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Functional polymers show unique physical and chemical properties, which can manifest as dynamic
responses to external stimuli such as radiation, temperature, chemical reaction, external force, and magnetic
and electric fields. Recent advances in the fabrication techniques have enabled different types of
polymer systems to be utilized in a wide range of potential applications in smart structures and systems,
including structural health monitoring, anti-vibration, and actuators. The progress in these integrated
smart structures requires the implementation of finite element modelling using a multiphysics approach in
various computational platforms. This special issue presents six scientific report articles.

The Special Issue opens with work from Eindhoven University of Technology in a joint study with
Bernal Institute, University of Limerick, Ireland, in which the researchers developed a finite element method
(FEM) for representing the microstructural behaviour, particularly the swelling of hydrogel beads [1].
As the design of the cross-linked layers influence the material properties, which, in turn, affect the
performance of the hydrogels widely used in pharmaceutical and industrial applications, such as drug
delivery or disposable diapers, the authors presented a modelling technique that addressed this limitation
for superabsorbent polymers with a partially cross-linked surface layer. The simulations demonstrated that
the crack behaviour was influenced by the intrinsic properties of the hydrogel, and provided numerical
support for the structural design of the cross-linked hydrogel.

In the second article, Zhang and colleagues from Northeast Agricultural University, China, designed
a novel hierarchical metamaterial with a tuneable negative Poisson’s ratio by re-entrant representative
star-shaped unit cells [2]. In this work, the in-plane mechanical behaviours of the star-re-entrant
hierarchical metamaterial were studied, by FEM, in terms of parameters of cell length, angle of inclination,
thickness for star subordinate cell, as well as the amount of subordinate cell along x–y directions.
The authors claim that the new hierarchical metamaterial will provide further opportunities to design
multifunctional lightweight materials that are promising for various engineering applications in the
construction, transportation, aerospace, marine, and manufacturing industries due to the inherent low
weight associated with hierarchical systems.

Zolfagharian and Kaynak from the School of Engineering in Deakin University, Australia, worked
on the fracture resistance analysis of three-dimensional (3D) printed polymers in collaboration with
Khoshravani from the University of Siegen in Germany [3]. The researchers investigated the fracture
behaviour of 3D-printed plastic components produced by fused deposition modelling (FDM) and multi-jet
fusion (MJF) 3D printing techniques to predict the crack propagation leading to catastrophic failure.

Polymers 2020, 12, 1229; doi:10.3390/polym12061229 www.mdpi.com/journal/polymers
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U-notched samples manufactured by using nylon and PA12 materials by FDM and MJF printing methods
were experimentally analysed. The equivalent material concept (EMC) was used in conjunction with
the J-integral failure criterion in ABAQUS software to investigate the failure of the notched samples
numerically. Numerical results, supported by experimental analysis, successfully predicted the fracture
behaviour of 3D-printed polymer samples. In addition, using the same type of material in the study
enabled comparison between the two different printing methods.

In the fourth article, [4], Carleo and colleagues at Queen Mary University of London funded by Jaguar
Land Rover investigated the modelling of anti-vibration design in the automotive industry in predicting
the dynamic behaviour of the suspension system. In their work, they developed an FEM in ABAQUS
software for predicting the viscoelastic behaviour of carbon black-filled rubber as a component of the
automotive suspension system. The model used in the study successfully represented the time-dependent
phenomenology of filled rubber for use in anti-vibration design considering non-linear elasticity and strain
history effects using Maxwell/Prony element and Mullins effect recovery models.

The Special Issue closes with the work of international researchers from the UK, USA, and Egypt
in which Atif and colleagues developed a computational fluid dynamics (CFD) model to investigate
characteristics of high-speed submicron polyvinylidene fluoride (PVDF) fibres as they are expelled from a
blow spinning (SBS) nozzle [5]. The authors used ANSYS Fluent for implementing the CFD model and
reported through theoretical and experimental study that a higher air pressure (4 bar) was more suitable to
achieve thin fibres of PVDF.
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Abstract: This paper presents a numerical study of the viscoelastic effects on drop deformation
under two configurations of interest: steady shear flow and complex flow under gravitational effects.
We use a finite element method along with Brownian dynamics simulation techniques that avoid
the use of closed-form, constitutive equations for the “micro-”scale, studying the viscoelastic effects
on drop deformation using an interface capturing technique. The method can be enhanced with a
variance-reduced approach to the stochastic modeling, along with machine learning techniques to
reconstruct the shape of the polymer stress tensor in complex problems where deformations can
be dramatic. The results highlight the effects of viscoelasticity on shape, the polymer stress tensor,
and flow streamlines under the analyzed configurations.

Keywords: drop; finite element method; machine learning; multiphase flow; particle level set;
non-Newtonian fluid

1. Introduction

Bubble and drop dynamics in non-Newtonian fluids are a topic of undeniable interest within
the community [1], owing largely to the number of real-world situations that may benefit from
a comprehensive knowledge of the underlying physics: from drop formation mechanisms [2],
to biomedical equipment involving droplet manipulation [3] or engineering devices in which breakup
plays a central role [4,5], from droplet impact on liquid surfaces [6] to the study of drop dynamics
within polymer gels and solutions [7,8]; a deeper understanding of this type of multiphase flows not
only would improve existing manufacturing processes, but also encourage the development of new
applications and spur breakthroughs in scientific research.

To study the multiphase flow of polymeric liquids, one should choose an appropriate
discretization method capable of providing an accurate description of the interface. Mesh-based
methods [9] offer such representation of the interface, either in an explicit (interface-tracking)
or in an implicit (interface-capturing) form. Among the former, front-tracking and Arbitrary
Lagrangian-Eulerian (ALE) schemes [10,11] display excellent performance in terms of mass
conservation and shape preservation; however, remapping techniques are often found necessary [12]
under extreme deformation of the moving interface. In contrast, interface-capturing methods follow
a Eulerian approach, with the ‘Volume-Of-Fluid’ (VOF) method positioning itself as one of the most
popular techniques within this context [13,14], showing good conservation properties, but requiring
additional tools for handling geometrical quantities derived from the interface [15]. As an alternative,
Level Set (LS) methods [16,17] capture the interface as the zero isocontour of a certain scalar function,
which is advected by the flow, with noticeable mass loss and shape degradation if excessive diffusion
is introduced during the advection stage. Despite these shortcomings, the LS method is widely
used for interface problems undergoing dramatic deformation and topological changes and can be
readily enhanced via “hybrid” schemes such as the Particle Level Set (PLS) method [18] that are able
to ease, to a large extent, many of its drawbacks. Whatever the multiphase technique, the correct

Polymers 2020, 12, 1652; doi:10.3390/polym12081652 www.mdpi.com/journal/polymers3
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implementation of appropriate Boundary Conditions (BC) for the configuration of interest is a topic
that requires careful consideration of the chosen discretization method [19], as it may have an enormous
influence on the actual shape of the interface.

A common approach to handling the polymer interaction with the flow at a macroscopic
scale is to represent the polymer contribution to the stress tensor by means of a closed-form,
“constitutive” equation; thus, e.g., the work of Yue et al. [20–22] on drop deformation and complex
two-phase flow using a diffuse-interface method and constitutive modeling; in [23], Pillapakkam
employed an LS method to study rising bubbles in viscoelastic media, while Foteinopoulou and
Laso [24] used a Phan–Thien-–Tanner model together with an elliptic mesh-deformation algorithm
to investigate bubble oscillation; Castillo et al. proposed an LS method with a pressure-enriched
FE space to study the two-fluid flow problem along with a Giesekus model for the polymeric
liquid [25]; Fraggedakis et al. [26] characterized the critical volume of a bubble rising in a viscoelastic
fluid using an FEM-based method and the exponential Phan–Thien and Tanner model; using
a coupled LS-VOF (“VOSET”) method, Wang et al. [27] studied drag reduction in cavity flow;
Xie et al. [28] focused on droplet oscillation under a Maxwell model using lattice Boltzmann
techniques. In contrast to constitutive modeling, the “micro-macro” approach [29] tackles the
polymer-flow interaction using stochastic and Brownian Dynamics (BD) simulations [30–33] to
retrieve the polymer stress tensor from the internal configurations of the polymer particles advected
by the flow. Taking the CONNFFESSITapproach of Laso and Öttinger [34], Cormenzana and
co-workers [35] and later Grande et al. [36] successfully handled free surface flows of polymer
solutions, while Prieto [7,37] conducted multiphase simulations in viscoelastic fluids using a
variance-reduced, stochastic implementation of a “micro-macro” method [38]. Further study of
multiphase non-Newtonian flows was carried out by Bajaj et al. [39] and Xu et al. [40] using the
Brownian Configuration Field (BCF) method of Hulsen et al. [41].

At present, there is a growing interest in Machine Learning (ML) [42,43] in the context of polymer
simulation: Doblies et al. [44] employed ML as a means of predicting mechanical properties, while
Jackson and collaborators [45] focused on the optoelectronic properties of conjugated polymers.
It was also used by Kopal and co-workers in the prediction of the viscoelastic behavior of elastomer
systems [46] using Radial Basis Functions (RBFs) or as a data-driven classification method to determine
polymer/solvent compatibility by Chandrasekaran et al. [47]. Fluid dynamics of multiphase flow also
benefits from this recent focus on ML: Ma and collaborators used statistical learning in [48] for bubbly
systems; Ladický et al. accelerated multiphase simulations in GPUs using a data-driven approach
with regression forests [49]; and Gibou and co-workers employed deep learning techniques with sharp
interface methods in [50]. Hence, it seems unquestionable that ML and data-driven simulations are
already having a tremendous impact within the scientific community, and the future possibilities seem
nearly endless.

The main purpose of this paper is to highlight the effects caused by the non-Newtonian behavior
of the polymer solution in a multiphase flow system, performing a series of numerical simulations by
means of a computationally efficient, accurate, and robust numerical method based on a finite element
discretization of the governing equations that uses ML-inspired techniques for the reconstruction
of the polymer stress tensor, a feature that proves to be of the greatest importance for the accurate
characterization of the viscoelastic flow. Thus, after presenting this Introduction, we describe the
governing equations along with the aspects of the computational implementation in the Materials and
Methods Section 2. Then, we move to Section 3, where we present results for drop deformation under
steady, shear flows and in situations where gravitational effects drive the dynamics of the flow. Finally,
Section 4 offers some conclusions and future lines of work.

2. Materials and Methods

In this section, we describe the main ideas, mathematical background, and computational
implementation of the FEM-based, ML-enhanced method used to perform the series of numerical
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experiments carried out in Section 3 to gain insight into the impact that viscoelasticity may have on
drop deformation. We start with the finite element discretization, then moving on to the computational
implementation.

2.1. Finite Element Discretization

The problem of drop deformation in polymer solutions can be tackled using different methods.
In this work, we use an FEM-based discretization of the “macro-scale” equations governing the fluid
flow, employing a stochastic modeling of the stresses arising from the polymer fluid to account for
the “micro”-scale. Finally, we use a Particle Level Set (PLS) method to capture the interface of the
deforming drop.

2.1.1. Governing Equations

The two-phase, incompressible fluid flow studied in this work is governed, at the “macro”-scale,
by the Navier–Stokes equations, which in dimensionless form can be written in the space-time domain
Ω × [0, T] as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Reρ
Du

Dt
−∇ ·

[
μ
(
∇u + (∇u)T

)]
+∇p = −ρez

Re
Fr2 +

c
De

∇ · τp +
Re
We

κδΓ(φ)n,

∇ · u = 0;

u (x, 0) = u0 (x) ∀x ∈ Ω,

u (x, t) = 0 on δDno-slip ⊂ δΩ, ∀t ∈ (0, T),

u
(
ximg, t

)
= (xref, t) on δDPBC ⊂ δΩ, ∀t ∈ (0, T),

u (x, t) · n = 0 and n · τs · t = 0 on δDfree-slip = δΩ \ (δDno-slip ∪ δDpbc), ∀t ∈ (0, T).

(1)

where ρ is the density, μ the viscosity, D()/Dt the total (convective) derivative operator, p the
pressure, v the velocity, τp the polymer (“extra-”)stress tensor, Γ the interface of the drop, κ its
curvature, φ the level set function (see Section 2.1.2), Re the Reynolds number, Fr the Froude number,
We the Weber number, c the concentration parameter, De the Deborah number, T the final time,
and δΩ the boundary of the spatial domain Ω. The “no-slip”, “free-slip”, and “Periodic Boundary
Conditions” (PBC), are implemented in Section 2.2.3 for the configurations explored in the Results and
Discussion Section 3. Using a semi-Lagrangian approach, the total convective operator in Equation (1)
is discretized along the “characteristic curves” of the flow without changing the Eulerian, underlying
mesh. The resulting weak formulation can be written as a Stokes-like problem to be solved at each
instant of time, with the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3Re
2dt

(ρ∗ (φn
h ) un

h , ψh) + (μ∗ (φn
h )∇un

h ,∇ψh)− (pn
h ,∇ · ψh) =

2Re
dt

(
ρ∗ (φn

h ) ūn−1
h , ψh

)
−

− Re
2dt

(
ρ∗ (φn

h ) ūn−2
h , ψh

)
− Re

Fr2 (ρ∗ (φn
h ) ez, ψh) +

+
c

De

(
∇ · τn

ph, ψh

)
+

Re
We

(
κn

h δΓh/2(φ
n
h )n

n
h , ψh

)
, ∀ψh ∈ Vh0;

(∇ · un
h , qh) = 0, ∀qh ∈ Qh; with : (a, b) ≡

∫
D

ab dx

(2)

where the subscript h denotes the spatial discretization of the variables; the superscripts ∗ and n their
non-dimensionality and temporal discretization at instant of time n, respectively; dt is the time step
size used in the discretization of the full interval (0, T); ψh the basis functions of velocity vector space
Vh and qh the basis functions of the pressure space Qh. The basis functions of the finite element spaces
are chosen to be polynomials of degree {P2,P1,P2,P1} for velocity, pressure, the level set function, and
the polymer stress tensor, respectively, thus satisfying the Ladyzhenskaya–Babus̆ka–Brezzi condition.
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The spatial discretization of the domain Ω is accomplished using an unstructured mesh composed
of simplices of average size h, and the surface tension effects are implemented making use of the
Laplace–Beltrami operator, as detailed in [37].

In Equation (2), we collect the “macro-scale” physics involved in the FEM-based discretization of a
multiphase flow of incompressible fluids subject to gravity, viscous, and surface tension forces, in which
the interface is retrieved by a level set function φ, and the viscoelastic effects of the polymer solution are
captured through the polymer stress tensor τp. We now take a stochastic approach to the computation
of τp avoiding closed-form constitutive equations, performing instead Brownian dynamics simulations
of polymer particles [7] modeled via the Hooke (equivalent to the Oldroyd-B constitutive equation)
and FENE (Finitely Extensible Non-linear Elastic) kinetic models [51]. To compute τp, we need to
average over the internal configurations Q of each of the Nd dumbbells (“polymer particles”), which
are scattered over the domain and follow the flow. Thus, we solve for each of the dumbbells the
following stochastic (dimensionless) differential equation:

dQ =

⎧⎪⎪⎨
⎪⎪⎩

(
κ · Q − 1

2De
Q

)
dt +

1√
De

dW, Hooke;(
κ · Q − 1

2De
Q

1 − ‖Q‖2/b

)
dt +

1√
De

dW, FENE;
(3)

a task that is accomplished by means of a (weak) second-order accurate predictor-corrector algorithm
proposed by Öttinger [51]. In Equation (3), κ is the velocity gradient, W a stochastic Wiener process,
the Deborah number De representing the ratio between the relaxation time of the polymer and
a characteristic time of the flow, and b is the FENE extensibility parameter so that, as b → ∞,
Hooke→FENE. A variance-reduction technique can also be implemented [37,41], performing the
average over the Nd dumbbells with uncorrelated noise that comprise each of the Nens ensembles, so
that the i-th dumbbell of each ensemble is subject to the same (correlated) stochastic “kick”, reducing
the overall noise of the simulation. Finally, the polymer stress tensor is reconstructed and evaluated at
the mesh nodes [52] using the ML-inspired techniques of Section 2.2.1.

2.1.2. Interface Capturing Technique

The interface Γ is captured as the zero isocontour of a level set function φ, which is transported by
the characteristic curves of the flow through the total derivative operator:

Dφ

Dt
=

∂φ

∂t
+ v · ∇φ = 0. (4)

As we did with Equation (1), the convective terms in Equation (4) are dealt with using a
semi-Lagrangian approach, as proposed first in [53]. The level set function φ is initialized as a
signed-distance function to improve the regularity and behavior of the transported solution. However,
as time goes on, discretization errors build up in the form of numerical artifacts that may eventually
propagate into the interface and destroy it. To prevent this undesired effect, an Eikonal-based,
redistancing procedure [54] is performed at each time step, so that we ensure that, within a band
around the interface, the level set function preserves the signed-distance property. To improve mass
conservation and shape definition, we add Nmp marker particles [18] that are passively advected by
the flow, helping to correct the interface by defining local level set functions with a variable radius
0 ≤ rmin ≤ rn

p ≤ rmax < h, accounting for lost resolution in the sub-grid scales (see [37] for details).

2.2. Computational Implementation

Next, we describe some of the topics involved in the computational implementation of the
ML-enhanced, FEM-based method utilized to tackle the drop deformation problems proposed in
Section 3. All code was written in the C programming language and compiled using the open-source
GNU-C compiler gcc. Efficiency and robustness are two features pursued in this implementation;

6
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accordingly, all simulations presented in this work can be run in a commodity personal computer with
a 4-core processor. All 2D plots were made using the open-source library matplotlib [55] and/or the
TikZ and PGF packages [56], while the 3D graphics make use of Mayavi [57]. For data manipulation
and data analysis, we use the pandas [58] package.

2.2.1. Machine Learning Enhancement

Radial basis functions are a family of kernel methods [59] widely used in Machine Learning (ML)
for their flexibility in generating spaces of trial functions with excellent approximation properties. This
close relation to approximation theory allows for a solid mathematical background, which proves
extremely useful when offering bounds in supervised learning problems [43] for the necessary number
of training data required to provide a model trained with such data and having a small generalization
error. Combining these concepts with novel applications in the field of image processing [60,61],
we leverage RBFs to reconstruct the discrete solution of the polymer stress tensor over the whole
domain, using the scattered data provided by the values of the polymer stress tensor defined at each
of the position of the ensembles. The main advantage of this idea is the mesh independence property
guaranteed by the RBF approach; the relevance of this feature cannot be overstated in the context of
“micro-macro” methods for non-Newtonian flows [29,34,41]. Traditional methods use particles for the
kinetic modeling of the polymer solution; however, spatial mesh refinement hinders the accuracy of
the stochastic model (given the reduced number of particles surrounding a certain mesh node), thus
requiring compromising on the accuracy of either the “micro-” (internal configurations of the polymer
and “extra-”stress tensor) or the “macro-” (velocity, pressure) scales. This is no longer the case with
our approach: now, using the smooth approximation built via RBFs, we can evaluate the tensor at any
position (e.g., a certain mesh point), virtually decoupling the “micro-” and “macro-”scales and paving
the way for adaptive mesh refinement in “micro-macro” methods.

Thus, at each instant of time, we retrieve the positions {xi} , i = 1, .., Nens of all the ensembles
scattered over the domain. Then, we compute τp,i, the value of the polymer stress tensor at the
ensemble i using Kramers’ expression averaging over the Nd dumbbells contained at the ensembles:

τp,i = nkBΘ

[
1

Nd

Nd

∑
j=1

F
(

Qi
j

)
⊗ Qi

j − I

]
. (5)

As kernels of approximation, we focus on compactly-supported RBFs [59,62] for their computational
efficiency and remarkable accuracy, since the matrices resulting from a suitable formulation of the
approximation problem are sparse. In particular, we use Wendland’s ϕ3,k(C2k), k = 0, .., 3, suitable for
problems of space dimension d ≤ 3, and degree of smoothness 2k:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ3,0(r) = (1 − r)2
+,

ϕ3,1(r) = (1 − r)4
+(4r + 1),

ϕ3,2(r) = (1 − r)6
+(35r2 + 18r + 3),

ϕ3,3(r) = (1 − r)8
+(32r3 + 25r2 + 8r + 1),

(6)

so that outside the support size χ, ϕ3,k(r > χ) = 0, whereas inside the support, they are positive
definite on Rd and provide optimal convergence rate O(hΩ)2k+d+1, with hΩ the fill distance [62]. Using
these kernels, we build an interpolant s of the form:

s(x) = p(x) + ∑
i

λi ϕ(‖x − xi‖), (7)

with p(x) a quadratic function defined by coefficients ci and and λi a set of real-valued interpolation
coefficients for the CSRBFs. The formulation can then be reduced to a system of equations equivalent to
a saddle-point problem of the form [Q P; PT 0]] [l; c] = [f; 0], which can be solved efficiently
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using the two-step approach described in [52] to obtain the solution vectors [l;c] required to build
the interpolant s. After building the interpolant and having reconstructed the polymer stress tensor,
we can straightforwardly evaluate each component at any given point (e.g., at one mesh node).

The use of CSRBFs as approximation kernels calls for the determination of the support size χ,
for each of the ensembles scattered over the domain. The technique used to perform this potentially
expensive computation is taken from the classification problems usually found in ML: the Nearest
Neighbor (NN) classification algorithm [42,43]. Using this approach, along with an implementation of
kd-tree as data structures, we are able to obtain, at each instant of time, the nearest neighbors of each
ensemble, within a certain support size χ.

