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Abstract: Elastoplastic analysis of a composite cylinder, consisting of an isotropic elastic inclusion
surrounded by orthotropic matrix, is conducted via numerical parametric studies for examining
its residual stress under thermal cycles. The matrix is assumed to be elastically and plastically
orthotropic, and all of its material properties are temperature-dependent (TD). The Hill’s anisotropic
plasticity material model is adopted. The interface between the inclusion and matrix is perfectly
bonded, and the outer boundary of the cylinder is fully constrained. A quasi-static, uniform
temperature field is applied to the cylinder, which is analyzed under the plane-strain assumption.
The mechanical responses of the composite cylinder are strongly affected by the material symmetry
and temperature-dependent material properties. When the temperature-independent material
properties are assumed, larger internal stresses at the loading phase are predicted. Furthermore,
considering only yield stress being temperature dependent may be insufficient since other TD
material parameters may also affect the stress distributions. In addition, plastic orthotropy inducing
preferential yielding along certain directions leads to complex residual stress distributions when
material properties are temperature-dependent.

Keywords: orthotropic plasticity; residual stress; temperature-dependent material properties;
composite cylinder; finite element analysis

1. Introduction

Temperature effects on the plastic deformation have significant industrial and academic
interests [1,2]. However, many studies in the literature make assumptions that the material properties
are isotropic and temperature-independent (TI). For example, aluminum composite discs under
thermal loading have been studied without using temperature-dependent (TD) material properties [3,4].
Considerations of elastic and plastic anisotropy are important when the deformation of textured
metals or single crystals under thermal loading are in question [5]. Orthotropic plasticity material
models have been extensively developed by Hill [6–8]. Anisotropic plasticity theory have been
applied in many studies to understand directional dependent yielding phenomena. For example,
Yoon10 et al. conducted research on the calibration of parameters used in anisotropic yield criterion
from experimental tests in strongly textured aluminum sheets [9]. Numerical studies on predicting
earing phenomena in anisotropic aluminum have been performed [10]. In addition, orthotropic plastic
deformation in fiber-reinforced composite disc under spinning has been analyzed [11].

The importance of using temperature-dependent material properties in thermal loading analysis
has been emphasized by Noda [12]. Thermomechanical responses of solid and hollow cylinders with

Symmetry 2019, 11, 320; doi:10.3390/sym11030320 www.mdpi.com/journal/symmetry1
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the consideration of temperature-dependent material properties have been reported [13]. Realistic
temperature functions to describe material properties at elevated temperatures for structural steels
can be found in [14]. Elastoplastic stress analysis of thin discs with temperature-dependent material
properties have been studied with analytical methods [15,16]. In addition, effects of thickness variations
on the elastoplastic behavior of annular discs have been studied [17]. Although these studies consider
the temperature-dependent material properties, they only deal with a system containing single
material. Composite systems introduce additional complexity into the plasticity problem. Zarandi et al.
examined the plastic responses of a composite disc, in two and three dimensions, under monotonic
temperature loading with consideration of temperature dependent material properties [18]. In addition,
the plasticity problem of a particular type of composite materials, termed functionally graded materials,
under bending have recently been investigated [19]. The derived analytical solutions provide an
efficient way in designing such materials.

In this work, we assume that the matrix material has orthogonal symmetry both in its elastic and
plastic properties, such as a single crystal, metal with texture, or or fiber-reinforced composite materials.
The matrix material is fully constrained on its outer rim, and its inner rim is in perfect bonding with an
isotropic, purely elastic inclusion. The finite element method is adopted to conduct parametric studies
on elastoplastic behavior and residual stress of the composite cylinder, analyzed under the plane-strain
assumption, subjected to uniform, quasi-static thermal loading and unloading. Numerical schemes
for solving elastoplasticity problems have been well established [20,21]. In this study, we conduct
parametric studies to analyze residual stresses with software package [22]. Both temperature dependent
and temperature independent material properties are considered. Effects of hardening and plane
stress/strain are analyzed. Our numerical results may serve as reference data for experimental
verifications or future analytical solutions to such a problem.

2. Theoretical and Numerical Considerations

As shown in Figure 1a, the composite cylinder consists of an isotropic, purely elastic inclusion
and elastoplastic matrix with the orthotropic symmetry both in its elastic and plastic behavior.
The inclusion-matrix interface is assumed to be perfectly bonded. The outer boundary of the composite
cylinder is fully clamped, and a uniform temperature field is quasi-statically applied to the composite
cylinder. Figure 1b shows representative thermal loading cycles. The thermal loading parameter serves
as loading steps in our analysis. In the figure, ΔT at Points B, D and F is in ratio of 1:1.25:1.5.
The temperature differences at the three points are 700, 875 and 1050 ◦C, respectively. During
the thermal loading or unloading cycles, residual stress fields may be developed at Points C, E
and G. The physical properties of the isotropic elastic inclusion (Young’s modulus Ei = 411 GPa,
Poisson’s ratio νi = 0.28, linear thermal expansion coefficient αi = 5.0 × 10−6 K−1) are assumed to be
temperature independent, but those of the elastoplastic matrix are temperature dependent. Physically
it is envisioned that the inclusion is made of a ceramic material (0 < r < a), surrounded by metallic
material (a < r < b), where r is the radial component of the polar coordinate system to describe the
points in the domain. The elastoplastic problems are numerically analyzed via the finite element
method in two dimensions.

2
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(a) (b)

Figure 1. (a) Schematic of the composite cylinder, with a = 0.3 m and b = 1 m, confined on the outer
rim, r = 1 m, and (b) representative quasi-static temperature loading profile.

In the elastic region, the orthotropic constitutive relationship for the matrix is as follows.

εij = Sijklσkl or εm = Smnσn (1)

where, at the reference temperature, E11 = 190, E22 = 200, E33 = 210, ν12 = 0.25, ν23 = 0.3, ν13 = 0.35,
G12 = 75, G12 = 80, G12 = 85. Moduli are in units of GPa. Thermal expansion coefficient is assumed
to have negligible orientational dependence, hence αm = 11.7 × 10−6 in units of 1/K.

In the orthotropic symmetry, the Cartesian coordinates, (x1, x2, x3) or (x, y, z), are the rolling
direction, the transverse direction and the normal direction, respectively. The Hill’s orthogonal yield
function is defined as

F (σij) = F (σ22 − σ33)
2 + G (σ33 − σ11)

2 + H (σ11 − σ22)
2 + 2Lσ2

23 + 2Mσ2
13 + 2Nσ2

12 (2)

It is assumed that at the reference temperature yield stresses are σ11 = 310, σ22 = 410, σ33 = 510,
σ23 = 200, σ13 = 300, σ12 = 400 in units of MPa. The associate flow rule is as follows.

ε̇
p
ij = λ

∂F
∂σij

(3)

Since the trance of the plastic strain tensor is zero due to the incompressibility assumption during
plastic flow,

ε̇
p
11 = 2λ [−G (σ33 − σ11) + H (σ11 − σ22)] (4)

ε̇
p
22 = 2λ [F (σ22 − σ33)− H (σ11 − σ22)] (5)

ε̇
p
33 = 2λ [−F (σ22 − σ33) + G (σ33 − σ11)] (6)

The consequence if the incompressibility assumption leads to,

ε
p
11 + ε

p
22 + ε

p
33 = 0 (7)

The inter-relationships among Hill’s parameters and directional yield stresses are as follows.

σy23 =

√
1

2L
, σy31 =

√
1

2M
, σy12 =

√
1

2N
(8)
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and

F =
1
2

(
1

σ2
y22

+
1

σ2
y33

− 1
σ2

y11

)
(9)

G =
1
2

(
1

σ2
y33

+
1

σ2
y11

− 1
σ2

y22

)
(10)

H =
1
2

(
1

σ2
y11

+
1

σ2
y22

− 1
σ2

y33

)
(11)

In this work, we specify the six yield stresses, instead the Hill’s parameters. One may further define
equivalent initial yield stress

σy0 =

√
3

2(F + G + H)
(12)

hence the Hill’s effective stress

σ2
Hill = σ2

y0

[
F (σ22 − σ33)

2 + G (σ33 − σ11)
2 + H (σ11 − σ22)

2 + 2Lσ2
23 + 2Mσ2

13 + 2Nσ2
12

]
(13)

The plastic potential used in the isotropic hardening

Fh = σHill − σy (14)

where

σy = σy0 + σh(εep) (15)

The hardening function σh depends on effective plastic strains εep. In the present analysis,

σh(εep) = Eisoεep (16)

where

1
Eiso

=
1

ETiso
− 1

E
(17)

and ETiso is the isotropic tangent modulus and E the effective Young’s modulus if the material is
elastically anisotropic. In this work, we set ETiso = 20 MPa if linear hardening is considered. The local
effective plastic strain is defined as follows.

ε̇ep =

√
2
3

ε̇
p
ij ε̇

p
ij (18)

The von Mises effective stress is defined as follows in terms of deviatoric stress tensor sij, or its second
invariant J2 [5].

σmises =
√

3J2(sij) =

√
3
2

sijsij and sij = σij − 1
3

σkkδij (19)
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here δij is the Kronecker delta function, and the Einstein summation rule for the indices is applied. The
temperature functions, shown in Equations (20)–(23), are used in this study. They are similar to those
in Argeso and Eraslan ([13]), but slightly modified.

fσ(T) = σy(T)/σ0 = 1 + T/[600 × ln(T/1630)] (20)

fE(T) = E(T)/E0 = 1 + T/[2000 × ln(T/1800)] (21)

fν(T) = ν(T)/ν0 = 1 + 2.5 × 10−4T − 2.5 × 10−7T2 (22)

fα(T) = α(T)/α0 = 1 + 2.56 × 10−4T − 2.14 × 10−7T2 (23)

where the applied temperature difference T is in units of ◦C and reference temperature is 22 ◦C.
A graphical representation of the temperature functions is shown in Figure 2. For the case that the
material is elastically and plastically isotropic, at the reference temperature, the Young’s modulus, yield
stress, Poisson’s ratio and linear thermal expansion coefficient of the matrix material are assumed to be
E0 = 200 GPa, σ0 = 410 MPa, ν0 = 0.3, and α0 = 11.7 × 10−6 per ◦C, respectively. When the material
is orthotropic, the above-mentioned temperature functions are applied to the material parameters
at the reference temperature, listed after Equation (1). In other words, temperature-dependent yield
stress σ(T) = σ0 fσ(T), Young’s modulus E(T) = E0 fE(T), Poisson’s ratio ν(T) = ν0 fν(T) and linear
thermal expansion coefficient α(T) = α0 fα(T). This choice of material parameters is representative for
studying the temperature dependent elastoplastic materials in general. The deformation process is
assumed to be quasi-static throughout this work.

(a) (b)

Figure 2. (a) Temperature functions for the material properties and (b) representative finite element
mesh used in this study.

A representative finite element mesh is shown in Figure 2b with the inclusion radius a = 0.3 m
and the radius to the outer boundary of the cylinder is b = 1 m. The number of two-dimensional
quadratic serendipity elements used in the analysis was about 6000, and the number of degrees of
freedom (d.o.f.) was about 170,000, including the internal d.o.f. for plasticity. We adopted COMSOL
([22]) software for the finite element calculations.

3. Results and Discussion

3.1. Residual Stress Analysis Under Elastic-Perfectly Plastic Assumption

When the plane-plane composite cylinder, with elastic-perfectly plastic model, under temperature
cyclic loading, Figure 3 shows the residual stress at r = 0.35 m, near the inclusion-matrix boundary, in
the TD case under the maximum applied temperature differences ΔT = 270, 337.5, 405 ◦C. All material
parameters are assumed to be temperature dependent. The maximum applied temperature differences
are labeled as the letters ’B’, ’D’ and ’F’ in the Figure 1, as schematics. Since the chosen loading

5
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magnitudes are large, reversed plasticity occurs during unloading. The stress magnitudes at the polar
angle θ = 45◦ direction are larger than those at θ = 0◦ due to the chosen plasticity parameters in the
Hill’s model having larger yield stress when θ = 45◦.

Under the TI assumption, Figure 4 shows the residual stress in the orthotropic cylinder under
maximum temperature differences ΔT = 270, 337.5, 405 ◦C, which are the same as those used in the
TD case. Since the loading magnitudes are kept the same in Figures 3 and 4, direct comparisons to
exhibit the the differences between TD and TI assumptions can be accomplished. In general, since TI
does not reduce yield stress at high temperature, it predicts higher stresses. Furthermore, it can be
seen that the residual stresses, at the loading parameters about 2.5, 4.5 and 7, are mildly developed
during reversed plasticity in the TI case since at high temperatures yield stress is not deduced. These
loading parameters respectively correspond to the letters ’C’, ’E’ and ’G’, shown in the schematics in
Figure 1b. However, in the TD case, yield stress is largely reduced at high temperatures as shown in
Figure 2a. This large reduction in yield stress causes strong reversed plasticity in the unloading phases.
Hence, the TD residual stresses in Figure 3, at the loading parameters about 2.5, 4.5 and 7, are much
larger than those in the TI case.

(a) (b)

Figure 3. Von Mises residual stress at r = 0.35 m in the temperature-dependent (TD) case with the
polar angle (a) θ = 0◦ and (b) θ = 45◦. Dashed lines indicate the applied temperature difference.

(a) (b)

Figure 4. Von Mises residual stress at r = 0.35 m in the temperature-independent (TI) case with the
polar angle (a) θ = 0◦ and (b) θ = 45◦. Dashed lines indicate the applied temperature difference.

3.2. Effects of Selective Temperature Dependent Material Properties on Residual Stress

In the previous section, the results are obtained with all material properties being temperature
dependent. In this section, we examine the effects of selective TD material properties on residual stress.
Linear hardening with ET = 20 MPa is assumed and its temperature dependence is assumed to be

6
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fE(T). Figure 5a shows the residual stress in the orthotropic cylinder after the maximum temperature
difference ΔT = 400 ◦C loading with all material parameters being temperature dependent, i.e., the
four temperature functions listed in Equations (20)–(23) are used in the analysis. When only yield stress
is considered to be temperature dependent, the corresponding residual stress is shown in Figure 5b. As
can be seen their von Mises residual stress distributions are similar, but their magnitudes are distinct.
Furthermore, the range for the residual stress ’plateau’ is shorter when all material properties are
temperature dependent. The ’plateau’ is slightly inclined due to the small linear hardening ET . As for
comparisons, the residual stress distribution for the TI case is shown in Figure 5c. Due to no reduction
in yield stress in the TI case as temperature increases, sharp residual stress distribution is developed
near the inclusion-matrix interface. It is remarked that residual stresses are self-equilibrated inside the
material. However, the von Mises residual stresses do not show this trend since they have averaged
according to Equation (19).

(a) (b) (c)

Figure 5. Residual stress distribution for (a) all material parameters being temperature dependent,
(b) only yield stress being temperature dependent and (c) all material parameters being temperature
independent.

3.3. Residual Stress Analysis with Linear Hardening

When the plane-strain composite cylinder under maximum temperature differences ΔT = 400,
500, 600 ◦C, the residual stresses, at r = 0.35 m, in each loading cycle are shown in Figure 6. Both
plastic anisotropy and isotropy are compared. Linear hardening is assumed, as in previous section.
For the TD case, all material properties are assumed to be temperature dependent in this section. It can
be seen that the TI case predicts large residual stress due to reversed plasticity in the unloading phase.
Due to orthotropic elastic constants, the numerical values between the isotropic and orthotropic case
can only be compared qualitatively.

(a) (b)

Figure 6. Residual stress near the inclusion-matrix interface at r = 0.35 for the (a) TD and (b) TI case.

7
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To observe the orientational dependence of residual stress in the cylinder, Figure 7 shows the stress
contour in the cylinder after unloading from maximum temperature difference ΔT =400 ◦C. Color
bars indicate the von Mises residual stress in units of MPa. The TI case shows weaker developments
in residual stress due to yield stress not being reduced at elevated temperature. Due to the matrix
being both elastically and plastically orthotropic, the isotropic inclusion also shows Under the same
loading/unloading conditions, Figure 8 shows the residual stress developed in the isotropic composite
cylinder. As expected, no orientational dependence is observed in the residual stress distribution.

(a) (b)

Figure 7. Von Mises residual stress in the orthotropic composite cylinder with the (a) TD and (b) TI
material properties.

(a) (b)

Figure 8. Von Mises residual stress in the isotropic composite cylinder with the (a) TD and (b) TI
material properties.

In order to better observe the directional dependence of the residual stress, shown in Figure 7,
we plot the residual stress at r = 0.35 m, near the inclusion-matrix interface indicated by a black circle
in the figure, around the circumferential direction, as shown in Figure 9. The circumferential direction
is indicated by the polar angle whose zero value is at the x-axis. It is remarked that for isotropic
plasticity such a plot would show horizontal lines only; no orientational dependence. As can be seen in
Figure 9, there are significant differences in the von Mises residual stress between the TD and TI case.
In the TD case, due to significant reduction in yield stress, the reversed plasticity during unloading
phase induces complex residual stress distribution.

8
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(a) (b)

Figure 9. Von Mises residual stress at r = 0.35 m around the polar angle in the orthotropic cylinder for
the (a) TD and (b) TI case.

Although many practical problems need to be analyzed in three space dimensions, long cylinders
can be analyzed in two dimensions under the plane strain assumption. Through the basic research
on the parametric analysis, it is demonstrated that the purpose of this study is to examine the
residual stress in the orthotropic cylinder under thermal loading with the consideration of temperature
dependent material properties. If materials have strong temperature dependence, one needs to be
aware significant differences between the TD and TI case. In the future, considerations of temperature
rates are required in order to realistically model the material responses.

Possible real-world applications of the present analysis are machine parts with anisotropic
characteristics under repeated temperature loading/unloading cycles or textured alloys during metal
forming processes. In addition, fiber-reinforced composite materials with fibers being arranged as
concentric rings may require the consideration of both elastic and plastic orthotropy, as studied in
the present work. This type of composite materials may be used in machinery, civil engineering or
biomedical engineering.

The development of residual stresses in materials depend on a variety of variables [23]. If the
residual stresses are to be minimized for certain applications, suitable selection of materials and
boundary conditions, as well as the methodology of analyzing the residual stresses under given
conditions, need to be considered. From the present study, to avoid complex residual stress
developments in the TD case under thermal loading, one may consider to choose a material with
less anisotropy and temperature sensitivity. For the TI case, one may either choose more isotropic
material or use multiple layers near the interface to reduce the orientational dependence in residual
stress. The multiple layers with suitable design and material selections may reduce the stress in the
matrix, hence reduce yielding and consequent the developments of residual stresses after unloading.
The multiple layer method may also work for the TD case. Further analysis is required.

4. Conclusions

Our parametric studies demonstrate that material symmetry plays an important role in the
residual stress distribution in the composite cylinder under thermal excitation. The combination of
material symmetry and temperature dependence in material properties may lead to complex residual
stress patterns. In designing cylinders as components for engineering applications, plastic anisotropic
effects cannot be ignored since they cause the orientational dependence in stress distribution along the
circumferential coordinate. In addition, considerations of all material properties to be temperature
dependent are important to reflect the physical processes in materials at high temperature. Residual
stresses calculated from only considering yield stress to be temperature dependent are different from
those with all TD material parameters. The assumptions of TI material properties do not reduce yield
stress at high temperatures, hence larger internal stresses under loading are obtained when compared

9
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to the TD case. It is found that the TD case may give rise to complex residual stress distribution,
as opposed to the TI case. Our numerical results and analysis procedure presented here may serve as
a methodology generating numerical data for benchmark tests to compare with future analytical or
experimental solutions.
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Abstract: Autofrettage is a widely used process to enhance the fatigue life of holes. In the theoretical
investigation presented in this article, a semi-analytic solution is derived for a polar, orthotropic,
open-ended cylinder subjected to internal pressure, followed by unloading. Numerical techniques are
only necessary to solve a linear differential equation and evaluate ordinary integrals. The generalized
Hooke’s law connects the elastic portion of strain and stress. The flow theory of plasticity is employed.
Plastic yielding is controlled by the Tsai–Hill yield criterion and its associated flow rule. It is shown
that using the strain rate compatibility equation facilitates the solution. The general solution takes into
account that elastic and plastic properties can be anisotropic. An illustrative example demonstrates
the effect of plastic anisotropy on the distribution of stresses and strains, including residual stresses
and strain, for elastically isotropic materials.

Keywords: residual stress; residual strain; open-ended cylinder; autofrettage

1. Introduction

High-pressure vessels are often autofrettaged to improve their performance under service
conditions. Numerous theories of the autofrettage process of hollow cylinders under different end
conditions are available. The three main end conditions are usually adopted (plane strain, closed-end,
and open-end conditions). The earliest attempt on a strict mathematical theory of the autofrettage
process appears to have been in [1], where the plane strain condition has been considered assuming
an elastic, perfectly plastic material model. This theory has been extended to closed-end tubes in [2].
A theory of the autofrettage process of tubes with free ends has been proposed in [3]. The Tresca yield
criterion has been adopted, and the solution has been found by a finite difference method.

The elastic/perfectly plastic solutions mentioned above have been extended to other constitutive
equations. In particular, solutions for open-ended cylinders of strain-hardening material have been
derived in [4,5]. Both the Tresca and von Mises criteria, in conjunction with the corresponding
associated flow rule, have been adopted in [4]. In the case of Ni-Cr-Mo cylinders, it has been shown
that the effect of strain hardening is important in cylinders with radius ratios of 3 or greater. Hencky’s
deformation theory of plasticity, based on the von Mises yield criterion, has been employed in [5].
A solution for hollow cylinders under a constant axial strain condition has been provided in [6], using
the deformation theory of plasticity and the von Mises yield criterion. The corresponding plane strain
solution can be obtained as a special case. A nonlinear strain-hardening model for steel has been
proposed in [7]. Then, this model has been used for studying the process of autofrettage in close-ended
cylinders. A comprehensive overview of autofrettage theories for internally pressurized homogeneous
tubes of perfectly plastic and strain-hardening materials has been provided in [8]. A plane strain
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Symmetry 2019, 11, 280

solution based on a gradient theory of plasticity has been found in [9]. Hencky’s deformation theory
of plasticity and a unified yield criterion have been adopted.

The Bauschinger effect can significantly influence the distribution of residual stresses and strains
in tubes subjected to internal pressure followed by unloading. Therefore, many theoretical solutions
for the process of autofrettage are based on material models that incorporate the Bauschinger effect.
A solution for a hardening law suitable for high-strength steel has been given in [10]. A distinguished
feature of this hardening law is that the material is perfectly plastic at loading, but shows a strong
Bauschinger effect within a certain range of the forward strain. The Tresca yield criterion and its
associated flow rule have been used. An approximate method of finding analytic solutions for generic
isotropic and kinematic strain hardening laws has been introduced in [11]. Another approximate
method has been employed in [12], using the concept of the single effective material. Numerical
methods have been developed in [13–15] for materials with nonlinear stress–strain behavior. An effect
of varying elastic and plastic material properties along the radius on the distribution of residual
stresses in autofrettaged cylinders has been evaluated in [16].

An efficient method of improving the performance of autofrettaged tubes is to use two- and multi-layer
tubes [17]. Several theoretical solutions for such tubes are available in the literature (for example, [18–23]).
The methods of analysis employed are similar to those used for homogeneous tubes.

In addition to the autofrettage treatment by internal pressure, thermal and rotational autofrettage
treatments are widely used. Thermal autofrettage has been studied in [24–27], and rotational
autofrettage in [28,29].

