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Figure 14. Pretrained YOLOv3 object detection on various rectified 190◦ fish-eye frames: bus detected
along the edge in the proposed rectified algorithm.

Figure 15. Pretrained SSD object detection on various rectified 120◦ wide-angle frames: person detected
in the proposed rectified algorithm frame.

6.2.2. Quantitative Performance Analysis

The quantitative analysis has been carried out using the synthetic distorted KITTI dataset on
various rectified algorithms—Aleman et al. [3], Santana et al. [5], and the proposed method—alongside
distortion-free and randomly distorted samples. The SOTA pretrained YOLOv3 and SSD were
employed to detect the objects in the scene, and comparisons were done with respect to various cases.
The corresponding quantitative analysis in terms of mAP is depicted in Figure 16. The pretrained
SSD achieved 72.4 mAP on rectified samples using the proposed method, which is higher than the
distorted an other rectified samples. Similarly, pretrained YOLOv3 achieved 79.8 mAP on proposed
method rectified samples, which is greater than the distorted and other rectified samples. The rectified
samples used in the streamlining of trained detectors must perform well in order to improve the
detection accuracy, and this must be validated using distortion-free samples for proper analysis.
The original samples are considered as a ground-truth benchmark such that the algorithm which can
produces better rectified samples can therefore be streamlined on to pretrained detectors for better
accuracy. This phenomenon proves that the rectified samples using the proposed method are more
pixel-consistent and preserved the object characteristics through stretch-free rectification compared to
the other rectification algorithms.
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Figure 16. SOTA pretrained YOLOv3 and SSD were employed to detect the objects in the scene on
distorted KITTI samples rectified with various algorithms.

6.3. High-Level Metrics: Video-Surveillance Use-Case

The quantitative and qualitative analysis was carried out on various samples retrieved from
different camera systems. Primarily, the comparisons were carried out between the use cases where
the inevitability of distortion is high. Both the quantitative and qualitative analyses were dealt
with using experiments where the distortions were rectified and thereby the intrinsic estimation
and height calculations were performed. This process was done for both cases—the distortion
rectification process proposed in this study as well as the manual rectification following the approach
of Li, Shengzhe et al. [32]. The accuracy in height measurements was estimated with a straightforward
method of retrieving errors between the estimated and available ground truth.

The results corresponding to the camera IDs 03, 04, and 08 are depicted in Figures 17–19,
respectively, as they spread-over the samples retrieved from both indoor and outdoor. The distortion
effect was nullified using both the rectification methods, and the rectified pixel points were used for the
further process of estimating the heights of all 11 subjects recorded using a similar camera ID. The red
plot line represents the height error values in the case of manual rectification, where the distortions
are not completely rectified and that resembles a concave effect due to inappropriate estimation of
distortion parameters. The blue plot line represents the error in height estimations in case of the
rectification using proposed method.

The results clearly state that the method used in Li, Shengzhe et al. [32] is manual in a manner with
the intrinsic-based height estimation, which can be termed as manual distortion-rectification-guided
intrinsic-based height estimation (DR-IE) has an effect due to pixel irregularities. This inconsistency
in pixel locations and corresponding error in metric information increases with the increase in the
distortion levels. The method proposed by Li, Shengzhe et al. [32] is unable to handle such irregularities
through manual rectification. In contrast, the proposed method uses the rectified frames to get the
pixel location which has relatively low pixel inconsistency resulting in the low height estimation error
in cm. This can be clearly shown in the error plots where the height estimation errors are relatively
larger in Li, Shengzhe et al. [32] than the proposed method.
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Figure 17. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Outdoor
camera ID.03: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

Figure 18. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Indoor
camera ID.04: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

Figure 19. Height Estimation errors using (Li, Shengzhe et al. [31] vs. proposed method) on Indoor
camera ID.08: (a) Qualitative pixel-consistency. (b) Height estimation error plot corresponding to all
the 11 subjects.

