◦ reductions in mean absolute phase errors. However, the Q1 and K2 constituents actually
have higher errors in the 2◦–3◦ range. Additionally, with the exception of Q1 which is roughly
unchanged, the diurnal constituents exhibit 1 to 8% reductions in relative amplitude errors while
the semi-diurnal have 3%–8% reductions in error.
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• For the Gulf of Mexico, the greatest RMS error improvements are in the O1 and K1 (0.5 cm),
M2 (1.0 cm) and S2 (0.3 cm) constituents. Mean absolute phase errors are improved by 1◦–3◦ for
the diurnal constituents and 3◦–11◦ for the semi-diurnal (with the exception of S2 which exhibits
little change). Meanwhile, mean relative amplitude errors are reduced by 2%–6% for the diurnal
constituents and by 8%–13% for the semi-diurnal (with the exception of Q1 and M2 which exhibit
error increases of 2%–3%).

• For the Caribbean region, there are minor RMS error improvements of about 0.2 cm in the O1,
K1 and S2 constituents and 0.4 cm for M2 while most of the other constituents are reduced by
less than 0.1 cm. Mean absolute phase errors increase by 1◦–2◦ for the diurnal constituents and
decrease by 2◦–9◦ for the semi-diurnal constituents. Mean relative amplitude errors decrease
by 2%–11% for the diurnal constituents and 2% for M2; while N2 and K2 increase by about 1%.
Given these erratic trends, it is instructive to note that the data records used at CO-OPS to generate
the harmonic constituent data in the U.S. Virgin Islands and Puerto Rico are often as small as
29 days.

 
Figure 9. Mean RMS errors (cm) in harmonic constituents for the EC2001 and EC2015 ADCIRC tidal
databases for each region of the WNAT model domain.
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Table 7. Comparison of mean relative amplitude and mean absolute phase errors by region for each of
the eight primary harmonic constituents and summed over all eight constituents for the EC2001 and
EC2015 tidal databases: only common 367 wet validation stations used in the summations.

Mean Relative Amplitude Errors (%)

Constituent
Entire Domain Atlantic Ocean Gulf of Mexico Caribbean Sea

EC2001 EC2015 EC2001 EC2015 EC2001 EC2015 EC2001 EC2015

O1 18.99 12.12 18.68 10.35 18.11 15.59 20.91 12.74
K1 19.51 14.02 18.93 12.96 18.42 15.97 22.45 14.56
P1 18.46 17.27 17.04 16.19 18.25 17.42 22.83 20.23
Q1 21.79 21.00 19.89 20.34 21.26 24.56 28.86 17.50
M2 23.39 20.65 13.39 8.50 38.31 39.81 32.95 30.98
S2 23.77 18.08 17.01 12.76 37.83 24.54 25.33 25.06
N2 22.57 19.20 14.76 11.97 39.76 31.60 23.66 24.72
K2 31.40 25.06 20.01 11.78 61.82 54.28 33.73 34.71

All 8 22.40 18.29 17.42 12.98 30.90 27.23 26.16 22.49
Mean Absolute Phase Errors (deg)

Constituent
Entire Domain Atlantic Ocean Gulf of Mexico Caribbean Sea

EC2001 EC2015 EC2001 EC2015 EC2001 EC2015 EC2001 EC2015

O1 10.37 8.49 11.02 9.41 9.30 6.53 9.87 8.34
K1 8.87 7.47 9.21 7.73 8.44 6.27 8.49 8.25
P1 9.59 7.66 9.52 7.55 8.90 6.71 10.69 9.17
Q1 13.70 14.22 15.22 17.03 9.85 8.20 14.83 14.58
M2 15.49 12.19 9.53 7.24 23.53 19.05 22.21 17.55
S2 16.24 14.35 9.40 8.53 26.62 22.81 22.64 20.27
N2 17.16 12.98 10.40 7.53 27.45 17.94 23.95 22.72
K2 19.11 19.57 12.06 15.72 30.19 25.05 29.17 25.67

All 8 13.76 12.00 10.72 9.97 17.72 13.79 17.60 15.65

4. Discussion

Table 8 provides a summary of the global RMS errors for the eight primary constituents, as well
as the mean regional errors summed over these constituents, for each of the nine model simulations
done as part of this study (statistics computed using only the 367 common validation data points).

Table 8. Summary of RMS errors (cm) for the 367 common validation stations: global means for the
eight primary constituents and regional means summed over all eight primary harmonic constituents.

Mean Global Constituent RMS Errors (cm)

Run Designation O1 K1 P1 Q1 M2 S2 N2 K2

EC2001 1.411 1.678 0.537 0.354 5.445 1.468 1.440 0.558
EC2001-ext 1.231 1.617 0.574 0.393 5.350 1.488 1.488 0.603

FES1 1.188 1.495 0.684 0.379 4.003 1.878 1.321 0.487
OTIS1 1.109 1.401 0.519 0.377 4.022 1.264 1.282 0.510
OTIS3 1.079 1.381 0.508 0.379 4.330 1.272 1.230 0.545

OTIS3noadv 1.048 1.366 0.504 0.378 4.653 1.266 1.208 0.534
OTIS4 1.108 1.375 0.517 0.373 3.980 1.263 1.282 0.503
OTIS5 1.104 1.382 0.516 0.374 3.972 1.264 1.275 0.506
OTIS6 1.118 1.372 0.521 0.372 4.028 1.264 1.296 0.500

Mean Regional RMS Errors (cm)

Run Designation Global Atlantic Ocean Gulf of Mexico Caribbean Sea Deep Ocean

EC2001 1.655 1.928 1.419 1.161 0.774
EC2001-ext 1.634 1.925 1.334 1.167 0.848

FES1 1.466 1.744 1.139 1.067 1.035
OTIS1 1.343 1.575 1.076 1.002 0.874
OTIS3 1.374 1.632 1.074 1.001 0.867

OTIS3noadv 1.405 1.691 1.066 1.000 0.888
OTIS4 1.332 1.577 1.035 0.995 0.875
OTIS5 1.331 1.569 1.046 0.999 0.873
OTIS6 1.341 1.593 1.038 0.991 0.878
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Notice that the placement of the boundary did not significantly change either the individual
constituents (greatest change was a less than 0.2 cm reduction for O1) or the regional means, where the
greatest difference was less than 0.1 cm. Recall from Section 2.2.1 that this improvement was included
primarily to increase the model stability for the long-term simulations of 410 days that were necessary
for this study. While the slight model improvement is appreciated, it was not expected or required.

Meanwhile, the inclusion of the advective terms did not significantly affect the mean errors either.
The largest difference was in the M2 constituent, which exhibited 0.3 cm reductions of error when the
advective terms were included in the simulation, and the largest regional change was for the Atlantic
stations (less than 0.05 cm difference). While these are not significant error reductions, it is important
to include as much of the model physics as possible. Furthermore, examination of scatter plots for
individual stations shows that the inclusion of the advective terms can have significant influence
on certain types of stations (rivers, channels, shallower estuaries, etc.) where we would expect the
hydrodynamics to be more dominated by advection.

Turning now to the open ocean boundary forcing, we note that the simulation with TPXO 7.2
forcing is on average more accurate than the FES2012 forcing. The most significant difference is for the
S2 constituent, which exhibits 0.6 cm less error when the TPXO 7.2 product is used as the boundary
condition, with the only other noticeable improvement being in the P1 constituent (about 0.15 cm).
Regionally, the reductions are about 0.15 cm for the deep and Atlantic stations. Interestingly, neither
of these constituents has the highest phase or amplitude errors in Table 2. Visual examination of P1

amplitudes and phases along the open boundary indicate that the FES2012 product has a considerable
phase lag, compared to TPXO 7.2, for this constituent along the entire length and a noticeable departure
for the amplitudes near the coast of Nova Scotia. However, there are no significant differences visible
for the S2 constituent. From this we infer that the non-linear interactions between the tides can indeed
be very complex. Additionally, this highlights the need for accurate boundary conditions at any
modeling level.

Finally, comparison of the various bottom friction schemes indicates that the bottom friction does
not noticeably affect the overall statistical errors; there are very few differences across the OTIS1, OTIS3
and OTIS4 through OTIS6 simulations for constituents or regions. The exception to this is that the
OTIS3 simulation is about 0.3 cm higher than all of the others for the M2 constituent, with most of these
errors occurring (on average) in the Atlantic region. However, as shown in Appendix B, individual
stations can be significantly affected when the bottom friction is varied, from which we infer that
overall statistical improvement could be gained by optimizing the friction scheme in each coastal
embayment and estuary.

5. Conclusions

The results indicate that most of the reduction in harmonic constituent errors are due to
the increased coastal resolution and updated coastal bathymetry. On average, very little overall
improvement was realized solely from the bottom friction representation, inclusion of advective terms
or new open ocean boundary location. However, these do contribute to the overall stability and
robustness of the model, as well as having localized effects on the harmonic accuracy.

To put the errors in context, we also computed the mean RMS error (for all eight primary
constituents) between the CO-OPS station data and the IHO data for the 63 stations that were available
in both data sets. The mean error for all 63 stations was 0.72 cm, while the minimum and maximum
error over all stations were 0.19 cm and 2.94 cm, respectively. On average, one could expect the data
itself to be in error by about 0.7 cm at a given station, which is about half of the global RMS errors
reported in Table 8. The measured to computed error measures reported throughout the paper include
these errors in the data; thus, a significant portion of the reported errors stem from the uncertainty in
the data itself.

212



J. Mar. Sci. Eng. 2016, 4, 72

Future improvements to the WNAT tidal database could include better bottom friction
representations in individual water bodies that have not been optimized (e.g., the upper reaches
of Chesapeake Bay, marshy areas along the Florida coast and other regions indicated by the figures
in Appendix C) and updated bathymetry for inlets and other important conveyances (e.g., Pamlico
Sound inlets) as the VDatum models themselves are updated with more recent sounding data.

It is recommended that users of the EC2015 tidal database follow two basic guidelines: (1) choose
your regional open ocean boundary location to be well outside of estuaries and bays and (2) make sure
that your regional model bathymetry matches the database bathymetry at your boundary. Additionally,
while harmonic information is available for 37 constituents, use caution when applying larger suites as
only eight have been validated. Further guidelines and limitations are provided in Appendix D for the
interested reader. The EC2015 tidal database is available on the ADCIRC website [24].
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Appendix A

The locations, names and regional classification of all 681 validation stations are given herein; the
last 277 stations are marked with IHO in the CO-OPS ID column to indicate that they are from the IHO
bank of tidal constituents. Stations marked with a single asterisk are considered “wet” in the EC2001
model even though they are approximated by their nearest neighbor. Meanwhile, those marked with a
double asterisk are not included in scatter plots or statistical error metrics for the EC2001 database
since they are well outside the domain of the boundary or are in channels and other features that
are not represented in the EC2001 model. Abbreviations for the region designations are as follows:
Atlantic Ocean—A, Gulf of Mexico—G, Caribbean Sea—C, Deep water—D.
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Table A1. Geographic location, name and regional classification for available validation stations.

ID CO-OPS Longitude Latitude Station Name Region

1 2695540 −64.70331 32.37339 Bermuda Esso Pier, St. Georges Island A
2 8410140 −66.98290 44.90460 Eastport, Passamaquoddy Bay A

3 ** 8410714 −67.10840 44.87045 Coffin Point, Coffin Neck A
4 ** 8410715 −67.13000 44.92330 Garnet Point, Hersey Neck A
5 ** 8410834 −67.14375 45.12889 Pettegrove Point, Dochet Island A
6 ** 8410864 −67.15167 44.82333 Gravelly Pt., Whiting Bay A

7 8411060 −67.20917 44.65637 Cutler Farris Wharf, Little River A
8 8411250 −67.29670 44.64170 Cutler Naval Base, Machias Bay A

9 ** 8412581 −67.87500 44.54000 Milbridge, Narraguagus River A
10 ** 8413320 −68.20500 44.39170 Bar Harbor, Frenchman Bay A

11 8413825 −68.43500 44.17000 Mackerel Cove, Swans Island A
12 8414249 −68.62093 44.19231 Oceanville, Deer Island A

13 ** 8414612 −68.77190 44.78765 Bangor, Penobscot River A
14 8414721 −68.81330 44.47170 Fort Point, Penobscot River A
15 8414888 −68.88840 44.16080 Pulpit Harbor, Penobscot Bay A

16 ** 8415490 −69.10170 44.10500 Rockland A
17 ** 8415709 −69.18170 44.07136 Thomaston, St George River A

18 8417177 −69.78500 43.75500 Hunniwell Point, Kennebec River A
19 ** 8417208 −69.79708 44.08721 Richmond, Kennebec River A
20 ** 8417227 −69.80880 43.92500 Bath, Kennebec River A
21 ** 8418150 −70.24601 43.65608 Portland, Casco Bay A
22 * 8418445 −70.33330 43.54000 Pine Point, Scarborough River A
23 * 8418606 −70.38170 43.46170 Camp Ellis, Saco River A
24 * 8419317 −70.56303 43.31966 Wells, Webhannet River A
25 ** 8419870 −70.74170 43.08000 Seavey Island, Portsmouth Harbor A
26 ** 8423898 −70.71167 43.07179 Fort Point, Newcastle Island A
27 ** 8440273 −70.90800 42.83600 Salisbury Point, Merrimack River A
28 * 8440452 −70.82000 42.81670 Plum Island, Merrimack River Ent. A
29 ** 8440466 −70.87330 42.81500 Newburyport, Merrimack River A
30 * 8441551 −70.61507 42.66033 Rockport Harbor A
31 ** 8442645 −70.87649 42.52295 Salem, Salem Harbor A
32 ** 8443187 −70.94330 42.45830 Lynn, Lynn Harbor A
33 ** 8443970 −71.04720 42.35750 Boston, Boston Harbor A

34 8444162 −70.89170 42.32830 Boston Light, Boston Harbor A
35 ** 8444525 −70.95330 42.28000 Nut Island, Quincy Bay A
36 ** 8444788 −70.96670 42.24830 Shipyard Point, Weymouth Fore River A

37 8445138 −70.72476 42.20099 Scituate, Scituate Harbor A
38 8446009 −70.63873 42.08330 Brant Rock, Green Harbor River A

39 ** 8446121 −70.18216 42.04959 Provincetown, Cape Cod A
40 ** 8446166 −70.66789 42.03830 Duxbury, Duxbury Harbor A
41 * 8446493 −70.66170 41.96000 Plymouth, Plymouth Harbor A
42 ** 8447173 −70.53500 41.77500 Sagamore, Cape Cod Canal A
43 ** 8447191 −70.56170 41.77000 Bournedale, Cape Cod Canal A
44 * 8447241 −70.15550 41.75600 Sesuit Harbor, East Dennis A
45 ** 8447259 −70.59342 41.74585 Bourne Bridge, Cape Cod Canal A
46 ** 8447270 −70.61670 41.74170 Buzzards Bay, Cape Cod Canal A
47 ** 8447295 −70.62425 41.73500 Gray Gables, Buzzards Bay A

48 8447368 −70.71500 41.71170 Great Hill A
49 ** 8447386 −71.16550 41.70580 Fall River, Hope Bay A

50 8447416 −70.71941 41.69578 Piney Point, Wings Cove A
51 * 8447435 −69.94887 41.68847 Chatham, Lydia Cove A
52 8447495 −70.05670 41.66478 Saquatucket Harbor A
53 8447712 −70.89981 41.59292 New Bedford, Clarks Point A
54 8447842 −70.92830 41.53830 Round Hill Point A
55 8447930 −70.67170 41.52330 Woods Hole, Buzzards Bay A

56 ** 8448157 −70.59870 41.45830 Vineyard Haven, Vineyard Hvn Hbr A
57 ** 8448558 −70.51150 41.38822 Edgartown, Martha’s Vineyard A

214



J. Mar. Sci. Eng. 2016, 4, 72

Table A1. Cont.
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58 * 8448725 −70.76795 41.35461 Menemsha Harbor A
59 ** 8449130 −70.09438 41.28503 Nantucket Island, Nantucket Sound A
60 * 8451552 −71.25500 41.63670 Bristol Ferry A
61 8452660 −71.32670 41.50500 Newport, Narragansett Bay A
62 8452944 −71.34330 41.71670 Conimicut Light, Narragansett Bay A
63 8453742 −71.38670 41.49670 West Jamestown A

64 ** 8454000 −71.39978 41.80786 Providence, Providence River A
65 * 8454049 −71.41100 41.58680 Quonset Point A
66 ** 8454538 −71.44346 41.57384 Wickford, Narragansett Bay A

67 8455083 −71.49000 41.36330 Point Judith, Harbor Of Refuge A
68 8458022 −71.76170 41.32830 Weekapaug Point, Block Island Sound A
69 8459338 −71.55621 41.17404 Block Island Harbor, Old Harbor A
70 8459479 −71.58000 41.22830 Sandy Point, Block Island Sound A
71 8459681 −71.61064 41.16330 Block Island, Block Island Sound A

72 ** 8461490 −72.08975 41.36105 New London, Thames River A
73 ** 8463701 −72.53170 41.26830 Clinton, Clinton Harbor A
74 ** 8465705 −72.90830 41.28330 New Haven, New Haven Harbor A
75 ** 8467150 −73.18170 41.17330 Bridgeport, Bridgeport Harbor A
76 * 8467373 −73.21330 41.15670 Black Rock Harbor, Cedar Creek A
77 ** 8467726 −73.28286 41.13249 Southport, Southport Harbor A

78 8468799 −73.48000 41.03830 Long Neck Point, Long Island Sound A
79 8510321 −71.85586 41.07199 Montauk Point Light A

80 * 8510448 −71.93500 41.07330 Lake Montauk (U.S.C.G.) A
81 ** 8510560 −71.96000 41.04830 Montauk, Fort Pond Bay A

82 8510719 −72.03191 41.25792 Silver Eel Pond, Fishers Island A
83 * 8511171 −72.19000 41.03500 Threemile Harbor Entrance A
84 8511236 −72.20521 41.17125 Plum Island Plum Gut Harbor A
85 8511671 −72.30670 41.13670 Orient, Orient Harbor A
86 8512668 −72.56170 41.01500 Mattituck Inlet, Long Island A

87 ** 8512735 −72.58170 40.93470 South Jamesport, Great Peconic A
88 ** 8512769 −72.58667 40.81830 Shinnecock Yacht Club, Penn. Creek A
89 * 8512987 −72.64500 40.98170 Northville Fuel Dock, Long Island A
90 8513825 −72.86830 40.73830 Smith Point Bridge, Narrow Bay A

91 * 8514322 −73.00000 40.74780 Patchogue, Patchogue River A
92 * 8514422 −73.04330 40.96500 Cedar Beach A
93 ** 8515586 −73.35330 40.90000 Northport, Northport Bay A

94 8515786 −73.40000 40.95330 Eatons Neck, Huntington Bay A
95 ** 8515921 −73.43170 40.91000 Lloyd Harbor Lighthouse A
96 ** 8516061 −73.47000 40.87330 Cold Springs Harbor A
97 ** 8516299 −73.55000 40.90330 Bayville Bridge, Oyster Bay A
98 ** 8516614 −73.65500 40.86330 Glen Cove Yacht Club, Long Island A
99 ** 8516761 −73.70330 40.83170 Port Washington, Manhassset Bay A
100 * 8516945 −73.76490 40.81030 Kings Point, Long Island Sound A
101 ** 8516990 −73.78170 40.79330 Willets Point, Little Bay, East River A
102 ** 8517276 −73.85670 40.78330 College Pt, Ft. Of 110Th St A
103 ** 8517847 −73.99517 40.70374 Brooklyn Bridge, East River A

104 8518091 −73.67170 40.96170 Rye Beach, Amusement Park A
105 ** 8518639 −73.90625 40.80133 Port Morris, East 138Th St. A
106 ** 8518668 −73.94170 40.77670 Horns Hook, E. 90Th St. Hell Gate A
107 ** 8518687 −73.95830 40.75830 Queensboro Bridge, East River A
108 ** 8518699 −73.96956 40.71170 Williamsburg Bridge A
109 ** 8518750 −74.01436 40.70020 The Battery, New York Harbor A
110 ** 8518903 −73.92500 40.87830 Spuyten Duyvil Ck, Ent., Hudson R. A
111 ** 8518905 −73.91670 40.90330 Riverdale, Hudson River A
112 ** 8518924 −73.96330 41.21830 Haverstraw Bay A
113 ** 8519483 −74.14230 40.63980 Bergen Point West, Kill Van Kull A
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114 * 8531680 −74.00940 40.46690 Sandy Hook A
115 8534720 −74.41830 39.35500 Atlantic City, Atlantic Ocean A
116 8534770 −74.47670 39.33500 Ventnor City, Fishing Pier A

117 * 8534836 −74.53330 39.30830 Longport, Risely Channel A
118 * 8536110 −74.96000 38.96833 Cape May Canal, Delaware Bay A
119 * 8536581 −74.89170 39.12830 Bidwell Creek Entrance, Del. Bay A
120 * 8536931 −75.17500 39.23830 Fortescue Creek A
121 8537121 −75.37500 39.30500 Ship John Shoal, Delaware River A

122 ** 8538886 −75.04300 40.01194 Tacony-Palmyra Bridge A
123 ** 8539094 −74.86970 40.08170 Burlington, Delaware River A
124 ** 8539487 −74.73670 40.13670 Fieldsboro, Delaware River A
125 ** 8539993 −74.75500 40.18830 Trenton Marine Terminal A
126 ** 8540433 −75.41000 39.81170 Marcus Hook A
127 ** 8545240 −75.14091 39.93333 Philadelphia (U.S.C.G.), Del. River A
128 ** 8545530 −75.13830 39.95330 Philadelphia (Pier 11 North), Del. R A
129 ** 8548989 −74.75170 40.13670 Newbold, Delaware River A
130 ** 8551762 −75.58830 39.58170 Delaware City, Delaware River A
131 ** 8551910 −75.57331 39.55870 Reedy Point, C&D Canal A
132 * 8554399 −75.40000 39.18500 Mahon River Entrance, Del. Bay A
133 8555889 −75.11333 38.98667 Brandywine Shoal Light, Del. Bay A

134 * 8557380 −75.12000 38.78200 Lewes, Ft. Miles A
135 * 8558690 −75.07000 38.61000 Indian River Inlet A
136 8570280 −75.08330 38.32670 Ocean City, Fishing Pier A

137 ** 8570283 −75.09167 38.32833 Ocean City Inlet A
138 ** 8570536 −75.18909 38.21516 South Point, Chincoteague Bay A
139 ** 8570649 −75.28500 38.14830 Public Landing, Chincoteague Bay A
140 ** 8571091 −75.86330 37.97670 Crisfield A

141 8571117 −76.02895 37.99826 Ewell, Smith Island A
142 8571421 −76.03830 38.22000 Bishops Head, Hoopers Strait A

143 ** 8571559 −76.00500 38.30000 Mccreadys Creek, Fishing Bay A
144 * 8571579 −76.26500 38.34170 Barren Island, Chesapeake Bay A
145 ** 8571773 −75.81930 38.48396 Vienna, Nanicoke River A
146 ** 8571892 −76.06818 38.57354 Cambridge, Choptank River A
147 * 8572467 −76.37330 38.83670 Kent Point, Chesapeake Bay A
148 ** 8572669 −75.94500 38.91670 Hillsboro, Tuckahoe Creek A
149 * 8572770 −76.35500 38.95670 Matapeake A
150 8572955 −76.30110 39.03170 Love Point Pier, Kent Island A

151 ** 8573349 −75.92500 39.24500 Crumpton, Chester River A
152 * 8573364 −76.24577 39.21333 Tolchester Beach, Chesapeake Bay A
153 * 8573704 −76.06330 39.37170 Betterton, Sassafras River A
154 ** 8573903 −75.91670 39.50330 Town Point Wharf A
155 ** 8573927 −75.81000 39.52766 Chesapeake City A
156 * 8574070 −76.09000 39.53670 Havre De Grace, Chesapeake Bay A
157 ** 8574459 −76.25500 39.38830 Pond Point, Bush River A
158 ** 8574680 −76.57833 39.26667 Baltimore (Fort McHenry) A
159 ** 8574683 −76.58500 39.26170 Fort McHenry Marsh, Patapsco R A
160 ** 8575512 −76.48099 38.98441 U.S. Naval Academy, Severn River A

161 8577004 −76.47261 38.46579 Long Beach, Chesapeake Bay A
162 * 8577188 −76.39640 38.39340 Cove Point A
163 ** 8577330 −76.45167 38.31667 Solomons Island, Patuxent River A
164 ** 8579542 −76.68333 38.65500 Lower Marlboro, Patuxent River A
165 ** 8579997 −76.93923 38.93240 Bladensburg, Anacostia River A
166 ** 8594900 −77.02167 38.87333 Washington, Potomac River A
167 ** 8630308 −75.40516 37.90701 Chincoteague Channel, South End A

168 8632200 −75.98844 37.16519 Kiptopeke, Chesapeake Bay A
169 * 8632366 −76.02450 37.26330 Cape Charles Harbor (U.S.C.G.) A
170 8632837 −76.01500 37.53830 Rappahannock Light A
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171 ** 8632869 −75.91670 37.55670 Gaskins Pt., Occohannock Creek A
172 8633532 −75.99288 37.82926 Tangier Island, Chesapeake Bay A
173 8635150 −76.96000 38.25170 Colonial Beach, Potomac River A

174 ** 8635257 −77.24297 38.21330 Rappahannock Bend A
175 ** 8635750 −76.46444 37.99590 Lewisetta, Potomac River A
176 ** 8635985 −76.78330 37.87330 Wares Wharf, Rappahannock R A
177 * 8636580 −76.29000 37.61442 Windmill Point, Rappahannock R A
178 ** 8636653 −76.98996 37.58327 Lester Manor A
179 * 8637289 −76.27330 37.34670 New Point A
180 8637590 −76.22170 37.25670 New Point, Comfort Shoal A

181 ** 8637624 −76.50000 37.24670 Gloucester Point, York River A
182 ** 8637689 −76.47833 37.22667 Yorktown U.S.C.G. Training Center A
183 ** 8638339 −76.39911 36.82322 Western Branch A
184 ** 8638421 −76.66830 37.05670 Burwell Bay, James River A
185 ** 8638424 −76.66330 37.22000 Kingsmill, James River A
186 ** 8638433 −76.78330 37.18500 Scotland, James River A
187 ** 8638445 −76.91170 37.40330 Lanexa, Chicahominy River A
188 ** 8638450 −76.94330 37.23988 Tettington, James River A
189 ** 8638489 −77.37338 37.26686 Puddledock, Appomattox River A
190 ** 8638495 −77.42060 37.52451 Richmond River Locks, James River A
191 * 8638610 −76.33000 36.94667 Sewells Point, Hampton Roads A
192 ** 8638660 −76.29202 36.82168 Norfolk Naval Shipyard A

193 8638863 −76.11333 36.96667 Chesapeake Bay Bridge Tunnel A
194 8639207 −75.96984 36.83180 Inside Channel, Rudee Inlet A

195 ** 8639348 −76.30172 36.77804 Money Point, S. Br. Elizabeth River A
196 8651370 −75.74669 36.18331 Duck, Frf Pier A

197 ** 8652247 −75.76890 35.90370 Manns Harbor, Croatan Sound A
198 ** 8652437 −75.65645 35.84482 Oyster Creek, Croatan Sound A
199 ** 8652547 −75.70000 35.81170 Roanoke Marshes Light, Croatan S A
200 ** 8652587 −75.54936 35.79429 Oregon Inlet Marina, Pamlico S A

201 8654400 −75.63500 35.22330 Cape Hatteras Fishing Pier A
202 ** 8654467 −75.70417 35.20950 U.S.C.G. Hatteras, Pamlico S A
203 ** 8654792 −75.98945 35.11564 Ocracoke Island A
204 ** 8655875 −76.34330 34.87500 Sea Level, Core Sound A
205 ** 8656483 −76.67000 34.72000 Beaufort, Duke Marine Lab A

206 8656590 −76.71170 34.69330 Atlantic Beach Triple S Pier A
207 ** 8658120 −77.95330 34.22670 Wilmington, Cape Fear River A

208 8658163 −77.78566 34.21330 Wrightsville Beach A
209 ** 8659084 −78.01830 33.91500 Southport A

210 8659182 −78.08170 33.90170 Oak Island, Atlantic Ocean A
211 * 8659897 −78.50670 33.86500 Sunset Beach Pier, Atlantic Ocean A
212 8661070 −78.91830 33.65500 Springmaid Pier, Atlantic Ocean A

213 ** 8664022 −79.92138 33.00880 Gen. Dynamics Pier, Cooper R. A
214 ** 8664545 −79.83000 32.92670 Cainhoy, Wando River A
215 ** 8664941 −79.70670 32.85670 South Capers Island, Capers Creek A
216 ** 8665099 −80.02170 32.83670 I-526 Bridge, Ashley River A
217 ** 8665530 −79.92378 32.78170 Charleston, Cooper River Entrance A
218 ** 8667633 −80.78410 32.50250 Clarendon Plantation, Whale Br. A
219 ** 8668498 −80.46500 32.34000 Hunting Island Pier, Fripps Inlet A

220 8668918 −80.73670 32.26670 Ribaut Island, Skull Creek A
221 ** 8670870 −80.90170 32.03373 Fort Pulaski, Savannah River A
222 ** 8677344 −81.39670 31.13170 St Simons Lighthouse A
223 ** 8679511 −81.51323 30.79781 Kings Bay A
224 ** 8679758 −81.47170 30.76330 Dungeness, Seacamp Dock A
225 ** 8679964 −81.54830 30.72000 St. Marys, St. Marys River A
226 ** 8720011 −81.46500 30.70830 Cut 1N, St Marys River Entr A

227 8720012 −81.30170 30.71670 Cut 2N, St Marys River Entr A
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228 ** 8720030 −81.46539 30.67171 Fernandina Beach, Amelia River A
229 ** 8720051 −81.52330 30.64330 Lanceford Creek, Lofton A
230 ** 8720098 −81.51500 30.56830 Nassauville, Nassau River East A
231 ** 8720211 −81.41330 30.40000 Mayport (Naval Sta.) St Johns R A
232 ** 8720218 −81.43000 30.39670 Bar Pilots Dock, St Johns River A
233 ** 8720219 −81.55830 30.38670 Dames Point, St. Johns River A
234 ** 8720220 −81.43170 30.39330 Mayport (Ferry) Saint Johns R A
235 ** 8720225 −81.63408 30.38337 Phoenix Park A
236 ** 8720242 −81.62000 30.36000 Longbranch, St Johns River A
237 * 8720291 −81.38670 30.28330 Jacksonville Beach A
238 ** 8720357 −81.69164 30.19170 I-295 Bridge, West End, St Johns R A
239 ** 8720503 −81.62830 29.97830 Red Bay Point, St Johns River A
240 ** 8720554 −81.30000 29.91670 Vilano Beach (ICWW) A
241 ** 8720582 −81.30670 29.86670 State Road 312, Matanzas River A

242 8720587 −81.26330 29.85670 St. Augustine Beach, Atlantic A
243 ** 8720625 −81.54832 29.80165 Racy Point, St Johns River A
244 ** 8720651 −81.25830 29.76830 Crescent Beach, Matanzas River A
245 ** 8720692 −81.22786 29.70453 State Road A1A Bridge A
246 ** 8720757 −81.20500 29.61500 Bings Landing, Matanzas River A
247 ** 8720767 −81.68170 29.59500 Buffalo Bluff, St. Johns River A
248 ** 8720774 −81.63170 29.64328 Palatka, St. Johns River A
249 ** 8720832 −81.67520 29.47675 Welaka, St. Johns River A
250 * 8721020 −81.00500 29.22830 Daytona Beach (Ocean) A
251 ** 8721604 −80.59350 28.41580 Trident Pier, Port Canaveral A
252 ** 8721608 −80.60152 28.40871 Canaveral Harbor Entrance A
253 ** 8722125 −80.37170 27.63170 Vero Beach, Indian River A
254 ** 8722208 −80.32500 27.47170 North Beach Causeway, Indian R A
255 ** 8722548 −80.06670 26.84330 Pga Boulevard Bridge, Palm Beach A
256 ** 8722588 −80.05096 26.77000 Port Of W. Palm Beach, Lake Worth A
257 ** 8722669 −80.04670 26.61330 Lake Worth (ICWW) A

258 8722670 −80.03330 26.61170 Lake Worth Pier, Atlantic Ocean A
259 * 8723080 −80.12000 25.90330 Haulover Pier, N. Miami Beach A
260 8723170 −80.13154 25.76830 Miami Beach (City Pier) A
261 8723178 −80.13000 25.76330 Miami Beach, Government Cut A
262 8723214 −80.16180 25.73140 Virginia Key, Biscayne Bay A

263 * 8723962 −81.01670 24.71830 Key Colony Beach G
264 * 8723970 −81.10500 24.71170 Vaca Key, Florida Bay G
265 * 8724580 −81.80790 24.55570 Key West G
266 8724635 −81.87830 24.45330 Sand Key Lighthouse G
267 8724671 −81.92153 24.71828 Smith Shoal Light, Fl G
268 8724698 −82.92000 24.63170 Loggerhead Key, Dry Tortugas G

269 * 8725110 −81.80750 26.13170 Naples, Gulf Of Mexico G
270 ** 8725520 −81.87120 26.64770 Fort Myers, Caloosahatchee River G

271 8726347 −82.76000 27.60170 Egmont Key, Tampa Bay G
272 8726364 −82.72670 27.61500 Mullet Key, Tampa Bay G
273 8726384 −82.56210 27.63870 Port Manatee, Tampa Bay G
274 8726520 −82.62690 27.76060 St. Petersburg, Tampa Bay G

275 * 8726607 −82.55376 27.85778 Port Tampa, Old Tampa Bay G
276 ** 8726667 −82.42500 27.91333 Csx Rockport, Mckay Bay Entrance G

277 8726724 −82.83170 27.97830 Clearwater Beach, Gulf Of Mexico G
278 ** 8726738 −82.68500 27.98830 Safety Harbor, Old Tampa Bay G
279 ** 8727235 −82.63830 28.69170 Johns Island, Chassahowitzka Bay G
280 ** 8727274 −82.63830 28.76170 Mason Creek, Homosassa Bay G
281 ** 8727277 −82.69540 28.77170 Tuckers Island, Homosassa River G
282 ** 8727293 −82.60330 28.80063 Halls River Bridge, Halls River G
283 ** 8727306 −82.65830 28.82500 Ozello G
284 ** 8727328 −82.66670 28.86330 Ozello North G
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285 8727333 −82.72330 28.87000 Mangrove Point, Crystal Bay G
286 ** 8727336 −82.63500 28.88170 Dixie Bay G
287 ** 8727348 −82.63829 28.90505 Twin Rivers Marina, Crystal River G
288 ** 8727359 −82.69170 28.92330 Shell Island, Crystal River G

289 8727520 −83.03170 29.13500 Cedar Key, Gulf Of Mexico G
290 * 8728229 −84.29000 30.05870 Shell Point, Walker Creek G
291 * 8728360 −84.51170 29.91500 Turkey Point G
292 ** 8728690 −84.98138 29.72670 Apalachicola, Apalachicola River G
293 ** 8729108 −85.66694 30.15228 Panama City, St. Andrew Bay G

294 8729210 −85.87830 30.21330 Panama City Beach, Gulf Of Mexico G
295 ** 8729501 −86.49330 30.50330 Valpariso, Boggy Bayou G

296 8729678 −86.86500 30.37670 Navarre Beach G
297 ** 8729905 −87.35670 30.41860 Millview, Perdido Bay G
298 ** 8729941 −87.42881 30.38694 Blue Angels Park, Perdido Bay G
299 ** 8731439 −87.68428 30.27982 Gulf Shores, Icww G
300 * 8733821 −87.93453 30.48664 Point Clear, Mobile Bay G
301 8735180 −88.07500 30.25000 Dauphin Island, Mobile Bay G

302 ** 8735391 −88.08800 30.56517 SH 163 Bridge, Dog River G
303 ** 8737048 −88.04010 30.70830 Mobile State Docks, Mobile River G

304 8741196 −88.53330 30.34000 Pascagoula Point, Miss. Sound G
305 * 8742221 −88.66670 30.23830 Horn Island, Mississippi Sound G
306 ** 8743281 −88.79830 30.39170 Ocean Springs G
307 ** 8744117 −88.90330 30.41175 Biloxi, Bay Of Biloxi G

308 8745557 −89.08170 30.36000 Gulfport Harbor, Mississippi Sound G
309 8747437 −89.32578 30.32639 Bay Waveland Yacht, Bay St. Louis G
310 8747766 −89.36670 30.28170 Waveland, Mississippi Sound G
311 8760417 −89.04447 29.20075 Devon Energy Facility, North Pass G
312 8760551 −89.14000 28.99000 South Pass G
313 8760721 −89.25830 29.17830 Pilottown G
314 8760849 −89.35120 29.27330 Venice, Grand Pass G
315 8760922 −89.40750 28.93220 Pilot Station East, SW Pass G
316 8760943 −89.41830 28.92500 Pilot Station, SW Pass G

317 * 8761305 −89.67325 29.86811 Shell Beach, Lake Borgne G
318 * 8761529 −89.83500 29.94500 Martello Castle, Lake Borgne G
319 8761819 −90.03830 29.40170 Texaco Dock, Hackberry Bay G

320 * 8761927 −90.11342 30.02717 U.S.C.G. New Canal, Lake Pont. G
321 ** 8762075 −90.20860 29.11430 Port Fourchon, Belle Pass G

322 8763535 −90.97600 29.17390 Texas Gas Platform, Caillou Bay G
323 ** 8764025 −91.23000 29.74330 Stouts Pass At Six Mile Lake G
324 ** 8764044 −91.23750 29.66750 Berwick, Atchafalaya River, La G

325 8764227 −91.33810 29.45500 Lawma, Amerada Pass G
326 8764311 −91.38500 29.37170 Eugene Island G
327 8765251 −91.88000 29.71336 Cypremort Point G

328 * 8767816 −93.22167 30.22364 Lake Charles, Calcasieu River G
329 8767961 −93.30069 30.19031 Bulk Terminal #1 G
330 8768094 −93.34289 29.76817 Calcasieu Pass, East Jetty G

331 ** 8770475 −93.93130 29.86670 Port Arthur, Sabine Naches Canal G
332 ** 8770520 −93.88170 29.98000 Rainbow Bridge, Neches River G
333 ** 8770539 −93.89500 29.76670 Mesquite Point G
334 ** 8770559 −94.69040 29.71330 Round Point, Trinity Bay G
335 ** 8770570 −93.87010 29.72840 Sabine Pass North G
336 ** 8770597 −93.72170 30.09830 Orange (Old Navy Base) G
337 ** 8770613 −94.98500 29.68170 Morgans Point, Barbours Cut G
338 ** 8770625 −94.86830 29.68000 Umbrella Point, Trinity Bay G
339 ** 8770733 −95.07830 29.76500 Lynchburg Landing, San Jacinto R G
340 ** 8770743 −95.09000 29.75670 Battleship Texas, Houston Ship Ch G
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341 ** 8770777 −95.26580 29.72580 Manchester, Houston Ship Ch G
342 8770822 −93.83694 29.67806 Texas Point, Sabine Pass G

343 ** 8770933 −95.06670 29.56330 Clear Lake G
344 ** 8770971 −94.51330 29.51500 Rollover Pass G
345 ** 8771013 −94.91830 29.48000 Eagle Point, Galveston Bay G

346 8771081 −93.64000 29.49830 Sabine Offshore G
347 ** 8771328 −94.78000 29.36500 Port Bolivar, Bolivar Roads G

348 8771341 −94.72483 29.35733 Galveston Bay Ent North Jetty G
349 ** 8771450 −94.79330 29.31000 Galveston Pier 21 G

350 8771510 −94.78940 29.28530 Galveston Pleasure Pier, GoMex G
351 ** 8772440 −95.30830 28.94830 Freeport, Dow Barge Canal G
352 ** 8772447 −95.30250 28.94310 U.S.C.G. Freeport, Entr Channel G
353 ** 8773037 −96.71170 28.40800 Seadrift, San Antonio Bay G
354 ** 8773259 −96.59500 28.64000 Port Lavaca, Lavaca Causeway G
355 ** 8773701 −96.38830 28.45170 Port O’Connor, Matagorda Bay G
356 ** 8774513 −97.02170 28.11830 Copano Bay State Fishing Pier G
357 ** 8774770 −97.04670 28.02170 Rockport, Aransas Bay G
358 ** 8775188 −97.47500 27.85830 White Point Bay G
359 ** 8775237 −97.07330 27.83890 Port Aransas G

360 8775270 −97.05000 27.82670 Port Aransas, H. Caldwell Pier G
361 ** 8775283 −97.20330 27.82130 Port Ingleside, Corpus Christi Bay G
362 ** 8775296 −97.39000 27.81170 Texas State Aquarium, Corpus G
363 ** 8775421 −97.28000 27.70500 Corpus Christi Naval Air Station G
364 ** 8775792 −97.23670 27.63330 Packery Channel G

365 8775870 −97.21670 27.58000 Corpus Christi, Gulf Of Mexico G
366 ** 8779748 −97.17670 26.07670 South Padre Island (U.S.C.G) G

367 8779750 −97.15670 26.06830 Padre Island, Brazos Santiago Pass G
368 ** 8779770 −97.21500 26.06000 Port Isabel, Laguna Madre G

369 9500966 −97.78050 22.26200 Madero, Tampico Harbor, Mexico G
370 9650593 −87.87000 15.89300 Puerto Cortes C
371 9710441 −78.99700 26.71000 Settlement Point, Grand Bahamas C
372 9751309 −64.72100 18.36800 Leinster Point (Bay), St. John C

373 * 9751364 −64.70500 17.75000 Christiansted, St. Croix Island C
374 ** 9751373 −64.71480 18.34560 St John’S Island, Coral Harbor C
375 ** 9751381 −64.72400 18.31800 Lameshur Bay, St. John C

376 9751401 −64.75410 17.69500 Lime Tree Bay, St Croix C
377 9751467 −64.80400 18.36090 Lovango Cay, St John C
378 9751494 −64.81800 18.29700 Dog Island, St Thomas C

379 ** 9751567 −64.86905 18.31870 Benner Bay C
380 9751583 −64.86400 18.34870 Water Bay, Saint Thomas C

381 * 9751584 −64.88400 17.71300 Fredericksted, St. Croix Island C
382 ** 9751639 −64.92030 18.33570 Charlotte Amalie, St. Thomas C
383 * 9751768 −64.96270 18.37110 Ruy Point, St Thomas C
384 * 9751774 −65.03500 18.36300 Botany Bay, St Thomas C
385 9752235 −65.30200 18.30100 Culebra C
386 9752619 −65.44400 18.15300 Isabel Segunda, Vieques Island C

387 * 9752695 −65.47100 18.09395 Esperanza, Vieques Island C
388 9752962 −65.57000 18.34500 Isla Palominos C

389 * 9753216 −65.63100 18.33500 Playa De Fajardo C
390 * 9753641 −65.71102 18.18700 Naguabo C
391 * 9754228 −65.83300 18.05500 Yabucoa Harbor C
392 ** 9755371 −66.11600 18.45900 San Juan, La Puntilla, San Juan Bay C

393 9755679 −66.15800 17.92800 Las Mareas C
394 * 9756639 −66.40700 17.95390 Santa Isabel C
395 9757809 −66.70210 18.48140 Arecibo, Puerto Rico C
396 9758053 −66.76200 17.97300 Penuelas, Punta Guayanilla C
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397 ** 9759110 −67.04603 17.97000 Magueyes Island C
398 ** 9759189 −67.18900 18.07500 Puerto Real C
399 ** 9759197 −67.19700 17.95100 Bahia Salinas C
400 * 9759394 −67.16080 18.21790 Mayaguez, Puerto Rico C
401 9759412 −67.16500 18.45700 Aguadilla, Crashboat Beach C
402 9759421 −67.18530 18.16500 Punta Guanajabo, Mayagues C
403 9759938 −67.93900 18.09000 Mona Island C

404 * 9761115 −61.82100 17.59040 Barbuda C
405 IHO −66.05000 45.23330 Partridge Island A
406 IHO −67.04999 45.06667 St Andrews A
407 IHO −66.86667 45.04583 Back Bay A
408 IHO −65.06665 45.05000 Margretsville A
409 IHO −67.01711 44.96622 Fairhaven A
410 IHO −66.98333 44.90000 Eastport A
411 IHO −66.95354 44.88334 Welshpool A
412 IHO −62.75896 44.77344 Murphy Cove A

413 ** IHO −66.75010 44.76557 North Head A
414 IHO −65.83334 44.66667 Deep Cove A
415 IHO −63.56712 44.64378 Halifax A
416 IHO −66.79999 44.60000 Outer Wood Island A
417 IHO −63.95001 44.49900 Indian Harbour A

418 ** IHO −66.10001 44.46390 Sandy Cove A
419 ** IHO −68.20001 44.40000 Bar Harbour A

420 IHO −68.01666 44.40000 Prospect Harbour A
421 IHO −66.39999 44.25000 Lighthouse Cove A
422 IHO −66.16666 44.20000 Meteghan A
423 IHO −68.88333 44.14642 Pulpit Harbour A
424 IHO −64.66210 43.98320 Liverpool A
425 IHO −65.10420 43.66480 Lockeport A

426 ** IHO −70.24667 43.65667 Portland A
427 IHO −65.74290 43.52580 Woods Harbour A
428 IHO −66.00000 43.50000 Flat Island A
429 IHO −66.00000 43.48333 Seal Island A

430 ** IHO −70.74167 43.08000 Portsmouth (Navy Yard) A
431 IHO −63.20001 42.81667 Fundy 1 A/D
432 IHO −63.98334 42.78333 SB2 A/D
433 IHO −64.36667 42.61666 Fundy 21 A/D
434 IHO −67.71667 42.46667 Fundy 6 A/D

435 ** IHO −71.03326 42.35078 Boston (Commonwealth Piers) A
436 IHO −65.50000 42.11666 Fundy 22a A/D
437 IHO −65.63333 42.05000 Fundy 22b A/D

438 ** IHO −71.39694 41.80080 Providence A
439 * IHO −70.50000 41.77482 E Cape Cod Canal A
440 ** IHO −70.61667 41.74072 WCape Cod Canal A
441 ** IHO −70.62512 41.73333 Buzzards Bay A

442 IHO −65.79999 41.73333 Fundy 3 A/D
443 * IHO −70.89999 41.60000 New Bedford A
444 IHO −71.33334 41.50000 Newport A
445 IHO −70.67143 41.52422 Woods Hole (Ocean Inst) A

446 ** IHO −72.09900 41.34903 New London A
447 IHO −72.35001 41.26667 Connecticut River Ent A

448 * IHO −73.16666 41.16667 Bridgeport A
449 IHO −72.20001 41.16521 Plum Island A

450 * IHO −71.96667 41.05000 montauk A
451 ** IHO −73.06728 40.95027 Port Jefferson A
452 * IHO −73.78333 40.80000 Willets Point A
453 ** IHO −73.85006 40.78285 College Point A
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454 IHO −66.83334 40.73333 Fundy 4 A/D
455 ** IHO −73.23280 40.71533 Bayshore Long Island A
456 ** IHO −74.01666 40.70000 New York: Battery A
457 ** IHO −74.01666 40.68333 New York: Governor’s Island A

458 IHO −74.03333 40.60000 New York: Fort Hamilton A
459 IHO −74.01666 40.46833 Sandy Hook A
460 IHO −67.75000 40.36666 Fundy 23 A/D
461 IHO −70.89999 40.30000 IAPSO: 30-1.2.32 A/D
462 IHO −68.63333 40.11667 IAPSO: 30-1.2.1 A/D

463 ** IHO −75.13333 39.95000 Philadelphia A
464 IHO −71.38333 39.95000 IAPSO: 30-1.2.2 A/D

465 ** IHO −75.58334 39.58333 Delaware City A
466 ** IHO −75.56665 39.55000 Reedy Point A
467 ** IHO −75.81665 39.53140 Chesapeake City A
468 ** IHO −75.88333 39.51667 Court House Point A
469 ** IHO −75.98419 39.43576 Elk River Entrance A

470 IHO −76.26666 39.28333 Pooles Island Light A
471 ** IHO −76.58070 39.26940 Baltimore A

472 IHO −72.16666 39.21667 IAPSO: 30-1.2.17 A/D
473 IHO −71.36667 39.16667 IAPSO: 30-1.2.19 A/D
474 IHO −76.41666 39.15000 Seven Foot Knoll Light A
475 IHO −76.30221 39.04201 Love Point Light A

476 ** IHO −76.48191 38.98550 Annapolis A
477 * IHO −74.96000 38.96833 Cape May Ferry Terminal A
478 IHO −76.43335 38.90000 Thomas Point Shoal Light A

479 ** IHO −77.01725 38.86094 Washington D.C. A
480 ** IHO −75.10220 38.78790 Breakwater Harbour A
481 ** IHO −75.07045 38.60092 Indian River Inlet A
482 ** IHO −76.06341 38.57254 Cambridge A
483 ** IHO −76.45001 38.31667 Solomons Island A
484 ** IHO −76.41666 38.31667 Drum Point Light A

485 IHO −76.95001 38.25000 Colonial Beach A
486 IHO −76.75000 38.21667 Colton Point A
487 IHO −76.53333 38.13334 Piney Point A
488 IHO −76.10001 38.06667 Holland Island Bar Light A
489 IHO −76.26666 37.80000 Great Wicomico Light A
490 IHO −76.26666 37.56667 Stingray Point Light A
491 IHO −73.08334 37.36666 IAPSO: 30-1.2.16 A/D

