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Preface to ”Symmetry in Applied 
Continuous Mechanics”

This Special Issue is dedicated to applications in the field of continuous mechanics in which 
the studied structures have certain symmetries. From the very beginning of the development of the 
Theory of Elasticity, it was found that the existence of certain types of symmetries in the geometry 
of a body or a structure leads to some advantages in the calculation of that structure. As a result, 
these observations have been used in industrial applications. At present, in all fields of engineering, 
there are many situations in which the systems used have different identical parts or symmetries. As 
a result, identifying the properties that these symmetries can bring in certain stages of design and 
calculation becomes an important operation. The present works show this tendency to identify and 
use, in order to save time and costs, these properties in the design and practical realization of such 
structures.

Marin Marin, Dumitru Baleanu, Sorin Vlase

Editors
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Abstract: Engineering practice requires the use of structures containing identical components or parts,
which are useful from several points of view: less information is needed to describe the system, design
is made quicker and easier, components are made faster than a complex assembly, and finally the
time to achieve the structure and the cost of manufacturing decreases. Additionally, the subsequent
maintenance of the system becomes easier and cheaper. This Special Issue is dedicated to this kind of
mechanical structure, describing the properties and methods of analysis of these structures. Discrete
or continuous structures in static and dynamic cases are considered. Theoretical models, mathematical
methods, and numerical analysis of the systems, such as the finite element method and experimental
methods, are expected to be used in the research. Such applications can be used in most engineering
fields including machine building, automotive, aerospace, and civil engineering.

Keywords: symmetry; topology; mechanical structures; robots; vibration; mechanical engineering;
applied mechanics

1. Introduction

In engineering, including civil engineering, machinery construction industry, automotive industry,
and the aerospace industry, there are products, elements, machines, and components that contain
identical, repetitive parts, which have different types of symmetries. In the constructions, most
buildings, works of art, halls etc have identical parts and have symmetries, because symmetry is
beneficial for an easy, fast, cheaper and aesthetic design. These properties can be successfully used
to facilitate static and dynamic analysis of some structures. The symmetries of different types that
offer structure-specific properties have long been observed and used especially in the static case. They
are presented in the classical courses of Strength of Materials or Structural Analysis. Symmetries
in mechanics have been studied mainly from the point of view of mathematicians [1,2]. In January
2018, a Special Issue of Symmetry Magazine dedicated to applications in structural mechanics was
launched [3]. A European project was also funded to study this type of problem [4] and courses
were held at the Center for Solid Mechanics CISM from UDINE (Similarity, Symmetry and Group
Theoretical Methods in Mechanics, 7 September 2015. Lectures were delivered at the International
Center for Mechanical Sciences). Symmetry in Applied Continuous Mechanics was developed in the
last decades [5,6].

2. Statistics of the Special Issue

The statistics of papers called for this Special Issue related to published or rejected items were [7–20]:
total submissions (21), published (13; 62%), and rejected (8; 38%). The authors’ geographical distribution

Symmetry 2019, 11, 1286; doi:10.3390/sym11101286 www.mdpi.com/journal/symmetry1
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by countries of authors in published papers is shown in Table 1, and it can be seen that 35 authors are
from 11 different countries. Note that it is usual for a paper to be signed by more than one author and
for authors to collaborate with authors with different affiliations.

Table 1. Geographic distribution by countries of authors.

Country Number of Authors

Romania 10
Saudi Arabia 2

Pakistan 1
China 7

England 1
Turkey 1

Iran 3
Japan 1
Egypt 2
Poland 2
Spain 5
Total 35

3. Authors of the Special Issue

The authors of this Special Issue and their main affiliations are summarized in Table 2, and it can
be seen that there are four authors on average per manuscript.

Table 2. Affiliations and bibliometric indicators for authors.

Author Affiliation Reference

Iuliu Negrean Technical University of
Cluj-Napoca, Romania [9]

Adina Veronica Crisan Technical University of
Cluj-Napoca, Romania [9]

Silviu Năstac “Dunarea de Jos” University of
Galati, Romania [10]

Carmen Debeleac “Dunarea de Jos” University of
Galati, Romania [10]

Sorin Vlase Transilvania University of
Bras, ov, Romania [10,11,15,17]

Marin Marin Transilvania University of
Bras, ov, Romania [11,15,17,19]

R. Ellahi

King Fahd University of
Petroleum & Minerals, Saudi

Arabia
International Islamic University

(IIUI), Pakistan

[11]

M.M. Bhatti
Shandong University of Science

and Technology, China
Shanghai University, China

[11]

Eliza Chircan Transilvania University of
Bras, ov, Romania [12]

Maria Luminit,a Scutaru Transilvania University of
Bras, ov, Romania [12]
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Table 2. Cont.

Author Affiliation Reference

Cătălin Iulian Pruncu Imperial College, London, UK
University of Birmingham, UK [12]

Zhang Yue Hainan Radio and TV University,
China [13]

Dumitru Băleanu

Cankaya University, Ankara,
Turkey

Institute of Space Sciences,
Bucharest-Magurele, Romania

[13,14,20]

Ji-Jun Pan Dianxi Science and Technology,
Normal University, China [14]

Mohammad Reza Mahmoudi Fasa University, Iran [14]
Mohsen Maleki Shiraz University, Iran [14]

Mariana Stanciu Transilvania University of
Bras, ov, Romania [15]

Xinghan Xu Kyoto University, Japan [16]

Weijie Ren Dalian University of Technology,
China [16]

Mohamed I. A. Othman Zagazig University, P.O. Box
44519 Zagazig, Egypt [17,19]

Lavinia Codarcea-Munteanu Transilvania University of
Bras, ov, Romania [17]

Krzysztof Kamil Żur
Bialystok University of

Technology, Poland [18]

Piotr Jankowski Bialystok University of
Technology, Poland [18]

Elsayed M. Abd-Elaziz
Zagazig Higher Institute of
Engineering & Technology,

Egypt
[19]

Behzad Ghanbari Kermanshah University of
Technology, Iran [20]

Maysaa Al Qurashi King Saud University, Riyadh,
Saudi Arabia [20]

Noelia Bazarra Universidade de Vigo, Spain [7]

José A. López-Campos
Departamento de Ingeniería

Mecánica, Escola de Enxeñaría
Industrial, Vigo, Spain

[7]
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Mecánica, Escola de Enxeñaría
Industrial, Vigo, Spain

[7]
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Mecánica, Escola de Enxeñaría
Industrial, Vigo, Spain

[7]

José R. Fernández Universidade de Vigo, Spain [7]

Yadong Zhou
Nanjing University of

Aeronautics and Astronautics,
Nanjing, China

[8]

Youchao Sun
Nanjing University of

Aeronautics and Astronautics,
Nanjing, China

[8]

Tianlin Huang Commercial Aircraft Engine Co.,
LTD, Shanghai, China [8]
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4. Brief Overview of the Contributions to the Special Issue

The analysis of the topics identifies the research undertaken. This section classifies the manuscripts
according to the topics proposed in the Special Issue. It was observed that there are three topics that
have dominated the others: symmetry in mechanical engineering; symmetry in applied mathematics
and symmetry in civil engineering.

Author Contributions: Conceptualization, M.M. and S.V.; methodology, D.B., software M.M.; validation, M.M.,
D.B. and S.V.; formal analysis, D.B.; investigation, S.V.; resources, S.V.; data curation, M.M.; writing-original
draft preparation M.M. and S.V.; writing-review and editing, M.M.; visualization, D.B.; supervision, S.V., project
administration, M.M.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: In spite of potential advantages for aircraft structures, composite laminates can be
subjected to bird-strike hazard in civil aviation. For purpose of future surrogate experiments,
in this study, impact-damage equivalency for twisted composite blades is numerically investigated
by Smoothed Particle Hydrodynamics (SPH) and finite element method (FEM). Cantilever slender
flat plates are usually used for basic impact tests, the impact-damage equivalency is being considered
by comparing damage modes and energies of three impact configurations: (1) twisted blade;
(2) flat blade (axisymmetric); and (3) inclined flat blade (centrosymmetric). The damage maps and
energy variations were comparatively investigated. Results indicate that both symmetrical flat and
inclined flat blades can be, to a certain extent, regarded as alternatives for real twisted blades under
bird impact; however, both types of blade have their own merits and drawbacks, and hence should
be used carefully. These results aim to serve as tentative design guideline for future prototype or
model experimental study of laminated blades in real aeronautical structures.

Keywords: bird-strike impact; composite laminate; damage equivalency; fan blade; symmetrical
configurations

1. Introduction

Since the beginning of aviation history, bird-strike events have become an increasingly serious
and catastrophic issue for aircraft structures [1], particularly for aircraft safety below 3000 feet from the
ground. For aeronautical structures in civil aviation industry, the crashworthiness ability to withstand
bird strike has been regulated by airworthiness certification requirements. The front-facing components
of aircraft susceptible to bird strikes, mainly refer to the engine fan blades [2–4], windshield [5–8],
wing leading edge section [9–11], wing flaps [12,13], and other auxiliary units, etc. Among these,
the rotating fan blades have relatively high probability of bird strike, due to the air ingestion of
aero-engines. Under bird impacts, many vital parameters, e.g., geometric effects of birds [2,4,14],
material models of birds [15,16], velocities and angles of bird projectile [17–19], etc., determine the
final deformation and damage mechanisms of such forward-facing structures.

Thanks to good performance and high efficiency, composite laminates have been more and more
exploited as key materials for the engine primary structures, e.g., the fan blades of high-bypass ratio
engines in the modern commercial aircraft, which can offer the potential for reducing the weight of civil
aircrafts. Additionally, some civil aircraft manufacturers of models such as ARJ21 and C919 in China,
are seeking further use of composite laminates in key components. However, bird-strike certification
compliance against impact-induced damage should be considered [20], e.g., according to FAR Part 25.
As an important form of foreign object damage (FOD), when subject to bird impact, the laminated
configurations will become critically vital [21,22]. The damage and failure modes in composite
materials largely depend on the structural geometries [7,23], the impact velocity/locations [10,12,24],

Symmetry 2019, 11, 1292; doi:10.3390/sym11101292 www.mdpi.com/journal/symmetry7



Symmetry 2019, 11, 1292

the shape and mass of the projectile [12], number and placement of layers [7,22,25], the fiber and matrix
properties [26], etc.

In recent years, evaluating the crashworthiness characteristics of composite laminates has gained
much attention [27,28]. Heimbs et al. [29] presented an experimental and numerical analysis of the
T800S/M21 composite laminate plate under bird impact, with two opposite ends of the plate clamped.
Hu et al. [23] conducted a composite cockpit prototype test under bird strike. Recently, Mohagheghian
et al. [21] employed three different polymer interlayer materials for laminated aircraft windshields,
where square plates were tested under bird strike. Orlando et al. [13] presented the prototype test of
a composite flap configuration compliant with EASA and FAA bird strike requirements. According
to the airworthiness requirements, Guida et al. [30] presented the simplified square plate for leading
edge design, subjected to the bird-strike phenomenon at 180 m/s and with an impacting mass of
1.8 kg. For composite fan blades under bird strike, Friedrich [31], Hou et al. [32], and Liu et al. [33]
conducted surrogate experiments by using cantilever slender plate-type structures. In numerical aspect,
Nishikawa et al. [34] also used the cantilever narrow-and-flat plate (1000 mm × 500 mm × 10 mm) to
discuss the bird-strike problem of composite fan blade. The authors [35] recently studied the effect of
rotational speeds on bird-strike damage modes in rotating composite laminates, but only rotating flat
configurations were considered.

How to design a rotating structure that meets the requirements of bird impact resistance? The most
straightforward method is “structural design–test–redesign–retest”; but the production cycle and
cost should be absolutely considered in civil aviation industry. As typical forward-facing structures,
composite fan blades constitute a rotationally symmetric system, and each blade has complex twisted
surfaces due to the angle of attack, such as an example shown in Figure 1. In primary design phase,
basic experiments should be conducted to obtain blades’ dynamic behaviours and damage mechanisms
under bird impact; however, cantilever slender flat plates are usually used for these basic tests for
simplicity and repeatability. Prototype experiments of blades will be high cost and time-consuming.
It can be promising to do laboratory-scale model experiments at early stage, using bird substitute
materials (with better reproducibility [6]) and simplified blade model (less cost for basic data and
mechanisms research [32,33]). However, its validity remains unclear, and to what degree it can replace
the prototype experiments also remains questioned. In brief, the impact-damage equivalency has been
considered inadequately in alternative testing. For these considerations, the main objective of present
work is to numerically investigate the configuration effect on the impact-induced damage of laminated
blade-like plates, which tentatively gain design guideline for future prototype or surrogate model
experimental study of laminated blades in real aeronautical structures.

 

(a) (b)

Figure 1. An example of aero-engine and one of its fan blades (a) the turbofan engine; (b) the twisted
fan blade [36].
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2. Numerical Method

Generally speaking, characterized by soft-body impact, bird-strike phenomenon is a short
duration (millisecond range) and high-intensity loads event. The bird’s mechanical property actually
changes from the low-velocity to the high-velocity regimes [4]. There are three most suggested
methods [9,37], named as Lagrangian, Arbitrary Lagrangian Eulerian (ALE) and Smoothed Particle
Hydrodynamics (SPH), to simulate the bird behaviour. Among these methods, SPH could better
describe bird fragmentation into discrete particles with high efficiency, yet required fewer elements
and normally had a shorter solution time compared to the Lagrangian and Eulerian model. In the SPH
approach, a continuous field is represented by a set of discrete but interacting particles. Therefore,
SPH has recently experienced high popularity [2,7,9,13,21,23,38,39] in bird-strike and high-velocity
dynamics studies. In the present study, an SPH method has been employed, which is a meshless
particle-based method. In this investigation, SPH modelling was similar to previous work [35],
and with the same parameters in the equation of state (EOS). Different substitute bird impactor
geometries were proposed, e.g., the cylinder, the cylinder with hemispherical ends, the ellipsoid and
the sphere [37], but there is no standardized artificial bird shape. Here the bird body is modelled as
a cylinder (aspect ratio = 2:1) projectile, with 200 mm length and 100 mm diameter. The bird-strike
velocity was fixed to 180 m/s. The projectile has an initial density of ρ0 = 950 kg/m3, and the weight of
projectile model is ≈1.5 kg, which is to verify the compliance of airworthiness regulation. The linear
Mie–Grüneisen EOS (also called Us - Up equation) was used for the bird, with parameters: the intercept
of Us - Up curve c0 = 1483 m/s; Grüneisen gamma Γ0 = 0; and s = 0.

For the fiber breakage and matrix cracking simulation, Continuum Damage Mechanics (CDM)
enables to predict with good accuracy the onset and growth of the intra-laminar damage by introducing
a degradation factor for material mechanical properties. The laminate edges’ length and width are
500 mm and 150 mm, respectively. The initial impact radius is 50 mm and initial distance between the
projectile’s front and the target is 100 mm, which can define the initial position of the projectile’s centre
of mass. The total thicknesses of composite laminated blades is 48 mm, with a basic laminate layup
[0/45/0/-45/-45/0/45/0]s. Namely, the 16-ply blades were considered, and the geometric details are as
shown in Table 1. The real laminated blades may consist of hundreds of layups, e.g., 400 layups in
GE90-115B. Herein, the number of layups was simplified by using the virtual lamina thickness.

Table 1. The considered plies and dimensions for blades.

Ply Angles Ply Number Total Thickness (mm) In-Plane Dimensions (mm ×mm)

[0/45/0/-45/-45/0/45/0]s 16 48 500 × 150

The blade was clamped supported on the root edge. The final numerical model of the
impacted blade consists of 1340 conventional shell finite elements (linear quadrilateral elements
S4R in ABAQUS). The failure modes are based on Hashin’s criteria formulation [40]. The material
mechanical properties and fracture energies are needed in CDM modelling, of which the values are
taken from References [41,42] as given in Table 2. Configuration designs of composite blades under
bird impact are shown as Figure 2 (view from the tip). Figure 2a represents the twisted blade under
impact; while (b) and (c) represent the vertical and inclined impact on flat blades respectively. It can be
seen that (b) and (c) are axisymmetric and centrosymmetric, respectively. Therefore, the question is
to investigate the damage equivalency of symmetrical configurations for the twisted configuration.
In present simulations, the bird projectile impacts the half span of the blade, therefore the inclined
angle (Figure 2c) is determined to the half of the twisted angle (θ in Figure 2a). The considered twisted
angle was 36◦ and hence the inclined angle was 18◦.
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Table 2. Material mechanical properties of the unidirectional lamina.

Properties Value

Mass density 1600 kg/m3

Orthotropic elastic properties E11 = 181,000 MPa; E22 = 10,300 MPa; ν12 = 0.28;
G12 = 7170 MPa; G13 = 1000 MPa; G23 = 500 MPa

Strength properties XT = XC = 1500 MPa; YT = 40 MPa;
YC = 246 MPa; S12 = 200 MPa; S13 = 123 MPa

Fracture energies
GT

1c = 11.5 kJ/m2; GT
2c = 4.1 kJ/m2;

GC
1c = 0.35 kJ/m2; GC

2c = 3.2 kJ/m2

θ
(a) (b) (c)

Figure 2. Configuration designs for composite blades under bird impact (view from the tip).

3. Results and Discussion

For the extremely discontinuous processes, an explicit dynamic analysis is appropriate to carry
out using ABAQUS/Explicit, which can be computationally efficient for complex mechanics models
with relatively short dynamic duration. In the present simulation, the projectile begins to initially
contact the impacted plate at approximately 0.5 ms, and the total simulation duration is 6 ms.

Bird impacts with high kinetic energy can produce severe intra-laminar damages,
e.g., fiber breakage and matrix cracking. In the failure modes of composite laminates, the fiber
breakage could probably lead to catastrophic failure of overall laminated structures and then threaten
the blade containment of aero-engines. Therefore, in the beginning of this section, attention is focused
on the fiber-tension damage mode.

Figure 3 illustrates the damage maps of fiber-tension mode of the three configurations:
(a) the twisted blade; (b) the flat blade; (c) the inclined-impacted flat blade. First, the maximum damages
are close to each other: 0.3916, 0.3817, and 0.3719 respectively. Then, it can be observed that blade
roots are all the highly-damaged areas for the three configurations, while damage distributions appear
slightly different. At the roots, the vertically-impacted flat case (b) shows that high damage almost
runs through along the root; however, in the twisted blade, high damage distributes at two corners
of the root, with the left corner larger damaged area. This fact can be due to the twisted surface,
with the left side is more front-facing than the right. From Figure 3c, it can be seen that the damage of
inclined-impacted flat blade can reflect the corner-distributed feature. Thus, the inclined-impacted flat
blade is more equivalent to the twisted blade in terms of fiber-tension damage.

For the fiber-compression damage mode, Figure 4 shows that both the axisymmetric and
centrosymmetric configurations can describe the damage distribution of the twisted case relatively
well. However, one disadvantage exists in that the damage distribution at the right corner cannot be
well reflected. The fiber-compression damage in the twisted case indicates that the rear-forwarding
area (right corner at the root) can be more easily subjected to fiber compression, which can lead to local
buckling of fibers.

10
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(a) (b) (c)

Figure 3. Fiber-tension damage maps of the three impacted configurations. (a) the twisted blade;
(b) the flat blade; (c) the inclined-impacted flat blade.

(a) (b) (c)

Figure 4. Fiber-compression damage maps of the three impacted configurations. (a) the twisted blade;
(b) the flat blade; (c) the inclined-impacted flat blade.

Figure 5 illustrates the damage maps of matrix-compression mode of the three configurations:
(a) the twisted blade; (b) the vertically-impacted flat blade; (c) the inclined-impacted flat blade.
First, the maximum damages are also close to each other: 0.3426, 0.3548, and 0.3654 respectively.
Then, it can be observed that blade roots are all the highly-damaged area for the three configurations,
while damage distributions appear quite different. At the roots, the result in vertically-impacted
flat case (b) shows that high damage distributes at the root corners; however, in the twisted blade,
although high damage also distributes at two corners of the root, but with the much larger damaged
area distributed in both corners. This could also be due to the twisted surface, aggravating the
matrix-compression damage. From Figure 5c, it can be seen that the damage of inclined-impacted flat
blade cannot reflect the corner-distributed feature for the matrix-compression mode. Thus, in terms of
matrix-compression damage, the two flat blades both failed to reflect the damage distribution of the
twisted blade, to certain degree. Such phenomenon indicates that the flat laminates cannot perfectly
reproduce the compressive deformations that the twisted laminate experiences, which is somewhat
similar with the local distribution in fiber-compression case.
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(a) (b) (c)

Figure 5. Matrix-compression damage maps of the three impacted configurations. (a) the twisted blade;
(b) the flat blade; (c) the inclined-impacted flat blade.

The matrix-tension damage can largely induce the stiffness degradation of laminated blades.
Figure 6 shows that the matrix-tension damage distributions of the three cases are in good agreement
on the whole, where extensive damages appeared except around the blade tip.

(a) (b) (c)

Figure 6. Matrix-tension damage maps of the three impacted configurations. (a) the twisted blade;
(b) the flat blade; (c) the inclined-impacted flat blade.

As an evolution process of inconvertible energy dissipation, damage dissipation energy denotes the
energy dissipated by the laminate’s failure modes during the impact event. Figure 7 compares the time
histories of the damage dissipation energies of the laminates in three configurations. Results indicate
that vertically-impacted flat blade is quite adequate to reflect the real damage history in twisted blade
case, while the inclined flat case performs inadequately, especially as the time increases. It is necessary
to mention that it is difficult for the damage dissipation energy to be experimentally measured, due to
the lack of straightforward measurement index.
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Figure 7. Time histories of damage dissipation energies in the three configurations.

To further explain the damage results, Figure 8 demonstrates the deformation series of the three
blades. In the twisted blade, the deformations had an oblique because of the asymmetry. However,
the deformations were completely symmetric in the vertically-impacted flat plate, due to the strict
symmetry of the system (the impacted plate and the bird projectile). It can be observed that the
deformations of the inclined case also indicated an oblique impact, just as with the twisted blade.
Therefore, it can be deduced that both the bending and torsion deformations happen in the twisted
and inclined blades, while only bending deflection happens in the vertically-impacted flat blade.

The total contact forces generated in the three models along the impact direction are compared in
Figure 9. Because the projectile began to initially contact the impacted plate at approximately 0.5 ms,
the contact forces achieved the highest peak value also at approximately 0.5 ms in the three blades,
which is due to the shock of Hugoniot pressure. It can be observed that the inclined blade is more
equivalent to the twisted one, by comparing the highest peak values of the contact forces. However,
the vertically-impacted flat blade is prone to overestimate the peak value of contact force. Such a
result may be mainly due to the fact that the impact energy is mostly absorbed by the plate in such
axisymmetric cases. On the contrary, the initial twist/inclination configuration and the induced torsion
deformations can partially disperse the kinetic energy of the bird projectile.

Hereto, simulation results revealed some important laws for the damage distributions,
damage energies, and contact forces in the different blade-like configurations. It can be seen that
the replaceability and applicability of the simplified blade-like configurations (axisymmetric and
centrosymmetric) can be different from different perspectives, which depend on the actual requirements
to examine the crashworthiness of real fan blades. For instance, when the fatal fiber fracture or the
peak force is the primary concern, the inclined case is the relative adequate choice. However,
the vertically-impact flat case can well reflect the damage dissipation energy. These numerical results
can provide a useful reference for aerospace engineers dealing with simplified and surrogate bird-strike
experiments of complex fan blades. Finally, it is necessary to mention that the present study only
considered the case in which the bird projectile impacts the central axis of the blade. It is worthwhile to
investigate the replaceability when the impact location is off the central axis, where more complicated
deformations can happen.
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Figure 8. Deformation series of the three blades.
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Figure 9. Contact forces of the three models.

4. Conclusions

Considering the fact that cantilever slender flat plates are usually used for basic impact tests, for the
purpose of a future simplified and surrogate experimental method, this article numerically investigated
the damage equivalency for twisted composite blades under bird strike, by using SPH-FEM simulations.
The impact-damage equivalency was considered by comparing damage modes and energy variations
of three impact configurations: (1) the twisted blade to represent the real aero-engine fan blades;
(2) the vertically-impacted flat blade (axisymmetric); and (3) the inclined flat blade (centrosymmetric).
The damage maps, energy variations and deformations were comparatively investigated. It was
found that:

� The inclined-impacted flat blade is more equivalent to the twisted blade in terms of the fiber-tension
damage and the contact force, which benefits from the similarity between the twisted and inclined
configurations, such as the coupling bending and torsion deformations. On the whole, the inclined
flat blade exhibits advantages over the vertically-impacted flat one in reproducing the fatal damage
mode, the corner-distributed feature, and the oblique deformation.

� For the fiber-compression damage mode, both the axisymmetric and centrosymmetric
configurations can relatively well describe the damage distribution of the twisted case. However,
in terms of the matrix-compression damage, the two flat blades both failed to adequately reflect
the damage distribution of the twisted blade. It can be indicated that the flat laminates cannot
perfectly reproduce the local compressive deformations that the twisted laminate experiences.

� The three configurations showed similar matrix-tension damage maps, which were globally
distributed. The vertically-impacted flat blade is quite adequate to reflect the real damage history
in the twisted blade case, while the inclined flat case performs inadequately.

In brief, results indicate that both the vertically-impacted flat and inclined flat blades can be,
to a certain extent, regarded as alternatives for real twisted blades under bird impact; however,
both vertically-impacted flat and inclined flat blades have their own merits and drawbacks, and hence
their replaceability and applicability should be carefully exploited for real engine blades in experimental
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evaluation, for the purpose of bridging the gap between the mechanism testing and the structural
damage prediction.
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Abstract: In this work, we numerically study a thermo-mechanical problem arising in
poro-viscoelasticity with the type III thermal law. The thermomechanical model leads to a linear
system of three coupled hyperbolic partial differential equations, and its weak formulation as three
coupled parabolic linear variational equations. Then, using the finite element method and the
implicit Euler scheme, for the spatial approximation and the discretization of the time derivatives,
respectively, a fully discrete algorithm is introduced. A priori error estimates are proved, and the
linear convergence is obtained under some suitable regularity conditions. Finally, some numerical
results, involving one- and two-dimensional examples, are described, showing the accuracy of the
algorithm and the dependence of the solution with respect to some constitutive parameters.

Keywords: viscoelasticity; type III thermal law; finite elements; error estimates; numerical results

1. Introduction

Since the first works by Nunziato and Cowin [1,2], many research papers have been published
involving the theory of elasticity of voids (see, for instance, [3–20] and also the monographs [21,22]).
The main idea of such a theory is the assumption that the mass at each material point is found as the
product of the mass density by the volume fraction, adding a new variable in the constitutive equations.
This theory has become very interesting because it has been useful in applications appearing in solid
mechanics (rocks, woods or even bones).

In this paper, we also consider an improvement of the classical Fourier heat law to remove the
well-known paradox of infinite wave speed. It is based on the work by Green and Nagdhi [23],
where the thermal displacement was included as a new independent variable into the model (even of
the elastic displacement), and it is usually called type III thermal law. Since then, many authors
worked on this theory (see, e.g., [4,24–29]). Here, our aim is to extend the results provided in [30],
where a general thermoelastic law was studied from both mathematical (existence and uniqueness)
and numerical (stability, a priori error estimates) points of view. We will consider the viscoelastic case
and we will also include the porosity into the model. Therefore, using the well-known finite element
method and the implicit Euler scheme, for the spatial approximation and the discretization of the time
derivatives, we present a fully discrete algorithm, we perform an a priori error analysis, which leads to
the linear convergence of the algorithm under some regularity conditions on the continuous solution,
and we perform some numerical simulations, in one and two dimensions, to show the accuracy of the
algorithm and the dependence of the solution on some constitutive parameters.

Symmetry 2019, 11, 1214; doi:10.3390/sym11101214 www.mdpi.com/journal/symmetry19
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The paper is structured as follows. The thermomechanical model is described in Section 2
following [26,27,31]. Its variational formulation is also obtained and an existence and uniqueness result
is stated. Then, in Section 3 a fully discrete algorithm is studied and analyzed. Finally, some numerical
simulations are shown in Section 4 and some conclusions are presented in Section 5.

2. The Thermo-Mechanical Problem and Its Variational Formulation

In this section, we describe the model, the constitutive assumptions, the variational formulation
of the thermomechanical problem, and we recall an existence and uniqueness result (see [26,27,31] for
further details).

Denote by Ω ⊂ Rd, d = 1, 2, 3, and [0, T], T > 0, the domain occupied by the thermo-viscoelastic
body and the time interval, respectively. Let also be x ∈ Ω and t ∈ [0, T] the spatial and time variables.

According to [26,27,31,32], using the linear theory of centrosymmetric isotropic and homogeneous
materials, a thermo-viscoelastic body is considered. Thus, let u, v ∈ Rd and ϕ, e, θ, ψ ∈ R be the
displacement and velocity fields, the volume fraction, the volume fraction speed, the temperature and
the thermal displacement, respectively. As usual, we have the following relations among them:

u(t) =
∫ t

0
v(s) ds + u0, ϕ(t) =

∫ t

0
e(s) ds + ϕ0, ψ(t) =

∫ t

0
θ(s) ds + ψ0, (1)

where u0, ϕ0 and ψ0 represent initial conditions for the displacement, the volume fraction and the
thermal displacement.

Therefore, the thermomechanical problem of a centrosymmetric, isotropic and homogeneous
thermo-viscoelastic body within the type III thermal theory is written as follows (see [26,27,32]).

Problem P. Find the displacement u : Ω × [0, T] → Rd, the volume fraction ϕ : Ω × [0, T] → R and
the thermal displacement ψ : Ω × [0, T] → R such that,

ρüi = μ∗Δu̇i + (μ∗ + λ∗)u̇j,ji + μΔui + (μ + λ)uj,ji + γϕ,i − βψ̇,i in Ω × (0, T) for i = 1, . . . , d, (2)

J ϕ̈ = a0Δϕ + γui,i − ξϕ + dψ̇ + mΔψ in Ω × (0, T), (3)

aψ̈ = κΔψ + mΔϕ − dϕ̇ − βu̇i,i + κ∗Δψ̇ in Ω × (0, T), (4)

u = 0, ψ = ϕ = 0 on ∂Ω × (0, T), (5)

u(x, 0) = u0(x), u̇(x, 0) = v0(x), ϕ(x, 0) = ϕ0(x) for a.e. x ∈ Ω, (6)

ϕ̇(x, 0) = e0(x), ψ(x, 0) = ψ0(x), ψ̇(x, 0) = θ0(x) for a.e. x ∈ Ω. (7)

Here, v0, e0 and θ0 are given initial conditions for the velocity, the volume fraction speed and
the temperature, respectively. As usual, the summation over repeated indexes is assumed, the partial
derivative with respect to a variable is represented by a subscript preceded by a comma and one
superposed dot denotes the first-order partial time derivative (two superposed dots represent the
second-order partial time derivative).

In Equations (2)–(4), ρ is the mass density, J is the product of the mass density by the equilibrated
inertia, λ and μ denote Lame’s coefficients, λ∗ and μ∗ represent viscosity coefficients, a denotes the heat
capacity, a0 is the volume fraction diffusion, κ is the thermal diffusion and κ∗ is the viscous thermal
diffusion. The remaining coefficients γ, β, ξ, m, d are model parameters. We also note that, for the
sake of simplicity, we have neglected in Equations (2) and (4) the respective terms corresponding to
the volume forces and the heat flux.

The following assumptions are imposed on the above constitutive coefficients:

λ > 0, μ > 0, (λ + μ)ξ > γ2, a > 0, ρ > 0, J > 0, a0 > 0, κ∗ > 0,
a0κ > m2, μ∗ > 0, λ∗ + μ∗ > 0.

(8)
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Now, we will derive the weak form of Problem P. Thus, denote by Y = L2(Ω), H = [L2(Ω)]d

and Q = [L2(Ω)]d×d, and their respective scalar products (resp. norms) by (·, ·)Y, (·, ·)H and (·, ·)Q
(resp. ‖ · ‖Y, ‖ · ‖H and ‖ · ‖Q). Moreover, to simplify the writing let E = H1

0(Ω) and V = [H1
0(Ω)]d.

Using boundary conditions (5) and applying classical Green’s formula and relations (1), we obtain
the weak form of Problem P as follows.

Problem VP. Find the velocity v : [0, T] → V, the volume fraction speed e : [0, T] → E and the
temperature θ : [0, T] → E such that v(0) = v0, e(0) = e0, θ(0) = θ0 and, for a.e. t ∈ (0, T),

ρ(v̇(t), w)H + μ∗(∇v(t),∇w)Q + (λ∗ + μ∗)(div v(t), div w)Y + (λ + μ)(div u(t), div w)Y

+μ(∇u(t),∇w)Q = γ(∇ϕ(t), w)H − β(∇θ(t), w)H ∀w ∈ V, (9)

J(ė(t), r)Y + a0(∇ϕ(t),∇r)H + ξ(ϕ(t), r)Y + m(∇ψ(t),∇r)H = d(θ(t), r)Y

−γ(div u(t), r)Y ∀r ∈ E, (10)

a(θ̇(t), z)Y + κ∗(∇θ(t),∇z)H + κ(∇ψ(t),∇z)H + m(∇ϕ(t),∇z)H = −d(e(t), z)Y

−β(div v(t), z)Y ∀z ∈ E, (11)

where the displacement, the volume fraction and the thermal displacement are then recovered from
relations (1).

Proceeding as in [27,31], we can state the existence of a unique solution to Problem VP. Details are
omitted for the sake of reading.

Theorem 1. Assume that the coefficients satisfy conditions (8) and the following regularity on the initial data:

u0, v0 ∈ [H2(Ω)]d, ϕ0, e0, ψ0, θ0 ∈ H2(Ω). (12)

Then, Problem VP admits a unique solution with the regularity:

v ∈ C([0, T]; V) ∩ C1([0, T]; H), e, θ ∈ C([0, T]; E) ∩ C1([0, T]; Y).

3. Fully Discrete Approximations: An a Priori Error Analysis

In this section, a finite element algorithm is shown for approximating solutions to Problem VP.
This is done in two steps. First, to approximate the variational spaces V and E we define the finite
element spaces Vh and Eh as follows,

Vh = {wh ∈ [C(Ω)]d ; wh
|Tr

∈ [P1(Tr)]d ∀Tr ∈ T h, wh = 0 on ∂Ω}, (13)

Eh = {rh ∈ C(Ω) ; rh
|Tr

∈ P1(Tr) ∀Tr ∈ T h, rh = 0 on ∂Ω}, (14)

where we assume that Ω is a polyhedral domain and we denote by T h a regular triangulation of Ω.
Moreover, the space of polynomials of global degree less or equal to 1 in element Tr is represented by
P1(Tr). Here, h > 0 denotes the spatial discretization parameter.

Secondly, in order to discretize the time derivatives we use a uniform partition of the time interval
[0, T], that we denote by 0 = t0 < t1 < . . . < tN = T (k = T/N is the time step size). Moreover, for a
continuous function f (t) we denote fn = f (tn) and, for the sequence {zn}N

n=0, let δzn = (zn − zn−1)/k
be its corresponding divided differences.

Using the classical implicit Euler scheme, the fully discrete approximation of Problem VP is
the following.
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Problem VPhk. Find the discrete velocity vhk = {vhk
n }N

n=0 ⊂ Vh, the discrete volume fraction speed
ehk = {ehk

n }N
n=0 ⊂ Eh and the discrete temperature θhk = {θhk

n }N
n=0 ⊂ Eh such that vhk

0 = vh
0, ehk

0 = eh
0 ,

θhk
0 = θh

0 , and, for n = 1, . . . , N,

ρ(δvhk
n , wh)H + μ∗(∇vhk

n ,∇wh)Q + (λ∗ + μ∗)(div vhk
n , div wh)Y + (λ + μ)(div uhk

n , div wh)Y

+μ(∇uhk
n ,∇wh)Q = γ(∇ϕhk

n , wh)H − β(∇θhk
n , wh)H ∀wh ∈ Vh, (15)

J(δehk
n , rh)Y + a0(∇ϕhk

n ,∇rh)H + ξ(ϕhk
n , rh)Y + m(∇ψhk

n ,∇rh)H = d(θhk
n , rh)Y

−γ(div uhk
n , rh)Y ∀rh ∈ Eh, (16)

a(δθhk
n , zh)Y + κ∗(∇θhk

n ,∇zh)H + κ(∇ψhk
n ,∇zh)H + m(∇ϕhk

n ,∇zh)H = −d(ehk
n , zh)Y

−β(div vhk
n , zh)Y ∀zh ∈ Eh, (17)

where the discrete displacement, the discrete volume fraction and the discrete thermal displacement
are then recovered from the relations:

uhk
n = k

n

∑
j=1

vhk
j + uh

0, ϕhk
n = k

n

∑
j=1

ehk
j + ϕh

0, ψhk
n = k

n

∑
j=1

θhk
j + ψh

0 , (18)

and the discrete initial conditions, denoted by uh
0, vh

0, ϕh
0, eh

0, ψh
0 and θh

0 are given by

uh
0 = P1hu0, vh

0 = P1hv0, ϕh
0 = P2h ϕ0, eh

0 = P2he0, ψh
0 = P2hψ0, θh

0 = P2hθ0. (19)

Here, P1h and P2h are the respective projection operators over the finite element spaces Vh and
Eh (see [33]).

It is easy to show that discrete problem VPhk admits a unique solution using well-known results
on linear variational equations and conditions (8), so we omit the details.

The aim of this section is to obtain some a priori error estimates on the numerical errors un − uhk
n ,

vn − vhk
n , ϕn − ϕhk

n , en − ehk
n , ψn − ψhk

n and θn − θhk
n .

First, we obtain the estimates on the velocity field. Subtracting Equation (9) at time t = tn for a
test function w = wh ∈ Vh ⊂ V and discrete Equation (15), we have, for all wh ∈ Vh,

ρ(v̇n − δvhk
n , wh)H + μ∗(∇(vn − vhk

n ),∇wh)Q + (λ∗ + μ∗)(div (vn − vhk
n ), div wh)Y

+(λ + μ)(div (un − uhk
n ), div wh)Y + μ(∇(un − uhk

n ),∇wh)Q − γ(∇(ϕn − ϕhk
n ), wh)H

+β(∇(θn − θhk
n ), wh)H = 0,

and so,

ρ(v̇n − δvhk
n , vn − vhk

n )H + μ∗(∇(vn − vhk
n ),∇(vn − vhk

n ))Q + μ(∇(un − uhk
n ),∇(vn − vhk

n ))Q
+(λ∗ + μ∗)(div (vn − vhk

n ), div (vn − vhk
n ))Y + (λ + μ)(div (un − uhk

n ), div (vn − vhk
n ))Y

−γ(∇(ϕn − ϕhk
n ), vn − vhk

n )H + β(∇(θn − θhk
n ), vn − vhk

n )H

= ρ(v̇n − δvhk
n , vn − wh)H + μ∗(∇(vn − vhk

n ),∇(vn − wh))Q + μ(∇(un − uhk
n ),∇(vn − wh))Q

+(λ∗ + μ∗)(div (vn − vhk
n ), div (vn − wh))Y + (λ + μ)(div (un − uhk

n ), div (vn − wh))Y
−γ(∇(ϕn − ϕhk

n ), vn − wh)H + β(∇(θn − θhk
n ), vn − wh)H ∀wh ∈ Vh.
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It is straightforward to show that

(v̇n − δvhk
n , vn − vhk

n )H ≥ (v̇n − δvn, vn − vhk
n )H

+
1
2k

[
‖vn − vhk

n ‖2
H − ‖vn−1 − vhk

n−1‖2
H

]
,

(∇(un − uhk
n ),∇(vn − vhk

n ))Q ≥ (∇(un − uhk
n ),∇(u̇n − δun))Q

+
1
2k

[
‖∇(un − uhk

n )‖2
Q − ‖∇(un−1 − uhk

n−1)‖2
Q

]
,

(div (un − uhk
n ), div (vn − vhk

n ))Y = (div (un − uhk
n ), div (u̇n − δun))Y

+
1
2k

[
‖div (un − uhk

n )‖2
Y − ‖div (un−1 − uhk

n−1)‖2
Y

+‖div (un − uhk
n − (un−1 − uhk

n−1))‖2
Y

]
,

(∇(θn − θhk
n ), vn − wh)H = −(θn − θhk

n , div (vn − wh))Y,
(∇(ϕn − ϕhk

n ), vn − wh)H = −(ϕn − ϕhk
n , div (vn − wh))Y,

(∇(θn − θhk
n ), vn − vhk

n )H = −(θn − θhk
n , div (vn − vhk

n ))Y,
(∇(ϕn − ϕhk

n ), vn − vhk
n )H = −(ϕn − ϕhk

n , div (vn − vhk
n ))Y,

where we have used that vhk
n = δuhk

n = (uhk
n − uhk

n−1)/k and notations δvn = (vn − vn−1)/k and
δun = (un − un−1)/k. Therefore, we find that, for all wh ∈ Vh,

ρ

2k

[
‖vn − vhk

n ‖2
H − ‖vn−1 − vhk

n−1‖2
H

]
+ C‖∇(vn − vhk

n )‖2
Q + C‖div (vn − vhk

n )‖2
Y

+
μ

2k

[
‖∇(un − uhk

n )‖2
Q − ‖∇(un−1 − uhk

n−1)‖2
Q

]
+ β(θn − θhk

n , div (vn − vhk
n ))Y

+
λ + μ

2k

[
‖div (un − uhk

n )‖2
Y − ‖div (un−1 − uhk

n−1)‖2
Y

+‖div (un − uhk
n − (un−1 − uhk

n−1))‖2
Y

]
+ γ(ϕn − ϕhk

n , div (vn − vhk
n ))Y

≤ C
(
‖vn − vhk

n ‖2
H + ‖v̇n − δvn‖2

H + ‖∇(un − uhk
n )‖2

Q + ‖div (un − uhk
n )‖2

Y

+‖vn − wh‖2
H + ‖∇(vn − wh)‖2

Q + ‖div (vn − wh)‖2
Y + ‖ϕn − ϕhk

n ‖2
Y

+‖∇(u̇n − δun)‖2
Q + ‖div (u̇n − δun)‖2

Y + (δvn − δvhk
n , vn − wh)H

+‖θn − θhk
n ‖2

Y

)
. (20)

Here and in what follows, C > 0 denotes a positive constant whose value may change for each
expression, which depends on the continuous solution but it is independent of the discretization
parameters h and k.

Secondly, we will find the error estimates on the volume fraction speed. Then, we subtract
Equation (10) at time t = tn for a test function r = rh ∈ Eh ⊂ E and discrete Equation (16) to obtain,
for all rh ∈ Eh,

J(ėn − δehk
n , rh)Y + a0(∇(ϕn − ϕhk

n ),∇rh)H + ξ(ϕn − ϕhk
n , rh)Y + m(∇(ψn − ψhk

n ),∇rh)H
= d(θn − θhk

n , rh)Y − γ(div (un − uhk
n ), rh)Y.

Thus, we find, for all rh ∈ Eh,

J(ėn − δehk
n , en − ehk

n )Y + a0(∇(ϕn − ϕhk
n ),∇(en − ehk

n ))H + ξ(ϕn − ϕhk
n , en − ehk

n )Y
+m(∇(ψn − ψhk

n ),∇(en − ehk
n ))H − d(θn − θhk

n , en − ehk
n )Y + γ(div (un − uhk

n ), en − ehk
n )Y

= J(ėn − δehk
n , en − rh)Y + a0(∇(ϕn − ϕhk

n ),∇(en − rh))H + ξ(ϕn − ϕhk
n , en − rh)Y

+m(∇(ψn − ψhk
n ),∇(en − rh))H − d(θn − θhk

n , en − rh)Y + γ(div (un − uhk
n ), en − rh)Y.
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Since

(ėn − δehk
n , en − ehk

n )Y ≥ (ėn − δen, en − ehk
n )Y +

1
2k

[
‖en − ehk

n ‖2
Y − ‖en−1 − ehk

n−1‖2
Y

]
,

(∇(ϕn − ϕhk
n ),∇(en − ehk

n ))H = (∇(ϕn − ϕhk
n ),∇(ϕ̇n − δϕn))H

+
1
2k

[
‖∇(ϕn − ϕhk

n )‖2
H − ‖∇(ϕn−1 − ϕhk

n−1)‖2
H +∇(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1))‖2

H

]
,

(ϕn − ϕhk
n , en − ehk

n )Y = (ϕn − ϕhk
n , ϕ̇n − δϕn)Y +

1
2k

[
‖ϕn − ϕhk

n ‖2
Y − ‖ϕn−1 − ϕhk

n−1‖2
Y

+‖ϕn − ϕhk
n − (ϕn−1 − ϕhk

n−1)‖2
Y

]
,

where we have used the fact that ehk
n = δϕhk

n = (ϕhk
n − ϕhk

n−1)/k and the notations δen = (en − en−1)/k
and δϕn = (ϕn − ϕn−1)/k, it follows that, for all rh ∈ Eh,

J
2k

[
‖en − ehk

n ‖2
Y − ‖en−1 − ehk

n−1‖2
Y

]
+

a0

2k

[
‖∇(ϕn − ϕhk

n )‖2
H − ‖∇(ϕn−1 − ϕhk

n−1)‖2
H +∇(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1))‖2

H

]
+

ξ

2k

[
‖ϕn − ϕhk

n ‖2
Y − ‖ϕn−1 − ϕhk

n−1‖2
Y + ‖ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1)‖2

Y

]
+m(∇(ψn − ψhk

n ),∇(en − ehk
n ))H − d(θn − θhk

n , en − ehk
n )Y + γ(div (un − uhk

n ), en − ehk
n )Y

≤ C
(
‖en − ehk

n ‖2
Y + ‖ėn − δen‖2

Y + ‖∇(ϕn − ϕhk
n )‖2

H + ‖ϕn − ϕhk
n ‖2

Y + ‖en − rh‖2
Y

+‖∇(en − rh)‖2
H + ‖∇(ϕ̇n − δϕn)‖2

H + ‖ϕ̇n − δϕn‖2
Y + (δen − δehk

n , en − rh)Y

+‖θn − θhk
n ‖2

Y + ‖div (un − uhk
n )‖2

Y

)
. (21)

Finally, we get the estimates on the temperature field. Then, we subtract Equation (11) at time
t = tn for a test function z = zh ∈ Eh ⊂ E and discrete Equation (17) to have, for all zh ∈ Eh,

a(θ̇n − δθhk
n , zh)Y + κ∗(∇(θn − θhk

n ),∇zh)H + κ(∇(ψn − ψhk
n ),∇zh)H + m(∇(ϕn − ϕhk

n ),∇zh)H
+d(en − ehk

n , zh)Y + β(div (vn − vhk
n ), zh)Y = 0,

and so, it follows that, for all zh ∈ Eh,

a(θ̇n − δθhk
n , θn − θhk

n )Y + κ∗(∇(θn − θhk
n ),∇(θn − θhk

n ))H + κ(∇(ψn − ψhk
n ),∇(θn − θhk

n ))H
+m(∇(ϕn − ϕhk

n ),∇(θn − θhk
n ))H + d(en − ehk

n , θn − θhk
n )Y + β(div (vn − vhk

n ), θn − θhk
n )Y

= a(θ̇n − δθhk
n , θn − zh)Y + κ∗(∇(θn − θhk

n ),∇(θn − zh))H + κ(∇(ψn − ψhk
n ),∇(θn − zh))H

+m(∇(ϕn − ϕhk
n ),∇(θn − zh))H + d(en − ehk

n , θn − zh)Y + β(div (vn − vhk
n ), θn − zh)Y.

Keeping in mind that

(θ̇n − δθhk
n , θn − θhk

n )Y ≥ (θ̇n − δθn, θn − θhk
n )Y +

1
2k

[
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y

]
,

(∇(ψn − ψhk
n ),∇(θn − θhk

n ))H = (∇(ψn − ψhk
n ),∇(ψ̇n − δψn))H

+
1
2k

[
‖∇(ψn − ψhk

n )‖2
H − ‖∇(ψn−1 − ψhk

n−1)‖2
H + ‖∇(ψn − ψhk

n − (ψn−1 − ψhk
n−1))‖2

H

]
,

(div (vn − vhk
n ), θn − zh)Y = −(vn − vhk

n ,∇(θn − zh))H ,
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where we have used the fact that θhk
n = δψhk

n = (ψhk
n − ψhk

n−1)/k and the notations δθn = (θn − θn−1)/k
and δψn = (ψn − ψn−1)/k, we obtain, for all zh ∈ Eh,

a
2k

[
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y

]
+ C‖∇(θn − θhk

n )‖2
H

+
κ

2k

[
‖∇(ψn − ψhk

n )‖2
H − ‖∇(ψn−1 − ψhk

n−1)‖2
H + ‖∇(ψn − ψhk

n − (ψn−1 − ψhk
n−1))‖2

H

]
+m(∇(ϕn − ϕhk

n ),∇(θn − θhk
n ))H + d(en − ehk

n , θn − θhk
n )Y + β(div (vn − vhk

n ), θn − θhk
n )Y

≤ C
(
‖θn − θhk

n ‖2
Y + ‖θ̇n − δθn‖2

Y + ‖∇(ψn − ψhk
n )‖2

H + ‖θn − zh‖2
Y + ‖∇(θn − zh)‖2

H

+‖vn − vhk
n ‖2

H + ‖en − ehk
n ‖2

Y + (δθn − δθhk
n , θn − zh)Y + ‖∇(ψ̇n − δψn)‖2

H

+‖∇(ϕn − ϕhk
n )‖2

H

)
. (22)

Combining now estimates (20)–(22) we find that

ρ

2k

[
‖vn − vhk

n ‖2
H − ‖vn−1 − vhk

n−1‖2
H

]
+ C‖∇(vn − vhk

n )‖2
Q + C‖div (vn − vhk

n )‖2
Y

+
μ

2k

[
‖∇(un − uhk

n )‖2
Q − ‖∇(un−1 − uhk

n−1)‖2
Q

]
+

λ + μ

2k

[
‖div (un − uhk

n )‖2
Y − ‖div (un−1 − uhk

n−1)‖2
Y

+‖div (un − uhk
n − (un−1 − uhk

n−1))‖2
Y

]
+ γ(ϕn − ϕhk

n , div (vn − vhk
n ))Y

+
J

2k

[
‖en − ehk

n ‖2
Y − ‖en−1 − ehk

n−1‖2
Y

]
+ m(∇(ϕn − ϕhk

n ),∇(θn − θhk
n ))H

+
ξ

2k

[
‖ϕn − ϕhk

n ‖2
Y − ‖ϕn−1 − ϕhk

n−1‖2
Y + ‖ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1)‖2

Y

]
+m(∇(ψn − ψhk

n ),∇(en − ehk
n ))H + γ(div (un − uhk

n ), en − ehk
n )Y

+
a

2k

[
‖θn − θhk

n ‖2
Y − ‖θn−1 − θhk

n−1‖2
Y

]
+ C‖∇(θn − θhk

n )‖2
H

+
κ

2k

[
‖∇(ψn − ψhk

n )‖2
H − ‖∇(ψn−1 − ψhk

n−1)‖2
H + ‖∇(ψn − ψhk

n − (ψn−1 − ψhk
n−1))‖2

H

]
+

a0

2k

[
‖∇(ϕn − ϕhk

n )‖2
H − ‖∇(ϕn−1 − ϕhk

n−1)‖2
H +∇(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1))‖2

H

]
≤ C

(
‖vn − vhk

n ‖2
H + ‖v̇n − δvn‖2

H + ‖∇(un − uhk
n )‖2

Q + ‖div (un − uhk
n )‖2

Y

+‖vn − wh‖2
H + ‖∇(vn − wh)‖2

Q + ‖div (vn − wh)‖2
Y + ‖ϕn − ϕhk

n ‖2
Y

+‖∇(u̇n − δun)‖2
Q + ‖div (u̇n − δun)‖2

Y + (δvn − δvhk
n , vn − wh)H

+‖θn − θhk
n ‖2

Y + ‖θ̇n − δθn‖2
Y + ‖∇(ψn − ψhk

n )‖2
H + ‖θn − zh‖2

Y + ‖∇(θn − zh)‖2
H

+‖en − ehk
n ‖2

Y + (δθn − δθhk
n , θn − zh)Y + ‖∇(ψ̇n − δψn)‖2

H + ‖∇(ϕn − ϕhk
n )‖2

H

+‖ėn − δen‖2
Y + ‖en − rh‖2

Y + ‖∇(en − rh)‖2
H + ‖∇(ϕ̇n − δϕn)‖2

H + ‖ϕ̇n − δϕn‖2
Y

+(δen − δehk
n , en − rh)Y

)
.

Taking into account that

γ(ϕn − ϕhk
n , div (vn − vhk

n ))Y + γ(en − ehk
n , div (un − uhk

n ))Y
= γ(ϕn − ϕhk

n , div (u̇n − δun))Y + γ(ϕ̇n − δϕn, div (un − uhk
n ))Y

+γ(ϕn − ϕhk
n , div (δun − δuhk

n ))Y + γ(δϕn − δϕhk
n , div (un − uhk

n ))Y,
m(∇(ψn − ψhk

n ),∇(en − ehk
n ))Y + m(∇(θn − θhk

n ),∇(ϕn − ϕhk
n ))Y

= m(∇(ψn − ψhk
n ),∇(ϕ̇n − δϕn))Y + m(∇(ψ̇n − δψn),∇(ϕn − ϕhk

n ))Y
+m(∇(ψn − ψhk

n ),∇(δϕn − δϕhk
n ))Y + m(∇(δψn − δψhk

n ),∇(ϕn − ϕhk
n ))Y,
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γ(ϕn − ϕhk
n , div (δun − δuhk

n ))Y + γ(δϕn − δϕhk
n , div (un − uhk

n ))Y

=
γ

k

[
(ϕn − ϕhk

n , div (un − uhk
n ))Y − (ϕn−1 − ϕhk

n−1, div (un−1 − uhk
n−1))Y

+(ϕn − ϕhk
n − (ϕn−1 − ϕhk

n−1), div (un − uhk
n − (un−1 − uhk

n−1)))Y

]
,

m(∇(ψn − ψhk
n ),∇(δϕn − δϕhk

n ))Y + m(∇(δψn − δψhk
n ),∇(ϕn − ϕhk

n ))Y

=
m
k

[
(∇(ψn − ψhk

n ),∇(ϕn − ϕhk
n ))Y − (∇(ψn−1 − ψhk

n−1),∇(ϕn−1 − ϕhk
n−1))Y

+(∇(ψn − ψhk
n − (ψn−1 − ψhk

n−1)),∇(ϕn − ϕhk
n − (ϕn−1 − ϕhk

n−1)))Y,
λ + μ

2k
‖div (un − uhk

n − (un−1 − uhk
n−1))‖2

Y +
ξ

2k
‖ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1)‖2

Y

+
γ

k
(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1), div (un − uhk

n − (un−1 − uhk
n−1)))Y ≥ 0,

a0

2k
‖∇(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1))‖2

H +
κ

2k
‖∇(ψn − ψhk

n − (ψn−1 − ψhk
n−1))‖2

H

+
m
k
(∇(ϕn − ϕhk

n − (ϕn−1 − ϕhk
n−1)),∇(ψn − ψhk

n − (ψn−1 − ψhk
n−1)))H ≥ 0,

where we have employed conditions (8), multiplying the previous estimates by k and summing up to
n, it follows that, for all wh = {wh

j }n
j=1 ⊂ Vh, rh = {rh

j }n
j=1 ⊂ Eh and zh = {zh

j }n
j=1 ⊂ Eh,

ρ‖vn − vhk
n ‖2

H + Ck
n

∑
j=1

‖∇(vj − vhk
j )‖2

Q + Ck
n

∑
j=1

‖div (vj − vhk
j )‖2

Y

+μ‖∇(un − uhk
n )‖2

Q + (λ + μ)‖div (un − uhk
n )‖2

Y + 2γ(ϕn − ϕhk
n , div (un − uhk

n ))Y

+J‖en − ehk
n ‖2

Y + a0‖∇(ϕn − ϕhk
n )‖2

H + ξ‖ϕn − ϕhk
n ‖2

Y + a‖θn − θhk
n ‖2

Y

+2m(∇(ψn − ψhk
n ),∇(ϕn − ϕhk

n ))H + C
n

∑
j=1

k‖∇(θj − θhk
j )‖2

H + κ‖∇(ψn − ψhk
n )‖2

H

≤ Ck
n

∑
j=1

(
‖vj − vhk

j ‖2
H + ‖v̇j − δvj‖2

H + ‖∇(uj − uhk
j )‖2

Q + ‖div (uj − uhk
j )‖2

Y

+‖vj − wh
j ‖2

H + ‖∇(vj − wh
j )‖2

Q + ‖div (vj − wh
j )‖2

Y + ‖ϕj − ϕhk
j ‖2

Y

+‖∇(u̇j − δuj)‖2
Q + ‖div (u̇j − δuj)‖2

Y + (δvj − δvhk
j , vj − wh

j )H

+‖θj − θhk
j ‖2

Y + ‖θ̇j − δθj‖2
Y + ‖∇(ψj − ψhk

j )‖2
H + ‖θj − zh

j ‖2
Y + ‖∇(θj − zh

j )‖2
H

+‖ej − ehk
j ‖2

Y + (δθj − δθhk
j , θj − zh

j )Y + ‖∇(ψ̇j − δψj)‖2
H + ‖∇(ϕj − ϕhk

j )‖2
H

+‖ėj − δej‖2
Y + ‖ej − rh

j ‖2
Y + ‖∇(ej − rh

j )‖2
H + ‖∇(ϕ̇j − δϕj)‖2

H + ‖ϕ̇j − δϕj‖2
Y

+(δej − δehk
j , ej − rh

j )Y

)
+ C

(
‖v0 − vh

0‖2
H + ‖∇(v0 − vh

0)‖2
Q + ‖div (v0 − vh

0)‖2
Y

+‖∇(u0 − uh
0)‖2

Q + ‖div (u0 − uh
0)‖2

Y + ‖e0 − eh
0‖2

Y + ‖∇(ϕ0 − ϕh
0)‖2

H

+‖ϕ0 − ϕh
0‖2

Y + ‖θ0 − θh
0‖2

Y + ‖∇(θ0 − θh
0)‖2

H

)
. (23)

Keeping in mind again assumptions (8), we find that there exist two constants ζ1, ζ2 > 0 such
that γ/ξ < ζ1 < (λ + μ)/γ and m/κ < ζ2 < a0/m. Then, we have

(λ + μ)‖div (un − uhk
n )‖2

Y + ξ‖ϕn − ϕhk
n ‖2

Y + 2m(div (un − uhk
n ), ϕn − ϕhk

n )Y

≥ (λ + μ − γζ1) ‖div (un − uhk
n )‖2

Y +

(
ξ − γ

ζ1

)
‖ϕn − ϕhk

n ‖2
Y,

a0‖∇(ϕn − ϕhk
n )‖2

H + κ‖∇(ψn − ψhk
n )‖2

H + 2m(∇(ϕn − ϕhk
n ),∇(ψn − ψhk

n ))H

≥ (a0 − mζ2) ‖∇(ϕn − ϕhk
n )‖2

H +

(
κ − m

ζ2

)
‖∇(ψn − ψhk

n )‖2
H .