The effect of the distortion-rectification-guided height estimation can be observed clearly in the
context of the wide-angle camera scenario. The below Figure 20 illustrates the robustness of the
proposed system in the presence of darkness and severe illumination changes.
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Figure 20. Robustness of proposed distortion-rectification-guided height estimation on wide-angle
camera at night time.

The overall height estimation errors with respect to various camera sensors in the context of 11
subjects have been extensively tested with the Li, Shengzhe et al. [31] result as a baseline. The proposed
method preserved the pixel consistency in the distortion-rectified image, thereby when those rectified
pixels are used for the height estimations, the errors seem to decline. These quantitative comparisons
are clearly illustrated in Table 4 below. The camera IDs 1, 2, 6, 7 were used to compare the distortion
effects on the metric height estimation because these camera sensors posses a slightly higher amount
of distortions compared to the other camera sensors used in the study. The average height estimation
errors are indicated in bold in the below table which clearly explains the effectiveness of height
estimation via the proposed automatic distortion rectification method.

Table 4. Quantitative comparison: Average height estimation errors with respect to various cameras on
11 subjects.

Subject
ID

Height Estimation Errors with Respect to Various Cameras on 11 Subjects [in cm]

Cam1 Cam2 Cam6 Cam7

Manual Automatic Manual Automatic Manual Automatic Manual Automatic

S1 0.1 0 0.1 0.2 0.1 0 0.1 0.1
S2 1 0.4 2 0.7 0.5 0.2 0.1 0.2
S3 0.1 0 0.2 0.1 1.2 0.7 0.6 0.5
S4 0.1 0 0.8 0.4 1.3 0.9 2.2 0.4
S5 4.2 1.5 0.2 0.3 3 0.6 3 1.2
S6 0.5 0.3 1.4 0.5 0.4 0.2 2.4 0.8
S7 2.6 0.7 3 0.8 0.3 0.2 0 0.1
S8 1.1 0.9 0.9 0.6 1.2 0.7 1.1 0.7
S9 2 0.6 0.3 0.2 0.4 0.3 0.9 0.8
S10 4.1 1.1 0.9 0.3 0.8 0.1 2.1 0.6
S11 2.8 1.3 1.3 0.2 1.4 0.4 0.8 0.5

Average
Errors [in cm]

1.69 0.61 1.01 0.39 0.96 0.39 1.20 0.53

7. Conclusions

An outlier refinement methodology for automatic distortion rectification of wide-angle and
fish-eye lens camera models was proposed. The novel cumulative plumbline angular loss over

294



Sensors 2020, 20, 894

line-member set aggregation exhibits better performance in conjunction with the outlier refinement
optimization scheme. The design elements were evaluated using various metrics on real datasets
(wide-angle: 120◦ < FOV < 150◦; fish-eye: 165◦ < FOV < 190◦) and synthetic distortions on distorted
KITTI comprising of several real-time challenges and diverse distortion variations. The practical
significance of the proposed novel elements was investigated using an ablation study in accordance
with public and private datasets on image quality and pixel consistency metrics. The novel cumulative
plumbline angular loss in conjunction with outlier refinement optimization scheme exhibited better
performance in rectifying severe distortions compared to other rectification options in the ablation
study. A diverse range of experiments were conducted in relevance to the low-level metrics such as
image quality, stretching, and pixel-point error on various metrics such as PSNR, SSIM, S3, and LPC-SI.
Besides, most of the experiments were carried out in the context of streamlining vision tasks on
the rectified frames. The high-level scenarios, such as object detection in ADAS and metric height
estimation in video surveillance, were extensively exploited on the distortion-rectified frames to
validate the proposed method. Application-oriented metrics such as mean average precision (mAP)
and height estimation errors (in cm) were employed to investigate the adaptability of the proposed
method in both learning-based appearance tasks and metric-based tasks. Both the quantitative and
qualitative metrics were employed in all the streamlined experiments to examine the practical usage of
the proposed method. The rectification algorithm proposed using the outlier refinement optimization
scheme guided the streamlining vision-based tasks to achieve better accuracy.
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Abstract: Brain computer interfaces are currently considered to greatly enhance assistive technologies
and improve the experiences of people with special needs in the workplace. The proposed adaptive
control model for smart offices provides a complete prototype that senses an environment’s
temperature and lighting and responds to users’ feelings in terms of their comfort and engagement
levels. The model comprises the following components: (a) sensors to sense the environment,
including temperature and brightness sensors, and a headset that collects electroencephalogram
(EEG) signals, which represent workers’ comfort levels; (b) an application that analyzes workers’
feelings regarding their willingness to adjust to a space based on an analysis of collected data and
that determines workers’ attention levels and, thus, engagement; and (c) actuators to adjust the
temperature and/or lighting. This research implemented independent component analysis to remove
eye movement artifacts from the EEG signals and used an engagement index to calculate engagement
levels. This research is expected to add value to research on smart city infrastructures and on assistive
technologies to increase productivity in smart offices.