492 ** IHO −77.26666 37.31667 City Point Hopewell A
493 ** IHO −76.02449 37.26667 Cape Charles A
494 ** IHO −76.49882 37.24811 Gloucester Point A

495 IHO −76.29999 37.00000 Old Point Comfort A
496 ** IHO −76.33334 36.95000 Hampton Roads (Sewall Pt.) A

497 IHO −75.96667 36.83333 Virginia Beach A
498 IHO −75.50000 35.33333 Avon A

499 * IHO −76.68335 34.71667 Morehead City A
500 ** IHO −77.95001 34.23333 Wilmington A
501 * IHO −78.01667 33.91500 Southport A
502 IHO −78.89999 33.66667 Myrtle Beach A

503 ** IHO −79.91666 32.78333 Charleston A
504 IHO −75.61667 32.68333 IAPSO: 30-1.2.3 A/D
505 IHO −64.64999 32.36666 St. Davids Island A

506 ** IHO −80.78279 32.31757 Port Royal Sound A
507 IHO −64.83334 32.31667 Ireland Island A

508 ** IHO −80.89995 32.03360 Savannah River Entrance A
509 IHO −64.43335 32.01667 IAPSO: 30-1.2.18 A/D

510 ** IHO −81.20050 31.53659 Sapelo Sound A
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511 ** IHO −88.04010 30.70830 Mobile G
512 IHO −76.41666 30.43333 IAPSO: 30-1.2.11 A/D

513 ** IHO −88.90330 30.41175 Biloxi G
514 ** IHO −87.21667 30.40000 Pensacola G
515 * IHO −81.43259 30.39928 Mayport A
516 ** IHO −87.26428 30.34872 Warrington Navy Yard G
517 ** IHO −81.61667 30.35000 Jacksonville Dredger Dept. A

518 IHO −90.29999 30.29805 Pass Nanchac Light G
519 IHO −89.33334 30.30000 Bay St Louis G
520 IHO −89.16666 30.23333 Cat Island G

521 ** IHO −88.01666 30.23333 Mobile Point Light G
522 ** IHO −85.74736 30.16939 Alligator Bayou G

523 IHO −84.18335 30.06667 St Marks Light G
524 IHO −90.11667 30.02376 West End G

525 ** IHO −90.06803 29.91999 New Orleans G
526 IHO −93.34736 29.78333 Calcasieu Pass Light G

527 ** IHO −94.69040 29.71333 Round Point G
528 IHO −84.98334 29.71667 Apalachicola G
529 IHO −93.85001 29.70000 Sabine G

530 ** IHO −94.98334 29.68333 Morgan Point G
531 * IHO −94.49038 29.51828 Gilchrist G
532 IHO −92.03492 29.57862 Lighthouse Point G

533 ** IHO −91.54999 29.51667 Point Chevreuil G
534 IHO −91.76710 29.48820 South Point G
535 IHO −89.16666 29.48333 Breton Island G

536 ** IHO −91.27077 29.51204 Shell Island G
537 IHO −91.59734 29.50966 Rabbit Island Pass G
538 IHO −91.38500 29.37170 Eugene Island G

539 ** IHO −89.33334 29.36667 Jack Bay G
540 IHO −94.70001 29.33333 Galveston Bay Entrance G
541 IHO −91.75000 29.28667 Point au Fer G

542 ** IHO −94.78333 29.31667 Galveston G
543 ** IHO −89.96667 29.26667 Bayou Rigaud G

544 IHO −89.60001 29.25000 Empire Jetty G
545 IHO −81.00000 29.23333 Daytona Beach A

546 ** IHO −95.00000 29.21667 Carancahua Reef G
547 IHO −89.04999 29.21667 Lonesome Bayou G

548 ** IHO −81.00000 29.21667 Daytona Beach A
549 IHO −83.03167 29.13333 Cedar Kay G
550 IHO −89.03333 29.11667 Southeast Pass G
551 IHO −89.26666 29.05000 Joseph Bayou G
552 IHO −89.16666 29.01667 Port Eads G
553 IHO −89.13333 28.98333 South Pass G
554 IHO −95.29999 28.93333 Freeport G
555 IHO −89.42833 28.93167 Southwest Pass G

556 * IHO −82.66874 28.45132 Indian Bay G
557 IHO −76.79999 28.45000 IAPSO: 30-1.2.15 A/D
558 IHO −67.53333 28.23333 IAPSO: 30-1.2.5 A/D
559 IHO −69.75000 28.13333 IAPSO: 30-1.2.4 A/D

560 ** IHO −97.04999 28.01667 Rockport G
561 IHO −76.78333 28.01667 IAPSO: 30-1.2.14 A/D
562 IHO −69.66666 27.98333 IAPSO: 30-1.2.8 A/D
563 IHO −69.66666 27.96667 IAPSO: 30-1.2.7 A/D

564 ** IHO −97.39999 27.81493 Nueces Bay G
565 IHO −82.61667 27.76667 St Petersburg G

566 * IHO −82.73295 27.53391 Anna Maria G
567 ** IHO −82.25000 26.71667 South Boca Grande G

568 IHO −84.25000 26.70000 IAPSO: 30-1.2.13 G/D
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569 ** IHO −81.86667 26.65000 Fort Myers G
570 ** IHO −82.06665 26.63333 Matlacha Pass G
571 ** IHO −82.08081 26.55000 Tropical Homesites G
572 ** IHO −82.18335 26.51667 Captiva Island G
573 ** IHO −82.08334 26.48333 St James City G
574 ** IHO −82.01666 26.48333 Punta Rassa G

575 IHO −69.33334 26.46667 IAPSO: 30-1.2.13 A/D
576 ** IHO −81.95001 26.45511 Matanzas Pass G
577 ** IHO −81.93335 26.45000 Hurricane Bay San Carlos G

578 IHO −69.31665 26.45000 IAPSO: 30-1.2.9 A/D
579 ** IHO −81.90951 26.43333 Estero Island Estero Bay G
580 ** IHO −81.85938 26.43120 Mound Key Estero Bay G
581 ** IHO −81.89248 26.41690 Ostego Bay G
582 ** IHO −81.88324 26.40748 Carlos Point Estero Bay G
583 ** IHO −97.35001 26.35000 North Point G
584 ** IHO −97.21500 26.06000 Port Isabel G

585 IHO −97.14999 26.06667 South Padre Island G
586 IHO −79.89999 25.85000 IAPSO: 30-1.2.12 A/D
587 IHO −79.28333 25.55000 Cat Cay A
588 IHO −77.35001 25.08333 Nassau A
589 IHO −77.96208 25.04691 Anros Island A
590 IHO −76.15000 24.76667 Eleuthera A
591 IHO −89.64999 24.76667 IAPSO: 30-1.2.6 G/D
592 IHO −80.93335 24.76667 Grassy Key A

593 ** IHO −81.01666 24.71667 Marathon Shores A
594 IHO −82.88333 24.63333 Tortugas G
595 IHO −81.79994 24.54559 Key West G
596 IHO −75.96631 23.66719 Steventon Great Exuma A
597 IHO −82.33334 23.17150 Habana G
598 IHO −74.95001 23.00000 Long Island A
599 IHO −73.04999 22.33333 Start Point Mayaguana A
600 IHO −97.76990 22.25000 Tampico G
601 IHO −74.29999 22.16667 Datum Bay A
602 IHO −79.97908 21.72682 Casilda C
603 IHO −82.91677 21.44490 Carapachibey C
604 IHO −71.14999 21.43333 Grand Turk A
605 IHO −89.65000 21.30000 Progreso G
606 IHO −76.10860 21.11580 Gibara A
607 IHO −74.49380 20.36023 Baracoa A
608 IHO −75.14999 19.89300 Guantanamo Bay C
609 IHO −90.55310 19.85580 Campeche G
610 IHO −70.65910 19.78300 Puerto Plata A

611 ** IHO −69.31665 19.19590 Samana A
612 IHO −96.11160 19.18333 Vera Cruz G

613 ** IHO −64.38333 18.72501 Anegada A
614 IHO −72.35384 18.55022 Port au Prince C

615 ** IHO −69.88333 18.46527 Ciudad Trujillo C
616 ** IHO −66.11600 18.45900 San Juan A
617 ** IHO −64.61667 18.42723 Tortola C
618 ** IHO −68.95001 18.41036 La Romana C
619 * IHO −64.93335 18.33333 St Thomas C
620 IHO −65.28333 18.30000 Great Harbor C
621 IHO −78.13333 18.20000 Savanna la Mar C
622 IHO −94.41666 18.15805 Coatzacoalcos G

623 ** IHO −67.04603 17.97000 Magueyes Island C
624 ** IHO −61.85111 17.12284 St Johns C

625 IHO −64.88333 16.53333 IAPSO: 30-1.3.2 C/D
626 IHO −64.91666 16.50000 IAPSO: 30-1.3.1 C/D
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627 ** IHO −61.50000 16.38333 Petit Canal C
628 * IHO −61.69943 16.33476 Sainte Rose C
629 IHO −61.26666 16.25000 Saint Francois C
630 IHO −61.53702 16.23290 Pointe a Pitre C
631 IHO −87.95001 15.83333 Puerto Cortes C

632 * IHO −61.46667 15.56667 Portsmouth C
633 IHO −61.04999 14.58333 Fort de France C
634 IHO −83.36667 14.01667 Puerto Cabezas C
635 IHO −61.00110 14.02240 Castries C
636 IHO −61.23334 13.13333 Kingstown St Vincent C

637 ** IHO −59.61454 13.08616 Carlisle Bay A
638 IHO −61.18335 12.83333 Mustique Grand Bay C
639 IHO −61.33334 12.70329 Charlestown Bay C
640 IHO −61.35001 12.63333 Tobago Cays C
641 IHO −70.05290 12.60000 Aruba Malmok Bay C
642 IHO −61.41778 12.59252 Clifton Harbour C
643 IHO −70.03554 12.51347 Aruba Oranjestad C
644 IHO −61.45709 12.48783 Hillsborough Bay C
645 IHO −68.93335 12.10000 Curacao Willemstad C

646 * IHO −61.75652 12.05000 St Georges C
647 IHO −68.64999 12.00000 Klein Curacao n.w. Coast C

648 * IHO −70.21667 11.75000 Amuay C
649 * IHO −60.73360 11.16920 Scarborough A
650 IHO −71.64651 11.02353 Zaparita C
651 IHO −71.58334 11.00000 Malecon C
652 IHO −71.56665 10.96667 Zapara Island C
653 IHO −71.61667 10.88333 Tablazo C
654 IHO −60.93335 10.83689 Toco A
655 IHO −71.63333 10.81667 Punta Palmas C

656 ** IHO −61.60001 10.68333 Carenage Bay C
657 IHO −61.64999 10.66667 Gaspar Grande C

658 * IHO −61.51692 10.64955 Port of Spain C
659 IHO −66.93335 10.61667 La Guaira C
660 IHO −62.08334 10.61667 Puerto de Hierro C
661 IHO −64.20470 10.45000 Cumana C
662 IHO −61.01932 10.40000 Nariva River A
663 IHO −75.57640 10.38333 Cartagena C
664 IHO −61.48334 10.36667 Point Lisas C
665 IHO −61.70001 10.18333 Point Fortin C

666 ** IHO −62.64310 10.12410 Punta Gorda C
667 * IHO −61.01666 10.15000 Guayaguayare Bay A
668 * IHO −61.64999 10.06667 Erin Bay C
669 IHO −62.20001 10.01667 Rio Pedernales C
670 IHO −83.03333 10.00267 Puerto Limon C
671 IHO −79.91666 9.36667 Colon C
672 IHO −79.91666 9.35000 Cristobal (Canal Zone) C

673 ** IHO −59.79999 8.41667 Waini Point A
674 ** IHO −58.25000 6.95000 Bluejacket Beacon A
675 ** IHO −58.04999 6.95000 Demerara Beacon A
676 ** IHO −58.41666 6.86667 Parika A
677 * IHO −58.16666 6.83333 Georgetown A
678 ** IHO −57.95001 6.78333 Belfield A
679 ** IHO −58.61667 6.40000 Bartica A
680 * IHO −57.01666 5.96667 Nickerie River Mouth A
681 ** IHO −55.21667 5.98630 Surinam River Entrance Light A

* Station is approximated by nearest neighbor for harmonic extraction since it is not within the actual bounds
of the EC2001 model domain but is near the edge of the domain; ** Station is not included in EC2001 error
measures or scatter plots as it is not physically within the EC2001 model domain and is far removed from
the domain.
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Appendix B

Scatter plots for the 10 stations shown by a black X in Figures 5 and 6 are provided herein. Both the
EC2015 Manning’s n and VDatum friction models are compared to the EC2001 model. Note that other
than the Pilottown, LA station (313) and Curacoa, Willemstad (645) stations, the different friction
formulations generally create more of a difference in the amplitude response than they do in the phase
response. Plots are grouped according to region.

 
Figure B1. Scatterplots of computed versus measured harmonic data for representative stations along
the Atlantic coast.
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Figure B2. Scatterplots of computed versus measured harmonic data for representative stations along
the Florida coast.
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Figure B3. Scatterplots of computed versus measured harmonic data for representative stations along
the Gulf of Mexico coast.
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Figure B4. Scatterplots of computed versus measured harmonic data for representative stations in the
Caribbean Sea.
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Figure B5. Scatterplots of computed versus measured harmonic data for representative deep
IHO stations.

Appendix C

The actual geographic distribution of errors for the K1 and M2 constituents are provided at all
681 validation stations in the following seven figures. Although the same regional views given in
Figures 5 and 6 are used herein, only the dominant constituent is shown in each subregion: Gulf of
Maine, Atlantic Coast and Florida Coast—M2, Gulf of Mexico and Caribbean Sea—K1. Symbol shapes
denote the magnitude of the errors while the colors represent whether the EC2015 model is over (red)
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or underestimating (blue) the amplitudes. Similarly, blue symbols denote locations where the model
exhibits a phase lag while red symbols denote a phase lead.

 

Figure C1. Distribution of relative amplitude and absolute phase errors for the K1 constituent:
global view.
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Figure C2. Distribution of relative amplitude and absolute phase errors for the K1 constituent:
Gulf of Mexico.
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Figure C3. Distribution of relative amplitude and absolute phase errors for the K1 constituent:
Caribbean Sea.
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Figure C4. Distribution of relative amplitude and absolute phase errors for the M2 constituent:
global view.
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Figure C5. Distribution of relative amplitude and absolute phase errors for the M2 constituent: Gulf of
Maine and New York Bight.
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Figure C6. Distribution of relative amplitude and absolute phase errors for the M2 constituent: Atlantic
coast from Delaware to Georgia.
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Figure C7. Distribution of relative amplitude and absolute phase errors for the M2 constituent:
Florida coast.

Appendix D

Herein we provide general applicability and usage guidelines for the EC205 tidal database. It is
recommended that users read through these sections to understand the limitations of the database
before they apply it to their own regions of interest.

Appendix D.1. Applicability Guidelines for the EC2015 Tidal Database

The EC2015 tidal database provides elevation amplitudes and phases throughout the WNAT
domain for all 37 constituents frequently used by NOS. Although data for all 37 constituents are
included in the database, care should be taken when deciding how many of these constituents are
important for the user’s intended application. Often, accurate results can be obtained when using only
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the primary astronomic tides, particularly if the boundary of interest is in deeper water, far removed
from the coastline.

This database does not provide information regarding responses associated with density effects,
riverine driven circulation, wind and atmospheric pressure driven events and/or oceanic currents.
Vertical and horizontal variations in density can set up steric level differences in sea surface elevation,
can drive significant horizontal circulation patterns, and can cause variation in the vertical structure
of the currents. These effects tend to be important in estuarine or delta systems with significant
freshwater riverine inflows. Furthermore the seasonal heating of the upper layers of the ocean’s
surface directly drives the expansion in the upper layer water volume that is associated with a
seasonal fluctuation of water level. This can be especially significant in the Gulf of Mexico and the
Caribbean Sea. It is noted that published tidal constituent data includes these seasonal sea surface
expansions as long-term tidal constituents such as the Sa Solar annual and the Ssa Solar semiannual
constituents. From a tidal hydrodynamics perspective these long-term constituents (with periods
of a year and half a year respectively) are of astronomical origin and should appear as weak tides.
They may also be generated through nonlinear interactions that lead to extremely weak responses.
Nonetheless, in harmonically-decomposed measured field data, these constituents can appear as
significant constituents since the driving radiational heating process is also an annual event. In the
Gulf of Mexico, the Sa and Ssa elevation constituents can be almost as large as the dominant diurnal
tides while current responses are much smaller due to the long-term period associated with these
constituents. Thus it is emphasized that the EC2015 computations are entirely barotropic and do not
include any of these density effects.

Rivers were not included in the EC2015 tidal database calculations. The barotropic pressure
gradient and mass input effects of the river will be important in the immediate vicinity of the river
outlet and will diminish away from the river outlet. Wind driven and/or atmospheric pressure driven
effects such as coastal setup and storm surge and any basinwide modes that may be set up by these
processes are also not included in the database. These effects can be significant on the shelf as well
as within bays and estuaries. Major oceanic circulation patterns such as the Gulf Stream and the
associated loop currents and other eddies, which are shed from it, are not included in the database.
These currents tend to reside off the shelf in deep ocean waters but can be associated with fast flows in
the 1 to 2 m/s range.

Finally the local accuracy of the EC2015 tidal computations will be affected by the accuracy
of the geometry and bathymetry locally defined in the WNAT-based EC2015 grid. Geometric and
bathymetric inaccuracies in the grid will especially affect the accuracy of the currents. Obviously a
missing estuary or island or inaccurate bathymetry will greatly influence the database computations.

Appendix D.2. Usage Guidelines for the EC2015 Tidal Database

The EC2015 tidal constituent database can be applied anywhere within the defined WNAT
domain. However, the prevailing hydrodynamics in a specific region will determine how accurately
the currents will be predicted. If the surface elevation response and currents are indeed dominated
by astronomical tides, then the database will provide an excellent prediction of the response. A good
estimate of the accuracy of the EC2015 tides can be obtained by examining the regional error estimates
given in Tables 7 and 8, or by examining the error plots provided for the dominant constituents in
Appendix C; although plots are only provided for the M2 and K1 constituents, in general, all four of the
semi-diurnal constituents follow the same regional trends, as do the diurnal constituents. Furthermore
how accurately the EC2015 grid and bathymetry describe the region of specific interest influences the
accuracy and appropriateness of applying database values.

For locations that are tidally dominated and for which the EC2015 grid accurately describes both
local geometry and bathymetry, the database can be directly applied to extract tidal elevations and
currents. Because the thirty-seven constituents are computed at every node and are defined within the
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framework of a finite element grid, values at any point within the domain can be readily interpolated
from the nodal values within which the point lies.

An extraction program, ADCIRC_db_extract.F90, together with the EC2015 finite element grid
file, ec2012_v3d_chk.grd, accompany the tidal database. The user must supply an input file that
provides the number of extraction points desired followed by the list of coordinates for those points.
The extraction program will prompt the user for this input files as well as the name of the grid
used to create the database. The program will also prompt the user whether they would like to
produce the harmonic constituent output for elevations, velocities or both and then will produce
the harmonic extraction output for amplitude and phase at the specified location(s) according to the
user’s request. Elevation output is stored in elev_hc.out while velocity output is stored in vel_hc.out.
Additionally, diagnostic output is written to tides.dia and provides the location of each extraction point
in the global mesh as well as the interpolation weights used to calculate the harmonic constituents.
The KDTREE2 search algorithms have been incorporated into the new extraction program to facilitate a
speedier search response. Finally, the program takes advantage of dynamic allocation in order to avoid
the old hardcoded array limitations found in previous extraction routines. The ADCIRC_db_extract.F90
program will work with any old ADCIRC databases that utilized the individual fort.53 and fort.54
file formats.

A time-history of response can be readily Fourier synthesized using the outputs in the elev_hc.out
and vel_hc.out files. For example a time-history of water-surface elevation can be computed as

ζ (x, y, t) = ∑ Ai (x, y) fi (t0) cos [σi (t − t0) + Vi (t0)− hi (x, y)] (D1)

where Ai(x,y) and hi(x,y) are the amplitude and phase, respectively, at the location (x,y) of interest
for constituent i, which are provided by the EC2015 tidal database, and the frequency σi = 2π/Ti.
The frequencies σi in rad/sec and periods Ti in hours for each of the 37 constituents included in the
database are presented in Table D1. It is important to specify frequencies precisely, at least to eight
significant figures. The nodal factor fi(t0) and the equilibrium argument, Vi(t0), relative to reference
time t0 can be computed using program tide_fac.f, which is available as a utility program on the
ADCIRC website [60].

Table D1. Frequencies and periods for EC2015 harmonic constituents.

Constituent Frequency (Rad/s) Period (h)

M(2) 0.0001405189 12.42
N(2) 0.0001378797 12.66
S(2) 0.0001454441 12.00
O(1) 0.0000675977 25.82
K(1) 0.0000729212 23.93
K(2) 0.0001458423 11.97
L(2) 0.0001431581 12.19

2N(2) 0.0001352405 12.91
R(2) 0.0001456432 11.98
T(2) 0.0001452450 12.02

Lambda(2) 0.0001428049 12.22
Mu(2) 0.0001355937 12.87
Nu(2) 0.0001382329 12.63

J(1) 0.0000755604 23.10
M(1) 0.0000702820 24.83

OO(1) 0.0000782446 22.31
P(1) 0.0000725229 24.07
Q(1) 0.0000649585 26.87
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Table D1. Cont.

Constituent Frequency (Rad/s) Period (h)

2Q(1) 0.0000623193 28.01
Rho(1) 0.0000653117 26.72
M(4) 0.0002810378 6.21
M(6) 0.0004215567 4.14
M(8) 0.0005620756 3.11
S(4) 0.0002908882 6.00
S(6) 0.0004363323 4.00
M(3) 0.0002107784 8.28
S(1) 0.0000727221 24.00

MK(3) 0.0002134401 8.18
2MK(3) 0.0002081166 8.39
MN(4) 0.0002783986 6.27
MS(4) 0.0002859630 6.10

2SM(2) 0.0001503693 11.61
Mf 0.0000053234 327.86
Msf 0.0000049252 354.37
Mm 0.0000026392 661.31
Sa 0.0000001991 8765.82
Ssa 0.0000003982 4382.91

In locations and/or at times where the hydrodynamics is not tidally dominated and/or the EC2015
grid does not provide sufficient geometric and/or bathymetric detail, a regional model that interfaces
with the EC2015 model will lead to a better representation of regional flows. Some examples of cases
where this may be appropriate include: (a) bays or estuaries not included in the grid; (b) shallow
nonlinearly-dominated inlets or estuaries; (c) coastal and/or estuarine regions barotropically and/or
baroclinically influenced by a significant riverine discharge; (d) combined wind- and tidally-driven
circulation on a shelf. The basic idea is to construct a domain/grid that extends onto or beyond the
shelf within the EC2015 domain. The open ocean boundary is then forced using the tidal constituent
data from the EC2015 tidal data base. The defined domain may also include additional regional detail
in geometric and bathymetric definition, may include additional forcing functions on select boundaries
or within the domain, and/or may include additional terms in the governing equations.

The regional model open ocean boundary should be placed away from the region of immediate
interest, and its exact position and shape depends on the application. In no case should the boundary be
placed at the mouth or entrance to an embayment of interest. The tidal constituents on the open ocean
boundary nodes of the regional model are extracted in the same way as a simple point location. It may
be necessary to add an additional forcing component to the boundary elevation and/or radiation
forcing function to account for additional interior domain processes and forces. In the development
of a regional model it is also recommended that the bathymetry along the open boundary match the
bathymetry of the EC2015 grid. This will help ensure that the boundary condition extracted from the
EC2015 database is physically consistent with the regional model. Failure to match bathymetries along
the regional model open boundary can lead to unrealistic gyre formation and/or instabilities in the
regional model computations. The bathymetry can depart from that comprising the EC2015 grid away
from the open boundary area.

The EC2015 tidal database is available on the ADCIRC website as two separate compressed files:
EC2015_elev-only_tidaldatabase.tar, which contains all of the extraction programs, grids, and sample
notes but only has the fort.53 elevation harmonics; and EC2015_tidaldatabase.tar, which has everything
given in the previous file with the addition of the fort.54 velocity harmonics [24]. You will only need
to download one of the files depending upon whether you wish to have access to the velocity data
as well.
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In addition to the ADCIRC_db_extract.F90 extraction program, the database also includes another
utility for “cutting” a portion of the global database out for visualization within SMS (or other tools).
The HarmonicResultScope.f90 program works much the same way as ResultScope.f90, for those who
are familiar with that ADCIRC utility program. Additional notes about the usage of each of these
programs, as well as sample input and output files for each, are included in the TidalExtract/ directory
within the database tar file.
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Abstract: The Forward Sensitivity Method (FSM) is applied to a GWCE-based shallow water model
to analyze the sensitivity to the numerical parameter, G, that determines the balance between the
wave and primitive forms of the continuity equation. Results show that the sensitivity to G calculated
in the sensitivity evolution portion of the FSM is consistent with the actual sensitivity to G computed
from multiple simulations using finite differences. The data assimilation step in the FSM is shown
to be effective in selecting G that minimizes an objective function, in this case model errors based
on sensitivities. Additionally, the FSM sensitivity results show 2Δx oscillations in the elevation and
velocity fields develop when G is increased too high, suggesting the FSM may be an effective tool for
determining the upper limit of G for real-world applications.

Keywords: shallow water equations; GWCE; forward sensitivity method; data assimilation

1. Introduction

The Generalized Wave Continuity Equation (GWCE) [1] is an extension of the Wave Continuity
Equation (WCE) [2], which was introduced to eliminate the spurious oscillations that plagued finite
element solutions of the primitive Shallow Water Equations (SWE). The GWCE contains a numerical
parameter, G, that determines whether the GWCE tends towards a wave equation form (low G) or
the primitive continuity equation (high G). It has undergone rigorous analytical studies, which have
shown that the GWCE is consistent with the primitive continuity as long as the initial conditions
satisfy continuity [1]. However, Kinnmark went on to show that even if that condition is not satisfied
exactly, then the solution remains robust as long as the numerical parameter, G, satisfies some minimal
conditions, e.g., G > 0. Many other studies have shown the superior wave propagation characteristics
of the GWCE, including non-aliased solutions for short waves (e.g., [3]) and low-dissipation for
physical waves (e.g., [4]). In that G is a numerical parameter, akin to a penalty parameter commonly
found in classic finite element methods, there have been numerous studies that sought to identify
an “optimum” value of G (e.g., [5–7]). Additionally, it should go without saying that all numerical
algorithms introduce conceptual errors (e.g., missing physics) and truncation errors into the solution;
a goal of modeling is to minimize the adverse impact of those errors. A big contribution of the
current manuscript is that it goes a step further than previous analyses because the methodology
can be applied to nonlinear problems and because it opens the door for data assimilation, which is
a widely-accepted practice of “tuning” a model to account for missing physics (e.g., subgrid scale
processes). However, in the end, real-world applications over the last 30 years provide the truest
test of the GWCE. For example, the resulting algorithm is employed in the production version of the

J. Mar. Sci. Eng. 2016, 4, 73 245 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 73

widely-used ADCIRC code ([8–10]), which has a long history of providing accurate, robust results in a
wide variety of applications, including tide- and wind-driven circulation, hurricane storm surge and
inundation, baroclinic transport, sediment transport and coastal dredging feasibility, and larval and oil
spill conveyance settings ([11–17]).

The WCE was first introduced by Lynch and Gray in 1979 [2]; in 1986, Kinnmark generalized
the WCE to the GWCE by introducing a weighting factor, G, that is distinct from the bottom friction
parameter, τ [1]. Kolar et al. [5] found that G has a large effect on model results and that a value G > τ

is necessary to minimize errors. Atkinson et al. [7] analyzed the wave propagation characteristics of
the GWCE-based SWE, and they found that the GWCE-based system is nearly identical to the primitive
SWE, with a quasi-bubble velocity approximation [18], for a specific G parameterization. The dispersion
analysis results of [7] have guided the recent selection of G (cf. [11,16]), where spatially-variable
parameter selection has been employed for diverse applications. However, specification of a value
(or parameterization) for G is an on-going issue.

In general, techniques applied to analyze the GWCE-based system have been limited to linear
analysis (or analysis of the linearized equations), e.g., dispersion and Fourier analysis. These classic
techniques are also limited to constant bathymetry domains and interior nodes. Herein, the Forward
Sensitivity Method (FSM) [19] is applied to analyze the 1D, GWCE-based SWE. In this analysis,
both constant and non-constant bathymetry cases are analyzed. As mentioned in [19], the FSM
builds on sensitivity function analysis (e.g., [20]) and includes an optimization component that allows
observations to be used to correct the model. The FSM is a deterministic data assimilation strategy
for correcting forecast errors when a deterministic model is used in the analysis. Forecast error is
defined by the difference between the model solution and the given (noisy) observation that the model
is supposed to capture in the first place. A model can be either perfect or imperfect. Recall that a
solution of a dynamic model depends on: (a) initial conditions; (b) the values of parameters; and (c)
the boundary conditions. Since these three factors control the evolution of the model solution, these
are collectively called “control”. The goal of FSM is to find corrections to the control so as to drive
the forecast errors as close to zero as possible in the least squares sense. FSM was first reported in
Lakshmivarahan and Lewis [19] and is closely related to the now classic adjoint sensitivity-based
4D VAR method [21]. The FSM-based approach is quite general and can handle both linear and
nonlinear models and can be used to correct the forecast errors due to all three components: initial
conditions, boundary conditions and parameters. A comprehensive account of FSM and varied
applications is given in Lakshmivarahan et al. [22]. The method is applied to analyze a differential
equation describing the air/sea interaction in [19]. In contrast to dispersion analysis, which is limited
in applicability (e.g., linear equations, interior nodes, constant bathymetry), the FSM can be applied to
analyze the non-linear equations at all nodal locations within the domain. The FSM has the added
capability of accounting for boundary conditions, whereas other methods look only at interior points.

While FSM is applicable to non-linear systems, the analysis in this manuscript is limited to the
linear system, with the intent being to present the exploration of a new analysis tool for shallow
water equation models. Application to the non-linear GWCE-based shallow water equations has been
performed [23], and the results will be presented in a subsequent paper. As presented first, derivation of
the equations for the evolution of the sensitivity functions follows [19]. Then, the FSM sensitivities are
analyzed for two domains, which is followed by a validation of the FSM sensitivities with a numerical
analog sensitivity approach. Section 3 begins with the presentation of the methodology, based on [19],
for computing parameter corrections, and concludes with applications for the linear sloping domain.
Section 4 contains the results of a proof-of-concept sequential optimization. Subsequently, a comparison
between FSM and dispersion analysis is presented in Section 5. Finally, conclusions are made based on
the analysis herein.
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2. Sensitivity Function Evolution

2.1. Derivation of Sensitivity Equations

The 1D linear inviscid GWCE and momentum equation are given by Equations (1) and (2), respectively,

ζtt + Gζt + (G − τ)hux − ghζxx = 0 (1)

ut + τu + gζx = 0 (2)

where ζ is the water surface elevation, G is the weighting parameter in the GWCE, τ is the bottom
friction term, h is bathymetry, u is depth-averaged velocity and g is the gravitational acceleration.
Additionally, the subscripts denote partial derivatives, i.e., ζtt is the second partial derivative of ζ with
respect to time.

Application of the continuous Galerkin finite element method, using constant grid spacing, and
a finite difference time discretization results in Equations (3) and (4) for the GWCE and momentum
equation, respectively,
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are time-weight parameters subject to α1 + α2 + α3 = 1.0.
The system can be written symbolically, as:

A(G)ck+1 = B(G)ck + C(G)ck−1 + fk+1
bc (5)

where the coefficient matrices A(G), B(G), C(G) ∈ R2n×2n are square matrices with dimensions
of twice the number of nodes, n, for each of the three time levels; the vectors of variables are
ck+1, ck, ck−1 ∈ R2n; and the forcing vector is fk+1

bc ∈ Rn.
The FSM allows calculation of the sensitivity to different aspects of the control, which includes

initial and boundary conditions, as well as physical, empirical and numerical parameters.
Herein, the focus is on the numerical parameter G. The sensitivity to G is the rate of change of
the solution due to a change in G. Given the system described in Equation (5), the sensitivity is found
by taking the derivative with respect to G, as shown in Equation (6).

∂

∂G
[A(G)ck+1] =

∂

∂G
[B(G)ck + C(G)ck−1 + fk+1

bc ] (6)

Application of the product rule, the definition of the sensitivity of the solution to G at a given
time as wk = ∂ck/∂G, and rearrangement yields:

A(G)wk+1 = −∂A(G)

∂G
ck+1 +

∂B(G)

∂G
ck +

∂C(G)

∂G
ck−1 + B(G)wk + C(G)wk−1 (7)

Note that the forcing vector is considered to be independent of G. According to Equation (7),
the unknown sensitivity vector can be computed from the previous sensitivities and elevation and
velocity fields, although ck+1 must be calculated before wk+1. The three time-level scheme requires sets
of sensitivity values at times k and k − 1. Results herein have cold start initial conditions, where the
initial elevation and velocity fields are zero throughout the domain. As such, the initial conditions do
not depend on G, and the initial conditions for the sensitivity to G are w−1 = w0 = [0, . . . , 0]T ∈ R2n.
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2.2. Sensitivity Results for Tidal Problem on the Linear Sloping Domain

The parameters for the test case on the linear sloping domain are given in Table 1. The number of
nodes (and, thus, the grid spacing) was varied, with 11, 21, 41 and 81 nodes, constant Δx grids being
employed. Additionally, the simulation duration and time step were variable. Finally, both explicit
(α1 = 0,α2 = α3 = 1/2) and implicit (α1 = α2 = α3 = 1/3) versions of the code were assessed.
The differences between the results from the explicit and implicit models (both flow variables
and sensitivities to G) were immaterial over the stable range of G values, although the implicit
α specification allows stability at lower G values than the explicit version (for this test case, the implicit
model was stable at G values two orders of magnitude smaller than the lowest stable value using the
explicit version).

Table 1. Parameters for the linear sloping domain test case.

Parameter Value

Bathymetry at open boundary 20.0 m
Bottom slope 1.25 × 10−4 m/m
Domain length 40.0 km
τ 0.001 s−1

Tidal forcing amplitude 1.0 m
Tidal forcing period 44,714.8 s
Ramp duration 1.0 days

Simulations with each grid, using a G value of 0.001 s−1 were performed for a period of 3.0 days,
with output recorded every 5.0 min for the last day. For the three coarsest grids, Δt = 1.0 s, while a time
step of 0.5 s was used for the 81-node grid. Nodal elevation and elevation sensitivity to G results at
select locations in the domain are shown in Figure 1. The node number listed on each panel corresponds
to the node number for the location in the 21-node grid. The first panel, labeled “Node 1”, shows
the specified (i.e., Dirichlet) elevation boundary time series. On each panel, there are four solid lines.
Each line shows the temporal evolution of the water surface elevation at the specified location for
a particular domain, corresponding to the 11-, 21-, 41- and 81-node domains. The four solid lines
are overlain on one another because the time series at the boundary are equivalent. Additionally,
each panel has four dashed lines, corresponding to the same grids as for the solid lines. The dashed
lines for Node 1 (along the line y = 0) show that the elevation sensitivity to G is zero, which is due to
the elevation boundary condition being independent of G.

The second panel, labeled “Node 3,” shows results 4.0 km into the domain. For this test case,
the elevation time series is independent of Δx, as is evident by the indistinguishable solid lines.
However, the magnitude of the elevation sensitivity to G is dependent on grid resolution, with the
magnitude decreasing substantially with increased resolution. The reduction in sensitivity to G with
increased grid resolution (i.e., smaller Δx) suggests that a solution with only a limited dependence
on G can be obtained for this domain if sufficient resolution is utilized. Additionally, the timing of
the sensitivity is consistent for the different grids, with co-located zero sensitivity values, which are
approximately 90 degrees out-of-phase from the zero elevation values.

Similar general trends hold for elevation and elevation sensitivity to G time series in the middle
(“Node 11”) and on the right side (“Node 21”) of the domain. Again, the elevation time series
are indistinguishable. However, the magnitude of the sensitivity to G is highly-dependent on Δx.
Additionally, the magnitude of the sensitivity to G, as well as the amount the elevation and elevation
sensitivity time series are out-of-phase depend on the location in the domain, with the magnitude and
the phase difference increasing with distance from the ocean boundary.
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Figure 1. Elevation (m) and elevation sensitivity to G (ms) for different simulations on the linear
sloping domain, with each simulation using a different resolution grid (11-node, black; 21-node, red;
41-node, green; and 81-node, blue). The solid lines depict the elevation results, while the dashed lines
show the temporal evolution of the sensitivity of the elevation to G. The node number listed in the title
for each panel is the node number in the 21-node grid associated with a given location.

Figure 2 shows the velocity equivalents to the elevation results shown in Figure 1. At the ocean
boundary, the velocity results are slightly dependent on Δx. Additionally, it is noteworthy that there
is a relatively large sensitivity to G at this location. The elevation value is specified at the boundary,
so changes to velocity resulting from changes to G result in changes to the amount of mass entering
and exiting the domain at the open boundary throughout the simulation. For the other locations in
the domain, the velocity time series overlay one another. The velocity sensitivity to G at the ocean
boundary shows that, regardless of grid resolution, the velocity is highly dependent on the choice of G,
which has significant implications on global mass balance, as noted in [5]. Throughout most of the
domain, the phase shift of the velocity sensitivity to G is independent of Δx, as was the case with the
elevation results in Figure 1; the location denoted by “Node 3” is the aberration, as there is a phase
shift for the velocity sensitivity for different grid resolutions. Furthermore, as with the elevations,
the magnitude of the sensitivity to G decreases with increasing grid resolution, and the sensitivity is
lower in magnitude the closer to the land boundary where velocity is specified.
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Figure 2. Velocity (m/s) and velocity sensitivity to G (m) for different simulations on the linear sloping
domain, with each simulation using a different resolution grid (11-node, black; 21-node, red; 41-node,
green; and 81-node, blue). The solid lines depict the velocity results, while the dashed lines show the
temporal evolution of the sensitivity of the velocity to G. The node number listed in the title for each
panel is the node number in the 21-node grid associated with a given location.

In order to assess the impact of different G values on the sensitivity of the solution to G, the implicit
version of the code was used, with a Δt of 5.0 s, for simulations with G values of 0.00001, 0.0001,
0.001, 0.01 and 0.1 s−1. Additionally, the simulations were 10.0 days in duration. The sensitivity
values over the last two days of the simulation, for Nodes 2–7, are shown in Figure 3. The gaps in
Figure 3 correspond to times when the sensitivity value is below the minimum ordinate value (which is
just greater than zero) on the plot, although generally, these instances correspond to times when the
sensitivity is negative for the current set of simulations.

Increasing G results in a decrease in the magnitude of the peak sensitivity. To a lesser extent,
increasing G changes the timing of the sensitivity. Specifically, when G is increased from 0.00001 to
0.0001 s−1, there is a small decrease in the magnitude of the peak sensitivity and a shift in the timing, so
the peak sensitivity occurs earlier. For the even-numbered nodes, these trends continue for subsequent
increases in G, although the decrease in sensitivity magnitude is more prevalent than the shift in timing
of the peak. In contrast to the results for the even-numbered nodes, the sensitivity results for the
three highest G values at the odd-numbered nodes are not coincident in time. Specifically, at Node 3,
the results for G values of 0.01 and 0.1 s−1 show a phase shift compared to the G value of 0.001 s−1.
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For the same set of simulations (varying G value), the velocity sensitivity to G follows the same general
trends as the elevation sensitivity.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Elevation sensitivity to G, for simulations with different G values, at different locations on the
21-node linear sloping domain. The five different lines on each plot correspond to the five simulations,
each with a different value of G as indicated in the legend below the figures. (a) Node 2; (b) Node 3;
(c) Node 4; (d) Node 5; (e) Node 6; (f) Node 7.

The GWCE was introduced for CG finite element modeling to control spurious 2Δx oscillations
present in solutions of the shallow water equations using the primitive continuity equation. Increasing
G shifts the GWCE towards the primitive continuity equation. The elevation sensitivity results show
2Δx oscillations in the sensitivity to G for values of the numerical parameter of 0.01 s−1 and larger for
this application on the linear sloping domain, suggesting those values result in the GWCE becoming
“too primitive” for this test case. The decrease in the magnitude of the sensitivity to G as G increases
is consistent with the formulation of the equations. Introduction of non-zero G values results in
the primitive continuity portion of the GWCE contributing. Eventually, as G values are increased,
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the primitive continuity term becomes dominant, and further increases in G will have only minimal
impacts on the solution.

2.3. Sensitivity Results for Tidal Problem over a Seamount

The simulation parameters for this second test case, using a seamount domain, are listed in Table 2;
the values are similar to those used for the case in Section 2.2. The base, 31-node, seamount domain is
shown in Figure 4. The length of the simulations was 5.0 days, and the time step was 5.0 s.

Table 2. Parameters for the seamount domain test case.

Parameter Value

Bathymetry at open boundary 50.0 m
Domain length 60.0 km
τ 0.001 s−1

Tidal forcing amplitude 1.0 m
Tidal forcing period 44,714.8 s
Ramp duration 1.0 days
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Figure 4. Bathymetry and node locations for the seamount domain.

The elevation sensitivity results (not shown), indicate that the general trends present from the
linear sloping domain test case also apply for the seamount domain. Specifically, the magnitude of
the sensitivity decreases with increasing G, and the peak sensitivities occur earlier in time for higher
G values. Furthermore, node-to-node oscillations in the sensitivities occur for the higher G values in
the set, with the 2Δx oscillations readily apparent for the highest G value, 0.1 s−1.

The elevation sensitivity results from the four simulations with different G values are summarized
by the left panel of Figure 5, which shows the peak elevation sensitivity to G, over the last day of the
simulation, for each node in the domain for simulations with different G values (0.0001, 0.001, 0.01,
0.1 s−1). The general trend is for the peak elevation sensitivity to increase with distance from the ocean
boundary. The results with G = 0.01 s−1 show 2Δx oscillations in the magnitude of the peak sensitivity
for a substantial portion of the domain, which is indicative of the GWCE becoming “too primitive”,
even though the sign of the sensitivity does not follow the traditional 2Δx oscillation pattern that
occurs for the highest G values.

The right panel of Figure 5 shows the peak velocity sensitivity to G over the last day of the
simulation for each node in the seamount domain for the four simulations with different G values.
The sensitivity is zero at the land boundary (Node 31); the peak velocity sensitivity increases from
a minimum at the land boundary to a maximum over the seamount (Nodes 16–21), then decreases
oceanward of the seamount. The results with a G value of 0.01 s−1 show short wavelength oscillations
in the peak velocity sensitivity for the majority of the domain. In contrast, the results for the highest G
value, 0.1 s−1, do not show prevalent oscillations in the peak velocity sensitivity landward of the start
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of the rise of the seamount (Node 11). However, a smooth set of peak velocity sensitivity points is not
a sufficient condition to conclude that the G value is below the “too primitive” threshold. Time series
analysis of the velocity sensitivities for the highest G value reveals the node-to-node switching of signs
on the sensitivities, i.e., the positive peak sensitivities for the odd-numbered nodes correspond to the
same times as the maximum negative sensitivities for the even-numbered nodes, and vice versa.

Figure 5. Peak elevation (left panel) and velocity (right panel) sensitivity to G for implicit runs on the
seamount domain. Each dot denotes the peak elevation sensitivity value, for a given node, over the
last day of a five day simulation. The color of the dot is based on the G value shown in the legend.

2.4. Comparison of FSM and Numerical Analog Sensitivities

The FSM sensitivity results presented previously predict the changes in the solution (elevations
or velocities) that result from a change in the numerical parameter, G. To verify the procedure for
computing the FSM sensitivity, the FSM sensitivity is compared to a numerical analog sensitivity.
The numerical analog sensitivity is computed using finite differences. In particular, by comparing the
results from two simulations with different G values, finite difference approximation of the sensitivity
to G can be calculated using Equation (8),

∂ζ

∂G
≈ Δζ

ΔG
=

(ζj
k)2 − (ζj

k)1

G2 − G1
(8)

where the subscripts 1 and 2 refer to the two different simulations.
A comparison of the FSM and numerical analog elevation sensitivities to G for Node 11 in the

linear sloping domain is shown in Figure 6. The left panel in Figure 6 is a comparison of the FSM
sensitivity to G (black line), for a simulation with a G value of 0.001 s−1, to the numerical analog
sensitivity (red line) calculated using results from simulations with G values of 0.001 and 0.003 s−1

(ΔG = 0.002). The evolutions of the sensitivities have the same shape, although the magnitude
of numerical analog is significantly lower than the FSM sensitivity. The right panel of Figure 6 is
a comparison of the FSM sensitivity to G to the forward numerical analog with a smaller difference in G
values, ΔG = 0.0001 s−1. It is readily apparent that decreasing the difference in G used to compute the
numerical analog reduces the difference between the FSM and numerical analog sensitivities, although
the numerical analog sensitivity is still smaller in magnitude than the FSM sensitivity.
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(a) (b)

Figure 6. Comparison of forward sensitivity method and numerical analog elevation sensitivity results
for the last two days of an explicit model simulation on the linear sloping domain. In each panel,
the black line depicts the temporal evolution to the FSM elevation sensitivity to G for a simulation
with G = 0.001 s−1. The red line shows the time series of the numerical analog sensitivities. In the
left panel, the two G values used for the simulations were 0.001 and 0.003 s−1, while G values of 0.001
and 0.0011 s−1 were used to generate the numerical analog for the right panel. (a) ΔG = 0.002 s−1;
(b) ΔG = 0.0001 s−1.

However, this underprediction by the numerical analog is directly related to the choice of G values
used to compute the numerical analog. In this case, the second value of G used to generate the
numerical analog is larger than the value of G for which the sensitivity is desired, which will be
referred to as a forward numerical analog (because G2 > G1, meaning ΔG is positive). The sensitivity
to G decreases with increasing G (c.f., Figure 3), so the forward numerical analog to G is generally
lower than the FSM sensitivity for a simulation with G = G1. Furthermore, for forward numerical
analogs, increasing ΔG increases the underprediction. In contrast, use of a similar backward numerical
analog would show that the numerical analog sensitivity is slightly greater in magnitude than the
FSM sensitivity.

The results presented above show that the sensitivities computed using the FSM are consistent
with the sensitivities calculated using the numerical analog as ΔG goes to zero, and the comparison
confirms that the behavior predicted by the FSM actually occurs in the solution as G varies. As such,
the FSM presents an opportunity to perform data assimilation, explored in Section 3, based on errors
between observations and results from a simulation with a given value of G, although one could
alternatively use a numerical analog approach to compute sensitivities for use in the data assimilation
step. The equivalence of the FSM and numerical analog sensitivities gives rise to the following question:
what is the benefit of FSM over a reasonably simple and straightforward numerical finite difference
calculation? In the case of the constant G simulations presented herein, the two methods would require
similar computational effort. However, for multi-parameter estimation, as is required for spatially-
and temporally-variable G specification, where sensitivities to p variables is necessary, p + 1 ADCIRC
simulations would be necessary to compute the p numerical analog sensitivities (with one base run and
p simulations with a small change in each parameter), whereas the FSM sensitivities to p parameters
can be computed during an individual simulation.

3. Data Assimilation Using Forward Sensitivities

3.1. Data Assimilation Approach

The second component of the FSM is the data assimilation step to correct G using the sensitivities
and computed model errors. As presented in [19], using a first-order approach, where only the first
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term in the Taylor series expansion is retained, the error is equal to the product of the sensitivity and
the correction, as given by Equation (9),

e(x, t, G) = z(x, t)− c(x, t, G) ≈ (ΔG)w(x, t, G) (9)

where for spatial location x, time t and numerical parameter value G, e(x, t, G) is the simulation error,
z(x, t) is the observation value, c(x, t, G) is the model result, ΔG is the correction to the numerical
parameter and w(x, t, G) is the sensitivity to G.

The correction can be computed in a variety of ways. The simplest correction uses an observation
at one point in space, xj, at one time, tk, along with the model results for the same location in space
and time. The correction, ΔG, to the value used for the simulation, G0, based on this one observation is
shown in Equation (10).

ΔG(G0) =
e(xj, tk, G0)

w(xj, tk, G0)
(10)

Least-squares minimization is a more sophisticated approach that allows for the use of multiple
observations in space or time. For the results herein, least-squares minimization will be applied
on a nodal basis. In other words, the observations and model results for a given point in space,
over a range of time, will be used to compute a least-squares correction to G. This is analogous to
the real-world situation where a buoy collects a time series of water surface elevation data at a fixed
location in the domain. Conversely, least-squares minimization could be applied on a temporal basis
where errors throughout the domain, at a given time, are used to generate a correction to G.

The least-squares correction, based on results and observations for node j using nrecs values in
time, requires the vector of sensitivities Hj and the error vector ej.

Hj = {wj
1, wj

2, ..., wj
nrecs}T (11)

ej = {zj
1 − cj

1, zj
2 − cj

2, ..., zj
nrecs − cj

nrecs}T (12)

The optimal least-squares correction, adapted from [19] for a scalar parameter, is given by
Equation (13).

(ΔG)j =
Hj

Tej

Hj
THj

(13)

The optimal least-squares correction is a standard result that is presented in [21], which provides
additional detail about the origins of the analysis technique.