We will need the following discrete version of Gronwall’s lemma (see, for instance, [34,35]).
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Lemma 1. Let {En}N
n=0 and {Gn}N

n=0 be two sequences of nonnegative real numbers satisfying, for a positive
constant C1 > 0 independent of Gn and En,

E0 ≤ C1G0,

En ≤ C1Gn + C1

n

∑
j=1

kEj, n = 1, . . . , N,

where k is a positive constant. If we denote C = C1(1 + C1Te2C1T) and T = Nk, then we have

max
0≤n≤N

En ≤ C max
0≤n≤N

Gn.

Now, taking into account that

k
n

∑
j=1

(δvj − δvhk
j , vj − wh

j )H =
n

∑
j=1

(vj − vhk
j − (vj−1 − vhk

j−1), vj − wh
j )H

= (vn − vhk
n , vn − wh

n)H + (vh
0 − v0, v1 − wh

1)H

+
n−1

∑
j=1

(vj − vhk
j , vj − wh

j − (vj+1 − wh
j+1))H ,

k
n

∑
j=1

(δej − δehk
j , en − rh

j )Y =
n

∑
j=1

(ej − ehk
j − (ej−1 − ehk

j−1), en − rh
j )Y

= (en − ehk
n , en − rh

n)Y + (eh
0 − e0, e1 − eh

1)Y

+
n−1

∑
j=1

(ej − ehk
j , ej − rh

j − (ej+1 − rh
j+1))Y,

k
n

∑
j=1

(δθj − δθhk
j , θn − zh

j )Y =
n

∑
j=1

(θj − θhk
j − (θj−1 − θhk

j−1), θn − zh
j )Y

= (θn − θhk
n , θn − zh

n)Y + (θh
0 − θ0, θ1 − zh

1)Y

+
n−1

∑
j=1

(θj − θhk
j , θj − zh

j − (θj+1 − zh
j+1))Y,

applying Lemma 1 to estimates (23), we conclude the following a priori error estimates result.

Theorem 2. Under the assumptions of Theorem 1, let us denote by (v, e, θ) the solution to Problem VP and
by (vhk, ehk, θhk) the solution to Problem VPhk, then we obtain the following a priori error estimates, for all
wh = {wh

j }N
j=0 ⊂ Vh, rh = {rh

j }N
j=0 ⊂ Eh and zh = {zh

j }N
j=0 ⊂ Eh,

max
0≤n≤N

{
‖vn − vhk

n ‖2
H + ‖∇(un − uhk

n )‖2
Q + ‖div (un − uhk

n )‖2
Y + ‖en − ehk

n ‖2
Y + ‖∇(ϕn − ϕhk

n )‖2
H

+‖ϕn − ϕhk
n ‖2

Y + ‖θn − θhk
n ‖2

Y + ‖∇(ψn − ψhk
n )‖2

H

}

+Ck
N

∑
n=1

[
‖∇(vn − vhk

n )‖2
Q + ‖div (vn − vhk

n )‖2
Y + ‖∇(θn − θhk

n )‖2
H

]

≤ Ck
N

∑
j=1

(
‖v̇j − δvj‖2

H + ‖vj − wh
j ‖2

H + ‖∇(vj − wh
j )‖2

Q + ‖div (vj − wh
j )‖2

Y

+‖∇(u̇j − δuj)‖2
Q + ‖div (u̇j − δuj)‖2

Y + ‖θ̇j − δθj‖2
Y + ‖θj − zh

j ‖2
Y + ‖∇(θj − zh

j )‖2
H

+‖∇(ψ̇j − δψj)‖2
H + ‖ėj − δej‖2

Y + ‖ej − rh
j ‖2

Y + ‖∇(ej − rh
j )‖2

H + ‖∇(ϕ̇j − δϕj)‖2
H + ‖ϕ̇j − δϕj‖2

Y

)
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+C max
0≤n≤N

‖vn − wh
n‖2

H + C max
0≤n≤N

‖en − rh
n‖2

Y + C max
0≤n≤N

‖θn − zh
n‖2

Y

+
C
k

N−1

∑
j=1

‖vj − wh
j − (vj+1 − wh

j+1)‖2
H +

C
k

N−1

∑
j=1

‖ej − rh
j − (ej+1 − rh

j+1)‖2
Y

+
C
k

N−1

∑
j=1

‖θj − zh
j − (θj+1 − zh

j+1)‖2
Y + C

(
‖v0 − vh

0‖2
H + ‖∇(v0 − vh

0)‖2
Q + ‖div (v0 − vh

0)‖2
Y

+‖∇(u0 − uh
0)‖2

Q + ‖div (u0 − uh
0)‖2

Y + ‖e0 − eh
0‖2

Y + ‖∇(ϕ0 − ϕh
0)‖2

H

+‖ϕ0 − ϕh
0‖2

Y + ‖θ0 − θh
0‖2

Y + ‖∇(θ0 − θh
0 )‖2

H

)
. (24)

The previous error estimates can be used to derive the convergence order. As a particular case,
under suitable additional regularity, the linear convergence is derived.

Corollary 1. Let the assumptions of Theorem 2 still hold. If we assume that the solution to Problem VP has the
additional regularity:

u ∈ H2(0, T; V) ∩ H3(0, T; H) ∩ C1([0, T]; [H2(Ω)]d),
e, θ ∈ H2(0, T; E) ∩ H3(0, T; Y) ∩ C1([0, T]; H2(Ω)),

(25)

and we use the finite element spaces Vh and Eh defined in (13) and (14), respectively, and the discrete initial
conditions uh

0, vh
0, ϕh

0, eh
0 , ψh

0 and θh
0 given in (19), there exists a positive constant C > 0, independent of the

discretization parameters h and k but depending on the continuous solution, such that

max
0≤n≤N

{
‖vn − vhk

n ‖H + ‖∇(un − uhk
n )‖Q + ‖div (un − uhk

n )‖Y + ‖en − ehk
n ‖Y + ‖∇(ϕn − ϕhk

n )‖H

+‖ϕn − ϕhk
n ‖Y + ‖θn − θhk

n ‖Y + ‖∇(ψn − ψhk
n )‖H

}
≤ C(h + k).

4. Numerical Simulations

In this final section, we will describe the algorithm and some numerical results involving one-
and two-dimensional examples.

4.1. Numerical Algorithm

As a first step, given the solution uhk
n−1, vhk

n−1, ϕhk
n−1, ehk

n−1, ψhk
n−1 and θhk

n−1 at time tn−1,
the velocity vhk

n , the volume fraction speed ehk
n and the temperature θhk

n are obtained from the coupled
Equations (15)–(17). The corresponding linear system can be expressed in terms of a product variable
xn and the resulting symmetric linear system is solved by using the well-known Cholesky method.
Finally, the displacement field uhk

n , the volume fraction ϕhk
n and the thermal displacement ψhk

n are
updated using (18).

The numerical scheme was implemented on a Intel Core 3.2 GHz PC using MATLAB, and a
typical one-dimensional run (h = k = 10−3) took about 0.957 seconds of CPU time, meanwhile a
two-dimensional run took about 2.74 s of CPU time.

4.2. A One-Dimensional Example: Numerical Convergence

To show the accuracy of the finite element approximations studied in the previous section, we will
consider the following simpler one-dimensional problem:

Problem P1D. Find the displacement u : [0, 1]× [0, 1] → R, the volume fraction ϕ : [0, 1]× [0, 1] → R

and the thermal displacement ψ : [0, 1]× [0, 1] → R such that
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ü = 5u̇xx + 5uxx + 2ϕx − ψ̇x + F1 in (0, 1)× (0, 1),

ϕ̈ = 2ϕxx + 2ux − 3ϕ + ψ̇ + ψxx + F2 in (0, 1)× (0, 1),

ψ̈ = ψxx + ϕxx − ϕ̇ − u̇x + ψ̇xx + F3 in (0, 1)× (0, 1),

u(0, t) = u(1, t) = ψ(0, t) = ψ(0, t) = ϕ(0, t) = ϕ(1, t) = 0 for t ∈ (0, 1),

u(x, 0) = u̇(x, 0) = ϕ(x, 0) = x(x − 1) for a.e. x ∈ (0, 1),

ϕ̇(x, 0) = ψ(x, 0) = ψ̇(x, 0) = x(x − 1) for a.e. x ∈ (0, 1),

where functions Fi, i = 1, 2, 3, are given by, for all (x, t) ∈ (0, 1)× (0, 1),

F1(x, t) = et (x(x − 1)− 19 − 2x) ,
F2(x, t) = et (3x(x − 1)− 4 − 4x) ,
F3(x, t) = et (2x(x − 1)− 7 + 2x) .

We point out that Problem P1D is the one-dimensional version of Problem P using the following data:

Ω = (0, 1), T = 1, ρ = 1, β = 1, J = 1, a = 1, κ∗ = 1, d = 1, μ = 2, λ = 1,
μ∗ = 1, λ∗ = 1, γ = 2, ξ = 3, m = 1, a0 = 2, κ = 1,

and all the initial conditions equal to x(x − 1).
We note that, in this case, the exact solution to Problem P1D can be easily found and it has the

following form:

u(x, t) = ϕ(x, t) = ψ(x, t) = etx(x − 1) for all (x, t) ∈ (0, 1)× (0, 1).

The numerical errors, for several values of the discretization parameters h and k, and given by

max
0≤n≤N

{
‖vn − vhk

n ‖H + ‖∇(un − uhk
n )‖Q + ‖div (un − uhk

n )‖Y + ‖en − ehk
n ‖Y + ‖∇(ϕn − ϕhk

n )‖H

+‖ϕn − ϕhk
n ‖Y + ‖θn − θhk

n ‖Y + ‖∇(ψn − ψhk
n )‖H

}
,

are shown in Table 1. Moreover, the evolution of the error depending on the parameter h + k is
depicted in Figure 1. The convergence of the numerical approximations is clearly observed, and its
linear convergence, stated in Corollary 1, seems to be achieved.

Table 1. Example 1: Numerical errors for some h and k.

h ↓ k → 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

1/23 0.434612 0.432825 0.431788 0.431452 0.431287 0.431188 0.431155

1/24 0.210312 0.207822 0.206588 0.206216 0.206038 0.205935 0.205902

1/25 0.107268 0.103366 0.101371 0.100897 0.100692 0.100580 0.100545

1/26 0.057972 0.053438 0.050939 0.050182 0.049865 0.049725 0.049685

1/27 0.034160 0.029016 0.026254 0.025397 0.024994 0.024772 0.024714

1/28 0.023231 0.017132 0.014037 0.013122 0.012688 0.012438 0.012359

1/29 0.018869 0.011671 0.008032 0.007020 0.006560 0.006299 0.006215

1/210 0.017445 0.009490 0.005197 0.004018 0.003510 0.003236 0.003149

1/211 0.017049 0.008778 0.004000 0.002601 0.002010 0.001708 0.001618

1/212 0.016947 0.008580 0.003583 0.002003 0.001301 0.00052 0.000854

1/213 0.016921 0.008529 0.003462 0.001794 0.001002 0.000589 0.000476
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Figure 1. Example 1: Asymptotic behavior of the numerical scheme.

If we assume now that there are not volume forces, and we use the following data:

Ω = (0, 1), T = 10, ρ = 1, β = 1, J = 4, a = 1, κ∗ = 1, d = 1, μ = 2, λ = 1,
μ∗ = 3, λ∗ = 4, γ = 1, ξ = 3, m = 1, a0 = 2, κ = 1,

and the initial conditions, for all x ∈ (0, 1),

u0(x) = x(x − 1), v0(x) = ϕ0(x) = e0(x) = ψ0(x) = θ0(x) = 0,

taking the discretization parameters h = k = 0.001, the evolution in time of the discrete energy Ehk
n

defined by

Ehk
n =

1
2

{
ρ‖vhk

n ‖2
Y + (λ + 2μ)‖(uhk

n )x‖2
Y + J‖ehk

n ‖2
Y + γ(ϕhk

n , (uhk
n )x)Y + a0‖(ϕhk

n )x‖2
Y + ξ‖ϕhk

n ‖2
Y

+m((ψhk
n )x, (ϕhk

n )x)Y + a‖θhk
n ‖2

Y + κ‖(ψhk
n )x‖2

Y

}
,

is shown in Figure 2 using both natural and semi-log scales. We can see that the discrete energy
converges to zero and an exponential decay seems to be achieved.
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Figure 2. Example 1: Discrete energy evolution in natural and semi-log scales.
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4.3. First Two-Dimensional Example: Application of a Surface Force

As a first two-dimensional example, we consider the square domain [0, 1] × [0, 1], which is
assumed to be clamped on its left part {0} × [0, 1]. We also suppose that the thermal displacement
and porosity vanish on the whole boundary, and we use the following expression for the mechanical
surface force:

f F(x, y, t) = (−ty2, 0) for x = 1, y ∈ (0, 1),

which is assumed to be applied on the boundary ΓF = {1} × (0, 1), a part of the whole boundary ∂Ω.
Even if this case was not studied in the previous sections, it is straightforward to extend the analysis to
this more general case.

The following data have been employed in this simulation:

T = 1, ρ = 1, β = 1, J = 1, a = 1, κ∗ = 1, d = 1, μ = 2, λ = 1,
μ∗ = 2, λ∗ = 1, γ = 2, ξ = 3, m = 1, a0 = 2, κ = 1,

and null initial conditions for all the variables.
Taking the time discretization parameter k = 0.01, the deformation generated by this mechanical

force is shown in Figure 3. In Figure 4 we plot the displacement in vector arrows (on the left-hand
side) and its norm (on the right-hand side) at final time. As can be seen, there is a deformation along
the horizontal axis. Moreover, the porosity (left) and the thermal displacement (right) are plotted in
Figure 5 at final time. We note that both neglect on the boundary due to the null boundary conditions
and they are generated by the deformation of the body.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

y

u
n

 

 

0.2

0.4

0.6

0.8

1

1.2

Figure 3. Example 2: Deformation and von Mises stress norm at final time.
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Figure 4. Example 2: Representation of the displacement with arrows (left) and its norm (right) at final time.
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Figure 5. Example 2: Porosity (left) and thermal displacement (right) at final time.

4.4. Second Two-Dimensional Example: Dependence on the Type III Thermal Coefficient

In this second two-dimensional example, we will investigate the dependence on the type III
thermal coefficient κ∗.

In this simulation, we have used the following data:

T = 1, ρ = 100, β = 1, J = 4, a = 3, d = 1, μ = 2, λ = 1, μ∗ = 2,
λ∗ = 1, γ = 2, ξ = 3, m = 1, a0 = 2, κ = 1,

with parameter κ∗ varying between 0.001 and 100. No mechanical forces are now applied, and we
also impose an initial condition ϕ0(x, t) = e0(x, y) = x(x − 1) ∗ y(y − 1) for (x, y) ∈ (0, 1)× (0, 1),
being the remaining initial conditions assumed to be zero.

Taking the time discretization parameter k = 0.01, the evolution in time of the norm of the
displacement at middle point x = (0.5, 0.5) is shown in Figure 6. It seems that an increasing quadratic
behavior is found. Moreover, in Figure 7 we plot the evolution in time of the porosity (left) and the
thermal displacement (right). The porosity has an oscillating behavior and, as expected, the thermal
displacement has a quadratic form, converging both variables to zero.
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Figure 6. Example3 2: Evolution in time of the norm of the displacement at point x = (0.5, 0.5).
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Figure 7. Example 3: Evolution in time of the porosity (left) and thermal displacement (right) at point
x = (0.5, 0.5).

5. Conclusions

In this paper, we numerically analyzed a dynamic poro-thermo-viscoelastic problem within the
type III thermoelasticity. The weak form led to a linear system composed of parabolic variational
equations written in terms of the velocity, the volume fraction speed and the temperature. Then, using
the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize
the time derivatives, we introduced a fully discrete scheme. A priori error estimates were proved by
using a discrete version of Gronwall’s inequality. Finally, we presented a one-dimensional numerical
simulation to show the convergence of the algorithm and the exponential decay of the discrete energy
(Example 1), the effect of the application of a surface force (Example 2) and the dependence on the
type III thermal coefficient (Example 3).
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Abstract: The present paper’s objective is to highlight some new developments of the main author in
the field of advanced dynamics of systems and higher order dynamic equations. These equations have
been developed on the basis of the matrix exponentials which prove to have undeniable advantages
in the matrix study of any complex mechanical system. The present paper proposes some new
approaches, based on differential principles from analytical mechanics, by using some important
dynamics notions, regarding the acceleration energies of the first, second and third order. This study
extended the equations of the higher order, which provide the possibility of applying the initial
motion conditions in the positions, velocities and accelerations of the first and second order. In order
to determine the time variation laws for the generalized variables, the driving forces and acceleration
energies of the higher order are applied by the time polynomial functions of the fifth order. According
to inverse kinematics also named control kinematics of the robots, the applications of polynomial
functions lead to the kinematic control functions of mechanical motions, especially the transitory
motions. They influence the dynamic behavior of multibody systems, in which robot structures
are included.

Keywords: advanced mechanics; analytical dynamics; acceleration energies; robotics

1. Introduction

Until the present, the dynamic behavior of rigid body and of the multibody systems can be studied
by considering the fundamental theorems from dynamics or the differential principles of analytical
mechanics [1–4]. Both are based on angular momentum, the mechanical work and kinetic energy,
as well as on their fundamental theorems. In mechanics, the defining expressions for the advanced
notions are based on fundamental input parameters that are represented by kinematic parameters
along with their differential transformations, as well as by the mass properties highlighted by the
inertia tensor and corresponding generalized variation laws.

The advanced concepts include higher-order accelerating energies known in the scientific
literature [5–7] as kinetic energies of higher-order accelerations. The kinetic energy is used, in
Newtonian mechanics, as a central function of Lagrange Euler equations. The existence of higher-order
accelerations has been proven by the fact that they occur every time the bodies/multi-body systems are
subjected to fast and sudden motions or, when particularly, this type of excitation produces vibration
modes with more frequencies of resonance. The acceleration itself cannot produce vibration being just
a static load. In fact, the sudden motions are generated by higher order accelerations. For example,
during the operation of a cam and cam follower mechanism at high speeds and accelerations, the
jumping off of the cam follower from the camshaft causing accidents may occur. Another example
is the case of manufacturing processes that require rapid changes in the acceleration of a cutting
tool. This leads to a quick tool wear and results in poor quality of the manufactured surfaces [8,9].

Symmetry 2019, 11, 1077; doi:10.3390/sym11091077 www.mdpi.com/journal/symmetry37
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The two situations presented above are generated by the effect of higher order accelerations. These
effects have to be also considered each time when a mechanical system is in a transient motion phase
(take-off/landing, acceleration/deceleration, etc.). The novelty of the paper consists in presenting a new
approach regarding the dynamic modeling of rigid bodies and multibody mechanical systems. Based on
scientific literature [10–20], the input kinematic and dynamic parameters have been formulated. These
parameters are compulsorily included in the dynamic equations of the higher order, corresponding to
fast and sudden motions. This type of motion characterizes the multibody systems, a category where
the robots are also included. The important formulations regarding the acceleration energies of the
first, second, third and higher orders are also presented in explicit and matrix forms. The expressions
for the acceleration energies of the higher order were determined, among others, based on matrix
exponential functions [14,19]. Although at first sight they seem difficult to put into practice, they
proved to have undisputable advantages in terms of their use in the kinematic and dynamic study of
complex mechanical systems.

These expressions are implemented into the differential equations of the higher order, thus
resulting the time variations of the generalized forces, which influences the dynamic behavior of rigid
body or of multibody systems. To illustrate the validity of the proposed mathematical model, an
experimental study, in which the higher order accelerations are highlighted, is performed.

2. Input Parameters in Advanced Dynamic Modeling

2.1. Position and Orientation Parameters

In Newtonian mechanics, the dynamics of the rigid bodies are studied based on the assumption
that they do not deform under the action of the external forces.

To study the dynamical behavior of a rigid body, its linear and angular position in the Cartesian space
must be known at each moment during the motion. To define the linear and angular position, [13,20],
the last one being also known as orientation, the simplest mechanical model, which is the material
point, is analyzed (Figure 1).
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Figure 1. (a) The position and orientation for a point; (b) The position and orientation of a system.

The following notations are considered:

χ = {u; v; w}; χ0 = {u0; v0; w0} whereu =
{
x; y; z

}
; v =

{
y; z; x

}
� u; w =

{
z; x; y

}
� v (1)

χ =
{
u; v; w

}
; χ0 =

{
u0; v0; w0

}
where u =

{
i; j; k

}
; v =

{
j; k; i

}
� u; w =

{
k; i; j

}
� v (2)

δχ =
{
αχ; βχ; γχ

}
; cos δχ = cδχ; sin δχ = sδχ (3)
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O0x0y0z0 ≡ {0}; O′0x′0y′0z′0 ≡
{
0′}; Oxyz ≡ {S} (4)

In the Expression (1), the coordinates or axes of the Cartesian frame, symbols from (2) representing
the unit vectors, and (3) the angles and the direction cosines are defined.

The dynamic study of the rigid solid is carried out, according to Figure 1, by considering two
reference systems: O0x0y0z0 = {0}, which is considered fixed and Oxyz = {S} which is a mobile
reference system, invariably linked to the body, having the origin in an arbitrary point O belonging to
the rigid body. The system Ox′0y′0z′0 = {0′}, represented in the same figure, is a system which originated
in point O, and whose orientation is maintained constant all throughout the movement and is identical
with the orientation of the fixed system, {0}, that is {0′}OR ≡ {0}OR.

The geometrical state of any material point (for example a certain point O) characterizes the
position, according to Figure 1a. The position is usually defined by means of the position vector:

r0 =
[

x0 y0 z0
]T

, relative to {0} f rame (5)

The three linear coordinates from (5) are independent in the case of a free material point, and
represents the degrees of freedom (d.o.f.). Further, the study is extended to a vector or an axis belonging
to the Cartesian frame (see Figure 1b). This geometrical state is called orientation (angular position).
Orientation (angular position) is defined through unit vectors. For any given unit vector χ ∈ {S}, in
relation to one of the frames {0}/{0′}, the orientation is defined by the direction cosines:

χ = χT ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

i0
j0
k0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cαχ
cβχ
cγχ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cα
cβ
cγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
χ

, where χT · χ = c2αχ + c2βχ + c2γχ = 1 (6)

According to linear algebra, in expression (6), the symbol χT defines the transposed matrix.
Further, considering the second expression from (6), the orientation of any vector or axis is

characterized by two independent angles. The above geometrical aspects are extended on an
orthogonal and right oriented frame (see Figure 1b, Ouvw ≡ Oxyz ≡ {S}) relative to {0}. In this case, the
geometrical state is defined by position and orientation. The position is defined by means of position
vector (5), while for orientation the rotation matrix is considered [10]:

0
S[R] =

[
i j k

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

cα
cβ
cγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cα
cβ
cγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cα
cβ
cγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

The resultant orientation matrix defined with (7), contains the unit vectors of {S} frame relative to
{0}. The rotation matrix or the matrix of direction cosines describes the orientation of each axis of the
mobile frame attached to the rigid body, relative to a fixed frame. Between the nine direction cosines
contained by the rotation matrix, six mathematical relations can be established. Thus, the result is that
the orientation of a mobile frame with respect to a fixed frame is defined by up to three independent
parameters, which are defining the orienting angles. Therefore, the resultant orientation of a frame
{S} with respect to another frame, {0}/{0′} is characterized by three independent orientation angles
(three d.o.f), [13]:

ψ(t)
(3x1)

=
[
αu(t) βv(t) γw(t)

]T
(8)

The angles from (8) are the components of the column matrix of orientationψ(t), and they describe,
from a geometrical point of view, dihedral angles between two geometrical planes:

χ0 = {u0; v0; w0} = cst − f ixed plane ∈ {
0′}/{0} and χ = {u; v; w} = 0 − mobile plane ∈ {S}
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Physically, the three angles defined with (8) expresses a simple rotation around one of the axes of
the Cartesian reference system: χ = {u; v; w}. Based on research from [10–14], when combining the
three simple rotations, there is a result of twelve sets of orientation angles (8). Taking χ =

{
x; y; z

}
, the

expressions of definition are further developed for the three simple rotation matrices symbolized as:

R(χ; δχ) =
{
R(x; αx); R

(
y; βy

)
; R(z; γz)

}
. (9)

The paper proposes the following form of mathematical representation for the generalized matrix:

R(χ; δχ) =
{
R(x; αx); R

(
y; βy

)
; R(z; γz)

}
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c
(
δχ · Δyz

)
−s(δχ · Δz) s

(
δχ · Δy

)
s(δχ · Δz) c(δχ · Δzx) −s(δχ · Δx)

−s
(
δχ · Δy

)
s(δχ · Δx) c

(
δχ · Δxy

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (10)

where Δuv{χ={u; v} }
=

{
Δyz; Δzx; Δxy

}
=

⎧⎪⎪⎨⎪⎪⎩
{

1
0

}
i f δχ =

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩

(
βy; γz

)
αx

⎫⎪⎪⎬⎪⎪⎭;
{

(γz; αx)

βy

}
;

⎧⎪⎪⎨⎪⎪⎩
(
αx; βy

)
γz

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭, (11)

and Δu{χ=u}
=

{
Δx; Δy; Δz

}
= 1− Δvw.

{χ={v; w} }
(12)

By substituting (11) and (12) in the generalized expression (10), the simple rotation matrices (9)
are obtained. The generalized matrix can be written in a new formulation as follows:

R(χ; δχ) = Diag
[
Δuv

]
+

[
Δu×

]
, (13)

where Δuv
(3×1)

=
[
c
(
δχ · Δyz

)
c(δχ · Δzx) c

(
δχ · Δxy

)]T
, (14)

and Δu
(3×1)

=
[
s(δχ · Δx) s

(
δχ · Δy

)
s(δχ · Δz)

]T
, (15)

In the expression (13), the symbol
[
Δu×

]
defines the skew-symmetric matrix associated to (15),

while Diag
[
Δuv

]
represents the diagonal matrix, written below:

Diag
[
Δuv

]
(3x3)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
c
(
δχ · Δyz

)
0 0

0 c(δχ · Δzx) 0
0 0 c

(
δχ · Δxy

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (16)

By applying (14) and (15), an expression identical with the classical Rodriguez formula is
obtained [17]:

R(χ; δχ) = χ · χT · (1− cδχ) + I3 · cδχ + (χ× sδχ). (17)

According to research from [3–10], the three simple rotations from (8) are performed either around
the moving axes or fixed axes belonging to {S} or {0′}/{0}. The resultant rotation matrix, symbolized
as 0

S[R], defines the orientation of the system {S}( attached to the rigid body), with respect to a fixed
system {0}, and χ = {u; v; w} is represented in the following matrix form:

0
S[R] = R(u; αu) ·R(v; βv) ·R(w; γw), (18)

0
S[R] =

∏
{χ; δχ}

R(χ; δχ) =
∏

{χ={u; v; w}}
exp[χ× δχ] =

∏
{u; v}

{
I3 · Δuv +

[
Δu×

]}
. (19)
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Using the research in the field of matrix exponentials [10,14], the following form for the resultant
rotation matrix (18) is written as:

0
S[R] =

∏
{χ; δχ}

R(χ; δχ) =
∏

{χ={u; v; w}}
exp[χ× δχ] = exp[u× αu] · exp[v× βv] · exp[w× γw] (20)

The above mathematical Expressions (5) and (8), which define the position and orientation in the
case of a rigid body, are written in a general form. Based on the definitions from the first paragraph
of this section, a rigid body consists of an infinite number of material points and also, an infinite
number of geometrical axes, parallel and perpendicular one to another, characterized by a continuous
distribution in the entire volume of the rigid (S) [14,15]. The rigid body is also made up of an infinite
number of assemblies consisting of three orthogonal geometrical plans, continuously distributed in the
entire volume of the rigid body.

In terms of geometry, in order to define a right oriented reference frame having the origin in
an arbitrary point O of the rigid body, a single ensemble composed of three orthogonal geometrical
plans is chosen. According to (4) and Figure 2, this reference frame is symbolized as Oxyz ≡ {S}. The
reference frame {S} is linked to the body due to its rigid nature. Expressions (5) and (8) define the
position and orientation of this frame.
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Figure 2. The representation of a free rigid body in the Cartesian frame.

Whereas the present paper proposes a study on advanced dynamics, it considers two material
points belonging to a rigid body, so that the following conditions are met: M � O and C � {O; M}. In
this case, the expressions defining the position can be written as time functions, according to [12]:

rM(t) = r0(t) + ρM(t) = r0(t) + 0
S[R](t) · SρM, (21)

rC(t) = r0(t) + ρC(t) = r0(t) + 0
S[R](t) · SρC, where ρM(t) � ρC(t) and rM(t) � rC(t) (22)
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Based on (18) and (19), the position equation is written, by considering the matrix exponentials:

rM(t) = r0(t) +
∏

{χ={u; v; w}}
exp[χ× δχ] · SρM = r0(t) +

{
exp[u× αu] · exp[v× βv] · exp[w× γw]

} · SρM. (23)

The position equation for any material point from the rigid body can be determined only when the
position r0(t) and orientation 0

S[R](t) of the moving frame Oxyz ≡ {S} are well known. By analyzing
the Expressions (21) and (22), the result is that the orientation is invariant for all the points of the
rigid solid. Thus, by considering the geometrical aspects, the body is substituted by the moving
frame Oxyz ≡ {S}. This is defined from a geometrically point of view by means of the six independent
parameters (six d.o.f.), which are included in the following symbol:

X
(6×1)

(t) =

⎡⎢⎢⎢⎢⎣ r0(t)

ψ(t)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

[
x0(t) y0(t) z0(t)

]T

[
αu(t) βv(t) γw(t)

]T

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

qi(t) · δi, i = 1→ 6

where δi =

{
(1− Δi), f or qi − linear,

Δi, f or qi − angular

} ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

where qj(t) is the generalized coordinate and Δi =
{
(1, qi − angular), (0, qi − linear)

}
is an operator

which highlights the type of driving joint. In this paper, the symbol X
(6×1)

(t), is substituted as:

X
(6×1)

(t) = θ(t) =
[

qi(t), i = 1→ 6
]T

, whereθ � θ
(0)

(25)

Considering Expression (24), the following notations are implemented:

⎧⎪⎪⎨⎪⎪⎩θ(t);
.

θ(t);
..

θ(t); · · · ;
(m)

θ (t)

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩ qi(t);
.
qi(t);

..
qi(t); · · · ;

(m)
qi (t)

i = 1→ 6, m ≥ 1

⎫⎪⎪⎬⎪⎪⎭. (26)

where m ≥ 1 represents the order of the time derivative.
In advanced mechanics, instead of (8), in the case of the angular vector of orientation, the following

expression of definition is used:

ψ(t) = 0 Jψ[αu(t) − βv(t) − γw(t)] · ψ(t) = ψ
[
qj(t) · Δ j; j = 1→ k∗ = 6, t

]
, (27)

0 Jψ[αu(t) − βv(t) − γw(t)] =
[

u R(u;αu) · v R(u;αu) ·R(v; βv) ·w
]
. (28)

where 0 Jψ represents the angular transfer matrix which is a function of the orienting angles.
In mechanics, the position and orientation of a moving frame Oxyz ≡ {S}, with respect to another

frame, for example a fixed frame {0}, is represented in a matrix form, according to [5,8] by means of
homogeneous transformations which are developed using matrix exponentials:

0
S[T]
(4×4)

(t) =
[ 0

S[R](t) p(t)
0 0 0 1

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
∏

{χ={u; v; w}}
exp[χ× δχ] p(t)

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦, (29)

p(t) =
∑

{χ={u; v; w}}

⎧⎪⎨⎪⎩ ∏
{χ={u; v; w}}

exp[χ× δχ]
⎫⎪⎬⎪⎭ · bχ +

⎧⎪⎨⎪⎩ ∏
{χ={u; v; w}}

exp[χ× δχ]
⎫⎪⎬⎪⎭ · p(0) · Δ p,

where Δp =
{{

0; p = r0
}
;
{
1; p = rM

}}
,

(30)

bχ =
[
χ(0) · χ(0)T · (δχ − sδχ)+ I3 · sδχ+

(
χ(0)×

)
· (1− cδχ)

]
·
[
p(0) × χ(0) · Δ χ

]
. (31)

Expression (30) defines the position vector of the mobile system {S} relative to fixed system
{0}, while (31) represents a position vector, which according to [11,20], is defined by means of
homogenous coordinates as a function of screw parameters. The conclusions and expressions of
definition, synthetically disseminated in this introductory section, are compulsory applied in the
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advanced kinematics and dynamics of mechanical systems. For example, a kinetic element from this
mechanical structure of a robot is considered (Figure 3).
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Figure 3. The representation of a kinetical element from robot mechanical structure.

In case of both rigid bodies and multibody systems, the dynamical study of current and sudden
motions is performed. The study is based on the differential principles from analytical dynamics
of systems, as well as on the advanced notions from the dynamics of solid bodies: Momentum and
angular momentum, kinetic energy, acceleration energies of different orders and their absolute time
derivatives of the high order.

2.2. The Kinematic Parameters of Higher Order

The parametric equations of motion are defined according to (24). The absolute position
Equation (21) shows the variable distribution from a point to another material point of the body. By
applying the first order time derivative on Expression (21), the result is:

.
rM(t) =

.
r0(t) +

.
ρM(t) =

.
r0(t) + 0

S

[ .
R
]
(t) · SρM =

.
r0(t) + 0

S

[ .
R
]
(t) · 0S[R]T(t) · 0S[R](t) · SρM, (32)

The following property is mandatory for the motion equations defined with (32):

0
S

[ .
R
]
(t) · 0S[R]T(t) = (ω×) (33)

where considering [1,10], (ω×) is the skew symmetric matrix associated to the angular velocity vector.
The time derivatives of the higher order, applied on the property (32), are defined as follows:

(k)
0
S[R] · 0S[R]T =

k−3∑
j=1

dj

d tj

⎧⎪⎪⎨⎪⎪⎩
[k−( j+1)]

0
S[R] · 0S[R]T · [ω×]

⎫⎪⎪⎬⎪⎪⎭ · δk−1 +
dk−2

d tk−2

{
[ω×] · [ω×]} · δk +

(k−1)
[ω×] +

(k−1)
0
S[R] · 0S[R]T · [ω×],

where k ≥ 2, and δk =
{
(0, when k ≤ 2) and (1, when k > 2)

} (34)

In advanced kinematics and dynamics, the time derivatives of the higher order for rotation
matrices and position vectors must be used according to [10–13] as follows:

(k)
0
S[R]

[
qj(t) · Δ j

]
=

6∑
j=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ∂

∂
(m)
qj

(m){
0
S[R]

}
· Δ j ·

(k)
qj

⎫⎪⎪⎪⎬⎪⎪⎪⎭+
6∑

j=1

k−1∑
r=1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r∏

p=1
(k−p)

p! ·
⎧⎪⎪⎨⎪⎪⎩ p!·m!
(m+p)! · ∂

∂
(m)
qj

⎧⎪⎪⎨⎪⎪⎩
(m+p)
0
S[R]

⎫⎪⎪⎬⎪⎪⎭ · Δ j ·
(k−p)

qj

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, (35)

43



Symmetry 2019, 11, 1077

(k−1)
vM =

dkrM(t)
d tk

=
6∑

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
(m)

rM

∂
(m)
qj

· (k)qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
6∑

j=1

k−1∑
r=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r∏
p=1

(k− p)

p!
·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p! ·m!
(m + p)!

· ∂
(m+p)

rM

∂
(m)
qj

· (k−p)
qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(36)

where k ≥ 1; k = {1; 2; 3; 4; 5; . . . . . .} and m ≥ (k + 1); m = {2; 3; 4; 5; . . . . . .} (37)

The symbols: (k) and (m) represent the order of the time derivatives applied on expressions (35)
and (36).

The expressions of definition for angular velocities, and then for the angular accelerations are:

.
ω[αu(t) − βv(t) − γw(t)] = d

dt
{
ω[αu(t) − βv(t) − γw(t)]

}
= d

d t

{ .
αu(t) · {exp[0]

} · u(0)+

+
.
βv(t) ·

{
exp[u(t) × αu(t)]

} · v(0) + .
γw(t) ·

{
exp[u(t) × αu(t)] · exp[v(t) × βv(t)]

} ·w(0)
}
.

(38)

By analyzing (38), it is noticed that the expressions of the kinematic parameters that define the
resultant rotation motion are written based on the matrix exponential functions.

Both velocities and accelerations of the higher order are established based on the following vectors:

r0(t) + exp

⎡⎢⎢⎢⎢⎢⎢⎣
∏

{χ={u; v; w}}
exp[χ× δχ]

⎤⎥⎥⎥⎥⎥⎥⎦ · SρC = rC
[
qj(t); j = 1→ k∗ = 6, t

]
= rC(t), (39)

ψ(t) = ψ
[
qj(t) · Δ j; j = 1→ k∗ = 6, t

]
= αu(t) · {exp[0]

} · u(0) + βv(t) · {exp[u(t) × αu(t)]
} · v(0)+

+γw(t) · {exp[u(t) × αu(t)] · exp[v(t) × βv(t)]
} ·w(0) (40)

where the orientation vector is defined according to the following expressions: (8), (19), (27) and (28).
An essential component (28) included in (40), known as the angular transfer matrix, can be defined

as a function of a set of the orientation angles. Considering (39) and (40), it is observed that they
are functions of generalized variables (24) and (25). Actually, the six generalized variables are the
independent parameters of the position and orientation from (24). Using the research from [10–14], the
on-time functions associated to position (39) and orientation (40) vectors and the differential properties
which are compulsory and applied in advanced kinematics and dynamics, have been developed:

dk−1

dtk−1

(
∂rC
∂qj

)
=

(k− 1)! ·m!
(m + k− 1)!

· ∂
(m+k−1)

rC

∂
(m)
qj

, k ≥ 1; m ≥ (k + 1); m = {2; 3; 4; 5; . . . . . .}, (41)

dk−1

dtk−1

⎛⎜⎜⎜⎜⎝∂ψi
∂qj
· Δ j

⎞⎟⎟⎟⎟⎠ = (k− 1)! ·m!
(m + k− 1)!

· ∂
(m+k−3)
ε

∂
(m)
qj

· Δ j =
(k− 1)! ·m!
(m + k− 1)!

· ∂
(m+k−1)

ψ

∂
(m)
qj

· Δ j, (42)

(k−1)
ε (t) =

(k)
ω (t) =

k∗=6∑
j=1

dk−1

d tk−1

⎡⎢⎢⎢⎢⎢⎢⎣∂
(m)

ψ(t)

∂
(m)
qj

· Δ j · ..qj(t)

⎤⎥⎥⎥⎥⎥⎥⎦+ 1
m+1 ·

k∗=n∑
j=1

dk−1

d tk−1

⎡⎢⎢⎢⎢⎢⎢⎣∂
(m+1)

ψ

∂
(m)
qj

· Δ j · .
qj(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =
(k+1)

ψ (t), (43)

(k−1)
aC (t) =

(k)
vC(t) =

k∗=6∑
j=1

dk−1

d tk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂

(m)

rC(t)

∂
(m)
qj

· ..qj(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
k∗=6∑
j=1

dk−1

d tk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

m + 1
· ∂

(m+1)
rC(t)

∂
(m)
qj

· .
qj(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
(k+1)

rC (t), (44)

The symbols k and m from (41) and (42) define the deriving orders with respect to time.
The expression (44) defines the angular and linear accelerations of the higher order for a rigid

solid in general motion. The input expressions and parameters of the higher order are compulsory and
applied in the definition of the dynamic notions of the higher order, such as the momentum, angular
momentum, kinetic energy and acceleration energy of the higher order.
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They have been included in the dynamics theorems which applies to current and sudden motions.
The next step consists of establishing the time variation law for the generalized coordinates

and generalized variables of the higher order. Considering [9], the result is that all parameters from
advanced kinematics are functions of generalized variables as well as of their time derivatives and
they can be developed by using polynomial interpolation functions [13,20]. The following general
form for the polynomial interpolation functions of the higher order is used:

(m−p)
qji(τ) = (−1)p · (τi − τ)p+1

ti · (p + 1)!
· (m)
qji−1 +

(τ− τi−1)
p+1

ti · (p + 1)!
· (m)

qji + δp ·
p∑

k=1

τp−k

(p− k)!
· ajik, (45)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
where p = 0→ m , m− deriving order, m ≥ 2, m = 2, 3, 4, 5, . . . , δp =

{
(0, p = 0); (1; p ≥ 1)

}
j = 1→ n, (degrees o f f reedom − (d.o. f .)); i = 1→ s , (intervals o f motion trajectories)

τ− actual time variable, ti = τi − τi−1 (time to each trajectory interval)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (46)

For every trajectory interval (i = 1→ s), the number of unknowns is (m + 1), and their significance
is: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ajik

)
f or k = 1→ m ; and

(
(m)

qji−1

)
f or i = 2→ s

where
(
ajik

)
− integration constants, and

(
(m)

qji−1

)
− generalized accelerations o f (m) order

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭, (47)

To determine the unknowns, (50) is required to apply geometrical and kinematical constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(τ0)⇒
(m−p)
qj0 , p = 0→ m; (τs)⇒

{
(m)
qjs , qjs

}

(τi)⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2)
qji − generalized accelerations
(m−p)

qji(τ
+) =

(m−p)
qji+1(τ

−) , p = 0→ m, continuity conditions
all conditions are applied to each (τi), where i = 1→ s− 1

, (48)

The kinematical constrains that can be applied in the case of polynomials of the higher order are:

(τ0) ⇒
{
h0k = qj0k ; v0k =

.
qj0k ; a0k =

..
qj0k;

..
a0k =

....
q j0k

}
, (τn) ⇒

{
hnk = qjnk ;

..
ank =

....
q jnk

}
, (49)

(τi)⇒
⎧⎪⎪⎨⎪⎪⎩ aik =

..
qjik ; i = 1→ n− 1 ; i ⊂ k ; k = 1→ m{

hik(t+) = hi+1k(t−); vik(t+) = vi+1k(t−) ;
.
aik(t+) =

.
ai+1k(t−)

}
where k = 1→ m is the sequence o f the working process

(50)

Finally, Expression (45) is substituted in the advanced notions of kinematics and dynamics.

2.3. The Mass Properties

In order to find an exact geometrical solution, it is considered that the rigid body consists of an
infinite number of material particles for which the distance between two points is maintained constant,
regardless of the forces that act upon it. The elementary particles, characterized by elementary and
infinitesimal mass, have a continuous distribution in the geometrical shape of the solid body.

When the density is constant inside the rigid structure, the solid rigid is homogeneous. When
the integration limits applied on the geometrical outline are well defined, it results in a homogeneous
body with a simple or regular shape. In this last case, the geometrical and mass integrals are applied.
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An essential aspect in advanced dynamics is represented by mass properties [13] The mass and
the position of the mass center is determined in relation with O′0x′0y′0z′0 ≡ {0′} frame, as presented:

M =

∫
dm; where dm =

{
ρσ · dσ}; σ = {V; A; L}, (51)

ρC(t) =

∫
ρM(t) · dm∫

dm
=

∫
ρM(t) · dm

M
, (52)

In the expression (51), ρσ defines the density of the material, where the symbol σ represents, by
case, the volume (V), the area (A) or the length (L) of the rigid body subjected to study

The position of the mass center, with respect to the O0x0y0z0 ≡ {0} reference frame, is expressed at
first in a classical form, and then by using matrix exponentials as:

rC(t) =
∫

rM(t)·dm∫
dm

=

∫
rM(t)·dm

M = r0(t) + ρC(t) = r0(t) + 0
S[R](t) · SρC =

= r0(t) + exp

⎡⎢⎢⎢⎢⎣ ∏
{χ={u; v; w}}

exp[χ× δχ]
⎤⎥⎥⎥⎥⎦ · SρC = r0(t) +

{
exp[u× αu] · exp[v× βv] · exp[w× γw]

} · SρC.

(53)
By applying the time derivative on (53), the linear velocity and acceleration of the mass center are

determined:

vC(t) =
.
rC(t) =

.
r0(t) +

.
ρC(t) =

.
r0(t) + 0

S

[ .
R
]
(t) · 0S[R]T(t) · 0S[R](t) · SρC =

= v0(t) +ω(t) × ρC(t) =
d
d t

⎧⎪⎨⎪⎩r0(t) +
⎧⎪⎨⎪⎩exp

⎡⎢⎢⎢⎢⎣ ∏
{χ={u; v; w}}

exp[χ× δχ]
⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ · SρC

⎫⎪⎬⎪⎭ =

= d
d t

{
r0(t) +

{
exp[u× αu] · exp[v× βv] · exp[w× γw]

} · SρC
}
.

(54)

Using classical Formulations (52) and (53), the result is the expressions for the acceleration of mass
center:

aC =
.
vC(t) =

.
v0(t) +

d
d t

[
ω(t) × ρC(t)

]
= a0 + ε× ρC +ω×ω× ρC (55)

In dynamic modeling, the following expression is necessary:

d
dt

(
ρM(t)

)
= d

dt

(
ρC(t) + r∗(t)

)
= d

dt

(
0
S[R](t) ·

(
SρC + Sr∗

))
=

= ω(t) × ρM(t) = ω(t) × ρC(t) +ω(t) × r∗(t).
(56)

In the case of rigid bodies involved in rotation motion, the inertia property is highlighted by the
mechanical moments of inertia [12–14]. According to Figure 2, the position of the elementary mass
(dm) relative to the mass center is defined by means of the vector: r∗ = r∗(t).

Considering (52), the following mass property is obtained:∫
r∗(t) · dm = 0

S[R](t) ·
∫

Sr∗ · dm = 0. (57)

Based on research [12,13], the inertial tensor and its variation law relative to the concurrent frames
applied in the mass center: {S∗} and {0∗}OR ≡ {0′}OR is established, according to:

I∗S =

∫
(r∗×) · (r∗×)T · dm = 0

S[R] · SI∗S · 0S[R]T, (58)
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where SI∗S is inertial tensor axial and centrifugal of the body (S) in with relation with {S∗} frame, applied
in the mass center (C), having the property: {S∗}OR ≡ {S}OR:

SI∗S =

∫ (
Sr∗×

)
·
(
Sr∗×

)T · dm, (59)

Since the dynamic study refers to the absolute motion, the use of the following expressions of the
inertial tensor are required:

I′S = 0
S[R] · SIS · 0S[R]T = I′SC + I∗S,

∫ (
SρM×

)
·
(
SρM×

)T · dm = SIS and I′SC = M ·
(
ρC×

)
·
(
ρC×

)T
. (60)

The matrix expression (60) represents the generalized variation law of the inertial tensor axial and
centrifugal with respect to the frame {0′}. Further, in the expression (60), I′SC is the inertia matrix axial
and centrifugal of the mass center relative to {0′}. The inertial tensor axial and centrifugal is defined
with respect to the absolute frame {0}OR = {0′}OR, as presented below:

IS =

∫
(rM×) · (rM×)T · dm = M · (r0×) · (r0×)T + I′S = ISO + I′S = ISO + I′SC + I∗S, (61)

In the Expression (61), ISO represents the inertia matrix containing axial and centrifugal inertia
moments, which is determined with respect to the fixed system {0}.
3. Higher Order Acceleration Energies

The term, advanced notions, from analytical dynamics presented in this paper refers to the motion
energies whose central functions are the higher order accelerations. They have been developing in
any sudden and transitory motion of mechanical systems. By having Appell’s function as the starting
point [1,2], a function which was highlighted in 1899 and that is also known as the kinetic energy
of accelerations, new mathematical formulations on the expressions for acceleration energies of the
first, second, and third order have been developed [10,14]. In this section, they are presented only
in an explicit form. From a physical point of view, the acceleration energy is expressed as

〈
J/s2

〉
and represents the mechanical power developed by a mechanical system per time unit. By applying
certain constraints, the acceleration energy can also be defined as the second order time derivative
applied on the kinetic energy corresponding to the whole mechanical system. In the following, based
on [10,14], the acceleration energies of the higher order are defined. They characterize the complex
mechanical systems and include among others, the robots. The author established the acceleration
energy corresponding to a rigid body involved in general motion, in a generalized form [10,14], also
called the first order acceleration energy and defined with:

E(1)
A = 1

2 ·
∫

a2
M · dm = 1

2 ·
∫ .

v
T
M ·

.
vM · dm = 1

2 ·
∫

Trace
[ .
vM ·

.
v

T
M

]
· dm, aM = a0 + ε× ρM +ω×ω× ρM (62)

By developing Expression (71), the first three terms are obtained:

1
2
·
∫

aT
0 · a0 · dm =

1
2
·M · aT

0 · a0 =
1
2
·M · a2

0, (63)

1
2
·
∫

aT
0 ·

(
ε× ρM

)
· dm =

1
2
·
∫ (
ε× ρM

)T · a0 · dm =
1
2
·M · a0 ·

(
ε× ρC

)
, (64)

1
2
·
∫

aT
0 ·

(
ω×ω× ρM

)
· dm =

1
2
·
∫ (
ω×ω× ρM

)T · a0 · dm =
1
2
·M · a0 ·

(
ω×ω× ρC

)
. (65)
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The following three components define the resultant rotation. Among these, the first two contain
the angular velocity and acceleration. The defining expressions are shown below:

1
2
·
∫ (
ε× ρM

)T ·
(
ε× ρM

)
· dm =

1
2
· εT ·

{∫ (
ρM×

)
·
(
ρM×

)T · dm
}
· ε = 1

2
· εT · I′S · ε (66)

Performing some transformations and developing the terms from (76), the result is:

E(1ωε)
A = 1

2 ·
∫ (
ε× ρM

)T ·
(
ω×ω× ρM

)
· dm = 1

2 · εT · (ω×) ·
[∫ (
ρM×

)
·
(
ρM×

)T · dm
]
·ω = 1

2 · εT ·
(
ω× I′S ·ω

)
. (67)

The last component, corresponding to rotation motion, exclusively contains the angular velocity:

E(1ω4)
A =

1
2
·ωT ·

[
ωT · I′S ·ω

]
·ω =

1
2
·ωT ·

[
ωT · Trace

(
I′pS

)
·ω−ωT · I′pS ·ω

]
·ω. (68)

The acceleration energy of the first order can be written in the following final form:

E(1)
A = 1

2 ·M · aT
0 · a0 + M · aT

0 ·
(
ε× ρC

)
+ M · aT

0 ·
(
ω×ω× ρC

)
+ 1

2 · εT · I′S · ε+
+εT ·

(
ω× I′S ·ω

)
+ 1

2 ·ωT ·
[
ωT · I′S ·ω

]
·ω.

(69)

If the following conditions are met: O ≡ C, ρC = 0, and I′S ≡ I∗S, then the mobile reference frame
is applied in the mass center of the rigid body and the position of the elementary particle (dm) with
respect to this frame is known, as well as the inertial tensor axial and centrifugal I′S ≡ I∗S with respect to
the mass center. Thus, (69) defines the first order acceleration energy in a generalized form:

E(1)
A =

1
2
·M · aT

C · aC +
1
2
· εT · I∗S · ε+ εT ·

(
ω× I∗S ·ω

)
+

1
2
·ωT ·

[
ωT · I∗S ·ω

]
·ω, (70)

The expression (70) represents a reinterpretation of König’s theorem for the acceleration energy
of the first order. In the case of multibody systems (which also includes robots), the expression of
acceleration energy of the first order (69) is determined according to:

E(1)
A

[
θ(t);

.

θ(t);
..

θ(t)
]
=

= (−1)ΔM · 1−ΔM
1+3·ΔM

n∑
i=1

{{
1
2 ·Mi · (i)

.
vT

Ci
· (i)

.
vCi

}
+ Δ2

M ·
{

1
2 · (i)

.
ωT

i ·
[
(i)I∗i · (i)

.
ωi +

(
(i)ωi × (i)I∗i · (i)ωi

)]}}
+

+Δ2
M ·

n∑
i=1

{
1
2 · (i)

.
ωT

i ·
(
(i)ωi × (i)I∗i · (i)ωi

)}
+ Δ2

M ·
n∑

i=1

{
1
2 · (i)ωi

T ·
[
(i)ωi

T · (i)I∗i · (i)ωi
]
· (i)ωi

}
where ΔM =

{
(−1, General motion); (0, Translation motion); (1, Rotation motion)

}
,

and i = 1→ n is the number of kinetic assemblies that compose the mechanical system.

(71)

Considering the advanced kinematics notions, the components of acceleration energy of the first
order are:

E(1)TR
A = 1

2 ·
n∑

i=1
Mi · a2

Ci
=

= 1
2 ·

n∑
i=1

Mi·
⎧⎪⎪⎪⎨⎪⎪⎪⎩

n∑
j=1

n∑
p=1

⎡⎢⎢⎢⎢⎢⎢⎣ ∂2
(m)

rCi

∂
(m)
qj ·∂

(m)
qp

· ..qj ·
..
qp + 1

(m+1)2 ·
∂2

(m+1)
rCi

∂
(m)
qj ·∂

(m)
qp

· .
qj ·

.
qp +

1
m+1 ·

∂
(m)

rCi

∂
(m)
qj

· ∂
(m+1)

rCi

∂
(m)
qp

· ..qj ·
.
qp

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(72)

E(1)ROTε
A =

1
2
·

n∑
i=1

εi
T · I∗i · εi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
2
·

n∑
i=1

n∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
(m)

ψi

∂
(m)
qj

· Δ j · ..qj +
1

m + 1
· ∂

(m+1)

ψi

∂
(m)
qj

· Δ j · .
qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

· I∗i · εi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, (73)
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I∗i · εi = I∗i ·
n∑

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
(m)

ψi

∂
(m)
qj

· Δ j · ..qj +
1

m + 1
· ∂

(m+1)

ψi

∂
(m)
qj

· Δ j · .
qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (74)

E(1)ROTωε
A =

n∑
i=1

εi
T ·

(
ωi × I∗i ·ωi

)
=

n∑
i=1

n∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
(m)

ψi

∂
(m)
qj

· Δ j · ..qj +
1

m + 1
· ∂

(m+1)

ψi

∂
(m)
qj

· Δ j · .
qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

· E(1)ROTωω
A , (75)

E(1)ROTωω
A =

(
ωi × I∗i ·ωi

)
=

n∑
i=1

n∑
j=1

n∑
p=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂
(m)

ψi

∂
(m)
qj

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣I
∗
i ·
∂
(m)

ψi

∂
(m)
qp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · Δ j · Δp · .
qj ·

.
qp. (76)

According research [10,14], the sudden motion of MBS (multibody system), the transient motion
phases, as well as the mechanical systems subjected to the action of a system of external forces, with a
time variation law [19,20], are characterized by linear and angular accelerations of the higher order.
Thus, the acceleration energy of the second order was also developed. According to the same research,
the explicit form for the acceleration energy of the second order is presented below:

E(2)
A

[
θ(t);

.