2.2.2. PETSc-Based Solver

The solution of the linear systems arising from the FEM discretization of the coupled
velocity-pressure system is carried out taking advantage of PETSc, the Portable, Extensible Toolkit
for Scientific Computation [63]. This step is key to the overall efficiency and viability of the method
as an appropriate candidate to tackle Newtonian and non-Newtonian multiphase flows in which
large density and viscosity ratios are involved, as those taking place in experiments dealing with
drop and bubble deformation. As the ratio increases, so does the condition number of the resulting
velocity matrix, which hampers the convergence of traditional iterative approaches to the solution of
the coupled velocity-pressure system such as preconditioned conjugate gradient techniques [64]
or traditional “splitting” techniques, usually problematic at low (viscosity-dominant) Reynolds
numbers [65]. Instead, we use a physics-based, block-preconditioning approach presented by
Elman and collaborators [66] and implemented in the PETSc-FieldSplit preconditioner: we define
separate fields for the discrete velocity and pressure and combine them using a Schur-complement
factorization [67] of the total system matrix, which is efficiently stored as a MatNest structure K=[A

B; BT 0], in which the corresponding sub-matrices for the discrete velocity, discrete gradient, and
discrete divergence are the four entries K_ij, for i,j=1,2. The following snippet collects a sample
function to build the block matrix.

PetscErrorCode fun_petsc_construct_block_matrix_PETSC_Stokes_system (...)
{

...
/* Build first sub-matrix "K00" */
ierr = MatDuplicate(K00,MAT_COPY_VALUES,& (Stokes_Problem_system->K_ij[0]));CHKERRQ(ierr);
ierr = MatAssemblyBegin(Stokes_Problem_system->K_ij[0],MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(Stokes_Problem_system->K_ij[0],MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
...
/* Build complete, block matrix "K" from sub-matrices "K_ij" as a nested matrix */
ierr = MatCreateNest(PETSC_COMM_WORLD, 2, NULL, 2, NULL, \

Stokes_Problem_system->K_ij, & (Stokes_Problem_system->K)); CHKERRQ(ierr);
ierr = MatAssemblyBegin(Stokes_Problem_system->K,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
ierr = MatAssemblyEnd(Stokes_Problem_system->K,MAT_FINAL_ASSEMBLY); CHKERRQ(ierr);
...

}

The previous approach can now be used to tackle the saddle-point problem resulting
from our FEM-based discretization of the Navier–Stokes equations using the PETSc-FieldSplit

preconditioner for the system matrix, collecting all the information in a suitable structure such as the
PETSc_Saddle_point_system sample structure included in the following code snippet.
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/* Structure with all the information required to solve a saddle-point problem */
typedef struct
{
Mat K; /*MatNest matrix with 4 sub-matrices: K = [K00 K01; K10 K11]*/
Mat K_ij[4]; /*each of the four sub-matrices of block matrix "K"*/
Mat Pmat; /*MatNest precond-matrix: Pmat = [Pmat00 Pmat01; Pmat10 Pmat11]; */
Mat Pmat_ij[4]; /*each of the four sub-matrices of precond-matrix "Pmat"*/
Vec x; /*solution of system*/
Vec b; /*right hand side vector*/
KSP ksp; /*solver context*/
MatNullSpace nullsp; /*Nullspace for pressure (in Stokes solved by PCFieldSplit)*/
PC pc; /*preconditioner context*/
IS isg[2]; /* index sets (rows) of splits "0" and "1" (e.g. velocity, pressure)*/

}
PETSC_Saddle_point_system;

The CHOLMOD package [68] is used to perform the sparse direct Cholesky factorization of the
positive-definite block matrix K00=A, while the Least-Squares Commutator (LSC) preconditioner [67]
takes care of the second field (pressure) involved in the upper factorization of the Schur complement,
using a combination of the conjugate gradient and additive-Schwarz methods [69] for the multigrid
levels of the ML (Multi-Level) preconditioner package [70] used for LSC. The following options passed
to PETSc were found to offer excellent performance in demanding multiphase flow problems with
high density ratios such as those found in Section 3.2.

/* KSP00=preonly (cholesky,CHOLMOD); KSP11:preonly (lsc); ksp_lsc: cg (ml(+asm)). */
char options_pc_stokes[] = "-stokes_ksp_rtol 5.e-9 -stokes_ksp_diagonal_scale \
-stokes_ksp_type fgmres -stokes_pc_type fieldsplit -stokes_pc_fieldsplit_type schur \
-stokes_pc_fieldsplit_schur_fact_type upper -stokes_pc_fieldsplit_detect_saddle_point \
-stokes_fieldsplit_0_pc_type cholesky -stokes_fieldsplit_0_pc_factor_mat_solver_package cholmod \
-stokes_fieldsplit_0_ksp_type preonly -stokes_fieldsplit_1_pc_type lsc -stokes_fieldsplit_1_lsc_pc_type ml \
-stokes_fieldsplit_1_lsc_mg_coarse_pc_factor_shift_type NONZERO \
-stokes_fieldsplit_1_lsc_mg_levels_1_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_2_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_3_pc_type asm -stokes_fieldsplit_1_lsc_mg_levels_4_pc_type asm \
-stokes_fieldsplit_1_lsc_mg_levels_5_pc_type asm -stokes_fieldsplit_1_lsc_ksp_max_it 3 \
-stokes_fieldsplit_1_lsc_ksp_type cg -stokes_fieldsplit_1_lsc_ksp_constant_null_space \
-stokes_fieldsplit_1_ksp_type preonly";

These are some of the general configuration options and data structures that are most responsible
for the performance boost we find for the kind of complex, polymer flows studied in this work.
Given the platform-independent model of C and PETSc, the snippets could be included with little
modification in any existing C code used by any researcher with a similar underlying mathematical
problem, independently of the particular field of knowledge.

2.2.3. Boundary Conditions

The viscous and viscoelastic flows presented here for the analysis of drop deformation in polymer
solutions make use of several types of boundary conditions: the “no-slip” boundary condition to
ensure that the fluid adheres to the adjacent solid boundary; the “free-slip” boundary condition to
neglect friction forces at the fluid-solid interface; and Periodic Boundary Conditions (PBCs) at the inlet
and outlet of the domain to model sufficiently large domains.

In our FEM-based method, the “free-slip” condition can be applied naturally as a Neumann-type
condition that is satisfied automatically by the weak formulation of the problem [7,37]. However, the
implementation of PBCs in unstructured meshes for the configuration presented in Section 3.1 for
drop deformation in shear flows is not straightforward. Following Pask et al. [71] and Sukumar and
Pask [72], we carry out an efficient implementation of the PBCs in structured and unstructured finite
element meshes using the idea of “reference” and “image” nodes at the inlet and outlet, respectively
(see Figure 1). First, we obtain the connectivity lists for the assembled sub-matrices K_00,K_01,K_10
of the block matrix K = [K00 K01; K10 K11]; then, we perform row operations (first) and column
operations (later) to K00,K01,K10 and to the right-hand side F, as described in [72]; finally, we update
the values of the (pressure,velocity) “image” nodes with the values obtained from the corresponding
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“reference” nodes. The addition of dumbbells and marker particles to deal with multiphase flows and
non-Newtonian fluids adds complexity to the actual implementation, but not to the general concept.

As for the “no-slip” conditions, they translate into homogeneous or non-homogeneous
Dirichlet-type conditions that can be applied efficiently using the symmetry-conserving procedure
MatZeroRowsColumns to perform row and column operations on the PETSc-based assembled matrices
K00,K01,K10 and right-hand side F.
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Figure 1. Schematic of the computational domain for a drop deforming in shear flow.

3. Results and Discussion

The main purpose of this paper is to explore the behavior of drops immersed in polymer solutions
through a series of numerical experiments that try to highlight the effects of viscoelasticity in the
shape of the drop, as well as in the emerging flow patterns. First, we focus on drop deformation
under a steady, shear flow, offering results under two configurations: Newtonian drop in a Newtonian
“matrix” (ambient fluid) and non-Newtonian drop in a Newtonian matrix. Then, we make use of
our ML-enhanced, FEM-based method to investigate stronger viscoelasticity effects in flows where
gravitational forces and surface tension effects can become relevant, showing the influence that the
discretization employed and the numerical techniques utilized may have on the accurate reconstruction
of the polymer stress tensor and on the quality of the discrete solution for the multiphase flow.

3.1. Drop Deformation in Steady, Shear Flow

We start the exploration of viscoelastic effects on drop deformation by considering the problem of
a drop immersed in another, ambient fluid and subject to a steady, shear flow. First, we show results
for a Newtonian/Newtonian system; then, we introduce viscoelasticity in the system, comparing
our results with others obtained using a constitutive (Oldroyd-B) model, equivalent to our stochastic,
Hookean dumbbell approach. The configuration is represented in Figure 1: a drop of a viscous (real)
fluid of radius a placed at the center of a domain [2L × 2H], with H = 4a and L = 8a, experiences
a steady, shear flow of rate γ̇ = V/H produced by the top and bottom lids moving at velocity V in
opposite directions.

The inlet and outlet walls have Periodic Boundary Conditions (PBCs), the implementation of
which is detailed in Section 2.2.3. At the top and bottom panels, the “no-slip” boundary condition
is considered.
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3.1.1. Newtonian Drop in a Newtonian Matrix

We place a Newtonian drop in a Newtonian ambient fluid as depicted in Figure 1 to study
the shape of the interface for different values of the capillary number Ca = We/Re in terms of the
“deformation parameter” D. This parameter is usually defined as D = (L − B) / (L + B), with L and
B being the longest and shortest lengths from the center of the drop to the interface (corresponding
also to the major and minor axes of the ellipse), respectively. We also choose a small value for the
Reynolds number (Re = 0.1) so as to neglect strong inertial effects, comparing our results with those
of Zhou and Pozrikidis [73], Yue et al. [20,22], and Afkhami et al. [74]. We employ an unstructured,
uniform mesh of size h = 1/80, in a rectangular domain [0, 2]× [0, 1] with time step dt = 1/100 and
Nmp = 2.5 × 105 marker particles. In Figure 2, we represent the steady value of the deformation
parameter for increasing values of the capillarity number; in all cases, we obtain excellent agreement
with the published results, especially with that by Afkhami et al. [74], deviating in the worst case
scenario < 2.5% at Ca = 0.6 from the results offered by Zhou and Pozrikidis in [73]. The steady values
of D show a linear behavior with Ca for small capillary numbers, then decreasing as Ca gets larger;
as pointed out in [20], we expect the physical insights gained by this 2D exploration to be relevant to
actual (three-dimensional) experiments.

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

Ca

D
st

ea
dy

Zhou & Pozrikidis [73].
Yue et al. [20].
Yue et al. [22].
Afkhami et al. [74].
This work.

Figure 2. Comparison of the steady-state deformation of a Newtonian drop in a Newtonian
matrix between our results and those found in Zhou & Pozrikidis [73], Yue et al. [20,22], and
Afkhami et al. [74].

We also collect in Figure 3 the evolution of the deformation parameter D as a function of the
dimensionless time t∗ = tγ̇ and compare it with the results of [74], for a wide range of capillary
numbers from Ca = 0.1 to Ca = 0.6. Again, an excellent agreement is obtained throughout, with
a maximum difference of less than 1.3% (for Ca = 0.6) between the two numerical methods at any
given time.
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Figure 3. Comparison of the evolution of deformation for a Newtonian drop in a Newtonian matrix of
equal viscosity, for different values of capillarity Ca, between our results (solid line) and those found in
Afkhami et al. [74] (dashed line).

Following Yue et al. [22], we now study the steady shape of the drop in polar coordinates,
collecting the radius r for each orientation angle θ ∈ [0, π], with θ defined as the angle formed by
the line connecting the center of gravity of the drop and a point in the free-surface, with the x-axis.
Thus, we show in Figure 4 the shape in polar coordinates and the actual shape for a simulation with
Ca = 0.1.
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Figure 4. Comparison of the drop shape in (a) polar coordinates and (b) the actual shape, for Ca = 0.1,
between our results (triangles) and those found in Yue et al. [22] (square markers).

We can observe in this Figure 4 very good agreement in the orientation angle of the droplet,
which can be measured at θ̂ ≈ 39.6◦, lower than 45◦ as numerical and experimental results confirm.
However, there is a major discrepancy between the results of the two methods: the radii for each polar
angle are smaller for the method of Yue et al. [22] when compared with ours (see left panel). To better
understand what is happening here, we plot the actual shape of the drop according to both methods in
the right panel of Figure 4. As can be observed, the reason for the discrepancy lies in the lack of mass
conservation “mass-loss” incurred by the drop of [22], which loses around 5% of its initial mass at the
end of the simulation, whereas we can ensure mass conservation up to 99.98% of the initial mass in
this simulation.
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3.1.2. Viscoelastic Drop in a Newtonian Matrix

After exploring the multiphase Newtonian/Newtonian system and comparing our results with
those of the literature, we now proceed with a problem in which the viscoelastic effects are present. We
focus on a viscoelastic drop modeled by the Hookean dumbbell model (equivalent to the Oldroyd-B
constitutive equation), immersed in a Newtonian, ambient fluid, using the same configuration of the
previous Newtonian/Newtonian analysis. The flow is impulsively started at t = 0 with shear rate
γ̇ = 1, using a rather coarse mesh with 80 × 40 elements and Np = 107 dumbbells uniformly placed
inside the droplet; the flow is continued until dimensionless time t∗ = tγ̇ = 10, with a small time step
to accurately solve the internal configurations of the dumbbells (dt = 1/200), taking Nt = 2000 time
steps to finish each simulation; the number of marker particles to improve the definition of the interface
was Nmp = 2.5 · 105. The ratio between viscous and inertial effects in the system, represented by the
Reynolds number, are of utmost importance, in the sense that, if the method is not able to deal with
extremely low Re (“creeping” or “Stokes” flows), the inertial effects become relevant when small time
steps are used, thus affecting the history of the flow and, consequently, that of the polymer particles
(dumbbells); it is for this reason that the value of Re = 0.1, deemed appropriate in the previous section
for Newtonian flows, is now replaced by Re = 10−5 to suppress any undesired effects that inertia
may have on the computation of the steady-state values for the polymer solution. The remaining
dimensionless parameters are chosen as those found in [21], with Fr → ∞, We = 10−6, so that the
Capillary number Ca = 0.1; our concentration parameter c, according to the characteristic scales
chosen in [21], corresponds to c = 1− β, with β = 0.5 the retardation parameter of the Oldroyd-B fluid;
the Deborah numbers studied are De = {0.25; 0.5; 1; 2}; and the density and viscosity ratios between
the drop and the outer ambient fluid (matrix) are taken as ρ2/ρ1 = μ2/μ1 = 1. We performed a set
of simulations to obtain the evolution of the drop deformation and compared the results found in
Figure 1 of [21].

Despite the rather coarse mesh used (equivalent to a uniform size h = 1/40), the not-so high
number of dumbbells and the totally different approach taken by the two techniques compared—the
diffuse-interface method combined with a phase-field approach ruled by Cahn–Hilliard dynamics
to study the Newtonian/non-Newtonian problem in a unified way of [21] and our FEM-based,
stochastic method—the results presented in Figure 5 are in remarkably good agreement, especially
the steady-state values of the deformation parameter D. However, also the transient behavior shows
a noteworthy resemblance, with the overshoot appearing for sufficiently high De values and the
evolution of De = 2 being for t � 4 higher than those for De = 1. In any case, we notice the effect
of the drop viscoelasticity as a means to reduce the deformation of the interface; plots of the actual
shape of the interface (not included here for brevity’s sake) show this same trend. Apart from the
stochastic noise, the modification of the interface by the correction step of the marker particles and the
mass conservation step add to the oscillatory behavior of D observed in Figure 5, which is explicitly
computed from the discrete interface. Moreover, Figure 5 underscores the elastic effects of the drop,
since an increase in the Deborah number De produces a larger ratio between the maximum and
the steady-state value of the deformation parameter D, as a consequence of the longer time (slower
response) that the polymer molecules take to recover from the applied shear strain.

We now compare the steady-state values of the polymer stress tensor obtained using the Oldroyd-B
constitutive model of [22] and the Hookean dumbbell model. The results are presented in Figure 6.
As we did for the Newtonian/Newtonian case, we represent the interface also in polar coordinates
with θ ∈ [0, π]. The normal component of the polymer stress tensor τp,n ≡ n · τp · n (with n the outer
normal at each point of the interface) is computed in Figure 6a.
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Figure 5. Comparison of the evolution of deformation for a non-Newtonian (Oldroyd-B) drop in a
Newtonian matrix of equal viscosity after the abrupt start of shear flow, for increasing values of the
Deborah number De, between our results (solid line) and those found in Yue et al. [21] (dashed line).
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Figure 6. Comparison of the (a) normal and (b) tangential stresses along the inner edge of the interface
for a non-Newtonian (Oldroyd-B) drop in a Newtonian matrix of equal viscosity, for increasing values
of the Deborah number, between our results (De = 0.5, green squares; De = 1, yellow triangles; De = 2,
inverted red triangles) and those found in Yue et al. [22].

In spite of the largely dissimilar methods, we notice a very good agreement between them. We
observe how the effects of the viscoelastic drop are not very strong on the normal component of the
polymer stress tensor, though increasing the viscoelasticity by means of De reduces the maximum
value, which is also moved towards smaller orientation angles, thus playing a part in diminishing
drop deformation. Overall, the normal polymer stress component is weakened at the poles and at the
equator of the drop as viscoelasticity increases, preventing drop deformation.
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Figure 6b shows the tangential component of the polymer stress tensor τp,t ≡ t · τp · t, with t the
unit vector tangent at all points to the interface and perpendicular to n (so that, in 2D, tx = ny, ty =

−nx). Here, the polymer stresses are much larger than for the normal component, showing again an
excellent agreement between our results and those in [22]. The larger De values intensify the tangential
stresses at the equator, being responsible to a larger extent for the reduced deformation observed for
the higher De. Despite small discrepancies, even with a coarse mesh and computationally inexpensive
simulation, our results compare very well with those of the reference, capturing the minimum and
maximum values of τp,t, as well as the evolution of τp,t along the interface.

3.2. Drop Deformation in Buoyancy-Driven Flow

After studying the problem of drop deformation in unsteady, shear flow, in this section, we focus
on following the behavior of a Newtonian drop immersed in an ambient, polymeric solution, rising
due to buoyancy effects and the density ratio between the fluids [75]. By means of a series of numerical
experiments, we gain insight into the deformation of the drop shape, characterized by the circularity �c,
the ratio between the perimeter of a circle whose area is equal to that of the drop and the perimeter of
the drop. We also shed light on the response of the “extra-” stress tensor τp to a varying degree of
polymer concentration and relaxation time, when the drop undergoes large deformation and velocity
gradients, highlighting the influence of different smoothness in the CSRBF. Finally, we observe the
effects that viscoelasticity may have on the flow, with emphasis on the flow streamlines during the full,
unsteady simulation.

Thus, we consider a dimensionless, 2D rectangular domain [0, 1]× [0, 2] in which a drop of radius
R = 0.25 is placed at position (0.5, 0.5) inside an unstructured mesh of uniform size h. The outer,
non-Newtonian polymer solution is modeled using the FENE and Hookean dumbbell models. The
flow is further defined by the density and viscosity ratios ρ2/ρ1, μ2/μ1 and dimensionless numbers
Re, We, Fr, c, De. The “no-slip” boundary condition is applied at the top and at the bottom, while we
consider “free-slip” at the lateral boundaries. All simulations are carried until dimensionless time
t = 3.

3.2.1. Convergence Results

We turn our attention to the evolution of the drop shape during the full simulation, as the mesh
size is decreased from h = 1/40 down to h = 1/320, and the number of ensembles scattered over
the domain changes, using two different kinetic models, Hooke, and FENE, and different degrees of
viscoelasticity, (c = 1, De = 1) and (c = 5, De = 3). The other relevant parameters in this case are:
Re = 35, We = 10, Fr = 1, ρ2/ρ1 = 10−1 = μ2/μ1.

In Figure 7, we present the results for convergence under mesh refinement, for the FENE and
Hooke models: for the case with weaker viscoelastic effects (c = 1, De = 1), the number of ensembles is
Nens = 5000, while the number of dumbbells inside each ensemble is Nd = 150, 000 for both stochastic
models. When the polymer concentration is increased (c = 5, De = 3), we scatter more ensembles in
the ambient (polymeric) fluid Nens = 5000 to capture the more dramatic effects in shape deformation,
reducing the number of dumbbells within each ensemble to Nd = 15, 000 to keep the computational
demands at a similar level. The results obtained here compare very well with those provided in [7]
for purely uncorrelated dumbbells, showing excellent convergence with mesh refinement for both
kinetic models and degrees of polymer concentration. Only in the coarser mesh, h = 1/40, do we
observe a slightly different behavior to that produced by the other unstructured meshes. This pattern
is more evident when using the Hooke instead of the FENE dumbbell model, due to the larger
stresses produced by the former model during drop deformation: the minimum value of the circularity
decreases for both c = 1 and c = 5, and we observe a lower local maximum at t � 2.2 for c = 5, De = 3,
with the drop showing a lack of deformation at the latter stages of the simulation (t ≥ 2.75).
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Figure 7. Evolution of the circularity of a drop rising due to buoyancy effects in a polymer solution,
using the FENE and Hookean kinetic models, variable mesh size h = {1/40, 1/80, 1/160, 1/320}, and
different degrees of viscoelasticity: c = 1, De = 1; and c = 5, De = 3.

Figure 8 shows the evolution of the circularity when the number of ensembles Nens and dumbbells
per ensemble Nd changes, keeping the product Nens × Nd = 750 × 106 constant so as to maintain the
computational cost; the mesh size is h = 1/320. For the case with lower polymer concentration and
viscoelastic effects, the convergence results are remarkable for both models. When the concentration
parameter and Deborah number are increased to c = 5, De = 3, we observe a small discrepancy in
the circularity values, proving that a certain number of ensembles are required to reconstruct, in an
accurate way, the stronger polymer stresses. However, there seems to be an optimal value of Nens

and Nd for a given computational cost, with this value of Nens being larger for Hooke than for the
FENE model. In any case, such a modest diverging behavior is only observed at or after the minimum
circularity (c = 1) or local maximum circularity (c = 5) are attained.