3.2. Correction to CG Results on the Linear Sloping Domain

In this section, “observations” will be taken from model results generated using the 2D CG version
of ADCIRC on a rectangular grid that is uniform in the y-direction. The 2D code was run implicitly
with the same parameters as the 1D code, and the 2D domain consists of 11 nodes in the y-direction for
each of the 21 nodes in the x-direction for the linear sloping domain. Results for the sixth line of nodes
(the centerline) from a simulation with a constant G value of 0.001 s−1 are used as the observations.
Furthermore, the x-component of the velocity from the 2D model is used as the velocity observation;
the y-component of the velocity is ignored, but is generally several orders of magnitude less than the
x-component (and close to zero).

The purpose of the data assimilation step in the FSM is to reduce model error. Therefore, before
delving into the calculations of the corrections, it is informative to analyze model error for a range
of G values. The error metric is the temporal mean of the root mean square error in space, denoted
as RMSEx. The equation for the temporal mean of the root mean square elevation error in space is
shown in Equation (14).
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RMSEx(ζ) =
1

nrecs

nrecs

∑
k=1

(RMSEx(ζ))
k (14)

The elevation error results are shown in the left panel of Figure 7, while the velocity error results
are shown in the right panel.
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Figure 7. RMSEx(ζ) (left panel) and RMSEx(u) (right panel) results, over the last two days of 10.0-day
simulation, for simulations with different values of G on the linear sloping domain, using observations
from the 2D CG ADCIRC model with G = 0.001 s−1.

For the G values used in the implicit 1D simulations, the minimum elevation and velocity errors
are achieved when approximately the same G value is used in the 1D model as was used in the 2D
model (to create the observations). The value of G that minimizes the error (i.e., G ≈ 0.001 s−1) is
the value of G that should be revealed using the data assimilation step of the FSM. When available,
elevation data are often in the form of time series at discrete location. Thus, herein, a time series of
elevation observations will be used to calculate errors, and the correction will be computed using those
errors and the corresponding time series of sensitivity values for a given node, as per Equation (13).

The correction varies for a given run depend on which node is used to calculate the correction.
For example, the corrections based on the results from the simulation with G = 0.0001 s−1 are shown
in Figure 8. The error and the sensitivity of the elevation results to G are both zero at the left boundary
node, so the correction is not computed at that location (Node 1); rather, the correction is set to zero
for plotting purposes. The correction can be calculated for each of the other nodes in the domain,
and Figure 8 shows the correction to be just slightly greater than 0.0001 s−1 for each of the nodes.
However, we know the optimal correction is close to 0.0009 s−1, based on the values of G used for
the runs to generate the model and observation results. The discrepancy between the computed
least-squares correction and the optimal correction (which would result in the new value of G being the
one that minimizes the model error) is a result of the variation in the sensitivity with G, as well as the
fact that only the first order terms are kept in the Taylor series development of the correction equation.
The sensitivity to G is much greater when G = 0.0001 s−1 than when G = 0.001 s−1. Because the
correction varies inversely with the sensitivity, the correction calculated using the sensitivity from the
run with G = 0.0001 s−1 is, expectedly, low.

In order to show how the correction varies with G, the maximum, minimum and mean of
the nodal corrections were calculated. Referring back to Figure 8, which shows a set of nodal
least-squares corrections for the simulation with G = 0.0001 s−1, the maximum correction is from
Node 2, ΔG = 0.000168 s−1, while the minimum comes from Node 9 (ΔG = 0.000107 s−1). The mean
correction is the arithmetic mean of the nodal corrections for Nodes 2–21. The results are shown
in Figure 9.

256



J. Mar. Sci. Eng. 2016, 4, 73

5 10 15 20
�0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

Node

G
C
or
re
ct
io
n
�s
�
1
�

Figure 8. Nodal least-squares corrections, ΔG, for each node based on results for an implicit simulation
with G = 0.0001 s−1 using output from the last two days of the 10.0-day simulation on the linear
sloping domain. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.

As seen in Figure 9, for a given simulation, the maximum, minimum and mean corrections are
similar for simulations with G values less than 0.005 s−1. Thus, regardless of location in the domain,
the correction is similar, as was the case for the set of corrections shown in Figure 8. Interestingly,
for the simulations with G values less than 0.001 s−1, the corrections are larger for the simulations with
G values closer to the target value, which seems counterintuitive. However, as mentioned previously,
the large variation in sensitivity with G causes under-corrections for simulations with low G values.
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Figure 9. Maximum, minimum and mean nodal least-squares correction, ΔG, for simulations over
a range of G values, using output from the last two days of the 10.0-day simulation on the linear
sloping domain. The magnitude of the correction is shown as the ordinate, while the color of the
dot corresponds to the sign of the correction: positive corrections are shown in black, and negative
corrections are shown in red. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.
(a) Maximum; (b) minimum; (c) mean.
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For the simulations with G values of 0.002 and 0.005 s−1, the corrections are consistent and
negative, as expected. However, the mean correction is larger in magnitude than the value of G
used for the simulation. For example, the mean correction for the simulation with G = 0.005 s−1 is
ΔG = −0.289 s−1. In contrast to the corrections from simulations with G values less than the optimal
value, simulations with G values greater than the optimal value have corrections that are too large
in magnitude.

Furthermore, for G values of 0.01 s−1 and above, some of the corrections are positive (indicated
by the black dots on the top left panel in Figure 9), which is opposite in sign from the mean corrections.
The presence of positive and negative corrections for the same simulation is a result of the GWCE
becoming “too primitive”. The initial appearance (lowest G value that experiences oscillations)
corresponds to the G threshold above which spurious oscillations are generated. When the solution
becomes “too primitive”, the sensitivities start to become irregular. Rather than being similar from one
node to the next, the sensitivities for successive nodes are opposite in sign or have varying magnitudes
of the same sign. This transition from a normal pattern of sensitivities to an irregular one produces the
aberrant correction results.

The difference in results for two model simulations is given by Equation (15).

Δζ =
∫ G+ΔG

G
w(x, t, G) ∂G (15)

For G values just greater than G = 0.001 s−1, the sensitivities are similar from node to node.
Therefore, the errors for model simulations with small deviations from the target value used in these
studies will be similar between nodes, as long as G is not increased too much. When G = 0.01 s−1,
there are 2Δx oscillations in the sensitivities. Thus, at some G value between 0.001 and 0.01 s−1,
2Δx oscillations begin to develop in the error values as a result of the oscillations in the sensitivities.

By computing the numerical analog using the target value as one of the G values for the simulation,
the result is the average sensitivity over the span of G values. This average sensitivity can be compared
to the FSM sensitivity, which gives the instantaneous sensitivity value. Figure 10 is a comparison of the
numerical analog sensitivity between G values of 0.001 and 0.1 s−1 and FSM sensitivity for G = 0.1 s−1

for the 11th and 12th nodes in the linear sloping domain. It is readily apparent that the FSM sensitivity
results are opposite in sign for the two nodes. However, the numerical analog sensitivity results are
similar for the two nodes. The notable difference is the magnitude of the numerical analog sensitivities
is larger for Node 12 than Node 11, which implies there is more error for results at Node 12 than Node
11. In this case, the ΔG value used to compute the numerical analog is −0.099 s−1. Therefore, when
the numerical analog sensitivity is positive, the error is negative, and vice versa. It should also be
noted that the FSM sensitivities are, generally, in-phase with the numerical analog sensitivities for
Node 12, whereas the two sets of sensitivities are out-of-phase for Node 11. Therefore, an additional
increase in G away from G = 0.001 s−1 will cause increases in the magnitude of the error at Node 12
and decreases in the magnitude of the error at Node 11.

As mentioned previously, the occurrences of positive numerical analog sensitivities in Figure 10
(e.g., the peak values occurring approximately 8.0, 8.5, 9.0, 9.5 and 10.0 days into the simulation)
correspond to times of negative model error (compared to the simulation with G = 0.001 s−1), and vice
versa. Therefore, 9.0 days into the simulation, the error is negative at Nodes 11 and 12. For Node 11,
the numerical analog and FSM sensitivities are out-of-phase, which means that, generally, when the
FSM sensitivity is positive/negative, the error is positive/negative (numerical analog sensitivity is
negative/positive). Subsequently, the correction to G will be positive, which is the wrong direction.
In contrast, the numerical analog and FSM sensitivities are generally in-phase at Node 12, which results
in the correction to G being negative, because the product of the error and sensitivity vectors is negative.
The corrections to G for each of the nodes are shown in Figure 11. As expected, based on Figure 10,
the correction produced using results for Node 11 is positive, while the correction generated using
results for Node 12 is negative.
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Figure 10. Numerical analog sensitivity (red) between implicit 1D results with G= 0.001 s−1 and
G = 0.1 s−1 and FSM sensitivity (black) for G = 0.1 s−1 for the 11th (left panel) and 12th (right panel)
nodes in the linear sloping domain.
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Figure 11. Nodal least-squares corrections, ΔG, for each node based on results for an implicit simulation
with G = 0.1 s−1 using output from the last two days of the 10.0-day simulation on the linear sloping
domain. Observations are from the 2D CG ADCIRC code with G = 0.001 s−1.

4. Sequential Optimization

In the previous section, corrections to G were calculated based on model errors and sensitivities
to G. In this section, the correction, ΔG, is added to the previous G value to determine the next G value.
This process is continued until the new correction is below a certain threshold, which signifies that the
optimization process has converged at the target value.

The linear sloping domain is used for this proof-of-concept application, along with the explicit
version of the code. The simulation parameters are the same as those used previously, with the
exception that the run is only 5.0 days long, and corrections are generated using the results from the
last day of the simulation. The observations are the elevation results along the centerline of the 2D
ADCIRC simulation with G = 0.001 s−1. The correction, ΔG, is the mean of the nodal corrections using
the elevation results to compute the errors.

The initial G value for this exercise is 0.0005 s−1, and the convergence threshold for ΔG was
set at 1.0 × 10−10 s−1. As expected, specification of an initial value that is less than the target value
resulted in each correction being in the appropriate direction (positive), with less than the optimal
magnitude, as shown in Table 3. The target value is the value at which the sequential optimization
finishes, 8.98 × 10−4 s−1 (however, it is close to the value of G used in the 2D model to create the
observations, but in practice, this would not be known). The ratio of the correction to the optimal
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correction is notable; as the G value approaches the target value, the correction approaches the optimal
correction. This is logical because as the difference between the current and target G values goes to
zero, the instantaneous sensitivity to G given by the FSM gets closer to the average sensitivity over
the range.

Table 3. Sequential optimization of G for the linear sloping domain compared to the 2D CG simulation
with G = 0.001s−1. The units for each of the columns, except for the fourth column, are s−1. The ratios
in the fourth column are dimensionless.

G Value Mean Nodal Correction, ΔG Optimal Correction, ΔGopt
ΔG

ΔGopt
New G Value, G + ΔG

5.00 × 10−4 2.24 × 10−4 3.98 × 10−4 0.564 7.24 × 10−4

7.24 × 10−4 1.39 × 10−4 1.74 × 10−4 0.801 8.63 × 10−4

8.63 × 10−4 3.28 × 10−5 3.46 × 10−5 0.948 8.96 × 10−4

8.96 × 10−4 1.78 × 10−6 1.81 × 10−6 0.983 8.98 × 10−4

8.98 × 10−4 3.10 × 10−8 3.14 × 10−8 0.984 8.98 × 10−4

8.98 × 10−4 4.81 × 10−10 4.88 × 10−10 0.986 8.98 × 10−4

8.98 × 10−4 7.02 × 10−12 7.02 × 10−12 1.000 8.98 × 10−4

Additionally, tests were performed with an initial G value greater than the target value.
As expected, specification of a value larger than the target, but still below the primitive threshold,
results in an over-correction in the first step. For the explicit code with an initial value of
1.20 × 10−3 s−1, the mean correction for the first step is ΔG = −3.94 × 10−4 s−1, resulting in a
new G value of 8.06 × 10−4. From there, the corrections bring the G value up to the target value.
However, if the initial specification is significantly higher than the target, the over-correction can result
in negative G value. For instance, the mean correction with G = 2.00 × 10−3 s−1 is −2.38 × 10−3 s−1,
which is larger than the previous G value. Thus, in practice, constraints on G would have to be put
into the optimization algorithm.

5. Comparison of FSM to Dispersion Analysis

Kolar et al. [5] performed a dispersion analysis of the 1D shallow water equations using the
GWCE for the Bight of Abaco, Bahamas. Kolar et al. noted that spurious 2Δx oscillations do not occur
if the dispersion curve is monotonic. In their paper, they delineated the frequency for the M6 tide [5]
(p. 536) and found that the monotonic dispersion relations for this frequency exist as long as G does
not exceed 0.075 s−1. The frequency of the M2 tide is one third the frequency of the M6 tide, so G must
be less than approximately 0.3 s−1 to ensure the solution remains free of spurious, short-wavelength
oscillations for the M2 frequency.

The dispersion analysis performed in Kolar et al. [5] used a bathymetry value of 2.0 m, an element
size of 2700 m and a bottom friction value of 0.01 s−1. For this study, these parameters were also
used in 1D simulations with a flat bottom domain consisting of 21 nodes. The time step for the 1D
simulations was 5.0 s. Larger time steps result in differences in the calculated sensitivities, whereas the
sensitivities were consistent between simulations with time steps of 2.5 and 5.0 s. It should also be
noted that dispersion analysis is restricted to interior nodes. The 1D simulations herein using the FSM
include boundaries that are treated as stated previously (specified elevation on the left, zero velocity
on the right).

For the 1D simulations using the M6 tide, the dispersion analysis predicts spurious oscillations for
G values greater than 0.075 s−1. The elevation FSM sensitivity results are free of 2Δx oscillations with
G = 0.01 s−1. With G = 0.03 s−1, the sensitivity results show 2Δx oscillations for the first four elements
in from the left boundary. However, the interior of the domain is not impacted. Further increase of
G results in oscillations in a greater percentage of the domain.

Using the M2 tide, the dispersion analysis predicts spurious oscillations for G values greater than
or equal to approximately 0.3 s−1. Again, oscillations in the FSM elevation sensitivities to G do not
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occur with G = 0.01 s−1 and occur only near the ocean boundary with G = 0.03 s−1. Similar to the
case for the M6 forcing, the oscillations become more prevalent as G increases, although the M2 forced
simulations generally have less prominent 2Δx noise than the simulations with the M6 forcing. This is
consistent with the results suggested by the dispersion analysis. With a G value of 0.1 s−1, the entire
domain experiences 2Δx oscillations.

The FSM sensitivities and dispersion analysis do not produce exactly the same values of G for the
onset of 2Δx oscillations in the solution. Given the underlying differences in the analysis techniques
(e.g., dispersion analysis is confined to interior nodes and continuous time), this is not an entirely
surprising result. However, the similarity between the results for the two techniques points to FSM
being a useful tool in the analysis of problems where dispersion analysis is not valid (e.g., non-linear
equations, non-constant bathymetry, etc.).

6. Conclusions

The FSM was successfully applied to the linearized, 1D version of ADCIRC with constant G.
The FSM is useful in determining the sensitivity, both in space and time, to G. In particular, the
sensitivity of the elevation and velocity fields to changes in G varies greatly with G. The sensitivity
is much greater at low values of G than at higher values, where the GWCE effectively approaches
the primitive continuity equation. Additionally, as G increases, the sensitivities from the FSM show
the 2Δx oscillations that plague the continuous Galerkin finite element solution when the primitive
continuity equation is used instead of the GWCE. Furthermore, the maximum G threshold, above
which the GWCE becomes “too primitive” and results in the generation of spurious 2Δx oscillations,
can be identified through analysis of the FSM sensitivities. In that sense, FSM can be used as a tool
like dispersion analysis to predict the folding of dispersion relations, with the advantage of being
applicable to complex, real-world problems.

The corrections, ΔG, calculated in the data assimilation step of the FSM are intrinsically tied to
the sensitivities. The change in sensitivity over the range of possible G values makes direct estimation
of the optimal correction difficult using first-order methods. At high G values, the corrections are
also hindered by the 2Δx oscillations in the sensitivities. However, sequential optimization should be
possible as long as care is taken in the specification of the starting point for optimization. Specifically,
use of a low initial value is optimal because the corrections are more stable, compared to higher
values of G.

While this analysis was limited to the linearized, 1D SWE, the FSM has potential use in more
complex systems. Additionally, while the analysis is focused on the sensitivity of the system to G,
the method can be adapted to analyze other parameters of the model.
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Abbreviations

The following abbreviations are used in this manuscript:

FSM Forward Sensitivity Method
GWCE Generalized Wave Continuity Equation
WCE Wave Continuity Equation
ADCIRC ADvanced CIRCulation
CG Continuous Galerkin
1D One-Dimensional
2D Two-Dimensional
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Abstract: The response of salinity in Apalachicola Bay, Florida to changes in water management
alternatives and storm and sea level rise is studied using an integrated high-resolution hydrodynamic
modeling system based on Curvilinear-grid Hydrodynamics in 3D (CH3D), an oyster population
model, and probability analysis. The model uses input from river inflow, ocean and atmospheric
forcing and is verified with long-term water level and salinity data, including data from the 2004
hurricane season when four hurricanes impacted the system. Strong freshwater flow from the
Apalachicola River and good connectivity of the bay to the ocean allow the estuary to restore normal
salinity conditions within a few days after the passage of a hurricane. Various scenarios are analyzed;
some based on observed data and others using altered freshwater inflow. For observed flow, simulated
salinity agrees well with the observed values. In scenarios that reflect increased water demand (~1%)
upstream of the Apalachicola River, the model results show slightly (less than 5%) increased salinity
inside the Bay. A worst-case sea-level rise (~1 m by 2100) could increase the bay salinity by up to 20%.
A hypothesis that a Sumatra gauge may not fully represent the flow into Apalachicola Bay was tested
and appears to be substantiated.

Keywords: Apalachicola Bay; salinity; oysters; model

1. Introduction

For over two decades, the states of Georgia, Alabama, and Florida have been debating potential
solutions to the management of shared water resources of the Apalachicola-Chattahoochee-Flint (ACF)
River Basin. The ACF River Basin originates in northeast Georgia, crosses the Georgia-Alabama
border into central Alabama, and follows the state line south until it terminates in Apalachicola Bay,
Florida. The U. S. Army Corps of Engineers (USACE) operates five reservoirs on the Chattahoochee
River and its water management operations impact fish and wildlife resources [1,2]. The river’s
water is used for various municipal, industrial, and agricultural users throughout the length of the
system. As consumptive water use has steadily increased over the past several decades, reliance
on the USACE’s reservoirs to support river flows has also increased, and the amount of freshwater
inflow into Apalachicola Bay has declined [1]. Reductions in freshwater inflow influence the salinity
regime, which is critical to many marine species, including oysters and the threatened Gulf sturgeon.
The USACE is currently updating their Water Control Plan for the ACF, which requires review under
the Endangered Species Act and the Fish and Wildlife Coordination Act. Together, these laws attempt
to assure that their proposed reservoir operations plan does not jeopardize the continued existence of
endangered or threatened species, or destroy or adversely modify their critical habitat, and provides
measures to mitigate impacts to fish and wildlife resources. Therefore, it is essential to develop
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a quantitative understanding of how freshwater inflow impacts salinity in Apalachicola Bay. Another
factor that could have a significant effect on Apalachicola Bay is the potential sea-level rise. As the
ocean levels rise, the salinity in the bay could increase [3,4]. Quantifying the effect of sea-level rise
could help with planning and development of practical consumption scenarios for the ACF system
that are mindful of the Apalachicola Bay well-being.

Apalachicola Bay is located along the Florida panhandle (Figure 1) and is well known for shrimp
and oyster harvests. It produces about 90% of Florida’s commercial oysters and is the only place
in the United States where wild oysters are still harvested by tongs from small boats. The shallow
(3–6 m) and flat bay is connected to the Gulf of Mexico via five openings counterbalancing the relatively
large freshwater inflow from the Apalachicola River. Huang and Spaulding [5], using computer model
simulations, found that the residence time in Apalachicola Bay typically ranges between three and
nine days, with the daily inflow from Apalachicola River ranging between 177 m3/s (drought season)
and 4561 m3/s (flood season).

 

Figure 1. Apalachicola Bay system, data stations and Curvilinear-grid Hydrodynamics in 3D (CH3D)
model grid (outlined in red).

The estuary receives over 90% of its freshwater from the Apalachicola River, which, combined
with the Chattahoochee River, Flint River and Chipola River drain a watershed of over 20,000 m2.
The importance of the Apalachicola Bay system has been long recognized and the region has been
designated as a National Estuarine Research Reserve (NERR), an Outstanding Florida Water, a State
Aquatic Preserve, and an International Biosphere Reserve. Apalachicola NERR (ANERR) is the third
largest reserve in the nation [2,3].

The importance of freshwater inflow has been recognized for years by managers and researchers
alike, with the oyster population being particularly sensitive to the salinity regime in the bay.
Livingston et al. [4] found that oyster production and mortality are correlated to bay salinity in
the bay. High salinity can cause increased predation from invasive species such as stone crabs and
oyster drills causing a significant drop in oyster production. Gulf sturgeon are also sensitive to changes
in salinity. As an anadromous fish, the Gulf sturgeon is adapted to life in both fresh and saline waters;
however, juvenile fish develop a tolerance to higher salinity gradually during the first year of life,
and juvenile growth rates are highest when the salinity is 9 ppt [5]. Extended periods of salinity
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less than 10 ppt would likely limit feeding habitat availability [6,7], and availability of lower-salinity
estuarine feeding habitats may influence recruitment [8–12].

Simulation of salinity and impact on oyster inside Apalachicola Bay has been conducted
by Huang [13,14] and Wang et al. [15] using a coarse (~500–1000 m) grid hydrodynamic model
and a relatively small model domain without the full influence of the ocean. In this study,
the simulation of salinity is validated using a high-resolution coastal and estuarine hydrodynamic
model, Curvilinear-grid Hydrodynamics in 3D (CH3D) [16–18] and a larger model domain coupled
to an ocean model using observed river inflow rates during 1999–2008 (Scenario I). Once calibrated,
the model is used to simulate the response of the system to four water management scenarios developed
by the USACE. In these scenarios freshwater entering the system through the Apalachicola River is
determined by: (I) the USACE’s Hydrologic Engineering Center Reservoir System Simulation program,
HEC-ResSim [19]; (II) The current reservoir operations in the ACF system; (III) and (IV) alternative
reservoir operation plans with higher consumptive water usage. Simulated salinity is then analyzed as
to its potential to affect the oysters’ growth and/or mortality rates.

2. Materials and Methods

2.1. Observed Data for Model Validation

Water level data (relative to the North American Vertical Datum of 1988 (NAVD88) datum and
with 6-min temporal resolution) was obtained from the NOAA (National Oceanic and Atmospheric
Administration) CO-OPS (Center for Operational Oceanographic Products and Services) station
NOS-8728690 located near the mouth of the Apalachicola River (Figure 1). NOAA also provides
predictions of the tides based on the analysis of tidal constituents at the site, which is useful in
identifying how well the model represents the tides. Regional tides are relatively low with three
constituents (M2, S2 and K1) dominating the tidal signal.

The bay features several data collection sites that measure salinity, temperature and nutrient data.
Salinity records are available at several locations near oyster bars: Cat Point, Dry Bar and East Bay
(Figure 1) from 2002 to 2007. Near-surface salinity observations are available at 30-min and 15-min
intervals depending on the time of collection.

2.2. The Integrated Modeling System—Description and Setup

The hydrodynamic modeling system used in this study is based on the CH3D (Curvilinear-grid
Hydrodynamics in 3D) model [16,20]. CH3D had been used in numerous studies of complex shallow
estuaries including Indian River Lagoon, Tampa Bay, Sarasota Bay, Roberts Bay, Florida Bay, Charlotte
Harbor, West Florida Shelf, St. Johns River, Lake Okeechobee, and Lake Apopka, etc. (e.g., [21–27]).

CH3D uses a non-orthogonal horizontally boundary-fitted curvilinear grid and a vertically
terrain-following sigma grid that accurately resolve coastal and nearshore waters with complex
shoreline and bathymetry. The model contains a robust turbulence closure model [28] that enables
accurate simulation of turbulent mixing and stratified flows. A fully integrated modeling system ACMS
(Advanced Coastal Modeling System, formerly split into two subsystems: CH3D-IMS (Integrated
Modeling System) and CH3D-SSMS (Storm Surge Modeling System)) has been developed and applied
to several estuarine systems including the Indian River Lagoon [22,24], Tampa Bay [28], and Charlotte
Harbor [23]. ACMS includes coupled models of circulation, wave, sediment transport, water quality,
light attenuation and seagrass biomass. In addition, it has been used for simulations of storm surge
and coastal inundation [26–28]. This modeling system is able to simulate 3D baroclinic flow with
wetting and drying. It has the capability to use spatially and temporally varying wind fields such
as tropical storms. It is also coupled to a wave model [27,29] and has the ability to obtain boundary
conditions from a variety of sources including basin-scale models.

The computational grid developed for the bay and surrounding areas to simulate the salinity
distribution is shown in Figure 2. The grid is 456 by 161 cells with the minimum cell size of 94 m and
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the average cell of 400 m. In vertical direction, the model uses 8 equally-spaced sigma layers (4-, 8- and
16-layer options were tested and it was found that 8 layers provide sufficient resolution with negligible
differences compared to the 16-layer setup) The model uses a 60-s time step and simulated period for
all scenarios spans from January 1, 1999 to December 31, 2008.

 

Figure 2. CH3D model grid bathymetry/topography, the orange lines at the south and west ends of
the domain denote the model open boundary.

CH3D is coupled to the HYbrid Coordinate Ocean Model (HYCOM) [30,31] model for the entire
Gulf of Mexico which provides time varying salinity at the open boundary. HYCOM is a generalized
(hybrid isopycnal/σ/z) coordinate in vertical and curvilinear in horizontal direction ocean model.
It is isopycnal in the open stratified ocean, but reverts to a terrain-following coordinate in shallow
coastal regions, and to z-level coordinates near the surface in the mixed layer. This generalized vertical
coordinate approach is dynamic in space and time via the layered continuity equation, which allows
a dynamical transition between the coordinate types. The Gulf of Mexico model has 1/25◦ equatorial
resolution and latitudinal resolution of 1/25◦ cos(lat) or ~3.5 km for each variable at mid-latitudes and
uses 20 vertical layers.

The domain has two open boundaries at the west and south ends of the model grid (Figure 2)
where tidal forcing is applied based on eight tidal constituents that are adjusted to match the predicted
tidal water level at the NOAA station at that location. Open boundary salinity is obtained from the
Gulf of Mexico HYCOM model for the period starting in 2003 and assumed as constant (34 ppt) before
2003 due to the lack of HYCOM data prior to that. Huang et al. [14] showed that the wind plays
an important role on the dynamics of salinity in the bay, therefore in this study the wind forcing is
based on atmospheric data from the NOGAPS (U.S. Navy’s Operational Global Atmospheric Prediction
System) Model [32].

2.3. River Flow Scenarios

Freshwater inflows are introduced at the Apalachicola River and the flows are based on the actual
observed daily data from the Sumatra gage (Scenario I) and three different daily flow rates provided
by the USACE ResSim (Reservoir System Simulation) model representing the ACF Basin hydrology
and reservoir operations (Scenarios II–IV; Table 1). The model is initialized using observed values of
water level and salinity in October 1998, and the three-month period from October–December of 1998
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is used as a spin up period for the model followed by a 10-year simulation. As an example, flow rate
at the Sumatra gage during 2004–2008 is shown in Figure 3.

Table 1. Characteristics for the flow rates (cfs) at the Sumatra gage.

Scenario Mean Mean (%)
Standard
Deviation

Standard
Deviation (%)

Minimum Maximum

I 519.2 0.00 411.4 0.00 124.6 4700.6
II 514.4 0.92 391.3 4.89 136.4 3965.7
III 515.9 0.64 391.4 4.86 136.4 3965.7
IV 516.4 0.54 391.0 4.96 136.4 3965.7
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Figure 3. Observed flowrate (cfs) at Sumatra gage.

Scenario II represents the Corps’ current reservoir operations, which are designed to provide
for the authorized project purposes of flood damage reduction, hydroelectric power generation,
and navigation, as well as for other authorized purposes or incidental benefits including fish and
wildlife conservation, recreation, water quality, and water supply. For releases to the Apalachicola
River, the Corps meets minimum flow targets [1] that vary by the amount of inflow into the reservoirs
in the basin, the amount of storage available, and by season.

Scenario III represents a reservoir operation alternative that is similar to Scenario II but included
changes in the amount of water storage available in each individual lake, a navigation season with
increased minimum flows when storage is high, reduced releases for hydroelectric power during
droughts at Lake Lanier (the upstream-most reservoir near Atlanta, Georgia), reduced releases from
Lake Lanier for water quality and water supply, and a reduction in water supply withdrawals from
Lake Lanier.

Scenario IV represents a reservoir operation alternative that is nearly identical to Scenario III
but included slightly lower consumption (200 cfs) from the City of Atlanta. As shown in Table 1,
the observed daily flows at the Sumatra gage (Scenario I) have the smallest minimum flow rate and the
largest maximum flow rate of the four scenarios. The daily flows at the Sumatra gage in the remaining
three scenarios vary only mildly relative to each other, which is not surprising since all three reservoir
operation scenarios are similar.

Additional model scenarios were considered after an analysis, based on the concept of reach gain,
was performed on the flow data from Sumatra gauge [33]. Observed flow data from Sumatra gauge is
the main source of data that quantifies fresh water inflow into Apalachicola Bay. This analysis indicates
that this data underrepresents actual total amount of fresh water flow coming into the system by 30%.
Leitman argues that at flows over 15,000 cfs (a value that U.S. Geological Survey found to correspond
with bank-full [34]) flow is entering the floodplain and then re-enters the river below Sumatra gauge
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therefore remaining uncaptured in data collected at the gauge. To test this hypothesis, we performed
a simulation altering the measured flow and several other flow adjustments to see how the system
would react to potentially more realistic, larger fresh water inflows. Table 2 shows the scenarios that
were simulated and Table 3 list the characteristics for these scenarios.

Table 2. Flow adjustments for additional simulation scenarios.

Scenario Flowrate Adjustment

V 90% (−10%)
VI 110% (+10%)
VII 130% (+30%)
VIII 150% (+50%)
IX 200% (+100%)
X 130% (+30%), when flow is over 15,000 cfs

Table 3. Characteristics for the flow rates (cfs) at the Sumatra gage for additional scenarios.

Scenario Mean Minimum Maximum

I 519 124.6 4700.6
V 467 112.1 4230.5
VI 571 137.1 5170.7
VII 604 162.0 6110.8
VIII 778 186.9 7050.9
IX 1038 249.2 9401.2
X 1298 311.5 11,751.5

3. Results

3.1. Model Verification—Salinity during 2004

Simulated water level and salinity in 2004, a year during which four hurricanes (Dennis, Frances,
Ivan and Jeanne) affected the area, are compared to observed data. Comparison of simulated water
levels with 6-min data at the CO-OPS station at the mouth of the Apalachicola River gives a correlation
value of 0.97. Simulated salinity values for Scenario I compare well with observed salinity data at
several ANERR data stations inside the Bay (Figure 4). Values of the root mean square (RMS) error and
the correlation coefficient can be found in Table 4. It is believed that the reason for poorer comparisons
at the East Bay station is the lack of flow data in the smaller streams around the East Bay location
as salinity at this stations tends to be overestimated by the model due to the lack of sufficient fresh
water inflow.

  
(a) (b) 

2004-01-14 2004-04-23 2004-08-01 2004-11-090

10

20

30

Measured
Simulated

Cat Point

2004-01-14 2004-04-23 2004-08-01 2004-11-090

10

20

30

Measured
Simulated

Dry Bar

Figure 4. Simulated salinity at (a) Cat Point; and (b) Dry Bar stations during 2004.
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Table 4. Estimation of simulation error.

Station Root Mean Square Error Correlation Coefficient

Cat Point 1.3 ppt 0.87
Dry Bar 1.6 ppt 0.82
East Bay 2.4 ppt 0.71

Salinity at the ANERR stations shown in Figure 4 show salinity fluctuating between 3 ppt and
34 ppt. During the January and February periods salinity at both stations decreased due to the
relatively large freshwater inflow from Apalachicola River. During the four major hurricanes, salinity
initially decreased due to the increased precipitation and river inflow but quickly recovered to the
pre-storm salinity values, due apparently to the good connectivity between the Apalachicola Bay and
the ocean. In September of 2004 three tropical storms (Figure 5) had a significant effect on salinity in
the Bay: Hurricanes Frances, Ivan and Jeanne. Simulated salinity in the bay around the time of the
storm (Figure 6) indicates that it takes on the order of one to two weeks for the estuary to recover
from the impact of the storm and restore the salinity regime established prior to the storm. This is
consistent with the typical residence times of three to nine days found by [5] and can be attributed to
a number of factors such as connectivity to the Gulf, large fresh water inflow from Apalachicola River
and shallow depths in the bay. These results differ significantly from the response of other Florida
estuaries to hurricanes. Tutak and Sheng [35] found that hurricanes had a much more significant
effect on the salinity inside the estuarine system of the Guana-Tolomato-Matanzas (GTM) National
Estuarine Research Reserve (NERR) at St. Augustine, FL, due to the relatively poorer connectivity of
the estuarine system with the ocean.

Figure 5. Water level before, during and after Hurricanes Frances, Ivan and Jeanne at Cat Point station.

Figure 6. Salinity before, during and after Hurricanes Frances, Ivan and Jeanne at Cat Point station.
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Model performance was recorded with approximate wall time of 12 min per day of simulation
using a single CPU core and 84 s per day of simulation using 16 cores with OpenMP parallelization.

3.2. Model Results for the 1999–2008 Period

Four scenarios of Apalachicola River discharge are considered for model simulations. Scenario I,
which uses the observed flow rates at the Sumatra gage provided by the USACE, serves as a base
scenario and a reference for comparison. Scenarios II through IV use altered flows with statistics for
the time series of flow rates are provided in Table 1. All other model parameters and forcing remained
the same for all scenarios.

The above results showed that there is little difference in salinity inside the Apalachicola Bay
among the current operation and two alternative operations (Scenarios II–IV). This is not a surprise
given that the three different reservoir operation scenarios are all similar. However, the ResSim
simulations of the current flow operation and two alternative flow operations result in higher salinity
at the higher salinity range (15–35 ppt) while lower salinity at the low salinity range than the observed
data from the gage. This difference is due to the consumptive demands used in ResSim. The three
ResSim simulations (Scenarios II–IV) use demand data from 2007 in every year, but those demands
were the highest on record, and higher than the actual demands observed over the years.

Using a relatively coarse grid hydrodynamic model, Huang [13] performed a study that featured
several scenarios on riverine flow and attempted to analyze the changes in salinity response due to
altered flow. He indicated that probability analysis can be useful in characterizing and summarizing
the modification of historic flow pattern by a river flow scenario resulted from the changes of upstream
reservoir operations and water demands. Huang [13] investigated how often a certain value of salinity
(integer values from 0 to 34) occurs and calculated a probability density distribution to identify the
maximum probable salinity values. It should be noted that Huang’s analysis [13] of salinity in the bay
during 1980–1989 revealed two distinct peaks in probability density curve for all stations, depending
on the scenario and the location the first salinity peak occurs in the range from 4 to 9 while the second
peak occurs in the range from 22 to 27. In most cases the second peak is more pronounced (means that
the salinity from the second range is more likely to occur). Our simulations, however, did not produce
two distinct peaks.

Impact of River Flow Scenarios on Bay Salinity

Exceedance probability curves are used in this study to analyze the differences between different
simulated scenarios. The probability of exceedance is calculated based on the simulated salinity data
(output at 1-min intervals) by ranking the data and calculating the number of data points that are
larger than or equal to a value X at 0.05 ppt intervals forming the curve.

This study covers the ten-year period from 1999 to 2008. Probabilistic analysis (Figure 7) of results
from this study produces curves that are a lot smoother than those in [13] and without the two distinct
peaks shown in their study. These curves are verified by applying the probabilistic analysis to the
observed data which produces similar curves. The reason for the double peaks in Huang’s results
could be due to the different hydrologic period or differences between the models, which require
further investigation.

Exceedance probability curves (Figure 8) indicate that the Observed scenario has lower probability
in the 15–25 ppt range and therefore the three scenarios using the Corps’ simulated operations are more
likely to result in higher bay salinity. Because the simulations in Scenarios II–IV use higher demand
data than the observed data, this indicates that higher consumptive demands could adversely impact
the oyster populations by resulting in higher bay salinities occurring more frequently. The salinity
responses for the different flow scenarios show little difference, since the flow rates associated with
these scenarios show little difference. However, if the freshwater consumption were to increase
dramatically above those in the four scenarios, it is expected that the salinity in the bay could
increase dramatically.
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Scenarios I–IV.

As expected, the additional scenarios that attempt to better capture high flow events yield a much
more significant response (Figure 9). Furthermore, it is notable that adding 30% to the river flow does
improve simulation results, slightly. Root mean square error improves from 1.3 to 1.1 ppt at the Cat
Point station and from 1.6 to 1.5 ppt at the Dry Bar station.
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Scenarios I, V–X.
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As mentioned earlier, extreme storm events can significantly alter the salinity levels. Due
to the relatively good connectivity of the Apalachicola Bay (relative to such estuary as the
Guana-Tolomato-Matanzas National Estuarine Research Reserve estuary), salinity usually recovers
quickly to the pre-storm values. Some of the impact factors that can affect the length of time required
for the estuary to recover are duration and amount of rainfall, which often accompany the storm and
can last significantly longer than the direct impact of the storm itself. Of course, there are others risk
factors that can be brought in by hurricanes and affect oyster beds such as red tide bloom that was
moved into the bay during Hurricane Katrina (even though the storm itself passed outside the domain
and did not have a significant direct impact) or oil spill which almost entered Apalachicola Bay during
the Deep Water Horizon spill in 2010. However, these are outside of the scope of this paper.

To better understand the impacts of the various flow scenarios, a statistical analysis was performed
on simulated salinity values. shows the average number of days in a year where salinity exceeds
26 ppt at various locations, and Scenario III has the highest number of days when the salinity value
exceeds 26 (Figure 10) making it the worst in terms of oyster production (US Fish and Wildlife Service
determined 26 ppt as a cut-off value for optimal oyster growth, Wang et al, also show 26 ppt as
an upper bound for the optimal oyster growth in Apalachicola Bay [15]).

  
(a) (b) 

  
(c) (d) 

Figure 10. Average (over 1999–2008) number of days in a year when salinity exceeded 26 ppt.
(a–d)—Scenarios I–IV, respectively.
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3.3. Effects of Potential Sea Level Rise on Bay Salinity

So far, studies have focused on the impact of freshwater withdrawal on the salinity in the
Apalachicola Bay, without considering the impact of global climate change and its impact on storms,
sea level rise, and precipitation. A recent Intergovernmental Panel on Climate Change (IPCC)
report [36] has predicted that sea level rise in the Panhandle area could reach 1 m by 2100.
In this study, we analyze potential impact of a sea level rise of 1 m, while not taking into consideration
other possible impacts of climate change, such as weather with subsequent changes in wind climate
and rainfall (discharge into the Apalachicola River) and ignoring any potential geomorphological
changes as well. The model simulation is run with the observed river flow data (Scenario II) and
increased water level at the open boundary of the model by 1 m compared to all previous simulations.

Results of this simulation (as can be seen on Figure 10), show that salinity rises significantly
(up to 20%) throughout the Bay, due to connectivity of the Bay to the ocean.

4. Discussion

Oyster growth rates and resultant population are sensitive to the salinity regime in the areas where
oyster reefs are located. In particular, the number of oyster larvae recruited per spawn are minimal
outside of moderately narrow temperature (27.5 ◦C–32.5 ◦C) and salinity (10 ppt–27.5 ppt) ranges [37].
Scenario III has the highest number of days when the salinity value exceeds 26 ppt (Figure 11) making
it the worst in terms of oyster production. This is also confirmed by the exceedance probability curves
that indicate that Scenario I is more likely to produce salinity in the 15 to 25 ppt range, while in the
remaining three scenarios this range is likely to be lower. The difference between Scenarios II, III and
IV is smaller and almost indistinguishable. Again, the relatively little difference in the bay salinity
response for the different freshwater withdrawal scenarios is due to the relatively mild difference in
the freshwater flow rates. However, if the flow rates were to reduce dramatically, the salinity response
can be expected to increase dramatically as well.
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Figure 11. Exceedance rate of salinity at Cat Point (a) and Dry Bar (b) stations. Scenario 2 with sea level
rise effects.

One notable observation is that the Apalachicola Bay system recovers relatively quickly from
storms, due to shallow depths, strong riverine flow from Apalachicola River and good connectivity to
the Gulf of Mexico. It takes on an order of one week to recover from an impact of the storm and this
observation is consistent with earlier findings of [5] that note the typical residence time is between
three and nine days, unlike in some other Florida estuaries such as the GTM-NERR [35], where it can
take nearly three months for the estuary to recover from the impact of the storm.
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The impact of various natural and anthropogenic (water management) controls on the bay salinity
is summarized in the following:

• Apalachicola Bay salinity regime can quickly recover from extreme events such as hurricanes.
• Scenario I (observed) is more likely to create favorable conditions for oyster production.
• Scenarios II–IV, corresponding to higher (~1%) consumptive freshwater demand than in the

observed scenario, are likely to result in slightly (~5%) higher salinities and unfavorable conditions
for oyster production.

• Newer freshwater flow alternatives which may cause more significant changes to the bay salinity
are being developed by the Corps.

• The worst case sea level rise scenario (~1 m by 2100) could significantly increase the bay salinity
by up to 20%.

A more comprehensive study on the impact of natural and anthropogenic controls on the bay
salinity may require more detailed investigation involving nutrient and sediment dynamics using
an integrated physical-chemical-biological modeling system such as the one used in [15], which would
also provide information on other factors that may affect oyster production such as temperature
distribution in the Apalachicola Bay.
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Abstract: The National Ocean Service (NOS) of National Oceanic and Atmospheric Administration is
developing an operational nowcast/forecast system for the Gulf of Maine (GoMOFS). The system
aims to produce real-time nowcasts and short-range forecast guidance for water levels, 3-dimensional
currents, water temperature, and salinity over the broad GoM region. GoMOFS will be implemented
using the Regional Ocean Model System (ROMS). This paper describes the system setup and results
from a one-year (2012) hindcast simulation. The hindcast performance was evaluated using the NOS
standard skill assessment software. The results indicate favorable agreement between observations
and model forecasts. The root-mean-squared errors are about 0.12 m for water level, less than 1.5 ◦C
for temperature, less than 1.5 psu for salinity, and less than 0.2 m/s for currents. It is anticipated to
complete the system development and the transition into operations in fiscal year 2017.

Keywords: Gulf of Maine; operational nowcast and forecast system; hydrodynamics; ROMS; water
level; currents; water temperature; and salinity

1. Introduction

The Gulf of Maine (GoM) is a semi-enclosed coastal basin located along the coastline of the
northeastern U.S. (Figure 1). It is surrounded by the New England coast to the west and to the north.
It is adjacent to the Bay of Fundy (BF) to the northeast and is bounded by the coast of Nova Scotia to
the east. To the south, the Gulf water communicates with the open ocean through a series of shoals,
banks and channels, such as Nantucket Shoals (NS), the Great South Channel (GSC), Georges Bank
(GB), the Northeast Channel (NEC), Brown Bank (BB), and the Cape Sable Channel (CSC).

The GOM/GB system demonstrates a broad variety of physical oceanography phenomena such
as a complicated circulation system, intense tidal currents, fronts, internal tides, etc. Baroclinic
hydrography, barotropic tidal dynamics, and meteorological factors are responsible for incurring
their existence and modulating of their intensity. Their relative significance varies spatially as well as
seasonally [1–5].
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Figure 1. Map of the Gulf of Maine (GoM)/Georges Bank (GB) region and the GoMOFS model domain.
Green lines represent the 50, 200, 500, 1000, and 3000-m isobaths. Blue lines denote the three open ocean
boundaries of the model domain. (a) Map of observation stations: the CO-OPS water level stations
(red circles) and water temperature stations (filled blue triangles), and the NeraCOOS buoys (magenta
squares). The station IDs are labeled near the location markers. The measurement depths of the
CO-OPS stations are 3.3 m (8410140), 2.4 m (8411060), 2.9 m (8413320), 4.9 m (8418150), 3.3 m (8419317),
2.9 m (8443970), 2.0 m (8447930), 1.2 m (8449130), and 1.8 m (8452660). The NeraCOOS depths are listed
in Table 1; (b) Map of NDBC buoy stations. The station IDs are labeled near the location marks. Three
leading digits “440” of each ID number are omitted for the clarity of illustration. The numbers in the
parentheses following the IDs represent the measurement depths (in meters) relative to the sea surface.
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The area is well known for its significant tidal fields. The tidal range is greater than 3 m along
the northern and western coast and over 5 m in the BF. The tidal currents are as high as 0.5 to 1 m/s
over the NS and GB. The tidal dynamics are heavily involved in forming the circulation, fronts, etc. [6].
Within the Gulf, tides are forced by ocean tides along the shelf break. Five tidal constituents, M2, S2,
N2, K1, and O1, account for 94% of the total tidal potential energy, while the M2 constituent contributes
over 80% of the total energy [7].

Researchers have explored the hydrodynamics of the area using various types of numerical
models, such as the finite difference [8–10], finite element [4,11], and finite volume [12] models.
Greenberg [8] and Naimie et al. [4] investigated the tidal dynamics of the M2 astronomical constituent.
Using the ADvanced CIRCulation (ADCIRC) model (ADCIRC), Yang and Myers [11] investigated the
pathway and intensity of the barotropic M2 tidal energy flux. Chen et al. [12] studied both barotropic
and internal tidal dynamics in the region using the Finite Volume Coastal Ocean Model (FVCOM).

Several of the numerical studies focused on investigating the three-dimensional (3-D)
hydrodynamics of the area. Naimie and Lynch [4] studied summer season stratification in the GB area
using the unstructured-grid finite element model QUODDY. Chen et al. [9] used the modified Princeton
Ocean Model (ECOM-si) to investigate the dynamics of the tidal currents rectifications and its impact
on the formation of upwelling in the GB region. Xue et al. [5] simulated the seasonal circulations using
the Princeton Ocean Model (POM). Gangopadhyay et al. [13] developed a multiscale feature model to
study the characteristic physical circulation features. To support the Gulf of Maine Ocean Observing
System (GoMOOS) operations, Xue et al. [10] developed the POM-based nowcasts/forecast system to
produce real-time, 3-D distribution of circulation and water properties. More recently, Wilkin et al. [14]
developed the data-assimilative “Doppio” real-time and reanalysis ROMS system to make the forecast
of hydrodynamics for the broad Mid-Atlantic Bight and the GoM regions.

The National Ocean Service (NOS) of National Oceanic and Atmospheric Administration (NOAA)
has recently been working on developing an operational oceanographic nowcast/forecast system
for the Gulf of Maine (GoMOFS). The GoMOFS aims to produce real-time nowcast and short-range
forecast guidance for water levels, 3-dimensional currents, water temperature, and salinity over the
broad GoM region. It will support the GoM harmful algal bloom (HAB) forecast, marine navigation,
emergency response, and the environmental management communities.

The GoMOFS uses the Regional Ocean Model System (ROMS) [15] as the hydrodynamic model.
In developing the GoMOFS, we conducted a one-year hindcast simulation for the year of 2012 and
evaluated the model performance using the NOS standard skill assessment software [16].

This article describes the model setup and skill assessment results of the hindcast simulation. It is
organized as follows. This section reviews the general hydrodynamics in the Gulf, previous numerical
studies, and NOAA’s initiative in developing the GoMOFS. Section 2 describes the model setup of
the 2012 hindcast simulation. Section 3 describes the observed data used for the skill assessment.
Section 4 presents the model results. Section 5 describes the skill assessment results. Section 6 states
the conclusion and summery.

2. Model Setup

The GoMOFS model has a nearly rectangular domain that goes from the eastern Long Island
Sound in the west to the shelf of Nova Scotia in the east and extends to the deep ocean outside of the
shelfbreak (see Figure 1). It has an orthogonal model grid with horizontal dimensions of 1177 by 776
and a uniform spatial resolution of 700 m. The grid resolved major coastal embayments including
Cape Cod Bay, Boston Harbor, Casco Bay, Penobscot Bay, and the Bay of Fundy. However, the 700-m
resolution prohibits the model from resolving small scale coastal features such as navigation channels
and river courses, e.g., the Cape Cod Canal. The grid has three open ocean boundaries (see the blue
lines in Figure 1): the western boundary in the western Long Island Sound, the southern boundary
outside the shelfbreak to the southeast of the GoM, and the eastern boundary across the shelf of
Nova Scotia.
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The bathymetry of the model grid was populated by linearly interpolating the combined VDatum
ADCIRC model grid bathymetry [17] and the bathymetry in the 2-min Gridded Global Relief Data
(ETOPO2) [18]. Figure 2 displays the color coded bathymetry. The model grid resolves key bathymetric
features such as Georges Bank, the Northeast Channel, the Great South Channel, etc.

Figure 2. Bathymetry of the model grid. The color bar unit is meter.

The model is configured with 30 sigma layers. It uses the ROMS wetting and drying feature,
a quadratic bottom friction scheme, and the two-equation model of the “revised” Mellor-Yamada
Level 2.5 turbulence closure scheme (GLS/k-kl) implemented through the ROMS generic length scale
(GLS) module.