A comprehensive overview of theoretical and experimental research on the process of autofrettage
has been recently provided in [30]. It is seen from this review that initially anisotropic materials were
not considered. On the other hand, it is known from solutions to other problems in structural mechanics,
for example in [31–33], that plastic anisotropy may have a significant effect on the solution. In particular,
it is mentioned in [33] that even mild plastic anisotropy significantly affects the distribution of residual
stresses, which is of special importance for the process of autofrettage. In the case of circular discs
and cylinders, a common type of anisotropy is polar orthotropy. In particular, the effect of plastic
anisotropy on stress and strain fields in rotating discs has been studied in [34–39], using different
material models and boundary conditions. Various boundary value problems for orthotropic cylinders
have been solved in [40–44]. All of these studies demonstrate that it is important to take into account
plastic anisotropy in analysis and the design of structures. It is therefore reasonable to provide a
theoretical analysis of the autofrettage process for polar orthotropic cylinders.

In the present paper, the open-ended cylinder is considered. It is assumed that the elastic
strain and stress are connected by the generalized Hooke’s law. Plastic yielding is controlled by the
Tsai–Hill yield criterion. This criterion is often used in applications [45–49]. Therefore, the material is
initially anisotropic. The flow theory of plasticity is employed. It is shown that using the strain rate
compatibility equation facilitates the solution. In particular, a numerical technique is only necessary to
solve a linear differential equation and evaluate ordinary integrals.

2. Statement of the Problem

Consider the expansion of a thick-walled hollow cylinder of inner radius a0 and outer radius b0

by a uniform internal pressure P0, followed by unloading. The external pressure is zero. It is natural to
solve this boundary value problem in a cylindrical coordinate system (r, θ, z) whose z−axis coincides
with the axis of symmetry of the cylinder. It is assumed that the cylinder is sufficiently long to make the
stresses and strains independent of the z-coordinate. The ends of the cylinder are not loaded. The inner
pressure at the end of loading is high enough so that the annulus contained by the inner radius and
some internal radius r = rc is plastic, while the outer annulus contained by the surface r = rc and the
outer radius is elastic. The surface r = rc is the elastic/plastic boundary. Let σr, σθ , and σz be the stress
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components referred to the cylindrical coordinate system. These stresses are the principal stresses.
Moreover, σz = 0 for the open-ended cylinder. The boundary conditions at loading are

σr = −P0 (1)

for r = a0, and
σr = 0 (2)

for r = b0. Let Pm be the value of P0 at the end of loading. Then, the boundary conditions at
unloading are

Δσr = Pm (3)

for r = a0, and
Δσr = 0 (4)

for r = b0. Here Δσr is the increment of the radial stress in course of unloading.
It is assumed that the cylinder is polar orthotropic. Then, the principal strain directions coincide

with the principal stress directions. In particular, the generalized Hooke’s law, in terms of the principal
stress and strain components under plane stress conditions, is

εe
r = arrσr + arθσθ , εe

θ = arθσr + aθθσθ , εe
z = arzσr + aθzσθ . (5)

Here εe
r, εe

θ , and εe
z are the elastic radial, circumferential, and axial strains, respectively.

The coefficients arr, arθ , arz, and aθz are the components of the compliance tensor. In terms of the
principal stresses, the Tsai–Hill yield criterion reads

σ2
θ − σrσθ + σ2

r
X2

Y2 = X2 (6)

where X and Y are the yield stresses in the circumferential and radial directions, respectively. The flow
rule associated with the yield criterion (6) is

∂ε
p
r

∂t
= λ1

(
2X2

Y2 σr − σθ

)
,

∂ε
p
θ

∂t
= λ1(2σθ − σr),

∂ε
p
z

∂t
= λ1

[(
1 − 2X2

Y2

)
σr − σθ

]
(7)

where ε
p
r , ε

p
θ , and ε

p
z are the plastic radial, circumferential, and axial strains, respectively; t is the time;

and λ1 is a non-negative multiplier. Since the model under consideration is rate independent, the time
derivatives in (7) can be replaced with derivatives with respect to any monotonically increasing or
decreasing parameter q. Then, Equation (7) is replaced with

ξ
p
r = λ

(
2X2

Y2 σr − σθ

)
, ξ

p
θ = λ(2σθ − σr), ξ

p
z = λ

[(
1 − 2X2

Y2

)
σr − σθ

]
(8)

where ξ
p
r = ∂ε

p
r /∂q, ξ

p
θ = ∂ε

p
θ /∂q, ξ

p
z = ∂ε

p
z /∂q, and λ is proportional to λ1. The total strains are

given by
εr = εe

r + ε
p
r , εθ = εe

θ + ε
p
θ , εz = εe

z + ε
p
z . (9)

The constitutive equations should be supplemented with the equilibrium equation of the form

∂σr

∂r
+

σr − σθ

r
= 0. (10)

The solution is facilitated by using the equation of strain-rate compatibility. This equation is
equivalent to

r
∂ξθ

∂r
+ ξθ − ξr = 0. (11)
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In what follows, the following dimensionless quantities will be used:

ρ =
r
b0

, a =
a0

b0
, ρc =

rc

b0
, p0 =

P0

X
, pm =

Pm

X
, k = Xarr. (12)

3. Purely Elastic Solution

The general purely elastic solution for stress can be written as

σr

X
= C1ρτ−1 + C2ρ−τ−1,

σθ

X
= τ

(
C1ρτ−1 − C2ρ−τ−1

)
(13)

where C1 and C2 are constants of integration and τ =
√

arr/aθθ . Substituting Equation (13) into
Equation (5) supplies the solution for strain in the form

εe
r

k = C1

(
1 + Xarθτ

k

)
ρτ−1 + C2

(
1 − Xarθ τ

k

)
ρ−τ−1,

εe
θ
k = C1

(
arθ
arr

+ aθθ τ
arr

)
ρτ−1 + C2

(
arθ
arr

− aθθτ
arr

)
ρ−τ−1,

εe
z
k = C1

(
arz
arr

+ τaθz
arr

)
ρτ−1 + C2

(
arz
arr

− τaθz
arr

)
ρ−τ−1.

(14)

The solution for Equation (13) should satisfy the boundary conditions of Equations (1) and (2).
Then, using Equation (12), the constants C1 and C2 are determined as

C1 = − p0

at−1 − a−t−1 , C2 =
p0

at−1 − a−t−1 . (15)

Substituting Equation (15) into Equation (13) results in

σr

X
=

p0

(aτ−1 − a−τ−1)

(
ρ−τ−1 − ρτ−1

)
,

σθ

X
= − τp0

(aτ−1 − a−τ−1)

(
ρ−τ−1 + ρτ−1

)
. (16)

It is assumed that plastic yielding initiates at the inner radius of the cylinder, ρ = a.
This assumption should be verified for each set of constitutive parameters. The corresponding
condition follows from Equations (6) and (16), in the form

p2
0

(aτ−1 − a−τ−1)
2

[
τ2

(
ρ−τ−1 + ρτ−1

)2
+

τ

ρ2

(
ρ−2τ − ρ2τ

)
+

(
ρ−τ−1 − ρτ−1

)2 X2

Y2

]
≤ 1 (17)

in the range a ≤ ρ ≤ 1. It follows from Equation (16) that

σr

X
= −p0,

σθ

X
=

τp0
(
1 + a2τ

)
(1 − a2τ)

(18)

at ρ = a. Substituting Equation (18) into the yield criterion of Equation (6) and using
Equation (12) yields

pe =
(

1 − a2τ
)[

τ2
(

1 + a2τ
)2

+ τ
(

1 − a4τ
)
+

X2

Y2

(
1 − a2τ

)2
]−1/2

. (19)

Here pe is the value of p0, at which point a plastic region starts to propagate from the inner radius
of the cylinder. In what follows, it is assumed that p0 > pe.

4. Elastic/Plastic Stress Solution

There are two regions, a ≤ ρ ≤ ρc and ρc ≤ ρ ≤ 1, at p0 > pe. The region ρc ≤ ρ ≤ 1 is elastic.
The general solution for Equation (13) is valid in this region. However, the constants C1 and C2 are not
given by (15). The stress solution in the region a ≤ ρ ≤ ρc must satisfy the yield criterion of Equation
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(6) and the equilibrium Equation (10). It is possible to verify by inspection that the yield criterion is
satisfied by the following substitution:

σr

X
= −2 sin ϕ

Q
,

σθ

X
= − sin ϕ

Q
− cos ϕ, Q =

X
Y

√
4 − Y2

X2 (20)

where ϕ is an auxiliary function of ρ. Substituting Equation (20) into (10) yields

2 cos ϕ
∂ϕ

∂ρ
+

(sin ϕ − Q cos ϕ)

ρ
= 0. (21)

The stress solution in the region a ≤ ρ ≤ ρc should satisfy the boundary condition of Equation (1).
Using Equations (12) and (20), this condition transforms to

ϕ = ϕa (22)

where ρ = a, where ϕa is determined from the equation

2 sin ϕa = Qp0 (23)

The unique solution of this equation is found using the condition that the circumferential stress
at ρ = a at the initiation of plastic yielding is determined from Equation (18), in which p0 should
be replaced with pe, given in Equation (19). The solution of Equation (21) satisfying the boundary
condition of Equation (22) is

ln
ρ

a
=

2Q(ϕ − ϕa)

(1 + Q2)
+

2
(1 + Q2)

ln
(

Q cos ϕa − sin ϕa

Q cos ϕ − sin ϕ

)
. (24)

Let ϕc be the value of ϕ at ρ = ρc. Then, it follows from Equation (24) that

ln
ρc

a
=

2Q(ϕc − ϕa)

(1 + Q2)
+

2
(1 + Q2)

ln
(

Q cos ϕa − sin ϕa

Q cos ϕc − sin ϕc

)
(25)

The solution of Equation (13) should satisfy the boundary condition in Equation (2). Therefore,
using Equation (12), it is possible to find that C1 + C2 = 0. Then, the stress solution in the elastic region
ρc ≤ ρ ≤ 1 is

σr

X
= C1

(
ρτ−1 − ρ−τ−1

)
,

σθ

X
= τC1

(
ρτ−1 + ρ−τ−1

)
. (26)

The radial and circumferential stresses must be continuous across the elastic/plastic boundary.
Then, it follows from Equations (20) and (26) that

− 2 sin ϕc

Q
= C1

(
ρτ−1

c − ρ−τ−1
c

)
, − sin ϕc

Q
− cos ϕc = τC1

(
ρτ−1

c + ρ−τ−1
c

)
. (27)

Eliminating C1 between these equations results in

1 + Q cot ϕc =
2τ

(
ρ2τ

c + 1
)

(ρ2τ
c − 1)

. (28)

In this equation, ρc can be eliminated by means of Equation (25). The resulting equation can be
solved numerically to find ϕc as a function of ϕa. Using this solution, ρc as a function of ϕa is immediate
from Equation (25), and then C1 is a function of ϕa from any part of Equations (27). Equation (23)
allows for all these quantities to be expressed as a function of p0. Then, at any value of p0, the variation
of stresses with ρ in the elastic region follows from Equation (26), and in the plastic region from (20)
and (24). The latter is in parametric form, with ϕ being the parameter. A difficulty is that this general

17



Symmetry 2019, 11, 280

solution may not exist. One of the restrictions is that plastic yielding is not initiated in the elastic
region. Using Equations (12), (6), and (26), the corresponding condition can be represented as

C2
1

[
τ2

(
ρτ−1 + ρ−τ−1

)2 − τ

ρ2

(
ρ2τ − ρ−2τ

)
+

(
ρτ−1 − ρ−τ−1

)2 X2

Y2

]
≤ 1 (29)

in the range ρc ≤ ρ ≤ 1. Having found the value of C1 the inequality in Equation (29), it can be verified
by inspection with no difficulty. Another restriction is immediate from (20):

Y
X

< 2. (30)

The physical sense of this restriction is that Equation (6) does not determine a convex yield
surface in principal stress space if Y > 2X. Still another restriction follows from Equation (23).
Since |sin ϕa| ≤ 1, the value of p0 must satisfy the inequality

p0 ≤ 2
Q

≡ pp. (31)

If p0 = pp, then the localization of plastic deformation occurs at the inner radius of the cylinder,
and the plastic region cannot propagate beyond the radius reached at this value of p0.

Consider the state of stress in the cylinder when the entire cylinder becomes plastic, and the
localization of plastic deformation occurs at the inner radius of the cylinder simultaneously. The latter
condition requires ϕa = π/2. On the other hand, the stresses in Equation (20) should satisfy the
boundary condition in Equation (2). It is reasonable to assume that at σθ > 0 at ρ = 1. Then, Equations
(2) and (20) combine to give ϕc = π. It is evident that ρc = 1. Substituting ϕa = π/2, ϕc = π,
and ρc = 1 into Equation (25) yields

ln a =
2 ln Q

(1 + Q2)
− Qπ

(1 + Q2)
. (32)

Here, Q can be eliminated using its definition. Then, Equation (32) determines a relationship
between a and Y/X corresponding to the state of stress in question. This relation is illustrated in
Figure 1. If the point corresponding to a pair (a, Y/X) lies above the curve, then the entire disc
becomes plastic before the localization of plastic deformation at the inner surface of the cylinder,
and vice versa.

Figure 1. Geometric interpretation of two different mechanisms of plastic collapse (localization of
plastic deformation at the inner radius of the cylinder and occurrence of the plastic region over the
entire disc).
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It is also of importance to consider the difference between pe and pp. It is seen from Equations (19)
and (31) that pp is the function only of Y/X, whereas pe depends on Y/X, a, and τ. The variation of
pp − pe with Y/X at a = 0.4 for several values of τ is depicted in Figure 2. It is seen from this figure
that the difference is rather small if the ratio Y/X is small enough. This means that the localization of
plastic deformation at the inner surface of the cylinder occurs at the very beginning of plastic yielding.

Figure 2. Effect of constitutive parameters on the magnitude of pressure at which plastic deformation
is localized at the inner radius of the cylinder.

5. Elastic/Plastic Strain Solution

The total strain is elastic in the region ρc ≤ ρ ≤ 1. Therefore, using Equation (12), the principal
strains in this region are found from the generalized Hooke’s law in Equation (5) and the stress solution
of Equation (26), as

εr
k = C1

[(
1 + τarθ

arr

)
ρτ−1 +

(
τarθ
arr

− 1
)

ρ−τ−1
]
,

εθ
k = C1

[(
arθ
arr

+ τaθθ
arr

)
ρτ−1 +

(
τaθθ
arr

− arθ
arr

)
ρ−τ−1

]
,

εz
k = C1

[(
arz
arr

+ τaθz
arr

)
ρτ−1 +

(
τaθz
arr

− arz
arr

)
ρ−τ−1

]
.

(33)

Using Equation (12), the elastic portion of strain in the plastic region, a ≤ ρ ≤ ρc, is determined
from the generalized Hooke’s law (Equation (5)) and the stress solution in Equation (20), as

εe
r

k = − (2+arθ/arr)
Q sin ϕ − arθ

arr
cos ϕ, εe

θ
k = − (2arθ+aθθ)

Qarr
sin ϕ − aθθ

arr
cos ϕ,

εe
z
k = − 2arz sin ϕ

arrQ − aθz
arr

(
sin ϕ

Q + cos ϕ
)

.
(34)

Substituting Equation (20) into Equation (8) leads to

ξ
p
r = λ

[
sin ϕ

Q

(
1 − 4X2

Y2

)
+ cos ϕ

]
,

ξ
p
θ = −2λ cos ϕ, ξ

p
z = λ

[(
4X2

Y2 − 1
)

sin ϕ
Q + cos ϕ

]
.

(35)

Eliminating λ between these equations gives

ξ
p
r

ξ
p
θ

= Q
2

(
4X2

Y2 − 1
)

tan ϕ − 1
2 ,

ξ
p
z

ξ
p
θ

= −Q
2

(
4X2

Y2 − 1
)

tan ϕ − 1
2 .

(36)
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In what follows, it is assumed that q ≡ ϕa and

ξe
r =

∂εe
r

∂ϕa
, ξe

θ =
∂εe

θ

∂ϕa
, ξe

z =
∂εe

z
∂ϕa

, ξr =
∂εr
∂ϕa

, ξe
θ =

∂εθ

∂ϕa
, ξe

z =
∂εz
∂ϕa

. (37)

Then, differentiating Equation (34) with respect to ϕa yields

ξe
r

k =
[
− (2+arθ /arr)

Q cos ϕ + arθ
arr

sin ϕ
]

∂ϕ
∂ϕa

,
ξe

θ
k =

[
− (2arθ+aθθ)

Qarr
cos ϕ + aθθ

arr
sin ϕ

]
∂ϕ
∂ϕa

,
ξe

z
k = −

[
2arz cos ϕ

arrQ + aθz
arr

(
cos ϕ

Q − sin ϕ
)]

∂ϕ
∂ϕa

.

(38)

Substituting Equation (9) differentiated with respect to ϕa into Equation (11) and using
Equation (12) leads to

ρ
∂ξθ

∂ρ
+ ξθ − ξ

p
r − ξe

r = 0. (39)

Moreover, using Equation (36),

ξ
p
r =

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ − 1
2

]
ξ

p
θ =

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ − 1
2

]
(ξθ − ξe

θ) (40)

Then, eliminating ξ
p
r in Equation (39) by means of Equation (40) yields

ρ
∂ξθ

∂ρ
+

ξθ

2

[
3 − Q

(
4X2

Y2 − 1
)

tan ϕ

]
+

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ − 1
2

]
ξe

θ − ξe
r = 0. (41)

Using Equation (21), differentiation with respect to ρ in Equation (41) can be replaced with
differentiation with respect to ϕ. As a result,

∂ξθ

∂ϕ
(Q − tan ϕ) + ξθ

[
3 − Q

(
4X2

Y2 − 1
)

tan ϕ

]
+

[
Q
(

4X2

Y2 − 1
)

tan ϕ − 1
]

ξe
θ − 2ξe

r = 0. (42)

It is seen from (38) that the expressions for ξe
r and ξe

θ involve the derivative ∂ϕ/∂ϕa. In general,
this derivative can be found from Equation (24), which is the solution of Equation (21). However,
it is more convenient to represent the solution of this equation satisfying the boundary condition
Equation (22) as

ln
ρ

a
= 2

ϕ∫
ϕa

cos η

(Q cos η − sin η)
dη (43)

where η is a dummy variable of integration. Differentiating Equation (43) gives

2 cos ϕ

(Q cos ϕ − sin ϕ)
dϕ =

2 cos ϕa

(Q cos ϕa − sin ϕa)
dϕa +

dρ

ρ
.

It follows from this equation that

∂ϕ

∂ϕa
=

cos ϕa(Q cos ϕ − sin ϕ)

cos ϕ(Q cos ϕa − sin ϕa)
. (44)
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Equations (38) and (44) combine to give

ξe
r

k =
[
− (2+arθ /arr)

Q cos ϕ + arθ
arr

sin ϕ
]
(Q−tan ϕ)
(Q−tan ϕa)

,
ξe

θ
k =

[
− (2arθ+aθθ)

Qarr
cos ϕ + aθθ

arr
sin ϕ

]
(Q−tan ϕ)
(Q−tan ϕa)

,
ξe

z
k = −

[
2arz cos ϕ

arrQ + aθz
arr

(
cos ϕ

Q − sin ϕ
)]

(Q−tan ϕ)
(Q−tan ϕa)

.

(45)

Eliminating ξe
r and ξe

θ in Equation (42) by means of Equation (45) results in the following linear
differential equation for ξθ/k:

∂(ξθ /k)
∂ϕ +

ξθ
k Φ1(ϕ) +

Φ2(ϕ)
(Q−tan ϕa)

= 0,

Φ1(ϕ) =
[
3 − Q

(
4X2

Y2 − 1
)

tan ϕ
]
(Q − tan ϕ)−1,

Φ2(ϕ) =
[

aθθ sin ϕ − (2arθ+aθθ)
Q cos ϕ

][
Q
(

4X2

Y2 − 1
)

tan ϕ − 1
]
+

2
[
(2arr+arθ)

Q cos ϕ − arθ sin ϕ
]
.

(46)

The circumferential strain rate must be continuous across the elastic/plastic boundary. Therefore,
the boundary condition to Equation (46) is

ξθ

k
=

ξc

k
(47)

for ϕ = ϕc. Here, ξc is the value of ξθ on the elastic side of the elastic/plastic boundary. Differentiating
the second equation in Equation (33) with respect to ϕa, and then putting ρ = ρc results in

ξc

k
=

dC1

dϕa

[(
arθ

arr
+

τaθθ

arr

)
ρτ−1

c +

(
τaθθ

arr
− arθ

arr

)
ρ−τ−1

c

]
. (48)

It is seen from this equation that it is necessary to find the derivative dC1/dϕa. It follows from
Equation (43) that

ln
ρc

a
= 2

ϕc∫
ϕa

cos ϕ

(Q cos ϕ − sin ϕ)
dϕ. (49)

Differentiating this equation and Equation (28) with respect to ϕa yields

dϕc

dϕa
=

(Q − tan ϕc)

2

[
dρc

ρcdϕa
+

2
(Q − tan ϕa)

]
(50)

and
dϕc

dϕa
=

8τ2ρ2τ−1
c sin2 ϕc

Q(ρ2τ
c − 1)2

dρc

dϕa
, (51)

respectively. Solving Equations (50) and (51) for the derivatives dρc/dϕa and dϕc/dϕa gives

dρc
dϕa

= (Q−tan ϕc)
(Q−tan ϕa)

[
8τ2ρ2τ−1

c sin2 ϕc

Q(ρ2τ
c −1)

2 − (Q−tan ϕc)
2ρc

]−1
,

dϕc
dϕa

= 8τ2ρ2τ−1
c sin2 ϕc(Q−tan ϕc)

Q(ρ2τ
c −1)

2
(Q−tan ϕa)

[
8τ2ρ2τ−1

c sin2 ϕc

Q(ρ2τ
c −1)

2 − (Q−tan ϕc)
2ρc

]−1
.

(52)

The derivative dC1/dϕa is determined from the first equation in Equation (27) as

dC1

dϕa
=

2 sin ϕc
[
(τ − 1)ρτ−2

c + (τ + 1)ρ−τ−2
c

]
Q
(

ρτ−1
c − ρ−τ−1

c

)2
dρc

dϕa
− 2 cos ϕc

Q
(

ρτ−1
c − ρ−τ−1

c

) dϕc

dϕa
(53)
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In this equation, the derivatives dρc/dϕa and dϕc/dϕa can be eliminated by means of Equation
(52). In the previous section, ϕc and ρc have been found as functions of ϕa. Therefore, Equations (48)
and (53) combine to supply ξc/k as a function of ϕa. Then, the solution of Equation (46), satisfying the
boundary condition of Equation (47), can be solved numerically.