� �

Figure 8. Evolution of the circularity of a drop rising due to buoyancy effects in a polymer solution,
using the FENE and Hookean kinetic models, variable number of ensembles (Nens × Nd = 750 × 106),
and different degrees of viscoelasticity: c = 1, De = 1; and c = 5, De = 3.

3.2.2. Impact of CSRBF smoothness on the polymer stress tensor

Next, we investigate the influence that the degree of CSRBF smoothness has on the flow.
In particular, we are interested in observing qualitative and quantitative deviations in the shear
component and normal stress difference of the polymer stress tensor τp, in a case with strong
viscoelastic effects (c = 5, De = 3), when Wendland’s CSRBFs, ϕ3,k, ∀j = 0, .., 3, are used. The
reason behind our pursuing this investigation is twofold: since the “extra-”stress is responsible for
the viscoelastic effects, it is mandatory to represent it as accurately as possible in simulations that aim
to highlight the non-Newtonian behavior of the polymer solution; at the same time, this should be
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accomplished as efficiently as possible, opting for the CSRBFs that provide results nearly as accurate
as the more computationally expensive alternatives.

In the following simulations, we take an unstructured mesh of size h = 1/320, keeping the same
values of the dimensionless parameters found in the previous section. The number of ensembles for
the FENE model is Nens = 30, 000, and the number of dumbbells within each ensemble Nd = 25, 000;
for the numerical experiments using the Hookean dumbbell model, the parameters are Nens = 75, 000
and Nd = 10, 000. Thus, Figsures 9–12 show the shear component τp,12 and the normal stress difference
τp,11 − τp,22, at (dimensionless) instants of time t = 2 and t = 3; for the ease of representation, the
Hookean stresses are scaled down a factor of 1.81 from the results obtained with the FENE model.

Figure 9. Representation of the shear component of the polymer stress tensor, τp,12, for the FENE model
(b = 50) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for variable types of
CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.

For the shear component τp,12 of the polymer stress tensor using the FENE model (Figure 9), all
CSRBFs provide very smooth solutions at t = 2. At the final time of the simulation t = 3, when larger
stresses are produced, the Wendland ϕ3,0 CSRBF shows small oscillations and a certain roughness that
may translate into an insufficiently resolved velocity field and an overall loss of symmetry in the drop
shape. Wendland ϕ3,1 offers much better accuracy, as well as an improved spatial resolution of the
stresses, to such an extent that increasing the smoothness of the CSRBF (ϕ3,0, ϕ3,3) offers almost no
distinct enhancement.

Figure 10. Representation of the shear component of the polymer stress tensor, τp,12, for the Hookean
dumbbell model (Oldroyd-B) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for
variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.
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When the Hookean dumbbell model is used (Figure 10), τp,12 shows much larger values
throughout the whole simulation. The influence of the type of CSRBF becomes evident at the later
stages, when extreme and very localized stresses are observed. The less smooth ϕ3,0 is unable to
provide a symmetric solution, while the other Wendland functions offer much better results in terms
of symmetry.

Figure 11. Representation of the normal stress difference of the polymer stress tensor, τp,11 − τp,22, for
the FENE model (b = 50) with c = 5, De = 3, at dimensionless instants of time t = 2 and t = 3, for
variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom row: t = 3.

If we now inspect the results for the normal stress difference, τp,11 − τp,22, we observe that when
the FENE model is used (Figure 11), remarkable smoothness is retrieved by all the CSRBFs explored,
but for ϕ3,0, which somewhat underperforms at the last instants of the simulation, when the viscoelastic
effects have shown up and the drop attains maximum deformation.

Figure 12. Representation of the normal stress difference of the polymer stress tensor, τp,11 − τp,22, for
the Hookean dumbbell model (Oldroyd-B) with c = 5, De = 3, at dimensionless instants of time t = 2
and t = 3, for variable types of CSRBF. From left to right: ϕ3,0, ϕ3,1, ϕ3,2, ϕ3,3. Top row: t = 2; bottom
row: t = 3.
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Figure 12 represents the normal stress difference, τp,11 − τp,22, for the Hooke model. In this case,
a higher degree of smoothness has a positive effect, improving the symmetry of the solution, to a
certain extent. However, unless the spatial resolution of the velocity field and the velocity gradients is
improved, the number of ensembles distributed over the domain is large enough, and the dumbbells
per ensemble ensure a sufficiently accurate computation of the “extra-”stress at the ensembles, there is
no point in further increasing the quality of the CSRBF for polymer stress reconstruction, since
the extremely large, very localized stresses cannot be accurately computed unless the previous
conditions are met. On the other hand, all previous conditions can be satisfied so long as the necessary
computational resources are available. As a result of all the previous investigations, we find Wendland’s
ϕ3,1 CSRBF as a good choice in terms of accuracy, smoothness, and computational demands, used in
this work unless otherwise noted.

3.2.3. Flow Pattern under Increasing Viscoelastic Effects

Finally, we explore the flow pattern, streamlines, and isocontours of the polymer stress tensor,
in a series of simulations under increasing polymer concentration and relaxation times, using the
FENE dumbbell model with extensibility parameter b = 50; see Figures 13–16. For all the subsequent
numerical experiments, a uniform, unstructured mesh of size h = 1/320 is used, with the number of
dumbbells per ensemble Nd and the number of ensembles Nens being collected in Table 1. Notice that,
for stronger viscoelastic effects, a larger number of ensembles are scattered throughout the domain,
reducing the computationally available number of dumbbells per ensemble, which in turn translates
into a larger stochastic noise. Two different density and viscosity ratios are explored to underscore
the effects caused by the polymer solution on the shape deformation and flow pattern of the drop
(ρ2/ρ1 = 10−1 = μ2/μ1, Re = 35, We = 10, Fr = 1) and of the bubble (ρ2/ρ1 = 10−3, μ2/μ1 =

10−2, Re = 35, We = 125, Fr = 1).

Table 1. Each entry in the table shows Nd / Nens for increasing viscoelastic effects and different density
ratios. Nd is the number of dumbbells per ensemble and Nens the number of ensembles scattered in the
domain.

Density Ratio c = 1, De = 1 c = 3, De = 1 c = 5, De = 3 c = 9, De = 5

10 150,000 / 5000 75,000 / 10,000 50,000 / 15,000 37,500 / 20,000
1000 150,000 / 5000 50,000 / 15,000 15,000 / 50,000 15,000 / 5000

In Figure 13, we show the final shape and filled isocontours of the normal stress difference of
the polymer stress tensor for increasing concentration of the polymer solution and longer relaxation
times for the drop (density ratio of 10), while Figure 14 presents the behavior of the shear component
under the same circumstances, for the bubble immersed in the polymeric media (density ratio 1000).
For the drop and normal stress difference, the results present an excellent degree of symmetry and
smoothness, despite the underlying stochastic procedure, even for the strongest viscoelastic effects at
(c = 5, De = 3), which produce extreme values at the top and bottom of the rising drop.

The bubble depicted in Figure 14 with the shear stress isocontours shows how the harder
computational demands of this simulation translate into a modest reduction of the overall symmetry
along with more dramatic changes of the bubble shape. Nevertheless, the smoothness of the discrete
solution obtained for the polymer stress tensor, even when the stronger polymer concentration is
used, is such that it is possible to retrieve the maximum values at the wake of the bubble, with a high
degree of accuracy and symmetry. Figures 13 and 14 also evince elastic effects, with heightened drop
deformation caused by larger values of the Deborah number (i.e., relaxation time of the polymer) and
polymer concentration, while viscous and surface tension forces are kept at the same level.
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Figure 13. Drop shape and isocontours of normal stress difference of the polymer τp,11 − τp,22 for
the FENE model (b = 50) with ρ2/ρ1 = 10−1 = μ2/μ1, at t = 3. From left to right, c = 1, De = 1;
c = 3, De = 1; c = 5, De = 3; and c = 9, De = 5.

Next, we focus on the streamlines of the flow under increasing viscoelastic effects. In Figure 15,
we represent the flow pattern for the drop (moderate density and viscosity ratios), with Figure 15a
presenting a snapshot at time t = 2, while Figure 15b shows the pattern at the final instant of time,
t = 3. For these high values of polymer concentration and relaxation times, at t = 3, we observe the
downwards velocities that characterize the “negative wake” effect [23,76].

For large density and viscosity ratios, Figure 16 depicts the behavior of the deforming bubble
at t = 3. At the higher levels of polymer concentration and relaxation times, the area in which
downwards velocities are observed, comprising the “negative wake”, is much larger than in the case
of the deforming drop.
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Figure 14. Drop shape and shear component of the polymer stress tensor τp,12 for the FENE model
(b = 50) with ρ2/ρ1 = 10−3, μ2/μ1 = 10−2, at t = 3. From left to right, c = 1, De = 1; c = 3, De = 1;
c = 5, De = 3; and c = 9, De = 5.
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Figure 15. Drop shape and streamlines for the FENE model (b = 50), with ρ2/ρ1 = 10−1 = μ2/μ1 at
different instants of time: (a) t = 2 and (b) t = 3. For each panel, the left figure (yellow line) shows the
streamlines for c = 5, De = 3; the right figure (red line), those for c = 9, De = 5.

Figure 16. Drop shape and streamlines for the FENE model (b = 50) with ρ2/ρ1 = 10−3, μ2/μ1 = 10−2,
at t = 3. From left to right, c = 1, De = 1 (blue line); c = 3, De = 1 (green line); c = 5, De = 3 (yellow
line); and c = 9, De = 5 (red line).

4. Conclusions

This paper presents a series of numerical experiments in an effort to gain insight into the
impact that viscoelasticity may have on drop deformation, under a number of multiphase flow
configurations. The numerical method employed is based on an FEM-based spatial discretization,
using a semi-Lagrangian approach to deal with the convective terms, a kinetic modeling of the polymer
contribution to the stress tensor, and ML-inspired techniques for building, over the whole domain,
each of the components of the extra-stress tensor, which effectively decouples the “microscopic” and
“macroscopic” scales. Hence, the process of mesh refinement is no longer hampered by the low number
of polymer particles at a certain computational cell, allowing us to use very refined meshes and achieve
excellent smoothness and accuracy in kinetic-based, complex flow simulations.

The results on drop deformation under shear flow agree extremely well with those in the literature
produced by an equivalent constitutive (Oldroyd-B) model and indicate that drop viscoelasticity
prevents deformation to some degree, underscoring the efficiency and viability of the stochastic
approach in multiphase flows. For more demanding situations in buoyancy-driven flow, we obtain
remarkable mesh (macro) and ensemble (micro) convergence for both the FENE and Hooke models;
as for the degree of CSRBFs smoothness required to accurately build the “extra-”stress tensor, the
numerical study points to a minimum degree of C2 smoothness guaranteed by ϕ3,1, with higher
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smoothness providing small benefits compared to the additional computational cost. Finally, we
observe dramatic changes of flow pattern, including viscoelastic (“negative-wake”) effects and
extremely large values of shear and normal stress differences close to the drop interface, as the
polymer concentration and relaxation times increase.

In future investigations of multiphase flow of polymeric liquids, we will try to address improved
resolutions and problem configurations taking advantage of this ML-enhanced method to combine
isotropic and anisotropic mesh adaptation [77] with a kinetic modeling approach.
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Abbreviations The following abbreviations are used in this manuscript:
μ1 Viscosity of the continuous phase
μ2 Droplet viscosity
ρ1 Density of the continuous phase
ρ2 Droplet density
τp Polymer (“extra-”)stress tensor
τp,12 Shear component of the polymer stress tensor
τp,11−22 Normal stress difference of the polymer stress tensor
φ Level set function
ϕ Compactly-supported Wendland function
χ Support size of the CSRBF
ψ Trial basis function
b FENE extensibility parameter
c Concentration parameter

�c Droplet circularity
dt Time step size
h Grid size of the uniform, unstructured mesh
p Pressure field
v Velocity field
s Approximation interpolant of the CSRBF
D Deformation parameter
Nd Number of uncorrelated dumbbells per ensemble
Nens Number of ensembles of polymer particles
Nmp Number of marker particles
Ca Capillary number
Fr Froude number
Re Reynolds number
We Weber number
ALE Arbitrary Lagrangian-Eulerian method
BD Brownian Dynamics simulations
CSRBF Compactly-Supported Radial Basis Function
FEM Finite Element Method
FENE Finitely Extensible Non-linear Elastic model
LS Level Set method
LSC Least Squares Commutator preconditioner
ML Machine Learning
NN Nearest Neighbor
PBC Periodic Boundary Conditions
PLS Particle Level Set
RBF Radial Basis Function
VOF Volume-Of-Fluid method
[l c] Vector of interpolation coefficients for the CSRBF
K Discrete matrix system
PETSc Portable, Extensible Toolkit for Scientific Computation
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Abstract: Computational fluid dynamics (CFD) was used to investigate characteristics of high-speed
air as it is expelled from a solution blow spinning (SBS) nozzle using a k-ε turbulence model.
Air velocity, pressure, temperature, turbulent kinetic energy and density contours were generated and
analysed in order to achieve an optimal attenuation force for fibre production. A bespoke convergent
nozzle was used to produce polyvinylidene fluoride (PVDF) fibres at air pressures between 1 and
5 bar. The nozzle comprised of four parts: a polymer solution syringe holder, an air inlet, an air
chamber, and a cap that covers the air chamber. A custom-built SBS setup was used to produce PVDF
submicron fibres which were consequently analysed using scanning electron microscope (SEM) for
their morphological features. Both theoretical and experimental observations showed that a higher
air pressure (4 bar) is more suitable to achieve thin fibres of PVDF. However, fibre diameter increased
at 5 bar and intertwined ropes of fibres were also observed.

Keywords: CFD; SBS; nozzle; PVDF; fibres

1. Introduction

In 1969, polyvinylidene fluoride (PVDF) was first reported as thermoplastic polymer piezoelectric
material (PEM) exhibiting the piezoelectric activity [1]. PVDF based PEMs are classified as stimuli
responsive materials and have been employed as standalone or as matrices in composites and layered
structures to fabricate stimuli responsive systems for applications such as drug delivery and tissue
engineering [2–4]. One of the applications of PVDF based PEMs is intelligent clothing to sense user
activities in sports and personalized health care [5–7]. As the precursor for textiles is yarn, which
is produced from fibres, various fabrication methods have been employed to produce fibres, such
as gas jet spinning, nozzle-free centrifugal spinning, rotary jet spinning, melt blow spinning and
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flash-spinning [8,9]. Out of these, electrospinning has been extensively used for the fabrication of fibres;
however, it has some limitations. Firstly, it can only be used for polymer systems that are electrically
conductive, and secondly, formation of a high fraction of β-phase (which has the highest piezoelectric
response) is dependent on very high electric field making the process a safety hazard [10]. As there is
electric field involved, it also requires the use of conductive collectors. It also has low yield making it a
laborious process and unfit for scale-up demands.

SBS has emerged as an alternative technique to produce sub-micron/nano sized fibres and can
relieve the user of the limitations posed by electrospinning. In SBS, a polymer is dissolved into a
suitable solvent to reduce its viscosity as thin fibres cannot be produced with very viscous polymer
melt [11,12]. The solution is then injected through a nozzle which is surrounded by a concentric outer
pipe from which air is purged out. The solution interacts with the air and forms short fibres which
fall on a collector. The advantage of SBS is that it can be applied to both electrically conducting and
insulating systems and does not require the application of electric field and conductive collectors to
initiate fibre processing [13,14]. Moreover, the yield of fibre production is about hundred times higher
than that of electrospinning making it suitable for industrialisation [15,16]. The nozzle design is very
critical in SBS as it significantly affects the airflow field distribution, the air velocity and morphology of
the final product [17]. If the internal diameter of nozzle is too large, outsized droplets will be produced
resulting in fibres with larger diameters. Similarly, a very small orifice will reduce the throughput,
however, it has the potential of producing thin fibres.

The influence of the protrusion length of the polymer solution syringe on fibre dimensions was
found to be insignificant [17]. Lou et al. [18] also reported that the effect of protrusion length has
insignificant effect on the fibre morphology. They used four different protrusion lengths: 4, 2, 0
and −2 mm (minus sign shows that the syringe was retracted from the nozzle end by a distance of
2 mm). They reported that the air velocity reaches a maximum in the vicinity of 10–20 mm below
the nozzle face. The maximum air velocities were in the range of 170–180 m/s. However, based
on practical experiments, they reported that the retracted nozzles resulted in intermittent process
with polymer solution blocking the nozzle end. The protruded syringe could produce fibres without
such deficiencies.

The attenuation force in solution blow spinning (SBS) is pressurized air and various computational
methods have been employed to numerically investigate the influence of air pressure and velocity on
the fibre morphology [19–21]. The laminar flow model is considered as the simplest of all available
models while the k-ε turbulence model is one of the most commonly used models in computational
fluid dynamics (CFD) to simulate mean flow characteristics for turbulent flow conditions with more
rapid convergence [18,22]. The k-ε turbulence model is effective for solving problems involving reverse
flow [12,23]. It is a semi-empirical model based on model transport equations for the turbulence kinetic
energy (k) and its dissipation rate (ε). Neglecting gravitational effects, the transport equations for the
k-ε turbulence model are given below [18,24]:
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where ρ is density kg/m3, k is turbulent kinetic energy m2/s2, t is time s, ui and uj are velocity fluctuations
in the ith and jth directions, respectively, μ is viscosity kg/(m.s), μt is turbulent viscosity kg/(m.s),
σk and σε are turbulent Prandtl numbers for the kinetic energy and the dissipation rate, respectively, ε is
dissipation rate of turbulent kinetic energy, Mt is turbulent Mach number, Cε1 and Cε2 are parameters
for k-ε turbulence model. The flow characteristics for solution blow spinning process have yet not
been studied in detail. For example, when air is passed through the air inlet and moves towards the
nozzle tip, whether the nozzle will get choked or not and what will be the influence of choking on
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the fibre morphology have yet not been reported. A nozzle is choked when the maximum mass flow
rate has been reached [25]. Any additional increment in pressure will result in an increase in chamber
pressure. Internally the pressure might increase to a value in excess of the rated mechanical strength of
the nozzle material which will result in catastrophic failure of the device. Externally of the nozzle,
an increase beyond choked conditions can lead to shock wave formation in the nozzle wake. If fluid
coming out of the nozzle cannot expand isentropically due to choking an irreversible discontinuity
arises called shockwave [26,27]. The shockwave is an abrupt disturbance that causes discontinuous
and irreversible changes in fluid characteristics such as speed, density, temperature, and pressure.
As a result of the gradient in temperature and velocity being caused by the shock, heat is transferred,
and energy is dissipated within the gas. These processes are thermodynamically irreversible [28].
As the nozzle design and the attenuation force (pressurized air) are of utmost importance in SBS, both
numerical (CFD) and experimental methods were used to investigate the fibre formation. CFD was
used to investigate the convergence point for high speed air as it comes out of the nozzle. The polymer
solution syringe was positioned such that it did not choke due to the reversal of air flow. The produced
fibres did not show any bead formation at higher pressure values indicating that optimized SBS can
successfully produce submicron PVDF fibres.

2. Experimental Work

2.1. Materials

PVDF (Kynar, melt viscosity: 23.0–29.0 MPa.s at room temperature) was supplied by ARKEMA
(King of Prussia, PA, USA). N, N-Dimethyl Formamide (anhydrous, 98%) was purchased from Loba
Chemie, Mumbai, India. Chemicals were used as received.

2.2. Nozzle Design

A bespoke SBS concentric nozzle was used to produce PVDF submicron fibres and was supplied
by AREKA group, Istanbul, Turkey. A schematic of the nozzle used for the CFD model to predict air
flow characteristics is shown in Figure 1. The polymer solution syringe is inserted through the opening
at the left end of the nozzle that passes all the way through and comes out from the right end of the
nozzle. In the middle is an air inlet (~4 mm diameter) that transfers air into the air chamber. To build
pressure, the air chamber has four holes with internal diameters of ~1 mm each. These holes are
covered with a cap that leaves a very narrow fissure for the air to come out 360◦ around the concentric
polymer solution syringe. To ease manufacturing, the nozzle consists of four metallic sections (Figure 2)
which are assembled to form the nozzle unit. Consequently, the experiments were carried out using
this assembled nozzle. Most of the CFD models in the reviewed literature were carried out in 2D
systems which were then extrapolated to 3D [18]. However, in this study, a 3D nozzle was employed
which was also used in the experiments and using the same system for theoretical calculations will
provide a more realistic comparison.

2.3. Experimental Setup

The experimental setup is shown in Figure 3 and a schematic of the process is shown in Figure 4.
As variation in temperature can influence fluid viscosity, and rheological properties are dependent on
viscosity, it was ensured that the temperature of the polymer solution was held constant by keeping
the SBS setup in a ventilated fume hood. No heating or cooling mechanism was used in the fume
hood and the temperature during experiments remained in the range 22–25 ◦C. Pressurized air was
used to attenuate polymer solution jet at 1–5 bar generated by Cruiser air compressor (1.5 HP, 30 L,
Shanghai, China). NE-300 infusion syringe pump with 21-gauge needle was employed to feed the
polymer solution, and was positioned inside the concentric nozzle with internal diameter di = 2 mm.
A working distance of 20 cm was maintained between the nozzle and the drum collector.
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Figure 1. Different sections of solution blow spinning (SBS) nozzle.

 
Figure 2. Various parts of the fabricated nozzle with four air holes through air chamber shown in the
top right corner and assembled nozzle shown in the top left corner.

 
Figure 3. SBS setup for the production of polyvinylidene fluoride (PVDF) fibres.
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Figure 4. Schematic of solution blow spinning process.