Keywords: Passive Brain Signals; adaptive automation and controller; EOG artifact; independent
component analysis; engagement index

1. Introduction

Worker engagement and concentration are essential to ensure productivity in the workplace.
However, busy workers may find it hard to concentrate since their focus can be easily broken by many
factors, and this may affect their engagement at work. The environment surrounding the employee
is one of these factors [1]. A room’s temperature [2], brightness level, window size [3], and noise
level [4] can affect focus at work, especially when employees have a busy schedule. For instance,
small changes in room temperature may directly affect engagement, which influences the productivity
of employees; this may sometimes occur without anyone noticing the causes for it. Therefore, providing
a control system to maintain an environment that helps increase user engagement can improve
productivity at work. Furthermore, the control system’s level of interaction with users in maintaining
an appropriate environment is critical, as most busy workers find it difficult or time consuming to
track their environment in order to continually adjust it. Although such a control system sounds
promising as an assistive technology to accommodate workers with movement disabilities, it would
be impractical in offices with more than one worker. Hence, the proposed research assumed the
environment of a small office with one or two workers that is equipped with sufficient infrastructure
to assist workers with disabilities.
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1.1. Passive Brain Computer Interaction

The original goal of Brain Computer Interaction (BCI) is to provide a communication and a control
channel for people with severe disabilities, especially those who are completely paralyzed. Most BCIs
are used for direct or explicit control, which might involve users controlling a cursor or selecting
letters on a computer screen using mental activity. The channel transfer rate of these applications
remains under 25 bits per minute [5] Such explicit BCIs often require a long training period but remain
a solution for patients.

Non-command user interfaces [6] have been proposed to use a BCI as an implicit communication
channel between a user and a computer. Implicit or passive BCIs refer to BCIs in which the user does
not try to control their brain activity. Passive BCIs have been deployed in recent research on adaptive
automation. In the field of adaptive automation, the first brain-based system was developed by
Pope et al. [7]. In this system, tracking tasks were allocated between a human and a machine based on
an engagement index, which was calculated using users’ brain activity. More recently, Kohlmorgen et al.
presented the use of implicit BCI in the context of a real driving environment [8]. In this study, the user
was engaged in a task mimicking an interaction with the vehicle’s electronic warning and information
systems. This task was interrupted when a high mental workload was detected. This experiment
showed good reaction times on average using BCI based on implicit interaction.

