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The Application of Hierarchical Clustering to Power Quality Measurements in an Electrical
Power Network with Distributed Generation
Reprinted from: Energies 2020, 13, 2407, doi:10.3390/en13092407 . . . . . . . . . . . . . . . . . . . 39

Alexander Vinogradov, Vadim Bolshev, Alina Vinogradova, Michał Jasiński,
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Preface to ”Signal Analysis in Power Systems”

This issue is devoted to reviews and applications of modern methods of signal processing

used to analyze the operation of a power system and evaluate the performance of the system in all

aspects. Monitoring capability with data integration, advanced analysis of support system control,

and enhanced power security are the key issues discussed in the paper “Analysis of the Power Supply

Restoration Time after Failures in Power Transmission Lines”. Advanced statistical analysis of the

power system is presented in papers “Combined Cluster Analysis and Global Power Quality Indices

for the Qualitative Assessment of the Time-Varying Condition of Power Quality in an Electrical Power

Network with Distributed Generation” and “The Application of Hierarchical Clustering to Power

Quality Measurements in an Electrical Power Network with Distributed Generation”, demonstrating

the cutting-edge developments in this emerging area. The relatively new concept of virtual power

plants, related to ongoing research in cooperation with industrial partners from the energy sector

is presented in the paper “A Case Study on Distributed Energy Resources and Energy-Storage

Systems in a Virtual Power Plant Concept: Technical Aspects”. New concepts of photovoltaic energy

forecasting complete the issue with the paper “Forecasting Solar PV Output Using Convolutional

Neural Networks with a Sliding Window Algorithm”.

Zbigniew Leonowicz

Editor

ix





energies

Article

Forecasting Solar PV Output Using Convolutional
Neural Networks with a Sliding Window Algorithm

Vishnu Suresh * , Przemyslaw Janik , Jacek Rezmer and Zbigniew Leonowicz

Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland;
przemyslaw.janik@pwr.edu.pl (P.J.); jacek.rezmer@pwr.edu.pl (J.R.); zbigniew.leonowicz@pwr.edu.pl (Z.L.)
* Correspondence: vishnu.suresh@pwr.edu.pl

Received: 25 December 2019; Accepted: 5 February 2020; Published: 7 February 2020

Abstract: The stochastic nature of renewable energy sources, especially solar PV output, has created
uncertainties for the power sector. It threatens the stability of the power system and results in
an inability to match power consumption and production. This paper presents a Convolutional
Neural Network (CNN) approach consisting of different architectures, such as the regular CNN,
multi-headed CNN, and CNN-LSTM (CNN-Long Short-Term Memory), which utilizes a sliding
window data-level approach and other data pre-processing techniques to make accurate forecasts.
The output of the solar panels is linked to input parameters such as irradiation, module temperature,
ambient temperature, and windspeed. The benchmarking and accuracy metrics are calculated for 1 h,
1 day, and 1 week for the CNN based methods which are then compared with the results from the
autoregressive moving average and multiple linear regression models in order to demonstrate its
efficacy in making short-term and medium-term forecasts.

Keywords: convolutional neural networks; multi-headed CNN; CNN-LSTM; forecasting; solar
output; sliding window; renewable energy

1. Introduction

Global efforts to keep the increase in average temperature below 2 ◦C, with the possibility of
keeping it lower than 1.5 ◦C, was agreed upon in the Paris agreement of 2015. In the recent “Climate
action and support trends—2019” report, it was mentioned that current greenhouse gas emission levels
and reduction efforts are not in line with meeting the targets that were set out [1].

Due to such environmental concerns and ambitious targets, there has been an increasing penetration
of renewable energy sources in the power sector, especially in the form of solar photovoltaic panels. One
of the biggest concerns connected with solar energy is its stochastic nature and variability, which threatens
grid stability. A well-known approach to mitigate such uncertainty is the use of accurate forecasts [2].

The motivation for this study is the need to build a forecasting algorithm for a stochastic energy
management system for the microgrid present at the Wroclaw University of Science and Technology.
The microgrid currently employs a system that is deterministic, but, considering the stochastic nature
of the solar panels, it was considered necessary. Convolutional neural network-based architectures
used in forecasting are mainly used to study images of the sky, as explained later, and are used in
tandem with statistical techniques for forecasting. This microgrid facility does not possess a device
to record images of the sky but a deep learning approach to forecasting was decided upon. Hence,
a data level approach using the sliding window algorithm for forecasting was adopted and the results
were analyzed.

The area of forecasting is widely researched and is an age-old concept, aiming to predict solar PV
outputs, wind turbine power outputs and loads in an electrical power system. A short literature review
reveals numerous approaches, some of which are described as follows. In [3], short-term forecasts
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for PV outputs were obtained using Support Vector Regression models wherein the parameters of
the models were optimized using intelligent methods, such as the Cuckoo Search and Differential
Evolution algorithms. In this study, the authors had used data from an inhouse rooftop solar PV unit
at Virginia Tech. In [4], multiple linear regression was employed to make forecasts for solar energy
output. This study had used extensive data obtained from the European Centre for Medium-Range
Weather forecasts, including as many as 12 independent variables. The study described in [5] presents
a generalized fuzzy logic approach in order to make short-term output forecasts from measured
irradiance data. The input data in this case was for one particular month (October 2014) and the inputs
and outputs were normalized within a range of 0.1–0.9. A comprehensive review and analysis of
different methods and associated results regarding the forecasting of solar irradiance and solar PV
output is presented in [6].

With regard to the application of Convolutional Neural Networks (CNN) for solar PV output
forecasts, there is little available literature. One of the approaches as seen in [7,8] is to use a combination
of historical data and sky images. The sky images are crucial in order to capture the effect clouds
have on PV output. The study described in [8] used a total sky imager, which provides images of the
sky and could, whereas [7] used videos recorded by a 6-megapixel 360 degrees fish eye camera by
HiKvision. Other approaches, which do not use images but only historical data, have adjusted the
CNN in such a way that it is able to deal with time series data. CNN is, in fact, a machine learning tool
that is explicitly used for image detection and classification but based on the method by which data is
processed, its ability to understand non-linear relationships between the inputs and outputs can be
leveraged for time series data. A hybridized approach where CNN is used for pattern recognition and
then a long short-term memory network is used for prediction is seen in [9] and then this framework
is applied for 30 min ahead forecasting of global solar radiation. In [2], a method in which suitable
data processing is applied before training the CNN is presented. In this case, the time series data is
split into various frequencies through variational mode decomposition and it is then converted into a
2D data form that is extracted by convolutional kernels. Finally, the approach used in [10] proposes
another hybrid method in which a chaotic Genetic Algorithm/Particle Swarm Optimization is used to
optimize the hyper parameters of the CNN, which is then used to make solar irradiance prediction.

This paper’s forecasting approach is to be applied in developing a stochastic energy management
system for microgrids. Hence, a few contributions in this regard are as follows: p A comprehensive
review about weather forecasts, forecast errors, data sources, different methodologies used, and their
importance in microgrid scheduling is described in [11]. The focus has been kept on wind energy
forecasts, solar generation, and load forecasts. Another popular approach for forecasts using the
ARMA (Autoregressive moving average) model, especially for load forecasting followed by solving
a microgrid unit commitment problem, is described in [12]. An advanced forecasting method using
artificial neural networks, support vector regression, and random forest followed by incorporation
into a Horizon 2020 project involving several countries has been described in [13].

This paper utilizes a sliding window approach in order to prepare data in such a way that it can
be used to train the CNN with historical data and make accurate predictions.

2. Forecasting Models, Data Processing, and Evaluation Metrics

2.1. Forecasting Models

The data for this study comes from a PV panel installed at a university building of the Wroclaw
University of Science and Technology. It is a part of a power plant with a peak power capacity of 5 kW.
The input measurements are obtained from associated sensors and are Irradiation (W/m2), Wind speed
(m/s), Ambient temperature (◦C), and PV Module Temperature (◦C). The output of the panel (W) and
all inputs are measured in a 15 min window. The forecasting is also done in steps of 15 min intervals.

The inputs were chosen according to the recommendations of the IEA (International Energy Agency)
report on “Photovoltaic and Solar Forecasting” [14] and other reliable sources [15]. The evaluation and
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benchmarking techniques to be used for the forecasts were also taken from [14–16] in order to establish
the reliability of the results of this study. The metrics are discussed in detail further on.

The structure of the CNN model is shown in Figure 1.
The CNN is a specialized neural network that is explicitly used for image recognition. In such

cases, the input images are represented as a two-dimensional grid of pixels. In order to use CNNs for
time series data, a 1-D structure is more appropriate. Taking the example of the input time series data
used in this study, it is a 175,200 × 4 matrix. The length (number of rows) represents the time step
of the input data, whereas the columns (Irradiation, Wind Speed, Ambient temperature, PV Module
Temperature) represent the width. This can be equated to the height and width of the pixels that are
used as the input data for training CNNs for image recognition.

For efficient and quick training of all networks, the min–max scaling algorithm was used. This is
necessary since the distribution and scale of the data varies for every variable. Moreover, the units of
measurement for every variable are also different, which could lead to large weight values, and models
assuming such large weight values often perform poorly while learning and are sensitive to changes in
input values [17]. It was applied to normalize the data within the range of [0,1]. The formula for the
same is described in (1).

xi −min(x)
max(x) −min(x)

(1)

Input Data 

Convolutional layer 
consisting of 4  filters for 4 

parameters 
Max pooling layer Flattening layer

Dense neural network 
connection 

Output

Figure 1. Convolutional Neural Network (CNN) structure.

The convolutional layer that follows input data processing is responsible for feature extraction [18].
The layer is made up of as many filters (neurons) as there are variables (4). These filters carry out
convolution, which, by definition, is a function that is applied to the input data to obtain specific
information from it. These filters are moved across the entire input data in a sliding window-like
manner. In case of 2-D images the sliding window is moved horizontally and vertically but since this
study employs a 1-D data the window is made to move vertically. The function used in this case is
the Rectified Linear Activation Function (RLAF), which is described below, and the sliding window
algorithm is described later.

The RLAF is a function that behaves like a linear function but is actually non-linear in nature,
which enables the learning of complex relationships in the input data. It is widely used and can be
defined in an easy manner. When the input is greater than 0.0, the output value remains the same as
the input value, whereas if the input is less than 0.0 the output is 0.0. Mathematically, it is defined as:

g(z) = max {0, z} (2)

where z is the input value and g is the RLAF function. The advantage of this function includes
computational ease, sparsity, and the ease of implementation to neural networks due to its linear
behavior despite non-linearity [19].

The output of the filters in the convolutional layers are called feature maps. The feature maps
hold relationships and patterns from the input data. These feature maps from each filter put together
complete the convolutional layer. This layer is followed by the pooling layer, the objective of which is
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to reduce the feature maps of the convolutional layer (it summarizes the features learnt in the previous
layer). This is done in order to prevent overfitting. It also reduces the size of the input data, which
results in increased processing speeds and reduced memory demand. While there are numerous
pooling functions, such as max, average, and sum [18], this study employs the max function, hence the
max pooling layer.

The flattening layer succeeding the max pooling layer converts the output into a 1-D input vector
that can be given to the dense or fully connected layer. The dense layer in this case is a regular neural
network that has a non-linear activation function.

The model in this case is fit by the Adam optimization algorithm. The advantage of using this
optimizer is that the learning rate is adjusted as the error is reduced.

It is in fact a combination of two well-known extensions of stochastic gradient descent, which are
the Adaptive gradient algorithm (AdaGrad) and Root mean square propagation (RMSProp). Adam is
discussed in detail in [20].

The second CNN structure used in this study is the multi-headed CNN. This approach involves
handling every input series by its own CNN. This approach has shown some flexibility. While there is
no significant proof in the literature behind the advantages of multi-headed CNN over the regular
CNN using multiple filters, a multi-headed CNN with 3 convolutional 2-D nets has been used for
enhanced image classification as shown in [21]. This paper uses a similar, yet different, architecture.
The structure of the multi-headed CNN is shown in Figure 2.

Input Data 

4 x Max pooling 
layer

Concatenation

Dense neural network 
connection 

Output

4 x CNN for
 4 inputs

4 x Flattening 
layer

Figure 2. Multi-headed CNN structure.

In this study, as described in Figure 2, the multi-headed CNN has 4 CNNs, one for each input.
This is followed by 4 max pooling layers and then by 4 flattening layers, and then the results from
these layers is combined before the information is fed to the dense neural network, which makes the
final prediction.

The third approach for forecasting is the CNN-LSTM (CNN-Long Short-Term Memory) network.
Recently, the CNN-LSTM has been implemented in many areas for time series predictions. Study [22]
presents a problem where water demand in urban cities is predicted. The correlation between water
demand and changes in temperature and holiday periods is obtained using CNN-LTSM networks, and
an improvement in predictions was observed. Similarly, an improvement in weather predictions was
demonstrated in [23] by using such a hybrid CNN-LSTM architecture.
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The LSTM is in fact an RNN (Recurrent neural network), which is efficient in working with time
series data and is known to be a powerful tool for classification and forecasting associated with time
series data. The uniqueness of LSTM comes from the memory cell, which behaves as a collector of
state information. Whenever new information is obtained if the input gate is triggered it will be
accumulated in the cell and past information would be forgotten if the forget gate is triggered. The
latest cell obtained in such a process would be propagated to the final stage only if the output gate
is triggered. This kind of cell behavior prevents the gradients trapped in the cell from vanishing
quickly and is characteristic of LSTM, which makes it better suited to handle time series data and make
predictions compared to other RNN structures [24].

The advantage of using a hybrid CNN-LSTM architecture is that the CNN is used to extract
features from the raw input time series and then these features are given as an input to the LSTM,
which is efficient with time series data.

Figure 3 provides the CNN-LSTM architecture. It can be noticed that, overall, the structure is
similar to the CNN structure in Figure 1, with the exception of the LTSM layer, which enables the
whole network to process the time series data more efficiently.

Input Data 

Convolutional layer 
consisting of 4  filters for 4 

parameters 

Max pooling 
layer

Flattening 
layer

Dense neural network 
Output 

Output

LSTM

Figure 3. CNN-LSTM structure.

In order to provide a benchmark with an established technique for forecasting, the ARMA model
is proposed. The ARMA model is utilized mainly for stationary time series data. In this method,
the predicted variable is calculated on the basis of a linear relationship with its past values [25,26].
In cases when the data is non-stationary and has seasonal characteristics, as will be explained in the
next section, it has to be transformed into a stationary one before an ARMA model is fit. The model
consists of two parts, AR (Autoregressive) and MA (Moving Average), and is defined as ARMA (m, n)
where m, n represent the orders of the model.

y
′AR
t =

m∑
i=1

∅ixt−i + ωt = ∅1xt−1 + ∅2xt−2 + . . .+ ∅mxt−m + ωt (3)

y
′MA
t =

n∑
j=0

θ jωt− j = ωt + θ1ωt−1 + θ2ωt−2 + . . .+ θnωt−n (4)

y
′ARMA
t =

m∑
i=1

∅ixt−i +
n∑

j=0

θ jωt− j (5)

where y
′AR
t , y

′MA
t , and y

′ARMA
t represent the time series values of the autoregression (AR), the Moving

average (MA), and the Autoregression moving average (ARMA), respectively. ∅i is the autoregressive
coefficient and θ j is the moving average coefficient. ωt is the noise.

The autoregressive (AR) part involves representing the current value as a result of a linear
combination of the previous values and the noise ωt. It is represented in Equation (3). The Moving
average part is a combination of previous individual noise components, which is used to create a time
series, as shown in Equation (4). ARMA is a combination of both AR and MA [27].
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The parameters of the model m and n are chosen on the basis of an auto correlation function
(ACF) and a partial auto correlation function (PACF). The ACF provides a correlation between a value
of a given time series with past values of the same series, whereas the PACF provides a correlation
between a value of the time series with another value at a different lag. If the ACF is reduced to a
minimum value after a few lags and PACF depicts a large cut-off after the initial value, the time series
is said to be stationary. This is then finally confirmed by the Augmented Dickey Fuller (ADF) test,
which is explained in [25]. A confidence level of 95% is assumed for this study, hence a p-value of less
than 0.05 is a confirmation of stationarity.

The analysis of the time series data according to the ACF, PACF, and ADF, in addition to its
conversion to a stationary time series followed by the fitting of an ARMA model, is discussed in the
next section.

Finally, the same data is also fit with a linear regression model. The linear regression model is
explained below. A comprehensive study on the use of linear regression along with an improved
model for hourly forecasting can be found in [28].

Y = βo + β1X1 + β2X2 + . . .+ βkXk + ε (6)

where Y is the dependent variable, Xk are the independent variables, β0 is the constant term, βk is the
coefficient corresponding to the slope of each independent variable, and ε is model’s error, also known
as residuals

2.2. Data Processing (Sliding Window)

While using the sliding window data processing approach for CNNs, a time series dataset is split
as follows. The input data column is split into vectors consisting of an equal number of time steps.
So, assuming the input data has 10 time steps, it is split into 5 vectors consisting of 2 time steps each.
Then, these vectors are mapped to a label that is an output value from the training data. In this way, 5
vectors are mapped to 5 output values and 5 values are dropped, resulting in a reduced computational
burden during the training of the model. The algorithm for the sliding window approach is presented
in Algorithm 1.

Algorithm 1 sliding window

Procedure Variables (X, V, t)
i = 0, n = 0; # number of windows = n
K = []; # K is the set of windows extracted
While i + V ≤ length (X) do #V is the length of the sliding window
K[n] = X [i . . . . (i + V – 1)};
i = i + t; n = n + 1;
end While

return F
end Procedure

While a general definition of the sliding window algorithm is presented here, every CNN model
needs data to be prepared according to its structure. The sliding window for the CNN model in this
study is applied to multivariate (the presence of more than one variable for every time step) time series
data. In this case, every window determined by the algorithm has 2-time steps and its associated
variables mapped to one output. The multi-headed CNN has 4 convolutional layers for every available
input variable, hence the input time series is split into 4 univariate (one variable per time step) time
series for each convolutional layer. Then, the sliding window algorithm is applied to each univariate
series, and every window determined by the algorithm has 2-time steps and its associated variable
mapped to an output.

6



Energies 2020, 13, 723

The CNN-LSTM model reads input data in a different manner. In this case, the first step involves
the application of the sliding window, where every window determined has 4-time steps, and then it is
reshaped into 2 sub sequences containing associated variables and is mapped to outputs. The window
is applied to a multivariate time series data.

2.3. Evaluation Metrics

The evaluation metrics chosen for this study were chosen based on recommendations of studies
and reports in the field of solar PV output forecasting [6,14]. The metrics are the Root Mean Square
Error (RMSE), Mean absolute error (MAE), and Mean Bias Error (MBE). RMSE is a metric that is widely
used in forecast studies. According to [29], it is suitable for such data since it has the tendency to
punish the largest errors with the largest effect, which the MAE and the MBE are unable to do. MAE is
calculated as the average of the forecast errors. The MBE also calculates the average forecast errors but
does not take in the absolute magnitude alone, this gives information regarding whether the model
has a tendency to over or under forecast. The metrics are as follows:

RMSE =
√

MSE =

√√√
1
N

N∑
i=1

e2
i (7)

MAE =
1
N

N∑
i=1

|ei| (8)

MBE =
1
N

N∑
i=1

ei (9)

ei = yi( f orecast) – yi(observed) (10)

where yi( f orecast) and yi(observed) represent the forecasted and observed observations at the ith time step.
ei is the error at ith time step. i = 1, . . . . . . , N represents all the time steps within the data.

The evaluation metrics presented in the results section were calculated on the basis of original
data after normalized prediction values were converted back using the inverse of the min–max scaling
algorithm presented in Equation (1).

3. Results

All models were built on PYTHON using jupyter notebook. The deep learning tools that were
used are TensorFlow and KERAS where the models were assembled. Additionally, Sci-kit learn and
other basic Python libraries were used for data processing and data handling. The computer used
for this purpose was equipped with an Intel®Core™ i5-4210 U CPU@ 1.70 GHz 2.40 GHz processor
with an installed 8 GB of RAM operating Windows 10. It was also equipped with a 2048 MB GeForce
840M Nvidia graphics card. The training times for the CNN, Multi-CNN, and the CNN-LSTM models
were 1364 s, 1657 s, and 3534 s, respectively. All architectures used the same data stretching over
6 years for model training and were trained for 100 epochs. The ARMA and MLR models were fit quite
instantaneously, providing an advantage over the CNN based models with regard to the computational
cost involved in model fitting. Once the models are fit, they are quite easy to use for the purposes of
predictions. There is not any significant difference in terms of ease of usage amongst the statistical
and CNN based techniques. Both models would need re fitting from time to time in order to take into
account the changes in climate.

The data used for training the models were 6+ years’ worth of data recorded from 1 March 2012
up to 31 December 2018. The validation split (test/train split) used was 20%, meaning that 80% of
the data was used to train the CNN models and 20% was used to test them. The evaluation metrics
obtained for 1 h, 1 day, and 1 week for both summer and winter months were obtained by testing
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the model for the months of July and December in 2019, which was unknown to the training models.
There was no validation split for the MLR and ARMA models. They were fit on to the whole data and
were tested with the July and December data of 2019, same as for the CNN models.

Figure 4 represents the time series data used in this study for the ARMA model without the
validation split, it is quite evident that data has seasonality where the peaks in power output are
observed during the summer. Hence, the periodicity for this study would be taken as 12 months.
A look at the ACF with 20 lags indicates significant correlation. In fact, a clear pattern is visible when
the lags are further increased to 60 and above. The PACF of the data also does not show any large
cut-offs after the initial value hence the time series is non-stationary and has to be converted to a
stationary time series before the ARMA model is fit to the data.

Figure 4. Solar panel output data with an auto correlation function (ACF) and a partial auto correlation
function (PACF) analysis.

Figure 5 presents the differentiated time series. It can be seen from its characteristic that it fluctuates
around zero, which is a defining characteristic for a stationary signal. Furthermore, in comparison
with Figure 4, it can be seen that the ACF is not significant and also does not possess a trend, which
is also the case for the PACF. In both cases, there is a sharp cutoff at 12, indicating seasonality at 12,
which is in line with the selection of seasonality or periodicity at 12.

The ADF test made with the differentiated signal resulted in a p-value of 0.001, which confirms
that the signal is stationary. Now the ARMA model parameters can be determined since the ACF and
PACF are negligible beyond lag 2 therefore m and n could have a maximum value of 2. In this study,
the m and n are taken as 1 and 2 and the following ARMA model is obtained.

Table 1 presents the ARMA model parameters that are used to predict solar output values for an
hour, 1 day, and 1 week. The model ignores the constant value due to its high p-value. The evaluation
metrics for the model predictions are presented in Table 2, and a comparison of the predictions as a
result of model application with other methods is shown later on. Figure 6 presents the manner in
which an appropriate forecasting model is obtained by different CNN architectures used. Figure 6a
represents the loss value that is optimized in every epoch for the multi-headed CNN structure. It can
be observed that for this model there is not any improvement in reduction of the loss function over
many epochs of training. After an initial drop in the loss value it remains a constant, which means that
training the architecture for a small number of epochs is sufficient for an accurate model. Figure 6b
represents the loss value minimization for a simple CNN structure. In contrast to the multi-headed
CNN structure, the loss minimization is more gradual, yet in a small number of epochs, a satisfying
model is obtained. It has been noticed during several trials that, in the simple CNN structure, the loss

8



Energies 2020, 13, 723

minimization keeps improving up to a 1000 epochs and more. However, the improvement in forecast
accuracy is not significant vis-à-vis the time it takes to train the model for a high number of epochs.

Figure 5. Differentiated output with ACF and PACF analysis.

Table 1. Autoregressive moving average (ARMA) model Parameters.

Parameter Estimated Value p-Value

∅1 0.208 0.000
θ1 −0.125 0.000
θ2 −0.197 0.000

Constant term 0.000 1.000
Variance 0.107 0.000

∅1—AR coefficient 1, θ1—MA coefficient 1, θ2—MA coefficient 2.

 
(a) (b) 

Figure 6. Model fitting test and train loss minimization for (a) Multi-headed CNN (b) and Simple
CNN structure.

Figure 7 represents the loss value minimization for the CNN-LSTM architecture. In comparison
with Figure 6a,b, it can be observed that the model fitting takes slightly longer, yet it is completed with
sufficient accuracy within 20 epochs. The model keeps improving with an increasing number of epochs,
but it has been observed that, with a higher number of epochs (>500), the model tends to overfit with the
loss curves of the test and train the data crossing over one another. For comparison purposes, keeping in
mind the time for model fitting, 100 epochs was considered to be sufficient for all models.

9
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Figure 7. Model fitting test and train loss minimization for the CNN-LSTM network.

Table 2 presents the various metrics, as described in the previous section, which help understand
the accuracy of the forecasts. The metrics are calculated for one hour (h), 1 day (D), and 1 week (W) in
order to understand its consistency over the short and medium term. Table 2 is specifically for the
summer months and the week in question is the 1st week of July 2019.

