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Preface to “Fluctuation Relations and Nonequilibrium

Thermodynamics in Classical and Quantum Systems”

Out-of-equilibrium quantum thermodynamics is now establishing itself as a lively and

productive area at the intersection of statistical mechanics and quantum information. This

success has been spurred on, on one side, by the discovery of classical and quantum fluctuation

theorems. On the other side, quantum information theoretic investigations on resource theories and

information-powered engines have led to unexpected results. Moreover, advances in experimental

quantum technologies have allowed for the demonstrations of thermodynamic devices with small

quantum systems.

This Special Issue includes novel results on a diverse range of topics that provide an excellent

showcase of the research activities in classical and quantum thermodynamics. In particular, a

number of papers present schemes of engines or other thermal devices whose working substance

is a small quantum system, e.g. a quantum harmonic oscillator [1], an electron in a quantum

dot [2], a transmon qubit [3] and an atomic gas in an optical cavity [4]. Others explore the theory

of classical and quantum fluctuation relations [5, 6], including the singular probability distribution

of thermodynamic quantities [7]. One contribution investigates the concept of daemonic entropy,

arising in schemes of work extraction through generalised quantum measurements [8]. Last but not

least, one paper studies the thermalization of many-body systems by a collision model [9]. There

are still many open problems, concerning the role of genuine quantum features in thermal devices,

the emergence of the laws of thermodynamics from first principles, and the thermalization of closed

systems. Moreover, quantum thermodynamics will also play a significant role in the realization of

energy-efficient quantum technologies in the near future.

1. Deffner, S. Efficiency of Harmonic Quantum Otto Engines at Maximal Power. Entropy 2018, 20,

875.

2. Peña, F.J.; Negrete, O.; Alvarado Barrios, G.; Zambrano, D.; González, A.; Nunez, A.S.; Orellana,
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Abstract: Recent experimental breakthroughs produced the first nano heat engines that have the
potential to harness quantum resources. An instrumental question is how their performance measures
up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles
it has been found that the efficiency at maximal power is given by the Curzon–Ahlborn efficiency.
This is rather remarkable as the Curzon–Alhbron efficiency was originally derived for endoreversible
Carnot cycles. Here, we analyze two examples of endoreversible Otto engines within the same
conceptual framework as Curzon and Ahlborn’s original treatment. We find that for endoreversible
Otto cycles in classical harmonic oscillators the efficiency at maximal power is, indeed, given by
the Curzon–Ahlborn efficiency. However, we also find that the efficiency of Otto engines made of
quantum harmonic oscillators is significantly larger.

Keywords: quantum Otto engine; Curzon–Ahlborn efficiency; endoreversible quantum thermodynamics

1. Introdcution

It is a standard exercise of thermodynamics to compute the efficiency of engines, i.e., to determine
the relative work output for devices undergoing cyclic transformations on the thermodynamic
manifold [1]. Like few other applications the study of heat engines illustrates the versatility of
thermodynamic concepts, since universally valid bounds can be obtained purely from macroscopic,
phenomenological knowledge about physical systems. However, all ideal cycles, such as the Carnot,
Stirling, Otto, Diesel, etc. cycles are only of limited practical importance, as they are comprised of
quasistatic, infinitely slow state transformations. Therefore, the power output of an ideal engine is
strictly zero [1].

All real engines operate in finite time, and thus their working medium is almost never in
equilibrium with the environment. Moreover, a more practical question is to determine the efficiency at
maximal power output, rather than focusing only at the ideal, maximal efficiency (at zero power). In a
seminal paper [2], Curzon and Ahlborn tackled this problem within the framework of endoreversible
thermodynamics [3].

At the core of endoreversible thermodynamics is the idea of local equilibrium: Imagine an engine,
whose working medium is in a state of thermal equilibrium of temperature T. However, T is not
equal to the temperature of the environment, Tbath, and thus there is a temperature gradient at
the boundaries of the engine. One then studies the engine as it slowly undergoes a cyclic state
transformation, where slow means that the working medium remains locally in equilibrium at all times.
However, since the cycle does operate in finite time, the working medium never fully equilibrates
with the environment. Therefore, from the point of view of the environment the device undergoes an
irreversible cycle. Such state transformations are called endoreversible [3], which means that locally the
transformation is reversible, but globally irreversible.

Entropy 2018, 20, 875; doi:10.3390/e20110875 www.mdpi.com/journal/entropy1
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Curzon and Ahlborn showed [2] that the efficiency of a Carnot engine undergoing an
endoreversible cycle at maximal power is given by,

ηCA = 1 −
√

Tc

Th
, (1)

where Tc and Th are the temperatures of the cold and hot reservoirs, respectively. Remarkably, it has
been found that ηCA (1) is also assumed by many, physically different engines at maximal power,
such as an endoreversible Otto engine with an ideal gas as working medium [4], the endoreversible
Stirling cycle [5], Otto engines in open quantum systems in the quasistatic limit [6], or a single ion in
a harmonic trap undergoing a quantum Otto cycle [7,8]. On the other hand, it also has been shown
that whether or not a finite time Carnot cycle assumes ηCA is determined by the “symmetry” of
dissipation [9], and the efficiency of an Otto engine working with a single Brownian particle in a
harmonic trap is determined by the specific parameterization of the trap’s stiffness [10].

In particular, the recent experimental breakthroughs in the implementation of nanosized heat
engines [11,12] that could principally exploit quantum resources [13–24] pose the question whether
their behavior can be universally characterized. For instance, Reference [6] suggested that to describe
the efficiency at maximal power ηCA could be such a universal result, at least for a class of engines.
However, the Curzon–Ahlborn efficiency (1) was originally derived for endoreversible Carnot cycles,
which is independent on the nature of the working medium. On the other hand, a standard textbook
exercise shows that the Otto efficiency is dependent on the equation of state, i.e., on the specific
working medium [1]. Therefore, it would actually be more natural to expect that the efficiency at
maximal power strongly depends on the nature of working medium. Similar conclusions have been
drawn, for instance, in the thermodynamic analysis of photovolatic cells [25–27].

In addition, the quantum Otto cycle is typically comprised of two thermalization and two
unitary strokes [28–30]. For cycles involving only unitary strokes [7,8] the assumption of local
equilibrium is almost never justified, and thus it becomes even more remarkable that at maximal power
output a quantum Otto cycle in a parametric, harmonic oscillator operates with the Curzon–Ahlborn
efficiency [7,8]. Also see Reference [6] for a more detailed treatment from open quantum dynamics.
Therefore, the question arises whether this is a peculiarity of the quantum Otto cycle in the harmonic
oscillator, or whether there is something more fundamental and universal about ηCA.

The purpose of the present work is to revisit these longstanding questions and study the
endoreversible Otto cycle in a conceptually simple and pedagogical approach similar to Curzon
and Ahlborn’s original treatment [2]. To this end, we compute the efficiency at maximal power for
two examples of endoreversible Otto engines. We start with a classical version, for which the working
medium is a single Brownian particle in a harmonic trap. Maximizing the power output with respect
to the compression ratio, we find analytically that the efficiency is indeed given by ηCA (1). As a second
example we study a quantum engine, whose working medium is a quantum harmonic oscillator
ultraweakly coupled to the thermal environment. We find that in this case the efficiency is larger
than ηCA (1), which demonstrates that the Curzon–Ahlborn efficiency is not universal at maximal
power. An advantage of the present treatment is that it is somewhat more pedagogical than earlier
works on the topic. The present derivation is entirely based on the phenomenological framework
of endoreversible thermodynamics. Thus, e.g., neither the full quantum dynamics [6] nor the linear
response problem [10] have to be solved.

2. Carnot Engine at Maximal Power

We begin by briefly reviewing the main gist of Reference [2] and by establishing notions and
notation. In particular, we focus on the limits and assumptions that lead to the Curzon–Ahlborn
efficiency (1) for endoreversible Carnot engines.

2
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The ideal Carnot cycle consists of two isothermal processes during which the systems absorbs/exhausts
heat and two thermodynamically adiabatic, i.e., isentropic strokes [1]. During the isentropic strokes the
working medium does not exchange heat with the thermal reservoirs, and thus its state can be
considered to be independent of the environment. Therefore, we only have to modify the treatment
of the isothermal strokes during which the working medium will be in a local equilibrium state at
different temperature than the temperature of the hot and cold reservoir, respectively.

In particular, during the hot isotherm the working medium is assumed to be a little cooler than
the hot environment at Th. Thus, during the whole stroke the system absorbs the heat

Qh = λhτh (Th − Thw) , (2)

where τh is the stroke time, Th,w is the temperature of the working medium, and λh is a constant
depending on thickness and thermal conductivity of the boundary separating working medium and
environment. Note that Equation (2) is nothing else but a discretized version of Fourier’s law for heat
conduction [1]. We will see shortly that for Otto cycles the rate of heat flux can no longer be assumed
to be constant, since we need to account for the change in temperature during the isochoric strokes.

Similarly, during the cold isotherm the system is a little warmer than the cold reservoir at Tc.
Hence, the exhausted heat can be written as

Qc = λcτc (Tcw − Tc) (3)

where λc is the cold heat transfer coefficient.
As mentioned above, the adiabatic strokes are unmodified, but note that the cycle is taken to be

reversible with respect to the local temperatures of the working medium. Hence, we can write

ΔSh = −ΔSc and thus
Qh
Thw

=
Qc

Tcw
. (4)

Equation (4) allows to relate the stroke times τh and τc to the heat transfer coefficients λh and λc.
We are now interested in determining the efficiency at maximal power. To this end, we write the

power output of the cycle as

P(δTh, δTc) =
Qh − Qc

γ(τh + τc)
(5)

where δTh = Th − Thw and δTc = Tcw − Tc. In Equation (5) we introduced the total cycle time
τcyc = γ(τh + τc), and thus γ ≡ τcyc/(τh + τc). Note that this neglects any explicit dependence of
the analysis on the lengths of the adiabatic strokes. We exclusively focus on the isotherms, i.e, on the
temperature differences between working medium and the hot and cold reservoirs.

It is worth emphasizing that in the present problem we have four free parameters, namely hot and
cold temperatures of the working substance, Thw and Tcw, and the stroke times τh and τc. The balance
equation for the entropy (4) allows to eliminate two of these, and Curzon and Ahlborn chose to
eliminate τh and τc [2].

Thus, we maximize the power P(δTh, δTc) as a function of the difference in temperatures between
working substance and environment. After a few lines of algebra one obtains [2],

Pmax =
λhλc

γ

(√
Th −

√
Tc√

λh +
√

λc

)2

, (6)

where the maximum is assumed for

δTh
Th

=
1 −√

Tc/Th

1 +
√

λh/λc
and

δTc

Tc
=

√
Th/Tc − 1

1 +
√

λc/λh
(7)

3
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From these expressions we can now compute the efficiency. We have,

η =
Qh − Qc

Qh
= 1 − Tcw

Thw
= 1 − Tc + δTc

Th − δTh
(8)

where we used Equation (4). Thus, the efficiency of an endoreversible Carnot cycle at maximal power
output becomes

ηCA = 1 −
√

Tc

Th
, (9)

which only depends on the temperatures of the hot and cold reservoirs.
In the following, we will apply exactly the same reasoning to the endoreversible Otto cycle.

3. Endoreversible Otto Cycle

The standard Otto cycle is a four-stroke cycle consisting of isentropic compression, isochoric
heating, isentropic expansion, and ischoric cooling [1]. Thus, we have in the endoreversible regime:

3.1. Isentropic Compression

During the isentropic strokes the working substance does not exchange heat with the environment.
Therefore, the thermodynamic state of the working substance can be considered independent of the
environment, and the endoreversible description is identical to the equilibrium cycle. From the first
law of thermodynamics, ΔE = Q + W, we have,

Qcomp = 0 and Wcomp = E(T2, ω2)− E(T1, ω1) (10)

where Qcomp is the heat exchanged, and Wcomp is the work performed during the compression.
Moreover, ω denotes the work parameter, such as the inverse volume of a piston or the frequency of a
harmonic oscillator (20).

3.2. Isochoric Heating

During the isochoric strokes the work parameter is held constant, and the system exchanges heat
with the environment. Thus, we have for isochoric heating

Qh = E(T3, ω2)− E(T2, ω2) and Wh = 0 . (11)

In complete analogy to Curzon and Ahlborn’s original analysis [2] we now assume that the
working substance is in a state of local equilibrium, but also that the working substance never fully
equilibrates with the hot reservoir. Therefore, we can write

T(0) = T2 and T(τh) = T3 with T2 < T3 ≤ Th , (12)

where as before τh is the duration of the stroke.
Note that in contrast to the Carnot cycle the Otto cycle does not involve isothermal strokes, and,

hence, the rate of heat flux is not constant. Rather, we have to explicitly account for the change in
temperature from T2 to T3. To this end, Equation (2) is replaced by Fourier’s law [1],

dT
dt

= −αh (T(t)− Th) (13)

where αh is a constant depending on the heat conductivity and heat capacity of the working substance.
Equation (13) can be solved exactly, and we obtain the relation

T3 − Th = (T2 − Th) exp (−αhτh) . (14)

4
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In the following, we will see that Equation (14) is instrumental in reducing the number of
free parameters.

3.3. Isentropic Expansion

In complete analogy to the compression, we have for the isentropic expansion,

Qexp = 0 and Wexp = E(T4, ω1)− E(T3, ω2) . (15)

3.4. Isochoric Cooling

Heat and work during the isochoric cooling read,

Qc = E(T1, ω1)− E(T4, ω1) and Wc = 0 , (16)

where we now have

T(0) = T4 and T(τc) = T1 with T4 > T1 ≥ Tc . (17)

Similarly to above (13) the heat transfer is described by Fourier’s law

dT
dt

= −αc (T(t)− Tc) , (18)

where αc is a constant characteristic for the cold stroke. From the solution of Equation (18) we
now obtain

T1 − Tc = (T4 − Tc) exp (−αcτc) , (19)

which properly describes the decrease in temperature from T4 back to T1.

4. Classical Harmonic Engine

To continue the analysis we now need to specify the internal energy E. As a first example,
we consider a classical Brownian particle trapped in a harmonic oscillator. The bare Hamiltonian reads,

H(p, x) =
p2

2m
+

1
2

mω2x2 , (20)

where m is the mass of the particle.
For a particle in thermal equilibrium the Gibbs entropy, S, and the internal energy, E, are

S
kB

= 1 + ln
(

kBT
h̄ω

)
and E = kBT , (21)

where we introduced Boltzmann’s constant, kB.
Note, that from Equation (21) we obtain a relation between the frequencies, ω1 and ω2 and the

four temperatures, T1, T2, T3, and T4. To this end, consider the isentropic strokes, for which we have

S(T2, ω2) = S(T1, ω1) and S(T4, ω1) = S(T3, ω2) , (22)

which is fulfilled by
T1 ω2 = T2 ω1 and T3 ω1 = T4 ω2 . (23)

We are now equipped with all the ingredients necessary to compute the endoreversible efficiency,

η = −Wtot

Qh
. (24)

5
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In complete analogy to fully reversible cycles [1], Equation (24) can be written as

η = 1 − T4 − T1

T3 − T2
, (25)

where we used the explicit from of the internal energy E (21). Further, using Equations (23) the
endoreversible Otto efficiency becomes

η = 1 − ω1

ω2
≡ 1 − κ , (26)

which defines the compression ratio, κ. Observe that the endoreversible efficiency takes the same form
as its reversible counter part [1]. However, in Equation (25) the temperatures correspond the local
equilibrium state of the working substance, and not to a global equilibrium with the environment.

Similarly to Curzon and Ahlborn’s treatment of the endoreversible Carnot cycle [2] we now
compute the efficiency for a value of κ, at which the power (5) is maximal. We begin by re-writing the
total work with the help of the compression ratio κ and Equations (23) as,

Wtot= Wcomp + Wexp = (κ − 1) kB (T2 − T3) . (27)

Further using Equation (14) we obtain

Wtot = (κ − 1) (1 − exp (−αhτh)) kB (T2 − Th) , (28)

which only depends on the free parameters T2, κ, and τh. Of these three, we can eliminate one more,
by combing Equations (14) and (19), and we have

T2 =
Tc (eαcτc − 1) + κ Th (1 − e−αhτh)

κ (eαcτc − e−αhτh)
. (29)

Finally, the power output (5) takes the form,

P =
2(κ − 1) kB (Tc − κ Th)

γκ(τc + τh)

sinh (αcτc/2) sinh (αhτh/2)
sinh [(αcτc + αhτh)/2]

. (30)

Remarkably the power output, P(κ, τh, τc), factorizes into a contribution that only depends on the
compression ratio, κ, and another term that is governed by the stroke times, τc and τh,

P(κ, τh, τc) = f1(κ) f2(τh, τc) . (31)

It is then a simple exercise to show that P(κ, τh, τc) is maximized for any value of τh and τc if we have,

Pmax = P(κmax) with κmax =

√
Tc

Th
. (32)

Therefore, the efficiency at maximal power reads,

η = 1 −
√

Tc

Th
. (33)

In conclusion, we have shown that for the classical harmonic oscillator the efficiency at maximal
power of an endoreversible Otto cycle (24) is indeed given by the Curzon–Ahlborn efficiency (1).

It is worth emphasizing that for the endoreversible Otto cycle we started with six free parameters,
the four temperatures T1, T2, T3, and T4, and the two stroke times, τh and τc. Of these, we succeeded in
eliminating three, by explicitly using Fourier’s law for the heat transfer, Equations (13) and (18), and the

6
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explicit expressions for the entropy and the internal energy (21). Therefore, one would not expect to
obtain the same result (33) for other working substances such as the quantum harmonic oscillator.

5. Quantum Harmonic Engine

For the remainder of this analysis we will be interested in a quantum harmonic oscillator in the
ultraweak coupling limit [31]. In this limit, a “small” quantum system interacts only weakly with a
large Markovian heat bath, such that the stationary state is given by a thermal equilibrium distribution.
This situation is similar to the model studied in Reference [6], however in the present case we will not
have to solve the full quantum dynamics.

The equilibrium state is given by a Gibbs state, ρ ∝ exp (−H/kBT), where ρ is the density operator.
Accordingly, the internal energy reads

E =
h̄ω

2
coth

(
h̄ω

2kBT

)
(34)

and the entropy becomes

S
kB

=
h̄ω

2kBT
coth

(
h̄ω

2kBT

)
− ln

[
1
2

sinh
(

h̄ω

2kBT

)]
. (35)

Despite the functional form of S being more involved, we notice that the four temperatures and
the two frequencies are still related by the same Equation (23). Thus, it can be shown [6] that the
efficiency of an endoreversible Otto cycle in a quantum harmonic oscillators also reads,

η = 1 − κ . (36)

Following the analogous steps that led to Equation (30) we obtain for the power output of an
endoreversible quantum Otto engine,

P = csch
[

h̄ω2 κ

2
eαcτc+αhτh − 1

Tc (eαcτc − 1) + κTh eαcτc (eαhτh − 1)

]
csch

[
h̄ω2 κ

2
eαcτc+αhτh − 1

Tc eαhτh (eαcτc − 1) + κTh (eαhτh − 1)

]
× h̄ω2

2
1 − κ

τc + τh
sinh

[
h̄ω2 κ

2
(κTh − Tc) (eαcτc+αhτh − 1) (eαhτh − 1) (eαcτc − 1)

(Tc (eαcτc − 1) + κTh eαcτc (eαhτh − 1)) (Tc eαhτh (eαcτc − 1) + κTh (eαhτh − 1))

] (37)

where we set kB = 1. We immediately observe that in contrast to the classical case (30) the expression
no longer factorizes. Consequently, the value of κ, for which P is maximal does depend on the stroke
times τh and τc.

Due to the somewhat cumbersome expression (37) we chose to find the maximum of P(κ, τh, τc)

numerically. In Figure 1 we illustrate our findings in the high temperature limit, h̄ω2/kBTc � 1.
Consistently with our classical example, the efficiency is given by Equation (33), which was also
found in Reference [6] for quasistatic cycles. It is worth emphasizing that Figure 1 was obtained
numerically for a specific choice of parameters. However, the above, classical analysis revealed that in
the limit of high temperatures the result, namely that the efficiency at maximal power is given by the
Curzon–Ahlborn efficiency (33), becomes independent of all parameters but the temperatures of the
hot and cold reservoirs.

7
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Figure 1. Efficiency of the endoreversible Otto cycle at maximal power (red, solid line), together with
the Curzon–Ahlborn efficiency (purple, dashed line) and the Carnot efficiency (blue, dotted line) in the
high temperature limit, h̄ω2/kBTc = 0.1. Other parameters are αc = 1, αh = 1, and γ = 1.

Figure 2 depicts the efficiency at maximal power (36) as a function of Tc/Th in the deep
quantum regime, h̄ω2/kBTc � 1. In this case, we find that the quantum efficiency is larger than
the Curzon–Ahlborn efficiency (33). From a thermodynamics’ point-of-view this finding is not really
surprising since already in reversible cycles the efficiency strongly depends on the equation of state.

Figure 2. Efficiency of the endoreversible Otto cycle at maximal power (red, solid line), together with
the Curzon–Ahlborn efficiency (purple, dashed line) and the Carnot efficiency (blue, dotted line) in the
deep quantum regime, h̄ω2/kBTc = 10. Other parameters are αc = 1, αh = 1, and γ = 1.

In conclusion, we have shown explicitly that contrary to anecdotal evidence in the
literature [4,6–8,12] the efficiency at maximal power is not universally given by the Curzon–Ahlborn
efficiency—not even for the harmonic oscillator. The natural question now is if and how this
“quantum supremacy” can be exploited in the design and experimental implementation of nano
engines. This, however, we leave for future work.

8
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6. Concluding Remarks

In the present work we have computed the efficiency at maximal power for two examples of
the endoreversible Otto engine. We have found that in the case of a classical harmonic oscillator the
efficiency is identical to the Curzon–Ahlborn expression originally found for endoreversible Carnot
cycles. However, we have also shown that for engines operating with quantum harmonic oscillators
the efficiency significantly differs from the classical expression. These findings are consistent with
References [6,10], where it was argued that the efficiency should be governed by internal friction
and specific driving protocols, respectively. The advantage of the present analysis is, however,
that our results were obtained entirely from the phenomenological equations of endoreversible
thermodynamics. Neither the quantum master equation [6] nor the linear response problem [10]
had to be solved explicitly.

Finally, we note that the present conclusions are a consequence of the differing equations of
state for the classical and quantum harmonic oscillator. More precisely, the maximal power output
is governed by the different expressions for the internal energies. As such, the conclusions drawn in
this work are more “thermodynamical” as they are “quantum”. By this we mean, that it is entirely
possible to find classical working substances, for which the efficiency at maximal power is not given
by the Curzon–Ahlborn efficiency. We also have not excluded the existence of other quantum working
substance, for which are described by the Curzon–Ahlborn efficiency. However, the hunt for these
systems we also leave for future work.
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Abstract: We studied the performance of classical and quantum magnetic Otto cycle with a working
substance composed of a single quantum dot using the Fock–Darwin model with the inclusion of the
Zeeman interaction. Modulating an external/perpendicular magnetic field, in the classical approach,
we found an oscillating behavior in the total work extracted that was not present in the quantum
formulation.We found that, in the classical approach, the engine yielded a greater performance in
terms of total work extracted and efficiency than when compared with the quantum approach. This
is because, in the classical case, the working substance can be in thermal equilibrium at each point of
the cycle, which maximizes the energy extracted in the adiabatic strokes.

Keywords: magnetic cycle; quantum otto cycle; quantum thermodynamics

1. Introduction

The study of quantum heat engines (QHEs) [1] is focused on the search and design of efficient
nanoscale devices operating with a quantum working substance. These devices are characterized by
their working substance, the thermodynamic cycle of operation, and the dynamics that govern the
cycle [2–26]. Among the cycles in which the engine may operate, the Carnot and Otto cycles have
received increasing attention. In particular, the quantum Otto cycle has been considered for various
working substances such as spin-1/2 systems [27,28] and harmonic oscillators [29], among others.
Recently, an increasing number of experimental realizations for the quantum Otto cycle has been
proposed in the literature [30–33]. Furthermore, it has been shown that thermal machines can be
reduced to the limits of single atoms [34].

Previous studies of the quantum Otto cycle embedding working substances with magnetic
properties have highlighted the role of degeneracy in the energy spectrum on the performance
of the engine [35–41]. In this same framework, we highlight the work of Mehta and Johal [38],
who studied a quantum Otto engine in the presence of level degeneracy, finding an enhancement of
work and efficiency for two-level particles with a degeneracy in the excited state. In addition, Azimi
et al. presented the study of a quantum Otto engine operating with a working substance of a single
phase multiferroic LiCu2O2 tunable by external electromagnetic fields [39], which was extended by

Entropy 2019, 21, 512; doi:10.3390/e21050512 www.mdpi.com/journal/entropy11
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Chotorlishvili et al. [40] under the implementation of shortcuts to adiabaticity, finding an optimal
output power for the proposed machine.

On the other hand, the classical description of the Otto cycle is characterized by state variables
that are well-defined at each point of the cycle. In this sense, the main difference between the
classical and quantum approach is that in the classical cycle the working substance can be at thermal
equilibrium after each stroke. Classically, the adiabatic strokes are determined by the isentropic
condition, which allows determining the state variables. For many systems, such as diamagnetic
systems, which were considered in this study, the relation between the thermodynamics variables
involved in the adiabatic stroke is not trivial in general and must be solved numerically [41].

In particular, it is interesting to compare the classical and quantum approaches for the same
working substance and establish the conditions for each case appropriately. In this framework,
several recent studies have focused on employing quantum coherence in the working fluid
for enhancing the performance of the engine [42–44]. Recently, an interesting regime called
“sudden cycles” [45] has been explored in an incoherent formulation avoiding off-diagonal elements of
the density matrix, characterized by finite cooling power [46].

In this work, we study the classical and quantum performance of a multi-level Otto cycle in
a diagonal formulation of the density matrix operator, where the working substance comprises a
nanosized quantum dot under a controllable external magnetic field. This system is described by
the Fock–Darwin model [47,48] that represents an accurate model for a semiconductor quantum dot.
For this diamagnetic system, we find the point at which the quantum total work extracted becomes
smaller than the classical one and we report, in the classical approach, an oscillating behaviour in the
total work extracted that is not perceptible under the quantum formulation.

2. Model

Let us consider a system given by an electron in the presence of a parabolic potential and external
magnetic field B. The Hamiltonian that describes the system is given by

Ĥ =
1

2m∗ (p + eA)2 + UD(x, y), (1)

where m∗ is the effective electron mass, A is the total vector potential, and the term UD(x, y) is given by

UD(x, y) =
1
2

m∗ω2
0

(
x2 + y2

)
, (2)

which corresponds to an attractive potential describing the effect of the dot on the electron. The quantity
ω0 is the parabolic trap frequency and can be controlled geometrically. If we consider a constant
perpendicular magnetic field in the form

B = Bẑ , (3)

and the use of the vector potential A in the symmetric gauge (i.e., A = B
2 (−y, x, 0)), the solution of the

eigenvalues of the Schrödinger equation are given by

Enm = h̄Ω (2n+ | m | +1) +
1
2

h̄ωcm. (4)

where ωc =
eB
m∗ is the cyclotron frequency, and n and m are the radial and magnetic quantum numbers

(n = 0, 1, 2, ... and m = −∞, ...,+∞), respectively. Ω is known as the effective frequency of the system
corresponding to

Ω = ω0

(
1 +

(
ωc

2ω0

)2
) 1

2

. (5)
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Notice that, when the parameter ω0 → 0, the energy levels of Equation (4) take the usual form of
the Landau energy levels in cylindrical coordinates.

To obtain a more precise expression, especially when we consider the case of strong magnetic
fields for the electron trapped in a quantum dot, we also take into account the electron spin of value
h̄σ̂
2 and magnetic moment μB, where σ̂ is the Pauli spin operator and μB = eh̄

2m∗ . Here, the spin can
be in two possible states, either ↑ or ↓, with respect to the applied external magnetic field B in the
z-axis. Therefore, we include the Zeeman term in the Fock–Darwin energy levels in Equation (4).
Consequently, the energy spectrum is given by

En,m,σ = h̄Ω(2n + |m|+ 1) + m
h̄ωc

2
− μBσB. (6)

The energy spectrum of Equation (6) is presented in Figure 1 for σ = −1 and σ = 1. It is interesting
to note that, for high magnetic fields (ωc/2ω0 >> 1), things simplify in Equation (6) and we get the
following expression:

En,m,σ =
h̄ωc

2
(n + 1/2 + |m|+ m)− μBσB , (7)

where we observe that |m| + m = 0 for m < 0, therefore each Landau level labeled by n has
infinite degeneracy.
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Figure 1. (a) Fock–Darwin energy spectrum with σ = −1 for the first six radial number n = 0, 1, ..., 6
and for each of them the azimuthal quantum number taking the values between m = −6,−5, ..., 5, 6.
(b) Fock–Darwin energy spectrum with σ = +1 for the first six radial number n = 0, 1, ..., 6 and for
each of them the azimuthal quantum number taking the values between m = −6,−5, ..., 5, 6. We clearly
observe the confinement of the energy levels at high magnetic fields (ωc/2ω0 >> 1).

In this paper, we consider a low-frequency coupling for the parabolic trap given by
ω0 ∼ 2.637 THz which in terms of energy units corresponds to a coupling of approximately 1.7 meV.
The selection of this particular value is to compare the intensity of the trap with the typical energy of
intra-band optical transitions of the quantum dots [47]. The order of this transition is approximately
around ∼1 meV for cylindrical GaAs quantum dots with effective mass given by m∗ ∼ 0.067 me [47–49].

For the classical approach, we employ the framework of Refs. [50–53], and, in particular,
classical thermodynamic quantities for the Fock–Darwin model with spin can be obtained analytically
using the treatment of Kumar et al. [54]. For a working substance in thermal equilibrium at inverse
temperature β = 1/kBT, the partition function can be written as:

ZdS =
1
2

csch
(

h̄βω+

2

)
csch

(
h̄βω−

2

)
cosh

(
h̄βωB

2

)
, (8)

where the frequencies ω± are:

ω± = Ω ± ωc

2
. (9)
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Therefore, entropy (S(T, B)), internal energy (U(T, B)) and magnetization M(T, B) are simply
given by

S(T, B) = kB lnZdS + kBT
(

∂ lnZdS
∂T

)
B

, (10)

U(T, B) = kBT2
(

∂ lnZdS
∂T

)
B

, (11)

M(T, B) = kBT
(

∂ lnZdS
∂B

)
. (12)

Equations (10)–(12) are presented in Figure 2 for a parabolic trap corresponding to an energy of
1.7 meV together with the scheme of the Otto cycle that we consider. A very interesting behavior is
observed for the entropy as a function of the magnetic field in Figure 2a. For external magnetic fields
≤1 T, the entropy decreases as the external field increases, but for values higher than 1 T we see the
opposite behavior. This can be explained by the energy levels becoming closer to each other as the
magnetic field increases, moving towards degeneracy. This behavior in the energy levels causes the
entropy growth as the magnetic field increases. In addition, the change in the behavior of the entropy is
affected by temperature, finding that the change of slope as a function of external magnetic field moves
away from the 1 T value to higher values as we move to higher temperature of the working substance.
This can be appreciated in Figure 2a. At the same time, the magnetization shows a crossing in its
behavior as a function of magnetic field, as we can see in Figure 2b, where previous to this crossing
at lower temperatures higher values of magnetization are obtained. This fact becomes essential for
the total work extracted. In the cycle that we propose, the work is directly related to the change in
the magnetization of the system as a function of magnetic field and temperature. On the other hand,
we can see that the internal energy monotonically decreases in terms of the magnetic field for all
temperatures considered. The reason for this is that the internal energy only depends on the derivative
of lnZdS (see Equation (11)) with respect to temperature while the entropy has an additional term
proportional to lnZdS (see Equation (10)) and the magnetization on its derivative with respect to the
external field (see Equation (12)).

Figure 2. Classical thermodynamic quantities entropy (S), internal energy (U) and magnetization
(M) as a function of: external magnetic field (B) (a–c); and temperature (T) (d–f). In (a–c), the colors
blue to red represent temperatures from 0.1 K to 10 K, respectively. For (d–f), the colors blue to
red represent lower to higher external magnetic field, from 0.1 T to 5 T. The value of the parabolic
trap is approximately to 1.7 meV. Additionally, we show how the Otto cycle appears in terms of the
thermodynamic quantities considered.
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3. First Law of Thermodynamics and the Quantum and Classical Otto Cycle

The first law of thermodynamics in a quantum context has been discussed extensively in the
literature. We follow the treatment in Refs. [50–52], which identifies the heat transferred and work
performed during a thermodynamic process by means of the variation of the internal energy of
the system.

First, consider a system described by a Hamiltonian, Ĥ, with discrete energy levels, En,m,σ.
The internal energy of the system is simply the expectation value of the Hamiltonian E = 〈Ĥ〉 =

∑n ∑m ∑σ pn,m,σEn,m,σ, where pn,m,σ are the corresponding occupation probabilities. The infinitesimal
change of the internal energy can be written as

dE = ∑
n

∑
m

∑
σ

(En,m,σdPn,m,σ + Pn,m,σdEn,m,σ) , (13)

where we can identify the infinitesimal work and heat as

dQ := ∑
n

∑
m

∑
σ

En,m,σdpn,m,σ, dW := ∑
n

∑
m

∑
σ

pn,m,σdEn,m,σ. (14)

Equation (13) is a formulation of the first law of thermodynamics for quantum working substances.
Therefore, work is then related to a change in the eigenenergies En,m,σ, which is in agreement with the
fact that work can only be carried out through a change in generalized coordinates. It is important to
note that the expressions of Equation (14) is only a particular case of the definition of work and heat
for a case of a density matrix operator that is diagonal on the energy eigenbasis [52]. A more complete
definition of Equation (14) can be found in Refs. [29–33,46].

The quantum Otto cycle is composed of four strokes: two quantum isochoric processes and two
quantum adiabatic processes. This cycle can be seen in Figure 3, replacing the value of Sl and Sh for
Pn,m,σ(Tl , Bh) and Pn,m,σ(Th, Bl) in the vertical axis, respectively. For the cases that we consider, the
quantum Otto cycle proceeds as follows.

Figure 3. The magnetic Otto engine represented as an entropy (S) versus a magnetic field (B) diagram.
The way to perform the cycle is in the form B → A → D → C → B.

1. Step B → A: Quantum adiabatic compression process. The systems, which is initialized
in thermal equilibrium at temperature Tl , is isolated from the cold reservoir and the magnetic
field is changed from Bh to Bl , with Bh > Bl . During this stage the populations remain constant,
so Pn,m,σ(Tl , Bh) = PA

n,m,σ. We remark that PA
n,m,σ does not yield a thermal state. No heat is exchanged

during this process.
2. Step A → D: The system, at constant magnetic field Bl , is brought into contact with a hot

thermal reservoir at temperature Th until it reaches thermal equilibrium. The corresponding thermal
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populations Pn,m,σ(Th, Bl) are given by the Boltzmann distribution with temperature Th. No work is
done during this stage.

The heat absorbed for the working substance is given by

Qin = ∑
n

∑
m

∑
σ

∫ D

A
En,m,σdPn,m,σ = ∑

n
∑
m

∑
σ

El
n,m,σ

[
Pn,m,σ(Th, Bl)− PA

n,m,σ

]
, (15)

where El
n,m,σ is the n-th eigenenergy of the system in the quantum isochoric heating process to an

external magnetic field of value Bl .
3. Step D → C: Quantum adiabatic expansion process. The system is isolated from the hot

reservoir, and the magnetic field is changed back from Bl to Bh. During this stage the populations
remains constant, thus Pn,m,σ(Th, Bl) = PC

n,m,σ. Again, we remark that PC
n,m,σ is not a thermal state.

No heat is exchanged during this process.
4. Step C → B : Quantum isochoric cooling process. The working substance at Bh is brought into

contact with a cold thermal reservoir at temperature Tl . Therefore, the heat released is given by

Qout = ∑
n

∑
m

∑
σ

∫ B

C
En,m,σdPn,m,σ = ∑

n
∑
m

∑
σ

Eh
n,m,σ

[
Pn,m,σ(Tl , Bh)− PC

n,m,σ

]
, (16)

where Eh
n,m,σ is the n-th eigenenergy of the system for an external magnetic field Bh.