1.2. BCIs in the Office

The environment around a person working in an office has a direct effect on their engagement
and productivity [2,4]. In the last few years, BCI researchers have studied BCI technology and its uses,
both for disabled and healthy users [9]. Finding an easy and smart way to automatically detect the
best environmental conditions and then adjust them accordingly would make the work environment
a more enjoyable and proactive place. Recent research has been conducted to develop smart offices
using various technologies and techniques, such as smartphones [10], speech commands, gestures [11],
and even active brain signals [12]. While some systems do not require direct interaction with the
user, most do. Such an interaction involves using passive BCI signals and concentrating on only
one environmental factor, such as a window [13]. However, to our knowledge, no research has been
conducted that includes adjusting multiple factors in the office environment to enhance worker
engagement and concentration [13]. Thus, an intelligent system that passively observes workers’
mental status, automatically and passively acquires their brain signals, analyzes these signals alongside
environmental measurements to find the perfect state to enhance workers’ concentration, and adjusts
environmental factors to meet the required state is needed.

2. Background and Literature Review

Using BCIs as a tool in smart offices [12] and homes [14,15] varies in terms of purpose,
methodology, and environment. Hence, in this section, a background on brain wave types and the use
of BCI technologies and methodologies in smart offices is discussed.

2.1. Brainwaves

Brain waves are classified based on bandwidth, and each type serves a different function.
Low-frequency waves dominate when a person is tired or daydreaming. High-frequency waves
appear more often when a person is active. The bandwidths of brain waves are shown in Table 1.
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Table 1. Brainwave bandwidths and functions.

Name Speed Description Wave Sample

Infra-low <0.5 HZ

This is the basic cortical tune that underlies higher
brain functions. This type of wave is very slow,
which makes it hard to detect; therefore, limited
knowledge exists surrounding it.

N/A

Delta 0.5 to 3 HZ
This wave is usually associated with deep stages of
sleep and meditation. In addition, it has the
highest amplitude and the slowest rate.

Theta 3 to 8 HZ This is a low-frequency and low-altitude wave that
occurs in sleep, daydreaming, and meditation.

Alpha 8 to 12 HZ
This wave is generated by the occipital lobe when
closing the eyes or relaxing. It is most visible over
the parietal and occipital lobes.

Beta 12 to 38 HZ

This wave dominates most of the human waking
state. This wave becomes small and fast when
performing hard mental work, such as
problem-solving, decision-making, etc. It is most
prominent in the frontal cortex during intense and
focused mental activity.

Gamma 38 to 42 HZ This is the fastest brain wave and occurs when a
person is facing a sudden situation.

2.2. BCI

Electroencephalogram (EEG) electrodes can be used to measure the voltage resulting from brain
activities. In the signal-processing stage, several steps are taken to obtain control signal, including
preprocessing, feature extraction, and classification. In the last stage, the processed signal is interpreted
into the desired action. Figure 1 describes these stages.

Figure 1. Typical Brain Computer Interaction structure, including data acquisition and signal
processing; finally, the interpreted action is shown as a result.

Advancements in the development of BCI systems in recent years have helped to make them
more appealing to a wider range of user groups. The cost of such systems has dramatically dropped,
and they have become more convenient to use; the electrodes are now wireless, dry, and easy to move
during wear. Currently, many commercial BCI devices are available, including NeuroSky [16] and
EMOTIV EPOC [17]. EMOTIV EPOC is a BCI device that was developed for research and development
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applications. It contains 14 sensors to acquire brain signals at the following locations: AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4, as shown in Figure 2 [18].

Figure 2. Emotiv EEG neuroheadset sensor position [18].

BCIs vary in terms of their properties and the ways they acquire, analyze, and translate signals.
Typical BCIs involve brain signal acquisition, processing, and interpretation. Brain signals can be
acquired using various methods, such as EEG.

