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1. Introduction

More people appreciate the importance of global sustainability. This is evidenced by a growing
number of quantitative studies investigating the connection between climate change and human
societies. Given this background, the Atmosphere Special Issue “Climate Change, Climatic Extremes,
and Human Societies in the Past” aims to highlight the major aspects of the climate–society nexus in
ancient and recent human history. There are eight papers in this Special Issue based on quantitative
approaches which illustrate different forms of the climate–society nexus in ancient (two papers),
historical (three papers), and contemporary periods (three papers).

2. Temporal Coverage of this Special Issue

2.1. Ancient Periods

Regarding ancient periods, the interconnection among climate, agriculture, and human societies
is assessed. Li et al. [1] review archaeobotanical evidence from Neolithic sites in China and show that
rice was primarily cultivated in the Yangtze River valley and its southern edge, while millet cultivation
occurred in northern China circa 9000–7000 BP. Millet- and rice-based agriculture intensified and
expanded during 7000–5000 BP. In 5000–4000 BP, rice agriculture continued to develop in the Yangtze
River valley, and millet cultivation moved gradually westwards. Meanwhile, mixed agriculture based
on both millet and rice developed along the border between the North and South. Climate-induced
changes in vegetation and the environment played a significant role in agricultural development from
7000–6000 BP, while precipitation was crucial in shaping the distinct regional patterns of Chinese
agriculture from 6000–4000 BP.

While climate and agriculture were closely connected in ancient times, the social dynamics
in human societies were also thought important, significantly mediating the climate–agriculture
connection. Wang et al. [2] base their paper on the human bone fragments obtained from the site of
Xiaohucun, dated to the late Shang Dynasty (ca. 1250–1046 BC) in China, together with the isotopic
analysis of collagen, to illustrate the connections between social status and diet. Those elite members
probably consumed more animal protein such as horses, pigs, donkeys, and sheep/goats than the
common people in the late Shang Dynasty.

2.2. Historical Periods

Regarding historical periods, various positive checks such as wars, famines, and epidemics are
examined in this Special Issue. The common theme of the associated papers is to reveal the non-linear
and complex relationship between climate change and the positive checks in historical China and
pre-industrial Europe. Zhang et al. [3] employ Emerging Hot Spot Analysis to examine war hot spots
in China from 1–1911. They show that war hot spots were generally located in the Loess Plateau and
the North China Plain during warm and wet periods, but in the Central Plain, the Jianghuai area,
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and the lower reaches of the Yangtze River during cold and dry periods. Furthermore, the hot spots for
agri-nomadic warfare had the abovementioned trends, while rebellion hot spots expanded outward
during warm and wet phases and compressed inward during cold and dry phases.

Zhai et al. [4] investigate the social responses to the North China Famine of 1876–1879, which was
brought on by extreme drought. They show that famine-related migration tended to be spontaneous
and short-distanced, with the flow mainly spreading to the surrounding areas and towns. Furthermore,
relief-money and grain from the non-disaster areas were allocated to the disaster areas. Yet, such state
administrated intervention disrupted the equilibrium of food markets in non-disaster regions, resulting
in food price fluctuations there.

Yue and Lee [5] examine the relative impact of the direct and indirect impacts of climate change
on plague outbreaks in Europe between 1347–1760 using Structural Equation Models. They found that
all of the climatic impacts on plague outbreaks were indirect and were materialized through economic
changes. They further demonstrated that temperature-induced economic changes triggered plague
outbreaks in cold and wet periods, while precipitation-induced economic changes induced plague
outbreaks in cold periods.

2.3. Contemporary Periods

Over more recent times, the papers in this Special Issue focus on weather-related phenomena
which significantly affect human societies. The non-linear dynamics of those phenomena are also
highlighted. The associated findings can help human societies to mitigate the adverse impacts of
weather extremes better. Xiang et al. [6] base their paper on summer precipitation data and 130
circulation indexes of 34 national meteorological stations in Chongqing spanning 1961–2010, together
with the decision tree and the stochastic forest algorithm, to build a new multi-factor model for summer
precipitation in Chongqing. Moreover, the model is tested with precipitation data from 2011–2018.
Results show that the new model outperforms previous single-factor models.

Zhou et al. [7] use temperature data over 1980–2012 together with the Correlation Dimension
method to analyze the temperature dynamics in the Yangtze River Delta in China. They find that the
temperature rose by 1.53 ◦C over this period and the temperature rose the fastest in densely populated
urban areas. However, the temperature dynamics were more complicated in the sparsely populated
areas when compared to densely populated urban areas. Moreover, the complexity of temperature
dynamics increased along with the increase in temporal scale. Lastly, the interaction between economic
activity and urban density had the most substantial influence on temperature.

Yuan et al. [8] investigate the coupling between soil moisture and air temperature over China
spanning from 1980–2013 using an energy-based diagnostic process. They show that the soil
moisture–temperature coupling is the highest in the transition zones between wet and dry climates
(e.g., north-eastern China and part of the Tibetan Plateau). Furthermore, the coupling is stronger in
spring, and varies greatly in different seasons over different climatic zones. The heatwaves of 2009 in
North China and 2013 in Southeast China further reveal that regions having low soil moisture may
enhance heat anomalies, which further strengthens the coupling between soil moisture and temperature.

3. Conclusions

In summary, this Special Issue contributes theoretical and methodological analyses of the
climate—society nexus. However, the conceptualization of the climate–society nexus is not a binary
one. The nexus should be contextualized, while interdisciplinary collaboration should be further
sought for addressing the topic [9,10]. It is also worth noting that the climate–society nexus is also
dependent on temporal and spatial scales, and research findings will be determined by the length of
the study time span and the size of the study area [11–13]. The aim of this Special Issue is to facilitate a
more fruitful discussion about the climate–society nexus.
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Abstract: The Neolithic period witnessed the start and spread of agriculture across Eurasia, as well
as the beginning of important climate changes which would take place over millennia. Nevertheless,
it remains rather unclear in what ways local societies chose to respond to these considerable changes
in both the shorter and longer term. Crops such as rice and millet were domesticated in the Yangtze
River and the Yellow River valleys in China during the early Holocene. Paleoclimate studies suggest
that the pattern of precipitation in these two areas was distinctly different. This paper reviews updated
archaeobotanical evidence from Neolithic sites in China. Comparing these results to the regional
high-resolution paleoclimate records enables us to better understand the development of rice and
millet and its relation to climate change. This comparison shows that rice was mainly cultivated in the
Yangtze River valley and its southern margin, whereas millet cultivation occurred in the northern area
of China during 9000–7000 BP. Both millet and rice-based agriculture became intensified and expanded
during 7000–5000 BP. In the following period of 5000–4000 BP, rice agriculture continued to expand
within the Yangtze River valley and millet cultivation moved gradually westwards. Meanwhile,
mixed agriculture based on both millet and rice developed along the boundary between north and
south. From 9000–7000 BP, China maintained hunting activities. Subsequently, from 7000–6000 BP,
changes in vegetation and landscape triggered by climate change played an essential role in the
development of agriculture. Precipitation became an important factor in forming the distinct regional
patterns of Chinese agriculture in 6000–4000 BP.

Keywords: Yangtze River valley; Yellow River valley; rice cultivation; millet cultivation; precipitation;
Neolithic China

1. Introduction

The climate is one of the driving forces behind the social evolution of humans, especially in
prehistory [1–4]. The studies of different strategies adopted by human societies in response to
drastic climate fluctuation in the past can provide valuable insights into the underlying patterns and
mechanisms of the human–land relationship. They can also offer important lessons on coping with the
current challenges of rapid climate change in the modern world, such as global warming. The Neolithic
period coincided with the early-mid Holocene—a recent warming period with numerous considerable
climate fluctuations. It is one of the most significant stages of sociocultural evolution in human history.
In recent years, there has been an increase of research focusing on human–environment interaction in
this specific period [4–8].

Atmosphere 2020, 11, 677; doi:10.3390/atmos11070677 www.mdpi.com/journal/atmosphere5
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One of the era-defining events in the Neolithic was the development of agriculture across the old
world, followed by a substantial increase in the size of population and settlements [9–12]. Climate
change has been considered to be a critical factor in the emergence and intensification of agriculture
during the Neolithic period [13,14]. While the changes in temperature follow the same approximate
trends in different regions of the Northern Hemisphere [15], precipitation shows distinct patterns
affected by local climate (e.g., the arid central Asia and the Asian Monsoon Region) [16,17].

East Asia was one of the points of origin of agricultural development. Rice and broomcorn/foxtail
millet were domesticated around 10,000 BP in the Yangtze River valley (southern China) and the Yellow
River valley (northern China), respectively [18–20]. Both crops later became widely cultivated and
formed the well-known agricultural structure in Neolithic China of northern millet vs southern rice [21].
Paleoclimate studies also suggest a similar geographical distinction between the Yangtze and the
Yellow River valley in terms of moisture variation, called the anti-phase pattern [22]. The relationship
between agricultural development in China and the regional variation of precipitation has not yet
been discussed in detail. In this paper, we have collected and analyzed a large amount of legacy
data, containing both archaeobotanical remains and radiocarbon dates from 125 Neolithic sites in
China. Correlating the archaeobotanical evidence with the variation of precipitation reconstructed
from well-dated paleoclimate records fills a significant gap in the current literature and allows us
re-explore the different phases of Neolithic China in more detail.

2. Spatial–Temporal Change of Human Cropping Structures in Neolithic China

It has been widely agreed that the Neolithic cultural evolution in northern China can be divided
into three phases: the pre-Yangshao period (9000–7000 BP), the Yangshao period (7000–5000 BP) and the
Longshan period (5000–4000 BP). This chronological framework is based on multiple lines of evidence
ranging from material culture (e.g., pottery typology), settlement, dietary practice, technological
change, stratigraphy and radiocarbon dating [23–25]. It offers a crucial point of departure for us to
reconstruct spatial patterns of the development of agriculture in China based on the archaeobotanical
evidence, which in return contributes to the overall picture. We collected archaeobotanical data from
125 Neolithic sites across China: the data recorded include the presence and absence of targeted
crops (millet, rice, barley, wheat), their absolute quantities and ratios between different types of crops.
Soybean crops have been excluded from this work, although carbonized grains have occasionally been
identified at some Neolithic sites in China, owing to the difficulty in separating domesticated from
wild varieties.

As is the case with legacy collections, the quality of data varies considerably. The first level of
complexity is caused by the scale of the archaeological excavation, as a fully excavated site might
present a more complete picture of crops in use at a given time in comparison to samples collected
from a surface survey. The data may have also derived from different theoretical and methodological
approaches prioritizing certain practices or scrutiny above others, and finally the identification of crop
remains is often subject to the individual analyst’s experience (e.g., wild crops vs domesticated crops).
Despite these potential complexities, the broad changes indicated by our big-data approach are arguably
valid and important, as the broad patterns are not based on any specific site or site type and there are
always multiple sites within one region for cross-checking. Furthermore, additional data, such as stable
isotopes, are also included in the discussion and help to counter-check the archaeological narratives.

3. Spatial Pattern of Cropping Structures in China during 9000–7000 BP

Archaeobotanical studies suggest that the initial domestication of rice took place in the middle
reaches of the Yangtze River prior to 10,000 BP, whereas broomcorn and foxtail millet were first
domesticated in the Central Plains of northern China around 10,000 BP [18–20,26]. However, due to the
limited number of identifiable crop fossils in these early Neolithic sites and the lack of direct radiocarbon
dating, the exact chronology of the earliest millet/rice remains highly controversial. As macrofossils of
domesticated millet and rice become more ubiquitous in sites dated between 9000 and 7000 BP and
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have direct radiocarbon dates associated with them, it is possible to say that the cultivation of rice
and millet dated at least as far back as 9000 BP [19,27–30]. Macro and micro fossils of rice dated to
9000–7000 BP were unearthed from sites in the middle and lower reaches of the Yangtze River, such as
Shangshan, Xiaohuangshan and Pengtoushan [20]. These sites are mainly in the piedmont zones,
possibly owing to locational convenience for hunting and gathering activities, which were the primary
survival strategies during this period. Interestingly, rice appears also to be the most ubiquitous crop in
a few sites in the southern margin of the middle Yellow River valley (Figure 1), as exemplified by the
famous Jiahu site, one of the largest settlements of the pre-Yangshao culture in the present-day Henan
Province [31,32].

Figure 1. The spatial pattern of crop macro-fossils from sites dated between 9000–7000 BP in China.
Squares represent sites without detailed archaeobotanical data; circles represent sites with detailed
archaeobotanical data.

Charred grains of broomcorn and foxtail millet have been identified from numerous pre-Yangshao
cultures (9000–7000 BP) in northern China, including the Peiligang, Xinglongwa, Houli, Cishan and
Laoguantai-Dadiwan [19,27,28,33]. In some sites of the Peiligang and Houli cultures, both millet and
rice were cultivated together (Figure 1). Most pre-Yangshao sites in northern China were located
in the foothill areas, probably to facilitate hunting and gathering [34]. Stable carbon isotopes of
human bones show a clear C3 signal [35,36], indicating that hunting and gathering—rather than millet
cultivation—was the major food strategy in this period [37]. Based on the large number of charred
grains of foxtail and broomcorn millet as well as the clear C4 signal from the isotope analysis of human
bones in the sites of Xinglonggou and Xinglongwa in east Inner Mongolia [38], it is possible that millet
cultivation might have become the principal food strategy in northern China during 8000–7000 BP [39].

4. Spatial Pattern of Human Cropping Structures in China during 7000–5000 BP

Evidence from the Yangshao Period sites in China (7000–5000 BP) suggests that, by this time,
crop cultivation had replaced hunting/gathering and was the primary subsistence strategy in both the
Yangtze and Yellow River valleys; for example, huge amounts of rice remains have been found in the
storage pits of the Hemudu site [40]. Moreover, the ratio of domesticated rice to wild rice increased
rapidly between ~6700–6300 BP in the lower Yangtze River valley [41]. In the Yellow River valley,
carbon isotopes of human bones unearthed from almost all Yangshao sites display a clear C4 signal.
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This strongly indicates that millet became a routine part of diet in northern China between 7000 and
5000 BP [39].

The geographical distribution of both millet and rice from 7000 to 5000 BP is undoubtedly larger
than it was from 9000 to 7000 BP (Figures 1 and 2). During the Yangshao period (7000–5000 BP),
the regular practice of rice cultivation extended further northwestward to the west Loess Plateau;
one example of this is the presence of domesticated rice at Xishanping, a site in the western Loess
Plateau [42]. The distribution of millet expanded in several directions: eastward to the Shandong
Peninsula and even Korea [43], westward to the northeast Tibetan Plateau [44], southwestward to the
Chengdu Plain [45] and southward to the middle Yangtze River valley (Figure 2; [46]).

Figure 2. The spatial pattern of crop macro-fossils from sites dated between 7000–5000 BP in China.
Squares represent sites without detailed archaeobotanical data; circles represent sites with detailed
archaeobotanical data.

5. Spatial Pattern of Human Cropping Structures in China during 5000–4000 BP

After the Yangshao period, there was a broad westward movement of millet farming in the
Longshan period (5000–4000 BP, Figures 2 and 3). In the east costal area of Shandong, local people
replaced millet with rice during 5000–4000 BP. In contrast, farmers of the Machang culture in western
China (4300–4000 BP) continued to rely heavily on millet cultivation. Together with the movement
of farmers, millet moved gradually westward and was cultivated in the Hexi Corridor [47] and east
Xinjiang [48]. Foxtail millet has also been identified at Karuo, a site on the southeastern Tibetan Plateau,
which has been dated to ~4700–4300 BP [49]. One should bear in mind that these crops were also likely
to be exchanged from adjacent farming societies rather than being locally cultivated [50].

The Yangtze River valley saw an expansion of rice cultivation during the Longshan period
(5000–4000 BP) when rice was undoubtedly the dominant crop in the region. During the same period,
it replaced millet and became the major subsistence crop in the northwest Chengdu basin as well
(Figure 3; [45]). Meanwhile, rice cultivation spread westward to the Yunnan-Guizhou Plateau [51],
as exemplified by the large number of rice and millet macrofossils from the first phase of the Baiyangcun
site in northwest Yunnan [52]. It was further introduced into the Pearl River Delta of southern China
during 5000–4000 BP. Charred rice grains have been discovered in both Laoyuan and Chaling sites [53].

8
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Figure 3. The spatial pattern of crop macro-fossils from sites dated between 5000-4000 BP in China.
Squares represent sites without detailed archaeobotanical data; circles represent sites with detailed
archaeobotanical data.

6. Spatial–Temporal Variation of Agriculture Patterns in Response to Climate Change in
Neolithic China

The archaeobotanical evidence reveals a series of broad changes in the spatial patterns of
agricultural development in Neolithic China. The overall area of rice cultivation appears to be larger
than that of millet during 9000–7000 BP, and the boundary between these two traditional agricultural
systems lay roughly east–west at ~34 ◦N (Figure 1). This boundary moved slightly southward to
~33 ◦N during 7000–5000 BP, as illustrated by the distribution of sites that yielded charred millet grains
(Figure 2). During 5000–4000 BP, the boundary between rice and millet shifted to an approximate
northeast–southwest direction. In east China, the northern limit for rice-based agriculture in the
Shandong Peninsula moved to ~36 ◦N. In the Chengdu Plain of southwest China, the local cropping
structure changed from a combination of broomcorn and foxtail millet to a combination of rice and
foxtail millet at around 4700 BP [45]. Millet agriculture appears most dominant in the upper and
middle valley of the Yellow River, the Hexi Corridor and the Yanshan-Liaoning area of northeast China
(Figure 3).

Given the fact that the environmental conditions for the growth of the crops vary between
species, broad changes in agriculture activities can be correlated with paleoclimate records. In order to
better understand how the spatial–temporal variation of rice and millet developed, we compared the
broad changes in agriculture activities with a number of key paleoclimate records in northern and
central China. The record, with a ~20 year resolution precipitation reconstruction from Gonghai Lake
(Figure 4f, [54]) in northern China, is indicative of gradually increasing precipitation from 14,600 to
7800 BP. Precipitation reached a maximum between 7800 and 5300 BP and decreased after 5300 BP.
The generally high rainfall/moisture stage from ~8000 to ~5000 BP has also been recorded in other
lake sediments and loess sections such as the Daihai Lake [55] and the Dadiwan section [56]. It is
also possible to cross-check the change in precipitation with different kinds of paleoclimate records.
For example, a large synthesis of precipitation based on 310 dates from 77 sites on the Loess Plateau
shows that the paleosol probability density was relatively high from 8000 to 5000 BP, reflecting the
relatively high moisture conditions during this period [57].
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Precipitation and moisture records from the middle and lower reaches of the Yangtze river during
the Holocene are relatively rare and more difficult to interpret. The pollen-based precipitation record
from the Chaohu Lake [58], the Gucheng Lake [59] and the Pingwang Lake [60] in the lower Yangtze
region suggest that precipitation reached its maximum between 10,000 and 7000 BP, after which it
followed a broad decline with strong oscillations up to the present day (Figure 4d, [61]). Moreover,
the stalagmite ARM/SIRM record from the Heshang Cave (Figure 4e, [62]) and the mass accumulation
rates of hopanoids from the Dajiuhu Peat bog [62], often used to reflect the Holocene paleo-humidity
variations of the middle reaches of the Yangtze River, also demonstrate that the climate became more
humid between 11,000–7000 BP and 3000–1000 BP but was more arid and highly variable between 7000
and 3000 BP. Although a number of small inconsistencies concerning precipitation or moisture can be
found in these records, the consensus is that there was relatively high precipitation and moisture from
10,000 to 7000 BP which decreased between 7000 and 5000 BP. Precipitation and moisture appear to
have subsequently increased from 5000–4000 BP in comparison.

Figure 4. Comparison of (a,b) temperature anomaly in the Northern Hemisphere (30–90 ◦N) [15]
and High Arctic [63]; (c) reconstructed sea-level change [64]; (d) pollen-based annual precipitation
(PANN) in the Yangtze River valley [61]; (e) stalagmite ARM/SIRM record from the Heshang Cave [62];
(f) reconstructed PANN from Gonghai lake [54]; (g) latitudinal distribution of Neolithic sites with
unearthed rice or millet sites between 9000–4000 BP.
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We have considered the temperature anomaly in the Northern Hemisphere (30–90 ◦N) [15]
and High Arctic [63] and pollen-based pollen-based annual precipitations (PANNs) for the Yangtze
River region [61] and the Gonghai Lake [54], together with the stalagmite ARM/SIRM record from
the Heshang Cave [62], as paleoclimate data, and have reconstructed the sea-level change [64] for
comparison with the archaeobotanical results (Figure 4). Although the local paleoclimates of the region
are complicated, the trend of the multiple paleoclimate records is largely valid on the regional scale.
It was relatively wet in the Yangtze River valley and dry in the Yellow River valley during 9000–7000 BP
and 5000–4000 BP, but these conditions changed to become completely opposite during 7000–5000 BP
(Figure 4).

We suggest that the change to a relatively high temperature and precipitation during 9000–7000 BP
(Figure 4a,b) provided ideal conditions for rice cultivation along the Yangtze River. Its growth requires
both an appropriate temperature and adequate moisture. In comparison, millet (broomcorn and
foxtail) are drought-tolerant and frost-sensitive and thus better adapted to the climate in northern
China. However, the sea level transgression between 9000–7000 BP in the coastal plain of eastern China
exerted considerable impact on the broad-spectrum economy based on fishing, hunting/gathering
and agriculture along the lower reaches of the Yangtze River [65,66]. In the pre-Yangshao period,
the expansion of millet seems to have been delayed in the Yellow River valley. The reason for this is
still unclear but may be related to the low survival pressure mitigated by hunting/gathering. In this
period, primitive agriculture was still in its infant stage, and hunting/gathering was the primary source
of food supply in Yangtze River and Yellow River valleys [37,39].

During 7000–5000 BP, both precipitation and temperature began to decrease and the climate
of the Yangtze River valley became dry and cool [15,61]. The sea level also began to lower at the
same time (Figure 4c, [64,67]). The dry conditions and regression of the sea level after 7000 BP were
disadvantageous for both fishing and hunting/gathering but provided an open landscape favorable
to the rapid development of agriculture. During this time, the genetic characteristics of the rice
remains from sites of the Hemudu culture (7000–5300 BP) tend to be stable and agricultural tools
and pottery technology had also been significantly improved [68,69], both of which could also have
facilitated rice cultivation and the expansion of this practice. On the other hand, powerful local
societies such as Chengtoushan (c.6000 BP) and Liangzhu (5200–4300 BP) started to emerge in the
middle and lower reaches of Yangtze River valley [70,71], indicating that the growth and aggregation
of regional populations may have become increasingly dependent on agriculture [21]. Despite the
drier and cooler climates, the changes in the sea level and human societies as a whole possibly
triggered the major transition of food strategies to rice cultivation in the Yangtze River valley during
7000–5000 BP [21,66,72].

In the Yellow River valley, however, precipitation was evidently higher during 7000–5000 BP
than 9000–7000 BP (Figure 4f, [54]). Thanks to the abundant water supply, millet agriculture became
more intensified between 7000–6000 BP in the middle Yellow River valley [21,39]. This was also
possibly related to the increasing size of the local population in northern China, which in return
required more food supply and intensification in agriculture, particularly during the Yangshao
period [73–75]. These human activities resulted in a sharp decline in forestation, making the area
increasingly disadvantageous for hunting/gathering but favorable for the rise of millet cultivation [76].
The favorable climate might also facilitate rice cultivation in the Yellow River valley. Genetic evidence
also shows a continuous movement of people from southern China to the Yellow River valey since the
Yangshao period [42,77]. Meanwhile, the adoption of millet cultivation and its southward expansion,
boosted by this climate change, is exemplified in the Chengdu Plain in upper Yangtze River valley
between 6000–4700 BP, where millet became the major food supply [45].

During 5000–4000 BP, precipitation declined in the Yellow River valley but increased in the Yangtze
River valley [54,61,62], while temperature followed a constant decline compared to 7000–5000 BP [15].
Climate deterioration in northern China appears to be one of the key reasons for the collapse of the
Yangshao culture, which mainly relied on the supply of millet [54]. The relatively wet climate in the

11



Atmosphere 2020, 11, 677

Yangtze River valley during 5000–4000 BP [61] provided favorable conditions for rice cultivation,
which might have promoted the transition of cropping patterns in the Chengdu Plain from millet
agriculture to mixed rice–millet agriculture [45]. Meanwhile, mixed agriculture also began to thrive in
the Huai River valley, located between the Yangtze River and the Yellow River [78]. The increasingly
diversified farming activities considerably improved human adaptability to the widespread climate
changes occurring between 5000 and 4000 BP [54,79].

In addition to millet and rice, during the second half of the Longshan period (ca. 4500–4000 BP),
another important crop in Chinese prehistory—wheat—was introduced into the lower Yellow River
valley [80]. As an exotic crop, it was initially not adopted as a major staple in Neolithic China.
The introduction and cultivation of cold-tolerant barley and wheat greatly altered the cropping
structures of northern China during the Bronze Age, especially in northwest China, where the altitude
is much higher than in east China [44,81]. Agricultural innovation in the Tibetan Plateau featured the
cultivation of barley and herding of sheep and yak, enabling local people to move into higher-elevation
areas and settle in them permanently after 3600 BP when the climate changed to become cold and
dry [44,82].

7. Conclusions

Archaeobotanical studies present the long and complicated trajectory of indigenous agricultural
development in China. It is certainly not as simple (i.e., northern millet and southern rice) as noted in
the historical documents but rather a dynamic process involving and responding to the key elements
of climate change. The period 9000–4000 BP was characterized by the combination of rice-based
agriculture in the Yangtze River valley and millet-based agriculture in the Yellow River valley, together
with a series of variations in regional cropping patterns during different phases of the Neolithic
Age. After 7000 BP, there was an important decline in temperature, which might have triggered the
transformation of landscape and vegetation and promoted the transition from hunting/gathering to
farming activities. The spatial–temporal variation of precipitation played an influential role in the
shifting spatial patterns of farming activities during 6000–4000 BP, shedding more light on the issue
of humans adapting to climate change in China during the Neolithic period prior to the adoption of
exotic crops such as wheat and barley from the west.
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Abstract: Here, we present evidence of possible links between diet and social status using carbon and
nitrogen stable isotope ratios at the site of Xiaohucun in the Central Plains, China. This pilot study from
a rescue excavation yielded humans (n = 12) identified to the late Shang Dynasty (ca. 1250–1046 BC),
which was a warm climatic period. The population consumed a predominately C4 diet (millets) and
no difference was observed between the δ13C results of individuals (n = 7) buried with (−9.1 ± 2.8%�)
and without (n = 5) bronze vessels (−8.2 ± 0.7%�). However, individuals buried with bronze vessels
(10.3±1.6%�) were found to have significantly higher δ15N values (one-way ANOVA; p = 0.015)
compared to individuals buried without bronze vessels (8.0 ± 0.9%�), providing evidence that possible
elite members consumed more animal protein (dog, pig, cow, sheep/goat). Isotopic results were also
examined for social status in relation to the number of burial coffins that an individual had: double
(n = 6), single (n = 3), or no coffin (n = 3). No difference was found in the δ13C values, but variations
were observed in the δ15N values: double coffin (10.2 ± 1.7%�) > single coffin (8.8 ± 1.8%�) > no coffin
(8.0 ± 1.3%�), again possibly showing increased animal protein consumption linked to social status.
Finally, isotopic results and status were studied by looking at the number of coffins and tomb size.
Again, no correlation was observed for the δ13C results, but a strong linear correlation (R2 = 0.85) was
observed for the δ15N values of the individuals buried in two coffins vs. tomb size.

Keywords: human diet; hierarchy; bronze age; carbon and nitrogen stable isotope ratios

1. Introduction

Ancient China was a complex and highly socially stratified society [1–4]. Vast disparities existed
between the nobility and the common people in areas such as rights, ownerships, diet, customs,
behavior etc. These differences were chronicled in various historical works such as: Li Ji “礼记” which
described how criminal law did not apply to senior officials and that etiquette did not apply to common
people [5]. This social hierarchy of the living was also extended to the treatment of the dead, and the
phrase: “Honor the dead as the living”, recorded by Xun Zi “荀子”, was and still is an important
concept that is intertwined through the fabric of Chinese society [6,7]. Social status could also be
maintained in the afterlife by the size and the scale of the tomb, and the quantity and quality of the
grave goods interred with an individual [8–12].

Stable isotope ratio analysis has been successfully applied to examine dietary patterns in past
populations from many societies across the globe [13–24]. Isotopic results of bone collagen primarily reflect
the protein component of the diet averaged over the entire lifetime of an individual, including a large
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portion of collagen synthesized during later childhood and adolescence [25,26]. Briefly, stable isotope ratios
are defined as the ratio of the heavier to the lighter isotope (e.g., 13C/12C or 15N/14N) and are compared in
terms of δvalues in parts per 1000 or “per mil” (%�) in relation to internationally defined standards for
carbon (Vienna Pee Dee Belemnite, VPDB) and nitrogen (ambient inhalable reservoir, AIR) [27]. In Chinese
archaeological research, δ13C measurements of human and animal collagen allow for an examination
of the contribution of C3 (rice, wheat, barley etc.) and C4 foods (millets) to the diet. These studies have
been vital for the reconstruction of a coarse time scale for the spread of different forms of agriculture in
China [28–35] and for understanding animal husbandry practices [36–39]. The δ15N results can be used as
an estimation of the trophic level of a human or animal in a foodweb and are based on the observation of an
increase of about 3%�–5%� from the food to the consumer tissue [14,40,41]. Thus, levels of animal protein
consumption can be examined with nitrogen isotope ratios. Modern human studies have found higher
δ15N values in omnivores compared to vegeterians and vegans [42,43]. However, an in-depth discussion
on the intricacies of stable isotope ratios to reconstruct past diets is beyond the focus of this paper and the
reader should consult the reviews of Katzenberg [44], Ambrose and Krigbaum [45], and Lee-Throp [46].

Increasingly, this technique is used to directly document dietary differences between social classes,
e.g., elites vs. common people [47–52], and the reader is directed to consult Twiss [53] for a review of
food and social diversity in archaeological and isotopic research. However, relatively little research has
focused on the use of stable isotope ratios to directly determine dietary differences related to social
status in China [54–58]. It is widely accepted that the Shang Dynasty (1600–1046 BC) is an early Chinese
era based on abundant written records and the rich archaeological evidence [59–64]. Thus, this period is
an extremely important phase in the development of the earliest Chinese civilization, and the formation
of the ritual systems of power, class, and hierarchy [3]. Here, we present results of a small pilot study
that examines dietary patterns related to social status for burials that date to the late Shang Dynasty
(ca. 1250–1046 BC). Humans (n = 12) from the site of Xiaohucun and animals (n = 11) from the nearby
contemporaneous site of Guandimiao in Henan Province were available for study due to a rescue
excavation. The results of this research will be the focus of this work [65].

2. Background of Ritual Systems in Ancient China

China has a long and vibrant tradition of organized rituals and hierarchy, and this is especially
evident for dining practices as well as the type of food consumed [66–70]. A separate system of dining
was very popular for the elite members of society. At dinner, individuals kneeled next to an Aiji
“案基” (a kind of little table) and a selection of tableware was placed next to each person for holding
cereals, meat, water, beverages, and liquor. The type, quality, and number of the dishes served were
determined by the status and the age of the diners. Elders and people of high social status had the right
to use more bronze vessels [69,71]. According to written accounts and archaeological data, the most
important tableware in China were Ding “鼎” (an ancient vessel for cooking or holding meat) and Gui
“簋” (an ancient vessel for holding grains), and a combination of both is the Chinese characters for
banquet “飨宴”, which was a symbol associated with nobility [72] (Figure 1). The number of Ding and
Gui that a person could use in life was consistent with their social status, and this was also reflected in
the combination of these items that were buried with the dead (Table 1). In addition, the consumption
of meat was a privilege of the nobility and elders of a family before the Qin Dynasty (Table 1). The work
Li Ji “礼记” recorded that “If there is not an important reason, the princes shouldn’t kill cattle to eat,
senior officials shouldn’t kill sheep to eat, junior officers shouldn’t kill dogs and pigs to eat, and the
common people should not eat meat [5]. Thus, meat was a luxury dietary item that was generally
reserved for elites and only for special occasions such as festivals or banquets. In addition, analysis of
ceramics from the early Shang Dynasty site of Yanshi determined different structures and behaviors
of dining between the palace elites and the individuals that made pottery [73]. Reinhart determined
that the Yanshi elites engaged in large-scale exclusionary feasting in contrast to the simpler and home
cooked meals of the potters.
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Figure 1. Bronze ritual vessels discovered in tomb M22 of Xiaohucun site (a = Ding, b = Gui, c = All
bronze grave goods).

There were also strict rules for the maintenance of social status for the deceased in ancient China.
Tomb size and burial depth (representing wealth and labor consumption) and the quantity and quality
of the coffins used were some of the most important criteria reflecting social status (Table 1) [74,75].
The writings of Xun Zi “荀子” described that the number of coffins used for the Emperor was seven, for a
prince was five, for senior nobility was three, and for junior nobility was two [6]. Furthermore, there were
strict codes for the materials, size, thickness, as well as the internal and external decoration patterns
of coffins, and this was related to hierarchy in Chinese society (Table 1). In addition, the type and
quality of grave goods was an important manifestation of the status of the deceased. At least from the
Zhou Dynasties, the combination of the number of bronze ritual vessels (Ding and Gui) played a very
important role in the status of a tomb owner (Table 1) [3,72]. However, it is important to note that there is
a chronological lag between these historical sources and the Shang period and that these works might be
biased by the views of the writers. Thus, caution and some skepticism are advised in the use of these
textual sources, and they should not be viewed as undisputed fact.