The net work done in a single cycle can be obtained from W = Qin + Qout,

W = ∑
n

∑
m

∑
σ

(
El

n,m,σ − Eh
n,m,σ

)
(Pn,m,σ(Th, Bl)− Pn,m,σ(Tl , Bh)) , (17)

where we use the condition of constant populations along the quantum adiabatic strokes. Furthermore,
the efficiency is given by

η =
W
Qin

. (18)

The main difference between the classical and quantum Otto cycle is related to Points A and C in
the cycle. In the classical case, the working substance can be at thermal equilibrium with a well-defined
temperature at each point. On the other hand, for the quantum case, the working substance only
reaches thermal equilibrium in the isochoric stages at Points B and D. After the adiabatic stages, the
quantum system is in a diagonal state which is not a thermal state.

For the classical engine, the total work extracted by Equation (16) can be calculated by replacing
PA

n,m,σ with P(TA, Bl) and PC
n,m,σ with P(TC, Bh), that is, it is obtained as a difference between the

internal energy at adjacent points which can be calculated from the partition function

Qin = U(Th, Bl)− U(TA, Bl); Qout = U(Tl , Bh)− U(TC, Bh), (19)

where TA and TC are determined by the condition imposed by the classical isentropic strokes. If
we have the classical entropy, the intermediate temperatures TA and TC can be determined in two
different forms:

• Finding the relation between the magnetic field and the temperature along an isentropic trajectory
by solving the differential equation of first order given by

dS(B, T) =
(

∂S
∂B

)
T

dB +

(
∂S
∂T

)
B

dT = 0, (20)

which can be written as
dB
dT

= − CB

T
(

∂S
∂B

)
T

, (21)
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where CB is the specific heat at constant magnetic field.

• By matching two points within an isentropic trajectory

S(Tl , Bh) = S(TA, Bl)

S(Th, Bl) = S(TC, Bh) ,
(22)

finding the magnetic field in terms of the temperature, throughout numerical calculation.
Therefore, from Equation (19) and W = Qin + Qout, the classical work is given by the difference

of four internal energy in the form

W = UD (Th, Bl)− UA (TA, Bl) + UB (Tl , Bh)− UC (TC, Bh) , (23)

It is important to mention that the cycle operation in the counter-clockwise form starting at Point
A described in Figure 2 gives negative work extracted, thus, to define a thermal machine correctly, we
start the cycle at Point B, and we go through it in a clockwise direction. This is due to the particular
behavior of the entropy as a function of magnetic field and temperature in the chosen zone marked with
A, B, C and D. Therefore, the cycle described in the next subsection is the form of B → A → D → C → B
and is presented in Figure 3.

The maximum values considered in our calculations for the temperatures and external magnetic
field were 10 K and 5 T. Therefore, for the quantum cycle calculation (i.e., Equation (17)), we used the
quantum numbers n = 0 to n = 10 and m = −33 to m = 33 for Equation (6). The selection of this
particular energy levels in this model is justified for the values of the thermal populations for the hot
and cold temperatures of the reservoirs that we selected. Our numerical calculations indicated that the
contributions of the other levels of energy can be neglected.

Finally, it is useful to express our results of total work extracted and efficiency in terms of the
relation between the highest value (Bh) and the lowest value (Bl) of the external magnetic field over
the sample. To do that, we used the definition of “magnetic length”, which is given by

lB =

√
h̄

eB
, (24)

allowing us to define the parameter

r =
lBl

lBh

=

√
Bh
Bl

, (25)

which represents the analogy of the compression ratio for the classical case. It is important to remember
that the Landau radius is inversely proportional to the magnitude of the magnetic field. Therefore, for a
major (minor) magnitude of the field, the Landau radius is smaller (bigger), and the r is well defined.

4. Results and Discussions

4.1. Classical Magnetic Otto Cycle

The condition given by Equation (21) (or Equation (22)) for the classical cycle give us information
about the behavior of the external magnetic field and the temperature in the adiabatic stroke. In Figure
4a, we can appreciate the level curves of the entropy function S(T, B) and, Figure 4b shows some
examples of isentropic strokes in a plot of S(B) vs. B for different temperatures. That example shows
three cases of constant low (red-black curve, S = 0.05), medium (yellow-black curve, S = 0.10) and
high (white-black curve, S = 0.13) entropy. We observe in Figure 4a that there is a zone where the
external field grows with the temperature of the sample and a zone where the opposite happens to
maintain the entropy constant. At low working temperatures, the behavior changes near B = 1 T,
while as the temperature increases, the slope change occurs at higher values of the magnetic field,
approaching B = 2 T. Secondly, if we observe Figure 4b showing the case for S = 0.13 (white-black
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line), we have a restricted area for field values lower to 3 T if we work with a maximum temperature
of 10 K. Therefore, the movement of the magnetic field is not arbitrary if we think in a thermodynamic
magnetic Otto cycle with two temperature reservoirs fixed at some specific values, more specifically,
the reservoir associated to the hot temperature in the cycle. In addition, Figure 4 is the solution of
S(T, B) = constant, obtained from the differential Equation (21) with different conditions (i.e., distinct
values of the constant value of S). Therefore, Figure 4a depicts the entire family of solutions for the
isentropic stroke of the engine of this particular system.

In our first example displayed in Figure 5, Point B has the value of the external field given by
Bh = 4 T and a temperature of TB = 6.19 K. The value of the temperature for Point D is fixed to
TD = 10 K. Therefore, the Carnot efficiency of the proposal cycle is given by

ηCarnot = 1 − TB

TD
= 1 − 6.19

10
= 0.381 (26)

Figure 5e shows different values of total work extracted (W) varying the value of BD from 4 T

to 1.99 T. This variation in the external field is reflected in the movement of r in the form of r =
√

4
Bl

.
Therefore, r is in the range of 1 ≤ r ≤ 1.41. The parabolic trap is fixed to the value of 1.7 meV and the
effective mass in the value of m∗ = 0.067me. In particular, Figure 5a–c shows the exact paths for the
magnetic cycle for the maximum point obtained when multiplying W (Figure 5e) and the efficiency
(η, Figure 5f). That point corresponds to r ∼ 1.22 (black point in Figure 5d–f) and constitutes the best
configuration of the systems to obtain the best W with the better η through the cycle. In addition, W
and η are presented in Figure 5e,f for the optimal value of r parameter mentioned before. We observe
that W obtained for that point is in the order of ∼0.038 meV with an efficiency of η ∼ 0.28. We have
corroborated the numeric result of total work extracted using the area enclosed by the cycle in Figure
5b of M versus B, as the work is W = −

∫
MdB [50–52] when the parameter changed during the

operation of the engine in the external field. On the other hand, to obtain the solid lines presented in
Figure 5d–f, we needed to make different cycles configuration keeping the values of the isothermal
fixed as can be appreciated in the Supplementary Materials (see the link after Section 5), made with the
Mathematica software [55], where we show each shape that the cycle must have to generate a specific
point of work. It is important to recall that we never reach the optimal value of η = 0.381, i.e., the
Carnot efficiency.

Due to the change of behavior in the entropy as a function of the external field, we obtained very
interesting results for W when we explored the zone close to B = 1 T. Before that point, the entropy
decreases as function of the external field (B) and after that point entropy begins to increase. This
fact can be used to explore the magnetic cycle in that zone finding an oscillatory behavior for W . In
Figure 6, we show the cycle with operating temperatures TB = 2.69 K and TD = 5.40 K and external
magnetic field moving between 2.995 T and 0.250 T and, consequently, the r parameter moving from 1
to 3.46. First, we observe a decreasing efficiency for r > 1.75 in Figure 6f with a maximum value of
η ∼ 0.43 for r ∼ 1.75. Therefore, also for this configuration, the Carnot efficiency (ηCarnot ∼ 0.5 for this
case) cannot be reached. Comparing these results with those previously discussed (when we avoid
this particular region), we can see in Figure 5f that the efficiency asymptotically approaches to the
efficiency of Carnot if we increase the intensity of the external magnetic field of the starting point of
the cycle (Point B).

In Figure 6b, we can understand the oscillations in W interpreting these results using the
expression W = −

∫
MdB. In Figure 6a–c, Points A–D correspond to the black point displayed

in Figure 6d–f where we see that the work is still greater than zero but close to a vanishing situation.
The reason there is still positive work at this point under study is that the total area enclosed to the
right of the crossing point is larger than the other to the left. The magnetization presented in Figure 6b
in the zone around the range of external magnetic field explored for this case (from 2.995 to 0.250T)
clearly reverses his behavior and presents a crossing point close to B ∼ 1.2 T for different temperatures.
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The area to the right of that point can be interpreted as a positive contribution to W while the left area
contributes to negative work.

Figure 4. Solution of classical isentropic path. (a) The entropy as a function of magnetic field (horizontal
axis) and temperature (vertical axis). The level curves (constant entropy values) highlight three
different cases for S: first, red-black curve corresponding to S = 0.05; secondly, yellow-black curve,
corresponding to S = 0.10 and finally, white-black curve for the case of S = 0.13. (b) The three constant
values for the entropy (S = 0.05, S = 0.10, S = 0.13) in a graphic of entropy as a function of B for
temperatures from 1 K (blue) up to 10 K (red). Due to the form of the entropy obtained for this system,
the solution for S = 0.13 needs to work with temperatures higher than 10 K for an external magnetic
field lower than 3 T (white dots in (a,b)). The value of the parabolic trap corresponds to 1.7 meV.

Figure 5. Proposed magnetic Otto cycle showing three different thermodynamic quantities, Entropy (S),
Magnetization (M) and Internal Energy (U) ((a–c), respectively) as a function of the external magnetic
field and different temperatures from 0.1K (blue) to 10K (red). (d) The total work extracted multiplied
by efficiency (Wη); (e) the total work extracted (W); and (f) the efficiency (η) for the classical cycle.
The black points in (d–f) represent exactly the cycle B → A → D → C → B, presented in (a–c). The value
of the parabolic trap corresponds to 1.7 meV. The fixed temperatures are TB = 6.19 K and TD = 10 K.

To explore if these oscillations in W are still obtained for higher temperature ranges, we plot
in Figure 7 the work W for different values of TD with TB = 2.69 K fixed. We note that for higher
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temperatures than 7 K the oscillations found before disappear. It is only a reinforcement that the
quantum effects of the working substance are only significant at low temperatures. On the other hand,
as we expect, W grows as the difference between the temperature reservoir is larger, as shown in
Figure 7a. However, for this case, the efficiency obtained is increasingly lower for increasingly larger
temperature differences, as we can appreciate in Figure 7b.

Figure 6. Proposed magnetic Otto cycle in three different thermodynamics quantities, Entropy,
Magnetization and internal energy ((a–c), respectively) as a function of the external magnetic field and
different temperatures from 0.1K (blue) to 10 K (red). Total work extracted multiplied by efficiency
(Wη) (d) total work extracted (W) (e) and efficiency (η) (d) for the cycle. The black point in (d–f)
represents the value of 0.02 meV of total work extracted and corresponds exactly to the cycle B →
A → D → C → B, shown in (a–c). The value of the parabolic trap correspond to 1.7 meV. The fixed
temperatures are TB = 2.69 K and TD = 5.40 K.

Figure 7. Work, efficiency and work multiply by efficiency (a–c) for different values of TD for TB = 2.69
fixed. The value of the parabolic trap corresponds to 1.7 meV.

4.2. Magnetic Quantum Otto Cycle

Next, we show the results of the evaluation of the quantum version of this magnetic Otto cycle
for the same cases shown in Figures 5 and 6. In Figure 8a, we plot the classical work (blue line) and the
quantum work (red line) for the same sets of parameters in Figure 5. First, we note that the classical
and quantum work are equal up to the value of r ∼ 1.07. This means, for values close to the starting
external magnetic field to Point B, we do not notice a difference between the classic and quantum
formulation of the Otto cycle. As shown in Figure 8a, we found a transition from positive work to
negative work not reflected in the classic scenario close to r ∼ 1.26.
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Figure 8. (a) Total work extracted for classical (blue line) and quantum version of Otto cycle (red line).
The parameters for this case displayed are : TD = 10 K, TB = 6.19 K and BB = 4 T as starting value of
the external magnetic field. The value of BD moves from 4 T to 1.99 T and this variation is reflected

in the movement of r in the form of r =
√

4
BD

, same parameter as the results shown in Figure 5. (b)
Total work extracted (W) presented in Figure 6e versus the values obtaining in the quantum version of
the Otto cycle. The parameters for this figure are TD = 5.40 K, TB = 2.69 K and BB = 2.995 T and BD

moves from 2.995 to 0.250 T. The parabolic trap is fixed to the value of 1.7 meV and the effective mass
value of m∗ = 0.067me.

Additionally, we observe that the maximum positive value of the total work extracted for the
quantum version of Otto cycle is reduced by approximately 0.01 meV compared to the classical
counterpart. In particular, for the quantum version of this cycle, we did not found the oscillations in W
presented in Figure 6e. Moreover, we found a transition from positive to negative work at some value
of the r parameter. This is dramatically reflected in Figure 8b, where the absolute value of W is highly
increased as compared with the classical approach.

In Figure 9, we present the work W per energy level and spin value for the most important values
of our numerical calculations. We used the same parameter as in Figure 8b. We observed that the
contribution given by σ = 1 are positive up to r close to r ∼ 1.6 being the energy levels E0,−1, E0,−2

and E0,−3 those that contribute with the most positive values. Contrarily, for the case of σ = −1, we
found that all contributions per energy level are negative. Therefore, the small region of positive work
found in Figure 8b can only be associated to the spin up (σ = 1) contributions.

Figure 9. Total quantum work extracted (W) per energy level for the case of σ = 1 (a) and for the case
of σ = −1 (b). The lines marked with circles correspond to the sum of all contributions of the energy
level for each spin. The parameters used for this figure are the same as the one used in Figure 8b.

To explore other operation regions for the magnetic Otto cycle, we calculated the total work
extracted and efficiency for the same ΔT = Th − Tl in a broad range of temperatures and the same
ΔBmax = 1.5 T in different regions of the external magnetic field for the classical cycle and its quantum
version. This is displayed in Figures 10 and 11 where the dotted lines represent the classical results
and the solid lines the quantum results. The three regions of temperature selected for these two figures
are 1–4 K (blue lines), 4–7 K (black lines) and 7–10 K (red lines). First, we treat the case of BB = 3.5 T
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and BD moving from 3.5 T to 2.0 T in Figure 10, where we note large differences between the classical
and quantum results for W, as can be seen in Figure 10b. On the other hand, if we observed the region
of 3.5 ≤ BD ≤ 5.0 T for a BB fixed, as shown in Figure 11b. The work and efficiency for the region of
1–4 K and 4–7 K present similar behavior for the classical and quantum versions. Only the case of
7–10 K shows a larger difference between this two approaches. For the case of the efficiency, we note
in Figure 10c a major difference between the classical results and quantum results compare with the
presented in Figure 11c and this is consistent with the reported results for the work W.

Figure 10. η × W (a); and total work extracted (b,c) efficiency for the case of ΔT = Th − Tl = 3 K for
different regions of temperature parameter for classical approach (solid line) and quantum version of
the magnetic Otto cycle (dotted line). For all graphics, we use the initial external magnetic field in the
value of BB = 3.5 T and the minimum value of the field, BD moves between 3.5 T and 2.0 T. Therefore,
the r parameter moves between 1 ≤ r ≤ 1.32. The parabolic trap is fixed to the value of 1.7 meV and
the effective mass value of m∗ = 0.067me.

Summarizing, our results show that it is the classical engine case with larger total work extracted
and efficiency compared to the quantum formulation. This can be explained as follows.

The main difference between the classical and quantum version of Otto cycle lies in the fact that,
in the classical formulation, the working substance can be in thermal equilibrium at each point in the
cycle. In the quantum approach, the working substance is a single system that can only be in a thermal
state after thermalizing with the reservoirs, which happens only in the isochoric strokes. After the
adiabatic strokes, the working substance is in a diagonal state which is not a thermal state. In our case,
the non-thermal points for the quantum case are Points C and A in Figure 3. The quantum work given
by Equation (17) can be rewritten in the convenient form

W = UD (Th, Bl)− ∑n,m,σ El
n,m,σPn,m,σ(Tl , Bh) + UD (Tl , Bh)− ∑n,m,σ Eh

n,m,σPn,m,σ(Th, Bl), (27)

where, due to the thermal equilibrium of the two points (Points D and B in Figure 3), we can
define the internal energy from equilibrium partition function. If we subtract the classical work
given by Equation (23) from the quantum work written in the form of Equation (27), we obtain the
following equation

W − W =
(

∑n,m,σ El
n,m,σPn,m,σ(Tl , Bh)− UA(TA, Bl)

)
+
(

∑n,m,σ Eh
n,m,σPn,m,σ(Th, Bl)− UC(TC, Bh)

)
(28)
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The first summation of Equation (28) is the average of the energy at low magnetic field with
thermal probabilities that satisfies the adiabatic condition

S = −kB ∑
n,m,σ

Pn,m,σ(Tl , Bh) ln (Pn,m,σ(Tl , Bh)) , (29)

i.e., the entropy at Point A. On the other hand, UA(TA, Bl) is the average value of the energy at low
external field and in thermal equilibrium, with the same value of entropy presented in Equation (29).
Therefore, UA(TA, Bl) is the absolute minimum according to thermodynamic [53]. The same argument
can be made at Point C, thus the difference of classical work minus quantum work always satisfies the
following condition

W − W ≥ 0 (30)

This result applies to any system in which the occupation probabilities of the energy levels at any
magnetic field are replaced with any form, provided that they satisfy the adiabatic condition. This is
because the value at equilibrium of any internal parameter (without constrains) of the system, makes
the internal energy to be a minimum for a given value of the total Entropy [53].

Figure 11. η × W (a); and total work extracted (b,c) efficiency for the case of ΔT = Th − Tl = 3 K for
different regions of temperature parameter. For all cases, we use the initial external magnetic field
at the value of BB = 5.0 T and the minimum value of the field, BD moves between 5.0 T and 3.5 T.
Therefore, the r parameter moves between 1 ≤ r ≤ 1.19. The parabolic trap is fixed to the value of
1.7 meV and the effective mass value of m∗ = 0.067me.

5. Conclusions

In this work, we explored the classical and quantum approach for a magnetic Otto cycle
for an ensemble of non-interacting electrons with intrinsic spin where each one is trapped
inside a semiconductor quantum dot modeled by a parabolic potential. We analyzed all relevant
thermodynamics quantities, and found that the entropy changes it behavior in terms of the external
magnetic field at the point where the energy spectrum tends towards degeneracy; this behavior was
present at all temperatures considered. This behavior determined the range of parameters such as
temperature and external magnetic field that would lead to the operation of the Otto cycle extracting
positive total work. In the classical approach, we found oscillations in the total work extracted that are
not present in the quantum approach. This happened near the zone of slope change in the behavior
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of the entropy in terms of the magnetic field. Interestingly, we found that, in the classical approach,
the engine yielded a much higher performance in terms of total work extracted and efficiency than
in the quantum approach. This is because, in the classical approach, the working substance can be
in thermal equilibrium at each point of the cycle, whereas, in the quantum approach, the working
substance can only thermalize in the isochoric strokes. Because of the principle of minimum energy,
the system is allowed to extract more energy when the adiabatic strokes can lead to states that are in
thermal equilibrium, which is only possible in the classical case.

These results are reasonable, since, in our quantum approach, the working substance remains in a
diagonal state and does not use quantum resources such as quantum coherence, which in some cases
can lead to enhanced performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/5/512/s1,
Video S1: “Work evolution for high field/temperature zones”, Video S2: “Oscillatory behaviour of classical work
extracted I”, Video S3: “Oscillatory behaviour of classical work extracted II”. Video S1 shows the behaviour of
work and efficiency in the high field/temperature zones for the proposed machine. Video S2 and S3 shows the
oscillatory nature of the extracted work for the classical version of the Otto cycle due to the entropy behavior.
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Abstract: The design and implementation of quantum technologies necessitates the understanding of
thermodynamic processes in the quantum domain. In stark contrast to macroscopic thermodynamics,
at the quantum scale processes generically operate far from equilibrium and are governed by
fluctuations. Thus, experimental insight and empirical findings are indispensable in developing a
comprehensive framework. To this end, we theoretically propose an experimentally realistic quantum
engine that uses transmon qubits as working substance. We solve the dynamics analytically and
calculate its efficiency.

Keywords: quantum heat engines; quantum thermodynamics; nonequilibrium systems

1. Introduction

Recent advances in nano and quantum technology will necessitate the development of a
comprehensive framework for quantum thermodynamics [1]. In particular, it will be crucial to investigate
whether and how the laws of thermodynamics apply to small systems, whose dynamics are governed
by fluctuations and which generically operate far from thermal equilibrium. In addition, it has already
been recognized that at the nanoscale many standard assumptions of classical statistical mechanics and
thermodynamics are no longer justified and even in equilibrium quantum subsystems are generically
not well-described by a Maxwell-Boltzmann distribution, or rather a Gibbs state [2]. Thus, the
formulation of the statements of quantum thermodynamics have to be carefully re-formulated to
account for potential quantum effects in, for instance, the efficiency of heat engines [3–6].

In good old thermodynamic tradition, however, this conceptual work needs to be guided by
experimental insight and empirical findings. To this end, a cornerstone of quantum thermodynamics
has been the description of the working principles of quantum heat engines [7–17].

However, to date it is not unambiguously clear whether quantum features can always be exploited
to outperform classical engines, since to describe the thermodynamics of non-thermal states one needs
to consider different perspectives—different than the one established for equilibrium thermodynamics.
For instance, it has been shown that the Carnot efficiency cannot be beaten [4,18] if one accounts for
the energy necessary to maintain the non-thermal stationary state [19–22]. However, it has also been
argued that Carnot’s limit can be overcome, if one carefully separates the “heat" absorbed from the
environment into two different types of energy exchange [23,24]: one is associated with a variation in
passive energy [25,26] which would be the part responsible for changes in entropy, and the other type
is a variation in ergotropy, a work-like energy that could be extracted by means of a suitable unitary
transformation. On the other hand, it has been shown [27] that a complete thermodynamic description
in terms of ergotropy is also not always well suited. Having several perspectives to explain the same
phenomenon is a clear indication of the subtleties and challenges faced by quantum thermodynamics,

Entropy 2019, 21, 545; doi:10.3390/e21060545 www.mdpi.com/journal/entropy27



Entropy 2019, 21, 545

and which can only be settled by the execution of purposefully designed experiments. Therefore,
theoretical proposals for feasible and relevant experiments appear instrumental.

In this work we propose an experiment to implement a thermodynamic engine with a transmon
qubit as the working substance (WS), which interacts with a non-thermal environment composed by
two subsystems, an externally excited cavity (a superconducting transmission line) and a classical
heat bath [28] with temperature T. The WS undergoes a non-conventional cycle (different from Otto,
Carnot, etc.) [29] through a succession of non-thermal stationary states obtained by slowly varying its
bare energy gap (frequency) and the amplitude of the pumping field applied to the cavity. We calculate
the efficiency of this engine for a range of experimentally accessible parameters [28,30–32], obtaining a
maximum value of 47%, which is comparable with values from the current literature.

2. System Description

We consider a multipartite system, comprised of a transmon qubit of tunable frequency ωT, which
interacts with a transmission line (cavity) of natural frequency ωCPW with coupling strength g. The
cavity is pumped by an external field of amplitude Ed and single frequency ω (see Figure 1). Both
systems are in contact with a classical heat bath at temperature T. Such a set-up is experimentally
realistic and several implementations have already been reported in different contexts [28,33]. Here
and in the following, the transmon is used as a working substance (WS) and the (non-standard) “bath”
is represented by the net effect of the other two systems: the cavity and the cryogenic environment
(classical bath). There are two subtleties that must be noted here: (i) the bath “seen” by the qubit does
not only consist of a classical reservoir at some fixed temperature, but it has an additional component,
namely the pumped cavity. By changing the pumping, several cavity states can be realized. Such a
feature gives the possibility of making this composed bath non-thermal on demand. In addition, (ii),
the proposed engine is devised as containing only one bath (cavity + environment), which does not
pose any problems considering that it is an out-of-equilibrium bath.

T

Transmon

Cavity

E(t)

g

Figure 1. Sketch of the quantum engine with a transmon qubit as working substance interacting
with an externally pumped (E(t)) transmission line (cavity). Both systems are embedded in the same
cryogenic environment, which plays the role of a standard thermal bath of temperature T. Such a setup
gives a dynamics of a working substance in the presence of a controllable non-thermal environment.

We start our analysis from the Hamiltonian describing a tunable qubit interacting with a single
mode pumped cavity through a Jaynes-Cummings interaction

H(t) =
h̄ωT

2
σz + h̄ωCPWa†a + gσx(a + a†)

+ Ed

(
aeiωt + a†e−iωt

)
,

(1)

where σx and σz are the Pauli matrices, a† and a are the canonical bosonic creation and annihilation
operators associated with the cavity excitations, g is the qubit-cavity coupling strength. The last
term represents a monochromatic pumping of amplitude Ed and frequency ω applied to the cavity.
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The experimental characterization of the qubit-cavity dissipative dynamics emerging from their
interaction with the same thermal bath shows that the system’s steady state is determined by the
master equation [28]

ρ̇(t) = − i
h̄
[HRWA, ρ] + K−

CPWD[a]ρ

+ K+
CPWD[a†]ρ + Γ−D[σ−]ρ + Γ+D[σ+]ρ,

(2)

with K−
CPW(K+

CPW) being the cavity decay (excitation) rate, Γ−(Γ+) the qubit relaxation (excitation)
rate and D[A]ρ = AρA† − 1/2(A† Aρ + ρA† A). Please note that these rates satisfy detailed balance for
the same bath of temperature T, K+

CPW/K−
CPW = exp (−h̄ωCPW/kBT) and Γ+/Γ− = exp (−h̄ωT/kBT).

The Hamiltonian part

HRWA =
h̄
2
(ωT − ω) σz + h̄ (ωCPW − ω) a†a

+ g(σ+a + σ−a†) + Ed(a + a†),
(3)

is the system Hamiltonian in the rotating wave approximation (RWA) [34], with σ+(σ−) being the spin
ladder operators.

Since we are interested in the observed dynamics of the WS, it is necessary to find the qubit’s
reduced density matrix ρT(t) ≡ tra {ρ(t)}, where tra {·} represents the partial trace on the cavity’s
degrees of freedom. The system state is in a qubit-cavity product state, i.e., ρ(t) ≈ ρT(t) ⊗ ρC(t),
which emerges in the effective qubit-cavity weak coupling regime due to decoherence into the global
environment. In addition, the cavity’s stationary state ρC(t) is assumed to be mainly determined by the
external pumping, which can be easily found for situations of strong pumping and/or weak coupling
strength g. This closely resembles a situation, in which the cavity acts as a work source of effectively
infinite inertia [35]. Thus, changing the state of the qubit does not affect the state of the cavity, but it is
still susceptible to the applied field and the cryogenic bath, and we have

〈a〉 = 〈a†〉∗ = Ed
h̄ [iκCPW/2 − (ωCPW − ω)]

, (4)

where we defined K−
CPW = κCPW. Hence, the reduced master equation (2) can be written as

ρ̇T(t) = − i
h̄
[H̃T,RWA, ρT] + Γ−D[σ−]ρT + Γ+D[σ+]ρT, (5)

with
H̃T,RWA =

h̄
2
(ωT − ω)σz + g

[
〈a〉σ+ + 〈a†〉σ−

]
. (6)

Please note that the effective qubit Hamiltonian carries information about the interaction with the
cavity through 〈a〉 and 〈a†〉, which are dependent on the cavity state.

3. Non-Equilibrium Thermodynamics

3.1. Non-Thermal Equilibrium States

The only processes that are fully describable by means of conventional thermodynamics are
infinitely slow successions of equilibrium states. For the operating principles of heat engines, the
second law states that the maximum attainable efficiency of a thermal engine operating between two
heat baths is limited by Carnot’s efficiency.

An extension of this standard description is considering infinitely slow successions along
non-Gibbsian, but stationary states [4,18–20,36]. In the present case, namely a heat engine with transmon
qubit as working substance, non-Gibbsianity is induced by the external excitation applied as a driving
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field to the cavity. We will see in the following, however, that identifying the thermodynamic work is
subtle – and that the energy exchange can exhibit heat-like character, which is crucial when computing
the entropy variation during the engine operation.

The stationary state can be found by solving the master equation Equation (5), and is written as

ρss
T =

(
ρee

T ρ
eg
T

ρ
ge
T ρ

gg
T

)
(7)

where the matrix elements can be computed explicitly and are summarized in Appendix A.
We observe that for the case of effective qubit-cavity ultra-weak coupling, i.e., h̄ωT �

gEd/ |i h̄κCPW/2 − h̄(ωCPW − ω)|, as expected, the obtained non-thermal state asymptotically
approaches thermal equilibrium, namely |ρeg

T | = |ρge
T | ≈ 0 and ρee

T /ρ
gg
T ≈ exp (−βh̄ωT). In addition,

as also expected, in the high temperature limit h̄ωT/kT � 1 the qubit stationary state becomes the
thermal, maximally mixed state, given that the cavity is not strongly pumped.

3.2. The Cycle

In equilibrium thermodynamics cycles are constructed by following a closed path on a surface
obtained by the equation of state [29], which characterizes possible equilibrium states for a given
set of macroscopic variables. This procedure can be generalized in the context of steady state
thermodynamics, where an equation of state is also constructed.

For the present purposes, we use the steady state (7) to devise a cycle for our heat engine.
The equation of state in our case is represented by the stationary state’s von Neumann entropy
S(ωT, Ed) = −tr

{
ρss

T ln ρss
T
}

, which is fully determined by the pair of controllable variables ωT, the
transmon’s frequency, and Ed, amplitude field of the pumping applied to the cavity. In order to
implement the cycle, the stationary state is slowly varied (quasi-static) (The timescale for which
the changes made can be considered slow is such that the conditions imposed to the system state
are satisfied, namely the state is a product state and the cavity steady state is a coherent state with
Equation (4)) by changing the “knobs” (ωT,Ed). It is composed of four strokes where we keep one of
the two controllable variables constant and vary the other one, for example, at the first stroke we keep
Ed = E0 and vary ωT from ω0 to ω1. The complete cycle is sketched in Figure 2.

(ω0, E0) (ω1, E0)

(ω0, E1) (ω1, E1)

Figure 2. Sketch of the thermodynamic cycle obtained by varying the tunable parameters ωT and Ed.
Each one of the strokes are obtained by keeping one of the variables constant while quasi-statically
varying the other one.

Since we are interested in analyzing the engine as a function of its parameters of operation, we
simulated several cycles with boundary values (ω1, E1), which will range from the minimum value
(ω0, E0) to the maximum one (ω1,max, E1,max). The corresponding cycles lie on the von Neumann
entropy surface depicted in Figure 3. In Appendix A plots of the stationary state’s population and
quantum coherence ρee

T and |ρeg
T | as a function of (ωT, Ed) are shown. There we can observed clearly

that the WS exhibits quantum coherence and population changes during its operation.
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Figure 3. Stationary state’s von Neumann entropy in the regime of operation of the thermal engine.
Any thermodynamic cycle must be contained on this surface.

Finally, it is worth emphasizing that in the present analysis all parameters were chosen from an
experimentally accessible regime [28,30–32], under the validity of the approximation of weak-coupling
interaction between transmon and cavity. The parameters are collected in Table 1.

Table 1. Engine parameters used in the present analysis.

Parameter Value

ωCPW/2π 4.94 GHz
ω/2π 4.94 GHz
g/2πh̄ 120 MHz

T 30 mK
Γ/2π 2 MHz

κCPW/2π 1 MHz
ω0/2π 100 MHz

ω1,max/2π 1000 MHz
E0/2πh̄ 0.2 MHz

E1,max/2πh̄ 2 MHz

4. Work, Heat and Efficiency

The first law of thermodynamics, ΔE(t) = W(t) + Q(t), states that a variation of the internal
energy along a thermodynamic process can be divided into two different parts, work W(t) and heat
Q(t), where for Lindblad dynamics we have [4,37],

W(t) =
∫ t

0
tr
{

ρ(t′)Ḣ(t′)dt′
}

,

Q(t) =
∫ t

0
tr
{

ρ̇(t′)H(t′)dt′
}

.
(8)

Typically, work is understood as a controllable energy exchange, which can be used for something
useful, while heat cannot be controlled, emerging from the unavoidable interaction of the engine with
its environment. As stated before, there are certain situations in which it can be shown that part of
Q(t) does not cause any entropic variation [24]. This has led to proposals for the differentiation of
two distinct forms of energy contributions to Q: the passive energy Q(t), which is responsible for the
variation in entropy, and the variation in ergotropy ΔW(t) which is a “work-like energy” that can
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be extracted by means of a unitary transformation and consequently would not cause any entropic
change. Both terms are defined as,

Q(t) =
∫ t

0
tr
{

π̇(t′)H(t′)dt′
}

,

ΔW(t) =
∫ t

0
tr
{
[ρ̇(t′)− π̇(t′)]H(t′)dt′

}
,

(9)

with π(t) being the passive state [25] associated with the state ρ(t) at time t. To calculate the upper
bound on the efficiency for systems that exhibit these different “flavors” of energy one should replace
Q by Q in statements of the second law, since the ergotropy is essentially a mechanical type of energy,
and consequently not limited by the second law, resulting in a different upper bound, see also Ref. [24].

Distinguishing these types of energy exchanged with the environment is crucial when one is
interested in determining the fundamental upper bounds on the efficiency. However, in the present
context, we are more interested in experimentally relevant statements, i.e., computing the efficiency in
terms of what can be measured directly. Thus, we consider the ratio of the extracted work to the total
energy acquired from the bath, independent of its type [24].

The cycle designed here is such that in each stroke one of the knobs (ωT, Ed) is kept fixed, while
the other one is changed. Recall that the cavity is assumed to be a subpart of the bath seen by the WS,
and that its state is modified by Ed. Since the WS is always in contact with the environment, one has
that heat and work are exchanged in each stroke. Here, such a calculation is done by using Equation (8),
considering the stationary state Equation (7) and the effective WS Hamiltonian Equation (6). Then,
for the ith stroke, the corresponding Wi and Qi integrals, representing the work and heat delivered
(extracted) to (from) the WS, can be parametrized in terms of the respective knob variation as we can
see in Appendix B. These quantities are obtained using the WS effective Hamiltonian H̃T,RWA, which
already takes into account the interaction with the external bath and pumped cavity.

Once these quantities are determined, we can calculate the efficiency η of this engine, defined by

η = −∑4
i=1 Wi

Q+
, (10)

with the delivered heat to the WS in a complete cycle being given by Q+ = ∑4
i=1 Qi

+, with Qi
+ the

given heat (only positive contributions inside the stroke) during the ith stroke (see Appendix B).
Therefore, this efficiency represents the amount of work extracted from the engine through the use of
the delivered heat to the WS.

Figure 4 shows the engine efficiency η attained in the execution of the strokes as a function of the
boundary values (ω1, E1), as depicted in Figure 2. Please note that (ω1, E1) sweeps the entire spectrum
of the tunable parameters (ωT, Ed), going from (ω0, E0) to (ω1,max, E1,max) where we find the maximal
efficiency. It is worth mentioning here that the highest value of the efficiency is dependent on the
chosen regime of parameters, which in our case is based on experimentally attainable values [28,30–32].
As usual, in order to extract the predicted work, one has to couple our engine to another system.
We envision using the experimental setup of Ref. [28], where a mechanical nanoresonator is present and
weakly driven by the transmon. Thus, under such a configuration, by following the nanoresonator’s
state (recall that we have assumed infinite inertia, i.e., the transmon is not capable of changing the
cavity’s state. In situations where such an assumption does not hold, one has to take into account the
possibility of having the transmon doing work on the cavity), one can determine the amount of energy
transferred in the form of work. In addition, by observing the transmon’s state, one can obtain the
amount of heat given by the non-standard bath, providing a full characterization of our engine.
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Figure 4. Efficiency η as a function of the upper values (ω1, E1) for the cycle depicted in Figure 2.
The observed highest efficiency of about 47% was attained when (ω1, E1) = (ω1,max, E1,max), with
ω1,max/2π = 1000 MHz and E1,max/2πh̄ = 2 MHz.