θ(t);
..

θ(t);
...
θ(t)

]
=

= (−1)ΔM · 1−ΔM
1+3·ΔM

· n∑
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1
2 ·Mi · i

..
vT
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· i
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}
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A

[
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.
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..

θ
2
(t)

]
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A
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.

θ
6
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..

θ(t)
]
+

+Δ2
M ·

n∑
i=1

{
1
2 · i

..
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i · iI∗i · i
..
ωi + 2 · iωT

i ·
(

i
..
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.
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)
+ i

.
ωT

i ·
(

i
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)
− iωT

i ·
(

i
..
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i · iI∗i · iωi

)
· iωi

}
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(77)

where E(2)
A

[
θ(t);

.

θ(t);
..

θ
2
(t)

]
=

= Δ2
M ·
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.
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.
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2 ·
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i
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(
iI∗pi
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(
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(78)

and E(2)
A

[
θ(t);

.

θ
6
(t);

..

θ(t)
]
=

= Δ2
M ·

{
n∑

i=1
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i ·

[
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i ·
(

i
.
ωi × iI∗pi · iωi

)]
· iωi+
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i ·
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} (79)

The study of advanced dynamics is extended to the acceleration energy of the third order.
According to [10,14], an explicit equation for the third order acceleration energy is developed:

E(3)
A
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.
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..

θ(t);
...
θ(t);

....
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(80)

An important aspect that has to be mentioned is that the component E(3)
A

[
θ(t);

.

θ(t);
..

θ(t);
...
θ

2
(t)

]
of

the acceleration energy of the third order is not included in the definition Equation (80). In the case
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of the multibody systems, the acceleration energies of the higher order are determined based on the
following generalized expression:

E(p)
A
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(81)

where p ≥ 1 , k ≥ 1,
{
p; k

}
= {1; 2; 3; . . .}, (p) − order o f acceleration, (k) − derivation order

and
(0)

E(p)
A

⎡⎢⎢⎢⎢⎢⎢⎣θ(t);
.

θ(t); · · · ;
(p+k)
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.
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⎤⎥⎥⎥⎥⎥⎥⎦ (82)

Expression (81) includes the inertia tensor planar and centrifugal, iI∗pi =
∫

ir∗i · ir∗Ti · dm.
The expressions for the acceleration energies of the higher order, according to [13] are further

included in the equations of advanced dynamics corresponding to the mechanical systems which are
subjected to fast and sudden movements.

4. Discussion on the Results

This section was introduced exclusively for highlighting the existence of the accelerations and
acceleration energies of the higher order. For this purpose, according to Figure 4, the rotation motion
of the arm of the serial robot Fanuc LR Mate 100 iB, on the angular interval (0, π) was considered. The
total time of the rotation motion was of 1.7 s.

 

Figure 4. Fanuc LR Mate 100 iB robot. The location of the transducer on the robot arm.

For highlighting the time variation law of the acceleration energies of the higher order, the
polynomial interpolating functions of the fifth order have been applied in accordance with (48)–(51). This
method requires, according to kinematical constraints (51), the establishment through measurements of
the angular acceleration corresponding to robot arm,

..
q3. As a result, in the first step, the time variation

law corresponding to the tangential component of the acceleration for the characteristic point belonging
to the robot arm has been determined at every 0.033 s. The experimental data was collected by using
a mono-axial accelerometer. The robot arm (more precisely the third kinetic ensemble of the robot)
was engaged in rotation motion at high speeds and by using the data collected by the accelerometer.
The time variation law for the tangential component of the acceleration of the characteristic point was
graphically represented. Considering the rotation motion, in the next step the time variation law of
the angular acceleration

..
q3(τ) was also represented. Both graphical representations are illustrated in

Figure 5.
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Figure 5. (a) Tangential accelerations variation law. (b) Generalized accelerations variation law. The
above presented parameters were also determined on the same angular interval (0, π), by applying the
sudden stop. The graphical representation is illustrated in Figure 6.
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Figure 6. (a) The tangential first order accelerations variation law; (b) The generalized accelerations of
first order variation law.

According to Figure 5, the maximum value for the linear acceleration exceeds 15
〈
m/s2

〉
, which

defines a sudden motion. The authors have considered, for this application, that the motion can be
described by using the polynomial interpolating functions of the fifth order:

....
q ji(τ) =

τi − τ
ti
· ....q ji(τi−1) +

τ− τi−1

ti
· ....q ji(τi) , (83)

...
q ji(τ) = − (τi − τ)2

2 · ti
· ....q ji−1 +

(τ− τi−1)
2

2 · ti
· ....q ji + aji1, (84)

..
qji(τ) =

(τi − τ)3

6 · ti
· ....q ji−1 +

(τ− τi−1)
3

6 · ti
· ....q ji + aji1 · τ + aji2, (85)

.
qji(τ) = − (τi − τ)4

24 · ti
· ....q ji−1 +

(τ− τi−1)
4

24 · ti
· ....q ji + aji1 · τ

2

2
+ aji2 · τ+ aji3, (86)

qji(τ) =
(τi − τ)5

120 · ti
· ....q ji−1 +

(τ− τi−1)
5

120 · ti
· ....q ji + aji1 · τ

3

6
+ aji2 · τ

2

2
+ aji3 · τ+ aji4. (87)

where ajip, p = 1→ 4 , are the integration constants which are determined from the geometrical and
kinematical constraints (50), with an important role in ensuring the continuity of the rotation motion on
the angular interval (0, π), characterized by 51 interpolation segments. Every interpolation segment
contains four unknowns, represented by the integration constants. It is obvious that the total number
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of the unknowns is 204. In order to determine the unknowns, according to (50), the numerical values
for the angular acceleration (Figure 5b) were substituted in the functions (83)–(87) presented above.
Considering the large number of results, more exactly 255 polynomial functions, only a few sequences
are illustrated in Tables 1 and 2.

Table 1. The polynomial time functions for the generalized coordinates for the third rotation joint.

Time Intervalτ 〈s〉
Polynomial Time Functions for Generalized Coordinates

{k=1→17, i= 1→51}

q3ik〈rad〉
.
q3ik〈s

−1〉

[0, 0.0195] 2478.916 · τ5 − 2.736 · τ3 + 0.047 · τ2 12394.582 · τ4 − 8.21 · τ2 + 0.094 · τ

[0.585, 0.605]
3792.503 · τ5 − 11239.525 · τ4+
+13301.344 · τ3 − 7864.32 · τ2+

+2331.436 · τ− 277.457

18962.519 · τ4 − 44958.1 · τ3+
+39904.034 · τ2 − 15728.643 · τ+

+2331.436

[1.191 , 1.21]
235.591 · τ5 − 1429.192 · τ4+

+3470.091 · τ3 − 4216.837 · τ2+
+2565.994 · τ− 622.767

1177.959 · τ4 − 5716.771 · τ3+
+10410.273 · τ2 − 8433.675 · τ+

+2565.994

[1.698, 1.718]
−62.678 · τ5 + 538.206 · τ4−
−1849.467 · τ3 + 3177.645 · τ2−
−2727.52 · τ+ 939.274

−313.393 · τ4 + 2152.825 · τ3−
−5548.403 · τ2 + 6355.291 · τ− 2727.52

Table 2. The Polynomial Time Functions for Generalized Variables in Case of the Third Rotation Joint.

Time Intervalτ 〈s〉
Polynomial Time Functions for Generalized Variables

{k=1→17, i=1→51}
..
q3ik〈s

−2〉
...
q3ik〈s

−3〉
....
q 3ik〈s

−4〉

[0, 0.0195] 49578.331 · τ3−
−16.421 · τ+ 0.094 148734.995 · τ2 − 16.421 297469.99 · τ

[0.585, 0.605]
75850.076 · τ3−
−134874.302 · τ2+

+79808.069 · τ− 15728.643

227550.23 · τ2−
−269748.605 · τ+ 79808.069

455100.461 · τ−
−269748.605

[1.191 , 1.21]
4711.839 · τ3−
−17150.314 · τ2+

+20820.546 · τ− 8433.675

14135.518 · τ2−
−34300.628 · τ+ 20820.546

28271.037 · τ−
−34300.628

[1.698, 1.718]
−1253.573 · τ3+
+6458.476 · τ2−

−11096.807 · τ+ 6355.291

−3760.72 · τ2+
+12916.952 · τ− 11096.807

−7521.4407 · τ+
+12916.9529

As a result, the numerical values for the angular acceleration (see Figure 5) were applied, finally
obtaining all of the integration constants. In order to illustrate this step, some sequences containing the
time variation laws of the functions described by Equations (83)–(87) are presented. These results are
included in Tables 1 and 2. Similarly, the polynomial functions are obtained for all the 51 interpolation
segments. As a result, the time variation law for the angular acceleration of the second and third order
are also graphically represented according to Figure 7:
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(a) (b) 

sτ

( ) 3
3q sτ −

sτ

( ) 4
3q sτ −

Figure 7. (a) The variation law of the angular accelerations of second order. (b) The variation law for
the angular accelerations of third order.

Thus, by customizing Expressions (71), (77)–(80) for the considered robot structure, the following
expressions characterizing the acceleration energies of the first, second and third order are:

E(1)
Aik(τ) =

1
2
·
(
M3 · x2

C3 + M3 · z2
C3 +

3I y
)
·
(..
q2

3ik(τ) +
.
q4

3ik(τ)
)
, (88)

E(2)
Aik(τ) =

1
2 ·

(
M3 · x2

C3 + M3 · z2
C3 +

3I y
)
·
[...

q 2
3ik(τ)− 2 · .

q3
3ik(τ) ·

...
q 3ik(τ) + 9 · .

q2
3ik(τ) ·

..
q2

3ik(τ) +
.
q6

3ik(τ)
]

(89)

E(3)
Aik(τ) =

1
2 ·

{(
M3 · x2

C3 + M3 · z2
C3 +

3I y
)
·
[ .
q8

3ik(τ)−8 · .
q5

3ik(τ) ·
...
q 3ik(τ) + 30 · .

q4
3ik(τ) ·

..
q2

3ik(τ)−
−12 · .

q2
3ik(τ) ·

..
q3ik(τ) ·

....
q 3ik(τ) + 30 · .

q4
3ik(τ) ·

..
q2

3ik(τ) − 12 · .
q2

3ik(τ) ·
..
q3ik(τ) ·

....
q 3ik(τ)+

+16 · .
q2

3ik(τ) ·
...
q 2

3ik(τ) + 24 · .
q3ik(τ) ·

..
q2

3ik(τ) ·
...
q 3ik(τ) + 9 · ..q4

3ik(τ) +
....
q 2

3ik(τ)
]} (90)

The obtained results (see example from Tables 1 and 2) regarding the higher order polynomial
functions have been included in the above expressions of the acceleration energies that characterize
the fast rotation motion of the robot arm. The results are represented in Figures 8 and 9:

  
(a) (b) 

sτ sτ

( ) ( )1
A 2

JE
s

τ( )τKE J

Figure 8. (a) The variation law for the kinetic energy. (b) The time variation law of the acceleration
energy of the first order.
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(a) (b) 
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( ) ( )3
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s

τ

Figure 9. (a) The variation law for the acceleration energy of second order; (b) The time variation law
of the acceleration energy of third order.

In the above graphical representations (Figures 8 and 9), the time variation laws for the kinetic
energy are illustrated, as well as the acceleration energies of the first, second and third order for an
application in which the serial Fanuc robot, presented in the Figure 4, is implemented.

5. Conclusions

The main objective of this paper was to highlight some new developments in the field of advanced
dynamics of mechanical systems and higher order dynamic equations. These equations were developed
by using matrix exponentials which proved to have indisputable advantages in the matrix study
of any complex mechanical system. In this paper, new approaches have been proposed based on
differential principles from analytical mechanics by using some important dynamics notions, regarding
the acceleration energies of the first, second and third order. The study was extended to the equations
of the higher order, which provided the possibility of applying the initial motion conditions in the
positions, velocities and accelerations of the first and second order. In order to determine the time
variation laws for the generalized variables and acceleration energies of the higher order, the time
polynomial functions of the fifth order were applied. In Newtonian dynamics, the establishment of
dynamic equations as second order differential equations are performed by considering the kinetic
energy as the main function. In the case of fast and sudden movements, the presence of higher order
accelerations leads to higher order differential equations which define the variation laws in relation
to time in the case of the forces and the driving moments that impose the motion of the mechanical
systems. As a result, the application of acceleration energies highlights, in an explicit and direct form,
the presence of higher-order accelerations, unlike the case where the study was performed considering
kinetic energy.

In accordance to inverse kinematics, also known as the control kinematics of the robots, the use of
polynomial functions leads to the control of the mechanical motion, especially of transitory motions.
These aspects were exemplified in the previous section. Therefore, it was noticed that on the time
interval of 1.7 s, a number of 51 measurements of the tangential acceleration were performed at every
0.033 s. Regarding the polynomial functions, this aspect led to a very good approximation of the
mechanical motion. At the same time, the polynomial functions were substituted in the expressions of
the acceleration energies of the higher order. Therefore, their time variation laws were obtained as
shown in graphical representations from the previous section.

6. Contributions of the Authors

The purpose of this paper was to present some original defining expressions for acceleration
energies of the higher order. These expressions also include the accelerations of the higher order
which define the fast and sudden motions of mechanical systems. The novelty of this paper was in
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determining in an explicit form of the expressions for the acceleration energies based on advanced
kinematic notions and using polynomial interpolation functions of the higher order.

Therefore, the contributions of the main author are highlighted by a great number of expressions
included in the following sections of this paper:

• 2.1. Position and Orientation Parameters. The new expressions are: (10)–(16), (19) and (20), as
well as (24), (27)–(30).

• 2.2. The Kinematic Parameters of Higher Order. The new equations are: (34)–(38) and (42)–(50);
• 3. Higher Order Acceleration Energies. This section contains the new expressions of definition for

the acceleration energy of the first, second and third order in an explicit form: (69)–(82).
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Abstract: We first formulate the mixed backward in time problem in the context of thermoelasticity for
dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding
the uniqueness of the solution for this problem. This is obtained based on some auxiliary results,
namely, four integral identities. The second main result is regarding the temporal behavior of our
thermoelastic body with a dipolar structure. This behavior is studied by means of some relations on
a partition of various parts of the energy associated to the solution of the problem.

Keywords: backward in time problem; dipolar thermoelastic body; uniqueness of solution; Cesaro
means; partition of energies

1. Introduction

In our study, we approach a thermoelastic body having a dipolar structure. This kind of structure
falls within a more general theory, namely, the theory of bodies with microstructure. The first studies
in this context were published by Eringen (see, for instance, references [1,2]). One may deduce the
importance of the dipolar structure due to the large number of published studies dedicated to this
topic, of which we can mention [3–7]. As such, our present work can be considered a continuation in
this respect.

A continuation of the theories of microstructure, is a theory that takes into account the voids in
the materials. It is considered that the initiators of this theory were Nunziato and Cowin, in their
known paper [8]. After that, the number of studies within this topic has grown impressively. We want
to enumerate some of these [9–16]: The first result for the backward in time problem belongs to
Serrin, who approached this problem in the context of Navier–Stokes equations (see [17]). In the
paper [17], we find some uniqueness in the results with regards to the forward in time problem. After
that, the number of studies dedicated to the backward in time problem has increased considerably.
Of particular importance are the works [18–27]. We have to point out that the results obtained by
Ciarletta in [23], and Ciarletta and Chirita in [24] were improved by Quintanilla in [25]. In addition,
Quintanilla approached the question of location in time for solutions to the backward in time problem,
in the context of thermoelasticity of Green and Naghdi [26,27] and the theory of porous thermoelastic

Symmetry 2019, 11, 863; doi:10.3390/sym11070863 www.mdpi.com/journal/symmetry57
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bodies. The elastic porous bodies were also approached by Iovane and Passarella in [28]. The forward
in time problem, in the context of theory for thermomicrostretch elastic solids, was approached by
Passarella and Tibullo in [29]. It is worth noting that the idea of considering non-standard problems,
in the context of the general theory of bodies having a dipolar structure, was inspired by Quintanilla
and Straughan’s work [30]. In [31,32] it is proved that the nonhomogenous temperature field has
a profound influence on the nanobeam mechanics. Additionally, [33] is a recent contribution on
stress-driven nonlocal modeling of thermoelastic nanostructures.

Here is the plane of our study. First of all, we summarize the main equations, the initial conditions,
and the boundary data of the mixed problem. Then, we prove some estimates for the gradient of
classical and dipolar displacements, and for the gradient of the function of voids. In the last part of
our study we prove the main result, namely, the continuous dependence of solutions—with regards to
the coefficients that couple the equations describing the dipolar deformation—with the equations that
describe the behavior of voids. The description of the continuous dependence was possible due to the
definition of an adequate measure.

2. Basic Equations and Conditions

In our paper, we approach a thermoelastic body having a dipolar structure. We will use an
anisotropic body, which is situated in a regular domain D, included in the physical space E3, that
is, the three-dimensional Euclidean space. Consider that the boundary of the domain is a piecewise
smooth surface ∂D. The closure of D is usual denoted by D̄, D̄ = D ∪ ∂D. An orthonormal system of
references is introduced, and then tensors and vectors have components with Latin subscripts over
1, 2, 3. Typical conventions for summation over repeated indices and for derivation operations are
implied. So, a subscript preceded by a comma is for a partial derivative with regards to corresponding
spatial coordinate; while a superposed dot is for a derivative with regards to time variable. All the
functions we use are assumed to be sufficiently regular as necessary. Additionally, if there is no
possibility of confusion, then the dependence of function with regards to its spatial or time variables
will be omitted. The evolution of the body with a dipolar structure will be described with the help of
the following specific variables:

ui(x, t), φij(x, t), θ(x, t), (x, t) ∈ D × [0, t0). (1)

Here, we denoted by ui the components of the displacement vector field, by φij the components of the
dipolar displacement tensor field, and by θ the absolute temperature.

Using the above variables ui(x, t), and φij(x, t) we will introduce the components of the tensors
of strain, namely, εij, κij, and χijk, as follows:

2εij = uj,i + ui,j, κij = uj,i − φij, χijk = φij,k. (2)

All our considerations are made within a linear theory, therefore it is natural to consider that the
Helmholtz’s free energy is a quadratic form with regards to its independent constitutive variables.
The Helmholtz’s free energy in the reference configuration will be denoted by W. So, in accordance
with the principle of conservation of energy, we develop in series the function W and we keep the
terms only until the second order. Because the reference state was assumed to be free of loadings, we
deduce that the Helmholtz’s free energy per mass can be considered of the following form (see [30]):

W = 1
2 Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr +

1
2 Bijmnκijκmn

+Gijmnrκijχmnr +
1
2 Cijkmnrχijkχmnr − aijεijθ − bijκijθ − cijkχijkθ − 1

2 cθ2.
(3)

We will use this form of free energy used in the entropy production inequality and deduce the
motion equations. In addition, from the same inequality, the constitutive equations are obtained. These
equations express the tensors of stress with the help of the tensors of deformation. We will denote the
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components of the stress measures by τij, ηij, and μijk. In this way, the constitutive equations establish
a connection between the tensors τij, ηij, μijk and the tensors εij, κij, χijk.

We will use a procedure similar to that used by Green and Rivlin in [6], so that considering the
Helmholtz’ free energy (3) we deduce the next constitutive equations

τij =
∂W
∂εij

= Aijmnεmn + Dmnijκmn + Fmnrijχmnr − aijθ,

ηij =
∂W
∂κij

= Dijmnεmn + Bijmnκmn + Gijmnrχmnr − bijθ,

μijk =
∂W

∂χijk
=Fijkmnεmn+Gmnijkκmn+Cijkmnrχmnr−cijkθ,

η = − ∂W
∂θ = aijεij + bijκij + cijkχijk + cθ,

(4)

which are satisfied in D × [0, t0). Here, we denoted by η the entropy per unit mass.
For the vector of heat flux, having the components qi we have a classical constitutive relation, namely,

qi = Kijθ,j, (5)

where Kij is the thermal conductivity symmetric tensor.
Also, we can deduce the main equations that govern the thermoelasticity of bodies with a dipolar

structure, namely (see [5,6]):
- the motion equations:

(
τij + ηij

)
,j + ρ fi = ρüi,

μijk,i + ηjk + ρgjk = Ikrφ̈jr; (6)

- the equation of energy:

ρT0η̇ = qi,i + ρr. (7)

The signification of the notations that we introduced in preceding equations is as follows: ρ,
the density of mass, which is a constant; Iij, the symmetric tensor of microinertia; k, the intrinsic
inertia; εij, κij, χijk, the strain tensors; τij, ηij, μijk, the stress tensors; fi, the body forces; gjk, the
dipolar charges; Aijmn, Bijmn, ..., aij, the functions that describe the properties of the material in terms
of elasticity. Suppose the following symmetry relations take place:

Aijmn = Ajimn = Amnij, Bijmn = Bmnij, aij = aji,
Cijkmnr = Cmnrijk, Fijkmn = Fijknm, Dijmn = Dijnm.

(8)

Assuming that there are no supply terms and taking into account the constitutive Equations (4)
and (5) and the kinematic Equation (2), Equations (6) and (7) become

ρüi =
[(

Cijmn + Gijmn
)
un,m +

(
Gmnij + Bijmn

)
(un,m − φmn) +

+
(

Fmnrij + Dijmnr
)

φnr,m −
(
aij + bij

)
θ
]

,j , (9a)

Ikrφ̈jr =
[

Fijkmnun,m+Dmnijk (un,m − φmn) + Aijkmnrφnr,m − cijkθ
]

,i
+

+Gjkmnum,n+Bjkmn(un,m−φmn)+Djkmnrφnr,m−bjkθ, (9b)

Kij
(
θ,j
)

,i = −T0

[
aiju̇i,j + bij

(
u̇j,i − φ̇ij

)
+ cijkφ̇ij,k + cθ̇

]
. (9c)

From now, we will assume that the Equations (2), (4), and (9) will be satisfied on the interval (−∞, 0].
The outward unit normal to the surface ∂D has the components ni. With the help of this normal

we can define the surface traction’s of components ti, the surface couple of components μjk, and the
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flux of heat, q. All of this makes sense in every point of regularity of the boundary ∂D and has the
following expressions

ti =
(
τij + ηij

)
nj, μjk = μijkni, q = qini. (10)

In close relation to these surface tractions, we consider the following homogeneous boundary
conditions:

ui(x, t) = 0, (x, t) ∈ ∂Du × (−∞, 0], ti = 0, (x, t) ∈ ∂Dc
u × (−∞, 0],

φij(x, t) = 0, (x, t) ∈ ∂Dφ × (−∞, 0], mjk = 0, (x, t) ∈ ∂Dc
φ × (−∞, 0], (11)

θ(x, t) = 0, (x, t) ∈ ∂Dθ × (−∞, 0], q = 0, (x, t) ∈ ∂Dc
θ × (−∞, 0],

where the surfaces ∂Du, ∂Dφ, ∂Dθ , and its complements ∂Dc
u, ∂Dc

φ, ∂Dc
θ are subsurfaces of the border

∂D, which are subject to the following restrictions:

∂D̄u ∪ ∂Dc
u = ∂D̄φ ∪ ∂Dc

φ = ∂D̄θ ∪ ∂Dc
θ = ∂D,

∂Du ∩ ∂Dc
u = ∂Dφ ∩ ∂Dc

φ = ∂Dθ ∩ ∂Dc
θ = ∅.

We still have to add the final restrictions. So, on the closed domain D̄ we have:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), θ(x, 0) = θ0(x),
φij(x, 0) = φ0

ij(x), φ̇ij(x, 0) = φ1
ij(x), (12)

where u0
i (x), u1

i (x), φ0
ij(x), φ1

ij(x), and θ0(x) are continuous prescribed functions in all points where
they are defined. Additionally, these functions are assumed be compatible with conditions (11) on the
appropriate subsets of ∂D.

Let us consider the internal energy density Ψ (see [30]), which has the following expression:

Ψ = 1
2 Aijmnεijεmn + Dijmnεijκmn + Fijmnrεijχmnr+

+ 1
2 Bijmnκijκmn + Gijmnrκijχmnr +

1
2 Cijkmnrχijkχmnr.

(13)

P is denoted the so-called boundary-final value problem, which consists of Equation (9), the boundary
restrictions (11), and the final data (12).

To obtain the results we have proposed, we will have to impose some conditions on the functions
we are dealing with.

So, if Jm(x) is the minimum eigenvalue of the inertia tensor Iij(x), then we need to assume that Jm

and ρ are continuous functions and the constitutive coefficients are of class C1(D). We also assume that:

(a) ρ(x) ≥ a1, Jm(x) ≥ a2, c(x) ≥ c0, where a1, a2, c0 are real positive constants;
(b) the tensor Kij is positive definite;
(c) the internal energy density Ψ is a positive definite quadratic form.

Based on hypothesis (b), we deduce that there exist two positive numbers, Km and KM, so that

Kmθ,iθ,j ≤ Kijθ,iθ,j ≤ KMθ,iθ,j, (14)

and, as a consequence of the hypothesis (c), we can find the positive constants M1 and M2 so that the
next inequality is satisfied:

M1

2

(
εijεij + κijκij + χijkχijk

)
≤ Ψ ≤ M2

2

(
εijεij + κijκij + χijkχijk

)
. (15)
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These hypotheses are not considered as very restrictive, as they are commonly imposed in
mechanics of continuous media.

It is not difficult to equate our boundary-final value problem P with a boundary-initial problem,
denoted by P′, by a convenient change of variables. In this regard, we set h′(t′) = h(t), for t′ = −t.
But, to simplify writing, we will give up the sign “prime” so that the P′ problem will be defined by
the following conditions and equations:

- the motion Equations (9a) and (9b), satisfied in D × [0, ∞);
- the energy equation:

Kij
(
θ,j
)

,i = T0

[
aiju̇i,j + bij

(
u̇j,i − φ̇ij

)
+ cijkφ̇ij,k + cθ̇

]
, in D × [0, ∞); (16)

- the geometric Equation (2), satisfied in D × [0, ∞);
- the constitutive Equation (4), satisfied in D × [0, ∞);
- the initial conditions (11), satisfied in D̄;
- the boundary conditions:

ui(x, t) = 0, (x, t) ∈ ∂Du × [0, ∞), ti = 0, (x, t) ∈ ∂Dc
u × [0, ∞),

φij(x, t) = 0, (x, t) ∈ ∂Dφ × [0, ∞), mjk = 0, (x, t) ∈ ∂Dc
φ × [0, ∞), (17)

θ(x, t) = 0, (x, t) ∈ ∂Dθ × [0, ∞), q = 0, (x, t) ∈ ∂Dc
θ × [0, ∞).

3. Main Result

We first establish some integral identities regarding a solution u =
(
ui, φij, θ

)
of the mixed

problem P′. These will be useful in obtaining the important results of our study.

Proposition 1. If the ordered array u =
(
ui, φij, θ

)
satisfies the mixed problem P′, then the following equality

takes place:

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) +

1
2

cθ2(t)
]

dV =

=
∫

B

[
ρu̇i(0)u̇i(0) + Ijkφ̇jm(0)φ̇km(0) + Ψ(0) +

1
2

cθ2(0)
]

dV + (18)

+
∫ t

0

∫
D

1
T0

Kijθ,i(τ)θ,j(τ)dVdτ, ∀t ∈ [0, ∞).

Proof. Taking into account the kinematics compatibility relations (2) and the differential conditions of
equilibrium (9a) and (9b), we obtain the following equality:

1
2

∂
∂t

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
=

=
[(

τij + ηij
)
u̇j + μijkφ̇jk

]
,i
−
(

τij ε̇ij + ηijκ̇ij + μijkχ̇ijk

)
.

(19)

Taking into account the constitutive Equation (4), the symmetry relations (8), and the expression of the
internal energy density Ψ from (13), the last parentheses in the right-hand side of (19) becomes

(
τij ε̇ij + ηijκ̇ij + μijkχ̇ijk

)
=

∂

∂t

(
Ψ +

1
2

cθ2
)
+

(
1
T0

qjθ

)
,j
− 1

T0
Kijθ,iθ,i. (20)

We substitute Equation (20) into Equation (19), then the resulting equality is integrated on cylinder
[0, t]× D. If we use the theorem of divergence and consider the conditions to the limit (17), we are led
to equality (18), such that the proof of the proposition is finished.
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In a similar way, one can demonstrate the identity that follows, as a complement to identity (18):

∫
D

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t)− 1

2
cθ2(t)

]
dV =

=
∫

D

[
ρu̇i(0)u̇i(0) + Ijkφ̇jm(0)φ̇km(0) + Ψ(0)− 1

2
cθ2(0)

]
dV − (21)

−
∫ t

0

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1
T0

Kijθ,i(τ)θ,j(τ)

}
dVdτ, ∀t ∈ [0, ∞).

To simplify writing, we enter the notation

2F(x, y) = Aijmnεij(x)εmn(y) + Dijmn
[
εij(x)κmn(y) + εij(y)κmn(x)

]
+

+Fijmnr
[
εij(x)χmnr(y) + εij(y)χmnr(x)

]
+ Bijmnκij(x)κmn(y) + (22)

+Gijmnr
[
κij(x)χmnr(y) + κij(y)χmnr(x)

]
+ Cijkmnrχijk(x)χmnr(y).

By using the symmetry relations (8), from (22) we deduce

F(x, y) = F(y, x). (23)

By direct substitution in (22) and taking into account Equation (13), we also obtain

F(τ, τ) = Ψ(τ). (24)

Now, we can prove a result similar to (18), but in the case of homogeneous initial conditions.

Proposition 2. Consider a solution
(
ui, φij, θ

)
of the problem backward in time P′, which corresponds to null

initial data. Then, the next identity takes place

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
− 1

2
cθ2(t)

]
dV =

=
∫

B

[
1
2

Aijmnεij(t)εmn(t) + Dijmnεij(t)κmn(t)+ (25)

+Fijmnrεij(t)χmnr(t) +
1
2

Bijmnκij(t)κmn(t) +

+Gijmnrκij(t)χmnr(t) +
1
2

Cijkmnrχijk(t)χmnr(t)
]

dV,

for all t ∈ [0, ∞).

Proof. By direct calculations, for a fixed t ∈ (0, ∞), we get the identity:

∂

∂t

(
ρu̇i(τ)u̇i(2t − τ) + Ijkφ̇jm(τ)φ̇km(2t − τ)− cθ(τ)θ(2t − τ)

)
=

= ρüi(τ)u̇i(2t − τ) + Ijkφ̈jm(τ)φ̇km(2t − τ) + cθ(τ)θ̇(2t − τ)− (26)

−ρu̇i(τ)üi(2t − τ) + Ijkφ̇jm(τ)φ̈km(2t − τ)− cθ̇(τ)θ(2t − τ).
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Taking into account the kinematic Equation (2), the constitutive Equation (4), the motion Equation (9),
and the symmetry relations (8), we are led to the equality

∂

∂t

(
ρu̇i(τ)u̇i(2t − τ) + Ijkφ̇jm(τ)φ̇km(2t − τ)− cθ(τ)θ(2t − τ)

)
=

=
[(

τij + ηij
)
(τ)u̇i(2t − τ)−

(
τij + ηij

)
(2t − τ)u̇j(τ)+ (27)

+μijkφ̈jk(τ)φ̇jk(2t − τ)− μijkφ̈jk(2t − τ)φ̇jk(τ)−

− 1
T0

θ(τ)qi(2t − τ) +
1
T0

θ(2t − τ)qi(τ)

]
,i
+ F(τ, 2t − τ),

the function F(., .) being defined in (22).
We just need to integrate this equality into [0, t]× D, to keep in mind that the initial data are

null and to use the definition (13), so we get the desired equality (25) and the proof of proposition is
complete.

The following two propositions are also useful in establishing the main outcomes of our study.

Proposition 3. Consider that the ordered array u =
(
ui, φij, θ

)
satisfies the mixed problem P′. Then, the

following equality takes place

∫
D

[
ρui(t)u̇i(t) + Ijkφjm(t)φ̇km(t)−

1
2T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,j

]
dV =

=
∫

D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

∫ t

0

∫
D

ρη(0)θ(τ)dVdτ + (28)

+
∫ t

0

∫
D

[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)− 2Ψ(τ)− cθ2(τ)

]
dVdτ,

for all t ∈ [0, ∞).

Proof. We will consider the constitutive relations (4), the geometric Equation (2), and the motion
Equations (9a) and (9b), we deduce

∂

∂t

(
ρui(t)u̇i(t) + Ijkφjm(t)φ̇km(t)

)
=

= ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + (29)

+
[(

τij(t) + ηij(t)
)
uj(t) + μijk(t)φjk(t)

]
,i
−

−
[(

τij(t) + ηij(t)
)

εij(t) + ηij(t)κij(t) + μijk(t)χijk(t)
]

.

Taking into account definition (13), the last parentheses from the right-hand side of (29) can be restated
in the following form:

τij(t)εij(t) + ηij(t)κij(t) + μijk(t)χijk(t) =

=

(
1
2

cθ2(t) + Ψ(t)
)
+

(
1
T0

θ(t)
∫ t

0
qi(τ)dτ

)
,i
− (30)

− 1
T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,i
− ρη(0)θ(t).

Here, the expression of the entropy η is obtained by integrating its equation of evolution (19), with
regards to time variable.
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We integrate the equality (30) on [0, t]× D, and take into account the data on the border (17) and
the theorem of divergence. As such, we arrive at the proposed equality (29), and the demonstration of
proposition is over.

Proposition 4. Let us consider a solution
(
ui, φij, θ

)
of the mixed problem P′. Then, the following equality

takes place

2
∫

D

[
ρui(t)u̇i(t)+ Ijkφjm(t)φ̇km(t)−

1
2T0

Kij

(∫ t

0
θ(τ)dτ

)
,i

(∫ t

0
θ(τ)dτ

)
,j

]
dV

=
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (31)

+
∫

D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV −

−
∫ t

0

∫
D

ρη(0) [θ(t + τ)− θ(t − τ)] dVdτ,

for all t ∈ [0, ∞).

Proof. We will take into account the geometric relations (2) and the motion Equations (9a) and (9b),
we deduce the following identity

∂

∂t
[ρ (u̇i(t + τ)ui(t − τ) + ui(t + τ)u̇i(t − τ))] +

+
∂

∂t

[
Ijk
(
φ̇jm(t + τ)φkm(t − τ) + φjm(t + τ)φ̇km(t − τ)

)]
=

=
[(

τij + ηij
)
(t + τ)ui(t − τ)−

(
τij + ηij

)
(t − τ)uj(t + τ)+ (32)

+μijk(t + τ)φjk(t − τ)− μijk(t − τ)φjk(t + τ)
]

,i
−

−
[(

τij + ηij
)
(t + τ)εij(t − τ)−

(
τij + ηij

)
(t − τ)εij(t + τ)

]
−

−
[
μijk(t + τ)χijk(t − τ)− μijk(t − τ)χjk(t + τ)

]
.

On the other hand, by using the symmetry Equation (8) and the constitutive relations (4), the last two
brackets receive the following form:

[(
τij + ηij

)
(t + τ)εij(t − τ)−

(
τij + ηij

)
(t − τ)εij(t + τ)

]
+

+
[
μijk(t + τ)χijk(t − τ)− μijk(t − τ)χjk(t + τ)

]
=

=
1
T0

[
θ(t + τ)

∫ t−τ

0
qi(s)ds − θ(t − τ)

∫ t+τ

0
qi(s)ds

]
,i
− (33)

− 1
T0

Kij

[(∫ t+τ

0
θ(s)ds

)
,i

(∫ t−τ

0
θ(s)ds

)
,j
−
(∫ t+τ

0
θ(s)ds

)
,i

(∫ t−τ

0
θ(s)ds

)
,j

]
−

−ρη(0) [θ(t + τ)− θ(t − τ)] .

Here, the expression of the entropy η is obtained by integrating its equation of evolution (19), with
regards to time variable.

Let us integrate the equality (33) on [0, t]× D, and take into account the border data (17) and the
theorem of divergence. As such, we arrive at the proposed equality (31) and the demonstration of the
proposition is over.
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If we combine the results from Equations (25) and (31), then we obtain a new useful equality

2
∫

B

[(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
− cθ2(t)

]
dV =

= −2
∫

D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

+
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (34)

+
∫

D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV +

−
∫ t

0

∫
D

ρη(0) [2θ(τ) + θ(t + τ)− θ(t − τ)] dVdτ,

for all t ∈ [0, ∞).
Based on the previously demonstrated integral identities, we are able to address the main results

of our study. First, we established a result of uniqueness for the solution of the backward in time
problem. As a consequence, we approach the question of localization of the solutions of the backward
in time problem.

Theorem 1. At most, an ordered array u =
(
ui, φij, θ

)
can satisfy the equations and conditions of the backward

problem P′.

Proof. As usual, we will assume, by absurdum, that the problem would admit two solutions.
The difference of the two solutions is also a solution, because the problem P′ is a linear one. Suffice
it to show that this difference is null. For this we have to show that the problem P′, for which the
boundary and initial data are null, admits the null solution. It is clear that for the difference of two
solutions, the boundary and initial conditions become homogeneous.

To simplify writing, we introduce the function M as a measure of the solution, defined by

M(t) =
∫

D

[ ε

2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ (ε + 2)Ψ(t) +

ε

2
cθ2(t)

]
. (35)

Here, ε is a small positive number.
Based on assumptions (a), (b), and (c), it can be deduced that the function M is positive.
Because the initial data are zero, the identity (18) received the simpler form:

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) + 1

2 cθ2(t)
]

dV =

=
∫ t

0

∫
D

1
T0

Kijθ,i(τ)θ,j(τ)dVdτ, ∀t ∈ [0, ∞).
(36)

Analogously, the identity (21) becomes

∫
B

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t)− 1

2
cθ2(t)

]
dV =

= −
∫ t

0

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
− (37)

−bijφ̇ij(τ)θ(τ) +
1
T0

Kijθ,i(τ)θ,j(τ)

}
dVdτ, ∀t ∈ [0, ∞).

If we use Equations (36) and (37), then the function M from (35) becomes

M(t) = −
∫ t

0

∫
D

{
2u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1−ε
T0

Kijθ,i(τ)θ,j(τ)
}

dVdτ, ∀t ∈ [0, ∞).
(38)
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By direct derivation with regards to the variable t in (37), we are led to the following equality:

dM(t)
dt = −2

∫
D

{
u̇i(τ)

[(
aij + bji

)
θ(τ)

]
,j + φ̇ij(τ)

[
cijkθ(τ)

]
,k
−

−bijφ̇ij(τ)θ(τ) +
1−ε
2T0

Kijθ,i(τ)θ,j(τ)
}

dV, ∀t ∈ [0, ∞).
(39)

With the help of Schwarz’ inequality and by using the arithmetic–geometric mean inequality, from (39)
we can deduce the following inequality:

dM(t)
dt ≤ C1

∫
D

[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + cθ2(t)

]
dV+

+ δ−1+ε
T0

∫
D Kijθ,i(τ)θ,j(τ)dV, ∀t ∈ [0, ∞).

(40)

Now, we take into account that the internal energy density Ψ is a positive definite quadratic form,
according to the hypothesis (c), using the definition (35) of the function M and choose δ ≤ 1 − ε. Then,
from (40) we obtain the inequality:

dM(t)
dt

≤ C1

ε

∫
D

ε
[
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t) + cθ2(t)

]
dV ≤ C1

ε
M, (41)

and it is then clear that a solution to this inequality meets the next inequality:

0 ≤ M(t) ≤ M(0)eC1/ε. (42)

We recall that for the difference of the two supposed solutions, the initial conditions are homogeneous,
then we have M(0) = 0, so from (42) we get

M(t) = 0, ∀t ∈ [0, ∞)

and this together with the assumptions leads to the conclusion that our problem has only the solution

ui(t) = 0, φij(t) = 0, θ(t) = 0, ∀t ∈ [0, ∞),

and the proof of Theorem 1 is concluded.

Our final result is dedicated to the partition of various energies associated with the solution of the
backward in time problem P∗. We recall that this problem consists of the equations of motion (9), the
constitutive relations (4), the kinematic Equation (2), the initial data (12), and the boundary restrictions
in their homogeneous form (11).

First, using the procedure outlined at the end of Section 2, we transform the boundary-final
value problem P∗ into the boundary-initial value problem P′. In this way, in what follows, we will
be able to make the considerations only on the problem P′. Let us denote by T the set of of those
thermoelastodynamic processes defined in the cylinder (−∞, 0]× D, which satisfy the restriction

∫
D

1
T0

Kijθ,i(τ)θ,j(τ)dV ≤ C1, (43)

for all t ∈ [0, ∞). Here, C1 is a given positive constant.
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We will introduce the known Cesaro means necessary to evaluate the various types of energies
that can be attached to a solution to the problem P′. So, if

(
ui, φij, θ

)
is a solution of the mixed problem,

then the Cesaro means are:

K(t) =
1
t

∫ t

0

∫
D

[
ρu̇i(τ)u̇i(τ) + Ijkφ̇jm(τ)φ̇jm(τ)

]
dVdτ;

S(t)=
1
t

∫ t

0

∫
D

[
1
2

Aijmnεij(τ)εmn(τ)+Dijmnεij(τ)κmn(τ)+Fijmnrεij(τ)χmnr(τ)+

+
1
2
Bijmnκij(τ)κmn(τ)+Gijmnrκij(τ)χmnr(τ)+

1
2

Cijkmnrχijk(τ)χmnr(τ)

]
dVdτ; (44)

R(t) =
1
t

∫ t

0

∫
D

1
2

c θ2(τ)dVdτ;

D(t) =
1
t

∫ t

0

∫ τ

0

∫
D

1
T0

Kijθ,i(s)θ,j(s)dVds dτ.

In the particular case when meas(∂Du)= 0 and meas(∂Dφ)= 0, it can be determined a rigid
displacement, a rigid dipolar displacement, and a null temperature, which satisfy the equations of
motion (9), the constitutive relations (4), the kinematic relations (2), and verify the homogeneous
boundary conditions (17). In this case, the initial data can be decomposed as follows:

u0
i = u′i + V0

i , u̇0
i = u̇′i + V̇0

i ,

φ0
ij = φ′

ij + Ψ0
ij, φ̇0

ij = φ̇′
ij + Ψ̇0

ij. (45)

The rigid displacements u′i, u̇
′
i, φ′

ij, φ̇′
ij can be computed using the functions

Wi(ω) =
∫

D
ρωiDv, Wjk(ψ) =

∫
D

ImnψmjψnkdV,

such that we have

Wi(V0
i ) = 0, Wi(V̇0

i ) = 0,

Wjk(Ψ
0
ij) = 0, Wjk(Ψ̇

0
ij) = 0. (46)

Together with known notation C1(D), we will use the notation Wn(D) for a Sobolev space defined on
the domain D, and Wn(D) = [Wn(D)]3.

Other new notations:

C1(D) =
{(

ui, φij
)
∈ C1(D)3 × C1(D)9 : ui = 0 on ∂Du, φij = 0 on ∂Dφ;

if meas(∂Du) = 0 and meas(∂Dφ) = 0, then Wi(ui) = 0, Wjk(φ
0
ij) = 0

}
;

C̃1(D) =
{

θ ∈ C1(D) : θ = 0 on ∂Dθ

}
;

W1(D) the completion of C1(D);

W̃1(D) the completion of C̃1(D),

the completion is by means of the original norm of the respective Sobolev space. Based on
definition (13), and taking into account the hypothesis (15), we can obtain the following inequality
(see [34]):

∫
D

Ψ(u)dV ≥ M1

2

∫
D

[
ρuiui + Ijkφjmφkm

]
dV, (47)

for any u =
(
ui, φij

)
∈ W1(D). M1 > 0 is a convenient chosen constant.
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On the other hand, if we take into account the hypothesis (14), we can obtain the next inequality
of Poincare’ type:

∫
D

Kijθ,iθ,jdV ≥ M2

∫
D

θ2dV, (48)

for any θ ∈ W̃1(D). M2 > 0 is a convenient chosen constant.
Let us consider a solution

(
ui, φij, θ

)
to the problem P′ in the particular case when meas(∂Du)= 0

and meas(∂Dφ)= 0. We can represent this solution in the following form:

ui(t, x) = ui(t, x) + u′
i(t, x) + tu̇′

i(t, x), θ(t, x) = ϑ(t, x),
φij(t, x) = ψij(t, x) + φ′

ij(t, x) + tφ̇′
ij(t, x), (t, x) ∈ [0, ∞)× D,

(49)

in which
(
ui, ψij, ϑ

)
∈ W1(D)× W̃1(D). In addition, the ordered array

(
ui, ψij, ϑ

)
satisfies the problem

P′, which corresponds to the following initial data:

ui(0, x) = Vi(x), u̇i(0, x) = V̇i(x), θ(t, x) = ϑ(x),

φij(0, x) = Ψij(x), φ̇ij(0, x) = Ψ̇ij(x), ∀x ∈ D.

We now have everything prepared to address the problem of the equipartition of the various types of
energies associated with the solution to the problem P′.

Theorem 2. Consider a solution
(
ui, φij, θ

)
of the backward in time problem P′. If the initial data satisfy the

following conditions:

u = (ui) ∈ W1(D), u̇ = (u̇i) ∈ W0(D),

φ =
(
φij
)
∈ W1(D), φ̇ =

(
φ̇ij
)
∈ W0(D), θ ∈ W0(D),

then the following three statements are true:
i) The thermal component of energy, R, vanishes as t → ∞:

lim
t→∞

R(t) = 0; (50)

ii) if meas(∂Du)= 0 and meas(∂Dφ)= 0, then we have

lim
t→∞

K(t) = lim
t→∞

S(t) +
1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′

jmφ̇′
km

]
dV, (51)

lim
t→∞

D(t) = 2 lim
t→∞

K(t)− 1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′

jmφ̇′
km

]
dV − E(0) =

= 2 lim
t→∞

S(t) + 1
2

∫
D

[
ρu̇′iu̇

′
i + Ijkφ̇′

jmφ̇′
km

]
dV − E(0);

(52)

iii) if meas(∂Du) �= 0 or meas(∂Dφ) �= 0, then we have

lim
t→∞

K(t) = lim
t→∞

S(t),

lim
t→∞

D(t) = 2 lim
t→∞

K(t)− E(0) = (53)

= 2 lim
t→∞

S(t)− E(0),

where, to simplify writing in (52) and (53), we used the notation:

E(t) =
∫

D

[
1
2

(
ρu̇i(t)u̇i(t) + Ijkφ̇jm(t)φ̇km(t)

)
+ Ψ(t) +

1
2

cθ2(t)
]

dV, (54)
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the internal energy density Ψ being defined in (13).

Proof. Taking into account the relations (18), (54), and (44) we immediately deduce the following
equality:

K(t) + S(t) + R(t) = D(t) + E(0), ∀t ∈ (0, ∞). (55)

Now, we consider the restrictions (43) and (48), the definitions (44), and the notation (54) in order to
deduce the following estimation:

R(t) ≤ T0C1

2M2t
max
x∈D

{c(x)}, ∀t ∈ (0, ∞). (56)

Clearly, since c(x) is a continuous function, we deduce that max
x∈D

{c(x)} is bounded, such that after we

pass to the limit in (56) for t → ∞, we obtain the result (50).
If we consider the identity (34) and use the notations (44), we are led to the the following identity:

K(t)− S(t)− R(t) =

= − 1
2t

∫
D

[
ρui(0)u̇i(0) + Ijkφjm(0)φ̇km(0)

]
dV +

+
1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV + (57)

+
1
4t

∫
D

[
ρui(0)u̇i(2t) + Ijkφjm(0)φ̇km(2t)

]
dV +

− 1
4t

∫ t

0

∫
D

ρη(0) [2θ(τ) + θ(t + τ)− θ(t − τ)] dVdτ,

for all t ∈ [0, ∞).
On the other hand, taking into account the hypothesis (15), the inequalities (43) and (48), and the

identity (18) we obtain the estimates
∫

D
ρu̇i(t)u̇i(t)dV≤2(C1+E(0)),

∫
D

Ijkφ̇jm(t)φ̇km(t)dV≤2(C1+E(0)),

c0

∫
D

ρθ2(t)dV ≤ 2(C1 + E(0)),
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)), (58)

where c0 is from hypothesis (a), C1 is from (43), and E from (54).
In (57) we use the Schwarz’s inequality and taking into account the estimates (58), we pass the

limit—for t → ∞—so we get the equality

lim
t→∞

K(t) = lim
t→∞

S(t) + lim
t→∞

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φ̇km(2t)

]
dV. (59)

In this way, it will be easy to demonstrate the relation (53), if we show that the integral from the
right-hand side of the identity (59) is bounded.

For this aim, we will use the fact that meas(∂Du) �= 0 or meas(∂Dφ) �= 0 and
(
ui, ψij

)
∈ W1(D).

Furthermore, we consider the relations (47), (54), and (18) in order to get the following estimates:

M1

∫
D

ρui(t)ui(t)dV ≤
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)),

M1

∫
D

Ijkφjm(t)φkm(t)dV ≤
∫

D
2Ψ(t)dV ≤ 2(C1 + E(0)),
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such that it is easy, after we apply the Schwarz’s inequality, to deduce

lim
t→∞

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV = 0. (60)

From (59) and (60) we obtain the first result from (53), and after we consider the equality (55), the second
equality from (53) is proven.

Finally, we will prove the equalities (51) and (52). In this regard, we take into account that
meas(∂Du)= 0 and meas(∂Dφ) �= 0 such that with the help of the decompositions (45) and (49), and
conditions (46), we are led to the equality

1
4t

∫
D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV =

=
1
4t

∫
D

ρu̇′iu
′
i(2t)dV +

1
4t

∫
D

ρ
(
u̇′i + V̇0

i

)
ui(2t)dV + (61)

+
1
2

∫
D

ρu̇′iu̇
′
idV +

1
4t

∫
D

Ijkφ̇′
jmφ′

kmdV +

+
1
4t

∫
D

Ijk

(
φ̇′

jm + Ψ̇0
jm

)
ψjk(2t)dV +

1
2

∫
D

Ijkφ̇′
jmφ̇′

kmdV.

Let us observe that relations (47), (54), and (18) involve the estimates

M1

∫
D

ρui(t)ui(t)dV ≤ 2(C1 + E(0)),

M1

∫
D

Ijkψjm(t)ψkm(t)dV ≤ 2(C1 + E(0)),

such that from (61) we are led to the equality

lim
t→∞

1
4t
∫

D

[
ρu̇i(0)ui(2t) + Ijkφ̇jm(0)φkm(2t)

]
dV =

= 1
2

∫
D ρu̇′iu̇

′
idV + 1

2

∫
D Ijkφ̇′

jmφ̇′
kmdV.

(62)

Now, we substitute (62) into Equation (59) and then obtain the relation (51). Lastly, we consider the
relations (50), (51), and (55) in order to obtain (52). With this, the proof of the theorem is completed.

4. Conclusions

We first formulate the mixed backward in time problem in the context of thermoelasticity for
dipolar materials. To prove the consistency of this mixed problem, our first main result is regarding
the uniqueness of the solution for this problem. This is obtained based on some auxiliary results,
namely, four integral identities. The second main result is regarding the temporal behavior of our
thermoelastic body with dipolar structure. This behavior is studied by means of some relations on
partition of various parts of the energy associated to the solution of the problem. After we introduce
the Cesaro means for all parts of the total energy, we can evaluate the asymptotic partition of these
parts. We have to say that the kinetic energy and potential energy become asymptotically equal when
the variable time tends to infinity.
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Abstract: A description of the motion equation of a single two-dimensional finite element used
to model a multi-body system with elastic elements is made in the article. To establish them, the
Lagrange’s equations are used. Obtaining the dynamic response of a system with deformable
components has become important for technical applications in recent decades. These engineering
applications are characterized by high applied loads and high acceleration and velocities. A study of
such mechanical systems leads to the identification of different mechanical phenomena (due to high
deformations, resonance phenomena, and stability). Coriolis effects and relative motions significantly
modify the motion equations and, implicitly, the dynamic response. These effects are highlighted in
this paper for plane motion.

Keywords: multi-body system; finite element method (FEM); linear elastic elements; Lagrange’s
equations; two-dimensional finite element; plane motion

1. Introduction

Finite Element Analysis (FEA) of elastic bodies with overall rigid motion began in the 1970s.
A number of papers analyzed different cases and types of finite elements used in this type of
analysis [1–3]. One-dimensional and three-dimensional finite elements have been developed with
plane motion or three-dimensional motion [4,5]. The field has remained interesting for researchers so
far, with many papers on different aspects of the issue being published. The new field of multi-body
systems (MBS), which has developed in recent decades, has reached the study of mechanical systems
with (some) linear/nonlinear elastic elements. Why is this type of analysis necessary? If the velocities,
accelerations, or loads that a constitutive element of a multi-body system supports are high, the
elasticity of the elements may cause instability phenomena. The classical hypothesis of the rigid
elements, commonly used in the dynamic analysis and synthesis of multi-body systems, no longer
corresponds to the reality. The phenomena of resonance and loss of stability represent classic forms
of manifestation of the elasticity properties. The classical approach involves the use of continuous
mechanical models. Unfortunately, this type of analysis leads to a nonlinear system of differential
equations that cannot be solved analytically in common engineering applications. The most convenient
approach is FEA, a time-validated and frequently used method for analyzing mechanical systems
with elastic elements. However, classical models of static or quasi-static systems do not correspond to
the analysis of multi-body systems, which have rigid motion. The relatively large amount of motion
between elements and Coriolis effects lead to the existence of additional terms in motion equations that
cannot be neglected. These terms are usually strongly nonlinear. As a consequence, proper modeling
of the problem is required [6,7]. The many aspects of a one-dimensional problem are described in [8].
In the following research, we develop a method for a two-dimensional finite element with plane motion.
The motion equations for this type of element are established.

Symmetry 2019, 11, 848; doi:10.3390/sym11070848 www.mdpi.com/journal/symmetry73
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2. Two-Dimensional Finite Element

2.1. Two-Dimensional Model

Let us consider a two-dimensional finite element with a body with the general rigid plane motion
of an MBS. To determine the governing equations for this element, the Lagrange’s equations are used.
The main phase in this type of approach is to obtain the Lagrangian for the one two-dimensional finite
element. The terms necessary to build the Lagrangian are the kinetic energy of the two-dimensional
finite element, the internal energy, and the work done by the concentrated and distributed loads.
The shape function (determined in every case by the type of finite element chosen and the hypothesis
made) will finally determine the form of the matrix coefficients and, as a consequence, the differential
system of the governing motion equations. A basic hypothesis in this study is that the deformations of
the elements of MBS are small enough not to influence the plane rigid motion of the system. Both the
problem of the plane multi-body rigid motion of the system and velocities and the acceleration field
distribution for each element can be solved using the classical method (see [9–11]).

The finite element chosen is related to the local reference frame Ox1x2 (participating with the finite
element in the general plane rigid motion) and to the global reference frame O’X1X2. It is considered
that the vector velocity and acceleration of the origin O related to the global reference system are
known from a previous dynamical analysis. All the bodies are considered to be rigid as is the angular
velocity and angular acceleration of the local reference system. In this way, the fields of velocity and
acceleration are known for each point of each constitutive element of the MBS [12–18].

For one single two-dimensional finite element, the generalized independent coordinates can
be the nodal displacements, depending on the shape function and hypothesis used to express the
displacement of a point in the finite element. The final number of independent coordinates will depend
on this hypothesis and shape function.