Table 1. Summary of selected differences based on social class in ancient China. This information is
referenced from LiJi “礼记” [5] except for “coffin number” which was referenced from Xun Zi “荀子” [6].
Note: Readers are advised that care must be taken with the accuracy of this information as it is compiled
from historical sources which could be subject to the biases of the writers.

Status

Diet Sacrifice Travel Burial

Tableware and
Courses per Meal

Meat in Diet
Bronze Vessels (Ding)

in Ritual Activities
Carriage
Number

Horse per
Carriage

Coffin
Number

Coffin
Material

Ding + Gui
Combination

Emperor 26 Yes 7 NA 6 7 N/A 9 & 8

Prince 12–16 Yes 5 7 4 5 Pine 7 & 6

Senior Nobility 8 Yes 4 5 3 3 Cypress 5 & 4

Junior Nobility 6 Yes 1 3 2 2 Miscellaneous 3 & 2

Common People 3–6 Only older people N/A N/A 1 N/A N/A N/A

3. Site of Xiaohucun, Henan Province, China

The Xiaohucun site, dating to the late Shang (ca. 1250–1046 BC) and Western Zhou Dynasty
(ca. 1046–771 BC), was the focus of a partial rescue excavation in 2006 by the Henan Provincial Institute
of Cultural Relics and Archaeology. The site is situated to the northeast of Xiaohu Village in Xingyang
City, which is about 20 km from Zhengzhou, the capital of Henan Province, China (Figure 2) [76].
This unique location is situated in the core of the Central Plains, which was the origin of many early
civilizations of China, and also the political and economic center of the early Shang Dynasty. Based on
archaeobotanical and isotopic research, the inhabitants of the Central Plains mainly relied on millet
cultivation (rice and wheat were also present to some extent) and animal husbandry (pig, cattle, etc.)
for subsistence [1,3,34,66,77–80].
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Figure 2. Map of China showing the location of the (a) Xiaohucun site and (b) Guandimiao site.
Note: Zhengzhou is the capital of Henan Province.

A total of 58 tombs from the late Shang Dynasty (ca. 1250–1046 BC) were excavated from an
area of 400 × 200 meters. All tombs are pits and rectangular in shape, and most had a platform
consisting of: inner coffin, outer coffin, waste pit, sacrificial dogs, and various types of grave goods.
Unfortunately, many tombs have been looted and destroyed and only 21 of them could be studied in any
detail. According to the preliminary report from this site, all the 21 tombs can be divided into three styles,
equivalent to the phases of the Yin Ruins II, III, and IV [81]. No radiocarbon dates are available from
the site, but examination of the tomb style, grave goods, and the writing on the bronze vessels suggest
that the cemetery was a family plot that belonged to the She “舌” family from the late Shang Dynasty.
Many of the individuals were from the junior nobility class, but a number of common people were also
interred here.

4. Materials and Methods

For the 21 tombs at Xiaohucun, bone samples consisting of long bone fragments were obtained from
12 late Shang Dynasty individuals for stable isotope ratio analysis. Osteological analysis, including sex
determination and age estimation, was carried out according to standard methods [82]. Unfortunately, due to
poor preservation and looting many of the skeletons were destroyed or incomplete and only 5 out of
12 individuals could be positively identified to gender and 9 out of 12 aged (Table 2). In addition, since
Xiaohucun was a cemetery site, faunal samples were not available for study. However, we were able
to obtain animal bones (n = 11) from the nearby (15 km) and contemporaneous site of Guandimiao
(ca. 1250–771 BC) which serves as a baseline estimation for the human diets (Table 3).

Collagen was extracted at the Key Laboratory of Vertebrate Evolution and Human Origins of the
Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology in Beijing, China,
using the protocol outlined by Richards and Hedges [83]. The extracted collagen was well preserved
and the majority of samples had collagen yields of over 1% and C: N between 3.0–3.2 (11/11 animals;
12/12 humans), which is indicative of collagen suitable for isotopic analysis [84]. The samples were
measured with an Isoprime 100 IRMS coupled with Elementar Vario. Standard material for testing the
carbon and nitrogen content was sulfonamides. For every 10 samples, we interpolated one IEAE-CH-6,
IEAE-N-2, and IEAE-600 to make data corrections. The measurement precision for δ13C and δ15N results
is ±0.2%�. SPSS 20.0 and Origin 8.0 were used for statistical analysis.
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Table 2. Isotopic results and sample information for all humans from the Xiaohucun site, Henan
Province, China.

Lab ID Location Sex Age
Open Size

(m2)
Depth

(m)
Coffin
Type

# Grave
Goods

Bronze
Vessels

# Bronze
Vessels

# Jade & other
Objects

δ13C
(%�)

δ15N
(%�)

%C %N C:N

1 M8 Male 45–50 7.35 4.30 double 6 yes 6 - −8.8 12.8 29.9 11.5 3.0

2 M24 Male 55 ± 5.52 1.80 double 8 yes 7 1 −8.1 10.7 38.6 14.0 3.2

3 M27 ? 55 ± 5.61 2.60 double 8 yes 3 5 −7.8 10.3 41.0 14.9 3.2

4 M30 ? ? 4.57 2.00 double 7 yes 6 1 −15.2 7.6 42.1 15.3 3.2

5 M39 ? 40-45 3.92 1.00 none - no - - −8.6 6.7 40.2 14.9 3.1

6 M46 ? 35 ± 2.60 0.90 single - no - - −8.8 7.5 39.7 14.4 3.2

7 M47 ? 25–30 1.92 1.60 single - no - - −7.5 8.2 38.4 14.1 3.2

8 M52 ? ? 6.80 3.58 double 11 yes 5 4 (1 cowrie shell &
1 wooden object) −6.4 10.9 41.4 15.2 3.2

9 M89 ? 50–55 2.30 0.70 none 1 no - 1 −7.4 8.2 41.2 15.2 3.2

10 M90 Male 40–45 3.95 0.66 single 4 yes 2 1 (1 cowrie shell) −9.3 10.8 39.6 14.7 3.2

11 M105 Male ? 4.91 2.25 double 5 yes 4 1 −8.0 9.2 40.0 14.8 3.1

12 M116 Female 45 ± 1.54 1.40 none 1 no - (1 cowrie shell) −8.5 9.2 37.5 13.5 3.2

Table 3. Isotopic results and sample information for all fauna from the Guandimiao site, Henan
Province, China.

Lab ID Location Species δ13C (%�) δ15N (%�) %C %N C:N

a 1 H28 Pig (Sus scrofa domestica) −8.2 7.8 35.1 13.0 3.2

a 2 H26 Pig (Sus scrofa domestica) −9.9 8.6 31.6 12.0 3.1

a 3 H26 Deer (Cervus nippon) −20.5 4.9 36.2 13.0 3.2

a 4 H741 Pig (Sus scrofa domestica) −6.7 6.6 41.8 15.0 3.2

a 5 H932 Pig (Sus scrofa domestica) −9.3 7.6 41.0 14.8 3.2

a 6 H932 Dog (Canis lupus familiaris) −7.6 8.6 37.3 13.7 3.2

a 7 H1309 Cattle (Bos primigenius
taurus) −9.0 5.7 41.9 15.2 3.2

a 8 H1250 Pig (Sus scrofa domestica) −11.6 8.8 22.2 9.0 2.9

a 9 H1251 Deer (Cervus nippon) −15.0 7.6 40.0 14.3 3.3

a 10 J20 Sheep/Goat (Caprinae) −10.7 7.5 39.8 14.3 3.2

a 11 G7 Dog (Canis lupus familiaris) −7.5 7.6 37.4 13.8 3.2

5. Results

Sample information and the δ13C and δ15N values for humans and animals are presented in
Tables 2 and 3. Given the work at the Xiaohucun site was a rescue excavation, and many tombs were
looted, we fully acknowledge that the number of humans available for study was relatively small,
but this collection serves as a pilot study and the first opportunity to gain a glimpse into possible
isotopic dietary differences related to status during the late Shang Dynasty (ca. 1250–1046 BC) in the
Central Plains of China.

5.1. Faunal Isotope Results

In Figure 3 the isotopic results of the humans and animals are presented. The δ13C values for pigs
(n = 5), dogs (n = 2), cow (n = 1), sheep/goat (n = 1) range from −6.7%� to −11.6%�, which indicates
that all of these animals had a diet predominately, if not exclusively, based on C4 dietary protein
sources. Past archaeological and isotopic research has revealed that millet agriculture was important
to the residents of the Central Plains [1,28,77,78,85], and that the livestock were mostly consuming
millet or its byproducts during the Shang Dynasty [39]. In contrast to the domestic animals, the two
deer had δ13C values that indicated either a mixed C3/C4 (−15.0%�) or exclusive C3 (−20.5%�) diet.
The finding of a deer with the mixed diet is interesting as this could suggest that this animal lived near
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the settlement and grazed on the millet fields or that it was possibly kept as pet. Similar results for
deer were found at the Xia Dynasty (2070–1600 BC) site of Xinzhai, also in Henan Provence, and these
13C-enriched deer were thought to have been possibly raised for the purposes of hunting by the elites
of the society [86]. The dog (8.1%�), pig (7.9 ± 0.9%�), and sheep/goat (7.5%�) all had similar δ15N
values, suggesting feeding at a similar trophic level, whereas the deer (6.3%�) and cow (5.7%�) were
lower. However, this site was closed to the Yellow river, so we could not eliminate the possibility of
ingesting freshwater or marine fish resources by human.

 

Figure 3. δ13C and δ15N results for humans from the Xiaohucun site and animals from the Guandimiao
site Henan Province, China.

5.2. Human Isotope Results

The human δ13C results range from −15.2%� to −6.4%� and show that most individuals had a
predominately C4 diet based on millet (Figure 3). The exception was individual M30 (−15.2%�) who had
a mixed C3/C4 diet that was likely a combination of rice and/or wheat and millet [79,87]. The human
δ15N results range from 6.7%� to 12.8%�, indicating there was likely significant individual variation in
the consumption of protein at the site. A comparison of the human and faunal isotopes values indicate
that pigs, dogs, cattle, and sheep/goats were all likely dietary protein sources, while deer played a
minor role (Figure 3). Thus, the diet of the individuals was predominately millet based with some
possible inputs of rice and/or wheat, but there were large differences in δ15N values that we ascribe to
variations in animal protein consumption, as discussed in the next section.

6. Discussion

6.1. Burials and the Classification of Social Status during the Late Shang Dynasty

In order to determine a possible correlation between social status and dietary differences at the
Xiaohucun site, it is important to understand how social status may have influenced the tomb type and
value. In ancient China, tombs and burials can be graded and valued based on the human labor costs
and materials used for construction, the size and shape of the structure, as well as the number and type
of graves goods reflecting symbols of power and wealth interred with individuals [55,71]. Since the
shapes of all the late Shang Dynasty burials at Xiaohucun were rectangular, the preliminary grading
scale of the 12 tombs was classified by number of coffins, tomb depth, and size, and by the presence of
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bronze funerary objects and this information is listed in Table 1 and plotted in Figure 4. Tomb sizes
ranged from 1.54 m2 to 7.35 m2 (4.25 ± 1.9 m2, n = 12), the burial depth was between 0.66 m to 4.3 m
(1.93 ± 1.1 m, n = 12), which could suggest that the cemetery was under a type of burial management
based on social hierarchy. More importantly, the burial depth and tomb size were found to have a
linear correlation (R2 = 0.67, p = 0.001) with clear differences between the number of coffins used and
whether a burial contained bronze vessels.

 

Figure 4. Plot of burial depth (m) vs. tomb size (m2) for individuals buried in different coffin types
with and without bronze funerary vessels at the Xiaohucun site, Henan Province, China.

In addition, past studies developed a specific classification system for Shang Dynasty tombs [3,71],
where they can be divided into three different categories (A, B, C) with seven subdivisions (Aa, Ab, Ac,
Ba, Bb, Bc, C) (Table 4). Using this system, seven of the tombs (M8, M52, M27, M24, M105, M30, M90)
at Xiaohucun are assigned to type Bb. Thus, the owners of these seven tombs are presumed to be junior
nobility: six had double coffins and all seven were buried with bronze funerary vessels. Four other
tombs (M47, M46, M116, M89) were matched to the Bc category, an indication that the occupants were
common people (Table 4). A single tomb (M39) gave somewhat conflicting results. The tomb size was
large (3.92 m2) indicating the owner could have been a noble, but the individual was found to be buried
without coffins or bronze funerary objects which is an indication this individual was of the lower
class (Table 4). It is important to recognize that these classifications are based on information from the
royal Shang capital at Anyang and may not be directly applicable at Xiaohucun. However, their use
here provides an important starting point from which to explore the relationship between dietary
differences and social status during the late Shang Dynasty.

6.2. Diet and Social Status

No difference is observed between the δ13C results of the perceived elites (n = 7) buried with
bronze vessels (−9.1 ± 2.8%�) and the individuals (n = 5) buried without bronze vessels (−8.2 ± 0.7%�),
and this indicates that all classes of the population relied heavily on a millet based diet (Figure 5a).
However, individuals buried with bronze vessels (10.3 ± 1.6%�) were found to have significantly higher
δ15N values (one-way ANOVA; p = 0.015) compared to individuals buried without bronze vessels
(8.0 ± 0.9%�). This finding suggests that the elite during the late Shang Dynasty were consuming a
diet with possibly more animal protein or fish than the commoners. Subtle similar patterns have also
been noted at the sites of Xipo (ca. 4000–3300 BC) and Qianzhangda (ca. 1000 BC) [54,56]. In particular,
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at Qianzhangda, a tomb owner associated with a larger grave was found to have a higher δ15N
result compared to the other tomb owners with smaller sized burials, and tomb owners were also
found to have higher δ15N results than sacrificed individuals. Zhang et al. [56] concluded that these
elevated nitrogen results of the elites with larger tombs were related to increased meat consumption.
However, the results presented here are the first to suggest a possible direct isotopic link between diet
and social status at a middle Shang Dynasty site from the Central Plains of China.

Table 4. Classification of social status for burials from the Shang and Zhou Dynasties. Note: Information
is referenced from IA CASS [3].

Type Sub-Type Tomb Passage Size (m2) Inner & Outer Coffins Grave Goods Human Sacrifice Owner Status

A
a 4 >100 always abundant always Emperor

b 2 >20 always abundant always Prince

c 1 20–70 always abundant always Prince or senior nobility

B
a 0 >10 always abundant mostly Prince or senior nobility

b 0 3–10 mostly ordinary rarely Junior nobility

c 0 <3 rarely little or absence absence Common people

C a 0 N/A absence absence absence Unprivileged people

  

Figure 5. (a) δ13C and δ15N results showing the differences between individuals buried with and
without bronze vessels at the Xiaohucun site, Henan Province, China. The δ15N results are statistically
significant (one-way ANOVA; p = 0.015); (b) δ13C and δ15N results for individuals buried in a double,
single, or without a coffin at the Xiaohucun site, Henan Province, China. The δ15N results were not found
to be statistically significant using one-way ANOVA tests (double vs. single, p = 0.288; double vs. none,
p = 0.095).

In addition, the isotopic values of the tombs were examined by coffin type: double coffin, single
coffin, and no coffin (Figure 5b). No differences in δ13C were observed for the double (−9.1 ± 3.1%�),
single (−8.5 ± 0.9%�), and no coffin (−8.2 ± 0.7%�) burials. Yet again, there were differences in the δ15N
values: double (10.2 ± 1.7%�) > single (8.8 ± 1.8%�) > no coffin (8.0 ± 1.3%�) suggesting that possible
differences in animal protein consumption were present during the lifetime of these individuals.
However, while these results are interesting, they must be viewed with the utmost caution as they
were not found to be statistically significant using one-way ANOVA tests (double vs. single coffins,
p = 0.288; double vs. no coffins, p = 0.095).

We further examined the isotopic results of the burials in relation to the number of coffins and
tomb sizes since a larger size might equate to higher social status based on the increased labor costs of
construction. This permitted an investigation of possible dietary differences within the same social
class; specifically did individuals with larger tombs have diets different from individuals with smaller
tombs? As with the previous measures of status, the δ13C values show little correlation with the size
of the tombs, and the entire population, regardless of status, was focused on the consumption of
millet (Figure 6a). The δ15N results of the individuals with a single or no coffin burial show little
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correlation with tomb size (Figure 6b). In contrast, a significant positive linear correlation (R2 = 0.84) is
observed for the δ15N values between the individuals buried in two coffins and the tomb size. This is
possible evidence that owners that were wealthy/powerful enough to build bigger tombs had diets
that contained increasing amount of animal products, and the largest tomb (M8) had an occupant that
consumed the most animal protein (Figure 6b). While these findings are intriguing and agree with the
historical accounts described in Zhou Li “周礼” (Rites of the Zhou Dynasty by Zhou Gong “周公”,
ca. 1100 BC [88]) and Chunqiu Gongyang Zhuan “春秋公羊传” (Gongyang’s Commentary on Spring
and Autumn Annals by Gongyang Gao “公羊高”, ca. 507 BC [89]) extreme caution is warranted as the
sample size is unfortunately small.

  

Figure 6. (a) δ13C results vs. tomb size (m2) for individuals buried in a double, single, or without a
coffin at the Xiaohucun site, Henan Province, China; (b) δ15N results vs. tomb size (m2) for individuals
buried in a double, single, or without a coffin at the Xiaohucun site, Henan Province, China.

It is noteworthy that the δ15N values of some burials did not correlate with the corresponding
tomb size although a general relationship between the two variables was observed as mentioned
above. The reasons for this are complex and unknown but could be related to the slow turnover rate
of bone collagen which averages the general dietary protein isotope signatures of the last decades
of life [25,26]. If an individual fell on financial or social misfortune and their social standing was
diminished during the later years of their life, this could account for a difference in the social status of
their burial vs. Their lifetime diet. For example, the δ15N result (10.8%�) of M90 was high and he was
buried with some bronze funerary objects suggesting a possible elevated social standing during life,
but the small size of his tomb (3.95 m2), shallow burial depth (0.66 m), and the fact that he was only
buried in a single coffin could imply that his social status or personal fortunes declined later in life.
In addition, the reverse scenario could be envisioned for the M30 burial. This individual had a δ13C
value (−15.2%�) which was radically different that the rest of the population and the lowest δ15N value
(7.6%�) of all the perceived elite burials. This is possible evidence that this person was a commoner
that immigrated to the Xiaohucun community, and that this individual was not born into elite status
but acquired it later in life, possibly though marriage, accumulation of wealth, or behavior (bravery in
battle). However, all of these possibilities are speculative scenarios and addition research is necessary
(ancient DNA, sulfur and strontium stable isotope ratios, etc.) to better understand these patterns, and
variables such as age and sex should also be considered in future studies that examine Shang Dynasty
sites for social stratification with stable isotope ratio analysis.

7. Conclusions

Here, we applied isotopic measurements as a direct technique to determine dietary patterns related
to social class at the site of Xiaohucun, Henan Province, China. For the most part, the population was
found to be consuming a predominately C4 diet (millets), although a single individual (M30) was found
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to have a mixed C4/C3 diet and could have been an immigrant to the community. No difference was
found in the δ13C results of the individuals buried with bronze vessels (−9.1 ± 2.8%�) and the individuals
buried without bronze vessels (−8.2 ± 0.7%�) but significant differences were present in the δ15N values:
individuals buried with bronze vessels (10.3 ± 1.6%�) vs. individuals buried without bronze vessels
(8.0 ± 0.9%�). Isotopic results were then compared by the number of burial coffins that an individual had:
double, single, or without coffin. No difference was found in the δ13C values, but variations were observed
in the δ15N values: double (10.2± 1.7%�)> single (8.8 ± 1.8%�)> no coffin (8.0± 1.3%�), possible evidence
of increased animal protein consumption with higher social status. Lastly, isotopic results and status were
examined by the number of coffins and tomb size. Again, no correlation was seen with δ13C, but a linear
correlation (R2 = 0.85) was found for the δ15N values of the elites. Thus, additional social stratification
could have existed among the elites with owners’ wealthy/power enough to build larger tombs and
possibly consuming more animal protein in their diets. These preliminary results of this pilot study offer
a glimpse of the social hierarchy that existed during the late Shang Dynasty.
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Abstract: Quantitative research on climate change and war hot spots throughout history is lacking.
In this study, the spatial distribution and dynamic process of war hot spots under different climatic
phases in imperial China (1–1911 CE) are revealed using Emerging Hot Spot Analysis (EHSA),
based on the Global Moran’s Index for testing the degree of spatial autocorrelation or dependency.
The results show that: (1) Battles were significantly clustered regardless of any climatic mode or
war category. (2) Hot spots for all war were generally located in the Loess Plateau and the North
China Plain during warm and wet periods, but in the Central Plain, the Jianghuai region, and the
lower reaches of the Yangtze River/Yangtze River Delta during cold and dry conditions. (3) Hot
spots for agri-nomadic conflict have similar patterns as those for all war, whereas rebellion hot spots
expanded outward during warm and wet intervals yet contracted inward during cold and dry stages.
These findings, by providing insightful evidence into the spatiotemporal patterns of war under the
movements of climatic-ecological zones and geopolitical variations in ancient China, can be a starting
point for future exploration of the long-term relationship between climate change and social security.

Keywords: climate change; war; imperial China; Global Moran’s I; Emerging Hot Spot Analysis

1. Introduction

The climate–war nexus in historical China has been widely addressed by academic communities
over the past decade [1–19]. Scientists have mostly focused on this nexus from a temporal or time-series
angle, whereas the spatiality of war and its connection with climate change has rarely been investigated.
Recently, our group determined that in imperial China, (1) geopolitical variables, such as the boundary
between agriculturalists and pastoralists, size of agricultural empire, battle location, and the direction
of war, were affected by multi-centennial precipitation fluctuation [15]; (2) the distributions of natural
disasters (flood and drought) and their social impacts (famine, cannibalism, and war) were influenced by
population on provincial and decadal scales [20]; and (3) secular temperature variation fundamentally
regulated the spatial disparities of war via controlling agricultural and pastoral productivity [21].
However, research on the spatiotemporal pattern and its dynamic process of war has not been
fully conducted.

In this study, we aimed to solve this problem by examining the linkage between climate change
and the focus (or hot spot) of war in imperial China. Using the comprehensive official history and
well-preserved local and private records in China since ancient times, a few native scholars have
discovered the focus (similarly, geographical pivot, or strategic area) of war. For example, Song [22]
divided wars in the imperial era into frontier and interior wars, and the pivots of the latter were
distributed in the western Henan Corridor, the south of the Huai River (also known as the Jianghuai
region), and Jing–Xiang (present-day northern Hubei). Rao [23] introduced an irregular chessboard
pattern of war from a military geographical view, in which there were nine strategic areas—four
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Atmosphere 2020, 11, 378

corners: Guanzhong, Hebei, Southeast China, and Sichuan; four foci/pivots: Shanxi, Shandong, Hubei,
and Hanzhong; as well as the heartland, the Central Plain. Wang [24] extracted information on the
spatial distribution and the shift of the focus area of war from poems in 618–765 CE (i.e., the early Tang
dynasty), which implied the potential value of classic literature. Leng [25] looked into the frontier
conflicts between the central governments and northern minorities during the imperial age and found
that the focus areas had moved from the Hetao region and the Hexi Corridor of Northwest China since
the Qin and Han dynasties to the Sixteen Prefectures of Yanyun and the western Liaoning Corridor
of Northeast China after the Tang dynasty. These findings, however, are all qualitative and do not
contain any climatic variables.

To fill in the research gaps, the technique in ArcMap, Emerging Hot Spot Analysis (EHSA), was
applied in this study. Developed by the Environmental Systems Research Institute, Inc. (ESRI), EHSA
identifies the spatial trends and distributions of different types of hot spots from data points. It has
been employed by some experts to unveil spatial patterns with time, such as detecting public sentiment
from geotagged photo collections in San Francisco in 2006–2015 and showing that different emotions
(anger, disgust, fear, joy, sadness, and surprise) have distinct spatial distributions [26], as well as the
spatiotemporal associations between a community greening program and neighborhood crime rates in
Flint, Michigan, in 2005–2014 [27]. Other examples include the spatiotemporal analysis of changes
in lode mining claims around the McDermitt Caldera, northern Nevada, and southern Oregon, in
1976–2010 [28], the expected trend in the occurrence of pulmonary tuberculosis cases from Hamadan
Province, Iran, during 2005–2013 [29], spatial patterns of crimes (larceny and aggravated assault) in
Miami-Dade County, Florida, from 2007 to 2015 [30], and statistically significant temporal-spatial
trends of forest loss in Brazil, Indonesia, and the Democratic Republic of Congo between 2000 and
2014 [31]. Thus, by integrating time and space domains, EHSA was suitable for the task of uncovering
the hot spots of war in China from 1 to 1911 CE. Compared with the aforementioned studies that only
covered several decades at most, this work is the first to use EHSA on a long time scale. Furthermore,
we made a methodological breakthrough by using the analysis with a climatological background,
which may lay a foundation for further exploration by researchers in related fields.

The structure of this paper is as follows. Data sources and data processing, which include the
cyclic division schemes for temperature and precipitation series, and the statistical tools, such as
the Global Moran’s I and EHSA, are introduced in Section 2. Distributions of the hot spots of three
kinds of war—all war, the conflict between agriculturalists and pastoralists (“agri-nomadic conflict”),
and rebellion under different climatic phases (warm versus cold/wet versus dry) in ancient China are
presented in Section 3. Some discussions about the effects of climatic and other non-climatic factors on
war hot spots, and our conclusions, are provided in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Data Source and Data Processing

The data used in this study included climatic series and battle coordinates. The procedures of
cycle divisions for temperature and precipitation sequences are stated in detail.

2.1.1. Climate

Derived from Ge et al. [32], the paleotemperature anomalies were reconstructed with the partial
least squares regression method based on multi-proxies (lake sediments, stalagmites, historical
documents, tree rings, and ice cores) from five regions (northeast, central east, southeast, northwest,
and the Tibetan Plateau) of China during 5–1995 CE. Due to the relatively coarse decadal resolution,
the data were linearly interpolated into an annual sequence. The original data were smoothed with a
five-point fast Fourier transform (FFT) filter to represent the 50-year variation. Similarly, in this study,
the FFT filter was set to 50 points (via OriginLab 2018) to obtain the same low-frequency signal.
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The paleoprecipitation series during 300 BCE–2000 CE was synthesized by Zhang et al. [15] from
38 document-based single-proxy hydroclimatic datasets at an annual resolution, using the composite
plus scale method [33]. This is the first-published long precipitation sequence that spans the past
2000 years on the national scale. A 300-year Butterworth low-pass filter was applied to retrieve the
multi-centennial cycle [15]. In this study, the imperial age 1–1911 CE was taken for consistency, and the
average of this sequence was calculated to facilitate comparisons.

2.1.2. Division of Climatic Cycles

On the basis of a few criteria, the temperature and precipitation series were divided into different
warm–cold and wet–dry cycles.

Temperature: Seven Warm–Cold Cycles

The paleotemperature anomalies reconstructed by Ge et al. [32] were originally divided into
four warm (5–200, 551–760, 951–1320, and 1921 CE–present) and cold (201–350, 441–530, 781–950,
and 1321–1920 CE) intervals. These do not cover the entire period, as this division scheme does not
indicate whether 351–440, 531–550, and 761–780 CE belonged to warm or cold periods. In this study, by
referencing the definitions of warm and cold phases from Zhang et al.’s [1] first study on the relationship
between climate change, social unrest, and dynastic transition in historical China, the start and end
of a warm or cold stage were placed in the midpoint between the highest and lowest temperature
anomalies. Based on this criterion, the procedure of cyclic division was as described below:

(1) Determination of the maxima and minima over the temperature sequence: The maximum
in 575 CE and minimum in 615 CE were excluded due to the short duration of the resultant warm
(530–594 CE) and cold (595–659 CE) periods that lasted for only 65 years. The maximum in 1911
CE was disregarded, as the warm phase in 1873–1911 CE would have been too short to avoid any
possible bias otherwise. Another minimum in 95 CE and maximum in 115 CE had a slight difference in
temperature anomalies and were not considered. Accordingly, seven pairs of extrema were identified
during 5–1911 CE.

(2) Calculation of the midpoint for each pair of extrema: The midpoint from a maximum to a
minimum was set as the end of a warm stage, and the year after was treated as the start of a cold phase.
By contrast, the midpoint from a minimum to a maximum was set as the end of a cold period, and
the year after was treated as the start of a warm stage. The maximum of 1911 CE was excluded in
the calculations.

Therefore, seven temperature cycles were defined according to this division scheme (Figure 1a).
Each warm and cold phase is listed in Table 1. The duration of all warm periods was 916 years, while
cold periods covered 991 years in total. Hence, the warm and cold intervals were relatively balanced
compared with the results from Ge et al. [32], in which there were 855 and 1010 years of warm and
cold stages, respectively.

Precipitation: Three Wet–Dry Cycles

The paleoprecipitation reconstruction from Zhang et al. [15], which was used to discuss the
interactions between agriculturalists and pastoralists in imperial China, was divided into three
“Yang” (agriculturalist empires took control of the hinterland) and “Yin” (nomadic tribes invaded
and established their own regimes on agricultural region) periods. The Yang–Yin division scheme is
actually dynasty-oriented rather than climate-based. Specifically, Yin 1 happened from the Eastern Jin
dynasty in 317 CE until the end of the Southern and Northern dynasties in 589 CE, Yin 2 occurred
during the Southern Song–Yuan dynasty (1127–1368 CE), and Yin 3 coincided with the Qing dynasty
(1644–1911 CE). Here, a new criterion for re-delimiting the precipitation curve was established, in
which a wet (dry) phase can be defined when the 300-year smoothed precipitation is above (below) the
average of the series (about 666.7 mm/year). Hence, three precipitation cycles were determined, and
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over the study period, the lengths of all wet and dry periods lasted for 826 and 1085 years, respectively
(Figure 1b and Table 1).2020

Figure 1. a

b

Table 1.

Warm 
Period 

Year Cold 
Period 

Year Wet 
Period 

Year Dry 
Period 

Year 

Figure 1. (a) Paleotemperature anomaly under the seven-cycle scheme. Note: The annual and 50-year
FFT-smoothed series are colored in yellow and red, respectively. Seven cold phases are highlighted in
cyan bars. (b) Paleoprecipitation reconstruction under the three-cycle scheme. Note: The annual and
300-year curves (smoothed by Butterworth low-pass filter) are shown in cyan and blue, respectively.
Three dry intervals are marked by yellow bars.

Table 1. Divisions of warm (W)/cold (C) and wet (W)/dry (D) cycles in ancient China, 1–1911 CE.

Warm Period Year Cold Period Year Wet Period Year Dry Period Year

W1 5–125 C1 126–320
W1 1–249 D1 250–685W2 321–440 C2 441–595

W3 596–765 C3 766–950
W2 686–1041 D2 1042–1262W4 951–1120 C4 1121–1205

W5 1206–1330 C5 1331–1490
W3 1263–1483 D3 1484–1911W6 1491–1615 C6 1616–1705

W7 1706–1790 C7 1791–1911

2.1.3. War

War data were gathered from the Tabulation of Wars in Ancient China, an appendix that belongs to
the Military History of China, which was summarized by the Editorial Committee of Chinese Military
History [34] and has been extensively employed in previous research [1–5,8–10,14–20]. In this study,
battle was considered the basic unit of war. The criterion is that if two sides engaging in a war have a
fight in reality, then such a fight is regarded as a battle. The terms ‘battle’ and ‘war’ are interchangeable
in this study when referring to different categories. All the ancient battlefields in this compendium
were verified using the Historical Atlas of China [35], counted within the present territory of China,
and converted into currently used place names. In other words, battlefields beyond the national
boundary were excluded even though they were historically in the areas that belonged to the Chinese
Empire. The exclusion of such battlefields may affect the spatial pattern of war, yet these outliers
only account for a small proportion of all records—they are usually difficult to locate due to extreme
remoteness and the lack of documents. Thus, 5501 battlefields during 1–1911 CE were identified in this
study. This number only represents battle locations with definite coordinates, which means the actual
number is larger. However, battles do not actually occur at an exact point. From a micro perspective,
a battle should have a combat zone, which cannot be measured because people never know much
about it. Therefore, the hot spots derived from battle points or coordinates can only be examined in
a large framework. The spatial scale of this study was set to national rather than regional and local
scales. The definitions of different kinds of wars (i.e., agri-nomadic conflict and rebellion) are provided
in Supplementary Materials.

2.2. Methods

In the “Spatial Autocorrelation” tool of ArcMap, the Global Moran’s I statistic, based on feature
locations and attribute values [36], was adopted to measure the degree of global spatial autocorrelation
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(or, roughly speaking, to decide whether there was a spatial cluster effect) for different kinds of war in
historical China. Before the tool can be applied, a grid containing the point data of battlefields was
generated to facilitate the statistical analysis. In this study, 100 km was selected as the length of each
square cell (Figure 2, and the reason for this is detailed in Supplementary Materials). Then, the number
of battles in each cell of the grid was counted. Next, the Global Moran’s I statistic was calculated
according to

I =
n
s0

∑n
i=1
∑n

j=1 wi· j(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (1)

where n is the total number of cells, xi and xj are the counted battle number in cells i and j respectively,
x is the mean value of battle number in all cells, and wi,j denotes the proximity between i and j. When i
and j are adjacent, wi,j = 1; otherwise, wi,j = 0. S0 denotes the aggregate of all spatial proximity as

S0 =
n∑

i=1

n∑
j=1

wi, j (2)

The z-score for the Global Moran’s I statistic is computed as

z =
I − E[I]√

V[I]
(3)

where E[I] and V[I] are the expectation and variance, respectively, with the formulas

E[I] = −1/(n − 1) (4)

V[I] = E[I2] − E[I]2 (5)

2020

 
Figure 2. Figure 2. Battle location and the grid (100 × 100 km per cell) adopted in this study.
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The index ranges between −1 and 1. The spatial autocorrelation is positive (negative) if the value
is larger (smaller) than 0. The higher (lower) the value, the more clustered (dispersed) the war. There is
no spatial autocorrelation (i.e., random distribution) when the value is equal to 0.