5. Conclusions and Final Remarks

Theoretical research of small heat engines in the quantum domain is common place in quantum
thermodynamics [37–46]. In the present work, we have devised a transmon-based heat engine using
an experimentally realistic regime of parameters reaching a maximal efficiency of 47%, which turns
out to be a reasonable value when compared with the state of the art in quantum heat engines. One of
the most recent experiments in quantum heat engine was implemented by Peterson et al. [47] using
a spin −1/2 system and nuclear resonance techniques, performing an Otto cycle with efficiency in
excess of 42% at maximum power. It is important to stress that implementing small heat engines
constitutes a hard task, even when dealing with classical systems. Indeed, a representative example is
the single ion confined in a linear Paul trap with a tapered geometry, which was used to implement a
Stirling engine [48] with efficiency of only 0.28%. Additional research is being carried out concerning
the behavior of this engine influenced by the presence of coherence and the dimension of the WS.
By devising this theoretical protocol for the implementation of a quantum engine, we hope to help
the community, and in particular experimentalists, in the formidable task to design and implement
quantum thermodynamic systems and to consolidate the concepts of this new exiting field of research.
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Appendix A. Non-Thermal Equilibrium States

Here, we summarize the explicit expressions of the density matrix elements of ρss
T (7), which are

plotted as a function of (ωT, Ed) in Figure A1 .

ρee
T =

g2E2
d

h̄4
[

1
4 κ2

CPW+(ωCPW−ω)2
] + 1

1+eβh̄ωT

[
1
4

Γ2

tanh2 (βh̄ωT/2)
+ (ωT − ω)2

]
2g2E2

d

h̄4
[

1
4 κ2

CPW+(ωCPW−ω)2
] + [ 1

4
Γ2

tanh2 (βh̄ωT/2)
+ (ωT − ω)2

] , (A1)

ρ
gg
T =

g2E2
d

h̄4
[

1
4 κ2

CPW+(ωCPW−ω)2
] + 1

1+e−βh̄ωT

[
1
4

Γ2

tanh2 (βh̄ωT/2)
+ (ωT − ω)2

]
2g2E2

d

h̄4
[

1
4 κ2

CPW+(ωCPW−ω)2
] + [ 1

4
Γ2

tanh2 (βh̄ωT/2)
+ (ωT − ω)2

] , (A2)

ρ
eg
T =

1
2h̄

[
Γ

tanh (βh̄ωT/2) i + 2(ωT − ω)
]

gEd

h̄
[

i κCPW
2 −(ωCPW−ω)

]
2g2E2

d

h̄4
[

1
4 κ2

CPW+(ωCPW−ω)2
] + [ 1

4
Γ2

tanh2 (βh̄ωT/2)
+ (ωT − ω)2

] tanh (βh̄ωT/2). (A3)

Figure A1. Stationary state’s elements ρee
T and |ρeg

T | for different values of (ωT, Ed). Important amounts
of population and quantum coherence changes can be reached during the engine operation.

Appendix B. Thermodynamic Quantities along Each Stroke

In this appendix we summarize the explicit expressions of the thermodynamic quantities Wi
and Qi for i = 1, 2, 3, 4 and the heat Q+ given to the WS. These quantities are obtained by changing
quasi-statically the parameters ωT and Ed producing a succession of steady states ρ̂ss

T (ωT, Ed):

W1 =
∫ ω1

ω0
tr
{

ρ̂ss
T (ωT, E0)

(
∂H̃T,RWA

∂ωT

)
E0

}
dωT,

W2 =
∫ E1

E0
tr
{

ρ̂ss
T (ω1, Ed)

(
∂H̃T,RWA

∂Ed

)
ω1

}
dEd,

W3 =
∫ ω0

ω1
tr
{

ρ̂ss
T (ωT, E1)

(
∂H̃T,RWA

∂ωT

)
E1

}
dωT,

W4 =
∫ E0

E1
tr
{

ρ̂ss
T (ω0, Ed)

(
∂H̃T,RWA

∂Ed

)
ω0

}
dEd. (A4)

34



Entropy 2019, 21, 545

Q1 =
∫ ω1

ω0
tr
{(

∂ρ̂ss
T

∂ωT

)
E0

H̃T,RWA(ωT, E0)

}
dωT,

Q2 =
∫ E1

E0
tr
{(

∂ρ̂ss
T

∂Ed

)
ω1

H̃T,RWA(ω1, Ed)

}
dEd,

Q3 =
∫ ω0

ω1
tr
{(

∂ρ̂ss
T

∂ωT

)
E1

H̃T,RWA(ωT, E1)

}
dωT,

Q4 =
∫ E0

E1
tr
{(

∂ρ̂ss
T

∂Ed

)
ω0

H̃T,RWA(ω0, Ed)

}
dEd. (A5)

Q+ =
4

∑
i=1

Qi
+ (A6)

with Qi
+ for i = 1, 2, 3, 4 given by

Q1
+ =

∫ ω1
ω0

tr
{(

∂ρ̂ss
T

∂ωT

)
E0

H̃T,RWA(ωT, E0)

}
Θ
[

tr
{(

∂ρ̂ss
T

∂ωT

)
E0

H̃T,RWA(ωT, E0)

}
dωT

]
,

Q2
+ =

∫ E1
E0

tr
{(

∂ρ̂ss
T

∂Ed

)
ω1

H̃T,RWA(ω1, Ed)

}
Θ
[

tr
{(

∂ρ̂ss
T

∂Ed

)
ω1

H̃T,RWA(ω1, Ed)

}
dEd

]
,

Q3
+ =

∫ ω0
ω1

tr
{(

∂ρ̂ss
T

∂ωT

)
E1

H̃T,RWA(ωT, E1)

}
Θ
[

tr
{(

∂ρ̂ss
T

∂ωT

)
E1

H̃T,RWA(ωT, E1)

}
dωT

]
,

Q4
+ =

∫ E0
E1

tr
{(

∂ρ̂ss
T

∂Ed

)
ω0

H̃T,RWA(ω0, Ed)

}
Θ
[

tr
{(

∂ρ̂ss
T

∂Ed

)
ω0

H̃T,RWA(ω0, Ed)

}
dEd

]
. (A7)

where the Heaviside function Θ[·] is inside the integral, selecting only the positive contributions (heat
given to the WS) along the stroke.
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Abstract: In this paper, we design a quantum heat exchanger which converts heat into light on
relatively short quantum optical time scales. Our scheme takes advantage of heat transfer as well as
collective cavity-mediated laser cooling of an atomic gas inside a cavitating bubble. Laser cooling
routinely transfers individually trapped ions to nano-Kelvin temperatures for applications in quantum
technology. The quantum heat exchanger which we propose here might be able to provide cooling
rates of the order of Kelvin temperatures per millisecond and is expected to find applications in
micro- and nanotechnology.

Keywords: quantum thermodynamics; laser cooling; cavitation; sonoluminescence

1. Introduction

Since its discovery in 1975 [1,2], laser cooling of individually trapped atomic particles has become
a standard technique in quantum optics laboratories worldwide [3,4]. Rapidly oscillating electric
fields can be used to strongly confine charged particles, such as single ions, for relatively large
amounts of time [5]. Moreover, laser trapping provides unique means to control the dynamics of
neutral particles, such as neutral atoms [6,7]. To cool single atomic particles, laser fields are applied
which remove vibrational energy at high enough rates to transfer them down to near absolute-zero
temperatures [5]. Nowadays, ion traps are used to perform a wide range of high-precision quantum
optics experiments. For example, individually trapped ions are at the heart of devices with applications
in quantum technology, such as atomic and optical clocks [8,9], quantum computers [10–13], quantum
simulators [14,15] and electric and magnetic field sensors [16].

For laser cooling to be at its most efficient, the confinement of individually trapped particles
should be so strong that the quantum characteristics of their motion is no longer negligible. This means
that their vibrational energy is made up of energy quanta, which have been named phonons. When this
applies, an externally applied laser field not only affects the electronic states of a trapped ion, but it also
changes its vibrational state. Ideally, laser frequencies should be chosen such that the excitation of the
ion should be most likely accompanied by the loss of a phonon. If the ion returns subsequently into its
ground state via the spontaneous emission of a photon, its phonon state remains the same. Overall one
phonon is permanently lost from the system which implies cooling. On average, every emitted photon
lowers the vibrational energy of the trapped ion by the energy of one phonon. Eventually, the cooling
process stops when the ion no longer possesses any vibrational energy.

Currently, there are many different ways of designing and fabricating ion traps [17,18]. However,
the main requirements for the efficient conversion of vibrational energy into light on relatively short
quantum optical time scales are always the same [19,20]:
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Entropy 2020, 22, 379

(1) Individual atomic particles need to be so strongly confined that the quantum character of their
motion has to be taken into account. In the following, ν denotes the phonon frequency and h̄ν is
the energy of a single phonon.

(2) A laser field with a frequency ωL below the atomic transition frequency ω0 needs to be applied.
As long as the laser detuning Δ = ω0 − ωL and the phonon frequency ν are comparable in size,

Δ ∼ ν , (1)

the excitation of an ion is more likely accompanied by the annihilation of a phonon than by the
creation of a phonon. Transitions which result in the simultaneous excitation of an ion and the
creation of a phonon are possible but are less likely to occur as long as their detuning is larger.

(3) When excited, the confined atomic particle needs to be able to emit a photon. In the following,
we denote its spontaneous decay rate by Γ. This rate should not be much larger than ν,

ν ≥ Γ , (2)

so that the cooling laser couples efficiently to atomic transitions. At the same time, Γ should not
be too small so that de-excitation of the excited atomic state happens often via the spontaneous
emission of a photon.

Given these three conditions, the applied laser field results in the conversion of the vibrational
energy of individually trapped ions into photons. As mentioned already above, laser cooling
can prepare individually trapped atomic particles at low enough temperatures for applications in
high-precision quantum optics experiments and in quantum technology.

In this paper, we ask the question whether laser cooling could also have applications in micro-
and nanoscale physics experiments. For example, nanotechnology deals with objects which have
dimensions between 1 and 1000 nm and is well known for its applications in information and
communication technology, as well as sensing and imaging. Increasing the speed at which information
can be processed and the sensitivity of sensors is usually achieved by reducing system dimensions.
However, smaller devices are usually more prone to heating as thermal resistances increase [21].
Sometimes, large surface to volume ratios can help to off-set this problem. Another problem for
nanoscale sensors is thermal noise. As sensors are reduced in size, their signal to noise ratio usually
decreases and thus the thermal energy of the system can limit device sensitivity [22]. Therefore,
thermal considerations have to be taken into account and large vacuums or compact heat exchangers
have already become an integral part of nanotechnology devices.

Usually, heat exchangers in micro- and nanotechnology rely on fluid flow [23]. In this paper,
we propose an alternative approach. More concretely, we propose to use heat transfer as well as
a variation of laser cooling, namely cavity-mediated collective laser cooling [24–28], to lower the
temperature of a small device. As illustrated in Figure 1, the proposed quantum heat exchanger mainly
consist of a liquid which contains a large number of cavitating bubbles filled with noble gas atoms.
Transducers constantly change the radius of these bubbles which should resemble optical cavities when
they reach their minimum radius during bubble collapse phases. At this point, a continuously applied
external laser field rapidly transfers vibrational energy of the atoms into light. If the surrounding
liquid contains many cavitating bubbles, their surface area becomes relatively large and there can be a
very efficient exchange of heat between the inside and the outside of cavitating bubbles. Any removal
of thermal energy from the trapped atomic gas inside bubbles should eventually result in the cooling
of the surrounding liquid and of the surface area of the device on which it is placed.

In this paper, we emphasize that cavitating bubbles can provide all of the above listed requirements
for laser cooling, especially a very strong confinement of atomic particles, such as nitrogen [29,30].
For example, calculations based on a variation of the Rayleigh–Plesset equations show that the pressure
at the location of a cavitating bubble can be significantly larger than the externally applied driving
pressure [31]. However, the strongest indication for the presence of phonon modes with sufficiently
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large frequencies for laser cooling to work comes from the fact that sonoluminescence experiments are
well-known for converting sound into relatively large amounts of thermal energy, while producing
light in the optical regime [32–34]. During this process, the atomic gas inside a cavitating bubbles can
reach very high temperatures [35,36], which hints at very strong couplings between electronic and
vibrational degrees of freedom. In addition, the surfaces of cavitating bubbles can become opaque
during the bubble collapse phase [37], thereby creating a spherical optical cavity [38,39] which is an
essential requirement for cavity-mediated collective laser cooling.

To initiate the cooling process, an appropriately detuned laser field needs to be applied in
addition to the transducers which confine the bubbles with sound waves. Although sonoluminescence
has been studied in great detail and the idea of applying laser fields to cavitating bubbles is not
new [40], not enough is known about the relevant quantum properties, such as phonon frequencies.
Hence, we cannot predict realistic cooling rates for the experimental setup shown in Figure 1.
A crude estimate which borrows data from different, already available experiments suggests that
it might be possible to achieve cooling rates of the order of Kelvin temperatures per millisecond
for volumes of liquid on a cubic micrometer scale. Cavitating bubbles already have applications in
sonochemistry, where they are used to provide energy for chemical reactions [41]. Here, we propose
to exploit the atom–phonon interactions in sonoluminescence experiments for laser cooling. In the
presence of an appropriately detuned laser field, we expect other, highly-detuned heating processes to
become secondary.

cavitating bubbles 

nm 

light 

nanotechnology 

laser 
&transducer 

noble gas atoms 

Figure 1. Schematic view of the proposed quantum heat exchanger. It consists of a liquid in close
contact with the area which we want to cool. The liquid should contain cavitating bubbles which are
filled with atomic particles, such as nitrogen, and should be driven by sounds waves and laser light.
The purpose of the sound waves is to constantly change bubble sizes. The purpose of the laser is to
convert thermal energy during bubble collapse phases into light.

There are five sections in this paper. The purpose of Section 2 is to provide an introduction to
cavity-mediated collective laser cooling of an atomic gas. As we show below, this technique is a
variation of standard laser cooling techniques for individually trapped atomic particles. We provide
an overview of the experimental requirements and estimate achievable cooling rates. Section 3 studies
the effect of thermalization for a large collection of atoms with elastic collisions. Section 4 reviews the
main design principles of a quantum heat exchanger for nanotechnology. Finally, we summarize our
findings in Section 5.

2. Cavity-Mediated Collective Laser Cooling

In this section, we first have a closer look at a standard laser cooling technique for an individually
trapped atomic particle [19,20]. Afterwards, we review cavity-mediated laser cooling of a single
atom [42–46] and of an atomic gas [26–28].
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2.1. Laser Cooling of Individually Trapped Particles

Figure 2a shows a single two-level atom (or ion) with external laser driving inside an
approximately harmonic trapping potential. Most importantly, the atom should be so strongly confined
that its phonon states are no longer negligible. In the following, ν denotes the frequency of the energy
quanta in the vibrational energy of the atomic particle and |m〉 is a vibrational state with exactly m
phonons. Moreover, |g〉 and |e〉 denote the ground and the excited electronic state of the trapped
particle with energy separation h̄ω0. Figure 2b shows the energy level of the combined atom–phonon
system with the energy eigenstates |x, m〉.

Figure 2. (a) Schematic view of the experimental setup for laser cooling of a single trapped ion.
Here, |g〉 and |e〉 denote the ground and the excited state of the ion, respectively, with transition
frequency ω0 and spontaneous decay rate Γ. The motion of the particle is strongly confined by
an external harmonic trapping potential such that it quantum nature can no longer be neglected.
Here, ν denotes the frequency of the corresponding phonon mode and ωL is the frequency of the
applied cooling laser. (b) The purpose of the laser is to excite the ion, while annihilating a phonon,
thereby causing transitions between the basis states |x, m〉 with x = g, e and m = 0, 1, . . . of the
atom–phonon system. If the excitation of the ion is followed by the spontaneous emission of a photon,
a phonon is permanently lost, which implies cooling.

To lower the temperature of the atom, the frequency ωL of the cooling laser needs to be below
its transition frequency ω0. Ideally, the laser detuning Δ = ω0 − ωL equals the phonon frequency ν

(cf. Equation (1)). In addition, the spontaneous decay rate Γ of the excited atomic state should not
exceed ν (cf. Equation (2)). When both conditions apply, the cooling laser couples most strongly,
i.e., resonantly and efficiently, to transitions for which the excitation of the atom is accompanied by
the simultaneously annihilation of a phonon. All other transitions are strongly detuned. Moreover,
the spontaneous emission of a photon only affects the electronic but not the vibrational states of the
atom. Hence, the spontaneous emission of a photon usually indicates the loss of one phonon. Suppose
the atom was initially prepared in a state |g, m〉. Then, its final state equals |g, m − 1〉. One phonon
has been permanently removed from the system which implies cooling. As illustrated in Figure 2b,
the trapped particle eventually reaches its ground state |g, 0〉 where it no longer experiences the cooling
due to off-resonant driving [19,20].

To a very good approximation, the Hamiltonian of the atom–phonon system equals [20]

HI = h̄g
(

σ−b† + σ+b
)

(3)

in the interaction picture with respect to its free energy. Here, g denotes the (real) atom–phonon
coupling constant, while σ+ = |e〉〈g| and σ− = |g〉〈e| are atomic rising and lowering operators.
Moreover, b and b† are phonon annihilation and creation operators with [b, b†] = 1. To take into
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account the spontaneous emission of photons from the excited state of the atom with decay rate Γ,
we describe the atom–phonon system in the following by its density matrix ρI(t) with

ρ̇I = − i
h̄
[HI, ρI] + Γ

(
σ− ρI σ+ − 1

2
σ+σ− ρI −

1
2

ρI σ+σ−
)

. (4)

This equation can be used to analyze the dynamics of the expectation value 〈AI〉 = Tr(AIρI) of
observables AI, since it implies

〈ȦI〉 = − i
h̄
[AI, HI] + Γ

〈
σ+ AI σ− − 1

2
AI σ+σ− − 1

2
σ+σ− AI

〉
. (5)

Here, we are especially interested in the dynamics of the mean phonon number m = 〈b†b〉.
To obtain a closed set of rate equations, we also need to study the dynamics of the population of the
excited atomic state s = 〈σ+σ−〉 and the dynamics of the atom–phonon coherence k1 = i 〈σ−b† − σ+b〉.
Using Equation (5), one can show that

ṁ = −g k1 ,

ṡ = g k1 − Γ s ,

k̇1 = 2g(m − s)− 4g ms − 1
2

Γ k1 (6)

when assuming that 〈σ+σ−b†b〉 = 〈σ+σ−〉〈b†b〉 = ms to a very good approximation. Having a
closer look at the above equations, we see that the system rapidly reaches its stationary state with
m = s = k1 = 0. Eventually, the atom reaches a very low temperature. More detailed calculations
reveal that the final phonon m of the trapped atom depends on its system parameters but remains
small as long as the ratio Γ/ν is sufficiently small [20]. The above cooling equations (Equation (6)) also
show that the corresponding cooling rate equals

γstandard
1 atom = g2/Γ (7)

to a very good approximation and that the cooling process takes place not on mechanical but on
relatively short quantum optical time scales.

2.2. Cavity-Mediated Laser Cooling of a Single Atom

Suppose we want to cool a single atom whose transition frequency ω0 is well above the optical
regime, i.e., much larger than typical laser frequencies ωL. In this case, it is impossible to realize the
condition Δ ∼ ν in Equation (1). Hence, it might seem impossible to lower the temperature of the atom
via laser cooling. To overcome this problem, we confine the particle in the following inside an optical
resonator (cf. Figure 3) and denote the cavity state with exactly n photons by |n〉. Using this notation,
the energy eigenstates of the atom–phonon–photon systems can be written as |x, m, n〉. Moreover, ν is
again the phonon frequency, κ denotes the spontaneous cavity decay rate and ωL and ωcav denote the
laser and the cavity frequency, respectively.

In the experimental setup in Figure 3, all transitions which result in the excitation of the atom are
naturally strongly detuned and can be neglected. However, the same does not have to apply to indirect
couplings which result in the direct conversion of phonons into cavity photons [27,44]. Suppose the
cavity detuning Δcav = ωcav − ωL and the phonon frequency ν are approximately the same and the
cavity decay rate κ does not exceed ν,

Δcav ∼ ν and ν ≥ κ , (8)
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in analogy to Equations (1) and (2). Then, two-step transitions which excite the atom while annihilating
a phonon immediately followed by the de-excitation of the atom while creating a cavity photon
become resonant and dominate the dynamics of the atom–phonon–photon system. The overall effect
of these two-step transitions is the direct conversion of a phonon into a cavity photon, while the atom
remains essentially in its ground state (cf. Figure 3b). When a cavity photon subsequently leaks into
the environment, the phonon is permanently lost.

 
              

 
                           

         
                                                                            

                                              
 

                     
 

                 
   

  

 
laser 
 

 a)                                                                                     b) 

atom in trap 

 |g  

 |e  

i

er 

         

    |g, m,0  

ω0     

    |g, m-1,0  
    |g, m-2,0  

    |g, m-2,1  
    |g, m-1,1  

    |g, m,1  

 
   

0
ν 

 ωL ωcav κ 
κ 

photons

Figure 3. (a) Schematic view of the experimental setup for cavity-mediated laser cooling of a single
atom. The main difference between this setup and the setup shown in Figure 2 is that the atom
now couples in addition to an optical cavity with frequency ωcav and the spontaneous decay rate κ.
Here, both the cavity field and the laser are highly detuned from the atomic transition and the direct
excitation of the atom remains negligible. However, the cavity detuning Δcav = ωcav − ωL should
equal the phonon frequency of the trapped particle. (b) As a result, only the annihilation of a phonon
accompanied by the simultaneous creation of a cavity photon are in resonance. In cavity-mediated
laser cooling, the purpose of the laser is to convert phonons into cavity photons. The subsequent loss
of this photon via spontaneous emission results in the permanent loss of a phonon and therefore in the
cooling of the trapped particle.

To model the above described dynamics, we describe the experimental setup in Figure 3 in the
following by the interaction Hamiltonian [44,45]

HI = h̄geff

(
bc† + b†c

)
, (9)

where geff denotes the effective atom–cavity coupling constant and where c with [c, c†] = 1 is the cavity
photon annihilation operator. Since the atom remains essentially in its ground state, its spontaneous
photon emission remains negligible. To model the possible leakage photons through the cavity mirrors,
we employ again a master equation. Doing so, the time derivative of the density matrix ρI(t) of the
phonon–photon system equals

ρ̇I = − i
h̄
[HI, ρI] + κ

(
cρIc† − 1

2
c†cρI −

1
2

ρIc†c
)

(10)

in the interaction picture. Hence, expectation values 〈AI〉 = Tr(AIρI) of phonon–photon observables
AI evolve such that

〈ȦI〉 = − i
h̄
[AI, HI] + κ

〈
c† AI c − 1

2
AI c†c − 1

2
c†c AI

〉
, (11)
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in analogy to Equation (5). In the following, we use this equation to study the dynamics of the phonon
number m = 〈b†b〉, the photon number n = 〈c†c〉, and the phonon–photon coherence k1 = i〈bc† − b†c〉.
Proceeding as described in the previous subsection, we now obtain the rate equations

ṁ = geffk1 ,

ṅ = −geffk1 − κn ,

k̇1 = 2geff(n − m)− 1
2

κk1 . (12)

These describe the continuous conversion of phonons into cavity photons which subsequently
escape the system. Hence, it is not surprising to find that the stationary state of the
atom–phonon–photon system corresponds to m = n = k1 = 0. Independent of its initial state,
the atom again reaches a very low temperature. In analogy to Equation (7), the effective cooling rate
for cavity-mediated laser cooling is now given by [44,45]

γ1 atom = g2
eff/κ . (13)

Due to the resonant coupling being indirect, geff is in general a few orders of magnitude smaller
than g in Equation (7), if the spontaneous decay rates κ and Γ are of similar size. Cooling a single atom
inside an optical resonator might therefore take significantly longer. However, as we show below,
this reduction in cooling rate can be compensated for by the collective enhancement of the atom–cavity
interaction constant geff [26].

2.3. Cavity-Mediated Collective Laser Cooling of an Atomic Gas

Finally, we have a closer look at cavity-mediated collective laser cooling of an atomic gas inside an
optical resonator [26,27]. To do so, we replace the single atom in the experimental setup in Figure 3 by
a collection of N atoms. In analogy to Equation (9), the interaction Hamiltonian HI between phonons
and cavity photons now equals

HI =
N

∑
i=1

h̄g(i)eff

(
bic† + b†

i c
)

, (14)

where g(i)eff denotes the effective atom–cavity coupling constant of atom i. This coupling constant
is essentially the same as geff in Equation (13) and depends in general on the position of atom i.
Moreover, bi denotes the phonon annihilation operator of atom i with [bi, b†

j ] = δij. To simplify the
above Hamiltonian, we introduce a collective phonon annihilation operator B,

B =
∑N

i=1 g(i)eff bi

g̃eff
with g̃eff =

(
N

∑
i=1

|g(i)eff |2
)1/2

, (15)

with [B, B†] = 1. Using this notation, HI in Equation (14) simplifies to

HI = h̄g̃eff

(
Bc† + B†c

)
. (16)

Notice that the effective coupling constant g̃eff scales as the square root of the number of atoms
N inside the cavity. For example, if all atomic particles couple equally to the cavity field with a
coupling constant geff ≡ g(i)eff , then g̃eff =

√
N geff. This means, in the case of many atoms, the effective

phonon–photon coupling is collectively enhanced [26].
When comparing HI in Equation (9) with HI in Equation (14), we see that both Hamiltonians are

essentially the same. Moreover, the density matrix ρI obeys the master equation in Equation (10) in
both cases. Hence, we expect the same cooling dynamics in the one atom and in the many atom case.
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Suppose all atoms experience the same atom–cavity coupling constant geff, the effective cooling rate of
the common vibrational mode B becomes

γN atoms = Ng2
eff/κ , (17)

in analogy to Equation (13). This cooling rate is N times larger than the cooling rate which we predicted
in the previous subsection for cavity-mediated laser cooling of a single atom. Using sufficiently large
number of atoms N, it is therefore possible to realize cooling rates γN atoms with

γN atoms � γstandard
1 atom . (18)

This suggests that the cooling rate of cavity-mediated laser cooling, i.e., the rate of change of the
mean number n of B phonons in the system, is comparable and might even exceed the cooling rates of
standard laser cooling of single trapped ions.

However, the above discussion also shows that cavity-mediated collective laser cooling only
removes phonons from a single common vibrational mode B, while all other vibrational modes of
the atomic gas do not experience the cooling laser. Once the B mode reaches its stationary state,
the conversion of thermal energy into light stops. To nevertheless take advantage of the relatively high
cooling rates of cavity-mediated collective laser cooling, an additional mechanism is needed [27,28].
As we shall see in the next section, one way of transferring energy between different vibrational modes
is to intersperse cooling stages with thermalization stages (cf. Figure 4). The purpose of the cooling
stages is to rapidly remove energy from the system. The purpose of subsequent thermalization stages
is to transfer energy from the surroundings of the bubble and from the different vibrational modes of
the atoms into the B mode. Repeating thermalization and cooling stages is expected to result in the
cooling of the whole setup in Figure 1.

Figure 4. Schematic view of the expected dynamics of the temperature of the atomic gas during
cavity-mediated collective laser cooling which involves a sequence of cooling stages (blue) and
thermalization stages (pink). During thermalization stages, heat is transferred from the different
vibrational degrees of freedoms of the atoms into a certain collective vibrational mode B, while the
mean temperature of the atoms remains the same. During cooling stages, energy from the B mode into
light. Eventually, the atomic gas becomes very cold.

3. Thermalization of an Atomic Gas with Elastic Collisions

Thermalization stages occur naturally in cavitating bubbles between collapse stages due to elastic
collisions. As we show below, these transfer an atomic gas into its thermal state, thereby re-distributing
energy between all if its vibrational degrees of freedom. During bubble expansions, the phonon
frequencies of the atoms become very small. It is therefore safe to assume that the atoms do not see the
cooling laser during thermalization stages.
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3.1. The Thermal State of a Single Harmonic Oscillator

As in the previous section, we first consider a single trapped atom inside a harmonic trapping
potential. Its thermal state equals [47]

ρ =
1
Z

e−βH with Z = Tr(e−βH) , (19)

where H is the relevant harmonic oscillator Hamiltonian, β = 1/kBT is the thermal Lagrange parameter
for a given temperature T, kB is Boltzmann’s constant and Z denotes the partition function which
normalizes the density matrix ρ of the atom. For sufficiently large atomic transition frequencies ω0,
the thermal state of the atom is to a very good approximation given by its ground state |g〉, unless the
atom becomes very hot. In the following, we therefore neglect its electronic degrees of freedom. Hence,
the Hamiltonian H in Equation (19) equals

H = h̄ν
(

b†b + 1
2

)
, (20)

where ν and b denote again the frequency and the annihilation operator of a single phonon. Combining
Equations (19) and (20), we find that [47]

Z =
e−

1
2 λ

1 − e−λ
. (21)

with λ = βh̄ν. Here, we are especially interested in the expectation value of the thermal energy of
the vibrational mode of the trapped atom which equals 〈H〉 = Tr(Hρ). Hence, using Equation (19),
one can show that

〈H〉 =
1
Z

Tr
(

He−βH
)
= − 1

Z
∂

∂β
Z = − ∂

∂β
ln Z . (22)

Finally, combining this result with Equation (21), we find that

〈H〉 = h̄ν

(
e−λ

e−λ − 1
+

1
2

)
(23)

which is Planck’s expression for the average energy of a single quantum harmonic oscillator. Moreover,

m =
e−λ

e−λ − 1
, (24)

since the mean phonon number m = 〈b†b〉 relates to 〈H〉 via m = 〈H〉/h̄ν − 1
2 .

3.2. The Thermal State of Many Atoms with Collisions

Next we calculate the thermal state of a strongly confined atomic gas with strong elastic collisions.
This situation has many similarities with the situation considered in the previous subsection. The atoms
constantly collide with their respective neighbors which further increases the confinement of the
individual particles. Hence, we assume in the following that the atoms no longer experience the
phonon frequency ν but an increased phonon frequency νeff. If all atoms experience approximately the
same interaction, their Hamiltonian H equals

H =
N

∑
i=1

h̄
(

νeff +
1
2

)
b†

i bi (25)
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to a very good approximation. Here, bi denotes again the phonon annihilation operator of atom
i. Comparing this Hamiltonian with the harmonic oscillator Hamiltonian in Equation (20) and
substituting H in Equation (25) into Equation (19) to obtain the thermal state of many atoms, we find
that this thermal state is simply the product of the thermal states of the individual atoms. All atoms
have the same thermal state, their mean phonon number mi = 〈b†

i bi〉 equals

mi =
e−λeff

e−λeff − 1
(26)

with λeff = h̄νeff/kBT, in analogy to Equation (24). This equation shows that any previously depleted
collective vibrational mode of the atoms becomes re-populated during thermalization stages.

4. A Quantum Heat Exchanger with Cavitating Bubbles

As pointed out in Section 1, the aim of this paper is to design a quantum heat exchanger for
nanotechnology. The proposed experimental setup consists of a liquid on top of the device which we
aim to keep cool, a transducer and a cooling laser (cf. Figure 1). The transducer generates cavitating
bubbles which need to contain atomic particles and whose diameters need to change very rapidly in
time. The purpose of the cooling laser is to stimulate the conversion of heat into light. The cooling
of the atomic particles inside cavitating bubbles subsequently aids the cooling of the liquid which
surrounds the bubbles and its environment via adiabatic heat transfers.

To gain a better understanding of the experimental setup in Figure 1, Section 4.1 describes the
main characteristics of single bubble sonoluminescence experiments [32–36]. Section 4.2 emphasizes
that there are many similarities between sonoluminescence and quantum optics experiments [29,30].
From this, we conclude that sonoluminescence experiments naturally provide the main ingredients
for the implementation of cavity-mediated collective laser cooling of an atomic gas [26–28]. Finally,
in Sections 4.3 and 4.4, we have a closer look at the physics of the proposed quantum heat exchanger
and estimate cooling rates.

4.1. Single Bubble Sonoluminescence Experiments

Sonoluminescence can be defined as a phenomenon of strong light emission from collapsing
bubbles in a liquid, such as water [32–34]. These bubbles need to be filled with noble gas atoms, such as
nitrogen atoms, which occur naturally in air. Alternatively, the bubbles can be filled with ions from
ionic liquids, molten salts, and concentrated electrolyte solutions [48]. Moreover, the bubbles need
to be acoustically confined and periodically driven by ultrasonic frequencies. As a result, the bubble
radius changes periodically in time, as illustrated in Figure 5. The oscillation of the bubble radius
regenerates itself with unusual precision.

At the beginning of every expansion phase, the bubble oscillates about its equilibrium radius until
it returns to its fastness. During this process, the bubble temperature changes adiabatically and there
is an exchange of thermal energy between the atoms inside the bubble and the surrounding liquid.
During the collapse phase of a typical single-bubble sonoluminescence, i.e., when the bubble reaches
its minimum radius, its inside becomes thermally isolated from the surrounding environment and
the atomic gas inside the bubble becomes strongly confined. Usually, a strong light flash occurs at
this point which is accompanied by a sharp increase of the temperature of the particles. Experiments
have shown that increasing the concentration of atoms inside the bubble increases the intensity of the
emitted light [35,36].
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Figure 5. Schematic view of the time dependence of the bubble radius in a typical single-bubble
sonoluminesence experiment. Most of the time, the bubble evolves adiabatically and exchanges
thermal energy with its surroundings. However, at regular time intervals, the bubble radius suddenly
collapses. At this point, the bubble becomes thermally isolated. When it reaches its minimum radius,
the system usually emits a strong flash of light in the optical regime.

4.2. A Quantum Optics Perspective on Sonoluminescence

The above observations suggest many similarities between sonoluminescence and quantum optics
experiments with trapped atomic particles [29,30]. When the bubble reaches its minimum radius,
an atomic gas becomes very strongly confined [31]. The quantum character of the atomic motion can
no longer be neglected and, as in ion trap experiments (cf. Section 2.1), the presence of phonons with
different trapping frequencies ν has to be taken into account. Moreover, when the bubble reaches
its minimum radius, its surface can become opaque and almost metallic [37]. When this happens,
the bubble traps light inside and closely resembles an optical cavity which can be characterized
by a frequency ωcav and a spontaneous decay rate κ. Since the confined particles have atomic
dipole moments, they naturally couple to the quantized electromagnetic field inside the cavity.
The result can be an exchange of energy between atomic dipoles and the cavity mode. The creation of
photons inside the cavity is always accompanied by a change of the vibrational states of the atoms.
Hence, the subsequent spontaneous emission of light in the optical regime results in a permanent
change of the temperature of the atomic particles.

A main difference between sonoluminescence and cavity-mediated collective laser cooling is
the absence and presence of external laser driving (cf. Section 2.3). However, even in the absence of
external laser driving, there can be a non-negligible amount of population in the excited atomic states
|e〉. This applies, for example, if the atomic gas inside the cavitating bubble is initially prepared in the
thermal equilibrium state of a finite temperature T. Once surrounded by an optical cavity, as it occurs
during bubble collapse phases, excited atoms can return into their ground state via the creation of a
cavity photon (cf. Figure 6). Suddenly, an additional de-excitation channel has become available to
them. As pointed out in Refs. [29,30], the creation a cavity photons is more likely accompanied by the
creation of a phonon than the annihilation of a phonon since

B† =
∞

∑
m=0

√
m + 1 |m + 1〉〈m| ,

B =
∞

∑
m=0

√
m |m − 1〉〈m| . (27)

Here, B and B† denote the relevant phonon annihilation and creation operators, while |m〉 denotes
a state with exactly m phonons. As one can see from Equation (27), the normalization factor of
B† |m〉 is slightly larger than the normalization factor of the state B |m〉. When the cavity photon is
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subsequently lost via spontaneous photon emission, the newly-created phonon remains inside the
bubble. Hence, the light emission during bubble collapse phases is usually accompanied by heating,
until the sonoluminescing bubble reaches an equilibrium.