2.4. Production of Samples/Fibres

A quantity of 15 wt % of PVDF polymer solution was pumped with the aid of the syringe and the
feed rate of polymer solution was varied between 2 to 10 mL/h. Air pressure was varied between 1 to
5 bar (only one variable was changed at a time). The fibres were collected at the drum collector and
analysed for their morphological features.

2.5. Characterization

CFD was carried out in ANSYS Fluent v19 (ANSYS Inc., Canonsburg, PA, USA). For the CFD
simulation, a solid enclosure was built around the nozzle with zero shear slip and meshed consisting
of 793,731 nodes and 3,355,960 elements. A steady-state, compressible Navier–Stokes equations was
used whose component forms for continuity, x-momentum, y-momentum, z-momentum, and energy
are given below, respectively, where p is pressure, q is heat flux, u, v, and w are velocity components,
ET is total energy, Re is Reynolds number, and Pr is Prandtl number.
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The closure models used were the ideal gas model for density and the Sutherland equation for
viscosity. The constants used were for air and mentioned below:

μ = μ0

(T0 + C
T + C

)( T
T0

)3/2

(8)

where, T0 is reference temperature (K), μ0 is reference viscosity (1.716 × 10−5 kg/m.s) at the reference
temperature T0 (273 K), T is effective temperature (110 K), and C is Sutherland’s constant for given
gaseous material. The outlets were all specified as pressure far-field outlets. The inlet to the
nozzle was a pressure inlet and remainder were all no-slip wall boundaries. Both laminar and k-ε
turbulent simulations were carried out. Although the flow field is inherently turbulent, laminar
flow was investigated as a steppingstone and was used to compare the results with turbulent flow
simulation. The laminar results are not shown here but can be viewed in the Supplementary Materials
(Figures S1–S22). A scanning electron microscope (JSM-6010LV-SEM, JEOL, Tokyo, Japan) was used
to investigate the morphology of the produced fibres. Fibre diameter was analysed using Image-J
software, average fibre diameter distribution was detected by measuring the distance across fibre
boundaries at different imaging scales to ensure consistency.

3. Results and Discussion

Under both laminar and k-ε turbulent flow conditions, a reverse flow was observed in the vicinity
of polymer solution syringe outlet as shown in Figure 5. If a polymer solution droplet gets trapped by
this reverse flow, there is high possibility that it will not move forward and will choke the syringe/nozzle.
This supposition is further supported by the experimental observations reported by Lou et al. [18] who
found that the retracted nozzle resulted in an intermittent process with polymer solution blocking
the nozzle end. They also reported that the best morphology of fibres was produced when polymer
syringe was protruded out by 4 mm.

 
Figure 5. Reverse flow in the vicinity of the polymer solution syringe tip that can choke the syringe.

Velocity, pressure, temperature, turbulent kinetic energy, and density contours at different air
pressures are shown in Figures 6 and 7. A magnified set of contours at 4 bar is shown in Figure 8 as
the thinnest fibres were produced at that pressure. For clarity of readings large contours have been
provided in the Supplementary Materials (Figures S23–S71). Velocity, temperature, and turbulent
kinetic energy profiles at six vertical slices (at 0, 1, 4, 6, 16, and 26 mm from the nozzle end) were also
calculated and plotted in Figures 9–11, respectively. The values of the parameters and z-velocity were
also measured at the horizontal symmetry axis of the geometry and are shown in Figures 12 and 13.
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They will be referred to as centreline air velocity (vc), pressure (Pc), temperature (Tc), turbulent kinetic
energy (TKEc), and density (ρc) from hereafter.

At 1 bar, vc increases quadratically to ~80 m/s at a distance of ~0.7 mm from the air outlet, then
slows down due to reverse flow until hits zero, and then shoots up to ~120 m/s at a distance of ~7 mm
and then starts to gradually decrease. The exact value of air velocity may change due to polymer
solution droplets in the flow field. Due to flow reversal, the Pc initially decreases quadratically to
~−3 kPa at a distance of ~0.5 mm, after which it starts to increase until hits zero at a distance of ~1 mm,
saturates at ~3 kPa at a distance of ~1.7 mm, and then gradually flattens out. The minimum Tc recorded
at ~4 mm was 291 K (18 ◦C) which was 7 K cooler than the ambient temperature which was set at 298 K
(25 ◦C). The maximum TKEC was ~1 kJ/kg recorded at ~1.3 mm from the air outlet. Experiments were
conducted at 1 bar in order to produce fibres using the setup shown in Figure 3. Despite changing
the feed rate between 2 mL/h to 10 mL/h, fibres could not be formed. This was ascribed to that the
polymer solution droplets kept falling on the floor just ahead of the nozzle. Therefore, it is believed
that air velocity of 120 m/s is not high enough to generate PVDF fibres. Similar trends were observed
at 2–10 bars for CFD results; however, fibre morphology was significantly affected by air pressure.

 
Figure 6. k-ε turbulence flow contours through SBS nozzle at different air pressures: (A,B) velocity
(m/s), (C) pressure (Pa), (a) 1 bar, (b) 2 bar, (c) 3 bar, (d) 4 bar, (e) 5 bar, (f) 6 bar, (g) 10 bar.
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Figure 7. k-ε turbulence flow contours through SBS nozzle at different air pressures: (A) temperature
(K), (B) turbulent kinetic energy (J/kg =m2/s2), and (C) density (kg/m3), (a) 1 bar, (b) 2 bar, (c) 3 bar,
(d) 4 bar, (e) 5 bar, (f) 6 bar, (g) 10 bar.

Fibres were successfully produced at 2 bar whose SEM image is shown in Figure 14a and diameter
distribution in Figure 14b. Fibres with wide distribution of diameters (between 100–900 nm) were
observed and it is important to mention that some beads were also observed on these fibres. At 3 bar,
relatively thinner fibres (than at 2 bar) as shown in Figure 14c were produced. The fibres were almost
defect free with fibre diameters in the range of 140–700 nm (Figure 14d). At 4 bar, Much thin and
bead-free fibres were produced as shown in Figure 14e. Most of the fibres were in 100–350 nm range
(Figure 14f) and these were the thinnest fibres produced in the current work. The fibres produced
at 5 bar were relatively thick as shown in Figure 14g. There were some intertwined fibre ropes
observed at 5 bar and diameter of each rope was measured to get mean fibre diameter of ~1.5 μm
(Figure 14h). At 5 bar, there is drop in temperature due to Joule-Thomson effect up to ~251 K (−22 ◦C).
This cryogenic environment can produce residual stresses in the fibres that might have caused them
turn and twist around each other while either during flight or after hitting the drum collector and
resulted in interlocked fibre ropes. The turbulent kinetic energy (Figure 13c,d) continues to rise
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with increasing air pressure and velocity and this increased turbulence might be another factor in
destabilizing the fibres in flight.

 
(a) (b) 

 
(c) (d) 

Figure 8. k-ε turbulence flow contours through SBS nozzle at air pressure of 4 bar: (a) velocity (m/s),
(b) turbulent kinetic energy (J/kg =m2/s2), (c) temperature (K), and (d) pressure (Pa).

The z-velocity graphs (Figure 12c,d) hit negative values that confirm reverse flow. It is important
to mention that the reverse flow is at the tip of syringe, which suggests that the polymer solution
needs to be injected forcibly to pass the barrier created by the reverse flow (Figure 12e,f). There is
fluctuation in the temperature as well (Figure 13a,b) due to reverse flow. As air leaves the air outlet,
the temperature follows a sinusoidal curve dropping at a distance of ~1 mm from the air outlet, which
goes up due to reverse flow, then drops again until it hits the lowest value (~193 K (−80 ◦C) at 10 bar)
and finally gradually goes up to the room temperature. A similar trend was observed for turbulent
kinetic energy (Figure 13c,d) along the positive ordinate.

The density plots (Figure 13e,f) show that the air is less dense at the nozzle opening. Air imposes
frictional drag on the moving objects which is approximately proportional to the square of the velocity
of the moving object. A decrease in density and viscosity would mean less frictional drag being exerted
on the polymer solution droplet through the air flow field which would be able to move faster and will
get thinner under the influence of attenuating force, i.e., high-speed air. The density graphs hit the
peak values at ~4 mm from the nozzle end. This increment in density is propitious as it would exert
compressive stresses on the fibres thereby resulting in compact fibres.
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Figure 9. Velocity profiles at six vertical slices (at distance of 0, 1, 4, 6, 16, and 26 mm from the air outlet)
for k-ε turbulence flow plots through SBS nozzle at different air pressures: (a) 1 bar, (b) 2 bar, (c) 3 bar,
(d) 4 bar, (e) 5 bar, (f) 6 bar, (g) 10 bar, and (h) maximum velocity values at different air pressures.
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Figure 10. Temperature profiles at six vertical slices (at distance of 0, 1, 4, 6, 16, and 26 mm from the air
outlet) for k-ε turbulence flow plots through SBS nozzle at different air pressures: (a) 1 bar, (b) 2 bar,
(c) 3 bar, (d) 4 bar, (e) 5 bar, (f) 6 bar, (g) 10 bar, and (h) minimum temperature values at different
air pressures.
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Figure 11. Turbulent kinetic energy profiles at six vertical slices (at distance of 0, 1, 4, 6, 16, and 26 mm
from the air outlet) for k-ε turbulence flow plots through SBS nozzle at different air pressures: (a) 1 bar,
(b) 2 bar, (c) 3 bar, (d) 4 bar, (e) 5 bar, (f) 6 bar, (g) 10 bar, and (h) maximum turbulent kinetic energy
values at different air pressures.
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Figure 12. k-ε turbulence flow plots through SBS nozzle at different air pressures: (a,b) velocity (m/s),
(c,d) z-velocity (m/s), and (e,f) pressure (Pa).

A significant drop in temperature was observed as air comes out of the nozzle. It can possibly
be related to the Joule–Thomson effect inducing temperature drops when high speed fluid quickly
escapes through a narrow hole [29]. Static temperature drops during the isentropic expansion process
and this drop in temperature is even more evident under supersonic flow where temperature can drop
down to 213 K (−60 ◦C) without any cryogenic cooling or use of solid adsorption techniques [28]. It has
been reported that PVDF solution temperature influences spinnability of PVDF fibres [15]. The drop
in temperature can alter viscosity of the polymer solution as viscosity and temperature are inversely
related to each other. When temperature of polymer solution is high, its viscosity will be low, and
therefore low attenuation force will suffice to get thin fibres and vice versa. Attenuation force in SBS is
high speed air which means that thin fibres can be achieved at relatively low air pressure and velocity.
A higher air pressure results in a higher air velocity and turbulent fluctuations. The higher air velocity
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will result in thinner fibres but turbulent fluctuations may break the fibres [18]. It has been reported
that there is a direct relationship between viscosity of polymer solution and mean fibre diameter.
Haddadi et al. [30] incorporated hydrophobic and hydrophilic nanosilica into PVDF and reported that
mean fibre diameter increased in both cases. They suggested that the viscosity of polymer solution
increased by the incorporation of nanofillers which in turn led to an increase in mean fibre diameter.
Yun et al. [31] fabricated Pb(Zr0.53Ti0.47)O3 reinforced PVDF nanofibres and reported that both density
and viscosity of the polymer solution increased after the incorporation of PZT. The mean fibre diameter
increased until 10 wt % and then gradually decreased when volume fraction was further increased up
to 30 wt % [31].

 

Figure 13. k-ε turbulence flow plots through SBS nozzle at different air pressures: (a,b) temperature
(K), (c,d), turbulent kinetic energy (J/kg =m2/s2), and (e,f) density [kg/m3].
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Figure 14. (a,c,e,g) SEM results at 2,3,4, and 5 bar air pressures, and (b,d,f,h) their respective fibre
size distribution.

The vc increases at 6 bar and 10 bar to ~400 and ~450 m/s, respectively. Experiments at 10 bar
could not be performed due to the limitation of the setup. However, CFD results provide a useful
information that the nozzle did not choke up until 10 bar. The effect of shock structures on the fibre
formation has not been determined, however it is likely that the rapidly changing conditions before
and after the shock will have a detrimental effect on the fibre morphology [32]. To avoid choking,
nozzle diameter, feed rate and air pressure must be carefully optimized [32,33].
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4. Conclusions

The current research provides a comprehensive numerical and experimental analysis for fibres
produced using solution blow spinning (SBS). The flow characteristics of high-speed air through
a bespoke nozzle were investigated numerically using computational fluid dynamics (CFD) and
experimentally in a custom-built SBS setup to produce polyvinylidene fluoride (PVDF) submicron
fibres. It has been concluded that under both laminar and k-ε turbulent flow conditions, a reverse
flow was observed in the vicinity of polymer solution syringe outlet. As a result of this, if polymer
solution droplets got trapped by this reverse flow, there is high possibility that the droplets will not
move forward causing the syringe/nozzle to choke. However, chocking of nozzle does not take place
at air pressures up to 10 bar. Submicron fibres were produced at air pressures ≥ 2 bar. However,
higher pressure of 4 bar was found to be more effective in producing fibres in the range of 150–200 nm.
Upon increasing the air pressure to 5 bar, the fibre diameter increased and interlaced fibre ropes were
produced as significant temperature drop (~251 K (−22 ◦C)) was observed due to Joule–Thomson
effect. The results presented in the paper will pave the way for future research in fibre manufacturing
using SBS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/5/1140/s1,
Figure S1. Solid enclosure with zero slip around SBS nozzle. Figure S2. Meshed system for CFD of SBS
nozzle. The mesh comprises of 793,731 nodes with 33,55,960 elements. Figures S3–S12. Laminar flow results.
Figures S13–S22. CFD contours for k-ε turbulent model at different values of εc1 and εc2. Figures S23–S71. k-ε
turbulent model-based contours with default parameters.
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Abstract: Component design of rubber-based anti-vibration devices remains a challenge, since
there is a lack of predictive models in the typical regimes encountered by anti-vibration devices
that are deformed to medium dynamic strains (0.5 to 3.5) at medium strain rates (0.5/s to 10/s).
An approach is proposed that demonstrates all non-linear viscoelastic effects such as hysteresis
and cyclic stress softening. As it is based on a free-energy, it is fast and easily implementable.
The fitting parameters behave meaningfully when changing the filler volume fraction. The model
was implemented for use in the commercial finite element software ABAQUS. Examples of how to fit
experimental data and simulations for a variety of carbon black filled natural rubber compounds
are presented.

Keywords: viscoelastic behaviour; modelling; elastomer; cyclic softening

1. Introduction

Suspension is one of the most important systems affecting a vehicle’s ride quality, and it is, therefore,
a key factor in determining a vehicle’s performance. The modelling of bushing force in the automotive
industry plays an important role in predicting the dynamic behaviour of the suspension system.
The viscous behaviour of elastomers makes the use of rubber components essential to reduce the level
of vibrations that are transmitted to the passengers in the vehicle. In particular, natural rubber
is the material of choice for these types of engineering applications. For automotive suspension
components, carbon black is also typically used as a filler to improve the rubber’s mechanical
properties such as the fatigue behaviour or the stiffness. For bushing applications, quasi-static
deformations up to large strains are of major interest. In these particular conditions, the rubber
exhibits non-linear viscoelastic behaviour such as the Mullins Effect, cyclic stress softening, hysteresis
and induced anisotropy [1–5]. This characteristic response is related to the molecular microstructure,
but it is not yet totally understood [6]. Furthermore, these effects are also present in unfilled
strain-crystallizing elastomers as natural rubber [7–10]. Modelling of filled rubber introduces difficulties
related to its nonlinear and incompressible behaviour. Many models try to capture this behavior from a range
of different perspectives. The multiscale nature of polymers is reflected by different computational methods
for specific length and time scales: quantum (∼10−10 m, ∼10−12 s), atomistic (∼10−9 m, ∼10−9–10−6 s),
mesoscopic (∼ 10−6 m, ∼10−6–10−3 s) or macroscopic scale (∼10−3 m, ∼1 s) [11–13]. At the top level,
phenomenological macroscopic models can roughly be classified into three categories [14] damage
models, rheological models with serial and parallel combination of elastic and viscous elements
and the constitutive equations based on a rubber elasticity model. Damage models [15–17] are unable
to differentiate between an unloading and a subsequent reloading with one consequence being that
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they cannot predict the cyclic stress softening phenomenon. Essentially, there is a limitation in
fitting the experimental behaviour as a limitation of the background theory. Rheological Framework
models are models with elastic and viscous components. The Parallel Rheological Framework ([18,19])
is capable of reproducing the full range of nonlinear viscoelastic effects that are under examination,
but it requires a large number of parameters that are very sensitive to the input test data. The dynamic
flocculation model (DFM) assumes the breakdown and reformation of filler aggregates as the main
mechanism [20]. Other physically-based works focus on the binding or sliding of polymer chains on
the fillers surface [21]. Recent Molecular Dynamics (MD) simulations indicate that both phenomena
may play a role [22,23].

Most of these models include softening effects using non-time dependent mathematics,
e.g., by softening the material based on maximum strain or stress measures. In contrast, experiments
clearly show that softening proceeds by repeatedly stretching the material to a predefined load
(cyclic stress softening) or by holding it at constant stretch (stress relaxation) [24]. More specifically,
stress decreases logarithmically [25–27]. In a recent review article [14] it was found that no predictive
model was able to fully reproduce cyclic stress softening to a satisfying quality. In the next sections
a new approach based on a recently proposed model [28] is presented. It is able to account for non-linear
elasticity and strain history effects.

2. Theory

2.1. Free Energy Density

The underlying free energy density is derived on the basis of the extended non-affine tube
model of rubber elasticity [29,30] which was shown to be the best compromise between fitting quality
and number of parameters [31]. In a simplified form it reads

W( Ĩ1, Ĩ∗) = Gc

2
Ĩ1

1 − 1
n Ĩ1

+ 2Ge Ĩ∗ (1)

with

Ĩ1 = I1 − 3 = λ2
1 + λ2

2 + λ2
3 − 3 (2)

Ĩ∗ = I∗ − 3 = λ−1
1 + λ−1

2 + λ−1
3 − 3 (3)

being modified invariants of the left Cauchy Green tensor, expressed by the principal stretches λi.
The straightforward simplifications done to arrive at Equation (1) are outlined in [32]. The parameter
Gc is called crosslink modulus and scales the contribution of crosslinks to the mechanical response.
Accordingly, Ge scales proportionally to the number of trapped entanglements of the polymer [33].
The third parameter n measures the number of statistical segments between network nodes,
which is a measure of elastically effective chain length. For example, natural rubber has a segment
length of about 0.934 nm [34], corresponding to roughly two isoprene units. Fillers are introduced
by assuming that they amplify strain heterogeneously within the matrix by local amplification factors
X [28]. To avoid problems arising from frame references the amplification factors directly act on
the invariants. In the case of Ĩ1 this is reasonable, as it represents the norm of a hypothetical length
within the material. The amplified energy density is then calculated as a superposition of differently
amplified domains

WX( Ĩ1, Xmax, Xmin) =

Xmax∫
Xmin

dX P(X)W(XĨ1, XĨ∗) (4)
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where the distribution of amplification factors is given by

P(X) = (X + C)−χ · χ − 1
(Xmin + C)1−χ − (Xmax + C)1−χ

(5)

The parameter χ gives the width of the distribution and C defines a plateau value around
X = 1. For C = 0 Equation (5) is equivalent to its equivalent in [28]. It is normalized to the interval
[Xmin,Xmax], which is motivated from conservation of the number of rubber-filler structures.
Carrying out the integral given by Equation (4) generates hypergeometrical functions. Additive splitting
of the integrand, as is explained in [32], gives a good approximation containing only elementary functions:

WX(Xmax, Xmin) ≈ 1
2

1
(Xmin+C)1−χ−(Xmax+C)1−χ ·[

Gc Ĩ1+4 Ge Ĩ∗
χ−2

(
(C + Xmin)

1−χ(C + (χ − 1) Xmin)− (C + Xmax)1−χ(C + (χ − 1) Xmax)
)

+Gc n2(χ − 1) Ĩ χ−1
1

(
C Ĩ1 + n

)−χ log
(

Ĩ1 Xmin−n
Ĩ1 Xmax−n

)] (6)

From Equation (6) the hyperelastic stresses can be derived, if Xmin and Xmax are known.
The minimum amplification factor is set to Xmin = 1, which corresponds to the assumption that
there are non-amplified domains (e.g., without filler) within the material.

2.2. Stress Softening

In [28] the maximum amplification factor is defined to be a monotonically decreasing function
of the all-time maximum of the modified first invariant Ĩ1. This naturally introduces immediate stress
softening if the material surpasses the previous maximum strain. As described in the introduction
stress softening is not immediate, but proceeds logarithmically or according to a slow powerlaw.
Generally, logarithmic relaxation in stress f∼− log t can be generated by differential equations
of the form d f /dt∼− exp | f |. From a physical point of view this can be understood in terms
of force-induced hopping over a potential barrier, as formulated by Kramers [35]. It is reasonable
to assume that softening is predominantly happening in the most stretched domains. A crude
approximation of the stress-scaling in this regime gives

f ∼ 1
〈λ〉W(XĨ1, XĨ∗) ≈ 1√

Ĩ1

Ĩ1 Xmax

1 − 1
n Ĩ1 Xmax

(7)

where the entanglement part of Equation (1) was neglected, because its influence is small at high strains.
The prefactor 〈λ〉 =

√
Ĩ1 is a frame independent measure of the systems stretch. Heuristically, stress

is also directly scaled by the amplification factor, such that d f /dt∼ dXmax/dt. Using again
the logarithm-generating differential equation d f /dt∼− exp | f | and introducing scaling constants c1

and c2 this gives
dXmax

dt
= − exp

(
−c2 +

1
c1

√
Ĩ1 Xmax

1 − 1
n Ĩ1 Xmax

)
· 1

s
(8)

The timescale of zero-load softening given as τsoft = exp(c2) s was put in the exponential
for numerical reasons. In practice, it should be sufficiently long that no significant softening happens
on the timescale of the simulation, if no load is imposed. This means that for Ĩ1 → 0 the result
of Equation (8) is usually small and the maximum amplification factor Xmax stays almost constant.
When the model approaches divergence at Ĩ1 Xmax/n → 1 the second summand inside the exponential
increases and induces a decrease of Xmax. It shall be noted that a more careful derivation was carried
out in [32] which relates c1 and c2 to temperature and allows the modeling of Mullins effect recovery [6]
at elevated temperatures.
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2.3. Viscoelasticity

Hysteresis is modeled by a single Maxwell element. The problem treated in this work requires
only a narrow range of strain rates such that this procedure is justified. Viscoelastic stress is evolved
according to the differential equation

dσσσvis

dt
= − 1

τc
σσσvis +

dσσσel
dt

(9)

where σσσvis is the viscoelastic stress contribution, τc is the relaxation time scale, and σσσel is the elastic
Cauchy stress derived from the free energy density given by Equation (6).