As the Global Moran’s I becomes positive, it is possible that there are some hot spots in which
battles are clustered in space. Thus, in this research, EHSA was used to visualize the foci of war.
The operational procedure of EHSA is realized in two major steps. First, a space–time cube with
network common data form (.nc format) was created by running the tool “Create Space Time Cube”
in the package “Space Time Pattern Mining Tools” of ArcMap. Instead of real ‘points’ (e.g., battle
coordinates), the hot spots are an array of grids in which point data are aggregated and counted.
Each cell (or bin) must have the same size. In this study, 100 km was chosen as the length of the side for
each bin, because a bin less than 100 km (e.g., 50 km) would lead to innumerable cells, each of which
only covers a small area. In this case, the bin number that contains battlefields may be small, whereas
others may be largely blank. By contrast, if the length of the side is more than 100 km (e.g., 200 km),
the resultant patterns may be too coarse to decipher, since only limited amounts of bins reside in the
study area (Figure S1). Therefore, the medium size of 100 × 100 km was suitable for this task.

During the first step, the Mann–Kendall trend test (or M–K test) was automatically conducted to
evaluate the overall trend for all bins in the cube. It is a non-parametric test used to analyze whether
data are consistently increasing or decreasing over time [37,38]. More details about the M–K test are
provided in Supplementary Materials. Second, the cube was input in the Emerging Hot Spot Analysis
tool, and the Getis-Ord Gi* statistic (i.e., the traditional hot spot analysis) was calculated for each bin.
The formula for obtaining the Gi* is given as [39]

G∗i =
∑n

j=1 wi, jxj − x
∑n

j=1 wi, j

S

√
n
∑n

j=1 w2
i, j−
(∑n

j=1 wi, j
)2

n−1

(6)

where

x =

∑n
j=1 xj

n
(7)

S =

√∑n
j=1 x2

j

n
− (x)2 (8)

Once the analysis was completed, each bin had an associated z-score, p-value, and hot spot
classification. With the resultant trend, z-score, as well as p-value for each location, the EHSA tool
categorized eight kinds of hot spots, which are listed in Table 2.

Table 2. Definitions of various hot spots in EHSA.

Category Definition

New The most recent time step interval is hot for the first time.
Consecutive A single uninterrupted run of hot time step intervals, being comprised of less than 90% of all intervals.
Intensifying At least 90% of the time step intervals are hot and are becoming hotter through time.

Persistent At least 90% of the time step intervals are hot, with no trend up or down.
Diminishing At least 90% of the time step intervals are hot and are becoming less hot over time.

Sporadic Some of the time step intervals are hot.
Oscillating Some of the time step intervals are hot, some are cold. The most recent time step interval is hot.
Historical At least 90% of the time step intervals are hot, but the most recent time step interval is not.

(http://desktop.arcgis.com/en/arcmap/latest/tools/space-time-pattern-mining-toolbox/learnmoreemerging.htm).

In terms of the spatiality of war, EHSA surpasses the traditional hot spot analysis because bins
with high frequencies of battles surrounded by high values can be determined and various hot
spots are categorized based on the variation trends over time. Accompanying hot spots, however,
the spatiotemporal patterns of cold spots (i.e., clusters of low values) are generated, which may be
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meaningless since war hot spots were prioritized in this study. Only significant hot spots are presented
(p < 0.05).

3. Results

3.1. Global Moran’s I

The results of the Global Moran’s I are provided in Table 3. The values ranged between 0.37 and
0.59 and were all significantly positive (p < 0.01), which indicates the cluster effect of war (i.e., positive
spatial autocorrelation or spatial dependency) and the feasibility of EHSA. In addition, except for
agri-nomadic conflict between warm and cold phases, the statistics during all cold and dry intervals
were larger than those in warm and wet stages. This illustrates that battles became more concentrated
in cold and dry climate, but were slightly scattered in warm and wet conditions. The indexes for all war
at any climatic mode were the largest, probably because each cell of the grid contains more battlefields.
This is followed by rebellion, and agri-nomadic conflict had the smallest values (except that the value
for rebellion in warm periods was the smallest), which means there seems to be a positive correlation
between battle number and the degree of the concentration of war.

Table 3. The Global Moran’s I for three kinds of war in all warm/cold and wet/dry intervals.

Climatic Phase All War Agri-Nomadic Conflict Rebellion

Warm 0.508 ** 0.471 ** 0.422 **
Cold 0.588 ** 0.416 ** 0.572 **
Wet 0.487 ** 0.373 ** 0.457 **
Dry 0.579 ** 0.491 ** 0.542 **

Note: ** p < 0.01.

3.2. Mann–Kendall Trend Test

Table 4 shows that except for wet periods, the hot spots for all war during the other climatic phases
failed to pass the M–K test as the trend statistics were insignificant. The statistics for agri-nomadic
conflict at any climatic stage were significantly positive compared with those for all war. The value for
all warm intervals was the largest (8.446, p < 0.01) amongst all statistics. For rebellion, the counterpart
of all warm stages failed to pass the M–K test at the level of 0.05, whereas other statistics were positively
significant, and the value for wet conditions was the largest (4.075, p < 0.01). Thus, the results of the
trend test indicate that notwithstanding the difference in climatic phase, the frequencies of agri-nomadic
conflict and rebellion in imperial China basically increased through time.

Table 4. Trend statistic for three categories of war during all warm/cold and wet/dry phases

Climatic Phase All War Agri-Nomadic Conflict Rebellion

Warm 0.979 8.446 ** 1.548
Cold −0.596 3.130 ** 2.207 *
Wet 4.445 ** 3.103 ** 4.075 **
Dry −0.775 6.678 ** 3.026 **

Note: ** p < 0.01, * p < 0.05.

3.3. EHSA Pattern and Explanation

The explanations of the spatial patterns of EHSA involve many geographical names (Figure
S2) and historical periods (Table S1) in China. Figure 3a shows that hot spots were preponderantly
distributed in northern China, i.e., from the border between Qinghai and Gansu to western Liaoning,
during all warm stages. Only a few oscillating hot spots were located in the Yangtze River Delta.
Intensifying hot spots indicate that the areas were becoming increasingly hot (i.e., battles were becoming
increasingly frequent). They were chiefly concentrated in central Shaanxi–eastern Gansu and southern
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Shanxi–the North China Plain and surrounded by other types. Beyond that, the south and north
were predominantly occupied by historical versus sporadic and oscillating hot spots, respectively. As
historical hot spots are hot most of the time but not hot in the most recent time, this situation implies
the alteration of hot spots in history. To the north, probably along the Great Wall, battles were not as
frequent as those in intensifying hot spots; therefore, they were categorized as sporadic or oscillating.
Similarly, battles were occasionally clustered, but scattered or even absent sometimes in the Yangtze
River Delta, which created oscillating hot spots.

2020

 

Figure 3. EHSA patterns of all warm and cold periods for three types of war: (a,b) All war,
(c,d) agri-nomadic conflict, and (e,f) rebellion. Only significant hot spots (p < 0.05) are shown
(the same as Figure 4).

By contrast, intensifying hot spots moved massively southeastward to the Central Plain and more
prominently to the Jianghuai region and the lower reaches of the Yangtze River during all cold intervals
(Figure 3b). The original hot spots in warm periods turned into diminishing hot spots, along with a
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few sporadic or oscillating cells in central Shaanxi–eastern Gansu and the North China Plain. Since
diminishing hot spots are opposite to intensifying hot spots in nature, this alteration indicates a less
hot pattern of war (or less frequent battles) in northern China over time. Furthermore, the hot spots in
all cold stages were generally situated farther south/southeast as they disappeared from northeastern
Qinghai and central Gansu to the northern Loess Plateau and northern Hebei, whereas they appeared
to the south of 30◦ N in a larger proportion. However, as battles in the middle–lower reaches of the
Yangtze River–Yangtze River Delta and near the border of Hunan, Guangxi, and Guizhou were only
concentrated during certain intervals, the hot spots in these areas were categorized as oscillating
or sporadic.

Figure 3c,d visualize the EHSA patterns for agri-nomadic conflict over all warm and cold stages.
In Figure 3c, there were only two sporadic hot spots, while others were oscillating hot spots, extending
from central Gansu to western Liaoning. This pattern represents the confrontations between agricultural
empires and nomadic tribes/regimes along the Great Wall in historical China. However, when carefully
examining the time-series, the conflicts contained by oscillating hot spots were concentrated in two
main periods: The Northern Song and Ming dynasties (Table S1). The war against the Liao and Western
Xia for the former, and that against the Mongols for the latter, occupied the largest proportion, whereas
battles during other stages were not intensive. This result is in line with the definition of oscillating hot
spot, i.e., occasionally hot (highly clustered), occasionally cold (sparsely scattered), and the last time
step (i.e., in the Ming dynasty) is hot.

In comparison, the hot spots for agri-nomadic conflict in cold climate principally shifted
southeastward (Figure 3d). Although some cells remained in northern China, they do not match
the scale in warm stages. Instead, hot spots (again prevailingly classified as oscillating) were more
concentrated in the Jianghuai region, the lower reaches of the Yangtze River–Yangtze River Delta,
and Fujian. Similarly, they are related to the distributions of battles during certain phases. Those in
the Jianghuai region and the lower reaches of the Yangtze River–Yangtze River Delta resulted from
N–S confrontations, such as northern dynasties versus southern dynasties and Jin versus Southern
Song (Table S2). The hot spots in Fujian could be explained by the Ming–Qing war. Given that these
oscillating hot spots emerged in different periods, the existence of this category is understandable.

The EHSA patterns for rebellion in all warm and cold stages are depicted in Figure 3e,f. In Figure 3e,
the hot spots in all warm periods expanded outward and were clustered in four separate parts: Sichuan,
the Central Plain, Taiwan, and Guangxi–Guangdong. Five kinds of hot spots were generated: new,
diminishing, sporadic, oscillating, and historical. Historical and diminishing hot spots only emerged
in the Central Plain, where rebellions were concentrated in earlier eras but gradually became less
frequent. Oscillating hot spots mostly appeared in Guangxi and Guangdong, in which battles largely
occurred in later eras but were not dense. Sporadic hot spots were distributed in the Chengdu Plain
and its northwest, with a few adjacent to diminishing hot spots in northern China. Battles in these
areas were concentrated, yet they were occasionally intensive in some intervals. Finally, the new hot
spots in western Taiwan may denote the recent revolts during the Qing dynasty.

The rebellion hot spots in all cold phases were more clustered (Figure 3f). The majority of them
were oscillating hot spots, spreading from eastern Guizhou to northern Zhejiang and occupying the
middle reaches of the Yangtze River. Another group in the Loess Plateau was adjacent to sporadic hot
spots, which extended from Guanzhong to the Central Plain, with another part emerging in the Yangtze
River Delta. Other types—such as consecutive, intensifying, and diminishing hot spots—appeared in
northern China with a few cells only. Diminishing hot spots were situated north of intensifying hot
spots, which implies the southward movement of the war focus through time. A comparison with the
warm climate pattern showed that the hot spots in the northern Central Plain (southern North China
Plain) changed from diminishing (sporadic) cells in all warm intervals to intensifying–consecutive
(diminishing) ones in all cold phases. As a traditional warring zone in ancient China, the northern
Central Plain became increasingly hot in recent time steps, particularly during the Ming–Qing transition
and the late Qing dynasty. Sporadic hot spots in the Guanzhong–Central Plain and the Yangtze River
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Delta were not always hot. To the south, oscillating hot spots primarily included the rebellions during
later cold stages, indicating the inward contraction of rebellion in cold periods.

The spatial patterns derived from EHSA during all wet and dry stages are visualized in Figure 4.
Figure 4a presents the result of all wet periods for all war. Similar to Figure 3a, four types of hot spots
(intensifying, diminishing, sporadic, and oscillating) dominated northern China and stretched from
eastern Gansu to the North China Plain via Guanzhong, Shanxi, and the Central Plain. They also
spread southeastward to the Jianghuai region, the lower reaches of the Yangtze River, and the Yangtze
River Delta, but were exclusively covered by oscillating hot spots. Intensifying hot spots were clustered
in most of the North China Plain, where battles became increasingly frequent through time. By contrast,
in Guanzhong and the eastern Central Plain, the cells that belonged to diminishing hot spots became
gradually less hot or not hot in the end, which implies a possible northward movement of battle over
time. A striking contrast was observed between the patterns of all wet and dry stages. In Figure 4b,
intensifying hot spots shifted to present-day Jiangsu, while the cells in the north mostly turned into
diminishing hot spots. Others, such as sporadic and oscillating hot spots, laid in the north (along
40◦ N) and south (the lower reaches of the Yangtze River) respectively, with a few historical cells
scattered around.

Figure 4c,d present the EHSA patterns for agri-nomadic conflicts in all wet and dry stages. The hot
spots during wet periods were all clustered in northern China, i.e., from central Ningxia to eastern
Hebei, and included three types: intensifying, sporadic, and oscillating. Oscillating hot spots were
mainly distributed in Ningxia, northeastern Gansu, and northern Shaanxi, while intensifying hot spots
in the North China Plain were surrounded by sporadic ones. The differences among them may have
resulted from the proportions of time steps in three wet phases. Still, most hot spots were found in the
north during all dry stages (Figure 4d), but their range elongated outward from two sides. The western
end extended into central Gansu, while the eastern end extended into northern Liaoning. A few hot
spots appeared in the lower reaches of the Yangtze River, which differentiates the patterns between wet
and dry phases. All hot spots in northern China were oscillating, indicating the confrontations between
agricultural and nomadic regimes along the Great Wall, which escalated in later times. Sporadic and
new hot spots emerged in the lower reaches of the Yangtze River and coastal Fujian, respectively.
Hence, the hot spots in southern China represent the southward nomadic invasions, and the new hot
spot can be associated with the Manchu conquest during the Ming–Qing transitional period.

The EHSA results for rebellion in all wet and dry intervals are displayed in Figure 4e,f, which
are similar to the patterns for all warm and cold stages in Figure 3e,f. The three separate parts in all
wet phases indicate that hot spots were clustered in the Central–North China Plain, the lower reaches
of the Yangtze River, as well as Guangxi and Guangdong (Figure 4e). The northern part, which was
primarily occupied by sporadic hot spots, was surrounded by several oscillating ones, while the latter
laid in the eastern and southern parts. For rebellions in sporadic hot spots, there were more time steps
during the second wet period, but oscillating hot spots included more battles during the last wet stage.
Thus, the hot spots in the north and south presented different patterns. The hot spots during all dry
phases were principally concentrated in the lower reaches of the Yangtze River–Yangtze River Delta
and expanded southwestward to eastern Guizhou, part of Hunan and Guangxi, along with those from
Guanzhong to the Central Plain (Figure 4f). Except for several diminishing hot spots in the north
with surrounding sporadic ones, oscillating hot spots dominated the pattern. The difference between
sporadic and oscillating hot spots may be attributed to the proportions of time steps in different dry
stages. For diminishing hot spots, rebellions were less frequent in later periods, which implies the
southward movement of rebellion focus through time.
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4. Discussion 

Figure 4. EHSA patterns of all wet and dry stages for three kinds of war. (a,b) All war, (c,d) agri-nomadic
conflict, and (e,f) rebellion.

4. Discussion

4.1. Effect of Climate Change on the Hot Spot of War

In this study, we attempted to quantify the cluster effect of war and determine the spatiotemporal
pattern of war hot spots in historical China by emphasizing a possible climatological root. On the
whole, warm and wet (cold and dry) climate and the accompanying shifts in climatic especially
temperature zones, may have brought about the north/west/northwestward (south/east/southeastward)
movements of agricultural and pastoral zones. The spatial distributions of war hot spots, particularly
the intensifying ones, varied correspondingly. Notably, different from traditional hot spots, those in
this research contain temporal information (i.e., time steps/series in each bin). The proportions of time
steps of later periods were larger in southern hot spots, which was consistent with the overall decline in
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temperature throughout the last two millennia (in particular, during the Little Ice Age (LIA), Figure 1a).
In comparison, precipitation fluctuated as cycles without a significant trend (Figure 1b), which shows
that the N–S disparities of hot spots may have been more temperature-dependent. The cyclic and
long-term temperature variations and the resultant patterns of war hot spots in this work are similar
to the findings in Zhang et al. [21], who used the Standard Deviational Ellipse as another spatial
analytical tool but for the detection of directional characteristics/differences of war during three secular
temperature cycles.

Specifically, as shown by the results in Figures 3 and 4, two categories of war—i.e., agri-nomadic
conflict and rebellion, which responded to climate change differently, had different hot spot patterns.
First, for agri-nomadic conflict, the strength of agricultural empire rose under warm and wet conditions,
so that the central government could either afford expeditions toward Northwest China—i.e., the
hinterland of steppes—and maintain control over the nomads there, or at least keep an equilibrium of
military power against nomadic tribes/regimes along the borderline. This is why nearly all hot spots
of agri-nomadic conflicts were concentrated in the north during such climatic phases. Conversely,
cold and dry climate severely affected the economic bases of agricultural empires and nomadic
regimes/tribes by reducing grain yields and herding resources, respectively. The weakened power of
the central government meant that the military initiative held in warm and/or wet periods gave way
to passive frontier defense against nomads [40]. Besides, driven by the cooling- and/or arid-induced
environmental degradation, nomads had no choice but to migrate southward, and their conflicts with
agriculturalists became increasingly intensive, even breaking through the boundaries and massively
invading southward [41,42]. Noticeably, after comparing the patterns between Figures 3d and 4d,
we observed many more hot spots in Southeast China during cold intervals than in dry periods,
which implied that the effect of temperature on war hot spots may have been stronger than that
of precipitation.

Second, with respect to rebellion, similar to the case of agri-nomadic conflict, warm and wet
climate typically boosted the economy of agricultural empire, so that the government was able to
initiate military campaigns toward the frontier. Moreover, the economic prosperity possibly resulted in
rapid population growth, and the demands for expanding living space and relieving the ever-increasing
population pressure would have needed to be met. As a result, accompanied by the outward conquest,
mass migrations of agriculturalists also occurred during warm and wet intervals, which may have
exacerbated the competitions for resources (especially for land) between the Han Chinese and ethnic
minorities. Therefore, the emergence and spread of revolts with separate clusters in remote areas,
such as the northwest of the Sichuan Basin, Taiwan, Guangdong, and Guangxi, could be interpreted.
In comparison, the rebellion hot spots during cold and dry stages shifted inward and widely covered
the middle–lower reaches of the Yangtze River, Yangtze River Delta, and the border among Guizhou,
Hunan, and Guangxi, but still manifested in the Central Plain and part of the North China Plain, even
extending westward to eastern Gansu, as the agricultural base of the Chinese Empire was heavily
undermined and the frontier control over ethnic minorities loosened. Nonetheless, the Central Plain
remained the core warring zone regardless of climatic phase, yet rebellions somewhat intensified
during cold periods.

4.2. Contributions of Other Possible Factors

Our investigation into the linkage between climate and war hot spots does not exclude the
possible contributions of other non-climatic factors that mediate the relationship. However, these
factors are extremely difficult to spatially quantify from historical documents, in which they are often
described ambiguously and fragmented in earlier ages. Yet, such limitations do not interfere with
our discussion. Clearly, the hot spots (particularly the intensifying ones) of war overlapped with
the developed and populous areas in China, e.g., the Guanzhong Basin, the Central–North China
Plain, the Jianghuai region, and the Yangtze River Delta. Hence, this spatial consistency could be
interpreted as population-pressure-led social contradiction, an important factor that was observed
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before [43–47]. Northern China, where the political center of the Chinese Empire was usually located,
greatly benefited from warm and/or wet conditions. The rapid economic development and population
growth in such an ecologically fragile agricultural–pastoral transition zone sooner or later deteriorated
the environment and caused problems like soil erosion, desertification, and salinization, thereby
lowering the land-carrying capacity and triggering resource struggles, and even armed conflict, within
the Han Chinese peasants/nomads (e.g., during the Sixteen Kingdoms), or between agriculturalists and
pastoralists. Likewise, as northern migrants fled nomadic invasions during cold and/or dry intervals,
population increased and the economy flourished in southern China, followed by increasing numbers
of conflicts and the emergence of the hot spot zone. Nevertheless, the spatial relationship between war
and population/migration in ancient China needs further surveys.

As the agricultural basis in the north was damaged by temperature drops (C5–C7, i.e., the LIA)
together with long-term drought (i.e., D3), migration also pointed to the southwest during the late
imperial epoch. After the migration from Jiangxi to Huguang in the Ming dynasty, the more massive
migration in the Qing dynasty (also known as “Huguang fills Sichuan”) boosted the population of the
entire southwest, since migrants also flooded into the Yunnan–Guizhou Plateau [48]. Overpopulation
on these ecologically fragile mountainous karst landforms exhausted the land-carrying capacity
and aggravated the tension between the Han and minorities. Consequently, the hot spots of war
were concentrated in these regions. Apart from the population stress resulted from mass migration
(sometimes launched by the government), governmental policy may have acted as a catalyst for
conflict. For instance, throughout the Ming and Qing dynasties, the management and exploitation
of southwestern China deepened. One momentous measure, the bureaucratization of native officers
(“Gaitu Guiliu”), aiming at abolishing the hereditary local chieftain system (or “Tusi System”) and
directly assigning officials by the central government, was implemented. This policy worsened the
relationships between the central government and ethnic minorities and ignited numerous revolts in
that region. Hence, for rebellion (some were waged by the Miao, Dong, Zhuang, and Yao people), the
concentrations of hot spots in the west of the Sichuan Basin, Guangxi, and the Guizhou Plateau could
be ascribed to the strengthened rule of the government.

Another possible factor is pertinent to the geopolitical situation. The N–S regime confrontation,
which was qualitatively elucidated in previous studies [22,23,49–52], is one of the most pronounced
characteristics in Chinese history. It included two aspects: united empires that occupied most of the
land area to the south of the Great Wall (China Proper) versus nomadic tribes/regimes that stayed in the
steppes of Inner Asia during warm and wet phases, as well as two or more Han Chinese or Han versus
nomadic regimes within China Proper during disintegrated eras and also under cold and dry conditions.
Looking at Table 1, Table S2, Figure 3b, and Figure 4b, the hot spots (especially the intensifying ones)
in the southeast can be partly explained by the latter aspect. Under the circumstances, battles were
dominantly clustered in the vicinity of regime borders, or distributed along natural boundaries, such
as the Yellow River (e.g., Northern Wei versus Liu Song during the Southern and Northern dynasties),
the Qinling Mountains–Huai River (e.g., Wei versus Shu and Wu in the Three Kingdoms Period and
Jin versus Southern Song), or farther south, the Yangtze River (e.g., Sui versus Chen).

5. Conclusions

This study is the first attempt to probe into long-term climate change (warm/wet versus cold/dry)
and its association with the hot spots of different types of war (all war, agri-nomadic conflict, and
rebellion) in imperial China. Looking at the connection from a spatiotemporal perspective with the aid
of a few quantitative and visualization techniques, we conclude the following:

1. The cluster effect of war in ancient China was quantified by using the Global Moran’s I, i.e., cells
with large battle numbers tended to concentrate adjacently.

2. The Mann–Kendall trend test showed that, at any climatic mode, agri-nomadic conflict and
rebellion basically increased over time, whereas the results for all war were almost insignificant.

43



Atmosphere 2020, 11, 378

3. Regarding EHSA, the hot spots for all war shifted northward and westward during warm and
wet intervals, but toward the southeast in cold and dry conditions. For agri-nomadic conflict, hot
spots were distributed along the boundary between agricultural and pastoral regimes in warm
and wet phases, but reached as far as South China (due to nomadic invasions) during cold and
dry stages. For rebellion, with the vicissitude of the Chinese Empire, hot spots spread outward in
three to four groups in warm and wet climate but contracted inward during cold and dry periods.

4. EHSA satisfactorily reflected the pattern of war hot spots, on which temperature may have
exerted more effect than precipitation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/4/378/s1,
Figure S1: Comparisons of battle number counted within the grids of (a) 50 km, (b) 100 km, and (c) 200 km for
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China in the study period, Table S2a: N–S confrontation within China Proper during warm and cold phase, 5–1911
CE, Table S2b: N–S confrontation within China Proper during wet and dry phase, 1–1911 CE, Table S3: The Global
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Author Contributions: Conceptualization, D.D.Z.; Data curation, S.Z. and D.D.Z.; Formal analysis, S.Z.; Funding
acquisition, D.D.Z.; Investigation, S.Z.; Methodology, S.Z. and D.D.Z.; Project administration, D.D.Z.; Resources,
D.D.Z.; Supervision, D.D.Z. and J.L.; Validation, S.Z., D.D.Z., and J.L.; Visualization, S.Z.; Writing—original draft,
S.Z.; Writing—review and editing, S.Z., D.D.Z., and J.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Fund for Key Platform Construction Project–Special Project of High
Level University Construction at Guangzhou University, grant number 290020363.

Acknowledgments: The authors thank the anonymous reviewers for their valuable comments on this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, D.; Jim, C.; Lin, C.; He, Y.; Lee, F. Climate change, social unrest and dynastic transition in ancient
China. Chin. Sci. Bull. 2005, 50, 137–144. [CrossRef]

2. Zhang, D.D.; Jim, C.Y.; Lin, G.C.; He, Y.; Wang, J.J.; Lee, H.F. Climatic change, wars and dynastic cycles in
China over the last millennium. Clim. Chang. 2006, 76, 459–477. [CrossRef]

3. Zhang, D.D.; Zhang, J.; Lee, H.F.; He, Y. Climate change and war frequency in eastern China over the last
millennium. Hum. Ecol. 2007, 35, 403–414. [CrossRef]

4. Lee, H.F.; Zhang, D.D. Changes in climate and secular population cycles in China, 1000 CE to 1911. Clim. Res.
2010, 42, 235–246. [CrossRef]

5. Zhang, D.D.; Lee, H.F. Climate change, food shortage and war: A quantitative case study in China during
1500–1800. Catrina 2010, 5, 63–71.

6. Zhang, Z.; Tian, H.; Cazelles, B.; Kausrud, K.L.; Bräuning, A.; Guo, F.; Stenseth, N.C. Periodic climate cooling
enhanced natural disasters and wars in China during AD 10–1900. Proc. R. Soc. B 2010, 277, 3745–3753.
[CrossRef]

7. Bai, Y.; Kung, J.K.S. Climate shocks and Sino-nomadic conflict. Rev. Econ. Stat. 2011, 93, 970–981. [CrossRef]
8. Lee, H.F.; Zhang, D.D. A tale of two population crises in recent Chinese history. Clim. Chang. 2013, 116,

285–308. [CrossRef]
9. Lee, H.F. Climate-induced agricultural shrinkage and overpopulation in late imperial China. Clim. Res. 2014,

59, 229–242. [CrossRef]
10. Pei, Q.; Zhang, D.D. Long-term relationship between climate change and nomadic migration in historical

China. Ecol. Soc. 2014, 19, 68. [CrossRef]
11. Zheng, J.; Xiao, L.; Fang, X.; Hao, Z.; Ge, Q.; Li, B. How climate change impacted the collapse of the Ming

dynasty. Clim. Chang. 2014, 127, 169–182. [CrossRef]
12. Fang, X.; Su, Y.; Yin, J.; Teng, J. Transmission of climate change impacts from temperature change to grain

harvests, famines and peasant uprisings in the historical China. Sci. China Earth Sci. 2015, 58, 1427–1439.
[CrossRef]

44



Atmosphere 2020, 11, 378

13. Xiao, L.; Fang, X.; Zheng, J.; Zhao, W. Famine, migration and war: Comparison of climate change impacts
and social responses in North China between the late Ming and late Qing dynasties. Holocene 2015, 25,
900–910. [CrossRef]

14. Zhang, D.D.; Pei, Q. Gone with winds: A quantitative analysis of battlefield locations and climate shifts
in imperial China. In Geo-Strategy and War: Enduring Lessons for Australian Army; Dennis, P., Ed.; Big Sky
Publishing: Newport, NSW, Australia, 2015; pp. 193–211.

15. Zhang, D.D.; Pei, Q.; Lee, H.F.; Zhang, J.; Chang, C.Q.; Li, B.; Li, J.; Zhang, X. The pulse of imperial China:
A quantitative analysis of long-term geopolitical and climatic cycles. Glob. Ecol. Biogeogr. 2015, 24, 87–96.
[CrossRef]

16. Lee, H.F.; Zhang, D.D.; Pei, Q.; Jia, X.; Yue, R.P. Demographic impact of climate change on northwestern
China in the late imperial era. Quat. Int. 2016, 425, 237–247. [CrossRef]

17. Liu, L.; Su, Y.; Fang, X. Wars between farming and nomadic groups from Western Han dynasty to Qing
dynasty in north China and relationship with temperature change. J. Beijing Normal Univ. (Nat. Sci.) 2016,
52, 450–457, (In Chinese with English abstract).

18. Lee, H.F.; Zhang, D.D.; Pei, Q.; Jia, X.; Yue, R.P. Quantitative analysis of the impact of droughts and floods on
internal wars in China over the last 500 years. Sci. China Earth Sci. 2017, 60, 2078–2088. [CrossRef]

19. Pei, Q.; Lee, H.F.; Zhang, D.D. Long-term association between climate change and agriculturalists’ migration
in historical China. Holocene 2017, 28, 208–216. [CrossRef]

20. Zhang, S.; Zhang, D.D. Population-influenced spatiotemporal pattern of natural disaster and social crisis in
China, AD1–1910. Sci. China Earth Sci. 2019, 62, 1138–1150. [CrossRef]

21. Zhang, S.; Zhang, D.D.; Li, J.; Pei, Q. Secular temperature variations and the spatial disparities of war in
historical China. Clim. Chang. 2020. [CrossRef]

22. Song, J. The geographical pivot of war in ancient China. J. Cap. Normal Univ. (Soc. Sci. Ed.) 1994, 4, 1–10.
(In Chinese)

23. Rao, S. Layout of the World: General Situation of Military Geography in Ancient China; People’s Liberation Army
Press: Beijing, China, 2002. (In Chinese)

24. Wang, X. Spatial distribution and focus area transfer of war and battle in poems of the early-prosperous
Tang dynasty. Data Cult. Educ. 2009, 18, 16–18. (In Chinese)

25. Leng, H. Research on the Transfer of the Northern Border Trouble in Ancient China from Qin and Han to
Ming Dynasties. Master’s Thesis, Liaoning University, Shenyang, China, May 2011.

26. Zhu, Y.; Newsam, S. Spatio-temporal sentiment hotspot detection using geotagged photos. In Proceedings
of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
Burlingame, CA, USA, 31 October–3 November 2016; ACM: New York, NY, USA, 2016. [CrossRef]

27. Sadler, R.C.; Pizarro, J.; Turchan, B.; Gasteyer, S.P.; McGarrell, E.F. Exploring the spatial-temporal relationships
between a community greening program and neighborhood rates of crime. Appl. Geogr. 2017, 83, 13–26.
[CrossRef]

28. Coyan, J.A.; Zientek, M.L.; Mihalasky, M.J. Spatiotemporal analysis of changes in lode mining claims around
the McDermitt Caldera, northern Nevada and southern Oregon. Nat. Resour. Res. 2017, 26, 319–337.
[CrossRef]

29. Hosseini, S.M.; Parvin, M.; Bahrami, M.; Karami, M.; Olfatifar, M. Pattern mining analysis of pulmonary TB
cases in Hamadan Province: Using space-time cube. Int. J. Epidemiol. Res. 2017, 4, 111–117.

30. Bunting, R.J.; Chang, O.Y.; Cowen, C.; Hankins, R.; Langston, S.; Warner, A.; Yang, X.; Louderback, E.R.; Sen
Roy, S. Spatial patterns of larceny and aggravated assault in Miami-Dade County, 2007–2015. Prof. Geogr.
2017, 70, 34–46. [CrossRef]

31. Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.;
Raad, M.; Hansen, M.; et al. Using spatial statistics to identify emerging hot spots of forest loss. Environ. Res.
Lett. 2017, 12, 024012. [CrossRef]

32. Ge, Q.; Hao, Z.; Zheng, J.; Shao, X. Temperature changes over the past 2000 yr in China and comparison with
the Northern Hemisphere. Clim. Past. 2013, 9, 1153–1160. [CrossRef]

33. Mann, M.E.; Zhang, Z.; Hughes, M.K.; Bradley, R.S.; Miller, S.K.; Rutherford, S.; Ni, F. Proxy-based
reconstructions of hemispheric and global surface temperature variations over the past two millennia.
Proc. Natl. Acad. Sci. USA 2008, 105, 13252–13257. [CrossRef]

45



Atmosphere 2020, 11, 378

34. Editorial Committee of Chinese Military History. Tabulation of Wars in Ancient China; People’s Liberation
Army Press: Beijing, China, 1985. (In Chinese)

35. Tan, Q. Historical Atlas of China; SinoMaps Press: Beijing, China, 1982. (In Chinese)
36. How Spatial Autocorrelation (Global Moran’s I) Works. Available online: https://desktop.arcgis.com/

en/arcmap/latest/tools/spatial-statistics-toolbox/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
(accessed on 26 August 2019).

37. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
38. Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Griffin: London, UK, 1990.
39. How Hot Spot Analysis (Getis-Ord Gi*) Works. Available online: https://desktop.arcgis.com/en/arcmap/

latest/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on
26 August 2019).

40. Wang, X.; Chen, F.; Zhang, J.; Yang, Y.; Li, J.; Hasi, E.; Zhang, C.; Xia, D. Climate, desertification and the rise
and collapse of China’s historical dynasties. Hum. Ecol. 2010, 38, 157–172. [CrossRef]

41. Fang, J. The impacts of climatic change on the Chinese migrations in historical times. Geogr. Environ. Res.
1989, 1, 39–46, (In Chinese with English abstract).

42. Wang, H. The relationship between the migrating south of the nomadic nationalities in north China and the
climatic changes. Sci. Geogr. Sin. 1996, 16, 274–279, (In Chinese with English abstract).

43. Ho, P.T. Studies on the Population of China, 1368–1953; Harvard University Press: Cambridge, MA, USA, 1959.
44. Webster, D. Warfare and evolution of state—reconsideration. Am. Antiq. 1975, 40, 464–470. [CrossRef]
45. Zhao, W.; Xie, S. History of Chinese Population; People’s Press: Beijing, China, 1988. (In Chinese)
46. Carneiro, R.L. The transition from quantity to quality: A neglected causal mechanism in accounting for

social evolution. Proc. Natl. Acad. Sci. USA 2000, 97, 12926–12931. [CrossRef]
47. Lee, H.F.; Fok, L.; Zhang, D.D. Climatic change and Chinese population growth dynamics over the last

millennium. Clim. Chang. 2008, 88, 131–156. [CrossRef]
48. Yang, Y. Migration and frontier society: Regulation of the Han-minority contradiction in Yunnan–Guizhou

region during the Qing dynasty under the perspective of social control. J. Yunnan Normal Univ. (Humanit.
Soc. Sci.) 2017, 49, 9–19. (In Chinese)

49. Shi, N. Discussion about the situations of west–east and north–south confrontations in historical China.
J. Chin. Hist. Geogr. 1992, 1, 57–112. (In Chinese)

50. Hu, A. Place with Strategic Importance: An Outline of Military Geography in Historical China; Hehai University
Press: Nanjing, China, 1996. (In Chinese)

51. Yao, X. A brief discussion on the evolution of the spatial orientation of war in ancient China. Mil. Hist. 2007,
4, 58–60. (In Chinese)

52. Yao, X. Study on the geopolitical model of wars in ancient Chinese dynasties. Hum. Geogr. 2007, 1, 125–128,
(In Chinese with English abstract).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

46



atmosphere

Article

Regional Interactions in Social Responses to Extreme
Climate Events: A Case Study of the North China
Famine of 1876–1879

Xianshuai Zhai 1,2, Xiuqi Fang 1,2 and Yun Su 1,2,*

1 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China;
201831051021@mail.bnu.edu.cn (X.Z.); xfang@bnu.edu.cn (X.F.)

2 Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal
University, Beijing 100875, China

* Correspondence: suyun@bnu.edu.cn

Received: 14 March 2020; Accepted: 8 April 2020; Published: 16 April 2020

Abstract: The North China Famine of 1876–1879, known in Chinese as the Dingwu qihuang (丁戊
奇荒), is a famous case of drought-induced famine in Chinese history. The purpose of this paper
is to provide empirical and historical evidence for understanding the impacts of extreme climate
events and major disasters and the mechanisms of adaptation. From the aspects of famine-related
migration and the allocation of relief money and grain, the regional interactions in social responses to
extreme climate events were analyzed. This paper collected 186 records from historical documents.
Regarding the regions as the nodes and the relationships between regions as the links, the spatial
patterns of famine-related migration and the allocation of money and grain from 1877 to 1878 were
rebuilt. The results show that, firstly, famine-related migration appeared to be spontaneous and
short-distanced, with the flow mainly spreading to the surrounding areas and towns. Secondly, as a
state administrative action, the relief money and grain from the non-disaster areas were distributed
to the disaster areas. However, the distribution of relief grain affected the equilibrium of the food
market in non-disaster areas, which led to fluctuations in food prices.

Keywords: drought; regional interaction; North China Famine of 1876–1879

1. Introduction

Scholars have been studying the complex interactions between climate change and human
history [1], and history is key to understanding the present and future. One of the major research themes
of the Past Global Changes (PAGES) project focuses on the social impacts of historic extreme climate
events and the responses, as well as the mechanisms and processes of past human-climate-ecosystem
interactions at multiple spatial and temporal scales. It aims to enhance our understanding of the
influence of contemporary climate change and the adaptation of human society. This is an international
effort to coordinate and promote past global change research [2].

Among the studies on the impacts of and responses to the historic extreme climate events, most
cases discussed the relationship between the human social system and the climate-environment system
in the same region, but rarely involve regional correlations or common responses. In fact, when the
impact of extreme climate events exceeds the regional carrying capacity, not only the affected areas,
but also the initially non-affected areas can be influenced. There will be a common response in both
affected areas and non-affected areas. For example, from 1813 to 1815, floods and droughts struck
many countries of Europe, resulting in crop failures. Approximately 8000 refugees from Southern
Germany migrated to Russia in the east. France, Italy, and the Netherlands imported food grains
from Egypt, Russia, the United States, and some other regions [3]. In Australia, during the period
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of 1800–1945, in the face of drought or floods, the social responses included the relocation of towns
and the establishment of dams to coordinate water consumption in the upstream and downstream
areas of the river basin [4]. In the southern part of North America, there were several severe drought
events in the 9th to 14th centuries, and people there abandoned the infrastructures and migrated [5].
In China, from 1560 to 1890, it was at the height of the Little Ice Age that the climate fluctuated violently.
The social responses, including famine-related migration and the allocation of money and grain, can be
observed [6–12].

The presented case studies show that regional interaction has become an essential way of social
response to historic extreme climate events. However, there is a lack of research on the characteristics,
processes, and mechanisms of these regional interactions. Given the impact of extreme climate events
and the social response could generate a complex multidirectional network in time and space [13],
it is necessary to contribute to the research on the social response mechanism from the perspective of
regional interaction.

In the present, global connectivity is continuously enhancing, and regional integration is deepening.
It can be inferred that at the local, national, regional and global levels, the possibility of being affected
by extreme events is increasing. According to the report of the American Meteorological Association,
climate change is closely related to extreme events, and these events will seriously threaten the social
economy and human life [14]. Therefore, inter-regional coordinated responses are urgently needed.
IPCC’s report pointed out that risk transfer and sharing will be an effective way of social response [15];
yet considering the interdependencies between regional economic and social systems, it may have
opposite effects on different regions, which means the disaster risks could be either reduced or even
amplified for a certain region involved [16,17]. Although it is impossible to reproduce the exact results
of the response to the past events, the mechanisms, experience, and lessons of regional interactions in
response to the historic extreme climate events are still be of an essential reference value.

Using documentary evidence to study past extreme climate events has become a recognized
method [18], which emphasizes China’s advantages in researching the social impacts of and response
mechanisms to past climate change. On the one hand, the monsoon climate in China is characterized
by its instability, and the traditional agriculture-based economy made the socio-economic system
significantly sensitive to the changes in climate. On the other hand, China owns abundant and
continuous documentary records left by its long history, such as historical books, local chronicles,
archived documents, private diaries, etc. Besides, newspapers, which were first published in China in
the early 19th century, are the documentary records with a high temporal resolution. They can not only
be used to reconstruct the precipitation, temperature and other weather conditions in history [19,20],
but also to explore the whole development process of historic extreme climate events within the
socio-economic systems [18,21].

In this paper, focusing on the famine-related migration and the allocation of money and grain,
the spatial and temporal features of the regional interactions in response to the North China Famine
of 1876–1879 (known in Chinese as the “Dingwu qihuang” or the “Incredible Famine of 1877–1878”)
are analyzed. Combining with exploration on the after-effects of the famine on both disaster areas
and non-disaster areas, the results provide the empirical evidence for understanding social response
mechanisms from the perspective of inter-regional linkages.

2. Data Sources and Research Methods

2.1. Case Selection

North China is a region with a temperate monsoon climate, prone to drought in spring, summer
and autumn. In the past 2000 years, there have been 227 extreme drought events in North China.
Droughts occurred more frequently in 150–200 A.D., 550–800 A.D., 1050–1100 A.D., and 1850–1900
A.D. [22].
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From 1876 to 1879, five provinces in North China, namely, Shanxi, Henan, Shaanxi, Hebei, and
Shandong (Figure 1), suffered a severe drought. The reconstructed precipitation (wet/dry) series
indicated that it was the most severe drought in this region in the past 300 years [23]. Sea surface
temperature anomalies in the eastern Pacific region and intense El Niño events [24] had resulted in the
weakening of the East Asian monsoon and precipitation variability, which were the direct causes of
this drought event. It had global effects, with several regions experiencing extreme drought at the
same time, including Australia, Europe, North America and South America [25–28].

Figure 1. Study area in the paper. In the North China Plain: Beijing, Hebei, Shandong, and Henan;
In the Loess Plateau: Shanxi, Shaanxi, and Gansu; In the Yangtze River Basin: Sichuan, Guizhou,
Hubei, Hunan, Anhui, Jiangxi; Jiangsu, and Zhejiang; andIn the Jiangnan region: Fujian, Guangxi
and Guangdong.

In China, the year 1877 was classified as a “Ding” year, and 1878 was classified as a “Wu” year.
Because the worst period was in 1877–78, this extreme drought event was historically known as the
“Dingwu qihuang”. In 1877, 20% of the villages in Shanxi Province experienced harvest failures, and
in the central Shaanxi Province, the harvest rate of grains during the fall harvest season was merely
30%. The famine reached its peak in 1877, with Shanxi and Henan worst affected [29]. Worse still, an
epidemic occurred soon after and had spread over a large area during the spring and summer of 1878.

Regarding the social factors, frequent warfare in the late Qing Dynasty, fiscal crisis, and
overburdened tenants aggravated the severity of disaster [30–32], leading to severe damage to
productivity, homelessness, and social crisis [23].

In the end, approximately 160 to 200 million people were affected by the drought, and about 9.5
to 13 million people died from famine and disease. Many worst-hit counties in Shanxi and Henan
provinces had lost over 50% of their population, with the death toll passed 5 million and 1.8 million
respectively [33].
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2.2. Study Area

The study area was divided into two parts (Figure 1). One is the affected areas. They are located
mainly in the Loess Plateau and the North China Plain, which are the major wheat-growing areas in
China, with a long development history and large population, containing the above-mentioned five
drought-stricken provinces. The capital city and the political center of China, Beijing, is also in this
region. This region is the target of the relief efforts carried out by the Qing government. The Qing
state’s responses to the famine consisted of a variety of strategies, such as allocating relief silver and
grain and reducing or canceling taxes.

The other part is the south region, containing the Yangtze River Basin and Jiangnan region. It is
the place where the economic center of China in the Qing Dynasty was located, and the resources
for the disaster relief mainly came from. The landforms of this region are featured with the plain
area along the middle–lower reaches of the Yangtze River, and the hilly area in the southeastern part.
Different from the north region, this area is with a subtropical monsoon climate. Good hydrothermal
conditions and well-developed water systems are conducive to the growth of rice, wheat, and a variety
of cash crops, as well as the development of forestry and fishing.

2.3. Data Sources

The data about the North China Famine of 1876–1879 were extracted from Qing Shi Lu [34],
Shenbao [35], Disaster annals in recent China [36], and Qing Tong Jian [37] (Table 1).

Qing Shi Lu is a long-term compilation of the chronicles of the Qing dynasty. It contains a total of
4363 volumes. The materials in Qing Shi Lu are originally from the official documents of the Imperial
Cabinet and other departments, the pieces of writing from the National Historical Archives, and some
first-hand materials such as the emperor’s anthology and handwriting [10]. The historical materials in
Qing Shi Lu are of exceptionally high value.

By 1876, the Shenbao had established itself as a commercially successful newspaper that carried
the only public and serious discussion of many public issues in China [38]. From 1876–79, Shenbao’s
critical coverage of the famine focused not only on the five hardest-hit northern provinces but also on
some other areas influenced by the drought event [39].

Disaster annals in recent China systematically and chronologically expounded on the natural
disasters in China from 1840 to 1919, combined with explicit analyses on the time, location, extent,
causes and social influences of various natural disasters, as well as the effectiveness and gaps of disaster
mitigation measures [40]. The data is of high quality and reliability.

In addition to the above sources, data source about Dingwu qihuang is also supplemented by
Qing Tong Jian. Its collection of historical materials is complete and reliable, and it discusses in detail
politics, society, finance, economy, transportation, war, etc.

Table 1. Information on sources of the data about the North China Famine of 1876–1879.

Data Sources
Temporal
Coverage

Language Access

Qing Shi Lu 1876–1879 Chinese ISBN 978710105626
Shenbao 1876–1879 Chinese https://www.neohytung.com/

Disaster annals in recent China 1876–1879 Chinese ISBN 9787535510839
Qing Tong Jian 1876–1879 Chinese ISBN 9787203039075

Food Price Database in the Qing Dynasty 1876–1879 Chinese http://mhdb.mh.sinica.edu.tw/foodprice/
Zhang’s research 1877–1878 English doi:10.3724/SP.J.1248.2010.00091

After the removal of redundant records, a total of 186 historical records were extracted and
classified (Table 2). We excerpted 96 records from Qing Shi Lu, 70 from Shenbao, 13 from Disaster
annals in recent China, and 7 from Qing Tong Jian. Figure 2 shows that 1877–1878 is the key period,
with significantly more records identified for the famine event.
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Table 2. Classification of the historical records for the North China Famine of 1876–1879.

Contents
Number of

Records
Records Indicated

Directions
Records Indicated

Quantities

Famine-related migration 56 30 6
Allocation of money and grain 74 74 34

Social unrest 56 56 7
Total 186 160 47

Contents/Years 1876 1877 1878 1879 
Famine-related migration 

Allocation of money and grain 
Social unrest 

No data  3% 3-4% 4-5% 
% %

5-7% 7-10% 

Figure 2. Percentage of days with records in each year from 1876–1879.

This paper selected data of wheat prices from the Food Price Database in the Qing Dynasty [41]
(Table 1). The database is based on historical documents in the First Historical Archives of China and
the Institute of Economics of the Chinese Academy of Social Sciences.

The data on the famine-struck area and plague-infested area is from Zhang’s research [42] (Table 1),
which was based on climate records extracted from historical documents in “A compendium of Chinese
meteorological records of the last 3000 Years (in Chinese)” [43].

2.4. Information Extraction

We extracted information on key activities, noting down the general processes, times and places of
occurrence, and the numbers of starving migrants, or the amount of relief silver and grain. The times in
the documents were converted into Gregorian calendar time format with monthly temporal resolution.
The locations were recorded based on the current provincial-level and prefecture-level administrative
divisions in China.

In the Qing Dynasty, grain was measured in piculs (“dan” in Chinese), and silver used in monetary
transactions was measured in taels (“liang”). In the 19th century, 1 picul of rice weighed 60 kg [29].
1 tael of silver was equal to $29.6 [44], converted according to the purchasing power of silver at
that time.

Firstly, we identified the records of famine-related migration, for example, “(1878) this year,
there was a severe drought in Henan, and starving people moved to Xuzhou in search of food [35]”
(Figure 3a). Then the migration route was noted down: Henan→Xuzhou.

Secondly, the records of silver and grain allocation were also extracted. “(1877) when the severe
drought struck Shanxi and Henan, the central government allocated 280,000 taels of silver to
Shanxi and 120,000 taels of silver to Henan. Equally, 40,000 piculs of grain from the granaries
in Anhui and Jiangsu shall be allocated to Shanxi [34]” (Figure 3b). The silver allocation was
noted down: “Beijing→Shanxi, 280,000 taels; Beijing→Henan, 120,000 taels”. The grain allocation:
“Jiangsu/Anhui→Shanxi, 40,000 piculs”. The grain in the paper refers to wheat and rice, the two major
food staples in China.

Finally came to the records of social unrest during the famine. It includes revolt, banditry, and
insurrection, e.g., “(1878) the bandits rebelled in Shanzhou [34]” (Figure 3c). In this record, the site of
the unrest event was the Shanzhou district, which is now the Sanmenxia city of Henan Province.
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(a) 

 
(b) 

Figure 3. Cont.

52



Atmosphere 2020, 11, 393

(c) 

Figure 3. Historical records related to the North China Famine of 1876–1879 (a) is from Shenbao, about
the famine-related migration; (b) is from Qing Shi Lu, about the allocation of money and grain; and (c)
is also from Qing Shi Lu, about social unrest.

2.5. Spatial Analysis

To demonstrate the regional interactions in the social responses, the origins and destinations of
the starving migrants were regarded as nodes, and the migration flows were regarded as the links.
A spatial network of the famine-related migration in 1877–1878 was built (Figure 4). Similarly, taking
the provinces where silver and grain transferred out and in as the nodes, the inter-provincial transfers
as the links, and the number of transfers as the weight, a weighted network of money and grain
allocation in 1877–1878 was built (Figure 5). In the networks, the degree refers to the number of direct
links connected with each node. It can reflect the number or range of connections between different
areas. Using ArcGIS, the lengths (distances) of migration and allocation flows can be calculated.

Besides, regarding the sites where the social unrest events took place as the core, point density
analysis was conducted in ArcGIS. In the analysis, a particular sample point is set as the center, then a
neighborhood is defined around each center with a certain value of search radius. After that, points of
different weight values that fall within the neighborhood are identified. Points are weighted higher if
they are closer to the centers. The weights gradually reduce until they drop to zero at the edge of the
neighborhood. The density value is the sum of the values of the sample points divided by the area
of the neighborhood [45,46]. In this paper, the unrest occurrence sites are the centers, and the search
radius is 100 km. The unrest density value is divided into eight levels according to the number of
unrest events per 10,000 square kilometers. The frequency of occurrence and the spillover effects of
social unrest were analyzed.
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(a) 

 
(b) 

Figure 4. (a) Origins, destinations and sizes of the famine-related migration in 1877. (b) Origins,
destinations and sizes of the famine-related migration in 1878. Straight line: migration flows with
exact locations of destinations; Dotted line: migration flows with approximate locations of destinations;
Degree: the number of direct links connected with a node.
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(a) 

(b) 

Figure 5. (a) Spatial characteristics of grain and monetary allocations in 1877. (b) Spatial characteristics
of grain and monetary allocations in 1878. Degree: the number of direct links connected with a node;
Weight: the number of inter-provincial transfers.
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3. Results

3.1. Regional Interactive Response and Characteristics

3.1.1. Spatial Characteristics of Famine-Related Migrations

Historically, Chinese farmers have had a tied connection to their homeland and farmland.
Large-scale population migration is temporary and spontaneous in the period of extreme climate
events. The migration is often driven by famine, plague and other events triggered by major
meteorological disasters [6]. The transition from being starving to homeless is the result of the local
social system losing its ability to adapt and the failure of individual survival strategies.

Famine victims tended to migrate from the hardest-hit areas to the nearest slightly-impacted
areas, and non-disaster areas (Figure 4). In 1877, migrants left from Shandong and Anhui to the south
of Jiangsu. Some people left from Shandong to Liaoning, while others moved from Shanxi, Henan,
and Hebei to Beijing. The victims migrated between 130 and 766 km (straight line distance, the same
below), with an average migration distance of approximately 429 km. In 1878, famished people in
Henan moved to Beijing and Anhui. Some people in Shandong, Hebei, and Shaanxi moved to Beijing,
and others in Shanxi moved to Hebei, Beijing and Anhui, as well as to the Daqingguan and Tongguan
in Shaanxi. Famine victims migrated between 130 and 1080 km, with an average migration distance of
approximately 460 km.

In this historical period, limited by poor traffic conditions and the physical weakness, the
spontaneous famine-related migration flows just spread from the disaster areas to the nearby areas.
In 1877–1878, the harvest rate of grains in Anhui was only about 50%, while in Jiangxi, Hubei, and
Hunan, which are farther away from the disaster areas, the harvest rate reached over 60% or 70%
(Table 3). Although with relatively low harvest rate, Anhui was still one of the major destinations
in the famine-related migration due to its proximity to the disaster areas. Meanwhile, the migration
directions of the famished people appeared to be relatively fixed and stable, indicating the influences
of regional politics, dissemination of the relief information, and customs and traditions [47].

Table 3. Harvest rate of grains in different provinces [48].

Year

Anhui Jiangxi Hubei Hunan

Summer
Harvest

Autumn
Harvest

Summer
Harvest

Autumn
Harvest

Summer
Harvest

Autumn
Harvest

Summer
Harvest

Autumn
Harvest

1877 50%+ 50%+ 70%+ 70%+ 60%+ 50%+ 60%+ 70%+
1878 50%+ 50%+ 60%+ 60%+ 60%+ 60%+ 60%+ 70%+

There was a visible difference in the economic conditions between towns and villages in China
during the Qing dynasties. Under the circumstance of the rural economic decline, cities and towns
became the destinations of the migrants. Soup kitchens and shelters there offered more chances of
survival. For example, the capital city at that time, Beijing, is close to the affected provinces, and it had
become a popular destination for the starving migrants. Besides, some other places attracted migrants
due to their advantageous geographical location and sophisticated traffic system. For instance, in 1878,
the whole area of Shaanxi Province suffered a severe drought, but its two towns, Tongguan and
Daqingguan, had experienced the entry of famished people from the Shanxi Province on the east.
Lying close to the shared borders of Shaanxi, Shanxi and Henan provinces, these two towns were
distribution centers of relief goods and had been of strategic importance since ancient times.

3.1.2. Spatial Characteristics of Money and Grain Allocations

In China, a state unified by centralized political power, the allocation of money and grain is a
state administrative action. It is normal that the central government provides emergency financial
assistance and food aid to disaster areas. The relief silver and grain are mainly from state banks
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and granaries, which are supplied by every locality on a regular basis. Besides, some resources in
the non-disaster areas could be requisitioned as emergency relief by the central government for the
duration of the famine.

In 1877, a total of 17 provinces were involved in the allocation of money and grain (Figure 5).
The main drought-stricken areas, Shanxi, Henan, Shandong, Shaanxi, and Hebei, received the most
amount of silver and grain. From the perspective of spatial pattern, the allocation is featured
with a core-ring structure: (1) Shanxi, lying in the core, received the most amount of silver and
grain; (2) Shandong, Henan, and Hebei, lying on the second layer, received the relief from other
provinces and also supplied resources for Shanxi; (3) Hunan, Anhui, Jiangxi, Jiangsu and other
provinces in the Middle–Lower Yangtze Plain, lying on the most peripheral ring, experienced mainly
the outflow of silver and grain. In 1877, the straight-line distances of silver and grain allocations were
between 270 and 1635 km, and the average transfer distance was approximately 800 km.

In 1878, also 17 provinces were involved in the relief allocations, but the spatial structure appeared
to be a complex network (Figure 5). The amounts of the relief grain being allocated to Shanxi, Henan
and Hebei accounted respectively for 34%, 39% and 27% of the total number of grain transfers.
The distribution appeared to be more balanced than that in 1877. Shanxi, Shaanxi, Henan, and
Hebei were the main receivers of the relief silver, accounting for 96% of the total silver transfers.
Zhejiang, Hubei, and Hunan in the Yangtze River Basin remained as the suppliers. Apart from
them, Fujian, Guangdong and Sichuan in the farther south also became the main relief suppliers. In
1878, the straight-line distances of silver and grain allocations were 132–1635 km, with an average of
approximately 860 km.

Unlike the spontaneous migrations of famine victims, the allocation of money and grain is
government action. It was at a larger spatial scale and with more frequent transfers. Moreover, the
spatial pattern of the money and grain allocations was relatively more complex, as it would vary
according to the severity of the disasters and national relief policies.

3.1.3. Temporal Characteristics of Famine-Related Migrations and Money and Grain Allocations

The records of the money and grain allocations mainly came from official documents, so the time
of the documents was the time of the allocations. While the records of famine-related migrations might
only appear when there were many migrations, they can still roughly indicate the period of mass
famine-related migration.

According to the records that contain clear time information of the events in 1877–1878 (Figure 6),
the relief allocations and famine-related migrations appeared to be seasonal and temporary, and shared
with a similar peak period, which was from October 1877 to May 1878. However, the duration of
money and grain allocations was longer than that of famine-related migrations.

Figure 6. The number of the records of famine-related migrations and relief allocations in 1877–1878.
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In North China, during the Qing dynasty, the summer harvest season started from May to June,
and the autumn harvest season was from September to October. For example, in Shandong Province,
wheat was harvested in the fifth lunar month (June in the Gregorian calendar), while sorghum and
millet were harvested in the eighth lunar month (September in the Gregorian calendar) [49].

A small number of records of migrations before the summer harvest in 1877 indicated the
occurrence of drought, but it also suggested that the situation was not beyond control. However, a large
number of records were found of the time period from October 1877 to May 1878. The autumn of 1877
experienced a severe harvest failure as the consequence of persistent extreme droughts in the previous
months. In the spring and summer of 1878, as the secondary disaster, plagues began to spread in the
disaster areas. These two might be the main causes of the significant rise of the number of records,
which suggested that the impacts of the extreme droughts had exceeded the response capability of a
single region. In this stage, regional interactions were necessary for the mitigation of disaster impacts.

4. Discussion

4.1. Influence of Money and Grain Allocations on Regional Food Prices

Food prices directly reflect the food supply and demand, and are negatively correlated with the
crop yields, and are also the indicators of social stability [50]. Therefore, variations in food prices in
disaster areas and non-disaster areas can indicate the effects of regional interactions and coordinated
responses to the extreme drought events. Wheat prices from 1876 to 1879 were selected from the Food
Price Database in the Qing Dynasty [41] for the analysis, as wheat has always been the primary food
staple in China. Figure 7 shows the lowest and highest wheat prices in different provinces and regions
in each year from 1876 to 1879.

Figure 7. Provincial wheat prices in 1876–1879. Blue lines: variations of the highest annual wheat price
in the province.

The wheat prices in every province of the disaster area had risen with fluctuations. In Shanxi
and Henan, the prices in 1877 and 1878 could be over four or five times higher than usual. Wheat
prices in Shanxi fluctuated most violently, and the extent of the rise was the most significant. In 1878
and 1879, wheat prices in Henan soared. In Shandong and Hebei, however, the wheat prices were
relatively stable, with just small increases. A positive correlation can be observed between wheat price
variations and the severity of droughts and famines.

The relief silver and grain alleviated some of the damages caused by the famine, but the effects
were still insufficient. Taking Shanxi as an example, from 1876 to 1879, Shanxi had received 1.76 million
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piculs of grain and 13 million taels of silver in total. The relief silver could purchase about 2.6 million
piculs of wheat according to the average annual wheat price (5 taels of silver per picul) in Shanxi at
that time. That is to say, on average, about 1.09 million piculs of wheat were distributed to Shanxi each
year. This amount of wheat could support 650,000 famine victims to survive for 8 months after the
autumn harvest failure till the next summer harvest, based on the average daily food consumption of
approximately 0.007 piculs per person [29]. However, at that time, the number of famine victims in
Shanxi had exceeded 4 million [51], which means only 16% of the famished people could be supported.
The situation remained severe, and some starving people even started resorting to cannibalism for
survival. According to the records, starvation cannibalism occurred in respectively 42 worst-hit
counties of Shanxi, 21 in Henan, and 11 Shaanxi [52].

In the non-disaster area, there were also obvious fluctuations in wheat prices. During 1877–1878,
the harvest rates in Hubei, Hunan, and Jiangxi were just around 60–70% (Table 3). Sending relief grain
to other provinces caused insufficient domestic supply, resulting in the sharp increases in wheat prices
in Hunan and Jiangxi. On the one hand, inter-regional grain transfers worked effectively in stabilizing
food prices in the disaster area. On the other hand, to some extent, the grain transfers disturbed the
conditions of the food markets in the non-disaster area.

4.2. Influence of Famine-Related Migrations on Regional Social Stability

The regional interactions in social responses to the famine also profoundly influenced social
stability. In 1877, more social unrest events (≥2–4/10,000 km2) took place in Henan, Shandong, Hebei,
and Beijing (Figure 8), which were the main origins and destinations of the starving migrants. Very high
unrest events density (≥6–7/10,000 km2) was found in Hebei. There were many reports of banditry and
food robbery at the junction of Shaanxi, Shanxi, and Henan provinces. In 1878, the popular destination
of famine migrants changed from the southern Jiangsu to Anhui, which made the social order of the
former begin to improve. The places with a high density of social unrest events (≥2–4/10,000 km2)
were recognized in Henan.

 
(a) 

Figure 8. Cont.
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(b) 

Figure 8. (a) Social unrest events density in 1877. (b) Social unrest events density in 1878.

When the famine victims left from the worst-hit areas to the surrounding slightly-impacted areas,
or from villages to towns and cities, the social unrest events also “followed” with them from the
disaster areas to the destinations for migrants. Thus, for the non-disaster areas, the management of the
starving migrants was a challenge of regional governance.

4.3. Regional Interaction Responses and Transfer-Dispersion of the Impacts of Extreme Weather Events

Famine-related migration represents the dispersion of the population pressure in the famine-struck
areas (Figure 9). The spatial redistribution of the famine victims dispersed the population pressure
in their places of origin, but increased the population pressure in their destinations. Famine-related
migration is also connected to social unrest events and represents the dispersion of the social impacts
of the extreme drought events.

The allocation of money and grain is an administrative action, with the purpose of adjusting the
gaps in food production between disaster areas and non-disaster areas, and increase the opportunities
to obtain food for the victims in the disaster areas. Affected by the allocation, food prices in some of
the non-disaster areas also increased. To a certain extent, the allocation of money and grain played a
role in transferring the social impacts of disasters and had positive effects on the post-disaster recovery
(Figure 9).

In Chinese history, normally there were two areas of destination for the migration driven by
the events related to climate change. One is the southeastern part of China, with warm and humid
weather and fertile soils. The other is the arid and barren northwest. Migrating to the northwest
seems to go against common sense, but it was because of the increase of conflicts between farmers and
herders, and the increase of invasion of the northern nomads in the dry period [53]. Between 1876 and
1879, extreme droughts led to a server famine in North China, and many people migrated in search
of food. However, in spite of the food production, the starving migrants selected their destinations
using the location and proximity to their homeland as the determining factors. This is because that the
famine-related migrations at that time were mainly temporary, and it was difficult for starving people
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to complete long-distance travel. Compared with the climate-driven migration mentioned above, the
migration during the North China Famine of 1876–1879 was a spontaneous social response to the
extreme disaster events and the dispersion of short-term population pressure in the disaster areas.

 
Figure 9. Process of regional interaction responses and transfer-dispersion of the impacts of disasters.

Based on the vast canal network, the central government planned, organized and carried out
the allocation of money and grain, which was also the process of impact transfer across the whole
country. In this network, the relationship between regions was more complex than that in the migration
network. This time, in spite of the distances, the grain storage and accessibility of a place were the
main factors in the decision-making process.

5. Conclusions

After the analysis of the spatial and temporal characteristics of famine-related migration and
allocation of the disaster relief in the North China Famine of 1876–1879, the conclusions were
summarized as follows:

(1) Famine caused by extreme drought events was the main driving force of the migration.
Famine-related migration was spontaneous and short-distanced, flowing into the surrounding
towns and cities. The straight-line travel distances of most migrations were approximately 400 km.
Famine-related migration spatially dispersed the population pressure but caused the spillover of
social unrest.

(2) As a government action, the relief silver and grain from the non-disaster areas were distributed
to the disaster areas, with an average relief transfer distance of over 800 km. The transfers of the
famine relief formed a complex spatial network. During the worst period of the famine, due to
harvest failures, wheat prices were over four or five times higher than usual. The allocation of
money and grain relieved some pressure on the food supply in the disaster areas but did not
fundamentally change the situation. It also affected the equilibrium of the food market in the
non-disaster areas, which led to the fluctuations in wheat prices.

(3) The regional interactions in the process of responding to extreme climate events is a process of
dispersion and transfer of the disaster events’ impacts, which will have different risk effects to
both disaster areas and non-disaster areas. In the context of increasing globalization and regional
linkages, a higher capacity for integrated risk prevention and comprehensive administrative
governance is required.
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Abstract: Climate change can influence infectious disease dynamics both directly, by affecting
the disease ecology, and indirectly, through altering economic systems. However, despite that
climate-driven human plague dynamics have been extensively studied in recent years, little is known
about the relative importance of the direct and indirect effects of climate change on plague outbreak.
By using Structural Equation Modeling, we estimated the direct influence of climate change on human
plague dynamics and the impact of climate-driven economic change on human plague outbreak.
After studying human plague outbreak in Europe during AD1347–1760, we detected no direct climatic
effect on plague dynamics; instead, all of the climatic impacts on plague dynamics were indirect,
and were operationalized via economic changes. Through a series of sensitivity checks, we further
proved that temperature-induced economic changes drove plague dynamics during cold and wet
periods, while precipitation-induced economic changes drove plague dynamics during the cold
periods. Our results suggest that we should not dismiss the role of economic systems when examining
how climate change altered plague dynamics in human history.

Keywords: climate change; plague; direct and indirect effects; Structural Equation Modelling

1. Introduction

Arguably, there is an increasing consensus in academia showing that climate change is a
dominant driving force of plague outbreak in the intricate pattern of disease complexity. For example,
climatic fluctuations have been found associated with the recurrent introduction of Yersinia pestis,
the bacterium responsible for causing the plague, from Asia into Europe during the Black Death era [1,2].
Stenseth, et al. [3] pointed out that warmer springs and wetter summers favored the prevalence of
plague dynamics at its natural reservoir in Kazakhstan. In China, the modeling results by Xu, et al. [4]
demonstrated that historical plague intensities in Northern and Southern China were positively
correlated to wetness and dryness, respectively. However, according to more updated findings from
Xu, et al. [5], wetness accelerated the spread of the plague during the third plague pandemic in China.
Apparently, some of these climate-plague nexuses are related to climatic phenomena at a larger scale.
Plague outbreak is quantitatively known to be associated with El Nino Southern Oscillation [6–8],
Indian Ocean Dipole [7], Pacific Decadal Oscillation [8], and Southern Oscillation Index [9].