During each bubble collapse phase, cavitating bubbles are thermally isolated from their
surroundings. However, during the subsequent expansion phase, system parameters change
adiabatically and there is a constant exchange of thermal energy between atomic gas inside the
bubble and the surrounding liquid (cf. Figure 5). Eventually, the atoms reach an equilibrium between
heating during bubble collapse phases and the loss of energy during subsequent expansion phases.
Experiments have shown that the atomic gas in side the cavitating bubble can reaches temperature of
the order of 104 K which strongly supports the hypothesis that there is a very strong coupling between
the vibrational and the electronic states of the confined particles [35,36].
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Figure 6. (a) From a quantum optics point of view, one of the main characteristics of sonoluminescence
experiments is that cavitating bubbles provide a very strong confinement for atomic particles.
This means that the quantum character of their motional degrees of freedom has to be taken into
account. As in ion trap experiments, we denote the corresponding phonon frequency in this paper by
ν. Moreover, during its collapse phase, the surface of the bubble becomes opaque and confines light,
thereby forming an optical cavity with frequency ωcav and a spontaneous decay rate κ. (b) Even in the
absence of external laser driving, some of the atoms are initially in their excited state |e〉 due to being
prepared in a thermal equilibrium state at a finite temperature T. When returning into their ground
state via the creation of a cavity photon, which is only possible during the bubble collapse phase,
most likely a phonon is created. This creation of phonons implies heating. Indeed, sonoluminescence
experiments often reach relatively high temperatures [35,36].

4.3. Cavity-Mediated Collective Laser Cooling of Cavitating Bubbles

The previous subsection shows that, during each collapse phase, the dynamics of the cavitating
bubbles in Figure 1 is essentially the same as the dynamics of the experimental setup in Figure 3 but
with the single atom replaced by an atomic gas. When the bubble reaches its minimum diameter dmin,
it forms an optical cavity which supports a discrete set of frequencies ωcav,

ωcav = j × πc
dmin

, (28)

where c denotes the speed of light in air and j = 1, 2, ... is an integer. As illustrated in Figure 7, the case
j = 1 corresponds to a cavity photon wavelength λcav = 2dmin. Moreover, j = 2 corresponds to
λcav = dmin, and so on. Under realistic conditions, the cavitating bubbles are not all of the same size
which is why every j is usually associated with a range of frequencies ωcav (cf. Figure 7). Here, we are
especially interested in the parameter j, where the relevant cavity frequencies lie in the optical regime.
All other parameters j can be neglected, once a laser field with an optical frequency ωL is applied,
if neighboring frequency bands are sufficiently detuned.
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In addition, we know that the phonon frequency ν of the collective phonon mode B assumes its
maximum νmax during the bubble collapse phase. Suppose the cavity detuning Δcav = ωL − ωcav of
the applied laser field is chosen such that

Δcav ∼ νmax and νmax ≥ κ , (29)

in analogy to Equation (2). As we have seen in Section 2.3, in this case, the two-step transition which
results in the simultaneous annihilation of a phonon and the creation of a cavity photon becomes
resonant and dominates the system dynamics. If the creation of a cavity photon is followed by a
spontaneous emission, the previously annihilated phonon cannot be restored and is permanently lost.
Overall, we expect this cooling process to be very efficient, since the atoms are strongly confined and
cavity cooling rates are collectively enhanced (cf. Equation (17)).

j=3

πc ⁄dmin

dmin=λcav

j=1

j=2

j=3
dmin=3 ⁄ 2λcav

dmin=λcav ⁄ 2

ωL 

2πc ⁄dmin

3πc ⁄dmin

ωcav 

Figure 7. When the cavitating bubbles inside the liquid reach their minimum diameters dmin, their walls
become opaque and trap light on the inside. To a very good approximation, they form cavities
which can be described by spontaneous decay rates κ and cavity frequencies ωcav (cf. Equation (28)).
Suppose the diameters of the bubbles inside the liquid occupy a relatively small range of values.
Then, every integer number j in Equation (28) corresponds to a relatively narrow range of cavity
frequencies ωcav. Here, we are especially interested in the parameter j for which the ωcav’s lie in the
optical regime. When this applies, we can apply a cooling laser with an optical frequency ωL which
can cool the atoms in all bubbles. Some bubbles will be cooled more efficiently than others. However,
as long as the relevant frequency bands are relatively narrow, none of the bubbles will be heated.

To cool not only very tiny but larger volumes, the experimental setup in Figure 1 should contain
a relatively large number of cavitating bubbles. Depending on the quality of the applied transducer,
the minimum diameters dmin of these bubbles might vary in size. Consequently, the collection of
bubbles supports a finite range of cavity frequencies ωcav (cf. Figure 7 so that it becomes impossible
to realize the ideal cooling condition Δcav ∼ νmax in Equation (29) for all bubbles. However, as long
as the frequency ωL of the cooling laser is smaller than all optical cavity frequencies ωcav, the system
dynamics will be dominated by cooling and not by heating. In general, it is important that the
diameters of the bubbles does not vary by too much.

Section 2.3 also shows that cavity-mediated collective laser cooling only removes thermal energy
from a single collective vibrational mode B of the atoms. Once this mode is depleted, the cooling process
stops. To efficiently cool an entire atomic gas, a mechanism is needed which rapidly re-distributes
energy between different vibrational degrees of freedom, for example, via thermalization based on
elastic collisions (cf. Section 3). As shown above, between cooling stages, cavitating bubbles evolve
essentially adiabatically and the atoms experience strong collisions. In other words, the expansion
phase of cavitating bubbles automatically implements the intermittent thermalization stages of
cavity-mediated collective laser cooling.

Finally, let us point out that it does not matter whether the cooling laser is turned on or off during
thermalization stages, i.e., during bubble expansion phases. As long as optical cavities only form
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during the bubble collapse phases, the above-described conversion of heat into light only happens
when the bubble reaches its minimum diameter. The reason for this is that noble gas atoms, such as
nitrogen, have very large transition frequencies ω0. The direct laser excitation of atomic particles is
therefore relatively unlikely, even when the cooling laser is turned on. If we could excite the atoms
directly by laser driving, we could cool them even more efficiently (cf. Section 2.1).

4.4. Cooling of the Surroundings via Heat Transfer

The purpose of the heat exchanger which we propose here is to constantly remove thermal
energy from the liquid surrounding the cavitating bubbles and device on which the liquid is placed
(cf. Figure 1). As described in the previous subsection, the atomic gas inside the bubbles is cooled
by very rapidly converting heat into light during each collapse phase. In between collapse phases,
the cavitating bubbles evolve adiabatically and naturally cool their immediate environment via heat
transfer. As illustrated in Figure 8, alternating cooling and thermalization stages (or collapse and
expansion phases) is expected to implement a quantum heat exchanger, which does not require the
actual transport of particles from one place to another.
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Figure 8. Schematic view of the expected dynamics of the temperature of a confined atomic gas
during bubble collapse stages (blue) and expansion stages (pink). During expansion stages, heat is
transferred from the outside into the inside of the bubble, thereby increasing the temperature of the
atoms. During bubble collapse stages, heat is converted into light, thereby resulting in the cooling of
the system in Figure 1. Eventually, both processes balance each other out and the temperature of the
system remains constant on a coarse grained time scale.

Finally, let us have a closer look at achievable cooling rates for micro- and nanotechnology devices
with length dimensions in the nano- and micrometer regime. Unfortunately, we do not know how
rapidly heat can be transferred from the nanotechnology device to the liquid and from there to the
atomic gas inside the cavitating bubbles. However, any thermal energy which is taken from the
atoms comes eventually from the environment which we aim to cool. Suppose the relevant phonon
frequencies νmax are sufficiently large to ensure that every emitted photon indicates the loss of one
phonon, i.e., the loss of one energy quantum h̄νmax. Moreover, suppose our quantum heat exchanger
contains a certain amount of liquid, let us say water, of mass mwater and heat capacity cwater(T) at an
initial temperature T0. Then, we can ask the question: How many photons Nphotons do we need to
create in order to cool the water by a certain temperature ΔT?

From thermodynamics, we know that the change in the thermal energy of the water equals

ΔQ = cwater(T0)mwaterΔT (30)

in this case. Moreover, we know that

ΔQ = Nphotons h̄νmax . (31)
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Hence, the number of photons that needs to be produced is given by

Nphotons =
cwater(T0)mwater ΔT

h̄νmax
. (32)

The time tcool it would take to create this number of photons equals

tcool =
Nphotons

Natoms I
, (33)

where I denotes the average single-atom photon emission rate and Natoms is the number of atoms
involved in the cooling process. When combining the above equations, we find that the cooling rate
γcool = tcool/ΔT of the proposed cooling process equals

γcool =
cwater(T)mwater

Natoms I h̄νmax
(34)

to a very good approximations.
As an example, suppose we want to cool one cubic micrometer of water (Vwater = 1μm3) at room

temperature (T0 = 20 ◦C). In this case, mwater = 10−15 g and cwater(T0) = 4.18 J/gK to a very good
approximation. Suppose ν = 100 MHz (a typical frequency in ion trap experiments is ν = 10 MHz),
I = 106/s and Natoms = 108 (a typical bubble in single bubble sonoluminescence contains about
108 atoms). Substituting these numbers into Equation (33) yields a cooling rate of

γcool = 3.81 ms/K. (35)

Achieving cooling rates of the order of Kelvin temperatures per millisecond seems therefore
experimentally feasible. As one can see from Equation (33), to reduce cooling rates further, one can
either reduce the volume that requires cooling, increase the number of atoms involved in the cooling
process or increase the trapping frequency νmax of the atomic gas inside collapsing bubbles. All of this
is, at least in principle, possible.

5. Conclusions

In this paper, we point out similarities between quantum optics experiments with strongly
confined atomic particles and single bubble sonoluminescence experiments [29,30]. In both situations,
interactions are present, which can be used to convert thermal energy very efficiently into light.
When applying an external cooling laser to cavitating bubbles, as illustrated in Figure 1, we therefore
expect a rapid transfer of heat into light which can eventually result in the cooling of relatively
small devices. Our estimates show that it might be possible to achieve cooling rates of the order of
milliseconds per Kelvin temperatures for cubic micrometers of water. The proposed quantum heat
exchanger is expected to find applications in research experiments and in micro- and nanotechnology.
A closely related cooling technique, namely laser cooling of individually trapped ions, already has a
wide range of applications in quantum technology [9–16].
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Abstract: In recent years, a quantum information theoretic framework has emerged for incorporating
non-classical phenomena into fluctuation relations. Here, we elucidate this framework by exploring
deviations from classical fluctuation relations resulting from the athermality of the initial thermal
system and quantum coherence of the system’s energy supply. In particular, we develop Crooks-like
equalities for an oscillator system which is prepared either in photon added or photon subtracted
thermal states and derive a Jarzynski-like equality for average work extraction. We use these equalities
to discuss the extent to which adding or subtracting a photon increases the informational content
of a state, thereby amplifying the suppression of free energy increasing process. We go on to derive
a Crooks-like equality for an energy supply that is prepared in a pure binomial state, leading to a
non-trivial contribution from energy and coherence on the resultant irreversibility. We show how the
binomial state equality fits in relation to a previously derived coherent state equality and offers a
richer feature-set.

Keywords: fluctuation relation; Crooks equality; quantum thermodynamics; coherence; athermality;
photon added thermal state; photon subtracted thermal state; binomial states; generalised
coherent states

1. Introduction

Thermodynamics, a theory of macroscopic systems at equilibrium, is vastly successful with
a diverse range of applications [1–6]. This is perhaps somewhat surprising given the prevalence
of non-equilibrium states and processes in nature. Underpinning this success is the second law of
thermodynamics, an inequality that holds for all equilibrium and non-equilibrium processes alike [7].
However, the implication of an irreversible flow in the dynamics belies the “arrow of time”, since
the underlying laws of motion generally define no preferred temporal order [8]. A resolution to
this seeming discrepancy arose in the form of fluctuation theorems, which derive the irreversibility
beginning from time-reversal invariant dynamics [8–12].

The challenge of generalising fluctuation relations to quantum systems has attracted significant
attention in recent years. The simplest approach defines the work done on a closed system as the change
in energy found by performing projective measurements on the system at the start and end of the
non-equilibrium process [10,13–17]. Extensions to this simple protocol have focused on formulations in
terms of quantum channels [18–20], generalisations to open quantum systems [21,22] and alternative
definitions for quantum work including those using quasi-probabilities [23,24], the consistent histories
framework [25] and the quantum jump approach [26–28]. However, these approaches tend to be limited
to varying degrees by the unavoidable impact of measurements on quantum systems. By defining
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quantum work in terms of a pair of projective measurements or continual weak measurements, the role
of coherence is attenuated.

A new framework for deriving quantum fluctuation relations has recently emerged [29–32] which
aims to fully incorporate non-classical thermodynamic effects into fluctuation relations by drawing on
insights from the resource theory of quantum thermodynamics [33–39]. This framework considers an
energy conserving and time reversal invariant interaction between an initially thermal system and a
quantum battery, that is the energy source which supplies work to, or absorbs work from, the system.
This framework can be taken as the starting point to derive Crooks-like relations for a harmonic
oscillator battery prepared in coherent, squeezed and Schrödinger cat states [40]. These new equalities
are used both to discuss coherence induced corrections to the Crooks equality and to propose an
experiment to test the framework. Furthermore, the fluctuation relations give way to an interpretation
involving coherent work states, a generalisation of Newtonian work for fully quantum dynamics.
It was proved that the energetic and coherent properties of the coherent work is totally captured in
this fluctuation setting [41].

In this paper, we use this new framework to explore deviations from classical fluctuation
relations resulting from athermality of the initial thermal system and quantum coherence of the
battery. In particular, we start by exploring the effects of athermality by developing Crooks equalities
for a quantum harmonic oscillator system which is prepared in a photon added and photon subtracted
thermal state. These states have received interest in quantum optics owing to their non-Gaussian and
negative Wigner functions [42–44] along with their producibility in lab settings [42,45–47]. Furthermore,
they have been suggested as useful resources in quantum key distribution [48], metrology [49] and
continuous variable quantum computing [50,51], and there is growing interest in their thermodynamic
properties [46,47].

We then proceed to investigate the role of coherence by deriving a Crooks equality for a battery
prepared in pure binomial states. Binomial states can be viewed as analogues of coherent states
for finite dimensional systems rather than infinite dimensional oscillators [52,53], leading to highly
non-classical properties [54,55]. While binomial states are harder to produce in lab settings, there have
been proposals [56,57]. The derived equality effectively generalises the coherent state Crooks equality
of Holmes et al. [40], incorporating finite sized effects and leading to the coherent state equality in
the appropriate limit. Moreover, binomial states quantify a smooth transition between semi-classical
regimes and deep quantum regimes by encapsulating both coherent state and multi-qubit fluctuation
relations in a single framework.

2. Background

2.1. Classical Fluctuation Relations

A system S is initially in thermal equilibrium with respect to Hamiltonian Hi
S at temperature T.

It is then driven from equilibrium by a variation of Hamiltonian Hi
S to H f

S , doing work W with
probability PF(W) in the process. This forwards process is compared to a reverse process in which a
system thermalised with respect to H f

S is pushed out of equilibrium by changing H f
S to Hi

S, doing work
−W with probability PR(−W). The ratio of these two probabilities is known as the Crooks equality [9],

PF(W)

PR(−W)
= exp (β(W − ΔF)) , (1)

where ΔF is the equilibrium Helmholtz free energy difference and β is the inverse temperature 1/kBT.
The Crooks equality is a generalisation of the second law of thermodynamics. As a corollary to

Crooks equality, one can derive the Jarzynski equality [12], which reads

〈exp (−βW)〉 = exp (−βΔF) . (2)
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Finally, using Jensen’s inequality [58], one arrives at the second law of thermodynamics in its
formulation as a bound for the average extractable work 〈Wext〉 ≤ −ΔF. The Jarzynski equality has
been used to calculate free energy changes for highly complex systems [59] such as unravelling of
proteins [60], and as a theoretical tool to re-derive two of Einstein’s key relations for Brownian motion
and stimulated emission [61].

2.2. Fully Quantum Fluctuation Relations

Our starting point is a global “fully quantum fluctuation theorem” from [29], a more general
relation than that explicated in [32,40,41], which can be used to derive a whole family of quantum
fluctuation relations. A defining property of quantum systems is their ability to reside in superpositions
of states belonging to different energy eigenspaces, a property often referred to simply as coherence.
The quantum framework we present here carefully tracks the changes in these energetic coherences.

Changing the Hamiltonian of a system typically requires doing work or results in the system
performing work and thus every fluctuation relation, at least implicitly, involves an energy source
which supplies or absorbs this work. While often not explicitly modelled, the dynamics of the energy
supply can contribute non-trivially to the evolution of the driven system. Thus, to enable a more careful
analysis of the energy and coherence changes of the system, we consider an inclusive (this is in contrast
to the exclusionary picture of the original Crooks and Jarzynski equalities) approach [29–31,40,41,62],
which introduces a battery and assumes the system (S) and battery (B) evolve together under a time
independent Hamiltonian HSB.

To realise an effective change in system Hamiltonian from Hi
S to H f

S with a time independent
Hamiltonian, we assume a Hamiltonian of the form

HSB = 1S ⊗ HB + Hi
S ⊗ Πi

B + H f
S ⊗ Π f

B (3)

where HB is the battery Hamiltonian and Πi
B and Π f

B are projectors onto two orthogonal subspaces,
Ri and R f , of the battery’s Hilbert space. We assume the battery is initialised in a state in subspace
Ri only and evolves under a unitary U to a final state in subspace R f only, such that the system

Hamiltonian is effectively time dependent, evolving from Hi
S to H f

S .
To ensure that the energy supplied to the system is provided by the battery, we require the

dynamics to be energy conserving such that [U, HSB] = 0. We further assume that U and HSB are
time-reversal invariant with U = T (U) and HSB = T (HSB). The time-reversal [63,64] operation T is
defined as the transpose operation in the energy eigenbasis of the system and battery.

The most general process that can be described by a fluctuation relation within the inclusive
framework involves preparing the system and battery in an initial state ρ, evolving it under the
propagator U and then performing a measurement on the system and battery, which can be represented
by the measurement operator X. The outcome of this measurement is quantified by

Q(X|ρ) := Tr
[

XUρU†
]

(4)

which can capture a number of different physical properties. For example, if the measurement operator
X is chosen to be an observable, then Q(X|ρ) is the expectation value of the evolved state UρU†,
whereas, if the measurement operator is chosen to be some state ρ′, corresponding to the binary POVM
measurement {ρ′, 1 − ρ′}, then Q(ρ′|ρ) captures a transition probability between the state ρ and ρ′

under the evolution U.
The global fluctuation relation relates Q(X f

SB|ρi
SB) of a forwards process to Q(Xi

SB|ρ
f
SB) of a

reverse process. For our purposes, we assume that the system and battery are initially uncorrelated in
both the forwards and reverse processes, i.e.,

ρi
SB = ρi

S ⊗ ρi
B and ρ

f
SB = ρ

f
S ⊗ ρ

f
B (5)
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and suppose that independent measurements are made on the system and battery such that the
measurement operator can be written in a separable form, i.e.,

Xi
SB = Xi

S ⊗ Xi
B and X f

SB = X f
S ⊗ X f

B . (6)

The global fluctuation relation holds for measurement operators and states related by the mapping
M defined as

ρk
S = M(Xk

S) ∝ T
(

exp

(
− βHk

S
2

)
Xk

S exp

(
− βHk

S
2

))
(7)

ρk
B = M(Xk

B) ∝ T
(

exp
(
− βHB

2

)
Xk

B exp
(
− βHB

2

))
(8)

for k = i, f . This mapping arises naturally when one relates a forward and a reverse quantum process
in the inclusive framework. When a measurement operator is a projection onto an energy eigenstate,
then the state related by the mapping, Equation (7), is an energy eigenstate. Conversely, when no
measurement is performed, i.e., X = 1, the corresponding state is a thermal state. However, in general,
the mapping is non-trivial and essential to capture the influence of quantum coherence and athermality.
The relationship between the four states quantified by the global fluctuation relation is sketched in
Figure 1.

ρiSB

ρfSB

Xf
SB

Xi
SB

M M

U

U

Figure 1. Relation between prepared states and measurements. In the forwards (reverse) process,

the state ρi
SB = ρi

S ⊗ ρi
B

(
ρ

f
SB = ρ

f
S ⊗ ρ

f
B

)
is prepared, it evolves under U as indicated by the wiggly

arrow, and then the measurement X f
SB = X f

S ⊗ X f
B

(
Xi

SB = Xi
S ⊗ Xi

B

)
is performed. As indicated by

the solid lines, the measurements Xi
SB and X f

SB are related to the states ρi
SB and ρ

f
SB, respectively, by

the mapping M, defined in Equation (7).

For the uncorrelated initial states and measurement operators related by the mapping M,
the global fluctuation relation [29,40,41] can be written as

Q(X f
SB|ρi

SB)

Q(Xi
SB|ρ

f
SB)

= exp
(

β(ΔW̃ − ΔF̃)
)

(9)

in terms of the quantum generalisation

ΔF̃ := Ẽ(β, H f
S , X f

S)− Ẽ(β, Hi
S, Xi

S) (10)
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of the change in free energy, as well as a quantum generalisation of the work

ΔW̃ := Ẽ(β, HB, Xi
B)− Ẽ(β, HB, X f

B) . (11)

supplied by the battery. The function

Ẽ(β, H, X) := − 1
β

ln (Tr [exp (−βH) X]) (12)

is an effective potential that specifies the relevant energy value within the fluctuation theorem context.
When the measurement operator is equal to the identity operation the effective potential, Ẽ(β, H, 1),
is equal to the free energy with respect to Hamiltonian H and thus ΔF̃ reduces to the usual
Helmholtz free energy. Conversely, for a projector onto an energy eigenstate, the effective potential,
Ẽ(β, H, |Ek〉〈Ek|), is the corresponding energy Ek from which we regain the classical work term using a
two point projective measurement scheme. More generally, when restricting to projective measurement
operators, the function βẼ(β, H, |ψ〉〈ψ|) is a cumulant generating function in the parameter β that
captures the statistical properties of measurements of H on |ψ〉 [41].

We regain the Crooks equality from this global fluctuation relation for a thermal system and a
battery with a well defined energy. Specifically, in the forwards process, the system is prepared in a
thermal state

γi
S ∝ exp

(
−βHi

S

)
(13)

and we consider the probability to observe the battery to have energy Ef having prepared it with
energy Ei, that is transition probabilities of the form

P(Ef |γi
S, Ei) := Q

(
1S ⊗ |Ef 〉〈Ef |

∣∣∣∣ γi
S ⊗ |Ei〉〈Ei|

)
. (14)

In this classical limit, the global fluctuation relation reduces to

P(Ef |γi
S, Ei)

P(Ei|γ f
S, Ef )

= exp (β(W − ΔF)) (15)

where W := Ei − Ef is the negative change in energy of the battery and thus, due to global energy
conservation, equivalent to the work done on the system. If we additionally assume that the dynamics
of the system and battery do not depend on the initial energy of the battery, then using this energy
translation invariance assumption, which we explicitly define in Section 3.3, one is able to regain all
classical and semi-classical fluctuation results [29]. The global fluctuation relation is thus a genuine
quantum generalisation of these relations and inherits their utility.

In this manuscript, we use the global fluctuation relation, Equation (9), to quantify deviations
from the classical Crooks relation resulting from athermality of the initial thermal system and quantum
coherence of the battery. Specifically, to probe the impact of preparing the system in imperfectly
thermal states, we derive in Section 3.1 a Crooks-like relation for a system that is prepared in a photon
added or a photon subtracted thermal state. In Section 3.2, we investigate the deviations generated by
coherence in the battery by deriving a Crooks equality for binomial states of the battery.

3. Results

3.1. Photon Added and Subtracted Thermal States

Photon added and subtracted states are non-equilibrium states generated from a thermal state
by, as the name suggests, either the addition or the subtraction of a single photon. Considering a

61



Entropy 2020, 22, 111

single quantised field mode with creation and annihilation operators a† and a and Hamiltonian H,
the photon added thermal state can be written as

γ+
H ∝ a† exp (−βH) a (16)

and the photon subtracted thermal state as

γ−
H ∝ a exp (−βH) a† . (17)

The states γ+
H and γ−

H are diagonal in the energy eigenbasis and therefore are classical in the sense
that they are devoid of coherence. Nonetheless, they are non-Gaussian and have negative Wigner
functions [45,65–68], traits which are considered non-classical in the context of quantum optics.

Moreover, the addition or subtraction of a photon from a thermal state has a rather surprising
impact on the number of photons in the state: In particular, adding a photon to a thermal state of
light, which contains on average n̄ photons, increases the expected number of photons in the state
to 2n̄ + 1 [42–44]. Similarly, subtracting a photon from a thermal state doubles the expected number
of photons to 2n̄. Thus, counter-intuitively, adding or subtracting a single photon to a thermal state
substantially increases the expected number of photons in the state.

In line with standard nomenclature we will refer to photon added and subtracted thermal states
throughout this paper; however, the modes in Equations (16) and (17) could naturally refer to any
boson. Experimental techniques for generating photon added [45] and subtracted [42] thermal states
are well established and methods are currently being developed for the preparation of phonon added
states [69].

To illustrate the deviations from classical thermodynamics induced by the addition (subtraction)
of a single photon we derive a Crooks-like relation characterised by replacing the initially thermal
system of the standard setting quantified by the Crooks equality, with a system in a photon added
(subtracted) thermal state. That is, for the photon added (+) and photon subtracted (−) equalities,
we suppose that the system is prepared in the states

ρi
S = γ±

i and ρ
f
S = γ±

f (18)

at the start of the forwards and reverse processes, respectively, where to simplify notation we have
introduced the shorthand γ±

k ≡ γ±
Hk

S
.

In analogy to the classical Crooks relation, we quantify the work supplied to the system when the
photon added (subtracted) thermal system is driven by a change in Hamiltonian. For concreteness,
we assume here that the system is a quantum harmonic oscillator with initial and final Hamiltonians
given by

Hk
S := h̄ωk

(
a†

k ak +
1
2

)
, (19)

for k = i and k = f , such that the system is driven by a change in its frequency from ωi to ω f .
As energy is globally conserved, the work supplied to the system is given by the change in energy
of the battery and therefore the probability distribution for the work done on the system can be
quantified by transition probabilities between energy eigenstates of the battery. Specifically, in the
forward process, we consider the probability to observe the battery to have energy Ef having prepared
it with energy Ei and vice versa in the reverse. We do not need to make any specific assumptions on
the battery Hamiltonian HB to quantify such eigenstate transition probabilities and therefore HB may
be chosen freely.

In contrast to the usual Crooks relation, the photon added (subtracted) Crooks relations depends
on the average number of photons in the photonic system after the driving process. This arises from
the mapping M between the measurement operators and the initial states following Equation (7).
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As shown explicitly in Appendix A, on inverting Equation (7), we find that for the photon added
equality the measurement operators Xi

S and X f
S are given by

Xk
S = a†

k ak := Nk for k = i, f ; (20)

and for the subtracted equality they are given by

Xk
S = aka†

k = Nk + 1 for k = i, f . (21)

That is, in both cases, they are given in terms of the number operator Nk only.
Given this form for the measurement operators, it follows that the photon added and subtracted

Crooks relations quantify the expected number of photons in the system at the end of the driving
process as well as the change in energy of the system. For example, for the forwards process of the
photon added Crooks equality, Q, as defined in Equation (4), is equal to

Q
(

N ⊗ |Ef 〉〈Ef |
∣∣∣∣ γ+

i ⊗ |Ei〉〈Ei|
)
= n(Ef |γ+

i , Ei)P(Ef |γ+
i , Ei) (22)

where P is the transition probability of the battery from energy Ei to Ef conditional on preparing the
system in a photon added thermal state, as defined in Equation (14), and n(Ef |γ+

i , Ei) is the average
number of photons in the system at the end of this driving process. Similar expressions to Equation (22)
are obtained for the reverse process of the photon added equality and both the forwards and reverse
processes of the photon subtracted equality.

As we are considering transition probabilities between energy eigenstates of the battery, the
generalised energy flow term ΔW̃ reduces to the work done on the system as in Equation (15). However,
as derived explicitly in Appendix A, the generalisations of the free energy term, Equation (10), ΔF̃+

and ΔF̃− for the photon added and subtracted equalities, respectively, evaluate to

ΔF̃± = 2ΔF ± ΔEvac . (23)

In the above, ΔF is the change in free energy associated with the change in Hamiltonian from Hi
S

to H f
S and we introduce ΔEvac,

ΔEvac :=
1
2

h̄ω f −
1
2

h̄ωi , (24)

as the difference between the initial and final vacuum energies of photonic system.
In the classical limit where h̄ tends to zero, the contribution from the energy of the vacuum

state, ΔEvac, vanishes and ΔF+ and ΔF− both tend to 2ΔF. This behaviour can be explained by the
observation in [44] that the photon probability distributions for photon added and subtracted states
have the same functional form but while the photon subtracted distribution starts at n = 0, that is
in the vacuum state, the photon added distribution starts at n = 1, and therefore has no vacuum
contribution, a shift which becomes increasingly insignificant for higher temperatures. Conversely,
as shown in Figure 2, in the low temperature quantum limit , the contribution of the energy of the
vacuum state generates sizeable deviations between the generalised free energy terms for the photon
added and subtracted cases. Specifically, while ΔF−

S tends to ΔF in agreement with the standard
classical Crooks relation, we find that ΔF+ is substantially larger than 2ΔF. This is due to the fact
that in the low temperature limit the photon subtracted thermal state and normal thermal state both
tend to the vacuum state, whereas the photon added thermal state tends to a single photon Fock state.
In all limits, ΔF+ and ΔF− are larger than ΔF, indicating that the addition and subtraction of a photon
increases the energy and information content of a thermal state, thereby increasing the extractable work
from the state. Similar phenomena have been observed elsewhere in the context of work extraction
protocols [46] and Maxwell demons [47].
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Figure 2. Generalised Free Energies. The solid red and dark blue lines show the generalised free
energy, ΔF+ and ΔF−, of the oscillator system for the photon added and photon subtracted equalities,
respectively. These are plotted as a function of χ = βh̄ωi/2, the ratio between the initial vacuum
fluctuations, h̄ωi/2, and the thermal fluctuations, kBT, a measure which quantifies the temperature
and thus effectively delineates the classical and quantum regimes. The grey dashed line is the usual
change in energy ΔF. The dotted lines indicate the contribution of ΔEvac (purple) and 2ΔF (light blue)
to ΔF+ and ΔF+. In this plot, we suppose h̄ω f = 1.5h̄ωi and energies are given in units of kBT.

The final photon added (+) and photon subtracted (−) Crooks equality can be written as

P(Ef |γ±
i , Ei)

P(Ei|γ±
f , Ef )

= R±(W) exp (β (W − 2ΔF ∓ ΔEvac)) . (25)

The prefactor R±(W) quantifies the ratio of the number of photons measured in the system
at the end of the reverse process over the number of photons measured at the end of the forwards
process. Note, as a result, the prefactor is only defined when both the numerator and denominator
of Equation (A30) are both positive quantities. As shown in Appendix A, the prefactors R+(W) and
R−(W) can be written as

R±(W) =
ω f

ωi

h̄ω f (2n̄ f + k±) + W + ΔEvac

h̄ωi

(
2n̄i + k−1

±
)
− W − ΔEvac

(26)

with k+ = 1 and k− = ωi
ω f

and where n̄k is the average number of photons in a thermal state with

frequency ωk. It is worth noting that R±(W) implicitly depends on the free energy of the initial
and final Hamiltonians because h̄ωk(n̄k +

1
2 ) is the average energy of a thermal photonic state with

frequency ωk, which, by definition, is equal to the sum of free energy and entropy of the state.
The classical Crooks equality implies that driving processes which require work and decrease free

energy are exponentially more likely than processes which produce work and increase free energy,
thus quantifying the irreversibility of non-equilibrium driving processes. Given that the generalised
free energy terms ΔF̃+ and ΔF̃− are greater than the usual change in free energy ΔF, it is tempting
to conclude that athermality of the initial system can strengthen irreversibility by amplifying the
suppression factor of free energy increasing processes. However, the presence of the prefactor R in
Equation (25), which depends on both the work done during the driving process and implicitly the
initial and final free energies of the system, makes it harder to draw clear cut conclusions.

To aid comparison between the athermal and thermal cases, in Figure 3, we plot the total predicted
ratio of the forwards and reverse processes for the photon added and subtracted Crooks relations,
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that is the right hand side of Equation (25), and compare them to the equivalent prediction of the
classical relation, Equation (1). We similarly plot the prefactors R+ and R−. As the prefactor R does
not appear in the classical Crooks relation, Equation (1), we can say that R is effectively equal to 1 in
the limit of a perfectly thermal system. For concreteness, we here consider a forwards process where
the oscillator frequency is doubled, increasing the system’s free energy. We plot the ratio and R as
a function of χ := βh̄ω

2 , the ratio of vacuum energy to thermal energy, a measure which delineates
between quantum and thermodynamic regimes.

χ

.

.

.

.

χ

R

W = hωi

W =
W = hωi

W =

Figure 3. Predicted ratio and R prefactor. The left figure plots the predicted ratio of the forwards
and reverse transition probabilities, i.e., the right hand side of Equation (25), for the photon added
(subtracted) Crooks equality as a function of χ = βh̄ωi/2. The right figure plots R as a function of
χ. The red (blue) lines indicates the photon added (subtracted) case and the grey lines indicate the
equivalent classical limit. That is, in the left plot the grey line is the right hand side of the classical
Crooks equality, Equation (1), and in the right plot the grey line is R = 1. The solid lines plot the case
W = 2h̄ωi and the dashed lines, W = 0. Here, we suppose h̄ω f = 5h̄ωi.

As shown in Figure 3, the interplay between the prefactors R±, which are greater than the classical
limit of 1, and the terms exp(−βΔF̃±), which are smaller than exp(−βΔF), leads to a rich spectrum
of deviations from the classical Crooks relation. For example, while the prefactor R+ for the photon
added case is substantially greater than 1 in the low temperature limit, the total predicted ratio is
smaller than for the photon subtracted case. This is because the large value of R+ is exponentially
suppressed by ΔF̃+ which is substantially larger than ΔF̃− and ΔF, as shown in Figure 2, due to the
contribution of the change in vacuum energy. Thus, we conclude that for the photon added relation,
irreversibility is milder in the quantum limit due to the contribution of the energy of the vacuum state,
a phenomenon which was also observed in [40].

In the high temperature classical limit one might expect adding or subtracting a single photon
to a thermal state containing on average a large number of photons would have a negligible effect.
Indeed, this is what we see for processes in which no work is performed on the system since in the
high temperature limit the prefactor R±(0) reduces to exp(βΔF). However, interestingly for work
requiring processes, we do see large deviations from the usual classical Crooks relation in the classical
limit. We attribute this to the fact that adding or subtracting a photon from thermal light effectively
doubles the mean photon number the state, and therefore the net effect can be substantial even for
high temperature states as they contain larger numbers of photons.

More generally, for all temperatures and for both the photon added and subtracted relations, we
find that the larger the work done on the system, the larger the predicted ratio. This confirms that even
when the initial states are photon added or subtracted thermal states, processes which require work
are exponentially more probable than processes that generate work.
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3.2. Binomial States

In the previous section, we show how the athermality of the initial system, due to the addition
or subtraction of a single photon, induces rich deviations from the classical Crooks relation. Here,
we complement this analysis by exploring how quantum features can be introduced through the
coherence of the battery. The quantum fluctuation relations are well characterised for coherent states of
the battery [40] which have close-to-classical properties. In the following, we consider binomial states,
which provide a well-defined transition between coherent states of a quantum harmonic oscillator,
and highly quantum mechanical states such as a state of an individual qubit.

Binomial states are pure states of the form

|n, p〉 =
n

∑
k=0

√(
n
k

)
pk(1 − p)n−k eiφk |k〉, (27)

whose properties have been extensively studied in the field of quantum optics [44,53,54,70]. Binomial
states are non-classical states with finite support and exhibit sub-Poissonian statistics [44,54], squeezing
of quadratures [54] and are highly non-classical both in terms of their coherent properties and the
negativity of their Wigner function [55]. They can be thought of as an n-qubit tensor product |p〉⊗n of
the states |p〉 =

√
1 − p|0〉+√

p|1〉. The states |n, p〉 and |p〉⊗n are related by an energy-preserving
unitary rotation. This is important as the effective potential Ẽ is invariant under energy conserving
unitaries, implying that as far as the fluctuation theorem is concerned, they are interchangeable. In the
limit that n tends to infinity, they approach the regular coherent states and the opposite limiting case
n = 1 corresponds to the deep quantum regime.