2.3. Electrooculography/Electromyogram Artifact Removal

Artifacts are the undesirable signals and noise that can interfere with acquired brain signals.
Artifacts have a much stronger amplitude than EEG signals and may affect the acquired brain signals,
thereby reducing the performance of BCIs. There are two types of artifacts: physiological and
non-physiological. Common physiological artifacts include eye movements, which are detected
by electrooculography(EOG), and muscle movements, which are detected by electromyography
(EMG). They usually appear as large-amplitude, high-frequency distortions within brain signals.
Non-physiological artifacts are usually technical and caused by the environment; they include
power-line noises and disturbances caused by recording equipment (e.g., changes in electrode
impedances). Non-physiological artifacts are easy to handle and prevent (by applying filtering and the
proper recording procedure, respectively). However, physiological artifacts are challenging to eliminate
from brain signals and are a significant problem in designing BCIs [19]. Recently, researchers have
published many methods to remove eye movement and blinking artifacts from EEG data. Among these
methods is rejecting contaminated EEG epochs; however, this method results in a significant loss of
collected information. Another method is performing regression on simultaneous EEG recordings,
including EMG and EOG recordings in the time or frequency domain. This method aims to derive
the parameters that characterize the appearance and spread of EOG artifacts in EEG channels. EOG
records may also contain brain signals; hence, removing EOG activity would result in the loss of
relevant EEG signals. As there is no clear reference channel for the artifacts, regression methods
cannot be used to removed them. A recent method was proposed by Hsu et al. 2016 [20] that involves
applying Independent Component Analysis (ICA) to eliminate artifacts from EEG sensors. In comparison
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with results obtained using regression-based methods and principal component analysis, Hsu et al.’s
published results show that ICA can effectively detect, separate, and remove artifacts from EEG records.

2.4. Processing EEG to Measure Engagement Levels

The growth of the BCI technology has attracted many researchers, who often use this technology
to measure the engagement of a user. The purpose of measuring user engagement differs from
that of enhancing user experience, interfaces, games, and online learning systems. For example, [21]
developed an attention-aware system that monitors a student’s attention to an online education system
and alerts their teacher when attention decreases. The system uses NeuroSky and achieved an 89.52%
accuracy rate on average. Ref. [22] developed a prototype system to enhance user experience in
museums. This system uses real-time feedback regarding user engagement, using a BCI to provide
a tailored museum experience based on a user’s taste. The system provides guided tours and suggests
exhibits based on a user’s engagement level.

A smart office was presented for the first time in [11], in which a user was observed and their
intentions anticipated to augment their environment and communicate useful information. At first,
the system was controlled using voice commands and gestures [11]. In recent years, much research
has adapted BCIs for use in smart offices in order to enhance worker experience and productivity.
The system in [13] was designed to improve user engagement by blocking outside distractions; this
was done by controlling the opacity of an office’s glass wall. The system uses BCI to passively measure
a user’s level of engagement through NeuroSky’s ThinkGear device. The user’s level of engagement
was used to determine the opacity of an electrochromic smart glass tile, which could change from
being fully opaque to being fully transparent. As the user focused, the system increased the opacity
of the window as a signal for others to not to disturb the user. However, this system ignores other
surrounding factors, such as lighting and room temperature. Ref. [12] used an EMOTIV headset
to actively acquire a worker’s brain signals and translate them to control the office environment.
The system allows users to control the temperature and brightness using their thoughts. However,
the system does not control the environment passively; it requires user intervention. Therefore, using
BCIs to develop smart offices is a growing research area that still has room for improvement.

3. Methodology

3.1. Proposed Structure

The basic structure of the proposed system is divided into the following phases: brain and
environment signal acquisition, signal processing, user engagement calculation, and decision making,
as shown in Figure 3. These phases continue working in a cycle to ensure the continuing functionality
of the system in order to provide a suitable environment for the worker.

Figure 3. Basic structure of the proposed smart office controller.
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3.2. Development Environments and Tools

LabVIEW (also called G) is a dataflow programming language that uses virtual instruments
to represent a program. In the field of BCI research, the system in [23,24] used LabVIEW as the
development environment to build a system for a smart house. The system’s purpose is to monitor
the temperature, humidity, lighting, fire and burglar alarms, and gas density in the house in order to
ensure safety. Ref. [25] built a smart home system based on a wireless sensor network designed to
ensure the safety of elderly people living alone. However, neither of these studies used BCIs. Although
many researchers have used LabVIEW to develop BCIs, none were used to create smart offices.