For the open ocean boundary, we adopted the implicit Chapman condition for the free surface, the
Flather condition for the 2-D momentum, and the radiation-nudging condition for the 3-D temperature,
salinity, and velocity.

The hindcast simulation was driven with the complete suite of model forcing data including open
ocean boundary forcing of the tidal and subtidal water level, 2-dimensional depth-averaged tidal
currents, 3-dimensional temperature (T), salinity (S), and subtidal currents, river discharge, and the
sea-surface meteorological forcing. It is noted that in the current setup the atmospheric pressure was
not applied as a model forcing. Instead, we factored in the pressure effect by applying an inverse
barometric pressure adjustment on the simulated water levels. In fact, we tested a setup with the air
pressure forcing and the results appeared to be less satisfactory in terms of the model-data agreement.

The tidal water levels and currents on the open ocean boundaries were calculated using the
tidal and currents harmonics of the TPXO 8.0-Atlas tidal database developed at the Oregon State
University [19]. We chose eight tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) as the tidal
forcing. The database was of the 1/30◦ horizontal resolution and was interpolated onto the GoMOFS
grid. Some adjustment on the tidal amplitude and phase along the model’s open ocean boundary was
made to optimize the model-data agreement at the water level stations. The adjustment was made
through a trial-and-error procedure. In quantitative details, the amplitude was altered by −7.0 cm
for M2, −1.5 cm for S2, −0.5 cm for N2, 1.0 cm for P1, and 3.0 cm for K1; the phase was altered by
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8.0 degrees for M2, 2.0 degrees S2, 6.0 degrees for N2, 6.0 degrees for K2, 8.0 degrees for P1, and
10.0 degrees for K1.

The non-tidal open ocean conditions used the nowcast results from the Global Real-Time Ocean
Forecast System (G-RTOFS) [20,21]. The G-RTOFS is being operated by the NOAA National Centers for
Environmental Prediction (NCEP). It is based on the Naval Oceanographic Office’s configuration of the
1/12◦ eddy resolving global Hybrid Coordinates Ocean Model (HYCOM). Its ocean model has 4500 by
3298 horizontal dimensions and 32 vertical hybrid layers (isopycnals in the deep, isolevel in the mixed
layer, and sigma in shallow waters). The system assimilates in situ profiles of temperature and salinity
from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. The G-RTOFS
is forced with 3-hourly momentum, radiation, and precipitation fluxes from the operational NCEP
Global Forecast System. It runs once a day and produces nowcasts and forecast guidance for sea
surface values (SSH, SST, and SSS) at three hour intervals, and full volume parameters (3-dimensional
temperature, salinity, currents, and mixed layer depths) at six-hourly interval. The nowcast outputs of
the three-hourly water level and the six-hourly 3-D currents and T/S as the non-tidal forcing were
spatially interpolated onto the model grid’s open ocean boundaries and temporally interpolated across
the hindcast period of the entire year of 2012.

It is noted that no adjustment on the G-RTOFS data were performed to improve the accuracy
of the open ocean boundary conditions. Due to the lack of real-time observations at locations
along the GoMOFS open boundary, it is not feasible to realize the adjustment during the GoMOFS
operational practice. Considering that the hindcast simulation with the non-adjusted G-RTOFS forcing
demonstrated skills meeting the NOS standard skill assessment criteria (Section 5), we decided to
accept the “flawed” model configurations and the results therein in the forecast implementation. It is
noted that data assimilation should ultimately be the methodology (being considered for future NOS
OFS implementations) to solve this kind of input errors.

The river forcing includes discharges from nine rivers along the Gulf coast. From north to south
they are: St. John River, St. Croix, Machias River, Penobscot River, Kennebec River, Androscoggin
River, Saco River, Merrimack River, and Neponset River. The river discharge and water temperature
data were the U.S. Geological Survey (USGS) river discharge observations [22]. Note that the river
discharge data were available at locations usually far from the river mouths. In the hindcast setup,
the magnitude of the discharge was increased by 20%. This factor was determined through a series of
empirical trial-and-error experiments.

The salinity was specified to be zero for all nine rivers. The assumption of zero salinity was
the recourse that was decided upon after considering factors such as data availability, the model
grid configuration for the river course, and the skill of the hindcast run results. The GoMOFS model
grid goes into the river course by four to ten kilometers for different rivers rather than defining the
river entrance by the nodes immediately along the open coast. The distances from the open coast
are not large enough to fully justify the zero salinity assumption. However, there is a lack of salinity
observations of the river discharge. Hence, following the “informal” common practice, we specified
the zero salinity values rather than choosing any other arbitrary value. As an ad hoc justification
for the zero-salinity assumption and for the adjusted discharge, the hindcast salinity demonstrated
reasonably good agreement with the observations (Section 5).

The hindcast made use of the 12-km resolution forecast guidance of the NOAA National Center
for Environmental Predictions (NCEP’s) North American Mesoscale Forecast Modeling System (NAM)
for surface forcing. The ROMS model was forced with 10-m wind velocity to compute the surface
wind stress, 2-m surface air temperature and relative humidity, total shortwave radiation, downward
longwave radiation, and the ROMS bulk formulation to calculate the air-sea momentum and heat
fluxes, evaporation and precipitation rate to calculate the net salinity flux across the air-sea interface.

Two scenarios of model simulations were conducted: a tidal forcing only simulation and a
hindcast simulation of year 2012. The model configuration in both simulations remains the same
except that the former was initialized with constant water temperature and salinity and forced with
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tidal water level and currents on the open ocean boundary, whereas the latter was driven with the
total water level and currents on the open ocean boundary, sea-surface meteorological forcing, and
river forcing. The purpose of the tidal only simulation was to verify the tidal open ocean boundary
setup so as to ensure a favorable model performance in reproducing realistic water levels.

3. Observation Data

The observed data for the skill assessment are water levels from the NOS Center for Operational
Oceanographic Products and Services (CO-OPS) water level stations, temperature (T) from the
CO-OPS meteorological observation stations, the National Data Buoy Center (NDBC) buoys, and the
Northeastern Regional Association of Coastal Ocean Observing Systems (NeraCOOS) buoys, and
salinity (S) and currents from the NeraCOOS buoys.

The water level data in 2012 were downloaded from the NOS CO-OPS Web site [23]. Of the
stations with the real time observations in 2012, the data from six stations (Figure 1a) were chosen for
the model-data comparison by comparing the station location with the model domain and the grid
layout. Some other stations located in the small estuaries, embayment, or inter-island channels which
were not resolved by the model grid were excluded. They are the stations 8449130 (Nantucket Island,
MA, USA), 8447930 (Woods Hole, MA, USA), 8447435 (Chatham, MA, USA), and 8410140 (Eastport,
ME, USA).

The water temperature data were collected at five CO-OPS meteorological observation stations,
ten NDBC buoys, and seven NeraCOOS buoys (Figure 1). All three data sets were downloaded from the
NDBC online archive [24]. The CO-OPS and NDBC data were near surface observations. The depths
of the CO-OPS and the NDBC measurements are shown in Figure 1a), respectively. The NeraCOOS
measurement depths are listed in Table 1.

Table 1. Measurement depths of water temperature, salinity, and current velocity at the
NeraCOOS buoys.

Station ID
Depth Relative to Mean Sea Level (m)

Temperature Salinity Current Velocity

A01 1, 2, 4 ,20, 50, 51 1, 20, 50 10, 22, 34, 46
B01 1, 2, 4, 20, 50 1, 20, 50 18, 30, 42
E01 1, 2, 4, 20, 50 1, 20, 50 18, 30, 42, 54, 66
F01 1, 2, 20 1, 20, 50 14, 26, 38, 50, 62, 74
I01 1, 2, 20, 50 1, 20, 50 14, 26, 38, 50, 62

M01 1, 2, 2.8, 20, 50, 150, 200 1, 20, 50, 200 34, 58, 82, 106, 130, 154, 178, 194
N01 1, 2, 20, 50, 100, 150,180 1, 20, 50, 100, 150, 180 24, 48, 72, 96, 104, 128, 152

Both the salinity and current velocity data were from the seven NeraCOOS buoys (Figure 1).
Table 1 lists the corresponding measurement depths. The data were downloaded from the NeraCOOS
website [25].

4. Results

4.1. Tidal Simulation

We computed the harmonic constants of tidal water levels using the outputs of the six-month,
tidal forcing only simulation. Figure 3 displays the scatter plots of the model-data harmonics of four
constituents: M2, S2, N2, and K1, respectively. The constituents represent the most prominent three
semidiurnal and one diurnal constituents in the area. Table 2 lists the corresponding station IDs and the
model-data differences at 24 NOS/CO-OPS water level stations encompassed in the GoMOFS domain.

For all the four constituents, the model-data discrepancy lies within the ten-percent lines at nearly
all stations. A further detailed investigation indicated that the few outliers (see plots in Figure 3c,e,g,h)
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correspond to some coastal locations which were barely resolved with the current model grid. Over
the 24 stations, the averaged root-mean-squared errors (RMSE) of the tidal amplitude are 4.3, 1.6, 1.7,
0.8 cm for M2, S2, N2, and K1, respectively; the corresponding RMSEs for tide phase are 3.8, 7.3, 4.5,
and 3.3 degrees. Note that in obtaining the K1 phase error of 3.3 degrees, three outlier stations (8455083,
8459338, and 8459479) were excluded from the calculation.

In general, the tidal simulation produced favorable model-data agreement with respect to both
amplitude and phase. This helps the hindcast and the future nowcast/forecast system to reproduce
realistic water levels.

Figure 3. Scatter plots of the tidal harmonic constants (amplitudes and phases) of M2, N2, S2, and K1

constituents between model results and observations. The red lines on each plot outline the ten percent
deviation from the perfect model-data match. (a) M2 amplitude; (b) M2 phase; (c) S2 amplitude; (d) S2

phase; (e) N2 amplitude; (f) N2 phase; (g) K1 amplitude; and (h) K1 phase.

4.2. Hindcast Simulation

The hindcast simulation ran from 1 January to 30 December 2012. It started from a still water state
with the T/S fields initialized with the G-RTOFS results. Following an initial 5-day ramping up, the
model run continued for another 10 days to ensure that an equilibrium state was reached. The time
series of the ocean state variable (water level, currents, and T/S) were recorded at the 6-min interval
from the 15th day to the end of the hindcast run. We then used the time series to evaluate the model
performance using the NOS standard skill assessment software [16].

4.2.1. Water Levels

Figure 4 showed both the modeled and observed subtidal water level time series after applying a
30-day Fourier Transform low-pass filter to the total water level data. The model results demonstrated
favorable agreement with the observations during both the event-free period (October) and the event
period (early November). For instance, the model successfully reproduced the water level setup at
stations 8423898, and 8443970 in early November (Figure 4e,f). At some stations, such as 8419317 and
8423898 (Figure 3d,e), the model slightly over-predicted the water levels in mid-October.
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Table 2. The model-data comparison of harmonic constants for the M2, S2, N2, and K1 constituents,
respectively. The stations are listed in the order of the total tidal range ranking from the largest to
the smallest.

Station
ID

Station Name

Differences between the Model Predictions and Observations
M2 amp

(cm)
M2 Phase
(Degree)

S2 amp
(cm)

S2 Phase
(Degree)

N2 amp
(cm)

N2 Phase
(Degree)

K1 amp
(cm)

K1 Phase
(Degree)

8411250 Cutler Naval Base, ME −2.7 2.1 0.8 6.3 2.1 1.3 0.9 −2.7
8414721 Fort Pt., ME −7.6 1.2 1 4 −0.5 4.4 −0.1 −7.6
8413320 Bar Harbor, ME −3.4 1.7 0.1 5.5 0.3 1.1 0.6 −3.4
8413825 Mackerel Cove, ME −4.1 1 1.4 3.9 0 −5.9 −1.4 −4.1
8414249 Oceanville, Deer Isle, ME −4.5 2 −0.1 −10 −0.1 2.7 1.3 −4.5
8414888 Penobscot Bay, ME −2.7 −0.5 1.4 3 −0.2 0 0.3 −2.7
8447241 Sesuit Harbor, MA −3.9 1.4 0.2 3.9 0 2.1 0.4 −3.9
8446121 Provincetown, MA −0.7 2.5 3.6 2.5 −0.2 3.7 0.6 −0.7
8446166 Duxbury Harbor, MA 0.2 −7.3 2 −9.1 1.6 −8.4 0 0.2
8444525 Nut Island, MA −1.3 −0.5 0.2 2.1 0.5 1 0.2 −1.3
8446493 Plymouth Harbor, MA 0.2 −4.6 0.3 −4.3 1.4 −2.7 0.2 0.2
8444162 Boston Light, MA 0.6 0.9 0.3 4.1 0.8 0.5 0.2 0.6
8418606 Saco River, ME 2.5 −1.5 1.4 −0.6 1.3 −1.5 −0.5 2.5
8446009 Green Harbor River, MA 1.9 −1.9 1.3 −0.2 0.5 1.8 0.2 1.9
8441551 Rockport Harbor, MA 0.8 0.7 1.3 2 0.2 −0.1 −0.4 0.8
8418445 Pine Point, ME 4.6 −5.5 3.1 −5.2 2.8 −9.7 0.1 4.6
8417177 Hunniwell, ME 7.1 −3 1.9 2.9 1.7 −3.4 −0.1 7.1
8440452 Plum Island, MA 14.1 −9.1 3.8 −7.6 7 −10.9 1 14.1
8455083 Point Judith, RI −3.3 −3.7 −0.8 −7.5 −0.9 −2.6 −0.3 −3.3
8447605 Hyannisport, MA −3.1 8.8 −0.2 26.9 −0.5 2.4 2.2 −3.1
8459338 Block Island, RI −2.5 −357 −0.9 −3.5 −0.2 1.7 1.4 −2.5
8459681 Block Island, RI −0.8 2.2 −0.3 −1.4 −0.1 2.6 0.8 −0.8
8459479 Sandy Point, RI −0.5 −0.5 −0.4 −5.6 0.1 −0.8 0.6 −0.5
8458022 Block Island Sound, RI 2.6 −5.3 1 −0.7 0 351.6 −1.4 2.6

Figure 4. Cont.
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Figure 4. Subtidal water levels at six CO-OPS water level stations (Figure 1). The red and black lines
represent the model results and observations, respectively. The six plots are for stations (a) 8411060;
(b) 8413320; (c) 8418150; (d) 8419317; (e) 8423898; and (f) 8443970.

4.2.2. Currents

Figure 5 displays the (u, v) components of the modeled and observed subtidal time series at three
measurement depths (10 m, 22 m, and 46 m) at buoy A. The subtidal data were extracted from filtering
the model output with a 30-h low-pass Fourier filter.

Figure 5. Comparison of the model (red lines) and the data (blue lines) time series of the current
velocity (u, v) at the NeraCOOS buoy station A. The measurement depths are shown on the plots.
(a,b) depict the u and v components at the 10 m depth; (c,d) depict the u and v components at the 22 m
depth; and (e,f) depict the u and v components at the 46 m depth.
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The hindcast simulation successful reproduced in the events taking place in early June and early
to mid-November, respectively. During the events, the currents appeared to be more intense in shallow
layers (at 10 m and 22 m) than in deeper layers (at 46 m). Comparison of the time series between the
winds and the currents indicated that the enhanced currents speeds resulted from the intensified wind
stress during the events.

4.2.3. Water Temperature

The modeled temperature time series were compared with the observations at the CO-OPS
meteorological stations and the NDBC buoys, and NeraCOOS buoys. The model results demonstrate
favorable agreement with the observations. As an example, the left panel in Figure 6 displays the
monthly averaged temperature at six depths (1 m, 20 m, 50 m, 100 m, 150 m, and 200 m) at the
NeraCOOS buoy M01. The plots illustrated that the model successfully reproduced both the magnitude
and the annual cycle of the temperature. The near surface water temperature varied between 6 ◦C in
the winter and the early spring and 20 ◦C in the mid-summer. In deeper water, temperature remained
at a nearly constant value of 9 ◦C throughout the year. This suggests that an intense thermocline
existed during the summer and completely faded away in the winter.

Figure 6. (Left panel) Comparison of the monthly averaged water temperature between the model
(red bars) and the observations (blue bars) at the NeraCOOS buoy M01. The measurement depths
are as shown on each plot. On some plots the observations do not appear due to the lack of data.
(Right panel) Bias of the modeled monthly mean temperature. The thin lines on top of each bar plot
represent the corresponding standard deviations.
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The right panel in the figure displays the bias and the standard deviation (std) of the monthly
averaged model temperature. The bias ranged from near zero to less than 1 ◦C and did not exhibit
evident trend of seasonal variations. The std ranged between 0.03 and 1.2 ◦C and appeared to be
greater in summer than in spring and winter.

4.2.4. Salinity

The modeled time series were compared with observations at the seven NeraCOOS buoys
(Figure 1 and Table 1). The left panel in Figure 7 displays the monthly averaged salinity of at buoys
A01 and M01. The corresponding measurement depths were 1 m, 20 m, and 50 m at buoy A01 and
1 m, 20 m, 50 m, 100 m, 150 m, and 200 m at buoy M01. The right panel displays the corresponding
model bias and std.

Figure 7. (Left panel) Comparison of the monthly averaged salinity between the model (red bars)
and the observations (blue bars) at the NeraCOOS buoys A01 and M01. The station name and the
measurement depths are as shown on each plot. On some plots the observations do not appear due to
the lack of data. (Right panel) Bias of the modeled monthly mean temperature. The black lines on top
each bar represent the corresponding standard deviations.
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In general, salinity exhibited greater temporal variability near the surface than in deeper waters,
especially during the late spring, summer, and early fall. The modeled salinity demonstrated positive
biases with the typical magnitude of 0.5–1.0 psu at nearly each station throughout the year. This
indicated that the hindcast tended to overestimate the salinity. However, this did not seem to be rooted
from the specifics of the currently adopted turbulence closure scheme (TCS). In fact, the other TCS
such as the k-ε, k-ω, and KPP models in the ROMS were also tested and they demonstrated similar
model skills. Model bias might be attributed to inherent errors of various model forcing data.

During these periods, the model-data discrepancy appeared to be greater than in the winter.
For instance, at buoy A01 the modeled surface salinity differed from the observations by 1.5 to 2 psu in
the summer months, whereas the two exhibited close match in the winter months. Farther offshore
at buoy M01, the model-data discrepancy appeared to be much smaller than at buoy A. The model
agreed well with the observations in the fall and winter seasons. Even during the hydrodynamically
active spring and summer seasons, the model-data differed by less than about 1 psu.

To examine the impact of the river discharges and rainfall forcings on the modeled salinity,
we estimated the correlation coefficient, CSP, between the sea-surface salinity (SSS) and the precipitation
rate and the coefficient, and CSR between the SSS and the discharge rates from the nearest river to each
NeraCOOS station. It was found that the magnitude of CSP was less than 0.06 at all stations. This
seems to indicate that at the NeraCOOS stations the rainfall played a minor role in determining the
modeled SSS compared with other forcing factors or ambient conditions.

CSR was −0.42 and −0.46 at Stations B and F, respectively and was much less significant
(|CSR| < 0.05) at the other stations. Note that Stations B and F are relatively closer to the river
entrance than the others and therefore demonstrated relatively higher CSR. Figure 8a,b display the SSS
and river discharge time series at Stations B and F to highlight the close correlation between the two
properties at the stations.

Figure 8. Daily time series of salinity (S) (black lines) and the river discharge (Q) (red lines): (a) S at
station B01 vs. Q of the Saco River and (b) S at Station F01 vs. Q of the Penobscot river.

5. Skill Assessment

We evaluated the hindcast results using the NOS standard skill assessment software [16].
The model time series of water level, currents, temperature, and salinity were compared against
the observed data (Section 2). In the following, we focused on reporting two key parameters, RMSE
and the central frequency (CF). CF represents the fraction (percentage) of the model errors that are less
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than some prescribed criteria of RMSE. The NOS standard prescribes the criteria as 0.15 cm for water
level, 0.26 m/s for the currents speed and 22.5 degree for the phase of currents, 3.0 ◦C for temperature,
and 3.5 psu for salinity, as well as the constant value of CF equal to 90% for all the above ocean state
parameters. The present skill assessment results demonstrated that the hindcast performance met
the above criteria. It is noted that the one set value criteria are not region specific and may not reflect
the regional variability of the concerned variables. Hence it poses limitations on the validity and
applicability of the model skill metrics from the criteria.

We compared the criteria with the performance of the nowcast/forecast system of the Gulf of
Maine Ocean Observing System (GoMOOS) [10] in terms of monthly averaged properties (i.e., T, S,
and current speeds). In general, the GoMOOS model skill in all three variables meet the NOS criteria,
especially for the 3 ◦C RMSE temperature criteria. The present results (reported in the following)
also meet the criteria with large margins at nearly all stations. In this regard, the 3 ◦C criteria does
not pose serious change to the model skill in the GoM region. This seems to indicate that the region
specific criteria would be needed to closely reflect the model skill. Bearing this in mind, we adopted
the constant criteria in this study before any regional dependent criteria are officially developed in
the future.

5.1. Water Level

Figure 9 display the model RMSE and CF, respectively. The RMSE ranges nearly from 0.09 m
(Station ID 8418150, Portland, ME, USA) to 0.13 m (Station ID 8411060, Cutler Farris Wharf, ME,
USA). The CF ranges from 76.2% (Station ID 8411060, Cutler Farris Wharf, ME) to 89.6% (Station ID
8418150, Portland, ME, USA). With respect to the RMSE and CF, the hindcast demonstrated better
skill at stations near the central western Gulf coast than that along the Massachusetts coast and the
northern Maine coast.

Figure 9. RMSE of the modeled water level.

The better model skill in the central domain stations might be attributed to their particular
geographical locations. The stations are farther away from either the open ocean boundary (OOB) or
the Bay of Fundy (BF) area compared with the other stations. The tidal range in the BF may reach up to
nearly 7 m due to the tidal resonance effect (Section 1). The farther distance naturally made the central
domain receive less adverse impact on the model skill due to the inherent inaccuracies in the OOB
conditions or the errors in the model predicted tidal resonance effect in the BF.
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5.2. Currents

Figure 10a,b displays the RMSE the currents speed and phase, respectively. In each figure, the
station ID is named with the first letter denoting the buoy ID (Figure 1) and the following digits
denoting the measurement depths in meter.

Figure 10. Skill assessment results of the currents speed and phase. (a) RMSE of speed and (b) RMSE
of phase.

For the current speed, the RMSE ranges from 0.05 m/s at station E-66m to about 0.20 m/s at
stations F-74m and N-24m. CF were mostly greater than 95% and lay between 80% and 90% at stations
F-74m and N-24m. At buoys stations A, B, E, F, and M, RMSEs ranged between less than 2 degrees to
10 degrees and CFs were all above 95%. At station N01, RMSE was between 15 cm/s and 17 cm/s and
CF was around 85% at all depths.

Note that the station N01 demonstrated significantly less favorable model skills than the other
stations. This might be related to the complex hydrodynamics in the Northeast Channel where the
station is located (Figure 1a). The channel has a sill depth of 230 m and is the major pathway for
the water mass exchange between the Gulf and the open ocean. The deep ocean water flows into
the central Gulf at depths and the Scotian water flows across the channel in the near surface layer.
The channel also serves as a major route for tidal energy to propagate into the Gulf. The combined
subtidal and tidal currents may reach a speed of 1 m/s or more. In contrast, hydrodynamics in the
other areas of the Gulf appear to be much less complex. The complex hydrodynamics in the channel
posed more serious challenges to realistically reproduce the local hydrography than elsewhere and
contributed to the greater model errors at Station N01.

5.3. Water Temperature

Figure 11 illustrates the skill assessment results in three groups with respect to the sources of
observed data, i.e., CO-OPS stations, the NDBC buoys, and the NeraCOOS buoys. In each figure,
the abscissa represents the station ID. In particular, the NeraCOOS station IDs (Figure 11c) followed
the same naming convention as shown in Figure 8. Both the CO-OPS and the NDBC buoy data
corresponded to the near surface measurements and the NeraCOOS data correspond to both the
surface and in-depth measurements. In addition, the CO-OPS stations are located in the nearshore
area whereas the other two data sets (the NDBC and NeraCOOS buoys) correspond to the further
offshore areas and even in the central Gulf and near the shelfbreak area. Therefore, the skill assessment
results of the three groups represent the hindcast performance in different hydrodynamic regimes, e.g.,
nearshore vs. offshore areas as well as at the sea surface vs. the in-depth waters.

The RMSE at the seven CO-OPS stations ranged from 0.9 ◦C to 1.7 ◦C and CF was all above 95%.
The RMSE at the NDBC stations was between 0.7 ◦C and 1.8 ◦C. Correspondingly CF was above 90%.

The RMSE at the NeraCOOS stations ranged from less than 1.0 ◦C at station M01 in the eastern
Gulf to around 2.3 ◦C at stations N01-20m and −50 m. CF was above 90% except at stations N01-20m
and −50 m for which CF equaled ~80%. Note that buoy N is located in the Northeast Channel
(Figure 1).
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Figure 11. The RMSE of the modeled water temperature compared with three sets of observed data,
(a) the CO-OPS stations; (b) the NDBC buoys; and (c) the NeraCOOS buoys.

5.4. Salinity

Figure 12 displays the RMSE of the salinity skill assessment results. In general, the RMSE ranged
from 0.2 psu to 1.5 psu and the CF was close to 100%. At buoys A, B, E, F, I, and M, the RMSE of
the near-surface salinity was around 1.0–1.5 psu, whereas the RMSE in the subsurface layer is much
smaller, less than 0.7 pus in general. At buoy N, the RMSEs at all three depths (1 m, 20m, and 50 m)
were between 1.0 psu and 1.4 psu.

Figure 12. The RMSE of the modeled salinity.
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6. Summary and Conclusions

The NOAA NOS is developing the Gulf of Maine operational nowcast/forecast system
(GoMOFS) to aim for producing real-time nowcast and short-range forecast guidance for water
levels, 3-dimensional currents, water temperature, and salinity over the broad GoM region.
Following the routine procedure of the OFS development, we conducted a one-year period hindcast
simulation of 2012. This manuscript described the model development, hindcast setup and the skill
assessment results.

The model performance was evaluated using the NOS standard skill assessment software and
the criteria by comparing the hindcast results with the observed time series of water level, T/S, and
currents collected by both the NOAA agencies (including the CO-OPS and NDBC) and the NeraCOOS.
In general, the hindcast results met the skill assessment criteria. The RMSE was about 0.12 m for water
level, less than 1.5 ◦C for temperature, less than 1.5 psu for salinity, and less than 0.2 m/s for the
currents speed and less than 15 degrees for the currents phase. The corresponding central frequency
was between 80% and 90% for the water level and generally above 90% for the other properties.

The NOS is working on transitioning the hindcast setup into operations on the NOAA’s Weather
and Climate Operational Supercomputing System. The GoMOFS is anticipated to be in operations in
fiscal year 2017.
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Abstract: In support of the National Oceanic and Atmospheric Administration’s VDatum program,
a new version of a tidal datum product for the North Carolina coastal waters has been developed
to replace the initial version released in 2004. Compared with the initial version, the new version
used a higher resolution grid to cover more areas and incorporated up-to-date tide, bathymetry,
and shoreline data. Particularly, the old bathymetry datasets that were collected from the 1930s to
the 1970s and were used in the initial version have been replaced by the new bathymetry datasets
collected in the 2010s in the new version around five North Carolina inlets. This study aims at
evaluating and quantifying tidal datum changes induced by morphological changes over about
40 to 80 years around the inlets. A series of tidal simulations with either the old or new bathymetry
datasets used around five inlets were conducted to quantify the consequent tidal datum changes.
The results showed that around certain inlets, approximately 10% change in the averaged depth
could result in over 30% change in the tidal datum magnitude. Further investigation also revealed
that tidal datum changes behind the barrier islands are closely associated with the cross-inlet tidal
flux changes.

Keywords: VDatum; tidal datums; morphological changes; inlets; North Carolina

1. Introduction

The software package VDatum, developed and maintained by the National Oceanic and
Atmospheric Administration (NOAA), allows users to transform geospatial data among a variety
of ellipsoidal, orthometric, and tidal datums [1]. For example, users can integrate the United States
Geological Survey’s elevation data referenced to the North American Vertical Datum of 1988 (NAVD88)
with NOAA’s sounding data referenced to Mean Lower Low Water (MLLW) to build a seamless
bathymetry-topography Digital Elevation Model (DEM) dataset referenced to a common datum of
Mean Sea Level (MSL) by using VDatum. The integrated DEM provides a basis for coastal inundation
modeling and mapping [2].

As a critical part of VDatum, tidal datums are derived from water level time series simulated by a
tide model. The tidal highs and lows from modeled water levels are used to calculate tidal datums:
Mean Higher High Water (MHHW), Mean High Water (MHW), Mean Low Water (MLW), and Mean
Lower Low Water (MLLW) [3]. Following the VDatum Standard Operating Procedures [4], we use the
ADvanced CIRCulation (ADCIRC) model [5] to conduct tidal simulations for deriving tidal datums in
VDatum. The ADCIRC model has been widely used for tidal simulations from the basin scale [6–8] to
the regional scale [9–11].

The initial version of VDatum for North Carolina was released in 2004 [12]. An updated version
has been developed to cover more areas and incorporate up-to-date tide, bathymetry, and shoreline
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data. Around five main North Carolina inlets (Beaufort, Barden, Ocracoke, Hatteras, and Oregon
Inlet), the bathymetry datasets collected from the 1930s to the 1970s were used in the initial version
for tide modeling to derive tidal datums. These old bathymetry datasets have been replaced by
the datasets collected in the 2010s around five inlets in the updated version. Tidal datum changes
induced by morphological changes of the inlets need to be quantified to provide NOAA guidance for
future updating of VDatum, installing new tide gauges, and conducting new hydrographic surveys in
this region.

Tidal inlets are typically dynamically active regions where tidal circulation and transport lead
to continuous sediment movement and thus morphological changes. In general, the combination
of tides and waves was considered to shape the inlet morphology into different types: flood-tidal
delta and ebb-tidal delta [13–16]. Tidal distortion was found to affect net sediment transport [17,18].
Tidal prism and inlet cross-sectional area were also considered as important factors to affect the inlet
morphology [19]. Around North Carolina’s Beaufort Inlet, a nearshore jet in tidal circulation was
identified and simulated and was considered to be associated with the net transport through the
inlet [20,21]. Sediment deposition and erosion around North Carolina inlets was investigated with the
local dynamics by Inman and Dolan [22]. These previous studies have mainly been focused on how
hydrodynamics (e.g., tides and waves) affect the morphology of the inlets. Little attention has been
paid to the feedback of tides to morphological changes of the inlets.

In this study, we aimed at evaluating and quantifying how morphological changes of the inlets
affect tidal changes. This paper is organized as follows: following the introduction section, Section 2
describes the sources of a variety of tide, shoreline, and bathymetry data, as well as the tide model
setup, numerical experiment design, and model validation. The results will be described in Section 3
followed by some discussions and conclusions in the last section.

2. Materials and Methods

2.1. Data Sources

The water level data [23] and the observed tidal datums [24] provided by the Center for
Operational Oceanographic Products and Services (CO-OPS) of NOAA were used for model validation.
CO-OPS typically publishes one single value for a particular tidal datum (e.g., MHW) at one station.
The tidal datums were typically derived from the water level time series for a certain time period
(from a couple of months to years). The observed tidal datums were referenced to the current National
Tidal Datum Epoch (NTDE) (1983–2001) [24]. In this paper, the observed tidal datums at 31 tide
stations were compared with the modeled tidal datums to evaluate the general model performance
in North Carolina coastal waters. Since the identification (ID) numbers of all North Carolina stations
begin with 865, the 865 will be ignored when we describe station IDs in the following discussions.

The locations of all 31 datum stations are shown in Figure 1. Among these stations, the 4 outside
stations 1370, 4400, 6590, and 6937 are located on the Atlantic Ocean coast. The other 27 inside stations
are located behind the barrier islands and within the sounds and estuaries. Among the 31 datum
stations, tidal harmonic constituents are also provided for 16 stations [25]. In addition, the hourly
water level data collected from 1967 to 2016 at Beaufort Station (ID: 6483), about 4 km behind the
Beaufort Inlet and Duck Station (ID: 1370) on the Atlantic coast, were used to evaluate the temporal
variation of MHW.

The development of the hydrodynamic model grid requires shoreline and bathymetry data.
The National Geodetic Survey provided the up-to-date North Carolina shoreline data which combined
NOAA Continually Updated Shoreline Product (CUSP) and the Office of Coast Survey (OCS) chart
shoreline data [26]. The bathymetry data were mainly from three sources. The OCS sounding data
collected from 1851 to 2012 were used for most of the North Carolina coastal regions. The particular
areas covered by the datasets collected in a certain year can be found in a Bathymetry Data Viewer [27].
A global bathymetry-topography database SRTM30_PLUS from Scripps Institution of Oceanography
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was used for the far offshore region [28]. The sounding data collected since 2010 by the U.S. Army
Corps Engineers’ Wilmington District were used for coastal inlets and intra-coastal waterways [29].
All the up-to-date tide, bathymetry, and shoreline data have been applied to derive the updated tidal
datums used by the currently available VDatum tool.

  
(a) (b) 

Figure 1. Map of North Carolina coastal waters and inlets and the locations of the National Oceanic and
Atmospheric Administration (NOAA) water level stations (black dots): (a) Northern part; (b) Southern
part. Please note that the scale in (b) is 4 times larger than (a).

2.2. Model Setup

The ADCIRC [5] Two-Dimensional Depth Integrated (2DDI) version was used in this study to
solve the shallow water equations and simulate tidal water levels. The finite amplitude and convection
terms and the wetting and drying option were activated. The lateral viscosity was set as a constant,
5.0 m·s−2, throughout the model domain. The quadratic bottom friction scheme was used with a
constant coefficient of 0.0025. The model was forced by a reconstructed tide at the ocean boundary
(shown as blue lines in Figure 2a) using the harmonic constants of the five most significant tidal
constituents (M2, S2, N2, K1, and O1) from the EC2001 tidal database [7].

  
(a) (b) 

Figure 2. (a) The triangular model grid (the blue lines delineate the open ocean boundary; the green
lines delineate the land boundary); (b) Model grid bathymetry in North Carolina coastal waters
(the regions deeper than 20 m use the same blue color; the black line shows the location for longitudinal
profiles in Figures 15 and 16).
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The time step was set to be 1 s. Under this condition, the maximum Courant number is 0.67 over
the smallest elements in the grid. This ensured model stability. The model simulations covered a
time period of 40 days. The first 10 days were used for the tidal field to reach an equilibrium state.
The 6-min water level time series at each node from the last 30 days of each simulation were then used
to derive tidal datums and harmonic constants. The 15-min velocity time series at each node from the
last 15 days of each simulation were used to calculate the flood and ebb fluxes across the inlets.

A triangular mesh (Figure 2a) has been developed with a spatially varying resolution from
30 km offshore to 10 m inland to resolve important geographical features such as inlets, channels,
estuaries, and bays. We used this mesh as a basis to generate the model grids by interpolating the old
(1930s–1970s) and the new (2010s) bathymetry datasets around five North Carolina inlets (Beaufort,
Barden, Ocracoke, Hatteras, and Oregon Inlet) onto the mesh. In the following discussions, we will
use the old-bathy grid to represent the model grid using the old (1930s–1970s) bathymetry data and
use the new-bathy grid to represent the model grid using the new (2010s) bathymetry data around
the inlets. The particular collection years for the old and new bathymetry datasets around each inlet
have been listed in Table 1. For the old-bathy grid, we combined the patched bathymetry datasets
collected in 1956 and 1962 around Ocracoke Inlet to represent the general morphology in this region in
the mid-20th century. For the new-bathy grid, we combined the bathymetry datasets collected in 2014,
2015, and 2016 around Hatteras Inlet and the bathymetry datasets collected in 2014 and 2016 around
Oregon Inlet to represent the recent morphology in these two regions. The detailed coverages of the
old and the new bathymetry datasets are shown for Beaufort and Barden Inlet in Figure 3d, Ocracoke
and Hatteras Inlet in Figure 4d, and Oregon Inlet in Figure 5d. Other than the inlet regions delineated
by the polygons in Figures 3–5, the old-bathy grid and the new-bathy grid have the same depths
interpolated from the same bathymetry datasets described in Section 2.1. Therefore, the only difference
between the old-bathy grid and the new-bathy grid was the bathymetry around the five inlets.

Table 1. Bathymetric data and morphological parameters around five North Carolina inlets.

Inlet
Width
(km)

Area with Changed
Bathymetry (km2)

Collection Years of
Old Bathymetry

Mean Depth of
Old-Bathy (m)

Collection Years of
New Bathymetry

Mean Depth of
New-Bathy (m)

Beaufort 1.3 6.2 1953 5.0 2010 7.2
Barden 0.7 4.3 1955 1.7 2015 2.9

Ocracoke 2.4 8.8 1956, 1962 4.0 2013 4.9
Hatteras 2.2 8.7 1935 2.6 2014, 2015, 2016 2.7
Oregon 1.0 3.7 1975 3.6 2014, 2016 4.0

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. The morphological changes around Beaufort Inlet and Barden Inlet: (a) the old-bathy grid
depths; (b) the new-bathy grid depths; (c) the depth difference between the new-bathy grid and the
old-bathy grid; (d) the original bathymetry sounding data points (orange: data in 1953 around Beaufort
Inlet and data in 1955 around Barden Inlet; blue: data in 2010 around Beaufort Inlet and data in 2015
around Barden Inlet). The black dotted polygons delineate the area with changed bathymetry.

  
(a) (b) 

  
(c) (d) 

Figure 4. The morphological changes around Ocracoke Inlet and Hatteras Inlet: (a) the old-bathy grid
depths; (b) the new-bathy grid depths; (c) the depth difference between the new-bathy grid and the
old-bathy grid; (d) the original bathymetry sounding data points (orange: data in 1956 and 1962 around
Ocracoke Inlet and data in 1935 around Hatteras Inlet; blue: data in 2013 around Ocracoke Inlet and
data in 2014, 2015, and 2016 around Hatteras Inlet). The black dotted polygons delineate the area with
changed bathymetry.
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(a) (b) 

  
(c) (d) 

Figure 5. The morphological changes around Oregon Inlet: (a) the old-bathy grid depths; (b) the
new-bathy grid depths; (c) the depth difference between the new-bathy grid and the old-bathy grid;
(d) the original bathymetry sounding data points (orange: data in 1975 around Oregon Inlet; blue:
data in 2014 and 2016 around Oregon Inlet). The black dotted polygons delineate the area with
changed bathymetry.

The same model setup and tidal forcing were applied to the models using the old-bathy grid and
the new-bathy grid. In the following discussions, we will use the old-bathy model and the new-bathy
model to represent the models using the old-bathy grid and the new-bathy grid, respectively.

Since Beaufort Inlet and Barden Inlet are close to each other, we made another two grids
new-bathy-BE and new-bathy-BA to evaluate the tidal datum changes induced by the morphological
changes of each individual inlet. For the new-bathy-BE grid, the new bathymetry data were used
around Beaufort Inlet and the old bathymetry data were used for the other four inlets. Similarly,
for the new-bathy-BA grid, the new bathymetry data were used around Barden Inlet and the old
bathymetry data were used for the other four inlets. We will use the new-bathy-BE model and the
new-bathy-BA model to represent tidal simulations using the new-bathy-BE grid and the new-bathy-BA
grid, respectively, in the following discussions.

The overview of the common area bathymetry is shown in Figure 2b. Most regions behind the
barrier islands are shallower than 8 m. There are significant bathymetric differences between the
old-bathy grid and the new-bathy grid around the inlets, as shown in Figures 3–5. For example, around
Beaufort Inlet (Figure 3), the mean depth has increased by 44% from the old-bathy depth of 5.0 m to the
new-bathy depth of 7.2 m. In addition, the recent deep channel became deeper and wider relative to
about 60 years ago. These morphological changes around Beaufort Inlet should be mainly associated
with historical dredging activities [30]. The mean depths increased by 70%, 22%, 4%, and 11% from the
old-bathy grid to the new-bathy grid around Barden Inlet, Ocracoke Inlet, Hatteras Inlet, and Oregon
Inlet, respectively. The morphological parameters for five inlets are listed in Table 1.
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2.3. Model Validation

Computed tidal datums from both the old-bathy model and the new-bathy model were compared
with the observed tidal datums at 31 stations. The root mean squared errors (RMSEs) of both models
for four tidal datums have been listed in Table 2. In general, both models had decent performances
relative to the observations. The new-bathy model had a little higher overall performance than the
old-bathy model. It should be noted that the RMSEs of the new-bathy model are slightly higher than
the uncertainty values published on the VDatum website [31]. This is mainly because the official
VDatum tidal datums were calculated from longer time series of simulated water levels.

Table 2. The root mean squared errors of the modeled tidal datums relative to the observed ones.

Model
Mean Higher High Water

(MHHW) (cm)
Mean High Water

(MHW) (cm)
Mean Low Water

(MLW) (cm)
Mean Lower Low

Water (MLLW) (cm)

Old-bathy Model 6.1 4.6 4.5 6.0
New-bathy Model 4.8 3.5 3.3 4.5

Since the four tidal datums have similar trend and patterns, only MHW will be discussed as an
example in the rest of the paper. The result for MHW is shown in Figure 6. The new-bathy model
outperformed the old-bathy model at particular stations. At the inside stations not too far away from
the inlets (e.g., 2678, 6084, and 6483), the new-bathy model matched the observations very well while
the old-bathy model underestimated the observations by approximately 5% to 25%. This is because
tidal datums at these stations had changed more dramatically than other stations and the new-bathy
model simulation is closer to the current National Tidal Datum Epoch (1983–2001) conditions. At the
outside stations and the inside stations far away from the inlets (e.g., 1370, 3365, and 6590), the MHW
values from both models had very small differences.
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Figure 6. Comparison of MHW at 31 NOAA stations between the observations (black dots), the
old-bathy model (red solid diamonds), and the new-bathy model (blue solid squares). The blank
diamonds and squares indicate the model errors.

The amplitudes and phases of five principal tidal constituents (M2, S2, N2, K1, and O1) from both
models were also compared with the observations at 16 stations. As an example, the results for M2

(Figures 7 and 8) indicate that the old-bathy model and the new-bathy model had decent performance.
For some stations with small amplitude (e.g., 5875), the discrepancy between the modeled phase and
the observed phase could be relatively high because the obscured tidal signals in the observed water
level time series led to high uncertainty in the observed phase itself.
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Figure 7. Comparison of the M2 amplitude at 16 NOAA stations between the observations (black dots),
the old-bathy model (red solid diamonds), and the new-bathy model (blue solid squares). The blank
diamonds and squares indicate the model errors.
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Figure 8. Comparison of the M2 phase at 16 NOAA stations between the observations (black dots),
the old-bathy model (red solid diamonds), and the new-bathy model (blue solid squares). The blank
diamonds and squares indicate the model errors.

At the inside stations not too far away from the inlets (e.g., 2678 and 6483), the new-bathy
model outperformed the old-bathy model. The old-bathy model had underestimated amplitudes and
overestimated phases relative to the observations.

Tidal datum changes induced by morphological changes of Beaufort Inlet can also be observed
from Beaufort Station (6483) about 4 km behind the Beaufort Inlet as shown in Figure 9a. The value of
each black dot in the figure came from the monthly averaged MHW. In addition to the 18.6-year-cycle
and seasonal variations, there was an obvious trend increasing from ~0.44 m in 1967 to ~0.49 m in 2016.
The 18.6-year-cycle variation is due to the changing locations of the sun and the moon relative to the
earth [2]. For the model results around the same location, MHW increased from 0.41 m of the old-bathy
model to 0.47 m of the new-bathy model, which is largely consistent with the observed trend. As a
comparison, for Duck Station (1370) on the Atlantic coast, MHW also showed the 18.6-year-cycle and
seasonal variations and a slightly decreasing trend based on the analyzed data in 1978–2016 (Figure 9b).
This trend is not reflected in the model results because Duck Station is approximately 50 km away
from the nearest Oregon Inlet and thus is not affected by the inlet bathymetry changes.
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(a) (b) 

Figure 9. Temporal changes for the last few decades of the monthly averaged MHW at two NOAA
stations: (a) Beaufort Station (ID: 6483); (b) Duck Station (ID: 1370). The red lines delineate the linearly
best fit lines.

3. Results

3.1. Tidal Datum Changes Due to Morphological Changes of the Inlets

The MHW from the new-bathy model and the old-bathy model and their differences for the
North Carolina coastal waters are shown in Figures 10–14. In general, MHW had higher values on the
Atlantic Ocean side and lower values behind barrier islands. The MHW values were also higher behind
Beaufort Inlet than those behind the other four inlets, indicating that it is much easier for the tides
to propagate from the ocean into the sounds through Beaufort Inlet. In addition, the waters behind
Beaufort Inlet have smaller areas and deeper depths relative to Pamlico Sound behind Ocracoke Inlet,
Hatteras Inlet, and Oregon Inlet. Thus, tidal energy there is much less dissipated than that within
Pamlico Sound.

  
(a) (b) 

Figure 10. The MHW changes induced only by the inlet morphological changes around Beaufort Inlet:
(a) the MHW difference between the new-bathy-BE model and the old-bathy model; (b) the MHW
change in percentage relative to the old-bathy model MHW. The black dotted polygons delineate the
area with changed bathymetry.

As shown in Figure 10, if the morphological changes only occurred around Beaufort Inlet (i.e., the
new-bathy-BE model), MHW has increased behind Beaufort Inlet in three directions: Newport River,
Bogue Sound, and Back Sound. MHW in the entire Newport River has increased by ~15% from ~0.4 m
to ~0.46 m. The increased MHW becomes smaller where it is farther away from the inlet entrance in
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both the Bogue Sound and Back Sound directions. The percentage of the increased MHW relative to the
old MHW drops to 10% about 10 km away from the inlet entrance in the Bogue Sound direction and
about 5 km in the Back Sound direction. Thus, the inlet morphological changes have more influence on
MHW in the Newport River direction than the other two directions. This is probably because Newport
River is a more enclosed area.

  
(a) (b) 

Figure 11. The MHW changes induced only by the inlet morphological changes around Barden Inlet:
(a) the MHW difference between the new-bathy-BA model and the old-bathy model; (b) the MHW
change in percentage relative to the old-bathy model MHW. The black dotted polygons delineate the
area with changed bathymetry.

As shown in Figure 11, if the morphological changes only occurred around Barden Inlet (i.e., the
new-bathy-BA model), the increased MHW has a maximum of 0.06 m (22% of the old MHW) around
Morgan Island. The percentage of the increased MHW relative to the old MHW drops to 10% 7 km
away from Morgan Island in the Back Sound direction and 3 km in the Core Sound direction. Thus,
the inlet morphological changes have more influence on MHW in the Back Sound direction than in
the Core Sound direction. This is probably because tidal changes induced by the inlet morphological
changes are positively correlated with tidal range. Tidal range is larger due to less damped tidal energy
in the deeper Back Sound relative to Core Sound (see depths in Figure 3a,b and MHW in Figure 12a,b).

(a) (b)

Figure 12. Cont.
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(c) (d)

Figure 12. The MHW changes induced by the inlet morphological changes around Beaufort Inlet
and Barden Inlet: (a) MHW from the old-bathy model; (b) MHW from the new-bathy model; (c) the
MHW difference between the new-bathy model and the old-bathy model; (d) the MHW change in
percentage relative to the old-bathy model MHW. The black dotted polygons delineate the area with
changed bathymetry.

In fact, the morphological changes occurred around both Beaufort Inlet and Barden Inlet.
As shown in Figure 12c, the increased MHW is almost the sum of that induced by individual inlet
morphological changes. For example, the increased MHW in North River is about 0.04 m. About 0.02
m is from the morphological changes of Beaufort Inlet (Figure 10a). The other 0.02 m is from the
morphological changes of Barden Inlet (Figure 11a). This is probably because the tides propagating
through Beaufort Inlet interact with the tides propagating through Barden Inlet in the regions located
in between both inlets. In the Core Sound direction, the location of the contour of 10% increase in
MHW is 10 km (Figure 12d) away from Morgan Island, compared to 3 km in the new-bathy-BA model
(Figure 11b). The extended part should come from the contribution of the Beaufort Inlet changes.

The influence range of the morphological changes around Ocracoke Inlet, Hatteras Inlet,
and Oregon Inlet are shorter than the distances between itself and its neighbor inlets. Thus, the
morphological changes of these three inlets have independent effects on local tidal datum changes.

For Ocracoke Inlet, water depths (Figure 4) have increased from ~4 m to ~9 m in the northeastern
part of the ocean-side area of the inlet but have decreased from ~4 m to ~2 m in most sound-side areas
of the inlet. As a result, MHW (Figure 13) has increased of ~20% from ~0.35 m to ~0.42 m in the middle
of the inlet and the increased MHW is confined within the inlet. MHW has a sudden drop by ~20%
from ~0.21 m to ~0.17 m on the northeastern side behind the inlet and the decreased MHW extends
inside of Pamlico Sound. The percentage of the decreased MHW gradually drops to 10% about 6 km
behind the inlet in the northeastern direction. Therefore the decreased water depths at the inside
entrance play a key role in strengthening the tides within the inlet but weakening the tides behind
the inlet.