Binomial states find use owing to their nice analytical properties. For instance, the commonly
encountered spin-coherent states are particular examples of binomial states [52,70–72]. Spin-coherent
states belong to a class of generalised coherent states that allow for different displacement operators,
in this case of the form D(α) = exp(αS+ + α∗S−) where S± are the spin-raising and lowering
operators [52,53,71]. Proposals for the generation of binomial states have been developed in
atomic systems [56,57] and they have been suggested as analogues to coherent states for rotational
systems [73,74]. These examples indicate that binomial states are of natural physical interest.

In what follows, we assume the battery is a harmonic oscillator, HB = h̄ω(a†a + 1
2 ), but do

not make any specific assumptions on the initial and final system Hamiltonians. Note, one could
also consider a finite Hamiltonian; however, for complete generality, decoupling the dimension of
the Hamiltonian and the support of the state proves useful. We assume the system is prepared in
a standard thermal state and consider transitions between two binomial states of the battery. More
specifically, here the battery measurement operators are chosen as the projectors

Xk
B = |nk, pk〉〈nk, pk| for k = i, f . (28)

which, given the mapping M in Equation (7), fixes the preparation states. As shown in Appendix B,
we find that the prepared states are the binomial states,

ρk
B = |nk, p̃k〉〈nk, p̃k| with p̃ =

pe−βh̄ω

pe−βh̄ω + q
and q̃ =

q
pe−βh̄ω + q

, (29)

with q = 1 − p and for k = i, f . Thus, we see that the mapping M preserves binomial statistics but
leads to a distortion factor due to the presence of coherence. Since p̃ is always less than p, this distortion
from M lowers the energy of the prepared state as compared to the equivalent measured state, with its
energy vanishing in low temperature limit.

There exist two clear distinct physical regimes corresponding to different battery preparation and
measurement protocols. In the realignment regime, we fix the system size n and consider transition
probabilities between rotated states. Conversely, the resizing regime quantifies transition probabilities
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between states of different “sizes”, that is states with different supports but fixed alignment in the
Bloch sphere. For the realignment regime, the prepare and measure protocols are as follows:

• Forwards: The battery B is prepared in the state |n, p̃i〉 and measured in |n, p f 〉
• Reverse: The battery B is prepared in the state |n, p̃ f 〉 and measured in |n, pi〉.

While for the resizing regime, where we fix p and vary n, we have the prepare and
measure protocol:

• Forwards: The battery B is prepared in the state |ni, p̃〉 and measured in |n f , p〉.
• Reverse: The battery B is prepared in the state |n f , p̃〉 and measured in |ni, p〉.

In the qubit picture, for a system of N qubits, the realignment regime amounts to fixing the
number of battery qubits with coherence to precisely n while changing the polarisation pk of each of
these n qubits concurrently. Similarly, the resizing regime corresponds to fixing the polarisation and
changing the number of non classical qubits. More precisely, we can write

|nk, pk〉 ≡ |pk〉⊗nk ⊗ |0〉⊗N−nk for k = i, f (30)

where in the first regime nk is kept fixed while pk is varied and vice versa for the second. In the context
of spin-coherent states, the first regime corresponds to a battery that remains a spin- n

2 system but
whose orientation varies, while the second amounts to changing the magnitude of the spin while fixing
the orientation.

The key quantity in the fluctuation relation is the generalised work flow, the derivations of which
can be found in Appendix B. In these processes, the generalised work flow in the realignment regime
and resizing regimes, ΔW̃align and ΔW̃size, respectively, take the form

βΔW̃align = n

(
ln

p f

p̃ f
− ln

pi
p̃i

)
(31)

βΔW̃size = (n f − ni)

(
ln

p
p̃
+ βh̄ω

)
, (32)

provided both pi and p f are non-zero. These capture the temperature-dependent distortion of the
binomial states due to M. While the generalised work flow in the realignment regime smoothly varies
with its free parameters, in the resizing regime, the energy flow is discretised. The binomial state
Crooks relations corresponding to the realignment and resizing regimes follow upon insertion of the
generalised work flow terms, Equations (31) and (32), into the global fluctuation relation, Equation (9),
when restricted to binomial state preparations specified in Equation (29).

In the high temperature limit, βh̄ω � 1, we can truncate the power series of ΔW̃ to second order
for sufficient accuracy, which gives

βΔW̃align ≈ βh̄ωn
(

pi − p f

)
− (βh̄ω)2

2
(σ2

i − σ2
f ) (33)

βΔW̃size ≈ βh̄ω(ni − n f )p − (βh̄ω)2

2
(ni − n f )σ

2, (34)

where σ2
k = npk(1 − pk) is the variance of HB in the state |n, pk〉 for k = i, f and σ2 = p(1 − p) is the

variance for a Bernoulli distribution. Note that the variance evaluated for pure states is a genuine
measure of coherence [75] and that due to microscopic energy conservation , that is the fact U commutes
with HSB, both energy and variance in energy are globally conserved. Given this, Equations (33) and (34)
characterise the change in energy and coherence of the system due to an equal and opposite change in
the battery.

Furthermore, binomial states exhibit sub-Poissonian statistics, that is the variance np(1 − p),
is smaller than the mean np (for non vanishing p). Therefore, it follows from Equations (33) and (34)
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that the fluctuation relation (Equation (9)) captures the sub-Poissonian character of these states and
shows that this affects the resulting irreversibility of the dynamics. Viewed through the lens of
quantum optics, binomial states of light are anti-bunched [55], a signature of non-classicality. Thus,
the binomial state Crooks equality draws a non-trivial link between bunching and the reversibility of
quantum driving processes, since anti-bunching and sub-Poissonian statistics are directly correlated
for single-mode time-independent fields [54].

In the case of spin-coherent states, the Hamiltonian is in effect taken to be defined in the eigenbasis
of the spin-z operator and therefore the variances in Equations (33) and (34) detail the variation of
uncertainty in the spin-z component. However, aligning the Hamiltonians in the z-direction defines
a preferential axis and therefore the spin-z and the spin-x and spin-y components are not placed on
equal footing. This is because the effective potential is invariant under unitary transformations U that
commute with H, that is

E(β, H, ρ) = E(β, H, UρU†) ∀ [U, H] = 0 , (35)

and hence is invariant under rotations about the z-axis. Consequently, while the fluctuation relation
captures changes to the uncertainties in the spin-z components, the relation is unaffected by changes
to uncertainties in the spin-x and spin-y components. More generally, the invariance of the effective
potential to phase rotations means that even for standard coherent states, the fluctuation relation
depends on the magnitude of the absolute displacement but not the particular magnitude of the
expectation values for position and momentum. This is no coincidence, as the connection between
these regimes will be explored further on.

Deviations from Classicality. To characterise the deviations between the binomial state Crooks
relation and classical Crooks equality, we can compare the generalised energy flow ΔW̃ to the actual
energy flow in the forwards and reverse processes. In the standard Crooks equality, the work term
appearing in the exponent of Equation (1) can be expressed as W = (W − (−W))/2, the average
difference between the work done in the forward and reverse processes. For the quantum analogue,
we introduce

Wq = (ΔE+ − ΔE−)/2 (36)

as the difference between the energy cost ΔE+ of the forwards process and the energy gain ΔE− of the
reverse process. Restricted to binomial state preparations of the form in Equation (29), the binomial
states Crooks relation is

P(n f , p f |γi; ni, p̃i)

P(ni, pi|γ f ; n f , p̃ f )
= exp

(
β
(
q(χ)Wq − ΔF

) )
. (37)

where the transition probabilities take the form

P(n f , p f |γi; ni, p̃i) := Q
(

1 ⊗ |n f , p f 〉〈n f , p f |
∣∣∣γi⊗|ni, p̃i〉〈ni, p̃i|

)
(38)

and we introduce the quantum distortion factor

q(χ) :=
ΔW̃
Wq

(39)

as the ratio between the generalised work flow and the actual energy flows. The classical limit
q(χ) = 1 corresponds to a quasi-classical expression in which the quantum fluctuation relation
depends only on the energy difference between the two states |ni, pi〉 and |n f , p f 〉. This can be seen
from Equations (33) and (34) when truncating to first order in βh̄ω. Deviations from unity thus capture
the quantum features of the process.
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The resizing and re-aligning protocols experience two related yet distinct distortions. These factors,
derived in Appendix B, are

qalign(χ) =
1
χ

ln( p̃ f /p f )− ln( p̃i/pi)

( p̃ f − p̃i) + (p f − pi)
and qsize(χ) =

1
χ

ln( p̃/p) + 2χ

p̃ + p
(40)

respectively, again provided neither pi nor p f vanishes. These two factors are plotted in Figure 4.
They are equal to each other if one of either pi or p f are zero, corresponding to measuring the
battery in the ground state, as can be seen with the long-form equations provided in Appendix B
(see Equations (A72) and (A78)).

Both factors are independent of the system size n. That only the parameter p plays a non-trivial
role is relevant to the fact that it alone controls the coherent properties of binomial states. Since n is the
free parameter of the resizing regime, it is particularly significant that the deviation is independent of
the change in system size. Beyond this, the realignment factor is symmetric in the parameters pi, p f
and thus does not depend on the chosen ordering of the measurements (likewise for the resizing factor
with respect to ni and n f ).
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Figure 4. Quantum distortions of fluctuation relations due to binomial battery states: The left and
right plots correspond to qalign and qsize, respectively. The left plot is evaluated for a fixed value
p f = 0.8. Both functions are plotted against the quantum-thermodynamic ratio χ =

βh̄ω
2 . The plots

show that the distortion due to quantum features can both enhance and suppress irreversibility
in a process as compared to a “classical equivalent” solely involving energy exchanges. In both
cases, we typically find suppressed irreversibility as quantum features dominate for large values of
χ. However, when thermodynamic and quantum energy scales are of similar magnitude, we observe
unexpected behaviour.

Regarding the thermodynamic properties, both factors exhibit a sensible classical limit in the
thermally dominated regime where χ is much less than one and p̃ converges to p. More generally,
in the quantum dominated regime at large χ, the distortion is generally sub-unity scaling as 1/χ,
showing the irreversibility is milder than is classically expected. To understand this, consider the fact
that Ẽ(β, H, ρ) is lower bounded by Emin(ρ), defined as the smallest energy eigenvalue with non-zero
weight in the state ρ [41], corresponding to the vacuum energy for all binomial states with p < 1.
In the low temperature limit, the lower bound is saturated meaning that the generalised energy flow
(accounted for by the differences in Ẽ between any two states) vanishes. However, as shown in Figure 4,
this behaviour is not true for all temperatures and values of p.

In the resizing regime, for values of p nearing unity, there exists a finite temperature region where
the fluctuation relation exhibits stronger-than-classical irreversibility. Peaking for values of p ≈ 1 in the
intermediate region originate because the semi-classical two-point measurement scheme is recovered
when p = 1, which corresponds to an energy eigenstate, hence qsize(χ) = 1. The states satisfying this
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condition on p must remain close to an energy eigenstate and have a flatter initial slope until larger
values of χ overcome this almost-eigenstate behaviour and recover the 1/χ scaling.

The behaviour of the realigning regime is more nuanced, having two free parameters. We observe
greatly enhanced irreversibility over a finite temperature region for most values of pi or p f if the
sum of these values are � 1. An oddity occurs when one measures an excited energy eigenstate,
corresponding to p f = 1 (due to symmetry in the parameters, one can also set pi = 1 and let p f be
free). In this case, at extremely low temperatures Equation (40) is modified to

lim
χ→∞

qalign(χ) =
2

2 − pi
≥ 1, (41)

and the quantum regime no longer asymptotically approaches zero. Rather, we have that Ẽ(β, H, ρ)

is naturally upper bounded by Emax(ρ), defined as the largest eigenvalue with non-zero weight
in the state ρ [41]. With the battery prepared in the excited state for either the forward or reverse
protocol, we have that Ẽ(β, HB, |n, 1〉) = Emax, and the greatest possible generalised energy flow
of ΔW̃ = Emax − Emin occurs when the lower bound of Emin is saturated. By fixing one state to be
the excited energy eigenstate, the generalised energy flow only attains this upper bound when the
temperature reaches absolute zero.

At low temperatures, for values of p nearing unity the deviations from classicality are most
pronounced for both regimes. Due to the temperature-dependent rescaling, this choice of parameter
corresponds to the physical preparation of states with greater coherence present, as detailed by
Equation (29) where p is greater than p̃ for all positive temperatures. Initialising the battery in a state
with a large amount of coherence thus generates the non-classical behaviour we would expect.

From this analysis, we can conclude that binomial states batteries display a greater range of
distinguishing features than coherent states, with the coherent properties playing a highly non-trivial
role. We observe behaviour that is reminiscent of the semi-classical coherent state Crooks equality in
the high and low temperature limits. In an intermediate temperature region, however, we observe
deviations that lead to stronger than classical irreversibility in both the resizing and realignment
regimes. We note that the binomial state factors bear many qualitative similarities to the squeezed-state
factors derived in [40]. The connection between binomial and coherent states in an appropriate limit
are discussed next.

The Harmonic Limit. Infinite dimensional binomial states in harmonic systems exhibit behaviour
that approaches simple harmonic motion. This link is well established and leads to a semi-classical
limit for the binomial state fluctuation theorem. Specifically, as shown in Appendix B, we prove that
as n tends to infinity, the binomial state |n, p〉 tends to the coherent state |α〉 where the displacement
parameter is given by α =

√
np and thus is only defined as long as np remains finite. Consequently,

for infinitely large spin systems, or infinitely large ensembles of qubits, with a finite expected
polarisation, binomial states reduce to coherent states. Thus, in this limit, the binomial state and
coherent state Crooks equalities [40] are quantitatively and qualitatively identical.

It follows that, for infinite dimensional binomial states, qalign(χ) and qsize(χ) converge on

q(χ) =
1
χ

tanh(χ) (42)

This form admits a special interpretation in terms of the mean energy of a harmonic oscillator
h̄ωth := 〈HB〉γ, with q(χ) = kBT/h̄ωth. In particular, the average energy in a thermal harmonic
oscillator is related to the thermal de Broglie wavelength λth [40]. The thermal de Broglie wavelength
often finds use as a heuristic tool to differentiate between quantum and thermodynamic regimes.
The coherent state equality thus leads to a natural and smooth transition between quantum
and thermal properties for semi-classical battery states delineated by λth, suggesting a genuinely
quantum-thermodynamic relation.
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It is interesting then that the binomial state fluctuation relation is able to incorporate a
wide-ranging set of features, all the way from the highly quantum single-qubit states to the
semi-classical coherent state limit, together in the same framework.

3.3. Energy Translation Invariance, Jarzynski Relations and Stochastic Entropy Production

The photon added and subtracted Crooks equalities both quantify transition probabilities between
states of the battery. If we assume that the system and battery dynamics depend only on the change
in energy of the battery and not the initial energy of the battery, then we can rewrite the relation in
terms of the probability distributions for the change in energy of the battery, that is the work done on
the system. This conceptual move allows us to derive a Jarzyski-like relation for photon added and
subtracted thermal states and hint at a link between the generalised free energy change and stochastic
entropy production.

If the system and battery dynamics are independent of the initial energy of the battery, then the
following energy translation invariance condition holds

P(Ej|γ±
i , Ek) = P((Ej − Ek) + El |γ±

i , El) ∀ Ej, Ek, El . (43)

We can now define the work probability distributions in the forwards (F) and reverse (R) processes
for the photon added (+) and subtracted relations (−) as

P±
F (W) := ∑

w
P
(
E0 − w|γ±

i , E0
)

p (E0) δ (W − w) and (44)

P±
R (W) := ∑

w
P
(

E0 − w|γ±
f , E0

)
p (E0) δ (W − w) (45)

where p(E0) is the probability that the battery is prepared with energy E0. It now follows, as shown in
Appendix A, that the photon added and subtracted Crooks relation can be written explicitly in terms
of these work distributions as

P±
F (W)

P±
R (−W)

= R±(W) exp (β(W ∓ ΔEvac − 2ΔF)) . (46)

The classical Jarzynski equality, which quantifies the work done by a driven system for a single
driving process, emerges as a corollary to the classical Crooks equality. Similarly, here, by rearranging
and taking the expectation of both sides of the above equality, we obtain the photon added and
subtracted Jarzynski relation〈

1
R±(W)

exp(−βW)

〉
= exp (−β(2ΔF ± ΔEvac)) . (47)

This relation complements our Crooks relation, Equation (25), by relating the work done on the
athermal system for a single driving process, where the system’s Hamiltonian is changed from Hi

S to

H f
S , to the associated change in free energy.

In classical stochastic thermodynamics, when generalising fluctuation relations to non-equilibrium
initial states, such as photon added or subtracted thermal states, a natural quantity to consider is the
stochastic entropy production. As expected and as shown in [31], in the limit of a classical battery
which is assumed to be energy translation invariant, this inclusive setting obeys the classical Crooks
equality in its formulation in terms of stochastic entropy production [9]. This suggests it may be
possible to directly relate the generalised free energies term of the global fluctuation relation for
non-equilibrium system states to stochastic entropy production. While these ideas were touched on
in [31], explicitly stating this link remains an open question.
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An analogous approach for the binomial state Crooks equality encounters difficulties. States with
coherence undergo a temperature dependent rescaling and therefore the initial and final states in the
forwards and reverse process are related but not equivalent. Thus, due to the presence of coherence,
energy translation invariance is not a sufficient condition to rewrite the binomial state Crooks relation
in terms of work probability distribution. Therefore, we cannot derive a Jarzysnki-like equality and
the link with stochastic entropy production is further obscured. Similar problems arise for states such
as coherent, squeezed and Schrödinger cat states, as were studied in [40].

4. Conclusions and Outlook

In this paper, we probe deviations from the classical Crooks equality induced by the initial state
of the system or battery and the measurements made at the end of the driving process. However,
we stress that the choice in prepared states and measurement operators is not the only manner in
which the relation is non-classical. Rather, the dynamics induced by the unitary evolution will in
general entangle the system and battery resulting in coherence being exchanged between the two
systems. Thus, the evolved state may be a highly non-classical state. For example, for the coherent
state Crooks equality, the battery is prepared in a coherent state, the most classical of the motional
states of a harmonic oscillator. However, driving the battery with a change in Hamiltonian Hi

S to

H f
S , using the experimental scheme proposed in [40], results in the highly non-Gaussian state with

a substantially negative Wigner function. The non-classicality of the final state can be amplified by
repeating the driving process a number of times, that is cycling through changes of Hi

S to H f
S back to

Hi
S and again to H f

S , repeatedly.
The photon added and subtracted Crooks relations could be tested by supposing that both the

system and battery are photonic and using a linear optical setup, as sketched in Figure 5. Preparing a
photonic battery in a high energy eigenstate, that is a Fock state containing a large but well defined
number of particles, would be experimentally challenging and thus a more promising avenue is to
consider a battery in a coherent state by driving one input arm with a laser. Such a scenario would
be quantified by a coherent state photon added and subtracted Crooks relation. A limitation of this
implementation is that it would not change the effective Hamiltonian of the system and thus only
probe the relation in the limit that ΔF and ΔEvac vanish. Constructing a physical implementation
involving a change to the system frequency requires more imagination. One possibility would be to
generalise the trapped ion implementation proposed in [40] but use a pair of internal energy levels to
simulate a thermal state of an oscillator. This could be done by changing the background potential to
simulate a wider range of energy level splittings.

One possible means of testing the binomial state Crooks equality would be to prepare a finite
number of qubits in the state |p〉 =

√
1 − p|0〉+√

p|1〉 and perform a unitary algorithm that interacts
the qubits with a thermal system. This could perhaps be best performed on a quantum computer by
utilising methods for Hamiltonian simulation [76,77] and with the thermal system modelled using
“pre-processing” [40]. One would need to restrict to unitaries that conserve energy between the qubits
and the thermal system. Both regimes could be probed with this set-up, where one could have an
N qubit register and in one case prepare ni or n f qubits in the state |p〉, where ni, n f ≤ N, or in
the other case a fixed number of qubits could be individually addressed to rotate them in the Bloch
sphere. Measurements in different bases are routinely performed on quantum computers and thus the
measurement procedure is readily implemented.

We have taken a highly general but rather abstract fluctuation relation and shown how its physical
content can be elucidated through a study of particular examples of interest. However, the cases we
have considered are just a sample of the diverse range of phenomena that can be explored with this
framework. While we have developed Crooks equalities for thermal systems to which a single photon
has been added or subtracted, a natural extension to probe further perturbations from thermality
would be to generalise our results to the case where multiple photons are added to or subtracted from
the thermal state, or perhaps the case when a photon is added and then subtracted from a thermal state.
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Similarly, one could quantify higher order quantum corrections to the Crooks relation by developing
equalities for squeezed and cat binomial states. On a different note, incoherent binomial states, that
is the dephased variant of a binomial state, model Fock states that have been transmitted through
a lossy channel and thus model a lossy classical battery. Given the structural similarities between
incoherent and coherent binomial states, our results here could be used to develop Crooks relations for
imperfect batteries.

Figure 5. Linear optic implementation schematic. A photon added (or subtracted) thermal state is
sent into one input arm of a linear optical set up and a coherent state the other. The linear optical set
up, consisting of a series of linear optical elements, such as beamsplitters, phase-shifters and mirrors
(the particular sequence sketched here is chosen arbitrarily), drives the photonic system and battery
with an energy conserving and time reversal invariant operation. Finally, a coherent state measurement
is performed on one output arm of the optical setup using a homodyne detection and the number of
photons out put is measured in the other arm.
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Appendix A. Derivation of Photon Added and Subtracted Crooks Equality

The photon added (subtracted) Crooks equality is derived from the global fluctuation relation by
supposing that the system is prepared in a photon added (subtracted) thermal state. That is, for the
photon added (+) and photon subtracted (−) equalities, we suppose that the system is prepared in
the states

ρi
S = γ±

Hi
S

and ρ
f
S = γ±

H f
S

(A1)

for the forwards and reverse processes, respectively, where the photon added state and subtracted
states are defined as

γ+
H ∝ a† exp (−βH) a and γ−

H ∝ a exp (−βH) a† (A2)

respectively. In what follows, we use the short hand γ±
i ≡ γ±

Hi
S

and γ±
f ≡ γ±

H f
S

to simplify notation. For

concreteness, we consider a quantum harmonic oscillator system with initial and final Hamiltonians
given by

Hk
S := h̄ωk

(
a†

k ak +
1
2

)
, (A3)

for k = i and k = f , such that the system is driven by a change in its frequency from ωi to ω f .
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We leave the battery Hamiltonian HB entirely general and, to isolate the deviations to the classical
Crooks equality due to the athermality of the initial system states, we consider a semi-classical battery,
which is prepared and measured in the energy eigenbasis. Specifically, we assume that

ρi
B = |Ei〉 〈Ei| and ρ

f
B = |Ef 〉 〈Ef | (A4)

where |Ei〉 and |Ef 〉 are energy eigenstates of HB. Given that the battery is prepared in energy

eigenstates, the measurement operators Xi
B and X f

B specified by Equation (7) are also projectors onto
energy eigenstates, that is

Xi
B = |Ei〉 〈Ei| and X f

B = |Ef 〉 〈Ef | . (A5)

It follows that the generalised energy flow ΔẼ, Equation (11), evaluates the change in energy of
the battery,

ΔW̃ = Ei − Ef ≡ W , (A6)

which by global energy conservation is equivalent to the work done, W, on the system.
To derive the photon added and subtracted Crooks relations from the global fluctuation, we need

to determine the measurement operators Xi
S and X f

S which are related to the initial photon added and
subtracted states by the mapping M, Equation (7). Specifically, inverting Equation (7), we have that
the measurement operators for the photon added, Xk+

S , and subtracted, Xk−
S , cases, respectively, are

related to the photon added and subtracted thermal states by

Xk±
S ∝ exp

(
χka†

k ak

)
γ±

k exp
(

χka†
k ak

)
(A7)

where χk =
βh̄ωk

2 . On substituting in the explicit expressions for γ+
k and γ−

k , and using the Hadamard
lemma, we find that

Xk+
S ∝ exp

(
χka†

k ak

)
a†

k exp
(
−2χka†

k ak

)
ak exp

(
χka†

k ak

)
∝ a†

k ak and similarly, (A8)

Xk−
S ∝ exp

(
χka†

k ak

)
ak exp

(
−2χka†

k ak

)
a†

k exp
(

χka†
k ak

)
∝ aka†

k . (A9)

We note that any constants of proportionality in front of the measurement operators Xi
S and X f

S
will cancel out in the final relation and thus we are free to set them to 1. We therefore conclude that the
measurement operators for the photon added Crooks relation, forced by the mapping M, Equation (7),
are given by

Xi+
S = a†

i ai ≡ Ni and X f+
S = Nf (A10)

and the measurement operators for the photon subtracted equality are equal to

Xi−
S = aia†

i = Ni + 1 and X f−
S = Nf + 1 (A11)

where Ni and Nf are the initial and final number operators, respectively.
The photon added Crooks equality thus quantifies the ratio of

Q
(

a†
f a f ⊗ |Ef 〉 〈Ef |

∣∣∣∣γ+
i ⊗ |Ei〉 〈Ei|

)
= n(Ef |γ+

i , Ei)P(Ef |γ+
i , Ei) (A12)

for a forwards process, and

Q
(

a†
i ai ⊗ |Ei〉 〈Ei|

∣∣∣∣γ+
f ⊗ |Ef 〉 〈Ef |

)
= n(Ei|γ+

f , Ef )P(Ei|γ+
f , Ef ) (A13)

74



Entropy 2020, 22, 111

of a reverse process. Here, n(Ef |γ+
i , Ei) (n(Ei|γ+

f , Ef )) is the average number of photons measured in
the system at the end of the forwards (reverse) process, conditional on the battery being measured to
have the energy Ef (Ei). Similarly, the photon subtracted Crooks equality quantifies the ratio of

Q
(
(a†

k ak + 1)⊗ |Ek〉 〈Ek|
∣∣∣∣γ+

j ⊗ |Ej〉 〈Ej|
)
=
(

n(Ek|γ+
j , Ej) + 1

)
P(Ek|γ+

j , Ej) (A14)

for a forwards process, with j = i and k = f , and a reverse process, with j = f and k = i.
It remains to calculate the generalised free energy ΔF̃ for the measurements Xi

S and X f
S as defined

in Equation (A11). To do so, we start by noting that ΔF̃ can be written as

ΔF̃ = kBT ln

⎛⎝ Z̃
(

β, Hi
S, Xi

S
)

Z̃
(

β, H f
S , X f

S

)
⎞⎠ where Z̃ (β, H, X) := Tr[exp(−βH)X] . (A15)

As our notation suggests, Z̃ is an operator dependent mathematical generalisation of the usual
thermodynamic partition function,

Z(β, Hk
S) := Tr[exp(−βHk

S)] . (A16)

For the oscillator Hamiltonians defined in Equation (A3), we find by working in the number
basis that

Z̃
(

β, Hk
S, Nk

)
=

∞

∑
nk=0

nk exp(−2χk(nk + 1/2)) =
exp(χk)

(exp(2χk)− 1)2 and

Z̃
(

β, Hk
S, Nk + 1

)
=

∞

∑
nk=0

(nk + 1) exp(−2χk(nk + 1/2)) =
exp(3χk)

(exp(2χk)− 1)2 .
(A17)

The physical content of these expressions can be elucidated by rewriting them in terms of the
usual partition function, which evaluates to

Z(β, Hk
S) =

exp(χk)

exp(2χk)− 1
. (A18)

On substituting Equation (A18) into Equation (A17), we obtain

Z̃
(

β, Hk
S, Nk

)
:= Zk

1
exp(2χk)− 1

= (Zk)
2 exp(−χk) and

Z̃
(

β, Hk
S, Nk + 1

)
= Zk

exp(2χk)

exp(2χk)− 1
= (Zk)

2 exp(χk)

(A19)

where we introduce the short hand Zk ≡ Z(β, Hk
S). Finally, on substituting Equation (A19) into

Equation (A15), and using the fact that because

Zf

Zi
= exp(−ΔF/kBT) it follows that

(Zf

Zi

)2

= exp(−2ΔF/kBT) (A20)

we find that
ΔF̃± = ±ΔEvac + 2ΔF . (A21)
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In the above, we introduce ΔEvac as the difference between the vacuum energies of the harmonic
oscillator at the start and end of the forwards driving process,

ΔEvac :=
1
2

h̄ω f −
1
2

h̄ωi . (A22)

The photon added (+) and photon subtracted (−) Crooks equality can thus be written as

P(Ef |γ±
i , Ei)

P(Ei|γ±
f , Ef )

= R± exp (β(W ∓ ΔEvac − 2ΔF)) , (A23)

where the prefactors R+ and R− are defined as

R+ :=
n(Ei|γ+

f , Ef )

n(Ef |γ+
i , Ei)

and R− :=
n(Ei|γ−

f , Ef ) + 1

n(Ef |γ−
i , Ei) + 1

. (A24)

Since the number of photons in the system is necessarily a positive quantity, the prefactors are
only defined when both the numerator and denominator of Equation (A24) are positive quantities.

The physical role of the R± term can be made more explicit by taking advantage of that fact that
energy is conserved during the driving process. It follows that the number of photons at the end of
the driving process is equal to the average number of photons initially in the system plus (minus)
the change in photon number due to the decrease (increase) in the energy of the battery. By energy
conservation, we can write

h̄ω f

(
n(Ef |γ±

i , Ei) +
1
2

)
= h̄ωi

(
n±

i +
1
2

)
− W and h̄ωi

(
n(Ei |γ±

f , Ef ) +
1
2

)
= h̄ω f

(
n±

f +
1
2

)
+ W (A25)

where n±
i (n±

f ) is the average number of photons in a photon added/subtracted thermal state
with frequency ωi (ω f ) at temperature T. Equation (A25) can be rearranged to find the average number
of photons measured at the end of the driving processes,

h̄ω f n(Ef |γ±
i , Ei) = h̄ωin±

i − W − ΔEvac and h̄ωin(Ei|γ±
f , Ef ) = h̄ω f n±

f + W + ΔEvac. (A26)

Thus, on substituting Equation (A26) into Equation (A24), we find that the prefactor R± takes
the form

R±(W) =
ω f

ωi

h̄ω f n±
f + W + x±

h̄ωin±
i − W ∓ x±

(A27)

with x+ equal to the change in vacuum energy, x+ = ΔEvac, and x− equal to the sum of the initial and

final vacuum energies, x− =
h̄ω f +h̄ωi

2 . As discussed in Section 3.1, the average number of photons in a
photon added or subtracted state, n±

f , evaluates to

n+
k = 2n̄k + 1 and n−

k = 2n̄k (A28)

where n̄k is the average number of photons in a thermal state with frequency ωk and takes the form

n̄k :=
1

Zk
∑ nk exp(−2χk(nk + 1/2)) =

1
exp(2χk)− 1

. (A29)

Thus, we find that the prefactor R±, Equation (A27), can be rewritten in terms of the mean
number of photons in a thermal state as

R±(W) =
ω f

ωi

h̄ω f (2n̄ f + k±) + W + ΔEvac

h̄ωi

(
2n̄i + k−1

±
)
− W − ΔEvac

(A30)
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with k+ = 1 and k− = ωi
ω f

. It is worth noting that the prefactor implicitly depends on the free energy

of the initial and final Hamiltonians because the term h̄ωk(n̄k +
1
2 ) is the average energy of a photon

in a thermal state with frequency ωk, which is equal to the free energy of the state plus kBT times
the entropy of the state. Thus, R depends on the temperature, the work done during the driving
process, the equilibrium free energy and the entropy of a thermal system with respect to the initial and
final Hamiltonians.

Photon added and subtracted Jarzynski equality.

We can derive a Jarzyski-like relation for photon added and subtracted thermal states from
Equation (25), if we further assume that the system and battery dynamics depend only on the change
in energy of the battery and not the initial energy of the battery. That is, if the following energy
translation invariance condition holds,

P(Ej|γ±
i , Ek) = P((Ej − Ek) + El |γ±

i , El) ∀ Ej, Ek, El . (A31)

Having made this assumption, we can rewrite the photon added and subtracted Crooks relation,
Equation (A23), as

P(w + E0|γ±
i , E0)

P(−w + E0|γ±
f , E0)

= R±(w) exp (β(w ∓ ΔEvac − 2ΔF)) , (A32)

which can be rearranged into

1
R±(w)

exp(−βw)P(w + E0|γ±
i , E0)p(E0) = exp (β(∓ΔEvac − 2ΔF))P(−w + E0|γ±

f , E0)p(E0) (A33)

where p(E0) is the probability that the battery is prepared with energy E0. We can now define the work
probability distributions in the forwards (F) and reverse (R) processes for the photon added (+) and
subtracted relations (−) as

P±
F (W) := ∑

w
P
(
E0 − w|γ±

i , E0
)

p (E0) δ (W − w) and (A34)

P±
R (W) := ∑

w
P
(

E0 − w|γ±
f , E0

)
p (E0) δ (W − w) . (A35)

It therefore follows from Equation (A33) that the photon added and subtracted Crooks equalities
can be rewritten in terms of the forwards and reverse work probability distributions instead of battery
state transition probabilities, with

P±
F (W)

P±
R (−W)

= R±(W) exp (β(W ∓ ΔEvac − 2ΔF)) . (A36)

Finally, rearranging and taking the expectation of both sides of the above equality we obtain the
photon added and subtracted Jarzynski relation〈

1
R±(W)

exp(−βW)

〉
= exp (−β(2ΔF ± ΔEvac)) . (A37)

Thus, we can relate the work done on a system which is prepared in a photon added or subtracted
thermal state and driven by a change in Hamiltonian to the change in free energy associated with the
change in Hamiltonian.
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Appendix B. Derivation of Binomial State Properties

This section contains derivations of some mathematical properties of binomial states. In the main
text, the mapping M is introduced, defined as

M(X) =

T
(

e−
βHB

2 Xe−
βHB

2

)
Tr(e−βHX)

. (A38)

This mapping, without the time-reversal, is often referred to as a Gibbs rescaling, and it has many
interesting properties [29,41]. Under the Gibbs rescaling, we find the binomial states transform as
follows.

Proposition 1. Let |n, p〉 be a binomial state as defined in the main text, for n ∈ N and 0 ≤ p ≤ 1. For a
harmonic Hamiltonian HB = h̄ω(a†a + 1

2 ), the Gibbs re-scaled state |n, p̃〉〈n, p̃| = ΓHB(|n, p〉〈n, p|) is also a
binomial state with probability distribution

p̃ :=
e−βh̄ω p

pe−βh̄ω + q
, q̃ :=

q
pe−βh̄ω + q

, (A39)

where q = 1 − p.

Proof. Since the Gibbs re-scaling maps pure states to pure states, we need only consider the action
of Z−1/2

n,p e−βHB/2|n, p〉 = |ψ〉 where Z−1/2
n,p is the normalising factor. As the phases are arbitrary, we

neglect them with no loss of generality. Before proceeding, we make the substitution χ = βh̄ω
2 and

q = 1 − p. Using the definition of |n, p〉, we find

|ψ〉 = 1√Zn,p

n

∑
k=0

√(
n
k

)
pkqn−ke−χ(a†a+ 1

2 )|k〉 (A40)

=
1√Zn,p

n

∑
k=0

√(
n
k

)
pkqn−ke−χ(k+ 1

2 )|k〉. (A41)

Let us calculate the normalisation factor

Zn,p = 〈n, p|e−βHS |n, p〉 (A42)

=
n

∑
k=0

n!
k!(n − k)!

pkqn−ke−2χ(k+ 1
2 ) (A43)

= e−χ(pe−2χ + q)n (A44)

where to obtain the last line we used the binomial expansion theorem. Inserting Equation (A44) into
Equation (A41), we obtain

|ψ〉 = e−χ/2

e−χ/2(pe−2χ + q)n/2

n

∑
k=0

√(
n
k

)
pkqn−ke−kχ|k〉 (A45)

=
n

∑
k=0

√(
n
k

)
pkqn−k

(pe−2χ + q)n e−2kχ|k〉 (A46)

=
n

∑
k=0

√(
n
k

) [
pe−2χ

pe−2χ + q

]k [ q
pe−2χ + q

]n−k
|k〉 (A47)

= ∑
k=0

√(
n
k

)
p̃kq̃n−k|k〉, (A48)
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where

p̃ :=
e−βh̄ω p

pe−βh̄ω + q
, q̃ :=

q
pe−βh̄ω + q

. (A49)

It is easily verified that p̃ + q̃ = 1 and therefore |ψ〉 = |n, p̃〉 is a binomial state as claimed.