By definition, ξθ = ∂εθ/∂ϕa if ξθ and εθ are regarded as functions of ϕa and ρ. However,
the solution of Equation (46) provides ξθ as a function of ϕa and ϕ. In this case, ∂εθ

∂ϕa
+ ∂εθ

∂ϕ
∂ϕ
∂ϕa

= ξθ .
In this equation, the derivative ∂ϕ/∂ϕa can be eliminated by means of Equation (44). Then,

∂εθ

∂ϕa
+

∂εθ

∂ϕ

(Q − tan ϕ)

(Q − tan ϕa)
= ξθ . (54)

Using a standard technique, it is possible to find that the equation of the characteristics is

dϕ =
(Q − tan ϕ)

(Q − tan ϕa)
dϕa (55)

and the relation along the characteristics is

d
( εθ

k

)
=

ξθ

k
dϕa. (56)

Equation (55) can be immediately integrated to give

Q(ϕa − ϕ) + ln
(

Q cos ϕ − sin ϕ

Q cos ϕa − sin ϕa

)
= D (57)

where D is a constant of integration. The boundary condition to Equation (56) is that εθ/k = εe
θ/k at the

elastic/plastic boundary. Here εe
θ is the circumferential strain on the elastic side of the elastic/plastic

boundary. Using Equation (33), this boundary condition is represented as

εθ

k
= C1

[(
arθ

arr
+

τaθθ

arr

)
ρτ−1

c +

(
τaθθ

arr
− arθ

arr

)
ρ−τ−1

c

]
(58)

for ρ = ρc (or ϕ = ϕc).
It is evident from Equation (57) that ϕ = ϕa is a characteristic curve, and that D = 0 on this

curve. Having ξθ/k as a function of ϕa at ϕ = ϕa (or ρ = a) from the solution of Equation (46), it is
possible to integrate Equation (56) along the characteristic curve ϕ = ϕa with the use of the boundary
condition in Equation (58), to find the circumferential strain at the inner radius of the cylinder without
solving Equation (54) for the entire plastic region. In order to illustrate the procedure for finding
the strain solution in the entire plastic region, consider a schematic field of characteristics shown in
Figure 3, where ϕm is the value of ϕa at the end of loading. Since ϕc as a function of ϕa is found
from the solution of Equation (28), the curve ϕ = ϕc is known. Choosing any pair (ϕa, ϕ) on this
curve, it is possible to find D from Equation (57). The corresponding characteristic curve follows from
Equation (57) at this value of D if ϕa varies in the range ϕe ≥ ϕa ≥ ϕm. In particular, the value of ϕ at
ϕa = ϕm is determined. This value of ϕ is denoted as ϕM. The value of the circumferential strain at
ϕa = ϕM and ϕ = ϕM is found from the solution of Equation (56) satisfying the boundary condition
of Equation (58). The plastic portion of this strain is immediate from Equations (9) and (34). Having
found the distribution of ξθ/k along the characteristic curve, it is possible to determine the distribution
of ξ

p
θ /k using the equation ξ

p
θ /k = ξθ/k − ξe

θ/k and Equation (45). Then, Equation (36) supplies the
distribution of ξ

p
r /k and ξ

p
z /k.
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Figure 3. A schematic diagram showing the field of characteristics.

By analogy to Equation (54), it is possible to get

∂ε
p
r

∂ϕa
+

∂ε
p
z

∂ϕ

(Q − tan ϕ)

(Q − tan ϕa)
= ξ

p
θ ,

∂ε
p
z

∂ϕa
+

∂ε
p
z

∂ϕ

(Q − tan ϕ)

(Q − tan ϕa)
= ξ

p
z . (59)

These equations can be integrated in the same manner as Equation (54). In particular, Equation
(57) is the equation of characteristic curves. The boundary conditions are

ε
p
r = ε

p
z = 0 (60)

for ρ = ρc (or ϕ = ϕc). Once the values of ε
p
r and ε

p
z at ϕa = ϕm and ϕ = ϕM have been found, the total

strains are immediate from Equations (9) and (34). The strain solution described supplies the variation
of strain components with ϕ at a given value of ϕa. In order to find the radial distributions, it is
necessary to use Equation (24).

6. Unloading

It is assumed that the process of unloading is purely elastic. This assumption should be verified a
posteriori. The general elastic solution of Equation (13), in which the stress components are replaced
with their increments, is valid in the entire cylinder. Then,

Δσr

X
= C3ρτ−1 + C4ρ−τ−1,

Δσθ

X
= τ

(
C3ρτ−1 − C4ρ−τ−1

)
(61)

where C3 and C4 are new constants of integration. These constants are found from the boundary
conditions of Equations (3) and (4). As a result,

C3 = −C4 =
pm

(a−τ−1 − aτ−1)
. (62)

Here, Equation (12) has been taken into account. Substituting Equation (62) into (61) supplies the
radial distribution of Δσr and Δσθ in the form

Δσr

X
=

pm

(a−τ−1 − aτ−1)

(
ρτ−1 − ρ−τ−1

)
,

Δσθ

X
=

τpm

(a−τ−1 − aτ−1)

(
ρτ−1 + ρ−τ−1

)
. (63)
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The variation of the residual stresses with ρ is found as

σres
r = σr + Δσr and σres

θ = σθ + Δσθ . (64)

It is understood here that σr and σθ are known from the stress solution given in Section 4,
at p0 = pm. The process of unloading is purely elastic if the yield criterion is not violated in the entire
cylinder. Using Equation (6), this condition can be represented as

(
σres

θ

X

)2

−
(

σres
θ

X

)(
σres

r
X

)
+

(
σres

r
X

)2 X2

Y2 ≤ 1 (65)

in the range a ≤ ρ ≤ 1. The radial distribution of the strain increments is determined from the
generalized Hooke’s law in Equations (5) and (62), as

Δεe
r

k = pm

(a−τ−1−aτ−1)

[(
1 + τarθ

arr

)
ρτ−1 − ρ−τ−1

(
1 − τarθ

arr

)]
,

Δεe
θ

k = pm

(a−τ−1−aτ−1)

[(
arθ
arr

+ τaθθ
arr

)
ρτ−1 −

(
arθ
arr

− τaθθ
arr

)
ρ−τ−1

]
,

Δεe
z

k = pm

(a−τ−1−aτ−1)

[(
arz
arr

+ τaθz
arr

)
ρτ−1 −

(
arz
arr

− τaθz
arr

)
ρ−τ−1

]
.

(66)

The variation of the residual strains with ρ is found as

εres
r = εr + Δεr, εres

θ = εθ + Δεθ and εres
z = εz + Δεz (67)

It is understood here that εr, εθ , and εz are known from the strain solution given in Section 5 at
p0 = pm.

7. Numerical Example

This section illustrates the effect of plastic anisotropy on the distribution of stress and strain in
an a = 0.4 cylinder, assuming that the elastic properties are isotropic. In particular, it is assumed that
Poisson’s ratio is equal to 0.3 (i.e., arθ = −0.3). The value of k is immaterial, because all strains are
proportional to k. The solution given in Section 4 has been used to calculate the radial distribution
of the radial and circumferential stress corresponding to ρc = 0.8. It is seen from Figure 1 that the
solution without the localization of plastic deformation at the inner radius of the cylinder exists only
if Y/X > 0.8. Therefore, the stress solution has been found at Y/X = 0.85, Y/X = 1 (isotropic
material), Y/X = 1.25, and Y/X = 1.5. This solution is illustrated in Figure 4 (radial stress) and
Figure 5 (circumferential stress). The associate strain solution has been found using the approach
described in Section 5. This strain solution is illustrated in Figure 6 (total radial strain), Figure 7 (total
circumferential strain), and Figure 8 (total axial strain). It can be seen from these figures that the effect
of the ratio Y/X on the distribution of the strains is very significant in the range Y/X < 1.25. In this
range, the magnitude of strains is very large in the vicinity of the inner surface of the cylinder, which
indicates the tendency towards the localization of plastic deformation. Since the solution found is
for small strains, it is necessary to verify for each combination of material and geometric parameters
that the assumption of small strain is acceptable. The distribution of the residual stresses has been
determined using the stress distributions depicted in Figures 4 and 5, in conjunction with the solution
provided in Section 6. This solution is illustrated in Figure 9 (residual radial stress) and Figure 10
(residual circumferential stress). The associate strain solution has been found using the approach
described in Section 6. This solution for residual strains is illustrated in Figure 11 (residual radial
strain), Figure 12 (residual circumferential strain), and Figure 13 (residual axial strain). As in the case
of the strain distribution at the end of loading, it is seen from these figures that the solution is very
sensitive to the value of Y/X in the range Y/X < 1.25. The residual circumferential stress is of special
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significance for autofrettage. It is seen from Figure 10 that the magnitude of this stress at the inner
surface of the cylinder is significantly affected by plastic anisotropy.

Figure 4. Variation of the radial stress with ρ in an a = 0.4 cylinder at several values of Y/X.

Figure 5. Variation of the circumferential stress with ρ in an a = 0.4 cylinder at several values of Y/X.

Figure 6. Variation of the total radial strain with ρ in an a = 0.4 cylinder at several values of Y/X.

25



Symmetry 2019, 11, 280

Figure 7. Variation of the total circumferential strain with ρ in an a = 0.4 cylinder at several values
of Y/X.

Figure 8. Variation of the total axial strain with ρ in an a = 0.4 cylinder at several values of Y/X.

Figure 9. Variation of the residual radial stress with ρ in an a = 0.4 cylinder at several values of Y/X.
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Figure 10. Variation of the residual circumferential stress with ρ in an a = 0.4 cylinder at several values
of Y/X.

Figure 11. Variation of the residual radial strain with ρ in an a = 0.4 cylinder at several values of Y/X.

Figure 12. Variation of the residual circumferential strain with ρ in an a = 0.4 cylinder at several values
of Y/X.
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Figure 13. Variation of the residual axial strain with ρ in an a = 0.4 cylinder at several values of Y/X.

8. Conclusions

A new theoretical solution for the distribution of residual stresses and strains in an open-ended,
thick-walled cylinder subjected to internal pressure followed by unloading has been proposed.
A distinguished feature of this solution is that the cylinder is initially anisotropic. In particular,
the paper is concentrated on a common type of anisotropy: polar orthotropy of elastic and plastic
properties. The elastic response of the cylinder is controlled by the generalized Hooke’s law, and the
plastic response by the Tsai–Hill yield criterion and its associated flow rule. The flow theory of
plasticity is employed. It has been shown that using the strain rate compatibility equation facilitates
the solution. In particular, numerical techniques are only necessary to solve the linear differential
Equation (46), and to evaluate ordinary integrals along characteristic curves.

The solution found can be directly used for the analysis and design of the process of autofrettage.
It is worthy of note that in this case, there is no need to construct the field of strain in the entire cylinder,
which is the most difficult part of the numerical solution. It follows from Equation (57) that ϕ = ϕa is a
characteristic curve, and this curve corresponds to the inner surface of the cylinder. The circumferential
strain along this curve can be immediately found from Equation (56). Therefore, the radius of the
cylinder after unloading is determined. The circumferential stress at the inner radius of the cylinder at
the end of loading follows from Equation (20) at ϕ = ϕa. Then, the corresponding residual stress is
immediate from Equations (61), (62), and (64).

An illustrative example is given in Section 7. In this case, it is assumed that the elastic properties
are isotropic. As a result, the effect of the ratio Y/X on the distribution of stresses and strains has been
revealed. This effect is especially significant in the range Y/X < 1.25 (Figures 5–8 and Figures 10–13).
An exception is the distribution of the radial stress at the end of loading and after unloading. (Figures 4
and 9). This is because the boundary conditions on σr and Δσr, from Equations (2) and (94), dictate
that this stress vanishes at the inner radius of the cylinder.

Author Contributions: All three authors participated in the research and in the writing of this paper.

Funding: S.A. acknowledges support from the Russian Foundation for Basic Research (Project 16-08-00469).

Acknowledgments: This work was initiated while M.R. was a visiting researcher at Beihang University, Beijing,
China. The publication has been prepared with the support of the “RUDN University Program 5-100”.

Conflicts of Interest: The authors declare no conflict of interest.

28



Symmetry 2019, 11, 280

References

1. Hill, R.; Lee, E.H.; Tupper, S.J. The theory of combined plastic and elastic deformation with particular
reference to a thick tube under internal pressure. Proc. Roy. Soc. London. Series A Math. Phys. Sci. 1947, 191,
278–303.

2. Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950.
3. Thomas, D.G.B. The autofrettage of thick tubes with free ends. J. Mech. Phys. Solids 1953, 1, 124–133. [CrossRef]
4. Rees, D.W.A. Autofrettage theory and fatigue life of open-ended cylinders. J. Strain Anal. 1990, 25, 109–121.

[CrossRef]
5. Gao, X. An exact elasto-plastic solution for an open-ended thick-walled cylinder of a strain-hardening

material. Int. J. Press. Vessels Pip. 1992, 52, 129–144. [CrossRef]
6. Hosseinian, E.; Farrahi, G.H.; Movahhedy, M.R. An analytical framework for the solution of autofrettaged

tubes under constant axial strain condition. J. Press. Vessel Techn. 2009, 131, 1–8. [CrossRef]
7. Molaie, M.; Darijani, H.; Bahreman, M.; Hosseini, S.M. Autofrettage of nonlinear strain-hardening cylinders

using the proposed analytical solution for stresses. Int. J. Mech. Sci. 2018, 141, 450–460. [CrossRef]
8. Rees, D.W.A. A theory for swaging of discs and lugs. Meccanica 2011, 46, 1213–1237. [CrossRef]
9. Gao, X.-L.; Wen, J.-F.; Xuan, F.-Z.; Tu, S.-T. Autofrettage and shakedown analyses of an internally pressurized

thick-walled cylinder based on strain gradient plasticity solutions. J. Appl. Mech. 2015, 82, 1–12. [CrossRef]
10. Chen, P.C.T. The Bauschinger and Hardening effect on residual stresses in an autofrettaged thick-walled

cylinder. Press. Vessel Techn. 1986, 108, 108–112. [CrossRef]
11. Livieri, P.; Lazzarin, P. Autofrettaged cylindrical vessels and bauschinger effect: An analytical frame for

evaluating residual stress distributions. J. Press. Vessel Techn. 2002, 124, 38–46. [CrossRef]
12. Parker, A.P.; Gibson, M.C.; Hameed, A.; Troiano, E. Material modeling for autofrettage stress analysis

including the “single effective material”. J. Press. Vessel Techn. 2012, 134, 1–7. [CrossRef]
13. Gibson, M.C.; Parker, A.P.; Hameed, A.; Hetherington, J.G. Implementing realistic, nonlinear, material

stress–strain behavior in ANSYS for the autofrettage of thick-walled cylinders. J. Press. Vessel Techn. 2012,
134, 1–7. [CrossRef]

14. Perl, M.; Perry, J. The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum
pressure. J. Press. Vessel Techn. 2013, 135, 1–5. [CrossRef]

15. Farrahi, G.H.; Voyiadjis, G.Z.; Hoseini, S.H.; Hosseinian, E. Residual stress analysis of the autofrettaged
thick-walled tube using nonlinear kinematic hardening. J. Press. Vessel Techn. 2013, 135, 1–8. [CrossRef]

16. Haghpanah Jahromi, B.; Farrahi, G.H.; Maleki, M.; Nayeb-Hashemia, H.; Vaziri, A. Residual stresses in
autofrettaged vessel made of functionally graded material. Eng. Struct. 2009, 31, 2930–2935. [CrossRef]

17. Jahed, H.; Farshi, B.; Karimi, M. Optimum autofrettage and shrink-fit combination in multi-layer cylinders.
J. Press. Vessel Techn. 2006, 128, 196–200. [CrossRef]

18. Lee, E.-Y.; Lee, Y.-S.; Yang, Q.-M.; Kim, J.-H.; Cha, K.-U.; Hong, S.-K. Autofrettage process analysis of a
compound cylinder based on the elastic-perfectly plastic and strain hardening stress-strain curve. J. Mech.
Sci. Techn. 2009, 23, 3153–3160. [CrossRef]

19. Gexia, Y.; Hongzhao, L. An analytical solution of residual stresses for shrink-fit two-layer cylinders after
autofrettage based on actual material behavior. J. Press. Vessel Techn. 2012, 134, 1–8. [CrossRef]

20. Benghalia, G.; Wood, J. Material and residual stress considerations associated with the autofrettage of weld
clad components. Int. J. Press. Vessels Pip. 2016, 139–140, 146–158. [CrossRef]

21. Abdelsalam, O.R.; Sedaghati, R. Design optimization of compound cylinders subjected to autofrettage and
shrink-fitting processes. J. Press. Vessel Techn. 2013, 135, 1–11. [CrossRef]

22. Hu, C.; Yang, F.; Zhao, Z.; Zeng, F. An alternative design method for the double-layer combined die using
autofrettage theory. Mech. Sci. 2017, 8, 267–276. [CrossRef]

23. Seifi, R. Maximizing working pressure of autofrettaged three layer compound cylinders with considering
Bauschinger effect and reverse yielding. Meccanica 2018, 53, 2485–2501. [CrossRef]

24. Hamilton, N.R.; Wood, J.; Easton, D.; Olsson Robbie, M.B.; Zhang, Y.; Galloway, A. Thermal autofrettage of
dissimilar material brazed joints. Mater. Des. 2015, 67, 405–412. [CrossRef]

25. Kamal, S.M.; Dixit, U.S. Feasibility study of thermal autofrettage of thick-walled cylinders. J. Press.
Vessel Techn. 2015, 137, 1–18. [CrossRef]

29



Symmetry 2019, 11, 280

26. Kamal, S.M.; Borsaikia, A.C.; Dixit, U.S. Experimental assessment of residual stresses induced by the thermal
autofrettage of thick-walled cylinders. J. Strain Anal. 2016, 51, 144–160. [CrossRef]

27. Shufen, R.; Dixit, U.S. An analysis of thermal autofrettage process with heat treatment. Int. J. Mech. Sci. 2018,
144, 134–145. [CrossRef]

28. Zare, H.R.; Darijani, H. A novel autofrettage method for strengthening and design of thick-walled cylinders.
Mater. Des. 2016, 105, 366–374. [CrossRef]

29. Kamal, S.M. Analysis of residual stress in the rotational autofrettage of thick-walled disks. J. Press.
Vessel Techn. 2018, 140, 1–10. [CrossRef]

30. Shufen, R.; Dixit, U.S. A review of theoretical and experimental research on various autofrettage processes.
ASME J. Press. Vessel Technol. 2018, 140, 050802. [CrossRef]

31. Alexandrov, S.; Chung, K.-H.; Chung, K. Effect of plastic anisotropy of weld on limit load of undermatched
middle cracked tension specimens. Fat. Fract. Engng. Mater. Struct 2007, 30, 333–341. [CrossRef]

32. Alexandrov, S.; Mustafa, Y. Influence of plastic anisotropy on the limit load of highly under-matched scarf
joints with a crack subject to tension. Eng. Fract. Mech. 2014, 131, 616–626. [CrossRef]

33. Prime, M.B. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy. Int. J.
Solids Struct. 2017, 118, 70–77. [CrossRef]

34. Alexandrova, N.; Alexandrov, S. Elastic-plastic stress distribution in a plastically anisotropic rotating disk.
Trans. ASME J. Appl. Mech. 2004, 71, 427–429. [CrossRef]

35. Alexandrova, N.; Vila Real, P.M.M. Effect of plastic anisotropy on stress-strain field in thin rotating disks.
Thin-Walled Struct. 2006, 44, 897–903. [CrossRef]

36. Peng, X.-L.; Li, X.-F. Elastic analysis of rotating functionally graded polar orthotropic disks. Int. J. Mech. Sci.
2012, 60, 84–91. [CrossRef]

37. Essa, S.; Argeso, H. Elastic analysis of variable profile and polar orthotropic FGM rotating disks for a
variation function with three parameters. Acta Mech. 2017, 228, 3877–3899. [CrossRef]

38. Jeong, W.; Alexandrov, S.; Lang, L. Effect of plastic anisotropy on the distribution of residual stresses and
strains in rotating annular disks. Symmetry 2018, 10, 420. [CrossRef]

39. Yildirim, V. Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar
orthotropic rotating discs. J. Brazilian Soc. Mech. Sci. Eng. 2018, 40, 320. [CrossRef]

40. Leu, S.-Y.; Hsu, H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow
cylinders. Int. J. Mech. Sci. 2010, 52, 1579–1587. [CrossRef]

41. Abd-Alla, A.M.; Mahmoud, S.R.; AL-Shehri, N.A. Effect of the rotation on a non-homogeneous infinite
cylinder of orthotropic material. Appl. Math. Comp. 2011, 217, 8914–8922. [CrossRef]

42. Lubarda, V.A. On Pressurized curvilinearly orthotropic circular disk, cylinder and sphere made of radially
nonuniform material. J. Elast. 2012, 109, 103–133. [CrossRef]

43. Croccolo, D.; De Agostinis, M. Analytical solution of stress and strain distributions in press fitted orthotropic
cylinders. Int. J. Mech. Sci. 2013, 71, 21–29. [CrossRef]

44. Shahani, A.R.; Torki, H.S. Determination of the thermal stress wave propagation in orthotropic hollow
cylinder based on classical theory of thermoelasticity. Cont. Mech. Thermodyn. 2018, 30, 509–527. [CrossRef]

45. Callioglu, H.; Topcu, M.; Tarakcılar, A.R. Elastic–plastic stress analysis of an orthotropic rotating disc. Int. J.
Mech. Sci. 2006, 48, 985–990. [CrossRef]

46. Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D. Simulation of mechanical behavior and damage of
a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 2018, 25, 237–254. [CrossRef]

47. Quadrino, A.; Penna, R.; Feo, L.; Nicola Nistico, N. Mechanical characterization of pultruded elements: Fiber
orientation influence vs web-flange junction local problem. Exp. Numer. Tests Compos. Part B 2018, 142, 68–84.
[CrossRef]

48. Morgado, T.; Silvestre, N.; Correia, J.R. Simulation of fire resistance behaviour of pultruded GFRP beams
—Part II: Stress analysis and failure criteria. Comp. Struct. 2018, 188, 519–530. [CrossRef]

49. Zhou, Y.; Duan, M.; Ma, J.; Sun, G. Theoretical analysis of reinforcement layers in bonded flexible marine
hose under internal pressure. Eng. Struct. 2018, 168, 384–398. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

30



symmetryS S
Article

Compression of a Polar Orthotropic Wedge between
Rotating Plates: Distinguished Features of
the Solution

Sergei Alexandrov 1,2,*, Elena Lyamina 2, Pham Chinh 3 and Lihui Lang 1

1 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
lang@buaa.edu.cn

2 Russian Academy of Sciences, Ishlinsky Institute for Problems in Mechanics RAS, 101-1 Prospect
Vernadskogo, 119526 Moscow, Russia; lyamina@inbox.ru

3 Vietnam Academy of Science and Technology, Institute of Mechanics, Hanoi 264 Doi Can, Vietnam;
pdchinh@imech.vast.vn

* Correspondence: sergei_alexandrov@spartak.ru

Received: 29 January 2019; Accepted: 19 February 2019; Published: 20 February 2019

Abstract: An infinite wedge of orthotropic material is confined between two rotating planar rough
plates, which are inclined at an angle 2α. An instantaneous boundary value problem for the flow
of the material is formulated and solved for the stress and the velocity fields, the solution being in
closed form. The solution may exhibit the regimes of sliding or sticking at the plates. It is shown that
the overall structure of the solution significantly depends on the friction stress at sliding. This stress
is postulated by the friction law. Solutions, which exhibit sticking, may exist only if the postulated
friction stress at sliding satisfies a certain condition. These solutions have a rigid rotating zone in the
region adjacent to the plates, unless the angle α is equal to a certain critical value. Solutions which
exhibit sliding may be singular. In particular, some space stress and velocity derivatives approach
infinity in the vicinity of the friction surface.

Keywords: polar orthotropy; Hill’s yield criterion; friction regimes; singularity

1. Introduction

An instantaneous plane strain rigid plastic solution is obtained for compression of an infinite
wedge of orthotropic material confined between two rough plates, inclined at angle 2α, and which
intersect in a line. This boundary value problem is ideal for studying qualitative mathematical
properties of boundary value problems, including constitutive equations and boundary conditions. For,
exact analytical or semi-analytical solutions can be found for many constitutive equations. In particular,
such solutions have been presented in [1,2] for isotropic viscoplastic materials and in [3] for the double
slip and rotation model. A description of this model can be found in [4].

The present paper provides an analytic solution for rigid plastic orthotropic material. It is assumed
that the principal axes of anisotropy are straight lines through the apex of the wedge and orthogonal
curves, which are of course circular arcs. This type of orthotropy is of practical interest [5–8] among
many others. The paper focuses on qualitative features of the solution such as non-existence of the
solution, singularity in the stress and velocity fields, appearance of a rigid region near the plates and
transition between the regimes of sticking and sliding. The effect of plastic anisotropy on these features
is discussed.