Table 2. Forecast metrics for the short and long term during the summer months.

Methods Used
RMSE
(1 h)

MAE
(1 h)

BIAS
(1 h)

RMSE
(1 D)

MAE
(1 D)

BIAS
(1 D)

RMSE
(1 W)

MAE
(1 W)

BIAS
(1 W)

CNN-Simple 0.068 0.066 −0.066 0.051 0.033 −0.017 0.056 0.031 −0.016
Multi-headed

CNN 0.169 0.169 −0.169 0.081 0.053 −0.036 0.080 0.050 −0.038

CNN-LSTM 0.053 0.053 −0.053 0.051 0.035 −0.025 0.045 0.030 −0.019
ARMA 0.046 0.043 +0.043 0.192 0.153 +0.153 0.244 0.134 +0.880

Multiple linear
regression 0.477 0.474 −0.474 0.258 0.179 −0.149 0.258 0.146 −0.120

The RMSE, MAE, BIAS values are all in kW, hour—h, day—D, week—W.

It can be noticed that the values of RMSE, MAE, and the BIAS for the 1h forecast for all CNN-
based methods are nearly the same. This is because the number of observations within an hour is just
limited to four (due to 15 min time step) and the neural network methods take multiple inputs in
order to make one prediction. In fact, for the CNN-LSTM model, the inputs needed are four for one
prediction, hence the RMS, MAE, and the BIAS are the same for the 1 h forecast. It can be noticed from
the BIAS value that, in the case of all methods being used except the ARMA model, there is a slight
tendency to overpredict. The ARMA model has performed as good as any used CNN method and has
the most accurate prediction followed by the CNN-LSTM.

For the 1-day forecasting (2 July 2019), it can be seen that the CNN-simple and the CNN-LSTM
perform in a similar manner. The RMSE being around 0.051 kW. All methods have shown better
performance than the MLR. The BIAS still indicates a tendency to over predict except for the ARMA
model. It can be noticed that while the ARMA model provided very accurate results for the 1-h
predictions, the RMSE value has increased considerably for the 1-day forecasts. The multi-headed
CNN performs the worst amongst the CNN models.

For the 1-week forecasting (1st week of July) it can be noticed that the CNN-LSTM makes more
accurate forecasts than the CNN-simple and multi-headed CNN models. In general, it can be noticed
that with longer forecasts the accuracy metrics improve, indicating a general improvement or at least
consistency in predictions for the CNN-based models. On the contrary for the ARMA model, the
RMSE value has increased considerably from the 1-h and 1-day predictions. The BIAS in this case is to
overpredict, except for the ARMA model.

10
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Figure 8 presents the 1-day forecasting (2 July 2019) made by different algorithms explained
previously. It can be inferred from the Figure that the most accurate forecasts for the day are made
by the CNN and the CNN-LSTM models, wherein they almost overlap the actual values. These are
followed by the multi-headed CNN model, which has a higher error in its predicted values, the ARMA
model, which, despite being more accurate than MLR, underpredicts at moments of sharp changes.

Figure 8. Comparison of different methods for the 1-day forecast (summer).

Figure 9 represents the forecasts made by different approaches used for a week (the 1st week of
July). It can be noticed that for most parts the forecasts form CNN-LSTM, CNN-simple (CNN), and
Multi-CNN closely match the actual values, though, at the peak, some inaccuracy can be noticed with
the multi-CNN forecasts. The ARMA model slightly underpredicts, especially during peak output.
The MLR is also inaccurate at the peaks.

Figure 9. Comparison of different methods for the 1-week forecast (summer).
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Table 3 provides the evaluation metrics of the models used during the winter months, it can
be seen that the models have less accuracy for the 1-h predictions when compared to their own
predictions during the summer. Again, the ARMA model performs with the highest accuracy for the
1-h predictions followed by the CNN-LSTM model. For the longer 1-day (28 December 2019) and
1-week periods (3rd week of December) it can be seen that the performance of all CNN-based models
is very consistent with their performance during the summer months. The most accurate forecasting is
made by the simple CNN model for 1-day (28 December 2019) forecasting, whereas for the 1-week
forecasting it is the CNN-LSTM model. An intriguing observation between the summer and winter
models is the fact that the difference between the RMSE and MAE values is higher during the winter
period. The RMSE values are two times that of the MAE values and are higher for the CNN-based
methods for the 1-day predictions, they are almost 3 times higher during the 1-week predictions, which
is an indication that when errors are made during predictions they are higher in magnitude when
compared to predictions in the summer because the RMSE has the inherent characteristic to give more
weight to bigger errors.

Table 3. Forecast metrics for the short and long term during the winter months.

Methods Used
RMSE
(1 h)

MAE
(1 h)

BIAS
(1 h)

RMSE
(1 D)

MAE
(1 D)

BIAS
(1 D)

RMSE
(1 W)

MAE
(1 W)

BIAS
(1 W)

CNN-Simple 0.466 0.451 +0.450 0.036 0.018 +0.005 0.104 0.039 +0.026
Multi-headed

CNN 0.341 0.328 +0.328 0.038 0.019 −0.016 0.092 0.032 +0.023

CNN-LSTM 0.297 0.295 −0.295 0.056 0.029 +0.005 0.100 0.036 +0.022
ARMA 0.188 0.187 +0.187 0.040 0.018 +0.018 0.142 0.050 +0.023

Multiple linear
regression 0.465 0.778 +0.778 0.092 0.059 −0.011 0.040 0.098 +0.032

The RMSE, MAE, and BIAS values are all in kW, hour—h, day—D, week—W.

Figure 10 presents the forecasting made for 1 day (28 December 2019) during the winter.
In comparison with the 1-day prediction for the summer, the ARMA and MLR forecast values
have significantly improved, and all methods predict quite accurately.

Figure 10. Comparison of different methods for the 1-day forecast (winter).
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Figure 11 represents the forecasting made by different approaches used in this study for the 3rd
week of December, it can immediately be noticed that the output values are lower when compared
with the summer week, with one day having almost no output. Except for the MLR, it can be seen that
all models predict quite closely to the real values, with all of them underpredicting a little during peak
power output.

Figure 11. Comparison of different methods for the 1-Week forecast (winter).

4. Discussion

This paper presents a forecasting approach using deep learning neural networks. The neural
network structures, used primarily for image recognition, have been adapted to handle time series
data with a seasonal characteristic. In order to make this possible, a data processing approach, such as
the sliding window algorithm, has been used. A comparison between the performance of different
possible structures of the neural network has been carried out along with a multiple linear regression
and ARMA model. It has been noticed that the CNN-simple and the CNN-LSTM methods perform
best for all 1-h, 1-day and 1-week predictions, with the CNN-LSTM providing better results on certain
occasions. The ARMA model performed exceptionally for the 1-h forecasts. The forecasting was
carried out for 1 h, 1 day, and 1 week with the function of electricity markets in mind. From the
accuracy metrics such as RMSE, MAE, and BIAS it can be concluded that the forecasting algorithms
perform satisfactorily. Since its performance has been tested in the short and medium term at the
university location, it will be followed by rigorous testing at other locations in order to establish its
applicability across geographical regions with different seasonal characteristics. Future work in this
regard includes investigating the performance of other architectures that possess more abstraction (the
level of complexity of the neural network). Abstraction can be increased by increasing the number of
convoluted layers, which may or may not improve the accuracy metrics. It also has an effect on the
training time for fitting an appropriate model. Furthermore, a different combination of CNNs and
RNNs could be considered. Additionally, the effect of clustering is to be explored. The CNN-based
models were fit, and, on the whole, the model performs quite uniformly across all seasons, which we
believe is due to the fact that during the training method a set of values from the past is used to train
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the model at every step. This enables the model to capture seasonality as the weather-related variables
from past values are clearly season-dependent. The approach is similar in the ARMA model since it
also uses past values, but it is important to remember that the ARMA class of models are applicable
only to univariate data (in this case the output values of the PV plant). Moreover, this study is a part of
building a stochastic Energy Management System for microgrids, hence they will be used as inputs for
optimization algorithms managing the EMS.
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Abstract: This paper presents the idea of a combined analysis of long-term power quality data using
cluster analysis (CA) and global power quality indices (GPQIs). The aim of the proposed method is to
obtain a solution for the automatic identification and assessment of different power quality condition
levels that may be caused by different working conditions of an observed electrical power network
(EPN). CA is used for identifying the period when the power quality data represents a different level.
GPQIs are proposed to calculate a simplified assessment of the power quality condition of the data
collected using CA. Two proposed global power quality indices have been introduced for this purpose,
one for 10-min aggregated data and the other for events—the aggregated data index (ADI) and the
flagged data index (FDI), respectively. In order to investigate the advantages and disadvantages
of the proposed method, several investigations were performed, using real measurements in an
electrical power network with distributed generation (DG) supplying the copper mining industry.
The investigations assessed the proposed method, examining whether it could identify the impact of
DG and other network working conditions on power quality level conditions. The obtained results
indicate that the proposed method is a suitable tool for quick comparison between data collected
in the identified clusters. Additionally, the proposed method is implemented for the data collected
from many measurement points belonging to the observed area of an EPN in a simultaneous and
synchronous way. Thus, the proposed method can also be considered for power quality assessment
and is an alternative approach to the classic multiparameter analysis of power quality data addressed
to particular measurement points.

Keywords: data mining; cluster analysis; power quality; global power quality index; electrical power
network; distributed generation; mining industry

1. Introduction

Over the years, global electric energy consumption has increased from 440 Mtoe in 1973 to
1737 Mtoe in 2015 [1]. This has resulted in electricity becoming a specific product that is subject
to market regulation in both quantitative and qualitative terms. Quantitative analysis is mainly
focused on the balance between energy that is produced, transmitted, stored, consumed or lost.
The current issues connected to quantitative aspects of energy consumption are related to demand-side
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response, the integration of renewable energy sources, and energy storage systems with electrical power
systems [2–5]. The qualitative approach mainly uses power quality analysis. The issues related to power
quality (PQ) include definitions of the parameters, and the methods of measurements and assessment,
which are already standardized, among others [6–8]. The methods described in the standards of power
quality analysis are based on power quality parameters measured during a representative period
of time, normally one week, which corresponds to the normal working conditions of the observed
network [9]. The parameters which characterize power quality include: frequency variation, voltage
variation, voltage fluctuation, voltage asymmetry, and voltage waveform distortion. These parameters
are collected during the period of observation, with the aggregation time interval usually equal to
10 min; however, 1 min aggregation intervals are also currently studied [10]. Using these parameters
creates a significant number of data to be considered in the analysis. Moreover, PQ data depends on the
network conditions, load changes, generation level, or configurations of the network. For this reason, a
rational approach is to search for data mining techniques able to extract and classify vectors of the
power quality data that represent different features. This would allow the range of qualitative analyses
to be extended by correlating the information of the network, environment or market condition.

There are many works dedicated to power quality disturbance extraction, PQ events recognition,
and the classification of PQ events and disturbances, which are all directly focused on the measured
voltage and current signals. Most of the works propose wavelet transforms, S-transforms, empirical
mode decomposition, and other different decomposition techniques, which are supported by artificial
neural networks in order to find valuable methods for PQ disturbance extraction and recognition [11–13].
However, a different problem can be formulated when there is a need for identifying and extracting
some of the data that represent different features from the long-term aggregated power quality
data. This necessitates a comprehensive method for the automatic classification of long-term power
quality data into groups that represent similar features. This task is essentially a data mining area
of interest. One of the data mining techniques that can meet these requirements is cluster analysis
(clustering). The general application of data mining techniques in power systems is presented in [14].
Specific applications of cluster analysis to electrical power networks include:

• Detection and classification of disturbances [15–19];
• Detection and analysis of events [20–25];
• Load characteristics and classification [26–30];
• Power flow problems [31–34];
• Power quality evaluation and monitoring [35–38].

This article extends the cluster analysis (CA) proposed by the authors in [9]. Jasiński et al. [9]
present the results of the application of CA in order to achieve a desirable division of the long-term
10-min aggregated power quality data into groups of data representing similar features. The collection
of the PQ data comes from four real points of measurement in the supply network of a copper mine.
The significant elements of the investigated power network are combined heat and power (CHP)
plants with gas-steam turbines working as a local distributed generation (DG), and also a welding
machine (WM) as the main time-varying load. Time-varying PQ conditions were intentionally created.
The distributed generation was switched on and off for a period of time, and a network reconfiguration
was also performed. The results discussed in [9] confirm the possibility of using cluster analysis for
the extraction of power quality data into groups related to the different working conditions of an
electrical network, including the influence of DG, reconfiguration of the network, working days, and
holiday time. In [9], the methodology of application of the cluster analysis, including the preparation
of the database structure, was also described. The idea presented in [9] leads to efficient classification
of the power quality data, but it does not provide a suitable method for the assessment of collected
clusters of the data. Searching for (1) a comprehensive solution that provides automatic classification
of the multipoint measurement data, and (2) a method for comparative evaluation of the collected
data, remains a desirable aim for wide-area monitoring systems and smart grids. Thus this article
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is an extension of the previously obtained classification [9] in order to a achieve quality assessment
of obtained clusters using global power quality indices. This leads to an automatic classification of
working conditions of an electrical power network (EPN), and the possibility of an easy comparison
using global values, that incorporate the impact of different PQ elements.

Both cluster analysis of PQ data and global power quality index (GPQI) application may be found
in the literature:

• Sacasqui et al. [39] present an application of grey clustering with entropy weight methodology.
The proposed solution was used to calculate a unified quality index of distributed electricity.
Their research is based on [40], where a new unified index was proposed, as well as a network
model. The model consists of a 138 kV system, wind energy system, hybrid wind-photovoltaic-fuel
cell system and the load. The PQ data consist of current total harmonic distortion, voltage total
harmonic distortion, sag, frequency deviation, instantaneous flicker level, and power factor.
The unified index is calculated for different working conditions using gray CA and entropy weight
for the measurement points separately. The research is based on simulations.

• The work of Song et al. [41] concerns the application of cluster analysis combined with a support
vector machine for the prediction of PQ indexes. The real measurement data from a 35 kV
substation are processed. The database contains selected PQ parameters including frequency
deviation, voltage unbalance, and total harmonic distortion (THD) in voltage, as well as weather
conditions and data on other associated factors. In the described article, CA was used to obtain
implicit classifications of indexes. The analysis concerns a single measurement point.

• Florencias-Oliveros et al. [42] present the analysis of recorded signals representing different
disturbances. The proposed index realizes a comparison of the variance values, skewness, and
kurtosis connected with each cycle, versus the ideal signal. Then, the CA is used to create a
classification of the disturbances using proposed PQ index.

The aspect that distinguishes the solution proposed in this paper from the methods described in
quoted works is the area-based approach to the PQ assessment, involving all measurement points for
the cluster analysis, as well as development of a new synthetic power quality index. Novel aspects of
the method proposed in this article include:

• Application of cluster analysis for the data collected from several measurement points distributed
in the supply network of a mining industry in order to achieve suitable identification of different
working conditions of the observed network. This approach treats the collected data as a common
database more representative of the observed area than particular measurement points.

• New synthetic global power quality indices are used for the assessment of groups of PQ data
identified by cluster analysis. The proposed definition of the GPQI consists of a set of classical
PQ parameters based on a 10-min aggregation interval; however, it is also extended by selected
parameters based on a 200-ms aggregation interval. The aim of extending the proposed GPQI
definition with parameters related to a 200-ms aggregation interval is to enhance the sensitivity
of the obtained global index. This proposed approach is tested by investigating the influence
of the factors which comprise the proposed global power quality index on the sensitivity of
the assessment.

• The proposed approach of using GPQIs leads to a straightforward comparison of the clusters in
terms of a generalized assessment of the power quality conditions, which in turn finally allows
a comparative assessment of different working conditions of the investigated network to be
performed. The indicated clusters, which represent different working conditions, may be easily
compared using a single GPQI for each of the measurement points.

The remaining structure of this paper is as follows: Section 2 reviews the present application of
global power quality indices in the electrical power network, and also proposes a new definition of the
GPQIs proposed in our assessment of clustered PQ data. Section 3 describes the proposed algorithm
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methodology for the comparative assessment of the power quality conditions using a combination
of clustering and global power quality indices. The first step of the algorithm is the identification
and allocation of the power quality data into groups that represent similar features. This part is
based on previous experience with CA application described in [9]. The second step is the assessment
of the collected data using the proposed GPQI. The results of the assessment are presented using
real multipoint power quality measurements in a medium voltage electrical network supplying the
mining industry. Additionally, this section also contains a sensitivity analysis of the proposed GPQI
in terms of the selection of the power quality parameters used to construct the GPQI. The presented
results are towered to realize one of the article’s aims—to highlight the impact of DG on PQ in the
industry network. The obtained clusters represent different conditions of PQ indices which are directly
associated with impact of the DG. Qualitative assessment of the PQ data collected in the identified
clusters using the proposed global power quality indices allows us to confirm several relations between
DG impact on PQ condition. Section 4 contains the discussion of the obtained results. Section 5
formulates the conclusions, interpretations in perspective studies, and implications for the future.

2. Global Power Quality Indices

Classical power quality assessment is a multi-criteria analysis approach that is independently
applied to particular power quality parameters. The idea of a simplified and generalized assessment
of the power quality condition uses a single index, known as a global, unified, total or synthetic index.
In this paper, we decided to use global power quality indices (GPQIs) as a unified name. Before new
definitions of GPQIs are introduced, it is relevant to have a review of the knowledge concerning the
development of GPQIs. Singh et al. [43] present the application of a unified power quality index that
uses the matrix method. The index, corresponding to voltage sag severity, was highlighted as a suitable
proposition for power quality assessment, and is carried out in a three-stage approach. The first
stage requires the preparation of a graphical system model (attribute digraph). The second step is
the conversion into an attribute matrix. The next step is the presentation of the matrix as a variable
permanent function. Ignatova and Villard [44] define green-yellow-red indicators for all PQ problems.
The proposed algorithm obtains the green-yellow-red indicators for both events and disturbances.
The index consists of all individual PQ parameters, which are expressed as a percentage in a range from
0% to 100%, where 0% denotes the worst PQ and 100% the optimal PQ. The index may be defined for
each single point or for the whole facility. The benefit of the proposed generalization is the possibility
to easily understand the interpretation of the PQ condition in the monitoring systems. Nourollah
and Moallem [45] present the application of data mining to determine the unified power quality
index which corresponds to all power quality parameters, with further classification, normalization,
and incorporation. The proposed fast independent component analysis algorithm was proposed to
determine the power quality level of each distribution site. The mentioned article proposes two indexes:
the Supply-side Power Performance Index, which expresses the impact of six voltage indices; and
the Load-side Power Performance Index. The second index corresponds to three current PQ indices.
Raptis et al. [46] present artificial neural networks as a sufficient tool to support PQ assessment using
an index called Total Power Quality Index. The index is the artificial neural network combination
of eight power quality values used as input variables. The presented method uses a multilayer
perceptron artificial neural network. Lee et al. [47] propose another power quality index. This index
includes the power distortion, which concerns non-linear loads. The indicated aim of the proposed
PQI is to support harmonic pollution determination in a distributed power system. The work [47]
proposes a new distortion power quality index. The application of this index is a determination of the
harmonic pollution ranking for different non-linear loads. It is realized by multiplication of the load
composition rate and the load currents’ total harmonic distortion. Hanzelka et al. [48] propose the idea
of a synthetic PQ index. This index is based on the maximum values of traditional PQ parameters.
These parameters are slow voltage change, harmonic content in voltage (represented by total harmonic
distortion in voltage, and a particular harmonic from 2nd to 40th), unbalance, and voltage fluctuation
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(represented by long-term flicker severity). The proposed assessment provided only satisfactory or
unsatisfactory results.

In the present work, two definitions of GPQIs are proposed—one for 10-min aggregated data,
and the other for the events. The proposed indices are inspired by the synthetic approach described
in [48,49]. Some elements of the GPQI definitions, in terms of the multipoint measurements, were
also proposed by the authors in [50]. Typical for the generalization process is that global indices are
usually less sensitive due to synthetization. In order to enhance the sensitivity, the global indices
proposed in this work are not only based on classical 10-min aggregated power quality parameters,
but they are also extended by other parameters like an envelope of voltage changes based on 200-ms
values. In order to demonstrate the proposed approach, we also present an analysis of how selected
parameters comprising the global index influence its sensitivity.

The first proposed global power quality index is called the aggregated data index (ADI), and is
expressed in (1).

ADI =
7∑

i = 1

ki·Wi (1)

ADI—aggregated data index;
i—number of the factor ranging from 1 to 7;
Wi—the particular power quality factors which create a synthetic aggregated data index;
ki—the importance rate (weighted factors) of the particular power quality factor constituting the

synthetic aggregated data index, range of [0, 1], where
∑7

i = 1 ki = 1.
The ADI utilizes five classical 10-min aggregated PQ parameters, including: frequency (f ), voltage

(U), short-term flicker severity (Pst), asymmetry factor (ku2), total harmonic distortion in voltage (THDu),
and also two additional parameters which are responsible for the enhancement of the sensitivity of
the proposed global index. The first additional parameter is represented by an envelope of voltage
deviation obtained by the difference between the maximum and minimum of 200-ms voltage values
identified during the 10-min aggregation interval. The second is a maximum of the 200-ms value
of the total harmonic distortion in voltage, similarly identified in the 10-min aggregation interval.
The mentioned parameters are calculated and refer to standard IEC 61000-4-30 [7]. Three phase
values, like U, Pst, and THDu are reduced to one using the mean value of the three phase values.
To be more specific, particular factors that create the proposed ADI index are based on the differences
between the measured 10-min aggregated power quality data and the recommended limits stated
in the standards. The differences are expressed as a percentage in relation to the limits. The final
values of the factors taken in the ADI calculation are the mean values of the time-varying factors
during the time period of observation. Additionally, the contribution of the particular power quality
factors in global indices can be controlled by the importance factors, which serve as the weight of the
contribution of particular parameters. The values of weighting factors are normalized to one. Selection
of importance factors makes it possible to check the impact of single parameters as well as groups
of parameters. The selection of parameters may be defined by a priori analysis of EPN problems
(e.g., harmonics, voltage variations). No a priori statements were conducted in this work, so the weight
of all parameters is the same and the priorities of particular parameters were the same. The aim of the
introduced weighted factors is to open the possibility to make the analysis more focused on particular
PQ parameters and neglect others—in other words, to obtain an analysis that is more sensitive for
selected PQ phenomena controlled by weighted factors. For example, to justify adding 200-ms values,
analyses with and without them were conducted.

Particular factors which create the global ADI index are defined as follows [50]:

W1 = W f =
mean

(∣∣∣ fm − fnom
∣∣∣)

Δ flimit
(2)

W1 = W f —factor of frequency change;
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fm—10-min measured value of frequency;
fnom—nominal value of frequency;
mean

(∣∣∣ fm − fnom
∣∣∣)—mean of frequency deviations in the observation time period;

Δ flimit—limit value of frequency change as a %.

W2 = WU =
mean(|Um −Uc|)

ΔUlimit
(3)

W2 = WU—factor of the voltage level;
Um—mean of 10-min measured values of voltage from three phases;
Uc—declared voltage;
mean(|Um −Uc|)—mean of voltage deviations in the observation period of time;
ΔUlimit—limit value of voltage change in volts.

W3 = WPst =
mean(Pstm)

Pstlimit
(4)

W3 = WPst—factor of voltage variation;
Pstm—mean of 10-min measurement value of the short-term flicker severity index from

three phases;
mean(Pstm)—mean of voltage variations in the observation time period;
Pstlimit—limit value of short-term flicker severity.

W4 = Wku2 =
mean(ku2m)

ku2limit
(5)

W4 = Wku2—factor of voltage unbalance;
ku2m—10-min measured values of voltage unbalance;
mean(ku2m)—mean value of voltage unbalance in the observation time period;
ku2limit—limit level of voltage unbalance.

W5 = WTHDu =
mean(THDum)

THDulimit
(6)

W5 = WTHDu—factor of total harmonic distortion factor of voltage supply;
THDum—mean of 10-min measurement values of the total harmonic distortion factor of the

voltage supply from three phases;
mean(THDum)—mean value of the total harmonic distortion factor in the observation time period;
THDulimit—limit level of the total harmonic distortion factor of the voltage supply.

W6 = WUenv =

mean(|Umax−Umin |)
Uc

2× ΔUlimit
(7)

W6 = WUenv—factor of voltage deviation envelope;
Umax—mean value of 200-ms voltage maximum values from three phases allocated in 10-min data;
Umin—mean value of 200-ms voltage minimum values from three phases allocated in 10-min data;
Uc—declared voltage;
mean(|Umax −Umin|)—mean of voltage envelope width in the observation time period;
ΔUlimit—limit level of voltage change.