Binomial state statistics are preserved under a Gibbs re-scaling but in general p̃ decreases with
increasing χ, as can be seen if we instead look at q̃. In the limit χ → 0, q̃ → q and hence p̃ → p,
while, in the limit χ → ∞, q̃ → 1 and conversely p̃ → 0. It smoothly varies between these two limits,
implying q̃ ≥ q.

To derive the quantum distortion factors, we need to know the expectation value in energy for a
system prepared in a binomial state.

Proposition 2. Suppose B has a harmonic Hamiltonian HB := h̄ω(a†a + 1
2 ); then, the expectation value of

energy for a state |n, p〉 is

〈HB〉n,p = h̄ω

(
np +

1
2

)
. (A50)

Proof. We begin by assuming a harmonic Hamiltonian HB = h̄ω(a†a + 1
2 ). Using the definition of

|n, p〉 leads to

〈HB〉n,p =
n

∑
k=0

n!
k!(n − k)!

pkqn−kh̄ω

(
k +

1
2

)
(A51)

We now proceed to calculate the two components separately; for the first, we have

first term = h̄ωnp
n

∑
k=0

k
(n − 1)!

k!(n − k)!
pk−1qn−k (A52)

= h̄ωnp
n

∑
k=1

(n − 1)!
(k − 1)!([n − 1]− [k − 1])!

pk−1q[n−1]−[k−1] (A53)

= h̄ωnp
m

∑
j=0

m!
j!(m − j)!

pjqm−j (A54)

= h̄ωnp(p + q)m (A55)

= h̄ωnp (A56)

where we made the substitutions m = n − 1 and j = k − 1. Doing a similar calculation for the
second term,

second term =
h̄ω

2

n

∑
k=0

n!
k!(n − k)!

pkqn−k (A57)

=
h̄ω

2
(p + q)n (A58)

=
h̄ω

2
. (A59)

Combining these two equations gives the claimed result.

The final property we need is the effective potential evaluated for an arbitrary binomial state

Proposition 3. For a binomial state |n, p〉 and harmonic Hamiltonian HB = h̄ω(a†a + 1
2 ),

βẼ(β, HB, |n, p〉) = βh̄ω

2
− n ln(pe−βh̄ω + q) (A60)
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where q = 1 − p.

Proof. From the definition of Ẽ and |n, p〉, we find

βẼ(β, HB, |n, p〉) = − ln

(
n

∑
k=0

e−βh̄ω(k+ 1
2 )

(
n
k

)
pkqn−k

)
(A61)

= − ln

(
e−βh̄ω/2

n

∑
k=0

e−βh̄ωk
(

n
k

)
pkqn−k

)
(A62)

=
βh̄ω

2
− ln

(
n

∑
k=0

(
n
k

) [
pe−βh̄ω

]k
qn−k

)
(A63)

=
βh̄ω

2
− ln

(
pe−βh̄ω + q

)n
(A64)

=
βh̄ω

2
− n ln

(
pe−βh̄ω + q

)
, (A65)

which concludes the proof.

Equation (A60) can also be formulated in terms of p̃ by noting that pe−βh̄ω/ p̃ = (pe−βh̄ω + q). It
follows that

βẼB(β, HB, |n, p〉) = βh̄ω

2
− n ln(pe−βh̄ω/ p̃) (A66)

= βh̄ω(n +
1
2
) + n ln( p̃/p), (A67)

on the condition that p, p̃ > 0.

Appendix B.1. The Quantum Distortion Factor for Binomial States

In the main text, we discuss a quantum distortion factor q(χ) that determines how the quantum
fluctuation theorem diverges compared to the standard notion of average change in energy of the
forwards and reverse processes. Here, we derive the explicit formulae for q(χ).

We defined two distinct processes when restricting to binomial state preparation and
measurement, corresponding to the resizing and re-aligning regimes. In the re-aligning regime, using
Proposition 2, the energetic cost to the battery in each protocol is

ΔE(align)
+ := 〈HB〉n,p̃i − 〈HB〉n,p f = h̄ωn( p̃i − p f ), (A68)

ΔE(align)
− := 〈HB〉n,p̃ f − 〈HB〉n,p f = h̄ωn( p̃ f − pi). (A69)

The quantity W (align)
q := (ΔE(align)

+ − ΔE(align)
− )/2 therefore takes the form

W (align)
q = h̄ωn

2

(
[ p̃i + pi]− [ p̃ f + p f ]

)
= h̄ω

2

(
pi

[
e−βh̄ω

pie−βh̄ω+qi
+ 1
]
− p f

[
e−βh̄ω

p f e−βh̄ω+q f
+ 1
])

. (A70)

For the generalised energy flow, we can use Proposition 3, which depends solely upon the normal
un-rescaled states ΔW̃ = E(β, HB, |n, pi〉)− E(β, HB, |n, p f 〉). This turns out to be

ΔW̃align = −nkBT ln

(
pie−βh̄ω + qi

p f e−βh̄ω + q f

)
= −nkBT ln

(
p̃ f pi

p f p̃i

)
, (A71)
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where the latter equality holds provided p f , pi �= 0. The quantum distortion factor where we are free
to vary p for fixed n thus takes the form

qalign (χ) =
1
χ

ln
(

pie−2χ+qi
p f e−2χ+q f

)
( p̃ f − p̃i) + (p f − pi)

(A72)

=
1
χ

ln
( p̃ f

p f

)
− ln

(
p̃i
pi

)
( p̃ f − p̃i) + (p f − pi)

, if pi, p f �= 0. (A73)

On the other hand, one is also free to vary n and keep p fixed as detailed by the resizing regime.
We can define the same quantities, which we now label with a new superscript to differentiate the cases.

ΔE(size)
+ := 〈HB〉ni ,p̃ − 〈HB〉n f ,p = h̄ω(ni p̃ − n f p), (A74)

ΔE(size)
− := 〈HB〉n f ,p̃ − 〈HB〉ni ,p = h̄ω(n f p̃ − ni p), (A75)

which implies

W (size)
q =

h̄ω

2

(
ni − n f

)
( p̃ + p) =

h̄ωp
2

(
ni − n f

)( e−βh̄ω

pe−βh̄ω + q
+ 1

)
. (A76)

Likewise, the generalised energy flow for this process is given by

ΔW̃size = −(ni − n f )kBT ln(pe−βh̄ω + q) = (ni − n f ) {kBT ln( p̃/p) + βh̄ω} . (A77)

The quantum distortion factor for the second regime is thus

qsize(χ) =
1
χ

ln(pe−2χ + q)
p̃ + p

(A78)

=
1
χ

ln( p̃/p) + 2χ

p̃ + p
, if p �= 0. (A79)

Appendix B.2. The Harmonic Limit

In this section, we prove that there exists a limit in which binomial states become coherent states
with arbitrary precision. In what follows, we assume that np = λ for some constant λ ∈ R. The correct
limit involves making the binomial states a superposition over infinitely many energy eigenstates by
taking n → ∞ and correspondingly p → 0.

Firstly, let us consider the effect on the expectation value for energy. We have that

lim
n→∞
np=λ

〈HB〉n,p = lim
n→∞
np=λ

h̄ω(np +
1
2
) (A80)

= h̄ω(λ +
1
2
) (A81)

which we note bears a likeness to the expectation value of energy for a coherent state |α〉 where
|α|2 = λ. Likewise, the effective potential also attains an identical form to that of a coherent state
Ẽ(β, HB, |α〉) where we once again choose |α|2 = λ.
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lim
n→∞
np=λ

βẼB(β, |n, p〉) = lim
n→∞
np=λ

(
βh̄ω

2
− n ln

(
1 +

λ

n
[e−βh̄ω − 1]

))
(A82)

= lim
n→∞
np=λ

(
βh̄ω

2
− n

[
λ

n
[e−βh̄ω − 1] +O

(
1
n2

)])
(A83)

=
βh̄ω

2
+ λ(1 − e−βh̄ω). (A84)

For our purposes, these two quantities being identical to their coherent state counterparts
means that the fluctuation theorem in the appropriate limit is indistinguishable from a coherent
state fluctuation theorem. However, it is also the case that the states themselves become identical. This
is easily verified by using the closely related characteristic functions [78]. Since characteristic functions
ϕ(t) uniquely specify a probability distribution, showing equality for all t translates to equality in
distribution. Defining the characteristic function ϕψ(t) := 〈ψ|eiHBt|ψ〉 we have

ϕα(t) = e|α|
2(eih̄ωt−1)+i h̄ω

2 t (A85)

ϕn,p(t) = ei h̄ω
2 t(1 + p[eih̄ωt − 1])n. (A86)

Making the substitution p = λ/n, we find

ϕn,p(t) = ei h̄ω
2 t(1 +

λ

n
[eih̄ωt − 1])n (A87)

However, in the limit, we have that limn→∞(1 + x
n )

n = ex and therefore

lim
n→∞
np=λ

ϕn,p(t) = eλ(eih̄ωt−1)+i h̄ω
2 t. (A88)

If these are equal for all values of t, we deduce that up to arbitrary phases,

lim
n→∞
np=λ

|n, p〉 = |
√

λ〉 (A89)

where |
√

λ〉 is a coherent state.
These results are enough to prove convergence of the binomial state fluctuation relation to the

coherent state fluctuation relation. The quantum distortion factors can also be obtained by perturbative
means or by using the relevant quantities in the coherent state limit.
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Abstract: We study the statistics of heat exchange of a quantum system that collides sequentially with
an arbitrary number of ancillas. This can describe, for instance, an accelerated particle going through
a bubble chamber. Unlike other approaches in the literature, our focus is on the joint probability
distribution that heat Q1 is exchanged with ancilla 1, heat Q2 is exchanged with ancilla 2, and so
on. This allows us to address questions concerning the correlations between the collisional events.
For instance, if in a given realization a large amount of heat is exchanged with the first ancilla,
then there is a natural tendency for the second exchange to be smaller. The joint distribution
is found to satisfy a Fluctuation theorem of the Jarzynski–Wójcik type. Rather surprisingly,
this fluctuation theorem links the statistics of multiple collisions with that of independent single
collisions, even though the heat exchanges are statistically correlated.

Keywords: fluctuation theorems; collisional models

1. Introduction

Fluctuations of thermodynamic quantities, which are usually negligible in macroscopic systems,
are known to play a dominant role in the micro- and mesoscopic domain. These fluctuations are
embodied in the so-called fluctuation theorems (FT) [1–4], a collection of predictions for systems
evolving under nonequilibrium conditions valid beyond linear response. They can be summarized
as [5,6]

P(+Σ)
P̃(−Σ)

= eΣ, (1)

where P(Σ) denotes the probability that an amount of entropy Σ is produced in a certain process and
P̃(Σ) denotes the corresponding probability for the time-reversed process.

Of the many scenarios which present FTs, one which is particularly interesting is that of heat
exchange between a system S, prepared in equilibrium with a temperature Ts, and an environment E,
prepared in a different temperature Te. In this case, as first shown by Jarzynski and Wójcik in Ref. [7],
the distribution P(Q) of the heat exchanged between them, satisfies

P(+Q)

P̃(−Q)
= eΔβQ, (2)

where Δβ = βe − βs (with β = 1/T and kB = 1). Here, and throughout the paper, Q denotes the
net heat transfer from the system to the environment. Quite surprising, in this case it turns out that
P̃(Q) = P(Q), meaning the statistics of the forward and backward processes are the same. Equation (2)

Entropy 2020, 22, 763; doi:10.3390/e22070763 www.mdpi.com/journal/entropy87
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was subsequently generalized to allow for the exchange of both energy and particles between several
interacting systems initially at different temperatures and chemical potentials [6,8,9].

Here we consider a generalization of this scenario, where the system interacts sequentially with
multiple parts of the environment, exchanging heat with each part. One can imagine, for instance,
an accelerated particle crossing a bubble chamber. In this case, the system will leave a trail on E,
represented by the heat exchanged in each point. In the microscopic domain this process will be
stochastic, with a random amount of heat exchanged in each interaction.

The key idea that we will explore in this paper is to look at the joint probability distribution for
the heat exchanged with each part, P(Q1, Q2, Q3, . . .). This allows us to understand the correlations
between the different heat exchanges.

For instance, in a situation where all the ancillas have the same temperature, from a stochastic
perspective a large exchange in the first collision increases the probability that the second collision
exchanges less. This feature is fully captured by the joint distribution. This happens because thermal
operations have the property of bringing the system closer to its thermal equilibrium state, σeq, i.e., [10]

D
(
σ0‖σeq

)
≥ D

(
σ1‖σeq

)
≥ D

(
σ2‖σeq

)
≥ · · · ≥ D

(
σN‖σeq

)
(3)

where D(ρ′||ρ) = Tr(ρ′ ln ρ′ − ρ′ ln ρ) is the quantum relative entropy. If in the first interaction the
system exchange a large quantity of heat, the system gets a lot closer to its steady state. So in the next
interaction, the system should exchange less heat.

To formalize this idea, we split the environment into a set of ancillas Ai, with which the system
interacts sequentially, producing a collisional model [11–14]. The process is schematically illustrated
in Figure 1 and the formal framework is developed in Section 2. In Section 3 we then show that
P(Q1, Q2, Q3, . . .) satisfies a fluctuation theorem that generalizes (2). Moreover, we show how this
fluctuation theorem relates the joint distribution to the statistics of a single collision, even though the
events are statistically correlated.

Forward  processes 

Figure 1. Schematic representation of a system S interacting sequentially with a series of ancillas.
The system starts in the state σ0 and the ancillas in an initial states ρi, which are assumed to be thermal
but at possibly different temperatures. Each SAi interaction is also governed by a possibly different
unitary Ui.

2. Formal Framework

We consider a quantum system S, with Hamiltonian Hs, prepared in a thermal state σ0 =

e−βs Hs
/Zs, with temperature Ts. The system is put to interact sequentially with a series of N ancillas

Ai, as depicted in Figure 1. The ancillas are not necessarily identical. Each has Hamiltonian Hi and is
prepared in a thermal state ρi = e−βi Hi

/Zi, with possibly different temperatures Ti. Each collision is
described by a unitary operator Ui acting only on SAi, which may also differ from one interaction to
another.

In order to comply with the scenario of Ref. [7], we assume that the Ui satisfy the strong
energy-preservation condition

[Ui, Hs + Hi] = 0. (4)

Or, what is equivalent, that each collision is a thermal operation [10,15]. This implies that all
energy that leaves S enters Ai, so nothing is stuck in the interaction. As a consequence, there is no
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work involved and all the change in energy of the system can be unambiguously identified as heat
flowing to the ancillas [13].

We label the eigenvalues and eigenvectors of the system as Hs|α〉 = Es
α|α〉. For concreteness,

we assume these levels are non-degenerate. Time is labeled discretely by i = 1, 2, 3, . . ., representing
which collisions already took place. For instance, the initial state is decomposed as σ0 =

∑α0
p0(α0)|α0〉〈α0|, with p0(α0) = e−βsEs

α0 /Zs and we use α0 to emphasize that this is before the
first collision. Similarly, the eigenvalues and eigenvectors of the ancillas are labeled as Hi|ni〉 = Ee

ni
|ni〉.

The initial state of each Ai is thus decomposed as ρi = ∑ni
qi(ni)|ni〉〈ni| where qi(ni) = e−βiEe

ni /Zi.
The dynamics depicted in Figure 1 generates a stroboscopic map for the system. The joint state of

SAi after the interaction is given by

�i = Ui
(
σi−1 ⊗ ρi

)
U†

i . (5)

Taking the partial trace over Ai then leads to the updated state σi. Conversely, tracing over the
system leads to the reduced state ρ′i of the ancilla after the interaction (Figure 1).

The fact that the unitary is energy preserving (Equation (4)), together with the assumption that
the energy levels are non-degenerate, means that it is possible to construct quantum trajectories for
the system in two equivalent ways. The first is to assume a two-point measurement scheme in S at
each step [16,17]. Equation (4) implies that the system will remain diagonal in the energy basis, so that
measurements in this basis are non-invasive (that is, have no additional entropy production associated
to it). Measuring S in the energy basis after each collision then leads to the trajectory

γs = {α0, α1, . . . , αN}. (6)

The heat associated with each collision is then readily defined as

Qi[γs] = −Es
αi
+ Es

αi−1
, (7)

Alternatively, one can construct a quantum trajectory by measuring the ancillas, before and after
each collision, plus a single measurement of the system before the process starts. That is, one can
consider instead a quantum trajectory of the form

γe = {α0, n1, n′
1, n2, n′

2, . . . , nN , n′
N}. (8)

This, in a sense, is much more natural since the ancillas are only used once and thus may be
experimentally more easily accessible. Furthermore, as far as heat exchange is concerned, this turns
out to be equivalent to the trajectory (6). The reason is that Equation (4) implies the restriction

〈αin′
i|Ui|αi−1ni〉 ∝ δ

(
(Es

αi
+ Ee

n′
i
)− (Es

αi−1
+ Ee

ni

)
) (9)

where δ(x) is the Kronecker delta. In addition, since the energy values are taken to be non-degenerate,
energies uniquely label states. Thus, for instance, if we know α0, n1, n′

1 we can uniquely determine α1,
and so on. The converse, however, is not true: from α0 and α1 we cannot specify n1 and n′

1 (which is
somewhat evident given that the number of points in Equation (6) is smaller than that in Equation (8)).
This, however, is not a problem if one is interested only in the heat exchanged, which can also be
defined from the trajectory (8) as

Qi[γe] = Ee
n′

i
− Ee

ni
. (10)

Due to Equation (9), this must coincide with Equation (7); i.e., Qi[γe] ≡ Qi[γs].
The assumption in Equation (4) may at first seem somewhat artificial. However, this is not the

case. This assumption is a way to bypass the idea of weak coupling, which is one of the conditions
used in [7]. Moreover, the interesting thing about the present analysis is that it establishes under which
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conditions Equations (6) and (8) are equivalent. Naively one would expect that this is often the case.
However, as the above arguments show, several assumptions are necessary for this to be the case.
This reflects some of the challenges that appear in describing thermodynamics in the quantum regime.

2.1. Path Probabilities from Measurements in S

Thermal operations imply that the probability that, after the i-th collision, the system is in a
given eigenstate |αi〉 depends only on the probabilities in the previous time. That is, the dynamics of
populations and coherences completely decouple [18]. Indeed, Equation (5) together with Equation (4)
imply that

pi(αi) = 〈αi|σi|αi〉 = ∑
αi−1

Mi(αi|αi−1)pi−1(αi−1), (11)

where

Mi(αi|αi−1) = ∑
ni ,n′

i

|〈αi, n′
i|Ui|αi−1, ni〉|2qi(ni). (12)

The populations therefore evolve as a classical Markov chain, with Mi(αi|αi−1) representing the
transition probability of going from αi−1 to αi. Moreover, Equation (9) together with the fact that the
ancillas are initially thermal, imply that Mi(αi|αi−1) satisfies detailed balance

Mi(αi|αi−1)e
−βiEs

αi−1 = Mi(αi−1|αi)e
−βiEs

αi , (13)

where, notice, what appears here is the temperature βi of ancilla Ai.
The path probability associated with γs in Equation (6) will then be

P [γs] = MN(αN |αN−1) . . . M2(α2|α1)M1(α1|α0)p0(α0), (14)

which is nothing but the joint distribution of a Markov chain. We call attention to the clear
causal structure of this expression: marginalizing over future events has no influence on past
ones. For instance, summing over αN leads to a distribution of the exact same form. Conversely,
marginalizing over past variables completely changes the distribution.

The joint distribution of heat can then be constructed from Equation (14) in the usual way:

P(Q1, . . . , QN) = ∑
γs

P [γs]

( N

∏
i=1

δ
(
Qi − Qi[γs]

))
. (15)

This is the basic object that we will explore in this paper.

2.2. Path Probabilities from Measurements in the Ai

Alternatively, we also wish to show how Equation (15) can be constructed from the trajectory γe

in Equation (8). The easiest way to accomplish this is to first consider the augmented trajectory

γse = {α0, n1, n′
1, α1, n2, n′

2, α2, . . . , nN , n′
N , αN} (16)

Introducing the transition probabilities Ri(αi, n′
i|αi−1, ni) = |〈αi, n′

i|Ui|αi−1, ni〉|2, the path
distribution associated with the augmented trajectory γse will be

P [γse] = RN(αN , n′
N |αN−1, nN) . . . R1(α1, n′

1|α0, n1)qN(nN) . . . q1(n1)p0(α0).

As a sanity check, if we marginalize this over ni and n′
i we find
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P [γs] = ∑
n1,...,nN
n′

1,...,n′
N

RN(αN , n′
N |αN−1, nN) . . . R1(α1, n′

1|α0, n1)qN(nN) . . . q1(n1)p0(α0)

= MN(αN |αN−1) . . . M2(α2|α1)M1(α1|α0)p0(α0),

where we used Equation (12). This is therefore precisely P [γs] in Equation (14), as expected.
Instead, from P [γse] one can now obtain P [γe] by marginalizing over α1, . . . , αN ; viz.,

P [γe] = ∑
α1,...,αN

RN(αN , n′
N |αN−1, nN) . . . R1(α1, n′

1|α0, n1)qN(nN) . . . q1(n1)p0(α0). (17)

The above analysis puts in evidence the Hidden Markov nature of the dynamics in Figure 1.
When measurements are done in the ancilla, the system plays the role of the hidden layer, which is
not directly accessible. Instead, predictions about the system must be made from the visible layer
(i.e., the ancillas).

This Hidden Markov nature manifests itself on the fact that even though the system obeys a
Markov chain [Equation (14)], the same is not true for the ancillas. In symbols, this is manifested by the
fact that n′

i depends not only on ni and n′
i−1, but on the entire past history (n1, n′

1, . . . , ni−1, n′
i−1, ni).

This is intuitive in a certain sense: the amount of heat exchanged at the i-th collision will depend on
the heat exchanged in all past events.

With P [γe], the distribution of heat, Equation (15) can be equivalently defined using Equation (10).
One then finds

P(Q1, . . . , QN) = ∑
γe

P [γe]

( N

∏
i=1

δ
(
Qi − Qi[γe]

))
. (18)

The reason why this is equivalent to Equation (15) becomes clear from the way we derived P [γe]

above: we can expand the summation to γse and then use the fact that Qi[γs] = Qi[γe].

2.3. Backward Process

To construct the fluctuation theorem, we must now establish the backward process. As shown
in [19], however, there is an arbitrariness in the choice of the initial state of the backward process;
different choices lead to different definitions of the entropy production. Here we are interested
specifically in heat and the generalization of the Jarzynski–Wójcik fluctuation theorem [7]. Hence,
we assume that in the backward process both system and ancillas are fully reset back to their thermal
states. As usual, the time-reversed interaction between SAi now takes place by means of the unitary U†

i .
However, the order of the interactions must now be flipped around, as shown in Figure 2. More about
the choice of backward process can be found in [20,21] and its relation to the notion of recovery maps
is discussed in [22].

Backward processes 

Figure 2. Schematic representation of the backward process.

In the backward process, the system will therefore evolve according to

p̃i(αN−i) = ∑
αN−i+1

MN−i+1(αN−i|αN−i+1) p̃i−1(αN−i+1),
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where we index the states as αN−i instead of αi just so that the trajectory γs can remain the same as in
the forward process. The path probability P̃ [γs] associated to this process will then be

P̃ [γs] = M1(α0|α1) . . . MN(αN−1|αN)p0(αN), (19)

which is similar to that used in the original Crooks fluctuation theorem [23]. The corresponding heat
distribution is

P̃(QN , . . . , Q1) = ∑
γs

P̃ [γs]
N

∏
i=1

δ
(
Qi + Qi[γs]

)
, (20)

where Qi continues to be the heat exchanged with Ai (which is now different from the heat exchanged
at collision i).

3. Joint Fluctuation Theorem for Heat Exchange

We are now ready to construct the fluctuation theorem. The detailed balance condition (13)
immediately implies that Equations (15) and (20) will be related by

P(Q1, . . . , QN)

P̃(−QN , . . . ,−Q1)
= e∑N

i=1(βi−βs)Qi . (21)

This is a theorem for the joint distribution of the heat exchanged between multiple ancillas. It thus
represents a generalization of Ref. [7] to the case where the system interacts sequentially with multiple
reservoirs. This result has several features which are noteworthy. First, note that the temperature
βi of the ancillas are not necessarily the same. Second, note how after the first collision the state of
the system is no longer thermal. However, still, this does not affect the fluctuation theorem. All that
matters is that before the first collision the system is in equilibrium.

It is also important to point out that any Markov chain satisfying the detailed balance relation
also satisfies a fluctuation theorem [24]. This fact can be used to obtain Equation (21) when properly
choosing the rates of the Markovian evolution. Beyond that, a generalization of the detailed FT to
multiple reservoirs has also being obtained before, e.g., in Ref. [25].

3.1. Causal Order and Relation to Single Collisions

The causal order of the process plays a crucial role here. Marginalizing over future events has no
effect on the fluctuation theorem. That is, from (21) one could very well construct a similar relation
for P(Q1, . . . , QN−1), by simply summing over QN . This is not possible, however, for marginalization
over past events. That is, P(Q2, . . . , QN), for instance, does not satisfy a fluctuation theorem.

The right-hand side of Equation (21) is very similar to what appears in the original FT (2). We can
make this more rigorous as follows. Let us consider a different process, consisting of a single collision
between the system thermalized in βs and an ancilla thermalized in βi (Figure 3). The associated heat
distribution Psc(Qi) will then satisfy Equation (2); viz.,

Psc(Qi)

Psc(−Qi)
= e(βi−βs)Qi , (22)

where, recall, in this case of a single collision the backward process coincides with the forward one,
so that the distribution P̃sc in the denominator is simply Psc. It is very important to emphasize, however,
that Psc(Qi) is not the marginal of P(Q1, . . . , QN) (with the exception of Q1). Notwithstanding,
comparing with Equation (21), we see that the full process in Figure 1 is related to the single-collision
processes according to

P(Q1, . . . , QN)

P̃(−QN , . . . ,−Q1)
=

Psc(Q1)

Psc(−Q1)
· · · Psc(QN)

Psc(−QN)
. (23)
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This result is noteworthy, for the right-hand side is a product whereas the left-hand side is not.
The full distribution P(Q1, . . . , QN) cannot be expressed as a product because the heat exchanges are,
in general, not statistically independent. Notwithstanding, the ratio on the left-hand side of (23) does
factor into a product. The point, though, is that this is not the product of the marginals, but of another
distribution Psc.

One can also write a formula of the form (23), but for only some of the heat exchanges. For instance,
it is true that

P(Q1, . . . , QN)

P̃(−QN , . . . ,−Q1)
=

P(Q1, . . . , QN−1)

P̃(−QN−1, . . . ,−Q1)

Psc(QN)

Psc(−QN)
. (24)

This kind of decomposition, however, depends crucially on the causal structure since it can only
be done for future exchanges. For instance, we cannot write something involving P(Q2, . . . , QN).
The reason is that P(Q1, . . . , QN−1) satisfies the fluctuation theorem (21), but P(Q2, . . . , QN) does not
(since, after the first collision the system is no longer in a thermal state).

Figure 3. Schematic representation of a single collision event.

3.2. Information-Theoretic Formulation of the Entropy Production

We define the entropy production associated with Equation (21) as

Σ[γs] = ln
P [γs]

P̃ [γs]
=

N

∑
i=1

(βi − βs)Qi[γs]. (25)

The second equality is obtained using the detailed balance relation (13). We emphasize that this is
the entropy production associated with the choice of backward protocol used in Section 2.3, which may
differ from other definitions in the literature [18,26]. As discussed in [19], the interpretation of the
entropy production depends on the choice of the initial state of the backwards process. For instance,
if we have chosen the initial state as the final state of the forward process, i.e., the state �N (see
Equation (5)), we would have a a contribution related to the correlations between the system and the
ancillas. This type of entropy production was called the inclusive entropy production in Ref. [19].
This happens because this state carries the information about the correlations. Here we have choose a
initial state for the backward process that does not have this contributions.

In [7], Jarzynski and Wójcik calculated an upper bound on the probability of observing a violation
of the second law, i.e., the passage of heat from a colder to a hotter body. We can apply the same
reasoning to Equation (25). Let us assume that all ancillas start in the same thermal state with
temperature Ta and βa − βs > 0. The probability that the heat transfer from the system to i-th ancilla
will fall below a specified value qi in each interaction through the whole process, obeys the inequality∫ q1

−∞
dQ1 · · ·

∫ qN

−∞
dQN P(Q1, . . . , QN) ≤ e(βa−βs)(q1+···+qN) (26)

which is the multiple-exchange extension of the result obtained in [7]. Equation (26) shows that
observing a positive total transference of heat from the hot system to the cold ancillas dies exponentially
with q1 + · · ·+ qN .

Alternatively, we can consider the entropy production from the perspective of the global trajectory
γse in Equation (16). Using also that Qi[γs] = Qi[γe], we can then write Σ[γse] as
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Σ[γse] =
N

∑
i=1

βiQi[γe]− βs(Es
αN

− Es
α0
) =

N

∑
i=1

ln
qi(ni)

qi(n′
i)
+ ln

p0(α0)

p0(αN)
. (27)

The average entropy production may then be written as

〈Σ[γse]〉 = S(σN)− S(σ0) + D(σN ||σ0) +
N

∑
i=1

{
S(ρ′i)− S(ρi) + D(ρ′i||ρi)

}
, (28)

where S(ρ) = −Tr(ρ ln ρ) is the von Neumann entropy. Here σN is the final state of the system after
the N collisions. In the Equation (28), we can identify

S(σN)− S(σ0) +
N

∑
i=1

S(ρ′i)− S(ρi) = ΔIse (29)

where ΔIse is the change in the mutual information between the system and the ancillas. This way we
can have a more clear meaning of the expression (28). One term is proportional to the total correlations
built between system and ancillas and the other two relative entropy terms measure the disturbance
on the environment and the system during the process.

The important aspect of this result is that it depends only on local changes in the ancillas. That is,
all quantities refer to the local states ρ′i of each ancilla after the interaction. In reality, because the
ancillas all interact with the system, they actually become indirectly correlated. These correlations are
still represented indirectly in Σ[γse], but they do not appear explicitly. This, ultimately, is a consequence
of the choice of backward process that is used in the Jarzynski–Wójcik scenario [7].

3.3. Initially Correlated Ancillas

One possible extension of our formalism is to consider the case of initially correlated
system-ancillas. In this case, we could explore how the correlation between the system and the
ancillas affect the XFT. This problem was studied for a single heat exchange in [27] and in our case,
the same approach yields

P[γse]

P̃[γse]
= e

−ΔI(γse)+∑N
i=1(βs−βi)(Es

αi
−Es

αi−1
)+∑N

i=1 βi [Es
αi
+Ee

n′i
−(Es

αi−1
+Ee

ni
))]

(30)

where the ΔI(γse) = I∗ − I with

I∗ = ln
[

p(αn, n′
1, . . . , n′

N)

p0(αN)q1(n′
1) . . . qN(n′

N)

]
(31)

I = ln
[

p(α0, n1, . . . , nN)

p0(α0)q1(n1) . . . qN(nN)

]
(32)

where we define p(α0, n1, . . . , nN) = 〈α0, n1, . . . , nN |ρSE|α0, n1, . . . , nN〉. Here ρSE is the initial state for
the system-ancillas. This result is similar to the one found in [27]. Because in our case, we are working
with thermal operations, we can write Equation (30) as

P[γse]

P̃[γse]
= e−ΔI(γse)+∑N

i=1(βs−βi)(Es
αi
−Es

αi−1
) (33)

By taking the above equation and sum over all trajectories, to obtain the nonequilibrium equality
for an initially correlated state

〈eΔI+∑N
i=1(βs−βi)Qi 〉 = 1 (34)
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and then using Jensen’s inequality we have that

N

∑
i=1

(βi − βs)〈Qi〉 ≥ 〈ΔI〉 (35)

So it is possible to obtain a type of Clausius relation where now the entropy production has a new
lower bound.

4. Conclusions

To summarize, we have considered here the sequential heat exchange between a system and a
series of ancillas. We assume all entities start in thermal state, but at possibly different temperatures.
Moreover, all interactions are assumed to be described by thermal operations, which makes the
identification of heat unambiguous. The main object of our study was the joint probability of
heat exchange P(Q1, . . . , QN) for a set of N collisions. This object contemplates the correlations
between heat exchange, a concept which to the best of our knowledge, has not been explored in the
quantum thermodynamics community. We showed that P(Q1, . . . , QN) satisfies a fluctuation theorem,
which relates this joint distribution with single collision events. This result, we believe, could serve
to highlight the interesting prospect of analyzing thermodynamic quantities in time-series and other
sequential models.
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Abstract: In this paper we review some general properties of probability distributions which exhibit
a singular behavior. After introducing the matter with several examples based on various models
of statistical mechanics, we discuss, with the help of such paradigms, the underlying mathematical
mechanism producing the singularity and other topics such as the condensation of fluctuations,
the relationships with ordinary phase-transitions, the giant response associated to anomalous
fluctuations, and the interplay with fluctuation relations.

Keywords: large deviations; phase transitions; condensation of fluctuations; fluctuation relations

1. Introduction

Quantitative predictions on the occurrence of rare events can be very useful particularly when
these events can produce macroscopic effects on the system. This occurs, for instance, when a large
fluctuation triggers the decay of a metastable state [1] leading the system to a completely different
thermodynamic condition. Other examples with rare deviations producing important effects are found
in many other contexts, as in information theory [2] and finance [3].

For a collective variable N, namely a quantity formed by the addition of many microscopic
contributions, such as the energy of a perfect gas or the mass of an aggregate, typical fluctuations are
regulated by the central limit theorem. Rare events, instead, may go beyond the theorem’s validity
and are described by large deviations theory [4,5] which, in principle, aims at describing the whole
spectrum of possible fluctuations, no matter how large or rare they are, by means of their full probability
distribution P(N).

It has been found that, in many cases, P(N) exhibits a singular behavior, in that it
is non-differentiable around some value (or values) Nc of the fluctuating variable [3,6–39].
Such singularities have an origin akin to those observed in the thermodynamic potentials of systems
at criticality. Indeed, a correspondence can be shown between P(N) and the free energy of a
companion system, related to the one under study by a duality map [4,34–36], which is interested by
a phase-transition.

Recently, a great effort has been devoted to the characterization of these singular behaviors in
the large deviation functions of different models where analytical results can be obtained. This has
unveiled a rich phenomenology which shares common features. In most cases non-analyticities are a
consequence of a particular condensation phenomenon denoted as condensation of fluctuations.

It occurs when a significant contribution to the fluctuations is built within a limited part of
phase-space, or is provided by just one of the degrees of freedom of the system. This is analogous
to what happens, for instance, in the usual condensation of a gas when it concentrates in a liquid
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drop, or in the well-known Bose–Einstein condensation, where the mode with vanishing wavevector
contributes macroscopically. However, while usual condensation represents the typical behavior of the
system, the condensation of fluctuations can only be observed when certain rare events take place.

Another interesting feature of systems with singular probability distributions can be their extreme
sensibility to small perturbations. Usually, the properties of a system made of many constituents or
degrees of freedom do not change much if some features of a single particle are slightly changed. This is
true both for the average properties and for the fluctuations. For instance, neither the average energy of
a gas nor its fluctuations change appreciably if the mass of one single molecule is increased a bit. This is
simply because this particle is only one out of an Avogadro number. However, when condensation of
fluctuations occurs, one can observe a giant response if the perturbed degree of freedom is exactly the
one that contributes macroscopically to the fluctuation.