2.4. Implementation

The model was implemented in Matlab for the hypothetical condition of fully incompressible
material, considering one material point loaded cyclically in the uniaxial direction and in a compressible
full three dimensional form for the finite element analysis. For incompressible materials J = I3 = 1
and the Cauchy stress is related to the free energy density:

σσσel = −pI + 2
(

∂WX
∂I1

+
∂WX
∂I∗

)
B (10)

The scalar p is the hydrostatic pressure (an indeterminate Lagrange multiplier) that can
be determined only from the boundary conditions. B is the left Cauchy-Green deformation tensor.
For compressible materials it is useful to split the deformation into distortional and volumetric
(dilational) parts via a multiplicative decomposition.

F = J1/3F̄ (11)

B = J2/3B̄ (12)

I1 = J2/3 Ī1 (13)

The J1/3 and J2/3 terms are related to the volume changes, while the •̄ terms are a modified
gradient and strain related to the distortional deformations. These decompositions express the stored
energy as W( Ī1(I1, J), Ī∗(I∗, J), J), that can be decomposed into volumetric and isochoric (distortional)
responses (Equation (14)) and give the Cauchy stress [36] as in Equation (15)

W(B) = Wvol(J) + Wiso(B̄). (14)

σσσel( Ī1, Ī∗, J) =
2
J

[
∂WX

∂ Ī1
+

∂WX

∂ Ī∗

]
B̄ + k(J − 1). (15)

The single Prony series element was integrated explicitly and the total stress is defined as:

σσσtot = (1 − φ)σσσel + φ σσσvis. (16)

where φ is a fitting constant which is assumed to increase with filler volume fraction. Figure 1 shows
the algorithm developed to implement the model as a user-defined material subroutine (VUMAT)
coded in Fortran for Abaqus/Explicit.

The model requires 10 parameters, plus the bulk modulus in case of compressible material.
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Figure 1. VUMAT Algorithm.

3. Materials and Experiments

Seven compounds supplied by TARRC (Tun Abdul Razak Research Centre, Brickendonbury,
Hertford, UK), were examined. Each compound contained a different volume fraction of carbon black
(FEF N550) that had been mixed into natural rubber (NR, SMR CV60). The compound formulations in
phr (part per hundred of rubber by mass) are given in Table 1.

Table 1. Compound formulation; phr (part per hundred of rubber by mass).

- NR2 NR10 NR20 NR30 NR40 NR50 NR60

Natural Rubber, SMR CV60 100 100 100 100 100 100 100
Carbon Black, FEF N550 2 10 20 30 40 50 60

Process oil, 410 - 1 2 3 4 5 6
Zinc oxide 5 5 5 5 5 5 5
Stearic acid 2 2 2 2 2 2 2

Antioxidant/antiozonant, HPPD 3 3 3 3 3 3 3
Antiozonant wax 2 2 2 2 2 2 2

Sulfur 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Accelerator, CBS 1.5 1.5 1.5 1.5 1.5 1.5 1.5

t90 (min) 15:16 13:50 11:50 10:30 10:00 9:04 7:10

Characterisation of all this materials under cyclic tensile tests is available in [14] and it is briefly
recalled in this section for the sake of completeness. Uniaxial tension tests were conducted using an
Electropulse Instron Test Machine. Cyclic loading, unloading and reloading tests were performed
using four different strain rates of 0.5/s, 1.5/s, 3/s and 6/s. All the specimens had a gauge length
of 12 mm and a cross section of 2 mm × 0.5 mm. The nominal strain, εNOM, was determined as
the ratio of the axial displacement to the original length of a specimen (12 mm). This test was difficult
to conduct because the large strain amplitude and rate approached the limit of the test machine.
To reach the desired strain rates, the specimens had to be short. In addition, the strain rate was too fast
to be reliably measured using the optical strain measuring device. The tensile force was measured
using a 1 kN load cell.

A subset of the results are shown in Figures 2 and 3 for two of the materials. The results display
strong nonlinearity, large hysteresis, complex Mullins behaviour (Figures 2 and 3b), cyclic stress
relaxation (Figure 3a) and permanent set. Full detail of all the experimental results can be found in [14].

In the range of interest the strain rate effect is not a dominant feature, so in the following analysis
it was ignored.
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Figure 2. Stress–strain response of natural rubber filled with 20 phr of carbon black (NR20) when
subjected to cyclic uniaxial tension. Different behaviour of the material after a different pre-strain
is evident.

(a) (b)

Figure 3. Stress–strain response of natural rubber filled with 30 phr of carbon black (NR30) submitted
to cyclic uniaxial tension at 1.5/s. The solid curves are the trends for the first cycle at a given amplitude.
The dotted curves are the trends after the initial cycle at given amplitude. (a) 5 cycles at the same
amplitude, (b) 5 cycles at 4 different strain amplitude.

4. Results

4.1. Sensitivity Analysis

This section shows how each parameter effects the output stress. The initial parameters shown in
Table 2 are used, it is an arbitrary set. The parameter Xmax,0 = Xmax(t = 0) is the boundary condition
of the differential Equation (8).

Table 2. Material parameters used in the sensitivity analysis and in the VUMAT.

Gc Ge φ Xmax,0 χ n c1 c2 C τc k

0.557 0.26 0.33 11.27 2.29 21.56 11.20 2.17 −0.78 0.399 100
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Figure 4 shows the effect of three of those parameters Gc, Ge, Xmax,0 on the predicted outputs.
Figure 5 shows the effect of parameters χ, C and c1. Figure 6 shows the effect of the parameters
c2, n and τc. Figure 7 shows the effect of the parameter φ. Gc and Ge, which respectively represent
the crosslink modulus and entanglement modulus in the extended tube model, influence the stiffness
of the material. The parameter Xmax,0 determines the value of Xmax before any deformation in
the system, and it influences cyclic stress relaxation phenomena. The parameters χ and C characterise
the power law distribution of the amplification factor. They influence the response of the material
in the loading paths, modifying the the level of stress and the dissipated energy and defining
the level of continuum damage due to cyclic stress softening. n, c1,and c2 define the relaxation
of the maximum amplitude factor to predict the continuum damage, so they operate on the response
of the material at a strain higher than 1 and envelop the cyclic stress relaxation process. The constant
c2 scales the zero-load relaxation of the material (which is usually very small), and thus determines,
together with c1 the stress threshold to overcome before softening starts. The parameter φ balances
elastic stresses (including softening) and viscous effects. The timescale τc defines the amount
of dissipated energy.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. Influence of parameters. (a,b) show the effect of the parameter Gc; (c,d) show the effect
of the parameter Ge; (e,f) show the effect of the parameter Xmax,0.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Influence of parameters. (a,b) show the effect of the parameter χ; (c,d) show the effect
of the parameter C; and, (e,f) show the effect of the parameter c1.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Influence of parameters. (a,b) show the effect of the parameter c2; (c,d) show the effect
of the parameter n; and, (e,f) show the effect of the parameter τc.

(a) (b)

Figure 7. Influence of parameters. (a,b) show the effect of the parameter φ.

4.2. Model Fit to Experimental Data

Model parameters were determined by minimising the mean square error between the model
predictions and experimental data. Figures 8a–c show comparisons of model predictions for a selection
of materials and loading configurations. For compounds with different amounts of carbon black,
the model accurately reproduces the initial loading curve, relaxation cycles, the Mullins effect
and the pre-strain effect.

(a) (b)

Figure 8. Cont.
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(c)

Figure 8. Comparison of the new model with experimental data loaded with cyclic uniaxial test with
uniform maximum strain amplitude [14]. Subfigures (a–c) show respectively the behaviour for NR2,
NR40 and NR60.

4.3. Effect of Carbon Black Content on the Parameters Used in the New Model

The uniaxial tests, where the compound were stretched cyclically with the step up of maximum
strain amplitude reached, represent a perfect test to highlight all the non linear viscoelastic behaviour
under examination (Mullins effect, cyclic stress softening and permanent set) (Figure 9). The seven
compounds were fitted starting from the material with the smaller amount of filler and using the new
set of parameters as the guess set for the following compound. The best-fit parameters for different
compounds loaded with this strain history show a robust trend with the true carbon black filler volume.

(a) (b)

Figure 9. Comparison of the new model with experimental data for NR30 loaded with cyclic uniaxial
stress with different maximum strain amplitude in step up. Subfigure (a) shows the Nominal Stress
versus time. Subfigure (b) shows the Nominal Stress versus Nominal Strain.

The trend of the parameters with the true Carbon Black (CB) filler volume is presented in Figure 10.

• Gc is the modulus resulting from network crosslink and it is relatively constant with the CB
volume fraction. It is found to be in a typical range for Natural Rubber vulcanizates. There is
a drop in crosslink density at the highest filler loading, whose origin is not clear and may be due
to experimental uncertainties and/or parameter correlations.

• Ge, the modulus resulting from network entanglement, is monotonically increasing with the CB
concentration. This is surprising and lacks a clear explanation up to now. Probably this parameter
somehow captures the increasing low-strain stiffness (Payne effect), even though it was not
designed to fulfil this purpose.

• φ, represents the scaling of the elastic and inelastic part, is proportional to the true filler volume fraction.
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• n, the distance between the network nodes is in a typical range, too. It is constant for the samples
containing less than 30 vol. % of carbon black and then slightly decreases, roughly in accordance with
the small drop in crosslink modulus at these filler concentrations.

• χ, the exponent of the amplification factor distribution, is approximately constant.
• τc, is decreasing with filler volume fraction.
• Xmax,0 is approximately constant with filler volume fraction.
• C is increasing. The parameter was introduced primarily to modify the shape of the virgin loading curve.

A value k > 0 generates a rather linear curve, as is observed for many highly filled compounds.
• c2 decreases with volume fraction and appears to asymptotic. From Equation (8) it can be seen

that exp c2 defines the timescale on which Xmax,0 relaxes without load. The value obtained from
fitting here create an optimal model for the timescale of the fit, but it may fail for longer simulation
times. An optimal determination of c2 and c1 requires a stress relaxation characterisation in
the fitting data.

• c1 increases modestly with volume fraction, probably representing that the rubber-filler structures
to be broken down during softening become more rigid at higher filler loadings.

Moreover, it can be seen that the parameters Ge, C, c1 , φ and τc show some kind of discontinuity
in the range of 9–13 vol. % carbon black loading. This roughly corresponds to the percolation threshold
of the filler network inside the polymer matrix [37].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 10. Cont.

56



Polymers 2020, 12, 841

(i)

(j)

Figure 10. Trend of he parameters with the true carbon black filler volume Vf . Subfigures (a–j) show
respectively the trend of Gc, Ge, Xmax,0, χ, C, c1, c2, φ, τc and n.

4.4. Finite Element Analysis

Benchmark Tests

This section shows the benchmark tests on a single element model with a simple prescribed
traction loading. The model is a cube of size 0.5 mm and is meshed with 1 linear brick element
with reduced integration (C3D8R). A velocity of 1 mm/s is applied in direction 1 (along the x-axis).
The element was loaded for 5 cycles at constant max strain amplitude using 10 steps. The velocity was
positive (v = 1 mm/s) in the odd steps to stretch the element and negative (v = −1 mm/s) in the even
steps to unload the element. The job was run using double precision. Material parameters are shown
in Table 2. Figures 11 and 12 show the typical output for two different cyclic loading path.

(a) (b)

Figure 11. Test 1: VUMAT output: (a) shows the nominal stress versus time; (b) shows the nominal
strain–stress path with the set of parameters in Table 2.
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(a) (b)

Figure 12. Test 2: VUMAT output: (a) shows the nominal stress; (b) shows the nominal strain–stress
path with the set of parameters in Table 2.

5. Discussion and Conclusions

The new model is based on physical rubber elasticity considerations. The total stress is the weighted
sum of two contributions: an amplified, simplified extended tube model, and a hysteretic part.
The hysteretic part was implemented using a single Maxwell/Prony element. For compounds with
different CB volume fraction the model reproduces the non-linear behaviour under examination: Mullins
effect, cyclic stress relaxation, permanent set, and hysteresis. The model requires 10 material parameters.
The best-fit sets of parameters show a linear or a polynomial trend with the CB volume fraction.
The sensitivity study shows the effect of altering each of the parameters. The FE implementation
of the new model reproduces the expected behaviour. Finite Element Analysis was conducted on
single-element models and on a realistic component. This preliminary investigation demonstrates that
this model is stable when incorporated into a finite element model. The VUMAT works properly with
different structures, and it is able to predict the desired non–linear viscoelastic behaviour. The new
model was already implemented in the Jaguar Land Rover (JLR) suspension tool. The first job carried
out a single cycle at 20 kN on a suspension loaded radially. Preliminary results are reported in Figure 13.
Further studies could focus on the modeling of a broader range of deformation rates potentially
requiring the use of more Prony elements. Moreover, the idea of a static hysteresis, as implemented
using an intrinsic time in [28], deserves further investigation.

Figure 13. JLR toolbox: preliminary results.
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Abstract: Three-dimensional (3D)-printed parts are an essential subcategory of additive
manufacturing with the recent proliferation of research in this area. However, 3D-printed
parts fabricated by different techniques differ in terms of microstructure and material properties.
Catastrophic failures often occur due to unstable crack propagations and therefore a study of fracture
behavior of 3D-printed components is a vital component of engineering design. In this paper,
experimental tests and numerical studies of fracture modes are presented. A series of experiments
were performed on 3D-printed nylon samples made by fused deposition modeling (FDM) and
multi-jet fusion (MJF) to determine the load-carrying capacity of U-notched plates fabricated by two
different 3D printing techniques. The equivalent material concept (EMC) was used in conjunction
with the J-integral failure criterion to investigate the failure of the notched samples. Numerical
simulations indicated that when EMC was combined with the J-integral criterion the experimental
results could be predicted successfully for the 3D-printed polymer samples.

Keywords: mechanical fracture; 3D printing; mixed mode fracture; load-carrying capacity

1. Introduction

Three-dimensional printing (3D) has increasingly become one of the prevalent manufacturing
methods for the development of tools and functional parts, particularly in the sectors entailing extensive
customization, such as medical and aerospace [1–3]. However, there are currently various types of
3D printing techniques, including fused deposition modeling (FDM), stereolithography (SLA), and
multi-jet fusion (MJF) that bring quite a number of uncertainties to the prediction of the outcome based
on the mechanical engineering concepts [4,5].

Generally, 3D-printed parts fabricated by different techniques differ in terms of strength, stiffness,
microstructure and material properties, so that it is necessary to investigate their behaviors through both
experimental tests and finite element analysis (FEA) [6–10]. Fused deposition modeling 3D printing has
shown promising capabilities to improve the specific mechanical properties of parts—such as fracture
toughness—by optimization of extrusion deposition trajectories [11]. It is reported that the filament
direction optimization contributed to a large deformation zone leading to “ductile-like behavior”,
which subsequently caused a slow crack propagation rate [9]. Also, using 3D printing for developing
co-continuous composite or interpenetrating phase composite parts proved a significant increase
of damage tolerance and fracture toughness compared to conventionally manufacture composite
parts [12]. Rationally designed interpenetrating architectures enabled implementing diverse techniques
of crack-deflection and crack-bridging to enhance fracture resistance in 3D-printed composites.
Mechanical reliability is an essential aspect of various engineering applications. Catastrophic failures
often occur due to unstable crack propagations and therefore, study of fracture of components is a
vital component of engineering design. In this respect, to address the fracture behavior of 3D-printed
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plastic components we used FDM and MJF techniques to manufacture notched samples and supported
the experimental observations with a failure model.

Pre-existing cracks in different materials can be induced by various circumstances. For instance,
in composite materials defects can inadvertently be produced in the service life and also during the
manufacturing process [13]. In ductile materials, cracks that originate from surface imperfections or
notches often grow slowly, accompanied by significant plastic deformation. However, the rate of crack
growth accelerates with the progressively increasing applied stresses [14].

A reliable method for evaluating the notched ductile parts before using them in real applications,
i.e., grooves, threads, and shaft holes, was developed through fracture toughness experiments [15].
In earlier studies, mode I and mixed mode conditions have been practically used to determine the
fracture behavior of materials [16–18]. Mode I fields are tensile stress normal to the plane of the crack
symmetric with respect to the crack line, while the mode II fields are shear stress acting parallel to
the plane of the crack and perpendicular to the crack front. Thus, the line ahead of the crack tip has
the mixed mode I/II stress intensity factors. In these studies, the finite fracture theory was employed
to investigate the fracture of rounded-tip notched samples with various notch radii and inclination
angles under tensile loading. However, analysis of the fracture in ductile materials are more critical
due to the plastic deformations as well as the stored elastic strain energy around the notch prior to the
crack initiation [19]. For the analysis of fracture in notched ductile specimens, elastic-plastic fracture
mechanics is usually employed, which is complex and time consuming. Therefore, an alternative
method, known as equivalent material concept (EMC), was proposed where the elastic-plastic fracture
mechanics analyses are circumvented with an equivalent virtual brittle material to predict ductile
failure [20,21].

In this paper, we present an analysis of the fracture of U-notched 3D-printed thermoplastic
components made by two different 3D printing techniques. The equivalent material concept was
employed to provide a new model in failure prediction. As the J-integral failure criterion is one of the
most common brittle failure models used in the study of notched specimens, we investigated whether
EMC could be combined with the J-integral failure principle to predict the fracture of U-notched
3D-printed specimens subjected to tensile loading. We present a study of the failure of U-notched
3D-printed rectangular nylon samples made by FDM and MJF under mode I and mixed mode I/II
loading regimes within the framework of combined EMC and J-integral criterions. Nylon 12 filament
and PA12 nylon powder were used for printing with centrally positioned notches. A series of tensile
tests under static loading regime were performed, the results of which compared with that obtained by
the EMC model combined with the J-integral criterion.

2. 3D Printing Samples

Two different types of 3D printing technologies were used to 3D print nylon samples. All the
samples were first designed in a CAD platform and then saved in “.stl” format. The dogbone-type
nylon samples were 3D-printed according to Type I ASTM D638 with a width of 13 mm, thickness of
5 mm and a gauge length of 50 mm as solid 100% infill rectangular plates, weakened by a centrally
located bean-shaped slit with two U-shaped ends as shown in Figure 1, were 3D-printed by FDM and
MJF with dimensions of 160× 40× 5 mm.

In FDM, nylon 12 samples were printed by a Fortus 450mc with nozzle and bed temperatures of
250 ◦C and 60 ◦C, respectively, nozzle speed 40 mm/s, infill percentage 100%, layer thickness 0.254,
number of contours 1, and raster angle 0◦, whereas an HP 3D printer was used to produce the MJF PA12
samples with powder melting 187 ◦C and infill percentage 100%. The infill percentage was 100% for
both samples. The average density of samples were measured using an electronic Qualitest Densimeter
SD-200L as 1.019 gr/cm3 and 0.984 gr/cm3 for MJF and FDM 3D-printed specimens, respectively.
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Figure 1. A schematic of centrally located bean-shaped notch with two U-shaped ends (dimensions in
mm).

3. Experiments

3.1. Tensile Tests on 3D-Printed Dogbone Samples

In order to determine basic mechanical properties, tensile tests were conducted on 3D-printed
dog-bone specimens, as shown in Figure 2. The tests were performed in an Instron 300LX (Instron,
High Wycombe, UK) with a crosshead speed of 5 mm/min−1. Tensile strength and modulus of the
3D-printed samples were determined from the stress vs strain graphs shown in Figure 3 and inserted
in Table 1. For each 3D printing technique, six samples were tested to obtain the average of the
mechanical properties.

The results of tensile tests showed that the average value of the modulus of elasticity of MJF
3D-printed nylon was 780 MPa, whereas the FDM sample had a lower value of 493 MPa. The average
value of the percent breaking strain of the FDM and MJF samples were 16 and 13 and the average tensile
strength of FDM and MJF samples were 44.8 and 34.9 MPa, respectively. Although FDM samples had
lower elastic modulus, they exhibited higher tensile strength and percentage elongation compared to
MJF, as well as higher modulus of toughness.

(a) (b) 

Figure 2. A dog-bone shaped MJF nylon 3D-printed nylon specimen; before (a), and after (b) tensile test.
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Figure 3. A typical tensile stress vs strain curve for the 3D-printed nylon specimens.

Table 1. Mechanical properties of the 3D-printed nylon specimens.