W7 = WTHDumax =
mean(THDumax)

THDulimit
(8)
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W7 = WTHDumax—factor of the maximum 200 ms value of the total harmonic distortion factor of
voltage supply;

THDumax—mean value of 200-ms maximum values of the total harmonic distortion factor of
voltage supply from three phases;

mean(THDumax)—mean of the total harmonic distortion factor in the observation time period;
THDulimit—limit level of the total harmonic distortion factor of the voltage supply.
Then, the preparation of the particular factors W1 ÷W7 and the selection of its important rates,

the aggregated data index factor expresses the PQ level in a global range. The interpretation of the
obtained index values are as natural. A value of “0” represents the ideal PQ; “0–1” represents possible
power quality deterioration, but in compliance with the requirements defined in the standards; and
finally, a value greater than 1 indicates the permissible parameters level defined in the standard
is exceeded.

The second proposed global index relates to events. The classical approach to power quality
assessment utilizes a flagging concept, which generally prescribes the extraction of the aggregated
values that are affected by events like dips, swells and interruptions. The authors propose to use the
information about the number of data which are not considered in classical PQ analysis due to the
flagging concept. This is used as the base for a global index called the flagged data index (FDI), defined
as follows [50]:

FDI =
f
n
× 100% (9)

FDI—flagged data index;
f —number of 10-min data, which were flagged in the observation time period;
n—number of all 10-min data in the observation time period.
Interpretation of the obtained FDI values can be formulated such that “0%” represents the ideal

PQ without any event disturbances, and “100%” expresses measurement data where each averaged
value is contaminated by voltage events.

The proposed concepts for the generalization of the power quality assessment using GPQIs
can be implemented for the fixed time period of observation or for identified periods of time
representing different features of the power quality condition of the monitored area of the power
system. The identification of such periods can be achieved using cluster analysis.

3. Results of Power Quality Assessment Using Cluster Analysis and Global Power
Quality Indices

The idea of combined analysis using CA and GPQIs is presented in Figure 1. In the first step, the
clustering is applied to achieve a classification of the power quality data into clusters representing
different features. The outcomes of the CA depend on the construction of the PQ database, that is the
set of PQ parameters under consideration, as well as the standardization of the formula. The mentioned
issues and their impact on the results of the CA were already investigated and presented in [9].
A novelty of this work is the implementation of GPQIs for the group of PQ data identified by CA.
We propose using the levels of GPQIs that characterize particular clusters for the comparative analysis.

As was already mentioned, some results of the cluster analysis were described in [9]. However,
selected information about the investigated electrical power network is repeated for clarity and to help
in understanding the presented application of the global power quality indices. Note that the input
PQ data that create the database are the four-week multipoint power quality measurements obtained
from a 6 kV power network supplying the mining industry [51]. The points of measurement include a
secondary side of 110 kV/6 kV transformers (denoted as “T1”, “T2”, “T3”), and a 6 kV outcoming feeder
supplying a welding machine (denoted as “WM”) [9]. Inside the network, distributed generation
units are installed (denoted as “DG”), represented by combined heat and power plants (CHP) with
gas-steam turbines, denoted as “G1”, “G2”, and “G3”, respectively. The analyzed EPN of the mining
industry and placement of the measurement points are presented in Figure 2.
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Figure 1. General scheme of the algorithm that performs the cluster analysis and global power quality
(PQ) calculation.

The proposed method was implemented for the real measurements collected from four
measurement points: three transformers T1, T2, T3 which supplied the medium voltage (MV)
industrial network and a significant load (i.e., the welding machine—WM). The changes in the power
demand of the investigated measurements points T1, T2, T3, and WM during the selected four weeks
of observation are presented in Figure 3a. The investigation was aimed to evaluate the influence of
the DGs installed inside the observed industrial network, and so Figure 3b presents changes in active
power generation of particular DG units denoted as G1, G2, and G3. Generator G1 was permanently
switched off during the experiment. G2 and G3 switched off, as can be seen in Figure 3b, due to
a planned maintenance break. Additionally, it can be seen that during the experiment, only G2
(connected to the transformer T3 which also supplies the welding machine WM) and G3 (connected to
transformer T2) were operating. The power variations of the DG is additional information, representing
conditions. The data from the DG do not form the database of measurements taken for the investigation.
An analysis of voltage events in the PQ measurements was conducted. Indicated events were voltage
dips, rapid voltage changes, swells, and interruptions. Detailed information about the events and
number of flagged data is included in Table 1 [52]. In accordance with the flagging concept introduced
in the standard [7], the aggregated 10-min data that contained such voltage events were excluded from
the power quality analysis. Based on the research presented in [9], it was shown that the best results
of the CA with regards to the identification of different PQ conditions caused by the impact of the
DGs could be achieved for the PQ databases denoted as C and CS, where database C is constructed of
frequency variation (f ), voltage variation (U), short-term flicker severity (Pst), asymmetry (ku2), total
harmonic distortion in voltage (THDu), and active power level (P). Database CS is the standardized
version of database C, obtained by dividing the particular time series by their maximum values to
achieve expression of the data in the range 0–1. Thus, for the investigation presented in this paper,
database C and its standardized version Cs were taken for consideration.
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Figure 2. Analyzed mining industry electrical power network (EPN) and placement of distributed
generation and PQ recorders [9]. T1—transformer 1; T2—transformer 2; T3—transformer 3;
T4—transformer 4; G1—generator 1; G2—generator 2; G3—generator 3; WM—welding machine.

(a) 

(b) 

Figure 3. The analysis of active power level in electrical power network of mining industry: (a) Active
power of the observed point of the measurements in the investigated network including the high
voltage/medium voltage (HV/MV) transformers T1, T2, T3 and the connection point of the welding
machine WM; (b) Active power of the distributed generators (DGs) during the investigated period of
observation (G2 is connected to transformer T3, G3 is connected to transformer T2).
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Table 1. Indication of events and number of flagged data during the measurements.

Point Type of Event
Flag Start Flag Stop Number of 10-min

Flagged DataDate Hour Date Hour

T1 long interruption, voltage dip, swell, rapid
voltage change 21.05 07:50:00 21.05 15:10:00 45

T2
voltage dip 05.05 05:40:00 05.05 05:40:00 1

long interruption, short interruption, voltage dip,
swell, rapid voltage change 14.05 08:20:00 14.05 16:20:00 49

voltage dip 05.06 14:00:00 05.06 14:00:00 1

T3

voltage dip 05.05 05:30:00 05.05 05:30:00 1
rapid voltage change 07.05 22:40:00 07.05 22:40:00 1

long interruption, voltage dip, swell, rapid voltage
change 09.05 09:00:00 10.05 17:20:00 195

long interruption, voltage dip, transient overvoltage,
rapid voltage change 20.05 08:00:00 20.05 19:20:00 69

WM
voltage dip 05.05 05:30:00 05.05 05:30:00 1

rapid voltage change 07.05 22:40:00 07.05 22:40:00 1
short interruption, voltage dip, rapid voltage change 20.05 07:40:00 20.05 07:40:00 1

3.1. Cluster Analysis—Identification of the Power Quality Data Representing Different PQ Conditions Due to
the Impact of DG

In [9], different results of the clustering were presented using different numbers of clusters (2, 3,
5, 20). It was shown that increasing the number of clusters enabled the identification of data not only
related to the impact of the DG (i.e., when the DG was active or switched off), but also for the extraction
of data associated with other working conditions (i.e., working day or non-working day, time of the
network reconfiguration). This article aims to highlight the influence of distributed generation on
power quality in the industry network. Thus, referring to the achievements presented in [9], in this
work the scope of the CA was limited to the aim of classifying the data into three groups: cluster
1—DG was active; cluster 2—DG was switched off; cluster 3—other conditions. After the experiences
described in [9], we decided to use the K-means algorithm with Euclidean distance.

In order to visualize the association of the obtained clusters with the distributed generation work
information, Figure 4, which presents the clustering results, is supported by additional, artificial
clusters indicated as cluster −1 and cluster 0, which were created on the basis of external information
collected by the control and monitoring systems of particular DGs, as well as the output of the PQ
monitoring systems considering the flagged data. Cluster −1 denotes the time series when the DG
was active. This approach enables the easy comparison of the CA outcomes with regards to the
identification of the working condition of the DGs. As was previously indicated, the databases are
comprised only of unflagged data. Cluster 0 concerns flagged data that must be excluded from the
main cluster analysis. The main clusters that are the outcomes of the CA analysis are cluster 1, which
represents data when the DG was working, and cluster 2, which expresses the time period when the
DG was switched off. Comparing the outcomes of the applied clustering with an artificial informative
cluster denoted as −1 allows for the conclusion that the applied technique provides an appropriate
output for connection of the clusters to different working states of the DG time period. Figure 4
presents the outcomes of the clustering with Euclidean distance when the initial number of clusters is 3.
Referring to the information coming from external network dispatcher systems, it was confirmed that
the time period indicated by cluster 3 was related to the reconfiguration of the network topology. In
this case, increasing the number of clusters ensures the determination of a more sensitive classification
of the collected PQ data when a specific working condition of the EPN is indicated. These and other
issues concerning the initial number of clusters and the construction of the database were studied
in [9]. However, it is important to note that the clustering is the first step in the multipoint long-term
measurement analysis, which ensures a classification of the data into groups that are matched with
the specific condition of the observed network. It finally leads to the possibility of the qualitative
assessment of the data collected into clusters, as well as comparative analysis between the clusters.
For this purpose, this paper proposes the use of global power quality indices.
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Figure 4. Results of power quality data clustering using cluster analysis (CA) with K-means and
Euclidean distance and three initial clusters. C1—the distributed generation (DG) was working; C2—the
DG was switched off; C3—DG was switched off and with a different network topology configuration.

3.2. Qualitative Assessment of the Determined Clusters Based on the Proposed Global Power Quality Indices

As was described in Section 2, the proposed aggregated data index (ADI) uses five components
based on 10-min aggregated data, and two other components based on 200-ms data. The acceptance
levels for the ADI components, with regards to aggregated power quality parameters, are presented in
Table 2. The values correspond to the demands included in the standard [6].

Table 2. The acceptance level of the components of the ADI related to 10-min aggregated power quality
parameters in reference to [6].

Parameter Value

Δ flimit 0.5 Hz
ΔUlimit 10%
Pstlimit 1.2
ku2limit 2%

THDulimit 8%

In the presented results, each importance rate k1 ÷ k7 (weighted factors) of the seven parameters
comprising the ADI were the same and equal to 1/7. This means that the importance of all the
parameters was treated equally. The 10-min step ADI variation for particular measurement points (T1,
T2, T3, WM) in relation to the determined clusters of the PQ data is presented in Figure 5. In order to
link the ADI variation with the output of the CA analysis, that is time periods which refer to particle
clusters, colored backgrounds for particular clusters were inserted in Figure 5.
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Figure 5. ADI variation for particular measurement points (T1, T2, T3, and WM) with relation to
determined clusters of the PQ data.

The lack of a background color means that the data were flagged. It can be noticed that
changeability of the ADI for different working conditions (represented by clusters) is observable but
very faint. Thus, the results of the power quality assessment using the proposed technique combining
the CA global power quality indices means that ADI can be summarized by statistics of the ADI
variation for particular clusters and measurement points. The results are collected in Table 3.

Table 3. Results of the assessment of the power quality using the proposed global power quality
indices ADI and FDI for the particular measurement points and with relation to clusters 1–3 when full
definition of the ADI index is implemented.

Cluster Cluster 1—DG Working
Cluster 2—DG Switched

Off

Cluster 3—DG Switched
Off and With a Different

Network Topology
Configuration

Measurement Point T1 T2 T3 WM T1 T2 T3 WM T1 T2 T3 WM

ADI

Minimal
value 0.119 0.087 0.115 0.130 0.060 0.069 0.060 0.084 0.071 0.062 0.075 0.092

Mean value 0.121 0.089 0.105 0.137 0.113 0.098 0.124 0.148 0.114 0.091 0.116 0.142
Maximum

value 0.123 0.092 0.115 0.145 0.259 0.188 0.256 0.260 0.212 0.382 0.178 0.203

FDI (%) 0.00 0.15 0.17

Comparative analysis of the ADI levels allows the formulation of the following remarks:

• Transformers T2 and T3, as well as the connection point of the welding machine WM, had the
highest level of ADI for cluster 2 when the DG was switched off, and the lowest for cluster 1 when
the DG was active. Distributed generation units were connected directly to T2 and T3 and the
impact of the DGs was identified.

• Transformer T1 had relatively higher ADI values for cluster 1 when the DG was active, and the
lowest for cluster 2 when the DG was switched off. However, there was active generation directly
connected to transformer T1.

• The highest level of ADI was recognized in the outcoming feeder that supplies the welding
machine which is a significant load with highly time-varying nature.
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• Referring to cluster 1 when the DG was active, the ADI had the lowest level for T2, then T3, and
the highest for T1.

• Referring to cluster 2 when the DG was switched off, the ADI had the lowest level for T2, and the
highest for T3.

• Cluster 3 represents a short period of time (around 2 days) when all the DGs were switched off
and some reconfiguration of the electrical power network connection was made. During the
reconfiguration, transformer T1 was more loaded, and transformers T2 and T3 were less loaded.
Comparing the ADI level during cluster 3, consisting of a period of time when there was a network
reconfiguration with cluster 2, when the network was operating in the normal configuration, it
can be seen that the values of the ADI decreased for T2, T3 and WM, and increased for T1.

To sum up, using the proposed cluster analysis and the proposed global power quality index, the
ADI can be a suitable tool for the identification and comparative assessment of different conditions
of the observed network. We revealed that for the observed transformers T2, T3, and the connection
point of welding machine WM, the power quality was better in cluster 1 when the DG was active.
The different outcomes of the ADI level formulated for transformer T1 could be caused by the fact that
there was no DG directly connected to T1. The highest values of ADI were identified in the feeder
supplying the welding machine.

The next global power quality index proposed in this work is the flagged data index (FDI), which
is related to the number of aggregated data affected by the events in reference to the periods identified
by clusters. Comparative analysis of the FDI levels is presented in Table 3. It allows for the formulation
of a general remark that the FDI level was noticeable for cluster 2 and cluster 3. The high values for
cluster 2 and cluster 3 are probably connected with the events caused by changes in the electrical power
network topology.

Additionally, correlation calculations between each factor to the ADI value were realized for each
point separately. Pearson correlation was used and the description of the coefficient was defined
as [10]:

• rxy = 0—no correlation;
• 0 < |rxy

∣∣∣ ≤ 0.1—slight correlation;
• 0.1 < |rxy

∣∣∣ ≤ 0.4—poor correlation;
• 0.4 < |rxy

∣∣∣ ≤ 0.7—noticeable correlation;
• 0.7 < |rxy

∣∣∣ ≤ 0.9—high correlation;
• 0.9 < |rxy

∣∣∣—strong correlation.

The correlation between factors and ADI are presented in Table 4. The generally noticeable
correlations in each measurement point were indicated for Pst (W3), THDu (W5), Uenv (W6), and
THDUmax (W7).

Table 4. Results of correlation analysis between each factor and the global index.

Measurement
Point

W1 W2 W3 W4 W5 W6 W7

T1 slight slight high slight high noticeable high
T2 slight poor noticeable poor noticeable noticeable high
T3 poor slight noticeable poor high high high

WM poor poor noticeable poor high noticeable high

3.3. Influence of the Factors Comprising the Proposed Global Power Quality Indices on the Sensitivity of
the Assessment

The construction of a global power quality index, ADI, understood as a weighted sum of component
factors related to power quality parameters, inclines us to discuss the impact of individual factors on
the assessment results. It is possible to select weighting coefficients in a way that favors the selected
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parameters in the assessment and moves the center of gravity of the global assessment in the direction of
the favorite parameters. The opposite direction is to enhance the sensitivity of the assessment by including
additional parameters in the definition of global indices. This work proposes the construction of a global
index using five basic 10-min parameters of power quality (frequency, root mean square (RMS) voltage,
asymmetry, voltage fluctuations, and total harmonic distortion in voltage) and to extend the definition
with two other parameters which are close to 200-ms values (i.e., the envelope of voltage changes and
the maximum value of the total harmonic distortion in voltage identified during 10-min aggregation
intervals). The aim of extending the ADI definition with parameters related to 200-ms intervals is to
enhance the sensitivity of the obtained global index. In order to investigate the impact of the proposed
200-ms parameters on the sensitivity of the assessment, a differential approach is proposed. The ADI
values for particular clusters and points of measurements when the full definition is involved are presented
in Table 3. The results represent a scenario where all seven factors with the same weighting factors equal
to k1 ÷ k7 = 1/7 were applied in the ADI calculation. Application of the full definition of ADI allowed us to
conclude that for the observed transformers T2, T3, and the connection point of the welding machine
WM, the power quality was better in cluster 1 when the DG was active. The obtained ADI values were
generally smaller in cluster 1 than in cluster 2, and the differences of ADI between clusters 1 and 2 were
consistently mostly negative. In order to perform a differential comparison between the ADI obtained
using the full definition and the ADI based on a reduced definition, new values of the ADI were calculated
where the parameters related to 200-ms values were neglected (i.e., when weighting factors were equal
to k1 ÷ k5 = 1/5, k6 = 0 and k7 = 0, respectively). The obtained values of the ADI calculated without the
200-ms parameters are presented in Table 5.

Table 5. Results of the power quality assessment using the proposed global power quality index ADI
for the selected measurement points, with relation to the revealed clusters when 200-ms parameters are
neglected in the ADI definition.

Cluster Cluster 1—DG Working
Cluster 2—DG Switched

Off

Cluster 3—DG Switched
Off and with a Different

Network Topology
Configuration

Measurement point T1 T2 T3 WM T1 T2 T3 WM T1 T2 T3 WM

ADI

Minimal
value 0.106 0.095 0.099 0.124 0.052 0.064 0.056 0.090 0.071 0.062 0.075 0.092

Mean value 0.110 0.095 0.097 0.133 0.099 0.099 0.111 0.144 0.114 0.091 0.116 0.142
Maximum

value 0.114 0.096 0.104 0.142 0.221 0.193 0.219 0.231 0.212 0.382 0.178 0.203

Instead of calculating the direct differences between the ADI values obtained for both scenarios
(which actually differ very slightly), we propose a comparison between interpretations of the results.
In other words, the sensitivity analysis was redirected to formulate the question of whether neglecting
the 200-ms parameters in the ADI definition would change the interpretation of the assessment.
Changes in the interpretation of the results can be identified if the signs of the difference of the ADIs
applied for full and reduced definitions are different. For example, we found that the ADI obtained
using the full definition decreased when the DG is active (C1—cluster 1) and increased when the DG
was switched off (C2—cluster 2). The difference of the ADIs between C1 and C2 was negative because
the values of the ADI in C2 predominated. If a reduction of the ADI parameters has an influence
on the sign of the differences between the clusters, it means that the interpretation is not coherent
and is dependent on the ADI construction. Table 6 contains information about the assessment results
between the ADI with 200-ms factors (k1 ÷ k7 = 1/7) and without 200-ms factors (k1 ÷ k5 = 1/5, k6 = 0,
and k7 = 0). Additionally, an interpretative logical comparative assessment index is introduced in the
table. A value equal to 1 means that the assessment and interpretation of the results are the same for
the full and reduced definitions of the ADI. A value equal to −1 means that the interpretations using
full and reduced definitions of the ADI are not coherent.
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Based on the analysis presented in Table 6, it can be generally concluded that among the 36
assessments of the clusters, 3 differ in terms of the interpretation after a reduction of the ADI definition.
In other words, a reduction of the ADI components introduced an 8% difference in the assessment.
Alternatively, this means that including the parameters associated with the 200-ms values in the ADI
definition enhances the sensitivity of the assessment.

To be more precise, the comparison of the differences of the ADI values constructed on seven
and five parameters addressed to particular clusters were seen to deliver additional observations.
For clusters 1 and 2, it can be concluded that interpretation results based on the ADIs were not sensitive
to a reduction of ADI components, and the interpretation results were the same. This is due to the
substantial differences between the power quality condition in clusters 1 and 2, which are reflected in
the ADI values. However, when comparing clusters containing similar data, the reduction of the ADI
components may cause differences in the assessment. An example of this can be seen with the data
associated with transformer T3 in cluster 2 (DG switched off) and cluster 3 (DG switched off and with
network reconfiguration). In this case, there was a significant impact of the DG; the power quality
conditions were similar, and the reduction of ADI components brought differences in the interpretation
in Table 6. This is denoted by the logical value −1. Another example can be seen in the differences
between cluster 1 and cluster 3 in the case of transformer T2. The network configuration result was
more loaded in transformer T1 and less loaded in transformer T2. In terms of transformer T2, it was
generally a similar condition as for the impact of DG when the reduction of the load demand was
also achieved. In this case, the power quality condition was similar for both clusters 1 and 3, and the
reduction of the ADI components introduced uncertainty to the assessment.

It can be concluded that the reduction of the parameters comprising the synthetic ADI index
influences the sensitivity of the assessment. In the case of the presented investigation, this inherent
relation was more significant when the differences between the power conditions in the compared
clusters were insignificant.

4. Discussion

This work presents the possibility of connecting CA and GPQIs. As indicated by the authors in a
previous work [9] PQ measurements are an appropriate input to cluster analysis. Note that the aim
of CA is to divide data based on its features. The proposed method was implemented for the real
measurements collected from four measurement points in an industry network: three transformers T1,
T2, T3 which supplied the MV industrial network, and a significant load (a welding machine, WM).
The investigation aimed to evaluate the influence of the DGs installed inside the observed industrial
network. However the power variations of the DGs are additional information, representing conditions.
The data from the DGs do not create the database of measurements taken for the investigations.
Naturally the same classification can be obtained using time identification representing different
conditions of the DGs, but the point of the method is to obtain automatic classification of the PQ data
based on its features, and then to find the reasons explaining the automatic classification. The presented
approach has a crucial meaning when the number of monitored points is increased.

The input database consists of many different parameters, leading to a multielement assessment.
Thus, in this work we proposed the use of global indices to simplify the process. The proposed indices
consist of power quality parameters that represent frequency, voltage, flicker asymmetry factor, and
harmonics in voltage. To classical 10-min aggregated data, we proposed adding the extremum values
of voltage and harmonics. Thus, we conducted an analysis of the impact of extending the global
indices to such values. Results indicated that our synthetic ADI index influenced the sensitivity of the
assessment. In the case of the present investigation, this inherent relation was more significant when the
differences between the power conditions in the compared clusters were insignificant. The composition
of ADI index is based on classical 10-min PQ parameters as well as 200-ms parameters. Weighting
factors were implemented for particular parameters. In order to reveal the influence of the DGs, all
weighting factors were set to one in order to obtain maximum sensitivity of the analysis on every PQ
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parameter collected in ADI. However, the weighted factors make it possible to focus the analysis more
on particular PQ parameters and neglect others (i.e., to obtain an analysis more sensitive for selected
PQ phenomena controlled by using different values of the weighting factor).

The proposed combination of CA and GPQIs was indicated as a suitable tool for the identification
and comparative assessment of different conditions of the observed mining industry network.
Among other things it was revealed that for the observed transformers T2, T3, and the connection
point of welding machine WM, the power quality was better in cluster 1 when the DG was active.
The different outcomes of the ADI level for transformer T1 could be caused by the fact that there was
no DG directly connected to T1. The highest values of ADI were identified in the feeder supplying
the welding machine, which is a high variable load. It can be concluded that obtained method is also
technically reasonable.

We also proposed the flagged data index (FDI), which is related to the number of aggregated data
affected by the events. It was used to compare clusters. Results concerning the use of the proposed
global power quality index dedicated to voltage events (FDI) showed that the FDI was higher in cluster
2 than in cluster 1, which can be attributed to the fact that in the period of time when DG was active
(cluster C1) there was relatively fewer detected voltage events than in the period when the DG was
switched off (cluster 2). The sense of the FDI is general. Detailed analysis of particular voltage events
requires separate investigations.

5. Conclusions

This article presents a method of analyzing long-term PQ data using a combined technique based
on cluster analysis and newly proposed global power quality indices. The presented investigations were
based on multipoint synchronized real measurements performed in a medium voltage electrical power
network with distributed generation supplying the mining industry. Time-varying PQ conditions were
intentionally created during the experiment when the distributed generation was switched on and off
for some period of time, with a network reconfiguration also being performed.

The cluster analysis is the first step of the proposed method and is used for identification of
the PQ data which represent different conditions. It was shown that cluster analysis with K-means
and Euclidean distance successfully allowed for the identification of portions of PQ data related to
the impact of distributed generation (switched on and switched off) and changes to the network
configuration. Basic investigations of the application of cluster analysis in an electrical power network
were presented by the authors in a previous work [9]. The extension of the mentioned work and
the novelty involved in the proposed method lies in extending the cluster analysis by assessing the
obtained portions of PQ data using global power quality indices. In order to achieve the goal, newly
proposed global power quality indices were provided, including the aggregated data index and flagged
data index. The proposed aggregated data index has a synthetic formula and is based on five classical
10-min aggregated power quality parameters and two parameters that demonstrate 200-ms values,
including the envelope of voltage changes and the maximum of total harmonic distortion in the voltage.
In this work, the proposed global indices were used for comparative assessment of identified clusters,
which in turn demonstrated different states of the network condition: active distributed generation,
switched off generation, and network reconfiguration when the generation was switched off. It was
shown that the use of the proposed global power quality indices resulted in the comparative analysis
between particular clusters being successfully performed.