The stress and velocity fields are singular if the regime of sliding occurs in the case of the maximum
friction law. A detailed asymptotic analysis of the solution is performed for this case. In particular, it is
shown that the asymptotic behavior of the solution is in agreement with the general theory developed
in [9].

Symmetry 2019, 11, 270; doi:10.3390/sym11020270 www.mdpi.com/journal/symmetry31
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An applied aspect of the solution found, is that it can be used in conjunction with the method for
analysis and the design of flat-rolling proposed in [10]. It is known that solutions, found by means of
this method, show a good comparison with experiment [11–13], and are used for verifying solutions
found by means of other approximate methods [14,15]. The importance of developing fast approximate
methods for the analysis and design of the process of rolling has been emphasized in [16].

2. Statement of the Problem

Two semi-infinite rough plates rotate towards each other with angular velocity of magnitude ω

about an axis O and compress a wedge of polar orthotropic material. The plates are inclined to each
other at an angle 2α (Figure 1). The boundary value problem consists of the instantaneous plane strain
deformation of the wedge. The problem is solved in a system of plane polar coordinates (r, θ) with its
origin at O and with θ = 0, taken as the perpendicular bisector of the angle 2α. It is assumed that the
principal axes of anisotropy coincide with coordinate curves of the coordinate system chosen. Then,
θ = 0 is an axis of symmetry for the flow and it is sufficient to find the solution in the region θ ≥ 0.
The components of the stress tensor referred to the polar coordinate system are denoted as σrr, σθθ and
σrθ ; and the components of the velocity vector as ur and uθ . There is no material flux through O.

Figure 1. Geometry of the boundary value problem.

Therefore, the radial velocity should satisfy the following condition:

ur = 0 (1)

at r = 0. By symmetry,
uθ = 0 (2)

and
σrθ = 0 (3)

at θ = 0. The circumferential velocity should also satisfy the condition:

uθ = −ωr (4)

at θ = α. Finally, the friction law is taken in the form:

{
ur = 0if|σrθ | ≤ τf
σrθ = −τf otherwise

(5)

at θ = α. Here τf > 0 denotes the frictional stress at sliding. The magnitude of τf will be specified
later. The sense of σrθ in (5) is dictated by the condition that ur ≥ 0 at the plate.

It is assumed that the material obeys Hill’s quadratic yield criterion [17] and its associated flow
rule. The elastic portion of strain is neglected. In the case of plane strain deformation of a polar
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orthotropic material, whose principal axes of anisotropy coincide with the coordinate curves of the
polar coordinate system, the constitutive equations of the model are:

(σrr − σθθ)
2

4(1 − c)
+ σ2

rθ = T2 (6)

and

ξrr = λ
(σrr − σθθ)

2(1 − c)
, ξθθ = −λ

(σrr − σθθ)

2(1 − c)
, ξrθ = λσrθ (7)

where (6) in the yield criterion and (7) is the associated flow rule. The quantity T is the shear yield
stress in the coordinate system chosen, c is a constitutive parameter, λ is a non-negative multiplier, ξrr,
ξθθ , ξrθ denote the components of the strain rate tensor. The parameter c can be expressed in terms of
the yield stresses in the directions of the principal axes of anisotropy and can vary (theoretically) in the
range −∞ < c < 1 [17]. Eliminating λ between the equations in (7) yields:

ξrr + ξθθ = 0,
ξrθ

ξrr − ξθθ
=

(1 − c)σrθ

σrr − σθθ
. (8)

It is evident that the first equation here is the equation of incompressibility. The strain rate components
are expressed in terms of the velocity components as

ξrr =
∂ur

∂r
, ξθθ =

1
r

∂uθ

∂θ
+

ur

r
, ξrθ =

1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
. (9)

The system of Equations (6), (8) and (9) are supplemented by the stress equilibrium equations:

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

σrr − σθθ

r
= 0,

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

2σrθ

r
= 0. (10)

In total, there are five unknowns (three components of the stress tensor and two components
of the velocity vector). The equations to solve are (6), (8) and (10). It is understood here that the
components of the strain rate tensor in (8) should be eliminated by means of (9). The solution should
satisfy the conditions (1) to (5).

3. General Stress Solution

The yield criterion (6) is satisfied by the following substitution:

σrr = σ + T
√

1 − c cos 2ϕ, σθθ = σ − T
√

1 − c cos 2ϕ, σrθ = −T sin 2ϕ (11)

where σ and ϕ are new unknown functions of r and θ. The direction of flow dictates that σrθ ≤ 0 and
σrr − σθθ ≥ 0. Then, it is immediate from (11) that:

0 ≤ ϕ ≤ π

4
. (12)

Using (11) and (12) the boundary condition (3) transforms to:

ϕ = 0 (13)

at θ = 0. Substituting (11) into (10) gives:

∂σ
∂r − 2T

√
1 − c sin 2ϕ

∂ϕ
∂r − 2T cos 2ϕ

r
∂ϕ
∂θ + 2T

√
1−c cos 2ϕ

r = 0,

−2T cos 2ϕ
∂ϕ
∂r + ∂σ

r∂θ − 2T
√

1−c sin 2ϕ
r

∂ϕ
∂θ − 2T sin 2ϕ

r = 0.
(14)
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A standard assumption made in similar problems of the classical theory of plasticity is that ϕ is
independent of r [17]. In this case, the equations in (14) become:

∂σ

∂r
− 2T cos 2ϕ

r
dϕ

dθ
+

2T
√

1 − c cos 2ϕ

r
= 0,

∂σ

2T∂θ
−√

1 − c sin 2ϕ
dϕ

dθ
− sin 2ϕ = 0. (15)

The first equation can be immediately integrated to give:

σ

2T
=

(
dϕ

dθ
−√

1 − c
)

cos 2ϕ ln
(

r
r0

)
+

σ0(θ)

2T
. (16)

Here r0 is a constant introduced for convenience and σ0(θ) is an arbitrary function of θ. Substituting
(16) into the second equation in (15) yields:

d
dθ

[(
dϕ

dθ
−√

1 − c
)

cos 2ϕ

]
ln
(

r
r0

)
= −√

1 − c sin 2ϕ
dϕ

dθ
+ sin 2ϕ − dσ0

2Tdθ
. (17)

Since the right-hand side of this equation is independent of r, the coefficient of ln(r/r0) on the left-hand
side must vanish. Then, Equation (17) results in the following two equations:

(
dϕ

dθ
−√

1 − c
)

cos 2ϕ = K0
√

1 − c,
dσ0

2Tdθ
=

(
−√

1 − c
dϕ

dθ
+ 1

)
sin 2ϕ. (18)

Here K0 is a constant of integration. Equation (16) becomes:

σ

2T
= K0

√
1 − c ln

(
r
r0

)
+

σ0(θ)

2T
. (19)

The second equation in (18) can be rewritten as:

dσ0

2Tdϕ
=

(
−√

1 − c +
dθ

dϕ

)
sin 2ϕ.

Eliminating in this equation the derivative dθ/dϕ by means of the first equation in (18) leads to:

dσ0

2Tdϕ
=

1√
1 − c

[
1 − c +

cos 2ϕ

(K0 + cos 2ϕ)

]
sin 2ϕ.

Integrating gives:
σ0

2T
=

1
2
√

1 − c
[− cos 2ϕ + K0ln(K0 + cos 2ϕ) + K1] (20)

where K1 is constant of integration.
It is seen from (12) and (13) that dϕ/dθ > 0 at ϕ = 0. Therefore, it follows from the first equation

in (18) that
K0 > −1. (21)

The first equation in (18) can be integrated to give:

θ
√

1 − c = ϕ − K0arctanh

[√
1 − K0

1 + K0
tan ϕ

](
1 − K2

0

)−1/2
(22)

if |K0| < 1,

θ
√

1 − c = ϕ − K0arctan

[√
K0 − 1
K0 + 1

tan ϕ

](
K2

0 − 1
)−1/2

(23)
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if K0 > 1, and

θ
√

1 − c = ϕ − tan ϕ

2
(24)

if K0 = 1. The solution for an important special case of (22), K0 = 0, is represented as

θ
√

1 − c = ϕ. (25)

The constant K0 cannot be determined without the solution for velocity.

4. General Velocity Solution

The velocity components may be represented as:

ur =
ωr
2

dg(ϕ)

dθ
and uθ = −ωrg(ϕ) . (26)

The condition (1) and the first equation in (8) are then automatically satisfied for any choice of the
function g(ϕ). Equations (9) and (26) combine to give:

ξrr =
ω

2
dg(ϕ)

dθ
, ξθθ = −ω

2
dg(ϕ)

dθ
, ξrθ =

ω

4
d2g(ϕ)

dθ2 . (27)

Substituting (11) and (27) in the second equation in (8) yields:

d2g
dθ2 + 2

√
1 − c tan 2ϕ

dg
dθ

= 0 (28)

or
dG
dθ

+ 2
√

1 − c tan 2ϕG = 0 (29)

where G = dg/dθ. Replacing in (29) differentiation with respect to θ with differentiation with respect
to ϕ by means of the first equation in (18) results in:

dG
dϕ

= − 2 sin 2ϕ

(K0 + cos 2ϕ)
G. (30)

Integrating gives
G = G0(K0 + cos 2ϕ). (31)

Here G0 is constant of integration. The definition for G and (31) combine to give:

dg
dθ

= G0(K0 + cos 2ϕ). (32)

Replacing here differentiation with respect to θ with differentiation with respect to ϕ by means of the
first equation in (18) results in:

dg
dϕ

=
G0 cos 2ϕ√

1 − c
. (33)

It is seen from (2), (13) and (26) that g = 0 at ϕ = 0. The solution of Equation (32) satisfying this
condition is:

g =
G0 sin 2ϕ

2
√

1 − c
. (34)

Substituting (33) into (26) and then the resulting expression for the circumferential velocity into
(4) yields:

G0 sin 2ϕw = 2
√

1 − c (35)
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where ϕw is the value of ϕ at θ = α. The dependence of ϕw on α follows from the solution of the first
equation in (18).

To complete the solution of the boundary value problem, it is necessary to satisfy the boundary
condition (5).

5. Solution of the Boundary Value Problem

The boundary condition (5) comprises two friction regimes, sticking and sliding. These regimes
should be treated separately.

5.1. Regime of Sticking

In this regime, the boundary condition (5) becomes ur = 0 at θ = α. It is seen from the definition
for G and (26) that this condition is equivalent to the condition G = 0 at θ = α. Then, it follows from
(31) that:

K0 = − cos 2ϕw. (36)

In this case the dependence of θ on ϕ is given by (22). Eliminating K0 in (22) by means of (36),
it is possible to find that the argument of the inverse hyperbolic tangent function is equal to 1 at θ = α.
Therefore, the left-hand side of (22) approaches infinity (or negative infinity) unless K0 = 0. In the
latter case, it is more convenient to use the solution (25). It follows from this solution, (35) and (36) that

ϕw =
π

4
, G0 = 2

√
1 − c and α =

π

4
√

1 − c
= αcr. (37)

The solution at sticking is possible only if α and c satisfy the third equation. Another restriction
on the existence of the solution at sticking is that the shear stress at θ = α is less or equal to τf involved
in (5). It is seen from the first equation in (37) and (11) that σrθ = −T at θ = α if the regime of sticking
occurs. Since T is the maximum possible value of the shear stress in the polar coordinate system,
a necessary condition for the existence of the regime of sticking is that τf = T. If τf < T then no
solution at sticking exists.

Assume that τf = T. The relation between α and c in (37) has been derived assuming that plastic
yielding occurs in the region 0 ≤ θ ≤ α. In the case of rigid/plastic solids, rigid regions may appear.
In the case under consideration, the solution at sticking is possible if α > αcr and the material in the
region α ≥ θ ≥ αcr is rigid. It worthy of note that the stress solution at K0 = 0 given in Section 3 is
valid in the rigid region. Therefore, the yield criterion is not violated in the range α ≥ θ ≥ αcr and the
solution is complete.

5.2. Regime of Sliding

It is convenient to consider two cases, τf = T and τf < T, separately. Assume that τf = T and
α < αcr. Then, no solution at sticking exists and it is necessary to find the solution at sliding. It follows
from (5), (11) and (35) that the first and second equations in (37) are valid. The equation for determining
K0 follows from (22) or (23). It is however convenient to start with the special case K0 = 1. In this case
Equation (24) is valid. Therefore, this special case occurs only if α and c satisfy the following equation:

α =
(π − 2)
4
√

1 − c
= αs. (38)

It is evident from (37) and (38) that αs < αcr. Equation (22) is valid in the range αs < α < αcr.
In this case, the equation for K0 is

α
√

1 − c =
π

4
− K0 arctanh

[√
1 − K0

1 + K0

](
1 − K2

0

)−1/2
. (39)
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Equation (23) is valid in the range 0 < α < αs. In this case, the equation for K0 is

α
√

1 − c =
π

4
− K0 arctan

[√
K0 − 1
K0 + 1

](
K2

0 − 1
)−1/2

. (40)

Equations (39) and (40) should be solved numerically.
Prandtl’s friction law reads τf = mT where 0 ≤ m ≤ 1. The case m = 1 has been treated above.

Therefore, assume that m < 1. In this case, no solution at sticking exists. The friction law (5) becomes
σrθ = −mT at θ = α (or ϕ = ϕw). Then, it follows from (11) that:

ϕw =
1
2

arcsinm. (41)

The value of G0 is found from (35) and (41) as:

G0 =
2
√

1 − c
m

. (42)

The equation for determining K0 follows from (22) or (23). As before, it is more convenient to
consider special cases first. The values of αcr and αs are now determined from (24) and (25) as:

αcr =
ϕw√
1 − c

and αs =

(
ϕw − tan ϕw

2

)
1√

1 − c
. (43)

In these equations, ϕw should be eliminated by means of (41). Equation (22) is valid in the ranges
αs < α < αcr and α > αcr. In this case, the equation for K0 is:

α
√

1 − c = ϕw − K0 arctanh

[√
1 − K0

1 + K0
tan ϕw

](
1 − K2

0

)−1/2
. (44)

The value of K0 is positive in the range αs < α < αcr and negative in the range α > αcr.
Equation (23) is valid in the ranges 0 < α < αs. In this case, the equation for K0 is:

α
√

1 − c = ϕw − K0 arctan

[√
K0 − 1
K0 + 1

tan ϕw

](
K2

0 − 1
)−1/2

. (45)

6. Singularity

It is seen from (18) that the derivative dϕ/dθ approaches infinity as ϕ → π/4 if K0 	= 0. If m < 1
then ϕw < π/4 and the solution is not singular. If the regime of sticking occurs then ϕw = π/4
but K0 = 0. Therefore, the solution may be singular only if m = 1 and the regime of sliding occurs.
It follows from (18) that:

dϕ

dθ
=

K0
√

1 − c
2(π/4 − ϕ)

+ O(1) (46)

as ϕ → π/4. Integrating and using the boundary condition ϕ = π/4 at θ = α yields:

π

4
− ϕ =

√
K0

√
1 − c

√
θ − α + o

(√
θ − α

)
(47)

as θ → α .
Consider the stress field. Differentiating (11) with respect to θ yields:

∂σrr

∂θ
=

∂σ

∂θ
− 2T

√
1 − c sin 2ϕ

dϕ

dθ
,

∂σθθ

∂θ
=

∂σ

∂θ
+ 2T

√
1 − c sin 2ϕ

dϕ

dθ
,

∂σrθ

∂θ
= −2T cos 2ϕ

dϕ

dθ
. (48)
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Eliminating the derivative dϕ/dθ in these equations by means of (18) gives:

∂σrr
∂θ = ∂σ

∂θ − 2T(1−c)(K0+cos 2ϕ) sin 2ϕ
cos 2ϕ , ∂σθθ

∂θ = ∂σ
∂θ + 2T(1−c)(K0+cos 2ϕ) sin 2ϕ

cos 2ϕ ,
∂σrθ
∂θ = −2T

√
1 − c(K0 + cos 2ϕ).

(49)

It is evident that the derivative ∂σrθ/∂θ is of a finite magnitude at ϕ = π/4 (or θ = α).
The derivative ∂σ/∂θ involved in (49) is determined from (18), (19) and (20) as:

∂σ

∂θ
= 2T

[
1 − (1 − c)(K0 + cos 2ϕ)

cos 2ϕ

]
sin 2ϕ. (50)

Equations (49) and (50) combine to give:

∂σrr

∂θ
= 2T

[
1 − 2(1 − c)(K0 + cos 2ϕ)

cos 2ϕ

]
sin 2ϕ,

∂σθθ

∂θ
= 2T sin 2ϕ. (51)

It is evident that the derivative ∂σθθ/∂θ is of a finite magnitude at ϕ = π/4 (or θ = α). Expanding
the right-hand side of the first equation in (51) in a series in the vicinity of ϕ = π/4 results in

∂σrr

∂θ
= −2TK0(1 − c)

(π/4 − ϕ)
+ o

[
(π/4 − ϕ)−1

]
(52)

as ϕ → π/4. Equations (47) and (52) combine to give:

∂σrr

∂θ
= − 2TK0(1 − c)√

K0
√

1 − c
√

θ − α
+ o

[
(θ − α)−1/2

]
(53)

as θ → α . It is seen from this equation that the derivative ∂σrr/∂θ approaches infinity (or negative
infinity) in the vicinity of the friction surface and follows an inverse square root rule.

Consider the strain rate field. It follows from the definition for G, (27) and (31), that
ξrr = −ξθθ = ωG0(K0 + cos 2ϕ)/2. It is evident from this equation that the normal strain rates in the
polar coordinate system are bounded at the friction surface. The shear strain rate is determined from
(18), (27) and (31) as:

ξrθ = −ωG0
√

1 − c(K0 + cos 2ϕ) tan 2ϕ

2
. (54)

It is seen from this equation that |ξrθ | → ∞ as ϕ → π/4. Expanding the right-hand side of (54)
in a series in the vicinity of ϕ = π/4 results in:

ξrθ = −ωG0K0
√

1 − c
4

(π

4
− ϕ

)−1
+ o

[(π

4
− ϕ

)−1
]

(55)

as ϕ → π/4. Equations (47) and (55) combine to give:

ξrθ = −ωG0
√

K0
√

1 − c
4
√

θ − α
+ o

[
(θ − α)−1/2

]
(56)

as θ → α . It is seen from this equation that the shear strain rate in the polar coordinate system follows
an inverse square root rule in the vicinity of the friction surface. This result is in agreement with the
general theory developed in [9].

Some models of anisotropic plasticity (for example, [18]) involve the material spin. Therefore, it is
of interest to understand the asymptotic behavior of the only non-zero spin component, ωrθ , near the
friction surface. By definition,

ωrθ =
1
2

(
1
r

∂ur

∂θ
− ∂uθ

∂r
− uθ

r

)
. (57)
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Equations (26) and (57) combine to give:

ωrθ =
ω

4

(
d2g
dθ2 + 4g

)
. (58)

Using the definition for G, (18), (31) and (34) Equation (58) can be rewritten as:

ωrθ =
ωG0 sin 2ϕ

4

[
1√

1 − c
− 2

√
1 − c

cos 2ϕ
(K0 + cos 2ϕ)

]
. (59)

It is seen from this equation that |ωrθ | → ∞ as ϕ → π/4. Expanding the right-hand side of (59)
in a series in the vicinity of ϕ = π/4 results in:

ωrθ = −ω
√

1 − cG0K0

4

(π

4
− ϕ

)−1
+ o

[(π

4
− ϕ

)−1
]

(60)

as ϕ → π/4. Equations (47) and (60) combine to give:

ωrθ = −ω
√√

1 − cK0G0

4
√

θ − α
+ o

[
(θ − α)−1/2

]
(61)

as θ → α . The qualitative behavior of the material spin near the friction surface that its magnitude
approaches infinity should be taken into account in material models that involve this quantity. A similar
approach has been used in visco-plasticity [19], where the qualitative behavior of the quadratic
invariant of the strain tensor near the friction surface, that its magnitude approaches infinity has been
taken into account.

7. Conclusions

The boundary value problem for the flow of the orthotropic material, resulting from the problem
formulated in Section 2 and illustrated in Figure 1, has been solved with the resulting solution being in
closed form. The stress field has been determined up to an arbitrary constant (K1 in Equation (20)).
Emphasized are the qualitative features of the solution. In particular, if the friction law demands
that the friction stress at sliding is less than the shear yield stress referred to in the principal axes of
anisotropy then:

1. no solution at sticking exists; and
2. the solution at sliding involves no rigid region.

If the friction law demands that the friction stress at sliding is equal to the shear yield stress
referred to the principal axes of anisotropy then:

1. no solution at sticking exists if α < αcr (αcr is introduced in (37)) and the solution for α > αcr

requires a rigid region adjacent to the plate; and
2. the solution at sliding exists if α < αcr and this solution is singular (some stress and velocity

derivatives approach infinity in the vicinity of the friction surface).

The effect of plastic anisotropy on the solution is controlled by the constitutive parameter c and
c = 0 for isotropic material. Even though the qualitative features of the solution are independent of
the value of c, the quantitative effect may be quite significant. For example, the values of two critical
angles, αcr and αs (αs is introduced in (38)), are sensitive to the value of c, and these angles control the
overall structure of the solution.
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Abstract: A columnar joint network is a natural fracture pattern with high symmetry, which leads to
the anisotropy mechanical property of columnar basalt. For a better understanding the mechanical
behavior, a novel modeling method for columnar jointed rock mass through field investigation is
proposed in this paper. Natural columnar jointed networks lies between random and centroidal
Voronoi tessellations. This heterogeneity of columnar cells in shape and area can be represented using
the coefficient of variation, which can be easily estimated. Using the bisection method, a modified
Lloyd’s algorithm is proposed to generate a Voronoi diagram with a specified coefficient of variation.
Modelling of the columnar jointed rock mass using six parameters is then presented. A case study
of columnar basalt at Baihetan Dam is performed to demonstrate the feasibility of this method.
The results show that this method is applicable in the modeling of columnar jointed rock mass as
well as similar polycrystalline materials.

Keywords: anisotropic columnar jointed rock; numerical model; centroidal Voronoi diagram;
coefficient of variation

1. Introduction

Columnar jointed rock is a typical geological structure formed by a lot of ordered colonnades like
the world famous natural wonders of Fingal’s Cave and Giant’s Causeway [1,2]. Being a miraculous
natural phenomenon, the study on the geological structure of columnar jointed rock can be dated back
to the 17th century [3]. Nowadays, the formation of columnar jointing is reasonably understood as a
result of cracks propagation in cooling lava flows [4–7]. In situ observations and laboratory tests have
also been employed in the study of columnar jointing [8–10].

With the increase of human activities, some engineering projects have encountered columnar
jointing, and a large hydropower station is even founded on it [11]. Because of its adverse geologic
conditions, study on the mechanical properties of columnar jointed rock mass is very important
in engineering projects. King et al. studied elastic-wave propagation in columnar joints with a
series of cross-hole acoustic measurements made between four horizontal boreholes drilled from a
near-surface underground opening situated in a basaltic rock mass [12]. In connection with the Baihetan
Hydropower Station project, several studies have been implemented for the mechanical property of
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columnar jointed rock. Meng systematically analyzed the anisotropic properties of columnar jointed
basalt using analytical and numerical methods [13]. Zheng et al. proposed a 3-D modeling method
for columnar basalt using random Voronoi tessellation [14]. In References [15–17], 2-D and 3-D
discrete element simulation methods of columnar are implemented, and the representative elementary
volume scale and equivalent mechanical parameters are obtained. Based on meso-structural analysis,
macro-anisotropic constitutive model is developed and 3-D numerical simulation is performed for
the dam foundation considering the effect of columnar joints [18]. Laboratory tests are carried out
using experimental analogs of jointing under uniaxial compression [19]. These research results
indicate that the characteristics of columnar jointed rock mass are very complex with anisotropic and
nonlinear properties.