Singular probability distributions raise the question about the validity of the fluctuation relations
(FRs). These relations have been extensively studied recently [40,41] because they reflect general
symmetries of the deviations of certain quantities and are believed to contribute to a general
understanding of non-equilibrium states. In particular, FRs connect the probability of observing
events with a certain value N of the fluctuating variable, to the probability of the events associated
to the opposite value −N. Among other open issues on the subject, one is represented by the case of
singular fluctuations. Indeed, the singularity in Nc usually separates two regions where fluctuations
have very different properties. For instance, on one side of Nc one can have a standard situation where
all the degrees of freedom contribute, whereas on the other side fluctuations can condense and be
determined by the contribution of a single degree. Clearly, if N is such that N and −N fall on different
branches of P(N), namely on the two sides of Nc, the mechanism whereby an FR can be fulfilled must
be highly non-trivial. In general, singular probability distributions may, or may not, exhibit the FR and
a general understanding of this point is still not achieved.

This paper is a brief review devoted to the discussion of singular probability distributions
where, without any presumption of neither completeness or mathematical rigor, we present examples
of models where such non-analyticities show up, we highlight the mathematical mechanism
producing condensation, and we discuss some relevant aspects related to the subject, such as
those mentioned above. We do that in a physically oriented spirit, providing whenever possible
an intuitive interpretation and a simple perspective. Non-differentiable probability distributions have
been previously reviewed also in [42], where however the authors focus on different models and
complementary aspects with respect to those addressed in this paper.

The paper is organized as follows. In Section 2 we recall some basic results of probability theory
and introduce some notations. In Section 3 we present some models of statistical mechanics where
non-differentiable probability distributions have been computed for different collective quantities.
In Section 4 we illustrate in detail some phenomena related to the singular distribution function,
mainly using the urn model as a paradigm, and discuss how similar behaviors arise in other systems.
We also discuss the topic of the fluctuation relations. More specific features, such as giant response and
observability, are then presented in Section 5, and, finally, some conclusions are drawn in Section 6.

2. Probability Distributions: Generalities

We consider a generic stochastic system, whose physical state is defined by the random variable
x taking values on a suitable phase space. We will be mainly interested in the behavior of collective
random variables, that are defined as the sum of a large number of microscopic random variables.
For these quantities some general results can be derived [5]. As an example let us consider the sum
N = ∑M

j=1 xj of a sequence of M random variables xj, with empirical mean

ρ =
N
M

=
1
M

M

∑
j=1

xj. (1)
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The quantities xj can represent a sequence of states of a system (for instance, the position of
a particle along a trajectory) or an ensemble of variables describing its microscopic constituents
(e.g., the energies of the single particles of a gas). In the case of independent identically distributed
variables, with expectation 〈x〉 and finite variance σ, one has that the empirical mean tends to 〈x〉 for
large M, namely

lim
M→∞

p(ρ − 〈x〉 < ε) → 1, (2)

where ε is a small quantity and hereafter p(E) (also P(E) or P(E)) is the probability of an event E.
The above equation represents the Law of Large Numbers.

As a further step, one can describe the statistical behavior of the small fluctuations of ρ around
the average 〈ρ〉, δρ = ρ − 〈ρ〉, introducing the quantity

zM =
1

σ
√

M

M

∑
j=1

(xj − 〈x〉), (3)

which, for very large M, and for δρ � O(σ/
√

M), has the following distribution function

p(zM = z) � 1√
2π

e−
z2
2 . (4)

This result is the central limit theorem (CLT), that holds also in the case of weakly
correlated variables.

More in general, fluctuations of arbitrary size of the quantity ρ can, under certain conditions,
be characterized by the large deviation principle (LDP)

p(ρ = y) ∼ e−MI(y), (5)

where I(y) is the so called rate function. When p(ρ) has a single absolute maximum (in 〈ρ〉), the rate
function is positive everywhere but for y = 〈ρ〉, where it vanishes. It is easy to obtain the CLT
Equation (4) from the LDP Equation (5) by expanding up to second order the function I(y) around
〈ρ〉. However, as we will discuss in detail below, there are interesting cases where the LDP in the form
Equation (5) is not satisfied.

A simple example where LDP holds and the rate function can be easily computed is obtained
by considering {xj} as dichotomous variables taking the value +1 with probability q and −1 with
probability 1 − q. Then, using the Stirling approximation, one obtains the explicit expression for the
rate function:

I(y) =
1 + y

2
ln

1 + y
2q

+
1 − y

2
ln

1 − y
2(1 − q)

. (6)

Expanding Equation (6) around the mean 〈y〉 = 2q − 1 one has the CLT

I(y) � (y − 〈y〉)2

2(1 − 〈y〉) . (7)

3. Singular Probability Distributions: Examples

As far as small deviations of a collective variable are considered, the associated probability
distribution is usually regular, being a Gaussian when the hypotheses of the CLT are satisfied.
Moving to the realm of large deviations, instead, can hold surprises as, for instance, the emergence
of non-analyticities. Before deepening the meaning and the bearings of the singular behavior, in this
section we first itemize some examples of systems where it has been observed. We will then study it in
more detail in some specific models in the following sections.
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3.1. Gaussian Model

The Gaussian model is a reference model of statistical mechanics. An order-parameter field φ(�x)
(which in the magnetic language can be thought of as a local magnetization at site �x) is ruled by the
following Hamiltonian

H[ϕ] =
1
2

∫
V

d�x [(∇ϕ)2 + rϕ2(�x)], (8)

where r > 0 is a parameter and V the volume. This simple model can be exactly solved and has a
rather trivial phase-diagram without phase transitions.

Let us consider the collective variable

N[ϕ] =
∫

V
d�x ϕ2(�x), (9)

namely the order parameter variance, and its density ρ = N/V. Its probability distribution was
computed analytically in [34–36]. The (negative) rate function of this quantity, evaluated in equilibrium
at a given temperature T, is plotted in Figure 1. The curve has a maximum in correspondence to the
most probable value, where I(ρ) vanishes. Far from such maximum, in the large deviations regime,
the rate function exhibits a singularity (marked with a green dot) at ρ = ρc. In this point the third
derivative of the rate function has a discontinuity [34–36]. The existence of such a singularity is related
to the fact that, as we will discuss later, fluctuations with ρ > ρc have a different character with
the respect to the ones in the region ρ < ρc where the average, or typical, behavior of the system
(i.e., the most probable value of ρ) is located.

0 0.05 0.1
 ρ

-0.02

-0.01

0

-I
( 

ρ
 )

ρ
c

Figure 1. The (negative) rate function I(ρ) of the variance N of the order parameter field in the Gaussian
model in d = 3, with r = 1, in equilibrium at the temperature T = 0.2.

3.2. Large-N Model

Another reference model of statistical mechanics is the description of a magnetic system in terms
of the Ginzburg–Landau Hamiltonian

H[ϕ] =
1
2

∫
V

d�x
[
(∇ϕ)2 + rϕ2(�x) +

g
2N (ϕ2)2

]
, (10)

where the N -components vectorial field ϕ has a meaning similar to that of the Gaussian model, and
r < 0 and g > 0 are parameters. In the large-N limit (sometimes also denoted as the spherical limit)
the model is exactly soluble. There is a phase transition at a finite critical temperature Tc separating a
paramagnetic phase for T > Tc from a ferromagnetic one at T < Tc.
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The probability distribution of the energy N(t, tw) = H[ϕ, t]−H[ϕ, tw] exchanged by the system
in a time interval [tw, t] with a thermal bath was computed exactly in [37]. The (negative) rate function
of the intensive quantity ρ(t, tw) = N(t, tw)/V is shown in Figure 2. This figure refers to the case
of a system quenched from a very high temperature to another T < Tc. Also in this case there is a
singularity corresponding to a certain value the quantity ρ(t, tw) = ρc where the third derivative has a
discontinuity, and this reflects a different mechanism of heat exchanges for ρ < ρc and for ρ > ρc.
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Figure 2. The (negative) rate function I(ρ) of the probability distribution P(N) of the energy N
exchanged by the large-N model in d = 3, with g = −r = 1, with the environment after a quench to
zero temperature.

3.3. Urn Model

Let us consider a set of integer variables ni ≥ 0 (i = 1, . . . , M) equally distributed in such a way
that the probability of having a certain value n of ni is

p(n) = ζ−1(n + 1)−k, (11)

where ζ is a normalization constant and k a parameter. One can think of having M urns, each of them
hosts a quantity nm of particles taken with probability Equation (11) from a reservoir. This setting is
appropriate to describe a wealth of situations in many areas of science, from network dynamics to
financial data. The probability distribution of the total number of particles

N =
M

∑
m=1

nm (12)

was studied for large M in different contexts [14,17,21–23,43]. The (negative) rate function is shown
in Figure 3. Also in this model it is found that, if k > 2, there is a singularity at ρ = ρc, that in this
particular case coincides with the average value 〈ρ〉. Notice that in this case, at variance with the
previous examples, the rate function vanishes in the whole region ρ ≥ ρc. This is due to the fact that
P(ρ) has a weaker dependence on M with respect to the exponential one of Equation (5), and hence
the LDP is violated for ρ > ρc. We will comment later on that.
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Figure 3. The rate function I(ρ) of the probability distribution P(N) of the total number of particles N
in the urn model with k = 3.

3.4. Stochastic Maxwell-Lorentz Particle Model

The so-called stochastic Maxwell–Lorentz gas [44,45] consists of a probe particle of mass m whose
velocity v changes due to the collisions with bath particles, of mass M at temperature T, and due to the
acceleration produced by an external force field E . Collisions with the scatterers change instantaneously
the probe’s velocity from v to v′ and we assume the simple collision rule v′ = V, where V is the velocity
of the scatterer, drawn from a Gaussian distribution:

Pscatt(V) =

√
M

2πT
e−

MV2
2T . (13)

The scatterers play the role of a thermal bath in contact with the probe particle. This model
is a particular case of a more general class of systems studied in [44,45]. During a time τ between
two consecutive collisions, the probe performs a deterministic motion under the action of the field E .
We assume that the duration of flight times τ is exponentially distributed Pτ(τ) =

1
τc

exp(−τ/τc) and
independent of the relative velocity of the particles. The system reaches a non-equilibrium stationary
state characterized by a total entropy production Δstot, associated with the velocity v(t), defined as

Δstot(t) = ln
P({v(s)}t

0)

P({v(s)}t
0)

, (14)

where P({v(s)}t
0) and P({v(s)}t

0) are, respectively, the pdf of a path {v(s)}t
0 spanning the time

interval [0, t] and of the time-reversed path {v(s)}t
0 = {−v(t − s)}t

0 [46]. This fluctuating quantity
takes contributions at any time and is therefore extensive in t. In this example it plays the role of the
collective variable N, and t plays the role of the number M of elements contributing to it.

The rate function I(ρ) of the quantity ρ = Δstot/t was studied in [11] by means of numerical
simulations for finite times and analytically in the limit t → ∞. This quantity is shown in Figure 4,
where ρc = mτcE2/θ, with θ = Tm/M playing the role of an effective temperature [47]. Also in this
case, as for the urn model, I(ρ) vanishes and P(Δstot) does not satisfy a standard LDP for ρ > ρc.
Indeed it can be shown that the far positive tail of P(Δstot) scales exponentially with

√
t rather than

with t [11], how it should be if the LDP (Equation (5)) holds. Recently, the nature of the singularities in
I(ρ) and their physical meaning have been thoroughly discussed in a similar model in [48], where the
observed non-analytical behaviors have been related to a first-order dynamical phase transition.
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Figure 4. The rate function I(ρ) of the quantity ρ = Δstot/t for the Maxwell–Lorentz gas model [11],
computed analytically in the limit t → ∞.

3.5. Some Other Models

We have discussed above some models where a singular probability distribution was found.
All these cases can be grouped into two classes: the first contains the cases where the rate function is
well defined, although it contains some non-analyticity point. The examples of Sections 3.1 and 3.2
behave in this way. The second class is the one represented by the urn model, where the probability
distribution is still singular, but the the rate function is not defined in a certain region (that is to say it
vanishes identically). The Maxwell–Lorentz gas is an example where the two behaviors are exhibited
in different regions of the fluctuation spectrum.

Beyond the cases discussed before, other examples of singular behavior include the probability
distribution of the work done by active particles [38], of the heat exchanged by harmonic oscillators
during a quench with a thermal bath [39], of the magnetization in the spherical model [6,7], of the
displacement of a Brownian walker with memory [10], of the work done in a quantum quench [12],
and many others [4,25–33].

We also mention the case where the singularity appears as a “kink” at zero in the probability
distribution, showing a linear regime for negative values. This behavior has been observed in
the distribution of the entropy production and of other currents for a driven particle in periodic
potentials [49–51], in a molecular motor model, described in [52], and in the experimental results
reported in [53], where the large deviation function of the velocity of a granular rod was measured.
In general, the presence of the kink can be related to different physical mechanisms [54], such as
intermittency [55], detailed fluctuation theorem [56], and dynamical phase transitions [57].

4. General Features of Singular Probability Distributions

In this section we will discuss some general properties of singular probability distributions
observed in the different models mentioned above, focusing on the common physical interpretation
and on the underlying mathematical structure.

4.1. Duality

The singular behavior of the probability distribution seen in the examples of the previous section
has an interpretation akin to the occurrence of phase transitions in ordinary critical phenomena.
In order to discuss this point we can refer to the Gaussian model as a paradigm. The partition
function is

Z =
∫

δϕP(ϕ), (15)
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where P is the probability of microscopic configurations as specified by the field ϕ. For instance,
in a canonical setting it is P(ϕ) = Z−1 exp[−βH(ϕ)], where β is the inverse temperature β = 1/(kBT);
in this case Z depends on T and V, the volume. On the other hand the probability of the collective
variable N of Equation (9) can be written as

P(N) =
∫

δϕP(ϕ) δ

(∫
V

d�xϕ2(�x)− N
)

. (16)

In view of Equation (15), one can recognize Equation (16) as a partition function as well. However
this is not the partition function of the original model that is, in this example, the Gaussian one. Instead,
P(N) in Equation (16) can be interpreted as the partition function of a dual system that can be obtained
from the original one upon removing all the configurations such that the argument of the delta function
in Equation (16) does not vanish. In other words, this is the model one arrives at upon constraining
configurations in a certain way. In this case the requirement is that the variance of ϕ must equal a
given value N. Such a system, a Gaussian model with a constraint on the variance, is the spherical
model of Berlin and Kac [58].

The equilibrium properties of the spherical model are exactly known. For fixed N, there is a
phase-transition at a critical temperature Tc, from a disordered phase for T ≥ Tc to an ordered one
below Tc. Equivalently, still in the Berlin–Kac model, if one keeps T fixed, the transition occurs
changing the variance N[ϕ] defined in Equation (9) upon crossing a critical value Nc. The ordered
phase is found for N > Nc, in this case. The presence of such a phase transition crossing Nc determines
a singularity of the partition function P(N) of the spherical model (Equation (16)) at N = Nc. However
the same quantity P(N) is also the probability distribution of the quantity N[ϕ] in the context originally
considered, the Gaussian model. This explains what one observes in Figure 1. Nc is the value of N
marked by a dot in this figure, where the singular behavior shows up.

This dual interpretation of P(N), as a probability distribution of a collective variable in the
original model, or as a partition function in a dual model, may help to understand why singularities
are manifested in the probability distributions. Indeed, if one asks the question: why a simple
model without phase transitions, such as the Gaussian model, exhibits a non trivial singularity in the
probability distribution P(N), the answer can be that, although the original model is quite simple,
the dual one is far from being trivial, with a phase-transition induced by the presence of the constraint.
This generates anomalous behavior in the fluctuation spectrum of the original model.

We have discussed the fact that imposing a constraint to the Gaussian model we change the system
into a dual one that is interested by a phase transition, since this is the spherical model. Is this an
isolated example or has this feature some generality? The answer is that it occurs quite often. Besides
the above mentioned spherical model, another well known example where the same mechanism is at
work is the perfect boson gas. There is no phase transition in a gas with a non conserved number N of
bosons, as in the case of photons, but if the number N of particles is fixed Bose–Einstein condensation
happens. The partition function of the conserved bosons, for a given volume and temperature, has a
singularity at a certain value of the boson number N = Nc (or density). This singularity corresponds
to the critical number of particles below which the condensed phase develops. According to the
duality principle discussed above, this implies that the probability distribution of the number of
bosons in a system of, say, photons, where this number is allowed to fluctuate, will be singular at the
same value Nc of the random variable N [33]. The very urn model is another instructive example.
One can consider a model, dual to the one discussed in Section 3.3, where the total number of balls is
conserved [21]. Marbles can only be exchanged among boxes and their density ρ is an external control
parameter. This model is known to be interested, for k > 2, by a phase transition crossing ρ = ρc.
Notice that, since ρ is a control parameter, having ρ > ρc in this dual model is not a rare event (as in
the model introduced in Section 3.3). A similar situation is found in related models such as the zero
range process [18,21,28].
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4.2. Condensation

In order to see how singularities may come about in another perspective we will discuss the
phenomenon in the framework of the urn models, where the physical meaning is probably more
transparent in term of a condensation mechanism. Something similar occurs also in the other models
considered in Section 3, regardless of the fact that the rate function is well defined or not.

Let us consider the conditional probability π(n, N, M) that one of the M a priori equivalent
urns contains n particles, given that there are N particles in the whole system. This quantity can be
evaluated exactly and is shown in Figure 5 (normalized by its value in n = 0 to better compare curves
with different N in a single figure). Let us discuss its properties. First of all π vanishes for n > N, since
it is impossible that an urn contains more particles than the whole system. Secondly, for small n one
has π(n, N, M) ∝ p(n) (dotted green line in Figure 5). This means that, as far as very few particles are
stored in the tagged urn, the condition on the total number of balls is irrelevant.
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Figure 5. The function π(n, N, M) is plotted, for k = 3 and M = 100, against n + 1 for two values of N:
N = 35, corresponding to a case without condensations, and N = 300, corresponding to a condensed
situation. The dotted green curve is the power-law x−k.

More interestingly, at large n, n � N, different behaviors are observed in the region of relatively
small N, and in the one with relatively large N, exemplified by N = 35 and N = 300, respectively,
in Figure 5. In the former case π is exponentially damped at large n, meaning that accommodating
many particles in a single urn is probabilistically very unfavorable. In the latter case there is a peak at a
value of n or of order N. This means that a significant fraction of the total number of particles is located
in a single urn. This is the condensation phenomenon. (We will see in the next section that in this
particular model occurs when k > 2 and for sufficiently large densities). The essence of a condensation
phenomenon is that a given quantity is not fairly distributed among many degrees of freedom, but is
concentrated in a single one. This is particularly clear in the urn model, where one particular urn
contains a macroscopic fraction of balls.

One easily realizes that something similar occurs in the other example models discussed in
Section 3. For instance, in the model of Section 3.1, writing N[ϕ] in terms of the Fourier components
ϕ�k of the field ϕ as

N[ϕ] =
1
V ∑

�k

|ϕ�k|
2, (17)

one can show that while for N ≤ Nc (or equivalently ρ ≤ ρc) all the Fourier components add up
to realize the sum in Equation (17) in a comparable way, for N > Nc the term with k = 0 alone
provides the most important contribution to the sum. A similar mechanism, with the dominance of
the k = 0 term, is also at work in the example of Section 3.2. In the Maxwell–Lorentz particle model
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(Section 3.4) one has that normal entropy fluctuations are formed by the addition of many contributions
associated to many short flights of the probe particle. However above the critical threshold ρc they
are associated to a single event which is responsible for a macroscopic contribution to the entropy
production. This event is a long flight of the probe particle with no collisions with the scatterers.
For more details and a very accurate analytical description of these kinds of behaviors in a similar
system re-framed in the context of active particles, see the recent work [48].

4.3. Mathematical Mechanism

In the previous section we have discussed the phenomenon of condensation on physical grounds.
In this section we show the underlying mathematical mechanism. We will give a description as simple
as possible, without presumption of mathematical rigor, in the framework of the urn model.

The probability distribution of the total number of particles N reads

P(N, M) = ∑
n1,n2,...,nM

p(n1)p(n2) . . . p(nM) δ∑M
m=1 nm ,N , (18)

where δa,b is the Kronecker function and in the leftmost sum the variables n1, n2, . . . , nM run from 0 to ∞.
Using the representation

δa,b =
1

2πi

∮
dz z−(b−a+1) (19)

of the δ function one arrives at

P(N, M) =
1

2πi

∮
dz eM[ln Q(z)−ρ ln z], (20)

where

Q(z) =
∞

∑
n=0

p(n)zn, (21)

and we have confused N+1
M with ρ = N/M for large M. Still for large M, the integral in Equation (20)

can be evaluated by the steepest descent method as

P(N, M) � e−MR(ρ), (22)

where
R(ρ) = − ln Q[z∗(ρ)] + ρ ln z∗(ρ), (23)

with z∗ the value of z for which the argument in the exponential of Equation (20) has its maximum
value. This in turn is given by the following implicit saddle-point equation

Θ(z∗) = ρ, (24)

where

Θ(z∗) = z∗
Q′(z∗)
Q(z∗)

. (25)

Let us study this equation. Clearly, it must be z ≤ 1 in order for the sums hidden in Q and Q′ to
converge. It can also be easily seen that Θ(0) = 0 and that this function increases with z up to

Θ(1) =

{
∞, k ≤ 2
ΘM, k > 2,

(26)

where ΘM is a finite positive number. The function Θ(z) is shown in Figure 6, for two values of the
parameter k. As it is clear from this figure, for k > 2 the saddle point Equation (24) admits a solution
only for 0 ≤ ρ ≤ ρc = Θ(1). It is trivial to show that ρc ≡ 〈ρ〉 = ∑n np(n). However nothing prevents
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fluctuations with ρ > 〈ρ〉 to occur. How can we recover the model solution for ρ > 〈ρ〉? We know
that for such high densities urns are no longer equivalent: there is one—say the first—which hosts an
extensive number of particles and condensation occurs. In a physically oriented approach, we can take
into account this fact by writing, in place of Equation (18), the following

P(N, M) = M
∞

∑
n1=0

p(n1) ∑
n2,n3,...,nM

p(n2)p(n3) . . . p(nM) δ∑M
m=2 nm ,N−n1

. (27)

The factor M in front of the r.h.s. stems from the fact that there are M ways to chose
the urn (denoted as 1) to be singled out. Repeating the mathematical manipulations as in
Equations (18) and (20), but only on the sum ∑n2,n3,...,nM

. . . , one arrives at

P(N, M) =
M

2πi

∞

∑
n1=0

p(n1)
∮

dz eM[ln Q(z)−(ρ− n1
M ) ln z]. (28)

Evaluating the integral with the steepest descent method, the saddle point equation is now

Θ(z∗) = ρ − n1

M
. (29)

Notice that in a normal situation, where condensation does not occur, in the thermodynamic limit
where M → ∞ with fixed ρ, the typical number of particles in a single urn does not depend on the
number of urns. Therefore the last term on the r.h.s. of Equation (29) is negligible and one goes back to
the previous saddle point Equation (24). However, when condensation occurs (i.e., with k > 2 and
ρ > 〈ρ〉) the only possibility to close the model equations is to have the last term in Equation (29) finite.
In conclusion one has {

z∗ < 1, n1
M � 0 no condensation

z∗ = 1, n1
M = ρ − 〈ρ〉 condensation.

(30)
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Figure 6. The function Θ(z) is shown for k = 1.5 and k = 2.5.

Clearly we are in the presence of a phase-transition resembling the ferro-paramagnetic or the
gas–liquid transitions. There are two phases with qualitatively different behaviors. However,
at variance with usual phase transitions, here the parameter producing the transition is not an
external one that can be varied at will, but the value of the spontaneously fluctuating variable N.
Another difference with usual phase transitions is the fact that here there is no interaction among urns.
Despite that, urns are not completely independent due to the constraint over the number of particles
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represented by the Kronecker function in Equations (18) and (27). This constraint can be regarded
as an effective interaction determining the transition (it can be easily seen, in fact, that without such
conservation there is no transition).

Notice that it is n1/M = 0 in the normal phase and n1/M �= 0 in the condensed phase, therefore
this quantity represents the order parameter of the transition. Despite the fact that a priori the
system (i.e., the Hamiltonian) is invariant under a permutation of the urns, namely all boxes are
equal, this property is not shared by the physical realization of the actual state of the system when
condensation occurs, since one urn behaves very differently from the others. We are in the presence of
spontaneous symmetry breaking.

As a final remark, let us note that the phenomenon of condensation in the sum of many identically
distributed variables is not specific to an algebraic decay of p(n), or to the discrete value of the variable
n. Indeed it is found [31] that it occurs provided that ∑n np(n) < ∞. Condensation in the presence of
a stretched exponential p(n), for instance, has been discussed in [59,60]. Finally, we mention the fact
that in the context of Lévy flights the phenomenon of condensation is usually referred to as the big
jump principle [61].

4.4. Fluctuation Relation

The Fluctuation Relation is one of the few general results of non-equilibrium statistical mechanics,
expressing an asymmetry property of the fluctuations of some extensive (in time or in number of
degrees of freedom) quantities N [40]. The FR reads

P(N/M = ρ)

P(N/M = −ρ)
= ecMρ+o(M), (31)

where c is a constant, and o(M) stands for sub-linear corrections in M. Usually, the exponential form
of the FR is related to two properties of P(N/M): (i) it satisfies a LDP Equation (5), and (ii) the rate
function I(ρ) has the symmetry:

I(−ρ)− I(ρ) = cρ. (32)

These two conditions, with I(ρ) different from 0 and ∞, are known to be sufficient for N/M to
satisfy a FR (see, e.g., [4] and references therein).

It is interesting to consider the validity of an FR in the case of probability distributions with
singularities. First, let us note that, when the singularity appears in zero, as in the case of the “kink”
mentioned in Section 3.5, then the validity of an FR is clearly not affected by the singularity. More in
general, the FR can also be satisfied by a pdf for which a standard (namely, with a leading exponential
scaling in M) LDP does not hold. This can be observed for instance in the driven Maxwell–Lorentz gas
described in Section 3.4. In this model it has been shown [11] that the entropy production calculated
over a time t satisfies an FR, even though the far positive tail of its pdf scales exponentially with√

t rather than t. In this case the validity of the FR can be exploited to extract some information on
the behavior of the probability distribution in the regions where the stretched-exponential scaling
takes place.

The FR Equation (32) in the presence of a singular rate function has been also observed [37],
besides the already mentioned Maxwell-Lorentz case , in some large time limit for the exchanged heat,
in the large-N model of Section 3.2. More recently, it has been shown [39] that the rate function of the
heat exchanged by a set of uncoupled Brownian oscillators with the thermostat during a non-stationary
relaxation process does not satisfy an FR in the form Equation (31). Although, even in this case, the rate
function shows a singular behavior in the limit of a large number of degrees of freedom, the lack of a
standard FR is not necessarily related to the presence of the singularity.
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5. Some Peculiarities of Singular Distributions

5.1. Giant Response

Generally, the behavior of a collective quantity such as the empirical mean Equation (1) is not
substantially altered if, for large M, the properties of only one out of M variables is slightly modified.
For instance, one does not expect to observe any significant change in the thermodynamic properties of
a gas of identical molecules if one is replaced with another of a different substance. This is because the
collective properties are determined by the synergic contribution of a huge number M of constituents,
and hence the features of a single molecule are negligible. This is true not only for the typical properties
but also for the fluctuation distribution. However, the situation can be dramatically different when
singular probability distributions enter the game.

Let us show this with the prototypical example of the urn model. We consider a slightly modified
version of the model defined in Section 3.3, where a single variable, say n�, is distributed as in
Equation (11) but with an exponent k� that may be different from the one, k, of all the remaining
ones. Let us now look at Equations (28)–(30). In a situation where condensation does not occur, as we
remarked earlier, the effect of a single variable is negligible, the first line of Equation (30) applies
and hence nm

M � 0, for any m. On the other hand, in the presence of condensation, the second line
of Equation (30) holds. In the case of equally distributed variables condensation occurs with equal
probability in any of the urns. However, if the �-th variable behaves differently, one has to understand
if the condensing variable could be the �-th, or any of the remaining ones. Both the cases can occur,
depending on the values of the exponents k and k�.

For k� > k > 2 (the latter inequivalence being needed for condensation) it is p(n� = n) � p(nm = n)
for large n (with � �= m). Hence the condensation phenomenon, which occurs by letting a huge amount
of particles occupy a single urn, is unfavoured in the �-th urn. The situation in this case is analogous to
the one discussed before with equally distributed variables, i.e., with k� = k. However for k > k� > 2
the opposite occurs, the condensing variable is the �-th. Hence Equation (28) applies with n1 replaced
by n�. One sees from Equation (28) that, when condensation occurs, P(N, M) is proportional to p(n�).
Since k� �= k, P(N, M) turns out to be different from the one found for equally distributed variables.
Hence, in this case, an even small change of the properties of a single variable can trigger the form
of the probability distribution of the collective variable N, a fact that is sometimes referred to as
giant response.

This is illustrated in Figure 7. Here P(N, M) is compared for three different choices of the
exponents k, k�. The continuous blue curve with asterisks refers to the case (i) with identically
distributed variables with k� = k = 3. Similarly, the dot-dashed green curve with squares corresponds
to the situation with (ii) k� = k = 6. Instead, the dashed-magenta curve with circles corresponds to
non-identically distributed variables with (iii) k� = 3 and k = 6. Notice that in the region to the left
of the maximum, where condensation does not occur (because in this region ρ < 〈ρ〉), the curves of
the cases (ii) and (iii) coincide. This nicely shows that in the absence of condensation the shift of the
properties of a single variable does not influence the collective behavior of the system. For ρ > 〈ρ〉,
on the other hand, the form of P drastically changes in going from (ii) to (iii), namely by perturbing
the properties of one single variable. Even more impressive, the slope of the curve for case (iii) is the
same as that of case (i), showing that this feature is dictated by the sole properties of the variable, n�,
which in case (iii) behaves as in (i).
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Figure 7. P is plotted for M = 333 and the three different choices (see text) (i) k� ≡ k = 3,
continuous blue with asterisks, (ii) k� ≡ k = 6, dot-dashed green with squares and (iii) k� = 3 ,
k = 6, dashed magenta with a circles.

5.2. Development of a Singular Fluctuation

We have seen in Section 4.1 that a singularity in the probability distribution can be interpreted as
a phase transition occurring at a critical value of ρ, playing the role of a control parameter. The analogy
can be pushed a step further. When a system is prepared in a certain equilibrium state and then a
control parameter is changed as to make it cross a phase transition, the ensuing dynamics can be slow
and characterized by a dynamical scaling symmetry associated most of the times with an ever growing
length scale [62–65]. Typical examples are magnets and binary systems quenched across the critical
temperature, and glassy systems.

Building on the analogy above, one might expect something similar to happen if one prepares a
system with a singular P(N) in a state such that the fluctuating collective variable N takes a definite
value N0 on one side (say the left) of the critical value Nc where the singularity takes place. If the
system is then left to evolve freely, all possible fluctuations will take place, including those on the other
side (say the right) of the singularity. Due to the duality principle, this process should occur in a way
akin to the kinetics of a system brought across a phase-transition. Hence slow evolution and dynamical
scaling should be observed. This has actually been shown to be the case, as we discuss below.

Upon supplementing the urn model of Section 3.3 with a kinetic rule allowing the system to
exchange single particles with an external reservoir in such a way that the stationary occupation
probability of any urn is given by Equation (11), one can solve exactly [43] the evolution of a system
whose initial state is such that condensation is not present. In the following we will discuss the case
in which the initial value of the density is ρ = 〈ρ〉. Starting from this configuration, corresponding
to an initial form P(N, M, t = 0) of the probability distribution of the collective variable, the system
will evolve as to produce all the allowed fluctuations. Hence P(N, M, t) becomes time-dependent.
Clearly, for long times it is expected to approach the stationary value P(N), with the singular behavior
already discussed. This curve is plotted in Figure 8, with a dotted green line.

In this figure one sees that the time evolution of the probability P(N, M, t) towards this asymptotic
form is much different on the two sides of the singularity. For N < 〈N〉, in the normal region without
condensation, the evolution is fast and the asymptotic form of the probability is attained at relatively
short times. Indeed, already the red curve for t = 1.2× 106 is indistinguishable from the stationary form
and increasing time does not change anything. Conversely, the evolution is slow in the condensing
region for N > Nc. Here one sees that, at any time, the asymptotic form is only attained up to a value
N = ν(t), beyond which P(N, M, T) drops much faster than what expected asymptotically. It can
be shown that ν(t) grows indefinitely in an algebraic way, much in the same way as a characteristic
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growing length does in systems quenched across a phase transition. In addition, a dynamical scaling
symmetry can be shown to be at work also in this case. The origin of this slow kinetics is clearly due to
the difficulty to condense a huge amount of particles in a single urn by exchanging single particles
with the reservoir.
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Figure 8. The probability P(N, M, t) with k = 3 is plotted against N with double logarithmic scales for
different times (see key), exponentially spaced. The dotted green line is the asymptotic form.

5.3. Observability

In the previous sections we discussed some peculiar properties of singular distribution functions.
A natural question is if such features can be observed in practical situations. Indeed, the non-analycities
of the probability distributions are observed in the regime of large deviations, namely outside the
range of small fluctuations which are generally described by the central limit theorem and are more
likely to be observed.

To make more clear this point let us make reference to the Gaussian model and, specifically,
to Figure 1. In this case, in order to detect singular deviations, ρ = ρc must be exceeded. Namely,
the system has to move quite far from the most likely observed value—the maximum of the distribution.
If the LDP Equation (5) holds (it does so in this model) the possibility to observe such a large fluctuation
is extremely small already for moderately large values of the number of constituents M (or volume
V), due to the exponential damping in M expressed by Equation (5). But the situation is different
if the LDP is violated. This occurs, for instance, in the urn model or in the Maxwell–Lorentz gas,
in the fluctuation range where the rate function vanishes. In the former model one can easily check
from Equations (28)–(30) that the LDP is obeyed in the non-condensing regime but it is violated when
condensation occurs. In fact, it is trivial to see that with z∗ = 1 the saddle point evaluation of the
integral in Equation (28) gives an exponential with an argument that is identically vanishing. As a
consequence fluctuations away from the average are no longer damped exponentially in M, but only as
M1−k (keeping ρ fixed). This is why the rate function of the model vanishes in the whole sector ρ > ρc

where condensation occurs (see Figure 3), despite the fact that P(N, M) decays for ρ > 〈ρ〉, as it can be
seen in Figure 7. Due to this much softer decay, there is a better chance to observe singular fluctuations
in this model than in others, e.g., the Gaussian model, where the LDP holds. A similar situation,
with LDP violations, is observed also in the Maxwell–Lorentz particle model (for ρ = Δstot/t > ρc) [11]
and in Bose–Einstein condensates [33].

6. Summary and Conclusions

In this paper we have shortly reviewed the issue of probability distributions characterized
by non-analyticities. Naively, this feature could be considered as a rare manifestation of curious
mathematical pathologies occurring in scholarly model with uncertain relations to the physical world.
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In reality, singular probability distributions have been shown analytically to occur in very simple
and fundamental models of statistical mechanics, such as the Gaussian one, and not only in weird
non-equilibrium states but also in equilibrium. Furthermore, they have been detected in numerical
simulations and, most importantly, also in real experiments. This widespread occurrence points
towards an underlying general mechanism for the development of singularities in the fluctuation
probability. This paper has been conceived in order to highlight and discuss, at a simple and physically
oriented level, at least some of such general features.

In the first part of the paper, after recalling basic and general concepts of probability theory we
have reviewed some models where singular fluctuation spectra have been observed. These range
from the aforementioned Gaussian model to the spherical limit of a ferromagnet, from the so-called
urn model to a description of the Maxwell–Lorentz gas. In all these cases the deviations of certain
collective observables are described by non-analytical probability distributions, which, in the case
when LDP holds, are characterized by the presence of exponential branches.

The non-analytical behavior has been interpreted as due to the same mechanism whereby
singularities develop in the thermodynamic functions of systems experiencing phase transitions.
Indeed we have discussed the fact that a singular fluctuation distribution function can be mapped onto
a thermodynamic potential of a dual model with a critical point. The singularity appears similarly to
what one observes in thermodynamic functions when a condensation transition is present. When such
feature occurs at the level of fluctuations, at variance with the usual examples of condensation, one
speaks of condensation of fluctuations.