Material Property FDM Nylon MJF Nylon

Elastic modulus, E (GPa) 0.493 0.780
Poisson’s ratio, ν 0.39 0.39

Ultimate tensile strength (MPa) 44.79 34.91
Yield stress (MPa), σY 3.61 7.21

Fracture toughness, (MPa m0.5) 0.92 0.58
Breaking strain (%), εB 16 13

Strain-hardening coefficient, k (MPa) 294.7138 140.9280
Strain-hardening exponent, n (MPa) 0.8437 0.5473

Fracture stress, σb (MPa) 43.45 34.03

3.2. Fracture Tests on 3D-Printed Components

To investigate the behavior of samples subjected to various in-plane modes of tensile loading
(i.e., mode I and mixed mode I/II loadings) as illustrated in Figure 4a,b. In mode 1 (crack opening)
the axial normal stress is applied perpendicular to the plane of the notch; in mode 2 (shear mode),
shear stress is applied normal to the crack front, parallel to the crack plane. In mode 3 (tearing mode),
the shear stress is applied parallel to the crack front. The samples were designed and fabricated with
various inclination angles (β), where β is the angle between the notch bisector line and the horizontal
axis. When β is equal to zero, pure mode I loading occurs at the U-shaped ends. As the value of β
increases, the in-plane shear strain develops around the U-notch which means with increasing β from
zero, the loading mode on the U-notch changes from mode I towards mixed mode I/II. The oblique
orientation of the notch with the axial loading gives rise to combined tensile-shear loading conditions.
In the current study, we consider specific orientations of the notch at β = 0◦, β = 30◦ and β = 60◦ as
well as different notch radii at r = 1 mm and r = 2 mm so that mode I, mixed mode I/II and notch
radius effects could be investigated. The cracks are generated inside the 3D-printed samples where the
load is distributed into horizontal and angled walls, to compare required fracture energy values.

The 3D-printed samples prepared by aforementioned approach were axially stressed until the
final failure by crack growth using an Instron 300LX (Instron, High Wycombe, UK) machine. Figure 4
shows MJF 3D-printed nylon specimen under tensile test conditions before (Figure 4a) and after
fracture (Figure 4b). The tests were conducted under displacement controlled conditions at a constant
cross-head speed of 20 mm/min. The photographs of the MJF- and FDM-printed nylon specimens
before and after fracture at three different notch orientations and two different radii are shown in
Figure 5. In each radius and inclination angle, three samples were tested to obtain the stress distribution
and average of the critical load during crack growth.

64



Polymers 2020, 12, 302

The representative stress–strain curves of the FDM and MJF 3D-printed nylon specimens at three
different notch angles and two different notch radii are demonstrated in Figure 6. In all the cases,
the ultimate tensile stress on the samples increased with an increase of inclination angle. The FDM
3D-printed nylon is clearly more ductile as it has shown approximately three times higher strain at
break than MJF 3D-printed samples. The pronounced difference in tensile behavior can be attributed
to the printing method employed. In the MJF method, a layer of powder is evenly distributed, then a
fusing agent is applied followed by application of uniform heat to fuse the powder into an isotropic
solid layer, whereas in the case of the FDM the thermoplastic filament is melted as it is positioned to
form the layer. The continuous nature of the filament aligned in the direction of the applied stress
resulted in better structural integrity than that achieved by fusing the polymer powder, thus resulting
in significantly higher elongation at break and toughness. An examination of the close-up photographs
of fractured FDM and MJF samples in Figure 7 demonstrates a ductile fracture in the case of FDM,
with significant plastic deformation below the fracture surface accompanied by stress whitening.
The narrowing of the cross section in the vicinity of the fracture surface indicates extensive stretching
(Figure 7a,c). In contrast, close-up images of the MJF samples (Figure 7b,d) do not show any significant
plastic deformation prior to failure. Irrespective of the notch orientation (Figures 5 and 7), all MJF
samples exhibited brittle behavior with flat fracture surfaces. Considering the tensile data in Table 2,
it is evident that the failure load of MJF 3D-printed nylon at both radii is greater than FDM samples for
β = 0◦ and 30◦. However, this is not the case when the inclination angle increased to 60◦. In addition
to the effect of crack angles; it was observed that increase in crack radius was associated with reduced
critical load in both types of 3D-printed samples.

(a) (b) 

Figure 4. An MJF nylon 3D-printed specimen under tensile test conditions; (a) before (b) after fracture.

Table 2. The experimental failure loads of the examined 3D-printed specimens.

Material β (deg.) ρ (mm) Pav (N)

FDM
Nylon

0
1 5011.8 ± 0.4
2 4015.1 ± 3.1

30
1 5667.3 ± 9.5
2 4968.6 ± 8.9

60
1 7047.5 ± 4.7
2 6714.7 ± 3.6

MJF
Nylon

0
1 5441.2 ± 5.7
2 4749.6 ± 2.8

30
1 5802.8 ± 2.1
2 5547.7 ± 1.9

60
1 6520.2 ± 4.1
2 6219.2 ± 3.8
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(a) 

(b) 

Figure 5. Cont.
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(c) 

(d) 

Figure 5. 3D-printed specimens before (left) and after (right) rupture; (a) MJF nylon, r = 1 mm, (b) MJF
nylon, r = 2 mm, (c) FDM nylon, r = 1 mm and (d) FDM nylon, r = 2 mm.
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(a) 

(b) 

Figure 6. Standard tensile stress–strain curves for the FDM and MJF 3D-printed nylon; (a) r = 1 mm,
(b) r = 2 mm

68



Polymers 2020, 12, 302

  
(a) 

  
(b) 

  
(c) 

Figure 7. Close-up photographs FDM and MJF printed nylon specimens after fracture from left to right,
respectively, with (a) 60◦, (b) 30◦, and (c) 0◦ notch orientations.

4. EMC, the J-Integral for U-Notched and THEIR Combination

Since connecting two or more parts is necessary in various specific designs, numerous engineering
components contain notches with different shapes and sizes. Although existence of cracks is usually
undesirable in engineering components, notches with different shapes (e.g., O, V, and U) are often
unavoidable as parts of certain design requirements. However, notches have a distinct disadvantage
that is stress concentrations in their vicinity that can lead to crack initiation, and ultimately failure of
the component. In this section, we describe the theory of the EMC and then briefly review the J-integral
in U-notched specimens, and finally explain their combination.

4.1. The Equivalent Material Concept (EMC)

Due to the complex and time-consuming nature of the analysis of the failure of notched ductile
materials by crack propagation the equivalent material concept (EMC) was introduced [22]. This
novel theory was proposed for predicting load-carrying capacity of notched components made of
ductile materials. In EMC, a ductile material with elastic-plastic behavior and a valid K-based fracture
toughness (KC or KIC) is considered to be equal to a virtual brittle material with an ideal linear
elastic behavior to the breaking point. In this mode, the virtual material is assumed to have the same
Poisson’s ratio, Young’s modulus and K-based fracture toughness as the real ductile material, but
different tensile strength. The fracture toughness can be determined either by a direct approach, where
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pre-notched specimens are impact tested, or an indirect method based on the examination of the
notched samples [23]. In EMC a ductile material is assumed to be equal to a virtual brittle material
(with linear elastic behavior), hence we can employ brittle failure criteria in linear elastic fracture
mechanics in order to predict ductile failure of notched components. According to this assumption,
both materials absorb the same amount of strain energy density (SED) for the crack initiation, and the
tensile strength of the equivalent material calculated.

Then the tensile strength and the fracture toughness can be simultaneously utilized in brittle
fracture criteria by linear elastic analysis to predict the load-carrying capacity of notched ductile parts.
As the SED absorbed by the ductile material is equal to a linear elastic SED absorbed by equivalent
material, the ultimate tensile strength of equivalent material would be significantly larger than of the
real ductile material. In other words, equating the two energy values would result in a larger ultimate
strength in the linear stress versus strain relationship. The parameters E, σY, εY, εc, σ∗u and denote
elastic modulus, yield stress, yield strain, strain at crack initiation and tensile strength of the equivalent
material respectively. It should be noted that the final rupture would be due to the brittleness of
the material.

The power-law expression for the true stress–strain relationship in the plastic zone of the ductile
material is as follows:

σ = Kεn
p (1)

where σ and K are the true stress and strain hardening coefficient, respectively. Also, εp and n denote
the true plastic strain and the strain-hardening exponent, respectively. The total strain energy density
consists of elastic and plastic components and can be written as follows:

(SED)total = (SED)elastic + (SED)plastic =
1
2
σY εY +

∫ εp
εy

σp dεp (2)

As εY = σY/E, with substitution of Equation (1) into Equation (2), results:

(SED)total =
σ2

Y
2E

+

∫ εp
εY

Kεn
p dεp (3)

By integration, Equation (3) results in

(SED)total =
σ2

Y
2E

+
K

n + 1

[(
εn+1

p − εn+1
Y

)]
(4)

Offset yield stress σY is determined from a strain value of 0.2%.

(SED)total =
σ2

Y
2E

+
K

n + 1

(
εn+1

p − εY
n+1
)

(5)

where εY is the yield strain.
The total strain energy density at any point in the plastic region can be calculated by Equation (5).

By replacing εp with εc, where εc is the value of the strain at crack initiation, the total strain energy
density associated with the onset of crack initiation can be determined:

(SED)total =
σ2

Y
2E

+
K

n + 1

(
εn+1

c − εY
n+1
)

(6)

Considering Equation (1), εc is determined as follows:

εc =
(
σc

K

)1/n
(7)
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By substituting Equation (7) into Equation (6), we have

(SED)total =
σ2

Y
2E

+
K

n + 1

((
σc

k

)n+1/n
− (εY)

n+1
)

(8)

In EMC, the equivalent material is considered to be a virtual brittle material with the same value
of elastic modulus and plane-strain fracture, but unknown value of ultimate tensile strength. The SED
for this material at the onset of crack initiation is equal to:

(SED)EMC =
ε∗∗2u
2E

(9)

As it was mentioned earlier, in EMC, it is assumed that SED values of real ductile and the virtual
brittle material are equal. Hence, Equations (8) and (9) are identical. Therefore

ε∗∗2u
2E

=
σ2

Y
2E

+
K

n + 1

((
σc

k

)n+1/n
− (εY)

n+1
)

(10)

Finally, the tensile strength σ∗u of the equivalent material can be extracted as follows:

σ∗u =

√
σ2

Y +
2EK
n + 1

((
σc

k

)n+1/n
− (εY)

n+1
)

(11)

Material fracture toughness and the tensile strength σ∗u of the equivalent material are recognized
as two necessary inputs in various brittle fracture criteria, to predict the crack initiation from the notch
in ductile components under tensile loading regime.

4.2. A Brief Review of J-Integral in U-Notches

Existence of cracks in materials and their subsequent propagation under applied stresses often
lead to unexpected failures, causing reliability issues in engineering structures and uncertainties over
expected service life. Understanding the influence of notches and cracks of various sizes, shapes, with
respect to applied stresses and material properties are important to predict the reliability of engineering
components. To address this, failure criteria have been developed to predict the load-carrying
capacities of engineering materials [24–26]. For ductile materials under general yielding condition
energy dissipation [27] or J-integral criteria [28] are common powerful methods of analysis of crack
propagation. In J-integral method a contour integral is defined which calculates the strain energy
release rate needed to create two new surfaces in the cracked component under loading. Subsequently,
some modifications of the J-integral concept were applied to different loading conditions [29–31].
The conditions for the path independence of the J-integral in U-and V-notched specimens [32],
an analytical calculation of the J-integral for a sample with a crack initiated from a notch under
elastic-plastic loading [33], and an expansion of J-integral concept considering volume element at the
border of a sharp V-notch [34] were investigated.

Here, we analyze 3D-printed U-notched rectangular specimens for ductile failure under mix mode
I/II loading by means of J-integral criterion, which is described considering basic equations of this
fracture parameter. As proposed [28], absolute value of the J-integral for the cracked components is
as follows:

Jk =

∫
ϕ

(
Wnk − Ti

∂ui
∂xk

ds
)
, (k = 1, 2) (12)

where nk is the unit vector normal to the specified contour path ϕ, ui and Ti denote displacement and
traction vectors. W and Jk are the strain energy density and the value of the J-integral, respectively.
The value of the J-integral can be divided to two distinct values along specified axes. We assume x
axis to be parallel to the notch bisector line, and located at the notch center of curvature (Figure 8).
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The values of two J-integral parameters J1 and J2 can be expressed along the coordinate axes x and y
as follows:

J1 =

∫
ϕ

(
Wdy− Ti

∂ui
∂x

ds
)

(13)

J2 =

∫
ϕ

(
Wdx− Ti

∂ui
∂y

ds
)

(14)

In the case of mixed mode I/II loading scenario, both Equations (13) and (14) have specific non-zero
values and the equivalent J-integral value

(
Jeq
)

can be determined by:

Jeq =
√

J2
1 + J2

2 (15)

In calculation of the J-integral for un-notched specimen under mixed mode I/II loading conditions,
the inner section of the indicated control volume, which incorporates the notch border must be
considered. Berto et al. [35] determined the specific control volume for U-notches to have a crescent
shape. This is illustrated in Figure 7, where position of the control volume for U- notch under mode I
and mixed mode I/II can be seen. The critical radius of curvature of the notch Rc, which is dependent
on material properties and the plane-strain condition, expressed as follows:

Rc =
(1 + v)(5− 8v)

4π

(KIc

σu

)2
(16)

where v, KIc and σu are Poisson’s ratio, the plane-strain fracture toughness, and tensile strength,
respectively. It should be pointed out that the thickness of the 3D-printed notched specimens are
equal to 4 mm, which results in a significant plastically deformed zone around the notch at fracture.
Because of the finite thickness and the resulting plastic zone, fracture toughness (Kc) was considered
and inserted in Table 1 instead of the plane-strain fracture toughness (KIc). The use of Kc is appropriate
as it is not a material property and depends on the sample thickness and relevant to large-scale plastic
deformation occurring in the 3D-printed notched nylon specimens.

As mentioned earlier, equation for the critical radius of curvature of the notch is based on plane
strain conditions in brittle failure. In order to apply it to our case KIc was substituted by Kc to predict
ductile failure of the U-notched 3D-printed plastic specimens.

 
Figure 8. Material dependent control volume for a U-notch under mode I (left), and mixed mode I/II
(right) loadings.

As it is illustrated in Figure 8, the outer radius of the crescent-shaped control volume is equal
to ρ2 + Rc. The path ACB is considered as the contour path for J-integral calculation. Due to the
traction-free surface on the contour path ACB, the second term of J-integral equations are equal to zero
(Equations (13) and (14)).
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4.3. Combination of EMC and J-Integral

In this section, a new expression of the J-integral criterion is described which combines the
equivalent material concept and the J-integral in order to predict load-carrying capacity of the
U-notched 3D-printed specimens. J-integral criterion is extended by using the material properties
obtained from EMC to analyze the fracture in ductile U-notched samples. According to the J-integral
criterion, brittle failure occurs when the value of the J-integral over a contour path along the inner arc
reaches the critical value of J-integral (Jcr), which is linked to the critical strain energy density Wcr

through the inner arc ACB in Figure 8 as:

Jcr � Wcr × arc (ACB) (17)

Wcr can be evaluated according to

Wcr =
(σu)

2

2E
(18)

where σu is the tensile strength. By considering the critical radius and critical strain energy density of the
equivalent material J-integral criterion can be used for the prediction of the ductile fracture in U-notched
specimens. By using the tensile strength σ∗u of the equivalent material instead of σu in Equations (16)
and (18) the critical radius of the RCE, and the critical strain energy density WCE for the equivalent
material can be determined as follows:

RCE =
(1 + v)(5− 8v)

4π

(
Kc

σ∗u

)2
(19)

WCE =
(σ∗u)

2

2E
(20)

Substituting values obtained by Equation (20) into Equation (17):

JCE =
(σ∗u)

2

2E
× arc (ACB) (21)

where, JCE is the value of the J-integral for the tensile tested U-notched 3D-printed MJF and FDM nylon
samples by utilizing the combined EMC/J-integral criterion. To achieve this, the strain energy density
value along the specified contour path is needed, which can be evaluated by numerical simulation in
finite element software.

5. Numerical Simulations and Results

With the aim to conform the experimental finding, we simulated the U-notched specimens that
experienced tensile loads, and finite element analysis was performed. In this context, ABAQUS software
was used to analyze the strain energy density distribution along the contour path defined in the vicinity
of the notch. For this purpose, a finite element model was created for each U-notched specimen,
utilizing eight-node biquadratic plane-strain quadrilateral element types. Considering the thickness of
the specimens, they have been considered slender. In simulation, the meshes have been refined at the
notch tip vicinity, because of high level of stress gradient. In numerical simulations, the tensile load
was applied to the nodes that lie on the upper end of the modeled U-notched specimens. The nodes,
which are lied on the lower end of the rectangular model, were constrained to be completely fixed.

The strain energy density contours around the notch for three selected specimens under tensile
loading are illustrated in Figure 9. The parameters J1, J2, Jeq, arc (ACB), and JCE are presented in
Table 3. It should be noted that these values are obtained for the average critical load (Pav) in the tensile
experiments. It should be noted that the obtained tensile stress versus strain curve was utilized in
this analysis. Considering different notch radii, there are different control volume geometries for the
model. Based on the method described in the previous section, the control volume is centered along
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the bisector line of the notch. In addition, by considering the value of RCE, the value of arc (ACB) is
obtained from FEA.

Figure 9. Illustration of strain energy density around the notch border for MJF nylon with a notch tip
radius of 2 mm at different notch orientations.

Table 3. Numerical results of 3D-printed U-notched nylon material under mode I and mixed mode I/II
loading scenarios.

Material
β

(deg.)
ρ

(mm)
Pav
(N)

J1
(N/mm)

J2
(N/mm)

Jeq
(N/mm)

arc (ACB)
(mm)

JCE
(N/mm)

FDM
Nylon

0
1 5011.8 12.7 0 12.7 1.3 7.3
2 4015.1 12.1 0 12.1 1.1 6.1

30
1 5667.3 11.8 11.2 16.2 1.6 8.4
2 4968.6 10.7 9.5 14.3 1.2 6.2

60
1 7047.5 90.3 9.4 13.2 1.7 9.5
2 6714.7 8.5 9.1 12.4 1.4 8.4

MJF
Nylon

0
1 5441.2 12.9 0 12.9 1.2 5.3
2 4749.6 12.3 0 12.3 1.1 4.8

30
1 5547.7 11.7 11.3 16.2 1.3 5.7
2 5802.8 10.9 9.8 14.6 1.1 4.8

60
1 6520.2 8.2 8.7 11.9 1.4 6.2
2 6219.2 7.4 8.1 10.9 1.2 5.3

A ductile failure model, called EMC-J criterion to evaluate load-carrying capacity of a U-notched
3D-printed ductile polymer samples under mixed mode I/II loading is introduced. At first by utilizing
Equation (15) the value of equivalent J-integral for an assumed load (e.g., 1 N) is determined, then the
load increased till Jeq attains JCE. The critical load can therefore be evaluated by the following equation:

Pcr

Papplied
=

√
JCE

Jeq
(22)

It should be pointed out that in EMC-J criterion, we considered a specified contour path round
the notch border, and then theoretical results are evaluated by calculation of definite integral of SED
values along this path.

In the current research, EMC-J criterion is employed to predict load-carrying capacity of
U-notched 3D-printed materials from a series of experiments, which were performed on notch
tip radii (ρ = 1 and 2 mm) with three notch inclination angles (β = 0◦, 30◦, 60◦). In Figure 10, average
critical load is expressed as a function of the loading angle (β) and experimental findings are compared
with results achieved by the EMC-J criterion. Results indicate that the critical load increases with the
loading angle in each notch tip radius. As expected, the contribution of mode II loading increased
with the increase of loading angle. That is, increase in the notch inclination angle β led to a greater
plastically deformed zone around the notch at failure, manifesting as greater resistance to the applied
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load. As seen in Figure 10 and Table 4, the experimental findings are in good agreement with the
theoretical predictions realized from EMC-J-integral criterion.

 
(a) 

 
(b) 

Figure 10. 3D-printed nylon specimens U-notch comparisons via EMC-J criterion; (a) ρ = 1 mm,
(b) ρ = 2 mm.

The experimental results of load-carrying capacity with theoretical predictions achieved from
EMC-J criterion for the examined 3D-printed nylon specimens and differences between the experimental
findings and theoretical results are presented in Table 4. There seems to a difference of up to 20%,
between experimental findings and the results achieved from EMC-J, but the difference in most of
the cases is lower than 8%. Therefore these findings suggest that EMC-J-integral criterion can be
considered as a reliable approach to predict ductile failure of U-notched 3D-printed nylon components
subjected to mixed mode I/II loading conditions.

75



Polymers 2020, 12, 302

Table 4. Calculated critical load for studied 3D-printed specimens by means of EMC-J criterion.

Material β (deg.) ρ (mm) Pav (N) PEMC−J (N) ΔEMC−J (%)

FDM Nylon

0
1 5011.8 4726.1 5.7
2 4015.1 3583.4 10.7

30
1 5667.3 5218.6 7.9
2 4968.6 3995.2 19.5

60
1 7047.5 7003.2 0.6
2 6714.7 6581.9 1.9

MJF Nylon

0
1 5441.2 5022.3 7.7
2 4749.6 4362.1 8.1

30
1 5547.7 5042.5 9.1
2 5802.8 5245.7 9.6

60
1 6520.2 5973.4 8.3
2 6219.2 5912.2 4.9

6. Conclusions

There has been recent growth in the additive manufacturing of engineering components, in
addition to the number of various three-dimensional (3D) printing techniques. However, the parts
fabricated by different techniques differ in terms of strength, stiffness, microstructure and material
properties. Therefore, investigation of fracture behaviour is a vital component of the engineering
design. In this study, we presented an analysis of the fracture of 3D-printed thermoplastic components
made by fused deposition modeling (FDM) and multi-jet fusion (MJF) 3D printing techniques. Nylon
12 filament and PA12 nylon powder were used for 3D printing specimens with centrally positioned
notches. It was observed that the printing techniques employed resulted in pronounced differences in
tensile behavior of the 3D-printed components.