For Hatteras Inlet, water depths (Figure 4) have decreased from ~5 m to ~2 m on the eastern side
of the inlet, which leads to a MHW (Figure 13) drop of ~30% from ~0.25 m to ~0.17 m. The decreased
MHW also extends inside of Pamlico Sound. The percentage of the decreased MHW gradually drops to
10% about 4 km behind the inlet in the northeastern direction. Water depths have increased from ~1 m
to ~4 m on the western side of the inlet, which leads to a MHW increase of ~20% from ~0.23 to ~0.28.
The extension of the increased MHW is confined within a small area inside the inlet and may be due to
the decreased water depths in the western part of the inside entrance.
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(c) (d) 

Figure 13. The MHW changes induced by the inlet morphological changes around Ocracoke Inlet
and Hatteras Inlet: (a) MHW from the old-bathy model; (b) MHW from the new-bathy model; (c) the
MHW difference between the new-bathy model and the old-bathy model; (d) the MHW change in
percentage relative to the old-bathy model MHW. The black dotted polygons delineate the area with
changed bathymetry.
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Figure 14. Cont.
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(c) (d)

Figure 14. The MHW changes induced by the inlet morphological changes around Oregon Inlet:
(a) MHW from the old-bathy model; (b) MHW from the new-bathy model; (c) the MHW difference
between the new-bathy model and the old-bathy model; (d) the MHW change in percentage relative to
the old-bathy model MHW. The black dotted polygons delineate the area with changed bathymetry.

For Oregon Inlet, the inlet channel with ~8 m depth has shifted from the northwestern side in the
old-bathy grid to the southeastern side in the new-bathy grid (Figure 5). The average depth around
Oregon Inlet has increased from ~3.6 m of the old-bathy grid to ~4.0 m of the new-bathy grid. Unlike
Ocracoke Inlet and Hatteras Inlet, MHW (Figure 14) has increased by ~50% from ~0.25 m to ~0.37 m
across the interior of the inlet. The increased MHW extends inside of Pamlico Sound. The percentage
of the increased MHW gradually drops to 10% about 6 km behind the inlet in almost all directions. This
is probably because the presence of several deeper channels (Figure 5a,b) in Pamlico Sound behind
Oregon Inlet favors tidal propagation in all directions.

3.2. Tidal Harmonic Changes

The spatial pattern of the M2 amplitude in North Carolina coastal waters is similar to that of
MHW because M2 is the dominant component of tidal constituents in this region; consequently, the M2

amplitude changes induced by the inlet morphological changes are also similar to the MHW changes.
Figure 15a,b show the M2 amplitude and phase from the old-bathy model and the new-bathy model
along a line (shown in Figure 2b) approximately 1 km behind the barrier islands. The M2 amplitude
has increased from the old-bathy model to the new-bathy model behind Beaufort Inlet, Barden Inlet,
and Oregon Inlet and has decreased behind Ocracoke Inlet and Hatteras Inlet. The M2 phase has
slightly decreased from the old-bathy model to the new-bathy model behind Beaufort Inlet, Barden
Inlet, and Oregon Inlet and has changed very little behind Ocracoke Inlet and Hatteras Inlet. These
suggest that it becomes easier for the M2 tide to propagate through Beaufort Inlet, Barden Inlet, and
Oregon Inlet relative to about 40 or 60 years ago. It becomes more difficult for the M2 tide to propagate
through Ocracoke Inlet and Hatteras Inlet relative to about 50 or 80 years ago.

As shown in Figure 15c,d, the K1 amplitude and phase changes induced by the inlet morphological
changes are similar to the M2 amplitude and phase changes. However, when we compared the
percentage of the amplitude change relative to the old, we found that the K1 changes are less dramatic
than the M2 changes behind Beaufort Inlet and Barden Inlet (Figure 16). The K1 changes in percentage
have similar magnitudes to the M2 changes behind Ocracoke Inlet, Hatteras Inlet, and Oregon Inlet.
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Figure 15. Longitudinal variations of: (a) the M2 amplitude; (b) the M2 phase; (c) the K1 amplitude;
(d) the K1 phase along a line (shown in Figure 2b) about 1 km behind the barrier islands. The red
lines indicate the results from the old-bathy model. The blues lines indicate the results from the
new-bathy model.
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Figure 16. Comparison between the M2 (red line) and K1 (blue line) in amplitude change between
the new-bathy model and the old-bathy model relative to the old-bathy model along a line (shown in
Figure 2b) about 1 km behind the barrier islands.

4. Discussion and Conclusions

The model results validated with the observations show that tidal datums (represented by MHW)
and harmonic amplitudes have increased by 10%–35% from the old-bathy model to the new-bathy
model behind Beaufort Inlet, Barden Inlet, and Oregon Inlet. Tidal datums and harmonic amplitudes
have decreased by 15%–30% from the old-bathy model to the new-bathy model behind Ocracoke Inlet
and Hatteras Inlet. Compared with the other four inlets, tidal datums around Oregon Inlet experienced
the most dramatic changes (35%) within a shorter time period (1975–2014). The reason needs to be
further investigated. In addition, Beaufort Inlet has the largest range of influence probably due to the
deeper waters behind it.

It should be noted that all four tidal datums (MHHW, MHW, MLW, and MLLW) are referenced to
MSL. The MHHW, MLW, and MLLW changes induced by the inlet morphological changes are very
similar to the MHW changes. Tidal range is an indicator of tidal energy. The morphological changes
of the inlets affect the energy of the tides propagating through the inlets and thus tidal range behind
the inlets. MHW and MLW are almost equal to half of the mean tidal range. MHHW and MLLW are
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almost equal to half of the diurnal tidal range. Therefore, all four tidal datums have similar changes in
response to the morphological changes.

To evaluate these tidal changes induced by morphological changes of the inlets, we calculated the
flood and ebb volumes and durations across the inlets based on the velocity and elevation outputs
from the old-bathy model and the new-bathy model. The results have been summarized in Table 3.
For Beaufort Inlet, the flood volume has increased by 18 × 106 m3 (16%) while the ebb volume has
increased by 8 × 106 m3 (7%) from the old-bathy model to the new-bathy model, suggesting that
more tidal energy and more water go into the sounds. Similarly, flood volumes have increased by
8 × 106 m3 (38%) and 11 × 106 m3 (15%) for Barden Inlet and Oregon Inlet, respectively. On the other
hand, flood volumes have decreased by 5 × 106 m3 (4%) and 7 × 106 m3 (6%) for Ocracoke Inlet and
Hatteras Inlet, respectively. These suggest that the cross-inlet tidal volume changes are closely related
to tidal datum changes behind the inlets. The magnitude of the volume change is also positively
correlated with the influence range.

Table 3. Flood and ebb volumes and durations across five North Carolina inlets from the old-bathy
model and the new-bathy model.

Inlet
Flood Volume

(106 m3)
Ebb Volume

(106 m3)
Tidal-Cycle

Residual (106 m3)
Flood

Duration (h)
Ebb

Duration (h)

Beaufort (old) 111.31 −113.60 −2.29 5.95 6.53
Beaufort (new) 129.37 −121.43 7.95 5.99 6.48

Barden (old) 21.72 −18.76 2.96 5.92 6.56
Barden (new) 30.02 −27.67 2.36 5.96 6.51

Ocracoke (old) 132.47 −141.34 −8.87 5.79 6.71
Ocracoke (new) 127.09 −132.91 −5.81 5.77 6.73
Hatteras (old) 122.12 −122.90 −0.78 5.80 6.70
Hatteras (new) 114.87 −113.74 1.13 5.80 6.70
Oregon (old) 73.07 −73.63 −0.56 5.82 6.67
Oregon (new) 84.52 −84.30 0.22 5.84 6.66

As mentioned in Section 2.2, for the common regions other than the inlet regions, the old-bathy
grid and the new-bathy grid used the same bathymetry sounding datasets [27]. For the shallow areas
within the sounds, most sounding data were collected before the 1980s and very limited sounding data
were collected after the 2010s. Tidal changes induced by morphological changes within the sounds
will be evaluated in future work upon the availability of new sounding data in these regions.

Based on the numerical experiments in this paper, both the magnitude and geographical extension
of the tidal datum changes behind the barrier islands can be easily evaluated by monitoring the inlet
morphological changes induced by erosion or accumulation, dredging, or dumping. This can be used
as a guidance for NOAA to make decisions on when to update VDatum tidal datums in this region
and where to install new tide gauges. Furthermore, as the sea level may rise in the future, some new
inlets may appear and the existing inlets may become wider and deeper. Under this circumstance,
the spatial pattern of the tides behind the barrier islands may be dramatically changed, which will be
evaluated in future work.

Acknowledgments: This study was supported by NOAA’s VDatum program coordinated by three NOAA offices:
the Office of Coast Survey, the Center for Operational Oceanographic Products and Services, and the National
Geodetic Survey. We sincerely thank the anonymous reviewers for providing insightful comments and suggestions
to help substantial improvements of this manuscript.

Author Contributions: J.W. and E.M. conceived and designed the experiments; J.W. performed the experiments
and analyzed the data; J.W. and E.M. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

309



J. Mar. Sci. Eng. 2016, 4, 79

References

1. Parker, B.B.; Hess, K.W.; Milbert, D.G.; Gill, S. A national vertical datum transformation tool. Sea Technol.
2003, 44, 10–15.

2. Eakins, B.W.; Taylor, L.A. Seamlessly integrating bathymetric and topographic data to support tsunami
modeling and forecasting efforts. In Ocean Globe; Bremen, J., Ed.; ESRI Press Academic: Redlands, CA, USA,
2010; pp. 33–86.

3. National Ocean Service. Tidal Datums and Their Applications; NOAA Technical Report NOS COOPS 1; Center
for Operational Oceanographic Products and Services: Silver Spring, MD, USA, 2000; p. 112.

4. National Ocean Service. VDatum Manual for Development and Support of NOAA’s Vertical Datum
Transformation Tool, VDatum. 2012; p. 119. Available online: http://vdatum.noaa.gov/docs/publication.
html (accessed on 20 September 2016).

5. Luettich, R.A., Jr.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation
Model for Shelves Coasts and Estuaries, Report 1: Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL;
Dredging Research Program Technical Report DRP-92-6; U.S. Army Engineers Waterways Experiment
Station: Vicksburg, MS, USA, 1992; p. 137.

6. Westerink, J.J.; Luettich, R.A.; Muccino, J.C. Modeling tides in the Western North Atlantic using unstructured
graded grids. Tellus A 1994, 46, 178–199. [CrossRef]

7. Mukai, A.Y.; Westerink, J.J.; Luettich, R.A.; Mark, D. Eastcoast 2001: A Tidal Constituent Database for the Western
North Atlantic, Gulf of Mexico and Caribbean Sea; Technical Report, ERDC/CHL TR-02-24; US Army Engineer
Research and Development Center, Coastal and Hydraulics Laboratory: Vicksburg, MS, USA, 2002; p. 201.

8. Hench, J.L.; Luettich, R.A.; Westerink, J.J.; Scheffner, N.W. ADCIRC: An Advanced Three-Dimensional Circulation
Model for Shelves, Coasts, and Estuaries, Report 6: Development of a Tidal Constituent Database for the Eastern North
Pacific; Dredging Research Program Technical Report DRP-92-6; U.S. Army Engineer Waterways Experiment
Station: Vicksburg, MS, USA, 1994; p. 21. Available online: http://acwc.sdp.sirsi.net/client/search/asset/
1004166 (accessed on 20 September 2016).

9. Blain, C.A.; Rogers, E. Coastal Tidal Prediction Using the ADCIRC-2DDI Hydrodynamic Finite Element Model;
Formal Report NRL/FR/7322-98-9682; Naval Research Laboratory, Stennis Space Center: Hancock County,
MS, USA, 1998; p. 92. Available online: http://www.dtic.mil/dtic/tr/fulltext/u2/a358752.pdf (accessed on
20 June 2016).

10. Luettich, R.A., Jr.; Carr, S.D.; Reynolds-Fleming, J.V.; Fulcher, C.W.; McNinch, J.E. Semi-diurnal seiching in
a shallow, micro-tidal lagoonal estuary. Cont. Shelf Res. 2001, 22, 1669–1681. [CrossRef]

11. Burrows, R.; Walkington, I.A.; Yates, N.C.; Hedges, T.S.; Wolf, J.; Holt, J. The tidal range energy potential of
the west coast of the United Kingdom. Appl. Ocean Res. 2009, 31, 229–238. [CrossRef]

12. Hess, K.; Spargo, E.; Wong, A.; White, S.; Gill, S. VDatum for Central Coastal North Carolina: Tidal Datums,
Marine Grids, and Sea Surface Topography; NOAA Technical Report NOS CS 21; the National Oceanic and
Atmospheric Administration: Silver Spring, MD, USA, 2005; p. 46.

13. Hayes, M.O. General morphology and sediment patterns in tidal inlets. Sediment. Geol. 1980, 26, 139–156.
[CrossRef]

14. Hubbard, D.K.; Oertel, G.; Nummedal, D. The role of waves and tidal currents in the development of
tidal-inlet sedimentary structures and sand body geometry: Examples from North Carolina, South Carolina,
and Georgia. J. Sediment. Petrol. 1979, 49, 1073–1092.

15. Komar, P.D. Tidal-inlet processes and morphology related to the transport of sediments. J. Coast. Res. 1996,
23–45.

16. Cayocca, F. Long-term morphological modeling of a tidal inlet: The Arcachon Basin, France. Coast. Eng.
2001, 42, 115–142. [CrossRef]

17. Militello, A.; Zarillo, G.A. Tidal motion in a complex inlet and bay system, Ponce de Leon Inlet, Florida.
J. Coast. Res. 2000, 16, 840–852.

18. Boon, J.D.; Byrne, R.J. On basin hyposmetry and the morphodynamic response of coastal inlet systems.
Mar. Geol. 1981, 40, 27–48. [CrossRef]

19. Fitzgerald, D.M. Geomorphic variability and morphologic and sedimentologic controls of tidal inlets.
J. Coast. Res. 1996, 47–71.

310



J. Mar. Sci. Eng. 2016, 4, 79

20. Luettich, R.A., Jr.; Hench, J.L.; Fulcher, C.W.; Werner, F.E.; Blanton, B.O.; Churchill, J.H. Barotropic tidal
and wind driven larvae transport in the vicinity of a barrier island inlet. Fish. Oceanogr. 1999, 8, 190–209.
[CrossRef]

21. Churchill, J.H.; Blanton, J.O.; Hench, J.L.; Luettich, R.A., Jr.; Werner, F.E. Flood tide circulation near Beaufort
Inlet, North Carolina: Implications for larval recruitment. Estuaries 1999, 22, 1057–1070. [CrossRef]

22. Inman, D.L.; Dolan, R. The Outer Banks of North Carolina: Budget of sediment and inlet dynamics along
a migrating barrier system. J. Coast. Res. 1989, 5, 193–237.

23. NOAA Tides and Currents Website: Water Levels. Available online: http://tidesandcurrents.noaa.gov/
stations.html?type=Water+Levels (accessed on 20 September 2016).

24. NOAA Tides and Currents Website: Datums. Available online: http://tidesandcurrents.noaa.gov/stations.
html?type=Datums (accessed on 20 September 2016).

25. NOAA Tides and Currents Website: Harmonic Constituents. Available online: https://tidesandcurrents.
noaa.gov/stations.html?type=Harmonic+Constituents (accessed on 20 September 2016).

26. NOAA Shoreline Website. Available online: https://shoreline.noaa.gov (accessed on 20 September 2016).
27. National Centers for Environmental Information (NCEI) Bathymetry and Global Relief. Available online:

https://www.ngdc.noaa.gov/mgg/bathymetry/relief.html (accessed on 20 September 2016).
28. Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.;

Kim, S.-H.; et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS.
Mar. Geod. 2009, 32, 355–371. [CrossRef]

29. US Army Corps of Engineering Wilmington District Website: Hydrographic Surveys. Available online:
http://www.saw.usace.army.mil/Missions/Navigation/Hydrographic-Surveys/ (accessed on 20 September 2016).

30. Olsen Associates, Inc. Inlet Dredging and Disposal. In Regional Sand Transport Study: Morehead City Harbor
Federal Navigation Project Summary Report; Olsen Associates, Inc.: Jacksonville, FL, USA, 2006. Available
online: http://www.carteretcountync.gov/DocumentCenter/View/268 (accessed on 20 June 2016).

31. NOAA VDatum Website: Estimation of Uncertainties. Available online: http://vdatum.noaa.gov/docs/est_
uncertainties.html (accessed on 20 September 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

311



Journal of

Marine Science 
and Engineering

Article

Modeling Water Clarity and Light Quality in Oceans

Mohamed A. Abdelrhman

Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research
and Development, United States Environmental Protection Agency, 27 Tarzwell Drive, Narragansett,
RI 02882, USA; Abdelrhman.mohamed@epa.gov; Tel.: +1-401-782-3182

Academic Editor: Richard P. Signell
Received: 20 July 2016; Accepted: 18 November 2016; Published: 24 November 2016

Abstract: Phytoplankton is a primary producer of organic compounds, and it forms the base of the
food chain in ocean waters. The concentration of phytoplankton in the water column controls water
clarity and the amount and quality of light that penetrates through it. The availability of adequate
light intensity is a major factor in the health of algae and phytoplankton. There is a strong negative
coupling between light intensity and phytoplankton concentration (e.g., through self-shading by
the cells), which reduces available light and in return affects the growth rate of the cells. Proper
modeling of this coupling is essential to understand primary productivity in the oceans. This paper
provides the methodology to model light intensity in the water column, which can be included in
relevant water quality models. The methodology implements relationships from bio-optical models,
which use phytoplankton chlorophyll a (chl-a) concentration as a surrogate for light attenuation,
including absorption and scattering by other attenuators. The presented mathematical methodology
estimates the reduction in light intensity due to absorption by pure seawater, chl-a pigment, non-algae
particles (NAPs) and colored dissolved organic matter (CDOM), as well as backscattering by pure
seawater, phytoplankton particles and NAPs. The methods presented facilitate the prediction of
the effects of various environmental and management scenarios (e.g., global warming, altered
precipitation patterns, greenhouse gases) on the wellbeing of phytoplankton communities in the
oceans as temperature-driven chl-a changes take place.

Keywords: modeling; irradiance; oceans; phytoplankton

1. Introduction

The major factors affecting phytoplankton metabolism are nutrient availability, light and water
temperature [1]. The maximum depth at which light intensity is adequate to maintain the plant
is referred to as the depth of the photic (or euphotic) zone, which is referred to here as the
“photic depth” [2]. Light intensity at this depth reaches 1% of its surface daylight value, which is
enough for photosynthesis to sustain phytoplankton growth and reproduction. This depth can change
as the incident solar irradiance changes with time during the day and throughout the year. The photic
depth can also change in space as the concentrations of the various attenuators above it change.

The importance of light to phytoplankton has driven many researchers to develop quantitative
methods to calculate light intensity in the water column. The complexity of this task arises from
the variability not only in the spectral light intensity, but also in the water column due to turbidity.
Bio-optical models are used to develop mathematical methods to calculate irradiance through the
water column [3]. Optical models have to be calibrated based on field measurements of both
water turbidity from phytoplankton, colored dissolved organic matter (CDOM) (also called yellow
substances or Gelbstoff) and non-algae (non-pigmented) particles (NAPs), as well as associated
spectral irradiance [4–9]. Abdelrhman [10] applied these methods to estuarine systems where both
phytoplankton and total suspended solids (TSS) contribute to turbidity. In oceans, the major contributor
to turbidity is phytoplankton [11,12]. The theoretical basis presented in [12] was further simplified

J. Mar. Sci. Eng. 2016, 4, 80 312 www.mdpi.com/journal/jmse



J. Mar. Sci. Eng. 2016, 4, 80

here to accommodate numerical modelers’ needs. Prieur and Sathyndranath [13] presented the
optical classification of coastal and oceanic waters based on the specific spectral absorption curves of
phytoplankton pigments, organic matter and other attenuators of light in the water column. A wide
range of absorption and backscattering spectra for oceans was presented by the International Ocean
Color Coordination Group (IOCCG) [3]. The IOCCG generated a wide range of synthetic data for
use in testing remote sensing algorithms. This range was based on mathematical relationships that
used measured phytoplankton concentration in ocean waters (Case 1 waters [14]) as a reference for
absorption and backscattering by all other attenuators in the water column including NAPs and
CDOM. These relationships are used here to calculate irradiance throughout the water column in
the oceans.

The focus of this work is determining the available irradiance profile in the water column through
the photic depth. The concentration of suspended solids and phytoplankton in the water column
controls the amount of light that travels through it. The main objective of this work is to present a
mathematical model, which can be included in numerical models, to resolve the coupling between
irradiance and phytoplankton in the oceans. This objective is met by focusing on using available
information from bio-optical methods, rather than developing them. Inherent optical properties of
water (i.e., chl-a concentrations) [3] are used to meet the modeling objective.

2. Methods

The total concentration of chl-a is obtained from available field measurements and used to develop
the mathematical methodology to estimate the irradiance throughout the water column at any location
throughout the whole year. Figure 1 presents a definition sketch of the vertical structure for the
mathematical model for irradiance, and Table 1 presents the definitions of all abbreviations and
symbols. Attenuation of the incident irradiance through the water column is a function of absorption
and scattering by the pure seawater and the dissolved and particulate materials therein.

 

Figure 1. Definition sketch of the relation between the numerical model vertical structure and its
utilization to study light intensity throughout the water column. Concentration of chl-a (Cx,y,z,t) should
be provided by the numerical model at location (x,y) at every layer depth (z) and at every time step (t)
during the year. Ei−1 and Ei are the incident and departing downwelling irradiances through layer i
(with thickness �i and extinction coefficient Ki) (Table 1).
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Table 1. Definitions of all abbreviations and symbols.

Symbol Definition Dimension

Abbreviations

CDOM Colored dissolved organic material
chl-a Chlorophyll a

IOCCG International Ocean Color Coordination Group
NAPs Non-algal particles
PAR Photosynthetically-available radiation
TSS Total suspended solids

Parameters

aw Absorption coefficient of seawater m−1

ac Absorption coefficient of chl-a m−1

as Absorption coefficient of NAPs m−1

ag Absorption coefficient of CDOM m−1

bw Backscattering a coefficient of seawater m−1

bp Backscattering a coefficient of phytoplankton particles m−1

bs Backscattering a coefficient of NAPs m−1

C chl-a concentration μg·L−1

E0 Irradiance at the water surface W·m−2

Ei, E� Irradiance at the bottom of the i-th layer, �i W·m−2

e Exponentiation base (e = 2.718281828459) dimensionless
f Spectrum distribution function dimensionless
g CDOM concentration (not implemented) μg·L−1

K Downwelling a extinction coefficient m−1

�i Layer thickness (zi − zi−1) m
P3,4 Calibration coefficients dimensionless

R1,2,3,4 Calibration coefficients dimensionless
RRi(λj) Reduction ratio of wavelength λj at the i-th layer dimensionless

S NAPs concentration mg·L−1

SS Spectral slope nm−1

λ Wavelength nm

Subscripts

i Counter for the water layer,
j Counter for the wavelength λ

t Time
x Eastward spatial location (see Figure 1)
y Northward spatial location (see Figure 1)
z Vertical spatial location below the water surface (see Figure 1)

Superscripts

+ Normalized value (see Table 2 and Figure 2)
a To avoid confusion in the subscripts presented in various equations, b is used for backscattering instead of the
commonly used bb, and K is used instead of Kd for the downwelling extinction coefficient.

There are seven major contributors to the loss of light intensity through the water column:
(1) absorption by pure seawater; (2) absorption by phytoplankton (algae) pigment; (3) absorption by
NAPs; (4) absorption by CDOM; (5) backscattering by phytoplankton particles; (6) backscattering
by NAPs; and (7) backscattering by pure seawater [3,8,13,15]. While volume scattering exists in all
directions, only backscattering is usually considered as a loss in the downwelling irradiance [2].
Although some methods combine some of these basic contributors, the following methodology
provides calculations of these seven types of losses within the range of the photosynthetically-available
radiation (PAR) (400 nm–700 nm).

The following equations define the mathematical values for the absorption and backscattering
coefficients according to the basic relationships presented in [3] for Case 1 waters. These relationships
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use phytoplankton chl-a concentration (μg·L−1 = mg·m−3) as a reference for the absorption
relationships of phytoplankton pigment, NAPs and CDOM, as well as backscattering from
phytoplankton particles and NAPs. Light absorption by phytoplankton, NAPs and CDOM uses
reference absorption values of phytoplankton pigment at the wavelength λ = 440 nm, while light
backscattering uses reference phytoplankton backscattering values at λ = 550 nm. Absorption
coefficients for the whole visible range of the spectrum are calculated using the normalized spectral
absorption values provided in the literature. Figure 2 and Table 2 present spectral distributions related
to absorption by pure seawater, phytoplankton pigment, NAPs and CDOM; in addition to spectral
distributions related to backscattering from phytoplankton, NAPs and seawater, as well as the derived
spectral distribution function for the incident light [10].

 

Figure 2. Spectral distributions of absorption by pure water and the normalized absorption coefficients
for phytoplankton pigment, NAPs and CDOM (full lines read on left axis); in addition to backscattering
from phytoplankton, NAPs and water, as well as the derived spectral distribution function for the
incident light (broken lines read on right axis). Refer to Table 2 for the definitions of normalized
absorption and backscattering coefficients.

Table 2. Spectral distributions of absorption, a, backscattering, b, and the shape function, f, for the PAR
(see the footnotes for details).

1 2 3 4 5 6 7 8 9 10

i λi aw (m−1) a+c a+s a+g bw (m−1) b+p b+s f (λ)

1 400 0.0180 0.6870 1.5530 2.2260 0.0076 1.1890 1.3250 0.0155
2 405 0.0180 0.7810 1.4700 2.0140 0.0072 1.1810 1.3100 0.0153
3 410 0.0170 0.8280 1.3910 1.8220 0.0068 1.1730 1.2960 0.0150
4 415 0.0170 0.8830 1.3170 1.6490 0.0065 1.1650 1.2820 0.0165
5 420 0.0160 0.9130 1.2460 1.4920 0.0061 1.1580 1.2690 0.0160
6 425 0.0160 0.9390 1.1790 1.3500 0.0058 1.1500 1.2560 0.0162
7 430 0.0150 0.9730 1.1160 1.2210 0.0055 1.1430 1.2430 0.0131
8 435 0.0150 1.0010 1.0570 1.1050 0.0052 1.1360 1.2300 0.0164
9 440 0.0150 1.0000 1.0000 1.0000 0.0049 1.1290 1.2180 0.0159
10 445 0.0150 0.9710 0.9460 0.9050 0.0047 1.1220 1.2060 0.0182
11 450 0.0150 0.9440 0.8960 0.8190 0.0045 1.1150 1.1940 0.0198
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Table 2. Cont.

1 2 3 4 5 6 7 8 9 10

12 455 0.0160 0.9280 0.8480 0.7410 0.0043 1.1080 1.1820 0.0188
13 460 0.0160 0.9170 0.8030 0.6700 0.0041 1.1020 1.1710 0.0188
14 465 0.0160 0.9020 0.7600 0.6070 0.0039 1.0950 1.1600 0.0184
15 470 0.0160 0.8700 0.7190 0.5490 0.0037 1.0890 1.1490 0.0181
16 475 0.0170 0.8390 0.6800 0.4970 0.0036 1.0830 1.1380 0.0188
17 480 0.0180 0.7980 0.6440 0.4490 0.0034 1.0770 1.1280 0.0192
18 485 0.0190 0.7730 0.6100 0.4070 0.0033 1.0710 1.1170 0.0181
19 490 0.0200 0.7500 0.5770 0.3680 0.0031 1.0650 1.1070 0.0180
20 495 0.0230 0.7170 0.5460 0.3330 0.0030 1.0590 1.0970 0.0186
21 500 0.0260 0.6680 0.5170 0.3010 0.0029 1.0530 1.0880 0.0174
22 505 0.0310 0.6450 0.4890 0.2730 0.0028 1.0470 1.0780 0.0179
23 510 0.0360 0.6180 0.4630 0.2470 0.0026 1.0420 1.0690 0.0180
24 515 0.0420 0.5820 0.4380 0.2230 0.0025 1.0360 1.0600 0.0172
25 520 0.0480 0.5280 0.4150 0.2020 0.0024 1.0310 1.0510 0.0170
26 525 0.0500 0.5040 0.3930 0.1830 0.0023 1.0260 1.0420 0.0174
27 530 0.0510 0.4740 0.3720 0.1650 0.0022 1.0200 1.0330 0.0182
28 535 0.0540 0.4440 0.3520 0.1500 0.0022 1.0150 1.0250 0.0181
29 540 0.0560 0.4160 0.3330 0.1350 0.0021 1.0100 1.0160 0.0171
30 545 0.0600 0.3840 0.3150 0.1220 0.0020 1.0050 1.0080 0.0177
31 550 0.0640 0.3570 0.2980 0.1110 0.0019 1.0000 1.0000 0.0174
32 555 0.0680 0.3210 0.2820 0.1000 0.0019 0.9950 0.9920 0.0176
33 560 0.0710 0.2940 0.2670 0.0910 0.0018 0.9900 0.9840 0.0169
34 565 0.0760 0.2730 0.2530 0.0820 0.0018 0.9860 0.9770 0.0171
35 570 0.0800 0.2760 0.2390 0.0740 0.0017 0.9810 0.9690 0.0168
36 575 0.0940 0.2680 0.2270 0.0670 0.0017 0.9760 0.9620 0.0172
37 580 0.1080 0.2910 0.2140 0.0610 0.0016 0.9720 0.9540 0.0172
38 585 0.1330 0.2740 0.2030 0.0550 0.0016 0.9670 0.9470 0.0173
39 590 0.1570 0.2820 0.1920 0.0500 0.0015 0.9630 0.9400 0.0163
40 595 0.2010 0.2490 0.1820 0.0450 0.0015 0.9580 0.9330 0.0167
41 600 0.2450 0.2360 0.1720 0.0410 0.0014 0.9540 0.9260 0.0163
42 605 0.2680 0.2790 0.1630 0.0370 0.0014 0.9500 0.9190 0.0164
43 610 0.2900 0.2520 0.1540 0.0330 0.0013 0.9450 0.9130 0.0160
44 615 0.3000 0.2680 0.1460 0.0300 0.0013 0.9410 0.9060 0.0157
45 620 0.3100 0.2760 0.1380 0.0270 0.0012 0.9370 0.9000 0.0161
46 625 0.3150 0.2990 0.1310 0.0250 0.0012 0.9330 0.8930 0.0155
47 630 0.3200 0.3170 0.1240 0.0220 0.0011 0.9290 0.8870 0.0154
48 635 0.3250 0.3330 0.1170 0.0200 0.0011 0.9250 0.8810 0.0154
49 640 0.3300 0.3340 0.1110 0.0180 0.0010 0.9210 0.8750 0.0151
50 645 0.3400 0.3260 0.1050 0.0170 0.0010 0.9170 0.8690 0.0150
51 650 0.3500 0.3560 0.0990 0.0150 0.0010 0.9130 0.8630 0.0145
52 655 0.3800 0.3890 0.0940 0.0140 0.0009 0.9100 0.8570 0.0136
53 660 0.4100 0.4410 0.0890 0.0120 0.0008 0.9060 0.8510 0.0140
54 665 0.4200 0.5340 0.0840 0.0110 0.0008 0.9020 0.8460 0.0145
55 670 0.4300 0.5950 0.0800 0.0100 0.0008 0.8980 0.8400 0.0142
56 675 0.4400 0.5440 0.0750 0.0090 0.0008 0.8950 0.8350 0.0139
57 680 0.4500 0.5020 0.0710 0.0080 0.0007 0.8910 0.8290 0.0137
58 685 0.4750 0.4200 0.0680 0.0070 0.0007 0.8880 0.8240 0.0135
59 690 0.5000 0.3290 0.0640 0.0070 0.0007 0.8840 0.8190 0.0134
60 695 0.5750 0.2620 0.0610 0.0060 0.0007 0.8810 0.8130 0.0132
61 700 0.6500 0.2150 0.0570 0.0060 0.0007 0.8770 0.8080 0.0131

Column 1: wavelength counter, i; Column 2: wavelength (nm); Column 3: water absorption coefficient
(m−1) [13]; Column 4: a+c (λ) is the normalized spectral absorption value at wavelength λ with respect to
absorption at λ = 440 nm [13]; Column 5: NAPs relationship for absorption: a+s (λ) = exp(−SSs (λ− 440))
from [3]; Column 6: CDOM relationship for absorption: a+g (λ) = exp(−SSg (λ− 440)) from [3]; Column 7:
water backscattering coefficient (m−1) (modified from [15]); Column 8: example of phytoplankton backscattering
relationship: b+p (λ) = b̃p

( 550
λ

)n1 from [3], with C = 0.4849 μg·L−1; Column 9: example of NAPs backscattering

relationship: b+s (λ) = b̃s
( 550

λ

)n1 from [3], with C = 0.4849 μg·L−1; Column 10: spectral distribution shape
function [10].
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2.1. Overall Light Attenuation

The mathematical structure of the model to calculate irradiance in oceans is similar to that
presented by [10] for estuaries. The only difference is the photic depth, which defines the lower bound
for irradiance in the oceans rather than the bed in shallower systems. The intensity of light at any
depth can be represented by the Beer–Lambert law. The following equations summarize this model.

Beer-Lambert law:
E� = E0e−(a+b)� (1)

Spectral irradiance at the bottom of the first (surface) layer:

E1 (λ) = E0 (λ) e[−K1(λ)�1] (2)

with the incident irradiance:
E0 (λ) = E0 f (λ) (3)

and the spectral extinction coefficient:

K1 (λ) = aw (λ) + a1
c (λ) + a1

s (λ) + a1
g (λ) + b1

p (λ) + b1
s (λ) + bw (λ) (4)

Irradiance at the bottom of a general layer, i:

Ei
(
λj
)
= Ei−1

(
λj
) [

e−aw(λj)�i × e−ai
c(λj)�i × e−ai

s(λj)�i × e−ai
g(λj)�i × e−bi

p (λj)�i × e−bi
s (λj)�i × e−bw(λj)�i

]
(5)

Overall irradiance for numerical integration:

Ei = 5
61

∑
j=1

Ei
(
λj
)
= 5

61

∑
j=1

Ei−1
(
λj
)× RRi

(
λj
)

(6)

where:

RRi
(
λj
)
= e−aw(λj)�i × e−ai

c(λj)�i × e−ai
s(λj)�i × e−ai

g(λj)�i × e−bi
p (λj)�i × e−bi

s (λj)�i × e−bw(λj)�i (7)

where E0 is the incident irradiance just beneath the water surface (W·m−2), E� (W·m−2) is the irradiance
at distance � (m) from the incidence surface, a is the absorption coefficient (m−1), b is the scattering
coefficient (m−1), E0(λ) is the spectral irradiance of the incident wavelength λ (W·m−2 nm−1) at
the water surface, E1(λ) is the irradiance of wavelength λ (W·m−2·nm−1) at a downward distance
�1 = z1 − z0 (meters, m), K1(λ) is the extinction coefficient of the downwelling spectral irradiance
(m−1) and f (λ) is the distribution function of the incident light between the various wavelengths
within the PAR [10]. The subscripts w, c, s, g and p refer to water, chl-a, NAPs, CDOM (Gelbstoff) and
phytoplankton, respectively; and the superscript i indicates the layer number. RRi (λj) is the reduction
ratio (dimensionless) of the incident light within λj through layer �i. The subscript j refers to the discrete
values of the normalized absorption coefficients at λj values representing PAR in 5-nm increments
(j = 1–61; Table 2). According to Simpson’s rule, only half of the first and last values can be used in
each summation (i.e., at j = 1 and j = 61). Introducing the 5-nm increment in Equation (6) preserves the
total irradiance within the PAR. The numerical integration procedure is executed for each layer within
the water column. The superscripts and subscripts are sometimes dropped for convenience. The same
consistent notation is used in the following descriptions of the various attenuators at the same discrete
wavelengths considering λ and λj to be synonymous.

2.1.1. Light Absorption by Pure Seawater, aw

Prieur and Sathyendranath [13] presented the absorption coefficient values, aw (λj), for pure
seawater at discrete wavelengths, λj (Table 2, Figure 2).
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2.1.2. Light Absorption by Algal Pigment, ac

Light absorption by phytoplankton pigment is given by the following equations [16,17]:

ac (λ) = ac (440)× a+c (λ) (8)

ac (440) = 0.05
[
Cx,y,z,t

]0.626 (9)

where ac(λ) is the absorption coefficient by phytoplankton pigment (m−1) at any wavelength λ, ac(440)
is the absorption coefficient by phytoplankton pigment (m−1) at wavelength 440 nm, ac

+(λ) is the
normalized spectral absorption value at wavelength λ with respect to absorption at λ = 440 nm [13] and
Cx,y,z,t is the concentration of chl-a (μg·L−1 = mg·m−3) at the station location, (x-eastward, y-northward),
and at the layer’s vertical location z-below the water surface (m) and at the time, t, during the year.
The coefficients 0.05 and 0.626 are based on observations from various regions including the North
Atlantic, North Pacific, Gulf of Mexico, Mediterranean Sea, Arabian Sea and more. These coefficients
can be site specific and can depend on λ [3,9,10,16]. For convenience, the stated values of the two
coefficients are used in the methodology presented here. The normalized phytoplankton absorption
values, ac

+(λ), from Prieur and Sathyendranath [13] (Table 2) provide a consistent parameterization for
the modeling methodology presented here. As expected, at the normalization wavelength, λ = 440 nm,
ac

+(440) = 1 (Table 2). Gallegos [18] indicated that the values of Prieur and Sathyendranath [13] are
adequate for use in his bio-optical methods. The calculated value of phytoplankton absorption, ac(440),
is used in the following calculations of the other absorption and backscattering coefficients.

2.1.3. Light Absorption by NAPs, as

The following equations are from IOCCG [3]:

as (λ) = as (440) exp (−SSs (λ− 440)) (10)

as (440) = P1ac (440) (11)

P1 = 0.1 +
0.5R1ac (440)

0.05 + ac (440)
(12)

where as(λ) is the absorption coefficient by NAPs (m−1) at any wavelength λ, as(440) is the absorption
coefficient by NAPs (m−1) at wavelength 440 nm and R1 is a random value between 0.0 and 1.0.
The randomness in R1 controls the random values of P1 makes the relationship between as(440) and
ac(440) not fixed and avoids extremely large as(440) when ac(440) is small. The range of the random
variable P1 is 0.1–0.6, and its distribution is presented in [3]. SSs is the spectral slope for NAPs
(randomly valued between 0.007 and 0.015 nm−1 [3]). Recent studies indicate that the NAPs vs. the λ

absorption curve has an exponential decay shape [19,20] similar to CDOM. However, understanding of
the NAPs behavior is still very limited, and more detailed studies are recommended [20]. Until future
values become available, this work assumes that the spectral slope for NAPs is in the middle of the
above range (i.e., SSs = 0.011 nm−1). To eliminate the randomness, R1 is calibrated as presented in the
Calibration and Validation Section. Values of the spectral distribution a+s (λ) = exp(−SSs (λ− 440))
are presented in Table 2 and Figure 2.

2.1.4. Light Absorption by CDOM, ag

The following equations are from IOCCG [3]:

ag (λ) = ag (440) exp
(−SSg (λ− 440)

)
(13)

ag (440) = P2ac (440) (14)
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P2 = 0.3 +
5.7R2ac (440)

0.02 + ac (440)
(15)

where ag(λ) is the absorption coefficient by CDOM (m−1) at any wavelength λ, ag(440) is the absorption
coefficient by CDOM (m−1) at a wavelength of 440 nm, SSg is the spectral slope for CDOM between
0.01 and 0.02 nm−1 and R2 is a random number between 0.0 and 1.0. The randomness in R2 controls
the random values of P2, makes the relationship between ag(440) and ac(440) not fixed and avoids
extremely large ag(440) when ac(440) is small. The range of the random P2 values is 0.3–6.0, and its
distribution is presented in [3]. To eliminate the randomness, R2 is calibrated as presented in the
Calibration and Validation Section. Values of the spectral distribution a+g (λ) = exp(−SSg (λ− 440))
are presented in Table 2 and Figure 2.

2.1.5. Light Backscattering by Phytoplankton, bp

The calculations of backscattering for phytoplankton particles include the wavelength-dependent
parameters for backscattering for the whole 400–700-nm spectrum, which are based on normalized
values referenced to the wavelength λ = 550 nm [3].

bp (λ) = b̃p bp (550)
(

550
λ

)n1

(16)

bp (550) = P3
[
Cx,y,z,t

]0.57 (17)

n1 = −0.4 +
1.6 + 1.2R3

1 +
[
Cx,y,z,t

]0.5 (18)

where bp (λ) is the backscattering of phytoplankton at wavelength λ, b̃p is the backscattering fraction,
which depends on the phase function of phytoplankton (assumed 1% based on the Fournier-Forand
phase function with respect to scattering angle [21]), P3 is randomly valued between 0.06 and 0.6 for
a given Cx,y,z,t and R3 is a random value between 0.0 and 1.0. The range of the random n1 values is
−0.1–2.0, and its distribution is presented in [3]. The randomness in R3 controls the random values of
n1, makes the relationship between n1 and Cx,y,z,t not fixed and avoids extremely large n1 when Cx,y,z,t

is small. The randomness in P3 controls the random values of bp (550) and makes the relationship
between bp (550) and Cx,y,z,t not fixed. The range of the random values and distribution of n1 are
presented in [3]. To eliminate the randomness, R3 and P3 are calibrated as presented in the Calibration
and Validation Section.

The original formulation in IOCCG [3] included the extra equation (b∗p (λ) = bp (λ) − ap (λ)),
which introduced superfluous error in bp when Cx,y,z,t was zero. This equation is not included here.

Examples of the values of the spectral distribution b+p (λ) = b̃p
( 550

λ

)n1 for an arbitrary chl-a
concentration are presented in Table 2 and Figure 2. These values will change with depth according to
the chl-a concentration (Equation (18)).

2.1.6. Light Backscattering by NAPs (Detritus, Minerals and Others), bs

Similarly, the calculations of backscattering for NAP particles include the wavelength-dependent
parameters for backscattering for the whole 400–700-nm spectrum, which are based on normalized
values referenced to the wavelength λ = 550 nm. The following equations are from IOCCG [3]:

bs (λ) = b̃s bs (550)
(

550
λ

)n2

(19)

bs (550) = P4
[
Cx,y,z,t

]0.766 (20)
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n2 = −0.5 +
2.0 + 1.2R4

1 +
[
Cx,y,z,t

]0.5 (21)

where bs (λ) is the backscattering of NAPs at wavelength λ, b̃s is the backscattering fraction, which
depends on the average particle phase function of phytoplankton (assumed 0.0183 based on the
Petzold phase function with respect to scattering angle [22]), P4 is randomly valued between 0.06
and 0.6 for a given Cx,y,z,t and R4 is a random value between 0.0 and 1.0. The randomness in R4

controls the random values of n2, makes the relationship between n2 and Cx,y,z,t not fixed and avoids
extremely large n2 when Cx,y,z,t is small. The randomness in P4 controls the random values of bs (550)
and makes the relationship between bs (550) and Cx,y,z,t not fixed. The range of the random n2 values
is −0.2–2.2, and its distribution is presented in [3]. To eliminate the randomness, R4 and P4 are
calibrated as presented in the Calibration and Validation Section. Examples of the values of the
spectral distribution b+s (λ) = b̃s

( 550
λ

)n2 for an arbitrary chl-a concentration are presented in Table 2
and Figure 2. These values will change with depth according to the chl-a concentration (Equation (21)).

2.1.7. Light Backscattering by Pure Seawater, bw

Buiteveld [23] presented the backscattering coefficient values, bw(λ), for pure seawater at 10-nm
increments within the visible range. These values were linearly interpolated at 5-nm increments to fit
within the same range of the numerical integration for the other coefficients (Table 2, Figure 2).

2.2. Data

Existing irradiance and chl-a data from the North Atlantic were used to calibrate and validate
the presented methodology. Data were obtained through personal communication [24]. Details of the
field methods, protocols and times are published in [25], and they are not repeated here. The data
included incident surface irradiance (W·m−2) at the water surface for all wavelengths within PAR
at 5-nm increments, profiles of the downwelling irradiance (W·m−2) at 2 m-depth increments and
chl-a concentration profiles at various depth locations during various seasons. The data indicated
that chl-a concentrations were always <3.5 μg·L−1. Data analysis indicated that the ship-based and
the glider-based surface PAR agree [25]. Accordingly, the glider surface records were used here to
represent the incident irradiance for the remainder of the corresponding downwelling profile.

Two sets of consistent data of incident irradiance, irradiance profile and chl-a profile were used
to calibrate and validate the presented methodology. The major criteria to choose these data were:
cloud cover does not obstruct incident irradiance during the period 10:00 GMT–14:00 GMT; the chl-a
profile measurements are collected on the same day of the irradiance data; and the data extend to at
least 100 m below the water surface. The collected chl-a concentrations were sparse throughout the
monitored top part of the water column and had to be interpolated at the same depth increments as
the irradiance profile (i.e., 2 m). Only fourteen chl-a data profiles reached depths ≥100 m. Two of these
profiles with contrasting vertical distributions were used here.

2.2.1. The Spectrum Shape Function, f

For modeling purposes, Abdelrhman [10] suggested the use of the spectrum shape function
at the top of the atmosphere to redistribute the incident irradiance, E0, to its spectral values, E0(λ),
within the PAR at the water surface (Table 2). The spectrum shape function alleviates the need to
identify E0(λ) at each location throughout the simulation time. Instead, the overall incident irradiance,
E0, can be used with f (λ) (Equation (3)). This simplification is tested with the incident irradiance
of 339 W·m−2 on 11 June 2013 at 9:30 GMT. Figure 3a compares the shapes of the actual incident
irradiance to that of the shape function, f (λ) (Table 2). The difference between the calculated and
observed values is ±5% for most of the PAR (λ = 450 nm–650 nm) and <±15% outside that range.
The scatter plot (Figure 3b) indicates that the correlation (slope) between calculated and observed
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shapes is 0.9981 (R2 = 0.7068) with zero intercept, which indicates that the use of f (λ) is adequate for
modeling purposes. The spectrum shape function is used here to define the spectral distribution for
the topmost near-surface record of the downwelling irradiance profile.

 

Figure 3. Comparison between observed and reconstructed spectrum shape functions on 11 June 2013
at 9:30 a.m.: (a) spectral distributions and the % error (100 (observed-calculated)/observed);
(b) correlation between observed and calculated spectral values.

2.2.2. The Summer Dataset

The summer data used in this study were collected on 11 June 2013 (Figure 4). The concentration
of chl-a showed a systematically decreasing trend with depth below the water surface (Figure 4a).
This trend was used to calculate chl-a concentrations at 2 m-depth increments, which correspond to
the measurements of the downwelling irradiance. The average of four irradiance profiles collected
during midday (10:00 GMT–14:00 GMT) was used to represent the observed downwelling irradiance, E,
on that day (Figure 4b). The topmost irradiance value was assumed to represent the incident irradiance,
E0. The distribution of the incident PAR was reconstructed according to Equation (3) (Figure 4c).

 

Figure 4. Summer data on 11 June 2013: (a) vertical distribution of ship-based measurements of chl-a
concentrations and their vertical trend; (b) vertical distribution of glider-based average irradiance from
10:00 GMT-14:00 GMT; (c) spectral distribution of the near-surface average irradiance measurement.

2.2.3. The Fall Data Set

A subsurface maximum of chl-a concentration appeared in the fall season of 2013 at ~30–40 m
below the water surface [25]. The data on 3 September 2013 consisted of the chl-a profile (Figure 5a),
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which demonstrated the subsurface maximum chl-a concentration. Two trends were used to interpolate
chl-a concentrations at 2-m increments corresponding to the measured downwelling irradiance.
The average of four irradiance profiles collected during midday (10:00 GMT–14:00 GMT) was used to
represent the observed downwelling irradiance, E, on that day (Figure 5b). The topmost irradiance
value was assumed to represent the incident irradiance, E0. The distribution of the incident PAR was
reconstructed according to Equation (3) (Figure 5c).

 
Figure 5. Fall data on 3 September 2013: (a) vertical distribution of ship-based measurements of chl-a
concentrations and their vertical trend; (b) vertical distribution of glider-based average irradiance from
10:00 GMT-14:00 GMT; (c) spectral distribution of the near-surface average irradiance measurement.

2.3. Calibration and Validation

The following three important rules of thumb were observed in calibration: (1) any attenuation
coefficient for any contributor at any wavelength (i.e., the exponentiation terms in Equations (5)–(7))
cannot exceed 1.0 at any depth; (2) any attenuation coefficient for any contributor except water should
be correlated with chl-a concentration (the surrogate for all attenuations); and (3) observed irradiance
should not exceed the irradiance in pure seawater.