Additionally, a sensitivity analysis of the synthetic aggregation data index was also proposed.
It can be concluded that a reduction of the parameters comprising the synthetic global power quality
index may influence the results of the assessment. In the case of the presented investigation, this
inherent relation was more significant when the differences between power conditions in the compared
clusters were insignificant.

The presented approach can be treated as an effective tool (not only related to power quality) for
the assessment of long-term multipoint measurements. The advantages of the proposed method are the
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automatic classification of the data into clusters and the assessment of the condition of the identified
group of data in a parametric global sense, which makes the comparative assessment easier and more
intuitive. The proposed technique has the potential for further implementation in the analysis and
optimization of energy processes, and also in the development of sustainable energy systems.
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Nomenclature:

ADI aggregated data index
C database for non-standardized data
Cs database for standardized data
C number of classes or clusters
DG distributed generation
GPQI global power quality index

ki
importance rate (weighted factors) of a particular power quality factor constituting the
synthetic aggregated data index, range of [0, 1]

ku2 asymmetry
P active power
Plt long-term flicker severity
Pst short-term flicker severity
PQ power quality
THD total harmonic distortion
U voltage variation
Wi particular power quality factors comprising the synthetic aggregated data index
WM welding machine
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Abstract: This article presents the application of data mining (DM) to long-term power quality
(PQ) measurements. The Ward algorithm was selected as the cluster analysis (CA) technique to
achieve an automatic division of the PQ measurement data. The measurements were conducted in an
electrical power network (EPN) of the mining industry with distributed generation (DG). The obtained
results indicate that the application of the Ward algorithm to PQ data assures the division with
regards to the work of the distributed generation, and also to other important working conditions
(e.g., reconfiguration or high harmonic pollution). The presented analysis is conducted for the
area-related approach—all measurement point data are connected at an initial stage. The importance
rate was proposed in order to indicate the parameters that have a high impact on the classification
of the data. Another element of the article was the reduction of the size of the input database.
The reduction of input data by 57% assured the classification with a 95% agreement when compared
to the complete database classification.

Keywords: data mining; power quality; cluster analysis; ward algorithm; different working conditions;
distributed generation

1. Introduction

A smart grid can be seen as the future of electrical power systems [1–3]. A smart grid requires the
monitoring and cooperation of more and more elements, devices, and systems. Thus, it introduces the
need for analyzing an increasing amount of data. Single parameter analysis, conducted by humans, has
become a thing of the past in terms of the functioning of an electrical power system (EPS). Thus, a need
for tools to support the long-term assessment has become very necessary [4–7].

This research is a continuation of previous work [8], which involves a method for analyzing
long-term power quality (PQ) data using non-hierarchical clustering and its assessment using global
indices in [9]. The presented results in Jasiński et al. [8] were based on 72 cases of clustering, which differ
in terms of both the number of clusters (2/25), and also the distance definition of the items in the
database (Euclidean, Chebyshev) for the K-mean algorithm. The different constructions of the database
were discussed. The direct impact of the distributed generation (DG) on the PQ conditions was
obtained when clustering using the K-mean algorithm and the Euclidean distance for non-standardized
data that are extended by power consumption, using database C: frequency (f), voltage variations
(U), short term flicker severity (Pst), asymmetry (ku2), total harmonic distortion in voltage (THDU),
active power (P). Thus, in this article, the same input database was selected. However, the Ward
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algorithm is presented in this research, which represents the hierarchical approach. Additionally,
this work contains an analysis of the importance rate in order to indicate which parameters have
an impact on the final classification. The comparison of clusters, which represent different working
conditions of the electrical power network (EPN), obtained automatically, was only conducted for the
indicated parameters with a high importance rate but not using a global index, which includes all the
parameters as in [9]. Additionally, the next novelty of this work is the proposition of reducing the
input database without losing data features. The proposed reduction to one value, instead of three
phase-to-phase parameters, assured the classification with a 95% agreement when compared to the
complete database classification.

The article is organized into four sections. Section 2 presents the state of the art of literature review.
Section 3 describes the definitions and techniques of cluster analysis (CA), with special consideration
for the Ward algorithm. Also, Section 3 contains the description of the research object—the EPN of
the mining industry with gas-steam units and conducted long-term PQ measurements. Additionally,
Section 3 contains the application of the Ward algorithm to PQ data and the results of the analysis
with regards to the different working conditions of the EPN. The final element of Section 3 presents
a discussion of the obtained results. Section 4 highlights the conclusions.

2. Literate Review

One solution to the problem of big data analysis is the application of data mining (DM) techniques.
The literature contains many examples of the possible applications of DM for electric power systems,
e.g.,

• the detection and classification of voltage events [10–15]
• the calculation and prediction of power losses [16–18]
• the diagnosis of faults in power transformers [19–23]
• load forecasting [24–29]
• load pattern segmentation [30–33]
• fault detection [34–38]
• fault prediction [39–42]
• the defining of energy consumption [43–48]
• the forecasting of energy gaining from renewable energy sources [49–52]
• the reliability assessment of renewable sources of energy [53–56]
• energy management in a household [57–60]
• the improvement of intrusion detection systems in smart grids [61–63]
• the detection of electricity theft in smart grids [64–67]

As observed above, the application of data mining is wide. This article presents the application of
data mining for achieving an automatic classification of long-term power quality (PQ) data from an
electrical power network (EPN) of the mining industry with distributed generation (DG). The selected
technique is cluster analysis (CA).

3. Methods and Results

3.1. Cluster Analysis—Ward Algorithm

Generally, the definition of data mining in the literature concerns the achievement of knowledge
from big databases. Possible algorithms and techniques are well-known and described in the literature.
Examples of data mining techniques are [68–72]:

• decision trees
• neural networks
• clustering
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• regression
• mining association rules
• the multilayered perceptron network—MLP network
• genetic algorithms
• fuzzy interference systems
• high-performance computing
• inductive logic programming
• memory-based reasoning methods
• fuzzy sets

One of the described techniques is cluster analysis, also known as clustering [73]. The main aim of
cluster analysis is to achieve homogeneous groups (clusters) of data as defined by Witten et al. and Wu
et al. in [74,75]. The homogeneous aspect of the group is defined by the similarity or dissimilarity level
of the data in the same cluster. There are a lot of data similarity/dissimilarity conditions that can be
selected. However, due to the grouping process approach, two basic methods of dividing are known:

• hierarchical
• non-hierarchical

In this article, the hierarchical method is presented. Hierarchical approaches are agglomeration
or divisive techniques. This article presents the agglomerative approach. Agglomerative techniques
represent a set of observations in which each piece of data is treated as a separate cluster at the
beginning. Then, the data are aggregated into a smaller number of clusters until one single cluster is
established, which represents all the data [73]. The possible methods for connecting data into clusters
are [73,76]:

• the single linkage method
• the complete linkage method
• the average linkage method
• the weighted pair-group average linkage method
• the unweighted pair-group centroid linkage method
• the unweighted pair-group centroid linkage method
• the Ward method of minimum variance

The hierarchical method is selected because the agglomerative sequence is presented on
a dendrogram. It is, therefore, possible to analyze if the connection is better realized by single
data or by a group of similar data (achieved in the previous agglomeration) to get a final classification.
The authors selected the Ward algorithm due to its features. Clustering is carried out in order to connect
data concentrated in an average value until the data has a similar value (range). The hierarchical
cluster analysis algorithm using the Ward method of minimal variance is presented in Figure 1.

In this paper, the hierarchical Ward method and non-hierarchical method based on the K-mean
algorithm are proposed for the power quality data analysis. The indicated “finding pair of clusters
which have the smallest sum of squares distance between the object and the cluster center to which
this object belongs”, is calculated as presented in Equation (1) [77].

Dpr =
np + nr

np + nq + nr
∗ dpr +

nq + nr

np + nq + nr
∗ dqr +

−nr

np + nq + nr
∗ dpq (1)

where:

Dpr—distance of the new cluster to cluster of number “r”,
r—proceed numbers of cluster from “p” to “q”,
dpr—distance of primary cluster “p” from cluster “r”,

41



Energies 2020, 13, 2407

dqr—distance of primary cluster “q” from cluster “r”,
dpq—common distance of primary clusters “p” and “q”,
n—number of single objects in each object.

Figure 1. Cluster analysis using the Ward method of minimum variance [73,78].

Additionally, the advantage of the Ward algorithm is that it can be stopped at any moment; it can
also achieve a classification represented by the excepted number of clusters. Thus, the final number of
clusters should be selected in accordance with the aim of the classification. In order to support the final
number of clusters, a lot of approaches have been conducted in literature. The most known are [79]:

• a dendrogram is analyzed in terms of the difference in distance between successive clusters. A big
value of difference means that the data in the cluster are various. Thus, the division ends when
the difference in the distance is maximal

• if a clear flattening (log vertical line) can be observed on the dendrogram, it means that in this
point the clusters are distant and it is the best point for division

• an approach based on the root-mean-square standard deviation

3.2. An Electrical Power Network of the Mining Industry and the Source of the PQ Data

The PQ data used in the investigation concerns real measurements made in substations of the
copper industry’s electrical power network. The 110-kV substation of the mining industry works in
a four-section system in cooperation with the four transformers (T1, T2, T3, T4). Normally, all the
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transformers are supplied from a different 110 kV section. However, during the measurements, the T4
transformer was not loaded. Thus:

• substations R-1 work independently
• substations R-2 work independently
• substations R-3 and R-4 are coupled

The presented PQ data concerns four weeks of measurements from 27th of April to 25th of May.
The measurements were conducted synchronously with class A PQ recorders [80]. This is more than
the classical one week of observation time, and therefore, the PQ data may consist of different working
conditions of the analyzed electrical power network of the mining industry [77]. Thus, the different
working conditions may be connected to:

MAIN LOADS:

• welding machines
• conveyor belts
• drainage pumps

DISTRIBUTED GENERATION:

• combined heat and power (CHP)
• gas-steam units

Thus, the PQ measurements include the analysis of the PQ level, which concerns the impact of the
DG and main load (welding machine) on the medium voltage (MV) network. The simplified scheme of
the copper industry network, showing the localization of power quality recorders installed in selected
bays and the localization of DG, is presented in Figure 2. The PQ recorders involve the measurements
of transformers at 6 kV side (T1, T2, T3) and an outcoming feeder to a welding machine (WM).

 
Figure 2. The simplified scheme of the electrical power network of the mining industry containing the
placement of the PQ recorder and distributed generation.

It is important to note that the local generation is connected at the 6 kV level and that it consists
of heat, a powerplant (G1–10 MW CHP), and steam-gas generation units (G3–15 MW gas unit and
G2−13,5 MW steam unit). During the measurements, G1 was out of order and the level of generation of
G2 and G3 was changing. The level of DG power (G1, G2, G3) and active power transformers (T1, T2,
T3, WM) at the MV level are presented in Figure 3.
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Figure 3. Active power of the high/medium (HV/MV) transformers T1, T2, and T3, welding machine
(WM), and distributed generations G1, G2, G3 using the MV side measurements.

3.3. Cluster Analysis Results

3.3.1. Parameters Included to the Input Database

For the implementation of hierarchical cluster analysis, the Ward algorithm was used. The reason
for this is due to the fact that the data assigned to clusters are characterized by the smallest variation of
results (minimum variance of data in clusters). A data set for clustering consisted of the following PQ
parameters:

• frequency variation (f)
• voltage variation (U)
• short-term flicker severity (Pst)
• asymmetry (ku2)
• total harmonic distortion in voltage (THDu)
• active power level (P)

The indicated database consists of parameters, which are considered in the classical PQ assessment
in accordance with the standard EN 50160 [81] but were extended to the active power in the measuring
points. The noticeable change was the use of short-term flicker severity in place of long-term flicker
severity. This change is connected with the time aggregations of the parameters; the long-term severity
has 2 h, and the short-term one has 10 min [82,83]. Thus, the application of short term flicker severity
enables a database consisting of parameters that are aggregated with 10 min intervals to be built,
as is demanded in the standard of International Electrotechnical Commission (IEC) 61000-4-30 [80].
The analyzed measurement data were divided into flagged and unflagged data in accordance with the
flagging concept of the standard IEC 61000-4-30 [80]. The data that was input to the CA were free of
voltage events.

Additionally, due to the feature of the Ward algorithm that involves the fact that clustering is
conducted in order to connect data concentrated in an average value until the data has similar values
(range), the standardization process was proposed. The standardization of the parameters aims to
obtain unified values by dividing the current value of a particular element of the time series by their
maximum values. The decision concerning standardizing data to the average value reduces the
problem with regards to different ranges and units of the PQ parameters. The standardize division
0–1 assures the possibility of comparing the changeability of the parameters.
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3.3.2. Clustering to Indicate Different Working Conditions of the EPN

For the defined input database, the clustering with the Ward algorithm was carried out using
the Statistica 13 program (StatSoft Polska, Kraków Polska). Figure 4 presents the CA dendrogram.
The time results of clustering are presented in Figures 5–9, which show a defined final number of
clusters equal to 2, 3, 4, 5, and 6. This selection of the number of clusters was realized using the
dendrogram (Figure 4). The authors decided to indicate the cluster that has a connection distance
greater than 100. Thus, no clusters equal or less than 6 were investigated. In the figures, the “virtual”
cluster 0 was defined, which represents the data that was flagged in the initial stage. Using knowledge
about the object, different working conditions, which may affect the data classification, were defined:

• working or non-working of distributed generation (G2, G3)—the knowledge was obtained from
a monitoring system of gas-steam units:

• working of DG: from 27.04, hour 00:00, to 08.05, hour 06:00; day 13.05, hours 11.00–12.00;
day 22.05, hours 13.20–16.50

• reconfiguration of the network, the supply of main loads was relocated between substations—the
knowledge was obtained from the Supervisory Control And Data Acquisition (SCADA) system:

• from 12.05.2017, hour 16.10 to 14.05.2017, hour 22:20

• maintenance breaks that are connected to the mining industry’s working schedule—checking the
technical conditions of machines, a shift timetable, working on weekends:

• each Monday–Saturday, hours 6.00–10.00: maintenance break during the first shift
• each Saturday, hour 22.00 to Monday, hour 6.00: the weekend character of working

Figure 4. Dendrogram of the CA using the Ward algorithm.

Figure 5. Cluster analysis results for the final number of clusters equal to 2.
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Figure 6. Cluster analysis results for the final number of clusters equal to 3.

Figure 7. Cluster analysis results for the final number of clusters equal to 4.

Figure 8. Cluster analysis results for the final number of clusters equal to 5.

Figure 9. Cluster analysis results for the final number of clusters equal to 6.
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Table 1 shows a summary of the analyzed working conditions and the assignment of clusters.
The three conditions previously mentioned (DG working, reconfiguration, maintenance breaks) were
indicated, and one unknown condition was observed. This unknown condition was indicated for the
final number of clusters equal to at least 4. The reconfiguration of the EPN connection was indicated
for the final number of clusters equal to 5. The impact of the DG and maintenance breaks was observed
for all the presented classifications.

Table 1. The connection between the number of clusters and the working conditions of the electrical
power network.

Condition
Final Number of Cluster

2 3 4 5 6

DG working x x x x x

reconfiguration x x

maintenance breaks x x x x x

other unknown condition x x x

A further investigation is carried out for the final number of clusters equal to 6, although it may
be realized for the other numbers too.

The analysis of the cluster assignment to the working conditions indicated that:

• c1: DG is working, exploitation time
• c2: DG is working, maintenance breaks time
• c3: DG is working, unknown working condition
• c4: DG is non-working, exploitation time
• c5: DG is non-working, maintenance breaks time
• c6: DG is non-working, reconfiguration of the network

There is an obvious question concerning which of the input parameters was important with
regards to the obtained final classification. Thus, the predictor importance analysis using the Statistica
13 software (in accordance with the guidelines of a StatSoft Polska [78] and Breiman et. al. [84]) was
realized for the classification of the 6 clusters. The results are presented in Figure 10. The results show
that the highest impact (importance rate > 0.7) is for:

• the active power level for the transformers T1, T2, and T3
• the total harmonic distortion in the voltage for transformer T3 and the welding machine—WM
• the short-term flicker severity for the transformers T2, T3, and the welding machine—WM
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Figure 10. Importance rate of the factors to the output of the cluster analysis results for the final number
of clusters equal to 6.

3.3.3. Qualitative Assessment of Clusters

A comparison of all the measurement points for each parameter in the database would lead to
the analysis of the changeability of 48 parameters for each of the six clusters. Therefore, the authors
suggest only analyzing those PQ parameters that were indicated as important with regards to the
obtained classification (according to the predictor importance rate).

Table 2 contains the comparison of the selected PQ parameters for each cluster in terms of the
mean, minimal, maximal, and standard deviation values.
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Table 2. Comparison of the PQ level for different clusters.

Measurement Point Parameter Value c1 c2 c3 c4 c5 c6 

T2 

Pst  

L1-L2 

minimal 0.16 0.13 0.12 0.14 0.09 0.08 
maximal 0.50 0.30 0.54 1.42 0.74 0.57 

mean 0.22 0.21 0.18 0.24 0.26 0.11 
standard deviation 0.03 0.03 0.04 0.05 0.07 0.05 

Pst  

L2-L3 

minimal 0.16 0.12 0.12 0.14 0.09 0.08 
maximal 0.50 0.29 0.53 2.07 0.73 0.38 

mean 0.22 0.21 0.18 0.24 0.26 0.11 
standard deviation 0.03 0.03 0.04 0.08 0.08 0.05 

Pst  

L3-L1 

minimal 0.17 0.13 0.13 0.14 0.10 0.08 
maximal 0.50 0.30 0.52 3.54 1.06 0.53 

mean 0.23 0.21 0.19 0.25 0.27 0.11 
standard deviation 0.03 0.03 0.04 0.11 0.08 0.05 

T3 

Pst  

L1-L2 

minimal 0.13 0.13 0.15 0.14 0.13 0.18 
maximal 0.47 0.52 0.74 0.86 0.60 0.53 

mean 0.30 0.18 0.30 0.39 0.29 0.33 
standard deviation 0.03 0.05 0.05 0.06 0.08 0.06 

Pst  

L2-L3 

minimal 0.14 0.14 0.16 0.15 0.14 0.19 
maximal 0.45 0.49 0.80 2.01 0.74 0.56 

mean 0.31 0.19 0.31 0.43 0.32 0.35 
standard deviation 0.03 0.05 0.05 0.09 0.09 0.07 

Pst  
L3-L1 

minimal 0.13 0.13 0.16 0.15 0.14 0.20 
maximal 0.46 0.48 0.81 1.93 1.10 0.70 

mean 0.32 0.19 0.33 0.44 0.32 0.37 
standard deviation 0.04 0.06 0.05 0.08 0.09 0.07 

THDu 
L1-L2 

minimal 0.48 0.39 0.87 0.47 0.41 0.57 
maximal 1.20 0.99 4.99 1.50 1.11 1.38 

mean 0.67 0.56 1.53 0.83 0.64 0.80 
standard deviation 0.07 0.08 0.27 0.08 0.12 0.09 

THDu 
L2-L3 

minimal 0.49 0.39 0.89 0.48 0.45 0.62 
maximal 1.23 0.99 5.23 1.56 1.13 1.44 

mean 0.68 0.55 1.57 0.86 0.68 0.84 
standard deviation 0.07 0.08 0.29 0.08 0.12 0.09 

THDu 
L3-L1 

minimal 0.49 0.38 0.91 0.49 0.41 0.58 
maximal 1.28 1.02 4.87 1.63 1.18 1.50 

mean 0.70 0.55 1.63 0.89 0.67 0.87 
standard deviation 0.08 0.08 0.29 0.09 0.14 0.10 

WM 

Pst 

L1-L2 

minimal 0.14 0.14 0.16 0.15 0.14 0.19 
maximal 0.47 0.54 0.78 6.84 0.64 0.56 

mean 0.31 0.19 0.32 0.43 0.31 0.35 
standard deviation 0.03 0.05 0.05 0.20 0.08 0.07 

Pst 

L2-L3 

minimal 0.13 0.13 0.16 0.15 0.14 0.19 
maximal 0.45 0.49 0.79 6.89 0.72 0.57 

mean 0.31 0.19 0.32 0.43 0.31 0.35 
standard deviation 0.03 0.06 0.05 0.20 0.08 0.07 

Pst 

L3-L1 

minimal 0.14 0.13 0.16 0.15 0.14 0.19 
maximal 0.46 0.46 0.78 6.84 1.12 0.66 

mean 0.31 0.18 0.31 0.43 0.31 0.35 
standard deviation 0.03 0.05 0.05 0.20 0.09 0.07 
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Table 2. Cont.

THDu 
L1-L2 

minimal 0.46 0.36 0.55 0.48 0.40 0.56 
maximal 1.23 0.99 2.40 1.54 1.16 1.42 

mean 0.67 0.53 1.56 0.85 0.65 0.81 
standard deviation 0.08 0.08 0.22 0.08 0.13 0.10 

THDu 
L2-L3 

minimal 0.45 0.36 0.59 0.49 0.43 0.59 
maximal 1.23 0.96 2.40 1.55 1.13 1.44 

mean 0.65 0.52 1.54 0.85 0.67 0.84 
standard deviation 0.08 0.08 0.23 0.08 0.13 0.10 

THDu 
L3-L1 

minimal 0.45 0.36 0.58 0.49 0.42 0.59 
maximal 1.22 0.94 2.37 1.53 1.12 1.42 

mean 0.65 0.52 1.50 0.86 0.67 0.85 
standard deviation 0.08 0.08 0.22 0.08 0.13 0.10 

where:

minimal—the minimal value of the parameter that may be found for the observed cluster
maximal—the maximal value of the parameter that may be found for the observed cluster
mean—the mean value calculated from all the data for the observed cluster
standard deviation—the standard deviation calculated from all the data for the observed cluster.

A comparison of the level of the PQ parameters for different clusters is equivalent to the comparison
of the different working conditions of an electrical power network. The examples of such a comparison
may be as follows:

• (c1 with c2) and (c4 with c5)—> comparison of time with the different characters of the company
that iss working (exploitation vs. maintenance break). It could be observed that the mean value of
Pst for T3 and WM is lower during the maintenance break. Therefore, in terms of flicker severity,
the time of maintenance is better.

• (c1 with c2) and (c4 with c5)—>comparison of time with the different characters of the company
that is working (exploitation vs. maintenance break). It could be observed that the mean value
of THDu for T3 and WM are lower during the maintenance break. Therefore, in terms of the
harmonic content, the time of maintenance is better.

• (c1 with c4) and (c2 with c5)—> comparison of time with the different characters of the working
DG. It could be observed that Pst for T3 and WM is lower for the time when the DG is working
(c1, c2) compared to when the DG is switched off (c4, c5). Therefore, in terms of flicker severity,
the time when the DG is working is better.

• c3 with all other clusters—> this unknown working condition represents the time when the THDu
level for T3 and WM is higher than for the other clusters.

• c6 with all other clusters—> the reconfiguration that represents the time when Pst for T2 is very
low. This is in agreement with the fact that T2 was underloaded, and therefore, the flicker is small

The presented examples about the comparison of the level of the PQ parameters for different clusters
assure simplified information concerning the differences between working conditions. However,
the working condition for defining the cluster c3 is unknown, but due to the indicated analysis, it is
possible to define that during this time there was a higher than normal level of harmonics for T3 and
WM. Thanks to this, attention could be paid to this time in order to find the reason for such high
harmonic content and to reduce it in the future. Additionally, after automatic classification of the data,
it is possible to show the impact of DG on the level of power quality in the electrical power network of
the mining industry.
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3.3.4. Reduction of the Input Database Size—Case Study

The natural question is, “is it possible to reduce or change the structure of the input database
without losing the most important information”. The first idea is just to exclude some parameters.
However, the proposed, complete database includes, all-important points of the classical PQ parameters.
Thus, excluding any of them would not seem to be adequate from the technical point of view.

In this research, the objects are represented by similar phase-to-phase values. Thus, the analysis
of only one “new-multiphase” value was conducted. Moreover, the way of conducting this may be
different. The minimal, maximal, mean, or median value from three phase-to-phase values may be
selected. However, in this research, the authors decided to use the mean value. Thus, for each 10 min
data of:

• voltage
• short-term flicker severity
• total harmonic distortion in voltage
• active power

the mean value from all three phase-to-phase values was calculated.
After such a reduction—from 16 input parameters (complete database) for each measurement

point to six input parameters (reduced database)—clustering was conducted. The result of the obtained
cluster using the six-parameter database, in comparison to 14-parameter clustering, is presented in
Table 3. Generally, the results of this reduction in terms of indicating the same working condition for
more than two clusters are positive. The obtained classification has the same result for at least 94.9% of
data. The only negative classification was obtained for two clusters. The averaged data during the
division to two clusters was not sensitive for DG impact.