In the MJF method, a uniform heat is applied to fuse the powder into an isotropic solid layer,
whereas in the case of the FDM the thermoplastic filament is melted as it is positioned to form each layer.
The continuous nature of the filament aligned in the direction of the applied stress have resulted in
better structural integrity in the FDM samples than that achieved by MJF, thus resulting in significantly
higher elongation at break and toughness. However, the mechanical properties of an FDM 3D-printed
part is far more complex than it may appear at first glance. It is well established that the FDM specimens
are anisotropic with the greater tensile strength in the axial direction than in the transverse direction
normal to the bonds [7].

Irrespective of the notch orientations, all MJF samples exhibited brittle behavior with flat fracture
surfaces. Considering the tensile tests, the failure load of MJF 3D-printed nylon was observed to be
greater than the FDM samples for β = 0◦ and 30◦, while this was not the case when the inclination
angle increased to 60◦. In addition to the effect of crack angles, it was observed that increase in crack
radius was associated with reduced critical load in both types of 3D-printed samples.

Finally, the equivalent material concept (EMC) was combined with the J-integral failure principle
to predict the fracture failure of U-notched 3D-printed specimens subjected to tensile loading under
mode I and mixed mode I/II loading regimes. The agreement between the experimental and simulation
results proved the EMC-J approach to be capable of successfully predicting fracture in the 3D-printed
notched ductile material components.
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Abstract: A novel hierarchical metamaterial with tunable negative Poisson’s ratio is designed by a
re-entrant representative unit cell (RUC), which consists of star-shaped subordinate cells. The in-plane
mechanical behaviors of star-re-entrant hierarchical metamaterial are studied thoroughly by finite
element method, non-dimensional effective moduli and effective Poisson’s ratios (PR) are obtained,
then parameters of cell length, inclined angle, thickness for star subordinate cell as well as the
amount of subordinate cell along x, y directions for re-entrant RUC are applied as adjustable design
variables to explore structure-property relations. Finally, the effects of the design parameters on
mechanical behavior and relative density are systematically investigated, which indicate that high
specific stiffness and large auxetic deformation can be remarkably enhanced and manipulated through
combining parameters of both subordinate cell and parent RUC. It is believed that the new hierarchical
metamaterial reported here will provide more opportunities to design multifunctional lightweight
materials that are promising for various engineering applications.

Keywords: hierarchical; metamaterial; re-entrant structure; auxetic; mechanical behavior

1. Introduction

Re-entrant honeycomb structures that display negative Poisson’s ratios (NPR) are known to be
one class of auxetic structures and have been used in many fields, such as aerospace and automotive
industries. The multifunctionality of anisotropic re-entrant honeycomb has been widely studied for its
static mechanical behavior [1–4], dynamic performance [5,6], thermal conductivity and heat transfer
properties [7].

Hierarchy [8] is one of the most readily observed topological features in natural structures and
now has been introduced to honeycomb and chiral lattice structures in pursuing ultralight materials
with improving elastic properties and damage tolerance. Specifically, considering hierarchical
sub-structures to honeycombs and designing novel metamaterials with tailorable multi-functional
properties, have attracted increasing attention in recent years.

Extreme values of hierarchical metamaterial properties such as specific stiffness, toughness,
strength, negative or complex Poisson’s ratio, zero or negative thermal expansion, phononic band
gaps as well as impact energy absorption have been reported in hierarchical architectures across
multiple length scales [9–15]. Sun et al. [16] analytically studied the in-plane elastic moduli and thermal
conductivity of a multifunctional hierarchical honeycomb (MHH), which is formed by replacing the
solid cell walls of an original regular hexagonal honeycomb (ORHH) with three different isotropic
honeycomb sub-structures possessing hexagonal, triangular or kagome lattices. Then the anisotropic
multifunctional hierarchical honeycomb (AMHH) with triangular or kagome honeycomb substructures
(OAHH) was proposed and the in-plane stiffness of these two kinds of AMHH was analytically
studied with the help of Euler beam theory [17]. Taylor et al. [18] investigated the in-plane elastic
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properties and structural hierarchy in honeycombs and explored the effects of adding hierarchy into
a range of honeycombs, with hexagonal, triangular or square geometry super and sub-structure
cells by using finite element simulation. Key parameters describing these geometries included the
relative lengths of the sub- and super-structures, the fraction of mass shared between the sub- and
super-structures, the co-ordination number of the honeycomb cells, the form and extent of functional
grading, and the Poisson’s ratio of the sub-structure. Mousanezhad et al. [19] studied the effects of
chirality and hierarchy on elastic response of honeycombs, derived the closed-form expressions for
elastic moduli of several chiral, anti-chiral and hierarchical honeycombs with hexagon and square
based networks, and finally validated the analytical estimates of the elastic moduli by using finite
element method. Gatt et al. [20] proposed a new class of hierarchical auxetics based on the rotating
rigid unit mechanism. These systems retain the enhanced properties from having a negative Poisson’s
ratio with the added benefits of being a hierarchical system. Through design, one can control the extent
of auxeticity, degree of aperture and size of the different pores in the system, which makes the system
more versatile than similar non-hierarchical ones. Chen et al. [21] reported a group of hierarchically
architected metamaterials constructed by replacing cell walls of regular honeycombs with hexagonal,
kagome, and triangular lattices, respectively. The numerical and analytical studies indicate that the
introduction of structural hierarchy in regular honeycombs results in improved heat resistance and
thermal anisotropy. Then, Yin et al. [22] studied the in-plane crashworthiness of the hierarchical
honeycomb group above, using the nonlinear finite element code LS-DYNA. The numerical simulation
results indicate that the triangular hierarchical honeycomb provides the best performance compared
to the other two hierarchical honeycombs and features more than twice the energy absorbed by the
regular honeycomb under similar loading conditions. More recently, Wu et al. [23,24] proposed an
innovative hierarchical anti-tetrachiral structure as well as a hierarchical anti-tetrachiral stent with
circular and elliptical nodes, based on the auxetic deformation behaviors of anti-tetrachiral unit cell
at different structural hierarchical levels. It was found that the mechanical behaviors of hierarchical
anti-tetrachiral structure can be tailored through adjusting the levels of hierarchical structures and unit
cell design, and the proposed hierarchical anti-tetrachiral stents exhibit remarkable radial expanding
abilities while maintaining axial stability. Besides the above-mentioned hierarchical metamaterials,
various types of alternative hierarchical structures have been proposed through the modification of the
node or cell wall structural levels for generating enhanced and tunable mechanical properties through
structural hierarchy approaches.

In the current work, a novel auxetic hierarchical metamaterial was designed, which consisted
of a re-entrant representative unit cell as well as a star subordinate cell with zero Poisson’s ratio;
both the main and sub cells were planar symmetric. Full dimensional models of the new hierarchical
metamaterial to describe the effective elasticity as well as loading-bearing capability in plane were
simulated by finite element method (FEM). Comprehensive parametric studies for both parent RUC
and subordinate cell were performed to evaluate in-plane non-dimensional moduli, effective Poisson’s
ratio and relative density of the new hierarchical structure, corresponding optimum structure-property
relations were explored for the designed metamaterial.

2. Materials and Methods

The geometry of the novel hierarchical star-re-entrant metamaterial is presented in Figure 1.
The representative unit cell (RUC), composed of star subordinate cell can be described as a re-entrant
hexagonal structure, and apparently both the cells are horizontal and vertical symmetry. Analogy
to a zero Poisson’s ratio cellular structure [25], the star subordinate cell is represented by length L0,
inclined angle θ as well as in-plane thickness t, respectively (Figure 1a). Then dimensions of the
new hierarchical star-re-entrant RUC is described by length Lx, Ly and symmetric inclined angle 45◦
(Figure 1b), where Li = Ni × L0 (i = x, y), Ni is the number of star subordinate cells along x or y
direction. The detail of star joint in re-entrant structure is presented in Figure 1c, the length of jointing
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star is expressed as W = (
√

2t)/(4 sinθ cos(45◦ − θ)). To avoiding the overlapping and contact of cell
walls, geometric constraints 0◦ < θ < 45◦ and 0 < t < L0(cosθ− sinθ) need to be satisfied.

  

W

θ

 
(a) (b) (c) 

Figure 1. Geometry of the novel star-re-entrant hierarchical metamaterial: (a) star subordinate cell, (b)
re-entrant representative unit cell, (c) the jointing between two neighboring stars.

The relative density is an important parameter for cellular structures, and it is defined by:

ρ

ρc
=

A
Ac

(1)

where A and Ac are respectively the cross-sections perpendicular to the out-plane thickness direction
and the load bearing area. Here, for this new hierarchical RUC, relative density results in:

ρ

ρc
=

36L0t sin 3θ− 36L0t sinθ− 10t2 sin 2θ− 8t2 cos 2θ− 8t2

9L2
0 sin 4θ

(2)

Finite element analysis was performed with Abaqus/CAE 6.13–4 commercial package standard
for one RUC as well as the whole hierarchical metamaterial structure. For all the simulations in this
paper, geometric dimensions of the new RUC are defined as L0 = 20, θ = 30◦, t = 2 and Lx = Ly = 6L0

with symmetric inclined angle 45◦, respectively. Acrylonitrile butadiene styrene (ABS) plastic with a
rapid prototyping Fusion Deposition Molding (FDM) Stratasys machine was used to manufacture all
the experimental samples and the elastic mechanical properties of the core material for finite element
simulation were set as Ec = 2265MPa and Poisson’s ratio νc = 0.25 [25,26]. An elastic shell element
with reduced integration (S4R) and element size of 0.8 for convergence were chosen for the simulation
of in-plane effective moduli, shown in Figure 2a. Accounting for the symmetry, the moduli of elasticity
and the Poisson’s ratio were determined by one quarter of the metamaterial structure. Taking full-size
representative volumes with 6 × 6 cells for example, boundary conditions for in-plane tensile Young’s
moduli and Poisson’s ratio were established based on References [23,27], where nodes on the left and
bottom edge were constrained from out-plane rotation and translation normal to the edge direction,
respectively, and displacements in the x-direction (y-direction) were applied to the ligament nodes on
the right (top) edge, which was also constrained from in-plane rotation, shown in Figure 2b. In the
case of the in-plane shear simulation, biaxial loading was introduced as close as possible a pure shear
deformation field [27,28], corresponding boundary conditions above as well as displacements in both
x and y directions were applied and are presented in Figure 2c.

Nominal strain and stress of the hierarchical representative unit cell in i( = x or y) direction were
calculated from:

εi =
δi
Li

, σi =
Fi
Aj

(3)

where δi is the applied displacement, Fi is the sum of the nodal reaction forces on the edge to which
displacement was applied, Li and Aj are the initial length and cross-sectional area of the hierarchical
structure in the i and j (= y or x) directions, respectively. According to Equation (3), effective Young’s
modulus as well as Poisson’s ratio are calculated by:
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Ei =
σi
εi

, νi j = −
δ jLi

δiLj
(4)

where, i is the loading direction.

  
(a) (b) (c) 

Figure 2. Numerical model description: (a) Mesh of one representative unit cell, (b) boundary
conditions of axial tension along x direction, (c) boundary conditions of biaxial shear test.

Then, effective shear modulus under biaxial loading in plane was obtained as following [27,28]:

Gxy =
τ
γ
=
σx − σy

2(εx − εy)
=

RxLx −RyLy

2h(δxLy − δyLx)
(5)

In Equation (5), Rx and Ry are reaction force along x and y direction, h is the out-plane thickness
of hierarchical structure.

In order to highlight the influence of the cell numbers on the convergence of the results,
computations were undertaken starting by a number of 2 × 2 cells to a maximum of 40 × 40
cells. The convergence was found to be achieved at the number of 40 cells; corresponding dependence
of mechanical property on the computations number of cells as well as the results of effective
non-dimensional moduli and Poisson’s ratio are demonstrated in Figure 3, respectively.

×

 

×

 
(a) (b) 

×

 
(c) 

Figure 3. Finite element simulations of effective mechanical property for the new hierarchical
metamaterial: (a) E∗1/Ec and ν∗12, (b) E∗2/Ec and ν∗21, (c) G∗12/Ec.
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3. Results and Discussion

To understand how the geometrical parameters of the star-re-entrant RUC influence the effective
mechanical properties of the new hierarchical metamaterial designed, parametric studies were
conducted by using finite element models described in Section 3, and the numerical results are
presented and discussed as follows.

3.1. The Geometry Effects of Star Subordinate Cell

Figures 4–6 demonstrate the FE homogenization of the non-dimensional in-plane elastic moduli
and corresponding Poisson’s ratio versus various parameters of lengths L0, thickness t and cell inclined
angle θ. In general, all the non-dimensional elastic moduli decrease with increasing L0, shown
in Figure 4 and increase with increasing thickness t, seen in Figure 5, when the other geometrical
parameters keep constant. The variations of non-dimensional effective moduli with cell inclined angle
θ are presented in Figure 6. For the increase of θ, E∗1/Ec exhibits an up-down-up trend, while the
other two non-dimensional moduli display a first descent and then ascent with different gradients,
for which E∗2/Ec and G∗12/Ec increased by 9.89% and 35.9%, respectively. The impact of geometric
parameters on effective Poisson’s ratio of the new hierarchical metamaterial are discussed as following.
Poisson’s ratio ν∗12 only increases with increasing L0 (Figure 4a) and declines with thickness t and cell
inclined angle θ, presented in Figures 5a and 6a, respectively. While the variations of Poisson’s ratio
ν∗21 with rising L0, θ and t exhibit as constant (Figure 4b), up-down (Figure 5b) as well as ascending
(Figure 6b), separately.

θ ° t υ

L

× υ

 

υ

L

×

θ ° t υ

 
(a) (b) 

θ °, t=2   

×

L  
(c) 

Figure 4. The variations of effective mechanical properties verse length L0: (a) E∗1/Ec and ν∗12, (b) E∗2/Ec

and ν∗21, (c) G∗12/Ec.
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Figure 5. The variations of effective mechanical properties verse thickness t: (a) E∗1/Ec and ν∗12, (b) E∗2/Ec

and ν∗21, (c) G∗12/Ec.
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×

θ °  
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Figure 6. The variations of effective mechanical properties verse inclined angle θ: (a) E∗1/Ec and ν∗12,
(b) E∗2/Ec and ν∗21, (c) G∗12/Ec.

In view of increasing cell thickness t mainly enhancing the structural weight and stiffening
mechanical behaviors, therefore, the effects of cell inclined angle θ for different L0 on in-plane
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mechanical property were studied in detail and are demonstrated in Figure 7. It may be observed
that variation and magnitude of the effective mechanical properties for L0 = 20 with enhancive θ are
completely different from those of L0 = 40− 120. With the increasing θ, non-dimensional modulus
E∗1/Ec displays an increasing and decreasing trend for L0 = 40, 60, and exhibits a gradual decrease
for L0 = 80− 120, presented in Figure 7a; E∗2/Ec and G∗12/Ec are both observed declines with slower
slopes, for L0 = 40 to L0 = 120, shown in Figure 7b,c, respectively. For the study of Poisson’s
ratio, the increasing cell angle θ makes ν∗12 decrease and ν∗21 increase inversely, seen in Figure 7d,e.
Additionally, parameter L0 makes no apparent effect on Poisson’s ratio, except the scenarios of L0 = 20,
where ν∗12 remains constant in the range of θ = 35◦ to θ = 40◦ as well as ν∗21 behaviors a relatively great
variation from −3.456 with θ = 10◦ to −1.271 with θ = 40◦.

LL
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L
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×

θ °  
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×
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L L
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L
L
L
L
L
L

υ
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Figure 7. Effects of parameters L0 and θ on the effective mechanical property for t = 2: (a) E∗1/Ec,
(b) E∗2/Ec, (c) G∗12/Ec, (d) ν∗12, (e) ν∗21.
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3.2. The Effects of Subordinate Cell Amount

The amount of star subordinate cells along x and y directions are defined and presented in Figure 8,
where Nx is the number of half star subordinate cell along x direction and Ny is the number of entire
star subordinate cell along y direction. The effects of subordinate cell amount on effective mechanical
behavior were then studied. It may be clearly observed from Figure 9a that a growing amount of Nx

increases E∗1/Ec and ν∗12, when Nx ≥ 7, ν∗12 turns positive. However, increasing Nx makes both E∗2/Ec

and G∗12/Ec decline and remains ν∗21 to be constant, presented in Figure 9b,c, respectively. Figure 10
shows how the effective properties of the new metamaterials vary with subordinate cell amount along y
direction. Non-dimensional effective modulus E∗1/Ec and G∗12/Ec decrease with the increasing number
of Ny, Poisson’s ratio ν∗12 increases and stays auxetic, whereas, E∗2/Ec and ν∗21 exhibit the opposite
variations under an increasing number of Ny. Consequently, it is found that a small amount of Nx and
appropriate number of Ny can satisfy the new hierarchical metamaterial with wholly auxetic behavior
and strong stiffness in-plane simultaneously.

  
(a) (b) 

Figure 8. The number variations of star subordinate cell: (a) Nx along x direction, (b) Ny along
y direction.

×

 

×

 
(a) (b) 

×

 
(c) 

Figure 9. Variation of subordinate cell amount Nx verse: (a) E∗1/Ec and Poisson’s ratio ν∗12, (b) E∗2/Ec

and Poisson’s ratio ν∗21, (c) G∗12/Ec.
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3.3. Relative Density Study

The formula of the relative density for one representative unit cell is given by Equation (2);
the variation of relative density ρ/ρc with parameters L0,θ and t were obtained and are shown in
Figure 11a–c. For Figure 11d, parameter θ was valid in a range of 2.5◦ − 42.5◦, corresponding ρ/ρc

exhibits a non-monotonic going up and down variation. Therefore, the values of θ in the range of
35◦ to 40◦ made a different influence on the results of relative density as well as previous effective
mechanical properties shown in Figure 7.

×

 

×

 
(a) (b) 

×

 
(c) 

Figure 10. Variation of subordinate cell amount Ny verse: (a) E∗1/Ec and Poisson’s ratio ν∗12, (b) E∗2/Ec

and Poisson’s ratio ν∗21, (c) G∗12/Ec.
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Figure 11. Cont.
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ρ/
ρ

θ (°)  
(c) (d) 

Figure 11. Geometric parameters effects on relative density of the hierarchical RUC: (a) t = 2,
(b) θ = 30◦, (c) L0 = 20, (d) L0 = 20 and t = 2.

The relationship between effective mechanical properties and relative density ρ/ρc simulated
by FEM finite element method were investigated as following. Variations of specific stiffness
(E∗i /Ec)/(ρ/ρc) with different parameters are represented in Figures 12 and 13, respectively. In Figure 12a,
specific stiffness all decline with increasing L0, extremum values of (E∗2/Ec)/(ρ/ρc) = 0.05963 and
(G∗12/Ec)/(ρ/ρc) = 0.00563 were achieved with L0 = 20, θ= 30◦ and t = 2. Similarly, for the increase
of cell thickness t, specific stiffnesses all exhibit a growing variation with different gradient, seen in
Figure 12b. The impact of parameter θ on effective mechanical behavior of the proposed new
metamaterial were investigated and are represented in Figure 12c. For the increase of θ, it may be
observed that (E∗2/Ec)/(ρ/ρc) and (G∗12/Ec)/(ρ/ρc) have a resembling variation of first decline and
then ascent, while (E∗1/Ec)/(ρ/ρc) exhibit an up-down-up variation. In the range of θ= 35◦ to θ= 40◦,
specific stiffnesses (E∗i /Ec)/(ρ/ρc) all increase monotonically.
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ρ/ρ

(c) 

Figure 12. Variation of specific stiffness (E∗i /Ec)/(ρ/ρc) with parameters: (a) L0, (b) t, (c) θ.
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Figure 13 presents the variation of in-plane specific stiffness with the cell angle θ for various
parameter L0, while t = 2. The specific stiffness along 1-direction exhibits three different variational
trends with a rising θ for different L0, respectively, shown in Figure 13a: (1) for L0 = 20, (E∗1/Ec)/(ρ/ρc)

varies as an up-down-up curve and reaches the maximum value of 0.04829 with θ = 40◦, which is 25
times greater than the one for L0= 120; (2) for L0 = 40, 60, (E∗1/Ec)/(ρ/ρc) presents a first increasing and
then decreasing variation; (3) for L0 ≥ 80, (E∗1/Ec)/(ρ/ρc) decreases monotonically. From Figure 13b,c,
it can be observed that (E∗2/Ec)/(ρ/ρc) and (G∗12/Ec)/(ρ/ρc) decrease clearly and then ascend with
the variation of cell angle θ from 35◦ to 40◦ when L0 = 20, a comparison of the specific stiffness in this
range shows that (E∗2/Ec)/(ρ/ρc) varies slightly from 0.03817 to 0.04422, however, (G∗12/Ec)/(ρ/ρc)

increases significantly from 0.0049 to 0.00704. When L0 ≥ 40, (E∗2/Ec)/(ρ/ρc) and (G∗12/Ec)/(ρ/ρc)

both monotonically decline with increasing θ and L0. Figure 13c illustrates that an increase of more
than 143% of the specific shear stiffness show up when the parameter L0 varies from 20 to 120 with
θ = 40◦, which makes varying L0 also a good design method for (G∗12/Ec)/(ρ/ρc). Therefore, it can
be determined that all the high specific stiffness in plane can be achieved simultaneously by choosing
proper parameter θ and L0.

ρ/
ρ

θ

L L L
L L L

 

L L L
L L L

ρ/
ρ

θ
(a) (b) 

ρ/
ρ

θ
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Figure 13. Variations of specific stiffness (E∗i /Ec)/(ρ/ρc) verse parameters L0 and θ, when t = 2:
(a) (E∗1/Ec)/(ρ/ρc), (b) (E∗2/Ec)/(ρ/ρc), (c) (G∗12/Ec)/(ρ/ρc).