Most of the modelling methods of columnar jointed rock mass use the program developed
by Zheng et al. [14]; however, this method has some shortcomings, such as a low efficiency and
immutable columnar shapes, as pointed out in Reference [20]. The objective of this paper is to
overcome these shortcomings in the generation of columnar joints in rock mass. An efficient and
controllable method for the generation of columnar joints is proposed based on a constrained centroidal
Voronoi tessellation diagram. In Section 2, the characteristics of typical columnar rock mass are briefly
introduced. The properties of Voronoi diagrams and the latest related research on this topic are
discussed in Section 3. Based on these discussion and algorithms, a detailed procedure for the
generation of columnar jointed rock mass is developed in Section 4. A case study on columnar jointed
basalt generation for the Baihetan Hydropower Station is presented in Section 5. Finally, the conclusion
is given in Section 6.

2. Typical Shapes of Columnar Jointed Rock Mass

With the development of hydropower station, columnar jointing is often encountered in
southwestern China. As a result of cooling lava flows and ash-flow tuffs, it occurs in many types of
volcanic rocks in the formation of a regular array of polygonal prisms or columns [21]. Several famous
typical columnar joints are shown in Figure 1.

   
(a) (b) (c) 

Figure 1. Typical columnar jointed rock masses: (a) Devil’s Postpile, Yosemite in California; (b) Fingal’s
Cave, Staffa in Scotland; and (c) Giant’s Causeway, Antrim in Northern Ireland.

Although the characteristics of columnar jointed rock is typical, they vary for different locations.
The column in some areas is regular and straight like Giant’s Causeway, while some other places
like Baihetan Dam, it is irregular. Besides, the diameters of columns vary from meters to centimeters.
Columns are usually parallel and straight, and the length can be as much as several meters.
Furthermore, the number of sides of an individual column also varies from three to eight. In order
to give a more specific illustration of the columns, a colorized O’Reilly map is presented in Figure 2.
In this figure, hexagons are green, heptagons are blue, octagons are purple, pentagons are orange, and
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squares are red. From the introduction of columnar jointed rock mass above, a diagrammatic drawing
is proposed in Figure 3. It is appropriate to model columnar joints using Voronoi diagrams.

Figure 2. A colorized map of about 200 columns at the Giant’s Causeway made by O’Reilly in
1879 [1,21].

  
(a) (b) 

Figure 3. Diagrammatic drawing of the joints in columnar basalt: (a) vertical columnar joint,
and (b) horizontal transverse joint.

3. Constrained Centroidal Voronoi and Implementation Method

3.1. Voronoi Diagram Algorithm and Its Constraints

3.1.1. Classical Voronoi Tessellation

A Voronoi diagram is a classical domain partitioning method named after Georgy Voronoi, a
Russian mathematician. Voronoi generation is the dual algorithm of Delaunay triangulation. A typical
Voronoi figure is generated using the perpendicular bisector of the lines composed by a set of points
called seeds. The Voronoi diagram is a topic in computational geometry and has already widely
applied in some other research areas like hydrology and crystal mechanics.

As shown in Figure 4, a Voronoi diagram with 10 random seeds Pi is generated. It can be seen
that the domain is divided into 10 patches and each patch has a single seed. For the generation of a
Voronoi diagram, a Delaunay triangulation is first implemented. Then the perpendicular bisector is
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plotted to partition the domain into different Voronoi cells. With the development of computational
geometry, Voronoi tessellation is included in many software and packages like MATLAB, Mathematica,
and SciPy. However, there are two obvious shortcomings of the classical Voronoi diagram:

(a) The Voronoi cell is not closed. For the Voronoi diagram in Figure 4, only one cell is closed and the
other nine cells are open. This brings inconvenience for the analysis.

(b) The shape of the Voronoi cell is random and it is very hard to generate a Voronoi diagram with a
specified statistical distribution.

3.1.2. Constrained Voronoi Diagram Generation

To overcome the first drawback of classical Voronoi tessellation, a constrained Voronoi diagram
algorithm is employed to generate a closed Voronoi tessellation with seed points Pi and domain D.
Taking a model with 16 points (xi, yi) and a square domain in Figure 5a as example, this algorithm can
be described as follows [22]:

(a) A Voronoi diagram is generated using a classical tessellation method (Figure 5b).
(b) All the open cells with a vertex outside the domain D are identified (shown in Figure 5c).
(c) A set of new seeds symmetric to the seeds of open cells with respect to the domain boundary are

created (Figure 5d).
(d) New Voronoi diagram is generated with a classical tessellation (Figure 5e).
(e) By removing the open cells as well as the related seeds, the final Voronoi diagram is shown in

Figure 5f.

  
(a) (b) 

Figure 4. An illustration of Voronoi tessellation with 10 generators: (a) a set of generators, and (b) the
resulting Voronoi diagram.

   
(a) (b) (c) 

Figure 5. Cont.
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(d) (e) (f) 

Figure 5. Illustration of the stages of the constrained Voronoi tessellation algorithm: (a) initial seeds,
(b) classical Voronoi tessellation, (c) open Voronoi cells, (d) symmetry seeds, (e) new Voronoi tessellation,
(f) constrained Voronoi diagram.

3.2. Centroidal Voronoi Algorithm

3.2.1. Random and Centroidal Voronoi Diagram

The Voronoi diagram created using a constrained Voronoi tessellation method with randomly
generated seeds is shown in Figure 6a. It can be seen that the Voronoi cell is irregular and there is a
clear deviation between the Voronoi seeds and the centroids. In order to obtain more regular columnar
as shown in Figure 2, an algorithm for centroidal Voronoi diagrams (Figure 6b) is proposed to tackle
this problem.

  
(a) (b) 

Figure 6. Random and centroidal Voronoi diagram: generators (white dots) and centroids (black dots):
(a) random Voronoi diagram, and (b) centroidal Voronoi diagram.

Compared with the random Voronoi diagram, the seed of a cell is coincident with its centroid in
centroidal Voronoi tessellation (CVT). It is widely used in related fields like mesh generation and data
compression. Previous study has indicated that some natural patterns like Giant’s Causeway can be
represented by the centroidal Voronoi tessellation [5].

There are a number of methods for the generation of centroidal Voronoi diagram, among which
are the algorithms by Lloyd and by MacQueen [23,24], which are widely used, and some other methods
are variations of these two methods. Considering that MacQueen’s algorithm needs twice as many
Monte Carlo simulations in each iteration, which consumes a large amount computation time, Lloyd’s
centroidal method is employed for modelling columnar jointed rock mass in this study.
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3.2.2. Lloyd’s Algorithm

In this work, Lloyd’s algorithm, named after Stuart P. Lloyd, is employed. It is an iteration method
to partition the domain into well-shaped and uniformly-sized convex cells [25]. The convergence of
Lloyd’s algorithm to a centroidal Voronoi diagram has been proven. The random Voronoi diagram
can be iterated to a centroidal Voronoi diagram using Lloyd’s algorithm and the algorithm can be
simplified as follows:

(1) For an initial seeds yi, generate a Voronoi diagram using constrained Voronoi tessellation;
(2) Compute the centroid zi of the Voronoi diagram of yi;
(3) Move the generating point yi to its centroid zi;
(4) Repeat Steps 1 to 3 until all generating points converge to the centroids.

3.2.3. Estimation of the Centroid

The centroidal Voronoi algorithm is very simple but the calculation of the centroid of each Voronoi
cell is time-consuming. In each iteration of Lloyd’s method, the centroidal positions of all shapes of
the Voronoi diagram are calculated. Thus, the estimation of the centroid is the most time-consuming
task. For determining the centroid of a Voronoi region, a simple formula is:

zi =

∫
Vi

χρ(χ)dVi∫
Vi

ρ(χ)dVi
(1)

where χ is the position, Vi is the region area, and ρ(χ) is the density function with ρ(χ) = 1 being
the default.

In order to calculate the position of centroid fast, two efficient methods for evaluating the integrals
are used in this work. One is based on an integration algorithm on triangle partitions and the other is
a sampling method. An integration algorithm can calculate the coordinates of centroids exactly but
not as fast as a sampling method; whereas a sampling method is fast but the results are not as accurate
as that of an integration algorithm.

(1) Integration method on triangle partitions

For an arbitrary polygon with n vertices, it can be divided into n − 2 triangles with a clockwise or
anti-clockwise direction (Figure 7). For each triangle with vertex Ai (xi, yi) (i = 1, 2, 3), the coordinates
of centroid are given by:

xg = (x1 + x2 + x3)/3 (2)

yg = (y1 + y2 + y3)/3 (3)

The area of the triangle is calculated as:

S = ((x2 − x1)× (y3 − y1)− (x3 − x1)× (y2 − y1))/2 (4)

Considering that the polygon can be discretized into n − 2 triangles and the centroid and area of
each triangle can be expressed as Gi(xgi, ygi) and Si, the coordinates of the centroid of the polygon can
be obtained as:

Xg =

n−2
∑

i=1
xgiSi

n−2
∑

i=1
Si

(5)
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Yg =

n−2
∑

i=1
ygiSi

n−2
∑

i=1
Si

(6)

 
(a) (b) 

Figure 7. Discretization of n-polygon: (a) polygon with n vertices, and (b) n − 2 discrete triangles.

(2) Sampling method

Although the integration on triangle partitions is a good solution for the estimation of the centroid
of a polygon, it takes a long time to complete each step in Lloyd’s iteration. For a quick calculation,
a simple and efficient sampling method is proposed as an alternative.

For a certain area with different Voronoi tessellations, a set of random points are distributed in
this area (Figure 8). For each Voronoi cell, if there are n points Pi(xi, yi) in this area, then the centroid of
this cell can be approximated as the average of these points:

Xg =
n

∑
i=1

xi/n (7)

Yg =
n

∑
i=1

yi/n (8)

In this way, the determination of centroids changes to the partition of areas into different Voronoi
cells, i.e., the “N-D nearest point search” problem. Luckily, the nearest point search problem has
a mature mathematical solution [26] and this algorithm has been written in a number of software
libraries, such as Python and MATLAB. Using these libraries, all the random points can be divided
efficiently and the centroid of Voronoi diagram can be computed quickly. With more sampling points,
the calculation of centroid will be more accurate. If the number of random points is selected properly,
this algorithm can be both fast and relatively accurate.
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(a) (b) 

Figure 8. Illustration of the sampling method: (a) Voronoi tessellation, and (b) random sampling points.

3.3. Numerical Implementation and Discussion

In the iterations of Lloyd’s algorithm, the Voronoi generators and centroids are known, and energy
can be employed to describe the Voronoi diagram [23]. For the Voronoi tessellation {Ωi}n

i=1, the energy
is defined as:

E =
n

∑
i=1

∫
Ωi

ρ(χ)‖ χ − χg ‖2dσ (9)

where χ is the position of the Voronoi generator, χg represents the position of the centroid, and ρ(χ) = 1
is the density function with ρ(χ) = 1 being the default.

However, if the generator of Voronoi diagram is not known beforehand, energy cannot be
estimated. For example, it is not easy to calculate the energy of Voronoi cells in Figure 2. Indirectly, the
coefficent of variation, which has been proven as an effective parameter in the estimation of Voronoi
diagram [27,28], is employed for the description of the properties of Voronoi cells. In the process of
smoothing energy from a randomly-generated Voronoi diagram to a centroidal Voronoi diagram, the
coefficient of variation value is recorded with the following formula:

CV =
SD
m

(10)

where SD is the standard deviation and m is the mean of Voronoi cell areas. The coefficient of variation
gives a quantitative indication on the spatial distribution: the higher the coefficient of variation, the
higher the tendency of cells to aggregate into clusters.

Based on the related algorithms described, numerical implementation is done in MATLAB,
in which some good programming techniques from the open-source program of Burkardt are
referenced [29]. The 50 seeds for Voronoi diagram are generated randomly. After 50 iterations, the
points are well-spaced and Lloyd’s algorithm for computing centroidal Voronoi tessellation converged
overall (Figure 9). In this way, the coefficient of variation has the same evolution trend as energy
(E), and it is reasonable to use coefficient of variation to describe the distribution property of the
Voronoi tessellation.
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Figure 9. Implementation of the constrained centroidal Voronoi algorithm: (a) initial condition, (b) step
5, (c) step 20, (d) step 50, (e) change of energy, and (f) change of coefficient of variation.

4. Modeling of Columnar Jointed Rock Mass

Analysis of typical shapes of columnar jointing shows that a columnar jointed rock mass can be
modelled through the extrusion of a 2-D Voronoi diagram. Hence, the generation of 2-D columnar
jointing, which is consistent with the site condition is a key task. In Section 3, it is shown that
coefficient of variation can describe the distribution property in the iterations of Lloyd’s algorithm.
The centroidal Voronoi diagram is applicable in the description of a natural phenomenon such as
Giant’s Causeway. In fact, natural columnar jointing is not an exactly centroidal Voronoi diagram, and
it lies between random and centroidal Voronoi diagrams. In the process of transforming a Voronoi
diagram from totally random to centroidal, the value of CV indicates that the Voronoi cells change from
heterogeneous to homogeneous. Therefore, it is feasible to describe the characteristics of columnar
joints by employing two main parameters: the columnar density representing the scale and coefficient
of variation reflecting the variation property.

A procedure for the generation of columnar jointed rock mass is proposed (Figure 10). Based on
field investigation of geological conditions and site images, the columnar jointing at the site of interest
is characterized by six parameters: columnar density (CD), coefficient of variation (CV), dip direction
(DD), dip angle (DIP), transverse joint distance (TD), and probability (TP). The number of random
seeds for generating a Voronoi diagram is estimated according to the calculated density. Based on the
idea of the bisection method, a novel modified constrained centroidal Voronoi smooth algorithm is
implemented to make the CV converge to the specified value as follows:

(1) For a Voronoi diagram with CV larger than the specified value, calculate the centroid PC.
(2) The new generator Pnew,g is set at the midpoint of the old generator Pold,g and the centroid PC.

Calculate the coefficient of variation CV of the new Voronoi diagram.
(3) Repeat Steps 1 and 2 to obtain the generator until the coefficient of variation CV converges to the

specified value with a prescribed accuracy.
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Having obtained a 2-D Voronoi diagram with specified CD and CV, it can be extruded to a 3-D
columnar shape in accordance with DD and DIP. Then for each extruding Voronoi cell and its length,
a transverse joint can be generated by the determination of the intersection between the extruding
Voronoi cell and the transverse plane. Sometimes, the transverse joint is non-penetrating, and the
transverse joint can be selected with the specified TD and TP. In this way, columnar jointed rock mass
with the site properties can be generated.

Figure 10. Procedure for modelling columnar joints.

5. Columnar Joints Generation: A Case Study of the Baihetan Hydropower Station

5.1. Engineering Geological Investigation

The Baihetan Hydropower Station is a multi-purpose project for harnessing the Yangtze River,
developed mainly for power generation, flood control, sediment flushing, and improving the
navigation conditions in the reservoir and downstream. The Baihetan Hydropower Station is located
on the downstream reaches of the Jinsha River. At the dam site, the most apparent stratigraphic
lithology is basalt that belongs to the Emeishan (Emei Mt.) formation of the Permain System (P2β).
In the construction of the plant’s hydraulic structures, columnar jointed basalt is found to be widely
distributed at the arch dam foundation, underground caverns, abutment slopes, and other water
conservancy tunnels (Figure 11).

  
(a) (b) 

Figure 11. Site conditions of the Baihetan Hydropower Station: (a) construction site, and (b) typical
columnar jointed basalt.
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A typical figure of columnar jointed basalt is drawn by the Huadong Engineering Cooperation
Limited (ECIDI), as shown in Figure 12 with related parameters listed in Table 1. The orientation of
columnar is regular with Dip = 72◦ and DD = 145◦, and the length of columnar is about 1.5 m. Based on
the skeleton figure, a digital image processing technique is employed in the analysis. The area of
each columnar is calculated and the coefficient of variation is obtained. Using a sample of 10 typical
columnar basalt drawings, the statistical mean of coefficient of variation was about 44.18% and
it implied that the discreteness of columnar basalt was quite large. Furthermore, the density of
columnar cells could also be obtained from skeleton drawings, which gave a density of about 20 in a
1 m × 1 m square.

  
(a) (b) 

Figure 12. Typical P2β3 columnar basalt at Baihetan Hydropower Station: (a) geological photo, and (b)
joints skeleton.

Table 1. Parameters of columnar jointed rock mass in dam foundation of Baihetan Hydropower Station.

Parameter Dip DD CD CV TD TP

Values 72◦ 145◦ 25/m2 44.18% 1.5 m 0.3

5.2. Columnar Jointing Model Generation

Considering the scale effect of heterogeneous materials, a proper size has to be selected.
For convenience, the size of the numerical model was taken as 1 m × 1 m. In order to ensure
that the 3-D model could be generated, an initial area of 5 m × 5 m was chosen for the generation of a
2-D Voronoi diagram. From the density of site conditions, it was estimated that about 500 seeds were
needed. A random Voronoi diagram was generated in Figure 13a with a CV of 56.45%. With a specified
CV value of 44.18%, a Voronoi diagram could be generated (Figure 13b) by applying the algorithm
proposed in Section 4. Then an extrusion at a certain direction with parameter DIP and DD was made
to extend the rock from 2-D to 3-D (Figure 13c). Afterwards, horizontal hidden joints was implemented
to cut the rock (Figure 13d). Using these operations, the coordinates information of all rock blocks
could be calculated. By trimming the solid with a certain boundary, the block information of the
columnar jointed rock is shown in Figure 13e. It was easier for the particle model in Figure 13f, where
the model could be generated by importing the DFN (discrete fracture networks) in Figure 13d to a
cubic particle model, which could be done easily in DEM packages like PFC (Particle Flow Code),
YADE (Yet another dynamic engine), and LIGGGHTS (LAMMPS improved for general granular and
granular heat transfer simulations).
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 13. Numerical specimen generation: (a) Voronoi diagram with CV = 56.45%, (b) Voronoi
diagram with CV = 44.18%, (c) extrude 2-D Voronoi diagram with direction, (d) cut columnar rock with
transverse joint, (e) block model of columnar rock, and (f) particle model of columnar rock.

Columnar jointed rock mass with different CV is shown in Figure 14. It can be seen that the
volume of columnar became more and more uniform with the decrease of coefficient of variation.
Columnar jointed rock masses with different directions are shown in Figure 15. The result shows that
the direction was also an important parameter affecting the morphology of columnar jointed rock
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masses. From all these cases, it can be concluded that this method is applicable and effective in the
modeling of columnar jointed rock mass with complex structures, which is extremely helpful in the
analysis of physical and mechanical properties of such materials.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 14. Columnar joints with different coefficient of variation: (a) block model with CV = 40%,
(b) block model with CV = 30%, (c) block model with CV = 20%, (d) block model with C = 10%,
(e) particle model with CV = 40%, (f) particle model with CV = 30%, (g) particle model with CV = 20%,
and (h) particle model with CV = 10%.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 15. Columnar joints with different joint dip angles: (a) block model with dip = 0◦, (b) block
model with dip = 30◦, (c) block model with dip = 60◦, (d) block model with dip = 90◦, (e) particle model
with dip = 0◦, (f) particle model with dip = 30◦, (g) particle model with dip = 60◦, and (h) particle
model with dip = 90◦.

6. Conclusions and Discussion

Aimed at the analysis of columnar jointed rock mass with complex structures, this paper proposed
a novel method for the generation of numerical model. From the results obtained, the following
conclusions can be drawn:
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(1) The coefficient of variation is an effective parameter for representing the deviation between the
generator and the centroid of Voronoi cell, which has the same effect as energy in a centroidal
Voronoi tessellation. Furthermore, it can reflect the heterogeneity of the cells forming the columnar
jointed rock mass.

(2) A modified Lloyd’s algorithm is proposed to generate the Voronoi diagram with a specified
coefficient of variation. Two algorithms for estimating the centroid were presented and discussed.

(3) This work proposed the description of columnar jointed rock mass with six parameters and a
detailed procedure for modelling columnar jointed rock mass. Taking the columnar basalt in the
Baihetan hydropower station as an example, numerical models for columnar jointed rock mass
with the specified geological properties were generated. The numerical results indicated that the
method was effective and efficient.
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Abstract: Hill’s quadratic orthotropic yield criterion is used for revealing the effect of plastic
anisotropy on the distribution of stresses and strains within rotating annular polar orthotropic disks of
constant thickness under plane stress. The associated flow rule is adopted for connecting the stresses
and strain rates. Assuming that unloading is purely elastic, the distribution of residual stresses
and strains is determined as well. The solution for strain rates reduces to one nonlinear ordinary
differential equation and two linear ordinary differential equations, even though the boundary value
problem involves two independent variables. The aforementioned differential equations can be
solved one by one. This significantly simplifies the numerical treatment of the general boundary
value problem and increases the accuracy of its solution. In particular, comparison with a finite
difference solution is made. It is shown that the finite difference solution is not accurate enough for
some applications.

Keywords: plastic anisotropy; rotating disk; plane stress; residual stresses and strains; flow theory of
plasticity; semi-analytic solution

1. Introduction

Thin rotating disks are used in many applications such as energy storage devices; gyroscopic
control devices for ships, submarines, aircrafts, rockets, and missiles; high-speed gears; and turbine
rotors [1]. Moreover, rotational autofrettage has been recently proposed [2] as a new technique for
producing compressive residual stresses. A purely elastic solution for isotropic rotating disks has been
given [3], and a comprehensive overview of the problem of an elastic rotating disk up through to the
late 1990s has been provided [4]. Further, an elastic solution for arbitrarily functionally graded polar
orthotropic rotating disks has been recently proposed [5].

A great number of elastic/plastic solutions have been also reported in the literature. In most
cases it has been assumed that plastic yielding is controlled by the Tresca yield criterion. A review of
such solutions has been provided [6]. A few solutions for the deformation theory of plasticity based
on the von Mises yield criterion are also available; a review of these solutions has been given [7].
In the case of the flow theory of plasticity, the finite difference method has usually been adopted
for determining the distribution of strains [8–10]. An efficient method that advances the analytical
treatment of elastic/plastic rotating disks has been proposed [11] for the von Mises yield criterion and
its associated flow rule. However, the general idea of the method can be extended to other yield criteria
with no difficulty. In particular, it has been demonstrated [12] where a model of pressure-dependent
plasticity has been adopted.
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Solutions for anisotropic materials are of special importance because even mild plastic anisotropy
has an amplified effect on residual stress and strain distributions under certain conditions [13].
The proposed orthotropic yield criterion [14] is often used to model plastic anisotropy in rotating disks,
for example [15,16]. An important type of anisotropy is polar anisotropy (see, for example, [16–20]).
Therefore, the present paper deals with polar orthotropic disks obeying the yield criterion [14].
The method developed in [11] is employed. This allows a semi-analytic solution to be found.
Comparison with the finite difference solution presented in [10] is made. It is shown that the finite
difference solution is not accurate enough for some applications. This demonstrates an advantage of
using the method [11] as compared with the finite difference method.