Consider the displacement {δ(u, v)} of an arbitrary point M of the domain of the finite element.
If we use the shape function Nij and the vector of the nodal displacements δe,j, the displacements in the
local coordinate system are

u = δ1 = N1 jδe, j; v = δ2 = N2 jδe, j; j = 1, p, (1)

or
δi = Nijδe, j i = 1, 2; j = 1, p, (2)

where the nodal displacement vector of the finite element is labeled e, and δe,j depends on the
independent coordinate chosen to define the element. The number of independent coordinates is p.
For a triangular finite element we have

δT
e = [u1 v1 u2 v2 u3 v3]. (3)

The two lines of the shape function matrix N correspond to the displacements u and v and are
named N(u) = N(1) and N(v) = N(2):

N=

[
N(u)
N(v)

]
=

[
N(1)
N(2)

]
=

[
Nij

]
, i = 1, 2; j = 1, p. (4)

The displacement of the point M(x1,x2), which is arbitrarily chosen, becomes, after deformation,
M’(x’1,x’2) and can be expressed through its components:

x′1 = x1 + u = x1 + δ1; x′2 = x2 + v = x2 + δ2, (5)
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or with respect to the global reference system:

X′1 = X10 + r1ix′i = X1o + r1ixi + r1iδi = X1o + r1ixi + r1iNijδe, j,
X′2 = X20 + r2ix′i = X2o + r2ixi + r2iδi = X2o + r2ixi + r2iNijδe, j,i = 1, 2; j = 1, p,

(6)

or
X′k = Xko + rkixi + rkiNijδe, j, k, i = 1, 2, j = 1, p. (7)

2.2. Lagrangian of an Element

Using (6), the velocity of point M’ can be obtained after differentiation with respect to the time:

.
X
′
k =

.
Xko +

.
rkixi +

.
rkiNijδe, j + rkiNij

.
δe, j, k, i = 1, 2, j = 1, p. (8)

The kinetic energy for one single element due to this velocity is

Ect =
1
2

L∫
0
ρA

.
X
′
k

.
X
′
kdA

= 1
2

L∫
0
ρt

( .
Xko +

.
rkixi +

.
rkiNijδe, j + rkiNij

.
δe, j

)( .
Xko +

.
rklxl +

.
rklNlmδe,m + rklNlm

.
δe,m

)
dA

(9)

where t is the thickness of the element, and ρ is the mass density.
In plane motion, the rotation of the local system of coordinates is expressed by the plane rotation

tensor rij. The columns of this tensor define the positions of the unit vectors of the local reference frame
Oxyz. For plane rotation, these coefficients can be expressed as

r11 = r22 = cosθ; r12 = r21 = − sinθ. (10)

The ortho-normality condition of these unit vectors leads to

rijrkj = rjkrji = δi j, i jk = 1, 2 (11)

where δij is the Kronecker delta (derived from the general three-dimensional transformation).
By differentiation, the following equation will result:

.
rijrkj + rij

.
rkj = 0, i, k = 1, 2. (12)

Denote
ωik =

.
rijrkj, . (13)

the skew-symmetric tensor angular velocity. The relation (12) becomes

ωik +ωki = 0, i, k = 1, 2. (14)

To this corresponds the angular velocity vector components defined by

ω3 = ω21 = −ω12 = ω, ω1 = ω32 = −ω23 = 0, ω2 = ω13 = −ω31 = 0. (15)

The angular velocity vector and the angular acceleration vector have, in plane motion, the same
components in both the local reference system and the global reference system.

The angular acceleration skew symmetric operator it is defined as

εik =
.
ωik =

..
rijrkj +

.
rij

.
rkj, i jk = 1, 2. (16)
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The angular acceleration vector is defined by

ε3 = ε21 = −ε12 =
.
ω = ε. (17)

The other components are null. We shall have

εik = ωik =
..
rijrkj +

.
rij

.
rkj =

..
rijrkj +

.
rijrjlrml

.
rkm =

..
rijrkj −ωilωlk (18)

from where
..
rijrkj = εik +ωilωlk, i jkl = 1, 2. (19)

The internal energy stored is obtained via the relation

Ep =
1
2

L∫
0

σi jεi jdV i, j = 1, 2. (20)

From (20), it is possible to obtain the stiffness matrix depending on the hypothesis and type of
finite element (and consequently, the shape functions) chosen. Here, we present a case as an example;
any other case can be treated in the same manner. The relationship between stress and strain is

σi j = Dikεkj. (21)

If we choose, for example, a rectangular finite element with sides a and b, a displacement field of
the form

u = α1 + α2x + α3xy + α4yv = β1 + β2x + β3xy + β4y (22)

can be used to obtain the stiffness tensor.
The boundary conditions (x = 0, y = 0 = > u = u1, v = v1; x = a, y = 0 = > u = u2, v = v2; x = a, y = b

= > u = u3, v = v3; x = 0, y = b = > u = u4, v = v4;) lead to the following fields for the displacements:

u = (1− ξ)(1− η)u1 + ξ(1− η)u2 + ξηu3 + η(1− ξ)u4

v = (1− ξ)(1− η)v1 + ξ(1− η)v2 + ξηv3 + η(1− ξ)v4.
(23)

Applying the classical laws of linear elasticity [2], the relation between the strain and nodal
displacement are, in this case,

ε11 = − 1−η
a u1 +

1−η
a u2 +

η
a u3 − ηa u4,

ε22 = − 1−ξ
b v1 + −ξb v2 +

ξ
b v3 +

1−ξ
b v4,

ε12 = ε21 = − 1−ξ
b u1 − 1−η

a v1 − ξb u2 +
1−η

a v2 +
ξ
b u3 +

η
a v3 +

1−ξ
b u4 − ηa v4 .

(24)

Using (20), (21), and (24), after some elementary calculus, it is possible to obtain the internal
energy of the form (see [2])

Ep =
1
2
δike,i jδ j i, j = 1, p (25)

The external work of the concentrated load is

W = qe, jδe, j, i = 1, 2, j = 1, p. (26)

Here, qej is the vector of the concentrated loads acting in nodes.
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The external work of the distributed loads is

W =

L∫
0

(piδi)dA =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
L∫

0

piNijdA

⎞⎟⎟⎟⎟⎟⎟⎟⎠δe, j = q∗e, jδe, j, i = 1, 2, j = 1, p, (27)

where the notation

q∗e, j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
L∫

0

piNijdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠δe, j, i = 1, 2, j = 1, p (28)

is used. We have all the data to build the Lagrangian [8,19]

L = Ec − Ep + Wd + Wc, (29)

or, taking into account the relations (9), (24), (25), and (26),

L = 1
2

L∫
0
ρt

( .
Xko +

.
rkixi +

.
rkiNijδe, j + rkiNij

.
δe, j

)( .
Xko +

.
rklxl +

.
rklNlmδe,m + rklNlm

.
δe,m

)
dA

− 1
2δe,ike,i jδe, j + q∗eL, jδe, j + qe,iδe,i.

(30)

3. Motion Equations

Theorem: The motion equations written in the local coordinate system for two-dimensional finite element take
the form

me,i j
..
δe, j + 2cωe,i j

.
δe, j +

(
ke,i j + kεe,i j + kω

2

e,i j

)
δe, j = qe,i + q∗e.i − qεe,i − qω

2

e,i −mo
e,i j

..
xjo (31)

where

me,i j =

∫ L

0
ρtNkiNkjdA, i, j = 1, p, k = 1, 2cωe,i j = 2

L∫
0

NkiωkmNmjρtdA; (32)

kεe,i j =
L∫

0
NkiεkmNmjρtdA; kω

2

e,i j =
L∫

0
NkiωkmωmlNljρtdA; mo

e,i j =
∫ L

0 ρANjidx,i, j = 1, p, k, m, l = 1, 2. (33)

Proof: We apply the Lagrange’s equations in the form

d
dt
∂L

∂
.
δe,i

− ∂L
∂δe,i

= 0. (34)

We obtain the motion equations (an extended presentation can be found in Appendix A):

[∫ L
0 ρtNikNjkdA

] ..
δe, j + 2

⎡⎢⎢⎢⎢⎣ L∫
0

NkiωkmNmjρtdA

⎤⎥⎥⎥⎥⎦ .
δe, j +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ke,i j +

L∫
0

NkiεkmNmjρtdA+

+
L∫

0
NkiωkmωmlNljρtdA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
δe, j

= qe,i + q∗e.i − qεe,i − qω
2

e,i −
(∫ L

0 ρANjidx
)

..
xjo.

(35)

Using the notation mentioned above, it is possible to obtain (30).
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4. Conclusions

In engineering practice, there are frequent cases in which the elements of a device or a machine are
required to operate with high forces or have high accelerations and speeds. In these cases, the elasticity
of the elements can be manifested in such a way as to negatively influence the working process of the
assembly. An analysis of the MBS motion in such conditions is required. In this work, we determined
the motion equations for a two-dimensional finite element with plane motion. This case often occurs
in practice. Most of the technical systems have elements operating in planar motion. In this case, a
system of differential equations with matrix coefficients that can be strongly nonlinear is obtained.
The mass tensor and the classical rigidity tensor are symmetrical matrices, while the Coriolis effects
tensor is skew-symmetric. There are also terms that change the classical stiffness of the element and
additional inertial terms. If we use FEA to obtain the motion equations for one single element in plane
motion, we obtain a system of second-order differential equations, as presented in (30). Generally, this
system is strongly nonlinear, with the matrix coefficients of the system depending on time and on the
position of the system. For a usual engineering application, some aspects of these equations can cause
difficulties. We highlight some properties of this system:

• The classical inertia tensor me,i j is a symmetrical tensor;
• The damping tensor cωe,i j is a skew symmetric tensor; this represents the effect of the accelerations

due to the Coriolis effects (relative motions with respect to the mobile reference co-ordinate system;
• The stiffness tensor ke,i j is a symmetric tensor; this tensor is modify by additional terms depending

on the general plane rotation of the element, becoming ke,i j + kεe,i j + kω
2

e,i j;

• The vector of the generalized loads contains some supplementary terms due to inertia of finite

elements being in rigid motion; these are −qεe,i − qω
2

e,i −mo
e,i j

..
xjo.

The common method used to solve this system is to linearize this system, considering the tensor
coefficients as being constant for very short time intervals (rigid motion freezing). In this way, it is
possible to obtain a system of differential equations with constant coefficients. To solve this, usual
and well-known methods can be used. There can be singularities due to the inertia term affecting the
stiffness matrix [20].
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Appendix A

The derivatives of the Lagrangian:

∂L
∂

.
δe,i

=
L∫

0
ρ

.
XkorklNlmtdA +

L∫
0
ρA

.
rkixirklNlmtdA +

L∫
0
ρ

.
rkiNijδe, jrklNlmtdA

+
L∫

0
ρrkiNij

.
δe, jrklNlmtdA

− ∂L∂δe,i
= − .

Xko
.
rkl

⎛⎜⎜⎜⎜⎝ L∫
0

NlmρtdA

⎞⎟⎟⎟⎟⎠− .
rki

.
rkl

⎛⎜⎜⎜⎜⎝ L∫
0

xiNlmρtdA

⎞⎟⎟⎟⎟⎠− .
rki

.
rkl

⎛⎜⎜⎜⎜⎝ L∫
0

NijNlmρtdA

⎞⎟⎟⎟⎟⎠δe, j

− .
rkirkl

⎛⎜⎜⎜⎜⎝ L∫
0

NijNlmρtdA

⎞⎟⎟⎟⎟⎠ .
δe,m.

(A1)
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Applying d
dt

(
∂L
∂

.
δe,i

)
− ∂L
∂δe,i
= 0 obtains

⎛⎜⎜⎜⎜⎝ L∫
0

NlmρtdA

⎞⎟⎟⎟⎟⎠rkl
..
Xko+

..
rkirkl

⎛⎜⎜⎜⎜⎝ L∫
0

xiNlmρtdA

⎞⎟⎟⎟⎟⎠+..
rkirkl

⎛⎜⎜⎜⎜⎝ L∫
0

NijNlmρtdA

⎞⎟⎟⎟⎟⎠δe, j+2
.
rkirki

⎛⎜⎜⎜⎜⎝ L∫
0

NijNijρtdA

⎞⎟⎟⎟⎟⎠ .
δe, j

+rkirkl

⎛⎜⎜⎜⎜⎝ L∫
0

NijNlmρtdA

⎞⎟⎟⎟⎟⎠ ..
δe, j − (qe,i + q∗e.i) + ke,i jδe, j = 0;(∫ L

0 ρtNikNjkdA
) ..
δe, j + 2ω

(∫ L
0 ρtN2iN1 jdA− ∫ L

0 ρtN1iN2 jdA
) .
δe, j+[

ke,i j + ε
(∫ L

0 ρtN2iN1 jdA− ∫ L
0 ρtN1iN2 jdA

)
−ω2

(∫ L
0 ρtN1iN1 jdA +

∫ L
0 ρtN2iN2 jdA

)]
δe, j

= qe,i + q∗e.i − qεe,i − qω
2

e,i −mo
e,i j

..
xjo,

(A2)

or
me,i j

..
δe, j + 2ω

(
m(21)

i j −m(12)
i j

) .
δe, j +

[
ke,i j + ε

(
m(21)

i j −m(12)
i j

)
−ω2

(
m(11)

i j + m(22)
i j

)]
δe, j = (A3)
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Abstract: Coefficient of variation (CV) is a simple but useful statistical tool to make comparisons
about the independent populations in many research areas. In this study, firstly, we proposed the
asymptotic distribution for the ratio of the CVs of two separate symmetric or asymmetric populations.
Then, we derived the asymptotic confidence interval and test statistic for hypothesis testing about
the ratio of the CVs of these populations. Finally, the performance of the introduced approach was
studied through simulation study.

Keywords: coefficient of variation; ratio; symmetric and asymmetric distributions; test of hypothesis

1. Introduction

Based on the literature, to describe a dataset (random variable), three main characteristics
containing central tendencies, dispersion tendencies and shape tendencies, are used. A central
tendency (or measure of central tendency) is a central or typical value for a random variable that
describes the way in which the random variable is clustered around a central value. It may also be
called a center or location of the distribution of the random variable. The most common measures
of central tendency are the mean, the median and the mode. Measures of dispersion like the range,
variance and standard deviation tell us about the spread of the values of a random variable. It may also
be called a scale of the distribution of the random variable. The shape tendencies such as skewness
and kurtosis describe the distribution (or pattern) of the random variable.

The division of the standard deviation to the mean of population, CV = σ
μ , is called as coefficient

of variation (CV) which is an applicable statistic to evaluate the relative variability. This free dimension
parameter can be widely used as an index of reliability or variability in many applied sciences such
as agriculture, biology, engineering, finance, medicine, and many others [1–3]. Since it is often
necessary to relate the standard deviation to the level of the measurements, the CV is a widely used
measure of dispersion. The CVs are often calculated on samples from several independent populations,
and questions about how to compare them naturally arise, especially when the distributions of the
populations are skewed. In real world applications, the researchers may intend to compare the
CVs of two separate populations to understand the structure of the data. ANOVA and Levene tests
can be used to investigate the equality of CVs of populations in case the means or variances of the
populations are equal. It is obvious that in many situations two populations with different means
and variances may have an equal CV. For the normal case, the problems of interval estimating the
CV or comparison of two or several CVs have been well addressed in the literature. Due to possible
small differences of two small CVs and no strong interpretation, the ratio of CVs is more accurate

Symmetry 2019, 11, 824; doi:10.3390/sym11060824 www.mdpi.com/journal/symmetry81
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than the difference of CVs. Bennett [4] proposed a likelihood ratio test. Doornbos and Dijkstra [5]
and Hedges and Olkin [6] presented two tests based on the non-central t test. A modification of
Bennett’s method was provided by Shafer and Sullivan [7]. Wald tests have been introduced by [8–10].
Based on Renyi’s divergence, Pardo and Pardo [11] proposed a new method. Nairy and Rao [12]
applied the likelihood ratio, score test and Wald test to check that the inverse CVs are equal. Verrill
and Johnson [13] applied one-step Newton estimators to establish a likelihood ratio test. Jafari and
Kazemi [14] developed a parametric bootstrap (PB) approach. Some statisticians improved these
tests for symmetric distributions [15–23]. The problem of comparing two or more CVs arises in
many practical situations [24–26]. Nam and Kwon [25] developed approximate interval estimation of
the ratio of two CVs for lognormal distributions by using the Wald-type, Fieller-type, log methods,
and the method of variance estimates recovery (MOVER). Wong and Jiang [26] proposed a simulated
Bartlett corrected likelihood ratio approach to obtain inference concerning the ratio of two CVs for
lognormal distribution.

In applications, it is usually assumed that the data follows symmetric distributions. For this
reason, most previous works have focused on the comparison of CVs in symmetric distributions,
especially normal distributions. In this paper, we propose a method to compare the CVs of two separate
symmetric or asymmetric populations. Firstly, we propose the asymptotic distribution for the ratio of
the CVs. Then, we derive the asymptotic confidence interval and test statistic for hypothesis testing
about the ratio of the CVs. Finally, the performance of the introduced approach is studied through
simulation study. The introduced approach seems to have many advantages. First, it is powerful.
Second, it is not too computational. Third, it can be applied to compare the CVs of two separate
symmetric or asymmetric populations. We apply a methodology similar to that which has been used
in [27–33]. The comparison between the parameters of two datasets or models has been considered in
several works [34–40]

2. Asymptotic Results

Assume that X and Y are uncorrelated variables with non-zero means μX and μY, and the finite ith

central moments:
μiX = E(X − μX)

i, μiY = E(Y − μY)
i, i ∈ {2, 3, 4},

respectively. Also assume two samples X1, . . . , Xm, and Y1, . . . , Yn, distributed from X and Y, respectively.
From the motivation given in the introduction, the parameter:

γ =
CVY
CVX

,

is interesting to inference, where CVY and CVX are the CVs corresponding to Y and X, respectively.
Assume miX = 1

m
∑m

k=1 (xk − x)i , miY = 1
n
∑n

k=1 (yk − y)i, i ∈ {2, 3, 4}. CVX and CVY,

are consistently estimated [41] by ĈVX =
√

m2X

X
and ĈVY =

√
m2Y

Y
, respectively. So, it is obvious that

γ̂ =
ĈVY

ĈVX

can reasonably estimate the parameter γ. For simplicity, let m = n. When n = m, let n∗ = min(m, n)
instead of m and n in the following discussions.

Lemma 1. If the above assumptions are satisfied, then:

√
n
(
ĈVX −CVX

) L→ N
(
0, δ2

X

)
, as n→∞,

82



Symmetry 2019, 11, 824

where:

δ2
X =

⎡⎢⎢⎢⎢⎣μ4X − μ2
2X

4μ2
Xμ2X

− μ3X

μ3
X

+
μ2

2X
μ4X

⎤⎥⎥⎥⎥⎦,
is the asymptotic variance.

Proof. The outline of proof can be found in [41]. �

The next theorem corresponds to the asymptotic distribution of γ̂. This theorem will be applied to
construct the confidence interval and perform hypothesis testing for the parameter γ.

Theorem 1. If the previous assumptions are satisfied, then:

√
n(γ̂− γ) L→ N

(
0,λ2

)
, as n→∞,

where:
λ2 =

1
CV2

X

(
γ2δ2

X + δ2
Y

)
,

and:

δ2
Y =

⎡⎢⎢⎢⎢⎣μ4Y − μ2
2Y

4μ2
Yμ2Y

− μ3Y

μ3
Y

+
μ2

2Y
μ4Y

⎤⎥⎥⎥⎥⎦.
Proof. By using Lemma 1, we have:

√
n
(
ĈVX −CVX

) L→ N
(
0, δ2

X

)
, as n→∞,

and: √
n
(
ĈVY −CVY

) L→ N
(
0, δ2

Y

)
, as n→∞.

Slutsky’s Theorem gives:

√
n
[(

ĈVX

ĈVY

)
−

(
CVX

CVY

)]
L→ N

(
0,

(
δ2

X 0
0 δ2

Y

))
,

for independent samples [41].
Now define f : R2 → R as f (x, y) = y

x . Then we have:

∇ f (x, y) =
(
− y

x2 ,
1
x

)
,

where ∇ f (x, y) is the gradient function. Consequently, we have ∇ f (CVX, CVY)
∑
(∇ f (CVX, CVY))

T =

λ2. Because of continuity of ∇ f in the neighbourhood of (CVX, CVY), by using Cramer’s Rule:

√
n
(

f
(
ĈVX, ĈVY

)
− f (CVX, CVY)

)
=
√

n(γ̂− γ) L→ N
(
0,λ2

)
, n→∞,

the proof ends. �

Thus, the asymptotic distribution can be constructed as:

Tn =
√

n
(
γ̂− γ
λ

)
L→ N(0, 1), as n→∞. (1)
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2.1. Constructing the Confidence Interval

As can be seen, the parameter λ depends on CVX, δ2
X, δ2

Y and γwhich are unknown parameters
in practice. The result of the next theorem can be applied to construct the confidence interval and to
perform the hypothesis testing for the parameter γ.

Theorem 2. If the previous assumptions are satisfied, then:

T∗n =
√

n
(
γ̂− γ
λ̂

)
L→ N(0, 1), as→∞, (2)

where:
λ̂2 =

1
ĈV2

X

(
γ̂2δ̂2

X + δ̂2
Y

)
,

δ̂2
X =

⎡⎢⎢⎢⎢⎢⎣m4X −m2
2X

4X
2
m2X

− m3X

X
3 +

m2
2X

m4X

⎤⎥⎥⎥⎥⎥⎦,
and:

δ̂2
Y =

⎡⎢⎢⎢⎢⎢⎣m4Y −m2
2Y

4Y
2
m2Y

− m3Y

Y
3 +

m2
2Y

m4Y

⎤⎥⎥⎥⎥⎥⎦.

Proof. From the Weak Law of Large Numbers, it is known that:

X
p→ μX, Y

p→ μY, miX
p→ μiX, miY

p→ μiY, i ∈ {2, 3, 4},

as n→∞.
Consequently, by applying Slutsky’s Theorem, we have λ̂

p→ λ, as n→∞ . Appliying Theorem 1
the proof is completed. �

Now, T∗n is a pivotal quantity for γ. In the following, this pivotal quantity is used to construct
asymptotic confidence interval for γ.

(
γ̂− λ̂√

n
Z α

2
, γ̂+

λ̂√
n

Z α
2

)
. (3)

2.2. Hypothesis Testing

In real word applications, researchers are interested in testing about the parameter γ. For example,
the null hypothesis H0 : γ = 1 means that the CVs of two populations are equal. To perform the
hypothesis test H0 : γ = γ0, the test statistic:

T0 =
√

n
(
γ̂− γ0

λ∗

)
, (4)

is generally applied, such that:

λ∗2 =
1

ĈV2
X

(
γ2

0δ̂
2
X + δ̂2

Y

)
.

If the null hypothesis H0 : γ = γ0 is satisfied, then the asymptotic distribution of T0 is standard normal.

2.3. Normal Populations

Naturally, many phenomena follow normal distribution. This distribution is very important in
natural and social sciences. Many researchers focused on the comparison between the CVs of two
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independent normal distributions. Nairy and Rao [12] reviewed and studied several methods such as
likelihood ratio test, score test and Wald test that could be used to compare the CVs of two independent
normal distributions. If the parent distributions X and Y are normal, then:

μ3X = μ3Y = 0, μ4X = 3μ2
2X, μ4Y = 3μ2

2Y.

Consequently, for normal distributions, δ2
X and δ̂2

X can be rewritten as:

δ2
X =

μ2Xμ2
X + 2μ2

2X

2μ4
X

,

and:

δ̂2
X =

m2XX
2
+ 2m2

2X

2X
4

,

respectively.

3. Simulation Study

In this section, the accuracy of the given theoretical results is studied and analyzed by different
simulated datasets. For the populations X and Y, we respectively simulated different samples from
symmetric distribution (normal) and asymmetric distributions (gamma and beta) with different CV
values, (CVX, CVY) ∈ {

(1, 1), (1, 2), (2, 3), (2, 5)
}
, which are equivalent to γ ∈ {1, 2, 1.5, 2.5}. Figures 1–3

show the plots of probability density function (PDF) for the considered distributions.

Figure 1. Probability density function (PDF) of normal (μ, σ2) distribution with different coefficient of
variation (CV) values. Black: μ = 1, σ = 1, CV = 1; red: μ = 1, σ = 2, CV = 2; green: μ = 1, σ = 3, CV
= 3; blue: μ = 1, σ = 5, CV = 5.
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Figure 2. PDF of gamma (α,λ) distribution with different CV values. Black: α = 1,λ = 0.001, CV = 1;
red: α = 0.25,λ = 0.001, CV = 2; green: α = 0.11,λ = 0.001, CV = 3; blue: α = 0.04, λ = 0.001, CV = 5.

Figure 3. PDF of beta (α, β) distribution with different CV values. Black: α = 0.94, β = 30.39, CV = 1;
red: α = 0.21, β = 6.87, CV = 2; green: α = 0.08, β = 2.51, CV = 3; blue: α = 0.009, β = 0.285, CV = 5.

The simulations are accomplished after 1000 runs using the R 3.3.2 software (R Development Core
Team, 2017) on a PC (Processor: Intel(R) CoreTM(2) Duo CPU T7100 @ 1.80GHz 1.80GHz, RAM: 2.00GB,
System Type: 32-bit).
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To check the accuracy of Equations (3) and (4), we estimated the coverage probability,

CP =
number of runs that Equation ( 3 ) contained true γ

1000
,

for each parameter setting. We also computed the value of the test statistic in Equation (4), for each run.
Then we considered the Shapiro–Wilk’s normality test and the Q–Q plots to verify normality assumption for
the proposed test statistic. Table 1 summarizes the CP values for different parameter settings.

Table 1. The CP values for different parameter settings.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 0.945 0.947 0.951 0.953 0.959 0.960

(1, 2) 0.945 0.948 0.952 0.953 0.958 0.959

(2, 3) 0.944 0.948 0.953 0.953 0.959 0.961

(2, 5) 0.946 0.950 0.950 0.955 0.956 0.960

Gamma

(1, 1) 0.946 0.948 0.952 0.956 0.958 0.961

(1, 2) 0.947 0.949 0.951 0.954 0.958 0.961

(2, 3) 0.947 0.950 0.952 0.953 0.959 0.961

(2, 5) 0.945 0.949 0.952 0.956 0.958 0.962

Beta

(1, 1) 0.944 0.950 0.950 0.954 0.958 0.961

(1, 2) 0.946 0.948 0.952 0.954 0.957 0.960

(2, 3) 0.945 0.947 0.952 0.954 0.958 0.959

(2, 5) 0.945 0.948 0.951 0.954 0.956 0.960

As Table 1 indicates, the CP are very close to the considered level (1 − α = 0.95), especially
when sample size was increased, and consequently the proposed method controlled the type I error.
In other words, about 95% of simulated confidence intervals contained true γ and consequently it
can be accepted that Equation (3) is asymptotically confidence interval for γ. The values of CPU
times (in seconds) for different parameter settings given in Table 2, verify that this approach is not
too time consuming. Furthermore, Figure 4 and Table 3 illustrate the Q-Q plots and the p-values of
Shapiro–Wilk’s test, respectively, to study the normality of the introduced test statistic.

First column:

Up : (CVX , CVY) = (1, 1) and (m, n) = (50, 100); down : (CVX , CVY) = (1, 2) and (m, n) = (75, 100).

Second column:

Up : (CVX , CVY) = (1, 2) and (m, n) = (100, 200); down : (CVX , CVY) = (2, 3) and (m, n) = (200, 300).

Third column:

Up : (CVX , CVY) = (2, 3) and (m, n) = (500, 700); down : (CVX , CVY) = (3, 5) and (m, n) = (700, 1000).

Table 3 indicates that all p-values are more than 0.05 and consequently the Shapiro–Wilk’s test
verified the normality of the proposed test statistic. This result could also be derived from Q-Q plots.
Since the points form almost a straight line, the observed quantiles are very similar to the quantiles of
theoretical distribution (normal). Therefore, the simulation results verify that the asymptotic theoretical
results seem to be quite satisfying for all parameter settings. Consequently our proposed approach is a
good choice to perform hypothesis testing and to establish a confidence interval for the ratio of the
CVs in two separate populations.
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Table 2. The CPU times for running the introduced approach.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 8.64 10.08 14.08 23.09 51.92 68.67

(1, 2) 8.72 10.29 16.41 21.85 52.19 74.17

(2, 3) 9.52 9.50 15.42 21.10 51.05 65.87

(2, 5) 9.35 10.90 15.25 24.31 49.97 74.90

Gamma

(1, 1) 9.45 9.02 15.16 22.13 47.05 74.92

(1, 2) 8.00 9.58 14.65 24.87 49.96 66.20

(2, 3) 9.63 9.29 14.47 21.91 52.52 66.84

(2, 5) 8.69 9.83 16.29 24.27 50.68 66.11

Beta

(1, 1) 9.53 10.57 14.19 21.47 53.26 66.58

(1, 2) 9.20 9.50 14.15 24.85 48.67 75.00

(2, 3) 9.02 9.63 14.25 23.52 50.29 69.67

(2, 5) 8.75 9.17 15.73 22.89 50.79 73.95

Figure 4. Q-Q plots to study the normality of the introduced test statistic.
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Table 3. P-values for studying the normality of the introduced test statistic.

(m,n)

Distribution (CVX,CVY) (50,100) (75,100) (100,200) (200,300) (500,700) (700,1000)

Normal

(1, 1) 0.444 0.551 0.662 0.701 0.899 0.977

(1, 2) 0.432 0.580 0.656 0.795 0.860 0.982

(2, 3) 0.408 0.600 0.602 0.718 0.859 0.943

(2, 5) 0.481 0.569 0.681 0.740 0.848 0.955

Gamma

(1, 1) 0.428 0.545 0.677 0.760 0.851 0.905

(1, 2) 0.407 0.544 0.612 0.775 0.880 0, 909

(2, 3) 0.484 0.508 0.611 0.708 0.855 0.940

(2, 5) 0.494 0.556 0.647 0.754 0.800 0.978

Beta

(1, 1) 0.411 0.599 0.657 0.709 0.870 0.946

(1, 2) 0.489 0.585 0.652 0.763 0.841 0.978

(2, 3) 0.411 0.505 0.606 0.724 0.874 0.908

(2, 5) 0.461 0.527 0.671 0.757 0.847 0.933

4. Conclusions

Coefficient of variation is a simple but useful statistical tool to make comparisons about
independent populations. In many situations two populations with different means and variances may
have equal CVs. In real world applications, researchers may intend to study the similarity of the CVs in
two separate populations to understand the structure of the data. Due to possible small differences of
two small CVs and no strong interpretation, the ratio of CVs is more accurate than the difference of the
CVs. In this study, we proposed the asymptotic distribution, derived the asymptotic confidence interval
and established hypothesis testing for the ratio of the CVs in two separate populations. The results
indicated that the coverage probabilities are very close to the considered level, especially when sample
sizes were increased, and consequently the proposed method controlled the type I error. The values
of CPU times also verified that this approach is not too time consuming. Shapiro–Wilk’s normality
test and Q-Q plots also verified the normality of the proposed test statistic. The results verified that
the asymptotic approximations were satisfied for all simulated datasets and the introduced technique
acted well in constructing CI and performing tests of hypothesis.
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Abstract: In many real world problems, science fields such as biology, computer science, data mining,
electrical and mechanical engineering, and signal processing, researchers aim to compare and classify
several regression models. In this paper, a computational approach, based on the non-parametric
methods, is used to investigate the similarities, and to classify several linear and non-linear regression
models with symmetric errors. The ability of each given approach is then evaluated using simulated
and real world practical datasets.

Keywords: comparison; Friedman test; linear regression; nonlinear regression; sign test; symmetric
errors; Wilcoxon test

1. Introduction

In many situations, we aim to study the effects of variables X1, . . . , Xk on variable Y. Simple
and multiple regressions are data analysis techniques to model these effects. The authors of the
references [1,2] applied simple and multiple linear regression models in different science fields, such
as agriculture, biology, material, mechanical engineering, and signal processing. In many real world
problems, scientists want to compare the relationship between the dependent variable and independent
variables in several separate datasets.

The comparison of the correlation between the variables X and Y in two separate datasets, different
techniques was provided by [3–5]. The comparison of the correlation between the variables X and Y
in a dataset, and the correlation between the two variables X and W in another dataset, resulted in
different methods developed by [6–10]. The correlation between the variables X and Y in a dataset, and
the correlation between two variables W and Z in another dataset, were compared by different methods
in [9,11,12]. The comparison and classification of two, and more simple linear regression models, have
been considered in [13–16]. The comparison of two regression models has been reported in [14–22].

In the present research, we aim to compare and classify several linear and non-linear regression
models that fitted on several independent datasets. The non-parametric methods are used to construct
an approach to investigate the similarity and to classify the linear and non-linear regression models.
A given approach is then evaluated using simulation and real world studies. The introduced approach
is powerful and applicable in its ability to compare any linear or non-linear regression models.

Symmetry 2019, 11, 820; doi:10.3390/sym11060820 www.mdpi.com/journal/symmetry93
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2. Models Comparing and Classification

Assume (X1 j, . . . , Xkj, Yj), j = 1, . . . , ni, is a sample dataset of size ni, from (X1, . . . , Xk, Y). The
equations of m linear or non-linear regression models can be written by:

Yij = fi(X1 j, . . . , Xkj) + εi j, j = 1, . . . , ni, i = 1, . . . , m, (1)

such that for i = 1, . . . , m, εi j, j = 1, . . . , ni, are zero-mean symmetric random variables with unknown
and equal variance σ2

i .
By considering Equation (1), consequently, the conditional expectation of Y based on fi(X1, . . . , Xk),

that we show it by θi(X1, . . . , Xk ), is given by:

θi(X1, . . . , Xk ) = E
(
Y
∣∣∣ fi(X1, . . . , Xk)

)
= fi(X1, . . . , Xk). (2)

In real-word problems the aim is to test the hypothesis H0 : θ1(X1, . . . , Xk ) = θ2(X1, . . . , Xk ) =

. . . = θm(X1, . . . , Xk). Under the rejection of H0, we conclude that at least two models of the m
regression models are not statistically similar, and if H0 is accepted then it can be concluded that the m
regression models are statistically equal.

The regression equations can be represented by:

Yi = fi(X1, . . . , Xk) + εi, i = 1, . . . , m, (3)

such that Yi =
(
y1, . . . , yni

)T
, i = 1, . . . , m, are the values for the dependent variable Y, X1 =(

x11, . . . , x1ni

)T
, . . . , Xk =

(
xk1, . . . , xkni

)T
, i = 1, . . . , m are the values for the independent variables

(X1, . . . , Xk), fi(X1, . . . , Xk) =
(

fi(x11, . . . , xk1), . . . , fi(x1ni , . . . , xkni)
)T

, and εi =
(
εi1, . . . , εini

)T
, i =

1, . . . , m, are zero-mean random variables with unknown and equal variance σ2
i .

First, all m regression models are estimated by

Ŷi = f̂i(X1, . . . , Xk), i = 1, . . . , m, (4)

for all n = distinct points (n1 ∪ n2 ∪ . . .∪ nm) values of (X1, . . . , Xk), where Ŷi = (ŷi1, . . . , ŷin)
T, i =

1, . . . , m, are the estimated values for dependent variable Y, based on ith regression model. Since
εi, i = 1, . . . , m, are zero-mean symmetric random variables, consequently, ŷi1, . . . , ŷin, i = 1, . . . , m,
are unbiased estimators for θi(X1, . . . , Xk ), i = 1, . . . , m, respectively. In other words, ŷi1, . . . , ŷin, i =
1, . . . , m, are random variables with mean θi(X1, . . . , Xk ), i = 1, . . . , m.

Remark 1. n = distinct points (n1 ∪ n2 ∪ . . .∪ nm) means that the repeated points are assumed once.

Now, to compare the fitted regression models, the Friedman test [23–26] will be applied on n
couples (ŷ11, . . . , ŷm1), . . . , (ŷ1n, . . . , ŷm1).

The Friedman test that is a non-parametric alternative to the repeated measures is used to compare
related datasets (datasets that are repeated on the same subjects). This test is commonly applied when
dataset do not follow the parametric conditions, such as normality assumption.

Classification

In previous discussion, if H0 is false, then we conclude that the mechanism of one model or
mechanisms of some models are significantly different from the other models. However, to determine
which models are significantly different from each other, the sign test or Wilcoxon test are applied in
order to compare each of the regression model pairs.
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3. Simulation Study

This section assesses the ability of the introduced approach simulation datasets. First, the different
datasets from different regression models are produced. Then, we compute the values of the Estimated
Type I error probability (α̂) and the Estimated Power (π̂) of the introduced approach. For comparison,
the Wilcoxon and Friedman tests are applied. The simulations are accomplished after 1000 runs and
using the R 3.5.3 software (R Development Core Team, 2018) on a PC (Processor: Intel(R) CoreTM(2) Duo
CPU T7100 @ 1.80GHz 1.80GHz, RAM: 2.00GB, System Type: 32-bit).

Example 1. Assume the simple linear regression model:

Y = βX + ε, (5)

such that ε and X are independent.

Example 2. Let
Y = β0 + β1X + β2Xε, (6)

such that ε and X are independent.

Example 3. Assume:
Y = 1 + βX + ε, (7)

such that ε and X are independent.

Example 4. Assume the multiple linear regression model:

Y = β0 + β1X1 + 2β2X2 + ε, (8)

such that ε, X1 and X2 are independent.

Example 5. For the first dataset, assume the simple nonlinear regression model:

Y = eX + ε, (9)

such that ε and X are independent.

For the second and the third datasets let Y =
{
eX + ε, 1 + βX + ε

}
, and Y ={

eX + ε, 1 + βX + ε, 2X + ε
}
, respectively.

Figures 1 and 2 shows the density plots of the some parts of the response variable Y. As it can be
seen in these figures, the density plots are symmetric, but not necessarily normal (Figure 2).
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Figure 1. The density plots of the some parts of the response variable Y (Black or Pie: Normal (0,1);
Red or Triangle: Normal (0,2); Green or Star: Normal (0,3); Blue or Plus: Normal (0,5)).

Figure 2. The density plots of the some parts of the response variable Y (Black or Pie: 0.5 – Beta (1.5,1.5);
Red or Triangle: 0.5 – Beta (1.75,1.75); Green or Star: 0.5 – Beta (2,2); Blue or Plus: 0.5 – Beta (2.5,2.5)).

The values of α̂ (first four rows) and π̂ (other rows) for Examples 1 to 5 are summarized in
Tables 1–5, respectively. As Tables 1–5 indicate the values of α̂ are very close to size test (α = 0.05), and
consequently the introduced approach can be controlled the type I error. Also the values of π̂ show
that the given technique can distinguished between the null and alternative hypotheses.
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Table 1. The values of α̂ and π̂ for Example 1.

(n1, n2, n3)

ε X
β

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−2, 2) Normal (0, 0.25) 1 1 0.053 0.051 0.051 0.049
Uni f orm (−2, 2) Exponential (5) 1 1 0.052 0.052 0.051 0.048
Normal (0, 0.5) Normal (0, 0.25) 1 1 0.053 0.052 0.050 0.049
Normal (0, 0.5) Exponential (5) 1 1 0.053 0.052 0.050 0.049

Uni f orm (−2, 2) Normal (0, 0.25) 1 2 0.738 0.882 0.934 0.958
Uni f orm (−2, 2) Exponential (5) 1 2 0.753 0.801 0.950 0.981
Normal (0, 0.5) Normal (0, 0.25) 1 2 0.754 0.854 0.945 0.972
Normal (0, 0.5) Exponential (5) 1 2 0.749 0.889 0.913 0.970

Uni f orm (−2, 2) Normal (0, 0.25) 1 3 0.703 0.825 0.941 0.993
Uni f orm (−2, 2) Exponential (5) 1 3 0.710 0.859 0.917 0.975
Normal (0, 0.5) Normal (0, 0.25) 1 3 0.728 0.824 0.910 0.984
Normal (0, 0.5) Exponential (5) 1 3 0.707 0.864 0.934 0.953

Uni f orm (−2, 2) Normal (0, 0.25) 2 1 0.768 0.828 0.913 0.978
Uni f orm (−2, 2) Exponential (5) 2 1 0.703 0.824 0.928 0.951
Normal (0, 0.5) Normal (0, 0.25) 2 1 0.794 0.846 0.930 0.968
Normal (0, 0.5) Exponential (5) 2 1 0.794 0.800 0.903 0.955

Uni f orm (−2, 2) Normal (0, 0.25) 2 2 0.745 0.813 0.946 0.971
Uni f orm (−2, 2) Exponential (5) 2 2 0.718 0.858 0.937 0.981
Normal (0, 0.5) Normal (0, 0.25) 2 2 0.784 0.866 0.901 0.953
Normal (0, 0.5) Exponential (5) 2 2 0.726 0.821 0.944 0.999

Uni f orm (−2, 2) Normal (0, 0.25) 2 3 0.795 0.849 0.924 0.982
Uni f orm (−2, 2) Exponential (5) 2 3 0.755 0.856 0.928 0.961
Normal (0, 0.5) Normal (0, 0.25) 2 3 0.763 0.845 0.936 0.988
Normal (0, 0.5) Exponential (5) 2 3 0.710 0.865 0.914 0.975

Table 2. The values of α̂ and π̂ for Example 2.

(n1, n2, n3)

ε X
(β0, β1, β2)

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (2, 1, 2) 0.053 0.051 0.050 0.049

Normal (0, 2) Normal (0, 1) (2, 1, 2) (2, 1, 2) 0.053 0.052 0.051 0.049
Normal (0, 2) Exponential (1) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (0, 2, 1) 0.770 0.843 0.903 0.981
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (0, 2, 1) 0.743 0.817 0.909 0.979

Normal (0, 2) Normal (0, 1) (2, 1, 2) (0, 2, 1) 0.771 0.842 0.918 0.992
Normal (0, 2) Exponential (1) (2, 1, 2) (0, 2, 1) 0.791 0.855 0.934 0.967

Uni f orm (−1, 1) Normal (0, 1) (2, 1, 2) (3, 2, 1) 0.737 0.891 0.941 0.997
Uni f orm (−1, 1) Exponential (1) (2, 1, 2) (3, 2, 1) 0.798 0.860 0.932 0.988

Normal (0, 2) Normal (0, 1) (2, 1, 2) (3, 2, 1) 0.740 0.849 0.947 0.993
Normal (0, 2) Exponential (1) (2, 1, 2) (3, 2, 1) 0.712 0.827 0.916 0.997

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (2, 1, 2) 0.782 0.837 0.932 0.966
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (2, 1, 2) 0.780 0.830 0.936 0.960

Normal (0, 2) Normal (0, 1) (0, 2, 1) (2, 1, 2) 0.720 0.857 0.945 0.998
Normal (0, 2) Exponential (1) (0, 2, 1) (2, 1, 2) 0.767 0.897 0.902 0.958

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (0, 2, 1) 0.790 0.809 0.921 0.992
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (0, 2, 1) 0.741 0.814 0.935 0.992

Normal (0, 2) Normal (0, 1) (0, 2, 1) (0, 2, 1) 0.710 0.844 0.945 0.981
Normal (0, 2) Exponential (1) (0, 2, 1) (0, 2, 1) 0.760 0.871 0.906 0.972

Uni f orm (−1, 1) Normal (0, 1) (0, 2, 1) (3, 2, 1) 0.776 0.807 0.919 0.969
Uni f orm (−1, 1) Exponential (1) (0, 2, 1) (3, 2, 1) 0.701 0.875 0.928 0.963

Normal (0, 2) Normal (0, 1) (0, 2, 1) (3, 2, 1) 0.780 0.803 0.936 0.987
Normal (0, 2) Exponential (1) (0, 2, 1) (3, 2, 1) 0.720 0.886 0.923 0.960
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Table 3. The values of α̂ and π̂ for Example 3.

(n1, n2, n3)

ε X
β

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−1, 1) Geometric (0.4) 1 1 0.053 0.051 0.050 0.049
Uni f orm (−1, 1) Binomial (2, 0.7) 1 1 0.053 0.051 0.051 0.050
Normal (0, 0.5) Geometric (0.4) 1 1 0.053 0.051 0.051 0.050
Normal (0, 0.5) Binomial (2, 0.7) 1 1 0.053 0.051 0.051 0.050

Uni f orm (−1, 1) Geometric (0.4) 1 2 0.724 0.846 0.924 0.996
Uni f orm (−1, 1) Binomial (2, 0.7) 1 2 0.734 0.813 0.942 0.952
Normal (0, 0.5) Geometric (0.4) 1 2 0.737 0.818 0.914 0.959
Normal (0, 0.5) Binomial (2, 0.7) 1 2 0.764 0.819 0.949 0.998

Uni f orm (−1, 1) Geometric (0.4) 1 5 0.797 0.808 0.904 0.959
Uni f orm (−1, 1) Binomial (2, 0.7) 1 5 0.760 0.869 0.919 0.978
Normal (0, 0.5) Geometric (0.4) 1 5 0.793 0.843 0.917 0.988
Normal (0, 0.5) Binomial (2, 0.7) 1 5 0.765 0.876 0.910 0.983

Uni f orm (−1, 1) Geometric (0.4) 2 1 0.742 0.868 0.934 0.954
Uni f orm (−1, 1) Binomial (2, 0.7) 2 1 0.730 0.810 0.925 0.966
Normal (0, 0.5) Geometric (0.4) 2 1 0.725 0.867 0.911 0.981
Normal (0, 0.5) Binomial (2, 0.7) 2 1 0.769 0.868 0.930 0.996

Uni f orm (−1, 1) Geometric (0.4) 2 2 0.763 0.816 0.905 0.982
Uni f orm (−1, 1) Binomial (2, 0.7) 2 2 0.706 0.895 0.935 0.951
Normal (0, 0.5) Geometric (0.4) 2 2 0.723 0.866 0.909 0.981
Normal (0, 0.5) Binomial (2, 0.7) 2 2 0.765 0.857 0.903 0.974

Uni f orm (−1, 1) Geometric (0.4) 2 5 0.710 0.867 0.910 0.950
Uni f orm (−1, 1) Binomial (2, 0.7) 2 5 0.764 0.837 0.904 0.981
Normal (0, 0.5) Geometric (0.4) 2 5 0.778 0.891 0.933 0.987
Normal (0, 0.5) Binomial (2, 0.7) 2 5 0.726 0.819 0.946 0.967

Table 4. The values of α̂ and π̂ for Example 4.

(n1, n2, n3)

X1 X2

(β0, β1, β2)
(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)

Second Third

Uni f orm (0, 2) Exponential (5) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.050 0.049
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (2, 1, 2) 0.053 0.052 0.050 0.049

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (2, 1, 2) 0.052 0.052 0.051 0.049
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (2, 1, 2) 0.052 0.051 0.050 0.048
Uni f orm (0, 2) Exponential (5) (2, 1, 2) (0, 2, 1) 0.734 0.893 0.923 0.961
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (0, 2, 1) 0.787 0.887 0.947 0.964

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (0, 2, 1) 0.766 0.813 0.943 0.973
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (0, 2, 1) 0.762 0.897 0.909 0.993
Uni f orm (0, 2) Exponential (5) (2, 1, 2) (3, 2, 1) 0.706 0.866 0.936 0.966
Uni f orm (0, 2) Geometric (0.3) (2, 1, 2) (3, 2, 1) 0.746 0.882 0.946 0.960

Binomial (3, 0.5) Exponential (5) (2, 1, 2) (3, 2, 1) 0.716 0.875 0.948 0.975
Binomial (3, 0.5) Geometric (0.3) (2, 1, 2) (3, 2, 1) 0.757 0.811 0.939 0.950
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (2, 1, 2) 0.792 0.866 0.936 0.985
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (2, 1, 2) 0.768 0.824 0.902 0.995

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (2, 1, 2) 0.773 0.841 0.933 0.983
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (2, 1, 2) 0.795 0.801 0.940 0.992
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (0, 2, 1) 0.790 0.891 0.912 0.953
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (0, 2, 1) 0.784 0.855 0.924 0.951

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (0, 2, 1) 0.739 0.842 0.908 0.961
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (0, 2, 1) 0.749 0.880 0.905 0.963
Uni f orm (0, 2) Exponential (5) (0, 2, 1) (3, 2, 1) 0.745 0.854 0.918 0.956
Uni f orm (0, 2) Geometric (0.3) (0, 2, 1) (3, 2, 1) 0.739 0.825 0.946 0.955

Binomial (3, 0.5) Exponential (5) (0, 2, 1) (3, 2, 1) 0.743 0.883 0.926 0.960
Binomial (3, 0.5) Geometric (0.3) (0, 2, 1) (3, 2, 1) 0.734 0.840 0.918 0.976
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Table 5. The values of α̂ and π̂ for Example 5.

(n1, n2, n3)

ε X
Y

(10, 10, 10) (20, 40, 60) (50, 75, 100) (75, 100, 150)
Second Third

Uni f orm (−2, 2) Normal (0, 0.5) eX + ε eX + ε 0.052 0.051 0.051 0.048
Uni f orm (−2, 2) Poisson (5) eX + ε eX + ε 0.053 0.051 0.051 0.049
Normal (0, 0.25) Normal (0, 0.5) eX + ε eX + ε 0.052 0.051 0.051 0.049
Normal (0, 0.25) Poisson (5) eX + ε eX + ε 0.052 0.051 0.050 0.048
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε 1 + βX + ε 0.787 0.895 0.901 0.965
Uni f orm (−2, 2) Poisson (5) eX + ε 1 + βX + ε 0.787 0.829 0.930 0.974
Normal (0, 0.25) Normal (0, 0.5) eX + ε 1 + βX + ε 0.725 0.848 0.912 0.991
Normal (0, 0.25) Poisson (5) eX + ε 1 + βX + ε 0.759 0.898 0.944 0.984
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε 2X + ε 0.734 0.891 0.949 0.962
Uni f orm (−2, 2) Poisson (5) eX + ε 2X + ε 0.788 0.811 0.921 0.981
Normal (0, 0.25) Normal (0, 0.5) eX + ε 2X + ε 0.759 0.877 0.941 0.965
Normal (0, 0.25) Poisson (5) eX + ε 2X + ε 0.704 0.868 0.948 0.989
Uni f orm (−2, 2) Normal (0, 0.5) eX + ε eX + ε 0.798 0.845 0.908 0.956
Uni f orm (−2, 2) Poisson (5) eX + ε eX + ε 0.753 0.809 0.927 0.989
Normal (0, 0.25) Normal (0, 0.5) eX + ε eX + ε 0.731 0.865 0.910 0.990
Normal (0, 0.25) Poisson (5) eX + ε eX + ε 0.731 0.820 0.906 0.962
Uni f orm (−2, 2) Normal (0, 0.5) 1 + βX + ε 1 + βX + ε 0.723 0.897 0.934 0.960
Uni f orm (−2, 2) Poisson (5) 1 + βX + ε 1 + βX + ε 0.799 0.807 0.949 0.982
Normal (0, 0.25) Normal (0, 0.5) 1 + βX + ε 1 + βX + ε 0.713 0.877 0.916 0.952
Normal (0, 0.25) Poisson (5) 1 + βX + ε 1 + βX + ε 0.743 0.872 0.925 0.965
Uni f orm (−2, 2) Normal (0, 0.5) 1 + βX + ε 2X + ε 0.725 0.892 0.901 0.996
Uni f orm (−2, 2) Poisson (5) 1 + βX + ε 2X + ε 0.795 0.886 0.944 0.959
Normal (0, 0.25) Normal (0, 0.5) 1 + βX + ε 2X + ε 0.707 0.821 0.925 0.972
Normal (0, 0.25) Poisson (5) 1 + βX + ε 2X + ε 0.798 0.825 0.924 0.974

4. Real Data

In this section, a practical real data is considered to study the power of the introduced approach
in real world problems. Drought is a damaging natural phenomenon. To prevent this phenomenon,
the hydrologists model and predict the drought datasets in a standard time period. In this research,
the average monthly rainy days (1966–2010) at three Iranian synoptic stations (Fasa, Sarvestan, and
Shiraz) was considered and modeled.

To model and forecast the average monthly rainy days, different polynomial regression models of
orders 1 to 3 (linear, quadratic and cubic) and exponential model were fitted to datasets. The formulas
of the considered models are as following:

Linear model: Y = β0 + β1X + ε Quadratic model:

Y = β0 + β1X + β2X2 + ε. (10)

Cubic model : Y = β0 + β1X + β2X2 + β3X3 + ε. (11)

Exponential model : Y = β0 + β1eβ2X + ε. (12)

The numerical computations are done using the R 3.5.3 software (Library ‘nlstools’, lm() function
for linear regression and nls() function for nonlinear regression) and Minitab 18 software.

The results of fitted regression models are summarized in Table 6. It can be observed that, for all
of the stations, respectively, the polynomial regression of order 3 (cubic), and the exponential models,
had the most R-square (R2) and the least root mean square error (RMSE) between all fitted models.
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Table 6. Indices to evaluate the fitted regression models.

Model Station R Square RMSE

Linear

Fasa 0.624 1.693
Sarvestan 0.638 1.516

Shiraz 0.689 1.501

Quadratic
Fasa 0.734 1.350

Sarvestan 0.743 1.285
Shiraz 0.767 1.265

Cubic

Fasa 0.895 0.910
Sarvestan 0.899 0.855

Shiraz 0.976 0.529

Exponential
Fasa 0.767 0.978

Sarvestan 0.778 0.926
Shiraz 0.876 0.713

Now, we use the proposed approach to compare and classify these stations, for each model.
The result of Friedman test is shown in Table 7. This table indicated that the fitted cubic and exponential
models are significantly different in these stations (p < 0.05). Also, there is no significant difference
between the fitted linear and quadratic models in these stations (p > 0.05).

Table 7. Friedman test to compare the stations.

Model p

Linear 0.123
Quadratic 0.224

Cubic <0.001
Exponential <0.001

As Table 8 indicates, we can classify the stations in two clusters, for cubic and exponential models.
First cluster: Fasa and Sarvestan, and second cluster: Shiraz.

Table 8. Wilcoxon test to compare and classify the stations.

Model Stations p

Cubic

Pair 1 Shiraz - Fasa 0.011
Pair 2 Shiraz - Sarvestan 0.003
Pair 3 Fasa - Sarvestan 0.144

Exponential
Pair 1 Shiraz - Fasa 0.019
Pair 2 Shiraz - Sarvestan <0.001
Pair 3 Fasa - Sarvestan 0.112

5. Conclusions

In many real world problems, researchers wish to compare and classify the regression models
in several datasets. In this paper, the non-parametric methods were used to construct an approach
to investigate the similarity of some linear and non-linear regression models with symmetric errors.
Particular approaches were evaluated using simulation and practical datasets. A simulation study
indicated that the introduced approach controlled the Type I error. Also the proposed technique
distinguished well between null and alternative hypotheses. The introduced approach also had many
advantages. First, it was powerful. Second, it was not too computational. Third, it could be applied to
compare any linear or non-linear regression models. Fourth, this method did not need the normality of
errors and could be applied for all models with symmetric errors.
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Abstract: This paper aimed to use the symmetry that exists to the body of a guitar to ease the analysis
behavior to vibrations. Symmetries can produce interesting properties when studying the dynamic
and steady-state response of such systems. These properties can, in some cases, considerably decrease
the effort made for dynamic analysis at the design stage. For a real guitar, these properties are used to
determine the eigenvalues and eigenvectors. Finite element method (FEM) is used for a numerical
modeling and to prove the theoretically determined properties in this case. In this paper, different
types of guitar plates related to symmetrical reinforcement patterns were studied in terms of modal
analysis performed using finite element analysis (FEA). The dynamic response differs in terms of
amplitude, eigenvalues, modal shapes in accordance with number and pattern of stiffening bars. In
this study, the symmetrical and asymmetric modes of modal analysis were highlighted in the case of
constructive symmetrical structures.