2.3.1. Calibration with Fall Data

The main purpose of the calibration is to define non-random (fixed) values for R1, R2, R3, R4, P3

and P4. The measured topmost value of the downwelling irradiance represented E0 on 3 September
2013; the recorded light intensity at each depth represented E�; depth increments (2 m) represented
the layer thickness, �; and the interpolated chl-a concentration within each layer represented Cx,y,z,t.
The calibration started with the mid-range values of the parameter and proceeded to improve the
fit with observations of the downwelling irradiance to find the correlation between predicted and
observed values. A zero intercept was enforced in all of the correlation plots. For convenience, the
p-values were assumed to be the same within their range of 0.06–0.6 (range = 0.54), and the R values
were also assumed to be the same within their specified range of 0.0–1.0 (range = 1.0). Both p and R
ranges were divided into 10 increments. Systematic iterations took place by fixing the p-values at each
of the incremented values and checking the correlation between predicted and observed irradiances
at each of the R incremented values. Figure 6a presents the calibrated irradiance profile with all of
the R parameters calibrated to 0.3 and the p parameters calibrated to 0.438. The correlation scatter
plot (Figure 6b) indicates that the calculated irradiance agreed with observed values (R2 = 0.9925).
The regression line slope was 0.9994, which is very close to unity for a one-to-one correlation.
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Figure 6. Calibration using fall data: (a) comparison between observed and predicted vertical irradiance
profiles together with the expected irradiance in pure seawater; (b) correlation between observed and
predicted irradiances.

2.3.2. Validation with Summer Data

Using the same calibration values for the R and p parameters, the summer irradiance profile on
11 June 2013 was checked against observations (Figure 7a). The scatter plot showed weaker linear
agreement with the r2 value of 0.8497 (Figure 7b). The regression line slope with zero intercept was
0.709, which reflects a one to-one correlation between predicted and observed profiles. The reason
for the lower correlation was attributed to other factors (e.g., stratification). In addition, the reported
irradiance measurements within the top 12 m coincided with the values of pure seawater (Figure 7a),
which un-intuitively does not represent effects from other attenuators. Validation with other data is
needed (see the discussion).

 

Figure 7. Validation using summer data: (a) comparison between observed and predicted vertical
irradiance profiles together with the expected irradiance in pure seawater; (b) correlation between
observed and predicted irradiances.

3. Results

The following results present a sample to illustrate the availability and quality of light in ocean
waters. The availability of light is defined by the photic depth at which 1% of the incident irradiance
exists. In addition, the presented methodology can identify the various depths where the spectral
values reach 1% of their incident values. As some spectral bands will become extinct before others,
the quality of light refers to the amount of energy remaining in each spectral band at any depth.
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Figure 8 presents the percent change in the total downwelling irradiance with depth,
which indicates a photic depth of 50 m on 3 September 2013. Figure 9 presents the penetration
profiles of various wavelengths. The high wavelengths are attenuated heavily within the top 10–20 m,
while the shorter wavelengths continue to deeper waters. The penetration depths of the whole PAR on
the same day are shown in Figure 10. Wavelengths 485–500 nm reached a maximum depth of 46 m,
while those close to 700 nm were almost extinct at an 8-m depth. Figure 11 presents the change in the
spectral distribution of the PAR throughout the water column, which defines the light quality on that
day. It is worth recalling that the shape and penetration depth of the various wavelengths will change
throughout space and time as the chl-a concentration and incident irradiance change.

Figure 8. Change of the total downwelling irradiance with depth on 3 September 2013.

 

Figure 9. Profiles and penetrations of various wavelengths, which illustrates the change in light quality
with depth.
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Figure 10. Penetration depth of the PAR on 3 September 2013.

 

Figure 11. Change of the spectral distribution of the PAR throughout the water column on
3 September 2013.

4. Discussion

A mathematical approach was presented to calculate irradiance in ocean waters (Case 1 waters).
The methodology is not site-specific, and it can be applied to any system. Nevertheless, proper
calibration of the bio-optical model remains an essential factor for any site-specific application.
The methodology presented here utilized relationships from a wide range of absorption and
backscattering spectra that were presented by the IOCCG [3]. This range was based on mathematical
relationships that used phytoplankton concentration in ocean waters as a reference to estimate all
absorption and backscattering components in the water column. Employing numerical modeling with
bio-optical modeling validates the use of the presented approach for predictions of future scenarios
related to changes in environmental and anthropogenic conditions. For example, environmental
impacts due to global warming may cause alterations to seasonal cycles in temperature, precipitation
and wind patterns. Such alterations can impact ocean circulation and stratification, which directly
impacts the transport, distribution and composition of phytoplankton groups and consequently their
optical properties. Similarly, anthropogenic effects due to increased aerosols can alter the incident
light, which affects the photic depth and the wellbeing of the phytoplankton communities.

It is argued here that the photic depth (at 1% irradiance) is an aggregate parameter for
phytoplankton studies and that a more detailed representation of the “light quality” is more
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appropriate. As presented above, while the photic depth was 50 m, some wavelengths were extinct
in much shallower depths (Figure 10). The resolved PAR distribution with depth (i.e., Figure 11)
identifies light quality throughout the water column, which can provide useful information about
the wellbeing of the phytoplankton communities at various depths. Such information can help in
studies of primary productivity in the oceans. Most current numerical models calculate production
(photosynthesis) based on total PAR only. In order for light quality to affect numerical models, they
must compute the spectral photosynthesis of the competing dominant phytoplankton species and
their adaptation to irradiance throughout the photic depth. An example of the complexity in this area
is tackled for two coexisting phytoplankton species in [26]. Partial numerical implementation was
presented using λ = 490 nm as a proxy to the PAR [27]. This topic needs more future studies to provide
further guidance for implementing light quality and spectral photosynthesis in such models.

As indicated in the presented methodology, calibration is essential to reduce the level of
uncertainty in the final irradiance predictions. Calibration of the bio-optical models eliminated
the random processes that were incorporated in the original formulation [3]. Constant values for
the relevant mathematical parameters and coefficients were calibrated using field observations [24].
The two physical parameters in Equation (9) can be site specific [3] and may have to be included in
the calibration. Similarly, the spectral slopes (Equations (10) and (13)) have to be defined properly.
Allowing such parameters to vary requires proper coupling between light and phytoplankton to
account for the continually-changing parameterization (see the proposed numerical steps below).
Validation of the presented methodology requires consistent high quality sets of data from various
locations during various seasons. Figure 7 indicates that the observed downwelling irradiance failed
to capture the attenuation within the top 12 m, which had the highest observed chl-a concentrations in
the profile (Figure 4). Such inconsistency infers an unjustified increase in the observed downwelling
irradiance. While physical effects (e.g., from density stratification) are beyond the scope of this work,
they may have impacted the model and data shown. More data are definitely needed to improve the
calibration and validation of the presented approach.

There are two major implications of the presented methodology: modeling implications and
ecological implications. The methodology presented validates the coupling of bio-optical models with
three-dimensional water quality models. The numerical implications of coupling phytoplankton to
light in water quality models can execute the following general steps, which are recommended for
relevant future work:

1. At time t
2. At location x,y
3. For layer �i

4. The numerical model provides Cx,y,z,t

5. Calculate ac(440) (Equation (9))
6. For every wavelength, calculate: ac(λ), as(λ), ag(λ), bp(λ), bs(λ) (Equations (8), (10), (13), (16)

and (19), respectively)
7. Calculate the spectral attenuation coefficient, Ki(λ), for each λ (Equation (4))
8. Calculate attenuated irradiance for each λ, Ei(λ) (Equation (5))
9. Calculate total irradiance, Ei, by numerical integration over all λ (Equation (6))
10. Move to the next layer down (i + 1) and repeat Steps 4–9
11. Move to next location and repeat Steps 3–10
12. For each layer, use Ei in the calculation of Cx,y,z,t+Δt, which fully couples light and phytoplankton

at the next time level (t + Δt).

The ecological implications encompass the predictive ability of phytoplankton biomass and
its primary productivity in the oceans. Coupling light quality to water quality models facilitates
understanding the relationship between light quality and phytoplankton. Light quality impacts the
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composition and health of phytoplankton communities in the water column, which, consequently,
alter water clarity and irradiance levels. Water clarity is a major indicator used for many management
decisions related to the health of estuarine, coastal and ocean waters. To the author’s knowledge,
such coupling is not present in most water quality models. However, recently, it was implemented in
studies of primary productivity in the Pacific Ocean [27].

The presented approach is expected to work well in environments where phytoplankton particles
are the major contributor to light attenuation through absorption by their chl-a pigment, their dead
NAPs cells and their exudation of CDOM; as well as backscattering by the particulate phytoplankton
cells and their dead NAPs. In other environments (e.g., with density stratification), the approach
has to be augmented with additional considerations to account for such effects. Processes related to
phytoplankton composition and dynamics (e.g., transport and vertical migration) should be covered
by the water quality model. As the methodology is based on chl-a concentration, situations when
phytoplankton cells and their chl-a content change may pose a challenge to this approach.

5. Conclusions

Predictive numerical models can use the presented methodology to couple light with
phytoplnkton physiology throughout the photic depth. Not only light quantity but also its quality
are essentisl for proper coupling. Nonetheless, numerical models have to accommodate the spectral
photosynthesis of the competing dominant phytoplankton species and their adaptation to the spectral
irradiance throughout the photic depth. The complexity of this coupling is still unresolved and
needs more attention from both the numerical modeling community as well as the optical and
bio-optical scientists.
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Abstract: Harmful algal blooms (HABs) have frequently occurred in the James River. The State
has convened a Scientific Advisory Panel (SAP) to review the James River chlorophyll-a standards.
The SAP will conduct a scientific study to review the basis for setting the chlorophyll-a standards.
To support the SAP study of chlorophyll-a standards, the State of Virginia has decided to develop a
numerical modeling system that is capable of simulating phytoplankton and HABs. The modeling
system includes a watershed model, a three-dimensional hydrodynamic model and water quality
models. The focus of this study will be on the development and verification of the hydrodynamic
model. In order to simulate the complex geometry of the James River, a high-resolution model has
been implemented. The model has been calibrated for a long-term period of 23 years. A series of
model experiments was conducted to evaluate the impact of forcings on dynamic simulation and
transport time. It was found that freshwater discharge is the most sensitive for an accurate simulation
of salinity and transport time. The water age predicted by the model in the tidal freshwater region
represents the fluctuation of transport processes, and it has a good correlation with the algal bloom,
while at the downstream, the transport time simulation agrees with the delay of the HAB in the
mesohaline of the James after the HAB occurred in the Elizabeth River due to the transport processes.
The results indicate that the hydrodynamic model is capable of simulating the dynamic processes of
the James and driving water quality models in the James River.

Keywords: estuarine dynamics; numerical model; transport time; James River

1. Introduction

The James River is a western tributary of the Chesapeake Bay (Figure 1). The unique geometry of
the James River results in complex dynamic fields in both upstream and downstream portions of the
James. The seasonal variation of the dynamic condition is believed to have a high influence on the
frequent formation of harmful algal blooms (HABs) in the estuary.

In the tidal fresh portion of the James, the chlorophyll-a distribution is strongly influenced by
hydrodynamic fields because of the limited mobility of phytoplankton. Bukaveckas et al. [1] found that
the location of the chlorophyll-a maximum in the tidal freshwater James River is determined in part
by the natural geomorphic features of the channel. The transition from a riverine-type (narrow, deep)
cross-sectional morphology to a broad channel with shallow lateral areas provides favorable light
conditions for the phytoplankton. The residence time increases during the low-flow period, which
coincides with the summer period. Consequently, the phytoplankton bloom occurs frequently during
summer in this region.
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Figure 1. James River model grid and the location of observation stations for tide and water quality.

The downstream portion of the James River is distinguished by a meandering main channel.
An abrupt bend in the river occurs at Newport News Point (NNP), approximately 10.5 km from its
mouth, where the orientation of the river changes from northeast-southwest in the lower river to
southeast-northwest in the upper river. Hampton Flats is the shoal flanking the northern side of
the deep channel in the lower James River (Figure 1). Water depth over the Hampton Flats is less
than 5 m. This unique geometry results in a strong circulation and topographic eddy [2], which
contributes to both larval retention and the formation of the HAB in the mesohaline region of the
James. Morse et al. [3] found that the Lafayette River inside the Elizabeth River, a sub-estuary of the
James River, acted as the initiation region for the bloom of C. polykrikoides in the James River during the
summers of 2007 and 2008. Although the bloom occurred initially in the Elizabeth River, C. polykrikoides
was transported from the sub-estuary into the lower James River and a portion of the lower James due
to this local estuarine circulation, and these form massive blooms over large portions of the tidal James
River and the lower Chesapeake Bay.

The cause of the HAB in the James is attributed to the high nutrient input from both point and
non-point sources. To improve the water quality condition of the estuary, nutrient reduction is needed
for the upstream and lateral watersheds. Besides, the State has convened a Scientific Advisory Panel
(SAP) to review and confirm or adjust the James River chlorophyll-a standards. The SAP will conduct
a scientific study to review the basis for setting the chlorophyll-a standards. To support the SAP
study of chlorophyll standards, a numerical model that is capable of simulating phytoplankton and
harmful algal blooms is needed. The model system includes a watershed model, a three-dimensional
hydrodynamic model and water quality models. The dynamic models have been often used for
environmental studies and drive water quality models [4–10].

Considering the variations of tidal, wind and baroclinic forcings, water movement in the tidal
James is truly multi-dimensional and quite complex. The accurate simulation of transport time
and residence time in the James River is the key to the success of the water quality model of the
James River. To accurately simulate the hydrodynamics of the James, we developed a numerical
model, which is capable of simulating the circulation features that span timescales of hours to months,
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and simulate density circulation, geometry-induced circulation and residence time for a 23-year
period. Although several models have been developed in the James River in the past, including the
Chesapeake Bay water quality model [11], a model study of dynamics related to larval transport and
an environmental assessment [2,3], none of the models have been verified for such a long period
and for the correctness of the simulation of transport time. On the other hand, the traditional model
skill assessment through comparison of the tide, salinity, etc., may not be sufficient to ensure correct
simulations of algae and HAB, which require accurate simulation of residence time and transport
time. These characteristics are very difficult to evaluate using the traditional method. The question as
to what is the influence of external forcing on simulating dynamic fields and consequently affecting
the transport of water quality state variables is not well-evaluated. Therefore, the variation of the
external forcing on the uncertainty of the hydrodynamic model prediction skill is the focus of this paper.
Several model sensitivity simulations were conducted with respect to the variation of the external
forcings, and the influence of the forcing condition on model prediction are evaluated. In order to
address the influence of the accuracy of model dynamics on transport processes, we will further
evaluate the model through a comparison of key transport timescales, such as water age and residence
time, to evaluate model performance.

2. Materials and Methods

2.1. Study Area

The James River is the southernmost tributary of Chesapeake Bay (Figure 1). It is about 160.0 km
long, and the width ranges from 300 m at its upstream and 6 km at the downstream with a mean
depth of 3.76 m. The tidal range is about 0.74 m at Sewells Point near the mouth. The mean freshwater
discharge is about 226 m3·s−1. The monthly river discharge varies seasonally from 86 m3·s−l in
September to 365 m3·s−l in March [2]. Salinity in the estuarine part of the James River varies seasonally,
which is a common characteristic of estuaries in the mid-latitudes. Near the river mouth, the channel
is more than 7 m deep, and salinity typically is around 25 parts per thousand (ppt). The horizontal
salinity gradients are usually larger near the upper mesohaline of the river where the freshwater and
saltwater converge. The denser, more saline bottom water enters the James River from the Chesapeake
Bay and flows upstream, while the less dense surface waters, dominated by freshwater inflow, flow
downstream toward the Bay [12,13].

2.2. Model Configuration

The three-dimensional Environmental Fluid Dynamic Code (EFDC) was used for simulations
for the James River and its tributaries. The EFDC model is a general hydrodynamic model that
solves three-dimensional, time-dependent flows governed by hydrostatic primitive equations [14,15].
The Mellor and Yamada [16] Level 2.5 turbulence closure scheme as modified by Galperin et al. [17] is
implemented in the model. The model uses curvilinear, orthogonal horizontal coordinates and sigma
vertical coordinates to represent the physical characteristics of a water body. A high-order transport
scheme with an anti-numerical diffusion scheme is implemented in the numerical model, which is
essential for simulating transport processes accurately in the Chesapeake Bay and its tributaries.

A Cartesian grid model has been applied to the James to study the eddy generated at the mesohaline
and polyhaline regions of the lower James [2,18]. The model does not have sufficient resolution for the tidal
freshwater region and Elizabeth River to simulate an algal bloom in these regions. A new model grid was
developed for the long-term simulation of the dynamic fields. Because the water quality model simulation
will span a 23-year period, the efficiency of computation needs consideration. We want to develop a
model with sufficient spatial resolution for the simulation of all dynamic features, but maintaining a
high efficiency of computation. The model grid cells were designed to follow the main channel of the
James River. High resolution was placed on the main stem of the river to obtain the best representation of
the topography in this area. The model grid is shown in Figure 1. There are a total of 3066 grid cells in
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the horizontal and eight layers in the vertical. The bottom bathymetry is interpolated using the NOAA
coastal relief model with 90-m resolution (https://www.ngdc.noaa.gov/mgg/coastal/crm.html). For the
Elizabeth River, data measured during a survey conducted by the Army Corps (Norfolk District) were
used. For small creeks, NOAA charts were used to obtain depths in shallow areas. Eight evenly-spaced
sigma layers were applied in the vertical.

The model simulation periods are from 1991 to 2000 and from 2007 to 2013. To allow the model
spin-up, the model started from 1990 and 2006, respectively, a full year in advance of each simulation
period. Therefore, the impact of the initial conditions can be efficiently removed. Daily river discharges
from upstream and lateral watersheds are obtained from the James River watershed model developed
by TetraTech, Inc., [19], which includes inflows from 87 sub-watersheds. The three main upstream
freshwater discharges are from Richmond, the Appomattox River and the Chickahominy River,
respectively. Hourly wind forcing data were obtained from the Norfolk and Richmond International
Airports, which are located near the Sewells Point station at the mouth and near the fall line of
the James, respectively. The open boundary conditions from 1990 to 2000 (which included hourly
time-varying water level, temperature and salinity profiles) were obtained from the 3D model of the
Chesapeake Bay Program [20]. Because the Chesapeake Bay Program (CBP) model does not simulate
the period from 2006 to 2013, the tide boundary condition for this period used Sewells Point data with
corrections of phase and amplitude. The mean differences of phase and amplitude were estimated
based on CBP model outputs and measured tidal elevations at Sewells Point. The hourly salinity
boundary conditions used for the 2006 to 2013 period are outputs from the large domain Chesapeake
Bay model [21,22]. The temperature boundary condition used hourly measurements at Sewells Point
at the surface and monthly temperature data measured at CBP Station CB8.1. Differences of surface
and bottom temperatures at Station CB8.1 were interpolated in time and applied to the hourly surface
temperature data to obtain an estimation of bottom temperature. Because the temperature is highly
determined by the air-sea exchange and the open boundary has less impact on the temperature inside
the James, this approach yields a good model-data agreement. The radiation boundary conditions are
used for the tide, salinity and temperature. Hourly wind forcing, surface pressure, humidity and solar
radiation obtained from the hourly meteorological data from Norfolk and Richmond Airports were
used for temperature simulations.

2.3. Age Calculation

Any change of hydrodynamic conditions will result in a change of transport processes, which is
more important for transporting both nutrients and phytoplankton [21,22]. Because it is difficult to
evaluate the change of dynamic conditions (e.g., change of velocity, surface elevation) and their impact
on algae and nutrient transport, we can use the transport timescale to evaluate the impact of dynamics
on water quality because it shows a cumulative effect. Transport timescales, such as residence time
and renewal time, are the first-order representatives of the dynamic conditions in the estuary, whereas
the vertical transport time is directly related to DO exchange [21].

The timescales can be computed using the concept of water age [23]. Freshwater age is the
elapsed time since a water parcel leaves the head of a tributary (or any origin), where it has a continual
freshwater input. The age at location x is the mean time required for a water parcel to be transported
from its discharge location to location x, regardless of its pathway [24]. Delhez et al. [23] provided a
way to use a numerical model to compute the water age. Assuming there is only one tracer released
to a system without internal sources and sinks, the transport equation for computing the tracer
concentration C(t,

⇀
x ) and the age concentration α(t,

⇀
x ) can be expressed as [24]:
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The mean age can be calculated as follows:

a(t,
→
x ) =

α(t,
→
x )

C(t,
→
x )

(3)

where a(t,
→
x ) is water age, ∇ =

⇀
i ∂

∂x +
⇀
j ∂

∂y +
⇀
k ∂

∂z and K is the diffusivity tensor. To simulate age,
the tracer was continuously released at the upstream or at Elizabeth River. The radiation boundary
condition was applied at the mouth [18]. Because the upstream of the James River is very narrow,
the age has minor variation laterally and vertically. Therefore, the difference of the cross-section
average age between its upstream and downstream for a control volume is a good estimate of the local
residence time for that control volume.

3. Results

3.1. Tidal Elevation and Current

Model validation for the tide was conducted for the entire simulation period. The surface
elevations were compared to the observations at six stations. There is only one NOAA tidal station
at Sewells Point. Another five stations are maintained by Virginia Estuarine and Coastal Observing
System (VECOS, http://web2.vims.edu/vecos/), which measure water depth using pressure sensors.
The bottom roughness height was adjusted to make the tidal propagation correct in the estuary.
A constant roughness height of 0.33 cm was used. The statistics of model performance are summarized
in the Taylor diagram. The Taylor diagram provides a concise statistical summary of how well patterns
match each other in terms of their correlation, their root-mean-square difference and the ratio of their
variance [25,26].

Figure 2 shows the model results of tidal elevation. There are three axes shown in the diagram that
represent correlation coefficients, the centered root-mean-square difference and standard deviation.
All data (both modeled and observed) are normalized by the observed standard deviation at a reference
station (APP001.83). The correlation axis shows the correlation between model results and observations.
The standard deviation axis indicates the deviation of model results from measurements measured
by the standard deviations. The circle of root-mean-square difference shows the root-mean-square
difference (RMSD). The value used to normalize the RMSD is 0.3 m.

Figure 2. Taylor diagram representing model-data comparisons for surface elevation (1 = JMS043.78,
2 = JMS073.37, 3 = APP001.83, 4 = JMS018.23, 5 = JMS002.55, 6 = Sewells Point, reference RMSD
value = 0.3 m).
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The modeled surface elevations are within 0.5 RMSD, which is less than 0.15 m. The RMSD is
relatively low, and the simulation variations are close to observations based on the measure of the
standard deviation, which is close to the reference site as observations. The correlation is larger than
0.86. It can be seen that the tide is well simulated.

In recent years, NOAA has conducted surface current observations in the lower James.
The model-simulated currents at a station near EL5-4 are compared to the NOAA observations.
Figure 3 shows the scatter plot of observations against the model simulations. The model skill,
which is defined as SS = 1 − ∑ (Amodel − Aobs)

2/ ∑ (Aobs − Aobs)
2, was used to evaluate the model

performance. Performance levels are categorized by the SS value as: >0.65 excellent; 0.65 to 0.5 very
good; 0.5 to 0.2 good; <0.2 poor [25]. It can be seen that the model simulations vary each year. Overall,
the simulations agree with observations with model correlation ranges from 0.6 to 0.82 and skill
between 0.24 and 0.65, indicating that the current simulation is satisfactory. For detailed model results,
the readers are referred to the James River Chlorophyll Study Modeling Report [19].

Figure 3. Scatter plots of comparisons of modeled versus observed current (SS is the model skill and
CC is the correlation coefficient).
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3.2. Salinity

The long-term transport processes are driven by sub-tidal circulation [12]. Correct calibration
of salinity is important for accurate simulation of sub-tidal circulation. The calibration of salinity is
focused on stratification and salinity intrusion. We used monthly data (measured once a month) to
conduct the salinity calibration. The salinity calibration was conducted from 1991 to 2000, and the
validation was conducted from 2007 to 2013. Although the data do not have high temporal resolution,
these can be used to evaluate a long-term simulation of salinity for seasonal and inter-annual variations.
Unlike the model calibration of surface elevation, there are no model parameters to calibrate salinity
for the 3D model. The discrepancy of salinity between modeled and observed is mainly caused by the
freshwater discharge, boundary condition(s), the wind and bathymetry (which will be discussed in
later sections). Both the transport scheme and turbulent scheme used in the model play important roles.
EFDC uses a second-order transport scheme with anti-numerical diffusion; it can simulate salinity
well in general. The summary of model prediction skill is shown in Figure 4 as a Taylor diagram, in
which salinity is compared at seven monitoring stations along the James River (locations are shown in
Figure 1). The value used to normalize the root-mean-square difference is 2.39 psu. It can be seen that
the model has a high correlation with a low root-mean-square difference at each station. The model
performance for the second period is better than that for the first period.

Figure 4. Taylor diagrams representing model-data comparisons at seven monitoring stations in the
James River. Three axes represent correlation coefficients (blue lines), the centered root-mean-square
difference (green lines) and normalized standard deviation (black lines) (station location: 1 = LE5.5,
2 = LE5.6, 3 = LE5.4, 4 = LE5.3, 5 = LE5.2, 6 = LE5.1, 7 = RET5.2, reference RMSD value = 2.39 psu).

Important characteristics of the salinity simulation are the stratification and salinity intrusion,
which are the key parameters that determine gravitation circulations. Examples of salinity stratification
(difference between bottom and surface) are shown in Figure 5 for Stations LE5.1, LE5.2, LE5.3 and
LE5.4, respectively, for 2008 and 2010. We compared the salinity difference between bottom and surface
layers. It can be seen that the model simulated the salinity stratification during this period rather
well. The model simulation of salinity intrusion is shown in Figure 6, for surface and bottom salinity.
We compared mean, minimum and a maximum of salinity for a three-day window of observations
along the James River from the mouth to the salinity intrusion limit and compared it to the observations
and their range. It can be seen that the simulation of modeled salinity intrusion agrees well with the
observations. The model performance to simulate salinity is satisfactory.
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3.3. Temperature

Temperature is a key parameter for the eutrophication model, as all kinetic parameters depend
on temperature, which varies from 5 to 30 ◦C. The observations are monthly (one observation each
month at each location). A summary of model prediction skill for temperature simulation is shown in
Figure 7 as a Taylor diagram, in which temperature is compared at ten monitoring stations along the
James River. It can be seen that the model results include a high correlation at each station with a low
root-mean-square difference. There is no difference for all stations statistically for model calibration
and validation. The model results are satisfactory.

Figure 7. Taylor diagrams representing model-data comparisons at seven monitoring stations in the
James River. Station locations: 1 = LE5.5, 2 = LE5.6, 3 = LE5.4, 4 = LE5.3, 5 = LE5.2, 6 = LE5.1, 7 = RET5.2,
8 = TF5.6, 9 = TF5.5, 10 = TF4.5 (reference RMSD value = 8.69 ◦C).

3.4. Sensitivity Tests

For a three-dimensional model of the EFDC, the logarithmic wall function is used for shear stress.
The only model parameter to be calibrated is the bottom roughness height, which determines the model
simulation of the tide. However, the external forcing and open boundary conditions are critical for
the accurate simulation of salinity, which is important for estuary dynamics and estuarine circulation.
A series of model sensitivities is conducted to test the model performance and help understand the
impact of external forcing on model performances.

3.4.1. Freshwater Discharge

Estuarine stratification is a competition between barotropic and baroclinic forcings. The large
buoyant forcing is from freshwater discharge, which flows out of the estuary on top of the salty, dense
water. It can be expected that a change of freshwater discharge can cause a change in salinity. For the
current 3D model configuration, we used a watershed model output to drive the model. The model
predictive skill is very high, but some discrepancy can be expected, as shown in Figure 8, upstream
of Richmond. A sensitivity run was conducted to replace three freshwater discharge input records
from locations upstream of Richmond, Appomattox River and Chickahominy River with United States
Geological Survey (USGS) flows (USGS02037500, USGS020416500 and USGS02042500). These three
stations account for the majority of the flow.

Figure 9 shows the comparison of the salinity difference when using watershed runoff and USGS
flow. It can be seen that the model is very sensitive to the flow. The salinity can differ by 2 to 4 psu,
which is on the same order as the root-mean-square error of the model calibration. Therefore, some
discrepancy during salinity calibration can be expected when using flow from the watershed model.
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Figure 8. Comparison of freshwater discharge between USGS data (USGS02037500) and watershed
model simulation output at Richmond.

Figure 9. Sensitivity tests for flow at Stations RET5.2 and LE5.4 (red lines show the results of a model
simulation using watershed flow, and blue lines show results of a simulation using USGS flow at three
upstream stations; the difference shows the difference of runs between USGS flow and watershed flow).

It is interesting to know if the change of salinity, which is within the accepted error range due
to flow or other forcings, will affect the long-term transport or export of nutrients, as the retention
of nutrients and eutrophication are highly determined by the residence time [27–29]. The transport
property of a substance can be quantified by the transport timescales, such as residence time and water
age [21–24]. The age of water is defined as the time elapsed since it leaves the headwaters. The age
at each location indicates the time required for the water or conservative substance to travel from
the headwaters to a specified location [18]. The age and the residence time are often sufficient to
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characterize the motions of a conservative substance. We computed the freshwater age along the James
River using different flows and compared the results in Figure 10. It can be seen that the transport
process is very sensitive to the flow condition. The difference can be about five days for a given period
for this example or at a particular day during the high-flow period. The change of flow can affect
short-term transport processes. However, the annual mean water age does not change much as shown
in Figure 11, especially at the downstream. As the watershed model simulated flow is slightly lower
than the USGS flow, even if it is higher during some high-flow periods, the transport slows slightly.
However, the results indicate that it will not affect the long-term transport of nutrients in the estuary.

Figure 10. An example of water age at 16 April 2008 (the left panel shows results using watershed flow,
and the right panel shows results using USGS flow).
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Figure 11. Mean water age and difference along the James River for the period of 2002 to 2008 with
respect to different freshwater discharge.

3.4.2. Wind

Wind is a very important forcing to change estuarine circulation. Downstream wind can enhance
the estuarine circulation, while upstream wind can increase mixing in the estuary. The wind plays
an important role in the modulation of hypoxia in the Chesapeake Bay [30,31]. A sensitivity test to
determine the influence of the wind on salinity was conducted. It is unknown if the wind will have
a large impact on salinity for this relatively small estuary. We reduced wind forcing by 10%, ran the
model from 1990 to 1992 and compared the salinity at Stations LE5.4 and RET5.2, which represents the
range of salinity intrusion in the estuary. The sensitivity results are shown in Figure 12. It can be seen
that a 10% reduction of wind can change salinity up to 2 psu at Station LE5.4, but causes less than a
0.5-psu change at Station RET5.2. Because the wind-forcing fluctuation has a frequency of three to five
days in Chesapeake Bay, the short-term change of the wind on long-term transport appears not to be
important for this narrow estuary. We compared water age (not shown here), as well, and found that
there is no difference in water age. The results suggest that a 10% error in wind forcing will not affect
the long-term transport of nutrients in the James River.

3.4.3. Open Boundary Condition

We used the output of salinity from the large model as the open boundary condition. The influence
of the open boundary condition of salinity on the model was evaluated by running the model with a
reduction of 5% of the salinity at the open boundary. Comparisons of model results at Stations LE5.4
and RET5.2 are shown in Figure 13. The salinity decreases by about 1.5 psu at Station LE5.4, but only
decreases up to 1 psu at Station RET5.2. It can be seen that the salinity simulation is sensitive to the
open boundary specification near the mouth. Based on the sensitivity runs, the calibration results are
satisfactory, although there are errors in the salinity open boundary condition.
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4. Discussion and Summary

The location of an algal bloom not only depends on light and nutrients, but also depends on
residence time [28,29]. A correct simulation of transport processes and residence time is critical for the
algal bloom. To evaluate the model performance, we computed residence time in the tidal freshwater
region and compared the results to the Chl-a observations at Stations TF5.5 and TF5.5A. It can be seen
that the peak algal bloom corresponds to the low residence time at that region with a good correlation
(R = 0.64, p = 0.001) (Figure 14). Because of the impact of available nutrients and light, it does not
match all of the variation as expected. The results indicate that the model simulation transport process
is satisfactory and can be used to simulate the HAB.

HABs have occurred almost every year in summer in the mesohaline region of the James, and
they are believed to be caused by the HAB bloom initiated in the Lafayette River, a tributary of the
Elizabeth River [3]. After a HAB has occurred in the Elizabeth River, the bloom will occur in the James
after 10 to 15 days. To verify the transport time for algal transport from the Elizabeth River to the James
River, we computed the water age from the Elizabeth River to the James River. The tracer is released
from the Elizabeth River; a water age at any location represents the time required for any dissolved
materials to be transported from its source to the location. Figure 15 shows the age distribution. It can
be seen that it takes about 10 to 15 days to reach the mesohaline region during spring and neap tides.
The surface water moves upstream faster during spring tide than during neap tide. The bottom water
moves 5–10 days faster upstream than surface water, which is due to the unique front and eddy system
near the mouth of the James River [2]. A portion of the ebb flow will turn to the north and flood into
the Hampton Flats, where a frontal system is well developed, and surface water will dive to the bottom
through this frontal system and be transported upstream along the deep channel near the northern
shore. Meanwhile, the flood tide will move surface water upstream [2]. The transport time for water to
move from Elizabeth River to the mesohaline region of the James River agrees well with the time delay
of the occurrence of the HAB in the James River after the HAB occurred in the Elizabeth River.

Figure 14. Comparison of residence time and Chl-a concentration at Stations TF5.5 and TF5.5a.

344



J. Mar. Sci. Eng. 2016, 4, 82

 

Figure 15. Travel time (age) corresponding to the dissolved substances released from the mouth of the
Elizabeth River at Day 215 (left, spring tide) and Day 220 (right, neap tide). The travel time is relative
to the releasing day.

In summary, a three-dimensional hydrodynamic model has been developed for the James River.
The Environmental Fluid Dynamics Computer Code (EFDC) is used for developing the James River
hydrodynamic model. The model was calibrated for surface elevation over the period from 2006 to
2008, for current over the period from 2007 to 2012 and for salinity and temperature from 1991 to 2000.
Furthermore, it is validated from 2007 to 2013 for salinity and temperature. The model validation
results indicate that the model is robust; it adequately simulates the hydrodynamics and temperature;
and it is suitable for the water quality model development for the James River.
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Abstract: The objective of this study was to assess the effect of shoreline retreat and dune erosion on
coastal flooding in a case study located in the southern coast of Rhode Island, USA. Using an extensive
dataset collected during 2011, an ADCIRC model was developed to simulate the propagation of storm
surge in the coastal areas, including coastal inlets and ponds. A simplified methodology, based on
the geological assessment of historical trends of the shoreline retreat and dune erosion in this area,
was incorporated in the model to represent coastal erosion. The results showed that for extreme
storms (e.g., a 100-year event), where coastal dunes are overtopped and low-lying areas are flooded,
the flooding extent is not significantly sensitive to coastal erosion. However, failure of the dunes leads
to a significant increase of the flooding extent for smaller storms. Substantial dampening of the storm
surge elevation in coastal ponds for moderate and small storms was associated with coastal inlets
connecting to coastal ponds which are often not resolved in regional surge models. The shoreline
change did not significantly affect the extent of flooding. It was also shown that the accuracy of
a storm surge model highly depends on its ability to resolve coastal inlets, which is critical for reliable
storm surge predictions in areas with inlet-basin systems.

Keywords: dune erosion; coastal ponds; storm surge; coastal flooding

1. Introduction

The northeast of the US, including the coastal regions of Rhode Island, have been impacted by
hurricanes in the past, most recently Hurricane Sandy in 2012. Climate change is expected to change
the strength and frequency of these events, putting more coastal areas at risk [1]. Further, it is estimated
that sea level will rise between 0.2 and 2 m by 2100 in the northeast of the US, which also magnifies
the impacts of coastal flooding [2]. As coastal flooding is sensitive to changes in bathymetry and
topography of a region, coastal erosion can potentially affect the storm surge propagation. Storm surge
and coastal erosion interact in two ways: (1) storm surges (and wave forces) lead to coastal erosion;
(2) coastal erosion affects the propagation of storm surge and consequently alters the extent of flooding.
While it is possible to examine the two-way interaction processes using morphodynamic models
(e.g., [3,4]), which incorporate sediment transport and bed level changes, validating morphodynamic
models is very challenging, and developing those models is costly. Alternatively, assuming worst case
scenarios (complete dune erosion, shoreline retreat at specified rate, etc.) is an alternative method
which allows understanding the effect of coastal erosion on flooding for extreme scenarios (e.g., [5]).

Our case study is located in the southern coast of Rhode Island (Figure 1), which consists of
several coastal ponds and barriers. The shorelines are retreating at a rapid rate, in some areas up to
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1.15 m per year [6]. The coastal dunes are also eroded during major storm events (Figure 2). The failure
of dunes can affect the dynamics of the inlet-basin/pond system.

Figure 1. Overview of the the study area in the southern coast of Rhode Island. Other details include
save points (blue crosses) from the North Atlantic Coast Comprehensive Study (NACCS) (see Section 2),
Woods Hole Group Inc. water level gauge locations (orange dots), and a red box around the study area.
Transects in the dark blue area were used to apply erosion scenarios (Figure 8).

Figure 2. Failure of dunes protecting Ninigret Pond after Hurricane Carol (1954); source: Rhode Island
(RI) Coastal Resources Management Council.

The objective of this study is to investigate the effects of dune erosion and shoreline retreat
(together and separately) on storm surge. The study was carried out using numerical modeling,
and analysis of the field data.

Section 2 describes several sources of data (observed/hindcast) which have been used in this
study; in particular, the hydrodynamic data, which have been collected during 2011, and other
relevant storm surge modeling studies in the region are presented. Section 3 explains the simplified
methodology which has been used to simulate shoreline retreat and dune erosion. Details of the
ADCIRC (ADvanced CIRCulation) model of the study area are provided in Section 4. Several scenarios
of coastal erosion and storm surge are discussed in Section 5. Discussions and summary of the results
are presented at the end.
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2. Data

From July 2010 to September 2011, Woods Hole Group carried out an extensive data collection
program [7], for the US Army Corp of Engineers (USACE) New England District, entitled “Wave,
Tide and Current Data Collection, Washington County, Rhode Island”. The primary purpose of that
work was to collect site-specific data to support a RI Regional Sediment Management Study, and
included a collection of water elevation, currents, wave, and meteorological data. Their study included
measurement of water elevations inside coastal ponds (Figure 1), as well as waves and currents
offshore. This data provided a unique source for understanding the effect of inlet-pond systems on
water elevation in this area. Hurricane Irene, which impacted this area during the observation period,
was also used for model validation.

For simulation of synthetic storms (i.e., 100-year event), the North Atlantic Coast Comprehensive
Study (NACCS; [8,9]) was used. NACCS is based on a system of numerical models including
ADCIRC [10], WAve Model (WAM), and STeady state spectral WAVE model (STWAVE) [11]. It has
simulated hydrodynamic and wave fields of 1050 synthetic tropical storms as well as 100 extratropical
historical storms over the Atlantic Coast. The model was based on a relatively high resolution
unstructured mesh (30 m–50 m near the coast). The synthetic storms were generated based on the
statistical analysis of past storms. The NACCS provides model results at the save points (Figure 1),
including time series of the wind, wave and water levels for the events and return period analyses for
the tropical storms. These data were used to force the model at the boundary for a synthetic storm
representing a 100-year event. It should be added that some of the save points of the NACCS are
located inside the coastal ponds which may be inaccurate, as will be discussed later. For the 100-year
event, all synthetic storms simulated in NACCS were examined, and a storm surge event which
generated the water levels of around 100-year storm surge at Newport (8452660) and Providence
(8454000) National Oceanic and Atmospheric Adminstration (NOAA) water level stations was selected.
This storm had a maximum surge of 3.20 m (Mean Sea Level (MSL)) at Newport (Figure 3), which is
close to 3.35 m (MSL) or 2.7 m (Mean Higher High Water (MHHW)) for the 100-year event, considering
the 100-year event at the upper 95% confidence level.

Figure 3. The time series of storm surge for synthetic storm 457—from NACCS—which approximately
produces 100-year storm surge (at the upper 95% confidence level) near the Newport NOAA water
level station.

Since coastal erosion occurs during major storms, several hurricanes were considered in this study.
For validation, Hurricane Irene (late August 2011) was selected as observed data was available during
this hurricane in several locations inside the model domain. A larger storm event, Hurricane Bob,
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a strong tropical storm which occurred on 19 August 1991 was chosen. Hurricane Bob provides
a good representation of large storms in the area, but it was not large enough to overtop the barriers.
Also, two synthetic storms from NACCS including a storm representing the 100-year event (which is
important for planning purposes) were simulated.

For the surge model, both bathymetry and topography of the domain (a digital elevation model:
DEM) were necessary due to wetting and drying. A DEM with a resolution of 10 m was used based on
the National Geography Data Center (NGDC) Bathymetry Data and the USACE 2010 coastal Light
imaging, Detection, And Ranging (LiDAR) survey. The LiDAR survey focused on the south coast and
extended about 1 km offshore (Figure 4).

Figure 4. The Digital Elevation Model (DEM) around the study area.

Wind data (for forcing the ADCIRC model) were extracted from the USACE Wave Information
Study (WIS) hindcasts near the domain. The WIS data covers a period from 1980 to 2012. For this
study, the wind fields from large storm events were of interest. It should be mentioned, as the model
domain covered just the southern coast of RI, the spatial variability of wind was considered negligible
in this small area. For this 30-year period, Hurricane Bob which made land fall in RI on 19 August
1991, was chosen. Hurricane Bob gives a good representation of large storms in the area [9]. It is the
fifth largest storm recorded at the NOAA tide gauge at Newport RI, and approximately corresponds to
a 20-year event, according to the extremal analysis for the site (Figure 5). The Newport water elevation
station is the closest station to the study area (71.33 W, 41.51 N) and has a long record including major
hurricanes. The wind field for Hurricane Bob extracted from WIS is plotted in Figure 6.

Figure 5. Extremal analysis of water elevation (MHHW = MSL + 0.65) for Newport NOAA station
(8452660); the red box shows Hurricane Bob.
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Figure 6. Plots of the wind speed and direction for Hurricane Bob at WIS station number 63079,
which is located near the region (71.22 W, 41.25 N).

3. Coastal Erosion Scenarios

Coastal erosion scenarios were based on shoreline retreat and dune erosion during large storm
events. The past shoreline retreat rates were used to estimate erosion rates for erosion scenarios,
and the DEM was changed according to these rates. It should be mentioned that the rate of erosion is
expected to rise due to Sea Level Rise (SLR); nevertheless, this assumption was made to simplify the
analysis. Further research is necessary to include the effect of SLR on the rate of erosion. The shoreline
retreat rates were calculated using aerial photographs from 1939 to 2014 (Figure 7; [6]). It should
be added that shorelines retreat in severe storms and recover during fair weather; however, there is
a consistent trend of shoreline retreat over past decades in this region.

Figure 7. A sample shoreline change map for a beach in the study area [6].
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The projected shoreline retreat over the next 25 years was considered. The shoreline was divided
into the cross-shore profiles shown in Figure 8. In the selected area, the beach profiles consist of
an offshore beach slope, a near shore beach slope, and a dune system. The offshore beach slope was
extended horizontally to the corresponding 25 years erosion (Figure 9). The same near shore profile
and dune system was then assumed at the end of each profile. This method retreats the shoreline
while keeping the same beach profile geometry. Once the transects were modified, they were linearly
interpolated to modify the DEM of the model.

Figure 8. Crossshore transects made to implement coastal erosion between Charlestown Beach and
Matunuck Beach (Numbered 1–30).

(a) (b)

Figure 9. The simplified method which was used to estimate the shoreline geometry after erosion in
future. Transect 30 (as an example; Figure 8), with the original shoreline (blue), 25-year shoreline (red),
and intersection point (star) are shown. The vertical axis is exaggerated for better clarity. (a) shoreline
geometry after erosion; (b) erosion of the dunes.

Coastal erosion during large storms can lead to failure of dunes as well as retreat of the shoreline.
During storm events, the combined action of storm surge and waves erode the dune and create surge
channels and wash-over fans (Figure 2). To implement dune erosion in the DEM, it was assumed that
the dunes were eroded or simply cut off at an elevation Mean High Water (MHW) with a horizontal
line (Figure 9). The elevation of the post storm profile was determined by examining the washover
fans deposited after past hurricanes in this area, including 1938 Hurricane, the Ash Wednesday storm
(1962), and Hurricane Sandy. The elevations of the washover fans were estimated using LiDAR; the
slope of 0.003 cm/m was measured for washover fans after Hurricane Sandy, which can be assumed
horizontal for the model resolution used in this study.
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4. Numerical Modeling

For surge modeling, the ADCIRC model was used. ADCIRC is based on the finite element
method and unstructured mesh discretization, allowing areas such as coastal inlets to be resolved
with a reasonable computational cost. ADCIRC has been coupled with Simulating WAves Nearshore
(SWAN), and can simulate the wave-surge interactions [12]. This model has been extensively used to
predict storm surge flooding (e.g., [10,13]).

A mesh was created, resolving coastal inlets, using the Surface water Modeling System Software
(SMS) with a resolution of 30 m near the coastline, 150 m farther offshore, and 2 km near the open
boundaries. The mesh is plotted in Figure 10. The model was forced along the open boundaries by
water elevation, and by wind stress/pressure over the domain. The model was run in the 2-D mode,
with a Manning friction coefficient of 0.018 (below MSL), and up to 0.06 in land areas. For the tidal
case, the model was forced using five harmonic constituents for tides including M2, N2, K1, S2, and O1
which can be extracted from tidal databases [14]. M4 and other overtide constituents were neglected.
M4 is generated in shallower regions by friction, and causes tidal asymmetry. Neglecting the M4
component can change the water level by around 6 cm, which can be neglected during a major storm
surge event. These constituents represent the main components of tide for this area (Table 1).

Figure 10. An overview of the mesh used for surge modeling in the southern coast of RI. The model
domain is larger than the study area and includes Block Island near the southern boundary.
Subfigure (b) shows a magnified view of the rectangular area in Subfigure (a) around Ninigret Pond.

Table 1. Harmonic constituents at the Newport and Providence NOAA water elevation stations.

Harmonics Newport Amplitude (m) Newport Phase (degrees) Providence Amplitude (m) Providence Phase (degrees)

M2 0.505 2.3 0.643 9.5
S2 0.108 25.0 0.138 33.6
N2 0.124 345.8 0.152 354.6
K1 0.062 166.1 0.073 169.4
M4 0.057 35.8 0.103 202.2
O1 0.047 202.0 0.027 312.7
M6 0.0005 220.1 0.027 312.7

MK3 0.0008 19.5 0.016 39.3
S4 0.0007 5.1 0.014 23.8

MN4 0.026 347.9 0.014 12.7
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5. Results

5.1. Model Skill Assessment

To test the performance of the model for tides and storm surge, the Woods Hole Group Inc. data
were used [7]. The observed data were compared with the model results during a spring-neap cycle
(for tides), and during Hurricane Irene (for storm surge). For tides, the model was run for 30 days from
14 May 2011 until 13 June 2011 with a one day ramping period. This time period is within the duration
of the Woods Hole Group data collection campaign. The model and observed water elevation data were
analysed by T_Tide code to compute tidal constituents [15]. Table 2 shows the comparison between the
modeled results and the observed data at the two stations inside Ninigred Pond. As this table shows,
the modeled and observed data, in general, are in good agreement. In particular, the performance of the
model for the phase and amplitude of the dominant M2 component is good. The model underpredicts
the amplitude of S2, but as this component is very small, its effect is not that significant inside the
pond. The overall RMSEs (Root Mean Square Error) for amplitude and phase are 0.015 m and 25◦,
respectively, which are convincing.

Table 2. Skill assessment of the numerical model for tidal predictions inside Ninigret Pond; see Figure 1
for location of the stations. RMSE for amplitude and phase are 0.015 m and 25◦, respectively.

Constituents

NW NN

Model Observation Model Observation

amp (m) Phase (deg) amp (m) Phase (deg) amp (m) Phase (deg) amp (m) Phase (deg)

O1 0.022 277 0.018 283 0.022 271 0.017 277
K1 0.024 217 0.019 223 0.024 210 0.019 216
N2 0.021 48 0.017 71 0.020 34 0.017 56
M2 0.083 82 0.081 89 0.075 69 0.077 75
S2 0.008 114 0.021 106 0.007 98 0.021 101

For the storm surge case, Hurricane Irene was simulated, a category 3 storm that occurred in
late August 2011. The comparison of the model results and observations are depicted in Figure 11.
The performance of the model for both stations is very good with an RMSE of 0.065 m and 0.041 m for
NN and NW respectively; however, the model slightly overestimates the surge. Overall, given the
magnitude of errors, the performance of the model was considered satisfactory.

(a) (b)

Figure 11. Comparison between the model predictions and the observed data for Hurricane Irene
(see Figure 1 for location of the stations). (a) NW station; (b) NN station.