Table 3. Comparison of clustering results for the completed database to the reduced one.

Final Number of
Clusters

Do Results Indicate the Same
Working Conditions?

Percent of the Data Assigned to
the Same Cluster

2 no * −
3 yes 95.7

4 yes 95.1

5 yes 95.0

6 yes 94.9

* no impact of DG is observable, only the maintenance is noticeable.

Additionally, the predictor importance for six clusters was defined. Figure 11 presents the
importance rate for both classifications—(a) reduced input database, (b) complete input database.
Generally, regarding the 0.7 importance rate level (noticeable importance rate), the same parameters
were indicated:

• transformer T1—active power
• transformer T2—active power
• transformer T3—active power, total harmonic distortion in voltage, short-term flicker severity
• welding machine WM—active power, total harmonic distortion in voltage, short-term

flicker severity

The only excluded parameter is the short-term flicker severity for transformer T2. However,
the importance rate is close to 0.7.

To summarize, the size of the database has been reduced from 14 parameters to six parameters,
and the obtained results are generally similar.
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(a) (b) 

Figure 11. Importance rate for six clusters for (a) reduced input database; (b) complete input database.

3.4. Discussion

The data mining technique presented in the article is the cluster analysis. The Ward algorithm
was selected as an example of the hierarchical approach. During the data preparation stage, it was
necessary to uniform the data aggregation time (selection of Plt to Pst), as well as to standardize the
parameter values. For the prepared data set containing both the PQ parameters and the active power
level, cluster analysis was conducted.

As a result of the cluster analysis, a dendrogram was obtained, which was illegible for the initial
stages of agglomeration due to a large amount of input data. This is an unquestionable disadvantage
of the hierarchical approach, but it is worth noting that it provides a division of data regardless of the
final number of the obtained clusters. Additionally, on the dendrogram, there is a simple possibility of
selecting the final number of clusters using methods indicated in the literature, e.g., Aggarwal [79].

Another important element of the article was to indicate the conditions that influenced the data
division. On the basis of knowledge about the object, the conditions of distributed generation working,
reconfiguration, and maintenance breaks were known. However, the obtained classification indicated
that, in terms of the PQ level, the relevant condition was not known. It is worth highlighting the
fact that the Ward algorithm is sensitive to the impact of the distributed generation on the technical
conditions of the electrical power network, which confirms that the research aim was specified correctly.

The next element of the article was the analyses of the parameters that have a higher impact on
the data classification. The obtained results indicated the importance of an active power level, as well
as the harmonic level and flicker. The voltage variations, voltage, and frequency levels had a small
impact on the classification.

Then, after obtaining the importance ranking, a comparison of the clusters in terms of the
selected PQ parameters was carried out. The obtained results presented the impact of DG on the
EPN. The impact of DG was indicated as positive regarding PQ. The unknown working condition was
described as a time with high total harmonic distortion at the voltage level. Thus, the analysis of only
this selected period of time may help to decrease the problem with harmonic pollution.

The last part of the research concerned the possibility of reducing the input database without losing
the information obtained from the clustering. The authors proposed reducing the three phase-to-phase
values to one mean value. Then, the comparison of the reduced input database to the completed one
was conducted. The obtained classifications were similar. Around 95% of data was connected to the
same clusters for both input databases and classification to more than two groups. The presented
approach decreased the size of the input database by 57% (from fourteen to six parameters) without
losing any data features.
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The presented in-article object represents a symmetrical network, although, the method may be
realized successfully for highly asymmetrical grids. Thus, if any of the phase-to-phase value was
changed, the mean value of all parameters also changed. The CA is sensitive for the differences so this
situation would also be indicated. The only disadvantage of this method is that there would be no
information on which phase caused this situation, thus the analysis of raw data, but for the indicated
period of time, is desirable.

4. Conclusions

The article presents the application of cluster analysis to long-term power quality measurements
obtained in an electrical power network of the mining industry with distributed generation. The selected
algorithm, due to its sensitivity to data dissimilarity, was the Ward algorithm. The article contains
a discussion of the pros and cons of the hierarchical approach.

The article also contains the analysis of the sensitivity of different (known) working conditions of
an electrical power network of the mining industry to the obtained classification. Conditions such
as the impact of distributed generation, reconfiguration appearance, or the character of the object
schedule (exploitation or maintenance breaks) are indicated. Additionally, the ranking of the impact of
the parameter on the classification was conducted using predictor analysis. This analysis indicated
that the level of active power, harmonic pollution, and flicker are important with regards to the
obtained classification.

The obtained classification indicated the unknown working condition. After the comparison
with other groups, the unknown condition was indicated as a high harmonic pollution period of time.
Thanks to this, it is possible to analyze a short period of time to find the problem with harmonic
pollution in an electrical power network of the mining industry.

The article contains the proposition of reducing a database concerning the calculation of one
value that represents three phase-to-phase values. The results were similar (close to 95%), and the
calculations were reduced by over 57%.

The presented approach of obtaining automatic data classification with regards to different
working conditions (especially distributed generation or the harmonic pollution problem) is an
important element of a smart grid. It is worth noting that the presented approach is conducted for
area-related analysis—four different measuring points that are considered as common input data.
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Abstract: This paper presents the analysis of power supply restoration time after failures occurring
in power lines. It found that the power supply restoration time depends on several constituents,
such as the time for obtaining information on failures, the time for information recognition, the time
to repair failures, and the time for connection harmonization. All these constituents have been
considered more specifically. The main constituents’ results values of the power supply restoration
time were analyzed for the electrical networks of regional power supply company “Oreolenergo”,
a branch of Interregional Distribution Grid Company (IDGC) of Center. The Delphi method was used
for determining the time for obtaining information on failures as well as the time for information
recognition. The method of mathematical statistics was used to determine the repair time. The
determined power supply restoration time (5.28 h) is similar to statistical values of the examined
power supply company (the deviation was equal to 9.9%). The technical means of electrical network
automation capable of the reduction of the power supply restoration time have also been found.
These means were classified according to the time intervals they shorten.

Keywords: power supply restoration; power supply outages; failures; time intervals; obtaining
information; information recognition; connection harmonization

1. Introduction

Improving power supply efficiency from private homes to large industrial enterprises is an urgent
and difficult task for power supply (PS) enterprises. This is because power supply companies often
encounter problems such as the remoteness of energy consumers from power distribution points,
insufficient capacity margin, depreciation of power supply equipment, and the lack of specialists
involved in servicing this equipment. As a result, it leads to the increase in the number of equipment
failures and the increase in PS interruptions. In turn, this translates into losses for power supply
companies due to the elimination of the failure’s consequences and for consumers due to a disruption
of the technological process caused by the power supply outages.

This article deals with the analysis of power supply restoration after power line failures. Thus,
the organization of the article is as follows. Section 2 is a literature review of the state of the art with the
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motivation and contribution of this paper. Section 3 introduces the problem of power supply reliability.
It indicates the elements that have an impact on the total time of restoration. In Section 4, the calculation
of each element is performed based on real data obtained from a Russian power supply company.
Section 5 contains a discussion of the results and propositions for the technical means of automation of
electrical networks to reduce the power supply restoration time. Section 6 is the conclusion part.

2. State-of-the-Art Power Supply Restoration Issues

The present research described in the literature concerns the problem of power supply reliability
in different areas. The aim of this research is a power supply restoration analysis [1]. Thus, current
research trends in the literature are analyzed with regards to restoration issues. The presented literature
review is divided into two areas:

• research based on simulations for both transmission and distribution systems,
• analysis for real objects obtained from historical data.

2.1. Research Based on Simulations

The present literature is generally based on simulations. The analysis of power supply reliability
in point of restoration issues was divided into two parts—distributed and transmission systems.

Distributed grid:

• The article [2] presents the networked microgrids aided approach to service restoration in a power
distribution network. This paper proposes to use a mixed-integer linear approach. The main
contribution of the article is to leverage networked microgrids to simplify service restoration. The
proposed model was verified using the modified IEEE 123 node distribution test system.

• The article [3] deals with service restoration for a distribution network. The element under
consideration is the uncertainty of restoration time. In the article, a two-stage adaptive algorithm
for service restoration was proposed. This algorithm uses the Wasserstein distance metric. It is
applied to calculate two restoration times with different probabilities. Then the higher probability
is used as the restoration time.

• The paper [4] describes a multi-stage restoration method. It is applied to an medium voltage
(MV) distribution system with distributed generation. The proposed service restoration approach
concerns intentionally connection islanding of distributed generators (DGs) with network
reconfiguration to maximize restoration of switched-off loads. It is realized by matching islanding
schemes. Then the restoration of network connectivity and DGs is realized. Finally, the network
reconfiguration as well as load shedding optimization are proposed. This research is based on a
Pacific Gas & Electric (PG&E) sixty-nine bus system.

• The article [5] proposes a heuristic method for distribution network restoration. The proposed
algorithm was implemented and tested on the IEEE 33-bus standard network.

• The article [6] concerns optimal network restoration after faults in a distribution network with
distributed generation. The selected method is a meta-heuristic Artificial Bee Colony algorithm.
The restoration algorithm and the load flow analysis were simulated using MATPOWER in
MATLAB software. That research aimed to minimize out-of-service loads and power losses and
improve the voltage profile. The article presents two examples of two single-fault and multi-fault
cases. For each example, five different scenarios were studied. The results showed the significant
power loss reduction and improvement in minimum voltage.

• Other papers that concern simulations to increase reliability are based on restoration issues for
distributed grids, e.g., static island power supply restoration strategy [7], power restoration method
using a genetic algorithm [8], the state-of-the-art fault localization and service restoration [9],
robust power supply restoration for self-healing active distribution networks [10], intelligent
power supply restoration [11], power restoration strategy [12], and a fast power service restoration
method [13].
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Transmission grid:

• The article [14] concerns power system restoration planning. The strategy presented in the
paper uses an optimal energizing time needed to sectionalize islands. The method contains the
identification of transmission lines that are not adequate to connect to the islands. The article
methods consist of a combination of optimization methods: heuristic and discrete. The heuristic
one is used to indicate an initial solution which is close to the optimal solution. Then it is input to
the discreet method, which is the discrete Artificial Bee Colony approach.

• The paper [15] is based on a resilience analysis of transmission line restoration. It indicated that
transmission line capacitance is based on resilience factors. The proposed ideas were verified in
two IEEE tests.

• The article [16] presents a parallel automated resilience-based approach to restoration. The
appliance aims to minimize the influence of the emergency power outages in a power system. The
article proposes that during the power restoration process, a black start element is allocated to a
little region on an as-needed demand. Then a mixed-integer nonlinear programming approach
is indicated. The bi-level programming was used in the proposed solution to such a large-scale
optimization model. The application was realized using both 6 and 118 bus IEEE test systems.

• The article [17] presents a possibility to solve the problem of expansion planning. The article
contains the proposition of using multistage stochastic programming to solve this issue. The
indicated mixed-integer linear programming proposes the placement of the construction and
reinforcement of new transmission lines to assure the high reliability and quick restoration. The
presented results are based on the IEEE 30-bus system with assuring to minimalize cost.

• The article [18] proposes the post-disaster restoration planning model that enables finding an
optimal repair and activation schedule for damaged system components. In this model, an aim is to
maximize load accommodation capability, as well as to minimalize the make-span of the restoration
process. The obtained results increased maintenance efficiency. The IEEE 118 and 30 bus test
systems were tested in the study. Moreover, the advantages of using the sequence-dependent
repairing period are discussed.

• Other papers that concern simulation results in transmission systems and reliability are: using
interline dynamic voltage restoration [19], a method for the optimization of a power system
restoration path [20], a transmission line restoration using an emergency restoration system
structure [21], an indication of the maintenance schedule of transmission lines [22], a definition of
a restoration strategy in a transmission system during windstorm [23].

2.2. Research Based on Historical Data and Real Objects

The previous subsection includes literature resources from the last three to five years. However,
all of them are based on simulations and different models (e.g., IEEE models). The authors indicate
that there is a lack of present research of restoration issues based on real data, even if it is only input
to further algorithms. This article is devoted to transmission lines restoration time; thus, this part
is narrowed down only to transmission grids. Some interesting papers that concerns real object
analysis using historical data can be found in the “SCOPUS” data base for key words “restoration” &
“transmission lines” from the last three to five years:

• The article [24] presents a black start case study. However, the article contains simulations which
are based on real data from Benghazi North Power Plant. The data were used to validate a
black start plan for steady-state and transient operating conditions. The article indicates that
the optimum size selection of the black start is defined by the capacity of the biggest motor,
transmission line capacitive charging reactance, transformers size, and vector group.

• The article [25] presents a fault location system. The system is based on synchro phasors
measurements. It is used for 345 kV and 161 kV transmission networks at Taiwan Power Company.
Additionally, the article presents an evaluation based on historical cases.
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• The paper [26] presents an issue that was connected with noticeable transmission lines failures in
India under natural disasters. Data used in the article consisted of historical measurements when
real disasters happened. The article discusses emergency restoration system applications. This
system uses structure and foundation information, weather-related failure information, weather
conditions, structural loading, and damage sizes.

• The paper [27] is related to the economic impact of climatic events in the USA. It additionally
discusses why emergency restoration plans are needed. The second part of the article presents a
case study from Oman. It presents emergency restoration procedures to downed transmission
lines. Key aspects of emergency restoration procedures are discussed. The article indicates that
with the development of materials and techniques, emergency restoration procedures must be
periodically reviewed using actual technologies.

• Other papers that concern using real data in a transmission system and reliability are: an analysis
of the empirical probability distribution of transmission line restoration time over 14 years [28],
a case study of black starts of transmission lines in Australia [29], the development of a sequential
restoration strategy and its empirical verification in a Korean power system [30].

2.3. Motivation and Contribution of the Paper

The number of articles, indicated in previous subsections, that concern simulation in recent years is
huge. However, there is a lack of recent analyses realized for real cases although such real case analyses
were common in the previous century. However, they are still necessary because the development of
the materials and technics has totally changed in different areas. Thus, this article is a case study for the
Russian power supply company “Oreolenergo” that concerns the analysis of restoration time in power
lines based on analyzing historical data and a survey. In the analyzed regional power supply company
“Oreolenergo”, there are no monitoring systems for outages in the considered electrical networks.
There is practically no automation equipment, and power lines are made radial. The structuring of the
power supply restoration time given in the study makes it possible to consider in more detail all the
constituents of the power supply restoration time and to establish the factors affecting it.

It is difficult to assess the real time of power supply restoration, since there is no real data on the
time of the power supply outage beginning. The countdown of the power supply restoration time in
most cases starts from the moment when the information on a failure is received by the dispatcher
of a power supply company. As a result, restoration time is underestimated. Consequently, the
damage from the undersupply of electricity is also inaccurate. Therefore, the constituent “time for
obtaining information” was introduced into the structure of the power supply restoration time. The
value of this constituent was determined by the Delphi method. This method was also used for
the determination of the time for recognizing information. The choice of this method is due to the
impossibility of evaluating the data on power supply restoration time constituents by other means. The
questionnaires used for Delphi were designed specifically for this purpose and were sent to specialists
who work in the power supply company “Oreolenergo” and who have at least five years of work
experience. The choice of experts was justified by the fact that the dispatchers of the power supply
companies receive information from consumers about power supply outages, register the moment
of this information receipt, send a repair brigade to search for places of damage and to eliminate
the identified damage, and register the corresponding time intervals for repairs and switching on.
In most cases of power supply outages, especially in the 0.4 kV electrical network, dispatchers receive
information about outages from consumers, since there are no monitoring systems for power supply
outages. Nevertheless, they have cases of receiving information about the time of obtaining information,
for example, during planned power supply interruptions made by the personnel of power supply
companies. In these cases, they can register the time of disconnection and the moment of receipt of
the information on the power supply outage from the consumer. Thus, there is the opportunity to
analyze the time interval for obtaining information on power supply outages and the experts were
competent in estimating time intervals for obtaining and recognizing information. A total of 20 experts
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responded to the questionnaires. In turn, the repair time was determined by using the method of
mathematical statistics, while the time for connection harmonization was determined by using the
analysis of literature sources. To summarize the method’s end elements indicated for the restoration
time indication, Figure 1 was prepared. Additionally, in the article, the technical means of electrical
network automation to reduce the power supply restoration time were also found.

Figure 1. The proposed methodology to obtain restoration time for a selected power supply company.

3. Power Supply Reliability

One of the main criteria for power supply efficiency is power supply reliability, which implies
the continuous supply of electricity to consumers in accordance with an electricity consumption
schedule [31]. In turn, a main indicator of the PS reliability is power supply restoration time [32]. It can
include the following constituents: time for obtaining information, time for information recognition,
time to repair failures, and time for connection harmonization [33]. That is, the PS restoration time can
be determined by Equation (1):

trestor. = tobt.infor. + trec.infor. + trepair + tharmonize (1)

where

• tobt.infor. —time to obtain information;
• trec.infor.—time to recognize information;
• trepair—time to repair failures;
• tharmonize—time to harmonize equipment connection.

Each component of this equation can be further analyzed and contains several more time intervals,
each of which ultimately has an impact on the overall power supply restoration time.

A time for obtaining information is denoted as an interval from the beginning of a failure until
obtaining information on it by a dispatching service of a PS company [33]. This time includes the
following intervals:

tobt.infor. = tinfor1 + tinfor2 + tinfor3 (2)

where

• tinfor1—time for obtaining information on failures by means of primary information links. This link
can be electrical equipment receiving power energy from an electrical network and disconnecting
in case of a power failure, a sensing device of an automation system, or network status monitoring
(for example, a voltage sensor);

• tinfor2—time for obtaining information on failures by means of secondary information links. It can
be the compared element of an automation system as well as a monitored network status. The
specified time interval can be significantly reduced in the case of the use of automation, since a
person (consumer) noticing disconnected equipment has to make sure that this disconnection
occurred due to failures;
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• tinfor3—time for obtaining information on failures by means of third information links. This
link can be a dispatcher that receives a network failure signal or an element of a network status
monitoring or another automation system making a decision based on received information
(for example, a data processing unit, a microprocessor, etc.). This time interval largely depends on
the data transmission channel. Thus, a person (consumer) can report a failure by phone, e-mail, or
in person to the dispatcher, etc. tinfor3 will be different in each of these cases.

The information recognition time may be described using this equation: [33]

trec.infor. = tread.infor + tdec + tsearch + treport (3)

where

• tread.infor—time required for information message recognition, that concerns failures in an electrical
network. This time also depends on the data transmission channel through which the message
arrived, the method of data transfer, and the speed of data recognition (who decrypts the message:
a person or automatic equipment);

• tdec—time spent on a decision by a dispatching office. It includes a time to decode information on
failure, and it lasts until a place and a failure type are determined by a brigade;

• tsearch—time required for a brigade to search the failure (depends on transport type, the remoteness
of the failure place, the terrain type, the failure type, and brigade equipment for the search);

• treport—time required to send information on a location and a failure type by a brigade (depends on
the type of data transfer).

The repair time is an interval starting from the preparation of equipment to eliminate a failure up to
the harmonization of the repair equipment [33]. This time can be represented as the following equation:

trepair = trepair.prepar + trepair.reach + trepair.switch + trepair.permit + trepair.work + trepair.complet (4)

where

• trepair.prepar—time required for a repair brigade to depart including the preparation of work permit,
equipment, devices, and loading on transport;

• trepair.reach—time required for a repair brigade to reach a failure location. It depends on the
distance to the failure place, the transport type, the landscape, road condition, the season, and the
time of day;

• trepair.switch—time required to switch necessary equipment;
• trepair.permit—time required to obtain a permit for the work of a repair brigade. It depends on the

work complexity as it impacts the preparation time of the workplace, that is, the implementation
of technical measures to perform safe work;

• trepair.work—time required to carry out direct repair work. It depends on brigade staff
(quantitative and qualitative ones) and equipment with the appropriate tools and devices,
along with the complexity of work;

• trepair.complet—time required for the completion of work, the cleaning of a workplace, the exit of a
repair brigade from a workplace, documenting the completion of work.

The time of the connection harmonization tharmonize can be described using this equation [33]:

tharmonize = tinf.transfer + tpre.connect + tconnect + tensure (5)

where

• tinf.transfer—time required for information transfer time to a dispatching office the need to connect
repaired equipment;
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• tpre.connect—time required to prepare the equipment connection and to document this;
• tconnect—time of equipment connection. It depends on the network diagram, the type of devices

used for switching on, the distance from the personnel carrying out the switching up to the
switching devices;

• tensure—time required to ensure that the equipment was successfully connected.

The literature positions indicate that data on the above time intervals are incomplete or often
missed. However, the analysis of these time intervals reveals the potential to realize a reduction of
the power supply restoration time that results in the power outages to consumers and the associated
failures. Since the diagnostic methods and technical means for obtaining information about failures
may be different [34], there are many factors that make it difficult to accurately determine the power
supply restoration time and each of its constituents.

4. Results

4.1. Obtaining Information Time

The most correct method of determinization of obtaining information time of failures in electrical
networks (tobt.infor) is the Delphi method. This method was successfully applied in different researches,
e.g., [35,36].

The questionnaire was prepared specifically for this research. It was given to twenty experts
working in PS companies (dispatchers). The experts had at least five years employment experience.

This research proposes obtaining information time in 12 intervals. The specialists had to give
a score from one to ten for each time interval. The most probable time interval got ten points from
experts while the least probable got zero points. In the case that the expert indicates the same time
interval probability, they could estimate the time intervals by points. The harmonization degree of
the participant of the questionnaire was calculated. For this, a concordance coefficient (Equation (6))
proposed by Kendall was used:

W = 12×S
m2 × (n3 −n) ,

W = 12× 35.9× 103

202 × (123 − 12) = 0.62
(6)

where

• S—the sum of squared differences between the sum of the estimates given by all experts to the
i-th time interval (

∑m
i=1 Nij) and the arithmetic mean of all the estimates N;

• m—the number of experts surveyed; n is the number of time intervals in the questionnaire;
• Nij—the score given by the j-th expert to the i-th time interval.

W =
12× 35.9× 103

202 × (123 − 12)
= 0.62 (7)

The arithmetic mean of all estimates was determined in accordance with the well-known
Equation (8):

N =

∑n
i=1
∑m

j=1 Nij

n
N = 172+ 180+ 164+ 135+ 117+ 97+ 71+ 61+ 57+ 41+ 31+ 19

12 = 95.4
(8)

The sum of the squares of differences was determined according to Equation (9):

S =
∑n

i=1 (
∑m

j=1 Nij −N)
2

S = (5.8 + 7.1 + 4.7 + 1.5 + 0.5 + 0.00256 + 0.6 + 1.2 + 1.5 + 3 + 4.2 + 5.8) × 103 = 35.9× 103
(9)
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Since the time intervals were indicated in the questionnaires, fixed points were chosen for
calculating the expectation at each interval. These points corresponded to the middle of the intervals.
The mathematical expectation was determined by the following equation:

M(t) =
∑n

i=1(tci·∑m
j=1 Nij)∑n

i=1
∑m

j=1 Nij

M(t) = 21.5+ 67.5+ 102.5+ 111.3+ 131.6+ 133.3+ 115.3+ 114.3+ 121.1+ 97.3+ 81.0+ 54.0
1145 = 1.01

(10)

where

• M(t)—the mathematical expectation of the time for obtaining information;
• tci—the time value of the middle of the i-th interval.

The calculation results are indicated in Table 1.
For clarity, the distribution of expert estimates given to the corresponding time interval is presented

in Figure 2.

Figure 2. The histogram that represents the assessment of experts concerning a distribution of the time
for obtaining information on failures.

The mathematical expectation of obtaining information time on failures was 1.01 h with the
concordance coefficient of 0.627. In the questionnaires, it was considered that there were no monitoring
systems of electric network, i.e., a PS company dispatcher obtained information on failures from
the consumers.

This is quite a long time, which can and should be reduced by various means. A proposition to
reduce the time may be, e.g., an automatic detection of failures facts and places in electrical networks
and unmanned aerial vehicles allowing to monitor the power line state and detect failure places.
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4.2. Recognizing Information Time

The present data indicated in the literature that concerns time of recognizing information on
failures trec.infor is not fully explored. However, it is worth noting that this time interval may take 75%
of the time of the PS restoration. The Delphi method was also used to determine this time, and there
were also 20 experts.

The results of the calculations are summarized in Table 2, the distribution of expert assessments
given to this time interval is shown in Figure 3.

Figure 3. The histogram that represents the assessment of experts concerning the distribution of the
recognizing information time.