Keywords: symmetric geometry; guitar’s plate; modal analysis; skew symmetric eigenmodes

1. Introduction

The dynamical study of mechanical systems with elastic elements that present symmetries or
have identical parts occurs in many engineering fields, especially in mechanical engineering and
civil engineering, but also in the automotive industry and aerospace engineering. In all engineering
fields, there are certain products or parts of products or components containing repetitive or identical
elements where different types of symmetry can occur. The study of such systems was made by many
researchers [1–3]. In civil engineering for example, most buildings, works of art or halls have, in their
structure, identical parts and symmetries. This has happened since antiquity for different causes. First,
as an easier, faster and a cheaper way to design, then for easy manufacturing and (less important for
engineers but important to the beneficiaries) for aesthetic reasons. Systems consisting of two identical
parts represent a particular case of these types of problems. Such systems exhibit interesting vibration
properties which computation is presented in literature [4–6]. Depending on the types of structural
elements (rod and shell), two methods were developed, namely asymptotic and variational, which are
presented by Le [7] from a mathematical point of view, emphasizing the formulation of boundary-value
problems. Zhou [8] presents an exact solution of free vibration of a thin rectangular plate attached
with sprung masses based on differential equations.

For this type of problem, its eigenmodes can be classified in symmetrical modes and
skew-symmetrical modes. The guitar is a vibrant mechanical system where we can easily identify a
symmetry plan in terms of model geometry. For this reason, it can fit into the class of mechanical
systems described above and the vibration study of it can be much simplified. In this paper, the
symmetrical system of the guitar is analyzed and the vibration properties that are the result of
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considering this symmetry are revealed. An example for a real system is made in the second part of the
paper. Derveaux et al. [9] developed a guitar model based on advanced numerical methods to simulate
the three-dimensional sound-pressure field of a guitar in the time domain. Due to the complexity of
the problem, the main parts of guitar (plates, body, strings, air from cavity, holes) that are implied in
acoustic radiation and vibration were simplified in terms of mathematical models and interactions.
Compare to [9], in this paper, the frequency spectrum and eigenmodes of different symmetric types of
guitar plates were analyzed and in future works, the guitars bodies with different bars pattern will be
numerical modeled. Elejabarrieta et al. [10] analyzed the influence of each component from acoustic
box of guitar on the vibrational behavior using finite element method in a progressive manner of
constructive system.

These types of problems occur frequently in practical applications; many mechanical systems
exhibit different kinds of symmetry properties, resulting from a design process for constructive,
simplistic, logistic or cost considerations. Knowing these properties allows to increase the precision of
calculations in such issues. Properties determined by symmetries have been observed by researchers
and are mainly used in the static analysis. They are presented in the classical courses of Strength of
Material or Structural Analysis. From a historical point of view, the symmetries in mechanics have been
studied by mathematicians [11,12]. Symmetry effects occur in the writing the motion equations, but the
solutions can be symmetric and antisymmetric according to the assumed boundary conditions [7]. In
accordance with [13], the methods of mechanics (Lagrangian and Hamiltonian) use symmetry to solve
complex problems. Moreover, these methods and symmetry principles are based on the developments
of string theory. In case of the sandwich plate, [13] present the solution of symmetric vibration and the
effects of the elastic, geometric and inertia parameters on dynamic behavior of plate.

Unfortunately, there are fewer applications in practice. In January 2018, a special issue of
the Symmetry magazine dedicated to applications in Structural Mechanics (Civil Engineering and
Symmetry - 2018, A special issue of Symmetry -ISSN 2073-8994) was launched. A European project
was also funded for the study of these types of problems (Mechanics and Symmetry in Europe:
the FP5-Human Potential). The latter held courses at the Solid Mechanics Centre—International
Center for Mechanical Sciences (CISM) at UDINE (similarly, the Symmetry and Group Theoretical
Methods in Mechanics held lectures in the International Centre for Mechanical Sciences in September
7, 2015–September 11, 2015) [14–19]. In the vibration field, the effect of symmetries was less used, but
there are papers that began to study this type of problem [20,21]. There are, however, many situations
that can be studied and that is why paper aims to complete the studied case.

The aim of this study is to present the solutions of eigenvalues and eigenvectors based on
symmetry principles in case of a symmetric structure as guitar plate. The effect of inertia parameters
(fan struts and bars) with respect the symmetry provided in this paper can be used as benchmark for
optimal soundboard strutting system of guitar during the manufacturing.

2. Guitar as a Mechanical System Subjected to Vibration

Being a complex structure, modeling of the guitar requires the identification of the component
parts from the point of view of the geometric model represented by them, the system of loads acting
on them, as well as the mechanical connections between the structures and the ground. Thus, in the
structure of the guitar, nearly all types of geometric models can be identified by the strength of the
materials, namely: wire, plates, trusses, massive blocks (Figure 1). In the paper the object of the main
theoretical interest is the structure of plates with different degrees of complexity and with various
stiffening systems [21–23].

Consider the guitar plate, presented in Figure 2. The density of the material is ρ. This it is in
transverse bending vibration.
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Figure 1. The main parts of a guitar: 1—top plate; 2—back plate; 3—guitar’s neck; 4—heel;
5—bridge; 6—strings.

Figure 2. The original geometry of a guitar plate.

Based on Kirchhoff’s hypotheses and applying the d’Alembert principle or another energy method,
it is obtained the dynamic response of the plate [23,24]:

ΔΔw(x, y, t) +
ρh
D
∂2w(x, y, t)
∂t2 =

p(x, y, t)
D

, (1)

where w(x, y, t)—the normal instantaneous displacement on the median surface of the plate;
D = Eh3

12(1−ν2)
—bending modulus of the plate, h—thickness of plate, E—the modulus of elasticity and

ν—Poisson’s coefficient; p(x, y, t)—the distributed load acting perpendicular to the median surface of
the plate; Δ = ∂2

∂x2 +
∂2

∂y2 —Laplacian differential operator.

If p(x, y, t) = 0, from (1) it results in the free transverse vibration Equations (2):

∂4w(x, y, t)
∂x4

+ 2
∂4w(x, y, t)
∂x2∂y2 +

∂4w(x, y, t)
∂y4

= −ρ h
D
∂2w(x, y, t)
∂t2 , (2)

To solve (1), the Fourier-Bernoulli method is used, finding a solution under the form:

w(x, y, t) = w(x, y) ·w(t), (3)

Using (3) in (2) results in:

D
ρh

1
w(x, y)

[
d4w(x, y)

dx4
+ 2

d4w(x, y)
dx2dy2 +

d4w(x, y)
dy4

]
= − 1

w(t)
d2wt(t)

dt2 = ω2, (4)

where ω is an arbitrary constant.
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From (4), we have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d2wt(t)

dt2 +ω2wt(t) = 0
d4w(x,y)

dx4 + 2 d4w(x,y)
dx2dy2 +

d4w(x,y)
dy4 = ω2 ρh

d w(x, y)
, (5)

For Equation (5), the solution is [25–27]:

wt(t) = A(t) cos(ωt−φ), (6)

A(t) and φ are integration constants depending on boundary conditions.
A good approximation for the guitar domain is a rectangular domain (Figure 2). In this case, the

second Equation (5) should satisfy the boundary conditions. Some common boundary conditions are:

a. In case of plate with one free edge (where x = x0), we assume that the bending moment My

and shear force Tzx are zero. Thus, the condition where the bending moment along the free edge
is zero, is: (

∂2w(x,y)
∂x2 + ν

∂2w(x,y)
∂y2

)∣∣∣∣∣
x = x0

= 0,(
∂3w(x,y)
∂x3 + (2− ν) ∂3w(x,y)

∂x∂y2

)∣∣∣∣∣
x = x0

= 0,
(7)

b. In case of the plate being supported at all edges (x = x0), the displacement are null and along
the all edges, the bending moment is zero, too. In Equation (8), the boundary conditions are
readily seen to be satisfied exactly:

w(x, y)
∣∣∣
x = x0

= 0(
∂2w(x,y)
∂x2 + ν

∂2w(x,y)
∂y2

)∣∣∣∣∣
x = x0

= 0
(8)

c. For a plate with one clamped edge (x = x0), the displacement and rotation in a perpendicular
plan to the side are null:

w(x, y)
∣∣∣
x = x0

= 0(
∂w
∂x

)∣∣∣∣
x = x0

= 0
(9)

In [7], Le makes the difference between the clamped edge and the fixed edge of a structure
considering based on the variational principle.

When the contour is not rectangular or circular and when the support is continuous, as is the case
with the guitar plates, the boundary conditions become more complicated. In the particular case of the
guitar plate supported at all edges, the boundary conditions (8) result in:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(x, y)
∣∣∣

x = 0
x = a

= 0,
(
∂2w(x,y)
∂x2 + ν

∂2w(x,y)
∂y2

)∣∣∣∣∣ x = 0
x = a

= 0

w(x, y)
∣∣∣

y = 0
y = b

= 0,
(
∂2w(x,y)
∂y2 + ν

∂2w(x,y)
∂x2

)∣∣∣∣∣ y = 0
y = b

= 0
, (10)

It can be shown that the function w(x, y) in the conditions (10) is expressed by (11):

w(x, y) = A(x,y) sin
πm
L

x sin
πn
l1

y, (m, n = 1, 2, . . .), (11)

where m and n are the numbers of vibration nodes.
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The eigenvalues corresponding of the plate with the eigenmode “mn” are:

ωm,n = π2
(

m2

L2 +
n2

l12

)√
D
ρh

, (m, n = 1, 2, . . .), (12)

According to Equation (12) the considered rectangular plate has duplicate eigenfrequencies due
to an arbitrary linear combination of the two modes [28]. Thus, one of the two eigenfrequencies will
hold the line, while the other varies with the parameters of the system [9].

3. Properties of a System Consisting of Two Identical Parts

From the big class of systems that have different types of symmetry, we will study a particular
one: a system made by two identical parts. Two example are presented in Figure 3a,b, [12,19].

 

(a) 

 

(b) 

Figure 3. Schemes of systems with two identical parts: (a) a continuous mechanical system with two
identical bars [19]; (b) model with wheels of a two engine acting a transmission (a truck used in the oil
industry) [12].

From a mechanical point of view, the guitar can be reduced to a structure consisting of two parts: a
bar represented by the neck of the guitar that is clamped on the body and the sound box (guitar body),
which is made of coupled plates. The strings system that loads the two components is compounded by
simple and complex wires which give an asymmetry of the entire acoustical structure.

If the strings are neglected, from the geometrical point of view, the guitar plate has a symmetry
plan (xz) and can be considered as being composed of two identical parts connected to each other, as
can be seen in Figure 4 [29]. This symmetry is also respected as material so that the wood used in
the structure of the guitar plates has a symmetrical structure. In the following, we will highlight the
vibration properties of such a system.

Figure 4. The symmetric guitar plate related to longitudinal axis (x).
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To determine the mechanical response of such type of structure we try to model the system. The
whole structure (S) can be considered as being composed by two identical sub-structure, denoted
with (S1) and (Sr) (Figures 3 and 4). We denote by Δa the common nodes of the two structures
(S1), with Δl the nodes of the left structure (S1), different from Δa and with Δr the nodes of the
right structure (Sr), different from Δa. The equations of the undamped free vibrations of the entire
structure (S), the left substructure (S1) (Equation (13)) and the right substructure (Sr) (Equation (14))
are, respectively [4,28–30]:

[
ma mab
mab mb

]⎧⎪⎪⎨⎪⎪⎩
..
Δl..
Δa

⎫⎪⎪⎬⎪⎪⎭+

[
ka kab
kT

ab kb

]{
Δl
Δa

}
= 0, (13)

[
ma mab
mab mb

]⎧⎪⎪⎨⎪⎪⎩
..
Δr..
Δa

⎫⎪⎪⎬⎪⎪⎭+

[
ka kab
kT

ab kb

]{
Δr

Δa

}
= 0, (14)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ma 0 mab
0 ma mab

mab mab mbb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

..
Δl..
Δr..
Δa

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ka 0 kab
0 ka kab

kT
ab kT

ab kbb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δl
Δr

Δa

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0, (15)

It is obvious that the matrices involved in the Equations (13) and (14) are the same. This means
that the problem of eigenvalues and eigenvectors offer the same solution in the both cases. For the full
system (Equation (15)), we have the following property (proved for a more general context in [26]):
P1—the eigenvalues for the subsystem (Sl) (for the differential, Equations (1) or (2)) are eigenvalues for
the system (S)).

This property expresses the fact that the eigenvalues corresponding to the subsystem (Sl) verified
the eigenvalues problem for the whole system (S). That means that the solutions of Equations (16) are
also solutions of the algebraic Equation (17):∣∣∣∣∣∣ ka −ω2ma kT

ab −ω2mab

kT
ab −ω2mab kb −ω2mb

∣∣∣∣∣∣ = 0, (16)

∣∣∣∣∣∣∣∣∣
ka −ω2ma 0 kab −ω2mab

0 ka −ω2ma kab −ω2mab
kT

ab −ω2mT
ab kT

ab −ω2mT
ab kb −ω2mb

∣∣∣∣∣∣∣∣∣ = 0, (17)

which implies that the polynomial in ω2 expressed by the Equation (17) is divided by the polynomial
in ω2 expresses by the Equation (16).

If we denote:

A11 =
[
ka −ω2ma

]
; A13 = A31 =

[
kab −ω2mab

]
; A33 =

[
kb −ω2mb

]
, (18)

and:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 0 A13

0 A11 A13

A31 A31 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

the characteristic Equation of (17) can be written:

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 0 A13

0 A11 A13

A31 A31 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = det[S] = 0 (20)
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To determine the eigenvectors, once the eigenvalues are known, it must to solve the linear
system [17,19,31]:

[S]{Φ} = 0, (21)

where we noted with {Φ} as the eigenvectors. Any eigenvalue corresponds to an eigenvector.
Concerning these, the following two properties are interesting for our research: P2—for the common
eigenvalues of the system presented in Figure 3a and of the system presented in Figure 3b, the
eigenvectors are of the form:

Φ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ1

−Φ1

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (22)

The components of the eigenmodes, corresponding to the two identical parts are skew symmetric, the
other components are zero-we call these skewsymmetric eigenmodes.

Proof: the existence of common eigenvalues for the system presented in Figure 3a,b is proven by the
previous presented theorem P1. With the eigenvalues obtained from (20), the linear homogeneous
system offers the eigenvectors:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
A11 0 A13

0 A11 A13

A31 A31 A33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Φl
Φr

Φa

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0
0
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (23)

with:
detA11 = 0, (24)

Equation (24) implies that we can find a vector Φ l, so that:

A11Φl = 0, (25)

and then (23) becomes:
A13Φa = 0, (26)

A11Φr + A13Φa = 0, (27)

A31(Φl + Φr) + A33Φa = 0, (28)

From (26), we immediately have:
Φa = 0, (29)

and by replacing in (28), we obtain Φl = Φr, which also verifies (27) if we consider (25). If we note:
Φl = Φ1, we easily obtain (22).

P3—for the other eigenvalues, (not obtained from (Sl)), the eigenvectors are of the form (symmetric
eigenmodes) [32,33]:

Φ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Φ1

Φ1

Φ3

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (30)

The components of the eigenmodes corresponding to the two identical beams are the same—we call
this symmetric eigenmodes [34]. �
Proof: for these eigenvalues we have to solve the system (23), considering detA11 � 0, or:

A11Φl + A13Φa = 0, (31)
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A11Φr + A13Φa = 0, (32)

A31(Φl + Φr) + A33Φa = 0 (33)

By subtracting (31) from (32), the following can be obtained:

A11(Φl −Φr) = 0 (34)

However, detA11 � 0, then we have Φl −Φr = 0 so Φl = Φr = Φ1. �

4. Finite Element Analysis (FEA) of Guitar Plates

The behavior of wood (a commonly used material for the guitar plate) under the action of sound
is influenced by the sound energy that comes into contact with the wood and, on the other hand,
by the quality of the wood material. It is known that wood is an orthotropic material characterized
by three planes of symmetry. The macro and microscopic structure of the wood: cell membrane
construction, dimensions and cohesion fibers, chemicals structure, the humidity and temperature of
the wood, the elastic properties and orientation of the structure with respect to the dynamic force
influences the dynamic response of plates [35]. As a result of vibrations, the internal friction occurring
in the wood transforms the original sound energy into a modified sound energy, obtaining a resonance
phenomenon as well as a caloric energy due to intermolecular energy exchanges.

The most important acoustic property of wood is the ability to receive sounds with a frequency
close to or identical to the frequency of its membranes. This produces the resonance phenomenon that
leads to the amplification of sounds and their timber enriched with overtones due to its complex and
anisotropic structure. Depending on the external excitation frequency period, the resonance occurs
whenever the pulse of forced vibration passes in the vicinity of eigenfrequency of the wood [28,29].
The complex phenomena that develop during cyclical stresses are structural and acoustic in nature,
interdependent with each other. From this point of view, the analytical theories underlying the
dynamic guitars’ response mainly deal with one aspect, which is why a series of simplifying hypotheses
are introduced. However, the calculations that use these theories are numerous and laborious. At
present, the mathematical and analytical modeling of the guitar is replaced by numerical methods: the
finite element method (FEM) or finite difference method (DFM) underlying the numerical modeling
software [30,31]. For the modal analysis of the guitar plates, nine symmetric variants of plates
were geometrically shaped respecting the dimensions practiced for a real guitar: a simple plate
with an acoustic hole (denoted PSah) without stiffening elements (Figure 5a); a plate with three
transversal reinforcing bars (denoted P3BT) (Figure 5b); a plate with three radial resonance bars,
symmetric disposed related to longitudinal axis of plate (denoted P3BR) (Figure 5c); a plate with
five radial resonance bars, symmetric disposed related to longitudinal axis of plate radial (denoted
P5BR) (Figure 5d); a plate with three radial and two transversal bars (denoted P3BR2T) (Figure 5e); a
plate with five radial and two transverse bars (denoted P5BR2T) (Figure 6f); a plate with three radial
bars, two transverse and two oblique (denoted P3BR2V) (Figure 5g); a plate with five radial bars, two
transverse and two oblique bars (denoted P5BR2V) (Figure 5h); a plate with seven radial bars two
transverse and two oblique bars (denoted P7BR2V) (Figure 5i) [35].
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

Figure 5. Different reinforcement solutions for the guitar plates: (a) simple plate with acoustic hole
(denoted PSah) without stiffening elements; (b) plate with three transversal reinforcing bars (denoted
P3BT); (c) plate with three radial resonance bars, symmetric disposed related to longitudinal axis
of plate (denoted P3BR); (d) plate with five radial resonance bars, symmetric disposed related to
longitudinal axis of plate radial (denoted P5BR); (e) plate with three radial and two transversal bars
(denoted P3BR2T); (f) plate with five radial and two transverse bars (denoted P5BR2T); (g) plate with
three radial bars, two transverse and two oblique (denoted P3BR2V); (h) plate with five radial bars,
two transverse and two oblique bars (denoted P5BR2V); (i) plate with seven radial bars two transverse
and two oblique bars (denoted P7BR2V) [35].

Modeling and simulation were done using the Patran Nastran 2004 package. For the meshing in
finite elements, elements shell type (QUAD4) were used; the number of degrees of freedom on the
element node being 6. For all the nodes on the contour, all the degrees of freedom were fixed. In
the preprocessing stage, the following parameters specific to the material and the geometry of the
plate were introduced: thickness (h = 1.5, 2, 2.5, 3, 3.5 mm), Young’s modulus (E = 10,000, 12,000,
14,000 MPa), density (ρ = 350, 400, 450, 500 kg/m3), system of beams; keeping Poisson’s coefficient
constant (ν = 0.36) and shear’s modulus (G = 5000 MPa). The values of the Young’s modulus E and the
density ρwere taken from the literature and based on the results of the analytical modeling [35–37].
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(1,1) 

(a) 

(2,1) 

(b) 

 

(3,1) 

(c) 

(4,3) 

(d)

(1,2) 

(e)

(2,2) 

(f)

Figure 6. Guitar plate without acoustic hole PS: (a–d) symmetrical eigenmodes; (e,f) skew
symmetrical eigenmodes.

5. Discussion: Use of the Symmetry in the Calculus of the Eigenvalues of the Guitar

In the following, we will present the procedure that facilitates the calculation, taking into account
the mentioned symmetry properties the case of free vibrations of such a system. First of all, we will
examine an example to see if these properties are met in the case of guitars. The calculation is done for
the entire structure and then only for half of the structure, with a numerical example; for a guitar that
is considered in two cases: once without the acoustic hole and the second time with the acoustic hole.
The results are shown in Table 1. It is noted that the first four frequencies for the guitar half are the 2, 5,
8, 9 skew-symmetrical eigenmodes of the guitar taken in its entirety. It follows that the properties listed
above are met by the guitar structure. This means that we can ease the calculation in this case using the
following method: first, we calculate eigenvalues for a half guitar. Then, the polynomial characteristic
equation for the entire structure is divided into the characteristic equation for half structure. The result
obtained, which is a polynomial, provides the rest of the structure’s eigenvalues, which will define the
symmetrical eigenmodes.

In the studied case, after the reduction of the dimension of the characteristic equation, the
calculated values are obtained with a very good approximation. In the following study, this method is
used to determine the eigenvalues, which reduces the time required to study. The properties P2 and P3
(from previous chapter) offer the eigenmodes of the structure. In order to determine how the existence
of the acoustic hole influences the eigenmodes and the eigenfrequencies, the element of the guitar
plate, without stiffening elements and without the acoustic hole was analyzed using FEA and the
same plate provided with a rosette. In the preprocessing step, the same characteristics of the material
were introduced, so as to obtain the eigenfrequencies determined by the change of the plate structure
in the presence of the sound hole. In Figures 6 and 7 are shown the eigenmodes, and in Table 1 the
eigenfrequencies. This study was previously used to verify the properties presented in the Section 2 of
this paper.
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Table 1. Influence of the acoustic hole on the eigenvalues of the guitar plates for: E = 13,000 MPa,
G = 2300 MPa, ν = 0.4, ρ = 500 kg/m3, h =2.5 mm.

All
Eigen-Mode

Eigen
Frequency

of Plate
without
Acoustic

Hole, (Hz)

Eigen
Frequency

of Plate
with

Acoustic
Hole, (Hz)

Difference
between the
Two Cases

(%)

Symmetrical/
Skew

Symmetrical
Modes

Eigen
Frequency

of Plate
without
Acoustic

Hole, (Hz)

Eigen
Frequency

of Plate
with

Acoustic
Hole, (Hz)

1 191.64 191.65 +0.00052 Symmetric
2 295.79 310.84 +4.5 Symmetric 296.21 310.23
3 405.56 404.99 −0.14 Skew (1)
4 437.14 428.00 −2.09 Symmetric
5 638.70 598.35 −6.8 Skew (2) 638.22 598.43
6 646.94 619.39 −4.258 Symmetric
7 702.26 695.79 −0.921 Symmetric
8 727.18 698.61 −3.92 Skew (3) 727.67 698.35
9 931.33 914.99 −1.754 Skew (4) 931.73 914.46

10 943.61 944.98 +0.145 Symmetric

 

(1,1) 

(a) 

(2,1) 

(b) 

 

(3,1) 
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(d)
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(2,2) 

(f)

Figure 7. Guitar plate with acoustic hole: (a–d) symmetrical eigenmodes PSah; (e,f) skew
symmetrical eigenmodes.

It has been found that the presence of the acoustic hole does not produce major differences in the
eigenvalues of eigenmodes as can be seen in Figures 6 and 7 and in Table 1. From the point of view of
eigenmodes, there are no differences between the first six eigenmodes between the single bezel plate
and the acoustic hole; starting with the seventh mode, there are differences in the distribution of nodal
lines. We highlighted symmetrical and skewsymmetrical modes. Figures 8–10 show eigenmodes of the
plates with different stiffening systems. We have presented a selection from the multitude of the model
studied. It has been observed that the eigenmodes are not influenced by the shape, size and order by
the material parameters used in the preprocessing stage, namely: density, thickness, Young’s modulus,
etc. [38]. However, the structure and stiffening elements of the plate has a significant influence on
eigenmodes. In Figure 8, the modal shapes of plate with three symmetrical radial bars are presented. If
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the bars are setting perpendicular to the longitudinal axis, the skew eigenmodes change in shape and
orientation as can be seen in Figure 9.

(1,1) 

(a) 

(2,1)

(b) 

(3,1) 

(c) 

(1,2) 

(e)

(2,2) 

(e)

Figure 8. Guitar plate with three radial bars: (a–c), symmetrical eigenmodes P3BR; (e,f) skew
symmetrical eigenmodes.

(1,1a) 

(a) 

(1,1b)

(b) 

(3,3) 

(c) 

(1,2a) 

(d)

(1,2b)

(e)

(2,2)

(f)

Figure 9. Guitar plate with acoustic hole and three transversal bars, P3BT: (a–c), symmetrical
eigenmodes; (d–f) skew symmetrical eigenmodes.
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(1,1) 

(a) 

(2,1)

(b) 

(2,3) 

(c) 

 (4,1) 

(d)  

 

(1,2) 

(e)

(2,2) 

(f) 

Figure 10. Guitar plate with acoustic hole, three symmetrical radial bars and two transversal bars,
P3BR2T: (a–d) symmetrical eigenmodes; (e,f) skew symmetrical eigenmodes.

In Figure 10, the symmetrical eigenmodes correspond to breathing mode or synclastic (1,1), to
anticlastic bending of first order (2,1) and second order (4,1). The skew symmetrical eigenmodes
reported to plane of symmetry are the center bout rotation (1,2) and transverse dipole in plane (2,2).

Analyzing the eigenmodes obtained in the case of studied plates, it was observed that:

• The first eigenmode of vibration (1,1) presents the same shape, regardless the stiffening pattern.
Compare to plates with transversal bars, the plates without them (Figures 6–8) are characterized
by a more extended shape along the longitudinal axis. Additionally, the plates without transverse
stiffening elements have the second eigenmode of the type (1,2) compared to the other plates
whose eigenmode is of the shape (2,1);

• The stiffening bars change the eigenmodes and the order on the plates. Additionally, the increases
of number of bars leads to the natural frequency also increased (Table 2);

• The eigenmodes for the plates with the complete stiffening bars: radial, oblique and transverse
bars, regardless of their number, are similar;

• An interesting situation is recorded for plate with only three transversal bars (Figure 9), where the
antisymmetric modes (1,2a) and (1,2b) are obtained related to a different plane from longitudinal
symmetry plane, which is inclined to about 40-45 degrees (Figure 9d,e).

In Table 2, the values of the first natural frequency obtained by means FEA, for the different
elasticity moduli are shown.

For plates without stiffening bars, the eigenmodes are formed over the entire surface of the plate;
the plate’s eigenmodes are not significantly influenced by thickness and material (density, Young’s
modulus, Poisson’s ratio).
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Table 2. The eigenvalues of the guitar plates with different stiffening pattern, for: G = 2300 MPa, ν = 3.6,
ρ = 450 kg/m3, h = 2.5 mm (Legend: PS – simple plate without acoustic hole; PSah - simple plate
with acoustic hole, without stiffening bars; P3BR – plate with three radial resonance bars, symmetric
disposed related to longitudinal axis of plate; P5BR – plate with five radial resonance bars, symmetric
disposed related to longitudinal axis of plate radial; P3BT – plate with three transversal reinforcing
bars; P3BR2T – plate with three radial and two transversal bars; P5BR2T – plate with five radial and
two transverse bars; P3BR2V – plate with three radial bars, two transverse and two oblique; P5BR2V –
plate with five radial bars, two transverse and two oblique bars; P7BR2V - plate with seven radial bars
two transverse and two oblique bars.

Frequency (Hz)

Plates 14,000 MPa 12,000 MPa 10,000 MPa

PS 101 92 87
PSah 106 98 89
P3BR 207 175 155
P5BR 209 193 176
P3BT 210 194 178

P3BR2T 262 242 221
P5BR2T 264 243 223
P3BR2V 261 241 220
P5BR2V 264 243 224
P7BR2V 265 245.72 224.43

6. Conclusions

For some practical reasons related to material costs, execution and design, identical parts in the
engineering are commonly used. Using identical parts in a project a device or a machine can be
designed and can be executed cheaper and faster. The paper made an analysis of such a structure to
determine if these repetitive parts can induce characteristic properties and can bring some advantages
in design and calculus. The paper studied a particular case of a structure made by two identical
parts with application to real guitar plates. Although the modal analysis of the guitar plates does not
provide a comprehensive eigenmodes map of the whole guitar, the natural modes of soundboards
presented in this paper play an important role on the vibrational behavior of coupled plates on the
entire guitar structure.

In this way, the computational time decreases significantly. The dimension of the system decrease
and it’s easier to make a vibration analysis. The FEA allowed verification of the stated properties and
was used for the numerical study of the problem.
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Abstract: The prediction of chaotic time series has been a popular research field in recent years. Due
to the strong non-stationary and high complexity of the chaotic time series, it is difficult to directly
analyze and predict depending on a single model, so the hybrid prediction model has become a
promising and favorable alternative. In this paper, we put forward a novel hybrid model based on
a two-layer decomposition approach and an optimized back propagation neural network (BPNN).
The two-layer decomposition approach is proposed to obtain comprehensive information of the
chaotic time series, which is composed of complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) and variational mode decomposition (VMD). The VMD algorithm is used
for further decomposition of the high frequency subsequences obtained by CEEMDAN, after which
the prediction performance is significantly improved. We then use the BPNN optimized by a firefly
algorithm (FA) for prediction. The experimental results indicate that the two-layer decomposition
approach is superior to other competing approaches in terms of four evaluation indexes in one-step
and multi-step ahead predictions. The proposed hybrid model has a good prospect in the prediction
of chaotic time series.

Keywords: chaotic time series prediction; neural network; firefly algorithm; CEEMDAN; VMD

1. Introduction

Chaotic time series exist in a wide range of areas, such as nature, the economy, society, and
industry. They contain many important and valuable information, useful for complex system modeling
and prediction. Time series data mining is an important means of the control and decision-making of
practical problems in various fields [1,2]. In recent years, scholars have carried out a great amount of
research work on chaotic time series analysis and prediction. Han et al. [3] proposed an improved
extreme learning machine combined with a hybrid variable selection algorithm for the prediction of
multivariate chaotic time series, which can achieve high predictive accuracy and reliable performance.
Chandra [4] put forward a competitive cooperative coevolution algorithm to train recurrent neural
networks (RNNs) for chaotic time series prediction. Yaslan et al. [5] presented a hybrid model based
on empirical mode decomposition (EMD) and support vector regression (SVR) for electricity load
forecasting. Chen [6] proposed a prediction model of a radial basis function (RBF) neural network
optimized by an artificial bee colony algorithm for prediction of traffic flow time series. A multilayered
echo state machine with the addition of multiple layers of reservoirs was introduced in [7], and it could
be more robust than the echo state network with a conventional reservoir in dealing with chaotic time
series prediction.

Symmetry 2019, 11, 610; doi:10.3390/sym11050610 www.mdpi.com/journal/symmetry119
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The time series prediction models proposed in recent years are usually divided into three types:
statistical models, artificial intelligence models, and hybrid models. The statistical models mainly
include autoregressive (AR) models [8], the autoregressive moving average (ARMA), the autoregressive
integrated moving average (ARIMA) [9], multivariate linear regression, the Gaussian process [10], and
so on. Since statistical models require time series to be subject to certain a priori assumptions, such as
stationarity, they are not ideal for practical systems with many uncertainties. With the development of
computational intelligence, artificial intelligence models have obtained widespread attention. They
are data-driven methods that do not require any a priori assumptions and thus have a wide range of
applications. Commonly used artificial intelligence models include support vector regression [11], RBF
neural networks [12], Elman neural networks [4], echo state networks [7], deep neural networks [13],
extended Kalman filters [14], adaptive neuro-fuzzy inference systems (ANFISs) [15–17], etc. So as
to improve the performance of single-model-based prediction models, a novel framework based on
decomposition algorithm has been introduced for time series prediction [18]. Multiple decomposition
methods have been put forward to analyze time series, thus forming the hybrid prediction models [19].
The subsequences obtained by the decomposition algorithms are much easier to predict than the
original time series, which brings forward a new means of predicting nonlinear and non-stationary
time series [20]. Ren et al. [21] introduced a hybrid model, EMD combined with kNN, for wind
speed prediction. The model generated a set of feature vectors from the components obtained by
EMD, and kNN was then employed for prediction. The suggested hybrid model performed well for
long-term wind speed forecasting. An ensemble EMD (EEMD)–ARIMA model has been proposed to
predict annual runoff time series [22]. According to the experimental results, it was concluded that the
introduction of EEMD could observably improve prediction performance, and the EEMD–ARIMA
model was superior to the ARIMA. It is confirmed that hybrid models perform better than their
corresponding single models in chaotic time series prediction.

Though these existing hybrid prediction models have indeed increased the performance of chaotic
time series prediction, they still cannot handle the chaotic time series with strong non-stationary and
nonlinear very well. Hence, the hybrid models can be further improved to obtain more accurate
predictions. For the sake of enhancing the accuracy of actual chaotic time series prediction, we put
forward a novel hybrid model based on a two-layer decomposition technique and an optimized
back propagation neural network (BPNN). The main contents and contributions of this paper are
summarized as follows.

1. A hybrid model based on a two-layer decomposition technique is proposed in this paper. For the
sake of solving the problem that the prediction model based on single decomposition technique
cannot completely deal with the nonlinear and non-stationary of chaotic time series, this paper
puts forward a two-layer decomposition technique based on CEEMDAN and VMD, which is able
to fully extract the complex characteristics of time series and improve prediction accuracy.

2. A firefly algorithm (FA) is applied to optimize the weights between input and hidden layer, the
weights between the hidden and output layer and the thresholds of neuron nodes, which can
reduce the human interference of parameter settings and improve the function approximation
ability of the neural network. A BPNN optimized by the FA is applied to predict the subsequences
obtained by two-layer decomposition.

3. The real world chaotic time series, daily maximum temperature time series in Melbourne, is
used to assess the validity of the proposed hybrid model. The experimental results indicate
that our hybrid model has a significant improvement in prediction accuracy compared to
the existing single-model-based approaches and hybrid models based on the single layer
decomposition technique.

The remainder of the paper is organized as follows. Preliminaries and related works are introduced
in Section 2. In Section 3, we introduce the principles and the implementation steps of the proposed
method. Section 4 presents the experiments illustrating the availability of the proposed model. Finally,
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conclusions and future directions are demonstrated in Section 5. For the convenience of reading, the
notations used in this paper are shown in Table 1.

Table 1. The notations used in this paper.

Notation Meaning

ε(t) independent Gaussian white noise with unit variance
ω0 a noise coefficient

r1(t) the first residue
Ej(·) a function to extract the j-th intrinsic mode function (IMF) decomposed by EMD
uk(t) the k-th mode of decomposition
ωk the center frequency of mode k
∂t(·) partial derivative
σ the Dirac distribution
∗ convolution computation
α the balancing parameter of the data-fidelity constraint
λ the Lagrangian multiplier

f̂ (ω) the Fourier transforms of f (t)
I0 the intensity of the light source
γ the light absorption coefficient
rij the distance between firefly i and j
β0 the attractiveness at the light source (r = 0)
si the space positions of firefly i

2. Preliminaries and Related Works

In this section, we will firstly introduce the basic methods, including CEEMDAN, VMD, and the
FA. Furthermore, related works of the hybrid prediction model will be described.

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

Ensemble EMD (EEMD) adds white noise to the original signal to solve the mode mixing problem
of EMD. However, the white noise sequence cannot be absolutely canceled through the finite average,
and the magnitude of reconstruction error depends on the times of integration. In addition, increasing
the times of integration would lead to an increase computational burden. To solve these problems,
CEEMDAN was proposed as an improved version of EEMD [23]. By adding a finite number of
adaptive white noise at each stage, the CEEMDAN method is able to obtain the reconstruction error
close to zero through a small average number of times of integration. Thus, CEEMDAN avoids the
mode mixing problem in EMD, while reducing computational complexity compared to EEMD.

2.2. Variational Mode Decomposition

VMD is a novel non-recursive signal processing approach [24], which decomposes the original
signal into a group of subsequences. Each subsequence is called a mode and is concentrated near a
specific central pulsation frequency. For assessing the bandwidth of each mode, there are three main
schemes: Firstly, apply the Hilbert transform to each mode separately, calculate the associated analytic
signals, and then obtain a number of unilateral frequency spectrums. Then, adjust each mode to its
estimated center frequency by adding an exponential term, so as to shift the frequency spectrums of
these modes to the respective baseband. Finally, estimate the bandwidth of every mode by means of
the Gaussian smoothness of the demodulated signal, for example, the L2-norm of the gradient.

2.3. Firefly Algorithm

The firefly algorithm (FA) [25] is a heuristic optimization algorithm based on firefly behavior,
whereby flash signals are used to attract potential mates for positional movement. It is a swarm
intelligence optimization algorithm and therefore has the advantages of a swarm intelligence algorithm.
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In addition, compared with other similar algorithms, it has the following two advantages. Firstly, it
can realize automatic segmentation, which is well suited for solving highly nonlinear optimization
problems. Secondly, the FA has multi-modal characteristics and can deal with multi-modal problems
quickly and efficiently. The basic idea of the FA is to treat every point in space as a firefly, which is
attracted to the brighter fireflies and moves in this direction. During the movement of the weakly
glowing firefly, the position is updated until the optimal position is found. Since it is proposed, FA has
been widely used to solve various practical problems.

2.4. Related Works

Aiming at the analysis of nonlinear and non-stationary time series, many hybrid models have been
proposed. In [26], the EMD–BPNN is presented and applied to forecast tourism demand, namely the
number of tourists. The hybrid model showed better performance than a single BPNN or ARIMA model.
Zhou et al. [27] put forward a hybrid model of EEMD–GRNN (general regression neural network)
for PM2.5 forecasting. Simulation results indicated that the EEMD–GRNN model outperformed the
GRNN, multiple linear regression, and the ARIMA. This research was significant for the development
of air quality warning systems. Moreover, a comparison work of hybrid prediction models based
on wavelet decomposition, wavelet packet decomposition, EMD, and fast EEMD was implemented
in [28]. The study investigated the decomposition and prediction performance of multiple hybrid
models. In [29], VMD was adopted to decompose wind power time series into multiple modes, and
Gram–Schmidt orthogonalization was used to eliminate redundant attributes. Next, the hybrid model
based on VMD and extreme learning machines was proposed for short-term wind power forecasting.
Similarly, Lahmiri [30] proposed a hybrid model for economic and financial time series forecasting,
called VMD–GRNN. Jianwei E et al. [31] raised a hybrid model VMD–ICA–ARIMA for crude oil price
forecasting. Wang et al. [32] suggested a hybrid model based on VMD, phase space reconstruction,
and a wavelet neural network, which is reliable for multi-step prediction of wind speed time series.

As mentioned before, hybrid models based on decomposition methods, such as EMD, EEMD, and
VMD, have been extensively used for time series modeling and have exhibited satisfactory performance.

3. Methodology

3.1. The Structure of CEEMDAN–VMD–FABP Model

Subsequences obtained by an effective decomposition technique are much easier to analyze than
an original time series, and a single-layer decomposition pattern is one of the most commonly adopted
methods in existing hybrid models. Models based on a single-layer decomposition technique are
able to increase the predictive performance of various chaotic time series to some extent, but they are
difficult in completely reflecting the non-stationarity and irregularity of original signals. In view of
this, we propose a novel two-layer decomposition approach using CEEMDAN and VMD for chaotic
time series forecasting, which is shown in Figure 1. In addition, we adopt a BPNN optimized by an
FA (FABP) to predict subsequences obtained by a two-layer decomposition operation. FABP has the
ability to automatically optimize weights and thresholds, which is able to reduce the randomness of
parameter selection and ultimately strengthen the function approximation ability of a neural network.
Next, we will comprehensively introduce the structure of the proposed model.
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Figure 1. The structure of the two-layer decomposition prediction model.

The CEEMDAN method with noise robustness is first used to decompose the original signal.
CEEMDAN has good performance in anti-noise, so the original signal is not denoised in this paper.
At present, many scholars are committed to improving the CEEMDAN algorithm by increasing its
robustness and improving its adaptive anti-noise performance so that it omits the process of denoising
the original signal. Therefore, the original signal is automatically decomposed into a group of intrinsic
mode functions (IMFs), namely IMF1, IMF2, . . . , IMFn, and a residue.

IMF1 has the highest frequency, which is the most difficult to track and predict. To improve
the overall prediction accuracy of the original signal, the VMD algorithm is introduced here for the
secondary decomposition of IMF1. IMF1 is decomposed by the VMD algorithm into VMF1, VMF2, . . . ,
VMFm. Next, they are each predicted by FABP. Afterwards, the prediction results of these subsequences
are combined into the final result of IMF1. Furthermore, the subsequences IMF2, . . . , IMFn and the
residue are each predicted using FABP. The summation of the prediction results of IMF2, . . . , IMFn
and the residue is superimposed with the prediction result of the IMF1. The final forecast result of the
original chaotic signal is obtained. At this point, the entire forecast process is complete.

3.2. Algorithm Design

3.2.1. CEEMDAN for Original Time Series

First, the CEEMDAN decomposition algorithm [23] is adopted to obtain a group of IMFs adaptively.
The computational process of CEEMDAN is as follows.

Step 1. A collection of noise-added original time series is created: xi(t) = x(t) + ω0εi(t),
i ∈ {1, . . . , I}, where ε(t) is independent Gaussian white noise with unit variance, and ω0 is a
noise coefficient.

Step 2. For each xi(t), EMD is used to obtain the first IMF and take the average:

c1(t) =
1
I

I∑
i=1

ci
1(t). (1)

The first residue is then r1(t) = x(t) − c1(t).
Essentially, the procedure of the EMD algorithm is a sifting process from which IMFs can be

obtained [33]. The specific computation process of the signal xi(t) is described as follows. Firstly, we

123



Symmetry 2019, 11, 610

obtain every local maxima and local minima of xi(t). Next, the upper envelope u(t) and the lower
envelope l(t) are structured by cubic spline interpolation. Finally, we calculate the average of u(t) and
l(t) and record the average as m(t).

m(t) = (u(t) + l(t))/2. (2)

We subtract m(t) from the original signal xi(t) and record the result as ci
1(t).

ci
1(t) = xi(t) −m(t). (3)

It is then determined whether ci
1(t) is an integral part of the IMF by checking whether ci

1(t) satisfies
the above two conditions. The IMFs should conform to the following two conditions: (1) the absolute
value of the difference between the number of extreme points and zero crossing must be less than or
equal to 1 in the whole data series; (2) the average of the upper envelope and lower envelope must be
zero at any point. If ci

1(t) meets the above two conditions, ci
1(t) is recognized as IMF1. In the meantime,

r(t) = x(t) − c(t) is used as the residue instead of x(t). If ci
1(t) is not an IMF, ci

1(t) is used instead of
xi(t), and the above process is repeated until we IMF1 is obtained.

Step 3. The second IMFs is obtained by decomposing the noise-added residue r1 +ω1E1(ε1(t)):

c2(t) =
1
I

I∑
i=1

E1
(
r1 +ω1E1

(
εi(t)

))
, (4)

where Ej(·) represents the j-th IMF obtained by EMD.
Step 4. The remaining IMFs are repeated until the number of extreme points of the residual signal

does not exceed two.
So far, the original signal has been decomposed into a series of IMF components, namely IMF1,

IMF2, . . . , IMFn. Due to the highest frequency and unpredictability of IMF1, this research introduces
the second decomposition of the IMF1 based on the VMD.

3.2.2. VMD for IMF1

The main task of the VMD algorithm [34] is to solve the following constrained
optimization problem:

min{uk},{ωk}
∑
k
‖∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e− jωkt‖2

2

s.t.
∑
k

uk = f
(5)

where uk(t) denotes the k-th mode of decomposition, ωk is the center frequency of mode k, ∂t(·) denotes
partial derivative, σ indicates the Dirac distribution, ∗ denotes convolution computation, and f is the
original signal to be decomposed.

In order to solve the above constrained optimization problem, a quadratic penalty term and a
Lagrangian multiplier are shown in Equation (6). The former is conducive to enforcing the constraint,
and the latter helps to improve convergence. Hence, the translated unconstrained form is shown as

L({uk}, {ωk},λ) = α
∑

k

‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖2

2
+ ‖ f −∑

k

uk(t)‖2
2

+

〈
λ(t), f (t) −

∑
k

uk(t)
〉
, (6)

where α represents the balancing parameter, and λ is the Lagrangian multiplier.
An alternate direction method of multipliers (ADMM) [35] is applied to settle the optimization

problem of (6). The saddle point of the obtained augmented Lagrangian L in iterative optimization
process is determined by AMDD. The suboptimized solution is embedded into ADMM and optimized
in the Fourier domain. The detailed calculation process can be found in [24]. To implement the
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VMD algorithm and update the modes, uk and ωk are iterated in two directions according to the
following solutions:

un+1
k = argmin

⎧⎪⎪⎨⎪⎪⎩α
∑

k

‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖2

2
+ ‖ f −

∑
k

ui(t) − λ(t)2
‖2

2

, (7)

ωn+1
k = argmin‖∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e− jωkt‖2

2
. (8)

Subsequently, the solutions are represented as follows:

ûn+1
k (ω) =

f̂ (ω) − ∑
i�k

ûi(ω) +
λ̂(ω)

2

1 + 2α(ω−ωk)
2 (9)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûk(ω)
∣∣∣2dω∫ ∞

0

∣∣∣ûk(ω)
∣∣∣2dω

(10)

where f̂ (ω), ûk(ω), and λ̂(ω) represent the Fourier transforms of f (t), uk(t), and λ(t), and n denotes
the number of iterations.

The complete calculation process of VMD is organized in Algorithm 1. IMF1 is decomposed by
VMD algorithm into VMF1, VMF2, . . . , VMFm.

Algorithm 1: ADMM Optimization Process for VMD

Initialize
{
û1

k

}
,
{
ω1

k

}
, λ̂1, n = 0

repeat

n = n + 1
for k = 1 : K do

Update û1
k for all ω ≥ 0

ûn+1
k (ω) =

f̂ (ω)−∑
i�k

ûi(ω)+
λ̂(ω)

2

1+2α(ω−ωk)
2

Update ωk

ωn+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω

end for

for all ω ≥ 0

λ̂n+1(ω)← λ̂n(ω) + γ

[
f̂ (ω) −∑

k
ûn+1

k (ω)

]
until convergence

∑
k ‖ûn+1

k − ûn
k ‖22/‖ûn

k ‖22 < ε

3.2.3. BPNN Optimized by a Firefly Algorithm

After two-layer decomposition, a BPNN is used to predict all subsequences obtained by
decomposition. The FA is adopted to optimize the parameters of the BPNN and is capable of
improving the BPNN’s function approximation ability.

The search process is related to two important parameters of fireflies: the brightness and mutual
attraction of the fireflies. Bright fireflies will attract the weak fireflies to move to them. The brighter
the lights are, the better their positions are, and the brightest fireflies represent the optimal solution
of the function. The higher a firefly’s brightness is, the more attractive it is to other fireflies. If the
luminance is the same, the fireflies will engage in a random motion, and the two important parameters
are inversely proportional to the distance. The greater the distance is, the smaller the attraction is.
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The relative fluorescent brightness of a firefly is defined as

I = I0e−γri j
2
, (11)

where I0 denotes the intensity of the light source. The better the objective function value is, the higher
the firefly’s brightness is. γ represents the light absorption coefficient. As the distance increases and
the transmission medium weakens the light intensity, the fluorescence gradually decreases. The light
absorption coefficient is set to reflect this characteristic. The parameter rij denotes the distance between
firefly i and j, which is calculated according to the following formula:

rij =

√√ n∑
k=1

(
sik − sjk

)2
, (12)

where n represents the dimension of the problem.
Once a firefly is attracted by the flash of other fireflies, the attractiveness β is updated based on

β = β0e−γri j
2
, (13)

where β0 denotes the attractiveness at the light source (r = 0).
The formula for updating the location of fireflies is as follows:

si(t + 1) = si(t) + β0e−γri j
2(

sj(t) − si(t)
)
+ αε, (14)

where si and sj denotes the space positions of firefly i and j, separately. α denotes the step factor, and ε
represents a random value.

The main algorithm process of the FA can be described as Algorithm 2.

Algorithm 2: Process of the Firefly Algorithm

Initialize n, β0, γ, α, ε, t = 0
Define the maximum number of iterations (MaxGeneration).
while t <MaxGeneration

t = t + 1
for i = 1 : n

for j = 1 : i
Calculate light intensity Ii at si position.
If Ij > Ii

Move firefly i towards j.
end if

Update the attractiveness values.
Evaluate the new solutions and update the light intensity.

end for

end for

Rank the fireflies and find the current best.
end while

Output the global optimal value.

We then obtain all prediction results of all subsequence, and the final prediction results of all
sub-signals obtained by decomposition are superimposed. The advantages of this approach are verified
in the next section.
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4. Experimental Results

In this section, the daily maximum temperature time series in Melbourne is applied to analyze and
verify the availability of the presented method. The experimental data is collected from the real world.
The evaluation criteria are selected as root-mean-squared error (RMSE), normalized root-mean-square
error (NRMSE), mean absolute percentage error (MAPE), and symmetric mean absolute percentage
error (SMAPE). All prediction errors shown next are the mean values of 50 experimental results.
The expressions are as follows:

RMSE =

⎡⎢⎢⎢⎢⎢⎣ 1
n− 1

n∑
k=1

[ŷ(k) − y(k)]2
⎤⎥⎥⎥⎥⎥⎦

1/2

, (15)

NRMSE =

[
1

n−1

n∑
k=1

[ŷ(k) − y(k)]2
]1/2

ymax − ymin
, (16)

MAPE =
100
n

n∑
k=1

∣∣∣∣∣∣ ŷ(k) − y(k)
y(k)

∣∣∣∣∣∣, (17)

SMAPE =
1
n

n∑
k=1

∣∣∣y(k) − ŷ(k)
∣∣∣∣∣∣y(k)∣∣∣+ ∣∣∣ŷ(k)∣∣∣ , (18)

where y(k) denotes the real value, ŷ(k) denotes the predicted value, and n denotes the number
of samples.

The daily maximum temperature time series in Melbourne is used in the experiment. The dataset
contains the daily maximum temperature from 3 January 1981 to 31 December 31 1990, a total of
3650 samples, which is shown in Figure 2. The training set is made up of the first 3000 samples, and the
testing set is composed of the remaining 650. In order to compare the effectiveness of the model, six
other methods were used in the comparative experiments: an RBF neural network, [36], an ANFIS [37],
the original BP model, FABP, FABP with CEEMDAN decomposition (CEEMDAN–FABP), and FABP
with VMD decomposition (VMD–FABP). The experimental environment involved the Windows 7
operating system, and all experiments were carried out using MATLAB R2016a on a 3.50 GHz, Intel(R)
Core i3-4150M CPU with 6 GB RAM.

Figure 2. The daily maximum temperature time series in Melbourne.

Figure 3 shows the decomposition results of the original time series based on CEEMDAN, which
adaptively obtains 13 IMFs. CEEMDAN has good anti-noise performance, so this paper leaves out the
de-noising process of the original time series.
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Figure 3. Decomposition results of the daily maximum temperature time series in Melbourne based on
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN).

In this paper, sample entropy is an indicator for judging the way IMF predicts. Figure 4 shows the
sample entropies of the IMFs. The entropy of the original time series is 0.81, which is indicated by
the dotted line. In this research, the IMF components, whose entropy is greater than the entropy of
the original time series, are predicted separately, because these IMFs are highly complex. The IMFs
whose entropies are smaller than the original time series are combined and superimposed. After the
combined operation, the model complexity and computational time are significantly reduced, while
ensuring accuracy of prediction. Based on the results in Figure 4, the first four IMF components should
be predicted separately, while the IMF components from 5 to 13 should be combined for prediction.

 
Figure 4. Sample entropies of intrinsic mode functions (IMFs).

We obtained the prediction results of five IMF components, as shown in Figure 5. It can be
observed that the prediction curve of each IMF is able to track the actual values, and the prediction
trend is basically consistent. Due to the high frequency characteristics of IMF1, accurate prediction and
tracking is more difficult, resulting in larger prediction errors for IMF1.
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Figure 5. Prediction results of IMFs.

Figure 6 shows the final prediction results of the hybrid model of CEEMDAN and FABP. It can
be seen that the prediction curve can track the real curve well and that the prediction error is small.
The prediction result can be obtained in the case of the original time series without denoising.

 
Figure 6. Prediction results and prediction errors of the daily maximum temperature in Melbourne
based on the hybrid model of CEEMDAN and FABP.

The prediction errors presented in Figures 5 and 6 are shown in Table 2. As can be seen from
Table 2, the overall prediction error of the time series is 0.7763, while the prediction error of IMF1 is
0.6361. Therefore, if the prediction accuracy of IMF1 can be improved, the overall prediction accuracy
will be greatly improved. Based on the above analysis, we propose the application of a two-layer
decomposition strategy to further decompose the IMF1 component.
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Table 2. Overall prediction error and prediction error of IMF1.

Prediction Error RMSE NRMSE MAPE SMAPE

Overall prediction error 0.7763 0.0325 0.0277 0.0138
IMF1 prediction error 0.6361 0.0808 1.8515 0.5829

The IMF1 component is decomposed into six subsequences based on the VMD algorithm.
The decomposition results of the IMF1 component are shown in Figure 7. We use FABP to predict
VMF1, . . . , VMF6, and we combine the prediction results to obtain the prediction results of the IMF1
component. Next, we combine the prediction results of IMF1 with IMF2, . . . , IMF5’ components,
thereby obtaining the prediction results of daily maximum temperature time series in Melbourne, which
are shown in Figure 8. The error indexes of different prediction models are shown in Table 3. It can
be seen that the proposed two-layer decomposition algorithm can significantly reduce the prediction
error and improve prediction accuracy compared with the direct prediction. This is mainly because the
decomposition algorithm converts complex original signals into several simple and easy-to-analyze
sub-signals, which is conducive to analysis and prediction. Based on the two-layer decomposition
model, the prediction error is smaller than the single-layer approach, and the prediction performance
is improved.

Figure 7. Decomposition results of IMF1 based on the variational mode decomposition
(VMD) algorithm.

We conducted one-step-, two-step-, three-step-, and five-step-ahead prediction experiments on
the time series. The corresponding prediction errors, including RMSE, NRMSE, MAPE, and SMAPE,
are shown in Tables 3–6. According to the results presented in the tables, the proposed model has a
minimum prediction error in multiple prediction experiments, which indicates that the hybrid model of
CEEMDAN–VMD–FABP has the best prediction performance. We can also say that the hybrid model
based on the two-layer decomposition approach is better than the hybrid models based on a single
decomposition approach. Surprisingly, although the ANFIS performed poorly in one-step prediction,
its one-step prediction and multi-step prediction have similar effects, especially in the five-step ahead
prediction experiment, and its performance is better than the RBF in multi-step prediction. The ANFIS
method shows stability ability in terms of prediction, although the overall effect was not satisfactory.
The prediction results of other models except for the ANFIS basically conform to the actual law.
The more advanced the steps are, the more difficult it is to predict the chaotic time series.
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Figure 8. Prediction results and prediction errors of the daily maximum temperature in Melbourne
based on the two-layer decomposition algorithm and a BPNN optimized by a firefly algorithm (FABP).

Table 3. Prediction errors of daily maximum temperature time series based on different algorithms
(one step ahead).

Model RMSE NRMSE MAPE SMAPE
Training

Time
Testing
Time

RBF 1.7241 0.0721 0.0695 0.0345 0.9984 0.1092
ANFIS 3.2410 0.1356 0.1224 0.0598 22.3393 0.0936

BP 1.3818 0.0578 0.0511 0.0255 0.4368 0.0468
FABP 1.3618 0.0570 0.0505 0.0251 34.4294 0.0780

CEEMDAN–FABP 0.7763 0.0325 0.0277 0.0138 151.3834 0.1404
VMD–FABP 0.7026 0.0294 0.0266 0.0132 197.1852 0.2340

CEEMDAN–VMD–FABP 0.5131 0.0215 0.0198 0.0099 307.5092 0.2964

Table 4. Prediction errors of daily maximum temperature time series based on different algorithms
(two steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 2.6741 0.1119 0.1051 0.0517
ANFIS 3.4725 0.1453 0.1317 0.0644

BP 2.4105 0.1009 0.0912 0.0454
FABP 2.4032 0.1006 0.0924 0.0456

CEEMDAN–FABP 0.9292 0.0389 0.0346 0.0172
VMD–FABP 0.7240 0.0303 0.0276 0.0138

CEEMDAN–VMD–FABP 0.6910 0.0289 0.0262 0.0130

Table 5. Prediction errors of daily maximum temperature time series based on different algorithms
(three steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 3.3242 0.1391 0.1286 0.0628
ANFIS 3.4715 0.1453 0.1330 0.0651

BP 3.1497 0.1318 0.1211 0.0589
FABP 3.1435 0.1315 0.1194 0.0587

CEEMDAN–FABP 1.1266 0.0471 0.0420 0.0209
VMD–FABP 0.9105 0.0381 0.0345 0.0172

CEEMDAN–VMD–FABP 0.8692 0.0364 0.0333 0.0166
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Table 6. Prediction errors of daily maximum temperature time series based on different algorithms
(five steps ahead).