5.2. Propagation of Tides/Storm Surge in Coastal Ponds; Effect of Coastal Inlets

As mentioned previously, the southern coast of RI consists of several coastal ponds and barriers,
and the failure of dunes can affect the inlet-basin/pond system. At first, a simplified analysis was
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carried out based on the previous research about the dynamics of inlet-basins, and the collected data
in this area. This analysis helped interpret modeling results. Figure 12 shows the comparison of
water elevation inside and outside Ninigret Pond using observed data for a duration of one month.
A dramatic reduction of the amplitude can be observed in this figure. A coastal inlet, in general,
causes a reduction of water elevation amplitude and a phase-lag or a delay inside coastal ponds
relative to offshore. This is mainly associated with the energy dissipation by high velocity currents
in an inlet. Simplified analytical methods have been introduced in the literature to compute the
reduction of the amplitude, and the phase lag, based on the geometry and physical characteristics of
the inlet-basin system. A detailed analytical analysis of inlet-basin hydrodynamics can be found in the
Coastal Engineering Manual [16]. Considering a long wave (e.g., tide or surge), with an amplitude of
ao, and a period of T, the effect of a coastal inlet on tide/surge signal as it propagates from the ocean
to the pond can be written as,

[R,φl ] = f (Ai/Ab, Rh, L, T, F); R = 1 − ai/ao (1)

where R is the reduction in the amplitude, ai is the amplitude inside the basin/pond, φl is the phase
lag, Ai is the cross sectional area of the inlet, Ab is the area of a basin or a pond, Rh is the hydraulic
radius of the inlet, L is the length of the inlet, and F represents the frictional coefficients for the entrance,
exit and channel friction losses. For Ninigret Pond, Ab = 7.5 km2, Ai = 45 m2, L = 1.7 km, Rh = 1.5 m.
Using these parameters, and assuming entrance, and exit loss coefficients of 0.1 and 1.0, respectively
(recommended by the Coastal Engineering Manual [16]), leads to R = 80% and φl = 90◦. The impact
of inlets on tidal signal was also assessed using observed data. By performing a tidal analysis using
T_Tide [15] inside (Wood Holes Group Station) and outside this pond (NOAA, Weekapaug Point
71.76 W, 41.33 N), R for the M2 tidal component was found to be 76% for the NW station (Figure 1),
with phase lags of 90.5◦ or about 3 h and 6 min. These values which are based on the observations are
very close to the analytical method predictions (i.e., R = 80% and φl = 90◦). Considering that some
storm surge events have similar (or longer) periods, if coastal barriers for this pond fail, this reduction
of the amplitude no longer exist. Consequently, dune erosion can lead to a significant increase in the
flooding area.

Figure 12. Comparison of observed water elevation data inside and outside Ninigret Pond (NW Gauge,
Figure 1).

Further, the geometry of a coastal inlet has a controlling effect on the reduction of the amplitude
of water elevation signal. Considering the three coastal ponds in this area (Figure 1; Ninigret Pond,
Trustom Pond, and Point Judith Pond), the effect of coastal inlet geometry can be further examined.
Point Judith Pond has a wide and deep inlet with a width of 80 m and a depth of around 7 m.
Trustom Pond, on the contrary, has no permanent connection to the ocean for tides, but during
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large storm events, part of its barrier is overtopped or breached (for example in Hurricane Sandy)
causing some flooding. Ninigret Pond has a relatively narrow inlet (35 m), protected by hard
structures. The water elevations in the three ponds are plotted for a tidal cycle, and for a storm
event (Hurricane Bob) in Figure 13 using the ADCIRC model. As this figure shows, the water elevation
signal for tide inside and outside of the Point Judith Pond is almost the same due to its wide inlet,
but the peak of storm surge slightly attenuates during the storm event. For Trustom Pond, the barrier
is not overtopped for tides or the storm surge scenario. Ninigret Pond shows a significant reduction
for tides (R = 80%) and for Hurricane Bob (R = 68%) due to its narrower inlet. Therefore, if a storm
surge does not overtop or erode coastal dunes, coastal inlets can significantly decrease the magnitude
of a storm surge (inside a coastal pond).

Figure 13. Effect of coastal inlet geometry on surge inside three coastal ponds in the study area;
comparison of water elevation in Ninigret Pond, Trustom Pond, and Point Judith Pond for (a) Tides;
(b) Hurricane Bob.

The above analysis shows a significant dampening of tide and surge signal caused by coastal
inlets. However, the frequency/period of a water elevation signal and the geometry of an inlet are
the two important factors which control this dampening [17–19]. Figure 14 shows the reduction
of amplitudes of various water elevation signals assuming different periods for Ninigret Pond.
The analysis was performed using the simplified analytical method mentioned earlier [16]. As this
figure shows, frequencies of 1, 2, and 2.5 days lead to 0.65, 0.38, and 0.25 reductions, respectively.
Therefore, a storm surge which has a long period (more than 2 days) will be less effected compared
to a tidal signal with a period of 12 h. It should be added that the total water level during a storm
surge is due to the combination of tide and surge signals. In addition, the geometry of an inlet,
as discussed above, is another important factor, which should be always considered before generalizing
these results.

Figure 14. Effect of water elevation signal period on reduction of the amplitude for Ninigret Pond.
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5.3. Effect of Erosion on Storm Surge

Two erosion scenarios were considered: shoreline change in 25 years, and dune erosion.
As mentioned, the erosion of dunes is a common consequence of large hurricanes in the study area as
can be seen in Figure 2, which shows the partial failure of the dune system of Ninigret Pond during
Hurricane Carol in 1954. Several scenarios considering the two storm cases (100-year synthetic storm
and Hurricane Bob) were considered.

For Hurricane Bob, the flooding areas assuming eroded (retreated) shoreline and the current
shoreline were examined. Table 3 shows the summary of results. Considering a retreated shoreline in
25 years, the flooding extent slightly increases by 0.22 km2, which is 20% of the original flooded area
(1.12 km2). This increased flooding area is approximately the advance of the sea (about 30 m) due to
coastal erosion; therefore, the shoreline retreat does not significantly increase the extent of flooding.
However, when the dunes are eroded, the flooding extent increased by 2.33 km2, which is a 207%
increase. When dunes erode, the coastal inlets of the ponds can no longer dampen the surge signal,
and therefore a much larger area within coastal ponds are flooded. For this scenario, the flooding
extent advanced up to 500 m in some areas. Figure 15 shows the flooding extent for existing dunes,
and eroded dune profile scenarios.

Table 3. Differences in flooded areas near the eroded shoreline for Hurricane Bob assuming
erosion scenarios.

Erosion Scenario Current Flooded Area, km2 Changed Flooded Area, km2 Difference, km2 Percentage Increase

Shoreline retreat in 25 years 1.13 1.35 0.22 19.7%
Eroded dunes 1.13 3.5 2.33 207%

Figure 15. Comparison of Hurricane Bob flooding extent assuming current condition (red) and current
shoreline with no dune system (blue), and the 25-year retreated shoreline as well as complete dune
failure (black).

For the 100-year event, the erosion scenarios (shoreline retreat and dune erosion) did not lead to
a significant change in flooded areas as shown in Figure 16. This is because for this event, the storm
surge is large enough to overtop the dunes (the dune top elevation is about 3 m, MSL in this area);
therefore, even if the dunes were solid structures and could resist the erosion during storm surge,
they could not protect the coastal ponds. It should be noted that the failure of dunes may significantly
affect wave propagation for the 100-year event (waves can break over dunes, due to decreased
water depth).
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Figure 16. Comparison of 100-year flooding extent assuming the current shoreline (blue),
current shoreline with eroded dune system (green), and the 25-year retreated shoreline plus complete
dune failure (black). Lines overlap for this scenario.

SLR, in general, leads to an increase of the flooding extent [20]. A very simple way of investigating
the impact of SLR on flooding is the bathtub approach or adding the magnitude of SLR to elevations
predicted by a storm surge model; this methods neglects the nonlinearity of the storm surge
propagation. A more accurate method includes changing the DEM, and simulating the storm surge
assuming a SLR scenario. Consistent to our analysis which assumed a 25 years shoreline retreat, 30 cm
or 1 foot SLR was assumed, corresponding to projected values by NOAA (High) for 25 years [21].
Figure 17 shows that the extent of flooding, as expected, increases in some areas. The flooding area
increased from 4.72 km2 to 6.80 km2, leading to a 44% increase.

Figure 17. Comparison of flooding extend of the 100-year storm event, assuming 30 cm SLR,
and coastal erosion.

6. Discussion

The geometry of coastal inlets controls the storm propagation for moderate storms in areas with
inlet-basin systems. Some regional modeling studies such as NACCS have not resolved these inlets,
and their predictions inside coastal ponds may not be reliable beyond barriers and inside ponds.
Figure 18 is an example showing the poor resolution of the NACCS mesh around Ninigret Pond inlet.
In Figure 19, the prediction of storm surge for a moderate synthetic storm (220, which has a peak
elevation of 1.67 m, MSL in Newport [8]), near two save points (see Figure 18b) located inside and
outside Ninigret Pond, has been compared with that from our model. The surge event was channeled
through the inlet, but given the poor resolution of the NACCS model, water levels are overestimated.
It should be noted that NACCS results, unlike the ADCIRC model developed in this study, have not
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been validated inside coastal ponds and very near shore in RI. Also, waves for this storm are not that
significant inside the pond; therefore, wave-surge interaction cannot be associated with higher storm
prediction in the NACCS model. The results are identical at the boundary (Point A), as the ADCIRC
model was forced by NACCS at the open boundary.

(a) NACCS model resolution around Ninigret inlet (b) Comparison points: A, B, and C

Figure 18. Effect of model resolution on the results; Subfigure (a) shows an example of low resolution
NACCS mesh in a coastal inlet; Subfigure (b) shows the locations of comparison for NACCS results
and those obtained in this study.

(a) (b)

Figure 19. Comparison of NACCS results and ADCIRC model of this study for synthetic Storm 220.
See Figure 18b for locations of comparison. (a) Comparison at B: outside Ninigret Pond; (b) Comparison
at C: inside Ninigret pond.

The dunes along the entire southern coast of RI have an average height of 3.39 m above MSL, but in
some areas they are as low as 1.1 m. This means that a storm with a magnitude of 100-year (3.35 m,
(MSL) considering the 100-year event at the upper confidence level curve) can potentially overtop all of
the dunes. A hurricane such as Carol, which had a surge height of 2.7 m, MSL at Newport RI can breach
the dunes (Figure 2), and have a similar but lesser effect on flooding (increasing the flooding extent).
Various factors are associated with the erosion of dunes [22], including the geotechnical properties of
dunes, the elevation of dunes compared to surge, wave-induced forces, and wave runup/overtopping.
Therefore, it is a challenging task to specify a threshold for a storm which leads to dune failure.
Morphological modeling (e.g., [4]) along with data collection during and after large storms around
coastal dunes can improve our understanding of this process for this area, for future studies.

The analysis carried out in this study was based on two extreme scenarios: complete dune
erosion, and no dune erosion. In reality, dunes are partially eroded during major storms (Figure 2),
and gradually recover during calmer months. Therefore, a storm cluster can lead to more damage
compared with isolated events. The effect of erosion on storm surge is overestimated by assuming
complete erosion of dunes. However, the results show the significant impact of dune erosion on
flooding, and quantify this impact for this extreme scenario.
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7. Conclusions

We explored the effect of dune erosion and shoreline retreat on coastal flooding in an area which
consists of coastal ponds protected by dunes and connected to the ocean by narrow inlets. A storm
surge model was developed/validated with a unique dataset, which included water elevation data
inside coastal ponds during 2011 and measurements during Hurricane Irene. The conclusions are
summarized as follows:

1. The results showed that erosion of dunes has more effect on flooding extent compared with
retreat of shorelines.

2. For storms which do not overtop or erode the coastal dunes, the inlets of coastal ponds can
significantly decrease the storm surge elevation. This can be explained using the concepts of
inlet-basin hydrodynamics. However, for very extreme storms such as a 100-year event where
coastal dunes are overtopped, and low-lying areas are flooded, the flooding extent did not
significantly change.

3. Assuming complete erosion of the dunes and for the scenario of Hurricane Bob, simulations
showed a more than 200% increase in the flooding extent. Several sources of uncertainty can
affect these estimations. For instance, in many cases, dunes are partially eroded. Coupled
hydrodynamic and morphodynamic models which can simulate dunes erosion more accurately,
can lead to more realistic estimations.

4. Numerical surge models which do not fully resolve coastal inlets (e.g., NACCS model in RI)
lead to significant errors in the prediction of surge in coastal ponds. Accurate bathymetric and
topographic measurement of coastal inlets is essential for storm surge modeling in areas with
inlet-basin systems.
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Abstract: The hydrodynamic and transport characteristics of the Baltic Sea in the period 2000–2009
were studied using a fully calibrated and validated 3D hydrodynamic model with a horizontal
resolution of 4.8 km. This study provided new insight into the type and dynamics of vertical structure
in the Baltic Sea, not considered in previous studies. Thermal and salinity stratification are both
addressed, with a focus on the structural properties of the layers. The detection of cooler regions
(dicothermal) within the layer structure is an important finding. The detailed investigation of thermal
stratification for a 10-year period (i.e., 2000–2009) revealed some new features. A multilayered
structure that contains several thermocline and dicothermal layers was identified from this study.
Statistical analysis of the simulation results made it possible to derive the mean thermal stratification
properties, expressed as mean temperatures and the normalized layer thicknesses. The three-layered
model proposed by previous investigators appears to be valid only during the winter periods;
for other periods, a multi-layered structure with more than five layers has been identified during
this investigation. This study provides detailed insight into thermal and salinity stratification in the
Baltic Sea during a recent decade that can be used as a basis for diverse environmental assessments.
It extends previous studies on stratification in the Baltic Sea regarding both the extent and the nature
of stratification.

Keywords: Baltic Sea; hydrodynamics; modeling; vertical structure; stratification; dicothermal; GEMSS

1. Introduction

The Baltic Sea is a brackish sea located in northern Europe from 53◦ N to 66◦ N latitude and
from 20◦ E to 26◦ E longitude. It is connected to the Atlantic Ocean via the Danish Straits.
The Baltic Ice Lake was born 13,000 years ago and its present brackish state emerged 7000 years
ago. For 2000 years, the salinity has been close to the present level (mean salinity: 7 parts per
thousand). The Baltic Sea borders nine coastal countries with a total population of 85 million people
(see Figure 1, [1]). The maximum length and width are 1600 km and 193 km, respectively. The surface
area is 377,000 km2, with an average depth of 55 m and a water volume of 20,000 km3. Its maximum
depth is 459 m, which is located between Stockholm and the Island of Gotland. The Baltic Sea is a
shallow sea that consists of a series of basins interconnected through narrow sills (Figure 2).

In spite of the Baltic Sea HELCOM agreement signed in 1974, the state of the Baltic Sea has
worsened (http://www.helcom.fi). Nutrient levels in the water and sediments are high, and poor
oxygen conditions and “dead bottoms” exist in large archipelago areas of both Sweden and Finland [2].
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However, during the past few decades there have been considerable efforts towards better and more
sustainable management of the Baltic Sea. Here, the hydrodynamics of the Baltic Sea, which has
been the subject of intensive research since the 1930s, plays a major role. The number of available
journal articles and other publications exceeds several hundred. The foci of these studies are exchange
processes, especially salt transport from the North Sea, and water age. Some of the main contributors
are Meier [3], and Lehman and Hinrichsen [4]. Here, the work of Omstedt et al. [5] should be mentioned
as it presents the state of knowledge on various hydrodynamic features of the Baltic Sea. There are
also several excellent books covering many different aspects, including Feistel et al. [6], Leppäranta
and Myrberg [7], and Harff et al. [8]. For a general literature review, the interested reader is referred to
the comprehensive review given by Dargahi and Cvetkovic [9].

 

(Model OB)

Figure 1. The Baltic model region and the model open boundary location [1].

The present study concerns the hydrodynamics of the Baltic, with a focus on the details of
stratification, which is the primary feature of the sea. The novel features of the work are the relatively
long simulation period of 10 years and the use of a complete set of external boundary conditions with
maximum spatial and temporal resolution, in combination with highly accurate bathymetry. The main
objectives were to create an accurate and validated 3D hydrodynamic model for investigating specific
stratification characteristics that have not been addressed in the previous studies. In the following
paragraph we present a short summary of previous research works on stratification.

The Baltic Sea is highly stratified by strong vertical salinity and temperature gradients.
The stratification is commonly referred to as a two-layer structure that consists of an upper and
a lower layer. A transitional middle layer exists between the upper and lower layers, which are known
as halocline and thermocline, respectively. There is a significant variation in the depth of the halocline,
from 40 m to 80 m in deeper regions to 10 m–30 m in shallower regions [7]. The lower values are
found in the Gulf of Riga (mean value = 25 m), and Arkona Basin, with a mean value of 25 m for both
regions [10,11]. The surface salinity varies in the north with a mean value of 3 ppt (parts per thousand)
to 8 ppt to the south, i.e., the Arkona Basin. The corresponding mean value at the lower layer is in the
range of 4–12.5 ppt. However, the salinities are considerably higher in the open sea. The mean values
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in the Kattegatt (the region in which the Baltic Sea drains through the Danish strait) are 22 ppt and
31 ppt, respectively (same references). Suominen et al. [12] studied surface salinity gradients and
their temporal fluctuations in the Archipelago Sea of the northern Baltic Sea based on field salinity
data for the time period July 2007–August 2008. They identified a broad scale gradient from low
salinity in the shallow inner bays to the high salinity in the open sea areas towards the Baltic proper.
The steepest gradients were observed in the semi-closed part of the archipelago. One important result
was that the use of temporal mean values of salinity was insufficient for coastal management purposes
in the region.

 

Figure 2. The Baltic Sea basin system, redrawn from an interpolated figure by Leppäranta &
Myrberg [7].

The halocline depth is controlled by wind-induced mixing and advection, which appears to
change little over time. Väli et al. [11] looked into variations of the halocline during 1961–2007.
Two periods were identified with shallow halocline during 1970–1975, and with deep halocline during
1990–1995. The main conclusion was that the freshwater content and absolute wind speed control the
halocline depth in the Baltic Sea. However, they found the wind speed to have a moderate impact on
the mean halocline depth in the Baltic proper due to the low impact of runoff.

An important issue is the effect of fresh water on stratification in the Baltic Sea. Hordoir and
Meier [13] studied the dynamics of fresh water, which is released during spring into the Baltic proper.
They showed that the fresh water only reaches the center of the Baltic proper after late summer.
A small amount of fresh water may reach the entrance of the Baltic Sea during one season. The arrival
of fresh water increases vertical stratification, which can in turn trigger the onset of the spring blooms.
They also found that the seasonal changes in the fresh water outflow were closely connected with those
of the zonal wind. An important result was the correlation of the annual variability of the seasonal
freshwater outflow maximum with the North Atlantic Oscillation.

The temperature stratification in the Baltic Sea has a mean three-layer structure in analogy to the
salinity stratification. The layers are commonly referred to as the epilimnion (upper layer), thermocline
(middle layer), and hypolimnion (lower layer). In similarity with the other large water bodies,
there is a seasonal stratification cycle, which is driven by the variations in the energy balance. However,
in the case of the Baltic Sea there are two specific features. First, fall and spring overturns are not well
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defined, and second, the hypolimnion has a nearly constant temperature, with few seasonal variations.
During the winter periods, the epilimnion layer has a lower temperature than the hypolimnion layer.
The Baltic Sea is monitored using 22 stations, as shown in Figure 3. A typical temperature difference at
the gauge station BY15 is about 5 ◦C. In the spring, following the ice melt, a thin warmer surface layer
rapidly develops and sets up the thermocline. The thickness of the layer varies considerably from
north to south, but a mean value of about 15 m can be used. The temperature gradient is high within
the epilimnion layer. For instance, at BY15, the temperature can vary from 1.5 ◦C to 5 ◦C within a depth
of 60 m. Below this depth, the temperatures increase rapidly to reach the constant temperature of the
hypolimnion layer (about 5 ◦C). The layer with transitional temperature is known as the dicothermal
layer, which is a cold layer sandwiched between two layers with higher temperatures (dicothermal).
The dicothermal layer was first discovered by the Ekman expedition of 1877 to the Baltic Sea
(see Fonselius [14]). The layer appears to originate from the vertical convection of the surface water in
the winter. It is further explained that this cold surface water from the previous winter was preserved
between the thermocline and halocline (see Fonselius [14]). The dicothermal layer develops at high
latitudes with cold climates. Peter [15] reports the development of a layer with a thickness of 100 m in
the Indian Ocean region of the Antarctic. The reported thickness in the Baltic Sea is in the range of
5–30 m, which persists during the summer and disappears during the autumn [7]. Here, we note that
the measured temperature profiles in the southern basins confirm the formation of the dicothermal
layer even during the spring.

 

Figure 3. Map showing the monitoring stations in the Baltic Sea.

The stratification is strongest during the summer due to high solar radiation input and warm
air temperatures. The surface layer thickness increases to about 20 m during the summer period
due to wind induced vertical mixing The temperature within the layer is nearly constant. Below the
surface layer, a strong thermocline develops that has a sharp temperature drop of about 10 ◦C over a
depth of about 10 m (e.g., temperature profile at BY15). There is also a dicothermal layer below the
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thermocline, which has a thickness of about 30 m at BY15. The hypolimnion layer has a relatively
constant temperature of 4–5 ◦C, which is close to the temperature of maximum density of water.
The layer thickness varies considerably, from about 30 m in shallow regions to 100 m in the deeper
region. The negative effect of the strong stratification limits the exchange between the epilimnion and
hypolimnion layers.

During autumn, the surface heat losses start to increase and the thermocline depth deepens.
For instance, in the Eastern Gotland Basin, the thermocline reaches a depth of about 40 m. The lower
temperatures cause the temperature gradient to decrease, which in turn weakens the thermocline.
The temperature changes in the thermocline cause a weak positive temperature gradient to develop in
the hypolimnion layer (e.g., 1 ◦C over 100 m).

2. Materials and Methods

The materials used to model the Baltic Sea consisted of basic geometrical and various flow and
meteorological data for the period 2000–2009 as listed below.

• The shoreline and the bathymetry in GIS format.

• Daily flow discharges for 24 Swedish rivers, 38 Finnish rivers, and five Eastern European rivers
(i.e., the Daugava, Neman, Neva, Odra, and Vistula).

• Monthly mean flow discharge for four Eastern European rivers (i.e., Lielupe, Narva, Pärnu,
and Narva). The daily records were not available.

• Water temperature for all the rivers.

• The forcing meteorological data (air temperature, dew point, cloud cover, pressure, wind speed,
and wind direction) at 3-h intervals as grid data.

• Precipitation as rain intensity at 19 stations at daily intervals.

• Water quality data at 15-day intervals for 22 different stations spread across the sea. The data
included water temperature, salinity, dissolved oxygen, and phosphorous.

• Wave heights and sea and water levels at several stations across the sea.

The main data sources were the Swedish Meteorological and Hydrological Institute, SMHI [16],
and the Finnish Meteorological Institute, FMI [17]. The gridded meteorological data were obtained
from http://www.smhi.se/en/research/research-departments/analysis-and-prediction, computed
based on actual measurements. Among the many variables that affect the hydrodynamics of a large
water body, the bathymetry and inflow of freshwater are the most important. So, special attention was
paid to improving the quality and reliability of the bathymetry data.

The digitized bathymetry data for the Baltic Sea were obtained from the Leibniz Institute for
Baltic Sea Research [18]. This dataset was frequently used in previous models of the Baltic Sea and also
agrees well with published bathymetry maps. This dataset performed poorly in resolving the various
channels along the coastlines of Finland, and in the Stockholm archipelago. The Åland Sea and its
archipelago were also poorly reproduced. The latter problems caused a significant flow blockage in
the forenamed areas. To resolve the foregoing issues, the bathymetry had to be refined using several
different resolutions ranging from 50 m to 400 m that depended upon the model regions. The focus
was on the areas along the coastlines and the interconnected channel systems. The modifications
were done by a combined method using published maps and other databases in ARCGIS. The final
bathymetry was analyzed using standard statistical methods to gain an understanding of the depth
distribution and its relationship for resolving the vertical layers for the study domain. It was observed
that depths less than 100 m cover 80% of the sea. This is an important result since it indicates the need
for finer vertical grid resolution within the depth of 0–100 m.
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2.1. Model Description

A three-dimensional, time-dependent hydrodynamic model, GEMSS® (Generalized
Environmental Modelling System for Surface waters), was used. GEMSS was developed and
maintained by Environmental Resources Mangement, Inc., Malvern, PA, USA. GEMSS is an integrated
system of 3D hydrodynamic and transport models embedded in GIS. GEMSS is in the public
domain [19] and has been used for similar studies throughout the United States and worldwide.
Edinger and Buchak [20,21] first presented the theoretical basis of the model. The model was enhanced
by implementing higher-order transport schemes, construction of various constituent modules,
incorporation of various supporting software tools, GIS interoperability, visualization tools, graphical
user interface (GUI), and post processors [22–26].

The hydrodynamic and transport relations are developed from the horizontal momentum balance,
continuity, constituent transport and the equation of state. A detailed mathematical formulation of the
model both in the hydrostatic and non-hydrostatic forms is described in [17,19] so will not be repeated
here. The hydrodynamic equations are semi-implicit in time, have the advantage of computational
stability, and are not limited by the Courant condition. The vertical momentum dispersion coefficient
and vertical shear are evaluated from a Von Karman relationship modified by the Richardson
number. Higher-order turbulence closure schemes (two-equation model, and second-moment closure
model by Mellor and Yamada [27] are also included. The Two-Equation model used in GEMSS is
based on the Generic Length Scale (GLS) model proposed by Umlauf and Burchard [28], and by
Warner et al. [29]. The longitudinal and lateral coefficients are scaled to the dimensions of the grid
cell using the dispersion relationships field developed by Okubo [30] and modified to include the
velocity gradients using the Smagorinsky [31] relationship. The wind stress and bottom shear stress
are computed using quadratic relationships with appropriate friction coefficients.

The transport module can run in fully explicit to fully implicit modes in a vertical direction
while performing explicit computations in a horizontal direction [32]. GEMSS uses a curvilinear
variably spacing horizontal staggered finite difference grid, which is based on control volume, with the
elevation and constituent concentration computed at cell centers and velocities through a cell interface.
Z-level with variable thickness is used for defining the grid in the vertical direction. Additional details
of the model can be found in the technical documentation of GEMSS [32–35].

The wave dynamic module of GEMSS has two wave models, i.e., a steady state linear and a
non-linear model. In the present investigation, the non-linear model was used. The model accounts
for the wave influence on the bottom shear stresses by using the Madsen and Grant [36] equation.
In the current study, a simplified linear ice model that relates the growth of ice thickness to the
temperature differences between water and melting ice, and ice in equilibrium was used. Based on
sensitivity studies, the linear ice model is a reasonably good model for the present study, which was
run for a long period of time to understand the hydrodynamic characteristics. In addition, the particle
tracking module of GEMSS was used for the current study to understand the travel time, water age [37]
and vertical mixing processes at various basins in the Baltic Sea using the current persistency index
defined in [38].

The GEMSS model was recently used by the first author to investigate the hydrodynamic and
related water quality characteristics of Saltsjo [33] and Lake Tana in Ehiopia [34].

2.2. Model Setup

The model setup involved several main steps of creating the model grid, interpolating the
bathymetry into the grid, defining the boundary conditions that include river inflow, water levels,
precipitation, and forcing meteorological conditions.

The model grid was created using the grid generator tool of GEMSS®. A non-uniform
boundary-fitted curvilinear grid in a horizontal plane (x-y) with a non-uniform z-layering in the
vertical plane was created for the study domain and is shown in Figure 4. The grid dimensions
are 195 × 200, with an approximate cell size of 4.8 km. The final bathymetry described in the previous
section was used to interpolate the depths for each grid cell in the study domain. Since depths less than
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100 m cover almost 80% of the Baltic Sea, the vertical layers were designed to have a finer resolution
within this depth. The total number of vertical layers used in the current study was 47, with thicknesses
varying from 1.5 m to 12 m.

 

Figure 4. The Baltic Sea numerical model grid.

2.2.1. Input Data

The model boundary conditions consisted of discharge, head (water levels), precipitation, and
meteorological forcing conditions. The true dynamic character of the input data is an important issue
that directly affects the results of any hydrodynamic simulations. Here, the input data are the river
discharge hydrographs and the forcing meteorological conditions. The amplitude and frequency of the
data control various hydrodynamic properties such as stratification and mixing processes. The control
file generator tool of GEMSS was used to define all forcing data needed for the current study.

The discharge boundary conditions were defined for 69 rivers out of 72 that enter the modeled
region. To define the exact locations of the rivers, a GIS file was used. The river data included the flow
discharge, water temperature, and salinity. We assumed that the rivers enter through the water surface
grid in the model.

The water level was set at the open boundary with the North Sea, as shown in Figure 1 with a
red line (≈104 km wide). The GPS coordinates are 54◦28′ N 12◦50′ E and 55◦22′ N 13◦03′ E in the
south and north directions, respectively. To set the water level, the data at the gauge station Skanör
(55◦26′ N 12◦50′ E) were used. At the open boundary the water temperatures and salinity profiles
from monitoring station BY1 (see Figure 3) were used.

The precipitation data in mm/day were applied regionally by dividing the Baltic Sea surface
into 19 regions, each with its corresponding rain intensity. Both point and gridded data were used
for meteorological forcing conditions. The gridded data cover the whole Baltic drainage basin with
a grid of (1◦ × 1◦) squares. The grid extends over the area: Latitude 49.5◦–71.5◦ N, Longitude
7.5◦–39.5◦ E. The gridded data covers 32 years, starting in 1970. The gridded meteorological data
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represent geostrophic wind and were converted to the open surface wind speed needed for the
model using the 2/3 power law. The second set was point data, which are available mainly along
the coastlines.

2.2.2. Initialization

The model initialization is an important part of any hydrodynamic simulation, especially in the
case of large water bodies such as the Baltic Sea. The long residence times make the model output
sensitive to the choice of method. In the present study, we initiated the model using the data available
at all the monitoring stations for water temperature and salinity. A total of 22 monitoring stations
(see Figure 3) were used to interpolate temperature and salinity for the entire model grid at the start of
the model simulation on 1 January 2000.

2.3. Simulations

In the present study we used the following setups for both partial and complete simulations, i.e.,
one year and 10 years.

• Vertical dispersion: Two-Equations with Mellor–Yamada formulation.

• Mixing dispersion: Okubo formulation.

• Transport diffusion: Prandtl method.

• Surface heat exchange: term by term, defining all the heat source and sink terms with
atmospheric interaction.

• Transport model: Quick.

• Vertical momentum: Non-hydrostatic.

• Coriolis force: Using model grid.

The maximum time step used in the model simulations was 360 s. The auto time step feature
available in GEMSS® was used so that the model time step goes only below the maximum time step
due to extreme forcing conditions such as large wind speeds and river discharges. The calibration and
verification simulations were carried out on a 4.8-km model grid shown in Figure 4. The model was
run for the year 2000 for calibration. The model validation was done for the full 10 years using the
restart files created by the calibration run.

3. Results

3.1. Model Calibration & Validation

A detailed description of model calibration and verification is available in [9] and will not be
repeated here. Instead, it will be briefly described here using some relevant plots and tables.

The model calibration for year 2000 was done using all the 22 monitoring stations shown in
Figure 3. The temperature, salinity, and water levels field data were used. It involved a systematic
two-step approach with a focus on temperature and salinity profiles. The first step was initiating
the model using the data available at all the monitoring stations for water temperature and salinity.
The RMS (Root Mean Square) errors of temperature and salinity were then evaluated. In Step 2 the
model was re-run with new sets of initial data that were successively adjusted to lower the RMS values.
The procedure significantly improved the agreement with the measurements, with a relative error
range of 10%–20% for both temperature and salinity. During the calibration procedure, the bottom
friction coefficient, wind drag coefficient, and coefficients related to surface heat exchange processes
were adjusted to lower the RMS values with respect to field observations. The coefficient values used
for the calibration matched reasonably well with similar modeling exercises completed for the Baltic
Sea. Based on all the calibration adjustments we have done for various model parameters, we found
that establishing the appropriate horizontally and vertically varying initial condition was the most
important precursor to achieve low RMS values on model results. The model successfully captured
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the seasonal variations in water temperature and salinity profiles as well as the stratification across the
entire Baltic Sea. Here, we have chosen only some typical results for a few stations. Figures 5 and 6
show the combined temperature and salinity profiles at the monitoring stations F3, GF, BY15,
and BY5. Table 1 summarizes the absolute and mean relative errors at these monitoring stations.
The range of the error is 4%–10%, which is acceptable considering the large volume of the Baltic Sea
and its complex hydrodynamics.

Table 1. Calibration error summary for temperature and salinity.

Absolute Error
Mean Relative

Error %Time 14 January 2000 28 May 2000 18 August 2000
9 November

2000

Station T (◦C) S (ppt) T (◦C) S (ppt) T (◦C) S (ppt) T (◦C) S (ppt) T S

F3 0.15–0.6 0.1–0.2 0.1–1.5 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 0.1–0.2 10 3

Time 14 January 2000 28 May 2000 22 August 2000 25 October 2000

BY15 0.1–0.57 0.1–0.8 0.1–1.3 0.1–0.8 0.1–0.9 0.1–0.7 0.1–1.6 0.1–1.2 4 4

Time 14 January 2000 28 May 2000 22 August 2000 25 October 2000

BY5 0.1–0.2 0.1–0.2 0.1–0.5 0.1–0.3 0.1–0.5 0.1–0.3 0.1–1.6 0.1–2 5 6

Time 2 January 2000 6 June 2000

GF 0.1–1 0.1–0.7 0.1–1 0.1–0.2 9 8

Figure 5. Comparison of model predicted vertical temperature and salinity profiles at the monitoring
stations F3 (Bay of Bothnia) and GF (Gulf of Finland) with field measurements for the year 2000.
(a) Station F3—14/01/2000; (b) Station F3—28/05/2000; (c) Station F3—18/08/2000; (d) Station
F3—09/11/2000; (e) Station GF—02/02/2000; Station (f)—06/06/2000.
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Figure 6. Comparison of model predicted vertical temperature and salinity profiles at the monitoring
stations BY15 (Eastern Gotland Basin) and BY5 (Arkona Basin) with field measurements for the year
2000. (a) Station BY15—14/01/2000; (b) Station BY15—28/05/2000; (c) Station BY15—22/08/2000;
(d) Station BY15—25/10/2000; (e) Station BY5—14/01/2000; (f) Station BY5—28/05/2000; (g) Station
BY5—22/08/2000; (h) Station BY5—25/10/2000.

Model validation was done for the whole 10 years using the restart files created by the calibration
simulation for the year 2000. For this purpose, the complete sets of field data at all the monitoring
stations were used (Figure 3). These data were considered independently from the simulation results
as only the first day records were used in the calibration simulations.
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The model predictions of water temperatures and salinities were satisfactory at all the monitoring
stations. Here, we have chosen some representative results for only a few stations. The time history
plots in Figures 7 and 8 compare the model predicted temperature and salinity with the field data at
stations F3 and BY29 at water surface and 40 m depth.

Figure 7. (a) Comparison of model predicted and measurements of temperature in the Baltic Sea at the
Station F3 surface and 42 m depth for the time period 2000–2009; (b) Comparison of model predicted
and measurements of salinity in the Baltic Sea at the Station F3 surface and 42 m depth for the time
period 2000–2009.

Figure 8. Cont.

373



J. Mar. Sci. Eng. 2017, 5, 2

Figure 8. (a) Comparison of model predicted and measurements of temperature in the Baltic Sea at the
Station BY29 surface and 42 m depth for the time period 2000-2009; (b) Comparison of model predicted
and measurements of salinity in the Baltic Sea at the Station BY29 surface and 42 m depth for the time
period 2000–2009.

The time history plots in Figure 9 compare the model predicted salinity with the field data at
stations BY15 and BY5. The comparisons are shown at the water surface and at the deepest points in
the basins. The agreements for these stations are better than the other stations as they are closer to
station BY1, which defines the model boundary condition.

Figure 9. (a) Comparison of model predicted and measurements of salinity in the Baltic Sea at the
Station BY15 surface and bottom for the time period 2000–2009; (b) Comparison of model predicted
and measurements of salinity in the Baltic Sea at the Station BY5 surface and bottom for the time
period 2000–2009.
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The range of Nash–Sutcliffe coefficients [39] calculated for all the monitoring stations
was 0.72–0.83, respectively, also suggesting close agreement. One other important feature is the
ability of the model to capture the 10-year seasonal variations of water temperatures and salinities.
The conclusion is that the model is reasonably validated over a considerable period, with a maximum
relative error of 10%.

3.2. Stratified Vertical Structure

We used the validated model to investigate the stratified structure within all the basins of the
Baltic Sea for the time period 2000–2009. The complete sets of numerical results are too extensive to be
reported here. We will present and discuss some general results that are illustrated using a few plots
(i.e., temperature and salinity) in both horizontal and vertical sections. The latter were investigated
along several cross sections shown in Figure 10 that were selected to cut through all the basins
(see Figure 2 for basin names) included in this study. The structure concerns thermocline and halocline
stratifications, which are controlled by the hydrodynamic variables, forcing meteorological parameters,
the topography, the shorelines, and the exchange processes with the North Sea.

 

Figure 10. Selected cross sections in the Baltic Sea for vertical structure analysis.

Examples of simulation results for temperature and salinity are presented seasonally for winter
(15 January), spring (15 May), summer (15 August), and autumn (15 October). Figures 11 and 12
show the surface and bottom contour plots of temperature for the year 2000, respectively. The typical
cross-sectional plots of temperature are given for sections S64 and S116 for the year 2000 are given in
Figures 13 and 14. The basins’ abbreviated names are also given in the foregoing figures. It should
be noted that the plotting scales were adjusted to show the full range of the hydrodynamic variables.
This is particularly important for insuring that the stratification features are not obscured by the choice
of the color scales. The summary results for all nine basins are presented in Tables 2 and 3. In these
tables the layer thicknesses are normalized (Ln) with mean depth.
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Figure 11. Seasonal surface temperature contour plots for the year 2000. (a) Winter; (b) Spring;
(c) Summer; (d) Autumn.

Figure 12. Seasonal bottom temperature contour plots for the year 2000. (a) Winter; (b) Spring;
(c) Summer; (d) Autumn.
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Figure 13. Seasonal thermal stratification plots in the Baltic Sea at cross section S64 for the year 2000.
(a) Winter; (b) Spring; (c) Summer; (d) Autumn.

Figure 14. Seasonal thermal stratification plots in the Baltic Sea at cross section S116 for the year 2000.
(a) Winter; (b) Spring; (c) Summer; (d) Autumn.
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The temperature development at the Baltic Sea is affected by the intrusion of the warmer water
masses from the North Sea and cold low salinity river water masses that flow into the Bay of Bothnia.
The northern part of the Baltic Sea is covered by ice during winter and spring, which reduces
the water temperature well into the summer. Figure 11 shows the seasonal variations of water
temperature at the surface and bottom layers. The surface temperatures are in good agreement with
the SMHI measurements available in [40]. The surface temperatures vary in the range of 0 ◦C to 18 ◦C.
In the winter, the bottom temperatures are higher than the surface temperatures by several degrees.
The spring is marked by higher surface temperatures, with the exception of the Bay of Bothnia and
the eastern Gulf of Finland. The surface temperatures increase significantly during the summer and
are about 2 ◦C higher than the bottom layer temperatures. The autumn shows a transitional behavior,
with a decreasing temperature differences between the two layers. This marks the start of the cooling
of surface water due to increased mechanical and thermal convection.

In summary, the thermal stratification in the Baltic Sea shows a considerable variation among the
different basins with a clear seasonal feature. During the winter period, the lower water layers are
warmer than the upper layers. The ice starts to melt in late spring but still maintains a higher water
temperature in the bottom layers. The temperature of the upper water layers starts to increase as the
end of the summer approaches. By then, the upper water layers have a higher temperature and the
stratification is reversed.

The common thermal stratification features in the Baltic Sea are obtained by analyzing the transient
plots along all the cross sections:

1. The number of the stratified layers varies from two to five.

2. There are two distinct layers, one with lower surface temperature, i.e., winter stratification and a
reversed summer-type stratification with higher surface temperatures. These two types prevail
during winter–spring and summer–autumn, respectively. Typical transitional behavior may
begin in late autumn, when the wind speed increases, but does not last more than a couple of
weeks. These stratification features dominantly occur in shallower regions of the Baltic Sea.

3. The surface layer has a transient structure composed of two to three minor thermoclines with
a mean thickness of about 10 m. It is often difficult to distinguish between these layers. Here,
the thermocline layer is considered as a layer with temperature variations more than 0.4 ◦C,
which gives negligible density difference (i.e., 0.01 kg/m3). The thermocline is located at a depth
of 10–30 m.

4. The summer stratification has a dicothermal character in the northern basins of the Baltic Sea.
This implies the existence of a colder layer sandwiched between two layers of higher temperatures.
The layer is stable since the upper layer has a lower salinity than the deep underlying layer.

The foregoing features are shown in Figures 13 and 14 at two typical cross sections of S64 and
S116, respectively. The former crosses most of the major basins in the Baltic Sea. This plot does not do
justice to the complexity of the stratification in the Baltic Sea. The intention is to provide support to the
results and the discussion. For thermal stratification, the layers are numbered in descending order
from the surface (Table 2). The division was needed due to the complex nature of the multilayered
thermal stratification. Layer 1 is defined as the surface or the top layer and the last layer refers to the
bottom layer. It is not very useful to list the absolute values due to the significant geometric variations
within and among the basins (size, volume, and depth).

In the Bay of Bothnia, there is a significant seasonal variation regarding the number and thickness
of the layers. The stratification in the Aland Sea is dominated by a three-layer structure, with the
exception of a four-layer structure during the spring period. The stratified structure in the Gulf
of Finland consists of three layers with significant variations in both thickness and temperature.
The multilayered stratification structure for the Northern Gotland Basin is composed of top and
bottom layers with constant temperatures. The Western Gotland Basin shows a sustained three-layered
structure from the winter to summer period. The Eastern Gotland Basin stratification is similar to the
northern basin except that the water temperatures are higher by 1 ◦C during the spring and autumn
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periods. The Bornholm Basin features are similar to the Eastern Gotland Basin. The Arkona Basin has
a clear three-layer structure and during the winter and summer periods, the temperatures are constant
in the 10-m thick upper layer, i.e., 4 ◦C and 16.5 ◦C, respectively. A short summary of each basin is
reported in this paper. A detailed description of each basin’s stratification is given in Dargahi and
Cvektovic [9]. The foregoing results are summarized in Table 2.

Table 2. Characteristics of thermal stratification in the basin system of the Baltic Sea, 2000–2009.

Basins Layers
Winter Spring Summer Autumn

T ◦C Ln % T ◦C Ln % T ◦C Ln % T ◦C Ln %

Bay of Bothnia
1 0.5 65 1.2 5 11 10 13.5 5
2 0.5–1.5 23 1.2–0.8 5 11–3 30 13.5–3 35
3 1.5 12 0.8 80 3–2 50 3–2 50

Sea of Bothnia

1 1.5 12 4.5 4.5 14–11.2 3 12 10
2 1.5–3 33 4.5–1 13.5 11.2–3.2 25 12–2.5 20
3 3 55 1.3 82 3.2–1.5 9 2.5–2 10
4 1.5–3 40 2–3 47
5 3 23 3 13

Gulf of Finland
1 0.2–0.25 42 7.5–1.5 42 16.2 21 13–12.8 21
2 0.25–2.6 42 1.5 16 16.2–2.6 50 12.8–3.5 50
3 2.6 16 1.5–4.2 42 2.6–4.2 29 3.5 29

Sea of Åland

1 0.5–4 25 4 10 14.2 10 10 10
2 4–4.3 35 4–2.4 27 14.2–6.5 27 10–9 18
3 4.3–4.8 40 2.4 27 6.5–3.9 63 9–5 72
4 2.4–2.9 36

Northern
Gotland

1 4.2 43 6 8 16.2 5 13.5 10
2 4.2–5.2 10 6–3.2 12 16.2–16.8 5 13.5–14.2 10
3 5.2 47 3.2–2.8 11 16.8–16 10 14.2–3.5 20
4 2.8–4.8 29 16–3 20 3.5–5 15
5 5.5 40 3–4.8 16 5 35
6 4.8 42

Western
Gotland

1 2 3 7–2.6 12 16–3.2 12 13.5 8
2 2–5 20 2.6–5 18 3.2–5 11 3.5 4
3 5–5.2 77 5–5.2 70 5–5.2 77 3.5–5 11
4 5–5.2 77

Eastern
Gotland

1 3.8 28 9–3 19 16.5 10 14 9
2 3.8–6 33 3 13 16.5–3.7 10 14–3.7 9
3 6–6.3 39 3–6 35 3.7–3 12 3.7–3 9
4 6–6.3 33 3–6 26 3–6 28
5 6–6.2 42 6–6.2 45

Bornholm
Basin

1 4.5 55 12–4 33 17–16.5 28 15–14.8 18
2 4.5–10 22 4 22 16.5–4.7 28 14.8–4.7 27
3 10 23 9 33 7–6.2 16 4.7–7.8 22
4 9–9.2 12 6.2–8 28 7.8–8.5 33

Arkona Basin
1 4 25 13.2–5.2 76 16.5 25 17–16.2 50
2 4–4.5 25 5.2–4.8 23 16.5–8.5 25 16.2–8.8 25
3 4.5–6 50 8.5–10.7 50 8.8–10.5 25

The seasonal variation in surface and bottom layer salinities is shown in Figures 15 and 16,
respectively. Figures 17 and 18 show salinity contours for the years 2000 and 2006 as two typical years
in the 10-year simulation period of 2000–2009. The general features are an outgoing surface flow with
low salinity that is diluted by the fresh water from the rivers and a denser incoming bottom flow from
the North Sea. The surface salinity varies from 1.6% to 9% and the bottom salinity in the range 3%–16%,
moving southwards from the Bay of Bothnia to the Arkona Basin. The corresponding salinity gradients
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are 0.0042%/m and 0.0054%/m, respectively. The intruded high salinity water from the North
Sea propagates like a plume as far as the Northern Gotland Basin, with a mean advection velocity
of 6 cm/s. The feature is apparent from Figures 13, 14, 17 and 18, which show the dense water
settling mainly in the deep regions of the Northern and Eastern Gotland Basins. The salinity
stratification has a multi-layer structure similar to the thermal stratification shown in Figures 13 and 14.
The general features are two thick (i.e., >30 m) surface and bottom layers with a transition layer
in-between. The stratification is complicated by its temporal and spatial variations both within
and among the basins. A detailed discussion on salinity stratification is provided by Dargahi and
Cvektovic [9] for all basins and so will not be repeated here. As an example, salinity stratification is
briefly discussed for the Gulf of Finland and the Northern Gotland Basin.

Figure 15. Seasonal plots of surface salinity in the Baltic Sea for the year 2000. (a) Winter; (b) Spring;
(c) Summer; (d) Autumn.

Figure 16. Seasonal plots of bottom salinity in the Baltic Sea for the year 2000. (a) Winter; (b) Spring;
(c) Summer; (d) Autumn.
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Figure 17. (a) Winter salinity stratification in the Baltic Sea at cross section S64 for the years 2000 and
2006; (b) Spring salinity stratification in the Baltic Sea at cross section S64 for the years 2000 and 2006.

Figure 18. (a) Summer salinity stratification in the Baltic Sea at cross section S64 for the years 2000 and
2006; (b) Autumn salinity stratification in the Baltic Sea at cross section S64 for the years 2000 and 2006.

4. Discussion

The understanding of stratification in large water bodies is of significant environmental
importance due to its direct coupling with water quality dynamics. Severe thermal stratification can
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have a number of adverse effects, among which are reduced water quality and the spatial distribution
of fish [41]. Any prolonged stratification can reduce oxygen solubility, which leads to oxygen depletion
in deep water masses. The deeper water masses in the Baltic Sea are particularly vulnerable to
eutrophication below the halocline or in regions affected by thermal stratification [42]. We know
that eutrophication is the most serious and challenging environmental problem for the Baltic Sea [1].
Consequently, accurate knowledge of stratification dynamics is required for the management of
eutrophication in the Baltic Sea.

The river Neva, the most voluminous river entering the Gulf of Finland (referred as Gulf in the
foregoing discussion) from the eastern coastline (2500 m3/s), significantly affects the stratification in
the Gulf. The zero-salinity water from the river creates a permanent plume that propagates westwards
to a distance of 50–150 km. The plume salinity varies from 0% to 5% and extends to a depth of about
15 m. The maximum extension occurs during early spring periods. The seasonal cross section plots are
shown in Figure 14 at S116 for the year 2000. The stratification in the Neva region appears to have a
permanent multi-layer structure with few seasonal variations. The characteristic three-layer structure
is found in the inner Gulf region. The stratification characteristics in the Northern Gotland Basin are
similar to those in the inner Gulf region. It is interesting to note the significant salinity increase to 9.5%
that is confined to the Northern Gotland Basin and the bottom layer.

The model prediction of three-layered salinity stratification in all basins of the Baltic Sea is in
general agreement with previous studies [8]. Salinity stratification has a strong seasonal variability but
is much weaker than the corresponding variability in temperature. The summary of model-predicted
salinity data for the entire 10-year period into seasonal normalized layer thicknesses is shown in
Table 3. The normalized values are more applicable than the absolute values given in the literature as
the layer thicknesses could be estimated as a function of depth. The latter vary significantly within
and among the basins. To examine the validity of the generalization, we compared the model and
measured salinities at all stations and found good agreement between the data. An example is given in
Table 4, which compares model results with measurements at station C3 (located in the Sea of Bothnia;
see Figure 3) for the year 2000. Evidently, the predicted mean thicknesses are within the range of the
measured data that supports our generalization.

The detailed investigation of thermal stratification for a 10-year period (i.e., 2000–2009) revealed
some new features. The current study revealed a multilayered structure that contains several
thermocline and dicothermal layers. The statistical analysis of all simulation results made it possible to
derive the mean thermal stratification properties, expressed as mean temperatures and the normalized
layer thicknesses (Table 2). The three-layered structure reported by Leppäranta and Myrberg [7]
appears to be oversimplified.