The mathematical expectation of a time of recognizing information on failures was indicated as
2.94 h (a concordance coefficient is 0.79).
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4.3. Repair Time

This work uses the statistical data of time to repair failures trepair obtained by using the year
statistics of a power supply company (“Oreolenergo“) [37]. The used data that concern failures and
repair time are summarized in Table 3 and shown in Figure 4.

Table 3. Number of failures for specific repair time.

Repair time, h. 0.00–0.50 0.50–1.00 1.00–1.50 1.50–2.00 2.00–2.50 2.50–3.00 3.00–3.50 3.50–4.00

Number of failures, pcs. 75 50 29 38 12 3 2 3

Figure 4. Number of failures for specific repair time.

The values of the mathematical expectation and dispersion of the repair time were determined
from this data [5,10,18]. To do this, the sampling mean XB was found out by Equation (11):

XB = 1
n ×

Ni∑
1
(Xi ×Ni)

XB = 0.25× 75+ 0.75× 50+ 1.25× 29+ 1.75× 38+ 2.25× 12+ 2.75× 3+ 3.25× 2+ 3.75× 3
212 = 1

(11)

where

• n—number of failures, n = 212;
• Xi—i-th repair time for which the calculation is made;
• Ni—frequency of the i-th time value.

Next, the conditional values Ui were determined by Equation (12):

Ui =
Xi−C

h
U1 = 0.25− 0.25

0.5 = 0
(12)

where

• C—constant (the repair time with the highest frequency of occurrence), C = 0.25 is for the first
time interval;

• h—scale (the time step h = 0.5 h).
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Similarly, other indicators were calculated, and the results are summarized in Table 4.

Table 4. Conditional values of the repair time.

No interval 1 2 3 4 5 6 7 8

Ui 0 1 2 3 4 5 6 7

The conditional sample value UB was determined by Equation (13):

UB = 1
n ×

Ni∑
1
(Ui ×Ni)

UB = 0× 75+ 1× 50+ 2× 29+ 3× 38+ 4× 12+ 5× 3+ 6× 2+ 7× 3
212 = 1.5

(13)

The sample value XB through the conditional sample value UB was found by Equation (14):

XB = UB × h + C
XB = 1.5× 0.5 + 0.25 = 1

(14)

The value of sample dispersion DB was determined by Equation (15):

DB = 1
n ×

Ni∑
1
[(Xi −XB)

2 ×Ni]

DB = 1
212 × [ (0.25− 1)2 × 75 + (0.75− 1)2 × 50 + (1.25− 1)2 × 29 + (1.75− 1)2 × 38+

(2.25− 1)2 × 12 + (2.75− 1)2 × 3 + (3.25− 1)2 × 2 + (3.75− 1)2 × 3
]
= 0.61

(15)

Root-mean-square deviation:
δB =

√
DB

δB =
√

0.61 = 0.781
(16)

The corrected root-mean-square deviation S was found out to obtain a more accurate value of
the deviation:

S =
√

n
n− 1 × δB

S =
√

212
212− 1 × 0.781 = 0.782

(17)

The probability of determining the repair time interval was taken to be γ = 0.95. Therefore, the
value for determining the interval is t = 1.96.

The accuracy of the assessment:
2F = γ = 0.95

F = 0.475
(18)

The estimation deviation:
t× S√

n
=

1.96× 0.782√
212

= 0.105 (19)

The boundaries of the confidence interval:

XB − t×S√
n
= 1− 1.96× 0.782√

212
= 0.895 is the lower interval

XB + t×S√
n
= 1 + 1.96× 0.782√

212
= 1.105 is the upper interval

(20)

Thus, the time to repair failures was in the interval 1 ± 0.105 h with 95% probability.

71



Energies 2020, 13, 2736

4.4. Connection Harmonization Time

The time for the harmonization of the equipment connection tharmonize depends on the applied
communication tools, the time for preparing the equipment to be connected and its documentation,
the time for equipment connection, and the time needed to ensure that the connection was successful.

The dispatcher must check the possibility of switching on a power line [38]:

• on records in the operational log and applications;
• by the telephone book “About the delivery and acceptance of lines”;
• by the absence of posters on the drives of disconnectors;
• by interviewing operating personnel of substations and power plants about the absence of working

people on the power line equipment which should be switched on.

After that, the command to turn on the equipment is given. In total, the time of connection
harmonization can take up to 20 min.

4.5. Analysis Results

Considering the values of time intervals, the PS restoration time was calculated using Equation (1):

trestor. = 1.01 + 2.94 + 1.00 + 0.33 = 5.28 h

The indicated time of power supply restoration based on our analysis is equal to 5.28 h. This
duration is significant and can cause considerable material damage to consumers supplied from the
electric grid where blackout has occurred especially for those sensitive to process shutdown.

5. Discussion

Annually, the investigated regional power supply company “Oreolenergo“, a branch of IDGC
of Center, has an average of 344 power supply outages with a total of 98,495.835 kWh of unsupplied
electric power [17]. The total number of power outages includes consumer outages, outages due
to damage of overhead lines, cable lines, transformers, equipment of transformer substations, and
distribution points. The average power supply restoration time is 5.86 h, which is close to the time
obtained based on the performed studies (5.28 h). The deviation is 9.9%. It should be noted that these
data on the power supply restoration time are related to failures in power transmission lines, which
are the most unreliable element of the power supply systems.

A power supply restoration time of more than 5 h causes significant damage both to consumers
and to power supply companies. Opportunities should be sought to shorten this time as much as
possible. In most cases, it is difficult, since a noticeable number of power lines especially in rural
areas have surpassed their resources and require replacement [39,40]. According to the statistical data
of “Oreolenergo” [17], the causes of damage to power lines are shortcomings in maintenance (45%),
the influence of natural and weather conditions (33%), the influence of unauthorized persons (15%),
other reasons (e.g., birds, animals, etc.) (7%). At the same time, it is indicated that shortcomings
in maintenance includes fallen trees and short circuits because of trees touching power line wires
caused by untimely cleaning of power line routes, breaks of wires, fallen utility poles, and other causes
associated with power line aging and late monitoring of their condition.

The PS restoration time may be reduced by different methods, especially the electrical network
automation means. Almost all automation means can reduce the time to perform a particular operation
and increase the accuracy of its execution. For example, the time to obtain information and recognize it
can be significantly reduced by using a power supply reliability monitoring system or by using means
for monitoring the technical condition of an electric network equipment, such as using unmanned
aerial vehicles (UAVs) as in the articles [41–44] or the thesis [45]. Calculations realized in [45] indicated
the implementation of the developed power supply reliability monitoring system in the Mtsensky
electric grid of the Orel Region, Russian Federation. They showed that the time to obtain information
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was reduced from 1.01 h to 0.09 h, and the time to recognize information was reduced from 2.30 h to
0.25 h. In [46], UAV tests were described based on the Orelenergo branch of the IDGC of Center, PJSC.
They showed that it was possible to achieve a reduction in the time of a PTL round check (the time for
recognizing information) from 3.5 h/km to 5 . . . 15 min/km, that is, more than 30-fold.

It should be noted that if there are means of sectionalizing and redundancy of power lines
such as automatic circuit reclosers (ACR), the time of power supply outages can also be significantly
reduced [47,48]. However, in this case, the power supply restoration will be carried out by redundancy
means, and the time for this restoration trestor.redund. is determined by the equation

trestor.redund. = tdamaged sec tion isol. + tbackup power act. (21)

where tdamaged sec tion isol. is the time spent on the isolation of the damaged section from intact ones, h;
tbackup power act. is the time spent on backup power actuation, h.

All means of electrical network automation can be classified according to the time intervals that
they shorten. This classification is shown in Table 5. Thus, the existing and promising methods and
technical means of electrical network automation aim at reducing the specific constituents of the power
supply restoration time.

Table 5. Methods and technical means of electrical network automation for reducing the power supply
(PS) restoration time.

Time Interval Methods and Technical Means of Electrical Network Automation

tobt.infor.
• Monitoring of the technical condition of electric network equipment;
• Monitoring of power supply reliability;
• Telecontrol.

trec.infor.

• Monitoring of the technical condition of an electric network equipment;
• Monitoring of power supply reliability;
• Monitoring of electric network operation modes;
• Telecontrol;
• Means for determining the failure location.

trepair

• Automation tools (processes digitalization of work authorization of
brigades, registration of the beginning and end of work, etc., for example,
the “Digital Electrician complex” [15]);

• Repair work automation.

tharmonize

• Means for remote communication of the brigade members with the
dispatcher and with each other;

• Monitoring the technical condition of electric network equipment;
• Monitoring of electric network operation modes;
• Telecontrol.

tdamaged sec tion isol.

• Automatic sectionalizing of power lines;
• Monitoring the technical condition of electric network equipment;
• Monitoring of power supply reliability;
• Telecontrol.

tbackup power act.

• Automatic redundancy of power lines and consumers;
• Monitoring the technical condition of electric network equipment;
• Monitoring of power supply reliability;
• Telecontrol.
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6. Conclusions

The power supply restoration time analysis of power transmission lines shows that it depends on
several constituents. The constituents of time restoration analyzed in this study are:

• time for obtaining information,
• time for information recognition,
• time to repair failures,
• time for connection harmonization.

In this article, the methods of obtaining each of them were proposed and described. The case
study calculations were realized for the Russian power supply company “Oreolenergo”. The obtained
restoration time was theoretically equal to 5.28 h. This value is equal to the statistical data obtained
from the selected power supply company. The result deviation was less than 10%. Additionally, after
obtaining the value of PS restoration time, it was proposed how it may be decreased. The proposition
of the technical means of electrical network automation was indicated. These means were proposed
and ordered in accordance to the time intervals they shorten.

Future research directions will be aimed at numerically estimating the impact of methods and
technical means of electrical network automation on the constituents of the power supply restoration
time. This will allow evaluating the effectiveness of their introduction by comparing the received values
of the power supply restoration time constituents with initial ones and determining the reduction in
damage from a lack of electricity supply.
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Abstract: The article presents calculations and power flow of a real virtual power plant (VPP),
containing a fragment of low and medium voltage distribution network. The VPP contains a
hydropower plant (HPP), a photovoltaic system (PV) and energy storage system (ESS). The purpose
of this article is to summarize the requirements for connection of generating units to the
grid. Paper discusses the impact of the requirements on the maximum installed capacity of
distributed energy resource (DER) systems and on the parameters of the energy storage unit.
Firstly, a comprehensive review of VPP definitions, aims, as well as the characteristics of the
investigated case study of the VPP project is presented. Then, requirements related to the regulation,
protection and integration of DER and ESS with power systems are discussed. Finally, investigations
related to influence of DER and ESS on power network condition are presented. One of the outcomes
of the paper is the method of identifying the maximum power capacity of DER and ESS in accordance
with technical network requirements. The applied method uses analytic calculations, as well as
simulations using Matlab environment, combined with real measurement data. The obtained results
allow the influence of the operating conditions of particular DER and ESS on power flow and voltage
condition to be identified, the maximum power capacity of ESS intended for the planed VPP to be
determined, as well as the influence of power control strategies implemented in a PV power plant
on resources available for the planning and control of a VPP to be specified. Technical limitations
of the DER and ESS are used as input conditions for the economic simulations presented in the
accompanying paper, which is focused on investigations of economic efficiency.

Keywords: virtual power plant; distributed energy resources; energy storage systems; grid codes;
power systems; smart grids; prosumer; business model; economic efficiency; sensitivity analysis
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1. Introduction

A Virtual Power Plant (VPP) is still an actual approach and there is not a standardized definition for
the framework of a VPP in the literature. The origin of the terminology of “Virtual Power Plant” may be
traced back to 1997, when S. Awerbuch, in the book “The Virtual Utility—Accounting, Technology and
Competitive Aspects of the Emerging Industry” defined Virtual Utility as flexible cooperation of
independent, market-driven actors that assures an efficient energy service expected by the consumers
without the need for appreciating assets [1]. A VPP manages distributed energy resources (DER)
named also distributed generation (DG) units [2]. For example, wind, solar and hydroelectric power
generation units are interconnected. Managing them together enables them to be more effective [3–5].

A Virtual Power Plant, as an autonomous, intelligent unit equipped with effective and safe
power flow control systems, consists of generators, loads and energy storage that is connected to the
distribution network [6]. These devices are equipped with controllers, which usually power electronic
converters that allow for power flow control [6]. Coordinating the work of the entire VPP is a difficult
and demanding task. The system’s architecture must not only enable power flow control but also ensure
VPP protection—not only related to power system security but also cybersecurity. In Reference [7],
VPP architecture based on a common information model (CIM) and IEC standard 61850 is shown.

There have recently been many attempts to integrate intelligent solutions in power systems.
An interesting discussion related to microgrids and the VPP is presented in Reference [8].
Microgrids allow increasing the efficiency of the use of distributed energy sources and energy
storage systems. It also allows for regulating the load. Microgrids can be connected to the power
system or operate as a standalone system. VPP management is based on computer software that enables
the integration of distributed sources. In systems connected to the distribution network, the value of the
power generated by the generation sources, the operation of the energy storage and the response of the
demand side are optimized. Several propositions proclaiming the idea of transforming microgrids to a
virtual power plant have recently been discussed, among others in References [2,6]. Additionally, it is
also worth mentioning a new topic called virtual microgrids, which can be recognized as software
solutions and algorithms supporting the planning, design and operation of microgrids. As an example
of the virtual microgrids, it is worth noting a prosumer cluster connection into virtual microgrids to
obtain cost reduction [9] or energy peer-to-peer trading in virtual microgrids [10].

Due to the random nature of the generated power, a large number of independent renewable
energy sources can lead to system stability problems and therefore the connecting of distant generation
sources, loads and energy storage units into a VPP has many benefits [11]. Work [12] shows the
possibility of using charging points for electric vehicles, as well as wind generation, in the VPP concept.
It also presents power flow optimization while taking into consideration price, wind generation and
electric vehicles. Paper [13] concerns VPP control power consumption for heating. The operation
algorithm is based on the application of thermal mass to the building to defer power consumption
from electric space heating.

There are many different aspects to VPP power flow control. The main goals correspond to
economic aspects related to electrical energy trading. The VPP control algorithms predict energy
storage charging at low energy prices, as well as discharging energy storage and the sale of energy at
peak demand at high prices. Paper [14] presents a stochastic bi-level optimization model to maximize
day-ahead profit and to minimize predicted real-time production and the consumption of imbalance
charges. In Reference [15], the bidding strategy of a VPP is determined using mathematical models.
Ref. [16] presents decentralized coordination of VPP units, considering both active and reactive power
using the novel Lagrangian relaxation-based mechanism. The method takes into account the effect of
flexible demand and prevents the creation of new demand peaks and troughs. Another aspect concerns
optimizing the use of locally generated energy and using the right strategy for storing energy in energy
storage [17,18]. Power flow in a VPP, due to technical aspects, can also be optimized. In Reference [19],
the binary backtracking search algorithm (BBSA) is used to optimize power flow in a VPP in order to
achieve a reduction of generation cost and power losses, as well as, to increase reliability. To achieve
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the same goal, risk-constrained stochastic programming is used in Reference [20] and the Imperialist
competitive algorithm is used in Reference [21]. A big problem in the modern generation can also be
seen to be carbon dioxide emissions. In Reference [22], binary particle swarm optimization (BPSO) is
used to solve the indicated issues.

However, technical issues cannot be overlooked when planning the different strategies for a
VPP. For example, voltage levels at all points in the distribution network should be within the range
allowed by the standards. The same applies to the values of currents in the transformer lines and
windings. Cooperation between units included in the VPP, meeting these expectations, is presented
in Reference [23]. Moreover, issues regarding the operation of the storage itself are also important.
Studies on the impact of energy storage parameters on VPP strategy and performance are presented in
References [24,25]. The crucial technical aim of the VPP is concentrated on the aggregation control of
the number of distributed generation units, which are grid-connected close to consumers (end-users,
households). The aggregation verification may be a centralized or not system supported by a logic
control algorithm, as well as, a communication infrastructure [26]. The control strategies must
concern reliability, uncertainty, stability, demand response, power quality, active and reactive power
management, protection and balancing and reliability in various load circumstances [27–29].

Additionally, when technical aspects are indicated it is worth noticing the management
entities—virtual power players issues. Virtual power players’ aim is the generation and services
remuneration or charging energy consumption. The diversity of players to expedite participation in the
electricity markets is described in the literature [11,30,31]. Reference [32] proposes the methodology
to DER management. The article includes resource scheduling, aggregation and remuneration.
The aggregation process is realized by k-means algorithm. Clustering is realized for different
approaches, that concerns tariffs definitions for the period of a week. Customer remuneration is
realized in accordance to Portuguese time-of-use tariffs. The research corners twenty thousand
consumers and five hundred distributed generation units. The paper [33] deal with the same issues.
However, it is realized for 2592 operation scenarios. Those cases consider over 5 hundred DGs,
over 20 thousand consumers and ten suppliers. The article [34] is another example of using clustering
to prosumers aggregation. The article [35] presents the discussion of demand response in point
economic pros and effectiveness. This article presents a sensitivity analysis of demand response prices
for the virtual power player operation costs. Additionally, the analysis comparison of cost of distributed
resources and demand-side response during facing supply unavailability. This calculation is performed
in a real smart grid on buses with associated micro-production. This allows the creation of sub-groups
of data according to their correlations. The clustering process is evaluated so that the number of data
sub-groups that brings the most added value for the decision-making process is found, according to
players’ characteristics. In addition to the technical aspects, selected issues concerning the roles of
VPP partners are discussed in the accompanying paper [36]. Physical and financial streams between
them are highlighted in point of the decision model which is concentrated on profits maximization.
The results show that the number of distributed energy resources and the available storage capacity of
battery energy storage has an impact on the economic efficiency of the VPP.

This article aims to study the technical aspects of integration of the above-mentioned units with an
electrical power system (EPS) with regards to their prospective application in the VPP. The mentioned
limitations are related to the regulation and protection procedures applied in the control of generation
units and storage systems and also their possible influence on power system parameters. This article
presents calculations and power flow of a real virtual power plant (VPP), containing a fragment of
low and medium voltage distribution network. The model contains the hydropower plant (HPP),
a photovoltaic system (PV), energy storage system (ESS). The problem is based on the identification of
the limitations, which are dictated by the technical requirements of cooperation of power generation
units and energy storage systems with the power system; the application of the simplified calculation,
which is supported by precise simulation techniques so that the maximum power capacity of the
planned energy storage system in the planed VPP can be indicated and the investigation of real
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measurements of a photovoltaic power plant in order to reveal the impact of power control strategy on
the potential of the resources integrated with the VPP. The presented review of VPP definitions and
aims, as well as a summary of VPP projects, are the motivation for this paper. Additionally, to obtain
the economic issues and impact on electricity marked firstly the technical requirements must be assured.
The contribution of this paper covers the current gap of knowledge related to the VPP project which
exhibits in the real case limitations of utilization the DER and ESS. For example, this paper provides
the real case example of calculation and simulation focused on the determination of maximum power
capacity of the ESS planned In terms of VPP efficiency and sensitivity, it is important to identify the
maximum level of ESS power capacity that can be connected in the planned node to be installed in
the selected network node. Results of presented investigations formulate margin condition for the
VPP resources. Another example of the contribution of the paper to the current knowledge gap is the
attempt to determine the influence of the power regulation strategies applied in PV plants on the real
power range available for the VPP control strategies. Using the real measurement investigations it was
shown that reactive power consumption implemented in the PV inverters reduces the energy volume
potentially available for VPP form the PV installations. Mentioned examples constitute the limitation
for the VPP project and can be adapted to other VPP investments.

The aim of this paper is to identify possible limitations in the development of the VPP which
might be related to the regulation, protection and integration of power generation units with power
systems. The mentioned problem can be seen to be a crucial issue, especially on the preliminary stage
of the VPP concept and when different approaches for the economic strategies for VPP are created.
After the introduction section, which highlights the main motivations of this paper, Section 2 presents a
literature review of the technical aspects of VPP. This includes recent investigations regarding network
integration, as well as a review of a selected real case of VPP realization. The aim of Section 2 is to
identify current problems and solutions related to VPP and to provide the range of functionality of
current VPP projects. Section 3 highlights the problems regarding the investigations presented in
this paper. It has to be emphasized that technical aspects of DER and ESS, associated with the VPP,
can be considered on several levels. Thus, Section 3 consists of the identification of codes and technical
standards that define the requirements and permissible limits of electrical power system parameters
and power quality, protection schemes and active and reactive power control issues applied for
distributed energy resources. An additional element described in Section 3 is the energy storage control
and limitations coming from the charging and discharging characteristics of energy storage systems.
The revealed aspects can be treated as boundary conditions for the identification of their impact on
VPP planning and operation strategies. The main investigations are presented in Section 4, which starts
with a description of the topology of a medium voltage network in the area of the investigated VPP.
The investigations are based on a real VPP project and present results considering the investigation
of the cooperation of a 1 MW hydropower plant with 0.5 MW battery energy storage connected to
the same node of medium voltage distribution network and impact of their operating condition on
power flow and voltage level in observed network belonging to the VPP, (b) identification of maximum
power capacity of battery energy storage which can be connected to considered node of the VPP as
well as identification of general grid capacity of the investigated fragment of the distribution network
to connect possible DERs/ESSs, (c) the identification of the impact of power control strategy applied
in a PV power plant on resources available for the VPP. The maximum power capacity of the ESS is
understood as the rated power of the ESS determined by requirements for power quality parameters of
the grid and requirements for the integration of the generation units with power systems. In presented
investigations, the storage capacity of the considered ESS is fixed and is used as a margin condition for
the simulations. The storage capacity determines the ESS operability usually reflected by available time
for charging and discharging. The selection of storage capacity of the ESS is usually based on specific
aim functions considering selected intentions of using the ESS like economic aspects or islanding mode.
The maximum power capacity of the ESS is restricted by the standards and regulations addressed
to cooperation with the grids. The presented analysis is based on simulations conducted in Matlab
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combined with real measurements. The initial condition for the calculation was based on the real
measurements of load and generated power that represent a day of summer load peak demand. As a
result of the investigation, the maximum power capacity of the considered ESS is identified with
regards to the requirements for the permissible level of rapid voltage changes. Additionally, the impact
of the power control strategy applied in a PV power plant on resources available for the VPP was also
identified. In Section 5 a discussion about the influence of requirements for grid connection applicable
to power generation units and its impact on limitation of the maximum power capacity of distributed
energy resources and energy storage systems considered for planning operation of the VPP is provided
in the broadest context. Section 6 presents the conclusions.

The identified limitations for the VPP, resulting from the technical aspects presented in this paper,
are used as the input conditions for the economic investigations presented in the accompanying
paper [36]. The paper presents the results of economic efficiency, including sensitivity analysis on price
factors and DER production volumes, as well as the capacity of ESS.

2. Literature Review in the Context of the Technical Aspects of the VPP

2.1. Selected Investigations of the VPP: Load Demand Reduction, Voltage Control, Islanding, Microgrids,
Power Quality

In recent years, in the literature related to the technical aspects of a VPP, several examples are
worth noting.

• Reference [37] introduces a regulation mechanism for a VPP. The calculation method of a virtual
power plant’s frequency performance is presented. The model proposed in the article enables the
VPP’s regulation performance score to be analyzed and the VPP’s regulation control strategies to
be simulated. The obtained results show that the strategy can reduce a VPP’s variability caused
by DGs.

• Reference [38] presents the possibility of usingμ-CHP generation units in households, which would
lead to a situation where consuming households will also be able to produce electricity. This enables
the local management of the grid. The application of information and communication technologies
(ICT) enables the clustering of μ-CHPs in VPP. The research was conducted by the companies
ECN and Gasunie. The results indicated that a cluster of 10 households with a μ-CHP may reduce
the substation peak load by 30–50% without infringing user comfort.

• Reference [39] indicates the need for efficient voltage control. The article presents the possibility
of using small run-of-the-river hydropower plants, which are connected to a VPP to control the
network voltage. The control is realized with the management of the reactive and active power
of communicated hydro power plants belonging to a virtual power plant. The paper contains
research on the efficiency of various voltage control measures. The small hydro power plant’s
active and reactive power enables the voltage in the electrical network to be controlled with PV
during times of high feed-in.

• Reference [18] presents research on the optimal configuration model of an energy storage system
(ESS) in a VPP with large-scale distributed wind power. The optimal objective function of the
energy storage system is established with consideration of economy, load shifting and safety
standards. The particle swarm optimization algorithm is used to solve the model. The model
feasibility is verified on the IEEE 33 node system. The obtained results indicate that larger ESS
configurations lead to a positive impact on load shifting.