Model RMSE NRMSE MAPE SMAPE

RBF 3.4960 0.1463 0.1353 0.0662
ANFIS 3.4408 0.1440 0.1333 0.0654

BP 3.3497 0.1402 0.1295 0.0633
FABP 3.3595 0.1406 0.1285 0.0632

CEEMDAN–FABP 1.5822 0.0662 0.0598 0.0297
VMD–FABP 1.2500 0.0523 0.0487 0.0242

CEEMDAN–VMD–FABP 0.9864 0.0413 0.0370 0.0183

To show the above experimental results more intuitively, we transform the error values, i.e. the
RMSE, NRMSE, MAPE, and SMAPE shown in Tables 3–6, into a column chart, presented in Figure 9.
It can be seen that the proposed hybrid model of CEEMDAN–VMD–FABP has the best performance.
The proposed two-layer decomposition model has minimum prediction error in one-step-, two-step-,
three-step-, and five-step-ahead prediction.

 
Figure 9. Performance comparison of different models with different prediction steps.

Moreover, we compared the training time and testing time in one-step-ahead prediction. Under
different prediction steps, the running time is not much different, so we only list the running time of
one-step prediction in Table 3. As can be seen in the table, the testing time of each method is not much
different. Although the method proposed in this paper has the longest training time, the experimental
results prove that the proposed two-layer decomposition model can obtain the best prediction accuracy,
which shows the effectiveness of the proposed method. Moreover, even if the training time is long, the
overall running time is only a few minutes (not long), completely within the acceptable range.
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5. Conclusions

In this paper, we propose a two-layer decomposition technique consisting of CEEMEAN and VMD.
We obtained a group of subsequences by a two-layer decomposition method. These subsequences
were separately predicted, and the prediction results were combined to obtain the final result. For
the prediction, we used a BPNN optimized by a firefly algorithm. From this work, the following can
be concluded:

1. The actual time series is usually non-stationary and noisy. It is generally difficult to analyze the
original time series. CEEMDAN is an anti-noise decomposition method, and VMD can handle
non-stationary signals very well. Therefore, subsequences decomposed by CEEMDAN and VMD
are easy to analyze and predict.

2. After decomposition of the original signal, the BPNN was used for prediction. At this stage, the
parameters in the BPNN greatly influenced prediction accuracy. Therefore, in order to reasonably
select the model parameters, the FA algorithm was introduced to optimize the parameters of BP.

In general, in order to improve prediction accuracy, the following can be considered for further
study: Firstly, original input variables were analyzed to eliminate factors that are not conducive to
analysis and prediction. Secondly, we optimized the prediction model at the prediction stage. We
studied the two aspects simultaneously, and the experimental results demonstrate the effectiveness of
the proposed method.

Author Contributions: Conceptualization: X.X. and W.R.; methodology: X.X. and W.R.; data curation: X.X. and
W.R.; writing—original draft preparation: X.X. and W.R.

Funding: This work was supported by the National Natural Science Foundation of China (61773087).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shah, H.; Tairan, N.; Garg, H.; Ghazali, R. A Quick Gbest Guided Artificial Bee Colony Algorithm for Stock
Market Prices Prediction. Symmetry 2018, 10, 292. [CrossRef]

2. Zhai, H.; Cui, L.; Nie, Y.; Xu, X.; Zhang, W. A Comprehensive Comparative Analysis of the Basic Theory of
the Short Term Bus Passenger Flow Prediction. Symmetry 2018, 10, 369. [CrossRef]

3. Han, M.; Zhang, R.; Xu, M. Multivariate Chaotic Time Series Prediction Based on ELM–PLSR and Hybrid
Variable Selection Algorithm. Neural Process. Lett. 2017, 46, 705–717. [CrossRef]

4. Chandra, R. Competition and collaboration in cooperative coevolution of Elman recurrent neural networks
for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 3123–3136. [CrossRef] [PubMed]

5. Yaslan, Y.; Bican, B. Empirical mode decomposition based denoising method with support vector regression
for time series prediction: A case study for electricity load forecasting. Measurement 2017, 103, 52–61.
[CrossRef]

6. Chen, D. Research on traffic flow prediction in the big data environment based on the improved RBF neural
network. IEEE Trans. Ind. Inform. 2017, 13, 2000–2008. [CrossRef]

7. Malik, Z.K.; Hussain, A.; Wu, Q.J. Multilayered echo state machine: A novel architecture and algorithm.
IEEE Trans. Cybern. 2017, 47, 946–959. [CrossRef]

8. Gibson, J. Entropy Power, Autoregressive Models, and Mutual Information. Entropy 2018, 20, 750. [CrossRef]
9. Alsharif, M.H.; Younes, M.K.; Kim, J. Time Series ARIMA Model for Prediction of Daily and Monthly Average

Global Solar Radiation: The Case Study of Seoul, South Korea. Symmetry 2019, 11, 240. [CrossRef]
10. Yan, J.; Li, K.; Bai, E.; Yang, Z.; Foley, A. Time series wind power forecasting based on variant Gaussian

Process and TLBO. Neurocomputing 2016, 189, 135–144. [CrossRef]
11. Nava, N.; Di Matteo, T.; Aste, T. Financial Time Series Forecasting Using Empirical Mode Decomposition

and Support Vector Regression. Risks 2018, 6, 7. [CrossRef]
12. Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B. Power calculation using RBF neural networks to improve

power sharing of hierarchical control scheme in multi-DER microgrids. IEEE J. Emerg. Sel. Top. Power Electron.
2016, 4, 1217–1225. [CrossRef]

133



Symmetry 2019, 11, 610

13. Ahn, J.; Shin, D.; Kim, K.; Yang, J. Indoor Air Quality Analysis Using Deep Learning with Sensor Data.
Sensors 2017, 17, 2476. [CrossRef] [PubMed]

14. Takeda, H.; Tamura, Y.; Sato, S. Using the ensemble Kalman filter for electricity load forecasting and analysis.
Energy 2016, 104, 184–198. [CrossRef]

15. Bogiatzis, A.; Papadopoulos, B. Global Image Thresholding Adaptive Neuro-Fuzzy Inference System Trained
with Fuzzy Inclusion and Entropy Measures. Symmetry 2019, 11, 286. [CrossRef]
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Abstract: Free vibration analysis of the porous functionally graded circular plates has been presented
on the basis of classical plate theory. The three defined coupled equations of motion of the porous
functionally graded circular/annular plate were decoupled to one differential equation of free
transverse vibrations of plate. The one universal general solution was obtained as a linear combination
of the multiparametric special functions for the functionally graded circular and annular plates with
even and uneven porosity distributions. The multiparametric frequency equations of functionally
graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form.
The influences of the even and uneven distributions of porosity, power-law index, diverse boundary
conditions and the neglected effect of the coupling in-plane and transverse displacements on the
dimensionless frequencies of the circular plate were comprehensively studied for the first time. The
formulated boundary value problem, the exact method of solution and the numerical results for the
perfect and imperfect functionally graded circular plates have not yet been reported.

Keywords: eigenvalue problem; axisymmetric and non-axisymmetric vibrations; multiparametric
special functions; circular plate; functionally graded porous material

1. Introduction

Functionally graded materials (FGMs) are a class of composite materials, which are made of
the ceramic and metal mixture such that the material properties vary continuously in appropriate
directions of structural components. In the processes of preparing functionally graded material,
micro-voids and porosities may appear inside material in view of the technical issues. Zhu et al. [1]
reported that many porosities appear in material during the functionally graded material preparation
process by the non-pressure sintering technique. Wattanasakulpong et al. [2] reported that many
porosities exist in the intermediate area of the functionally graded material fabricated by utilizing a
multi-step sequential infiltration technique because of the problem with infiltration of the secondary
material into the middle area. In that case, less porosities appear in the top and bottom area of material
because infiltration of the material is easier in these zones.

In recent years, a significant number of articles about the free vibrations of porous functionally
graded (FGM) plates have appeared in the literature due to their wide applications in many fields
of engineering such as aeronautical, civil, mechanical, automotive, and ocean engineering. The
gradation of properties in functionally graded materials and the diverse distributions of porosity
have a significant effect on distributions of the mass and the stiffness of plates and therefore their
natural frequencies. The knowledge about influence of distribution of the material properties on
dynamics of plates is very important because it allows us to predict the frequency of plates and find
their optimal parameters. Additionally, the comprehensive investigation of the effect of functionally
graded material with porosities and diverse boundary conditions on the natural frequencies of plates
is the first important step to designing their safe and rational active vibration control system.
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We note that, in most engineering applications, the classical plate theory is often used to analyze
the dynamic behavior of thin lightweight plates. It is impossible to review all works focused on
mechanical behavior of porous FGM structures; then, we limit ourselves to chronological review of
some of the works focused on mechanical behavior of porous and porous FGM plates that are closely
related to our work.

Jabbari et al. [3] studied the buckling of thin saturated porous circular plate with the layers of
piezoelectric actuators. Buckling load was obtained for clamped circular plate under uniform radial
compressive loading. The same authors presented the buckling analysis of clamped thin saturated
porous circular plate with sensor–actuator layers under uniform radial compression [4,5] investigated
thermal and mechanical stability of clamped thin saturated and unsaturated porous circular plates with
piezoelectric actuators. Rad and Shariyat [6] solved the three-dimensional magneto-elastic problem for
asymmetric variable thickness porous FGM circular supported on the Kerr elastic foundation using the
differential quadrature method and the state space vector technique. Barati et al. [7] studied buckling
of functionally graded piezoelectric rectangular plates with porosities based on the four-variable plate
theory. Mechab et al. [8] studied free vibration of the FGM nanoplate with porosities resting on Winkler
and Pasternak elastic foundation based on the two-variable plate theory. Mojahedin et al. [9] analyzed
buckling of radially loaded clamped saturated porous circular plates based on higher order shear
deformation theory. Wang and Zu [10] analyzed vibration behaviors of thin FGM rectangular plates
with porosities and moving in the thermal environment using the method of harmonic balance and
the Runge–Kutta technique. Gupta and Talha [11] analyzed flexural and vibration response of porous
FGM rectangular plates using nonpolynomial higher-order shear and the normal deformation theory.
Wang and Zu [12] analyzed vibration characteristics of longitudinally moving sigmoid porous FGM
plates based on the von Kármán nonlinear plate theory. Ebrahimi et al. [13] studied free vibration
of smart shear deformable rectangular plates made of porous magneto-electro-elastic functionally
graded materials. Feyzi and Khorshidvand [14] studied axisymmetric post-buckling behavior of a
saturated porous circular plate with simply supported and clamped boundary conditions. Wang and
Zu [15] studied large-amplitude vibration of thin sigmoid functionally graded plates with porosities.
Wang et al. [16] studied vibrations of longitudinally travelling FGM porous thin rectangular plates
using the Galerkin method and the four-order Runge–Kutta method. Ebrahimi et al. [17] used a
four-variable shear deformation refined plate theory for free vibration analysis of embedded smart
rectangular plates made of magneto-electro-elastic porous functionally graded materials. Shahverdi
and Barati [18] developed nonlocal strain-gradient elasticity model for vibration analysis of porous
FGM nano-scale rectangular plates. Shojaeefard et al. [19] studied free vibration and thermal
buckling of micro temperature-dependent FGM porous circular plate using the generalized differential
quadrature method. Barati and Shahverdi [20] presented a new solution to examine large amplitude
vibration of a porous nanoplate resting on a nonlinear elastic foundation modeled based on the
four-variable plate theory. Kiran et al. [21] studied free vibration of porous FGM magneto-electro-elastic
skew plates using the finite element formulation. Cong et al. [22] presented an analytical approach to
buckling and post-buckling behavior analysis of FGM rectangular plates with porosities under thermal
and thermomechanical loads based on the Reddy’s higher-order shear deformation theory. Kiran
and Kattimani [23] studied free vibration and static behavior of porous FGM magneto-electro-elastic
rectangular plates using the finite element method. Arshid and Khorshidvand [24] analyzed free
vibration of saturated porous FGM circular plates integrated with piezoelectric actuators using the
differential quadrature method. Shahsavari et al. [25] used the quasi-3D hyperbolic theory for free
vibration of porous FGM rectangular plates resting on Winkler, Pasternak and Kerr foundations.

2. Contribution of Current Study

The aim of the paper is to formulate and solve the boundary value problem for the free
axisymmetric and non-axisymmetric vibrations of FGM circular plate with even and uneven porosity
distributions and diverse boundary conditions. The defined coupled equations of motion for the porous
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FGM circular plate were decoupled based on the properties of physical neutral surface. The general
solution of the decoupled equation of motion of a porous FGM circular plate was defined as the linear
combination of the Bessel functions functionally dependent on the material parameters. The obtained
characteristic equations allow us to comprehensively study the effect of the distribution of material
parameters and the formulated boundary conditions on the natural frequencies of axisymmetric and
non-axisymmetric vibrations of the circular plates without the necessity to solve a new eigenvalue
problem for plates with a steady distribution of parameters.

Authors of many previous papers (e.g., [26–30]) presented the free transverse vibration analysis
of the perfect (without porosity) FGM circular plates using the equation of motion including only the
coefficient of the pure bending stiffness varying in the thickness direction of the plate. The coefficients
of the extensional stiffness and the bending-extensional coupling stiffness were neglected because
the effect of the coupled in-plane and transverse displacements was omitted for obtaining simplified
solution to the eigenvalue problem.

In the present paper, the obtained equation of motion of the perfect and imperfect FGM circular
plates includes the coefficients of extensional stiffness, bending-extensional coupling stiffness and
bending stiffness, which appeared by decoupling the in-plane and transverse displacements using the
properties of the physical neutral surface. The differences between the values of numerical results for
the eigenfrequencies of the perfect FGM circular plate with and without the coupling effect are shown
for diverse boundary conditions.

To the best knowledge of authors, there are no studies which focus on the free axisymmetric and
non-axisymmetric vibrations of FGM and porous FGM circular plates. In particular, the obtained exact
solution, the multiparametric frequency equations and the calculated eigenfrequencies for the free
vibrations of perfect and imperfect FGM circular plates with clamped, simply supported, sliding and
free edges have not yet been reported. The present paper fills this void in the literature.

3. FGM Circular Plate with Porosities

Consider a porous FGM thin circular plate with radius R and thickness h presented in the
cylindrical coordinate (r, θ, z) with the z-axis along the longitudinal direction. The geometry and the
coordinate system of the considered circular plate are shown in Figure 1. The FGM plate contains evenly
(e) and unevenly (u) distributed porosities along the plate’s thickness direction. The cross-sections of
the FGM circular plates with the two various types of distribution of porosities are shown in Figure 2.

 
Figure 1. The geometry and the coordinate system of the porous FGM circular plate.
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(a) (b) 

Figure 2. The cross-sections of the porous FGM circular plate: (a) even distribution;
(b) uneven distribution.

The functionally graded material is a mixture of a ceramic (c) and a metal (m). If the volume
fraction of the ceramic part is Vc and the metallic part is Vm, we have the well-known dependence:

Vc(z) + Vm(z) = 1. (1)

Based on the modified rule of mixtures [16] with the porosity volume fraction ψ (ψ � 1), the
Young’s modulus, the density and the Poisson’s ratio for evenly (e) distributed porosities over the
cross-section of the plate have the general forms:

Ee(z, ψ) = Ec

[
Vc(z)−

ψ

2

]
+ Em

[
Vm(z)−

ψ

2

]
, (2a)

ρe(z, ψ) = ρc

[
Vc(z)−

ψ

2

]
+ ρm

[
Vm(z)−

ψ

2

]
, (2b)

νe(z, ψ) = νc

[
Vc(z)−

ψ

2

]
+ νm

[
Vm(z)−

ψ

2

]
. (2c)

The volume fraction of the ceramic part changes continually along the thickness and can be
defined as [31]

Vc(z, g) =
(

z
h
+

1
2

)g
, g ≥ 0, (3)

where g is the power-law index of the material. A change in the power g of functionally graded material
results in a change in the portion of the ceramic and metal components in the circular plate. We assume
that the composition is varied from the bottom surface (z = −h/2) to the top surface (z = h/2) of
the circular plate. After substituting the variation of the ceramic part Vc(z, g) from Equation (3) into
Equation (2), the material properties of the functionally graded circular plate with evenly distributed
porosities are defined in the final form:

Ee(z, g, ψ) = (Ec − Em)

(
z
h
+

1
2

)g
+ Em − ψ

2
(Ec + Em), (4a)

ρe(z, g, ψ) = (ρc − ρm)

(
z
h
+

1
2

)g
+ ρm − ψ

2
(ρc + ρm), (4b)

νe(z, g, ψ) = (νc − νm)

(
z
h
+

1
2

)g
+ νm − ψ

2
(νc + νm). (4c)
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For the functionally graded circular plate with unevenly (u) distributed porosities [16], the material
properties in Equations (4) can be replaced by the following forms:

Eu(z, g, ψ) = (Ec − Em)

(
z
h
+

1
2

)g
+ Em − ψ

2
(Ec + Em)

(
1 − 2|z|

h

)
, (5a)

ρu(z, g, ψ) = (ρc − ρm)

(
z
h
+

1
2

)g
+ ρm − ψ

2
(ρc + ρm)

(
1 − 2|z|

h

)
, (5b)

νu(z, g, ψ) = (νc − νm)

(
z
h
+

1
2

)g
+ νm − ψ

2
(νc + νm)

(
1 − 2|z|

h

)
. (5c)

In this case, the porosity linearly decreases to zero at the top and the bottom of the cross-section
of the plate. The effect of Poisson’s ratio is much less on the mechanical behavior of FGM plates than
the Young’s modulus [32,33], thus the Poisson’s ratio will assume to be constant νe = νu = ν in the
whole volume of the porous FGM circular plate.

4. Constitutive Relations and Governing Equations

In most practical applications, the ratio of the radius R to the thickness h of the plate is more than
10; then, the assumptions of classical plate theory (CPT) are applicable and rotary inertia and shear
deformation can be successfully omitted.

For a thin circular plate, the displacement field has the form:

ur(r, θ, z, t) = u(r, θ, t)− z
∂w(r, θ, t)

∂r
, (6a)

uθ(r, θ, z, t) = v(r, θ, t)− z
r

∂w(r, θ, t)
∂θ

, (6b)

w(r, θ, z, t) = w(r, θ, t), (6c)

where u, v and w are the radial, circumferential and transverse displacements of the midplane (z = 0)
of the plate at time t. Based on the linear strain–displacement relations and Hook’s law, the resultant
forces and the moments for porous FGM circular plate (i = {e, u}) can be expressed in the following
form [34]: ⎛

⎜⎝ Ni
rr

Ni
θθ

Ni
rθ

⎞
⎟⎠ =

⎡
⎢⎣ Ai

11 Ai
12 0

Ai
12 Ai

11 0
0 0 Ai

33

⎤
⎥⎦
⎛
⎜⎝ ε0

rr
ε0

θθ

γ0
rθ

⎞
⎟⎠+

⎡
⎢⎣ Bi

11 Bi
12 0

Bi
12 Bi

11 0
0 0 Bi

33

⎤
⎥⎦
⎛
⎜⎝ κrr

κθθ

κrθ

⎞
⎟⎠, (7a)

⎛
⎜⎝ Mi

rr
Mi

θθ

Mi
rθ

⎞
⎟⎠ =

⎡
⎢⎣ Bi

11 Bi
12 0

Bi
12 Bi

11 0
0 0 Bi

33

⎤
⎥⎦
⎛
⎜⎝ ε0

rr
ε0

θθ

γ0
rθ

⎞
⎟⎠+

⎡
⎢⎣ Di

11 Di
12 0

Di
12 Di

11 0
0 0 Di

33

⎤
⎥⎦
⎛
⎜⎝ κrr

κθθ

κrθ

⎞
⎟⎠, (7b)

where (
ε0

rr, ε0
θθ , γ0

rθ

)
=

(
∂u
∂r

,
1
r

∂v
∂θ

+
u
r

,
1
r

∂u
∂θ

+
∂v
∂r

− v
r

)
, (8a)

(κrr, κθθ , κrθ) =

(
−∂2w

∂r2 , − 1
r2

∂2w
∂θ2 − 1

r
∂w
∂r

,−2
r

∂2w
∂r∂θ

+
2
r2

∂w
∂θ

)
(8b)

are the in-plane strains and curvatures of midplane, respectively.
We assume that the material properties are varied from the bottom surface (z = −h/2) to the top

surface (z = h/2) of the plate; then, the coefficients of extensional stiffness Ai
kl , bending-extensional

141



Symmetry 2019, 11, 429

coupling stiffness Bi
kl and bending stiffness Di

kl can be defined for FGM circular plate with i-th
distribution of porosities in the general forms:

(
Ai

11, Bi
11, Di

11

)
=
∫ h/2

−h/2

Ei(z, g, ψ)

1 − ν2

(
1, z, z2

)
dz, (9a)

(
Ai

12, Bi
12, Di

12

)
=
∫ h/2

−h/2

νEi(z, g, ψ)

1 − ν2

(
1, z, z2

)
dz, (9b)

(
Ai

33, Bi
33, Di

33

)
=
∫ h/2

−h/2

Ei(z, g, ψ)

2(1 + ν)

(
1, z, z2

)
dz. (9c)

Additionally, the stiffness coefficients from Equation (9) satisfy the equations

Ai
12 + 2Ai

33 = Ai
11, Bi

12 + 2Bi
33 = Bi

11, Di
12 + 2Di

33 = Di
11. (10)

The resultant forces and the moments can be also defined by

(
Ni

rr, Ni
θθ , Ni

rθ

)
=
∫ h/2

−h/2

(
σi

rr, σi
θθ , τi

rθ

)
dz, (11a)

(
Mi

rr, Mi
θθ , Mi

rθ

)
=
∫ h/2

−h/2

(
σi

rrz, σi
θθz, τi

rθz
)

dz, (11b)

where the stress components and the strain components have the form:

⎛
⎜⎝ σi

rr
σi

θθ

τi
rθ

⎞
⎟⎠ =

⎛
⎜⎜⎝

Ei(z,g,ψ)
1−ν2 (εrr + νεθθ)

Ei(z,g,ψ)
1−ν2 (εθθ + νεrr)

Ei(z,g,ψ)
2(1+ν) (2γrθ)

⎞
⎟⎟⎠, (12)

⎛
⎜⎝ εrr

εθθ

2γrθ

⎞
⎟⎠ =

⎛
⎜⎝ ε0

rr + zκrr

ε0
θθ + zκθθ

γ0
rθ + zκrθ

⎞
⎟⎠. (13)

4.1. Coupled Equations of Motion

Using the Hamilton’s principle [34] and ignoring in-plane inertia forces, the equilibrium equations
of motion of the porous FGM thin circular plate have the forms:

∂Ni
rr

∂r
+

1
r

(
∂Ni

rθ

∂θ
+ Ni

rr − Ni
θθ

)
= 0, (14a)

∂Ni
rθ

∂r
+

1
r

∂Ni
θθ

∂θ
+

2
r

Ni
rθ = 0, (14b)

∂2Mi
rr

∂r2 +
2
r

∂Mi
rr

∂r
+

1
r2

∂2Mi
θθ

∂θ2 − 1
r

∂Mi
θθ

∂r
+

2
r

∂2Mi
rθ

∂r∂θ
+

2
r2

∂Mi
rθ

∂θ
= ρih

∂2w
∂t2 , (14c)

where the resultants forces and the moments can be obtained using Equations (7) and (8), and can be
presented in the following form:

Ni
rr = Ai

11
∂u
∂r

+ Ai
12

(
1
r

∂v
∂θ

+
u
r

)
− Bi

11
∂2w
∂r2 − Bi

12

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (15a)

Ni
θθ = Ai

12
∂u
∂r

+ Ai
11

(
1
r

∂v
∂θ

+
u
r

)
− Bi

12
∂2w
∂r2 − Bi

11

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (15b)
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Ni
rθ = Ai

33

(
1
r

∂u
∂θ

+
∂v
∂r

− v
r

)
− Bi

33

(
2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
, (15c)

Mi
rr = Bi

11
∂u
∂r

+ B12

(
1
r

∂v
∂θ

+
u
r

)
− Di

11
∂2w
∂r2 − Di

12

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (16a)

Mi
θθ = Bi

12
∂u
∂r

+ Bi
11

(
1
r

∂v
∂θ

+
u
r

)
− Di

12
∂2w
∂r2 − Di

11

(
1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
, (16b)

Mi
rθ = Bi

33

(
1
r

∂u
∂θ

+
∂v
∂r

− v
r

)
− Di

33

(
2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
. (16c)

In Equation (14c), ρi is the averaged material density of the FGM circular plate for the i-th
distribution of porosities presented in the general form:

ρi ≡ ρi(g, ψ) =
1
h

∫ h/2

−h/2
ρi(z, g, ψ)dz, i = {e, u}. (17)

Substituting Equations (15) and (16) into Equation (14), and using relations given in Equation (10),
we get the coupled equilibrium equations of motion of the porous FGM circular plate presented in
terms of displacement components:

Ai
11

(
∂2u
∂r2 +

1
r

∂u
∂r

− u
r2 − 1

r2
∂v
∂θ

+
1
r

∂2v
∂r∂θ

)
+ Ai

33

(
1
r2

∂2u
∂θ2 − 1

r
∂2v
∂r∂θ

− 1
r2

∂v
∂θ

)
− Bi

11
∂∇2w

∂r
= 0, (18a)

Ai
11

(
1
r2

∂u
∂θ + 1

r
∂2u
∂r∂θ +

1
r2

∂2v
∂θ2

)
+ Ai

33

(
1
r2

∂u
∂θ − 1

r
∂2u
∂r∂θ +

∂2v
∂r2 + 1

r
∂v
∂r − v2

r

)
− Bi

11
1
r

∂∇2w
∂θ = 0, (18b)

Di
11∇2∇2w − Bi

11∇2ε = −ρih
∂2w
∂t2 , (18c)

where ∇2 = ∂2

∂r2 +
1
r

∂
∂r +

1
r2

∂2

∂θ2 is the Laplace operator presented in polar coordinates and

ε =
∂u
∂r

+
1
r

∂v
∂θ

+
u
r

. (19)

4.2. Decoupled Equation of Motion

Equation (18) show that the in-plane stretching and bending are coupled because the reference
surface is a geometrical midplane. We can eliminate this coupling by introducing the physical neutral
surface, where the in-plane displacements will be omitted. The in-plane displacements of the midplane
can be expressed in terms of the slopes of deflection in the following form:

u(r, θ, t) = z0
∂w(r, θ, t)

∂r
, (20a)

v(r, θ, t) = z0
1
r

∂w(r, θ, t)
∂θ

, (20b)

where z0 is the distance between the midplane and the physical neutral surface. By substituting
Equation (20) into Equations (6) and (15) and introducing z = z0, the in-plane displacements u, v and
the in-plane forces Ni

rr, Ni
θθ , Ni

rθ must equal zero based on properties of the physical neutral surface.
By substituting Equation (20) into Equation (15)

Ni
rr =

(
z0 Ai

11 − Bi
11

)∂2w
∂r2 +

(
z0 Ai

12 − Bi
12

)( 1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
= 0, (21a)

Ni
θθ =

(
z0 Ai

12 − Bi
12

)∂2w
∂r2 +

(
z0 Ai

11 − Bi
11

)( 1
r2

∂2w
∂θ2 +

1
r

∂w
∂r

)
= 0, (21b)
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Ni
rθ =

(
z0 Ai

33 − Bi
33

)(2
r

∂2w
∂r∂θ

− 2
r2

∂w
∂θ

)
= 0 (21c)

and assuming that the Poisson’s ratio is constant, distance z0 can be obtained from relations:

z0 Ai
11 − Bi

11 = z0 Ai
12 − Bi

12 = z0 Ai
33 − Bi

33 = 0, (22)

where

z0 =
Bi

11

Ai
11

=
Bi

12

Ai
12

=
Bi

33

Ai
33

=

∫ h/2
−h/2 Ei(z, g, ψ)zdz∫ h/2
−h/2 Ei(z, g, ψ)dz

. (23)

By substituting Equations (20) and (23) into Equations (18c) and (19), we obtain the decoupled
equation of transverse vibration of the porous FGM thin circular plate in the form:

Di∇2∇2w = −ρih
∂2w
∂t2 , (24)

where

Di = Di
11 −

(
Bi

11
)2

Ai
11

. (25)

5. Solution of the Problem

Taking into account a harmonic solution, the small vibration of the porous FGM circular plate
may be expressed as follows:

w(r, θ, t) = W(r) cos(nθ) cos(ωt), (26)

where W(r) is the radial mode function as the small deflection compared with the thickness h of
the plate, n is the integer number of diagonal nodal lines, θ is the angular coordinate, and ω is the
natural frequency. By substituting Equation (26) into Equation (24) using the dimensionless coordinate
ξ = r/R (0 < ξ ≤ 1), the general governing differential equation assumes the following form:

Ln(W) = ρihω2W, (27)

where Ln(·) is the differential operator defined by

Ln(·) ≡ Di d4

dξ4 +
2Di

ξ

d3

dξ3 −
(
1 + 2n2)Di

ξ2
d2

dξ2 +

(
1 + 2n2)Di

ξ3
d

dξ
+

(
n4 − 4n2)Di

ξ4 . (28)

The calculated general forms of material density ρi and the coefficients of extensional stiffness(
Ai

11
)
, extensional-bending coupling stiffness

(
Bi

11
)

and bending stiffness
(

Di
11
)

for the porous FGM
circular plate are presented in the following general forms:

ρi =
ρc(2x − ψ − gψ) + ρm(2xg − ψ − ψg)

2x(1 + g)
, (29a)

Ai
11 =

Ech
1 − ν2

[
(2x − ψ − gψ) + Em

Ec
(2xg − ψ − gψ)

2x(1 + g)

]
, (29b)

Be
11 = Bu

11 =
Ech2

(1 − ν2)

⎡
⎣ g

(
1 − Em

Ec

)
2(1 + g)(2 + g)

⎤
⎦, (29c)

Di = Ech3

12(1−ν2)

[
y(6g2+6g+12)−ψ(1+g)(2+g)(3+g)+ Em

Ec [y(2g3+6g2+16g)−ψ(1+g)(2+g)(3+g)]
2y(1+g)(2+g)(3+g)

]
, (29d)
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where x = y = 1 for the even distribution (i = e) of porosities and x = 2, y = 4 for the uneven (i = u)
distribution of porosities. The extensional-bending coupling stiffness Bi

11 has the same form for both
types of porosities.

By substituting the obtained forms from Equation (29) into Equation (27), the generalized ordinary
differential equation with variable coefficients is obtained as:

Ln(W)χ = λ2μiW, (30)

where

Ln(·)χ ≡
(
χi

1 + χi
2
) d4

dξ4 +
2(χi

1+χi
2)

ξ
d3

dξ3 −
(1+2n2)(χi

1+χi
2)

ξ2
d2

dξ2 +
(1+2n2)(χi

1+χi
2)

ξ3
d

dξ +
(n4−4n2)(χi

1+χi
2)

ξ4 , (31)

χi
1 =

6xg2(Ec − Em)
2

Ec(1 + g)(2 + g)2[Ec(ψ + gψ − 2x) + Em(ψ + gψ − 2xg)]
, (32)

χi
2 =

Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]
2yEc(1+g)(2+g)(3+g) , (33)

μi =
(−gψ − ψ + 2x)− ρm

ρc
(gψ + ψ − 2xg)

2x(1 + g)
, (34)

λ = ωR2
√

ρch/Dc, (35)

Dc =
Ech3

12(1 − ν2)
. (36)

The boundary conditions on the outer edge (ξ = 1) of the porous FGM circular plate may be one
of the following: clamped, simply supported, sliding supported and free. These conditions may be
written in terms of the radial mode function W(ξ) in the following form:

• Clamped:
W(ξ)

∣∣
ξ=1 = 0, (37a)

dW
dξ

∣∣∣∣ξ=1 = 0. (37b)

• Simply supported:
W(ξ)

∣∣
ξ=1 = 0, (38a)

M(W)

∣∣∣∣∣ξ=1 =

[
d2W
dξ2 +

ν

ξ

dW
dξ

− νn2

ξ2 W
]

ξ=1
= 0. (38b)

• Sliding supported:
dW
dξ

∣∣∣∣ξ=1 = 0, (39a)

V(W)

∣∣∣∣∣ξ=1 =

[
d3W
dξ3 +

1
ξ

d2W
dξ2 −

(
1 + 2n2 − νn2

ξ2

)
dW
dξ

+

(
3n2 − νn2

ξ3

)
W
]

ξ=1
= 0, (39b)

• Free:
M(W)

∣∣
ξ=1 = 0, (40a)

V(W)
∣∣
ξ=1 = 0. (40b)

The static forces M(W) and V(W) are the normalized radial bending moment and the normalized
effective shear force, respectively.
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The one multiparametric general solution of the defined differential Equation (30) for FGM
circular/annular plates with the two various types of distribution of porosities (i = {e, u}) is obtained
in the following form:

Wi
n(ξ, λ, g, ψ) = C1 Jn

[(
λ
√
Mi

)1/2
ξ
]
+ C2 In

[(
λ
√
Mi

)1/2
ξ
]
+ C3Yn

[(
λ
√
Mi

)1/2
ξ
]
+ C4Kn

[(
λ
√
Mi

)1/2
ξ
]
, (41)

where n (n ∈ N+) is the number of nodal lines, C1, C2, C3, C4 are the constants of integration,
Jn

[(
λ
√
Mi

)1/2
ξ
]
, In

[(
λ
√
Mi

)1/2
ξ
]
, Yn

[(
λ
√
Mi

)1/2
ξ
]
, Kn

[(
λ
√
Mi

)1/2
ξ
]

are the Bessel functions as
particular solutions of Equation (30), and Mi is the generalized multiparametric function defined as:

Mi ≡ Mi(x, y, g, ψ, Em, Ec, ρm, ρc) =
Ωi

1

Ωi
2 + Ωi

3
, Mi ≥ 1∀g ∈ [0, ∞] ∧ ∀ψ ∈ [0, 1) , (42)

where
Ωi

1 = −Ecx(2 + g)2[ρc(gψ + ψ − 2x) + ρm(gψ + ψ − 2xg)], (43a)

Ωi
2 =

12xyg2(Ec − Em)
2ρc

Ec(gψ + ψ − 2x) + Em(gψ + ψ − 2xg)
, (43b)

Ωi
3 =

(2+g)ρc[Ec[y(12+6g+6g2)−ψ(1+g)(2+g)(3+g)]+Em[y(16g+6g2+2g3)−ψ(1+g)(2+g)(3+g)]]
3+g . (43c)

The functions Jn

[(
λ
√
Mi

)1/2
ξ
]

and In

[(
λ
√
Mi

)1/2
ξ
]

are the limited linear independent solutions(
lim
ξ→0

Jn

[(
λ
√
Mi

)1/2
ξ
]
< ∞, lim

ξ→0
In

[(
λ
√
Mi

)1/2
ξ
]
< ∞

)
of Equation (30) for the axisymmetric and

non-axisymmetric deflections at center (ξ = 0) of the porous FGM circular plate and diverse values
of the physically justified parameters λ, g and ψ. The particular solutions Yn

[(
λ
√
Mi

)1/2
ξ
]

and

Kn

[(
λ
√
Mi

)1/2
ξ
]

are unlimited
(

lim
ξ→0

Yn

[(
λ
√
Mi

)1/2
ξ
]
= −∞, lim

ξ→0
Kn

[(
λ
√
Mi

)1/2
ξ
]
= ∞

)
for the

deflection at the center of the plate, then, the general solution (41) for the porous FGM circular plate
can be presented in the new form:

Wi
n(ξ, λ, g, ψ) = C1Ψ1 + C2Ψ2, (44)

where

Ψ1 ≡ Jn

[(
λ
√

Mi

)1/2
ξ

]
, (45a)

Ψ2 ≡ In

[(
λ
√

Mi

)1/2
ξ

]
. (45b)

By applying the general solution (44) and the boundary conditions (37–40) as well as assuming the
existence of the non-trivial constants C1 and C2, the general nonlinear multiparametric characteristic
equations of the FGM circular plate with the two various types of distribution of porosities were
obtained in the form:

• Clamped (C):

Δi
C(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ Ψ1 Ψ2
∂Ψ1
∂ξ

∂Ψ2
∂ξ

∣∣∣∣∣
ξ=1

= 0; (46a)

• Simply supported (SS):

Δi
SS(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ Ψ1 Ψ2

M[Ψ1] M[Ψ2]

∣∣∣∣∣
ξ=1

= 0; (46b)
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• Sliding supported (S):

Δi
S(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣
∂Ψ1
∂ξ

∂Ψ2
∂ξ

V[Ψ1] V[Ψ2]

∣∣∣∣∣
ξ=1

= 0; (46c)

• Free (F):

Δi
F(λ, g, ψ, n, x, y) ≡

∣∣∣∣∣ M[Ψ1] M[Ψ2]

V[Ψ1] V[Ψ2]

∣∣∣∣∣
ξ=1

= 0. (46d)

If x = y = 1 is introduced to Equations (42) and (45), then the obtained characteristic Equation (46)
will be valid for the FGM circular plates with even (i = e) distribution of porosities. If x = 2, y = 4 is
introduced to Equations (42) and (45), then the obtained characteristic equations (46) will be valid for
the FGM circular plates with uneven (i = u) distribution of porosities.

The general solution for the perfect (without porosity) FGM circular plate can be obtained from
Equation (44) and presented in the following form:

Wn(ξ, λ, g) ≡ lim
ψ→0

Wi
n(ξ, λ, g, ψ) = C1 lim

ψ→0
Jn

[(
λ
√

Mi

)1/2
ξ

]
+ C2 lim

ψ→0
In

[(
λ
√

Mi

)1/2
ξ

]
. (47)

After calculations, the final form of general solution for the perfect FGM circular plate is
expressed as

Wn(ξ, λ, g) = Jn

[(
λ
√

Y
)1/2

ξ

]
+ In

[(
λ
√

Y
)1/2

ξ

]
, (48)

where

Y =
Ec(2 + g)2(3 + g)(Ec + gEm)(ρc + gρm)

ρc(1 + g)[12E2
c + (28g + 16g2 + 4g3)EcEm + (7g2 + 4g3 + g4)E2

m]
. (49)

The general solution for the perfect FGM circular plate with negligible effect of the coupling
in-plane and transverse displacements ( Ai

11 → 0, Bi
11 → 0) has the form:

Wn(ξ, λ, g) = C1 Jn

[(
λ
√

P
)1/2

ξ

]
+ C2 In

[(
λ
√

P
)1/2

ξ

]
, (50)

where

P =
Ec(2 + g)(3 + g)(ρc + gρm)

ρc[3Ec(2 + g + g2) + Em(8g + 3g2 + g3)]
. (51)

6. Parametric Study

The every single fundamental and lower dimensionless frequencies of the free axisymmetric
and non-axisymmetric vibrations of porous FGM circular plate were calculated for diverse values of
the power-law index g, the porosity volume fraction ψ and different boundary conditions using the
Newton method aided by a calculation software.

The Poisson’s ratio is taken as ν = 0.3 and its variation is assumed to be negligible. In the present
study, aluminum is taken as the metal and alumina is taken as the ceramic material. The values of
Young’s modulus and densities are taken as follows: Em = 70 GPa, Ec = 380 GPa, ρm = 2702 kg/m3,
ρc = 3800 kg/m3.

6.1. Imperfect FGM Circular Plate

The obtained numerical results for the first three dimensionless frequencies λ = ωR2
√

ρch/Dc

of the axisymmetric (n = 0) and non-axisymmetric (n = 1) vibrations of the perfect (ψ → 0)
homogeneous (g → 0) circular plate with various boundary conditions are presented in Table 1
and compared with the results obtained by Wu and Liu [35], Yalcin et al. [36], Zhou et al. [37] and
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Duan et al. [38]. The obtained numerical results for the perfect homogeneous circular plate are in
excellent agreement with those available in the literature.

Table 1. The dimensionless frequencies of the perfect homogeneous circular plate.

λ

Clamped
Simply

Supported
Sliding

Supported
Free

n

0 1 0 1 0 1 0 1

λ0

Present 10.215 21.260 4.935 13.898 14.682 3.082 9.003 20.474
[35] 10.216 21.260 4.935 13.898 14.682 3.082 9.003 20.475
[36] 10.215 21.260 4.935 13.898 - - 9.003 20.474
[37] 10.215 21.260 4.935 13.898 - - 9.003 20.474
[38] 10.215 21.260 4.935 13.898 - - 9.003 20.474

λ1

Present 39.771 60.828 29.720 48.478 49.218 28.398 38.443 59.812
[35] 39.771 60.829 29.720 48.478 49.218 28.399 38.443 59.812
[36] 39.771 60.828 29.720 48.479 - - 38.443 59.811
[37] 39.771 60.828 29.720 48.478 - - 38.443 59.811
[38] 39.771 60.828 29.719 48.478 - - 38.443 59.812

λ2

Present 89.104 120.079 74.156 102.773 103.499 72.859 87.750 118.957
[35] 89.104 120.079 74.156 102.772 103.499 72.859 87.750 118.957
[36] 89.104 120.079 74.156 102.773 - - 87.705 118.957
[37] 89.104 120.080 74.156 102.773 - - 87.750 118.957
[38] 89.104 120.079 74.156 102.773 - - 87.750 118.957

The calculated fundamental dimensionless frequencies λ0 of the axisymmetric (n = 0) and
non-axisymmetric (n = 1) vibrations of the FGM circular plate with evenly (i = e) and unevenly
(i = u) distributed porosity are presented in Tables 2–5. In the parametric study, values of the
power-law index of FGMs is taken as g = {0, 0.2, 0.4, 0.6, 1, 2, 3, 4, 5} and values of the porosity
volume fraction is taken as ψ = {0, 0.05, 0.1, 0.2, 0.3}.

Table 2. The dimensionless fundamental frequencies of the clamped porous FGM circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 10.215 9.481 8.896 8.436 7.797 7.090 6.867 6.777 6.724
0.05 10.286 9.522 8.905 8.414 7.718 6.920 6.661 6.559 6.503
0.1 10.362 9.566 8.914 8.387 7.623 6.712 6.401 6.280 6.219
0.2 10.535 9.668 8.932 8.315 7.374 6.113 5.612 5.402 5.305
0.3 10.745 9.792 8.948 8.207 6.993 5.034 3.949 3.312 2.923

1

0 21.260 19.731 18.514 17.557 16.228 14.756 14.292 14.105 13.993
0.05 21.406 19.816 18.533 17.510 16.062 14.402 13.863 13.650 13.533
0.1 21.564 19.909 18.552 17.454 15.866 13.968 13.222 13.069 12.942
0.2 21.925 20.121 18.590 17.304 15.346 12.723 11.680 11.242 11.041
0.3 22.362 20.380 18.622 17.081 14.554 10.478 8.220 6.894 6.084

u

0

0 10.215 9.481 8.896 8.436 7.797 7.090 6.867 6.777 6.724
0.05 10.288 9.544 8.949 8.478 7.819 7.079 6.844 6.751 6.698
0.1 10.364 9.611 9.004 8.521 7.840 7.065 6.816 6.719 6.666
0.2 10.523 9.751 9.120 8.612 7.882 7.023 6.738 6.630 6.577
0.3 10.696 9.903 9.246 8.710 7.923 6.959 6.622 6.495 6.438

1

0 21.260 19.731 18.514 17.557 16.228 14.756 14.292 14.105 13.993
0.05 21.411 19.864 18.624 17.644 16.272 14.733 14.244 14.050 13.940
0.1 21.568 20.001 18.738 17.734 16.316 14.703 14.182 13.983 13.874
0.2 21.901 20.293 18.980 17.923 16.404 14.617 14.023 13.798 13.688
0.3 22.260 20.610 19.243 18.127 16.490 14.483 13.782 13.517 13.399
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Table 3. The dimensionless fundamental frequencies of the simply supported porous FGM
circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 4.935 4.580 4.297 4.075 3.767 3.425 3.317 3.274 3.248
0.05 4.969 4.600 4.302 4.064 3.728 3.343 3.218 3.168 3.141
0.1 5.005 4.621 4.306 4.051 3.683 3.242 3.092 3.033 3.004
0.2 5.089 4.670 4.315 4.017 3.562 2.953 2.711 2.609 2.563
0.3 5.190 4.730 4.322 3.965 3.378 2.432 1.908 1.600 1.412

1

0 13.898 12.898 12.103 11.477 10.608 9.646 9.343 9.220 9.147
0.05 13.993 12.954 12.115 11.446 10.500 9.415 9.062 8.923 8.847
0.1 14.097 13.015 12.127 11.410 10.372 9.131 8.708 8.543 8.460
0.2 14.333 13.153 12.152 11.312 10.032 8.317 7.635 7.349 7.218
0.3 14.618 13.322 12.173 11.166 9.514 6.849 5.373 4.506 3.977

u

0

0 4.935 4.580 4.297 4.075 3.767 3.425 3.317 3.274 3.248
0.05 4.970 4.611 4.323 4.095 3.777 3.420 3.306 3.261 3.236
0.1 5.006 4.643 4.349 4.116 3.787 3.413 3.292 3.246 3.220
0.2 5.083 4.710 4.406 4.160 3.808 3.393 3.255 3.203 3.177
0.3 5.167 4.784 4.467 4.207 3.828 3.362 3.199 3.137 3.110

1

0 13.898 12.898 12.103 11.477 10.608 9.646 9.343 9.220 9.147
0.05 13.997 12.985 12.174 11.534 10.637 9.631 9.311 9.185 9.113
0.1 14.099 13.075 12.249 11.592 10.666 9.611 9.273 9.141 9.069
0.2 14.317 13.266 12.408 11.716 10.724 9.555 9.167 9.020 8.948
0.3 14.551 13.473 12.580 11.850 10.780 9.468 9.009 8.836 8.759

Table 4. The dimensionless fundamental frequencies of the porous FGM circular plate with
sliding support.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 14.682 13.626 12.785 12.124 11.206 10.190 9.870 9.740 9.663
0.05 14.782 13.685 12.798 12.092 11.092 9.946 9.573 9.426 9.346
0.1 14.892 13.749 12.811 12.053 10.956 9.646 9.199 9.025 8.938
0.2 15.141 13.895 12.837 11.950 10.597 8.786 8.066 7.764 7.625
0.3 15.442 14.074 12.860 11.796 10.051 7.236 5.676 4.761 4.201

1

0 3.082 2.860 2.684 2.545 2.352 2.139 2.072 2.045 2.029
0.05 3.103 2.873 2.687 2.538 2.328 2.088 2.010 1.980 1.962
0.1 3.126 2.886 2.690 2.530 2.300 2.025 1.931 1.894 1.876
0.2 3.178 2.917 2.695 2.509 2.225 1.844 1.693 1.630 1.600
0.3 3.242 2.954 2.700 2.476 2.110 1.519 1.191 0.999 0.882

u

0

0 14.682 13.626 12.785 12.124 11.206 10.190 9.870 9.740 9.663
0.05 14.786 13.717 12.861 12.184 11.237 10.174 9.836 9.703 9.627
0.1 14.895 13.812 12.940 12.246 11.268 10.154 9.795 9.656 9.581
0.2 15.124 14.014 13.107 12.377 11.328 10.094 9.684 9.529 9.453
0.3 15.372 14.233 13.289 12.518 11.388 10.002 9.518 9.334 9.253

1

0 3.082 2.860 2.684 2.545 2.352 2.139 2.072 2.045 2.029
0.05 3.104 2.880 2.700 2.558 2.359 2.136 2.065 2.037 2.021
0.1 3.127 2.890 2.716 2.571 2.365 2.131 2.056 2.027 2.011
0.2 3.175 2.942 2.752 2.598 2.378 2.119 2.033 2.000 1.984
0.3 3.227 2.988 2.790 2.628 2.391 2.100 1.998 1.960 1.942
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Table 5. The dimensionless fundamental frequencies of the free porous FGM circular plate.

i n ψ

g

0 0.2 0.4 0.6 1 2 3 4 5

λ0

e

0

0 9.003 8.355 7.840 7.435 6.872 6.248 6.052 5.973 5.926
0.05 9.064 8.391 7.848 7.415 6.802 6.099 5.870 5.780 5.731
0.1 9.132 8.431 7.856 7.391 6.718 5.915 5.641 5.534 5.480
0.2 9.284 8.521 7.872 7.328 6.498 5.388 4.946 4.761 4.675
0.3 9.469 8.630 7.886 7.233 6.163 4.437 3.481 2.919 2.576

1

0 20.474 19.002 17.830 16.908 15.628 14.211 13.764 13.584 13.476
0.05 20.615 19.084 17.848 16.863 15.468 13.870 13.350 13.145 13.033
0.1 20.767 19.173 17.866 16.809 15.280 13.452 12.829 12.586 12.464
0.2 21.115 19.378 17.902 16.665 14.779 12.253 11.248 10.827 10.633
0.3 21.535 19.628 17.934 16.450 14.016 10.091 7.916 6.639 5.859

u

0

0 9.003 8.355 7.840 7.435 6.872 6.248 6.052 5.973 5.926
0.05 9.067 8.411 7.886 7.471 6.890 6.239 6.032 5.950 5.903
0.1 9.133 8.470 7.935 7.509 6.909 6.226 6.007 5.921 5.875
0.2 9.274 8.593 8.037 7.590 6.947 6.190 5.938 5.843 5.796
0.3 9.426 8.728 8.149 7.676 6.983 6.133 5.836 5.724 5.674

1

0 20.474 19.002 17.830 16.908 15.628 14.211 13.764 13.584 13.476
0.05 20.620 19.129 17.935 16.992 15.670 14.188 13.718 13.531 13.425
0.1 20.771 19.262 18.045 17.078 15.713 14.160 13.660 13.466 13.361
0.2 21.091 19.543 18.279 17.261 15.798 14.077 13.505 13.288 13.182
0.3 21.437 19.848 18.532 17.457 15.881 13.948 13.273 13.017 12.903

The dependences of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations of the circular plate on selected values of
the power-law index and the porosities volume fraction are presented in Figures 3–6 as the
two-dimensional (2D) and three-dimensional (3D) graphs for the two various types of distribution of
porosity and all considered boundary conditions.

6.2. Perfect FGM Circular Plate

The obtained general solution (48) and the defined boundary conditions (37 ÷ 40) were used to
calculate the first three dimensionless frequencies λ of the axisymmetric (n = 0) and non-axisymmetric
(n = 1) vibrations of the perfect (ψ = 0) FGM circular plate with various boundary conditions.

The obtained numerical results are presented in Tables 6–9 for selected values of the power-law
index g. Numerical results obtained for the clamped and simply supported plates (Tables 6 and 7)
were compared with the results presented in the paper [27], where the effect of the coupling in-plane
and transverse displacements was omitted.
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Figure 3. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations on selected values of the power-law index and the
porosity volume fraction of the clamped circular plate with evenly and unevenly distributed porosities.
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Figure 4. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations on selected values of the power-law index and
the porosity volume fraction of the simply supported circular plate with evenly and unevenly
distributed porosities.
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Figure 5. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations on selected values of the power-law index and
the porosity volume fraction of the sliding supported circular plate with evenly and unevenly
distributed porosities.
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Figure 6. The dependence of the fundamental dimensionless frequencies λ0 of the free axisymmetric
(n = 0) and non-axisymmetric (n = 1) vibrations on selected values of the power-law index and the
porosity volume fraction of the free circular plate with evenly and unevenly distributed porosities.
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Table 6. The dimensionless frequencies of the clamped perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0

λ0
Present 7.797 7.090 6.867 6.777 6.724 5.199

[27] 8.498 8.123 7.911 7.733 7.573 -

λ1
Present 30.357 27.604 26.737 26.386 26.177 20.243

[27] 33.086 31.625 30.798 30.107 29.485 -

λ2
Present 68.012 61.845 59.902 59.116 58.649 45.352

[27] 74.127 70.855 69.002 67.453 66.059 -

1
λ0 16.228 14.756 14.292 14.105 13.993 10.821
λ1 Present 46.430 42.219 40.893 40.357 40.038 30.961
λ2 91.655 83.344 80.725 79.667 79.037 61.118

Table 7. The dimensionless frequencies of the simply supported perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0

λ0
Present 3.767 3.425 3.317 3.274 3.248 2.512

[27] 4.105 3.924 3.821 3.736 3.658 -

λ1
Present 22.685 20.628 19.980 19.717 19.562 15.127

[27] 24.724 23.633 23.015 22.498 22.033 -

λ2
Present 56.602 51.470 49.853 49.199 48.810 37.744

[27] 61.692 58.968 57.426 56.137 54.977 -

1
λ0 10.608 9.646 9.343 9.220 9.147 7.074
λ1 Present 37.003 33.648 32.591 32.163 31.909 24.675
λ2 78.446 71.332 69.091 68.185 67.646 52.310

Table 8. The dimensionless frequencies of the free perfect FGM circular plate.

n λ
g

1 2 3 4 5 ∞

0
λ0 6.872 6.248 6.052 5.973 5.926 4.582
λ1 29.343 26.682 25.844 25.505 25.303 19.567
λ2 66.979 60.905 58.992 58.218 57.757 44.663

1
λ0 15.628 14.211 13.764 13.584 13.476 10.421
λ1 45.653 41.513 40.209 39.682 39.368 30.443
λ2 90.799 82.565 79.971 78.922 78.298 60.547

Table 9. The dimensionless frequencies of the perfect FGM circular plate with sliding support.

n λ
g

1 2 3 4 5 ∞

0
λ0 11.206 10.190 9.870 9.740 9.663 7.473
λ1 37.568 34.161 33.088 32.654 32.396 25.051
λ2 79.000 71.836 69.579 68.667 68.124 52.680

1
λ0 2.352 2.139 2.072 2.045 2.029 1.568
λ1 21.676 19.711 19.091 18.841 18.692 14.454
λ2 55.612 50.569 48.981 48.338 47.956 37.084

The fundamental dimensionless frequencies of the perfect FGM circular plates with and without
the effect of the coupling in-plane and transverse displacements obtained for selected values of
the power-law index and diverse boundary conditions are presented in Table 10. Additionally, the
differences (errors) between obtained results were calculated according to the equation:
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δ(%) =

∣∣∣∣∣λ
P
0 − λY

0

λP
0

∣∣∣∣∣·100%, (52)

where λP
0 and λY

0 are the fundamental dimensionless frequencies of the perfect FGM circular plate
without and with effect of the coupling in-plane and transverse displacements, respectively. Figure 7
presents the dependence of the differences (errors) between obtained results for the power-law index
g ≥ 0.

Table 10. The differences between the fundamental dimensionless frequencies of the perfect FGM
circular plates with and without effect of the coupling in-plane and transverse displacements.