The thermocline layer has a sharp temperature gradient that connects the upper and lower two
layers. We have found the three-layer model to be valid only during the winter. In the northern basins,
the vertical temperature gradients are significantly lower than for the southern basins (a factor 3).
We attribute the difference to the formation of an ice cover during winter and spring in the northern
basins (i.e., Northern Gotland Basin and above), which affects the surface heat transfer and its exchange
with the overlying cold air. The ice layer acts as a thermal barrier preventing further heat losses due to
the action of wind and convective transport. Consequently, the upper layer is rather thick and can
occupy up to 65% of the depth in these basins. Following the winter, the three-layered structure is
decomposed into several layers with increasing or decreasing temperature gradients. The process
takes place in all the basins in the Baltic Sea. Here, we believe the primary driving force is the
increased mixing processes between the basins during the ice-free periods. The high-momentum
fresh water inflows from the rivers contribute to higher surface water temperatures, thus increasing
the temperature gradients. On average, the thickest layer is the bottom layer (≈50%) with a small
temperature gradient, except in the Bornholm and Arkona basins. We believe the low gradients are
due to low-intensity exchange processes in the northern basin of the deep water regions.
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Table 3. Characteristics of salinity stratification in the basin system of the Baltic Sea, 2000–2009.

Basins Layers
Winter Ln

%
Spring Ln

%
Summer Ln

%
Autumn Ln

%
Salinity ‰

Bay of Bothnia
Upper 18 34 31 22 3

Halocline 33 15 22 66 3.2
Bottom 49 51 41 12 4

Sea of Bothnia
Upper 50 15 5 15 5

Halocline 35 65 70 70 5.5
Bottom 15 20 25 15 6.5

Sea of Åland
Upper 15 10 10 10 5.9

Halocline 35 50 46 40 7.6
Bottom 50 40 44 50 10

Gulf of Finland
Upper 25 32 25 30 4.7

Halocline 30 38 50 40 6.5
Bottom 45 40 25 30 8.3

Northern Gotland
Upper 35 38 20 25 5

Halocline 30 32 55 45 42
Bottom 35 30 25 30 28

Western Gotland
Upper 35 50 55 50 6.9

Halocline 50 40 30 30 8.1
Bottom 15 10 15 20 10

Eastern Gotland
Upper 30 20 25 20 6.8

Halocline 35 50 50 55 9.3
Bottom 35 30 25 25 11.5

Bornholm Basin
Upper 45 35 50 50 7.8

Halocline 10 30 35 30 12.5
Bottom 45 35 15 20 15.5

Arkona Basin
Upper 35 60 38 60 8

Halocline 50 25 50 25 9
Bottom 15 15 12 15 12

Table 4. Comparison of modeled and measured salinity stratification at station C3 (Sea of Bothnia), 2000.

Period
Upper Layer (m) Halocline (m) Bottom Layer (m)

Measured Model Measured Model Measured Model

Winter 60–90 100 50–90 62 10–40 30
Spring 10–20 18 100–125 135 20–50 30

Summer 10–15 10 110–140 140 20–50 33
Autumn 15–30 22 100–130 127 20–45 22

The Bornholm and Arkona basins are shallower and more influenced by the exchange of warmer
and more saline waters with the North Sea. This is reflected by the increased temperature gradients
in these basins (from ≈0.02 ◦C/m to ≈0.5 ◦C/m). Our simulations indicate a wide spectrum in the
layering properties among the basins. However, a few generalizations appear to be possible based
on the results listed in Table 2. The thermocline occupies about 25% of the water depth in each basin.
The deep bottom layer is about 40% of the water depth with temperatures of about 3 ◦C and 5 ◦C
in the northern and southern basins, respectively. Our mean results on the properties of thermal
stratification agree well with the results reported by Leppäranta and Myrberg [7]. Here, the reported
annual averaged halocline thickness is 10–20 m. For example, in the Bay of Bothnia we get an averaged
normalized depth of 35% from Table 2. The mean depth is 40 m, which yields a thickness of 14 m—well
within the range given by Leppäranta and Myrberg [7].

There is also some evidence of upwelling and downwelling along the coastlines across the
Baltic Sea [3,6,39,43]. The existence of the dicothermal layer is an indication of upwelling. The two
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features occur as wind causes surface water to diverge (Ekman transport) or converge (downwelling).
During both processes, water is either replenished from the deep region or forced downwards [44].
Consequently, the salinity variations, which are mainly controlled by the water balance,
are further modified.

We will also examine the validity of having normalized layer thicknesses (Table 2) in each basin
that only vary seasonally. We start by examining the measured vertical temperature profiles for two
extreme locations of F3 (Bay of Bothnia) and BY5 (Bornholm Sea). Figure 19 shows the measured
vertical temperature profiles at F3, and BY5 for the years 2000, 2008, and 2009. Note that the data were
rather limited and thus the lines are only illustrative and do not necessarily show the correct trends.
The good agreement with the simulated summary results listed in Table 2 is apparent. For example,
Table 2 predicts a thick top layer in the winter period (red line) at both stations that agrees well with
the plots for F3, on 27 January 2000, and BY5, on 19 January 2000. We can also note that the profile
shapes are preserved during the simulation period. However, the magnitudes of the temperatures
show some significant variation. In conclusion, we believe the normalized layer thicknesses give
reasonable estimates, with a standard deviation of ±15%.

Figure 19. (a) Measured temperature profiles at F3 in 2000, 2008 and 2009; (b) Measured temperature
profiles at BY5 in 2000, 2008 and 2009.

An interesting feature is the extreme inflow event of January 2003. According to Lehmann et al. [45],
a massive salt intrusion of cold and oxygen-rich water from the North Sea took place at Darss Sill,
which is a few kilometers west of the open sea boundary used in the model domain (see Figure 1).
They consider the event as “the most important inflow from 1993”. Their results indicate significant
changes in both salinity and temperature distributions in the deeper basins of the Baltic Sea. In the
present study, we have investigated the reported event by comparing the surface and bottom salinities
at all the stations (see Figure 3). We present the results in Figure 20, illustrating the salinity time series
at stations BY1, BY5, and BY15 at the surface and bottom layers. The curves at BY1 are measured field
data but the curves at BY5 and BY15 are model results. The model results are plotted at seven-day
intervals for ease of comparison with the field data. Several important features are evident from
this figure:
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1. The event took place on 18 January 2003 with a salinity of 29%.

2. It took nearly a month for the peak salinity to reach station BY5, which dropped to 19%.

3. The peak salinity was reduced to 12.5% at station BY15 after almost five months.

 

0

5

10

15

20

25

30

01/01/00 05/15/01 09/27/02 02/09/04 06/23/05 11/05/06 03/19/08 08/01/09

Date

Sa
lin

ity
 ( 

0/
00

)

By1- Field Z=0m By1- Field Z=40m By5-Model Z=0m
By5-Model Z=90m By15-Model Z=0m By15-Model Z=225m

02/19/2003

06/05/2003

01/18/2003

Figure 20. Time series of surface and bottom salinities at stations BY1, BY5, and BY15.
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foregoing information and the distances between the three stations (Table 5). A representative diffusion
coefficient (ϑD) for the Baltic Sea is 103 m2/s [7]; the advective velocity is typically 0.1 m/s in the
Arkona and Bornholm basins (present study). We can conclude that the diffusive transport is much
faster than the advective transport. There is a significant reduction in the Eastern Gotland Basin in both
modes of transport. It is interesting to note that the temporal variations in the bottom salinity appear
to be random as opposed to the surface salinities. The surface salinities have lower amplitudes with
no corresponding peaks as the bottom salinity. We believe the outgoing freshwater plays a significant
role in lowering the salinity amplitude.

Table 5. Estimates of salinity transport in the southern basins.

Transport of Salt BY1 (Arkona)-BY5 (Bornholm) BY5-BY15(Eastern Gotland)

Diffusive (‰/day) 17 × 10−3 5 × 10−3

Advective (‰/day) 86 × 10−8 1.12 × 10−8

5. Conclusions

An integrated 3D modeling system was developed for the Baltic Sea using a public domain model
called GEMSS®. The model was calibrated and verified using 10 years of data covering 2000–2009.
We have incorporated boundary conditions and bathymetry with as high an accuracy as possible,
to serve as an improvement over previous studies. The model was then used to investigate the vertical
structure of the Baltic Sea to understand the stratification and exchange processes across various
basins. This paper addressed in detail both the thermal and salinity stratifications, with a focus on the
structural properties of the layers.

The hypothesis was that the layer properties could be expressed as dimensionless numbers valid
for all seasons. In particular, the detection of cooler regions (dicothermal) within the layer structure
has been an important finding. The detailed investigation of thermal stratification for a 10-year period
(i.e., 2000–2009) revealed some new features. A multilayered structure that contains several thermocline

385



J. Mar. Sci. Eng. 2017, 5, 2

and dicothermal layers prevails. Statistical analysis of the simulation results made it possible to derive
the mean thermal str atification properties, expressed as mean temperatures and the normalized
layer thicknesses.

The three-layered structure reported in the literature appears to be rather simplified. The current
study found that the three-layer model is valid only during the winter.

The layering properties vary significantly among the basins whereby the layered structure could
not be generalized. Nevertheless, a few generalizations appear to be possible. The thermocline
occupies about 25% of the water depth in each basin. The deep bottom layer is about 40% of the water
depth, with temperatures of about 3 ◦C and 5 ◦C in northern and southern basins, respectively.

Three-layered salinity stratification prevails in all basins of the Baltic Sea, in general agreement
with previous studies. Salinity stratification has a strong seasonal variability but this is much
weaker than the corresponding variability in temperature. We have succeeded in generalizing the
seasonal normalized layer thicknesses for the entire 10-year period. The use of normalized values is
advantageous compared to the absolute values given in the literature, enabling estimation of layer
thickness as a function of depth.

This study provides detailed insight into thermal and salinity stratifications in the Baltic Sea
during a recent decade and can be used as a basis for diverse environmental assessments (e.g., anoxia
and reduced nutrient mixing between layers [1]). It extends previous studies on stratification in the
Baltic Sea regarding both the extent and the nature of stratification.
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Abstract: A nowcasting and forecasting system for storm surge, inundation, waves, and baroclinic
flow for the Florida coast has been developed. The system is based on dynamically coupled CH3D
and SWAN models and can use a variety of modules to provide different input forcing, boundary and
initial conditions. The system is completely automated and operates unattended at pre-scheduled
intervals as well as in event-triggered mode in response to Atlantic-basin tropical cyclone advisories
issued by the National Hurricane Center. The system provides up to 72-h forecasts forward depending
on the input dataset duration. Spatially, the system spans the entire Florida coastline by employing
four high-resolution domains with resolutions as fine as 10–30 m in the near-shore and overland to
allow the system to resolve fine estuarine details such as in the Intracoastal Waterway and minor
tributaries. The system has been validated in both hindcast and nowcast/forecast modes using water
level and salinity data from a variety of sources and has been found to run robustly during the test
periods. Low level products (e.g., raw output datasets) are disseminated using THREDDS while a
custom defined web-based graphical user interface (GUI) was developed for high level access.

Keywords: forecasting; storm surge; baroclinic; Florida

1. Introduction

Coastal zones in the U.S. and throughout the world are subject to increasing hazards including
storms and storm surge, sea level rise, and harmful algal bloom. Tropical cyclones and associated
surge and inundation along the southeastern US coastline area major concern for coastal communities
and their economies. Coastal waters in the southeastern US support ecologically and economically
significant ecosystems, providing tourism, boating, fishing, and other recreational opportunities with
an annual economic benefit of $675+ billion. With 73.5% of the population living in the coastal zone and
77.1% of GDP coming from shore-adjacent counties, this concern about tropical cyclones is particularly
important to the State of Florida as it ranks in the top five of US states in the total ocean economy for
its reliance on coastal tourism, recreation, and transportation sectors for employment [1,2]. Florida’s
battle with tropical cyclones is notorious as it has been affected by more hurricanes than any other
state. For example, between 1900 and 2010, Monroe County, located along the southwest Florida coast
was affected by 32 hurricanes, which is more than any other county in the United States [3].

Management of the Floridian coastal environment is a challenging task for several state and local
agencies including Florida Department of Environment Protection, Florida Division of Emergency
Management, Water Management Districts, and coastal counties as well as local governments. The work
of these agencies is heavily dependent on information made available by such federal agencies as
National Oceanic and Atmospheric Administration (NOAA), Federal Emergency Management Agency
(FEMA), U. S. Geological Survey (USGS), etc. Within NOAA (the primary agency associated with
surge and inundation hazards), the National Weather Service (NWS), National Ocean Service (NOS),
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as well as the U.S. Integrated Ocean Observing System (IOOS) provide a multitude of data on the
national scale. However, data at physical scales relevant to regional and sub-regional management can
be scarce, which makes coastal zone management difficult.

There are several operational and/or quasi-operational forecasting systems for the Florida coast.
The National Hurricane Center (NHC) provides the official tropical cyclone surge forecasts, based on
the SLOSH [4] and ADCIRC [5] model forecasts. These forecasts provide information for emergency
operations and evacuation along the U.S. Atlantic and Gulf coasts. However, both SLOSH and ADCIRC
forecasts are based on two-dimensional barotropic models. SLOSH is further constrained in that it
uses a coarse grid resolution (on the order of a kilometer) and lacks such important processes as tides,
waves, and nonlinear inertia. The Center for Ocean Atmospheric Prediction Studies (COAPS) of Florida
State University operates a HYCOM-based 3D forecasting system [6] which possesses robust physics
(such as atmospheric-ocean interaction) and 3D baroclinic ocean processes. However, the HYCOM
forecasting system uses a relatively coarse grid (>500 m) which is inadequate to resolve the complex
coastal and estuarine processes. Similar issues can be found in other Florida forecasting systems based
on implementations of the ROMS model [7] and the NCOM model [8] which use relatively course grid
resolutions along the Florida coast.

To address the need for a high-resolution forecasting system which can simulate water levels,
waves, salinity, and baroclinic circulation along the Florida coast the Advanced Coastal Modeling
System (ACMS) was developed. This system can provide forecast information which could be used by
the state and local agencies to enhance management of coastal ecosystems and coastal communities in
the state of Florida.

Example applications of ACMS forecast information include improved protection of coastal
communities from coastal inundation; improved coastal and marine planning and decision-making;
improved public health advisories; improved storm surge and rip current warnings; safer and more
efficient marine operations and emergency response; advanced decision-making regarding commercial,
recreational fisheries and shoreline erosion; improved planning to enhance climate resiliency; improved
operational management of water control structures and utility infrastructure by Water Management
Districts and utility companies, respectively; and improved emergency operations and management
during tropical cyclones via information provided to Weather Forecasting Offices (WFOs) and National
Estuarine Research Reserves.

The ACMS is based on the dynamically-coupled CH3D [9–13] and SWAN [14] models which
account for wave effects (such as wave-induced wind stresses, wave-current interaction which includes
radiation stresses throughout the water column and wave-current bottom stresses) and can incorporate
a variety of input forcing functions and boundary and initial conditions for driving these models.
The system is automated and can be run at pre-scheduled intervals or be triggered by such events as
tropical storm advisories by the National Hurricane Center.

Another significant issue to be considered for operational modeling is computational efficiency.
Multiple (often over ten) forecasting model runs with high grid resolutions every day require significant
computing resources. A forecasting system must be able to produce timely forecasts, since the value of
forecast products declines quickly with the time it takes to produce them.

In the remainder of this paper, ACMS is first described, followed by a description of the model
setup, and example model validations.

2. Materials and Methods

2.1. The ACMS Modeling System

2.1.1. CH3D

CH3D (Curvilinear Hydrodynamics in 3D) is a hydrodynamic model originally developed by
Sheng [9,10]. The model can simulate 2-D and 3-D barotropic and baroclinic circulation driven by tide,
wind, density gradients, and waves. CH3D uses a boundary-fitted non-orthogonal curvilinear grid
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in the horizontal direction and a terrain-following sigma grid in the vertical direction. As such, the
model can accurately represent complex shoreline and geometries in coastal regions. It uses a robust
turbulence closure model to represent vertical turbulent mixing [15] and a Smagorinsky type model
for horizontal turbulent mixing. The model uses bathymetry and topography which are referenced
to the NAVD88 vertical datum for all domains to accurately simulate the coastal inundation. CH3D
has been applied to such water bodies as Charlotte Harbor, Biscayne Bay, Apalachicola Bay, Florida
Bay, Indian River Lagoon, Lake Okeechobee, Lake Apopka, Sarasota Bay, St. Johns River, Tampa Bay,
Naples Bay, and Rookery Bay in Florida, as well as Chesapeake Bay, New York Bight, Long Island
Sound, and the Gulf of Mexico.

2.1.2. CH3D-IMS

CH3D has been coupled to models of wave, sediment transport, water quality, light attenuation,
and sea grass dynamics to produce CH3D-IMS [16], an Integrated Modeling System for simulating the
response of estuarine and coastal ecosystems to anthropogenic (e.g., increased nutrient loading) and
natural (e.g., sea level rise) changes.

2.1.3. CH3D-SSMS

CH3D-SSMS (Storm Surge Modeling System) is a modeling suite that features coupled CH3D
and SWAN models for coastal dynamics and large scale surge-wave models that are used to extract
boundary conditions for the coastal model [11,17], which has been used extensively to simulate storm
surge and inundation due to various tropical cyclones including Hurricanes Charley (2004), Dennis
(2005), Isabel (2003), Frances (2004), Ivan (2004), Jeanne (2004), Katrina (2005), Wilma (2005), Katrina
(2005), Ike (2009), Sandy (2012), Matthew (2016), and others [11–13,17–19]. Details of the CH3D model,
including equations of motion and boundary and initial conditions, are described in [11]. CH3D-SSMS
contains a robust flooding and drying scheme which is an extension of that developed by Davis and
Sheng [20].

In a regional storm surge and coastal inundation model Testbed [21], CH3D-SSMS was compared
with ADCIRC [5], CMEPS [22], FVCOM [23], and SLOSH [4]. Detailed comparisons of models were
made in terms of simulated storm surges during historic storms as well as coastal inundation maps
including the surge atlas and the 1% annual chance coastal inundation maps which is also known as
the Base Flood Elevation (BFE) according to the Federal Emergency Management Agency (FEMA) of
the US [24]. The results of CH3D-SSMS were found to compare well with observed water level data
and was as accurate as other models. The computational efficiency of CH3D-SSMS is only inferior to
the extremely efficient SLOSH model which uses a very coarse grid (~1 km) and has simpler physics.
The model Testbed results demonstrated that, to obtain accurate model results efficiently, it is feasible
to use a highly efficient coastal surge-wave model, e.g., CH3D-SWAN, with high resolution in the
coastal region, and couple it to large-scale surge-wave models with coarser resolution in the offshore
region. Alternatively, one can use an unstructured grid surge-wave model for the coastal and offshore
domains with a single grid, but a high-resolution grid in the coastal region often results in stringent
computational time step limitation and requires dramatically more computational resources.

CH3D suites continue to be improved as new research enables incorporation of more dynamic
features, e.g., vegetation effects on storm surge, into the models. For example, Lapetina and Sheng [25]
recently used the vegetation-resolving ACMS to simulate the effects of vegetation, three-dimensionality,
and onshore sediment transport on complex storm surge dynamics during Hurricane Ike which
inflicted major damage to the Texas coast in 2009. Results of the 3D model are found to be more
accurate than 2D model results.

2.2. ACMS

The cornerstone of the ACMS modeling system includes the CH3D (shallow water hydrodynamics)
and SWAN (wave) models, running on four domains (Figure 1) that span the entire Florida coast.
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The two models are dynamically coupled, which enables representation of complex physics such as
vertically varying wave-current interaction. ACMS is essentially the integration of CH3D-SSMS and
CH3D-IMS which was described in the previous section.

 

Figure 1. Advanced Coastal Modeling System (ACMS) Florida coast domains: Northern Gulf (NG) of
Mexico (pink), Southwest (SW) (blue), Southeast (SE) (green), and East Coast (EC) (yellow).

SWAN is a third-generation phase-averaged wave model that can be applied to nearshore wave
modeling. The model can use a variety of computational grid arrangements including non-orthogonal
regular, curvilinear, and unstructured triangular grids. SWAN accounts for wave propagation in
time and space, shoaling, refraction due to currents and depth, frequency shifting due to currents
and dynamic depth, wave generation by wind, energy dissipation by bottom friction, depth-induced
breaking and transmission through and reflection from obstacles (full or partial reflection can be
considered). SWAN represents waves using a two-dimensional wave action density energy spectrum
and the evolution of the spectrum is described by the spectral action balance equation in which a
local rate of change of action density in time is related to the propagation of action in geographical
space, shifting of relative frequency due to currents and depths, depth-induced and current-induced
refraction balanced by the source term in terms of energy density representing the effects of energy
generation, energy dissipation and nonlinear wave-wave interactions.

ACMS can use a variety of wind fields such as

• Hurricane Research Division’s H*Wind [26];
• Navy’s NOGAPS [27];
• GFDL [28];
• NAM (North American Mesoscale) that uses WRF (Weather Research and Forecasting model [29])

and is run by the National Centers for Environmental Prediction [30]; and
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• Several synthetic parametric wind models driven by storm parameters that are derived from
National Hurricane Center (NHC) predictions.

2.3. ACMS Modules and Workflow

ACMS consists of four main modules (Figure 2): (1) data acquisition and pre-processing module;
(2) simulation setup (staging/running/etc.) and job management module; (3) post-processing module;
and (4) visualization module. These modules provide automation of such processes as input data
acquisition, archiving and cataloging of data and model results, data pre-processing, setting up model
simulations, running and monitoring jobs, post-processing of model results, and visualization. Some of
the most important properties of the ACMS are full automation, compliance with existing standards
for ocean data, and efficient use of available computational resources. Previous implementation of the
system showed that it can perform both 3D baroclinic and storm surge simulations simultaneously
during tropical cyclones [18], as well as ensemble forecasting of storm surges based on an ensemble of
storm tracks generated from the probability distribution of previous track forecasting errors [31].

The data acquisition module is responsible for data acquisition and consists of monitors that
poll the data providers for new data and acquires the data as it becomes available. Monitors for
a variety of datasets are available: NOAA NHC advisories, the U.S. Navy’s Automated Tropical
Cyclone Forecasting System (ATCF [32]) forecast products, atmospheric inputs (NAM, NOGAPS,
GFDL, etc.), boundary and initial conditions for circulation from such models as HYCOM [33] and
ROMS, and boundary and initial conditions for waves from wave models such as WaveWatch III
(WWIII) [34]. River flow measurements and predictions, salinity measurements, etc. are also collected
where available from USGS, National Estuarine Research Reserves, and the National Weather Service
River Forecast Center. All the data are obtained as they become available, processed (with QA/QC,
subsetting, and necessary format conversions), archived, and cataloged (using a MySQL database).

 

Figure 2. ACMS workflow diagram.

ACMS supports two modes of operation:

- Event triggered, where a model instance is created as a response to an event (such as an
NHC-issued tropical cyclone advisory) or
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- Preset cycles, where a model is initiated at fixed times, which usually follow the standard 4-cycles
per day scheme (model initialized at 00:00, 06:00, 12:00 and 18:00 UTC).

The job management module initiates the simulation and polls the data acquisition module.
Once all the data necessary for model input is collected, the module generates the necessary input
files, sends the job to the computing cluster via HTCondor job management system [35] and monitors
the job status for potential computing resource failures in which case the jobs are resubmitted to
alternate resources.

The post-processing module extracts output from completed forecast runs, generates aggregate
products, calculates statistics, and places products and outputs in the archive. ACMS currently uses
NetCDF with CF-1.5 conventions as a data format of choice and Unidata’s THREDDS Data Server [36]
as the main platform for data distribution. Visualization module (mostly client-based) is written in
JavaScript and uses THREDDS server (via WMS feeds and NetCDF subsetting) as a data provider to
display data in a user-friendly manner (Figure 3).

Figure 3. Sample ACMS web-based interface for data preview and download developed for St. Johns
River Water Management District with focus on the Indian River Lagoon on the east coast of Florida.

Data availability is the limiting factor for initiating a new forecast cycle. A complete data set
such as wind, the waves at the open boundary, the surge at the open boundary, and the flow rates
at rivers should be available from the archive for the forecast cycle to be initiated. Data is pulled
from the archive by the Data Processing Module and all necessary input files are generated for all the
simulations that are scheduled to run within that cycle. Completion of this process triggers the start
of the cycle at the Core Module which is responsible for setting up the boundary conditions for all
the models involved in the cycle, scheduling, and submitting the simulation to one of the available
computational resources. There are mechanisms that enable forecasts even when some of the data is
missing. Certain data such as missing atmospheric snapshots or relatively short gaps in time-series
data can be reconstructed, interpolated or extrapolated based on available data.

2.4. ACMS Model Setup

Two implementations of ACMS are discussed in this paper:
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1. 2D implementation—The 2D barotropic CH3D model is coupled with SWAN and CH3D receives
open boundary conditions from a large-scale ADCIRC model running on a coarse grid ~2–5 km,
while SWAN receives open boundary condition from WWIII. Despite the coarseness of the grid,
ADCIRC produces satisfactory results along the offshore CH3D boundary and runs very quickly
to allow syncing with the CH3D model. This implementation is event-triggered by NHC tropical
cyclone advisories. ACMS downloads NHC advisories and, whenever it contains forecasted
tropical cyclone track coming within 100 miles of a CH3D domain, creates a model instance for
that advisory. This implementation is used to quickly forecast storm surge and inundation during
tropical storms. Not only do 2D model simulations complete quicker, but all the inputs required
for the model are also contained in the advisory, because the surge and wave models are driven
by a synthetic parametric model for atmospheric wind and pressure. In most cases, the amount
of time between the advisory time stamp and prediction is less than two hours.

2. 3D Implementation—The 3D baroclinic CH3D model is coupled with SWAN, and CH3D receives
boundary conditions from a large-scale HYCOM or ROMS model, while SWAN receives open
boundary condition from WWIII. The model runs four times a day at 6-h intervals starting at
00:00 UTC. This implementation is intended to provide more comprehensive forecasts including
water levels, waves, baroclinic circulation, and salinity. However, this increased fidelity comes
at a cost: not only the model runtime increases to 4–6 h (depending on domain and conditions
such as networking and transfer speeds, etc.), but the time required to fetch all the inputs
(including open boundary conditions from HYCOM or ROMS, atmospheric predictions from
NAM, and river flows, etc.) can be twice as long. The model has the capability to simulate
temperature, however, due to limited data available for boundary conditions and verification,
current forecasting implementation does not include temperature simulation.

2.4.1. Atmospheric Forcing

Atmospheric forcing in ACMS includes atmospheric pressure, wind, and precipitation. The system
can use a variety of wind fields as well as several synthetic parametric models. The 2D implementation
uses the parametric model of Xie et al. [37]. Model parameters such as location of the storm, maximum
wind, and radii to 34 kt, 50 kt, and 64 kt winds are based on the NHC predicted storm parameters.
The 3D implementation is driven by the atmospheric forcing predicted by the NAM model.

2.4.2. Surge-Wave Coupling

In ACMS, the CH3D model is dynamically coupled to the SWAN wave model [14]: wave results
obtained by SWAN are passed to CH3D and water depths and currents obtained by CH3D are passed
onto SWAN. This accounts for wave setup and wave-current interaction within the CH3D model,
which features several formulations for calculating wave stresses [38], including vertically varying
formulations (e.g., Mellor [39]) as well as the vertically uniform formulation of Longuet-Higgins and
Stewart [40,41]. The 3D implementation of the model uses the formulation by Mellor [39] as it was
found to produce more accurate results [38].

The time step used for CH3D simulation is 60 s and time step used for SWAN simulation is 5 min,
which is when the two models exchange information.

2.4.3. Coastal-Offshore Coupling

Both coastal CH3D and SWAN models use the same non-orthogonal curvilinear model grid
and are dependent upon open boundary conditions provided by larger scale ocean models. ACMS
interfaces enable it to receive boundary conditions from a variety of large-scale models such as
HYCOM, ROMS, CH3D, and ADCIRC for CH3D, and larger-scale SWAN or WWIII for SWAN.

In the 2D implementation, CH3D obtains open boundary conditions (elevation at the open
boundary) from a coarse-grid (~2–5 km) ADCIRC model which is run simultaneously with the CH3D
model. Large-scale SWAN model produces boundary conditions for the coastal SWAN model.
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In the 3D implementation, CH3D obtains open boundary conditions (vertically varying currents
and salinity) from a HYCOM, while SWAN derives its boundary conditions either from a WWIII
model or a large-scale SWAN model.

2.4.4. ACMS Model Domains and Forecast Cycles

The four domains used by ACMS span the entire Florida coastline (Figure 1) and extend 50–100 km
offshore (Table 1). The forecasts range from 48 h up to 72 h, depending on the configuration and
available input. Each cycle is initialized from the previous cycle, and a 6-h nowcasting is performed to
fill the 6-h gap between cycles, followed by a forecast.

ACMS model domains use NAVD88 as a vertical datum of choice, which makes computing surge,
inundation, and flooding a simple and transparent process since all the topography data is generally
referenced to NAVD88. The 3D implementation of the model typically uses six equally spaced sigma
layers in vertical—this number was determined by comparing simulations obtained with 4, 6, 8, 16
layers, which found that 6 layers were sufficient to resolve the pycnocline and that going from 6 to
8+ layers provides negligible differences in simulation results.

Table 1. Characteristics of Advanced Coastal Modeling System (ACMS) model domains.

Domain
Minimum Resolution

(m)
Approximate Grid Cell

Count
Average Offshore

Extent (km)

East Coast (EC) 32 339,000 55
Southeast (SE) 21 607,000 60

Southwest (SW) 29 366,000 65
Northern Gulf of Mexico (NG) 47 404,000 75

2.4.5. Boundary Conditions

The water level at the open boundary of CH3D domain is prescribed by combining the water
level predicted by a regional ocean circulation model and spatially varying tidal constituents which
include M2, S2, N2, K2, K1, O1, P1, Q1, SA, and SSA. These tidal constituents were determined to
be important for the Florida coast based on the NOAA tidal gauge data, while other constituents
generally are estimated to have an amplitude of less than 1 cm. The constituents at the open boundary
are developed via an iterative process in which phases and amplitudes at the open boundary are
adjusted during tide-only simulations to provide the best possible fit with observed tides at the coastal
stations. Salinity at the open ocean boundary is interpolated from a 1/12 degree HYCOM or ROMS
(provided at 6-h intervals).

Open boundary conditions for SWAN are wave height and period obtained from the results of a
0.25 degree WWIII model.

River flow measurements/forecasts and salinity measurements are gathered from a variety
of sources such as NOAA Advanced Hydrologic Prediction Service, Florida DEP, Florida Water
Management Districts, and National Estuarine Research Reserves. These data serve as boundary
conditions for flow and salinity upstream of rivers and creeks and are crucial to accurate predictions of
currents and salinity in estuaries, inlets, and near-shore zone. River flow and salinity data used for
boundary conditions in estuaries are extrapolated in time based on the trend identified in previous
data for stations where flow forecasts are unavailable or the forecasted period is shorter than the length
of ACMS forecast. The extrapolation is based on identifying a linear trend during the last 7 days and
using it to extrapolate the flow (subject to a maximum increase/decrease of 2 ppt in a 7-day period).
This was found to produce slightly better results compared to using the last available value for the
entire forecast period.
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3. Results

3.1. Model Validation

Using the model setup described in the previous section, a series of validation tests were
performed by hindcasting non-storm events (lighter wind speeds, tidally-dominated flow) as well
as several tropical cyclones including Andrew (1992), Jeanne (2004), Wilma (2005), and Fay (2008).
The storms are selected to represent different hurricanes ranging from slow moving Tropical Storm
Fay, which became almost stationary for about a day just off the east coast of Florida near Jacksonville,
to fast-paced Hurricane Wilma that went across the entire state in less than six hours with significant
variation in intensity and size. Some forecast results are also presented since the ACMS system has
been running in the quasi-operational mode since 2012. Only a select few stations (Figure 4) per
domain are shown here as it would be impossible to show model-data comparisons for all of them in
the scope of this paper.

 

Figure 4. Location of select data stations used for ACMS validation.

3.1.1. Non-Storm Conditions

Simulation of tides is a key feature of a forecasting system because water levels and currents
are very important for safe navigation and recreation as well as the increasing coastal inundation
during high tides. Under calmer weather conditions, tides usually dominate and determine the coastal
circulation. Hence, the ability to accurately predict tidal water level and flows is crucial. Data during
2008–2014 were used for validation purposes and the criterium for tidal validation is to achieve an
average RMS error of 7 cm per domain. The total number of stations used for validation of tides is: nine
for the EC domain, five for the SE domain, five for the SW and six for the NG domains. Vilano Beach
(Figure 5) and Melbourne (Figure 6) stations are examples of tidal simulations on the EC domain.
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Data from a NOAA station at Naples, FL (Figure 7) on the west coast was used to validate the tides for
the SW domain.

Figure 5. Comparison of simulated (hindcast) and observed water levels at Vilano Beach station for
tidally-dominated flow.

Figure 6. Comparison of simulated (hindcast) and observed water levels at Melbourne station for
tidally-dominated flow.

Figure 7. Comparison of simulated (hindcast) and observed water levels at Naples station for
tidally-dominated flow.

Tidal Simulation

Overall, ACMS predicted amplitudes and phases of select tidal constituents (M2, S2, N2, K2, K1,
O1, P1, Q1, SA, and SSA) are very close to the observed values at all stations with the average RMS
error being under 5%.
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Nuisance Flooding

The ACMS was used to forecast “king” tides (astronomically high tides) near Miami Beach
(Figure 8), and the results were provided to the city of Miami Beach. During a “king” tide, numerous
South Florida communities (Miami Beach, Fort Lauderdale, Key West, and Naples, etc.) experience
nuisance flooding with streets inundated of 30 cm or more. Nuisance flooding is occurring more
frequently as the sea level continues to rise. By 2050 some communities (e.g., Key West) are expected
to have nuisance flooding during more than 100 days per year. The City of Miami Beach installed
20 pumps in 2015 to mitigate nuisance flooding during king tides.

Figure 8. Forecast of “king” tides and comparison with National Oceanic and Atmospheric
Administration (NOAA) observed and predicted water levels at Virginia Key station in October
2014 (initialization time: 6 October, 2014 00:00Z).

Salinity Simulation

Limited salinity data was available for validation with just two stations for the EC and SE domains,
five stations clustered inside the Naples/Rookery Bay region on the west coast of Florida and a few in
the Apalachicola Bay maintained by the Apalachicola National Estuarine Research Reserve (ANERR).
The quality of salinity predictions can vary drastically depending on availability and accuracy of
river flow predictions. However, most stations show satisfactory agreement. The RMS error in the
SW domain during September and October 2014 varied between 2 ppt and 7 ppt with a correlation
coefficient (r2) between 0.52 and 0.9. The NG domain comparisons (Figure 9) show slightly better
agreement with the RMS error between 2 ppt and 5 ppt. The RMS errors for stations in the EC domain
vary between 3 ppt and 9 ppt, most likely due to the inaccuracy and limited availability of river flow
data that provides fresh water inflow into the model domains.

Figure 9. Comparison of simulated and observed salinity Cat Point station (NG domain), orange
vertical lines indicate land fall times of the three storms: Frances, Ivan, and Jeanne.
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Surface Current Simulation

There exist limited datasets of observed surface currents collected by the high frequency radar
(HF Radar, [42,43]) along the southeast coast of Florida near Biscayne Bay. The ACMS simulated
currents in the central part of the coastal domain appear to be comparable (Figure 10) with the
observed data. However, it should be noted that these currents data have not been fully analyzed to
remove errors associated with interference of the radar signals.

 
(a) (b) 

Figure 10. Comparison of estimated surface currents (a) vs. surface currents measured by the HF Radar
(b) east of the Biscayne Bay (SE domain, 20 March 2014 12:00Z). Coordinate space is UTM zone 17N (m).

3.1.2. Simulation of Surge, Wave, and Inundation during Tropical Cyclones

Model validations for tropical cyclone conditions were carried out in a hindcast mode for the
following four storms: Hurricane Andrew (1992), Hurricane Jeanne (2004), Hurricane Wilma (2005),
and Tropical Storm Fay (2008).

Hurricane Andrew

Andrew was a small but ferocious hurricane that brought unprecedented economic devastation
to the southern Florida peninsula. Overall damage in the U.S. is estimated at ~$26.5 billion (1993 USD)
making it one of the five costliest storms in U.S. history. The tropical cyclone struck southern Dade
County, Florida (Figure 11) especially hard, with violent winds and storm surges characteristic of a
category 5 hurricane [44] on the Saffir/Simpson Hurricane Scale, and with a central pressure of 922 mb.
Unfortunately, the amount of data available for Andrew is limited to a single station at Haulover
Pier, but the model predicted water level at this station compared very well with the observed data
(Figure 12), especially when the wave model is coupled to the surge model in the simulation.

400



J. Mar. Sci. Eng. 2017, 5, 8

Figure 11. Track of Hurricane Andrew (1992).

Figure 12. Comparison of observed and simulated (hindcast) water levels at the Haulover Pier station
during Hurricane Andrew (1992). “No waves” curve shows results based on CH3D model that does
not include wave effects and “with waves” shows results based on the coupled CH3D-SWAN model.

Hurricane Jeanne

Hurricane Jeanne (Figure 13), while known as a very deadly storm claiming more than 3000 lives
in Haiti alone, weakened significantly before making its landfall on the east coast of Florida near
Stuart [45]. After which, it further weakened to a tropical cyclone making its way across Florida
peninsula towards Tampa. Because of its smaller size (about 50 miles at landfall) the area affected by it
was relatively small. As such, a very limited amount of data is available for comparison. The water
level response predicted by ACMS at Trident Pier (Figure 14) matches the observed data well, both in
terms of the peak water level and phase.
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Figure 13. Track of Hurricane Jeanne (2004).

Figure 14. A comparison between simulated (hindcast) and measure waver levels at the Trident Pier
Station during Hurricane Jeanne (2004).

Hurricane Wilma (2005)

Hurricane Wilma (Figure 15) was the most intense tropical cyclone ever recorded in the Atlantic
basin. In the U.S. it made landfall near Cape Romano, Florida with winds of 120 mph [46] and quickly
crossed Florida emerging on the east coast just 5 h later. There is significant amount of data available
for Wilma, including over 20 storm gauges that were installed along the west coast of Florida by the
USGS. Below is a comparison of peak surge heights at these gauges (Figure 16) and comparison of
simulated and observed data at Trident Pier station on the east coast that was affected by the storm
after Wilma crossed the Florida peninsula (Figure 17). Maximum storm surge during Wilma was also
compared to a number of high water marks and the correlation coefficient between recorded and
predicted water marks was 0.78.
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Figure 15. Track of Hurricane Wilma (2005).

(a) (b) 

Figure 16. Map of data stations with observed data (a) and comparison between observed and
simulated (hindcast) and peak surges during Hurricane Wilma (b).
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Figure 17. A comparison between simulated (hindcast) and observed water levels at the Trident Pier
Station during Hurricane Wilma (2005).

Tropical Storm Fay

The last storm presented for validation purposes is Tropical Storm Fay [47], (Figure 18). It is
the weakest storm of the four presented, however, one notable feature of this storm is that it was
slowly moving just off the east coast of Florida zigzagging across the coastline over a period of about
24 h making a total of four landfalls in Florida. Fay produced torrential rainfall dropping as much
as 27 inches of rain near Melbourne, Florida. The rainfall significantly affected the river flows and
salinity making it an interesting case study. Water level comparison at I-295 bridge station (Figure 19)
near Jacksonville and salinity comparison at Pine Island station (Figure 20) show that predicted values
compare quite well with observed data. It is worth noting that, even though the semidiurnal variations
in salinity are only partially captured, the observed significant drop in salinity over the 3-day period
was well captured by the model simulation.

 

Figure 18. Track of Tropical Cyclone Fay (2008).
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Figure 19. A comparison between the simulated (hindcast) and observed water levels at the I-295
Bridge Station (EC domain) during Tropical Storm Fay (2008).

Figure 20. A comparison between simulated (hindcast) and observed salinity at the Pine Island Station
(EC domain) during Tropical Cyclone Fay (2008).

3.2. 2015 Hurricane Season Forecasting

ACMS was tested in a quasi-operational mode during the 2015 hurricane season spanning from
1 June 2015 to 30 November 2015. Unfortunately, arrangements for hardware location, networking,
etc. are such that it is currently impossible to guarantee a 24/7 uptime for the system as it is located
in a research rather than an operational environment and is subject to power and network outages,
hardware failures, etc. The system was functioning about 85% of the time. Several statistics were
calculated (Table 2) based on these forecasts: root mean square error (RMSE), central frequency (CF),
and positive/negative outlier frequency (POF/NOF). These are some of the criteria that are used
by NOS for model skill assessment [48]. The error calculations are for the 0–24 h forecast window.
Acceptable error limits used for calculation of CF are 15 cm for water level and 3 ppt for salinity
and acceptable error limits used for calculation of POF/NOF are 30 cm for water level and 6 ppt for
salinity [48].
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Table 2. Errors statistics calculated based on ACMS forecasts during 1 June 2015–30 November 2015.
Units for root mean square error (RMSE) are cm for water level data and ppt for salinity. Green indicates
that the errors are within acceptable limits (>90% for CF and <1% POF/NOF), red indicates otherwise.

Data Station
ACMS

Domain
Data
Type

Source
RMSE
cm/ppt

CF % POF/NOF %

8728690 Apalachicola NG WL NOAA 7 92.4 0.1/0.3
8727520 Cedar Key NG WL NOAA 6 93.2 0.2/0.3

8726724 Clearwater Beach SW WL NOAA 6 92.0 0.1/0.1
8720219 Dames Point EC WL NOAA 6 93.8 0.2/0.2

8720030 Fernandina Beach EC WL NOAA 5 94.6 0.2/0.1
8725520 Fort Myers SW WL NOAA 4 97.2 0.1/0.0
8720357 I-295 Bridge EC WL NOAA 4 95.6 0.1/0.2

Key West SE WL NOAA 5 95.6 0.1/0.1
Lake Worth Pier SE WL NOAA 6 94.1 0.2/0.2

Mayport EC WL NOAA 4 97.8 0.1/0.0
Mckay Bay SW WL NOAA 5 96.2 0.1/0.1

Naples SW WL NOAA 4 98.2 0.0/0.0
Old Port Tampa SW WL NOAA 5 96.7 0.4/0.2

Panama City NG WL NOAA 5 95.7 0.2/0.7
Pensacola NG WL NOAA 7 93.3 0.4/0.9

Port Manatee SW WL NOAA 6 94.8 0.3/0.2
Racy Point EC WL NOAA 12 86.8 1.4/0.8

Red Bay Point EC WL NOAA 10 91.2 1.1/0.8
S. Riverwalk EC WL NOAA 7 94.0 0.2/0.6
St Petersburg SW WL NOAA 6 94.4 0.3/0.2
Trident Pier EC WL NOAA 5 93.4 0.3/0.3

Vaca Key SE WL NOAA 5 94.8 0.2/0.3
Virginia Key SE WL NOAA 5 96.2 0.2/0.1

Bing’s Landing EC WL FLDEP 6 93.2 0.2/0.3
Binney Dock EC WL FLDEP 6 94.7 0.2/0.3

Dry Bar NG WL FLDEP 5 95.3 0.2/0.2
East Bay NG WL FLDEP 6 92.2 0.3/0.6

Gordon River Inlet SW WL FLDEP 5 94.4 0.3/0.1
Melbourne EC WL FLDEP 4 96.6 0.2/0.1
Naples Bay SW WL FLDEP 4 96.3 0.1/0.1
Pilot Cove NG WL FLDEP 7 92.0 0.3/0.5

Ponce de Leon EC WL FLDEP 6 94.5 0.3/0.2
St. Lucie Inlet EC WL FLDEP 5 95.8 0.2/0.2

Tolomato River EC WL FLDEP 7 93.3 0.1/0.3
Vilano Beach EC WL FLDEP 7 94.0 0.1/0.2

Bing’s Landing EC S FLDEP 2.1 94.1 0.6/0.4
Dry Bar NG S FLDEP 6.2 77.5 1.7/3.3

Melbourne EC S FLDEP 2.7 88.2 0.7/0.9
Tolomato River EC S FLDEP 1.8 92.9 0.7/0.4

Cat Point NG S ANERR 2.8 87.0 0.8/0.6
Henderson Creek SW S RNERR 1.7 93.7 0.3/0.3
Fakahatchee Bay SW S RNERR 2.3 90.2 0.5/0.4
Faka Union Bay SW S RNERR 2.6 88.2 0.6/0.4
Pellicer Creek EC S GNERR 4.1 81.5 1.5/0.9
San Sebastian EC S GNERR 3.1 86.7 0.8/0.6

Pine Island EC S GNERR 3.3 81.1 1.3/0.8

NOAA—NOAA Tides and Currents [49]; FLDEP—Florida Department of Environmental Protection [50];
ANERR—Apalachicola Bay NERR [51]; RNERR—Rookery Bay NERR [51]; GNERR—Guana-Tolomato-
Matanzas NERR [51]; Data types: WL—Water level, S—Salinity.

3.3. Computational Efficiency and Timing

One notable feature of ACMS is its computational efficiency. Currently, model codes run in
parallel (implemented via OpenMP) on Intel-based machines running Red Hat Linux (RHEL6/7) with
quad-core CPUs (Intel i5-4690 CPU @ 3.50 GHz). Computers are not shared by simulations of different
domains or with any other resource-intensive tasks (i.e., each simulation is assigned to a dedicated
quad-core machine). The wall times for the full ACMS setup described earlier in this paper for each
domain are shown in Table 3.
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As noted previously, given the computational efficiency of ACMS provides good balance between
the provided accuracy and required resources. In order to run in real time, ACMS needs only
1–4 processing cores, compared to other systems which often require a high-performance computing
system with hundreds or thousands of processors. Current ACMS setup uses a single quad-core system
(as described above) per model domain. The codes within the system are effectively parallelized and
the wall time can be reduced by using more CPU cores. For example, using 32 CPU cores yields
approximately 30–40 min wall times (Table 3).

Table 3. Average wall-clock time for ACMS simulations (a simulation consists of a 6-h hindcast/nowcast
and a 72-h forecast) per domain. Times can vary from cycle to cycle, depending on conditions and
number of wetted grid cells.

Domain

Wall Clock Time (Hours:Minutes)

4 CPU Cores 32 CPU Cores

2D 3D 2D 3D

East Coast 0:58 3:40 0:22 00:28
Southeast 1:45 5:42 0:37 00:43
Southwest 1:10 4:11 0:29 00:32

Northern Gulf of Mexico 1:29 5:04 0:34 00:37

As such, the 2D and 3D implementations of ACMS differ significantly in wall time required to
perform the model simulations, however, this difference only slightly affects the total forecast cycle
time. The amount of data required and time needed to fetch these data is significantly different for the
2D and 3D implementations. It can take up to 12 h to obtain all the required boundary conditions for
the 3D implementation. The only external data required for the 2D model is a hurricane track as it
uses a synthetic parametric wind model to generate wind and pressure fields, which generally takes
only minutes to obtain. Pre/post-processing steps take 2–5 min and hence the entire forecast cycle
using a 2D model can be completed in less than two hours using the current computational setup.

4. Discussion and Future Work

This paper details how the ACMS was setup, tested, and validated in tidal and hindcast scenarios.
The system is shown to be robust and results match well with data for hindcasting. Simulated water
levels and salinity for hindcasted periods match well with data and 24-h forecasts that were performed
during the 2015 hurricane season are within acceptable limits for most stations. RMS errors for water
levels are found to vary between 4 cm and 12 cm. Additional efforts will be undertaken to analyze
the sources of error for stations that do not satisfy the criteria (e.g., two stations located upstream
the St. Johns River: Racy Point and Red Bay Point) and attempt will be made to reduce the errors.
The computational performance of the system is also discussed. Model efficiency allows the production
of robust forecasts in a limited-resource environment and choice of NetCDF-based data standards
gives flexibility in distributing the data using a THREDDS server and derived products using in-house
web-based user interface. The system will be tested in operational settings (completely unattended)
and operational performance, uptime, etc. will be a subject of a future publication.

Data availability and its accuracy significantly affect the results of simulations. It is especially
important for salinity, as missing river flow or salinity boundary conditions can drastically change the
quality of predictions inside an estuary. Additional quality control and data extrapolation methods
will be explored along with an option to include a watershed model into ACMS suite for more robust
predictions of upstream river flows and subsequently salinity inside estuaries. Temperature is another
important variable. While ACMS is capable of simulating temperature, such simulations are currently
in the preliminary phase. Feasibility of accurate temperature predictions constrained by limited data is
being explored. The key to this is data availability with very little data available for use as boundary
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conditions and for validation. Efforts will be made to obtain such data, and setup and validate the
temperature model.

Forecasting results from the 2016 hurricane season will be analyzed using more statistical
categories and NOS criteria, including maximum duration of positive and negative outliers and
worst case outlier frequency, as well as timing of maximums and minimums.

Sheng et al. [52,53] developed a vegetation model which incorporates the effects of vegetation on
mean flow and turbulence in the water column. The vegetation resolving model showed that, during
hurricanes, total inundation volume can be reduced by up to 40% due to the presence of vegetation.
The reduction of storm surge and coastal inundation depends on the characteristics (type, distribution,
height, and density, etc.) of vegetation as well as hurricane characteristics (intensity and forward speed,
etc.). The vegetation module will be added to the ACMS, however, additional efforts are needed to
optimize the algorithms and ensure that this addition does not hinder the efficiency of ACMS.
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