3.3. Signal Acquisition

The proposed system controls the office environment automatically as it detects the user’s
engagement and intensity levels and the temperature of the environment, which it then maps onto
the user’s comfort level. Hence, the system adjusts temperature and light intensity as needed. An
EMOTIV headset is placed on a user’s scalp to collect real-time data (brain signals) in various situations
(comforted, stressed, engaged, and distracted), while environmental sensors acquire the temperature
and brightness level. The sampling frequency of the headset is fixed at 128 samples per second.
Since electrodes placed on the frontal and occipital lobes perform better in obtaining cognitive EEG
data than in other locations, the electrodes are placed at the following locations: F3, F4, FC5, FC6, P7,
P8, O1, and O2. These channels were chosen because they are closest to those used in other engagement
research [22,26–28].

To acquire environmental signals, a temperature sensor was used, and a photoresistor was used
to acquire the light intensity. The sensors were set on an electronic circuit connected to an Arduino
UNO board, which functions as an interface between the sensors and the computer.

3.4. Signal Processing

After the brain and environmental signals are acquired, they are imported for processing.
The processing of the temperature and light signals is done by conditioning them. The temperature
and light signals are analog signals; signal conditioning involves converting these signals into digital
signals for the next stage. This conversion is done using an existing function in LabVIEW.

The signal processing of the acquired EEG signals is considered difficult due to noise and artifacts.
As such, this process is divided into the following stages in order to extract the frequencies required
for the task:

• A high-pass filter with a cut-off frequency of 0.6 Hz and a low-pass filter with a cutoff frequency
of 50 Hz are used to remove the DC offset.

• Linear finite impulse response filtering is used to remove 50- or 60-Hz line noise.
• Since the reading is collected in real time, a buffer is used to read and then remove the mean of

n samples.
• A band-pass filter is used to remove frequencies that are not related to the task. Since only

alpha, beta, and theta waves are required, frequencies outside the ranges of 13–22 Hz, 8–12 Hz,
and 5–7 Hz are eliminated. An Infinite Impulse Response filter of the second order is used as a
band-pass filter to filter alpha and beta waves.

• EOG artifacts represent the comfort level of a worker trying to relax by closing the eyes. Such
artifacts include eye movements. Blinks are separated using ICA in order to tangibly improve the
EEG data interpretation and analysis. ICA is used to identify, separate, and remove these artifacts
with a minimal loss of brain activity data. The algorithm follows the steps described below:

1. Figure 4 shows all the components, including those that contain eye artifacts and spatial
mixtures of brain and artifact activities.
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2. The rows of the input matrix, X, are EEG signals recorded with different electrodes, and
the columns are measurements recorded at different time points, where participants were
instructed regarding their eye movement. Hence, the input data are weighted as follows:
C = MX.

3. ICA-based artifact separation from EEG data is performed using linear decomposition.
The inverse matrix of M represents the projection strength of the components at each of the
brain sensors. After linear separation, the multi-channel data result is a sum of independent
and spatially fixed components.

4. Components that represent artifacts based on spatial filters are extracted.
5. Artifactual components, including blink artifacts, are removed. Eye movement artifacts

are isolated as a linear subtraction of the components representing the artifacts, as shown
in Figure 5.

Figure 4. Mixed electroencephalogram/electrooculography (EEG/EOG) data. Note the pulses in the
independent components.

Figure 5. EEG data after eye blink removal.

3.5. Engagement Index Computations and Environmental Control

This system uses the engagement value to determine the best action. If a new high engagement
value is recorded, the system saves its related temperature and light intensity values to use when
controlling the system. Since temperature and light intensity do not change suddenly in smart offices,
the overload on the system is reduced, making it more efficient. The system logs all environmental
data and their related engagement levels as references to find the best condition for the user.
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• Monitor the surrounding office environment (room/body temperature, brightness level, curtain
state) using special sensors.