Although the above studies help us understand the connection between climate change and
plague outbreaks, they are all grounded on the same assumption: climatic variables have a direct
and one-step impact on plague dynamics. In those studies, the investigated climatic variables and
the plague-indicating variables are simply correlated for measuring their first-order relationship.
However, is the association between climate and plague straightforward in nature? According to a
series of studies by Zhang et al. [10–12], climatic variations might have worked through a specific set
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of economic systems to cause the outbreak of epidemics. Hence, the climate-plague association is
unlikely to be direct in nature, as there should be a medium in human societies translating climatic
forcing to plague outbreaks.

If there is indeed a direct relationship between the climatic variables and plague dynamics,
then the investigations of the climate-plague nexus would remain convincing that the nexus normally
requires a lesser likelihood to include a third variable in explaining the correlation. If there is not such
a relationship, although it cannot overturn the previous observations and computational results, it may
somehow indicate that many scholars may have oversimplified the necessary pathways between climate
change and plague outbreak. As Zhang et al. [12] indicated, climate change could generate chronic
undernourishment in China through the shrinkage of agricultural production, which further weakened
immunity to infectious diseases. Lee and Zhang [13] associated the causality of climate-induced famine
on epidemics outbreak in historical China. Tian, et al. [14] worked further to reveal that cold and dry
climate conditions, in large part, indirectly increased the frequency of epidemics outbreak through
generating the prevalence of locusts and famines in China over the last two millennia. Dunca and
Scott [15] also emphasized the crucial role of nutrition and immunity in the spread of infectious
diseases in pre-industrial European societies. The study by Pei, et al. [16] outlined the dependence
on climate of the macroeconomic structure in Europe, and further indicated that such dependence
would be imperative in pulling human societies into the Malthusian trap, which includes epidemics
outbreak, in pre-industrial Europe. Specifically, we also provided a hypothetical explanation of
the climate-plague relationship and highlighted the possibility that climate change affected plague
dynamics via economic systems. Hence, the influence of temperature/precipitation on plague
dynamics appeared to have inconsistent time lags at the multi-decadal to centennial timescales [2].
However, despite efforts to demonstrate the climate-economic-epidemics relationship in the past
decades, there exists little empirical understanding of how climatic variations and plague dynamics
are integrated via economic systems.

In this study, we tried to fill in the research gap in the climate-economic-epidemic relationship by
examining the direct and indirect effects of climatic fluctuations on the frequency of plague outbreak in
pre-industrial Europe at the continental scale. In our study region over the course of AD1347–1760,
there have been documented long-term counts of human plague outbreak; the economic trend has
been described in fine resolution; and climatic variables have been reconstructed through widespread
dendrochronology records. We used such long-term data on plague, climate, and economic attributes
to answer the following questions: (1) whether the investigated climatic variable exhibited a direct
and/or indirect influence (through economic systems) on human plague dynamics in Europe at the
continental scale; (2) whether economic attributes deliver their influence to human plague activities in
Europe at the continental scale; and (3) whether both climatic variables and economic factors maintain a
long-term trend with human plague dynamics over the study period in Europe at the continental scale.
To address the above issues, we applied structural equation modeling (SEM) to disentangle that direct
and/or indirect importance of climatic fluctuations on historical plague activities in human societies.
We showed all the hypothetical pathways being tested in our analysis in Figure 1. Our findings suggest
that climate-driven economic fluctuations played a crucial role in translating climate change into
plague outbreak.
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Figure 1. Path diagram showing all hypothesized direct and indirect links amongst climate change,
economic fluctuations (including wheat price, CPI, and real wage), and plague outbreak. Climate change
and economic fluctuations may directly cause the plague outbreak. Also, climate change may indirectly
cause the plague outbreak by influencing the wheat price, and then the wheat price will affect CPI and
the real wage.

2. Materials and Methods

2.1. Plague Data

To measure the historical plague outbreak in Europe, we adopted a detailed geo-referenced plague
dataset digitalized by Būntgen, et al. [17]. The database records the starting year of each human plague
outbreak in Europe at the city-scale. We counted the number of cities identified with plague outbreak
in each year and transformed the database into a time series. Only data from Europe was counted,
as Europe was selected for our study region. Slightly different from the original dataset, which used the
number of total plague outbreak count as its unit, the transformed dataset adopted in this study used
the number of cities with plague outbreak count as our unit. Over the AD1347–1760 period, a total
of 6764 plague outbreaks were recorded in Europe. The year with the most extensive plague outbreak
is AD1630, with a record 119 cities affected by the plague. Out of 414 units of observation, plague quiet
years are recorded 14 times. Zero-inflation of the dataset should not be considered as a problem.

2.2. Climate Data

We considered three sets of climate data, namely temperature, precipitation, and scPDSI, for our
analysis in this study. They were common parameters for historical study relating to climate-human
relationships and were found strongly significant in influencing plague dynamics over time and
space [18,19].

The temperature and precipitation dataset included for analysis are acquired from the climate
reconstruction provided by Büntgen, et al. [20]. This climatic reconstruction was made possible
through surveying 1547 sets of tree ring chronologies from Europe for the reconstruction of past
climatic variability of Europe at its continental scale in annual resolution. Particularly, the time
series for temperature data is calibrated into temperature anomaly with respect to the period of
AD1901–2000. The vast coverage of raw data from this dataset ensured the reliability and validity
of climate reconstruction. Thus, the dataset has been widely adopted in other historical studies of
Europe [21].

Another set of climatic variables adopted in this study originated from the Old World Drought
Atlas (OWDA) project of Cook et al. [22]. Our study considered self-calibrated Palmer Drought
Severity Index (scPDSI) as the projection of the natural hydroclimatic environment. As such, the PDSI
reconstruction by Cook et al. [22] provides an ideal extended record of natural wetness/dryness
variability for the pre-industrial era of Europe. The OWDA was developed from dendrochronological
records over the European continent and calibrated with high-quality instrumental scPDSI gridded
data from the Royal Netherlands Meteorological Institute. Our study retrieved available data points,
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which have a spatial resolution of half-degree longitude-by-latitude grid, from our study area and
further aggregated relevant grids of the same year into a time series for our analysis.

2.3. Economic Data

For historical economic parameters, we selected wheat price, consumer price index (CPI), and real
wages as variables for our estimations. The historical wheat price is extracted from the database
created by Allen [23]. We extracted the data from each city and determined whether they fell onto our
study region. The raw data is first standardized by [(xi − xmean)/xs.d.], then we calculated the averaged
standardized wheat price of Europe. The historical CPI data comes from Allen [23]. We calculated the
averaged standardized CPI by the same method as suggested in wheat price. We here averaged the
standardized real wages of laborers and standardized real wages of building craftsmen based on the
database from Allen [23].

2.4. Structural Equation Modeling

We applied structural equation modeling (SEM) [24] to test for the relative importance of climatic
variables and economic variables on plague dynamics, and whether climate change has a direct
influence on plague dynamics. To do this, we first constructed all the hypothetical pathways that fully
detailed the causality amongst variables within the system being studied [25]. Then, mathematically,
the total pathway added up together as a series of linear regression. The technique hypothetically
decomposed all the correlations of two variables into direct effects that pinpointed the causal influence
of one factor on another and indirect effects that passed through other variables in the model and
non-casual mediating predictors resulting from a common cause [26]. From the full casual model,
the sum of direct effects and all indirect effects mediated by other variables between the predictor and
response variable would yield total effect. In SEM, by assuming that all of the important variables
and pathways were labeled, every effect listed in path analysis was considered linear, additive and
unidirectional, and that residuals were presumably uncorrelated [27]. In this study, as also shown
in Figure 1, the response variable is plague outbreak. We hypothesized that climate change and
economic fluctuations (including wheat price, CPI, and real wage) may directly cause plague outbreak.
Also, climate change may indirectly cause plague outbreak by influencing wheat price, which then will
affect CPI and real wage.

2.5. Linear Regressions

To test whether different sets of data correlate directionally with each other over the long-run
and in different climatic settings, we statistically compared the long-term trends between: (1) climate
change and plague outbreak; (2) economic change and plague outbreak; (3) climate change and
economic change; and (4) internal dynamics of economic change. For each set of correlation tested,
we divided the study timespan into different climatic periods, namely: (1) warm periods (positive
temperature anomaly); (2) cold periods (negative temperature anomaly); (3) dry periods (below-average
precipitation with reference to AD1347–1760); and (4) wet periods (above-average precipitation with
reference to AD1347–1760). To assess the afore-mentioned long-term relationship, we adopted simple
linear regression models for each combination.

3. Results

3.1. Direct and Indirect Climatic Effect on Plague Outbreak

Over our study period in AD1347–1760, our SEM results showed that temperature and
precipitation variations would have a substantial indirect impact on plague outbreak in Europe
through climate-induced fluctuations in wheat prices (Figure 2). Yet, the climatic influence, as implied
from the SEM results, is never directly linked to plague dynamics.
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     (a) 

 

       (b) 

     (c) 

Figure 2. Path diagrams for (a) Model 1: Temperature anomaly; (b) Model 2: Precipitation; (c) Model 3:
PDSI, for the direct and indirect effects of climate change on plague outbreak. The residual variables
(ε1, ε2, ε3, ε4) represent the unmeasured factors affecting the corresponding variable. Arrows represent
the relationship of each pair of the variables, with the path coefficients stated next to the arrows.
The path coefficients are standardized partial regression coefficients from linear regressions. We omit
those statistically insignificant paths in the models, except for the path PDSI→Wheat Price. Red arrows
represent statistically insignificant paths, while the black ones represent statistically significant ones.

Model 1 shows that temperature variation has a statistically-insignificant direct relationship with
plague dynamics (Table 1).
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Table 1. Correlation coefficients between each set of climatic/economic predictor and plague response.
The correlation is decomposed into the direct and indirect effects, and the synergy of the direct and
indirect effects gives the total effect.

Direct Indirect Total

Model 1
Temp→ Plague −1.49 −1.66 *** −3.15 ***

Wheat price→ Plague 38.56 *** −28.86 *** 9.69 **
CPI→ Plague −31.68 *** −0.32 −31.99 ***

Real wage→ Plague 3.02 / 3.02
Model 2

Precipitation→ Plague −0.03 0.02 *** −0.01
Wheat price→ Plague 38.79 *** −28.31 *** 1048 ***

CPI→ Plague −31.12 *** −0.30 2.91 ***
Real wage→ Plague 2.91 / 2.91

Model 3
PDSI→ Plague −0.51 0.09 0.47

Wheat price→ Plague 38.91 *** −28.70 *** 10.21 ***
CPI→ Plague −31.43 *** −0.32 −31.75 ***

Real wage→ Plague 3.08 / 3.08

Significance level: *** p < 0.001, ** p < 0.05.

However, temperature would indirectly control the variations of plague frequency through wheat
price fluctuations (intercept = −1.66, p < 0.001). In Model 2, precipitation displayed a similar pattern as
temperature. The command of precipitation on plague dynamics is undertaken indirectly through the
manipulation of wheat prices (intercept = 0.02, p < 0.001) during our study period. Likewise, the path
model again denied the direct impact of precipitation on the plague outbreak. In Model 3, the estimation
suggested that PDSI would have no directional effect on plague dynamics, both directly and indirectly.
For each set of the path analysis, we also included selected economic factors to investigate the direct
and indirect influence of climate change on plague dynamics. In all models, it is observed that,
despite the climate-induced fluctuation, both wheat price and CPI have a direct effect on plague
outbreak. The influence of wheat price and CPI was not mediated by other variables in the models
when other factors were held constant. The models also universally demonstrated that the sensitivity
of plague dynamics was indirectly correlated with the changes in wheat price via CPI. However, not all
the economic variables tested were found relevant to plague outbreak. The historical real wage was
not directly related to any variations of plague dynamics. By combining the direct effect and indirect
effects of predictors, we were able to measure the total effect of both climatic variables and economic
variables on plague outbreak. From the result, as indicated in Table 1, the total effect of temperature,
precipitation, and CPI remained statistically negatively significant to any change of plague activity,
while the effect of wheat price on plague was reported to be positive. In short, plague dynamics is
favored by low temperature, dry environment, rising wheat price, and decreasing CPI.

3.2. Long-Term Trends of Climate, Economic Changes, and Plague Outbreak

In the process of creating SEM from climatic, economic, and plague data, we also looked for
long-term trends between variables and checked for their consistency over our study period. In Figure 3,
we laid out the general long-term sensitivity of plague dynamics and identified predictors deduced
from SEM.
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Figure 3. Long-term trend of plague outbreak with (top left) temperature anomaly; (top right)
precipitation; (bottom left) wheat price; and (bottom right) CPI. The red lines represent the trends, and
the green envelopes provide the 95% confidence interval areas.

Plague dynamics, as estimated, had a negative trend with temperature (Coef. = −0.007, p < 0.001,
F = 8.24) (Table A1), implying that cooling would effectively trigger plague outbreak. For precipitation,
the long-term trend is statistically insignificant to the plague dynamics. For the two economic variables
tested here, wheat price exhibited a consistent positive trend with the plague dynamics (Coef. = 0.0126,
p < 0.001, F = 60.24); whilst CPI also showed a similar trend (Coef. = 0.0062, p < 0.001, F = 16.20).

Over the 414 years of observation, temperature and precipitation both have a persistent impact on
wheat price. It was estimated that the price of wheat drops with increasing temperature (Coef. = −0.319,
p < 0.001, F = 23.81) and decreasing rainfall (Coef. = 10.519, p < 0.001, F = 23.81). At the same time,
wheat price, because it is closely related to the economy, was itself positively correlated with CPI
(Coef. = 1.029, p < 0.001, F = 2597.16).

We also compared the long-term trend of temperature influence between warm and cold periods.
It should be noted that climatic control on plague and economic parameters behaved differently in
warm and cold periods. During cold periods, the long-term trend of all studied relationships performed
the same as the overall long-term trend observed (Figure 4, Table A2). However, during warm periods,
temperature no longer exerted its effect on plague dynamics and wheat price (Figure 5, Table A3).
From the statistical results we obtained, the sensitivity of plague dynamics was primarily controlled
by wheat price (Coef. = 0.0122, p < 0.001, F = 12.04) and CPI (Coef. = 0.0093, p < 0.001, F = 8.66)
within the warm phases. Such control was also revealed in the SEM models presented in the previous
section, in which growing CPI and rising wheat price occurred together during the warm periods
(Coef. = 1.065, p < 0.001, F = 691.12).
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Figure 4. Long-term trend of plague outbreak with (top left) temperature anomaly; (top right)
precipitation; (bottom left) wheat price; and (bottom right) CPI during the cold periods. The cold
periods refer to the time with negative temperature anomaly. Red lines represent the trends, and the
green envelopes provide the 95% confidence interval areas.

 
Figure 5. Long-term trend of plague outbreak with (top left) temperature anomaly; (top right)
precipitation; (bottom left) wheat price; and (bottom right) CPI during the warm periods. The warm
periods refer to the time with positive temperature anomaly. Red lines represent the trends, and green
envelopes provide the 95% confidence interval areas.
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In addition, the performance of the climatic variable differed in the dry and wet periods.
Further analyses showed that temperature could not change the trend of plague outbreak during dry
periods (Figure 6, Table A4). The pressure from the temperature on wheat price and plague outbreak
did not exist at all during dry periods. However, in wet periods, the dynamics of plague activity
increased with temperature cooling (Coef. = −0.0119, p < 0.001, F = 12.90), whilst increasing wheat
price was also associated with decreasing temperature (Coef. = −0.524, p < 0.001, F = 32.18) (Figure 7,
Table A5).

 
Figure 6. Long-term trend of plague outbreak with (top left) temperature anomaly; (top right)
precipitation; (bottom left) wheat price; and (bottom right) CPI during the wet periods. The wet
periods refer to the time with above-average precipitation over our study period. Red lines represent
the trends, and the green envelopes provide the 95% confidence interval areas.

 

Figure 7. Cont.
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Figure 7. Long-term trend of plague outbreaks with (top left) temperature anomaly; (top right)
precipitation; (bottom left) wheat price; and (bottom right) CPI during the dry periods. The dry
periods refer to the time with below-average precipitation over our study period. Red lines represent
the trends, and the green envelopes provide the 95% confidence interval areas.

4. Discussion

Given that climate change and the risk of plague outbreak are closely coupled [28], actions need
to focus on the pathways and patterns of climate-plague nexus. In particular, the mechanism of those
climatic effects—whether they are direct and/or indirect, remain largely unclear and understudied so
far. In this study, we found that the effect of climatic forcing on the temporal distribution of plague
outbreak was solely indirect in nature. Furthermore, the long-term trend of climate-plague nexus was
only significant in the cold and wet periods.

4.1. Direct and Indirect Paths Embedded in the Climate-Plague Nexus

The statistical results from SEM led us to similar conclusions: (1) that climate has an indirect
influence on plague dynamics; (2) that economic factors have a direct influence on plague dynamics;
(3) that climate has a direct influence on economic factors, also meaning that the influence of climate
on plague dynamics is mediated by economic systems. More specifically, the effect of temperature
on plague dynamics is indirect but as a whole significant, whilst the effect of precipitation on plague
dynamics is indirect but considerably insignificant as a whole.

Although many disease outbreaks are characteristically associated with climate directly [29,30],
the indirect pathway is not uncommon [31]. However, the recognition of such an indirect climatic effect
has not received significant attention in academia. Most often, previous studies considered climatic
influence as a direct indicator to plague activities without testing the potential existence of an indirect
pathway. Our results challenged the previous perspective and demonstrated that the economic system
is an important element of the indirect effect of climate on plague outbreak. In fact, our SEM approach
could not detect any direct climatic effect on plague activity; instead, only temperature displayed total
effect on plague dynamics, and the pathways of temperature influence and precipitation influence
were all indirect. Indeed, previous studies suggested that high summer temperature could inactivate
human plague occurrence in the case of the United States [32,33] and may cause the reduction of flea
survival, early-stage development, reproduction rate, and the ability to transmit the disease [34,35].
The influence of precipitation was previously well documented but defined in a complicated manner.
The trend of precipitation was depicted as a positive and linear indicator of plague outbreak in the
U.S. [36]. Nonetheless, the correlation is negative in Vietnam and Uganda, where dry seasons favored
the risk of plague outbreak to a greater extent than wet seasons [37,38]. However, regardless of the
disparity in the study area, the variation in climate (both temperature and precipitation) did not post
any direct effect on plague dynamics in our study when we held the economic parameters constant.
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Academically, much more is known about how climate affects economic systems, or how economic
attributes led to epidemics–partly because climate-epidemics study is a comparatively new subject for
researchers. A series of work by Pei et al. [16,39–41] is most prominent in justifying the casual pathway
from cooling to the shrinkage of crop productivity, and thus, shock in the agricultural market and the
stability of agrarian society. In fact, before the time of the Industrial Revolution, when most people
were farmers, it is understandable that an agrarian society relies heavily on “good climate”. The study
by Zhang et al. [12] extended further the idea of climate-induced food shortage to malnutrition and
hypothesized a declined cohort immunity through examining the time series of human height in Europe.
Moreover, because of malnutrition, the undernourished population would easily be more susceptible to
infectious diseases through dysfunctional immunological responses [42]. Thus, it is possible, with the
support of past literatures, to demonstrate that climatic variables could be hypothetically correlated
to increasing plague activities through their commands on the agro-economy. However, from our
SEM result, only temperature and precipitation variations were deemed significant in such a pathway,
with PDSI coming up short in showing a statistically significant relationship with plague dynamics
both directly and indirectly. As a result, since not all the climatic variables we tested in this analysis
were found to be correlated, additional climatic variables, or the term “climatic influence” should be
considered carefully when we describe their impact on plague outbreak.

Our study also delineated the indirect effect of precipitation on plague outbreak in time series.
In fact, previous results once questioned the role of precipitation in producing any significant change in
plague dynamics [2]. Yet, those studies might have only considered the total effect of precipitation but
not the indirect effect of it. Our study also highlighted the indirect positive effect of wetness on plague
dynamics. However, our SEM results indicate that this association could be weak, yet significant,
in magnitude. The reason behind this might lie in the contextual variations in the agricultural markets
or major crop types. In this study, we used wheat price as a representation of crop market and Europe
as the study area, and it could be that wheat is more sensitive to wetness than dryness and historical
Europe was capable of absorbing shocks in mild climatic variations, and thus, generating the result we
saw from our analysis. In an alternative study adopting the same methodology of ours but working on
a region with a completely different market and key crop types, the role of precipitation in influencing
plague dynamics might also appear different.

Furthermore, our results, suggest that the sustainability and resilience of societies to climate
change matters for their survival against the plague. Some researchers identify climate as the direct
driver of plague activities in European history, with such climate-plague tropes supported by robust
palaeoclimatic and reconstructed disease data. Yet, those hypotheses might have simplified social
responses and failed to account for the complexity of disease dynamics in human society. To a certain
extent, the lack of synchronous climate-driven plague outbreak mechanisms in China in the work of
Xu et al. [4] should have already implied profound regional variations in plague resilience and buffers
to climatic variability. Such recognition of regional variation in plague resilience had been stifled by
treating the disease dynamics of plague to climatic variation as a homogenous and universal entity.
Statistical analyses that assumed a single, homogenous and direct response of plague dynamics to
climate forcing were therefore at odds with empirical data relevant only to a certain spatial level so
that the results might appear dichotomous, inconsistent, mild, or insignificant. Consequently, there is
a dissonance between method and hypothesis.

Five important caveats should be noted in interpreting our study results. First, our study results did
not refute the role of climatic variation in any previous studies, although our study showed that climatic
variation was not directly related to plague dynamics. Our intent was to demonstrate that the effects of
climate on the economic system exert a stronger influence on temporal plague outbreak patterns, and to
call for addressing the role of social responses to plague outbreak. Second, the disease dynamics of
plague remained extremely complex. Our study is pilot in nature to outline the plausible indirect effect
of climate on the plague outbreak dynamics at our study scale. Yet, the interpretation of such results
should not be overgeneralized to plague dynamics in other contexts such as virus-host relationship,

75



Atmosphere 2020, 11, 388

rodent plague outbreak dynamics, host-to-human transmission, and so on. Third, the indirect effect of
climate change on plague dynamics might not only bypass social response. For example, Yue, et al. [43]
explored the influence of trade routes on plague spreading patterns. Despite the fact that they assumed
the transportation route as static over their study period, one can easily forecast the evolution of
transportation could also contribute to plague dynamics in time. Forth, in a similar sense, the effect of
other climatic variables on the plague dynamics should await further analysis. Plague dynamics might
not only be influenced by temperature and precipitation. Instead, recent progress in climate-plague
nexus had frequently suggested the role of large-scale climatic phenomenon [44,45]. Finally, this paper
focused mainly on the climate-plague nexus at the macro-scale. However, we should not overlook the
importance of studying micro-regions in Europe during this outbreak. A series of recent work [46–50]
has called for attention between the balanced view of macro-scale study of plague dynamics and
micro-perspective of it in medieval Europe.

4.2. Long-Term Trends of the Climate-Plague Nexus

Long-term trends between different variables suggested that human plague dynamics is sensitive
to particular climatic situations, and economic attributes are potentially more consistent in influencing
plague dynamics. To be more specific, the long-term trend of human plague activities with different
predictors suggested that only temperature remained significant in correlating with plague outbreak
patterns in cold and wet climate, whilst the effect of precipitation showed no significant relationship
with plague directly in any sensitivity tests. Furthermore, the effect of temperature displayed no total or
indirect relationship with plague outbreak when the climate is warm and dry. Similarly, the increasing
temperature only promoted the drop of wheat price during cold and wet periods but made no
significant impact on the wheat market when the climate was already warm and dry. In comparison,
decreasing precipitation also contributed to the lowering of wheat price in cold and wet periods. On the
one hand, the above long-term dynamics are consistent with and supportive of our SEM results. On the
other hand, the pattern might also indicate that the direct/indirect/total effects of climate variation were
spatio-temporally selective and variable-dependent. Thus, such reshaping of the idea of direct/indirect
climate-plague nexus at the temporal domain might also be applicable in similar fashion at the spatial
domain, or in a multi-scalar study [51]. Second, the results suggested that cooling during cold times
and growing wetness in wet times could stimulate plague outbreak. In a similar vein, extreme coldness
and flooding were the contributors to plague outbreak in Europe [2]. Third, to expand on the previous
point, our result might have explained the insignificant climate-plague association in some other
studies. To a large extent, the meticulous picture of the climate-plague association we obtained from
this study was attributable to the centennial-scale historical panel data applied. Other studies that
utilize shorter time frames or contemporary plague outbreak might unavoidably fall onto the “warm
period”, which provided a null result, rejecting the legitimacy of climate-plague relationship.

In addition, both wheat price and CPI exhibited a positive relationship with human plague outbreak
regardless of any climatic situations. The consistent relationship between economic parameters and
plague might seem persuasive in confirming their dominant role in governing plague dynamics.
Yet, one should also consider that plague dynamics, or any other pandemics, would certainly shock
agricultural markets and living standards [52]. Therefore, a cyclic correlation between epidemics and
economic systems might reinforce each other, making their correlation become consistent and stable.
Besides, factors such as wars, social turmoils, urbanizations, and famine could have a fundamental
impact on both agricultural markets and infectious disease outbreak [10]. Based simply on the analysis
performed in this study, it remained unknown whether socio-economic variables were more important
than climatic variables in driving plague dynamics, and that whether factors like wars and urbanization
might play a part in climate-plague nexus. Yet, given that our analytic results could address the
consistent significant correlation between economic changes and plague dynamics, further research
for the aforementioned questions should be warranted. As our analysis focused on the long-term
relationship of climate-plague nexus over a continental spatial unit, future study could be arranged at

76



Atmosphere 2020, 11, 388

case studies in the modern context with a smaller spatial study unit to capture the potential variation
of climate-plague nexus with a moving scalar window.

5. Conclusions

The identification of the direct and indirect relationship between climate change and human
plague dynamics is a topic of high interest in the context of surging researches over the potential
elevating risk of plague outbreak under climate change. Although many studies have revealed the
possible linkages in the climate-plague nexus and have highlighted the concern of scale-dependent
variability in climate-driven plague dynamics in the spatio-temporal dimension [45], they seldom
explicitly consider the possibility that the relationship is an indirect one. In this study, we applied SEM
to quantitatively justify that the casual pathway from climate change to plague dynamics in historical
Europe was not a direct one but was mediated by climate-driven economic changes. In a nutshell,
the influence of temperature was only significant in the cool and wet periods, corresponding to the
total effect and indirect effect of temperature in SEM; whilst the influence of precipitation on human
plague dynamics seemed to be indirect in nature and was significant only in cold climate. The study
evidenced that climate-driven economic changes, rather than climate change alone, were the direct
cause of human plague outbreak. The investigation on such indirect influence of climate change on
human plague dynamics should receive more attention in the future.
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Appendix

Table A1. Linear regression results of the long-term relationship between different sets of variable
employed in the path analysis, AD1347–1760 (n = 414).

Variable A Variable B Coef F R2

Temperature anomaly Plague outbreak −0.007 *** 8.24 0.0196
Precipitation Plagueoutbreak −0.090 0.60 0.0014
Wheat price Plague outbreak 0.0126 *** 60.57 0.1282

CPI Plague outbreak 0.0062 *** 16.20 0.0378
Temperature anomaly Wheat price −0.319 *** 23.81 0.0546

Precipitation Wheat price 10.519 *** 10.29 0.0244
Wheat price CPI 1.029 *** 2597.16 0.8631

Significance level: *** p < 0.001.

Table A2. Linear regression results of the long-term relationship between different sets of variable used
in path analysis during the cool periods of AD1347–1760 (n = 319).

Variable A Variable B Coef F R2

Temperature anomaly Plague outbreak −0.007 *** 11.73 0.0357
Precipitation Plague outbreak −0.090 0.08 0.0002
Wheat price Plague outbreak 0.0125 *** 48.11 0.1318

CPI Plague outbreak 0.0054*** 9.70 0.0297
Temperature anomaly Wheat price −0.229 *** 14.90 0.0449

Precipitation Wheat price 13.655*** 13.84 0.0418
Wheat CPI 1.025 *** 1875.74 0.8554

Significance level: *** p < 0.001.
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Table A3. Linear regression results of the long-term relationship between different sets of variable used
in path analysis during the warm periods of AD1347–1760 (n = 95).

Variable A Variable B Coef F R2

Temperature anomaly Plague outbreak −0.0007 0.08 0.0009
Precipitation Plague outbreak 2.503 0.11 0.0012
Wheat price Plague outbreak 0.0122 *** 12.04 0.1146

CPI Plague outbreak 0.0093 *** 8.66 0.0852
Temperature anomaly Wheat price 0.020 0.09 0.0010

Precipitation Wheat price 2.503 0.11 0.0012
Wheat price CPI 1.065 *** 691.12 0.8814

Significance level: *** p < 0.001.

Table A4. Linear regression results of the long-term relationship between different sets of variable used
in path analysis during the wet periods of AD1347–1760 (n = 217).

Variable A Variable B Coef F R2

Temperature anomaly Plague outbreak −0.0119 *** 12.9 0.0566
Precipitation Plague outbreak 0.088 0.00 0.0000
Wheat price Plague outbreak 0.0147 *** 47.82 0.1819

CPI Plague outbreak 0.0064 *** 8.66 0.0852
Temperature anomaly Wheat price −0.524 *** 32.18 0.1302

Precipitation Wheat price 0.879 0.00 0.0000
Wheat CPI 1.020 *** 1166.35 0.8444

Significance level: *** p < 0.001.

Table A5. Linear regression results of the long-term relationship between different sets of variable used
in path analysis during the dry periods of AD1347–1760 (n = 197).

Variable A Variable B Coef F R2

Temperature anomaly Plague outbreak −0.001 0.06 0.0566
Precipitation Plague outbreak 3.679 1.73 0.0088
Wheat price Plague outbreak 0.0104 *** 18.86 0.0882

CPI Plague outbreak 0.0061 ** 7.46 0.0369
Temperature anomaly Wheat price −0.142 2.38 0.0120

Precipitation Wheat price 3.68 1.73 0.0088
Wheat CPI 1.038 *** 1377.92 0.8760

Significance level: *** p < 0.001; ** p < 0.01.
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Abstract: Meteorological disasters are the result of the interaction of multiple factors and multiple
systems. In order to improve the accuracy of prediction, it is necessary not only to consider the
characteristics and cycles of each subsystem, but also to study the interaction of all systems. Based on
the summer precipitation data and 130 circulation indexes of 34 national meteorological observation
stations in Chongqing from 1961 to 2010, the prediction model of Chongqing summer precipitation
was established based on the decision tree and the stochastic forest algorithm based on machine
learning, and the prediction test of 2011–2018 was carried out independently by the model. Compared
with the results of the single-factor prediction model, the trend consistency rate increased by 37.5% and
12.5% respectively. In addition, when using the random forest model to predict summer precipitation
in Chongqing from 2014 to 2018, the 5-year average Ps, Cc and PC scores were 84.6, 0.27 and 67.1,
respectively, which were significantly improved compared with 72.4, −0.12 and 52.9 of the current
climate forecasting methods, and the forecast quality of the random forest was relatively stable.
The multi-system collaborative impact model based on decision tree and random forest algorithm
can achieve high accuracy and stability. Thus, this method can not only be an effective means for the
diagnosis and prediction of climate causes, but also has a good theoretical and practical value for the
prediction of extreme disasters.

Keywords: decision tree; random forest; precipitation prediction; machine learning

1. Introduction

Since summer precipitation is of great concern regarding meteorological disasters, a lot of research
work has been done on the influence of climate system subsystem changes and their interactions on
summer precipitation. Some progress has been made in the study of the characteristics, causes and
prediction methods of summer precipitation in Chongqing and its surrounding areas. Li [1–3] analyzed
the characteristics of summer precipitation, drought and flood in the eastern part of southwest China,
and pointed out that it had obvious inter-annual and inter-decadal changes. Zhou et al. [4] studied
the basic climatic characteristics of summer precipitation in the three gorges reservoir area, and the
results showed that the summer precipitation in the three gorges reservoir area had a good consistency,
the frequency of drought years was significantly higher than that of flood years, and the summer
precipitation in the three gorges reservoir area had an obvious inter-decadal variation. Ma Zhenfeng [5]
analyzed the main physical factors affecting summer precipitation in southwest China, such as plateau
factors, westerly belt system, subtropical high and other factors, and established a summer precipitation
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prediction model with a certain physical basis on this basis, which achieved good results in precipitation
prediction in flood season in recent years. Zhang Qiang et al. [6] analyzed the correlation between
Sea Surface Temperature (SST) index and drought and flood disaster in the upper reaches of the
Yangtze river, showing that the occurrence of El Nino event increases the probability of drought in the
upper reaches of the Yangtze river, while the occurrence of La Nina event increases the probability of
waterlogging in the upper reaches of the Yangtze river. Liu De et al. [7] analyzed the characteristics
of Eurasian circulation in summer rainfall in Chongqing, and established a conceptual model for
forecasting summer precipitation in Chongqing by using circulation index in key areas in early winter.