• Reference [40] contains simulations of a VPP. The analyzed VPP consists of a 200 MW wind
power plant (WPP), a 100 MW photovoltaic power plant, PV and +/− 250 MW pumped storage.
The indicated DG units are integrated into an islanded grid with a thermal power plant. The base
islanded grid load is 1300 MW. The article describes the control strategies of the pumped storage
power plant. The analyzed strategies are focused on the improvement of the power quality (PQ)
level in case of significant solar power variations.
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• Reference [41] concerns the frequency control issues connected with an increasing amount of
wind generation, which can be seen as an important part of a VPP. The authors indicate that the
inertia of the system has an important function because it determines the influence on frequency
variation during the changes in generation or power demand level. Thus, the doubly-fed induction
generator wind turbines, which reduce the effective inertia of the system, may be used to control
the frequency.

• Reference [42] contains a technical-economic impact analysis of the massive integration of small
generators and demands into a VPP. The results can be observed in system functioning and
on the outcome of demands and generators within the VPP. The paper contains the analysis
and comparison of several VPP strategies. Additionally, the article proposes optimization
algorithms based on the modification of the big band and big crunch (BB–BC) optimization
method. The algorithms under research aim to determine the optimal location and optimal load
control strategy of renewable energy sources and also the optimal operation schedule of energy
storage elements in order to minimalize the energy purchased from a substation. The important
outcome of the research is that a high reduction of energy purchased from substation energy is
possible using the control of the load demand in a VPP.

• Reference [43] contains the description of a flexible energy optimizer for microgrids and VPPs.
In the article, the unit commitment and economic dispatch problem is solved by an enhanced mixed
integer linear programming (MILP) method. Additionally, different post-optimization modules
were developed, which enabled the potential network constraint violations to be mitigated and
power quality to be improved. One of the strategies is toward to enhance voltage and loading
quality, reduce power losses and support selected ancillary service in worst voltage quality nodes
and nodes with high power consumption.

• Reference [44] presents the architecture for a VPP and the interaction of customer meters
using a virtual power plant controller. The paper contains the description of human machine
interface (HMI) development to access reactive power metering at the location of customers.
Additionally, the article presents a recording tool for reading a VPP controller. The VPP controller
is able to control the reactive power flows to the customers and it, therefore, carries out a proactive
operation to reduce voltage instability.

• Reference [45] contains the impact analysis of harmonic distortion on the energization of energy
distribution transformers integrated into a VPP. One of the parts presents the analysis of an
analytical procedure that predicts the inrush current and the parameters of a single-phase power
transformer under a distorted voltage condition. The aim of the indicated analysis is that variations
in inrush current resources correspond to the voltage harmonic distortion level expressed by the
total harmonic distortion in the voltage. Although, it is important to notice that in large-scale
home appliance use of electronic power equipment so the level of distortions may increase in
the future.

2.2. Review of Selected Real Case VPP Realizations

Despite the many investigations concerning VPP concepts, strategies and control, it is worth
noticing actual VPP projects, which show the scale of developments and results:

• The Fenix project was developed to improve the contribution of distributed energy resources to the
electric network by aggregating them into Large Scale Virtual Power Plants. The project is based on
the cooperation of DG owners, energy companies, research institutes and universities—EDF, Areva,
Siemens, ECRO SRL, Imperial College London, the University of Manchester and the University
of Amsterdam, among others. The project consists of three phases [46]. The first phase involves
the preparation of two scenarios—northern and southern—which are described in this subsection.
The analysis presented in paper [46] included the DER contribution to the network, as well as
its strengths and weaknesses. The second phase covered the design of the communication and

82



Energies 2020, 13, 3086

control system between the DERs in a VPP. The last phase concerned the validation of previously
prepared analysis and systems through the realization of building 2 installations—in the UK and
Spain [47]. Close to Bilbao City in Spain, there is a FENIX Southern Demonstration VPP connected
to the Iberdrola system. The indicated installation connect a lot of different DER, such as combined
heat and power (CHP), wind turbines, hydropower, photovoltaics, a CHP-biomass system, with a
combined total capacity of 0.168 GW. The distribution area, that the project is realized has the
peak demand equal to 0.320 GW. It works as a casual VPP. It means, that information from every
connected distributed energy source is analyzed in the main control system. The information
is exchanged in an intelligent interface called “FENIX Boxes.” This system connects every DG.
The indicated intelligent electronic devices assures adequate steering and implementation for
the communication protocols. The protocols use wireless communication approaches for the
distributed energy sources and control systems. It is based on the Virtual Private Network.
The Virtual Private Network unites the heat and power plants, wind and solar sources and heat
pumps, which assures creation of the interconnected, flexible system that has centralized control.

• The project Smart Power Hamburg aims to design a VPP. It is towered to aggregate the variable
load and CHP units in Hamburg in Germany. The created Virtual Utility applies the present urban
infrastructure. The infrastructure consists of CHP units, heat storage systems and a building with
demand-side management. It presents a new direction to the generation of electricity, as well
as, covering heat demand in the urban area. The connection of cogeneration and heat storage
systems enables the unit to be operated according to electrical demand instead of heating demand,
thus increasing the unit’s flexibility. The project shows the possibility of integrating the bunkers
storage possibility, swimming pools or heating networks, which are steered by the indicated
virtual power plant [48].

• The Danish EDISON virtual power plant case was started in 2009. It is related to analyzing the
Bornholm Island that provides supportive services to real energy market players for example,
generation companies to obtain the effective application of distributed energy resources [49].

• A battery storage virtual power plant placed in the Australia. The South Australia conducted the
biggest case study project. The indicated virtual power plant consists of a lot of the small-scale
batteries and photovoltaics. The total capacity of indicated units is five MW (seven MWh).
The indicated systems are connected to the central monitoring and management element in the
VPP. The important element of the project is to simplify local network constraints, stabilize prices
of electric energy and support renewable energy sources. The South Australia has great potential
for exploitation of renewable energy—more than forty percent of the generated power proceeds
from the wind farms or rooftop photovoltaic systems [50].

3. Problem Statement

The cited examples show significant progress in the development of VPPs. However, this article
aims to highlight technical aspects at the preliminary stage of the concept and operation planning of a
VPP. The size of the ESS, the capacity of available power generation, as well as control restrictions
on the use of the DER and ESS have to be identified. The cited examples are also of interest due to
permanent amendments of standards and network codes. This is why the problem has its beginnings
in the technical requirements of the cooperation of power generation units and energy storage systems
with a power system. The aim of this section is firstly to generally review the technical requirements
dedicated to controlling the DER and ESS in terms of their cooperation with the power system and
then to select and discuss in detail several topics which can appear on the primary level of VPP
planning. Among the wide list of technical aspects, this paper presents three of them. They were
selected due to the association of the VPP project with the distribution network and small generation
units. Thus, the technical aspects presented in this section serve as the base for further investigation of
the following problems:
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• cooperation of the DER and ESS and their impact on the power flow and voltage level in the
observed network belonging to the VPP,

• identification of maximum power capacity of ESS which can be connected to the considered node
of the VPP and identification of grid capacity to connect possible DERs and ESSs

• investigation of the impact of the power control strategy applied in DERs on resources available
for the VPP.

3.1. Review of Control of DER, Protection Systems, Requirements for the Connection to the Grid and Parallel
Operation with EPS

Distributed energy resources, as well as energy storage systems, should fulfill the requirements in
relation to relevant power system parameters including:

• the frequency and voltage levels, which are usually associated with the requirements for reactive
power regulation, as well as frequency control issues,

• the short-circuit current contribution,
• the fault-ride-through capability, which exhibits itself in the requirements for protection devices

and settings.

The issues of the impact of distributed energy resources on power system parameters were
described by Conseil International des Grands Réseaux Électriques (CIGRE) in Reference [51] and
Verband der Elektrotechnik Elektronik Informationstechnik (VDE) in Reference [52]. The European
Commission established the requirements for connecting power sources to the grid in Reference [53].
The Agency for the Cooperation of Energy Regulators (ACER), in Reference [54], made it mandatory for
transmission system operator (TSO) and distribution system operator (DSO) to include the mentioned
requirements in network codes (NC). The network codes set out the necessary minimum standards and
requirements that need to be followed when connecting the DER. A prominent example of the network
code is the European Network of Transmission System Operators for Electricity (ENTSO-E) network
code [55]. In the case of distributed generation with a connection point below 110 kV, the ranges
of permissible limits of power system parameters are defined separately for four types of power
generating modules, depending on the maximum power capacity. For the Central Europe networks,
the different types of maximum capacity threshold from which a power generating module is a
categorized are:

• “type A”: 0.8 kW–1 MW,
• “type B”: 1 MW–50 MW,
• “type C”: 50 MW–75 MW,
• “type D”: higher than 75 MW.

For the particular types of power generating modules at the point of connection to the grid,
the following are defined:

• a permissible range of frequency,
• the active power frequency response capability that regards a limited frequency sensitive mode

(overfrequency), as well as the maximum power capability reduction with a falling frequency
concerning the limited frequency sensitive mode (underfrequency—selected parameters consider
active power range, frequency response insensitivity, frequency response deadband, droop),

• pre-fault, post-fault circumstances for the fault-ride-through capability (voltage and time parameters),
• voltage and reactive power profiles in relation to the level of the actual value of the ratio of reactive

and active power for consumption and generation scenarios (the characteristic coordinates of the
(U–Q)/Pmax profile consists of the maximum range of Q/Pmax, which demonstrates the maximum
range of cosφ or tgφ regulation, as well as the maximum range of the steady-state voltage level).
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The mentioned types of power generating modules are subject to predefined compliance
simulations. Additionally, the network operators define the scheme and settings that are necessary to
protect the network, taking into account the profiles of the generation units. The network code [55]
mentions the following aspects of protection schemes: ” [55]

• external and internal short circuit,
• asymmetric load (negative phase sequence),
• stator and rotor overload,
• over/under excitation,
• over/under voltage at the connection point,
• over/under voltage at the alternator terminals,
• inter-area oscillations,
• inrush current,
• asynchronous operation (pole slip),
• protection against inadmissible shaft torsions (for example, subsynchronous resonance),
• power generating module line protection,
• unit transformer protection,
• backup schemes against protection and switchgear malfunction,
• overfluxing (U/f),
• inverse power,
• rate of change of frequency,
• neutral voltage displacement.”

All the mentioned aspects have been listed in order to highlight the technical aspects which should
be taken into consideration when VPP concepts are created. The presented paper considers a case study
of a VPP concept which uses resources that are localized in the distribution network. Some general
studies about standards related to small generators are presented in Reference [56]. In order to
highlight the details of the control strategy applied for small generators in the following subsections,
selected issues are described in detail, including active power reduction strategies and voltage profile
requirements. The described elements are used in the further investigations, which concentrate on
the identification of the maximum capacity of the network for the energy storage connection and
assessment of the losses of active power capacity in a photovoltaic power plant regarding reactive
power control strategy.

3.2. Active Power Control Strategy Applied in DERs

When highlighting the active power control strategy implemented in small generators, it is
worth pointing out existing standards, such as VDE-AR-N-4105 [52]. When referring to this standard,
the active power frequency response characteristic P(f) and standard characteristic of the Q/Pmax

(known also as cosϕ(P) or tgφ(P)) for the generation unit directly connected to a low voltage (LV)
network can be revealed. These characteristics are presented in Figures 1 and 2, respectively. The power
frequency response characteristic assumes that for power system frequency between 50.2 Hz and
51.5 Hz. When the exceedance of frequency is detected, it is recommended to reduce active power
generation from PM with a gradient of 40% PM per Hertz. At system frequencies higher than 51.5 Hz
and lower than 47.5 Hz, the power generation unit will be disconnected immediately.
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Figure 1. Standard active power frequency response characteristic P(f) applied for DER units integrated
with an low voltage (LV) electrical network (based on Reference [52]).

When discussing relations between active power and reactive power, the characteristic of the
Q/Pmax (known also as cosϕ(P) or tgφ(P)) for the generation unit can be introduced. This characteristic
is presented in Figure 2. It can be concluded that up to 20% of the maximum power capacity Pmax,
both generation and consumption of reactive power is recommended. In the range of (0.2–0.5) Pmax,
the active power generation is accepted. When exceeding half of Pmax, both generations of the active
power and reactive power consumption are recommended. It may be used as a model with the
capacitive power factor cosϕcap. The reactive power level consumption relays on a range of Pmax.
The application of reactive power consumption aims to reduce the increase in voltage that is because
of the noticeable active power generation. levels.

 
(a) 

 
(b) 

Figure 2. Standard Q/Pmax profile (cosϕ(P) characteristic) applied for distributed energy resource (DER)
units integrated with a LV electrical network: (a) with regard to units with a maximum power capacity
of 3.68 kVA to 13.8 kVA; (b) with regard to units with the maximum power capacity over 13,800 VA
(based on References [52,57]).

3.3. Power Quality Voltage Profile

A common area that can be related to the mentioned control and regulation strategies and
protection schemes, is the power quality. The most crucial power quality parameters are frequency
variations, voltage variation, voltage fluctuation, voltage unbalance (asymmetry), voltage harmonics,
interhamonics, subharmonics, direct current injection (DC) and rapid voltage changes [58,59]. A general
standard related to public electrical networks is EN 50160 [60]. In conjunction with quoted standards
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related to the DER, it is possible to define permissible limits of voltage changes in the connection points
of the DER, as well as in other nodes of the network.

One of the critical requirements states that rapid voltage changes caused by switching operation
with maximum power capacity cannot be more than 3% of the nominal voltage.

dc =
|ΔUc|

Ua
100 ≤ 3%, (1)

where:

• ΔUc—steady state voltage change
• Ua—nominal voltage
• dc—relative steady state voltage change as a parameter of rapid voltage change

Additionally, a slow voltage changes (voltage level) in every node of distribution network
consisting of DERs cannot exceed 10% of nominal voltage considering every DERs working
simultaneously with maximum power capacity for 10-min aggregating time recommended by standard
EN50160 [60]. Recently, in the last update of the mentioned standard [60], measurements with an
aggregation time of 1-min instead of 10-min were suggested. Some investigations of the influence
to aggregation interval on the assessment of photovoltaic power plant belonging to discussed VPP
topology has been discussed in Reference [61].

3.4. Protection Schemes

In addition to the control and regulation characteristics, the aspects of protection schemes should
also be considered. Table 1 consists of the over/under voltage and over/under frequency protection
schemes at the connection point of DERs that are connected to an LV electrical network. The schemes
are required by the DSO in selected European countries on the basis of References [52,56].

Table 1. Over/under voltage and over/under frequency protection schemes at the connection point of
DERs connected to a LV electrical network in selected European countries.

Country Under Voltage Over Voltage Under Frequency Over Frequency

Germany 0.7–1.0 UN;
t ≤ 0.2 s

1.0–1.15 UN;
t ≤ 0.2 s

47 Hz;
t ≤ 0.2 s

52 Hz;
t ≤ 0.2 s

Italy 0.8 UN;
t ≤ 0.2 s

1.2 UN;
t ≤ 0.1 s

49–49.7 Hz;
immediately

50.3–51 Hz;
immediately

Spain 0.85 UN;
t ≤ 1.2 s

1.1 UN;
t ≤ 0.5 s

48 Hz;
t ≤ 3 s

51 Hz;
t ≤ 0.2 s

Belgium 0.5–0.85 UN;
t ≤ 1.5 s

1.06 UN;
immediately

49.5 Hz;
immediately

50.5 Hz;
immediately

Poland 0.85 UN;
t ≤ 1.5 s

1.15 UN;
t ≤ 0.2 s

47 Hz;
t ≤ 0.5 s

51 Hz;
t ≤ 0.5s

3.5. Control of EES, Charging and Discharging Characteristics

Among energy storage devices, chemical batteries are increasingly used in professional power
engineering [62]. The desirable features of batteries are their high energy density, high charge and
discharge power and long life cycle. Other aspects are also relevant, such as the methods of determining
the state of charge (SoC) and the possibilities of recycling [63]. For this reason, lithium-ion batteries
are the most commonly used in battery energy storage (BES). The advantages of this type of battery
include the fact that they have an energy density of 160 Wh/kg, a power density of up to 350 W/kg
and a lifetime greater than 1000 charging and discharging cycles. The disadvantages of a lithium-ion
battery include its high cost and the need for a heating and cooling system.

The main issue connected with controlling energy flow to and from an energy storage device
is the correct determination of its operating characteristics [64]. Characteristics are defined by the
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manufacturer and they depend on the storage design. Furthermore, the system operator can control
the storage operation using them. The rate of charging or discharging energy storage (also called
C-rate) when using lithium-ion batteries can be determined as the value of the current at which the
energy storage is discharged [65]. It is often expressed as the ratio of the battery capacity to the time
of discharge. For example, a discharge rate of 1C means that storage will be completely discharged
in 1 h. On the other hand, a discharge rate of 0.5C means that the same storage will be completely
discharged in 2 h. [66] The storage charging or discharging rate is also determined by the remaining
energy. The relative value of the remaining energy in relation to the rated capacity is called the state of
charge (SoC) [67]. The characteristics of the dependence of the storage charging and discharging power
on the SoC level should be provided by the manufacturer. The operator can change the shape of the
characteristics within certain limits, for example, by preferring quick or slow charging or discharging in
a specific SoC range [68]. In some cases, such shaping of characteristics can optimize storage efficiency
and increase its lifetime and safety.

An important aspect of modeling energy storage operation is its lifetime and the decrease in
capacity when using the battery. Reference [69] describes the impact of the ambient temperature and
depth of discharge on the wear and tear and degradation cost of storage.

To ensure that each cell operates correctly within a certain voltage, temperature and current range
during charging and discharging, the battery requires a built-in controller that communicates with the
battery management system (BMS). The power value regulated by the BMS takes into account both the
technical limitations of the technology and the safety conditions of the storage. The BMS is designed
to maintain the efficient operation of the storage. The control is based on the current state of battery
operation, that is, state of charge (SoC), temperature, counted discharge cycles and so forth.

The storage charging and discharging rate are especially affected by:

• Design—when designing batteries, manufacturers need to choose the size, weight, cost, lifetime and
performance of the storage. Depending on needs, storage power and capacity can be lower due to
cost and weight.

• State of Charge (SoC)—when the battery is almost fully charged, the charging speed decreases.
The reason is that BMS prevents the cells from overheating. At 80–90% SoC, the charging speed
usually drops significantly and slows down to almost zero at 100% SoC. Charging speed is most
effective between 0% and 80% SoC.

• Temperature—lithium-ion battery cells work most effectively in the 20–30 degree Celsius range.
When the battery temperature is too low or too high, the BMS reduces the current in order to protect
the battery cells. If the storage is equipped with a heating and cooling system, the BMS controls
the temperature of the storage cells by thermal management of the battery. The temperature of the
battery depends on the ambient temperature and on the value of the charging or discharging power.

For the selected type of storage system, the dependence of charging and discharging power on
the degree of SoC (modified Ragone plot) can be determined. The speed of charging (discharging) is
determined by the power and is expressed in Watts or as a relative value in relation to the nominal
power of the container. However, the SoC can also be defined as energy in Watt-hours or as a relative
value in relation to the nominal capacity of the storage tank. Exemplary charging (discharging) of
typical storage based on lithium-ion batteries is shown in Figure 3. An appropriate sign of the battery
power was assumed for charging (positive-red) and discharging (negative-blue). The presented
characteristics are typical for the lithium-ion batteries. Characteristics express the limitations of
available power depending on the current SoC level. In discussed VPP, the storage unit has a power of
500 kW and is composed of lithium-ion batteries. It requires individual investigations to reveal the
“real” charging/discharging characteristic, which may differ from that presented in Figure 3.
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Figure 3. Dependence of charging and discharging power from the state of charge (SoC): Charging
(positive-red) and discharging (negative-blue).

4. Investigation of the Impact of the DER and ESS on VPP Planning and Operating
Conditions—A Case Study

Discussed technical aspects related to the impact of DERs on the operating condition of the
network or power control strategy applied in DERs are primarily addressed to the integration of DER
with the power systems. However, the revealed aspects can be treated as boundary conditions in terms
of VPP planning and operation strategies. This section aims to present methods that can be used to
solve three formulated in the problem statement topics. These issues are investigated based on a real
VPP project. The obtained results are associated with the investigated localization of the VPP however
can be treated as an example of a method for the assessment of formulated topics. These topics are
as follows:

• Investigation of the cooperation of a 1 MW hydro power plant with 0.5 MW battery energy storage
that is connected to the same node of medium voltage distribution network and also the impact of
their operating conditions on the power flow and voltage level for analyzed network belonging to
the VPP,

• identification of maximal power capacity of battery energy storage which may be connected
to considered node of analyzed VPP as well as identification of general grid capacity of the
investigated fragment of the distribution network to connect possible DERs/ESSs,

• identification of the impact of power control strategy applied in a PV power plant on other DER
available for the VPP.

4.1. Description of the Case Study—Topology of the Planned VPP

The planned virtual power plant is based on the fragment of the distribution network in Poland.
The topology of the VPP on the distribution network scheme is presented in Figure 4. The VPP area
consists of two parts of distribution networks supplied from two HV/MV main stations—110/20 kV R-J
and R-Z. The supplied stations are connected to the 110 kV electrical power system (EPS). The 20 kV
network, fed from R-J station, is an overhead-cable network. The 20 kV network, fed from R-Z station,
is mainly an urban cable network. Both networks work with earth fault current compensation.

Inside the mentioned distribution networks, there are several distributed energy sources and
energy storage systems. Planned VPP consists of hydro power plant, photovoltaic power plant,
biogas generation units and combined heat and power unit based on combined installation using boiler
and steam turbine integrated with generator and heating system in the industry. An integral element
of planed VPP is the prosumers mainly using photovoltaic systems. Detailed information about the
DERs identified in the area of the VPP is presented in Table 2. The detailed information about ESSs
localized in the VPP area is presented in Table 3. In the first part of the distribution network supplied
from the station R-J, a crucial element of the planned VPP is the hydro power plant denoted as HPP-L
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with generating power about 0.94 MW and battery energy storage system ESS-L connected to the same
node of MV network as hydro power plant with installed power 0.5 MW. In the second part of the
distribution network supplied from the station R-Z, a photovoltaic power plant PV-C with generating
power of 0.1 MW and an associated energy storage system can be noted.

 
Figure 4. Topology of the planned virtual power plant (VPP).

Table 2. Renewable source of energy (RES) in the area of the planned VPP.

Name Type Installed Power [MW] Generating Power [MW] Connection Voltage Level

HPPL-L hydro 1.250 0.94 MV
PV-C photovoltaic 0.132 0.100 LV
I-CS industrial CHP 3.960 3.600 MV

BIO-S biogas 1.100 1.100 MV
BIO-N biogas 200.000 150.000 MV
PV-S photovoltaic 0.029 0.029 LV
PV-N photovoltaic 0.087 0.087 LV
PV-MI photovoltaic microinstallation LV

Table 3. Energy storage system (ESS) integrated with the VPP.

Name Nearest RES Installed Power Connection Voltage Level

EES-L hydro 500 kW/500 kWh MV
EES-C photovoltaic 65 kW/65 kWh LV

4.2. Identification of the Impact of the Active Power Changes Generated by the DER and ESS on the Load
Reduction in the Distribution Line, as well as the Voltage Changes in the Nodes of the Grid Covered by the VPP

In order to illustrate the technical aspects related to the integration of DER and ESS with electric
power systems and also their impact on resources available to the VPP control, the issue of identifying
the maximum power capacity of ESS is presented with regards to network requirements concerning
voltage level and rapid voltage changes. The network requirements were described in Section 2.
This paper aims to reveal the maximum capacity of the ESS that is planned to be attached to the
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same node as analyzed HPP. The investigated approach does not consider the valuable aspects of
the interaction of ESSs with different RES at respective locations or analyze the advantages and
disadvantages of using one ESS vs multiple small ESSs. However, these mentioned issues have been
investigated in point of the economic aspects and are presented in associated paper [36]. The presented
investigations are performed using Matlab modeling integrated with a database of real measurements
of power flows. Referring to the VPP topology presented in Figure 4, the appropriate model was
created and simulations were carried out in order to identify:

• the impact of switching on and off the active power generation of hydro power plant HPP-L on
the power flows and on the voltage level in indicated distribution network considered in the
VPP topology,

• the impact of a gradual increase of active power fed into the network jointly by hydro power
plant HPP-L and energy storage system ESS-L, which is done to determine the maximum power
capacity of ESS-L which is permissible from the point of view of rapid voltage changes parameter.
The rapid voltage changes parameter is caused by the sudden shutdown of these energy sources.

Firstly, in order to associate the model with the real operating conditions of the distribution network
associated with the VPP a steady state initial condition of power flows was prepared. Power flows were
prepared based on the available set of annual real measurements of load demands and power generated
by DER. Loads consist of the two main HV/MV transformers and all busbars of the power stations
R-J and R-Z. One day of measurements, representing summer maximum peak demand, was selected.
The day was selected based on the analysis of the database of the Polish power system load, which is
shared by the Polish Transmission System Operator [70]. The presented investigations concern the
day 14.07.2017 at 1 PM. A simplified scheme of the electrical connection of the VPP, with denoted
instantaneous power flow measurements at the time of the identified summer peak demand value,
is presented in Figure 5.