BCs n λ
g

1 2 3 4 5 10 30 60 ∞

Clamped

0
λP

0 8.498 8.123 7.911 7.733 7.573 6.977 6.064 5.687 5.199
λY

0 7.797 7.090 6.867 6.777 6.724 6.512 5.960 5.654 5.199
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 17.687 16.906 16.464 16.094 15.762 14.520 12.621 11.835 10.821
λY

0 16.228 14.756 14.292 14.105 13.993 13.552 12.404 11.767 10.821
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Simply
supported

0
λP

0 4.105 3.924 3.821 3.736 3.658 3.370 2.929 2.747 2.512
λY

0 3.767 3.425 3.317 3.274 3.248 3.145 2.879 2.731 2.512
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 11.562 11.051 10.762 10.521 10.303 9.492 8.250 7.737 7.074
λY

0 10.608 9.646 9.343 9.220 9.147 8.859 8.108 7.692 7.074
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Sliding
supported

0
λP

0 12.214 11.675 11.369 11.114 10.885 10.027 8.716 8.173 7.473
λY

0 11.206 10.190 9.870 9.740 9.663 9.359 8.566 8.126 7.473
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 2.564 2.451 2.387 2.333 2.285 2.105 1.830 1.716 1.569
λY

0 2.352 2.139 2.072 2.045 2.029 1.964 1.798 1.706 1.569
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

Free

0
λP

0 7.489 7.159 6.972 6.815 6.674 6.149 5.344 5.012 4.582
λY

0 6.872 6.248 6.052 5.973 5.926 5.739 5.252 4.983 4.582
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

1
λP

0 17.033 16.281 15.855 15.499 15.179 13.984 12.155 11.398 10.421
λY

0 15.628 14.211 13.764 13.584 13.476 13.051 11.945 11.332 10.421
δ(%) 8.2 12.7 13.2 12.3 11.2 6.6 1.7 0.5 0

 
Figure 7. The dependence of the differences (errors) between the fundamental dimensionless
frequencies of the perfect FGM circular plate without (λP

0 ) and with (λY
0 ) effect of the coupling

in-plane and transverse displacements for diverse values of the power-law index.
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7. Discussion

7.1. Imperfect FGM Circular Plate

The numerical results for the fundamental dimensionless frequencies of the porous FGM circular
plates presented in Tables 2–5 and Figures 3–6 show the following dependences:

• the fundamental eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the
circular plate decreases with the increasing value of the power-law index g for the two considered
distributions of porosities and all considered values of the porosity volume fraction ψ;

• for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity
volume fraction ψ for g ∈ [0, 0.4] and decreases for g ∈ [0.6, 5];

• for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate increases with the increasing value of the porosity
volume fraction ψ for g ∈ [0, 1] and decreases for g ∈ [2, 5];

• the influence of values of the porosity volume fraction ψ on the values of the fundamental
eigenfrequency λ0 of the axisymmetric and non-axisymmetric vibrations of the plate is smaller
for the unevenly distributed porosities than for the evenly distributed porosities;

• for the evenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric and
non-axisymmetric vibrations of plate decreases faster for ψ = 0.3 with the increasing values of
the power-law index g than for ψ = {0, 0.1, 0.2};

• for the unevenly distributed porosities, the fundamental eigenfrequency λ0 of the axisymmetric
and non-axisymmetric vibrations of the plate decreases slowly with the increasing values of the
power-law index g for all considered values of the porosity volume fraction ψ.

The observed dependences exist because of the diverse influence of porosity distributions, values
of the power-law index and the porosity volume fraction on decreasing (increasing) the ratios of mass
to stiffness of the considered circular plates. The all observed dependences are independent of the
considered boundary conditions which influence only the values of the dimensionless frequencies of
the plate.

7.2. Perfect FGM Circular Plate

It can be observed that the values of dimensionless frequencies of the perfect FGM circular plates
obtained by omitting the effect of coupling in-plane and transverse displacements are higher than the
values of the dimensionless frequencies of the considered plate with the coupling effect. The differences
(errors) between the calculated dimensionless frequencies of free axisymmetric and non-axisymmetric
vibration of the perfect FGM circular plate with and without the coupling effect are significant for the
power-law index g ∈ [0, 20], but, for g ∈ [20, ∞], these differences decrease from 2% to 0%. It can
be observed from Table 10 that the differences between the calculated dimensionless frequencies are
independent of the modes of vibrations and the boundary conditions of the considered circular plate.

8. Conclusions

This paper presents the influence of two different types of distribution of porosities on the free
vibrations of the thin functionally graded circular plate with clamped, simply supported, sliding
supported, and free edges. To this aim, the boundary value problem was formulated and a solution
was obtained in the exact form. The universal multiparametric characteristic equations were defined
using the properties of the multiparametric general solution obtained for the plate with even and
uneven distribution of porosities. The effects of the power-law index, the volume fraction index and
diverse boundary conditions on the values of the dimensionless frequencies of the free axisymmetric
and non-axisymmetric vibrations of the circular plate were comprehensively studied. Additionally, the
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influences of the power-law index and different boundary conditions on the values of dimensionless
frequencies of the FGM circular plate without porosities were also presented.

The presented multiparametric analytical approach can be effectively applying for free vibration
of circular and annular plates with other diverse models of an FGM and FGM porous material. The
material parameters can be modeled via the exponential or sigmoid functions, as well as Mori–Tanaka
functions or other homogenization techniques [39–44]. Diverse applied homogenization techniques
only have an influence on the forms of the final replaced plate’s stiffnesses and directly on the function
Mi presented in the obtained general solution in the present paper. It will be the goal of future papers.

The obtained multiparametric general solution will allow for studying the influences of diverse
additional complicating effects such as stepped thickness, cracks, additional mounted elements
expressed by only additional boundary conditions on the dynamic behavior of the porous functionally
graded circular and annular plates. The exact frequencies of vibration presented in non-dimensional
form can serve as benchmark values for researchers and engineers to validate their analytical and
numerical methods applied in design and analysis of porous functionally graded structural elements.
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Abstract: The present work investigated the effect of Thomson and initial stress in a thermo-porous
elastic solid under G-N electromagnetic theory. The Thomson coefficient affects the heat condition
equation. A constant Thomson coefficient, instead of traditionally a constant Seebeck coefficient,
is assumed. The charge density of the induced electric current is taken as a function of time. A normal
mode method is proposed to analyze the problem and to obtain numerical solutions. The results that
were obtained for all physical sizes are graphically illustrated and we offer a comparison between
the type II G-N theory and the G-N theory of type III, both in the present case and in the absence of
specific parameters, as initial stress, pores and the Thomson effect. Some particular cases are also
discussed in the context of the problem. The results indicate that the effect of initial stress, Thomson
coefficient effect, and magnetic field are very pronounced.

Keywords: Thomson effect; initial stress; magneto-thermoelastic; voids; normal mode method;
G-N theory

1. Introduction

In the generalized theories, the governing equations involve thermal relaxation times and they
are of the hyperbolic type. Green and Naghdi [1–3] considered a new extend theory by including the
thermal displacement gradient between the constitutive variables. As we know, the classically coupled
thermoelasticity includes the temperature gradient as one of the constitutive variables.

An important feature of this theory is that it does not accommodate the dissipation of thermal
energy. In paper by Sharma and Chauhan [4], we find an approach regarding the elastic interactions
without considering the energy dissipation due to heat sources and body forces.

An important step in evolution of the classical theory of elasticity was made through the
appearance of the theory of poroelasticity, which consider the volume of void, in an elastic body
with pores, as a kinematics variable.

This gave the opportunity to investigate some concrete types of biological and geological solids
and their useful applications. See, for instance, the applications in the fuel-cell industry [5–10].

We have to point out that the theory of linear elastic bodies with pores allows for the approach
of such properties of biological and geological medium that could not be studied in the context of
classical theory. It is very important to note that, when the volume of the pores tends to zero, we can
see that the poroelastic theory reduces to the theory of classical elasticity.

Symmetry 2019, 11, 413; doi:10.3390/sym11030413 www.mdpi.com/journal/symmetry161
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In the paper, Nunziato and Cowin [11] first established a theory of elastic bodies with pores in the
non-linear theory case.

This theory of porous media has gained a great extension over the last period of time, and many
authors consider different mathematical models for the mechanical behavior of solids with pores,
by combining the poroelasticity theory with other different theories, in other words, combining
different effects, [12–16].

The consideration of the dynamic reaction of a thermoelastic body with additional parameters is
very helpful in solving many concrete applications. For instance, the initial stresses are considered in a
thermoelastic body with pores due to different reasons, such as the gravity variations, the difference of
temperature, the process of quenching, etc.

Clearly, the earth is constantly under the influence of high initial stresses. As such, the researchers
have allocated great importance to the study the effect of initial stresses regarding the thermal and
mechanical state of a solid. For instance, Montanaro in [17] investigated a thermoelastic isotropic body
with hydrostatic initial stress.

Of course, the laser pulse has an effect on thermal loading in an elastic body with voids.
Othman and Abd-Elaziz studied this effect in the paper [18]. Marin investigated Cesaro means
in the thermoelasticity of dipolar bodies [19]. Marin and Oechsner studied the effect of a dipolar
structure on the Holder stability in Green-Naghdi thermoelasticity [20].

Other effects, such as the effect of the Earth’s electromagnetic field on seismic propagations,
the designing of different elements of machine, emissions of electromagnetic radiations from nuclear
devices, plasma physics, etc., can be found in [21–27].

In our present study, we approach of the plane strain problem of a half-space body consisting of
an electro-magneto-thermoelastic material that possesses voids and is subjected to some initial stress
and to the Thomson effect. Our mathematical model is regarding the Green–Naghdi theory of type II
and III of thermoelasticity. We assume that the Thomson effect is a constant coefficient and the density
of charges that are induced by electric current is a function that depends on time variable.

In order to obtain the expressions for the considered parameters, it used the known normal
mode technique. We also have obtained some graphic representations for the repartition of the
considered variables.

2. Formulation of the Problem

An isotropic and homogeneous elastic body with pores (voids) is considered, with the temperature
T0, in the reference state, and the half space (y ≥ 0). The motion referred to a rectangular Cartesian
system of coordinates (x, y, z) with origins in the surface (z = 0). Additionally, the X-axis is pointing
vertically into the body. In the of a two-dimensional problem, we suppose that the evolution of the
body will be characterized by the displacement vector u, with components u = (u, v, 0). The functions
that are considered in this context are dependent on the time variable t and of the spatial variables x
and y.

We consider a magnetic field with components H = (0, 0, H3), having a constant intensity,
which acts parallel to the direction of the Z-axis.

It is known that a magnetic field of the form H = (0, 0, H0 + h(x, y, t)) produces an induced
electric field of components E = (E1, E2, 0), and an induced magnetic field, as denoted by h, and
these satisfy the electromagnetism equations, in the linearized form. We will use the Maxwell’s
equations [24] in order to characterize the evolution of the electric field and for variation of the
magnetic field, as follows:

∇ × h = J +
.

D, (1)

∇ × E = −
.
B, (2)

∇ . B = 0, ∇ . D = ρe, (3)

B = μ0 (H + h), D = ε0 E. (4)

162



Symmetry 2019, 11, 413

The modified Ohm’s law for a medium with finite conductivity supplements the above system of
coupled equations, namely

J = σ0(E + μ0
.
u × H), (5)

where μ0 is the magnetic permeability, B is the magnetic displacement vector, ε0 is the electric
permeability, J is the current density vector, ρe is the charge density, D is the electric displacement
vector, and E is the induced electric field vector.

For an isotropic and homogeneous thermoelastic body having pores, the constitutive equations
receive the following form:

σij = 2μ eij + (λ err + λ0 φ − β T )δij − L∗(δij + m∗
ij), (6)

hi = αφ,i, (7)

g = − λ0 err − ξ1 ϕ + mT, (8)

ρη∗ = βerr + a0 T + mφ. (9)

The strain-displacement relation is

eij =
1
2
(ui,j + uj,i). (10)

The tensor of rotation has the components:

m∗
ij =

1
2
(uj,i − ui,j), i, j = 1, 2, 3. (11)

In Green-Naghdi (G-N) theories we take into account the Thomson effect, so that the Fourier’s
law becomes

qi = − [kT,i + k∗
.
T,i] + MJi, (12)

which gives
qi,i = −

[
kT,ii + k∗

.
T,ii

]
+ M Ji,i. (13)

If we take into account Equations (1) and (3), then from Equation (13), we deduce

qi,i = − [kT,ii + k∗
.
T,ii ] + M

.
ρe. (14)

where T is the temperature above the reference temperature T0 is chosen so that |(T − T0)/T0| < 1 ,
λ, μ are the counterparts of Lame’ constants, t is the time, σij are the components of the stress tensor, h,i
is the equilibrated stress vector, ψ is the equilibrated inertia, g is the intrinsic equilibrated body force,
α, λ0, ξ1, ω0, m are constants of material that are due to the presence of the pores, β = (3 λ + 2 μ) αt,
such that αt is the coefficient of thermal expansion, δij is the Kronecker delta, ρ is the mass density,
CE is the specific heat at the constant strain, k is the thermal conductivity, η∗ is entropy per unit mass,
k∗ is a constant, and qij are the components of the first heat flux moment vector, we write the equation
of continuity for the charges in the body in the form

.
ρe +∇ · (ρevi) = 0, (15)

where the velocity of the charges has the components vi.
Let us now consider that the charge density is a function that does not depend on spatial variables,

but only on time variable. Thus, Equation (15) will reduce to

.
ρe + ρe∇ · (vi) = 0. (16)
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We will assume that the charges have the speed of components vi, which are proportional to the
components of the velocity for particles

.
ui, so that we can write

vi = p0
.
ui, (17)

which gives
∇ · vi = p0∇ · .

ui = p0
.
e, (18)

where p0 is a positive constant (non-dimensional).
If we take into account Equation (18), from Equation (16), we are led to

.
ρe = − ρe p0

.
e, (19)

which gives ∫ dρe

ρ
= −p0

∫
de. (20)

Hence, we obtain
ρe = ρ0

e exp(−p0e) � ρ0
e (1 − p0e), (21)

where ρ0
e is the charge density when the strain vanishes.

Then, we obtain
.
ρe = −ρ0

e (1 − p0e)p0
.
e. (22)

While taking into account the Equation (22), from Equation (14) we deduce that the Fourier’s law,
in its generalized form, receives the form:

qi,i = − [kT,ii + k∗
.
T,ii] + M ρ0

e (1 − p0e)p0
.
e. (23)

In the case of null heat supply, the balance energy becomes

ρT0
.
η
∗
= − qi,i. (24)

Taking into account Equations (9) and (23), from Equation (24), we deduce that the equation of
heat conduction can be written in the form

kT,ii + k∗
.
T,ii − m T0

.
φ = ρ Ce

..
T + β T0

..
ui,i + Mρ0

e (1 − p0e)p0
.
e. (25)

This equation can be substitute by an approximate form

kT,ii + k∗
.
T,ii − m T0

.
φ = ρ Ce

..
T + β T0

..
ui,i + Mρ0

e p0
.
e. (26)

As a consequence, we can obtain the stress components in a simplified form. Accordingly, from
Equations (6), (10), and (11), we are led to

σxx = λ [
∂u
∂x

+
∂v
∂y

] + 2μ
∂u
∂x

+ λ0 φ − β T − L∗, (27)

σyy = λ [
∂u
∂x

+
∂v
∂y

] + 2μ
∂v
∂y

+ λ0 φ − β T − L∗, (28)

σzz = λ [
∂u
∂x

+
∂v
∂y

] + λ0 φ − β T − L∗, (29)

σxy = (μ +
L∗

2
)

∂u
∂y

+ (μ − L∗

2
)

∂v
∂x

, (30)
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σyx = (μ +
L∗

2
)

∂v
∂x

+ (μ − L∗

2
)

∂u
∂y

, σxz = σyz = 0. (31)

The equations of motion, taking into account the Lorentz force

σji,j + Fi = ρui,tt. (32)

The Lorentz force is given by
Fi = μ0(J × H)i. (33)

The current density vector J is parallel to electric intensity vector E, thus J = (J1, J2, 0).
The Ohm’s law (5) after linearization gives

J1 = σ0(E1 + μ0H0
.
v), J2 = σ0(E2 − μ0H0

.
u). (34)

Equations (1), (4), and (34) give

∂h
∂y

= σ0(E1 + μ0H0
∂v
∂t

) + ε0
∂E1

∂t
, (35)

∂h
∂x

= − σ0(E1 − μ0H0
∂u
∂t

)− ε0
∂E2

∂t
. (36)

From Equations (2) and (5), we get

∂E1

∂y
− ∂E2

∂x
= μ0

∂h
∂t

. (37)

From Equations (33) and (34), we obtain

F1 = σ0μ0H0(E2 − μ0H0
∂u
∂t

), F2 = − σ0μ0H0(E1 + μ0H0
∂v
∂t

), F3 = 0. (38)

From Equations (27)–(32) and (38), we get

(μ − L∗

2
)∇2 u + (λ + μ +

L∗

2
)

∂e
∂x

+ b
∂φ

∂x
− β

∂T
∂x

+ σ0μ0H0(E2 − μ0H0
∂u
∂t

) = ρ
∂2u
∂t2 (39)

(μ − L∗

2
)∇2 v + (λ + μ +

L∗

2
)

∂e
∂y

+ b
∂φ

∂y
− β

∂T
∂y

− σ0μ0H0(E1 + μ0H0
∂v
∂t

) = ρ
∂2v
∂t2 , (40)

in which we used the notation e = ∂u
∂x + ∂v

∂y .
For the equation of the equilibrated forces, we obtain

ρψφ,tt = hi,i + g. (41)

Also, while taking into account Equations (7), (8), and (41), we are led to

α φ,jj − λ0ui,i − ξ1φ − ω0 φ,t + m T = ρψ
..
φ. (42)

Let us define the non-dimensional sizes

(x′ i, u′
i) =

w∗
1

c1
(xi, ui), (t′, t′0) = w∗

1(t , t0), φ′ =
ψ w∗2

1
c2

1
φ, σ′

ij =
σij

μ
, p′1 =

p1

μ
, L∗′ =

L∗

μ
,

θ′ =
T − T0

T0
, h′ =

w∗
1

σ0H0μ0c2
1

h, E′
i =

w∗
1

σ0H2
0 μ0c2

1
Ei, (43)
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where w∗
1 =

ρcec2
1

K , c2
1 = λ+2μ

ρ .
For dimensionless sizes that are defined in Equation (43), we can write the above basic equations

in the following from

a1∇2u + a2
∂e
∂x

+ a3
∂φ

∂x
− a4

∂θ

∂x
+ a5(a6E2 −

∂u
∂t

) = a7
∂2u
∂t2 , (44)

a1∇2v + a2
∂e
∂y

+ a3
∂φ

∂y
− a4

∂θ

∂y
− a5(a6E1 +

∂v
∂t

) = a7
∂2v
∂t2 , (45)

(∇2 − a8 − a9
∂

∂t
− a10

∂2

∂t2 )φ − a11e + a12θ = 0, (46)

[(k + k∗w∗
1

∂

∂t
)∇2 − a13

∂2

∂t2 ]θ + a14
∂φ

∂t
− βc∗1

∂2e
∂t2 − M0

∂e
∂t

= 0, (47)

∂h
∂y

= a15E1 + a16
∂E1

∂t
+

∂v
∂t

, (48)

∂h
∂x

= − a15E2 − a16
∂E2

∂t
+

∂u
∂t

, (49)

∂E1

∂y
− ∂E2

∂x
=

∂h
∂t

, (50)

by dropping the dashed, for convenience. Here, M0 =
Mρ0

e p0c2
1

w∗
1 T0

, is the Peltier coefficient at T0 and

a1 = μ − L∗μ
2 , a2 = λ + μ + L∗μ

2 , a3 =
bc2

1
ψw∗2

1
, a4 = βT0, a5 =

μ2
0 H2

0 σ0c2
1

w∗
1

, a6 =
μ0σ0c2

1
w∗

1
, a7 = ρc2

1, a8 =
ξ1c2

1
αw∗2

1
,

a9 =
w0c2

1
αw∗

1
, a12 = mψT0

α , a13 = ρCec2
1, a14 =

mc4
1

ψw∗3
1

, a15 =
σ0μ0c2

1
w∗

1
, a16 = μ0ε0c2

1, a10 =
ρψc2

1
α , a11 = λ0ψ

α .

From Equations (44) and (45), we obtain

[(a1 + a2)∇2 − a7
∂

∂t
− a5

∂2

∂t2 ] e + a3∇2φ − a4∇2θ − a6a5
∂h
∂t

= 0. (51)

From Equations (48) and (49), we obtain

(∇2 − a15
∂

∂t
− a16

∂2

∂t2 )h − ∂e
∂t

= 0. (52)

3. The Solution of the Problem

3.1. Decomposition by Normal Mode Analysis

Using the normal mode analysis, we can decompose the solution of the above physical parameters
in the following form

[e, θ, φ, h, σij](x, y, t) = [e∗, θ∗, φ∗, h∗, σ∗
ij](y) exp[i(a x − ω t)], (53)

in which e∗, φ∗, θ∗, h∗, σ∗
ij are the amplitudes of the respective fields, i =

√
−1, ω is the frequency, and

a is the wave number.
By taking into account Equation (53) in Equations (46), (47), (51), and (52), we are led to

(r1D2 − r2) e∗ + a3(D2 − a2)φ∗ − a4(D2 − a2)θ∗ + r3h∗ = 0, (54)

(D2 − r4) φ∗ − a11e∗ + a12θ∗ = 0, (55)

(r5D2 − r6) θ∗ + r7φ∗ + r8e∗ = 0, (56)
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(D2 − r9) h∗ + iωe∗ = 0, (57)

where r1 = a1 + a2, r2 = ra2 − iω a5 − a7ω2, r3 = iω a6a5, r4 = a2 + a8 − iωa9 − a10ω2, r5 = k− iωk∗w∗,
r6 = r5a2 − a13ω2, r7 = iω a14, r8 = βω2c2

1 − iωM0, and r9 = a2 − iω a15 − a10ω2.
Eliminating (55), we get the following ordinary Equation (52) between e∗(y) φ∗(y), θ∗(y),

the differential Equation satisfied by h∗(y):
(

D8 − N1 D6 + N2 D4 − N3 D2 + N4

)
{h∗(y), φ∗(y), e∗(y), θ∗(y)} = 0. (58)

We can write the Equation (58) in a decomposed form, as follows

(D2 − k2
1)(D2 − k2

2)(D2 − k2
3)(D2 − k2

4){h∗(y), φ∗(y), e∗(y), θ∗(y)} = 0, (59)

where, k2
n (n = 1, 2, 3, 4) are roots of the characteristic equation of Equation (58) and s1 =

r5r9 + r4r5 + r6, s2 = r6r9 + r4r5r9 − a12r7 + r6r4, s3 = r4r6r9 + a12r7r9, s4 = r5r6 − a12r8 + r6,
s5 = a11r6r9 − a12r8r9, s6 = r8r9 + r4r8 − a11r3, s7 = r8r4r9 − a11r7r9, s8 = r6 + r4r5, s9 =

r4r6 − a12r7, s10 = 1
r1r5

, N1 = s10(r1s1 + r2r5 − a3a11r5 + a4r8), N2 = s10(r1s2 + r2s1 − a3a11r5a2 −
a3s4 + a4s6 + a4r8a2 − iωr3r5), N3 = s10(r1s3 + r2s2 − a3s5 − a3s4a2 + a4s7 + a4s6a2 − iωr3r8),
and N4 = s10(r2s3 − a3s5a2 + a4s7a2 − iωr3r9).

The general solutions of the Equation (59), bound at y → ∞,

e(x, y, t) =
4

∑
n=1

Rn exp[− kny + i(ax − ωt)], (60)

h(x, y, t) =
4

∑
n=1

H1nRn exp[− kny + i(ax − ωt)], (61)

θ(x, y, t) =
4

∑
n=1

H2nRn exp[− kny + i(ax − ωt)], (62)

φ(x, y, t) =
4

∑
n=1

H3nRn exp[− kny + i(ax − ωt)], (63)

where

H1n =
− iω

k2
n − s9

, H2n =
− r8(k2

n − r4)− r7a11

(k2
n − r4)(r5k2

n − r6)− r7a12
, H3n =

a11 − a12H2n

k2
n − r4

. (64)

3.2. Boundary Conditions

In the following, we will consider some boundary conditions on the surface of Equation y = 0,
which will help us to determine the above constants R1, R2, R3 and R4.

3.2.1. The mechanical boundary condition

The mechanical boundary condition that the bounding plane to the surface y = 0 has zero strain,
so we have

e(x, 0, t) = 0

3.2.2. The Boundary Restriction of Heat

We assume that the boundary surface of the body is subject to a thermal shock described by
the function

θ(x, 0, t) = θ0 exp(i(ax − ωt)), (65)
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where θ0 is constant.

3.2.3. Voids Conditions

∂φ

∂y
= 0. (66)

3.2.4. The Boundary Restriction for Electromagnetic Field

On the surface of the half-space h(x, 0, t) = h∗, we consider that the electromagnetic field intensity
is a continuous function. Here, the intensity of the magnetic field in free space is h∗.

We now assume there is no magnetic or electric field in the free space, that is,

h(x, 0, t) = h∗ = 0. (67)

In order to obtain the constants R1, R2, R3 and R4, we will use the dimensionless size θ′0 = θ0
T0

and the expressions of the variables into the boundary restrictions imposed above. Additionally, we
will use the normal mode analysis in order to obtain the system of equations

4

∑
n=1

Rn = 0, (68)

4

∑
n=1

H2nRn = θ0, (69)

4

∑
n=1

kn H3nRn = 0, (70)

4

∑
n=1

H1nRn = 0. (71)

after suppressing the primes.
After applying the inverse of matrix method for the above equations, we get the values of the

constants Rn(n = 1, 2, 3, 4), hence; we obtain the expressions of strain, magnetic intensity, temperature
distribution and the change in the volume fraction field for the generalized thermoelastic medium
with voids.

4. Special Cases

4.1. Pores Neglect

First, we will neglect the presence of the voids, that is, we have (α = λ0 = ξ1 = ω0 = m = ψ = 0).
While putting (α = λ0 = ξ1 = ω0 = m = ψ = 0) in Equations (54)–(57), we get:

(r1D2 − r2) e∗ − a4(D2 − a2)θ∗ + r3h∗ = 0, (72)

(r5D2 − r6) θ∗ + r8e∗ = 0, (73)

(D2 − r9) h∗ + iω e∗ = 0. (74)

Eliminating e∗, θ∗, and h∗ among Equations (72)–(74), we obtain the following sixth order differential
Equation, which is satisfied by e∗(y), θ∗(y) and h∗(y)

[D6 − B1 D4 + B2 D2 − B3]{e∗(y), θ∗(y), h∗(y)} = 0, (75)
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where s10 = 1
r1r5

, B2 = s10[r1r6r9 + r2r5r9 + r2r6 − r8a4(r9 + a2) + iωr3r5], B1 = s10(r1r9r5 + r1r6 +

r2r5 − r8a4), B3 = s10(r2r5r9 − r8a4r9a2 + iωr3r6).
The solutions of Equation (75) are

(e∗, h∗, θ∗)(y) =
3

∑
n=1

(1, H4n, H5n)R∗
n exp(− α∗ny), (76)

where α∗2
n (n = 1, 2, 3) are the roots of the characteristic equation of Equation (75) and H4n = −iω

α∗2
n −r9

,

H5n = − r8
r5α∗2

n −r6
.

The expressions for the strain, the induced magnetic field, and the temperature field in the
generalized initially stressed the electro-magneto-thermoelastic half-space solid with voids are:

(e∗, h∗, θ∗)(y) =
3

∑
n=1

(1, H4n, H5n)R∗
n exp(− α∗n y + i (a x − ωt)). (77)

We wish to determine the above coefficients R∗
n, (n = 1, 2 , 3).

To this end, we will keep in mind the boundary conditions in Equations (64), (65), and (67), and
we will use the method of inverse of the matrix, as following:

⎛
⎜⎝ R∗

1
R∗

2
R∗

3

⎞
⎟⎠ =

⎛
⎜⎝ 1 11

H51 H52 H53

H41 H42 H43

⎞
⎟⎠

−1⎛
⎜⎝ 0

θ0

0

⎞
⎟⎠. (78)

4.2. Neglecting the Initial Stress

By taking (L∗ = 0) in the governing equations, the corresponding expressions of the physical
variables can be obtained without initial stress.

5. Numerical Results and Discussion

For numerical computations, following Dhaliwal and Singh [28], magnesium material was chosen
for the purposes of numerical evaluations. All of the units of parameters that were used in the
calculation are given in SI units. The constants were taken as λ = 2.17 × 1010 N/m2, μ = 3.278 × 1010

N/m2,k = 1.7 × 102 W/m·deg, ρ = 1.74 × 103 Kg/m3, β = 2.68 × 106 N/m2·deg, Ce = 1.04 × 103

J/Kg·deg, ω∗
1 = 3.58 × 1011 /s, αt = 1.78 × 10−5 N/m2 and T0 = 298 K.

The voids parameters are ψ = 1.753 × 10−15 m2, α = 3.688 × 10−5 N, ξ1 = 1.475 × 1010 N/m2,
λ0 = 1.13849 × 1010 N/m2, m = 2 × 106 N/m2·deg and ω0 = 0.0787 × 10−3 N/m2s.

The Magnetic field parameters are ε0 = 10−9/(36π) F/M, μ0 = 4π × 10−7H/M, H0 = 105 A/M
and σ0 = 9.36 × 105 Col2/Cal·cm·sec.

The comparisons were carried out for a = 0.7 m, θ0 = 0.1 k, ω = χ0 + iχ1, χ0 = 2 rad/s,
χ1 = 0.09 rad/s, x = 0.2 m, and 0 ≤ y ≤ 4 m.

Since, we have exp(ωt) = [cos(χ1t) + i sin(χ1t)] exp(χ0t), and for small values of time we can
take ω = χ0, which is a real constant.

The above comparisons have been made in the context of two (G-N) theories of type II and III,
in three situations:

(i) whether we have an initial stress or not [L* =0 and 105 at M0=0.5 and H0=105];
(ii) whether we have a Thomson effect or not [M0 =0 and 0.5 at H0=105 and L*=105];
(iii) whether we have some void parameters or not [M0 = 0.5, H0 = 105 and L∗ = 105].

Case i: In the Figures 1–4, we made the calculations for t = 0.2, at x = 0.2. The values of the
deformation e, the values of the temperature θ, the electromagnetic field h, and the values of the voids
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function φ are graphically represented, for different values of y in some graphs of two-dimensional
space. In these figures, we use the solid lines for the results in the case without initial stress for the
(G-N) theory of type II. For the results in the case of the (G-N) theory of type II with initial stress,
we have used the large dashes line. In the case without initial stress for the (G-N) theory of type III,
we have used the small dashes. Finally, for the results in the case with initial stress for the (G-N) theory
of type III, we have used the small dashes line with dot.

Figure 1. The strain e distribution at M0 = 0.5 and H0 = 105.

Figure 2. The temperature θ distribution at M0 = 0.5 and H0 = 105.
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Figure 3. The induced magnetic field h distribution at M0 = 0.5, and H0 = 105.

Figure 4. The change in the volume fraction field φ distribution at M0 = 0.5 and H0 = 105.

Figure 1 depicts the variation of the strain e versus y. The magnitude of the strain is found to
be large for the G-N theory of type III. It can be seen that the initial stress shows an increasing effect
on the magnitude of strain. In Figure 2, the parameter for the initial stress is decreasing as an effect.
Additionally, when the initial stress parameter L∗ is increasing, the value of the temperature θ is
decreasing. Figure 3 shows the variation of the induced magnetic field h versus y. The value of strain
is found to be large for the theory of G-N of type III. It can be seen that the presence of the initial stress
shows a decreasing effect on the magnitude of the induced magnetic field. Figure 4 expresses the
distribution of the change in the volume fraction field φ versus y. It was observed that the initial stress
has a great effect on the distribution of φ.

Case ii: In the Figures 5–8, calculations were made for M0 = 0.0, 0.5 at H0 = 105, and t = 0.2.
The strain e, the temperature θ, the electromagnetic field h and the voids function φ are graphically
represented in some of the graphs for different values of y. Here, the solid lines is for results in the
G-N theory of type II at M0 = 0.0, which gives the classical Fourier’s law of heat conduction, the large
dashes line is for results in the type II G-N theory at M0 = 0.5, which gives the generalized Fourier’s
law of heat conduction. We also use a small dashes line for the results for the type III G-N theory in the
case M0 = 0.0, while the line with small dashes and the dot is for results for the type III G-N theory for
M0 = 0.5. Figure 5 is for the effect of M0 in the case that it exists and we can see that the value of the
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deformation e is increasing when M0 increases with the corresponding difference. Figure 6 is for the
value of the temperature θ, which is decreasing for the parameter M0, which is increasing. In Figure 7,
the effect of parameter M0 exists and the value of the induced magnetic field h increases when the
parameter M0 increases. In Figure 8, the value of the voids function φ is increasing for the case that the
parameter M0 is increasing.

Figure 5. The strain e distribution at H0 = 105 and L∗ = 105.

Figure 6. The temperature θ distribution at H0 = 105 and L∗ = 105.
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Figure 7. The induced magnetic field h distribution at H0 = 105 and L∗ = 105.

Figure 8. The change in the volume fraction field φ distribution at H0 = 105 and L∗ = 105.

Case iii: Figures 9–11 present the evolution of the physical sizes with regards to the distance y
in 2D during M0 = 0.5, H0 = 105, L∗ = 105, and with and without void parameter, in the context of
G-N theory of type II and type III G-N theories. In this case of comparison, the solid lines is for results
of pore effect 1.9 in the type II G-N theory, the small dashes line is also the voids effect, but in the
case of the type III G-N theory. We use a large dashes line for results in the G-N theory of type II by
neglecting the effect of pores, while the small dashes line with dot is used for results in the type III
G-N theory, neglecting the effect of pores. In Figure 9, we find the repartition of the strain e, and we
have a comparison between the values of the strain in the case of the presence of the pores to those
in the case of neglecting the voids, in the range 0 ≤ y ≤ 1.7; while, the values are the same for two
cases at y ≥ 1.7. Figure 10 illustrates the repartition of the temperature θ, and a comparison between
the temperature in the case of presence of pores to those in the case of neglecting the voids, for y in
the range 0 < y < 1.9. In the case y > 1.9, the values are the same for two cases. Figure 11 depicts the
repartition of the magnetic field h, an the values of the magnetic field h in the case of the presence of
pores are compared to those in the case of neglecting the voids, for y in the range 0 ≤ y ≤ 3; in the case
y ≥ 3. The values are the same for the two cases.
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Figure 9. The strain e distribution at H0 = 105, M0 = 0.5 and L∗ = 105.

Figure 10. The temperature θ distribution at H0 = 105, M0 = 0.5, and L∗ = 105.

Figure 11. The induced magnetic field h distribution at H0 = 105, M0 = 0.5, and L∗ = 105.

Figures 12–15 are giving 3D surface curves for the physical quantities i.e., the strain e, the
temperature θ, the magnetic field h, and the voids fuction φ for the thermoelastic theory of
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electromagnetic bodies with pores, by taking into account the Thomson effect and the effect of the
initial stress. The importance of these figures is that they give the dependence of the above physical
sizes regarding the vertical component of distance.

Figure 12. Three-dimensional (3D) curve distribution of the strain e versus the distances at: M0 = 0.5,
H0 = 105, and L∗ = 105.

Figure 13. 3D Curve distribution of the temperature θ versus the distances, at: M0 = 0.5, H0 = 105

and L∗ = 105.
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Figure 14. 3D Curve distribution of the induced magnetic field h versus the distances, at: M0 = 0.5,
H0 = 105 and L∗ = 105.

Figure 15. 3D Curve distribution of the change in the volume fraction field φ versus the distances, at:
M0 = 0.5, H0 = 105 and L∗ = 105.

6. Conclusions

The results concluded from the above analysis can be summarized, as follows:

(1) We have derived the field equations of homogeneous, isotropic, electro-magneto-thermo- porous
elastic half-plane with the Thomson effect and initial stress.

(2) The analytical solutions that are based upon normal mode analysis for the thermoelastic problem
in solids have been developed and utilized.

(3) The presence of initial stress, void parameters, and Thomson effect play significant roles in all of
the physical quantities.

(4) The value of all physical quantities converges to zero with the increase in distance y and all of the
functions are continuous.

(5) The deformation of a body depends on the nature of the applied forces and Thomson effect,
as well as the type of boundary conditions.
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Abstract: The recently introduced technique, namely the generalized exponential rational
function method, is applied to acquire some new exact optical solitons for the generalized
Benjamin–Bona–Mahony (GBBM) equation. Appropriately, we obtain many families of solutions for
the considered equation. To better understand of the physical features of solutions, some physical
interpretations of solutions are also included. We examined the symmetries of obtained solitary
waves solutions through figures. It is concluded that our approach is very efficient and powerful for
integrating different nonlinear pdes. All symbolic computations are performed in Maple package.

Keywords: exact solutions; the generalized Benjamin–Bona–Mahony equation; generalized
exponential rational function method; solitary wave solutions; symbolic computation

1. Introduction

The Benjamin–Bona–Mahony (BBM) equation has been studied by Benjamin, Bona, and Mahony
in 1972 as the improved KdV equation for the description of long surface gravity waves having a
small amplitude. They have also investigated the stability and uniqueness of solutions to the BBM
equation [1]. The description of the drift of waves in plasma physics, the propagation of wave in
semi-conductors and optical devices [2], and the behavior of Rossby waves in rotating fluids [3] are
some other phenomena that are modeled by this equation.

Let us consider the dimensionless form of the (1 + 1) the generalized Benjamin–Bona–Mahony
(GBBM) equation as follows [4]:

ut + αux + (βuϑ + γu2ϑ)ux − δuxxt = 0, (1)

with the unknown function u and the constants of α, δ, n, β and ϑ.
It is also known that the multi-soliton solutions for the Equation (1) only exist with the conditions

γ = 0 and ϑ = 1, i.e., whenever we have

ut + αux + (βu)ux − δuxxt = 0. (2)

The main application of the BBM equation is related to model the hydromagnetic waves
in cold plasma, the acoustic waves in anharmonic crystals and the acoustic-gravity waves in
compressible fluids [5,6].

Recently, the investigation of exact solutions of nonlinear PDEs has begun to attract
mathematicians and physicists’ attention because of the onset of soliton [7–9]. Therefore,
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several efficient techniques for handling NPDEs have been developed. Among them, we can list
the traditional methods: the Hirotas bilinear method [10] and the Darboux transformation method [11].
There are also some recent direct and algebraic methods: the variational iteration method [12],
the exp-function method [13], various extended tanh-function methods [14] and Lie symmetry
analysis [15–17].

The relatively new technique called the generalized exponential rational function method (or
GERFM in short) was firstly suggested by Ghanbari et al. in Ref. [18] to solve the resonance nonlinear
Schrödinger equation as

iψt + αψxx + βF
(
|ψ|2

)
ψ + γ

( |ψ|xx

|ψ|

)
ψ = 0, i =

√
−1. (3)

Another application of the method has been carried out in Ref. [19] where the authors have
implemented the method to solve the Fokas–Lenells equation in the presence of the perturbation terms,
as follows:

i
∂ψ

∂t
+

∂2ψ

∂x2 + α|ψ|2ψ + i
[

γ1
∂ψ3

∂x3 + γ2
∂ψ

∂x
|ψ|2 + γ3

∂|ψ|2
∂x

ψ

]
= 0. (4)

The method also has been successfully implemented to retrieve traveling wave solutions to the
nonlinear Schrödinger’s equation in the presence of Hamiltonian perturbations [20] as

iψt + aψxx +
(

b1|ψ|+ b2|ψ|2
)

ψ = i{αψx + λ
(
|ψ|2ψ

)
x
+ θ

(
|ψ|2

)
x

ψ}. (5)

In all cases, the authors have declared that the method introduces some new solutions that have
not been reported in previous works. In addition, it deduces that the method can be applied to study
many other nonlinear PDEs in many branches of physics, biology, engineering. This research aims to
integrate the GBBM Equation (1) using the GERFM. For this reason, our paper is organized as below:
Section 2 deals with the presentation of the method. Section 3 is devoted to the application of GERFM
to the GBBM equation. Eventually, the conclusion of the present research is outlined in the last section.

2. The Main Steps of GERFM

In this subsection, we review the routine description of GERFM.

1. Let us take into account the nonlinear PDE in the form:

L(ψ, ψx, ψt, ψxx, . . .) = 0. (6)

Using the transformations ψ = ψ(η) and η = σx − lt, Equation (6) is reduced to following
NODE as:

L(ψ, ψ′, ψ′′, . . .) = 0, (7)

where the values of σ and l will be found later.
2. Now, the structure of the wave solution of Equation (7) is assumed to be

ψ(η) = p0 +
M

∑
k=1

pkΘ(η)k +
M

∑
k=1

qk

Θ(η)k , (8)

where
Θ(η) =

ι1eκ1η + ι2eκ2η

ι3eκ3η + ι4eκ4η . (9)

The values of constants ιi, κi(1 ≤ i ≤ 4), p0, pk and qk(1 ≤ k ≤ M) are determined, in such a way
that solution (8) always persuade Equation (7). By considering the homogenous balance principle,
the value of M is determined.

180



Symmetry 2019, 11, 20

3. Substituting Equation (8) into Equation (7), an algebraic equation P(S1, S2, S3, S4) = 0 in terms
of Si = eqiη for i = 1, . . . , 4 is constructed. Then, making each coefficient for the powers of P to
zero, we acquire a series of nonlinear equations in terms of pi, qi(1 ≤ i ≤ 4), and σ, l, p0, pk and
qk(1 ≤ k ≤ M) is generated.

4. By solving the above system of equations using any computer package like Maple (18, Waterloo
Maple, Canada), the values of ιi, κi(1 ≤ i ≤ 4), p0, pk, and qk(1 ≤ k ≤ M) are determined,
replacing these values in Equation (8) provides us the exact solutions of the nonlinear PDE (6).

3. Utilization of GERFM for the GBBM Equation

Let us consider the following dependent variable transformation

u (x, t) = ψ(η), η = kx − θt, (10)

where k and θ are constants need to be calculated. Under the transformation of Equation (10),
Equation (1) can be reduced to the following NODE:

(αk − θ)ψη + k
(

βψϑ + γψ2ϑ
)

ψη + δk2θψηηη = 0. (11)

We may now integrate Equation (11) to have

(αk − θ)ψ + k
(

β

ϑ + 1
ψϑ+1 +

γ

2ϑ + 1
ψ2ϑ+1

)
+ δk2θψηη = 0. (12)

Using the transformation ψ = ψn in (12), we attain

ψψηη + σ1ψ2 + σ2ψ3 + σ3ψ4 + σ4
(
ψη

)2
= 0, (13)

where

σ1 =
(αk − θ) ϑ

δk2θ
,

σ2 =
βϑ

δk(ϑ + 1)θ
,

σ3 =
γϑ

δk(2ϑ + 1)θ
,

σ4 =
1 − ϑ

ϑ
.

In this section, GERFM will be used to determine solitary wave solutions of (1). To this end, if
we apply the balancing principle for the terms of ψ4 and

(
ψη

)2 in (13), (i.e., 4M = 2(M + 1)), we get
M = 1. This implies that Equation (1) has the solution given by

ψ(η) = p0 + p1Θ(η) +
q1

Θ(η)
. (14)

We now exert the GERFM to derive the following categories of solutions for Equation (1):

Family 1: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
−3 − 2 eη

1 + eη . (15)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,
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k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 =
(−6 ϑ − 3) β

γ (ϑ + 2)
, p1 = 0, q1 =

(−12 n − 6) β

γ (ϑ + 2)
.

These resulting values direct us to have

ψ (η) =
(−6 ϑ − 3) β

γ (ϑ + 2) (3 + 2 eη)
.

Consequently, we can get the following exact wave solution

u1 (x, t) =
(

(−6 ϑ − 3) β

γ (ϑ + 2) (3 + 2 eη)

) 1
ϑ

, (16)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Case 2:

θ = −
√

2 ϑ + 1
√

25 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

25
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
25 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 =
(−2 n − 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

5γ (ϑ + 2)
, q1 = −6β (2 ϑ + 1)

5γ (ϑ + 2)

led

ψ (η) =
(−2 ϑ − 1) β eη

(ϑ + 2) (1 + eη) γ (15 + 10eη)
.

Hence, we get the following solitary wave solution for GBBM as

u2 (x, t) =
(

(−2 ϑ − 1) β eη

(ϑ + 2) (1 + eη) γ (15 + 10eη)

) 1
ϑ

, (17)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
25 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
25 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

25
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 2: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) = − sin (η)

cos (η)
. (18)

182



Symmetry 2019, 11, 20

Case 1:

θ =

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

2
√

δ (γ ϑ + γ) (ϑ + 2)2 ,

k =

√
2ϑ + 1ϑβ

2
√

δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 = − β (2 ϑ + 1)
2γ (ϑ + 2)

, p1 = 0, q1 =
i (2 ϑ + 1) β

2γ (ϑ + 2)
.

These resulting values help us to have

ψ (η) = − k sinh (η)√
2 γ2k2 − γ2q2 + 2 qγ − 1

√
ϑ cosh (η)

.

Consequently, the following exact wave solution is determined

u3 (x, t) =

(
− k sinh (η)√

2 γ2k2 − γ2q2 + 2 qγ − 1
√

ϑ cosh (η)

) 1
ϑ

, (19)

where

η =

√
2ϑ + 1ϑβ

2
√

δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x−

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

2
√

δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 3: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
sin (η) + cos (η)

cos (η)
. (20)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ − 1) β

γ (ϑ + 2)
, p1 =

β (2 ϑ + 1)
2γ (ϑ + 2)

, q1 =
β (2 ϑ + 1)
γ (ϑ + 2)

.

These resulting values led us to obtain

ψ (η) =
β (2 ϑ + 1)

2 (ϑ + 2) γ cos (η) (sin (η) + cos (η))
.

Hence, one arrives to the following exact wave solution:

u4 (x, t) =
(

β (2 ϑ + 1)
2 (ϑ + 2) γ cos (η) (sin (η) + cos (η))

) 1
ϑ

, (21)
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where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 4: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
− sin (η) + cos (η)

sin (η)
. (22)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

2
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ

2
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ − 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

2γ (ϑ + 2)
, q1 =

(−2 ϑ − 1) β

γ (ϑ + 2)
.

These solutions direct us to get

ψ (η) =
β (2 ϑ + 1)

2γ (ϑ + 2) sin (η) (sin (η)− cos (η))
.

As a result, we can get the following exact wave solution:

u5 (x, t) =
(

β (2 ϑ + 1)
2γ (ϑ + 2) sin (η) (sin (η)− cos (η))

) 1
ϑ

, (23)

where

η = −
√

2ϑ + 1ϑβ

2
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

2
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 5: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) = − 1
1 + eη . (24)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 = 0, p1 =
β (2 ϑ + 1)
γ (ϑ + 2)

, q1 = 0.
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Then, we arrived to

ψ (η) =
(−2 ϑ − 1) β

γ (ϑ + 2) (1 + eη)
.

Therefore, the following exact wave solution for the equation is achieved

u6 (x, t) =
(

(−2 ϑ − 1) β

γ (ϑ + 2) (1 + eη)

) 1
ϑ

, (25)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 6: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
3 eη + 2
1 + eη . (26)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 =
(−4 n − 2) β

γ (ϑ + 2)
, p1 = 0, q1 =

(−4 n − 2) β

γ (ϑ + 2)
.

These values let us to consider

ψ (η) =
(−4 n − 2) β

γ (ϑ + 2) (eη + 2)
.

Thus, we obtain

u7 (x, t) =
(

(−4 n − 2) β

γ (ϑ + 2) (eη + 2)

) 1
ϑ

, (27)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 7: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
−eη − 2
1 + eη . (28)

Case 1:

θ = −
√

2 ϑ + 1
√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,
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k = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 =
(−6 ϑ − 3) β

γ (ϑ + 2)
, p1 = 0, q1 =

(12 n + 6) β

γ (ϑ + 2)
.

These resulting values help us to consider

ψ (η) =
(−6 ϑ − 3) β eη

γ (ϑ + 2) (3 eη + 2)
.

Accordingly, we can get the following exact wave solution

u8 (x, t) =
(

(−6 ϑ − 3) β eη

γ (ϑ + 2) (3 eη + 2)

) 1
ϑ

, (29)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
(γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

Family 8: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
2 eη + 1
1 + eη . (30)

Case 1:

θ = −
√

2 ϑ + 1
√

9 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

9
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ
√
−δ

√
9 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

,

p0 =
(−2 ϑ − 1) β

γ (ϑ + 2)
, p1 =

β (2 ϑ + 1)
3γ (ϑ + 2)

, q1 =
2β (2 ϑ + 1)
3γ (ϑ + 2)

.

From these results, one has

ψ (η) =
(−2 ϑ − 1) β eη

3γ (ϑ + 2) (1 + eη) (2eη + 1)
.

Thus, we can get the following exact wave solution

u9 (x, t) =
(

(−2 ϑ − 1) β eη

3γ (ϑ + 2) (1 + eη) (2eη + 1)

) 1
ϑ

, (31)

where

η = −
√

2ϑ + 1ϑβ
√
−δ

√
9 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2

x+

√
2 ϑ + 1

√
9 (γ ϑ + γ) (ϑ + 2)2 α − (2ϑ + 1) β2ϑβ

9
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.
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Family 9: We attain ι = [1, 1, 1,−1] and κ = [1,−1, 1,−1], so we will obtain

Θ (η) =
cos (η)− 2 sin (η)

sin (η)
. (32)

Case 1:

θ = −
√

2 ϑ + 1
√

4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

8
√
−δ (γ ϑ + γ) (ϑ + 2)2 ,

k = −
√

2ϑ + 1ϑβ

2
√
−δ

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

,

p0 =
(−2 ϑ − 1) β

γ (ϑ + 2)
, p1 = − β (2 ϑ + 1)

4γ (ϑ + 2)
, q1 = −5β (2 ϑ + 1)

4γ (ϑ + 2)
.

These results suggest us to have

ψ (η) =
(2 ϑ + 1) β

4 (ϑ + 2) γ sin (η) (cos (η) + 2 sin (η))
.

At this point, the following exact wave solution is formulated

u10 (x, t) =
(

(2 ϑ + 1) β

4 (ϑ + 2) γ sin (η) (cos (η) + 2 sin (η))

) 1
ϑ

, (33)

where

η =

√
2ϑ + 1ϑβ

2
√
−δ

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2

x−

√
2 ϑ + 1

√
4 (γ ϑ + γ) (ϑ + 2)2 α + (2ϑ + 1) β2ϑβ

8
√
−δ (γ ϑ + γ) (ϑ + 2)2 t.

To analyze the dynamic behavior of the obtained solutions, some three-dimensional figures have
been depicted in some special cases. The moduli of s u3(x, t), u4(x, t), u6(x, t), u8(x, t), u9(x, t) and
u10(x, t) are depicted in Figures 1–6, respectively. The analytical results and profiles obtained in this
contribution provide us a different physical interpretation for the considered equation. As we observe,
the absolute value of solutions displayed in Figure 1 is a bright solitary wave, in Figure 2 is a periodic
wave, in Figure 3 is a kink solitary wave, in Figure 4 is a dark wave, in Figure 5 is a periodic wave
soliton, and finally in Figure 6 is a singular periodic wave.

Figure 1. Perspective view of the modulus of u3(x, t) with α = 0.5, β = 2, δ = 1, γ = −0.5 and ϑ = 1.5.
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Figure 2. Perspective view of the modulus of u4(x, t) with α = 1, β = 1, δ = 1, γ = 0.5, and ϑ = 3.

Figure 3. Perspective view of the modulus of u6(x, t) with α = 0.5, β = 1, δ = 2.0, γ = −0.5, and
ϑ = 1.1.

Figure 4. Perspective view of the modulus of u8(x, t) with α = 0.5, β = 1, δ = 1, γ = −1.5, and ϑ = 1.5.
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Figure 5. Perspective view of the modulus of u9(x, t) with α = 0.5, β = 1, δ = 0.5, γ = 2, and ϑ = 3.

Figure 6. Perspective view of the modulus of u10(x, t) with α = 1, β = 1, δ = 1, γ = −0.5, and ϑ = 3.

4. Conclusions

The study in this paper was devoted to the derivation of new exact solitary wave solutions of the
generalized BBM equation through the GERFM. The correctness of the whole solutions u1(x, t)-u10(x, t)
has been verified with a symbolic Maple package, and it is found that all are satisfied with their
corresponding original equations. The obtained solutions could be classified as periodic solutions
and soliton solutions. Some graphical representations reveal the fact that the wave profile u behaves
as bright and kink, multi-soliton solutions. These new obtained solutions could help for a deeper
understanding of systems described by the BBM equation. All obtained solutions in the present work
are new, and have not been previously reported in the literature. This is the main advantage of the
GERFM over existing methods for solving GBBM equations, and indicates that GERFM is an efficient
and easy to use tool that can help physicists and mathematicians handle and explore various sets of
nonlinear PDEs.
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Abstract: This study deals with computational analysis of vibration isolators’ behavior, using the
fractional-order differential equations (FDE). Numerical investigations regarding the influences of
α-fractional derivatives have been mainly focused on the dissipative component within the differential
constitutive equation of rheological model. Two classical models were considered, Voigt-Kelvin
and Van der Pol, in order to develop analyses both on linear and nonlinear formulations. The aim
of this research is to evaluate the operational capability, provided by the α-fractional derivatives
within the viscous component of certain rheological model, to enable an accurate response regarding
the realistic behavior of elastomeric-based vibration isolators. The hysteretic response followed,
which has to be able to assure the symmetry of dynamic evolution under external loads, and at
the same time, properly providing dissipative and conservative characteristics in respect of the
results of experimental investigations. Computational analysis was performed for different values of
α-fractional order, also taking into account the integer value, in order to facilitate the comparison
between the responses. The results have shown the serviceable capability of the α-fractional damping
component to emulate, both a real dissipative behavior, and a virtual conservative characteristic, into
a unitary way, only by tuning the α-order. At the same time, the fractional derivative models are able
to preserve the symmetry of hysteretic behavior, comparatively, e.g., with rational-power nonlinear
models. Thereby, the proposed models are accurately able to simulate specific behavioral aspects of
rubber-like elastomers-based vibration isolators, to the experiments.

Keywords: α-fractional calculus; vibration isolation; fractional-order differential equation; rubber-like
elastomers; Riemann–Liouville/Caputo/Grünwald-Letnikov fractional derivative

1. Introduction

Fractional calculus (FC) studies the differentiation and integration of an arbitrary real or complex
order of the differential operator. The starting point of FC’s use was a discussion between Leibniz and
L’Hospital (1695) concerning the calculation and significance of the derivative of the power function,
which also became the name of FC. FC has been largely applied to pure mathematics and its application
in physics or engineering has remained extremely limited until, by association with the theory of chaos
or fractals, it has increased the interest in this branch of analysis. The reputation enjoyed by FC is still
exotic, and for many researchers, it is still unclear what its practical use is. Fractional derivatives take
into account the previous evolution of the variable, unlike the standard differential operator, which is
limited to taking into account local time history. This feature allows for a better description of system
dynamics [1].

Symmetry 2019, 11, 924; doi:10.3390/sym11070924 www.mdpi.com/journal/symmetry191
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Taking the previous aspects into account, the next paragraphs contain a briefly survey of some
relevant works within the areas of both computational aspects, and some practical applications on
vibration isolation analysis, of FC. Thus, in article [1], there is presented a dynamic statistical analysis
of a system composed of a large number of masses. The conclusion of this article shows that, while
the individual dynamics of each material point has an integer-order behavior, global dynamics reveal
both the existence of the integer dynamics and the fractional dynamics. Babiarz and Legowski, in the
paper [2], developed a fractional model of the human arm, and is an approach representing an attempt
to consider the properties of damping in the simplest form.

Inside the editorial paper [3], Zhou et al. had proposed a selection of papers presenting many
applications of fractional dynamics in different research domains. Three areas are distinguishable:
Dynamical analysis (leading to fractional differential equations and systems), fractional-order control
theory, and applications considering models with fractional calculus.

The work [4] presents some ways to use Matlab software with the associated numerical methods
to simulate and compute the fractional derivatives. These methods are based on series technique
(Fourier and Taylor in our case). In addition, some numerical examples were presented. The fractional
calculus offers a number of axioms and methods to extend the derivative notions from integer n to
arbitrary order α, under favorable conditions [5]. In paper [5], the author has intended to solve a linear
homogeneous differential equation with constant coefficients by means of N-fractional calculus method,
and the results show that singular differential equations can be solved by means of the N-fractional
calculus method.

Koh and Kelly, in Reference [6], are studying a mechanical oscillator consisting of a concentrated
mass and a Kelvin-type element with fractional behavior, modeling an elastomeric bearing in
groundwork isolation systems. For a dynamic analysis of a fractional oscillator developed efficient
numerical multi-step schemes in the time domain, in good agreement with the Laplace and
Fourier solutions. The model with fractional derivative agrees, to a satisfactory extent, with the
experimental results.

Freundlich, in paper [7], is studying the vibration of a simply supported beam with a viscoelastic
behavior of fractional order. The beam, considering the Bernoulli-Euler hypotheses, was excited
by the supports movement. In this model, the Riemann–Liouville fractional derivative (RLFD)
of order 0 < α ≤ 1 was used. Firstly, the steady-state vibrations were analyzed and therefore the
RLFD with lower terminal at -∞ was considered, in order to simplify solution of the FDE and to
enable direct computation of the amplitude-frequency characteristic. Final results showed that the
appropriate selection of both damping coefficients, and respectively, of fractional derivative order,
offers more accurate fitting of the dynamic characteristic comparatively with the model using the
integer order derivative.