In recent years, artificial intelligence technology has also begun to be applied in the
field of atmospheric science such as severe convection weather forecast and climate prediction.
There are many applications of machine learning in severe convection weather prediction. In 2017,
Shenzhen Meteorological Bureau and Alibaba jointly organized the CIKM data science competition
themed "smart city, smart country", and made climate precipitation forecast with radar images.
Xiu Yuanyuan et al. [8] used machine learning supervised learning model support vector machine
SVM to identify and forecast severe convection weather. Sun Quande et al. [9] showed the potential
of machine learning methods in improving local accurate weather prediction. Li Wenjuan et al. [10]
founded that the physical significance of factors selected by the random forest algorithm was relatively
clear. In the field of climate, researchers have used artificial intelligence systems to help them rank
climate models over the past few years [11] to detect hurricanes and other extreme weather events
in real and simulated climate data, and thus find new climate models. The above study is based on
considering the influence of a single system or physical factor on precipitation in and around Chongqing.
The effects of anomalies of multiple systems or physical factors on precipitation in Chongqing are
considered. In fact, due to the non-linear and chaotic nature of the climate system, the factors that
affect the precipitation prediction constitute the comprehensive effects of many sea temperatures
(ENSO, Kuroshio, etc.), plateau snow, land surface temperature, volcanic activity, astronomical factors,
monsoon, subtropical high, high resistance and plateau topography. We aim to analyze the synergistic
effect of the factors that lead to the precipitation change through sorting, statistics, analysis and
processing of big data, machine learning, etc., and distinguish which factors are excellent forecasting
factors, and the weight of these excellent factors in different regions, that is, how much forecasting
information these factors can provide. If these issues are resolved, precipitation prediction will become
possible and credible.

As an excellent representative of the machine learning algorithm, the decision tree model adopts
recursive segmentation technology to continuously divide the data space into different subsets so as
to detect the potential structure, important patterns and relationships of data [12]. Compared with
traditional parametric statistical methods, the decision tree model does not need to make assumptions
about the relationship between independent variables and dependent variables in advance, and it can
effectively overcome the multi-collinearity of independent variables. However, the results of a single
decision tree are unstable and prone to overfitting. The random forest model builds decision trees by
randomly extracting some samples from the original samples through Bootstrap sampling technology,
and combines multiple decision trees to effectively avoid overfitting [13]. At present, decision trees and
random forest algorithms are more and more widely used in meteorology. Shi Dawei et al. [14] used
the decision tree algorithm to establish a more accurate classification and prediction model for road
icing disaster. Shi Yimin et al. [15] studied the classification and prediction model of regional summer
precipitation days based on the data mining Classification and Regression Tree (CART) algorithm.
Qin Pengcheng et al. [16] Hubei rapeseed yield limiting factor analysis based on a decision tree and
random forest model also achieved good application.

Based on the actual forecast business, this paper adopts the decision tree classification method to
establish the precipitation prediction model with multi-factor collaborative influence for the average
summer precipitation in Chongqing. Based on decision tree modeling, random forest is used to conduct
an integrated prediction test, and evaluate its prediction effects.
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2. Materials and Methods

2.1. Materials

The meteorological data used in this paper were obtained through the Meteorological
Unified Service Interface Community of China Meteorological Administration. The decision tree
method uses the regional average precipitation of 34 national meteorological observing stations in
Chongqing (Figure 1), while random forest analyzes the precipitation of 34 national meteorological
observing stations.

 
Figure 1. Map of 34 national meteorological stations in Chongqing.

The circulation index in this article comes from the business meteorological network [17–20],
respectively, including atmospheric circulation index 88 such as the subtropical high, east Asian trough,
polar vortex, Eurasian circulation type, characteristics, Pacific Ocean trade winds etc., SST index 26 such
as ENSO (various districts and types), warm pools, Indian Ocean, Tide area, Kuroshio area et al., cold air
and typhoon, Southern Oscillation Index (SOI), The Pacific Decadal Oscillation (PDO), Quasi-biennial
Oscillation (QBO), subsurface SST index and another 16; in total, 130 items. Among them, the SST
index in this article includes 26 SST indexes and 16 other indexes including multivariable ENSO index,
decadal oscillation in the north Pacific, meridional mode SST in the Atlantic Ocean, quasi-biennial
oscillation, EU300T_130E, EU300T_160E, EU300T_180W, and Atlantic SST triples. In this article,
summer refers to June to August.
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2.2. Methods

The machine learning algorithms adopted in this article include decision tree [14,16,21],
and random forest [22–24]. The evaluation methods are Prediction Consistency (Pc), Prediction
Score (Ps) and Correlation Coefficient (Cc) [25–27], which are used in the China Meteorological
Administration (CMA). The modeling period is from 1961 to 2010, and the independent inspection and
evaluation period is from 2011 to 2018. The decision tree and stochastic forest model are multi-factor
prediction models using 130 circulation indexes, while the prediction model established by using any
one of the 130 circulation indexes is a single-factor prediction model.

2.2.1. The Decision Tree

Yang et al. [28] introduced the basic concepts and common algorithms of decision tree, which can
be used to form classification and predictive model. Suppose D =

{
(x1, y1), (x2, y2), . . . , (xn, yn)

}
,

including xi =
(
xi
(1), xi

(2), . . . , xi
(n)
)T

as input variables (circulation index), n is the number of features
(the summer model is 130, the winter model is 34), yi ∈ {1, 2, . . . , K} is the category-type response
variable (that is, the amount of precipitation), i = 1, 2, . . . , N, N is the sample size (from 1961–2018,
58 years). Among them, 1961–2010 is the training data set and the completion of model training;
2011–2018 is the independent test data set and the independent inspection and evaluation. The goal of
decision tree learning is to build a decision tree model based on a given training set to enable it to
correctly classify instances. In this paper, the C4.5 algorithm of Quinlan is adopted for decision tree
generation [29].

2.2.2. Random Forest

Random forest is a multifunctional machine learning algorithm. It was first proposed by Breiman,
a professor of statistics at the University of California, Berkeley, in 2001, and can perform regression and
classification calculations. The basic composition of the random forest is classification and regression
tree (classification and regression tree) invented by Breiman and other inventions. Compared with
machine learning algorithms such as neural networks, this algorithm of repeated classification
and regression of binary data effectively reduces the amount of calculation. Random forest is the
combination and re-aggregation of these classification trees. Random forest improves the estimation
accuracy without significant increase in the calculation amount, and it is insensitive to missing values
and multivariate collinearity, and can estimate up to thousands of explanatory variables, which why it
is known as one of the best algorithms at present [30,31].

Random forests use the Bagging method to combine decision trees, and they use the Bootstrap
sampling methods (Bootstrap method) to extract N samples from the original sample to model the
decision tree. Under normal circumstances, random forests will randomly generate hundreds to
thousands of decision trees. Each tree in the forest is independent, and then the most repetitive tree is
selected as the final result. Since there is no need to consider constraints such as variable distribution
conditions, interactions, non-linear effects and even missing values, the structure of the random forest
is complex, but it is robust and easy to use [32–34].

The specific construction process of the random forest is as follows:

(1) If the size of the training set is N (50 in this paper, that is, 1961–2010), for each tree, N training
samples are randomly and recursively extracted from the training set (this sampling method is
called bootstrap sample method) as the training set of the tree;

(2) If the feature dimension of each sample is M, specify a constant m <<M, randomly select m (20
in this paper) feature subsets from M features, and select the optimal one from these m features
every time the tree splits.

(3) Every tree grows as fast as possible, and there is no pruning process.
(4) Established a large number of decision trees according to steps (1)–(3), thus forming a random

forest. The classification result depends on the number of votes of the tree classifier.
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In the process of building a random forest, there are two parameters that need to be set by the
user according to the specific situation. In most cases, the default parameters of the model can obtain
the optimal simulation results without adjustment. The term “random” in random forest refers to
the two random parameters here. The introduction of these two randomness factors is crucial to the
classification performance of a random forest. Due to their introduction, the random forest is not
easy to fall into overfitting and has a good anti-noise ability (for example, insensitive to the default
value). Therefore, the random forest models established in this paper to estimate precipitation all use
default parameters.

2.2.3. Test Method

In order to test the climate prediction quality, CMA used a prediction grading score in 2010,
then Ps and Cc in 2013. In order to be consistent with the current climate operations, Pc, Ps and Cc are
used in this paper to test the prediction quality of the summer precipitation in Chongqing.

(1) Pc is evaluated station by station on the basis of whether the predicted and actual anomaly
coincidence was consistent. The consistency rate formula is defined as follows:

Pc =
N0
N
× 100%

where N0 is the number of the stations with correct climate trend prediction; N is the number of
stations actually participating in the assessment.

(2) Ps test method is a method that sets different weights to comprehensively test the results of
climate trend prediction and anomaly level prediction. Its test score is relatively intuitive. On the basis
of the correct score of trend prediction, the correct score of abnormal prediction can still be obtained,
which is equivalent to giving encouragement to the abnormal forecast, and its prediction score can
relatively reflect the ability and level of climate prediction.

Trend prediction is the prediction of anomaly/anomaly percentage sign. When the prediction is
identical to the actual sign (0 for positive), the trend prediction is correct. Anomaly level prediction
refers to the prediction that the percentage of precipitation anomaly exceeds (including) ±20% and the
temperature anomaly exceeds (including) ±1 ◦C.

Calculation formula of Ps test method:

Ps =
a×N0 + b×N1 + c×N2

(N −N0) + a×N0 + b×N1 + c×N2 + M
× 100

where, N0 is the number of stations with correct climate trend prediction; N1 is the number of stations
with correct first-order anomaly prediction; N2 is the number of stations with correct second-order
anomaly prediction; N is the actual number of participating evaluation stations; M is the number of
stations where there are no secondary anomalies and the precipitation anomaly percentage ≥100% or
equal to −100% and the temperature anomaly ≥3 ◦C or ≤−3 ◦C; a is the weight coefficients of climate
trend terms, b is the first-order abnormal terms and c is the second-order abnormal terms. In this
method, a = 1, b = 2 and c = 4.

(3) Cc tests the correlation of climate trend prediction products, which characterizes the degree of
correlation between the forecast and the live field. The size of the correlation coefficient can indicate
the correspondence between the high and low center of the forecast field and the live field. It reflects
the accuracy of the prediction result and the quality of the prediction method to a certain extent.
It is one of the internationally popular prediction evaluation methods. Prediction inspection and
evaluation of precipitation and the temperature mainly use precipitation anomaly percentage and
average temperature anomaly to calculate their correlation coefficients.
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Specific calculation method:

Cc =

N∑
i=1

(ΔR f i − ΔR f )(ΔR0i − ΔR0)√
N∑

i=1
(ΔR f i − ΔR f )

2 N∑
i=1

(ΔR0i − ΔR0)
2

where ΔR f i is the forecast value of precipitation anomaly percentage of each station; ΔR f is the average
value of the precipitation anomaly percentage of all stations in the region; ΔR0i is the observed actual
value of the precipitation anomaly percentage of all stations in the region; ΔR0 is the average value of
the observed values of precipitation anomaly percentage of all stations in the region; N is the total
number of stations actually participating in the assessment.

The forecast released in this article refers to the forecast submitted by the Chongqing Climate
Center to the National Climate Center to participate in the assessment of forecast quality.

3. Results and Analysis of Precipitation Prediction in Summer Test

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can be
drawn. In the actual climate prediction of Chongqing, due to the complex and changeable terrain,
it is necessary to make trend judgment on the precipitation and average precipitation of 34 stations
in order to obtain the forecast data and obtain the detailed spatial distribution. The authors used
decision trees and random forests for correlation analysis based on both averages and individual
site data from 34 sites. The single site results of the decision tree is relatively complex, and have no
significant characteristics, while the single site results of random forest analysis are relatively good.
However, due to the limitation of sample number, while based on average date of 34 sites, the results
of random forest are not as good as those of the decision tree method. Therefore, in this paper,
the decision tree model takes the average precipitation of 34 sites as the modeling object and focuses
on the collaborative influence of multiple factors. In the random forest model, 34 sites were modeled,
and spatial distribution characteristics were focused. The two methods complement each other.

3.1. Decision Tree Model Test

Considering the physical factors in the summer period, IBM SPSS Modeler 18.0 was used, and the
CART algorithm (the same as below) was used to model (Figure 2). It can be seen from the model
that the circulation index that has a large impact on summer precipitation in Chongqing includes the
western Pacific subtropical high ridge line, landfall typhoon, SST in tidal zone, the northern boundary
of the North African Atlantic North American High, polar vorticity in the Atlantic European region,
Indian sub-high area, and 30 hPa zonal wind.

The combination of the summer rainfall trend in Chongqing and the concurrent circulation index
model based on the CART algorithm is shown in Table 1. Factors with less precipitation include
factors 1–4, factors with more precipitation include factors 5–7. “+” and “−” respectively represent the
positive and negative anomalies of the exponent in the condition, and the percentile in brackets is the
probability of less (or more).

Using the same period index from 2011 to 2018 to predict the amount of summer precipitation in
Chongqing and compare it with the observations, the results are shown in Table 2.

If the prediction only considers single-factor effects, the northern (southern) ridge of the western
Pacific subtropical high (referred to as the Western Pacific subtropical high) generally corresponds to
less (more) summer precipitation in Chongqing. Based on this prediction, the northern ridge of the
western Pacific subtropical high in 2011, 2012, 2015 and 2018 corresponds to less precipitation, and the
results in 2015 are inconsistent. In 2013, 2014, 2016 and 2017, the southward ridge of the western Pacific

88



Atmosphere 2020, 11, 508

subtropical high corresponds to more precipitation, but only in 2014 and 2017. The total prediction
accuracy was 62.5% (5/8).

When multi-factor synergy is considered, even if the western Pacific subtropical high is southerly,
there may be less precipitation, as shown in case (3). In the actual prediction, 2011 and 2012 are
completely in line with the situation (1). The percentages of precipitation anomalies are −30.5% and
−22.1%, which are significantly less. The percentage of precipitation anomaly in 2013 was −26.1%,
and the result was consistent with situation (3). If only the first two conditions of situation (3) are
met, the probability of less precipitation is only 50%. In 2013, the 30 hPa zonal wind was significantly
larger, which increased the probability of less precipitation to 100%. Similarly, in the collaborated
multi-factor prediction, either the ridge line of the western Pacific subtropical high is northerly or
southerly, there may be more precipitation, as shown in situation (5) and situation (6). The circulation
index in 2014 is consistent with the result of situation (6). The probability of more precipitation is
100%, and the actual precipitation anomalies percentage is 6.3%, which is more normal. The circulation
index in 2015 is consistent with the result of situation (5). The probability of excessive precipitation is
100%, and the percentage of actual precipitation anomaly is 11.7%. The circulation index in 2016 is
consistent with the situation (3), which predicts less precipitation, but the actual situation is 9.5% more
precipitation. 2016 is a typical El Nino year, and the anomaly of the atmospheric system caused by the
SSP anomaly in the Pacific Ocean may be the possible reason for the failure of the prediction model in
2016 [30,31].

Figure 2. An analytic diagram of the relationship between the precipitation trend and circulation index
in summer in Chongqing based on the CART algorithm. The ‘% ‘represents the probability of more or
less. The ‘n’ represents more or less annual scores (as below).
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According to the prediction effect test from 2011 to 2018, the prediction accuracy of multi-factor
synergy reached 87.5%, which was 25% higher than that of a single factor. In view of the fact that
the analysis of the contemporaneous factors is more applied to diagnostic analysis, considering the
actual situation of prediction, the SST index modeling of pre-winter (Figure 3) is selected to forecast
the business according to the previous method.

Figure 3. Relationship between precipitation trend in summer and SST index in pre-winter based on
the CART algorithm in Chongqing.

The combination of summer precipitation trend and winter SST index model based on the CART
algorithm in Chongqing is shown in Table 3. In the model, there are 6 cases of lower precipitation and
6 cases of higher precipitation.

The model was tested based on the observation of summer precipitation in Chongqing from 2011
to 2018, the results are shown in Table 4. In the model, if the Atlantic meridional model SST with
the highest correlation is considered, the precipitation in Chongqing is low if it is high, while the
precipitation in Chongqing is high if it is low. The trend forecast is correct in all years except 2014. If
different combinations are considered, from 2011 to 2014, the Atlantic SST to mold is on the high side,
and the NINOA is low. The cold tongue ENSO index was small and the predicted precipitation was
small in 2013, which is consistent with the situation (1). The difference in the remaining three years
is the difference in the western hemisphere warm pool index. In 2011 and 2012, it is consistent with
the situation (2), with less predicted precipitation. In 2014 it is consistent with the situation (7), with
more predicted precipitation. Signals of SST in 2015 and 2016 are consistent with the situation (10),
and too much precipitation is predicted. In 2017 and 2018, it coincided with the situation (3), with
less precipitation forecast. From the test, it can be seen that the forecast of precipitation trend in the
8 years from 2011 to 2018 is correct when considering the coordination of multiple factors, which is
12.5% higher than that when considering only a single factor.

The above considers the multi-factor synergy of the decision tree method. Although quantitative
prediction of Chongqing’s summer precipitation cannot be achieved, the experiments show that, no
matter whether the predictive diagnosis analysis is made by using the previous or the same period
factor, it is more obvious than the single index. This also shows that the “climate system”, as a complex
system, is the result of the interaction of multiple factors and multiple systems. In the process of
diagnosis or prediction, we not only need to analyze the characteristics and cycles of each part of

91



Atmosphere 2020, 11, 508

the system separately, but we must also study the integration behavior of the entire system and the
interaction of the sub-system. This process requires statistical analysis of a large number of data such
as ocean and atmosphere, as well as various model prediction data, in order to obtain the key factors
affecting the local climate, the key regions of different circulation fields, and the key periods when
indexes and circulation affect the local climate. With many "blind spots" in the physical processes
and research of climate system change, current prediction methods cannot make full use of these
huge data resources. It may be an important factor for large climate systems, but not necessarily a
critical factor for local climatic characteristics. This will inevitably lead to “lighter and slightly heavier”
situations in forecasting analysis, leading to uncertainty in the forecast Increased predictive accuracy.
Therefore, with the help of decision tree and other machine learning technologies, comprehensive
and valuable information can be fully mined from the vast variety of data, so as to discover the main
system and collaborative influence mechanism that affect the local climate, which plays a significant
role in improving the accuracy of local climate prediction.

3.2. Prediction Experiment of Random Forest Model in Summer

In the actual forecasting business, it is not only necessary to forecast the overall trend of the region,
but also to analyze the spatial distribution pattern and forecast the rainfall centers and the occurrence
locations. Therefore, based on the average model of the whole city in the previous section, this section
uses random forests for prediction of 34 National Meteorological Observatories in Chongqing. In the
selection of circulation index, since the actual summer forecast is released in March, the circulation
factor that can be obtained at this time can only reach February. Thus, when random forests are used
for prediction, this article only uses the early winter SST index modeling, regardless of the constraints
such as the distribution conditions, interactions, nonlinear effects, and even missing values of variables.
Figure 4 is the forecast distribution map of random forest precipitation and distribution of actual
precipitation anomaly rate over the years 2011–2018.

It can be seen from Figure 4 that there was no consistent or excessive summer precipitation in
Chongqing during 2011–2018, which is a case of different spatial distributions, which also makes
prediction difficult. Comparing the forecast with the actual situation, the overall trend forecast for
8 years is more accurate. Only the spatial distribution of 2011 and 2015 is slightly different, and the
remaining years are relatively accurate in regional forecast. Because the forecast uses a dichotomous
trend forecast and cannot be refined for anomalous forecasting, the prediction results are tested at 20%
and −20% using Ps, Cc and PC test methods, respectively. The test results are shown in Table 5.

As can be seen from Table 5, the random forest prediction score is higher and more stable. The
average Ps, Cc and PC scores for 2014-2018 were respectively 84.6, 0.27 and 67.1. Compared with 72.4,
−0.12, and 52.9, which are released by the forecast, they are significantly improved. From the historical
comparison, Ps and PC scores are consistent. 2016 and 2017 are roughly equivalent to the released
forecasts, and the rest of the years are about 20 points higher than the released forecasts. The Cc score
for the correlation between the predicted field and the live field is significantly better than the forecast,
and, except for 2015, they all exceed 95% significance test. In contrast, the published forecast shows
that Cc scores are mostly negative, which indicates that the predictive typing needs to be improved.
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Figure 4. Forecast and observation distribution of summer precipitation in Chongqing based on
random forest. (F) and (O) mean forecasting and observation, respectively.
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4. Conclusions and Discussion

By establishing a decision tree model based on multi-factor collaboration for summer precipitation
in Chongqing and conducting random forest integration and testing, the following conclusions are
reached:

(1) In the concurrent circulation index that affects summer precipitation in Chongqing, the western
Pacific subtropical ridge is a very important influencing factor. However, if we only consider the
West Pacific sub-ridge ridgeline, there are a total 5 years in the 2011–2018 trend forecast which are
accurate. Considering the synergistic effect of the Indian sub-high area and the typhoon landing,
the 8-year trend can be accurately predicted, and the trend consistency rate increased by 37.5%.
In the case that multiple factors were taken into account for the SST factor in the first winter,
the precipitation trend prediction in 8 years was correct, which was 12.5% higher than that in the
case that only a single factor of Atlantic meridional model SST was considered. This shows that
in the prediction business, as the climate system is the result of the interaction of multiple factors
and multiple systems, we not only need to analyze the characteristics and cycles of each part of
the system separately, but also need to study the integration behavior of the whole system and the
interaction of each subsystem. Using the decision tree to construct a multi-system collaborative
impact model is an effective technical method. It is able not only to effectively improve the
prediction accuracy, but also the prediction model established by the decision tree is different
from the fully black-box effect of the neural network. The affected processes are relatively clear,
so there is a higher application prospect for researches such as mechanism analysis.

(2) Using random forest to predict the summer precipitation Ps, Cc and PC scores of Chongqing
from 2014 to 2018 are steadily higher than the released forecasts. In addition to the instability
of publishing forecasts, the quality of random forest forecasts is relatively stable. The results
show that it is feasible to use the random forest algorithm to predict summer rainfall precipitation
in Chongqing in actual business. In addition, the random forest algorithm does not have high
requirements on data, and it does not need to consider constraints such as the distribution
conditions, interaction, nonlinear effects, even missing values of variables. In most cases,
the default parameters of the model can give optimal simulation results without tedious parameter
adjustment. Therefore, the application of the random forest algorithm in the climate prediction
business has good prospects.

In this paper, when using decision trees and random forests to predict and model summer
precipitation in Chongqing, although the model has a good prediction effect, it is also a qualitative
forecast. Quantitative prediction modeling research has not been carried out, and there are obvious
limitations in precipitation prediction and central locations. The author will increase the research
and development of multi-factor collaboration, multi-system integration and multi-mode collection
technology in subsequent research and business. Further analysis is made on various factors affecting
summer rainfall in Chongqing, so as to provide more evidence and clues for improving the precipitation
forecasting level in this region.

Author Contributions: Conceptualization, C.Z. and X.D.; methodology, C.Z., X.D. and B.X.; software, B.X.;
validation, X.D., B.X. and C.Z.; formal analysis, X.D. and C.Z.; investigation, J.W.; resources, X.D.; data curation,
J.W.; writing—original draft preparation, X.D., C.Z. and J.W.; writing—review and editing, X.D., C.Z. and J.W.;
visualization, B.X.; supervision, J.W.; project administration, X.D.; funding acquisition, C.Z. and X.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by national natural science foundation of China (41875111), Chongqing
natural science foundation project (cstc2019jcyj-msxmX0227), Chongqing technology innovation and application
demonstration general project (cstc2018jscx-msybX0165), Intelligent meteorological technology innovation team
project of Chongqing meteorological bureau (ZHCXTD-201804), Data availability. The data in this study are not
available for use by others.

Conflicts of Interest: The authors declare no conflict of interest.

96



Atmosphere 2020, 11, 508

References

1. Yong-Hua, L.I.; De, L.I.U.; Ye-Yu, Z.H.U.; Yang-Hua, G.A.O.; Wen-shu, M.A.O. Singular Spectrum Analysis
of Surface Air Temperature and Precipitation Series in Chongqing. Plateau Meteorol. 2005, 24, 798–804.

2. Yong Hua, L.; Wen Shu, M.; Yang Hua, G.; Feng Qing, H.; Jia Qi, L. Regional Flood and Drought Indices in
Chongqing and their Variation Features Analysis. J. Meteorol. Sci. 2006, 26, 638–644.

3. Li, Y.H.; Gao, Y.H.; Han, F.Q.; Xiang, M.; Tang, Y.H.; He, Y.K. Features of Annual Temperature and Precipitation
Variety with the Effects on NPP in Chongqing. J. Appl. Meteorol. Sci. 2007, 18, 73–79.

4. Yi, Z.; Yanghua, G.; Xionghong, D. Primary Climatic Characteristics of Summer Precipitation in the
Three-Gorges Reservoir Region. J. Southwest Univ. (Nat. Sci. Ed.) 2005, 27, 269–272.

5. Zhenfeng, M. Forecast of Summer Precipitation over Southwest Region of China. Meteorol. Mon. 2002, 28,
29–33.

6. Zhang, Q.; Jiang, T.; Wu, Y.J. Impact of ENSO Events on Flood/Drought Disasters of Upper Yangtze River
during 1470–2003. J. Glaciol. Geocryol. 2004, 26, 691–696.

7. De, L.; Yong-hua, L.I.; Yang-hua, G.A.O.; Jing, L.I.; Yun-hui, T.A.N.G.; Zhao, Y.E. Analysis on Eurasian
Circulation of Drought and Flood in Summer of Chongqing. Plateau Meteorol. 2005, 24, 275–279.

8. Xiu, Y.Y.; Han, L.; Feng, H.L. The identification of strong convective weather based on machine learning
methods. Electron. Des. Eng. 2016, 24, 4–7.

9. Quande, S.; Ruili, J.; Jiangjiang, X.; Zhongwei, Y.; Haochen, L.; Jianhua, S.; Lizhi, W.; Zhaoming, L. Adjusting
Wind Speed Prediction of Numerical Weather Forecast Model Based on Learning Methods. Meteorol. Mon.
2019, 45, 426–436.

10. Li, W.; Zhao, F.; Li, M.; Chen, L.; Peng, X. Forecasting and Classification of Severe Convective Weather Based
on Numerical Forecast and Random Forest Algorithm. Meteorol. Mon. 2018, 44, 1555–1564.

11. Jones, N. How machine learning could help to improve climate forecasts. Nature 2017, 548, 379–380.
[CrossRef] [PubMed]

12. Huang, R.F.; Zhou, G.C. Meteorology and Big Data; Science Press: Beijing, China, 2017.
13. Zhao, Z.Y. Python Machine Learning Algorithm; Electronic Industry Press: Beijing, China, 2017.
14. Shi, D.; Geng, H.; Ji, C.; Huang, C. Construction and application of road icing prediction model based on

C4.5 decision tree algorithm. Meteorol. Sci. 2015, 35, 204–209.
15. Shi, Y.; Shi, D.; Hao, L.; Zhang, Y.; Wang, P. Research on classification and prediction model of regional

summer precipitation days based on CART algorithm of data mining. J. Nanjing Univ. Inf. Technol. (Nat. Sci.
Ed.) 2018, 10, 118–123.

16. Qin, P.C.; Liu, Z.X.; Wan, S.Q.; SU, R.R.; Huang, J.F. Yield limiting factor analysis of rapeseed in Hubei
province based on decision tree and random forest model. Chin. J. Agrometeorol. 2016, 37, 691–699.

17. Zhang, R.; Zhang, R.; Zuo, Z. Impact of Eurasian spring snow decrement on East Asian summer precipitation.
J. Clim. 2017, 30, 3421–3437. [CrossRef]

18. Wu, B.; Su, J.; D’Arrigo, R. Patterns of Asian winter climate variability and links to arctic sea ice. J. Clim.
2015, 28, 6841–6858. [CrossRef]

19. Weng, H.; Wu, G.; Liu, Y.; Behera, S.K.; Yamagata, T. Anomalous summer climate in China influenced by the
tropical Indo-Pacific Oceans. Clim. Dyn. 2011, 36, 769–782. [CrossRef]

20. Yuan, Y.; Yang, S.; Zhang, Z. Different evolutions of the Philippine Sea anticyclone between eastern and
central Pacific El Niño: Possible effect of Indian Ocean SST. J. Climate 2012, 25, 7867–7883. [CrossRef]

21. Wei, W.; Fengchang, X.; Dawei, S.; Xiaojie, S. Research and application of CART algorithm based summer
drought prediction model. J. Meteorol. Sci. 2016, 36, 661–666.

22. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
23. Wu, J.; Chen, Y.F.; Yu, S.N. Research on drought prediction based on random forest model. China Rural Water

Resour. Hydropower 2016, 11, 17–22.
24. Binren, X.U.; Yuanyuan, W.E.I. Spatial statistical reduction of precipitation data of TRMM on Qinghai-Tibet

plateau based on random forest algorithm. Remote Sens. Land Resour. 2018, 30, 181–188.
25. Qingquan, L.; Yiming, D.; Yihui, L. 10-Year Hindcasts and Assessment Analysis of Summer Rainfall over

China from Regional Climate Model. J. Appl. Meteorol. Sci. 2005, S1, 41–47.

97



Atmosphere 2020, 11, 508

26. Guang-tao, D.; Bo-min, C.; Bao-de, C. Application of Regional Climate Model (RegCM3) on 10-Year Hindcast
Experiment and a Real-Time Operation in Summer of 2010 in the Eastern China. Plateau Meteorology. 2012,
31, 1601–1610.

27. Bai, H.; Gao, H.; Liu, C.Z.; Mao, W.Y.; Du, L.M. Assessment of Multi-model Downscaling Ensemble Prediction
System for Monthly Temperature and Precipitation Prediction in GuiZhou. Desert Oasis Meteorol. 2016, 10,
58–63.

28. Yang, X.B.; Zhang, J. Decision Tree and Its Techniques. Comput. Technol. Dev. 2007, 17, 43–45.
29. Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufman: San Mateo, CA, USA, 1993.
30. Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; Peters, M. Estimating potential habitat for 134 eastern US tree

species under six climate scenarios. For. Ecol. Manag. 2008, 254, 390–406. [CrossRef]
31. Wang, W.J.; Yao, Z.Y.; Jia, S.; Zhao, W.H.; Tan, C.; Zhang, P.; Gao, L.S.; Zhu, X.Y. Application Research on

Random Forest Algorithm in the Statistical Test of Rainfall Enhancement Effect. Meteorol. Environ. Sci. 2018,
41, 111–117.

32. Men, X.L.; Jiao, R.L.; Wang, D.; Zhao, C.G.; Liu, Y.K.; Xia, J.J.; Li, H.C.; Yan, Z.W.; Sun, J.H.; Wang, L.Z.
A temperature correction method for multi-model ensemble forecast in North China based on machine
learning. Clim. Environ. Res. 2019, 24, 116–124. (In Chinese)

33. Gao, H.; Ding, T.; Li, W. The three-dimension intensity index for western Pacific subtropical high and its link
to the anomaly of rain belt in eastern China (in Chinese). Chin. Sci. Bull. 2017, 62, 3643–3654. [CrossRef]

34. Shao, X.; Zhou, B. Monitoring and Diagnosis of the 2015/2016 Super El Nino Event. Meteorol. Mon. 2016, 42,
540–547.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

98



atmosphere

Article

The Contribution Rate of Driving Factors and Their
Interactions to Temperature in the Yangtze River
Delta Region

Cheng Zhou 1, Nina Zhu 2,3,4,*, Jianhua Xu 2,3,4,* and Dongyang Yang 5

1 Faculty of Culture and Tourism, Shanxi University of Finance and Economics, Taiyuan 030006, China
2 Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University,

Shanghai 200241, China
3 Research Center for East–West Cooperation in China, East China Normal University, Shanghai 200241, China
4 School of Geographic Sciences, East China Normal University, Shanghai 200241, China
5 Key Research Institute of Yellow River Civilization and Sustainable Development, Henan University,

Kaifeng 475004, China
* Correspondence: ninaecnu@126.com (N.Z.); jhxu@geo.ecnu.edu.cn (J.X.);

Tel.: +86-1592-186-5239 (N.Z.); +86-139-1834-3871 (J.X.)

Received: 6 November 2019; Accepted: 24 December 2019; Published: 27 December 2019

Abstract: Complex temperature processes are the coupling results of natural and human processes,
but few studies focused on the interactive effects between natural and human systems. Based on the
dataset for temperature during the period of 1980–2012, we analyzed the complexity of temperature by
using the Correlation Dimension (CD) method. Then, we used the Geogdetector method to examine
the effects of factors and their interactions on the temperature process in the Yangtze River Delta
(YRD). The main conclusions are as follows: (1) the temperature rose 1.53 ◦C; and, among the dense
areas of population and urban, the temperature rose the fastest. (2) The temperature process was
more complicated in the sparse areas of population and urban than in the dense areas of population
and urban. (3) The complexity of temperature dynamics increased along with the increase of temporal
scale. To describe the temperature dynamic, at least two independent variables were needed at a daily
scale, but at least three independent variables were needed at seasonal and annual scales. (4) Each
driving factor did not work alone, but interacted with each other and had an enhanced effect on
temperature. In addition, the interaction between economic activity and urban density had the largest
influence on temperature.

Keywords: correlation dimension method; Geogdetector method; interaction effect; multi-scale

1. Introduction

The climate system is a complex system, which influence on ecosystems and human society has
attracted more and more attention from scholars, and temperature is one of the most important factors
in the climate system.