 
Σ 

Σ 

275 685 800 

Figure 5. A simplified scheme of the electrical connection of the VPP, with denoted instantaneous
power flow measurements at the time of the identified summer peak demand value.
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Secondly, a Matlab Simulink model of the VPP topology, consisting of the described 20 kV
networks, hydro power plant, battery energy storage and photovoltaic power plant was created
and validated. The model is the dynamic model and captures several aspects related to dynamic
representations of DERs and BES. In the case of HPP simulation, a standard electro-hydraulic speed
controller model was used. The mechanical time constant and the time of waterfall was calculated
based on the real parameters and equals 2 s and 3 s, respectively. The static excitation system was
chosen according to the IEEE type ST1A excitation system mode in Matlab. The dynamics of the
system are determined by the parameters of the voltage regulator and equalizer. Both elements are
represented by an inertial element with the following parameters:

• regulator: Gr(s) = Ka
1+Tas , with assumed parameters: Gr(s) = 210

1+0.100s

• equalizer: G f (s) =
K f s

1+T f s , with assumed parameters: G f (s) = 0.001s
1+s .

In the case of the battery energy storage system, a functional modeling assumption was made
that BES works like a controllable source of active and reactive power. The phenomena and processes
occurring in the cells as well as in the control and commutation system of the inverter are not taken
into consideration in the applied model. Applied limits are connected to restrictions on the discharge
and charge current, the battery charge level and the power change speed. An ideal P,Q inverter
regulation system, controlled by voltage magnitude and phase, was applied. Simulation of the BES
operation in the grid was realized in accordance to the selected scenario, for example, determining
the time intervals for energy return and battery charging. In addition, it is necessary to determine
the power of exchange with the grid (discharge and charge current) and to also control the battery
charge level. For this purpose, the P,Q inverter model was supplemented with a battery charge
control system. The condition for the simulations assumed the use of the BES that was planned in
the VPP project, with nominal parameters of 0.5 MW of maximal power Pmax and a 0.5 MWh of
maximum capacity. Additionally, a limitation for the speed of power change in the simulations was
implemented to ± 10%Pmax/s. The numerical values given in the figures refer to BES with a 0.5 MW
power and a 0.5 MWh useful capacity. The PV power plant is also modeled using the P,Q inverter
model. However, in the performed simulations of short time intervals, fixed values of active and
reactive power were used on the basis of real measurements collected for the investigated PV-C. In the
applied model of PV-C, the issue of generation changes due to radiation and temperature changes are
neglected. Initial condition for the simulation was supported by the real measurement data which
represents selected summer peak demand.

Simulation time of 24 min (1440 s) was selected, which allowed all the assumed events in the
simulation scenario, while at the same time maintaining the real dynamics of energy sources and
storage systems during switching operations, to be performed. Time of the simulation results from the
time interval of control and regulations systems. In the simulation model the issue of water turbine
response, mechanical constant, limitation of the speed of power changes in the control of BES have been
implemented. The particular time interval associated with the planned switching operations, carried out
in the generation units and energy storage system, are defined in the scenario of the simulated events.
The simulations use the algorithm for solving differential Equations known as ode24tb, which works
with a variable integration step. The maximum integration step was 10−4 s, while the actual step was
selected automatically. The accuracy of the timestamp is not worse than 10−4 s.

With regards to the scheme of the electrical power network in the area of the planned VPP
(Figure 4), the presented simulations are focused on the active power changes and voltage changes of
particular VPP elements, including:

• the hydropower plant HPP-L, which is connected in the distribution network that is supplied
from the main station R-J,

• the battery energy storage, which is connected to the same node as the hydro power plant ESS-L,
• the main transformer T1 in the main power station R-J,
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• the distribution line L-62 associated with main statin R-J and hydropower plant HPP-L with
battery storage system ESS-L. ESS-L serves for supplying the energy consumers and for power
transmission from the HPP-L and ESS-L to the main station R-J,

• the photovoltaic power plant PV-C.

The scenario of events consists of several switching operations carried out in the generation units
and energy storage system:

• 5th s—switching on the hydro power plant HPP-L with presets: active power generation
PG = 940 kW and reactive power QG = 0.0 kVAr,

• 5th–900th s (15 min)—time interval for the HPP-L to reach the setpoints of the HPP-L control and
regulation systems HPP-L,

• 900th s (15th min)—switching on the photovoltaic power plant PV-C with parameters: active
power generation PG = 100 kW and reactive QG = 0.0 kVAr,

• 1000th s (approx. 17th min)—switching on the full load battery energy storage ESS-L in
the discharge mode with presets: active power generation PG = 500 kW and reactive power
QG = 0.0 kVAr,

• 1200th s (20th min)—switching off the hydropower plant HPP-L,
• 1300th s (approx. 22nd min)—switching off the battery energy storage ESS-L,
• 1400th s (approx. 23rd min)—switching off the photovoltaic power plant PV-C,
• 1440th second (24th min)—end of the simulation.

Active power changes in the distribution line L-62, associated with main statin R-J and hydropower
plant HPP-L with battery storage system ESS-L during series of switching operations of HPP-L,
PV-C and ESS-L are presented in Figure 6. It can be seen that the gradual increase of active power
generated by the hydro power plant HPP-L from zero to the assumed setup of 940 kW generating
power decreases the load demand in line L-62 which connects HPP-L with the main station R-J.
The achieving by HPP-L a preset of 940 kW takes 1000 s but it can be concluded that the power flow
of the observed line L-62 changes the direction from load demand to generation after approximately
150 s when the generation of the HPP-L obtains a level of 500 kW. Switching on the battery energy
storage ESS-L additionally increases the level of transmitted generation power by the observed
line. Naturally, the observed process has a positive impact on decreasing the load demand of the
transformer in the main station R-J. Figure 7 presents active power changes in the high voltage/medium
voltage (HV/MV) transformer in the main station R-J during the switching operation series of HPP-L,
PV-C and ESS-L.

With regards to the network requirements for the voltage changes caused by the integration of the
DERs with the electrical power systems presented in Section 2, the assessment of the influence of the
simulated series of the switching operations of HPP-L, PV-C and ESS-L on the voltage changes in the
connection point of the DER, as well as on the secondary side of the HV/MV transformer, is presented.
When observing Figures 8 and 9, it may be indicated that inserting the active power from HPP-L into
the associated line L-62 causes a slow voltage increase at the 20 kV busbar of the hydro power plant on
the level of 1%. At the same time, the voltage on the 20 kV busbars at the main station R-J changes
by less than 0.1%. When the ESS-L generates about 500 kW, there is an increase in voltage at 20 kV
busbar of the connection point of HPP-L and ESS-L approximately on the level of 0.6% and a slight
change in voltage. A sudden switching off of the HPP-L and ESS-L causes a rapid voltage change at
the connection point of these energy sources on the level of 1.6% and simultaneously a rapid voltage
change of less than 0.1% at the 20 kV busbar of the main station R-J.
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Figure 6. Active power changes P in the distribution line L-62 associated with main station R-J.
Changes of generated power of hydropower plant HPP-L. Changes of generated power of battery storage
system ESS-L. Analysis carried out during a series of switching operations of HPP-L, PV-C and ESS-L.

Figure 7. Active power changes P in the high voltage/medium voltage (HV/MV) transformer in the
main station R-J during the series of switching operations of HPP-L, PV-C and ESS-L.
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Figure 8. Voltage changes U in the connection point of the hydropower plant HPP-L and battery energy
storage system ESS-L during the series of switching operations of HPP-L, PV-C and ESS-L.

Figure 9. Voltage changes U at the secondary side of the HV/MV transformer in the main station R-J
during the series of switching operations of HPP-L, PV-C and ESS-L.

When observing voltage changes at the secondary side of the HV/MV transformer in the main
station R-Z presented in Figure 10, it may be concluded that the generation of active power in analyzed
network connected to the main station R-J is slightly noticeable at the busbar of station R-Z which is
associated with station R-J by high voltage line. Additionally, switching on the photovoltaic installation
PV-C with 100 kW of active power causes a slight change in voltage at the 20 kV busbar of the
main station R-Z that is not noticeable in the station R-J. However, it should be emphasized that the
observed changes are small and at the level of one-hundredth of a percent of the 20 kV nominal value.
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Noticed voltage changes can be compared with the quoted requirement of voltage changes on the level
of three percentage and permissible value of voltage level not more than 10% of nominal value [60].

Figure 10. Voltage changes U at the secondary side of the HV/MV transformer in the main station R-Z
during the series of switching operations of HPP-L, PV-C and ESS-L.

The simulations aimed to identify the direct impact of the active power changes generated by
the HPP and BES on the load reduction in the distribution line, as well as on the voltage changes in
the node of the connection and the substation. Therefore, standard methods of voltage regulations,
including the on-load-tap-changer, were not used in the simulations. In reality, the tap-changer control
is implemented in the main substations 110/20 kV, denoted as R-J and R-Z. However, the classical
regulation strategy for the HV/MV transformer often uses a step of regulation on the level of 1.09–1.10%.
In presented simulations indicated changes of voltage level in the main substations caused by BES or
PV-C were less than the classical step of on-load-tap-changer regulation.

4.3. Identification of the Maximum Power Capacity of the ESS in the Considered Node of the VPP Regarding the
Power Quality Voltage Profile

In terms of VPP efficiency and sensitivity, it is important to identify the maximum level of ESS
power capacity that can be connected to the planned node. In order to identify the maximum power
capacity of the ESS, it is proposed to conduct investigations with power quality parameters of the
grid and requirements for the integration of the generation units with power systems. The impact of
ESS power capacity on economic efficiency is considered in paper [36]. In this paper, the maximum
power capacity of ESS-L is identified using a simplified analytic derivation, as well as Matlab modeling
and simulation.

A rough estimation of the maximum power capacity of the considered battery energy storage
ESS-L connected to the same node of MV network as hydro power plant HPP-L can be calculated based
on short circuit power related to the connection point of ESS-L and HPP-L. The simplified one-phase
Thevenin’s equivalent circuit, which can be used for rough calculations, is presented in Figure 11.
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Figure 11. Simplified one-phase Thevenin’s equivalent circuit used for a rough estimation of the
influence of power capacity of considered hydro power plant and energy storage system on voltage level.

In a simplified estimation of the influence of the selected generation unit on the voltage condition
in the connection point, a critical simplification can be considered. Firstly, the investigated network is
treated as unloaded so that the decrease of voltage caused by the load is not taken into consideration.
Only the direct influence of the considered generation is then revealed. As a result of the mentioned
assumption, before the connection of the power unit, the Thevenin’s substitute voltage source
magnitude ET in the point of common coupling (PCC) is the equal nominal voltage. The Thevenin’s
reactance XT is equal to short circuits reactance XQ addressed to the node of the connection point.
The resistance of Thevenin’s equivalent can be neglected in comparison to reactance. The parameters
of Thevenin’s equivalent circuits can be calculated as:

ET =
UN√

3
(2)

XT = XQ =
c·U2

N
SkQ

, (3)

where:

• UN—the nominal voltage phase to phase value,
• SkQ—the short circuit apparent power in the connection node,
• C—the short circuit factor (c = 1 for minimal short circuit power, c = 1.1 for maximal short

circuit power).

Due to the high influence of reactive power on the voltage level, the second critical assumption
in the simplified calculation is that the HPP-L and ESS-L only generate a reactive power in the PCC.
The voltage change is caused by a voltage associated with the short circuit reactance and current flow
IPCC inserted into the network by both generating units connected to the PCC operating at maximum
power. The estimated steady state voltage change visible in the PCC can be expressed by:

ΔUC =
√

3 · IPCC·XQ =
√

3 · SPCC√
3·UN

·c·U
2
N

SkQ
= c·UN·SPCC

SkQ
, (4)

where: SPCC—the maximum power capacity of the power generation unit connected to the PCC,
which in the described case study is a sum of generated power HPP and ESS—SPCC = SHHP + SESS.

Combining definition of voltage change dC introduced in Equation (1) with Equation (4) allows
deriving a direct relation between maximum power capacity of considered power generation unit
connected to the PCC (SPCC) with the short circuit power which characterizes equivalent of the network
visible in point of the PCC (SkQ). This relation can be revealed as:

dc =
|ΔUC|

UN
= c·SPCC

SkQ
. (5)
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Equation (5) can be recalculated in order to express the maximum power capacity of the power
generating unit connected to the considered PCC which is characterized by short circuit power.
Short circuit power depends on the permissible level of rapid voltage change.

SPCC =
dc

c
·SkQ. (6)

Short circuit power in the selected node of the investigated power network, that is, in the busbar
of the main station R-J and in the connection point of the hydropower plant HPP-L and battery energy
storage system ESS-L, are presented in Table 4. Next, taking into account permitted levels of rapid
voltage change dc = 3% and short circuit factor of c = 1.1 as quoted in Section 2, it is possible to use
Equation (6) to estimate the maximum capacity of the power generating units that can be connected to
the investigated node of the power network from the point of view of rapid voltage change requirement.
An example of the calculation, in relation to the main power station R-J and the connection point of the
hydropower plant and energy storage system (node L), is compared in Table 4. It can be concluded
that the nodes located deep in the power grid are characterized by a lower level of short circuit power
which ultimately increases the limitation of the capacity of the generating unit that can be connected
in that node. When referring to the connection node of the hydropower plant and energy storage
system, which is characterized by short circuit power on the level of 54.2 MVA, the maximum power
capacity of the generation unit is limited to 1.48 MW. Assuming the operation of the hydropower plant
HPP-L with a maximum power level of 0.94 MW, it can be concluded that the permissible power of
the energy storage system ESS-L connected to the same node is limited to 0.54 MW. The presented
calculation results of the possible power of the battery energy storage ESS-L should be treated as a
rough estimation. The results are extremely limited by the simplification of the network, the unloaded
condition, the reactive power consideration and the restricted limit of the rapid voltage change dc = 3%.

Table 4. Short circuit power in the selected node of the investigated power network and the
estimated maximum power capacity of the power generation unit permissible in terms of rapid
voltage change requirements.

Node of the Investigated Power Network Short Circuit Power SkQ [MVA]
Estimated Maximum Power Capacity of

Power Generation Unit SPCC [MW]

Main station R-J 209.3 MVA 5.71
PCC of HPP-L and ESS-L 54.2 MVA 1.48

In order to obtain a more precise estimation of the desired value of the maximum power capacity
of the ESS-L, a simulation of the influence of gradually increasing the power of the ESS-L on the
voltage level in the connection point of the HPP-L and ESS-L is proposed. The basic conditions of
the simulation are similar to those previously used when the effect of switching on the DER series
on the voltage level was simulated. These preliminary assumptions are as follows—the initial power
flows relate to summer peak load demand and the HHP-L power generation level is a maximum of
around 940 kW. The result of the simulation is presented in Figure 12. The results allow concluding
that from the point of view of acceptable rapid voltage changes at the point of connection of HPP-L and
ESS-L, the total maximum capacity of these two generating units should be in the range from 2 MW to
2.4 MW. Assuming that the power generated by HPP-L is around 1 MW, it can be concluded that the
possible maximum capacity of a given energy storage system ESS-L is limited to 1 MW or 1.4 MW.
In comparison with the method based on simplified calculations using short circuit power circuits,
the result obtained using more precise simulations is more realistic.

The rough estimation using short circuit power is the fast method, however, usually gives
relatively underestimated results. The short-circuit equivalent model is dedicated to the linear electrical
components. In addition, the short circuit current is significantly modified in the presence of power
electronic inverters used to integrate DERs and ESSs into the power supply system. The results of
the calculation of the maximum power of a given ESS using network modeling are more technically
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realistic but require modeling and computing power. It should be mentioned that the estimation of the
maximum power capacity of a considered ESS based on modeling and simulation is more accurate as
it includes:

• regulation of the transformer in main power stations R-J and R-Z,
• the power exchange between main power stations R-J and R-Z with a 110 kV line,
• parameters of the individual line sections connecting DER with main stations,
• parameters of the loads distributed along the lines,
• parameters of the DERs, especially the contribution of the power inverters in short circuits,

possible dynamics during fast load changes, speed limits for power changes.

The presented results were used in the accompanying paper [36] in the point concerning the
economic efficiency test where a 0.5 MW or 1 MW battery energy storage system is considered to
be used in the VPP topology. In Reference [36] general aspects related to VPP concepts were also
examined, including the analysis of the advantages and disadvantages of using one ESS compared to
many small ESSs or more RES.

Figure 12. Voltage changes at the point of connection of MV HPP-L and ESS-L during the gradual
increase of maximum power of power generators.

4.4. Study on the Impact of the Power Control Strategy Used in a PV Power Plant on the Resources
Available for VPP

Section 3.2 discusses the relationship between active power and reactive power applied to low
voltage generation units. It has been shown that such generating units have a standard cosϕ(P)
characteristic assuming a reactive power consumption for the production of active power above 50%
of the maximum power of the generating unit. This regulation strategy serves to reduce of voltage
increase. However, from the point of view of the virtual power plant, the regulation introduces certain
restrictions which affect the availability of resources integrated into the VPP. In order to highlight
this issue, studies of PV power plants belonging to the VPP were carried out. The PV power plant
mentioned is a 132 kW PV installation marked as PV-C in Figure 4 and Table 2. This power plant is the
facility consisting of several individual photovoltaic power plants PV, three-phase and single-phase
installations using different installed power and different photovoltaic technologies but all connected
in the same PCC. From a PCC point of view, the combined phase is occupied almost symmetrically but
there may be some differences between the phases. The aim of the presented studies is to determine
the level of energy, which is redirected to the reactive power consumption instead of the active
power generation. In order to achieve this, the actual measurement of changes in active and reactive
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power in the selected week, which is characterized by similar daily weather conditions, was analyzed.
Changes in active and reactive power during the test week due to changes in solar irradiance are
shown in Figure 13. It can be seen that a high level of active power generation is accompanied by
reactive power consumption, which indicates that PV installations integrated with the PV power plant
realize the cosϕ(P) characteristic. In order to emphasize the observed correlation, Figure 14 shows the
correlation between solar irradiation and active and reactive power. The calculated Pearson correlation
coefficients for active and reactive power confirm the high correlation between solar irradiation and
the generation of active power and, consequently, reactive power consumption.

Figure 13. Changes in active (PL1, PL2, PL3) and reactive (QL1, QL2, QL3) power in specific phases
in point of common coupling (PCC) of PV power plant PV-C and changes in solar irradiation in the
examined week.

Figure 14. Correlation analysis between solar irradiation and active power (a) and reactive power
(b) in PCC of PV power plant PV-C during the investigated week.

Table 5 contains an analysis of active power generation and reactive power consumption over
one week to determine the effect of the implemented cosϕ(P) characteristic on the reduction of active
power generation availability. It was shown that during one observation week, which is characterized
by sunny weather, the total amount of active energy produced is 4799.91 [kWh] and at the same time,
reactive energy consumed is 53.87 [kvarh]. This leads to the conclusion that during the sunny week
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1.11% of the total energy from the considered PV is not available for the VPP planning because it is
used for reactive power regulation. The result presented corresponds to a sunny week, therefore a
long-term analysis should be carried out to verify this observation.

Table 5. Analysis of energy production of the PV power plant during the investigated week in order
to determine the impact of reactive power regulation on reducing the availability of the resources
integrated into the VPP in the perspective of the observed week.

Parameter Phase L1 Phase L2 Phase L3 Total

Time of active power generation 92.17 [h] 93.17 [h] 87.50 [h] 90.95 [h] (mean)
[h]/[% 168 h of the week] 54.86 [%] 55.46% [%] 52.08 [%] 54.13 [%] (mean)

Time of reactive power consumption 52.33 [h] 51.50 [h] 38.00 [h] 47.28 (mean)
[h]/[% 168 h of the week] 31.15 [%] 30.65% 22.62 [%] 28.14 [%] (mean)

Generated active energy
1666.51 1509.35 1624.05

4799.91 [kWh]
[kWh]/[% of total energy] 98.89 [%]

Consumed reactive energy
34.18 14.14 5.55

53.87 [kvarh]
[kvarh]/[% of total energy] 1.11 [%]

5. Discussion

This paper formulates a thesis that requirements related to regulation, protection and integration
of power generation units and battery storage system with power systems have an impact on the
planning and operation strategies of the VPP. After a comprehensive study of the current grid codes,
standards and papers, three topics were selected and highlighted in the VPP:

• identification of an operational condition of the 1 MW hydro power plant and 0.5 MW battery
energy storage connected to the same node and its impact on power flow and voltage level in
observed network covered by VPP,

• identification of maximum power capacity of battery energy storage, which can be connected to a
given node and identification of the overall capacity of the examined fragment of the distribution
network to connect possible DERs/ESSs

• identification of the impact of power control strategy applied to a PV power plant on resources
available for the VPP.

Mentioned issues were investigated based on the real VPP project. The results obtained are
distinctive and related to the investigated localization of the VPP, however, the proposed test method
and results obtained can be treated more generally. In order to determine indicated aspects, a few
test methods using Matlab simulation have been implemented, combining actual load demand
measurements with data generated as a prerequisite for simulation and direct analysis of actual
measurements. Application of the proposed method to the real case study of the VPP allowed
to formulate several observations related to the operational capabilities of the VPP and technical
requirements related to the integration of the DER and ESS with the utility grid:

• Grid capacity for connection of the DERs and ESSs is limited. One of the main limitations is the
requirement for rapid voltage changes. In the presented studies it was shown that using modeling
of the considered network covered by the planned VPP, it is possible to determine the maximum
power capacity of the ESS intended to be connected in the selected node. It has also been proven
that the use of the simplified model adopted for short-circuit calculation is extremely simplified
and results of rough estimates usually return relatively underestimated results.

• The implementation of cosϕ(P) characteristic for reactive power control in power inverters
integrating PVs with the grid reduces the availability of active power generation, which ultimately
means restrictions on the use of PV in the VPP planning strategy. The presented results of real PV
measurements associated with the considered VPP showed that 1.11% of the total energy from
the considered PV is not available for VPP planning in the sunny week because it is designed to
regulate reactive power.
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• Representation of the grid covered by the VPP using a simulation model, which is complemented
by actual measurements, provides extended opportunities for research into the choice of strategy
for planning and operating a VPP. Presented results allowed to determine the impact of power
changes of energy storage system or hydropower plant on the reduction of load on lines and
transformers and on voltage changes. It can be used to create energy system services provided
by VPP.

Obtained results constitute the influence of the technical requirements for DER and ESS integration
with the power grid on the VPP operational condition.

6. Conclusions

Technical aspects related to the integration of DER with the power systems can be treated as
boundary conditions for the VPP planning and operation strategies. This article presents indicated
results obtained for a specific case of a VPP and a broad generalization for another VPP location is
not easy to achieve. However, the presented assessment method, the methodology of the studies and
investigations, can be adapted and applied to another VPP topology. In addition, the definition of
limitations on VPP resources formulated by the technical aspects can be further used as a prerequisite
for economic research. For example, based on the studies carried out, it was indicated that planned
battery energy storage in the investigated grid covered by the VPP could be increased from the planned
capacity of 0.5 MW to 1.0 MW. Therefore, this result allowed us to investigate the impact of the size of
the energy storage system to economic efficiency in associated work [36].
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Abbreviations

The following abbreviations are used in the paper:
ACER Agency for the Cooperation of Energy Regulators
BMS battery management system
c short circuit factor
CHP combined heat and power
CIGRE Conseil International des Grands Réseaux Électriques
CIM common information model
DC direct current
DER, DG distributed energy resources, distributed generation
DSO distribution system operator
ΔUC steady state voltage change
dC relative maximum steady state voltage change
cosφ power factor
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ENTSO-E European Network of Transmission System Operators for Electricity
EPS electrical power system
ESS energy storage system
f frequency
g gravitational acceleration
H height
HPP hydro power plant
HV high voltage
ICT information and communication technology
IPCC current inserted in the point of common coupling by generation unit
LV low voltage
MV medium voltage
NC network code, grid code
ode24 function in Matlab for solvation a ordinary differential Equation
P active power
Pmax maximum power capacity
PM actual power
PCC point of common coupling
PQ power quality
Q reactive power
RES renewable energy sources
SkQ short circuit apparent power
SoC state of charge
SPCC power of the generation unit connected to the point of common coupling
ST1A IEEE type ST1A excitation system mode in Matlab
U voltage
UN nominal voltage
UC steady state voltage
VPP virtual power plant
XQ short circuit reactance
XT reactance of Thevenin’s circuit equivalent
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59. Klajn, A.; Bątkiewicz-Pantua, M. Application Note-Standard EN 50 160: Voltage Characteristics of Electricity
Supplied by Public Electricity Networks. 2017. Available online: https://copperalliance.org.uk/uploads/2018/
03/542-standard-en-50160-voltage-characteristics-in.pdf (accessed on 15 February 2020).

60. CENELEC Comité Européen de Normalisation Electrotechnique. Voltage Characteristics of Electricity Supplied
by Public Electricity Networks; CENELEC: Brussels, Belgium, 2010.
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