The fractional equations of the mass-spring-damper system were considered by Gómez-Aguilar
et al. in Reference [8]. The results had shown viscoelastic behaviors of the mechanical components
(producing, at different scales, temporal fractality). This proves the material heterogeneities in the
mechanical components.

Use of the fractional order models in bioengineering applications is presented in paper [9], where
a method to obtain a numerical solution, considering the power series expansion was provided.
Fractional dynamic of such system leads to different equations and the applications are solved with
Matlab/Simulink software. The study offers several illustrative cases that can be used not only in
bioengineering, but so too in other disciplines, where it is possible to apply the fractional calculus. In
addition, with the previous mentioned paper [9], within chapter [10], Petráš had developed methods to
obtain the fractional derivative, fractional integral solution of a fractional differential equations using
Matlab. Illustrative examples, together the correspondent Matlab code sources, were also presented.

The researches of Rossikhin et al. dealt with dynamic behavior of mechanical oscillators (linear and
nonlinear)—in [11], respectively, with force-driven vibrations of nonlinear oscillators—in Reference [12],
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where the constitutive equations use fractional derivatives. The authors had concluded that using
fractional derivatives is possible to do an approximate analysis of the vibratory regimes of the oscillator.

The nonlinear response of a plate endowed loaded with a random force using fractional derivative
is presented in Reference [13] by Malara and Spanos. A statistical linearization is used to determine an
approximate solution of the governing equations of the plate vibration. Eigenvalues analysis offers a
time-dependent representation of the response. In this way, it is possible to obtain the set of nonlinear
fractional differential equation. The linearization is considered in a mean square sense.

Inside study [14], the stochastic response of a structural systems has been studied, with a
single-degree-of-freedom. The excitation was stationary and non-stationary. The damping is considered
with fractional behavior. The final equation of motion becomes a set of coupled differential linear
equations, involving more degrees of freedom. The number of the additional degrees of freedom
depends on the discretization of the fractional derivative operator. Using these methods, the stochastic
analysis becomes straightforward and simple. It is mentioned that, for the most current engineering
interest, it has been proven that the second-order statistics response can be obtained in a closed form,
in a simple manner.

In paper [15], Cajić et al. makes an analysis of a nanobeam free damped transverse vibration. The
method used is the non-local theory of Eringen and fractional derivative model for viscoelasticity. The
classic Euler–Bernoulli beam theory and constitutive equation using fractional order derivatives that
offer the form of the motion equation of a nanobeam. Different values of fractional order parameter are
used in order to obtain the time dependent behavior.

The actual literature also provides a suite of theoretical approaches related to fractional differential
equations. Hereby, Ma [16] proposed the Adomian decomposition method and a computational
technique for the study of the impulsive fractional differential equations. Continuing this research in
Reference [17], to obtain an exact solution for nonlinear fractional problems, the authors combined the
double Laplace transforms with the Adomian decomposition method. The new method is applied
to solve regular and singular conformable fractional coupled Burgers’ equations, and illustrated the
effectiveness of the proposed method with some examples.

Finally, in this section, and in addition to previously mentioned works, comprehensive information
regarding both theoretical and computational aspects of FC can be found within the texts [18–22]. These
works also contain some applications of FC on various important areas of engineering and physics.

Linear and nonlinear models regarding the elastomers-based vibration insulation devices can be
found in papers [23–25], where they had earnestly presented the influence of dissipative characteristic
on isolator dynamic behavior. In addition, the research trials, as well as the efforts of the author,
within the area of vibration isolation using the passive systems, was presented by the papers [26–30],
which contain both computational and experimental results, according with proposed linear and
nonlinear approaches.

Usually, numerical investigations have a sensible aspect related to the required computational
resources, optimal balancing between hardware performances, and computing time. Most of the
researchers made additional searches into computing time optimization, beyond that of the mainly
numerical procedures development [31]. Regarding this aspect and within the present study, the
authors noted that the computational cost required by evaluation of α-fractional derivative increase
the total simulation time to a certain measure, directly depending on both FC formulation and
solving the numerical approach had adopted within the computational model. Computational cost
optimization was not framed by the aim of this study, but nevertheless, some related-to investigations
done by the authors show a relatively small increasing of total simulation time for FC-based algorithm
comparatively with the linear case. Taking into account an average 6000 points single dimension grid
for each simulation, it has to be noted that the FC had required 1.12...1.23 s, in the same time with
0.88...0.93 s by the classical algorithm (hardware and numerical FC formulation were kept identical).

This paper was structured based on the next sections as follows: Theoretical basics of
α-fractional derivative calculus and classical models related on FDE’s within vibratory systems
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analysis, computational assessments regarding fractional-order dissipation, discussions, and final
concluding remarks.

2. Materials and Methods

The basic approach of fractional calculus consists by the Riemann–Liouville fractional integral
(RLFI) [4,9,10]

aJαt f (t) =
1

Γ(α)

∫ t

a
(t− τ)α−1 f (τ)dτ, (1)

with α ∈ (0, 1] and t > a, where a is the initial value (usually a = 0). Associated derivative is able to
result through the Lagrange rule for differential operators. Evaluating the nth order derivative over
the (n − α) order integral, yields the α order derivative (related to RLFD) as follows

aDαt f (t) = Dn
t aJn−α

t f (t) =
1

Γ(n− α)
dn

dtn

[∫ t

a
(t− τ)n−α−1 f (τ)dτ

]
, (2)

with α ∈ (n− 1, n], α > 0, notation D denoting d/dt and Γ(•) means the Gamma function, defined as
follows

Γ(t) =
∫ ∞

0
e−zzt−1dz. (3)

Taking into account the initial value a set to 0, that denotes the most common case, the RLFD,
Equation (2), becomes [2]

0Dαt f (t) =
1

Γ(1− α)
d
dt

∫ t

o
(t− τ)−α f (τ)dτ, (4)

where in it was assumed the restriction of derivative order α ∈ (0, 1].
Following the RLFI previous expressions, a commonly compact definition, used for fractional

derivatives, is [6]

Dα f ≡ aDαt [ f (t)] ≡ dα f (t)
[d(t− a)]α

≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1

Γ(n−α)
dn

dtn

[∫ t
a (t− τ)n−α−1 f (τ)dτ

]
,

{
n > α ≥ 0
n integer

1
Γ(−α)

∫ t
a (t− τ)−α−1 f (τ)dτ, α < 0

dn

dtn f (t), a = 0, α = n, n integer

. (5)

Caputo, in 1990’s, supposed another way to define the fractional derivatives, actually known as
Caputo Fractional Derivative (CFD) [4,8]

aDαt f (t) =
1

Γ(1− β)
∫ t

a
(t− τ)−β f (m+1)(τ)dτ, (6)

where α = β + m, β ∈ (0, 1] and m denotes the nearest integer less than α. The Caputo definition does
not require the fractional order initial conditions to define, and thus, it is often preferred in solving
differential equations.

A.K. Grünwald and A.V. Letnikov propose a new generalization of integer derivative by
approaching the integer difference of the fractional case [4]. Supposing the binomial coefficients as an
iterative formulation [10](

x
y

)
= c(x)y =

(
1− 1 + x

y

)
c(x)y−1, c(x)0 = 1, y = 0, 1, 2, . . . , k, (7)
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and considering the real valued binomial coefficients based on Gamma function [10,16] because that
allows a generalization to non-integer arguments

(
x
y

)
=

Γ(x)
Γ(x− y) Γ(y)

, x, y ∈ �, (8)

the Grünwald-Letnikov Fractional Derivative (GLFD) is [4,9,10]

aDαt f (t) = lim
h→ 0
k = (t− a)/h

h−α
[k]∑
j=0

(−1) j
(
α
j

)
f (t− jh), (9)

with the notation [•] meaning the integer part of the argument. Obviously, y(t) = 0 for t < 0 within
transient problems, thus −∞Dαt y(t) becomes identical to 0Dαt y(t), [6]. For analyses within the area
of vibration isolation, into the context of the viscoelasticity theory, the fractional order α, known as
memory parameter, was assumed to have a value varying from zero to one.

The fractional model, used within computational analyses, followed the conventional Voigt-Kelvin
rheological schematization. The constitutive equation, embedding fractional order formulation into
dissipative term, were assumed to have the following expression [30]

τ(t) = Go(1 + c Dα)γ(t), (10)

with damping constant c > 0, Go denoting the shear modulus, and τ, γ meaning the stress and the
shear strain, respectively. It has to be noted that the authors of the paper [6], using the less-square fit
procedure for a set of experimental data, showed that the fractional Voigt-Kelvin model fits the data
much better than the hysteretic, classical Kelvin and standard linear solid models.

Three practical applications of FDE for mechanical vibration analyses [30], embedding fractional
order terms, are briefly presented as follows. The first case is the fractional order Van der Pol oscillator,
having both inertial and dissipative α-fractional terms

D1+αx + δ
(
x2 − 1

)
Dαx + b x = f (t), (11)

or supposing only the fractional damping

..
x + δ

(
x2 − 1

)
Dαx + b x = f (t). (12)

Second case relates to the equations of fractional order Duffing-like systems, with a dissipative term

D1+αx + δDαx + b x + a x3 = f (t), (13)

or without damping
Dαx + b x + a x3 = f (t). (14)

The last exemplification case presents an interesting system with small fractional and delayed
damping, modeled by the following expression

..
x(t) + δ

[
β1

.
x(t) + β2Dαx(t) + β3

.
x(t− 1)

]
+ b x(t) + a x3(t) = f (t). (15)

In Equations (11)–(15), having mass normalized formulations, δ denotes damping coefficient, a > 0
is the control parameter of nonlinearity, b relates to squared pulsation of equivalent linear system,
and f (t) is the excitation term. The parameters βi are the control coefficients related to each damping
component. It has to be noted that extensive examples of FDE can be found in the works [11,12] and
within theirs bibliography.
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One challenge, especially for practical simulations, consists of settling the correct dimensionality
of the differential equations. In order to supply this, an additional parameter μ that must be included
within the fractional temporal operator was proposed in the work [8]

d
dt
→ 1
μ1−α

dα

dtα
≡ 0Dαt ,

d2

dt2 →
1

μ2(1−α)
d2α

dt2α ≡ 0D2α
t (16)

where parameter μ has a dimension of seconds. According to Reference [8], parameter μ relates to the
temporal components within the system (those components implying changes to the time constant of
system). Clearly, taking μ = 1 into Equation (16) yields ordinary integer temporal derivative operators.

According to Reference [8], μ can be estimated by following expressions

α =
√

k/mμ, (17)

for a mass—spring ensemble,

α =
k
c
μ, (18)

for a damper—spring ensemble, and

α =

√
k
m
− c2

4m2μ, (19)

for a complete mass—spring—damper ensemble, with k, m denoting the rigidity and mass, respectively,
and c meaning the damping coefficient.

In the view of this papers goal and taking into account the previous assertions regardingα-fractional
derivatives, a α-fractional derivative SDoF system based on Voigt-Kelvin linear schematization, can be
modeled with the expression [30]

1
μ2(1−α) 0D2α

t x(t) +
δ

μ1−α 0Dαt x(t) + b x(t) = f (t), (20)

where the parameters have aforementioned significations.
Following the aim of this study, to characterize the hysteretic behavior of vibration isolator

based on α-fractional derivative approaches, the authors consider a differential formulation related to
Equation (20), but ignore the inertial term. This hypothesis were justified by the assertions in paper [11],
and was also mentioned and detailed by the analyses in paper [30], where an extended investigation
regarding the implications of α-fractional derivative within the classic linear was developed, Duffing
and Van der Pol oscillators, respectively. Different values for the main parameters were adopted and
the responses, in terms of time, spectral, and hysteretic characteristics were discussed.

Into this paper, the symmetrical trends in evolution of a vibration isolator subjected to harmonic
excitation were studied. The capability of this α-fractional derivative approach to simulate both
dissipative and conservative character of an isolator through a singular term was investigated,
involving only the damping, but α-fractional-typed. The analyses were focused on evaluation
of the equivalence between α-fractional-derivative and pseudo-linear systems, but underlined the
maintaining of symmetry of hysteretic behavior. This last aspect is very important because of the
practical observations (including instrumental investigations), which highlight the symmetry in
hysteresis loops independently by dynamic excitation type or material characteristics. In this view,
the α-fractional approach comes with the advantage of a unitary expression that intrinsically embeds
damping and stiffness parameters, but keeping the realistic behavior (in term of hysteresis symmetry).
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3. Results

As was previously mentioned, a simple dissipative oscillator was adopted, according to classical
Voigt-Kelvin schematization, Equation (20), with α-fractional derivative in damping term

(
c · 0Dαt x(t)

)
and null stiffness. The inertial term was ignored, the excitation was supposed to be kinematical, in
terms of harmonic displacement x(t) with 1 Hz frequency, and the damping coefficient was unitary
valued (c = 1). Computational investigations were conducted for order α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and
in addition, the ordinary case (α = 1) was considered. Fractional derivatives were evaluated using a
GLFD-based algorithm.

Timed evolution and spectral composition of the response function were, respectively, presented
in Figures 1 and 2. The results related to the regular derivative case (α = 1) were differently marked
onto the graphs in order to facilitate comparative analysis. For spectral distribution, both magnitude
and phase components because some changes in frequency evolution were considered and have more
visibility into the phase diagram than the magnitude.

Figure 1. Timed response of α-order fractional damping model with respect to 1 Hz harmonic
displacement excitation. Fractional orders were mentioned on graph legend.

Figure 2. Spectral composition of α-order fractional damping model with respect to 1 Hz harmonic
displacement excitation, in terms of magnitude and phase, respectively.

Diagram in Figure 3 presents the response function in respect of the excitation displacement. The
presence of the hysteretic loop can be observed, which acquires changes as a function of fractional
order. In order to evaluate the linear-like evolution of the system, a Poincare map, with a snapshot
increment identical to the time period of excitation signal, was overlapped on diagrams in Figure 3.
Null scattering of dots related to Poincare maps highlight the correlated evolution of the system with
the excitation frequency. It has to be mentioned that, for the investigations presented into this paper,
the evaluation of Poincare maps is justified by the fact that the response function is identical with the
system velocity, because the model only incorporates the unitary gained dissipative term (in fact, the
response function in respect to the displacement is similar with the phase plane diagram).
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Figure 3. The response of α-fractional damping model with respect to 1 Hz harmonic displacement
excitation. Poincare maps, with snapshots at 1s, were doted on graphs (named PM on graph legend).

The changes in slope of each hysteresis in Figure 3 indicate that, in the same time with increasing
of α order, the system provide both dissipative and conservative characteristics, which quantitatively
depend on the effective α value. This fact leads to the necessity of the pseudo-linear equivalent
system evaluation, in terms of stiffness and damping of Voigt-Kelvin schematization. Taking into
account the proportionality between the dissipated energy and the hysteresis loop area, it results in
the equivalent-damping coefficient. In order to evaluate the stiffness, the hysteresis axis between the
extreme horizontal coordinates was considered. For the loops in Figure 3, the correspondent axes
were depicted in Figure 4. Analyzing the slopes of axes in Figure 4 clearly result in that α-fractional
derivatives provide an additionally elastic component within system behavior. In the same time, the
symmetry of the hysteresis loops through both the equality of the extremely values, and the common
point of all axes on origin (0, 0) is evident.

Figure 4. Hysteresis axes for loops in Figure 3, denoting the pseudo-elastic component, virtually
emulated by the α-fractional damping model.

An additional analysis was conducted for largest number of α order values. The results, presented
in Figure 5, in terms of timed evolution, hysteresis loops (included Poincare maps dots-based
representations) and hysteresis axis, highlight the previously mentioned observations.
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(a) (b) 

 
(c) 

 
(d) 

Figure 5. The results of additional analysis, supposing large number of α-fractional orders, in terms of
hysteresis, including Poincare maps (a), with detail on the left hand side (b), timed evolution (c), and
correspondent hysteresis axes (d).

At this point, it is evident that the α-fractional-based dissipative model is able to provide a
behavior equivalent to a linear Voigt-Kelvin model, and vice-versa (see Figure 6). In fact, the fractional
dissipative model is able to emulate a linear visco-elastic model, with direct linkage between α order
and the pair of viscous and elastic parameters, respectively.

c0

x(t)

k0

F(t)

m
x(t)

F(t)

m

cD

Figure 6. Schematic diagram related to the equivalence between α-fractional dissipative model and
emulated linear Voigt-Kelvin model.

A computational application was developed for identification and evaluation of the proper values
of the pseudo-linear system parameters. Different values for α-order between zero and one were
considered, and both fractional and equivalent systems responses have been compared. The results
indicate that the estimated relative error tends to zero, obviously depending by the computation
precision. The diagrams in Figure 7 present two cases related to α-order valued to 0.4 and 0.7,
respectively. It can be observed that both plots perfectly overlapped.
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(a) (b) 

Figure 7. Comparative hysteresis of initial α-fractional dissipative and emulated linear Voigt-Kelvin
models respectively, for α-order valued to 0.4 (a) and 0.7 (b). The identified values of virtual linear
system were mentioned on each graph.

Taking into account aforementioned observation, it has to identify the correlation between α-order
and the parameters of equivalent linear system. This analysis was performed by considering the
equivalent stiffness and damping, respectively, and the results were depicted in Figure 8. In addition,
the losses coefficient, as the ratio between dissipative and conservative parameters, was evaluated.
The evolution of losses coefficient in respect to α-order was presented in Figure 9, where semi-log
representation was adopted taking into account the relative large domain of function variability. It is
evident that the losses coefficient g→ +∞ for α = 1 and g = 0 for α = 0.

 
(a) (b) 

Figure 8. The evolution of pseudo-elastic component (a) and pseudo-dissipative component (b),
respectively, for the emulated linear Voigt-Kelvin model, in respect to α-order of initial fractional
derivative model.

Figure 9. The evolution of losses coefficient for the emulated linear Voigt-Kelvin model, in respect to
α-order of initial fractional derivative model.
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An extended analysis was developed by taking into account the classical Van der Pol (VdP)
expression for dissipative component, obviously supposing the α-fractional order derivative. The
effects of fractional derivative in model behavior was followed, related to the observations and
acquired for the previous simplest pseudo-linear model. This analysis was adopted based on the
previous work evaluations [30], where it was considered for both Duffing and VdP non-linear models.
The dissipative term within Duffing-type model enables only linear dependence in respect to the
displacement derivative

c0

μ1−α 0Dαt x(t) + k0
[
x(t) + k3x3(t)

]
= f (t), (21)

thus that the dynamic behavior cannot be differently influenced by the fractional derivative than the
Voigt-Kelvin-based model. Hereby, in the frame of this study and taking into account the nonlinear
damping expression, becomes interesting to analyze a VdP-type model, embedding fractional order
derivative, related to its capability that emulate a classical VdP model.

The following expression of VdP nonlinear model including α-fractional derivative was proposed
for computational investigations [30]

− c0

μ1−α
[
1− x2(t)

]
0Dαt x(t) + k0 x(t) = f (t). (22)

where f (t) denotes the response of the system, x(t) is the instantaneously displacement, and c0, k0

denote damping and stiffness coefficients, respectively.
In respect of the hypothesis within previous case analysis, the parameters c0, k0 were identically

valued as follows: c0 = 1, k0 = 0. Taking into account the nonlinear term in parenthesis within the left
side hand of Equation (22), the analysis has to be conducted related to displacement magnitude. In
this study, random values for magnitude were taken. The results presented correspond to the 3.3, 1.0,
and 0.3 valued displacement magnitudes. The monitored parameters, for each case, were similarly
adopted than the previous linear case: Timed evolution, spectral composition, hysteretic loops with
Poincare maps overlapped, and hysteresis axis according to the pseudo-elastic component provided by
the model. The results for the three cases were presented in Figures 10–12, respectively (details were
mentioned within the figure captions).

 
(a) 

(b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. The response of α-order fractional damping VdP-based model, with respect to 1 Hz and 3.3
magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude and phase
spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic component (d).

 
(a) 

(b) 

  
(c)                                              (d) 

Figure 11. The response of α-order fractional damping VdP-based model, with respect to 1 Hz and
unitary magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude
and phase spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic
component (d).
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(a) 

(b) 

  
(c)                                              (d) 

Figure 12. The response of α-order fractional damping VdP-based model, with respect to 1 Hz and 0.3
magnitude harmonic displacement excitation, in terms of timed evolution (a), magnitude and phase
spectral composition (b), hysteresis loops with Poincare map (c), and pseudo-elastic component (d).

A comparative analysis between this group of results highlight the fact that the VdP model
embedding the fractional derivative is also able to emulate a pseudo-conservative behavior, depending
on the α-order. This aspect is dependent to the excitation magnitude and appears for any of its values
except the unitary ones—see Figure 11c,d.

As was performed for the previous linear case, the authors developed a computational application
in order to identify the proper formulation of the equivalent VdP visco-elastic model and to evaluate
the parameters values of equivalent models. Identification procedure was imposed by the nonlinear
formulation of the dissipative term in VdP model and by the fact that this expression has propagated
to the conservative term for the equivalent model. In this view, the authors supposed two forms of the
equivalent model. The first case was in respect of the classical VdP expression as follows

− c01
[
1− x2(t)

] .
x(t) + k01 x(t), (23)
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in the same time that the second case supposes a specific nonlinear terms for equivalent rigidity
as follows

− c02
[
1− x2(t)

] .
x(t) + k02

[
1− x2(t)

]
x(t). (24)

The analyses were performed for different values of the α-fractional order and displacement
magnitudes, respectively. For presentation, the 1.8, 1.0, and 0.8 valued displacement magnitudes were
adopted, maintaining α = 0.7. The results were depicted as pair diagrams of the first and second
equivalent model, for each displacement magnitude, in Figures 13–15, respectively.

Comparative analysis of this last group of results (depicted in Figures 10–12) show that
identification of the right equivalent model formulation is easily done, taking into account the
differences between the loops evolutions in diagrams. Even if the first equivalent model (emulated
VdP-based model with linear rigidity) is able to provide the same energy dissipation for a proper
damping coefficient and supplies certain pseudo-stiffness, the hysteretic evolution is clearly different.
This fact can produce certain difficulties on the tuning process between theoretical behavior and the
experimental investigations.

In the same time, the second approach (emulated VdP-based model with propagated nonlinear
rigidity term) provides the best approximation with the α-fractional derivative model. Obviously,
similar to the case of the linear model, the estimated relative error tends to zero, only and directly
depending by the computation precision.

 
(a) (b) 

Figure 13. Responses hysteresis provided by the initial α-fractional dissipative and the emulated
VdP-based models, respectively. The simulations were performed for displacement magnitude gained
to 1.8, and in respect to emulated VdP model according to Equation (23) (a), and respectively, to
Equation (24) (b). The α-order was valued to 0.7.

 
(a) (b) 

Figure 14. Responses hysteresis provided by the initial α-fractional dissipative and the emulated
VdP-based models, respectively. The simulations were performed for displacement magnitude unitary
gained, and in respect to emulated VdP model according to Equation (23) (a), and respectively, to
Equation (24) (b). The α-order was valued to 0.7.
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(a) (b) 

Figure 15. Responses hysteresis provided by the initial α-fractional dissipative and the emulated
VdP-based models, respectively. The simulations were performed for displacement magnitude gained
to 0.8, and in respect to emulated VdP model according to Equation (23) (a), and respectively, to
Equation (24) (b). The α-order was valued to 0.7.

4. Discussion

Each case of analysis was briefly discussed on the same time with its presentation. Besides this,
the main findings within this study has to be detailed, in a general view, taking into account the
intrinsic availability of α-fractional derivatives that virtually modify the behavioral characteristics of
linear/nonlinear vibration isolators models. The results in Figure 8, in terms of equivalent damping and
stiffness, respectively, are relevant into this way. From the diagram of damping evolution in respect of
the α-order results, the fractional derivative model is able to provide a full scale of dissipation, from
weak to strong, related to the full range of α. In the same time, from the diagram of pseudo-elastic
component results that also provided a relative very large scale for rigidity, from stiff, by very stiff
(more of doubled initial value), to zero stiffness. These two observations are very useful, e.g., for
investigations of elastomers-based vibration isolators, which provide strong nonlinear evolutions
under the external dynamic loads and involve many parameters within computational (experimentally
augmented) models.

Taking into account the comparative analysis of diagrams in Figure 8, it has to be mentioned
that the evolutions of the two components are strongly correlated. In this sense, for small α orders,
the FDE-based model enables only weak-dissipation with stiff to very stiff behavior. For medium
to 0.9 values of α, the FDE-based model still enables a stiff behavior with damping transition from
medium to strong. Finally, for 0.9...1.0 valued α, the model provides only a soft to zero stiffness, but
very damping, behavior. These last observations have restricted the area of practical using for the
FDE-based dynamic models. Nevertheless, these theoretical models are able to provide enough of a
range of dynamic characteristics, in respect of a single parameter, and was thus suitable for inclusion
into the computational approaches of vibration isolator dynamics.

In addition, the availability of the α-fractional derivatives has to be underlined, embedded to
the differential constitutive equations, which do not change the hysteretic evolution of a dynamic
system with symmetrical evolution in respect to its static state equilibrium point. This is a very
useful observation, because the investigations done by the authors highlights that the insertion of
fractional-order derivatives into the classical differential formulations of dynamic systems actually
provides the preservation of the symmetry of the hysteretic behavior.

For the simple, rubber-like, composites without any augmentations related to differentiation of
their reversible evolution under dynamic loads, the previously mentioned fact focuses on the interest to
these computational approaches, because of theirs accurate capability to simulate the realistic behavior,
experimentally acquired, in the same time with keeping the nonlinear characteristics identified to the
microstructural and phenomenological analyses.

For the sake of comparison in the view of previous paragraph remarks, the diagrams in Figure 16
show the evolution of a rational-power simulated system, with quite identical material parameters to
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those used within this study. It was adopted in the force to displacement graphs, considering both the
conservative and dissipative force components, in order to highlight the unsymmetrical hysteresis of
such computational models. The conservative component of the model was supposed to have linear
expression to displacement, with a constant value of rigidity.
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(a) (b) (c) 

Figure 16. Hysteretic response of rational-power model, for α ∈ [2.3; 3.7] (a), [1.3; 2.7] (b) and [0.3;
1.7] (c). It was assumed a single time-period of 1 Hz excitation signal, and ratio between rigidity to
damping, for linear components, valued to 20 s−1. Within these diagrams, the symbol α must be
considered as the rational power of additional dissipative component (multiplied by 20 from linear
damping coefficient) into the computational model, with specific values mentioned on graph legends.

5. Conclusions

The computational investigations within this study highlight a very interesting aspect of the
α-fractional derivatives embedded in classical linear or nonlinear oscillators. This aspect consists by
the capability of emulating a pseudo-conservative characteristic for a computational implementation
of the only dissipative component. In the view of practical using these models for the evaluation of
vibration isolators dynamic behavior, this capability is very useful because it provides a single tuning
parameter (in term of the α-order) instead of two (for linear case) or more parameters (for nonlinear
case), for classical rheological dynamic models. Moreover, these FDE-based approaches are able to
maintain the hysteresis symmetry, specific to the real systems, within its dynamic behavior under
external loads.

Two cases of classical rheological models were analyzed in this work, fractional-derivative
augmented. The future investigations will be focused on enlarging the area of fractional calculus
applicability within other basic rheological models, and the potential useful results will be discussed
into forthcoming works.
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Abstract: In our study, we will extend the domain of influence in order to cover the thermoelasticity
of initially stressed bodies with voids. In what follows, we prove that, for a finite time t > 0,
the displacement field ui, the dipolar displacement field ϕjk, the temperature θ and the change in
volume fraction φ generate no disturbance outside a bounded domain B.

Keywords: initially stressed bodies; dipolar structure; voids; volume fraction; domain of influence

1. Introduction

We must outline that our bodies are included in the thermoelasticity of bodies with voids. As we
know, Nunziato and Cowin, in the paper [1], have initiated the approach of the bodies with vacuous
pores (or voids). In this theory, the authors introduce an additional degree of freedom in order to
develop the mechanical behavior of a body in which the skeletal material is elastic and interstices are
voids of material. There are many modern applications of this theory, of which we just mention the
manufactured porous materials and the geological materials like soils and rocks. In the linear case,
this theory of bodies with pores was approached by Cowin and Nunziato in the study [2]. In this paper,
the authors demonstrated a result of the uniqueness regarding the solution for the mixed problem
and obtained a result of weak stability for the respective solutions. See also [3]. The equations of the
thermoelasticity of bodies with pores were obtained by Iesan in work [4]. Other results regarding the
contributions of voids of material in the theory of micropolar body with pores can be found in the
papers [5,6]. Lately, the number of papers devoted to various aspects of microstructure has greatly
increased (see [7–23], so that our work can be considered a continuation in this respect. In our present
study, we extend the previous results in order to cover the thermoelasticity of initially stressed material
with voids. Thus, after we put down the main equations, the initial conditions and the boundary data
of the mixed value problem in this context, we define the so-called domain of influence, denoted by Bt,
which corresponds to the data at time t and it is associated with the mixed problem. As in previous
studies (see for instance [5,24,25]), we will use a specific method in order to prove a theorem regarding
the domain of influence.

Our basic result asserts that the solutions of the mixed initial-boundary value problem, in the
context of the theory of thermoelasticity of bodies with voids, decay to zero outside Bt, for any finite
variable t > 0.

Symmetry 2019, 11, 573; doi:10.3390/sym11040573 www.mdpi.com/journal/symmetry209
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2. Basic Equations

In our paper, we will consider some elastic bodies. We suppose that such anisotropic body is
situated in regular domain B, include in R3, that is, the three-dimensional Euclidian space. The border
of this domain is a smooth surface, denoted by ∂B. The closure of B is usual denoted by B̄.

A fix system of Cartesian axes Oxi, (i = 1, 2, 3) is used and the Cartesian notation is used for
vectors and tensors. For the time derivative of a function, it is used a superposed dot. For the partial
derivatives of a function with respect its spatial variables, we will use a comma which is followed by a
subscript. partial derivatives with respect to the spatial coordinates. In the case of the repeated indices,
the Einstein summation rule is used.

In addition, if there is no possibility of confusion, then dependence of function with regards to
its spatial or time variables will be omitted. The evolution of body with dipolar structure will be
described with the help of the following specific variables:

ui(x, t), ϕij(x, t), (x, t) ∈ B × [0, t0). (1)

Here, we denoted by ui the components of the displacement vector field and by ϕij the components
of the dipolar displacement tensor field.

Using the above variables ui(x, t), ϕij(x, t), we will introduce the components of the tensors of
strain, namely εij, kij and γi, as follows:

2εij = uj,i + ui,j, γij = uj,i − ϕij, χijk = ϕij,k. (2)

Being in the context of linear theory, it is natural to consider that internal energy density is a
quadratic form with the following expression:

�0e =
1
2

Aijmnεijεmn + Gijmnεijγmn + Fijmnrεijχmnr

+
1
2

Bijmnγijγmn + Dijmnrγijχmnr +
1
2

Cijkmnrχijkχmnr +

+uj,kPkiεij − ϕjkQkiγij + uj,r Nirkχijk +

+dijmεijφ,m + eijmγijφ,m + fijkmχijkφ,m + (3)

+aijεijφ + bijγijφ + cijkχijkφ +
1
2

Aijφ,iφ,j −

+diφφ,i + aiθφ,i + ξφ2 − mθφ +
1
2

aθ2 +

−αijεijθ − βijγijθ − δijkχijkθ +
1
2

kijθ,iθ,j.

We will use a procedure similar to that used by Nunziato and Cowin in [3]. Thus, taking into
account that

τij =
∂e

∂εij
, ηij =

∂e
∂γij

, μijk =
∂e

∂χijk
,

hi =
∂e

∂φ,i
, g = − ∂e

∂φ
, η =

∂e
∂θ

, qi =
∂e

∂θ,i
, (4)
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we obtain the following constitutive equations

τij = uj,kPki + Aijmnεmn + Gijmnγmn + Fmnrijχmnr +

+aijφ + Dijkφ,k − αijθ,

ηij = −ϕjkQik + ϕjk,r Nrik + Gijmnεmn + Bijmnγmn +

+Dijmnrχmnr + bijφ + eijkφ,k − βijθ,

μijk = uj,r Nrik + Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr + (5)

+cijkφ + fijkmφ,m − δijkθ,

hi = dmniεmn + emniγmn + fmnriχmnr + diφ + Aijφ,j − aiθ,

g = −aijεij − bijγij − cijkχijk − ξφ − diφ,i + mθ,

η = αijεij + βijγij + δijkχijk − mφ + aiφ,i + aθ,

qi = kijθ,j.

The main equations that govern the thermoelasticity of initially stressed materials with pores are
(see [5]):

- the motion equations:

(
τij + ηij

)
,j + � fi = �üi,

μijk,i + ηjk + uj,iQik + ϕkiQji − (6)

−ϕkr,i Nijr + �gjk = Ikr ϕ̈jr;

- the equation for the equilibrium of the forces:

hi,i + g + �l = �κφ̈, (7)

- the equation of energy:

�T0η̇ = qi,i + �r. (8)

We complete the above equations with:
- the kinetic relations

εij =
1
2
(
uj,i + ui,j

)
, γij = uj,i − ϕij,

χijk = ϕjk,i, θ = T − T0, φ = ϕ − ϕ0. (9)

The meaning of the notations that we used in Equations (3)–(8) is as follows: �—the density
of mass, which is a constant; η—the entropy per unit mass; T0—the temperature of the material in
its undeformed state; Iij—the tensor of microinertia; κ—the variable inertia the equilibrated forces;
ui—the vector of the vector of moving; ϕjk—the tensor for dipolar moving; ϕ—the function for the
volume fraction that in the undeformed state has the value ϕ0; φ—a measure for change in volume,
regarding the undeformed state; θ—the variation of the temperature, regarding the temperature T0

from the reference state; εij, γij, χijk—the strain tensors; τij, ηij, μijk—the the stress tensors; hi—the
components of the vector for equilibrated stress; qi—the vector for the flux of the heat; fi—the body
forces; gjk—the dipolar charges; r—the measure of the supply heat; g—a measure for balancing of
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intrinsic force; L—a measure for balancing of extrinsic force; Aijmn, Bijmn, ..., kij—the functions what
characterize the elastic properties of the material. These satisfy the following symmetry relations:

Aijmn = Amnij = Ajimn, Bijmn = Bmnij, aij = aji,

dijk = djik, gij = gji, Cijkmnr = Cmnrijk, Fijkmn = Fijknm, (10)

Gijmn = Gijnm, Pij = Pji, kij = kji.

In the above relations (1) and (3), the quantities Pij, Qij and Nijk are prescribed functions which
satisfy the following equations:

(
Pij + Qij

)
,j = 0, Nijk,i + Qjk = 0.

Based on the inequality of the entropy production, we can deduce that

kijθ,iθ,j ≥ 0. (11)

In order to complete our mixed initial-boundary value problem, we add to the basic Equations
(2)–(7), the following prescribed initial data

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), ϕjk(x, 0) = ϕ0
jk(x), ϕ̇jk(x, 0) = ϕ1

jk(x),

θ(x, 0) = θ0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = φ1(x), x ∈ B̄. (12)

We also consider the given conditions to the limit

ui = ūi on ∂B1 × [0, t0), ti ≡
(
τij + ηij

)
nj = t̄i on ∂Bc

1 × [0, t0),

ϕjk = ϕ̄jk on ∂B2 × [0, t0), mjk ≡ μijkni = m̄jk on ∂Bc
2 × [0, t0), (13)

φ = φ̄ on ∂B3 × [0, t0), h ≡ hini = h̄ on ∂Bc
3 × [0, t0),

θ = θ̄ on ∂B4 × [0, t0), q ≡ qini = q̄ on ∂Bc
4 × [0, t0).

n = (ni) is the unit normal to the surface∂B, outward oriented. In addition, we denoted by ∂B1, ∂B2, ∂B3

and ∂B4 the subsets of ∂B, considered together with their corresponding complements ∂Bc
1, ∂Bc

2, ∂Bc
3

and ∂Bc
4. The time t0 can be infinite. The functions u0

i , u1
i , ϕ0

jk, ϕ1
jk, θ0, φ0, φ1, ūi, t̄i, ϕ̄jk, μ̄jk, φ̄, θ̄, q̄,

h̄ are prescribed and regular in all points where are defined.
By introducing the geometric Equation (7) and the constitutive Equation (6) into Equations (2), (3)

and (5), we obtain the following system of equations:

�üi =
[
uj,kPki − ϕjk,r Nrik +

(
Aijmn + Gijmn

)
εmn +

(
Gmnij + Bijmn

)
γmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
φ +

(
dijk + eijk

)
φ,k −

(
αij + βij

)
θ)
]

,j
+ � fi,

Ikr ϕ̈jr=
(

uj,r Nirk+Fijkmnεmn+Dmnijkγmn+Cijkmnrχmnr+cijkφ+ fijkmφ,m−δijkθ
)

,i
(14)

−ϕjiQki+ϕji,r Nrki+Gjkmnεmn+Bjkmnγmn+Djkmnrχmnr+bjkφ+ejkiφ,i−β jkθ+�gjk,

�κφ̈ =
(
dmniεmn + emniγmn + fmnriχmnr + diφ + Aijφ,j − aiθ

)
,i + �l −

−aijεij − bijγij − cijkχijk − ξφ − diφ,i + mθ,

aθ̇ =
1

�T0
(kijθ,j),i +

1
T0

r − αij ε̇ij − βijγ̇ij − δijkχ̇ijk − mφ̇ − aiφ̇,i. (15)
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We can define the solution of our mixed initial boundary value problem in the context of the
theory of thermoelasticity of initially stressed bodies with voids in the cylinder Ω0 = B × [0, t0) as
being the array (ui, ϕjk, θ, φ) that verify all equations of the system (14)–(15) for any (x, t) ∈ Ω0, and
satisfy the initial data (12) and also the conditions to the limit (13).

3. Main Result

First of all, we start by introducing the definition of the concept of a domain of influence. Then, we
will prove an inequality which will underpin the influence theorem. This inequality is a counterpart of
that demonstrated in the study [5]. The main result of our work is a theorem regarding the existence of
a domain of influence in the context of thermoelasticity of porous materials.

In order to obtain our results, we need to impose the following hypotheses on the properties of
the bodies:

(i) � > 0, κ > 0, Iij > 0, T0 > 0, a > 0;
(ii)

Aijmnxijxmn + 2Gijmnxijymn + Bijmnyijymn + 2Fmnrijxijzmnr +

+2Dijmnryijzmnr + Cijkmnrzijkzmnr + Pkixjkxji − 2Qikxjiyjk +

+Nrikxjizjkr + 2aijxijω + 2bijyijω + 2cijkzijkω + 2dijkxijωk +

+2eijkyijωk + 2 fijkmzijωm + 2diωiω + ξω2 + Aijωiωj ≥
≥ α(xijxij + yijyij + zijkzijk + ωiωi + ω2), (16)

for all xij = xji, yji, zijk, ωi, ω;

(iii) kijηiηj ≥ γηiηi, for all ηi.

These hypotheses are not considered as very restrictive, as they are commonly imposed
in mechanics of continuum media. As an example, the hypothesis iii is deduced from the corollary (9)
and this can be obtained from the entropy production inequality.

By analogy with the step function of Heaviside, we will consider a smooth non-decreasing
function Ue(z) as follows:

Ue(z) =

{
0, i f z ∈ (−∞, 0],
1, i f z ∈ [α, ∞),

for a sufficiently small e > 0.

We now fix two constants R > 0 and t > 0 and use d = |x − x0|, in order to define, with the help
of the above function Ue, the following useful function

V : B × [0, t] → R, V(x, s) = Ue

(
R − d

v
+ t − s

)
. (17)

x0 is an arbitrary point fixed in B. Here, v > 0 is a constant which have the amplitude of speed, which
will be determined later.

Using a sphere S(x0,R) of the form

S(x0,R) = {x ∈ R3 : |x − x0| < R}, (18)

we define the set A by
A =

⋃
α∈[0,t]

S [x0, R + v(t − α)] .
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It is easy to see that V(x, s) is a regular function in all points of B × [0, t], which decay to zero outside
set A.

We now prove an inequality which is useful in what follows.

Proposition 1. If the ordered array (ui, ϕij, φ, θ) satisfies the system of Equations (14) and (15) and verifies
Equations (12) and (13), then the following inequality takes place:

[
�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2 + Aijmnεijεmn+

+2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr +

+2Dijmnrγijχmnr + Cijkmnrχijkχmnr + 2aijεijφ +

+2bijγijφ + 2cijkχijkφ + 2dijkεijφ,k + 2eijkγijφ,k + (19)

+2 fijkmχijkφ,k + 2diφφ,i + 2Aijφ,iφ,j + ξφ2
]
≥

≥
[
�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2+

+εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i

]

for all (x, s) ∈ B × [0, t].

Proof. This result can be immediately deduced by taking into account the above assumptions i and
ii.

Let us define a function P(x, s) by

P =
1
2

[
�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2 + Aijmnεijεmn+

+2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr +

+2Dijmnrγijχmnr + Cijkmnrχijkχmnr + Pkiuj,kuj,i − (20)

−2Qikuj,i ϕjk + 2Nrikuj,i ϕjk,r + 2aijεijφ + 2bijγijφ +

+2cijkχijkφ + 2dijkεijφ,k + 2eijkγijφ,k +

+2 fijkmχijkφ,k + 2diφφ,i + Aijφ,iφ,j + ξφ2
]

.

From definition (20), we can deduce that P, as a function of (t, s) is, in fact, the potential density energy.

In the following, we also use the function K(x, s) defined by

K =
1
2

[
�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2+

+εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i

]
. (21)

Clearly, this function is kinetic energy.
If we take into account the hypotheses i and ii, from Equations (20) and (21), we are led to the conclusion

P(x, τ) ≥ K(x, τ), ∀(x, τ) ∈ B × [0, t]. (22)

In the following theorem, we will prove an inequality, which is helpful to obtain our main result.
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Theorem 1. If (ui, ϕij, θ, φ) is a solution of the system of Equations (14) and (15) that verifies (12) and (13),
then the next inequality is satisfied for any (x, τ) in the cylinder B × [0, t]:

∫
D[x0,R]

P(x, t)dv +
1
T0

∫ t

0

∫
D[x0,R+c(t−s)]

kijθ,iθ,jdv ≤
∫

D[x0,R+ct]
P(x, 0)dv +

+
∫ t

0

∫
D[x0,R+c(t−s)]

�

[
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

]
dvds + (23)

+
∫ t

0

∫
∂D[x0,R+c(t−s)]

[
t̄i u̇i + μ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

]
dSds,

for any R > 0, t > 0 and x0 ∈ B.
Here, D(x0, R) = {α ∈ B : |α − x0| < R}, ∂D(x0, R) = {α ∈ ∂B : |α − x0| < R}.

Proof. If we multiply the both members of Equation (14)1 by Vu̇i, we obtain

1
2

V
d
dt
(�u̇iu̇i) = �V fiu̇i +

[
V
(
τij + ηij

)
u̇i
]

,j − V,j
(
τij + ηij

)
u̇i −

−V
(

Aijmnεmn + Gijmnγmn + Fijmnrχmn + aijφ + dijkφ,k − αijθ
)

u̇i,j. (24)

Analogously, we multiply both sides of Equation(14)2 by V ϕ̇jk, so that we get the equality

1
2

V
d
dt
(Ikr ϕ̇jr ϕ̇jk) = �Vmjk ϕ̇jk + (Vμijk ϕ̇jk),i − V,iμijk ϕ̇jk −

−V
(

Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr + cijkφ + fijkmφ,m − δijk

)
ϕ̇jk,i. (25)

Furthermore, multiplying both sides of (14)3 by Vφ̇, we obtain the identity

1
2

V
d
dt
(�κφ̇2) = �Vlφ̇ + (Vhiφ̇),i − V,ihiφ̇ −

−V(Aijφ,jφ̇,i + dmniεmnφ̇,i + emniγmnφ̇,i + fmnriχmnrφ̇,i + diφφ̇,i − aiθφ̇,i)− (26)

−V(aijεijφ̇ + bijγijφ̇ + cijkχijkφ̇ + ξφφ̇ + diφ,iφ̇ − mθφ̇).

At last, by multiplying both sides of (14)4 by Vθ, we will obtain

1
2

G
d
dt
(aθ2) =

1
T0

Grθ +
1

�T0

[
(Gθqi),i − G,iθqi

]
−

− 1
�T0

Gkijθ,iθ,j − G
(

αijθε̇ij + βijθγ̇ij + δijkθχ̇ij + mθφ̇ + aiθφ̇,i

)
. (27)
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Now, by summing up, term by term, Equations (24)–(27), it is easy to deduce the identity

1
2

V
d
dt
(�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2) =

= �V fiu̇i + �Vgjk ϕ̇jk + �Vlφ̇ +
1
T0

Vrθ +

+V
[(

τij + ηij
)

u̇j + μijk ϕ̇jk + hiφ̇ +
1

�T0
θqi

]
,i
−

−V
[
Aijmnεmn ε̇ij + Gijmn

(
εmnγ̇ij + ε̇mnγij

)
+

+Bijmnγmnγ̇ij + Fmnrij
(
εijχ̇mnr + ε̇ijχmnr

)
+

+Dijmnr
(
γijχ̇mnr + γ̇ijχmnr

)
+ Cijkmnrχijkχ̇mnr + (28)

+aij
(
ε̇ijφ+εijφ̇

)
+bij

(
γ̇ijφ+γijφ̇

)
+cijk

(
χ̇ijkφ+χijkφ̇

)
+

+dijk
(
εijφ̇,k + ε̇ijφ,k

)
+ eijk

(
γijφ̇,k + γ̇ijφ,k

)
+

+ fijkm

(
χijkφ̇,m + χ̇ijkφ,m

)
+ di (φφ̇,i + φ̇φ,i) +

+Aijφ,iφ̇,j + ξφφ̇
]
− V,j

(
τij + ηij

)
u̇i − V,iμijk ϕ̇jk −

−V,ihiφ̇ − 1
�T0

V,iqiθ −
1

�T0
Vkijθ,iθ,j.

It is not difficult to notice that relation (28) can be rewritten in the following equivalent form:

1
2

G
d
dt

(
�u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + �κφ̇2 + aθ2+

+Aijmnεmnεij + 2Gijmnγmnεij + Bijmnγmnγij +

+2Fmnrijεijχmnr + 2Dijmnrγijχmnr + Cijkmnrχijkχmnr +

+2aijεijφ + 2bijγijφ + 2cijχijφ + 2dijkεijφ,k +

+2eijkγijφ,k + 2 fijkmχijkφ,m + 2diφφ,i + Aijφ,iφ,j + (29)

+2aiθφ,i − 2mθφ + aθ2 + ξφ2
)
=

= �V
(

fiu̇i + gjk ϕ̇jk + �lφ̇ +
1
T0

rθ

)
+

+V
[(

τij + ηij
)

u̇i + μijk ϕ̇jk + hjφ̇ +
1

�T0
θqj

]
,j
−

−V,j
(
τij + ηij

)
u̇i − V,iμijk ϕ̇jk − V,ihiφ̇ − V,i

1
�T0

θqi −
1

�T0
kijθ,iθ,j.

Taking into account the expression of the potential energy P from (30), identity (29) can be restated
in the form

1
2

VṖ +
1

�T0
kijθ,iθ,j =

= V
(

� fiu̇i + �gjk ϕ̇jk + �lφ̇ +
1
T0

�rθ

)
+ (30)

+V
[(

τij + ηij
)

u̇j + μijk ϕ̇jk + hiφ̇ +
1

�T0
θqi

]
,i
−

−V,i

[(
τij + ηij

)
u̇j + μijk ϕ̇jk + hiφ̇ +

1
�T0

θqi

]
.
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By integrating, over B × [0, t], both sides of identity (30) so that, by using the divergence theorem
and the conditions to the limit (13), we are led to the following equality:

∫
B

VP(x, t)dv +
1

�T0

∫ t

0

∫
B

Vkijθ,iθ,jdvds =
∫

B
VP(x, 0)dv +

+
∫ t

0

∫
∂B

V
(

t̄i u̇i + μ̄jk ϕ̇jk + h̄φ̇ +
1

�T0
q̄θ

)
dvds + (31)

+
∫ t

0

∫
B

�V
(

fiu̇i + gjk ϕ̇jk + lφ̇ +
1
T0

rθ

)
dvds +

+
∫ t

0

∫
B

V̇P(x, s)dvds −
∫ t

0

∫
B

V,i

[(
τij + ηij

)
u̇j + μijk ϕ̇jk + hiφ̇ +

1
�T0

qiθ

]
dvds.

Now, we consider the definition (17) of the function V in order to the identity:

∣∣∣∣−V,j
(
τij + ηij

)
u̇i − V,iμijk ϕ̇jk − V,ihiφ̇ − 1

�T0
V,iqiθ

∣∣∣∣ =
=

∣∣∣∣1cU ′
e

xj

r

(
τij + ηij

)
u̇i +

1
c
U ′

e
xi
r

μijk ϕ̇jk +
1
c
U ′

e
xi
r

hiφ̇ +
1

c�T0
U ′

e
xi
r

qiθ

∣∣∣∣ = (32)

=

∣∣∣∣1cU ′
e

1
r

[(
Aijmnεmnxj + Gijmnγmnxj + Fijmnrχmnrxj+

+
(
aij + bij

)
φxj +

(
dijk + eijk

)
φ,kxj −

(
αij + βij

)
θxj

]
u̇i +

+
(

Fjkmnrεmnxr + Djkmnrγmnxr + Cijkmnrχmnrxi

)
ϕ̇jk +

+
(

Dmniεmnxi + Emniγmnxi + Aijφ,jxi + diφxi − aiθxi
)

φ̇ +
1

�T0
kijθ,jθxi

]∣∣∣∣ ,

where we used the notation:
U ′

e =
dUe

dr
.

For the terms on the right-hand side of identity (32), we will use the arithmetic-geometric mean
inequality in the form

ab ≤ 1
2

(
a2

m2 + b2m2
)

(33)

such that if we choose some suitable parameters m, we can find v (from the definition of Ue) to satisfy
the inequality

∣∣∣∣−V,j
(
τij + ηij

)
u̇i − V,jμijk ϕ̇jk − V,ihiφ̇ − 1

T0
V,iqiθ

∣∣∣∣ ≤ U ′
e K(x, s). (34)

In addition, we obtain the inequality

∫ t

0

∫
B

V̇P(x, s)dvds −

−
∫ t

0

∫
B

(
V,j
(
τij + ηij

)
u̇i + V,jμijk ϕ̇jk + V,ihiφ̇ +

1
T0

V,iqiθ

)
dvds ≤ (35)

≤
∫ t

0

∫
B
U ′

e (x, τ)[K(x, τ)− P(x, τ)]dvdτ ≤ 0.
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Considering inequality (35), we are led to the conclusion that identity (31) receives the following
form:

∫
B

VP(x, t)dV +
1
T0

∫ t

0

∫
B

Vkijθ,iθ,jdvds ≤
∫

B
VP(x, 0)dv +

+
∫ t

0

∫
B

�V
(

fiu̇i + gjk ϕ̇jk + lφ̇ +
1

�2T0
rθ

)
dvds + (36)

+
∫ t

0

∫
∂B

V
(

t̄i u̇i + μ̄jk ϕ̇jk + h̄φ̇ +
1

�T0
q̄θ

)
dvds.

Finally, if we will pass to the limit in relation (36), as e → 0, then we deduce that the (boundedly)
limit of the function V is the indicator function, also called the characteristic function, for the set A,
defined after (18). As an immediate consequence, we are led to the inequality (23), such that Theorem
1 is concluded.

The previous estimations obtained in Theorem 1, Proposition 1 will be used to obtain the main
theorem of our present work, which is a generalization of the domain of influence result.

Let us denote by B(t) the set that contains the points x from B̄ such that:

(1) for x ∈ B, u0
i �=0 or u1

i �=0or ϕ0
jk �=0 or ϕ1

jk �=0 or φ0 �=0 or φ1 �=0 or θ0 �=0 or
∃α ∈ [0, t] so that fi(x, α) �= 0 or mi(x, α) �= 0 or l(x, α) �= 0 or r(x, α) �= 0;

(2) for x ∈ ∂B1, ∃α ∈ [0, t] so that ūi(x, α) �= 0;
(3) for x ∈ ∂Bc

1, ∃α ∈ [0, t] so that t̄i(x, α) �= 0;
(4) for x ∈ ∂B2, ∃α ∈ [0, t] so that ϕ̄jk(x, α) �= 0;
(5) for x ∈ ∂Bc

2, ∃α ∈ [0, t] so that μ̄jk(x, α) �= 0;
(6) for x ∈ ∂B3, ∃α ∈ [0, t] so that φ̄(x, α) �= 0;
(7) for x ∈ ∂Bc

3, ∃α ∈ [0, t] so that h̄(x, α) �= 0;
(8) for x ∈ ∂B4, ∃α ∈ [0, t] so that θ̄(x, α) �= 0;
(9) for x ∈ ∂Bc

4, ∃α ∈ [0, t] so that q̄(x, α) �= 0.

At the instant t, the domain of influence of the data, Bt, is a set defined by

Bt = {x0 ∈ B̄ : B(t) ∩ S̄(x0, vt) �= Φ}, (37)

where Φ is the notation for the empty set and the sphere S(x0, vt) is defined in Equation (18).
Now, we can prove the main result of our study.

Theorem 2. If the array (ui, ϕij, θ, φ) verifies all equations of the system of Equations (14) and (15) and satisfies
the conditions (12) and (13), we obtain a characterization of the solution as follows:

ui = 0, ϕij = 0, θ = 0 and φ = 0, for (x, τ) ∈ {B̄ \ Bt} × [0, t]. (38)

Proof. We will use inequality (23) considered for an arbitrary x0, x0 ∈ B̄ \ Bt and τ ∈ [0, t], by taking
the values t = τ and R = v(t − τ). Then, we obtain

∫
D[x0,v(t−τ)]

P(x, τ)dV +
1
T0

∫ τ

0

∫
D[x0,v(t−s)]

kijθ,iθ,jdVds ≤

≤
∫

D[x0,vt)]
P(0, x)dv +

∫ τ

0

∫
D[x0,v(t−s)]

�

(
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

)
dVds + (39)

+
∫ τ

0

∫
∂D[x0,v(t−s)]

�

(
t̄i u̇i + μ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dSds.
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However, x0 ∈ B̄ \ Bt, so we can deduce that x ∈ D(x0, vt) and therefore x �∈ B(t). Thus, we are
led to the conclusion that ∫

D[x0,vt]
P(0, x)dv = 0. (40)

Taking into account that, because of D[x0, v(t − s)] ⊆ D(x0, vt), we get

∫ τ

0

∫
D[x0,v(t−s)]

�

(
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

)
dVds = 0 (41)

and
∫ τ

0

∫
D[x0,v(t−s)]

(
t̄i u̇i + μ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dVds = 0. (42)

Now, considering the hypothesis iii and taking into account the relations (40)–(42), we deduce
∫

D[x0,v(t−s)]
P(s, x)dv ≤ 0. (43)

The inequality (43) together with the inequality (22) lead to the conclusion
∫

D[x0,v(t−s)]
K(x, s)dV ≤ 0 (44)

so that, considering the definition (21) of the function K, we obtain

u̇i(x0, s) = 0, ϕ̇jk(x0, s) = 0, θ(x0, s) = 0, φ(x0, s) = 0

for all (x0, s) ∈ {B̄ \ Bt} × [0, t].
At last, because ui(x0, 0) = 0, ϕjk(x0, 0) = 0 for all x0 ∈ B̄ \ Bt, we get

ui(x0, s) = 0, ϕjk(x0, s) = 0, θ(x0, s) = 0, φ(x0, s) = 0

for all (x0, s) ∈ {B̄ \ Bt} × [0, t] so that the proof of Theorem 2 is complete.

4. Conclusions

We want to emphasize that our main result from the present study is a generalization of the result
regarding the domain of influence theorem from classical elasticity and this extension is made in a
more complex context, one of the theory of thermoelastic body with dipolar structure and with voids.
Thus, we have proven that the result regarding the domain of influence is still valid even if we are out
of the framework of classical elasticity.

Namely, we need to emphasize that the validity of the domain of influence result was not affected
by the fact that we considered the effect of thermal treatment, the effect of the dipolar structure and
the effect of voids.
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