A number of studies [1–7] have indicated that the spatiotemporal variation of temperature and its
driving factors had regional differences. Sharma et al. [8] analyzed the temperature changes in eastern
India, and the results showed that the average temperature in central, southern and western was
decreasing, while the average temperature in the northeast, west and southeast was on the rise. Salman
et al. [9] conducted a hybrid model to select the climate models for simulating spatiotemporal changes
in temperature of Iraq. They found that temperature would increase during the period of 2070–2099
and temperatures in the north and northeast had increased significantly. Kenawy et al. [10] pointed out
that temperatures in northeastern Spain showed an upward trend during the 1960–2006 period, and
the Eastern Atlantic (EA), the Scandinavian (SCA), and the Western Mediterranean Oscillation (WeMO)
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patterns had a significant impact on temperature changes. Iqbal et al. [11] found temperature had
different correlations with North Atlantic Oscillation (NAO), Arctic Oscillation (AO), El Niño-Southern
Oscillation (ENSO), and North Sea Caspian Pattern (NCP) in different months in Pakistan. It can be
seen that the temperature change is complicated. Therefore, further understanding the mechanisms
for spatio-temporal variation of temperature and its driving factors are highly desired.

In order to reveal the complexity of temperature, many methods had been proposed, such
as wavelet analysis [12,13], ensemble experience mode decomposition [14], spectrum analysis [15],
Mann-Kendall trend test [16], and correlation dimension [17]. All of these methods had explored the
complexity of temperature from different perspectives and got some achievements. On the other hand,
there are many studies about the driving factors of temperature change. The main driving factors
are atmospheric circulation [2], land use changes [3], greenhouse gas emissions [18], urbanization
development [19], and so on. However, under the global warming, coupled with rapid economic
development, population growth, and urbanization, the temperature and its driving factors became
more and more complicated. In addition, the contribution rate of natural and socioeconomic factors
and their interactions on temperature variation were rarely studied and remained one of main gaps in
our current knowledge.

Due to the regional differences, it is necessary to conduct an in-depth analysis of temperature
variations in some key areas, especially those that play an important role in national development.
The Yangtze River Delta (YRD), one of China’s most developed, dynamic, densely populated and
concentrated industrial areas, is growing into an influential world-class metropolitan area. However,
the developed industries and frequent human activities have led to an increasingly serious urban heat
island phenomenon in this region, forming a strong regional heat island, leading to the temperature
presenting a significant warming trend over the past 50 years and extremely high temperatures occuring
frequently [20]. Property, economic losses, and social impacts caused by extremely temperature events
in this region are often enormous. In addition, extreme changes in temperature can also have an
impact on the environment and endanger human health [21]. Therefore, it is of great significance to
study the temperature changes in this region, to find the reasons that affect its changes, and to try to
reduce losses.

Therefore, we attempt to explore the spatiotemporal dynamics of temperature in the YRD,
and assess the influences of factors and their interactions on temperature. Based on observed
temperature data at 68 meteorological stations during the period of 1980–2012, we first investigated the
spatiotemporal complexity of temperature by using the Correlation Dimension (CD) method; and then
we analyzed the individual contribution rates and interactional contribution rates of driving factors to
temperature slope (TS) by using the Geogdetector method. Our main purpose is to explore which
factors or interactions between factors contribute the most to temperature.

2. Materials and Methods

2.1. Study Area and Data

The study area includes four regions: Jiangsu Province, Anhui Province, Zhejiang Province, and
Shanghai (Figure 1). The study area lies between 114◦54′–122◦42′ E and 27◦12′–35◦20′ N, and has
an area of approximately 344.03 103 km2, accounting for 3.58% of China’s total land area. The area
is under a monsoon climate regime, with hot and humid summer and cold and dry winter. The
annual precipitation is about 1000 mm, of which the precipitation in summer accounts for two-thirds
of the total precipitation [22]. The average temperature is close to 30 ◦C in July and August, and the
maximum temperature recently exceeded 40 ◦C in Shanghai [23]. The high terrain is in the north and
south and low terrain in the middle, which is dominated by plains and hills. In addition, the YRD is
one of the most developed regions in China, with dense population, convenient transportation, and
developed tertiary industry.
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Figure 1. The study area and spatial distribution of 68 meteorological stations.

On a global scale, the temperature is mainly affected by factors such as atmospheric circulation,
volcanic eruptions, sunspots, and so on. However, on the regional scale, the temperature is mainly
affected by surface properties and human activities. According to previous studies [24–26], the altitude
(AT), normalized difference vegetation index (NDVI), urban density (UD), gross domestic product
(GDP), and night light (NL) datasets were selected. The first two can be seen as natural factors and the
last three can be seen as socioeconomic factors. The daily temperature of 68 meteorological stations
from 1980 to 2012 is from the China Meteorological Data Service Center (http://data.cma.com). We
analyzed data from the period from 1980 to 2012 because we couldn’t get station data of temperature
for 2013–2018. AT and UD data are provided by the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn), and the UD data is from 1990
to 2010. NDVI is from the Geospatial data cloud (http://www.gscloud.cn/), and its period is from 1989
to 2012. NL is from the National Centers for Environmental Information (https://www.ngdc.noaa.gov/),
and its period is from 1992 to 2012. GDP is from the “Shanghai Statistical Yearbook”, “Anhui Statistical
Yearbook”, “Jiangsu Statistical Yearbook”, “Zhejiang Statistical Yearbook”, and “China Regional
Economic Statistics Yearbook” and other statistics, and its period is from 1980–2012. To ensure a
consistent data format, a 0.5 km by 0.5 km grid for the whole area in ArcGIS 10.5 software (Manufacturer,
City, US State abbrev. if applicable, Country) was built, assigned values to each grid, and deleted the
outliers by using a box-plot analysis method. According to different standards, all factors were divided
into different strata using ArcGIS 10.5 software. The division of the results is shown in Figure 2 below.
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(a) (b) (c) 

 
(d) (e)  

Figure 2. The distribution of driving factors: (a) altitude (AT); (b) normalized difference vegetation
index (NDVI); (c) urban density (UD); (d) gross domestic product (GDP) change rate; (e) night light
(NL).

2.2. Methods

To investigate the spatiotemporal complexity of temperature and its driving factors, the correlation
dimension method and the Geogdetector method were used. It can be seen from Figure 3, we first
showed the spatiotemporal pattern of temperature; then, we analyzed the complexity of temperature
on the daily, seasonal, and annual scales by using the Correlation Dimension (CD) method;finally, the
individual contribution rates and interactional contribution rates of driving factors to the temperature
slope (TS) by using Geogdetector method were detected.

 

Figure 3. The framework of this study.

102



Atmosphere 2020, 11, 32

2.2.1. Trend Analysis Method

Trend analysis is the most studied and most popular quantitative forecasting method by far. It
is based on a known historical data to fit a curve, so that this curve can reflect the growth trend of
things themselves, and then to predict the future according to this growth trend curve. Commonly
used trend models include linear trend models, polynomial trend models, linear trend models, log
trend models, power function trend models, exponential trend models, and so on [27]. In this study,
we use the linear trend method to analyze the change trend of the time series:

y(t) = at + b, (1)

where y represents the time series, t represents the time, a represents the linear slope, and b represents
the intercept.

If a > 0, it indicates that the time series is increasing, if a = 0, it means that the time series is not
changing, and, if a < 0, it indicates that the time series is decreasing. The size of a indicates the degree
of change in time series.

2.2.2. Kriging Interpolation Method

Temperature is a regionalized variable, which is changing with the variation of space position.
In order to analyze the distribution of the plum rainfall in different years, Kriging interpolation is
employed. Kriging interpolation (or space local estimation) is named by D. G. Krige, who is a mining
engineer in South Africa, and it is an optimal interpolation method [28]. The original data of the
regional variables and the structural characteristics of the variance function is used to estimate the
value of non-sampling points unbiasedly and optimally [28]. In general, Kriging interpolation contains
several types, namely Ordinary Kriging, Universal Kriging, Co-Kriging, and so on. Ordinary Kriging
is shown below:

Assume that Z(x) is a regionalized variable that satisfies two-stage stationary hypotheses and
intrinsic hypothesis. m is mathematical expectation, with covariance function and variance function all
existing at the same time. The relation between them is indicated below:

E[Z(x)] = m, (2)

C(h) = E[Z(x)Z(x + h)] −m2, (3)

γ(h) =
1
2

E[(Z(x) −Z(x + h)]2. (4)

Assuming that there are no measured points in the neighborhood of x, namely x1, x2, . . . , xn, for
which the sample value is Z(xi)(i = 1, 2, 3, . . . , n), the formula can be defined as follows:

Z∗(x) =
n∑

i=1

λiZ(xi), (5)

where λi is a weight coefficient that presents the contribution degree of the observed values of Z(xi) to
estimate the values of Z∗(x). Two points need to be noticed about this formula: on the one hand, the
estimated value of Z∗(x) must be unbiased, namely the mathematical expectation of the deviation is
zero; on the other hand, it must be optimal, namely the difference between the estimated value and the
actual value is the smallest.

2.2.3. Correlation Dimension (CD)

Since the appearance of fractal theory, fractal dimension has been welcomed by scholars as one
of the quantitative indicators to describe whether the dynamic system has chaotic characteristics.
There are different types of fractal dimensions, such as topological dimension, Hausdorff dimension,
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information dimension, and correlation dimension. As for the correlation dimension, Grassberger
and Procaccia [29] proposed an analysis method for experimental time series data in 1983, which is to
obtain the fractal dimension through the relationship between the integral C (r) and the distance r on
the reconstructed phase space through the univariate time series. This method is called a G–P method.
Because it is particularly suitable for experimental observation data and the algorithm is simple and
easy to implement, it has been widely used. In this study, we use this method when calculating the
correlation dimension.

The correlation dimension (CD) is usually applied to analyze time series and determine if it
exhibits a chaotic dynamic characteristic [30,31]. Considering {x1, x2, x3, . . . , xi, . . . }, the equal interval
time series of daily temperature, and the first m data are extracted, and they determine the first point
in the m-dimensional space, which is denoted as X1. Then, remove x1, and take m data x2, x3, . . . ,
xm+1, and the second point is composed of this set of data in m-dimensional space, which is recorded
as X2. According to this, a series of phase points X1, X2, . . . , XN are formed. Given the number r, and
check how many point pairs (Xi, Xj) distance is less than r, and the ratio of the number that point pairs
distance is less than r to the total number of point pairs N is denoted as C(r) [17]. It can be expressed as
the following formula:

C(r) =
1

N2

∑N

i, j � 1
i � j

θ
(
r−
∣∣∣Xi −Xj

∣∣∣), (6)

where θ(x) is the Heaviside function, which is defined as:

θ(x) =
{

1
0

, x > 0
, x < 0

. (7)

If r is too large, the distance of all point pairs will not exceed it. In addition, this r cannot
measure the correlation between phase points. In addition, appropriate reduce r, the following formula
may exist:

C(r) ∝ rd. (8)

If this relationship exists, d is a dimension called the correlation dimension, denoted as D2:

D2 = lim
r→0

ln C(r)
ln r

. (9)

The limit here mainly represents a direction in which r is reduced, and it is not mean that the r
must be close to 0. In the scale transformation of the actual system, there are scale restrictions in the
magnitude of both directions. Exceeding this limit is beyond the featureless scale area.

Figure 4 shows the results of ln(r) versus ln(r), and the correlation dimension (d) versus embedding
dimension (m) used the measured data of temperature in this paper. It is apparent that the correlation
dimension, D2, is given by the slope coefficient of ln(r) versus lnr. According to (lnr, lnC(r)), D2 can be
obtained by the least squares method using a log–log grid (as shown in Figure 4a).

To detect the chaotic behavior of the system, the correlation dimension has to be plotted as a
function of the embedding dimension (as shown in Figure 4b).

The MATLAB 2014a software (Manufacturer, City, US State abbrev. if applicable, Country)
was used to calculate Correlation Dimension. First, we calculated the time series of daily average
temperature, monthly average temperature, and annual average temperature of each meteorological
station during the period of 1980–2012, and then calculated the CD value of each station on different
time scales through programming using MATLAB software (The MathWorks, Natick, MA, USA).
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Figure 4. (a) a plot of ln(r) versus ln(r) and (b) the correlation dimension (d) versus embedding
dimension (m).

2.2.4. Geogdetector

The influencing factors have spatial heterogeneity and work together to affect the temperature.
Geogdetector is a set of statistical methods for detecting spatial variability and revealing forces driving
the variability [32,33]. The advantages of this method are that it cannot only detect both quantitative
and qualitative data, but also can detect the interaction of two factors [34]. Geogdetector contains four
detectors: a risk detector, a factor detector, an ecological detector, and an interaction detector.

The risk detector can determine whether there is a significant difference in the means of attributes
between two sub-regions, using the t statistic to test:

tyh=1 yh=2
=

Yh=1 −Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

] 1
2

, (10)

where Yh is the attribution average in the region h, nh is the sample size of sub-region h, and Var is the
variance. The statistic t approximates the Student’s distribution, where the degree of freedom (df ) is
calculated as:

d f =

Var(Yh=1)
nz=1

+
Var(Yh=2)

nz=2

1
nh=1−1

[
Var(Yh=1)

nh=1

]2
+ 1

nh=2−1

[
Var(Yh=2)

nh=2

]2 . (11)

Null hypothesis: Yh=1 = Yh=2. If H0 is rejected at significance level α, there is a significant
difference in the mean of the attributes between the two sub-regions.

The factor detector mainly detects the spatial variability of Y and the extent to which X is probed
to explain the spatial differentiation of Y. The q-value was used to measure the factors:

q = 1−
∑L

h=1 Nhσh
2

Nσ2 = 1− SSW
SST

, (12)

SSW =
L∑

h=1

Nhσh
2, SST = Nσ2, (13)

where h = 1, . . . , L is the stratum of Y or X, Nh, and N are the unit numbers of layer h and the unit
numbers of the whole region, respectively, and σh

2 and σ2 are the variances of Y of the layer h and
of the whole region, respectively. SSW and SST are the sum of squares and the total sum of squares,
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respectively. The range of q is [0, 1]. The larger the value, the more obvious the spatial distribution
of Y is. If the stratum is generated by the independent variable X, a larger q value shows stronger
explanatory power of the independent variable X to Y, and a smaller q means weaker power. In
extreme cases, a q value of 1 indicates that factor X has complete control over the spatial distribution of
Y, and a q value of 0 indicates that factor X has no control over the spatial distribution of Y.

The ecological detector explores whether a geographical stratum, C, is more significant than
another stratum, D, in controlling the spatial pattern, and the statistic F is used to measure it:

F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2
, (14)

SSWX =
L1∑

h=1

Nhσh
2, SSTX2 =

L2∑
h=1

Nhσh
2, (15)

where Nx1 and Nx2 are the sample sizes of factors X1 and X2, respectively, and SSWx1 and SSWx2 are
sums of the variances in the strata formed by X1 and X2, respectively. L1 and L2 represent the number
of variables in X1 and X2, respectively. H0 is SSWx1 = SSWx2. If H0 is rejected at the significance level
of α, there is a significant difference in the spatial distribution of Y between X1 and X2.

The interaction detector is used to evaluate whether X1 and X2 together will increase or decrease
the explanatory power of the dependent variable Y, or whether the effects of these factors on Y are
independent of each other. q(X1), q(X2), and q((X1∩X2) were calculated and compared the differences
between q(X1), q(X2), and q((X1∩X2).

The Geogdetector software was used to calculate Geogdetector. First, we need to calculate the
annual average of temperature, AT, NDVI, UD, GDP change rate, and NL in their respective time
periods, and convert the data format to .tif format; secondly, a 0.5 × 0.5 km grid is established by
ArcGIS software, and each variable is extracted by the points in the grid; next, the extracted AT, NDVI,
UD, GDP change rate, and NL were classified respectively. In this study, these variables are divided
into five categories according to the natural segmentation method in ArcGIS software. Finally, the
processed data is imported into the Geogdetector software for calculation.

3. Results

3.1. The Spatiotemporal Pattern of Temperature

In order to understand the temperature variations during the period of 1980–2012 in the YRD, we
first analyzed the overall trend of temperature variation by using the linear trend method, and the
linear slope is used to identify the trend of temperature changes. If the linear slope is greater than 0,
it indicates that temperature is increasing, if the linear slope is equal to 0, it means that temperature
is not changing, and, if the linear slope is less than 0, it indicates that temperature is decreasing. It
showed a significant increasing trend during the period of 1980–2012 (Figure 5), and this trend may
continue in the future. We can see that the temperature rose 1.53 ◦C with the average rising rate of
0.465 ◦C/10 years and passed the significance test during the period of 1980–2012. However, in the
most recent 50 years, the global average rising rate only has reached about 0.13 ◦C/10 years [35]. We
can conclude that the increase in temperature in the YRD was not only the result of global warming,
but also other regional factors.
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Figure 5. The trend of temperature during the period of 1980 to 2012.

Then, we showed the spatial distribution of TS during the period of 1980–2012 (Figure 6). The
ordinary Kriging method was used during the interpolation, in which a spherical model is used when
selecting the semi-variogram model, and its parameters are system default parameters. We can see
that the temperature rose in all regions. In addition, among the dense areas of population and urban,
the temperature rose quickly, while the temperature in the sparse areas of population and urban
rose slowly.

 

Figure 6. Temperature slope (change rate of temperature) during the period of 1980–2012.

3.2. The Spatiotemporal Complexity of Temperature

3.2.1. The Temporal Complexity of Temperature

Based on meteorological data, we analyzed the chaotic dynamics with fractal characteristic for the
temperature dynamics by using the G–P method [36]. Firstly, we randomly selected six meteorological
stations (i.e., Bozhou, Nanjing, Nantong, Wuhu, Hangzhou, Dongtou) with annual time series data for
a pilot study. The relationship between different embedding dimension (m) and correlation exponent
(d) was shown in Figure 7.
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Figure 7. The plots of correlation exponent (d) versus embedding dimension (m) for the time series of
annual data from the selected six meteorological stations

It can be seen from the trend of the six meteorological stations in Figure 7 that, as the embedding
dimension increases, the correlation exponent increases continuously and eventually stabilizes, and
the saturated correlation exponent, namely, the correlation dimension, was obtained when m ≥ 10.

Then, we calculated the CD on the daily, seasonal and annual temporal scales of each station in
the same way. Table 1 shows the CD values of several representative stations and average CD values
of all stations at different temporal scales. It can be seen from Table 1 that each CD is not an integer,
which indicates that the temperature process at different temporal scales is a chaotic dynamic system
with a fractal characteristic, and it is sensitive to the changes of initial conditions.

Table 1. The Correlation Dimension (CD) values at daily, seasonal, and annual scales for
68 meteorological stations.

Station
Temporal Scale

Daily Seasonal Annual

Xuzhou 1.79 2.18 2.80
Fuyang 1.82 2.25 2.99
Nanjing 1.78 2.12 2.23
Nantong 1.62 2.02 2.11

Hefei 1.84 2.13 2.39
Baoshan 1.78 1.78 2.40

Huangshan 1.62 1.77 2.30
Hangzhou 1.69 1.86 2.05

Cixi 1.66 1.66 1.94
Jinhua 1.86 1.96 2.00

MCD 1.73 2.08 2.32

Note: MCD is the mean of correlation dimensions for all meteorological stations.

It can be seen from the mean of correlation dimensions (MCD) at different temporal scales in
Table 1 that the ordering of the CD is: annual (2.32) > seasonal (2.08) > daily (1.73). We can conclude
that the temperature process over a larger temporal scale is more complicated than the temperature
process at a small temporal scale. Figure 8 showed the temperature anomalies of daily range and
temperature anomalies of annual range. It could be seen from the maximum, minimum, and variance
that the annual temperature fluctuated greatly, which proved that the temperature process on the
annual scale was more complicated. Table 1 also shows that, even at the same temporal scale, the CD
values of different stations are different. It is mainly related to the different locations of each station,
which makes the driving factors of each station different. The values of MCD on the seasonal and
annual scales are greater than 2, with 2.2 and 2.4, respectively, indicating that at least three independent
variables are needed to describe the dynamics of temperature process on the seasonal and annual scale;
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and the value of MCD for daily is 1.73, indicating that at least two independent variables are needed to
describe the dynamics of temperature process on the daily scale.

 

Figure 8. (a) anomalies of the daily range and (b) anomalies of the annual range.

3.2.2. The Spatial Distribution Complexity of Temperature

Table 1 gives the CD values of the temperature on different temporal scales, showing temperature
dynamics on the daily, seasonal and annual scales. What is the spatial distribution of the CD values
of different stations? We show the spatial distribution of CD values on the daily, seasonal, and
annual scales (Figure 9). The ordinary Kriging method was used during interpolation, in which a
spherical model is used when selecting the semi-variogram model, and its parameters are system
default parameters.

Figure 9. The spatial pattern of complexity of the temperature process at daily (a), seasonal (b), and
annual (c) scales.

Figure 9a shows the spatial distribution of CD values on the daily scale, with values between
1.46 and 1.87. High value is mainly distributed in the northwest and southwest of the entire region,
while low values are mainly distributed in the eastern coastal areas. Figure 9b presents the spatial
distribution of CD values on the seasonal scale, which shows that all CD values are between 1.51 and
2.34. High value is mainly distributed in the northwest of the entire region, while low values are
mainly distributed in the eastern coastal areas. Figure 9c shows the spatial distribution of CD values
on the annual scale. All CD values are between 1.73 and 2.99, and the spatial pattern is similar with the
spatial pattern on the seasonal scale. As we all know, the eastern coastal areas, especially Shanghai,
Suzhou, and Hangzhou, are densely populated and have high levels of urbanization, and the CD value
of this area is relatively low, while the areas located in the northwest of the YRD, such as Bozhou,
Xuzhou, and Fuyang, the large outflow of people results in a relatively small population in these areas,
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and the urbanization level is relatively low, and the CD value in this area is relatively high. It can be
seen that the population density and the urbanization level are related to CD.

In general, on different temporal scales, the high values of CD are mainly distributed in the sparse
areas of population and urban, while the low values of CD are mainly distributed in the dense areas of
population and urban.

3.2.3. The Influences of Driving Factors and Their Interactions on Temperature Slope

From the above results, we can see that the spatial distribution of TS is different, and what is the
reason for this result? In order to answer this question, we choose some driving factors (AT, NDVI,
UD, GDP, and NL) that affect the temperature to explore the reasons of this phenomenon by using the
Geogdetector method.

The factor detector is used to detect whether the driving factors affect TS and the size of their
influences. In addition, the greater the value of q, the greater the influence of this factor on TS. Table 2
shows the result of the factor detector. On the whole, the influence, in order of size, of each factor is:
UD (0.323) > GDP (0.234) > NL (0.218) > NDVI (0.118) > AT (0.047). In addition, all driving factors
pass the significant test, which means that these five factors have significant effects on TS. In addition,
we can see that the contribution rate of socioeconomic factors (UD, GDP, NL) is greater than natural
factors (NDVI, AT).

Table 2. The result of factor detectors.

GDP AT NL UD NDVI

q statistic 0.234 0.047 0.218 0.323 0.118
p-value 0.000 0.000 0.000 0.000 0.000

Note: GDP represents the gross domestic product; AT represents the altitude; NL represents the night light; UD
represents the urban density; NDVI represents the normalized difference vegetation index.

Whether the factor has a significant difference in the spatial distribution affecting the TS is achieved
by an ecological detector. A test with a significance level of 0.05 indicates that the two factors are
different influencing the distribution of TS; otherwise, there is no significant difference. The result of
an ecological detector is shown in Table 3.

Table 3. The result of an ecological detector.

Socio-Economic Factors Natural Factors

GDP UD NL AT NDVI

Socio-economic
factors

GDP - - - - -
UD Y - - - -
NL N Y - - -

Natural factors
AT N Y Y - -

NDVI N N N Y -

Note: Y indicates that the two factors have significant differences in the spatial distribution of temperature slopes, N
indicates no significant difference, and the confidence is 95%. And GDP represents the gross domestic product;
UD represents the urban density; NL represents the night light; AT represents the altitude; NDVI represents the
normalized difference vegetation index.

The result shows that there is a significant difference between UD and GDP; there is no significant
difference between AT, NL, NDVI, and GDP, indicating that the effects of AT, NL, NDVI, and GDP on
the spatial distribution of TS are similar. In addition, there is a significant difference between UD and
NL, AT, and there is no significant difference between UD and NDVI. Similarly, there is a significant
difference between NL and AT, while NL is not significantly different from NDVI. For AT and NDVI,
there is also a significant difference between them. We can also conclude that the influences of various
driving factors on the TS are different.
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Table 2 indicates that the contribution rate of each factor alone to the TS is different. Thus, there is
an interaction between them, and, if so, what is the interaction result? In order to answer this question,
we give the results of interaction detector as Table 4.

Table 4. The result of interaction detectors.

Socio-Economic Factors GDP Natural Factors

GDP UD NL AT NDVI

Socio-Economic
Factors GDP

Natural Factors

GDP 0.234 - - - -
UD 0.464 # 0.323 - - -
NL 0.391 # 0.420 # 0.218 - -
AT 0.290 * 0.365 # 0.235 # 0.047 -

NDVI 0.314 # 0.393 # 0.262 # 0.146 # 0.118

Note: # indicates that the interaction is a bi-enhancement, i.e., q (X1∩X2) >Max(q(X1), q(X2)); * indicates that the
interaction is a nonlinear enhancement, i.e., q (X1∩ X2) > q(X1) + q(X2). And GDP represents the gross domestic
product; UD represents the urban density; NL represents the night light; AT represents the altitude; NDVI represents
the normalized difference vegetation index.

Table 4 shows that only AT and GDP have a nonlinear enhancement effect (q (GDP∩ AT) > q(GDP)
+ q(AT)) on TS, and the interactions between remaining driving factors have the bi-enhancement effect
on TS. It shows that the effect of interaction of any two factors is greater than the effect of a single factor.
Among them, the interaction effect between GDP and UD (q (GDP ∩ UD) = 0.464) is the largest, and
the interaction effect between UD and NL (q (UD∩ NL) = 0.420) is second, followed by the interaction
effect between UD and NDVI (q (UD∩NDVI) = 0.393) and the interaction effect between GDP and NL
(q (GDP∩NL) = 0.391), while the interaction effect between AT and NDVI (q (AT∩NDVI) = 0.146) is the
smallest. In general, the interaction effect between socioeconomic factors is the largest, the interaction
effect between socioeconomic factors and natural factors is second, followed by the interaction effect
between natural factors.

4. Discussion

In this study, we found that the temperature rose 1.53 ◦C with an average rising rate of
0.465 ◦C/10 years during the study period, which was higher than the global average rate. The result
was consistent with previous studies [37–39]. It confirms the regional differences in climate change. In
addition, it means that the temperature was not only affected by global warming, but also affected by
various driving factors within the region. In addition, the temperature rose quickly in the dense areas
of population and urban, and the temperature rose slowly in the sparse areas of population and urban.
It reflected the urban-rural differences in temperature distribution from the side.

The climate system was an open system with external forcing and nonlinear dissipation [40],
and fractal theory was one of the effective methods to quantitatively describe the nonlinear evolution
process of climate and its self-similar structural features. Numerous studies [41–45] had shown
that fractal analysis could calculate its fractal dimension from a seemingly chaotic climate sequence,
confirming the fractal information of the climate system. Temperature was an element of the climate
system and also had nonlinear characteristics. Especially in the YRD, the temperature was more
complicated due to the influence of human activities. By calculating the CDs on the daily, seasonal,
and annual scales of the YRD, we confirmed that the temperature in the YRD was a chaotic dynamic
system with nonlinear characteristics. We found that temperature on the annual scale was more
complicated than on the daily scale in the YRD. It was because the annual average temperature was the
average of the daily temperature, which was the macroscopic performance of the daily temperature
and influenced by many factors [46,47], so it showed greater complexity on the whole. Xu et al. [17]
found that the temperature process on the daily scale was more complicated than the temperature
process on the annual scale in Xinjiang. It was contrary to the YRD, indicating the complexity of
the temperature process had regional differences. In the spatial distribution, whether in the daily,
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seasonal, or annual scale, the high CD values were mainly distributed in the sparse areas of population
and urban, while the low CD values were mainly distributed in the dense areas of population and
urban. In the dense areas of population and urban, due to the density of cities and people, industrial
and urbanization were developing rapidly, and the temperature was mainly affected by the rapid
development of cities, showing an upward trend [38]. While in the sparse areas of population and
urban, the temperature changes were mainly affected by natural factors and socioeconomic factors
together, so the temperature changes more complicated.

The effects of five driving factors on the TS were quantitatively investigated by using the
Geogdetector method. UD was the most important factor affecting TS. From Figures 2c and 8, we can
see that the spatial distribution of UD was similar to the spatial distribution of TS, that is, decreasing
toward the periphery with Shanghai as the center. The UD reflected the intensity of the city. In Shanghai
and its surrounding areas, cities were dense and urbanization was high. One of the most striking features
of this was that the impervious surface of the city increased rapidly [48,49]. The impervious surface
of the city had strong heat storage, poor water storage capacity, and hindering airflow transmission,
which seriously affected the city’s surface hydrological cycle [50], energy distribution [49] and urban
microclimate [51], resulting in an urban heat island effect, which causes the temperature in dense areas
of urban to rise quickly. The impact of urban impervious surface on surface temperature had been
verified in different regions and a certain consensus had been reached [52–55]. The contribution rate of
GDP to TS was second. From Figures 2 and 6, we can see that the spatial distribution of GDP was
similar to the spatial distribution of TS. The development of GDP inevitably consumed a large amount
of energy, which would emit a large amount of greenhouse gases, resulting in a quick increase in
temperature. The GDP in Shanghai and its surrounding areas was increasing rapidly, so the TS in this
area was high. The contribution of NL was similar to the contribution rate of GDP, and the spatial
distribution of NL was similar to the TS. NL reflected the level of GDP and energy consumption from
the side [56,57], so it had a high contribution rate to TS. The NDVI was the smallest in Shanghai and its
surrounding area, while the TS was largest in this area, which meant that the vegetation coverage rate
played an important role in suppressing the increase of temperature, but it was not enough only to rely
on the vegetation coverage rate. Most of the YRD was plain and the fluctuation of terrain was small, so
the contribution rate of AT to the TS was small and can be ignored. Each driving factor had an effect
on TS; they did not work alone, but different driving factors interacted with each other and had an
enhanced influence on temperature.

Our main purpose is to explore which factors or interactions between factors contribute the
most to temperature. The paper only analyzed the complexity of the temperature process and the
contribution rates of driving factors to temperature, but the mechanism behind it remains to be studied
further. In addition, through the analysis of the driving factors, some policy opinions to mitigate the
temperature rise need to be proposed in the next study.

5. Conclusions

The study first analyzed the spatiotemporal variations of temperature in the YRD during the
period of 1980–2012 by using the trend analysis method; then, we investigated the spatiotemporal
complexity of temperature on different time scales by using the correlation dimension; finally, the
effects of driving factors and their interactions on TS in the YRD during the period of 1980–2012 was
analyzed by using the Geogdetector method. Summarizing this study, the main conclusions are as
follows:

1. The temperature was increasing during the period of 1980–2012, and it rose by 1.53 ◦C from
1980 to 2012; in addition, among the dense areas of population and urban, the temperature rose
quickly, while the temperature in the sparse areas of population and urban rose slowly.

2. In the temporal, the temperature process was more complicated with the increase of temporal
scale; in the spatial distribution, whether it is the daily time scale, the seasonal time scale, or
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the annual time scale, the temperature process was more complicated in the sparse areas of
population and urban than the dense areas of population and urban.

3. Socioeconomic factors were the main factors affecting climate change in the YRD, and the
contribution rate of urban density is the largest among the contribution rates of single factors. In
addition, the interactions between various driving factors had an enhanced effect on regional
climate change. In addition, the interaction between economic activity and urban density had the
largest influence on temperature.

Author Contributions: C.Z. designed, carried out the analysis, and wrote the manuscript. N.Z. revised the paper
and refined the results, conclusion, and abstract. D.Y. discussed the results. N.Z. edited the figures. J.X. revised
the paper and gave the commentary. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Scientific and Technological Innovation Programs of Higher Education
Institutions in Shanxi, Grant No. 2019L0477 and the Humanities and Social Sciences Foundation of the Ministry of
Education of China, Grant No. 19YJA890006.