• Analyze these data to predict the best possible environment to help the user stay focused.
• Associate the brain signal data with the conditions in the second step above.
• If the statement (current engagement score > maximum engagement) is true, then the system will

first set a new maximum engagement value and then acquire the temperature and light intensity
using the acquisition function. The system only acquires the temperature and light intensity here.

• If the statement (current engagement score > maximum engagement) is false, the system has
detected a low engagement level and will find the most suitable environment to raise engagement;
then, it adjusts the office environment to this environment. First, the system checks whether
current engagement is low; if so, then it sets the temperature and light intensity values to the
saved ones. After, the system logs the changes.

• If the engagement value is normal, the system does nothing.
• The system automatically adjusts the office environment to maintain a user’s engagement when

it is high.

3.6. Feature Selection and Classification of Actions

The purpose of feature selection is to convert digitized brain signals that are recorded at various
locations into features [20]. For the feature extraction, a fast Fourier transform (FFT) is used. A Hanning
window is first applied; then, the FFT is performed for each epoch. After, the average power spectral
density value is extracted for the alpha, beta, and theta frequency bands in order to extract the features
of each band. The FFT reduces the computation complexity by obtaining faster results than the discrete
Fourier transform. In addition, the FFT is a commonly used algorithm for signal processing; in this
project, it is used to capture the frequency components of the EEG signals recorded by the EMOTIV
headset. Figure 6 shows a real-time EEG data spectrum. The system acquires new EEG data and
processes these data in each iteration. Then, it identifies the engagement level of a user by analyzing
the extracted features associated with their mental status using a suitable classification. The alpha, beta,
and theta powers collected previously are used to calculate the engagement score. The engagement
index is calculated using the following function:

Engagement level =
β

α + θ
(1)

Figure 6. EEG data spectrum.

Then, the engagement values are scaled from zero to one; the higher the value is, the higher
engagement level is. In this stage, the system makes a decision and applies changes depending on the
results of the previous stage. All the environmental data and engagement data are logged. In a case
where the engagement level is below the threshold, the system takes action. First, the system checks
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whether the environmental data are in the normal range to ensure that the cause of this loss is the
environment. If so, the system adjusts the environmental data to a suitable range (from the log data)
and then notifies the user about the changes. The decision algorithm is shown in Algorithm 1.

Algorithm 1 Decision algorithm.
if engagement value ≤ Threshold then

1: Find temperature and light intensity values associated with Max Eng. Value.
2: Adjust the temperature to it;
3: Adjust the light intensity to it;
4: Notify the user about changes; else Do Nothing end if=0

4. Experimental Setup

The raw EEG data were collected from two participants, both male and aged 20–29 years of
age. The mental status and health conditions of both participants were normal. For this experiment,
there was no pre-knowledge required from the participant about how to use a computer or how to
operate an office appliance. The experiment took place in a room where the participants were asked
to perform specific tasks that required their attention. The tasks included sending emails, editing
a Word document, and reading a document. The participants performed the tasks wearing a headset
connected to a computer containing the system software. The headset sampling frequency was set to
256 samples per second. In addition, an Arduino board with two circuits containing a temperature
sensor and light sensor were connected to the same computer.

5. Discussion

In this section, the results are presented in more detail and analyzed in three phases. The first
phase records the values of a user’s engagement level at a neutral status in order to learn and record
the engagement level of the user. The second phase analyzes the impact of changing the temperature
and fixing the light intensity value on the user’s engagement level. The third phase analyzes the effect
of changing the light intensity value while fixing the temperature on the user’s engagement level.

Figure 7 shows the engagement across one full session. Figure 8 presents the maximum
engagement, temperature, and light intensity values over time to show changes to the system over
time and to allow for a rapid analysis of the system’s performance and the user’s engagement.

Figure 7. Engagement data for one session.

307



Sensors 2019, 19, 3042

Figure 8. Engagement and sensor results for one session.