2. Statement of the Problem

A detailed description of the boundary value problem under consideration can be found in many
works (see, for example, [11]). The boundary value problem is solved in a cylindrical coordinate
system (r, θ, z) whose z axis coincides with the axis of symmetry of a thin annular rotating disk of
constant thickness. The assumption of constant thickness is often adopted in theoretical analyses of
rotating disks [21–28]. The outer and inner radii of the disk are denoted as b0 and a0, respectively.
The angular velocity of the disk is ω. The boundary value problem is illustrated in Figure 1. Strains
are small. The disk has no stress at ω = 0. The normal stresses in the cylindrical coordinate system, σr,
σθ , and σz, are the principal stresses. The solution of the boundary value problem is independent of
the polar angle. The state of stress is plane, σz = 0. The component of the acceleration vector in the
circumferential direction is neglected. The stress boundary conditions are:

σr = 0 (1)

for r = a0 and r = b0. In general, the disk consists of two regions: elastic and plastic. Hooke’s law
connects the elastic strains and stresses. In particular,

εe
r =

σr − νσθ

E
, εe

θ =
σθ − νσr

E
, εe

z = −ν(σr + σθ)

E
. (2)

Here, ν is Poisson’s ratio and E is Young’s modulus, εr is the radial strain, εθ is the circumferential
strain, and εz is the axial strain. The superscript e denotes the elastic part of the strain and will
denote the elastic part of the strain rate. The orthotropic yield criterion proposed in reference [14]
and its associated flow rule are adopted in the plastic region. It is assumed that the principal axes of
anisotropy coincide with coordinate curves of the cylindrical coordinate system. Under plane stress
conditions, the yield criterion adopted reads (G + H)σ2

r + (F + H)σ2
θ − 2Hσrσθ = 1 where G, H, and F

are anisotropic constants. It is convenient to rewrite this criterion as:

σ2
r +

σ2
θ

η2
1
− ησrσθ

η1
= σ2

0 (3)

where

η =
2H√

(G + H)(H + F)
, η1 =

√
G + H√
H + F

, η2 =
2F

(H + F)
√

4 − η2
, σ0 =

1
G + H

. (4)
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Figure 1. Schematic diagram of a rotating annular disk.

The yield criterion (Equation (3)) reduces to the von Mises yield criterion at F = G = H. In this
case, σ0 is the tensile yield stress. Let

.
ε

p
r ,

.
ε

p
θ , and

.
ε

p
z be the plastic strain rates. In the case under

consideration, the associated flow rule can be written as [29]:

.
ε

p
r = λ

(
σr − η

2η1
σθ

)
,

.
ε

p
θ =

λ

η1

(
σθ

η1
− η

2
σr

)
,

.
ε

p
z = −λ

[(
1 − η

2η1

)
σr +

(
1
η1

− η

2

)
σθ

η1

]
(5)

where λ is a non-negative multiplier. The superimposed dot denotes the time derivative at fixed r and
the superscript p denotes the plastic part of the strain rate and will denote the plastic part of the strain.
The total strains and strain rates in the plastic region are:

εr = εe
r + ε

p
r , εθ = εe

θ + ε
p
θ , εz = εe

z + ε
p
z ,

.
εr =

.
ε

e
r +

.
ε

p
r ,

.
εθ =

.
ε

e
θ +

.
ε

p
θ ,

.
εz =

.
ε

e
z +

.
ε

p
z .

(6)

The equilibrium equation is of the form:

∂σr

∂r
+

σr − σθ

r
= −ςω2r. (7)

Here, ς is the mass density of the material.
The boundary value problem is classified by the following dimensionless quantities:

ρ =
r
b0

, Ω =
ςω2b2

0
σ0

, a =
a0

b0
, k =

σ0

E
. (8)

Since the material model is rate-independent, the time derivative can be replaced with the
derivative with respect to Ω. The derivatives of strain components with respect to Ω are denoted as:

ξr =
∂εr

∂Ω
, ξθ =

∂εθ

∂Ω
, ξz =

∂εz

∂Ω
,

ξe
r =

∂εe
r

∂Ω
, ξe

θ =
∂εe

θ

∂Ω
, ξe

z =
∂εe

z
∂Ω

,

ξ
p
r =

∂ε
p
r

∂Ω
, ξ

p
θ =

∂ε
p
θ

∂Ω
, ξ

p
z =

∂ε
p
z

∂Ω
.

(9)

Then, the equation of strain rate compatibility is equivalent to:

ρ
∂ξθ

∂ρ
= ξr − ξθ . (10)
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Using Equation (8), Equation (7) can be rewritten as:

∂σr

σ0∂ρ
+

σr − σθ

σ0ρ
= −Ωρ. (11)

3. Solution at Loading

3.1. Purely Elastic Solution

The general purely elastic solution for a rotating disk is given, for example, in [3]. Using Equation
(8), the solution satisfying the boundary condition (Equation (1)) at ρ = 1 is represented as:

σr
σ0

= B
(

1
ρ2 − 1

)
+ Ω(3+ν)

8
(
1 − ρ2),

σθ
σ0

= −B
(

1
ρ2 + 1

)
+ Ω(1+3ν)

8
( 3+ν

1+3ν − ρ2),

εr
k =

8B[1+ν−(1−ν)ρ2]+Ω(1−ν)[3+ν−3(1+ν)ρ2]ρ2

8ρ2 ,

εθ
k =

−8B[1+ν+(1−ν)ρ2]+Ω(1−ν)[3+ν−(1+ν)ρ2]ρ2

8ρ2 ,
εz
k = ν

4
{

8B − Ω
[
3 + ν − 2(1 + ν)ρ2]}.

(12)

Here, B is a constant of integration. Using the boundary condition (Equation (1)) at ρ = a, it is
possible to find that:

B = −Ω(3 + ν)a2

8
. (13)

Eliminating B in Equation (12) by means of Equation (13) provides the solution for the stresses
and strains in the purely elastic disk. Let Ωe be the value of Ω at which the plastic region starts to
develop from the surface ρ = a. Substituting the values of σr and σθ at ρ = a into the yield condition
Equation (3) and using Equation (4) yields:

Ωe =
4η1

3 + ν + a2(1 − ν)
. (14)

In what follows, it is assumed that Ω > Ωe.
The solution (Equation (12)) is valid in the elastic region of the elastic/plastic disk. However,

Equation (13) is not valid in this case because one of the boundary conditions in Equation (1) should
be replaced with the condition that the radial and circumferential stresses are continuous across the
elastic/plastic boundary.

3.2. Elastic/Plastic Stress Solution

The elastic/plastic stress solution is available [30]. For completeness, this solution is outlined
below. The yield condition (Equation (3)) is satisfied by the following substitution:

σr/σ0 = 2 cos ψ/
√

4 − η2, σθ/σ0 =

(
η cos ψ/

√
4 − η2 + sin ψ

)
η1 (15)

where ψ is a new function of ρ and Ω. Substituting Equation (15) into Equation (11) and using
Equation (4) leads to:

2 sin ψ√
4 − η2

∂ψ

∂ρ
+

(η2 cos ψ − η1 sin ψ)

ρ
= Ωρ. (16)

The boundary condition to this equation is determined from the boundary condition (Equation (1))
at ρ = a and Equation (15) as:

ψ =
π

2
(17)
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for ρ = a. It has been taken into account here that σθ > 0 at ρ = a. Let ρc be the dimensionless radius
of the elastic/plastic boundary. The value of ψ at ρ = ρc is denoted by ψc. The continuity of the radial
and circumferential stresses across the elastic/plastic boundary, together with Equations (12) and (15),
leads to:

B
(

1
ρ2

c
− 1

)
+ Ω(3+ν)

8
(
1 − ρ2

c
)
= 2 cos ψc/

√
4 − η2,

−B
(

1
ρ2

c
+ 1

)
+ Ω(1+3ν)

8
( 3+ν

1+3ν − ρ2
c
)
=

(
η cos ψc/

√
4 − η2 + sin ψc

)
η1.

(18)

Eliminating B between these equations yields:

2 cos ψc√
4−η2

+

(
η cos ψc/

√
4−η2+sin ψc

)
(1−ρ2

c)η1

(1+ρ2
c)

−Ω(1−ρ2
c)

8

[
(1+3ν)

(1+ρ2
c)

( 3+ν
1+3ν − ρ2

c
)
+ 3 + ν

]
= 0.

(19)

For a given value of Ω, Equation (19) and the solution of Equation (16) supply the system of
equations for ρc and ψc. Then, B can be determined from Equation (18). The stress distribution in the
elastic region, ρc ≤ ρ ≤ 1, follows from Equation (12). The stress distribution in the plastic region,
a ≤ ρ ≤ ρc, is readily determined from Equation (15) and the solution of Equation (16). The latter is in
parametric form with ψ being the parameter. The plastic region occupies the entire disk when ρc = 1.
Let Ω p be the corresponding value of Ω. This value can be found numerically using the dependence
of ρc on Ω known from Equation (19) and the solution of Equation (16). In particular, it is seen from
Equation (19) that ψc = π/2 at ρc = 1. This condition and Equation (17) allow the value of Ω p and a
constant of integration to be determined from the solution of Equation (16).

3.3. Elastic/Plastic Strain Solution

Eliminating B in Equation (12) by means of the solution of Equations (18) and (19) supplies the
strain solution in the elastic region as follows in terms of Ω and ρ. Replacing the plastic strain rates in
Equation (5) with the corresponding quantities introduced in Equation (9) and eliminating λ between
the resulting equations leads to:

ξ
p
r = ξ

p
θ

(2η1σr − ησθ)η1

(2σθ − ηη1σr)
, ξ

p
z = ξ

p
θ

[(2η1 − η)η1σr + (2 − ηη1)σθ ]

(ηη1σr − 2σθ)
.

The stresses in these equations can be expressed in terms of ψ by means of Equation (15). Then,

ξ
p
r = ξ

p
θ

(√
4 − η2 cos ψ − η sin ψ

)
η1

2 sin ψ
, ξ

p
z = −ξ

p
θ

[
η1

√
4 − η2 cos ψ + (2 − ηη1) sin ψ

]
2 sin ψ

. (20)

The elastic portion of the strain components in the plastic region is determined from Equations (2),
(8) and (15) as:

εe
r

k = (2−ηη1ν) cos ψ√
4−η2

− η1ν sin ψ, εe
θ
k = (ηη1−2ν) cos ψ√

4−η2
+ η1 sin ψ,

εe
z
k = ν(ηη1+2) cos ψ√

4−η2
+ νη1 sin ψ.

(21)

Differentiating these expressions with respect to Ω and using Equation (9) yields:

ξe
r

k = −
[
(2−ηη1ν) sin ψ√

4−η2
+ η1ν cos ψ

]
∂ψ
∂Ω , ξe

θ
k =

[
η1 cos ψ − (ηη1−2ν) sin ψ√

4−η2

]
∂ψ
∂Ω ,

ξe
z

k = ν

[
η1 cos ψ − (ηη1+2) sin ψ√

4−η2

]
∂ψ
∂Ω .

(22)
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Taking into account Equation (6), Equation (10) can be rewritten as ρ∂ξθ/∂ρ = ξ
p
r + ξe

r − ξ
p
θ − ξe

θ .
Eliminating ξ

p
r in this equation by means of Equation (20) results in:

ρ
∂ξθ

∂ρ
=

[
η1

√
4 − η2 cos ψ − (ηη1 + 2) sin ψ

]
2 sin ψ

ξ
p
θ + ξe

r − ξe
θ .

This equation and Equation (6) combine to give the following equation for ξθ :

ρ
∂ξθ

∂ρ
=

[
η1

√
4 − η2 cos ψ − (ηη1 + 2) sin ψ

]
2 sin ψ

ξθ +
η1

[
η sin ψ −√

4 − η2 cos ψ
]

2 sin ψ
ξe

r − ξe
θ (23)

where ξe
r and ξe

θ should be eliminated by means of Equation (22). It is therefore evident that
Equation (23) is a linear ordinary differential equation. In order to solve this equation, it is necessary to
express the derivative ∂ψ/∂Ω involved in Equation (22) in terms of ψ or/and ρ. Following the method
proposed in [8], Equation (16) is differentiated with respect to Ω. Then,

2 sin ψ√
4 − η2

∂χ

∂ρ
+

(
2 cos ψ√

4 − η2

∂ψ

∂ρ
+

η2 sin ψ + η1 cos ψ

ρ

)
χ − ρ = 0 (24)

where χ = ∂ψ/∂Ω. Using Equation (16), the derivative ∂ψ/∂ρ involved in Equation (24) can be
expressed in terms of ψ and ρ. Then, Equation (24) becomes:

2 sin ψ√
4 − η2

∂χ

∂ρ
+

{
η2 sin ψ + η1 cos ψ

ρ
+ 2 cos ψ

[
Ωρ − (η2 cos ψ − η1 sin ψ)

2ρ sin ψ

]}
χ − ρ = 0. (25)

It follows from the boundary condition (Equation (17)) that ∂ψ/∂Ω = 0 at ρ = a. Therefore,

χ = 0 (26)

at ρ = a. This is the boundary condition to Equation (25), which is a linear ordinary differential
equation for χ. This equation should be solved numerically. Once χ has been found from Equation (25),
it is possible to determine ξe

r and ξe
θ involved in Equation (23) as functions of ψ and ρ by means

of Equation (22). Having ψ as a function of ρ due to the solution of Equation (16), it is possible to
represent the coefficients of Equation (23) as functions of ρ. Then, this ordinary differential equation
can be solved numerically with no difficulty. The boundary condition to Equation (23) follows from
the continuity of the circumferential strain rate and, therefore, ξθ across the elastic/plastic boundary
ρ = ρc. The value of ξθ on the elastic side of this boundary is determined from Equation (12) as:

ξc

k
=

(1 − ν)
[
3 + ν − (1 + ν)ρ2

c
]

8
−

[
1 + ν + (1 − ν)ρ2

c
]

ρ2
c

dB
dΩ

. (27)

Then, the boundary condition to Equation (23) is

ξθ = ξc (28)

for ρ = ρc. Once the solution of Equation (23) has been found, the total circumferential strain in
the plastic region is determined by integration of ξθ with respect to Ω at a given point ρ = ρt.
The maximum value of Ω is denoted as Ω f and the corresponding value of ρc as ρ f . It is assumed that
Ω f < Ωp. It is obvious that a ≤ ρt < ρ f . The value of Ω and the value of the circumferential strain on
the elastic side of the elastic/plastic boundary at ρc = ρt are denoted as Ωt and Et

θ , respectively. Then,
it follows from the definition for ξθ given in Equation (9) that:
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εθ =

Ω f∫
Ωt

ξθdΩ + Et
θ . (29)

The value of Et
θ is determined from Equation (12) as:

Et
θ

k
=

−8Bt
[
1 + ν + (1 − ν)ρ2

t
]
+ Ωt(1 − ν)

[
3 + ν − (1 + ν)ρ2

t
]
ρ2

t

8ρ2
t

. (30)

Here Bt is the value of B at ρc = ρt. This value follows from Equations (18) and (19). Equations (6)
and (22) combine to give:

ξ
p
θ = ξθ − k

[
η1 cos ψ − (ηη1 − 2ν) sin ψ√

4 − η2

]
χ . (31)

Substituting Equation (31) into Equation (20) leads to:

ξ
p
r
k = η1

2

{
ξθ
k −

[
η1 cos ψ − (ηη1−2ν) sin ψ√

4−η2

]
χ

}(√
4−η2 cos ψ−η sin ψ

)
sin ψ ,

ξ
p
z
k = − 1

2

{
ξθ
k −

[
η1 cos ψ − (ηη1−2ν) sin ψ√

4−η2

]
χ

}[
η1
√

4−η2 cos ψ+(2−ηη1) sin ψ
]

sin ψ .

(32)

Hence,

ε
p
r
k

=

Ω f∫
Ωt

ξ
p
r
k

dΩ,
ε

p
z
k

=

Ω f∫
Ωt

ξ
p
z
k

dΩ . (33)

Here, the integrands are known functions of Ω. In particular, ξ
p
r and ξ

p
z are first eliminated by

means of Equation (32). Then, the solutions of Equations (16), (23) and (25) are used to represent ψ,
ξθ , and χ, respectively, as functions of Ω at any value of ρ = ρt. Therefore, the integrals involved in
Equation (33) can be evaluated numerically. The total radial and axial strains in the plastic zone are
found by means of Equation (6) where the plastic parts are given by Equation (33) and the elastic parts
by Equation (21).

4. Distribution of Residual Stresses and Strains

It is assumed that unloading is purely elastic (i.e., the distribution of residual stresses found by
means of Hooke’s law for the increments of stresses does not violate the yield criterion in the range
a ≤ ρ ≤ 1). This assumption should be verified a posteriori. The residual stresses are determined as:

σres
r = σ

f
r + Δσr, σres

θ = σ
f
θ + Δσθ . (34)

Here, σ
f
r and σ

f
θ are the radial and circumferential stresses, respectively, at the end of loading.

These stresses were found in the previous section. Δσr and Δσθ are the increments of the radial
and circumferential stresses, respectively, in the course of the process of unloading. Analogously,
the residual strains are determined as:

εres
r = ε

f
r + Δεr, εres

θ = ε
f
θ + Δεθ , εres

z = ε
f
z + Δεz. (35)

Here, ε
f
r , ε

f
θ , and ε

f
z are the total radial, circumferential, and axial strains, respectively, at the end

of loading. These strains were found in the previous section. Δεr, Δεθ , and Δεz are the increments of
the radial, circumferential, and axial strains, respectively, in the course of the process of unloading.
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Since the process of unloading is assumed to be purely elastic, the increments of the strains are related
by Hooke’s law to the increments of the stresses:

Δεe
r =

Δσr − νΔσθ

E
, Δεe

θ =
Δσθ − νΔσr

E
, Δεe

z = −ν(Δσr + Δσθ)

E
. (36)

Therefore, the solution (Equations (12) and (13)) in which Ω should be replaced with −Ω f is valid.
As a result,

Δσr
σ0

= Bf

(
1
ρ2 − 1

)
− Ω f (3+ν)

8
(
1 − ρ2),

Δσθ
σ0

= −Bf

(
1
ρ2 + 1

)
− Ω f (1+3ν)

8
( 3+ν

1+3ν − ρ2),

Δεr
k =

8Bf [1+ν−(1−ν)ρ2]−Ω f (1−ν)[3+ν−3(1+ν)ρ2]ρ2

8ρ2 ,

Δεθ
k =

−8Bf [1+ν+(1−ν)ρ2]−Ω f (1−ν)[3+ν−(1+ν)ρ2]ρ2

8ρ2 ,

Δεz
k = ν

4

{
8Bf + Ω f

[
3 + ν − 2(1 + ν)ρ2]}

(37)

where

Bf =
Ω f (3 + ν)a2

8
. (38)

Substituting the solution found in the previous section together with Equations (37) and (38) into
Equation (35) yields the distribution of residual stresses and strains. It follows from Equation (3) that
the yield criterion is not violated after unloading if:

(
σres

r
σ0

)2
+

(
σres

θ

σ0η1

)2

− η

η1

(
σres

r
σ0

)(
σres

θ

σ0

)
− 1 ≤ 0. (39)

Since the distribution of the residual stresses has been found, this inequality can be verified with
no difficulty.

5. Illustrative Example

Equations (16), (23) and (24) were solved numerically for several materials whose anisotropic
coefficients, given in [31,32], are shown in Table 1. It is assumed that ν = 0.3 in all cases. The value of
k introduced in Equation (8) is immaterial. In particular, assume that the solution for a disk of given
geometry and physical properties has been found. Then, simple scaling of this solution supplies the
solutions for similar disks of material with the same Poisson’s ratio and anisotropic coefficients but
any value of k. The numerical solution is illustrated for an a = 0.5 disk at Ω f = 1.7. The distribution of
stresses is depicted in Figures 2 and 3 and residual stresses in Figures 4 and 5. The associated total and
plastic strain fields are shown in Figures 6–11. The variation of the residual strains with ρ is depicted
in Figures 12–14. The solution for the residual stresses was used in conjunction with Equation (39) to
verify that the process of unloading is purely elastic. It is evident from Figure 3 that the effect of plastic
anisotropy on the radius of the elastic plastic boundary is very significant and, as a result, so is the
effect of plastic anisotropy on the distribution of stresses, strains, residual stresses, and residual strains.
On the other hand, the yield loci for the anisotropic parameters considered are depicted in Figure 15.
It is seen from this figure that the yield loci for the materials considered are not very different (except
for the yield locus for AA3104). This sensitivity of solutions to the yield locus requires very accurate
numerical methods for calculating stress and strain fields. Therefore, it is of interest to compare the
present solution and a finite difference solution. The present solution involves fewer approximations
than finite difference solutions because the derivative ∂ψ/∂Ω is found from Equation (24) without
any discretization with respect to Ω (i.e., with respect to time). Therefore, it is natural to assume that
the present solution is more accurate. In [10], several finite difference solutions were found for an
a = 3/7 disk assuming that ρ f = 5/7 (in our nomenclature). Using the anisotropic constants adopted
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in [10], the distribution of the circumferential strain was determined using the method proposed in the
present paper. A comparison of the magnitude of circumferential strain at ρ = a and ρ f = 5/7 (in our
nomenclature) predicted by the new method and that found in [10] is presented in Table 2. It can be
seen from this table that the accuracy of the finite difference solution may be insufficient for practical
applications. In particular, Δ shown in Table 2 is defined as:

Δ =
|εθ,FDM − εθ,N |

εθ,N
× 100%

where εθ,FDM is the total circumferential strain at ρ = a and ρ f = 5/7 found in [10] and εθ,N is the total
circumferential strain at ρ = a and ρ f = 5/7 found in the present paper.

Table 1. Anisotropic coefficients of several materials.

Material F/(G + H) H/(G + H)

DC06 0.243 0.703
AA6016 0.587 0.410
AA5182 0.498 0.419
AA3014 0.239 0.301
Isotropic 0.5 0.5

Table 2. Comparison of the total circumferential strain at ρ = a and ρ f = 5/7 found by the
two methods.

F/(G + H) H/(G + H) εθ,FDM εθ,N Δ (%)

0.452 0.681 0.00088 0.00134 26.3
0.421 0.615 0.0014 0.0019 34.4
0.283 0.634 0.00178 0.00212 16.0
0.811 0.454 0.0025 0.0036 30.6
0.5 0.5 0.0019 0.0022 13.6

Figure 2. Effect of anisotropic properties on the distribution of the radial stress in an a = 0.5 disk.
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Figure 3. Effect of anisotropic properties on the distribution of the circumferential stress in an
a = 0.5 disk.

Figure 4. Effect of anisotropic properties on the distribution of the residual radial stress in an
a = 0.5 disk.

 

Figure 5. Effect of anisotropic properties on the distribution of the residual circumferential stress in an
a = 0.5 disk.
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Figure 6. Effect of anisotropic properties on the distribution of the radial strain in an a = 0.5 disk.

 
Figure 7. Effect of anisotropic properties on the distribution of the circumferential strain in an
a = 0.5 disk.

Figure 8. Effect of anisotropic properties on the distribution of the axial strain in an a = 0.5 disk.
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Figure 9. Effect of anisotropic properties on the distribution of the radial plastic strain in an a = 0.5 disk.

 

Figure 10. Effect of anisotropic properties on the distribution of the circumferential plastic strain in an
a = 0.5 disk.

Figure 11. Effect of anisotropic properties on the distribution of the axial plastic strain in an a = 0.5 disk.
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Figure 12. Effect of anisotropic properties on the distribution of the residual radial strain in an
a = 0.5 disk.

Figure 13. Effect of anisotropic properties on the distribution of the residual circumferential strain in
an a = 0.5 disk.

 

Figure 14. Effect of anisotropic properties on the distribution of the residual axial strain in an a =

0.5 disk.
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Figure 15. Yield loci for several materials.