Acknowledgments: The authors are grateful to the Resource and Environmental Science Data Center (http://www.
resdc.cn) of the Chinese Academy of Sciences and the China Meteorological Data Sharing Service System (http:
//cdc.cma.gov.cn/) for providing data. The authors appreciate the insightful comments of anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, B.; Zhang, M.; Wei, S.; Wang, S.; Li, S.; Ma, Q.; Li, X.; Pan, S. Changes in extreme events of temperature
and precipitation over Xinjiang, northwest China, during 1960–2009. Quatern. Int. 2013, 298, 141–151.
[CrossRef]

2. Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of
changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469.
[CrossRef] [PubMed]

3. Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact
on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [CrossRef]

4. de Barros Soares, D.; Lee, H.; Loikith, P.C.; Barkhordarian, A.; Mechoso, C.R. Can significant trends be
detected in surface air temperature and precipitation over South America in recent decades? Int. J. Climatol.
2017, 37, 1483–1493. [CrossRef]

5. Liuzzo, L.; Bono, E.; Sammartano, V.; Frenia, G. Long-term temperature changes in Sicily, Southern Italy.
Atmos. Res. 2017, 198, 44–55. [CrossRef]

6. Zhu, N.; Xu, J.; Li, W.; Li, K.; Zhou, C. A Comprehensive Approach to Assess the Hydrological Drought of
Inland River Basin in Northwest China. Atmosphere 2018, 9, 370. [CrossRef]

7. Ullah, S.; You, Q.; Ali, A.; Ullah, W.; Lan, M.A.; Zhang, Y.; Xie, W.; Xie, X. Observed changes in maximum
and minimum temperatures over China- Pakistan economic corridor during 1980–2016. Atmos. Res. 2019,
216, 37–51. [CrossRef]

8. Sharma, C.S.; Panda, S.N.; Pradhan, R.P.; Singh, A.; Kawamura, A. Precipitation and temperature changes in
eastern India by multiple trend detection methods. Atmos. Res. 2016, 180, 211–225. [CrossRef]

9. Salman, S.A.; Shahid, S.; Ismaila, T.; Ahmed, K.; Wang, X.J. Selection of climate models for projection of
spatiotemporal changes in temperature of Iraq with uncertainties. Atmos. Res. 2018, 213, 509–522. [CrossRef]

10. Kenawy, A.E.; López-Moreno, J.I.; Vicente-Serrano, S. Trend and variability of surface air temperature
in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmos. Res. 2012, 106, 159–180.
[CrossRef]

11. Iqba, M.A.; Penas, A.; Cano-Ortiz, A.; Kersebaum, K.C.; Herrero, L.; del Rio, L. Analysis of recent changes in
maximum and minimum temperatures in Pakistan. Atmos. Res. 2016, 168, 234–249. [CrossRef]

12. Baliunas, S.; Frick, P.; Sokoloff, D.; Soon, W. Time scales and trends in the Central England Temperature data
(1659–1990): A wavelet analysis. Geophys. Res. Lett. 1997, 24, 1351–1354. [CrossRef]

13. Bolzan, M.J.A.; Vieira, P.C. Wavelet Analysis of the Wind Velocity and Temperature Variability in the Amazon
Forest. Braz. J. Phys. 2006, 36, 1217–1222. [CrossRef]

113



Atmosphere 2020, 11, 32

14. Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoilak, B.V.; Chen, X. On the time-varying trend in global-mean surface
temperature. Clim. Dyn. 2011, 37, 759–773. [CrossRef]

15. Macias, D.; Stips, A.; Garcia-Gorriz, E. Application of the Singular Spectrum Analysis Technique to Study
the Recent Hiatus on the Global Surface Temperature Record. PLoS ONE 2014, 9, e107222. [CrossRef]

16. Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann-Kendall and Sen’s slope
approach. Clim. Dyn. 2017, 48, 783–797. [CrossRef]

17. Xu, J.; Chen, Y.; Li, W.; Liu, Z.; Wei, C.; Tang, J. Understanding the complexity of temperature dynamics
in Xinjiang, China, from multitemporal scale and spatial perspectives. Sci. World J. 2013, 2013, 259248.
[CrossRef]

18. Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of Arctic temperature change to greenhouse-gas and
aerosol influences. Nat. Clim. Chang. 2015, 5, 246–249. [CrossRef]

19. Chen, Y.; Chiu, H.; Su, Y.; Wu, Y.C.; Cheng, K.S. Does urbanization increase diurnal land surface temperature
variation? Evidence and implications. Landsc. Urban Plan 2017, 157, 247–258. [CrossRef]

20. Shi, J.; Cui, L.; Ma, Y.; Du, H.; Wen, K. Trends in temperature extremes and their association with circulation
patterns in China during 1961–2015. Atmos. Res. 2018, 212, 259–272. [CrossRef]

21. Liang, L.; Engling, G.; Zhang, X.; Sun, J.; Zhang, Y.; Wu, W.; Liu, C.; Zhang, G.; Liu, X.; Ma, Q. Chemical
characteristics of PM2.5 during summer at a background site of the Yangtze River Delta in China. Atmos.
Res. 2017, 198, 163–172. [CrossRef]

22. Zhang, Q.; Gemmer, M.; Chen, J. Climate changes and flood/drought risk in the Yangtze Delta, China, during
the past millennium. Quatern. Int. 2008, 176, 62–69. [CrossRef]

23. Chu, W.; Qiu, S.; Xu, J. Temperature Change of Shanghai and Its Response to Global Warming and
Urbanization. Atmosphere 2016, 7, 114. [CrossRef]

24. Kawashima, S. Effect of vegetation on surface temperature in urban and suburban areas in winter. Energy
Build. 1990, 15, 465–469. [CrossRef]

25. Gall, K.P.; Elvidge, C.D.; Yang, L.; Reed, B.C. Trends in night-time city lights and vegetation indices associated
with urbanization within the conterminous USA. Int. J. Remote Sens. 2004, 25, 2003–2007. [CrossRef]

26. Zhang, N.; Gao, Z.; Wang, X.; Chen, Y. Modeling the impact of urbanization on the local and regional climate
in Yangtze River Delta, China. Theor. Appl. Climatol. 2010, 102, 331–342. [CrossRef]

27. Hess, A.; Iyer, H.; Malm, W. Linear trend analysis: A comparison of methods. Atmos. Environ. 2001, 35,
5211–5222. [CrossRef]

28. Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems.
Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [CrossRef]

29. Grassberger, P.; Procaccia, I. Measuring the strangeness of strange attractors. Phys. D 1983, 9, 189–208.
[CrossRef]

30. Sivakumar, B. Nonlinear determinism in river flow: Prediction as a possible indicator. Earth Surf. Proc. Land.
2006, 32, 969–979. [CrossRef]

31. Ling, H.; Xu, H.; Fu, J.; Zhang, Q.; Xu, X. Analysis of temporal-spatial variation characteristics of extreme air
temperature in Xinjiang, China. Quatern. Int. 2012, 282, 14–26. [CrossRef]

32. Wang, J.; Li, X.H.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based
Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China.
Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [CrossRef]

33. Yang, D.; Wang, X.; Xu, J.; Xu, C.; Lu, D.; Ye, C.; Wang, Z.; Bai, L. Quantifying the influence of natural and
socioeconomic factors and their interactive impact on PM 2.5 pollution in China. Environ. Pollut. 2018, 241,
475–483. [CrossRef]

34. Wang, J.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33,
114–115. [CrossRef]

35. Qi, L.; Wang, Y. Changes in the observed trends in extreme temperatures over China around 1990. J. Clim.
2012, 25, 5208–5222. [CrossRef]

36. Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346. [CrossRef]
37. Yang, B.; Braeuning, A.; Johnson, R.K.; Shi, Y.F. General characteristics of temperature variation in China

during the last two millennia. Geophys. Res. Lett. 2002, 29, 31–38. [CrossRef]
38. Du, Y.; Xie, Z.; Zeng, Y.; Shi, Y.; Wu, J. Impact of urban expansion on regional temperature change in the

Yangtze River Delta. J. Geogr. Sci. 2007, 17, 387–398. [CrossRef]

114



Atmosphere 2020, 11, 32

39. Yan, H.; Zhang, J.; Hou, Y.; He, Y. Estimation of air temperature from MODIS data in east China. Int. J. Remote
Sens. 2009, 30, 6261–6275. [CrossRef]

40. Rial, J.; Coauthors, A. Nonlinearities, feedbacks and critical thresholds within the Earth’s climate system.
Clim. Chang. 2004, 65, 11–38. [CrossRef]

41. Olsson, J.; Niemczynowicz, J.; Berndtssonet, R. Fractal Analysis of High-Resolution Rainfall Time Series.
J. Geophys. Res. Atmos. 1993, 98, 23265–23274. [CrossRef]

42. Bodri, L. Fractal analysis of climatic data: Mean annual temperature records in Hungary. Theor. Appl.
Climatol. 1994, 49, 53–57. [CrossRef]

43. Radziejewski, M.; Kundzewicz, Z.W. Fractal analysis of flow of the river Warta. J. Hydrol. 1997, 200, 80–294.
[CrossRef]

44. Oñate Rubalcaba, J.J. Fractal analysis of climatic data: Annual precipitation records in Spain. Theor. Appl.
Climatol. 1997, 56, 83–87. [CrossRef]

45. Rangarajan, G.; Sant, D.A. Fractal dimensional analysis of Indian climatic dynamics. Chaos Solitons Fract.
2004, 19, 285–291. [CrossRef]

46. Webster, P.J.; Yang, S. Monsoon and ENSO: Selectively interactive systems. Q. J. R. Meteorol. Soc. 1992, 118,
877–926. [CrossRef]

47. Zhang, K.; Wang, R.; Shen, C.; Da, L. Temporal and spatial characteristics of the urban heat island during
rapid urbanization in Shanghai, China. Environ. Monit. Assess. 2020, 169, 101–112. [CrossRef]

48. Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens.
Environ. 2003, 84, 493–505. [CrossRef]

49. Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as
indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386.
[CrossRef]

50. Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comput. Environ. Urban Syst.
2000, 24, 5–22. [CrossRef]

51. Xu, H. Analysis of Impervious Surface and its Impact on Urban Heat Environment using the Normalized
Difference Impervious Surface Index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [CrossRef]

52. Xiao, R.B.; Ouyang, Z.Y.; Zhang, H.; Li, W.; Schienke, E.W.; Wang, X. Spatial pattern of impervious surfaces
and their impacts on land surface temperature in Beijing, China. J. Environ. Sci. 2007, 19, 250–256. [CrossRef]

53. Weng, Q.; Lu, D. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay
with impervious surface and vegetation coverage in Indianapolis, United States. Int. J. Appl. Earth Obs.
Geoinf. 2008, 10, 68–83. [CrossRef]

54. Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal characterization of land surface temperature in relation to
impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. 2009, 11,
256–264. [CrossRef]

55. Nie, Q.; Xu, J. Understanding the effects of the impervious surfaces pattern on land surface temperature in
an urban area. Front. Earth Sci. 2015, 9, 276–285. [CrossRef]

56. Doll, C.N.H.; Muller, J.; Morleyet, J.G. Mapping regional economic activity from night-time light satellite
imagery. Ecol. Econ. 2006, 57, 75–92. [CrossRef]

57. Elvidge, C.D.; Baugh, K.E.; Anderson, S.; Sutton, P.C.; Ghosh, T. The Night Light Development Index (NLDI):
A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

115





atmosphere

Article

Coupling of Soil Moisture and Air Temperature from
Multiyear Data During 1980–2013 over China

Qing Yuan, Guojie Wang *, Chenxia Zhu, Dan Lou, Daniel Fiifi Tawia Hagan, Xiaowen Ma and

Mingyue Zhan

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Geographical
Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China;
qyuan@nuist.edu.cn (Q.Y.); zhuchenxia@nuist.edu.cn (C.Z.); loudan711@163.com (D.L.);
dhagan@yeah.net (D.F.T.H.); 17853462199@163.com (X.M.); zhanmingyue0614@163.com (M.Z.)
* Correspondence: gwang@nuist.edu.cn; Tel.: +86-25-58731418

Received: 28 November 2019; Accepted: 24 December 2019; Published: 26 December 2019

Abstract: Soil moisture is an important parameter in land surface processes, which can control
the surface energy and water budgets and thus affect the air temperature. Studying the coupling
between soil moisture and air temperature is of vital importance for forecasting climate change.
This study evaluates this coupling over China from 1980–2013 by using an energy-based diagnostic
method, which represents the momentum, heat, and water conservation equations in the atmosphere,
while the contributions of soil moisture are treated as external forcing. The results showed that the
soil moisture–temperature coupling is strongest in the transitional climate zones between wet and
dry climates, which here includes Northeast China and part of the Tibetan Plateau from a viewpoint
of annual average. Furthermore, the soil moisture–temperature coupling was found to be stronger in
spring than in the other seasons over China, and over different typical climatic zones, it also varied
greatly in different seasons. We conducted two case studies (the heatwaves of 2013 in Southeast
China and 2009 in North China) to understand the impact of soil moisture–temperature coupling
during heatwaves. The results indicated that over areas with soil moisture deficit and temperature
anomalies, the coupling strength intensified. This suggests that soil moisture deficits could lead to
enhanced heat anomalies, and thus, result in enhanced soil moisture coupling with temperature.
This demonstrates the importance of soil moisture and the need to thoroughly study it and its role
within the land–atmosphere interaction and the climate on the whole.

Keywords: soil moisture–temperature coupling; heatwaves; multiple time scales

1. Introduction

The summer of 2013 was unprecedentedly hot in Eastern China, causing substantial societal
and economic impacts [1]. Such a phenomenon has drawn widespread concerns, and the physical
mechanism behind such heatwave is gradually being discovered [2–4]. The changes of large-scale
atmospheric circulations may be the main cause of temperature anomalies, and small-scale physical
processes of local energy balance such as soil moisture–atmosphere coupling could also make
a contribution to them [5]. Many studies have shown that soil moisture anomalies play an important
role in soil moisture–temperature coupling [6,7], as it could control the energy budget by the partitioning
of latent heat flux and sensible heat flux, further impacting the air temperature [8,9]. When soil moisture
decreases, less water can be used for evapotranspiration, resulting in a decrease of latent heat flux [8,10].
Based on the energy balance, the decline of latent heat flux causes an increase of the sensible heat
flux, thus enhancing the air temperature. These conditions indicate a negative feedback between soil
moisture and air temperature: Soil moisture deficit results in the rise of air temperature [11–13].
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Nowadays, various studies have shown that dry soil moisture conditions can have a substantial
influence on the severity of heat waves and drought through the coupling between soil moisture
and atmosphere [10,11]. As shown, soil moisture–temperature coupling helps to explain heat
waves in summer climate [14,15]. Modeling experiments have focused on identifying the strong
coupling regions, and how these regions are influenced by the changing climate [14,16]. The Global
Land–Atmosphere Coupling (GLACE) project indicated that the strongest coupling regions (hot spots)
of soil moisture–temperature are between the transitional regions of wet and dry climates [16,17].
In addition, some numerical experiments have been devoted to studying the soil moisture–temperature
coupling at regional scales [18–20] finding that soil moisture anomalies impact air temperature during
summer mainly in areas like Northern China [21–23].

At present, many studies have tried to use different metrics for assessing land–atmosphere
coupling strengths. Koster et al. [16] proposed to use correlation between evapotranspiration and
temperature, and found results agreeing with other metrics, for example, those based on the correlation
between evapotranspiration and radiation. Gallego-Elvira et al. [24] used the dependence of the
surface heating rate of different cover types on the previous precipitation during drought to identify
different evaporative regions. Dirmeyer [25] devoted an index of surface flux sensitivity to soil
moisture variability and applied it to global atmospheric reanalysis datasets. However, most studies
assessing the coupling of soil moisture to climate were based primarily on summer (June–July–August,
JJA) [9,14], but there is a lack of understanding on its seasonal changes; therefore, it is important to
devote more attention to studying the coupling within the other seasons as well. Moreover, the studies
of the soil moisture–temperature coupling were mostly based on modeling experiments [10,26],
which show a large difference in the regions and strengths of land–atmosphere coupling [8]. However,
the limited ground measurements of soil moisture cannot meet the research needs of land–atmosphere
coupling on regional scales. Given the limitation of ground measurements, satellite data could be
used in soil moisture–temperature coupling studies from an observational point of view, and the
recent development of soil moisture and evapotranspiration products from remote sensing technology
provides the possibility for such studies.

A wide variety of datasets makes it possible for us to study soil moisture–temperature coupling
from an observational perspective [24,27,28]. This study utilized one of these satellite-based datasets
with a coupling diagnostic to show the spatial distribution and interannual variation of strong coupling
regimes between soil moisture and temperature over China in different seasons. This diagnostic
focused on two different timescales to fill the gap between extremes and climatological studies of soil
moisture–temperature coupling. Different season coupling hot spots of China are illustrated in the
following sections. Subsequently, we explored the role of soil moisture during the 2013 heatwave in
Southeast China and the 2009 event in North China.

Furthermore, this study depicts not only soil moisture–temperature coupling in long-term
variations, but also soil moisture–temperature coupling during the heat wave events and the related
heating processes. It may help to point us toward better understanding the underlying processes of
soil moisture–temperature coupling, and thus improve the prediction skills of heat waves [14,29].

2. Materials and Methods

2.1. Study Area

China has a complex climate due to its topography [30]. Mainland China is generally divided into
three different climatic zones: Arid region with annual precipitation below 200 mm, humid region
with annual precipitation more than 800 mm, and transitional region with annual precipitation from
200 to 800 mm [31]. The arid region mainly includes Xinjiang province and western Inner Mongolia
Plateau. The humid region is mainly South China. The transitional region mainly includes North
China Plain, Northeast Plain, and part of Tibetan Plateau, where there is more rain in summer but
less in winter. Known as the “The Third Pole”, the Tibetan Plateau is the highest and most unique
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geographical unit on earth [32]. It is one of the most sensitive regions to global climate change and
its hydrological processes are quite different from that of other regions of China [33,34]; thus, it is
regarded as a separate typical region in this study. The humid, transitional, and dry regions, as well as
the Tibetan Plateau, are shown in Figure 1.

Figure 1. The typical climate regions of China (arid, humid, transitional, the Tibetan Plateau).

2.2. Data Sources

The evapotranspiration (ET) and potential evapotranspiration (PET) data from the GLEAM v3.0a
(Global Land Evaporation Amsterdam Model) product were used in this study, which span the period
from 1980 to 2015 with a spatial resolution of 0.25◦. The GLEAM model is a simplified land model,
which is fully dedicated to estimating the terrestrial evaporation and root zone soil moisture based on
satellite data [35]. It comprises a set of algorithms using multiyear satellite observations to estimate
the components of terrestrial ET. The PET is calculated within the Priestley–Taylor equation via the
observations of net radiation and near-surface air temperature [36]. The 2-m air temperature and the
top layer (0–7 cm) volumetric soil moisture from the ERA-Interim reanalysis data were used [37].

2.3. Methods

This study used a diagnostic method to estimate the long-term soil moisture–temperature coupling
over China in different seasons, which is based on two energy balances of ET and PET. The partitioning
of the land energy is expressed in Equation (1), where Rn refers to the surface net radiation, G means
the ground heat flux, and λ is the latent heat of vaporization, which can be captured from near-surface
air temperature; the ground heat flux is negligible in this study [36,38].

Rn −G = λE + H, (1)

When the annual time series of E, Ep, Rn, and near-surface temperature (T) are available,
the diagnostic method could be used to estimate the long-term soil moisture–temperature coupling [17],
where the metric (Π) can be calculated as:
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Π = ρ(H, T) − ρ
(
Hp, T

)
, (2)

H = Rn − λE, (3)

Hp = Rn − λEp, (4)

where ρ means Pearson’s correlation coefficient, and H is the sensible heat flux. Using Π, we can
derive an indicator of the long-term soil moisture–temperature coupling, which can be considered as
a multi-year average. When considering the σT, σH, and σHp (the standard deviations of T, H, and Hp),
Equation (1) could also be expressed in another form as covariances:

Π =
1
σT

⎛⎜⎜⎜⎜⎜⎜⎝cov(H, T)
σH

−
cov
(
Hp, T

)
σHp

⎞⎟⎟⎟⎟⎟⎟⎠, (5)

To understand the related heating processes between land and atmosphere during the
heatwave events, we used a different diagnostic method based on daily data to derive the soil
moisture–temperature coupling at daily scale [8], and the metric (π) is defined as:

πi =
Ti − T
σT

⎛⎜⎜⎜⎜⎜⎝Hi −H
σH

− Hp,i −Hp

σHp

⎞⎟⎟⎟⎟⎟⎠, (6)

where T, H, and Hp indicate the averages of T, H, and Hp over a long term. It can be simplified as:

π = T′ × e′, (7)

e′ = (Rn − λE)′ −
(
Rn − λEp

)′
, (8)

where T′ represents the anomalies of T, and e′ is equal to H′ −Hp
′ and indicates the contribution of

soil moisture deficit to sensible heat flux. When there is sufficient soil moisture for the atmospheric
demand, this energy term will be zero, and it may increase under arid condition. Only if the potential
influence of soil moisture on temperature is accompanied by a large anomalous value of temperature
is the local energy balance likely to control air temperature [11].

TheΠ and theπ are two coupling metrics at different time scales; the former includes the long-term
record in terms of correlation coefficients to evaluate long-term climatology, while the latter expresses
anomalies of one day in terms of standard deviations to evaluate daily extreme. When Π and π values
are greater than zero, then the higher the value the stronger soil moisture–temperature coupling.
If values are less than or equal to zero, there is no coupling [17].

3. Results

3.1. Long-Term Soil Moisture–Temperature Coupling

To know the spatial distribution of strong coupling between soil moisture and temperature
in China, we first calculated the metric (Π) by using ET (evapotranspiration) and PET (potential
evapotranspiration) from the GLEAM data, and T (2-meter temperature) and Rn (surface net radiation)
from the ERA-Interim reanalysis data over the period 1980–2013. Figure 2 illustrates the derived
long-term soil moisture–temperature coupling annually and in different seasons.

Figure 2a shows the Π values derived from the annual data. The coupling strength appears to
be highest in Northeast China and part of the Tibetan Plateau, where the climate is neither too wet
nor too dry, showing that soil moisture has the strongest impact on temperature over the annual
average in these regions. The results are consistent with previous studies which have suggested that
such hot spots of soil moisture–temperature coupling occur most in transitional regions between wet
and dry climate [9,39,40]. In spring, there appears to be strong soil moisture–temperature coupling
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(Figure 2b) in large areas of China, including Northeast, North, Northwest China and the Tibetan
Plateau, and Yunnan province as well.

In summer, the coupling strengths are largely reduced compared to those in spring. There are
only coupling signals in North China, especially Inner Mongolia. In autumn, the strongest coupling
signals appear in Northeast China and the northern part of the Tibetan Plateau, although these are
also significantly weakened compared to those in spring. It is not surprising to find strong signals
in Northeast China, where it is neither too wet nor too dry in summer. In the cold season of winter,
quite limited coupling signals are found, indicating that the soil moisture generally has quite limited
impact on temperature across China.

Over the whole region, as shown in Figure 2, soil moisture–temperature coupling is relatively
stronger in spring, followed by summer and autumn, and rather insignificant in winter. The seasonality
of the soil moisture–temperature coupling strength has a distinct regional variation. Over Northern
China, which is mainly a arid/semi-arid region, the contribution of soil moisture to evapotranspiration
is mainly limited by water. Here, the results in Figure 2 depict strong coupling, which suggests
a stronger impact of soil moisture anomies on temperature. Given that Southern China is mainly
a humid/semi-humid region, the comparatively weaker soil moisture–temperature coupling (as seen
in Figure 2) demonstrates that the region is mostly dominated by energy-limited conditions [8,13].
The north of China is here identified as a hot spot in spring, mainly because dry conditions (water-limited)
persist throughout the year. In spring, a sufficient energy supply for ET, due to melting ice and snow,
increases the amount of water in these regions, as well as causes more evaporation and, thus, increased
coupling strength to the atmosphere. This may explain why coupling strength is higher in spring than
in summer in North China [41]. The seasonal transition from winter to spring affects the soil moisture
thawing and radiation budget over the Tibetan Plateau, which results in more heat transfer into the
atmosphere. The heat energy transferred to the atmosphere is used to warm the air, thus showing strong
soil moisture–temperature coupling [42]. In Yunnan province, the water supply is not sustainable
because of the special climatic conditions, thus the soil is drier during the spring, which leads to
a strong soil moisture–temperature coupling [43].

Figure 3 shows the soil moisture–temperature coupling strengths in different seasons based on
the four climatic regions. Obviously, the coupling strengths vary greatly in different regions and
different seasons. Except for the humid region, the coupling strengths of the other three climatic regions
are all the strongest in spring and the weakest in winter. From the perspective of different seasons,
the strength differences between the arid region, the transitional region, and the Tibetan Plateau
region are relatively small. The seasonal transition from winter to spring influences soil moisture
thawing and radiation budgets, with more heat energy being transferred into atmosphere [42,43].
For the typical climate regions divided according to Figure 1, the arid and transitional regions and
the Tibetan Plateau zone have analogous soil moisture and atmosphere conditions, thus they are very
similar, particularly in spring. However, coupling strengths in the humid region appear to be much
smaller than the other regions in all seasons. The transitional region appears to have the strongest
coupling strength in terms of the annual average, followed by the arid region and the Tibetan Plateau.
The soil moisture–temperature coupling in spring appears to be much stronger than in the other
seasons, which is particularly significant in the arid and transitional regions and the Tibetan Plateau.
In the cold winter, the soil moisture–temperature coupling strengths are rather weak in all of the four
climatic regions. Despite notable differences in the soil moisture–temperature coupling strengths
among the four seasons, there are still some features in common. There appears to be hot spots of soil
moisture–temperature coupling in the transitional zones between wet and dry regimes in all seasons.
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Figure 2. Soil moisture–temperature coupling over China during the period 1980–2013. (a) Whole
year; (b) spring (MAM, from March to May); (c) summer (JJA, from June to August); (d) autumn (SON,
from September to November); (e) winter (DJF, from December to February).
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Figure 3. Soil moisture–temperature coupling strengths in different seasons in the typical climate
regions over China during the period 1980–2013.

In order to understand how the soil moisture–temperature coupling strengths are linked to the
soil moisture amount, Figure 4 shows the density scatter plot of coupling strengths against the soil
moisture amount in spring. It appears that, principally, the coupling strengths are linearly related to
the soil moisture amounts across China; when soil increases, the strength of soil moisture-temperature
coupling decreases, and this linear relationship is particularly clear when the soil moisture amount
is more than 0.2 m3/m3. When soil is too dry, the coupling is not sensitive to soil moisture amount,
and where there is too much soil moisture, especially in the humid regions, the density of data points
is also high and shows that the coupling strengths are rather low. This result is also consistent with
other studies [11,13].

 
Figure 4. The density scatter plot of coupling strengths against the soil moisture amount in spring.
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3.2. Coupling Anomalies in Heatwaves

As seen in Figure 2, the soil moisture–temperature coupling is strongest in spring than in other
seasons in China; however, many studies have reported heat wave amplifications through the feedback
loops between soil moisture deficit and temperature in summer [18,44]. To understand the detailed
processes of soil moisture–temperature coupling in the heatwave events, we conducted two case
studies on daily scales.

3.2.1. Case 1: Heatwave of Southeast China in Summer 2013

In the summer of 2013, Southeast China experienced abnormally high temperatures, which broke
the heat records for the past 141 years and led to an unprecedented heatwave across China [1].
This unprecedented anomalies reached high values from 23 July to 14 August [3]. This disaster
caused about US$10 billion in crop damage, and a total of 5758 Heatwave-related illness cases were
reported [40–47].

Figure 5a illustrates the soil moisture–temperature coupling from 1 June to 30 August, when the
heatwave occurred. Figure 5b,c shows the soil moisture and temperature anomalies, referring to
the multi-year average of 1980–2013. It appears that the summer temperature was strongly coupled
to land surface soil moisture in East China, where the heatwave occurred. Meanwhile, there were
significant soil moisture deficits and large-scale positive temperature anomalies, reaching roughly
6 ◦C, particularly in the middle and lower reaches of the Yangtze River basin. Atmospheric circulation
anomalies are generally considered to be the main cause of heatwaves in China, e.g., the movement of
the Northwest Pacific subtropical high [46,48,49]. However, land surface feedback on the atmosphere
have been found to be an important factor for heatwaves over China, which may contribute 30–70% of
the high temperature anomalies [22]. Our finding from Figure 5a–c is very likely to tell such a story that
soil moisture deficit resulted in, at least partly, a significant heatwave through the coupled processes
between land and atmosphere.

To better understand the temporal evolution of the heat wave, we show in Figure 5d–f the changes
of the temperature anomalies (T′) and the heat anomalies (H′ −Hp

′) with time. Figure 5d shows
the positive heat anomalies before the heatwave occurred (12–23 July) in Southern China, which are
related to the soil moisture deficit and lead to enhanced evaporative stress. Figure 5e illustrates the
mega-heatwave from 24 July to 16 August in Southern China, when both the temperature anomalies
(T′) and the heat anomalies (H′ −Hp

′) reached their maximum values with the largest spatial coverage.
Figure 5f shows the temperature anomalies (T′) and the heat anomalies (H′ −Hp

′) during 17–28 August,
when the heatwave had almost vanished with largely reduced temperature and heat anomalies, as well
as their spatial coverages. Further, in Figure 5g, we show the temporal variations of

(
H′ −Hp

′) and T′
from 1 June to 13 August, which are averaged within a small region in the epicenter of the heatwave
(marked in Figure 5e). The right Y-axis indicates the metric π, and the left Y-axis indicates the anomalies
of
(
H′ −Hp

′) and T′. It clearly shows how soil moisture deficit contributed to the enhancement of heat
and temperature anomalies; it is obvious that the land–atmosphere coupling was strongest with the
largest π values during the mega heatwave (23 July–18 August).
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Figure 5. The soil moisture–temperature coupling and related processes during the summer heatwave
of Southeast China during 24 July–16 August 2013. (a) The coupling metric π; (b) the soil moisture
anomalies and (c) the temperature anomalies, referring to the multi-year average of 1980–2013;
(d) pre-heatwave (12–23 July); (e) the occurrence of the heatwave (24 July–16 August); (f) the days after
the heatwave (17–28 August); (g) daily time series of T′, H′, Hp

′, and the coupling metric π.

3.2.2. Case 2: Heatwave of North China in Summer 2009

There was a heatwave from 20 June to 4 July in 2009 in North China. Although it was not as
severe as the mega-heatwave in Southeast China in 2013, the continuous hot weather in the North
China plain was rare since 1949 [50]. At the end of June, an unprecedented heatwave hit Hebei
and Shandong provinces, setting new temperature records. By early July, the heatwave gradually
dissipated in North China and the high temperature shifted to Southern China [51]. The cause analysis
of this event mainly focused on the effect of El Niño and is typical of the high-pressure systems [49].
In addition, the soil moisture deficit of North China would increase the sensible heat flux and influence
the atmospheric boundary layer temperature, conducive to strengthening the subtropical high and
causing a heatwave [52]. Figure 6a–c depicts the coupling metric π, as well as the soil moisture and
temperature anomalies referring to multi-year average of 1980–2013 during the heatwave (20 June–4
July) in North China in 2009. Where there is the strongest coupling, there is significant soil moisture
deficit and maximum temperature anomalies.
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Figure 6d–f is analogous to Figure 5d–f, dividing the study period into pre-heatwave (the left
panel), the mega heatwave (the middle panel), and post-heatwave (the right panel). It appears that the
heat anomalies (H′ −Hp

′) and the temperature anomalies (T′) reached their maximum values during
the heatwave, while such anomalies existed in neither the left nor the right panel. In Figure 6f, we show(
H′ −Hp

′) and T′ for the period 1 June–31 August, averaged within a small region in the epicenter
of the heatwave (marked in Figure 6e). Similarly, it is obvious that the land–atmosphere coupling is
strongest with the largest π values during the mega heatwave 20 during June to 4 July, when there is
the largest heat and temperature anomalies associated with a significant soil moisture deficit.

Figure 6. The soil moisture–temperature coupling and related processes during the summer heatwave
of North China during 20 June–4 July 2009. (a) The coupling metric π; (b) the soil moisture anomalies
and (c) the temperature anomalies referring to the multi-year average of 1980–2013; (d) pre-heatwave
(12–19 June); (e) the occurrence of the heatwave (20 June–5 July); (f) the days after the heatwave (6–13
July); (g) daily time series of T′, H′, Hp

′, and the coupling metric π.

4. Conclusions and Discussion

This study attempted to utilize the GELAM and ERA-Interim datasets to study land–atmosphere
coupling in China for the period 1980–2013. The key findings are as follows.
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Hot spots of soil moisture–temperature coupling were found in North China and over the Tibetan
Plateau, which indicate that the soil moisture–temperature coupling is strongest in the transitional
climate zones. These results are in agreement with [9,14]. The seasonality of soil moisture–temperature
coupling strength has marked regional variation, which suggests that soil moisture–temperature
coupling strength is stronger in Northern China than in the southern, and coupling is relatively
stronger in spring, followed by summer and autumn, and insignificant in winter. In spring,
soil moisture–temperature coupling is stronger within dry areas, and these regimes are mainly
water-limited regions, where evaporation depends on the supply of water.

Case studies involving the 2013 Southeast China heatwave and the 2009 North China heatwave
were conducted to understand the role of soil moisture–temperature coupling and the related heating
processes during heatwave events. It was found that enhanced heat and temperature anomalies
associated with soil moisture deficit, when the soil moisture–temperature coupling intensifies,
could result in enhanced evaporative stress and heat anomalies, which finally leads to enhanced soil
moisture coupling with temperature [1,50]. However, there is much debate about the exact physical
mechanisms of how heatwaves occur and evolve. Mirelles et al. [11] found that the prevailing persistent
synoptic patterns led to warm air advection and clear skies, along with a high atmospheric demand,
intensified soil desiccation (causing a strong surface sensible heat flux), causing the mega-heatwaves
of 2003 and 2010 in Europe. Zhang et al. [53] supports that soil moisture in spring and early summer
may be an important contributor to heatwaves in July via positive subtropical high anomalies. Several
studies show that the formation mechanism of heatwaves is not only caused by a certain external force,
but may be influenced by circulation systems, external forcing, or local effect, and soil moisture deficit
may contribute directly and indirectly to all of these processes [10].

Land–atmosphere coupling involves water, energy, and chemical elements, which affect different
processes in the hydrological cycle and thus play a critical role in the climate system [8]. However,
in-situ observations of soil moisture and land surface fluxes are scarce and uncertain at the appropriate
scale, which has caused great difficulties in the study of land–atmosphere coupling. The recent
advances in satellite remote sensing have provided near-real-time datasets for us, and reanalysis data
can also provide long-term databases for such studies. The long-term memory of soil moisture could
help better understand the land–atmosphere interactions and may provide valuable information in
weather forecasts to aid the management of extremely warm climates.

Other dynamic relations between soil moisture and atmosphere coupling were ignored in this
study, which may also affect the participation of sensible heat and latent heat. Furthermore, the ultimate
causal relationship was not demonstrated in the diagnostics between soil moisture and temperature
coupling. The physical mechanism and causal relationship between soil moisture and temperature still
need to be further explored in future work.
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