Table 2 shows the results of calculating the maximum engagement value and its related
environment sensory readings. The system accurately saved the high engagement value. The highest
score in this session was achieved at a temperature of 24 and a light intensity of 86. By observing the
engagement recorded after changing the office environment status, an improvement in engagement
was seen for a reasonable time (Table 2). The recording, at first, was below the threshold (0.342805);
after setting the temperature to 24.9 and the light intensity to 86.14, the engagement score
slightly increased.

Table 2. Calculating the maximum engagement results for one session.

Maximum Engagement Score Temperature Value Light Intensity Value

0.225049 25.459999 86.044
0.302148 25.459999 86.142
0.32732 25.459999 85.848

0.369682 25.459999 85.946
0.406814 25.459999 85.946
0.684875 25.459999 85.652
0.936263 24.969999 86.142

5.1. Maximum Engagement Records and Associated Temperature and Light Intensity

Table 3 shows the temperature and light intensity values related to the maximum engagement
value from each session. The engagement values changed over 15 min across the three sessions.
The first session was run under a low temperature (18–20), as shown in Figure 9. The second session
was run under a high temperature (24–26), and the third session was run in the middle of the low
and high temperatures used (21–23). The system calculated the engagement values and saved the
maximum engagement values. The light intensity remained in the same range. Figure 10 shows the
changes to the saved maximum engagement values over 15 min for each session.

Table 3. Related temperature and light intensity values.

Session Temperature Light Intensity

Session 1 19.000 90.944
Session 2 25.400 75.600
Session 3 23.500 77.028

308



Sensors 2019, 19, 3042

Figure 9. Engagement values for different temperatures.

Figure 10. Engagement values for different light intensity values.

5.2. Engagement versus Synthesized Changing Temperature Values

In this phase, the temperature values were changed to record the associated engagement values.
The results show the influence of changes in temperature on the engagement level of the user; our
results conform to those reported in [7,29].

By changing the temperature and light intensity (Figures 9 and 10), at first, all sessions started
with low engagement values, at 0.25056, 0.266476, and 0.225049. Since these values are below the
threshold (0.4), the system set the temperature and light intensity values to the saved optimal values
for each session. After, as shown in Figure 11, the engagement values slightly increased over time until
they reached high values (above 0.6) at the end of the sessions.

Figure 11. Engagement values over 15 min.

6. Conclusions

EEG is expected to be a future user input technology. This research provides a prototype and a
first step to relate EEG data with the office environment in order to enhance and develop smart offices.
The environmental sensory data remained the same from sensors connected to Arduino board. Alpha,
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beta, and theta powers were extracted from the EEG data and used to calculate user engagement.
Based on the engagement value, the system sets the temperature and light density values. The system
saved 22.3 C as the optimal temperature and 76 lux as the optimal light intensity.

The experimental results show efficient control in terms of the focus level of users by correctly
adjusting the office temperature and light intensity.

In this study, the best possible environment was determined based on the engagement value.
There are two factors considered in this study: room temperature and illumination. The value for
each was set based on the highest engagement value obtained. In the future, Artificial Intelligence
algorithms may be utilized to determine the best environment. The temperature and lumen values in
this study are assumed to be fixed. However, during the testing phase we changed the values within
a limited range (range of normal situation in offices).

Many factors affect EEG, including: emotional state, fatigue, sleepiness, age, body temperature,
and blood oxygen saturation. All these factors are important to consider. Thus, it is suggested to collect
more feedback from the subjects and also to vary the duration and frequency of training sessions.

Due to time and device limitations, our system only deals with room temperature and lighting.
Future enhancements should count more than two parameters and investigate the use of other
mechanisms to track eye blinking as a sign of discomfort. In addition, low engagement should
be eliminated using linear discriminant analysis for the classification of the feature vectors extracted
from the ICA components. Further enhancements could use a more convenient EEG headset—this may
generate effective results since the user would not feel a difference in their daily routine at the office.
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