6. Conclusions

A semi-analytic solution for the stresses and strains within a rotating elastic/plastic polar
orthotropic annular disk was found under plane stress. The range of validity of plane stress solutions
was determined in [33] by comparing such solutions with 3-D finite element solutions. The distribution
of residual stresses and strains was determined as well. The constitutive equations consist of
Hooke’s law, the orthotropic yield criterion proposed in [14], and the associated flow rule. Therefore,
the equations to be solved involve the strain rate tensor. This greatly adds to the difficulties of the
solution as compared with the constitutive equations that relate the stresses to the strains (or allow for
the strains to be immediately found by integrating relations between strain rate components). In order
to facilitate numerical solution, the method developed in [11] was adopted. As a result, it is only
necessary to use numerical methods for solving ordinary differential equations and to evaluate ordinary
integrals, even though the solution depends on two independent variables—Ω and ρ.

It is seen from Equations (12), (21), (22), (32) and (33) that the parameter k introduced in
Equation (8) is immaterial in the sense that scaling of any strain solution for a disk of given radius,
Poisson’s ratio, and anisotropic parameters provides the solutions for similar disks of material with
the same Poisson’s ratio and anisotropic parameters but any value of k.

It is known that numerical codes should be verified before their use in applications [34–36].
The present solution is useful for this purpose since ordinary differential equations can be solved
numerically with a very high accuracy with no difficulty. In particular, comparison with the finite
difference solution proposed in [10] was made. It was shown that the accuracy of the finite difference
solution for the total circumferential strain at the inner radius of the disk may be insufficient (Table 2).

The solution found is for a rate-independent model of plasticity. However, in many cases,
solutions for rate-dependent plasticity are required [37]. Moreover, disks of varying thickness and
disks made of functionally graded materials are widely used in industry [38]. The general approach
used in the present paper can be extended to at least some of these cases. This will be the subject of a
subsequent investigation.
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Abstract: The warm sheet cylindrical deep drawing experiment of aluminum alloy was carried
out and macro-mechanical properties and microstructure evolution of hydro-formed cups with
different cooling medium were analyzed, which aimed to investigate the effects of different types
of cooling on mechanical properties and microstructure of cylindrical cups hydro-formed by
warm Hydro-mechanical Deep Drawing (HDD). Results show that, under the condition of warm
hydroforming, the mechanical properties such as yield stress and ultimate strength were influenced
very little by air or water cooling. Grain coarsening of these hydro-formed cups can be inhibited
to a certain extent with subsequent rapid water cooling. Moreover, it shows that the processing
with warm sheet hydroforming and subsequent rapid cooling of 7075-O aluminum alloy has a
positive significance in maintaining the stability of macro mechanical properties and inhibiting the
degradation of the microstructure of materials.

Keywords: hydro-mechanical deep drawing (HDD); mechanical property; type of cooling; microstructure

1. Introduction

Warm/hot sheet hydroforming has prominent advantages in improving the forming limit
due to combining the advantages of both cold sheet hydroforming and warm sheet forming [1,2].
Since temperatures and fluid pressures can lead to more formability than by using cold sheet
hydroforming or warm sheet forming, a warm/hot sheet hydroforming process is suitable to form
the thin-wall structural parts with complex surfaces of hard-to-form materials at Room Temperature
(RT), which can solve the manufacturing problems in hard shaping or hard integral shaping using
conventional forming methods [3,4]. Like cold sheet hydroforming, according to the action of fluid
pressure in the forming process, warm/hot sheet hydroforming is classified into two styles: passive
forming and active forming, which is shown in Figure 1 [5]. When forming parts like cylindrical cups,
the fluid pressure plays a supporting role in the forming process, which can be called HDD, and the
passive forming style can be used. By contrast, the other style can be chosen when more active fluid
pressures are needed for forming parts, which can be referred to as warm/hot sheet hydro-bulging.

Even though the plasticity of materials can be improved in a warm/hot environment, it will
inevitably lead to the deterioration tendency of material properties due to microstructure variation.
In addition, when encountering a reduced temperature gradient at an elevated temperature, the
microstructure deterioration tendency of metal materials may be inhibited and transformed in a
favorable direction [6,7]. From this, the corresponding solution to the microstructure property
deterioration of materials can be determined.
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Figure 1. Schematic of warm sheet hydroforming.

Unlike steel materials, the strengthening process of heat treatable aluminum alloys (such as
7075) is precipitation dispersion strengthening. It requires the rapid cooling of the materials from the
solution temperature to room temperature rapidly and undergoes natural aging or artificial aging to
strengthen its matrix due to precipitating the dispersed phase. Some relevant studies indicated [8–10]
that the hydroforming technology process under a higher heat environment requires materials to have
a certain strength and the forming temperature should not be too high in contrast to those with a warm
or hot forming type. The hard-to-form materials, which cannot be formed using a traditional forming
method, can be formed using warm/hot sheet hydroforming with subsequent rapid cooling to proceed
incomplete solution strengthening. Then it can maintain the stability of macro-mechanical properties
and inhibit the degradation of the microstructure of materials to a certain extent. In addition, research
shows that [5,11,12] assuming that the material is isotropy, stress-strain curves obtained by the bulging
test have been very close to the actual flow properties of materials and can reflect the stress-strain
state during the forming process. Considering that the cylindrical cups HDD experiment is a classic
basic research method [13,14], it was used to research the effect of the process of warm/hot sheet
hydroforming with subsequent rapid cooling on mechanical properties and microstructure evolution
of the cups, which were formed by warm/hot sheet HDD [15,16]. Meanwhile, the isotropic material
was assumed in this study.

As mentioned above, using a special warm/hot sheet hydrobulging-hydromechanical deep
drawing equipment, a warm/hot sheet HDD experiment of 7075-O aluminum alloy was carried out
and macro mechanical properties and microstructure evolution of hydro-formed cups with different
cooling medium (which represents different types of cooling) were researched, which aimed to
reveal the influence rule of different types of cooling on mechanical properties and microstructure
of cylindrical cups formed by warm/hot sheet hydroforming in this study. In addition, it is of great
significance to further study the process characteristics of warm sheet hydroforming and inhibit the
degradation of the microstructure of materials [17]. Moreover, the results can promote the application
process of warm/hot sheet hydroforming technology effectively in the field of aerospace.

2. Warm/Hot Sheet HDD Experiment

2.1. Experimental Material

The HDD testing material used was an AA 7075-O aluminum alloy sheet with a thickness of
1 mm, which was produced by Alcoa (Al-Zn-Mg-Cu series high-strength alloy). As a representative
alloy used widely in the aerospace field and as a hard-to-form material at room temperature, it was
selected to conduct the hydro-bulging test. Table 1 shows the chemical composition [18] and Figure 2
shows the initial microstructure of 7075-O aluminum alloy obtained using the Scanning Electron
Microscope (SEM).

74



Symmetry 2018, 10, 362

Table 1. Chemical composition of 7075-O aluminum alloy (wt %) [18].

Composition Zn Mg Cu Mn Cr Fe Si Ti others Al

Percent (%) 5.1 2.1 1.2 0.3 0.18 0.5 0.4 0.2 0.2 rest

Figure 2. The initial microstructure of AA 7075-O aluminum alloy captured with the Scanning Electron
Microscope (SEM).

2.2. Test Equipment

The HDD test equipment used was the self-development YRJ-50 machine [6,18,19], by which not
only can the stress-strain curve be confirmed and obtained by a warm bulging test [19,20] but also a
warm sheet HDD test can be carried out. It consists of a mechanical body, a detecting system, and a
control system. Figure 3 shows the equipment and the setup of this HDD test.

Figure 3. Equipment and setup of HDD test. (a) Warm sheet hydro-bulging-hydro-mechanical deep
drawing equipment; and (b) experimental setup of warm hydro-mechanical deep drawing.
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2.3. Experimental Results

At RT and 210 ◦C, the warm sheet HDD experiment of the aluminum alloy 7075-O was carried out
using the equipment mentioned above. In addition, the test conditions include: the punch diameter
was 80 mm, the punch nose radius was 10 mm, the draw die shoulder radius was 10 mm, the aperture
of the blank holder was 81.5 mm, the blank holder radius was 8 mm, the inlet diameter of the liquid
chamber was 85 mm, the blank diameter was 200 mm (210 ◦C and 160 mm (RT), the final diameter
of the cup after forming in theory was nearly 81 mm, and the deep drawing depth was 85 mm. As a
blank holder force, liquid pressure-punch stroke curves and liquid pressure-punch stroke curves are
very important influencing factors during the process of warm sheet HDD. They were designed before
testing, which is shown in Figure 4a,b. After being formed, air cooling and water cooling were selected
to cool the test samples to RT rapidly (the processing rate is shown in Figure 4c. Then the testing
samples were obtained. Figure 5 shows the cylindrical cups hydro-formed by a warm sheet HDD at
210 ◦C.

Figure 4. Experimental scheme of warm sheet HDD experiment. (a) liquid pressure-punch stroke
curve and drawing force-punch stroke curve at 210 ◦C. (b) curves of liquid pressure-punch stroke in
HDD at RT; and (c) processing route of the warm sheet HDD experiment.

Figure 5. Cylindrical cups hydro-formed by a warm sheet HDD at 210 ◦C.
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3. Performance Evaluation of Aluminum Alloy Cylindrical Cups Hydro-Formed by Warm
Sheet HDD

3.1. Evaluation Testing Scheme

After being formed by warm/hot HDD, as the deformation of sheet materials has been
accumulated, the microstructure of test sheets is in an unstable state to a certain extent. Different
types of cooling (different cooling medium) represent different cooling rates in order to evaluate
the macro performance of aluminum alloy cylindrical cups. The uniaxial tension samples in the
straight wall of cups with the rolling direction of 0 degrees were sampled. Then, in order to evaluate
their mechanical performance parameters that yield strength, tensile strength, and elongation, the
uniaxial tension experiment at RT was conducted. On the other hand, with the rolling direction of
90 degrees and clipping the narrow strips with the width of 10 mm from the flange to the bottom
of cylindrical cups, the microstructure observation samples were prepared (see Figure 6). There is a
different deformation due to a different deformation area since both flange and a cup wall are the parts
with large deformation during the warm/hot sheet HDD process of aluminum alloy cylindrical cups.
The two positions of cups were selected to observe their microstructure variation. The performance
measurement and evaluation plan of formed cylindrical cups is shown in Table 2.

Figure 6. Schematic diagram of specimens sampling for uniaxial tension and metallographic
observation. (a) sampling area for uniaxial tension and metallographic observation; and (b) sample
size for uniaxial tension.

Table 2. Experimental plan for mechanical properties after warm sheet HDD.

Serial
Number

Temperature
(◦C)

Maximum
Pressure

(MPa)

Sizes of Cylindrical
Cups (mm)

Type of Cooling
Samples of

Uniaxial Tension
(mm)

Rolling
Direction

(◦)

1 210 Pmax = 14.5 t0 = 1.0; ϕ = 80; h = 85 Water cooling L0 = 71 0
2 210 Pmax = 14.4 t0 = 1.0; ϕ = 80; h = 85 Water cooling L0 = 71 0
3 210 Pmax = 14.3 t0 = 1.0; ϕ = 80; h = 85 Water cooling L0 = 71 0
4 210 Pmax = 14.5 t0 = 1.0; ϕ = 80; h = 85 Air cooling L0 = 71 0
5 210 Pmax = 14.4 t0 = 1.0; ϕ = 80; h = 85 Air cooling L0 = 71 0
6 210 Pmax = 14.3 t0 = 1.0; ϕ = 80; h = 85 Air cooling L0 = 71 0

3.2. Effect of Type of Cooling on Mechanical Properties of Testing Samples

In order to observe the influence of different types of cooling on mechanical properties of
cylindrical cups after being formed by warm/hot sheet HDD, it was necessary to carry out the
uniaxial tension test, which was conducted using the electro-hydraulic servo tension test machine
Instron 8801 (in Figure 7) on the evaluation samples. During testing, two samples in each group were
selected to obtain the average values, which yielded the test results. Then the following equation
was used.

L0 = 5.65
√

S0 (1)

where S0 is the minimum value of the section of samples and L0 is the initial reference length for
calculating the percentage elongation, which is the sample length for uniaxial tension. This is shown
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in Figure 6b. Equation (1) describes the relation between L0 and S0, which means the test sample is a
scaling sample conforming to the international common standard. Then the reliable and significant
testing results can be insured using this method.

Figure 7. Experimental setup of a uniaxial tension test.

According to the performance measurement scheme, the mechanical property test results of
cylindrical cups are shown in Figure 8a. It can be indicated that the yield strength is 224.18 MPa and
the ultimate strength is 260.43 MPa under the condition of air cooling while, under the condition
of water cooling, the yield strength is 228.43 MPa and the ultimate strength is 260.66 MPa. Results
show that the yield strength increases a little under water cooling compared with air cooling and the
ultimate strength is nearly unchanged during either type of cooling. It indicates that different types
of cooling have little effect on the mechanical properties of 7075-O aluminum alloy cylindrical cups
formed using warm/hot sheet HDD. Figure 8b shows the results of specific elongation after cooling
using two different types of cooling. The value with air cooling is 11.83% and, with water cooling, is
11.18%. Results show that the specific elongation of cylindrical cups under water cooling decreases a
little more than that of air cooling. In general, though, the effect of different types of cooling on the
specific elongation is not clear.

Figure 8. The influence of different types of cooling on yield stress, ultimate strength, and specific
elongation. (a) Yield stress and ultimate strength; (b) Specific elongation.

In theory, the different types of cooling mainly affects the cooling rate of samples during the
forming process of materials using warm/hot sheet hydroforming. Due to the result of cylindrical cups
after being formed, the influence on mechanical properties may not be clear. It shows that the influence
of different types of cooling on properties of aluminum alloys may be in a macro field rather than in a
micro field, which is demonstrated by the experimental results described above. These results may be
positively significant for maintaining the stability of macro mechanical properties of sheet metals.

3.3. Effect of Type of Cooling on the Microstructure of Testing Samples

The metallographic test and the Electron Back-Scattered Diffraction (EBSD) analysis on flanges
and cup walls of samples after being formed using different types of cooling were carried out to
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observe the microstructure variation of cylindrical cups hydro-formed by warm/hot sheet HDD.
According to GB/T 3246.1-2000, test samples and the special parts of the aluminum alloy cylindrical
cups were corroded using a Keller reagent (1 mL HF, 1.5 mL HCl, 2.5 mL HNO3, and 95 mL H2O).
Then, using the optical microscope Axiovert 200MAT produced by the Zeiss company in Oberkochen
of Germany, the samples were observed. The results are shown in Figure 9.

Figure 9. The influence of different types of cooling on microstructures. (a-1) The microstructure
of flange by a metallographic test with air cooling. (a-2) The microstructure of flange by EBSD
with air cooling. (b-1) The microstructure of cup wall by a metallographic test with air cooling.
(b-2) The microstructure of cup wall by EBSD with air cooling. (c-1) The microstructure of flange by
a metallographic test with water cooling. (c-2) The microstructure of flange by EBSD with water
cooling. (d-1) The microstructure of the cup wall by a metallographic test with water cooling.
(d-2) The microstructure of a cup wall by EBSD with water cooling. (e-1) The microstructure of
flange by SEM with air cooling. (e-2) Orientation image of a cup wall by EBSD with water cooling.
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Studies have shown that [21–23], under the condition of a warm/elevated temperature, grain
growth is mainly caused by plastic deformation and it is a dynamic recovery process. As is shown
in Figure 9(a-1,c-1,e-1), after being formed using warm/hot sheet HDD, the compounds in flange of
7075-O aluminum alloy was permutated along the calendaring direction after fracture. In addition,
the phase particle was precipitated in the α (Al) matrix, which was shown clearly in Figure 9(e-1).
Figure 9(b-1,d-1) show that the compounds in a cylindrical cup wall further fractured, which were a
stronger permutation along the deformation direction than that of flange and there was a dispersed
phase in the α (Al) matrix. According to References [21–23], on the whole, there were more oversized
second phase particles in the metallographic structure under the two types of cooling and these second
phases were different in morphology including the acicular metastable phase and the punctiform stable
phase [21,22]. From Figure 9(a-2) to Figure 9(e-2), they show the results of grain morphology observed
using EBSD technology. Figure 9(e-2) shows the orientation image of a cup wall with water cooling
from which it can be seen that, along the calendaring direction, the grain was strip, which illustrates
the grain anisotropy of formed cylindrical cups in a calendaring direction and vertical direction [23].

Comparing Figure 9(a-2) with (b-2) and Figure 9(c-2) with (d-2), it can be seen that, under the same
types of cooling, the grain size in the cylindrical cup wall is larger than that of the flange. The reason is
that, during the process of deep drawing, the flange was acted upon by two forces of a pressure-tensile
stress (pressure stress of circumferential and thickness direction). Besides the thickness normal stress
provided by hydraulic pressure, the cylindrical cup wall was also acted upon by the two forces of
tensile stress.

The variation of grain size under different types of cooling are shown in Figure 10. Under the
condition of air cooling, the maximum grain size in the flange was 34 μm, which accounts for 13.3% of
the sampling area. The maximum grain size in the cylindrical cup wall was 45 μm, which accounts for
19.7%. While under the condition of water cooling, the maximum grain size in the flange was 20 μm
and it accounts for 8.3% of the sampling area. The maximum grain size of the cylindrical cup wall was
37 μm and it accounts for 9.4%. It shows that, with the air cooling condition, there were an increase in
the oversized grain. By contrast, there was grain coarsening to a certain extent with a water cooling
condition, but the grain size was uniform on the whole and the grain size in the flange and cylindrical
cup wall was smaller than that of air cooling. In addition, the maximum grain size appeared in the
same cylindrical cup wall under both of the types of cooling while the maximum grain size under the
water cooling condition was about 80% than that of air cooling. The results show that the processing
warm sheet hydroforming with thereafter subsequent cooling of 7075-O aluminum alloy can inhibit the
grain coarsening to a certain extent, which proves that it is of clear positive significance in maintaining
the stability of macro mechanical properties and inhibiting the degradation of the microstructure
of materials.

Figure 10. Cont.
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Figure 10. The influence of different types of cooling on the grain size.

4. Conclusions

This paper brings new experimental results concerning the effects of a type of cooling on the
properties of aluminum alloy using a warm/hot sheet hydroforming process. Warm/hot sheet HDD
experimentation was carried out to investigate the effects of different types of cooling on mechanical
properties and microstructure evolution of cylindrical cups. The main results obtained in this study
can be summarized by the following points below.

1. It shows that, under the condition of warm hydroforming, the mechanical properties of the
7075-O aluminum alloy cylindrical cups were influenced very little by different types of cooling.
Compared with air cooling, there were more precipitates of the cups with water cooling, but the
ultimate strength was nearly unchanged. While the yield strength increased slightly and the
specific elongation tended to decrease a little under the condition of water cooling.

2. Under the condition of air cooling, the grain of the flange and the cylindrical cup wall of the
formed cups were coarsened inordinately and the grain of the cylindrical cup wall was the most
serious in which the maximum grain size was 45 μm. Alternately, under the condition of water
cooling, the grain size of the flange and the cylindrical cup wall of the cups were inhibited
effectively and the grain size was smaller and more uniform than that of air cooling.

3. It proves that the grain coarsening of the 7075-O aluminum alloy hydro-formed cups can be
inhibited to a certain extent during warm/hot sheet hydroforming with subsequent rapid water
cooling, which indicates that there is a positive significance in maintaining the stability of macro
mechanical properties and inhibiting the degradation of the materials’ microstructure.
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Abstract: The fractional viscoplasticity (FV) concept combines the Perzyna type viscoplastic model
and fractional calculus. This formulation includes: (i) rate-dependence; (ii) plastic anisotropy; (iii)
non-normality; (iv) directional viscosity; (v) implicit/time non-locality; and (vi) explicit/stress-fractional
non-locality. This paper presents a comprehensive analysis of the above mentioned FV properties,
together with a detailed discussion on a general 3D numerical implementation for the explicit time
integration scheme.
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1. Introduction

In search of a generalization of existing models describing experimentally observed phenomena,
the concept of fractional calculus [1,2] emerged as a tool that in the recent years became
widely applied. Among the areas in which this theory has found application, it is worth mentioning
mechanics where one can distinguish: (i) time-fractional models; (ii) space-fractional models; and (iii)
stress-fractional models. For example, in [3], the time-fractional model was used to describe the
time-dependent mechanical property evolution in ductile metals. The fractional oscillators were
analyzed in [4], whereas the heat and mass transfer analysis in the framework of fractional calculus was
presented in [5,6]. Furthermore, the analysis and modeling of turbulent flow in a porous medium [7],
fluid transport induced by the osmotic pressure of glucose and albumin [8], wave propagation in the
viscoelastic material [9], non-local boundary value problem [10], and evolution for the damage variable
for hyperelastic materials [11] with an application of time-fractional derivative suggests great versatility
of this approach. On the other hand, the space-fractional models are successfully used in mechanics
to describe the deformation of a harmonic oscillator [12], deformation of an infinite bar subjected
to a self-equilibrated load distribution [13], modeling plane strain and plane stress elasticity [14],
Euler–Bernoulli beam [15], Darcy’s flow in porous media [16] and fractional strain formulation [17].
Finally, the stress-fractional models [18,19] and their finite element implementations were used to
study the granular soils under drained cyclic loading [20], and monotonic triaxial compression [21].
Concluding, one should emphasize that regardless of the specific formulation, the fractional operators
have one common feature, namely, the ‘change’ of a selected variable is based on integration over
a closed interval, thus extending the definition of integer order derivative (defined in a point) and
simultaneously introducing a non-locality in a given space.

It is commonly accepted that the Theory of Thermo-Viscoplasticity (TTV), which plays a central
role in the following considerations, began with the publication of Perzyna [22], which, until the present
day, serves a basis for many efforts in linking experimental and numerical results for different types
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of materials. The main results of this theory were discussed in a great number of papers that focused
on phenomena such as propagation of mechanical and thermal waves [23,24], viscosity controlled
by material parameter [25,26], dispersion [26], or implicit non-locality in the time variable [27].
Nonetheless, the classical TTV formulation does not include directional viscosity, and to include
the non-normality extension needs, as all classical plasticity theories, postulation of an additional
potential, which is not straightforward and causes the increase of material parameters. Furthermore,
the same concern is relevant to the plastic anisotropy effects in terms of the original Perzyna model;
to include this effect additional variables and evolution equations for them are needed to be postulated.
This limitations were resolved by the generalization of the Perzyna formulation by definition of the
fractional flow rule, first proposed in [18] and later developed in [19,28–30].

The implementation of the fractional plastic (rate independent) rule, for the Huber-Mises-Hencky
(HMH) yield criterion, in the framework of implicit and explicit procedures and with examples on
material point level, was presented in [28]. This was further developed in the subsequent article [29] to
any smooth and convex yield criterion but still focusing on rate independent plastic flow. Concluding,
in both these articles the non-locality in the stress state was present, however the implicit time
non-locality common for the viscoplastic flow was not included in them.

This paper extends the concept of FV, which was first reported in [18], for the Initial Boundary
Value Problem (IBVP), and provides a detailed discussion of the model material parameters.
The parametric study includes the influence of the overstress power and the relaxation time (which is
understood as implicit length scale parameter, as mentioned in [27]) on the dynamic properties of the
FV model. Moreover, additional fractional material parameters, which induce the directional viscosity,
the non-associative, and the anisotropic plastic flow, were also discussed.

2. Fractional Viscoplasticity

2.1. Remarks on Fractional Calculus

Fractional calculus (FC) introduces a new, universal method for calculating the intensity of
changes of various quantities in mathematical models describing experimentally observed phenomena.
FC implies a generalization of integer order derivatives, by fractional derivatives (FD). The selection
of the FD definition (from an infinite number) can use a type of material as a criterion to obtain the
best fitting of the constitutive model to a given experimental evidence. All definitions of the FD have
a common property, namely they include summation over an interval abandoning the integer order
derivative definition given at a single point; therefore they are called non-local. The classical derivative
can be regarded a special case of the FD when its order becomes integer.