Finally, the ratio between effective Poisson’s ratio and relative density verse parameters L0 and
θ were investigated. In Figure 14a, it is seen that υ∗12/(ρ/ρc) performs from positive to remarkable
auxetic behavior and it declines significantly with both increasing L0 and θ, the maximal descending
slope is achieved with L0= 120. Comparing with Figure 13a, the optimum values of both high specific
stiffness and large auxetic deformation in 1-direction can be selected widely for the special curve shape
of (E∗1/Ec)/(ρ/ρc) with L0 = 20. Figure 14b reveals that the auxetic υ∗21/(ρ/ρc) increases with greater
θ and decreases with increasing L0, oppositely. Contrast to Figure 13b, the optimal values of both high
specific stiffness and large auxetic deformation in 2-direction is acquired for θ = 10◦ and L0 = 20,
where (E∗2/Ec)/(ρ/ρc)= 0.57228 and υ∗21 = −3.45649.
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Figure 14. Variations of the ratio between effective Poisson’s ratio and relative density verse parameters
L0 and θ, when t = 2: (a) υ∗12/(ρ/ρc), (b) υ∗21/(ρ/ρc).

4. Conclusions

A novel hierarchical metamaterial with tailorable mechanical properties was proposed using
re-entrant planar lattice structure with star-shaped subordinate cell. The effective non-dimensional
moduli and Poisson’s ratio in plane were simulated by FE homogenization firstly, then the influences
of the geometric parameters on mechanical behavior and relative density were studied in detail. It was
found that the new hierarchical metamaterial can obtain large variations and control of the design
of the in-plane mechanics through the variations of parameters for both the re-entrant RUC and
star subordinate cell. Comparing with conventional re-entrant honeycomb, the novel star-re-entrant
metamaterial has enhanced mechanical properties of specific stiffness and auxeticity accounting
for its hierarchical porosity as well as multilevel tunable parameters. In addition, the new auxetic
metamaterial is more convenient fabricated by 3D printing technique as less stress concertation occurs
in the connecting tips of star subordinate cell when compared with other zero Poisson’s ratio star
cellular structure. However, the inclined angle of parent re-entrant RUC is restricted to 45◦ due to the
symmetric simplification of star subordinate cell; as a result, in-plane effective mechanical behavior of
the new hierarchical metamaterial can be limited by lacking another internal inclined angle of sub
cell. In general, optimum results such as small values of parameters L0, t and θ for sub cell as well as
small amount of Nx and moderate number of Ny for parent RUC can provide the new hierarchical
metamaterial with whole auxetic behavior and strong specific stiffness in-plane simultaneously. It is
believed that the innovative hierarchical metamaterials will greatly expand the potential applications
in the construction, manufacturing and transportation industries due to the inherent low-weight
associated with hierarchical systems, like doubly curved panels in aerospace or marine structures.
It can also be used in conformable and stretchable electronics, biomedical devices such as porous smart
bandage releasing different classes of medications to different extents, as well as the design of smart
auxetic stents, etc.
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Abstract: In numerous industrial applications, the microstructure of materials is critical for
performance. However, finite element models tend to average out the microstructure. Hence,
finite element simulations are often unsuitable for optimisation of the microstructure. The present
paper presents a modelling technique that addresses this limitation for superabsorbent polymers
with a partially cross-linked surface layer. These are widely used in the industry for a variety of
functions. Different designs of the cross-linked layer have different material properties, influencing
the performance of the hydrogel. In this work, the effects of intrinsic properties on the fracture
nucleation and propagation in cross-linked hydrogels are studied. The numerical implementation for
crack propagation and nucleation is based on the framework of the extended finite element method
and the enhanced local pressure model to capture the pressure difference and fluid flow between
the crack and the hydrogel, and coupled with the cohesive method to achieve crack propagation
without re-meshing. Two groups of numerical examples are given: (1) effects on crack propagation,
and (2) effects on crack nucleation. Within each example, we studied the effects of the stiffness (shear
modulus) and ultimate strength of the material separately. Simulations demonstrate that the crack
behaviour is influenced by the intrinsic properties of the hydrogel, which gives numerical support
for the structural design of the cross-linked hydrogel.

Keywords: hydrogel; swelling; fracture; nucleation; propagation

1. Introduction

As industrial applications require computational tools that resolve the microstructure of
products rather than tools that smooth out microstructures, increasingly higher levels of versatility
and robustness are demanded of finite element codes. Indeed, heterogeneities, discontinuities,
microcracking, and contact problems can potentially complicate a microstructural computation. As an
example of a such a computation, in this paper we study the swelling of hydrogel beads. Swelling
or drying volume transitions of ionized hydrogels can be induced by a continuous change of various
conditions, such as temperature, pH, electric field, and salt concentration [1]. The degree of volume
transformation depends on the composition and structure of the cross-linked network [2,3]. Because of
their swelling behaviour, ionized hydrogels have received considerable attention for pharmaceutical
and industrial applications, such as drug delivery or disposable diapers. Many swelling processes of
hydrogels start from a dry state. When the dry hydrogel is placed in a solvent, it absorbs fluid and
swells. During this volume transformation, a stress field is created within the hydrogel, and to some
degree, cracks are generated and developed [4,5].

As the US patent US7517586B2 addressed, hydrogel-forming polymers used as absorbents require
adequately high sorption capacity and gel strength [6]. Gel strength resists deformation of hydrogel
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particles during swelling and avoids gel blocking within a swollen gel bed, which is achieved by
increasing the level of surface cross-linking. Although a surface cross-linked hydrogel increases gel
stiffness at the surface, it reduces the absorbent capacity and increases the tendency to have a brittle
fracture. It is crucial to optimize the balance between absorbent capacity and gel strength.

The effect of the microstructure of the material on swelling capacity has been well-tested; however,
few studies take the effects of damage into consideration. Cervera et al. [7] developed a computational
model to analyse the progressive cracking due to the swelling of concrete in large concrete dams.
Zhang et al. [8] numerically studied the phenomenon of crack healing induced by swelling in gels.
Guo et al. [9] found out that the intrinsic properties of the interface between a polymeric hydrogel
and a rigid substrate have a great influence on the opening profile of the interface crack. Although
the studies mentioned above deal with crack behaviours induced by swelling, there is still a long way
to go. Considering that the structural optimization of the hydrogel is largely affected by the intrinsic
properties of the cross-linked and original hydrogel, it is important to study the effects of material
properties on crack behaviours.

The extended finite element method (XFEM) is an efficient tool used to simulate fracture growth
without re-meshing. It was first applied by Belytschko and Black [10] by adding an additional degree
of freedom on nodes which belong to the element crossed by the discontinuity. Wells and Sluys [11]
incorporated a cohesive surface formulation into the method to achieve the crack propagation in
any arbitrary direction. Similarly, Leonhart and Meschke took the moisture transport in opening
discontinuities into account and analysed the crack propagation in partially saturated porous
media [12]. Kraaijeveld et al. [13] took osmotic forces into consideration and studied Mode I crack
propagation in saturated ionized porous media in small deformations. Irzal et al. [14] extended the
partition of unity approach of fracturing porous media into the finite deformation regime. In order to
capture the pressure gradient across the discontinuity, Remij et al. [15] developed the enhanced local
pressure model (ELP): a separate degree of freedom for the pressure in the discontinuity was added to
the pressure left and right of the crack. Furthermore, the level set method (LSM) [16] is commonly
incorporated with XFEM to model crack growth. LSM is used to locate the crack and its tip, and it
simplifies the selection of the enhanced nodes in XFEM.

In the present work, a finite deformation model is presented to study the crack behaviour of a
heterogeneous swelling hydrogel. We integrated XFEM and ELP to capture the pressure difference
and fluid flow between the crack and the hydrogel, and used the cohesive zone method to achieve
crack propagation without re-meshing [17].

2. Results

2.1. Crack Propagation

Here, we consider a circular sample consisting of three different materials (Figure 1). We fixed the
middle point and constrained the node located on the boundary between the core and middle part at
0◦ in the y direction. A changing chemical potential was applied at the outer surface, which led to the
swelling of the medium. The material properties are listed in Table 1.

Figures 2 and 3 show the behaviour of crack propagation with different stiffnesses and ultimate
strength of the shell. The crack propagates over time for four different shell shear moduli (2 MPa, 3 MPa,
3.5 MPa and 4.5 MPa) and the same shell ultimate strength of 0.52 MPa (Figure 2). For G = 2.0 MPa,
the initial crack opens without propagation. For the other four examples, every initial crack propagates.
Generally, a stiffer material reaches high stress faster than a softer material with the same amount of
deformation, causing material failure and crack growth. The higher the shear modulus is, the earlier
the initial crack propagates, as seen in Figure 2 with crack propagation plotting for G = 3.0, 3.5,
and 4.5 MPa. At the same time, a stiffer shell resists the particle’s deformation and helps to keep the
shape of the particle. Less deformation comes with smaller stress in the middle part, which suppresses
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the crack growth (Figure 4). This is the reason why the crack length of G = 4.5 MPa is much smaller
than with G = 3.0 MPa and G = 3.5 MPa.

Figure 1. The geometry and boundary conditions of the sample. A changing chemical potential is
applied along the outer surface. The red dashed line indicates the initial crack. (RShell = 0.5 mm,
RInner = 0.45 mm, RCore = 0.2 mm)

Table 1. Material properties.

Name Symbol Value

Shear modulus (core) G 0.05 MPa
Shear modulus (middle) G (1.0, 1.5, 1.7) MPa
Shear modulus (shell) G (2.0, 3.0, 3.5, 4.0, 4.5) MPa
Intrinsic permeability kint 1.0 × 10−11 mm2

Fluid dynamic viscosity μ 1.0 × 10−9 MPa s
Porosity ϕ 0.83
Ultimate strength (core) τult 0.01 MPa
Ultimate strength (middle) τult (0.3, 0.4, 0.5, 0.6) MPa
Ultimate strength (shell) τult (0.48, 0.52, 0.54) MPa
Toughness Gc 0.01 N/mm
Gas constant R 8.3145 J·mol−1·K−1

Temperature T 293.0 K
Initial fixed charge density c f c

0 332.0 × 10−6 mmoleq/mm3

External salt concentration cex 154.0 × 10−6 mmol/mm3

Similarly, we fixed the shell shear modulus (Gshell = 4 MPa), and studied the effect of various
ultimate strengths (0.3 MPa, 0.4 MPa, 0.5 MPa, and 0.6 MPa) of the middle material (Figure 3). The effect
of ultimate strength is straightforward; the ultimate strength does not contribute to the propagating
length of the crack, but it increases the capacity of the material to resist tension, and only affects
the rate of propagation. The higher the ultimate strength, the later the crack starts to propagate.
It is advisable to achieve relatively high ultimate strength in the material design to obtain higher
elongating resistance.
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Figure 2. Crack propagation profile over time with different stiffnesses of the shell.
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Figure 3. Crack propagation profile over time with different ultimate strengths of the shell.

(a) Original geometry (b) G = 2 MPa

(c) G = 3 MPa (d) G = 4.5 MPa
Figure 4. The displacement profile with different shear moduli of the shell.
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2.2. Crack Nucleation

The energy accumulates within the hydrogel particle when it swells. There are two ways to
dissipate energy, propagate existing cracks, or nucleate new cracks. In Section 2.1 we discussed the
behaviour of crack propagation. In the current section, we discuss the behaviour of crack nucleation.

The same geometry (Figure 1) and material properties (Table 1) are used here to model crack
nucleation. In order to avoid too many cracks nucleating at the same time too close together, we made
an extra constraint that there were at least 30 elements between two cracks. We compared the nucleation
state within three groups: different shear moduli of the shell, different ultimate strengths of the shell,
and different shear moduli of the middle part of the sample.

The point at 45◦ to the x-axis in the first quadrant is the initial crack. In Figure 5, we plotted
the nucleations with the shell’s ultimate strength of 0.48 MPa, 0.52 MPa, and 0.54 MPa, respectively.
There was no nucleation with an ultimate strength of 0.54 MPa. For τult = 0.52 MPa, it has five
nucleations. When τult decreases to 0.48 MPa, the nucleations increase to 7.

Figure 6 shows the nucleation locations with different shear moduli of the shell. There were
nine nucleations for G = 4.5 MPa and five nucleations for G = 4.0 MPa. No new cracks nucleated for
G = 3.0 MPa. Similarly, Figure 7 plots the nucleation locations with different shear moduli of the middle
part of the particle. It shows that there are 7, 5, and 0 nucleations relating to G = 1.0, 1.5 and 1.7 MPa,
respectively. The distribution of nucleations is roughly symmetric about the diameter crossing the
initial crack.
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Figure 5. Crack nucleations with different ultimate strengths of the shell. Every coloured dot represents
one nucleation site. The results of three separate computations with different values of the shell’s
ultimate strength are superimposed. The colour of the dot specifies the computation to which it belongs.
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Figure 7. Crack nucleations with different stiffnesses of the middle part.

Figure 8 is the chemical potential distribution within the crack with different time steps.
The nucleation process shows a cascade phenomenon (Figure 8). At the time of 4.8 s, the initial
crack propagates without any nucleation. After 0.1 s, there is one nucleation. Another new crack
nucleated after 0.1 s. At the time of 5.1 s, the previous two nucleations kept growing, and another three
new cracks were generated.
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(a) time 4.8 s (b) time 4.9 s

(c) time 5.0 s (d) time 5.1 s
Figure 8. Nucleations at different times (s), red circles emphasize nucleation spots.

3. Discussion

This study illustrates how the relationship between the microstructure and function of a product
can be studied using a dedicated nonlinear multiphysics, multicomponent, finite element analysis.
The type of analysis done in this study was made possible with commercial codes, because they lack
the vital options needed. The feasibility of complex non-linear analyses combining large deformations
and mesh-free multiple crack propagations through a swelling heterogeneous material has been
demonstrated. Much more is needed for the robustness of the XFEM code in computations that resolve
the microstructure, as deformations are very large, locally, and heterogeneities hamper the smoothness
of the solutions. This investigation is mainly focused on the effects of intrinsic properties on the fracture
behaviour. We studied two dissipative mechanisms here, where one is the propagation of existing
cracks, and the other is the nucleation of cracks. From the results, it appears that the crack propagation
and nucleation are largely affected by the intrinsic properties of the material, and particularly the
properties of the cross-linked shell around the softer swelling hydrogel particle.

Generally, the higher the shear modulus of the shell, the earlier the initial crack propagates.
Besides, a stiffer shell resists the particle’s ability to deform, and helps to keep the shape of the particle.
Less deformation comes with smaller effective stress in the middle part, which suppresses crack
growth. However, a swelling media requires high swelling capacity. Therefore, there needs to be a
balance between the swelling of the inner part and the elastic stiffness of the outer part. This numerical
simulation can be used as a tool to optimize the material property of the gel in the microstructural
design of the swelling hydrogel particle. By comparing the crack propagation with different ultimate
strengths of the shell, we found that the ultimate strength only affects the rate of the propagation.
The higher the ultimate strength is, the slower the crack propagates.

From Figures 5–7, we conclude that:

• The higher the ultimate strength of the shell, the fewer the cracks which nucleate.
• The higher the shear modulus of the shell, the more cracks which nucleate.
• The higher the shear modulus of the middle part of the particle, the fewer the cracks which nucleate.
• The distribution of nucleations is roughly symmetric about the diameter crossing the initial crack.
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Figure 8 presents a cascade of nucleations with different crack openings with material properties
of Table 1. The events illustrate that the failure of the gel builds up in stages. It starts from fewer
defects and weakens the material while the material is still functioning. When more and more defects
appear and interact with each other, the material finally fails. The process of the defects is the same as
the process of the nucleation. The opening of cracks not only depends on the stress state, but also on
the neighbouring cracks. If the neighbouring crack is located close to the current crack with a relatively
large opening, it will impede the opening of the current crack.

The software presented in this paper serves as a great numerical support for the design of a proper
cross-linked shell, such as the special cross-link density required to achieve a specific stiffness and
fracture resistance. The stiffness ratio between the inner part and the shell is a critical parameter that
determines the performance of the product. A high ratio delays the swelling of the hydrogel, and too
high a ratio disallows the failure of the hydrogel altogether.

4. Methods

4.1. Kinematic Relations

We considered a body Ω crossed by a discontinuity (Figure 9). The body was divided into two
subdomains, Ω+ and Ω−. The total displacement field of the solid skeleton was described by a regular
displacement field û and an enhanced displacement field ũ,

Figure 9. The body Ω is crossed by a discontinuity (dashed line). nΓd represents the normal of the
discontinuity surface pointing to Ω+.

u(X, t) = û(X, t) +HΓd(X)ũ(X, t), (1)

where X is the material point in the reference configuration of the solid, HΓd is the Heaviside step
function, defined as

HΓd =

{
1 X ∈ Ω+

0 X ∈ Ω− . (2)

The chemical potential field is discontinuous across the discontinuity and the hydrogel,
and defined as

μ f (X, t) = μ̂ f (X, t) +HΓd(X)μ̃
f (X, t), (3)

In the discontinuity, the chemical potential is equal to an independent variable μd,

μ f = μd, X ∈ Γd. (4)
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Hence, the value of the chemical potential jumps from μ̂ f to μd to μ̂ f + μ̃ f as one crosses the
discontinuity from Ω− to Ω+.

4.2. Balance Equations

We considered the body as a solid skeleton with fully saturated interstitial fluid. It was assumed
that there was no mass transfer, and thermal gradients, inertia, and gravity were neglected. Based on
Biot’s theory, the momentum balance reads

∇ · σσσ = 0 in Ω, (5)

with σσσ the total stress, which is decomposed into the effective stress σσσe and the pore fluid pressure p,

σσσ = σσσe − pI, (6)

with I being the unit tensor.
Equations (5) and (6) can be written with respect to the reference configuration, using the

transformation of P = Jσσσ · F−T , read

∇0 · P = 0 in Ω0 (momentum balance),

P = Pe − JpF−T (total first Piola-Kirchhoff stress),

where Pe is the effective first Piola-Kirchhoff stress.
Conservation of mass for an incompressible fluid yields the mass balance in the

reference configuration,
J̇ +∇0 · Q = 0, (7)

with J̇ = Jdivu̇ and Q = −K · ∇0μ f the seepage flux obeying the Darcy’s relation in the presence
of the concentration gradient. In the equation of the seepage flux, K is the permeability tensor
back-transformed to the reference configuration, and μ f is the chemical potential, defined as

μ f = p − π, (8)

with p being the hydrostatic pressure, and π the osmotic potential.
The fracture process behaviour is governed by a traction separation law. Here, we assumed stress

continuity from the gel to the discontinuity, the local momentum balance being described as

P · nΓd = J||F−T · nΓd ||td − J(μ f
d + πd)F

−T · nΓd , (9)

in which nΓd is the normal of the discontinuity Γd, td is the traction, and μ
f
d and πd are the chemical

potential and osmotic pressure, respectively, within the discontinuity.
The local mass balance was obtained by integrating the continuous mass balance across

the discontinuity.

nΓd · (Q+
Γd

− Q−
Γd
) = Jun

∂

∂s
(kd

∂μ
f
d

∂s
)− Jun〈∂v

∂s
〉 − Ju̇n, (10)

where kd is the conductivity in the discontinuity

kd =
(un)3

12μ
, (11)

with μ being the viscosity of the fluid, un = ũ · nΓd the opening of the discontinuity.
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4.3. Swelling Behaviours

Swelling equilibria between the hydrogel and the immersed fluid must fulfil μin = μex

(μin is the chemical potential within the hydrogel, and μex describes the chemical potential of the
surrounding fluid).

The difference of the osmotic pressure between the hydrogel and the surrounding fluid allows
ions or fluid to go into or out of the hydrogel, leading to swelling or shrinking. Because the ionic
diffusion coefficient of SAP is two orders of magnitude larger than the pressure diffusion coefficient
of SAP, we assumed the ionic constituent to be drained. Based on Van’s Hoff empirical relation,
the osmotic pressure difference was given by

Δπ(ε) = RT
√
(c f c)2 + 4(cex)2 − 2RTcex, (12)

where R is the gas constant, T is the temperature, c f c is the fixed charge density, and cex is the external
salt concentration.

4.4. Nucleation Mechanism

Crack nucleation and growth are part of the fracture development. Nucleated micro-cracks are
based on the stress state of the solid skeleton. The stress state was obtained by averaging effective
stresses around the crack tip. Remmers et al. [18] used a Gaussian weighted function to calculate the
averaged stress:

σσσav =
nint

∑
i=1

ωi
ωtot

σσσi

ωtot =
nint

∑
j=1

ωj,

here, nint is the number of integration points in the domain, and ωi is the weight factor relating to the
integration point i. The weight factor is defined as

ωi =
1
l3
a

e
−r2

i
2l2a , (13)

where la is the length scale parameter, and ri denotes the distance between the integration point i and
the crack tip.

4.5. Crack Propagation Mechanism

The crack propagation is governed by the stress state of the crack tip. The stress is calculated by
averaging the stress around the crack tip. The traction td in Equation (9) acting on the fracture surface
is based on the cohesive constitutive relation, and governs the propagation of the crack. When the
averaged stress of the crack tip exceeds the ultimate strength, the crack starts to propagate. The normal
traction tn is described as

tn = τultexp(−unτult
Gc

), (14)

where τult is the ultimate strength of the material, and Gc denotes the fracture toughness.
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4.6. Constitutive Equation

In this paper, we used a compressible Neo-Hookean model. Though the solid itself was incompressible,
due to its porous structure, the entire solid matrix was compressible. The Cauchy stress [19,20] is
given by

σσσ = −1
6

ln J
J

GI(−1 +
3(J + ns,0)

(−J + ns,0)
+

3 ln(J)Jns,0

(−J + ns,0)2 ) +
G
J
(F · FT − J2/3I), (15)

where G is the shear modulus, and ns,0 represents the initial solid volume fraction. As J tends to ns,0,
the fluid content vanishes and Equation (15) becomes an incompressible law.

When osmotic swelling is included, the total stress reads

σσσtot = σσσ − (μ f + π)I. (16)
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