In order to explain the FD concept, let us consider a generalized fractional differential operator
Bα

P as a composition of fractional integral Kα
P with classical integer (n-th) differential operator [31]

Bα
P = Kn−α

P ◦ dn

dtn , (1)

where α is the order of the derivative, n = �α�+ 1, �·� denotes the floor function, P is a parameter set
(described below) and ◦ denotes the composition operator. Bα

P is referred to as the fractional differential
operator B (B-op) of order α and p-set P, and analogously Kα

P identifies the K (K-op) fractional integer
operator of order α and p-set P.

The definition of K for the parameter set P =
〈

a, t, b, p, q
〉

can be given as

(Kα
P f ) (t) = p

∫ t

a
kα(t, τ) f (τ)dτ + q

∫ b

t
kα(τ, t) f (τ)dτ, (2)

where t ∈ [
a, b

]
and a < t < b, p, q are real numbers, and kα(t, τ) is a kernel that depends on the

order of the derivative α. It can be shown that if kα is a difference kernel, i.e., kα(t, τ) = kα(t − τ)
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and kα ∈ L1 ([0, b − a]) then L1 ([b, a]) → L1 ([b, a]) is well defined, bounded and linear. For explicit
definition, the special form of the kernel function can be assumed

kα(t − τ) =
1

Γ(α)
(t − τ)α−1 , (3)

then for P =
〈

a, t, b, 1, 0
〉

(Kα
P f ) (t) =

1
Γ(α)

∫ t

a
(t − τ)α−1 f (τ)dτ = (a Iα

t f ) (t), (4)

is obtained or, if P =
〈

a, t, b, 0, 1
〉

then

(Kα
P f ) (t) =

1
Γ(α)

∫ b

t
(τ − t)α−1 f (τ)dτ = (t Iα

b f ) (t), (5)

where Γ is the Euler gamma function. Equations (4) and (5) describe the left and right
Riemann-Liouville fractional integrals of the order α, respectively. The application of these operators
in Equation (1) leads to the following fractional derivative definitions:

(Bα
P) f (t) = C

a Dα
t f (t) =

1
Γ(n − α)

∫ t

a

f (n)(τ)
(t − τ)α−n+1 dτ, (6)

for t > a, and

− (Bα
P) f (t) = C

t Dα
b f (t) =

(−1)n

Γ(n − α)

∫ b

t

f (n)(τ)
(τ − t)α−n+1 dτ, (7)

for t < b. The FD operators C
a Dα

t f (t) and C
t Dα

b f (t) are known as the left- and right-sided Caupto
fractional integrals.

Finally, for the purpose of further definition of the FV, the Riesz-Caputo (RC) derivative can be
expressed as a linear combination of previously given left and right Caputo derivatives

RC
a Dα

b f (t) =
1
2

(
C
a Dα

t f (t) + (−1)n C
t Dα

b f (t)
)

. (8)

It can be shown that for the RC derivative the fundamental property of integer order derivatives is
preserved, that is, the derivative of a constant is zero.

2.2. Basic Concepts

In the following section Voigt notation is applied, thus the second rank tensors are ordered as
(6 × 1 column matrix)

t = (t11 t22 t33 t23 t13 t12)
T = (t1 t2 t3 t4 t5 t6)

T , (9)

whereas the fourth order tensors are represented by 6 × 6 matrices ordered in accordance with the rule
used in Equation (9).

Deformation assumes the additive decomposition of total strain, therefore

ε = εe + εvp, (10)

or in a rate form
ε̇ = ε̇e + ε̇vp, (11)
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where ε is the total strain, εe is the elastic strain and εvp is the viscoplastic strain. Next, due to
thermodynamic restrictions, the elastic strain is related to elastic stress through Hooke’s law

σe = Leεe, (12)

where σe denotes the Cauchy stress tensor and Le denotes the elastic constitutive tensor. The rate of
viscoplastic strain is analogous to the classical viscoplastic definition, namely

ε̇vp = Λp, (13)

where Λ is a scalar multiplier and p is the second order unit tensor which governs the direction
of viscoplastic flow. As the p tensor is normalized, the magnitude of ε̇vp depends solely on the Λ
parameter.

Following the concept introduced by Perzyna [22], this parameter is expressed as

Λ = γ 〈Φ(F)〉 , (14)

where γ = 1
Tm

is the viscosity parameter, Φ is the overstress function that depends on the
rate-independent yield surface F, and 〈·〉 is Macaulay brackets. It is well-known that γ introduces
implicit time non-locality in the viscoplastic model [27]. Furthermore, the function Φ has the
following form

Φ(F) = Fmvp =

(√
J2

κ
− 1

)mvp

, (15)

where
√

J2 denotes the second invariant of stress deviator and κ is the static yield stress in simple shear.
Finally, the remaining object needed to be defined is the tensor p. In this place, the difference

between the classical theory of viscoplasticity and the new approach is most evident. Let us recall,
that in the classical formulation the direction of yield is normal to yield surface and p can be written as

p =
∂F
∂σ

(∣∣∣∣
∣∣∣∣ ∂F
∂σ

∣∣∣∣
∣∣∣∣
)−1

. (16)

It is also well known, that Equations (16) and (15) indicate that the viscoplastic strain is coaxial
with the deviatoric stress tensor (associated flow). As a result, the volume change can occur in the range
of elastic deformations only. For modern materials such as metal-matrix composites, this assumption
is no longer valid. Therefore, the constitutive model should be modified to capture this phenomenon.

The fractional approach assumes the application of the RC operator to p definition [18]. In such a
case, Equation (16) is generalized to the form

p = DαF ||DαF||−1 , (17)

where Dα stands for the RC operator (see Equation (8)). It is worth noting that the proposed formulation
of p introduces the anisotropy of viscoplastic flow and furthermore (due to non-associativity) develops
a tool to control the volume change in the plastic range of material behaviour [18]. Another essential
remark is that Equation (17) introduces explicit stress-fractional non-locality in the overall model. It is
important that the thermodynamic restrictions are formulated in a standard manner, and because of
complicated structure of Equation (17) they are checked incrementally in the numerical procedure
(see [29] for a detailed discussion).

3. Implementation

Introduction of the three-dimensional fractional viscoplastic model requires a numerical procedure
that governs the solution. Since our considerations are focused on extreme dynamic processes,
the explicit time integration was chosen for finite element method. Therefore, the ABAQUS/Explicit
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code was utilized together with the user subroutine VUMAT. The critical steps of the implementation
are presented below.

In the first step, Hooke’s law is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2G + λ λ λ 0 0 0

λ 2G + λ λ 0 0 0

λ λ 2G + λ 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

2ε23

2ε13

2ε12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)

where G = E/2(1 + ν) and λ = Eν/(1 + ν)(1 − 2ν) are elastic constants and E and ν denote Young’s
modulus and Poisson’s ratio, respectively. Next, because of application of the HMH yield criterion,
the yield function in a matrix form is as follows

F(σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1
2 − 1

2 0 0 0

− 1
2 1 − 1

2 0 0 0

− 1
2 − 1

2 1 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 3κ2 = 0. (19)

Afterwards, the increment of viscoplastic strain (see Equations (13) and (17)) can be written in
the form

Δεvp = ΔtΛp = ΔtΛ

{
D
σ11

αF D
σ22

αF D
σ33

αF D
σ23

αF D
σ13

αF D
σ12

αF
}T

||DαF|| , (20)

where (cf. [28])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p11

p22

p33

p23

p13

p12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(33) − 1
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(33) kM
(33) 0 0 0

0 0 0 3kM
(23) 0 0

0 0 0 0 3kM
(13) 0

0 0 0 0 0 3kM
(12)

⎞
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ23

σ13

σ12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kQ
(11)

kQ
(22)

kQ
(33)

3kQ
(23)

3kQ
(13)

3kQ
(12)
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

Symbols in Equation (21) denotes

kM
(ij) =

Γ(2)
Γ(2 − α)

[(
ΔL
(ij)

)1−α
+

(
ΔR
(ij)

)1−α
]

, (22)

kQ
(ij) =

(
Γ(2)

Γ(2 − α)
− 1

2
Γ(3)

Γ(3 − α)

) [(
ΔR
(ij)

)2−α −
(

ΔL
(ij)

)2−α
]

, (23)
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ΔL =

(
ΔL
(11) ΔL

(22) ΔL
(33) ΔL

(23) ΔL
(13) ΔL

(12)

)T
, (24)

and

ΔR =

(
ΔR
(11) ΔR

(22) ΔR
(33) ΔR

(23) ΔR
(13) ΔR

(12)

)T
, (25)

where
a(ij) = σij − ΔL

(ij), b(ij) = σij + ΔR
(ij). (26)

Terminals a(ij), b(ij) are needed to define the partial fractional derivatives in Equation (17) that
enforce the directional nature of the fractional viscoplastic flow–the subscripts L and R corresponds
to the left and the right Caputo derivatives, respectively. In addition, by introducing sections that
extend the calculation beyond the material point, a virtual neighbourhood is obtained that results in a
non-locality in a stress state.

The interpretation of the virtual surrounding in a stress state depends on the specific material
(see [28]), but in general it could be understood as a (homogenized) phenomenological measure
of some instability, e.g., for metallic materials it is connected with dislocation nucleation [32–34],
nucleation of voids [35] or breakup of grains [36–38] (see review paper [39]). By way of illustration,
Figure 1 shows the cross-section of this virtual neighbourhood in the σ2 − σ3 plane.

Figure 1. Virtual surrounding of a material point.

The analysis of Equation (21) shows differences in relation to the classical viscoplasticity where
the change in volume may only occur in the elastic range—in the classical case, the trace of the p tensor
equals 0. This condition is abandoned in the fractional formulation (when α ∈ (0, 1)), thus explicitly
providing a tool to control the evolution of volume in the plastic range through α and parametric
vectors ΔL and ΔR. Moreover, the versatility of the fractional approach is proven for α = 1, for which
the associated plastic flow as a special case is obtained.

Finally, the flowchart was formulated that presents the general calculation scheme for the
elasto-viscoplastic material in the framework of the fractional viscoplastic flow rule for explicit time
integration in VUAMT subroutine (see Figure 2). The VUAMT subroutine aims at determination of
the values of Cauchy stresses and updating strains and internal variables at time tn+1 based on the
knowledge of these parameters at the previous moment tn. The procedure starts with the calculation
of the elastic trial stress, which is later used to establish the value of the yield criterion. If this criterion
is fulfilled, the plastic multiplier Λ and the direction of plastic flow p are calculated according to the
flow rule; otherwise the elastic step is conducted.
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Given parameters: E, ν, κ, Tm, m

Δεn+1, σn, εn = εe
n + ε

vp
n

Δσtrial
n+1 = LeΔεn+1

σtrial
n+1 = σn + Δσtrial

n+1

J2

(
σtrial

n+1

)
> κ

Λn = 0

Δε
vp
n = 0

No (elasticity)

ε
vp
n+1 = ε

vp
n

εe
n+1 = εe

n + Δεn+1

= εe
n + Δεe

n+1

σn+1 = σtrial
n+1 = Leεe

n+1

Λn = 1
Tm

〈√
J2(σn)

κ − 1
〉m

pn = Mσn + q

Δε
vp
n = ΔtΛnpn ||pn||−1

Yes (plasticity)

ε
vp
n+1 = ε

vp
n + Δε

vp
n

εe
n+1 = εe

n + (Δεn+1 − Δε
vp
n )

= εe
n + Δεe

n+1

σn+1 = Leεe
n+1

Figure 2. VUMAT subroutine flowchart for the fractional viscoplastic rule.

4. Parametric Study: Uniaxial Tension

4.1. Description of the Numerical Experiment

The conducted parametric study is focused on the material point level represented by a unit cube
with dimensions of 1 × 1 × 1 mm discretized by a single finite element C38DR (linear, eight-node brick
with reduce integration). The boundary conditions required to achieve uniaxial constraints are shown
in Figure 3. Basic mechanical properties were assumed as for the carbon steel, therefore the elastic
range was characterized by Young’s modulus E = 205 GPa and Poisson’s ratio ν = 0.27. The fractional
flow rule presented in Section 2 was applied in the plastic range. The static yield stress in simple shear
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for the selected material was κ = 605 MPa. Other material parameters, depending on the studied case,
were chosen as described below.

Figure 3. Unit cubic model restricted to uniaxial tension.

The analyzed cases of fractional flow were divided into two groups to show how various
combinations of model parameters influence plastic deformation. The first group is focused on the
value of the stress-fractional non-locality spread (ΔL,R) and the order (α) of the fractional flow. In the
second group, the influence of the material parameters Tm and m under various speeds of the imposed
displacement is closely studied. Anticipating the anisotropic behaviour of the fractional material model,
these two groups were further subdivided according to the direction where the dominant viscoplastic
flow was expected. Hence, two cases were formed for tension direction (ΔL,R

22 = 0.005κ ≈ 3.0 MPa)
and direction perpendicular to tension (ΔL,R

11 = 0.005κ ≈ 3.0 MPa). In each of those cases, other values
of the Δ were set to 0.0017κ ≈ 1.0 MPa.

Two kinds of plots were used to present the results of the parametric study. The first kind
exemplify the relation between three normal strains ε11, ε22, ε33. The second type shows the stress–strain
relation in the tension (2) direction (it should be pointed out that for this kind of plots, a ‘softening’
is observed, especially for highest tension velocities, however, this effect is due to the lateral stresses
induced by the inertia effects and is not due to constitutive model κ = const. See Figure 4, where this
effect is negligible due to relatively small tension velocity v = 1 m

s ). The research on influence of the
fractional derivative order was performed for a set α ∈ {0.1, 0.25, 0.5, 0.75, 0.99, 1.0}—as mentioned
earlier, fractional generalization of the viscoplasticity reduces to the classical solution for α = 1.
The study of Tm and m was conducted for three different velocities of tension, i.e., v = 1, 25 and 50 m

s .

90



Symmetry 2018, 10, 282

Figure 4. Influence of the order α and the value of material parameter Δ22 on the stress–strain relation,
for: v = 1 m

s , Tm = 2.5e-6 s, m = 1.

4.2. Influence of the Order of FV and Non-Locality in a Stress State on Plastic Flow

4.2.1. Study of Intensified Plastic Flow in Tension Direction for Different Orders of Flow

Figure 4 presents the material response to the applied tension velocity of v = 1 m
s for different flow

intensities in tension direction and flow orders. Increasing the flow intensity parameter (ΔL,R) causes
higher evolution of the plastic flow in the chosen direction but in this case the velocity of the load is not
sufficient to reveal different behaviour in the stress–strain relation for different values of α (see Figure 4).
Next, for the same configuration of material parameters higher velocity is applied, namely v = 25 m

s .
At this speed (Figure 5), a slight waveform begins to be visible for ΔL,R

22 = 1.0 MPa. The amplitude of
the stress signal increases with the increases ΔL,R

22 . Additionally, the influence of α is shown because
the decrease in its value translates into greater amplitude of oscillations. So, we conclude that both
fractional parameters, control the dynamic properties of a fractional model.

Figure 5. Influence of the order α and the value of material parameter Δ22 on the stress–strain relation,
for: v = 25 m

s , Tm = 2.5e-6 s, m = 1.
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4.2.2. Study of Intensified Plastic Flow Perpendicular to the Tension Direction for Different Orders
of Flow

Results presented in this section were obtained for a parameter set similar to this in Section 4.2.1
with the difference that flow intensity is increased in the direction perpendicular to tension,
namely ΔL,R

11 = 3.0 MPa. Others components of vectors in Equations (24) and (25) equal 1. As in the
discussion in the previous section, the tension velocity of v = 1 m

s is insufficient to reveal the influence
of α on the stress–strain relation (see Figure 6). However, Figure 7 shows that the material prefers to
deform in (1) direction when the magnitude of ΔL,R

11 growths, hence the ε11/ε33 ratio is greater then 1.
Moreover, the intensity of the flow in the preferred direction increases as the value of α diminishes to 0.
Next, as before, the velocity is increased to v = 25 m

s . Figure 8 shows that when the value of ΔL,R rises,
greater amplitude of the oscillation and hardening of the material can be observed. This last effect
is inversely proportional to the order of the fractional flow. The relation between ε11, ε22 and ε33 is
presented in Figure 9 and is very similar to Figure 7 with the only distinction that slight oscillation
occurs as a result of higher velocity. So, we conclude that both fractional parameters control the
anisotropic properties of a fractional model in the plastic range.

Figure 6. Influence of the order α and the value of material parameter Δ11 on the stress–strain relation,
for: v = 1 m

s , Tm = 2.5e-6 s, m = 1.

Figure 7. Influence of the order α and the value of material parameter Δ11 on the relation between
three normal stresses, for: v = 1 m

s , Tm = 2.5e-6 s, m = 1.
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Figure 8. Influence of the order α and the value of material parameter Δ11 on the stress–strain relation,
for: v = 25 m

s , Tm = 2.5e-6 s, m = 1.

Figure 9. Influence of the order α and the value of material parameter Δ11 on the relation between
three normal stresses, for: v = 25 m

s , Tm = 2.5e-6 s, m = 1.

4.3. Influence of the Relaxation Time and the Overstress Power

4.3.1. Study of the Fractional Flow Under Different Dynamic Loading Rates for Intensified Plastic Flow
in Tension Direction

Here we assume that the intensified plastic flow, determined by ΔL,R
22 = 3.0 MPa, is in

tension direction. Figure 10 presents the effect of different relaxation times for various velocities
of tension. It should be pointed out that in order to increase clarity of interpretation both the classical
(α = 1) and the fractional (α = 0.75) solutions are compared on each graph. As can be seen, when the
relaxation time grows, the hardening of the material as well as the stress waves oscillations increase.
The latter is especially pronounced for the relaxation time Tm = 2.5e-5 s.
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Figure 10. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, m = 1, Δ22 = 3.0.

Figure 11 presents the result of increasing the value of the overstress parameter m. For the
fractional (α = 0.75) viscoplastic material the stress level is smaller in relation to the classical (α = 1.0)
viscoplastic solution (Figures 10 and 11).

Figure 11. Influence of the material parameter m and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, Tm = 2.5e-6 s, Δ22 = 3.0.

Results discussed above indicate that the relaxation time and overstress power, together with
fractional parameters, control the level of strain rate hardening and stress waves oscillation amplitude.

4.3.2. Study of the Fractional Flow Under Different Dynamic Loading for the Intensified Plastic Flow
Perpendicular to the Tension Direction

In this section, it is assumed that fractional flow is intensified in the direction perpendicular to
tension load (ΔL,R

11 = 3.0 MPa). Figure 12 shows that raising relaxation time causes similar effects to
those discussed in the previous section. The biggest change occurs for the relaxation time Tm = 2.5e-5 s
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both in the stress level and the stress wave oscillations frequency. In Figure 13 a clear anisotropy of the
plastic deformation for α = 0.75 can be noticed. As before, it is observed that increasing the value of
m causes a growth in the material strain hardening without any apparent influence on the frequency
of the stress wave (see Figure 14). By analogy to what is presented for Tm, in Figure 15 the dominant
nature of ε11 can be observed, in addition to more pronounced oscillations for greater values of m.
The analysis of the σ − ε relation for α = 1 and α = 0.75 also revealed that the stress levels of the
fractional model are generally greater than for the classical solution (see Figures 12 and 14). This last
observation is different from what was discovered in the previous section.

Figure 12. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, m = 1, Δ11 = 3.0.

Figure 13. Influence of the relaxation parameter Tm and the value of applied velocity field v on the
relation between three normal stresses, for: α = 0.75, m = 1, Δ11 = 3.0.

In conclusion, as before, a prominent influence of the relaxation time and overstress power,
together with fractional parameters, on the level of strain rate hardening and stress waves oscillation
amplitude is observed. Additionally, the impact on dynamic properties of deformation anisotropy for
fractional material was confirmed.
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Figure 14. Influence of the material parameter m and the value of applied velocity field v on the
stress–strain relation, for: α = 0.75, Tm = 2.5e-6 s, Δ11 = 3.0.

Figure 15. Influence of the material parameter m and the value of applied velocity field v on the relation
between three normal stresses, for: α = 0.75, Tm = 2.5e-6 s, Δ11 = 3.0.

4.4. Study of the Disperse Character of the Fractional Viscoplastic Stress Waves

The last study performed was the analysis of the disperse character of the fractional viscoplastic
stress waves. As shown in the previous sections, the uniaxial dynamic deformation induces a
stress waves. The regularity of the oscillations was determined by averaging intervals between
peaks and then calculating the frequency. Table 1 lists the stress wave frequencies for ΔL,R

22 = 3.0 MPa
and ΔL,R

11 = 3.0 MPa, which were depicted in the middle graphs of Figures 10 and 12. The material
parameter ΔL,R does not appear in the classical viscoplasticity, so there is no change in the stress wave
frequency for various values of this parameter when α = 1, thus tension velocity is only important.
However, for fractional material, i.e., when α = 0.75, both flow intensity parameters and tension
velocities modulate the frequency of stress waves. For α = 0.75 the frequencies are higher when the
distinguished direction is co-linear with tension (Δ22 = 3.0 MPa).
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Table 1. The stress wave frequencies for Tm = 2.5e-6 s, m = 1

Δ22 = 3.0 Δ11 = 3.0

v = 25 m
s

α = 1 2.085 MHz 2.085 MHz

α = 0.75 2.108 MHz 1.996 MHz

v = 50 m
s

α = 1 2.073 MHz 2.073 MHz

α = 0.75 2.157 MHz 2.028 MHz
.

The results presented in Table 2 correspond to the investigation of the role of the relaxation time
and overstress power discussed in Section 4.3. Regardless of the value of α, the largest change in
frequency can be observed between columns 2 and 3, that is for Tm = 2.5e-6 s and Tm = 2.5e-5 s.
The comparison of the values in columns 1 (Tm = 2.5e-7 s) and 2 (Tm = 2.5e-6 s) shows that the stress
wave frequencies are the same or very similar. The impact of m shows that the significant influence of
this parameter was only recorded for Tm = 2.5e-5 s. For both α = 0.75 and α = 1 the increase of the
overstress power results in the increase of the frequency of the stress wave.

Table 2. The stress wave frequencies for Δ22 = 3.0 MPa, v = 50 m
s

Tm

2.5e-7 2.5e-6 2.5e-5

m = 1
α = 1 2.073 MHz 2.073MHz 2.274 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.288 MHz

m = 2
α = 1 2.073 MHz 2.085 MHz 2.182 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.207 MHz

m = 3
α = 1 2.073 MHz 2.085 MHz 2.169 MHz

α = 0.75 2.157 MHz 2.157 MHz 2.182 MHz
.

One concludes that the relaxation time and overstress power, together with fractional parameters,
control the dispersive character of stress waves, and even more, makes this attribute directional.

5. Conclusions

The analysis of the dynamic properties of the Perzyna model of viscoplasticity (implicit time,
non-local) generalized using fractional calculus (explicit, stress-fractional, non-local) leads to the
following conclusions:

• Fractional viscoplasticity introduces an additional set of material parameters, namely flow order
α and virtual stress state surrounding Δ.

• Fractional parameters α and Δ control the dynamic properties of the fractional model,
especially hardening, the character of the stress waves, and plastic anisotropy.

• The direction of the flow vector is controlled by Δ, which in general leads to non-normality of
plastic flow.

• As in the classical Perzyna model, the relaxation time Tm and the overstress power m affect the
strain rate hardening and the character of the stress waves.
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• Induced plastic anisotropy of the fractional model should be regarded not only in the classical
sense as directional deformation but also as directional viscosity, which results in directional
dispersive character.

The above results are fundamental from the point of view of modeling strain localization and
damage phenomena. Both these aspects will serve as a base for future studies.
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