Singularities of the probability distributions can have a scarce practical relevance if they occur
in regions where fluctuations have a negligible chance to be observed. However, in some of the
cases considered in this paper the non-analytical behavior is associated to the breakdown of the
large deviation principle. As a result, large fluctuations of macrovariables have a better chance to
be observed even in systems with a relatively large number of degrees of freedom. In this case the
presence of singularities not only can be observed, but its effects can be appreciated. Perhaps, one of
the most intriguing one is the so called giant susceptibility, whereby slightly tuning the properties
of even one single component, say a molecule of a gas, can have catastrophic consequences on the
behavior of the whole system.

Non-analyticity points in the probability distributions also influence the way in which rare
fluctuations are developed out of typical state where they are absent. Indeed, it has been shown that
large fluctuations in the region where condensation occurs are formed by means of a complex slow
dynamics which resembles, once again a manifestation of a dual behavior, that of systems brought
across a phase transition. The knowledge of the dynamical path leading to a rare fluctuation may have
important consequences in those cases when such deviations lead to catastrophic events, as in the case
of extinctions or bankruptcies.

Among the several perspectives of future studies in this context, we mention the possibility to
explore the role of correlated noise on the large deviations, for instance in models of active particles
where some analytical results can be obtained [66]; the meaning of singularities, which are related
to non-equilibrium phase transitions, within the general framework of the macroscopic fluctuation
theory [67]; the relation between the presence of singularities and the validity of the fluctuation relation
for entropy production or related quantities in more general cases; the role of correlations among
random variables in the anomalous large deviations, as observed for instance in conditioned random
walks [68] and Brownian motion [69]; the effect of inhomogeneous rates in bulk-driven exclusion
processes [70].
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Abstract: Recently, the concept of daemonic ergotropy has been introduced to quantify the maximum
energy that can be obtained from a quantum system through an ancilla-assisted work extraction
protocol based on information gain via projective measurements [G. Francica et al., npj Quant. Inf.
3, 12 (2018)]. We prove that quantum correlations are not advantageous over classical correlations
if projective measurements are considered. We go beyond the limitations of the original definition
to include generalised measurements and provide an example in which this allows for a higher
daemonic ergotropy. Moreover, we propose a see-saw algorithm to find a measurement that attains the
maximum work extraction. Finally, we provide a multipartite generalisation of daemonic ergotropy
that pinpoints the influence of multipartite quantum correlations, and study it for multipartite
entangled and classical states.

Keywords: ergotropy; quantum correlations; information thermodynamics

1. Introduction

In the rapidly evolving research arena embodied by the thermodynamics of quantum systems,
the resource-role of quantum features in work-extraction protocols is one of the most interesting and
pressing open questions [1–4]. Quantum coherences are claimed to be responsible for the extraction
of work from a single heat bath [5] and the enhanced performance of quantum engines [6]. Weakly
driven quantum heat engines are known to exhibit enhanced power outputs with respect to their
classical (stochastic) versions [7]. Quantum information-assisted schemes for energy extraction have
been put forward and shown to be potentially able to achieve significant efficiencies [8–13]. However,
controversies in the usefulness of quantum correlations and coherences in schemes for the extraction
of work from quantum systems have also been discussed [14–17]. While a full physical understanding
of these issues is still far from being acquired, theoretical progress in this direction will be key to the
design and implementation of informed experimental proof-of-principle experiments and thus the
consolidation of a quantum approach to the thermodynamics of microscopic systems.

Recently, a simple ancilla-assisted work-extraction protocol has been proposed that is able
to pinpoint the crucial role that quantum measurements have in the performance of a quantum
work-extraction game. This protocol also highlighted important implications arising from the
availability of quantum correlations between the work medium and the ancilla [18]. The scheme
provided a link between enhanced work extraction capabilities and quantum entanglement between
ancilla and work medium, suggesting the possibility to exploit entanglement as a resource.

In this work we show that although this link exists for pure states, quantum correlations and
work extraction capabilities are unrelated if mixed states are considered. However, the scheme in
Reference [18] relied on a set of very stringent assumptions, which leave room to further investigations
aimed at clarifying the potential benefits of exploiting quantum resources. Here, we critically
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investigate the protocol in Reference [18], and extend it in various directions. First, we address the
class of measurements that ensure the enhancement of the work-extraction performance. We provide
an example in which generalised measurements allow for more extracted energy than projective
measurements do. The search for the right generalised measurement poses serious computational
challenges that we solve by proposing a constructive see-saw algorithm that is able to identify the most
effective measurement for a given state of the work medium and ancilla, and an assigned Hamiltonian
of the former. We then address the issue embodied by the interplay between information gathered
via optimal measurements and quantum correlations shared between work medium and ancilla. We
show that, depending on the nature of the optimal measurement, quantum correlations may become
entirely inessential for the enhancement of work extraction. Finally, we open the investigation to
multipartite settings by addressing the case of multiple work media and ancillas, showing that the
structure of correlation-sharing among the various parties of such a system is key in the performance
of our work-extraction protocol.

Our results contribute to the ongoing research for the ultimate resources to be exploited to draw an
effective and useful framework for quantum enhanced thermodynamical processes. While clarifying a
number of important points, our work opens up new avenues of investigation that will be crucial for
the design of unambiguous experimental validations.

2. Notation and Concepts

The maximal energy decrease of a given state �S with respect to a reference Hamiltonian H
undergoing an arbitrary unitary evolution U is its ergotropy [19]

W(�S, H) = Tr[�S H]− min
U

Tr[U�SU† H]. (1)

This is interpreted as the maximal amount of work that can be extracted from a system prepared
in state �S by the means of a unitary protocol [19]. Given some state in its spectral decomposition
�S = ∑k rk |rk〉〈rk| with rk+1 ≤ rk and a Hamiltonian H = ∑k εk|εk〉〈εk| with εk+1 ≥ εk the optimal
unitary is U = ∑k |εk〉〈rk| [19]. This is a direct consequence of the von Neumann trace inequality [20].
It states that tr[AB] ≤ ∑i aibi, where ai (bi) are the eigenvalues of A (B) and ai+1 ≥ ai, bi+1 ≥ bi.
Choosing A = −U�SU† and B = H and writing maxU tr[−U�SU † H] = −minU tr[U�SU † H] then
shows that the bound given by the von Neumann trace inequality is achieved with the unitary
stated above.

In Reference [18], an ancilla-assisted protocol allowed for enhanced work extraction by making use
of a process of information inference. The fundamental building blocks of the protocol are embodied
by the joint state of a work medium S and an ancilla A, and a projective measurement M performed
on the latter (cf. Figure 1). The information gathered through these measurements is then used to
determine a unitary transformation to be applied to S to extract as much work as possible.

Figure 1. Illustration of daemonic ergotropy. A system S is coupled to an ancilla A. A measurement is
performed on the latter and depending on the outcome i different unitaries can be applied to S in order
to extract work. The maximal amount of extractable work using this protocol is the daemonic ergotropy.
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This work, which is dubbed daemonic ergotropy, is given by

WD(�
SA, H, M) = Tr[�S H]− ∑

i
min

Ui
Tr(γS

i H̃i), (2)

where H̃i = U†
i HUi, M = {Πj} is a projective measurement, and γS

i = TrA[�
SA(IS ⊗ ΠA

i )] is the
unnormalised conditional state of S corresponding to the ith measurement outcome. The daemonic
ergotropy can be written in a more compact way using the ergotropy, namely

WD(�
SA, H, M) = ∑

i
W(γS

i , H). (3)

For a pure state, any projective measurement M with Πi rank-one projectors maximises the
daemonic ergotropy. In fact, the conditional states γS

i are then pure and it is always possible to find
a unitary—specific to every conditional state—that maps it to the ground state of the Hamiltonian,
thus lowering as much as possible the energy of the system and extracting the maximum amount of
work [18].

The difference between maximal daemonic ergotropy and ergotropy is called daemonic gain [18],
and is formalised as

δW(�SA, H) = max
M

WD(�
SA, H, M)− W(�S, H). (4)

If �SA is a pure product state, �S is pure. Thus, no measurement on the ancilla is required for
optimal work extraction, since in this case there is a unitary that maps �S to the ground state of the
Hamiltonian. Consequently, the daemonic ergotropy coincides with the ergotropy in this case and
there is no daemonic gain.

The definitions provided above pinpoint the key role of the measurement step in such an
ancilla-assisted extraction protocol. In particular, the assumption of projective measurements performed
on A appears to be too restrictive. It is thus plausible to wonder if better performances of the daemonic
work-extraction scheme are possible when enlarging the range of possible measurements on the ancilla
to generalised quantum measurements.

3. Non-Optimality of Projective Measurements for Daemonic Ergotropy

We now address such a scenario and provide an example where more energy can be extracted
from S when generalised measurements are performed. To this end, we will employ the formalism of
positive operator valued measures (POVMs) [21]. In the case of a finite set of outcomes {i}, a POVM
is a map that assigns a positive semidefinite operator Ei—dubbed as effect—to each outcome i, such
that ∑i Ei = I. As with projective measurements, the probabilities for the outcomes are obtained as
pi = Tr(Ei�). However, the effects Ei of a POVM need not be projectors.

Let us consider now a three-level system S and a two-level ancilla A prepared in the joint state

�SA =
1
3

2

∑
j=0

|j〉〈j| ⊗ Π
(

2π j
3

, 0
)

(5)

with projectors

Π(α, β) =
1
2
{I + cos(α)σz + sin(α)[cos(β)σx − sin(β)σy]}. (6)

Here (α, β) are angles in the single-qubit Bloch sphere. We assume a reference Hamiltonian
H=∑j εj|j〉〈j| with energy eigenvalues εj arranged in increasing order. If only projective measurements
M are allowed on the state of the ancilla, the maximum daemonic ergotropy achieved upon optimizing
over the measurement strategy is
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max
M

WD(�
SA, H, M) = W(�S, H) +

ε2 − ε0

2
√

3
. (7)

Details on this result are presented in Appendix A. However, if generalised measurements are
permitted, one may choose the POVM with effects Ej =

2
3 Π(2π j/3, 0) to yield a daemonic ergotropy of

WD(�
SA, H, {Ei}) = W(�S, H) +

1
6
(ε1 + ε2 − 2ε0). (8)

This can exceed the maximum daemonic ergotropy achieved through projective measurements.
For instance, we can assume to have shifted energy so that ε0 = 0. Under such conditions, we
would have WD(�

SA, H, {Ei}) > maxM WD(�
SA, H, M) for (

√
3 − 1)ε2 < ε1 ≤ ε2. Figure 2 shows the

daemonic gain δW corresponding to the example above as a function of the value of the highest energy
level of the Hamiltonian for projective measurements (PVMs) and POVMs. While in this example
the optimal projective measurement does not depend on the Hamiltonian, the optimal POVM does.
Therefore, the daemonic gain grows linearly with the value of the highest energy value, as long as
only projective measurements are taken into account. For comparison, the daemonic gain that can be
achieved with the previously discussed POVM

( 2
3 Π(2π j/3, 0)

)
j is plotted as a dashed line.

Figure 2. Daemonic gain δW as a function of the value of the highest energy level of the Hamiltonian
H (in units of ε1) for the state �SA given in Equation (5). Here ε = ε2/ε1. We compare the performance
under the optimal r projective measurements (PVM) and positive operator valued measures (POVM).
The latter was found numerically using the see-saw algorithm proposed here. The former is determined
analytically as discussed in Appendix A. The dashed line is obtained as the daemonic gain δW for the
fixed POVM with effects Ej =

2
3 Π(2π j/3, 0).

4. Construction of Optimal POVMs

Having provided a useful example, we now move to address the problem of identifying the ideal
POVM for optimal daemonic ergotropy. The following Lemma is instrumental to the achievement of
our goal:

Lemma 1. The ergotropy is a sublinear function in its first argument, which refers to the state. That is, for any
γ = γ1 + γ2

W(γ, H) ≤ ∑
i=1,2

W(γi, H) (9)

and

W(λγ, H) = λW(γ, H) (10)
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for any λ ≥ 0. As ergotropy is symmetric under the exchange of its first and the second argument, it is also
sublinear in the Hamiltonian.

Proof. The second equation holds trivially, which justifies our use of unnormalised states. We obtain
the first inequality as follows

W(γ, H) = Tr(γH)− min
U

Tr[UγU† H]

≤ ∑
j=1,2

[
Tr(γj H)− min

U
Tr(UγjU† H)

]
= ∑

j=1,2
W(γj, H). (11)

Note that sublinearity implies convexity, i.e., W[λγ1 + (1− λ)γ2, H] ≤ λW(γ1, H) + (1− λ)W(γ2, H).
This result allows us to state the following corollary:

Corollary 2. The daemonic ergotropy

WD(�
SA, H, M) =∑

i
W(γS

i , H) ≥ W(∑
i

γS
i , H) = W(�S, H) (12)

is larger or equal to ergotropy. Equality holds for the trivial measurement, with the identity as only effect.

This claim has already been proven in a different way in Reference [18]. A second interesting
consequence of the sublinearity of ergotropy is stated in the following lemma:

Lemma 3. Daemonic ergotropy is a convex function of its third argument, which pertains to the
measurement strategy.

Proof. Let us consider a mixed measurement strategy Q = λM + (1 − λ)N with 0 ≤ λ ≤ 1, and the
corresponding daemonic ergotropy. We have

WD[�
SA, H, Q] ≤ λ ∑

i
W[TrA(�

SA I ⊗ Mi), H] + (1 − λ)∑
i

W[TrA(�
SA I ⊗ Ni), H]

=λWD(�
SA, H, M)+(1−λ)WD(�

SA, H, N). (13)

We complete our formal analysis that precedes the presentation of an algorithm for the
identification of the optimal POVM with the following theorem.

Theorem 4. For any state �SA and any POVM M, one can find a POVM M̃ with at most d2 effects, where d
is the dimension of the ancilla, such that

WD(�
SA, H, M) = WD(�

SA, H, M̃). (14)

Proof. The set of POVMs on a d dimensional system is convex and it has been shown that the extremal
points of this set are POVMs with at most d2 effects [22]. A convex function that is defined on a convex
domain takes its maximum on an extremal point. Therefore, there is an extremal POVM E with n
outcomes, 1 ≤ n ≤ d2, that exhibits a daemonic ergotropy that is larger than or equal to the daemonic
ergotropy for M. If equality holds, we choose M̃ = E. Otherwise, there is a mixture M̃ = λE+ (1− λ)I
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between E and a trivial random measurement I with n outcomes and effects Ii = I/n that meets the
requirement, since WD(�

SA, H, I) = W(�S, H) ≤ W(�SA, H, M).

We are now in the position to present an algorithm for the search of the optimal measurement. This
task involves two parts (a) Finding the optimal measurement and (b) Finding the optimal unitaries to
calculate the ergotropies of the conditional states. Assume a fixed measurement. Then, the conditional
states are fixed and one can find the optimal unitaries as discussed in the introduction after Equation (1).
On the other hand, if some d2 unitaries Ui are given, finding the optimal measurement M = (Ei)i is a
semidefinite program (SDP) [23]

min
M

∑
i

Tr(τiEi)

s.t ∑
i

Ei = I

Ei ≥ 0 (15)

where Ei are the effects associated with the POVM M and

τi = TrS(�
SAU†

i HUi). (16)

We thus propose the following see-saw Algorithm 1:

Algorithm 1 Optimise POVM for daemonic ergotropy

1: Choose n different unitaries Ui and calculate τi
2: Solve the SDP above. This will yield a POVM M.
3: Calculate the conditional states γS

i for the POVM M and the optimal unitaries Ui.
4: repeat � Iterate steps 2 and 3
5: until convergence.

We can restrict ourselves to n = d2 different unitaries in the first step because of Theorem 4.
Calculating the daemonic ergotropy after every round of the algorithm will yield a monotonically
increasing sequence that is bounded from above because all involved operators are bounded and will
therefore converge. In the case of the example discussed above, roughly 10 iterations are needed until
the limit is reached within numerical precision. The sequence however sometimes converges to a local
maximum that is strictly smaller than the maximal daemonic ergotropy. Besides observing this in
practice, we also construct such a case in Appendix B.

5. The Role of Quantum Correlations

Notwithstanding the handiness of the algorithm built above, analytical solutions can be found in
some physically relevant cases. The one most pertinent to the scopes of this work [18] is embodied by
quantum-classical S-A states, i.e., states that can be cast in the form

�SA
qc = ∑

j
σS

j ⊗ |j〉〈j|A (17)

with { |j〉A} a set of orthonormal vectors and σS
j unnormalised states. This class of states has attracted

attention from the community interested in the characterization of general quantum correlations, for
it has only classical correlations, that is, it is not entangled and exhibits no quantum discord, if A is
considered as the system the measurement being performed on [24–27]. For these states, we provide
the following theorem. The proof is found in Appendix C.
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Theorem 5. For a quantum-classical state �SA
qc , the maximum daemonic ergotropy is

max
M

WD(�
SA, H, M) = ∑

j
W(σS

j , H). (18)

This value is achieved by performing the projective measurement with effects Pj = |j〉〈j|A (j = 1, . . . , d) on the
ancilla A.

This shows that, in the case of a quantum-classical state, we have an analytic form for the daemonic
gain. To calculate it, we should diagonalise the reduced state �A = TrS(�

SA) of the ancilla. This yields
a unitary to make the state block-diagonal. The individual blocks are then the optimal conditional
states σS

j that one needs in order to compute the daemonic gain.
The above result paves the way to an investigation on the role that quantum correlations play in

the daemonic protocol for work extraction. This important question was already partially addressed
in Reference [18], where a very close relation between daemonic gain and entanglement in pure S-A
states was pointed out, while the link was shown to be looser for the case of mixed resource states.

Here, by using the results reported above, we shed further light on the link between daemonic gain
and quantum correlations. Let us assume that, for a given resource state �SA, the optimal measurement
for daemonic gain is projective, and call Pi = |i〉〈i| the corresponding projections, which can be chosen,
without loss of generality, to be rank one. We write the resource state as

�SA =
S

∑
ij

σS
ij ⊗ |i〉〈j|A, (19)

where the dyads |i〉〈j|A are written in the basis defined by the optimal projectors Pi above. We notice
that all off-block-diagonal terms σS

ij (with i �= j) do not contribute to the daemonic gain, which is thus
the same as the one associated with the quantum-classical state

�SA
qc = ∑

i
σS

ii ⊗ |i〉〈i|A. (20)

That this state is a quantum-classical state is obvious from the definition provided in Equation (17).
This state can be produced by performing the optimal measurement and preparing a pure state on the
ancilla accordingly. This procedure destroys all the quantum correlations, while the daemonic gain
remains unchanged. Quantum correlations in the resource states are thus not useful, if the optimal
measurement is projective. This is especially true if only projective measurements are considered
from the start, which stresses the importance of considering generalised measurements, if one aims at
investigating the impact entanglement may have on daemonic ergotropy.

However, we now show that, even if we allow for the use of arbitrary POVMs, the maximum
daemonic gain for any given Hamiltonian can be achieved by classical-classical states, i.e., states
whose parties share only classical correlations [26]. We do this by providing an upper bound on the
daemonic gain. This bound is tight as it is achieved by a classical-classical state. Let us consider an
explicit formula for daemonic gain, where we have inserted the definitions of ergotropy and daemonic
ergotropy. We have

δW(�SA, H) = min
U

Tr(U�SU† H)− min
(Ek)

min
Uk

∑
k

Tr(Uk�S
k U†

k H). (21)

Using von Neumann’s trace inequality, which reads Tr(AB) ≤ ∑i aibi with ai(bi) the eigenvalues
of A (B) in increasing order, one easily finds that the first term never exceeds 1

dS
Tr(H), where dS is the

dimension of the Hilbert space of S. This value is attained if �S is maximally mixed. The smallest value
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that the second term can take is ε0, the lowest energy eigenvalue. This is achieved for pure conditional
states �S

k . Consequently

δW(�SA, H) ≤ 1
dS

Tr(H)− ε0. (22)

If the dimension of the ancilla dA is greater or equal to dS, this value is attained by using—among
others—the classical-classical state

�SA =
1
dS

dS

∑
i=1

|si〉〈si|S ⊗ |ai〉〈ai|A (23)

and the projective measurement with effects |ai〉〈ai|A, where { |ai〉A} ({ |si〉S}) forms an orthogonal
basis of A (S). In the above example, the bound is also achievable with maximally entangled pure states

|ΨSA〉 = 1√
dS

dS

∑
i=1

|si〉S |ai〉A. (24)

The maximal daemonic gain is, however, not always achieved using pure states, as the following
example shows. Consider the following classical-classical state with a qutrit system and a qubit ancilla

�SA =
1
3
[|0〉〈0|S ⊗ |0〉〈0|A + (|1〉〈1|S + |2〉〈2|S)⊗ |1〉〈1|A]. (25)

For a Hamiltonian with eigenvalues ε0 ≤ ε1 ≤ ε2 one easily finds the daemonic gain δW(�) =

(ε2 − ε0)/3. On the other hand, for any pure state, including maximally entangled states, we have

δW( |Ψ〉SA) ≤ 1
2
(ε1 − ε0), (26)

since the Schmidt-rank of a pure state on a 3 × 2 dimensional system is at most 2. For a suitably
chosen Hamiltonian, such as H/ε1 = |1〉〈1|+ ε|2〉〈2|, with ε = ε2/ε1 > 3/2, the daemonic gain of
�SA [Equation (25)] exceeds the daemonic gain of any pure state of the same system.

6. Multipartite Daemonic Ergotropy

In this section we want to investigate a multipartite adaptation of the daemonic ergotropy protocol.
Concretely, we consider the situation in which N different parties i ∈ {1, ..., N} each own one system
Si, whose energy they can locally measure using their local Hamiltonian H(i). The energy of all systems
combined will then be evaluated using the Hamiltonian

H =
N

∑
i=1

H(i). (27)

Additionally, they can only act on their systems locally, that is using local unitaries. It is only this
restriction that makes the protocol multipartite regarding the systems. If arbitrary global unitaries were
admitted, this would be equivalent to a situation with a single system consisting of N subsystems.

We also take the case into account in which there are M ancillas, each owned by a different party
k ∈ {1, ..., M}. As we are interested in a genuinely multipartite protocol, each party must resort to local
measurements, possibly assisted by classical communication among the parties, yielding outcomes jk.
After all outcomes are obtained, they are publicly announced and every party i performs a unitary
on their system Si, which may depend on all the outcomes�j = (jk)M

k=1. We define the multipartite
daemonic ergotropy Wmult

D to be the maximum amount of energy that can be extracted from a state in
this way.
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Note that, in spite of the previously imposed restrictions, our notion of multipartite daemonic
ergotropy is in fact a generalisation of daemonic ergotropy. This might appear paradoxical at first
glance. However, the daemonic ergotropy protocol is equivalent to the protocol of multipartite
daemonic ergotropy for one system and one ancilla. This especially includes scenarios in which system
and ancilla comprise several subsystems. Studying multipartite daemonic ergotropy is interesting,
because it is also applicable to settings, in which the implementation of global measurements and
unitaries are unfeasible.

As we are only concerned with local measurements, possibly assisted by classical communication
among the parties, all effects of a POVM are of the form

E�j =
M⊗

k=1

Ek
jk . (28)

We denote the respective conditional states of all systems by �S
�j
= Tr(A1...AM)(�

S1...SN A1...AM E�j)

and the conditional state of system Si given a measurement outcome�j as �i
�j
. As before, the multipartite

daemonic ergotropy can then be expressed in terms of the ergotropy as

Wmult
D (�{Sj},{Ak}, H, E) = ∑

�j

N

∑
i=1

W(�i
�j
, H(i)). (29)

With this result, we can show that contrary to the bipartite case [cf. discussions after Equation (3)]
in the multipartite setting projective measurements are in general not optimal for work extraction
even for pure states. In order to see this, consider a state �S1 A and a purification |ψ〉S1S2 A, with
�S1 A = TrS2(|ψ〉〈ψ|S1S2 A). If we now assume that system S2 is equipped with a local Hamiltonian
H(2) = hI, where h is a constant, the multipartite daemonic ergotropy of the purified state is

Wmult
D ( |ψ〉S1S2 A, H, E) = ∑

�j

[
W(�1

�j
, H(1)) + W(�2

�j
, H(2))

]
= ∑

�j

W(�1
�j

, H(1))

= WD(�
S1 A, H(1), E).

(30)

This result stems from the fact that H(2) is completely degenerate and the ergotropy vanishes for
such Hamiltonians. Thus, also the multipartite daemonic ergotropy of the purification is maximised
for the same POVM that also maximises the daemonic ergotropy of �SA. Hence, the purification of
the qutrit-qubit state stated in Equation (5) is an example for a pure state that requires a POVM to
maximise the multipartite daemonic ergotropy. Note, however, that there are also states for which
projective measurements are optimal independently of the choice of the Hamiltonian. The first example
are states that possess a Schmidt decomposition [28], i.e.,

|Ψ〉 = ∑
i

√
λi |iS1 . . . iSn iA1 . . . iAm〉, (31)

with 〈iSl |jSl 〉 = 〈iAl |jAl 〉 = δij∀i, j, l. For qubits, these are exactly the states that become separable as
soon as one particle is ignored [29]. A famous example is the m-partite Greenberger–Horne–Zeilinger
(GHZ) state

|GHZ〉 = 1√
2
( |0S1 . . . 0Sn 0A1 . . . 0Am〉+ |1S1 . . . 1Sn 1A1 . . . 1Am〉), (32)
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for which the local projective measurements on |0〉 and |1〉 are optimal, since the conditional state of
all systems is a pure product state independently of the outcome and its energy can thus be minimised
using local unitaries.

A second class of states for which projective measurements are always optimal are multipartite
quantum-classical states

�S1...Sn A = ∑
i

σS1...Sn
i ⊗ |i〉〈i|A. (33)

Here, we can recover the proof of Theorem 5 to show that the projective measurement with projectors
|i〉〈i| is optimal. The only adaptation to the proof is that the unitaries are now required to be products.
Of course this result is still true in the special case when the ancilla is made up of several parties, such
that the state can be written as

�{Sj}...{Am} = ∑
i

σS1...Sn
i ⊗ |i〉〈i|A1 ⊗ . . . |i〉〈i|Am . (34)

In this case, the optimal measurement consists of the local projective measurements with
effects |i〉〈i|Ak .

7. Conclusions

We have significantly extended the concept of daemonic ergotropy to situations involving
POVM-based information-gain processes, demonstrating that, in general, one should expect
an advantage coming from the use of generalised quantum measurements in ancilla-assisted
work-extraction schemes. While the optimal generalised measurements can be identified analytically
in some restricted—yet physically relevant—cases, we have proposed an SDP-based see-saw algorithm
for their construction. This has led to a number of results shedding light on previously unreported
issues linked to daemonic approaches to quantum work extraction: while the interplay between
quantum correlations and the features of the optimal measurements appears to be intricate, the
structure of entanglement sharing in a multipartite scenario where only local unitaries and POVMs are
used turns out to be key in the performance of ancilla-assisted work extraction.

Our work paves the way to a number of interesting developments aimed at exploring further and
clarifying the relation between quantum features and work-extraction games in quantum scenarios.
On the one hand, it will be very interesting to further compare, quantitatively, the performance of
daemonic protocols under optimal PVMs and POVMs to ascertain the extents of the benefits induced
by the latter class of measurements against the difficulty of practically implement them. On the other
hand, the analysis that we have reported here leaves room to the in-depth assessment of multipartite
daemonic gain against the structure of multipartite entanglement aimed at the identification of
potentially optimal classes of multipartite entangled states, when gauged against their role as a resource
in work-extraction schemes.
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Appendix A. POVM Advantage in Qutrit-Qubit Example

We present the state

�SA =
1
3

2

∑
j=0

|j〉〈j| ⊗ Pj (A1)

with

Pj = Π
(

2π j
3

, 0
)

(A2)

and
Π(α, β) =

1
2
{I + cos(α)σz + sin(α)[cos(β)σx − sin(β)σy]} (A3)

as an example in which higher daemonic ergotropy can be achieved with POVMs compared to
projective measurements, if a Hamiltonian is chosen suitably. Here, we work out the details and show
all necessary calculations explicitely. First, we find the optimal projective measurements. It turns out,
that they can be found independently of the chosen Hamiltonian. With this result and bearing in mind
that the daemonic gain is invariant under unitary transformations of the Hamiltonian, we can then
compute the daemonic ergotropy as a function of the energy spectrum.

Since the ancilla is a qubit, there are only two types of projective measurements: Either, the
projective measurement has one outcome that is obtained with certainty, which makes the measurement
trivial, or the measurement has two outcomes. In the latter case, the effects are rank one. Therefore,
we can compute the maximal daemonic gain for projective measurements by computing it for the
measurement Π = (Π(α, β), Π(α + π, β)) and optimise over the angles α and β afterwards. We have

�S =
1
3
(|0〉〈0|+ |1〉〈1|+ |2〉〈2|),

�S
α =Tr[�SA(I ⊗ Π(α, β))]

=
1
3
{|0〉〈0|Tr[P0Π(α, β)] + |1〉〈1|Tr[P1Π(α, β)] + |2〉〈2|Tr[P2Π(α, β)]}

=
1
3

[
|0〉〈0|1

2
(1 + cos(α)) + |1〉〈1|

(
1
2
− 1

4
cos(α) +

√
3

4
sin(α) cos(β)

)

+|2〉〈2|
(

1
2
− 1

4
cos(α)−

√
3

4
sin(α) cos(β)

)]
,

�S
α+π =Tr[�SA(I ⊗ Π(α + π, β))]

=
1
3

[
|0〉〈0|1

2
(1 − cos(α)) + |1〉〈1|

(
1
2
+

1
4

cos(α)−
√

3
4

sin(α) cos(β)

)

+|2〉〈2|
(

1
2
+

1
4

cos(α) +

√
3

4
sin(α) cos(β)

)]
. (A4)

From the definition of ergotropy one can easily see that the ergotropy of the conditional states γS
α

and γS
α+π will be maximal for cos(β) = ±1. This becomes clear when considering a state

� = a|0〉〈0|+ (b + c)|1〉〈1|+ (b − c)|2〉〈2|, (A5)

127



Entropy 2019, 21, 771

where a, b, c ∈ R and c ≥ 0. Let the Hamiltonian be

H = ε0|ε0〉〈ε0|+ ε1|ε1〉〈ε1|+ ε2|ε2〉〈ε2|. (A6)

Then, the ergotropy can without loss of generality be written as

W = Tr[�H]− min
U

Tr[U�U† H]

= Tr[�H]− [ε0a + ε1(b + c) + ε2(b − c)]

= Tr[�H]− [aε0 + b(ε1 + ε2) + c(ε1 − ε2)], (A7)

where the energy eigenvalues are ordered such that the minimum is achieved. Consequently, we get
ε1 ≤ ε2 since (b + c) ≥ (b − c). Therefore, W increases with c and we can set β = 0 in the above
calculation. Exploiting addition theorems, we can now write

�S
α =

1
6

[
|0〉〈0|[1 + cos(α)] + |1〉〈1|

(
1 + cos

(
α − 2π

3

))
+ |2〉〈2|

(
1 + cos

(
α +

2π

3

)) ]
�S

α+π =
1
6

[
|0〉〈0|(1 − cos α) + |1〉〈1|

(
1 − cos

(
α − 2π

3

))
+ |2〉〈2|

(
1 − cos

(
α +

2π

3

)) ]
.

As one can easily see, an optimal value of α is not unique, as shifting its value by 2π
3 can be

compensated by relabeling the states, which does not affect the daemonic gain. We now aim to find the
optimal α in the interval [−π

3 , π
3 ). When calculating the ergotropy of the conditional states we need to

know the ordering of their eigenvalues

α ∈
[
−π

3
, 0
)
⇒ cos(α) ≥ cos

(
α +

2π

3

)
≥ cos

(
α − 2π

3

)
α ∈

(
0,

π

3

)
⇒ cos(α) ≥ cos

(
α − 2π

3

)
≥ cos

(
α +

2π

3

)
(A8)

In the following calculation, the upper sign will refer to the negative and the lower sign will refer
to the positive interval

δW(�SA, H, Π) = WD(�SA, H, Π)− W(�S, H)

= Tr[�S H]− min
Π

∑
k

Tr[�S A(U†
k HUk ⊗ Πk)]−

[
Tr[�S H]− min

U
Tr[�SU† HU]

]
= min

U
Tr[�SU† HU]− min

Π
∑
k

Tr[�S A(U†
k HUk ⊗ Πk)]

= max
α

{
1
3
(ε0 + ε1 + ε2)−

1
6
(ε0[1 + cos(α)]) + ε1

(
1 + cos

(
α ± 2π

3

))
+ ε2

(
1 + cos

(
α ∓ 2π

3

))
+ ε0

(
1 − cos

(
α ∓ 2π

3

))
+ ε1

(
1 − cos

(
α ± 2π

3

))
+ ε2(1 − cos α)

}
=

1
6
(ε2 − ε0)max

α

(
cos(α)− cos

(
α ∓ 2π

3

))
=

ε2 − ε0

2
√

3
. (A9)
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Now, that we computed the maximal daemonic gain for projective measurements, we compare
this with the daemonic gain that can be achieved by using the POVM M, consisting of the effects 2

3 Pi,
as defined in Equation (A2). In this case, the conditional states are

γS
P0

=
2
9

(
|0〉〈0|+ 1

4
|1〉〈1|+ 1

4
|2〉〈2|

)
,

γS
P1

=
2
9

(
1
4
|0〉〈0|+ |1〉〈1|+ 1

4
|2〉〈2|

)
,

γS
P2

=
2
9

(
1
4
|0〉〈0|+ 1

4
|1〉〈1|+ |2〉〈2|

)
. (A10)

Given the conditional states, we can now compute the daemonic gain as

δW =ε0

(
1
3
− 2

3

)
+ ε1

(
1
3
− 1

6

)
+ ε2

(
1
3
− 1

6

)
=− 1

3
ε0 +

1
6
(ε1 + ε2).

(A11)

Choosing the Hamiltonian H = |ε1〉〈ε1| + |ε2〉〈ε2| provides an example where the maximal
daemonic gain can not be achieved by using projective measurements because

δWproj =
1

2
√

3
< δWM =

1
3

. (A12)

Appendix B. Non-Optimal Convergence of the See-Saw Algorithm

In the following, we construct a case in which Algorithm 1 will yield a sequence of values for
the daemonic ergotropy that does not converge against the maximal daemonic ergotropy. Consider a
state �SA on a system S with a Hamiltonian H and a d-dimensional ancilla A, such that the optimal
measurements are rank-one projective measurements as long as only d-outcome measurements are
considered. Then, there exists an initialisation of Algorithm 1, such that the sequence of daemonic
ergotropies generated by the algorithm limits in the maximal daemonic ergotropy for d-outcome
measurements. In order to see this, consider a measurement Π that is optimal among d-outcome
measurements. For the effects {Π1, . . . , Πd} one finds d optimal unitaries {V1, . . . , Vd}. We now
initialise the algorithm for d2 outcomes in the following way

Ui = Vi, i = 1, ..., d − 1

Ui = Vd, i = d, ..., d2. (A13)

This implies τd = τd+1 = . . . = τd2 , where τi = TrS(�
SAU†

i HUi). Hence, the objective of step 2
of the algorithm simplifies to

min
M

d2

∑
i=1

Tr(τi Mi) = min
M

[
d−1

∑
i=1

Tr(τi Mi)+Tr

(
τd

d2

∑
j=d

Mj

)]
. (A14)

The value of this expression thus depends on d effects M1, . . . , Md−1, ∑d2

j=d Mj. In this case, the
minimum can by assumption only be achieved if the effects are all rank-one. This implies that
the first d − 1 effects are orthogonal rank-one projectors and the remaining effects are rank-one
operators on the remaining one-dimensional subspace and sum up to a rank-one projector. Thus, the
algorithm again finds a d-outcome rank-one projective measurement that is optimal among d-outcome
measurements. The case that was discussed above is of practical relevance, as we have observed in
numerical experiments that randomly initialised unitaries may converge against the configuration
stated in Equation (A13).
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The example discussed in Appendix A meets the requirement that all optimal two-outcome
measurements are rank-one projective measurements. The optimal projective measurements are
calculated in Appendix A. Any two outcome measurement in two dimensions with rank-two effects
can be considered as a mixture of a rank-one projective measurement with white noise. The only
case, in which white noise will not decrease the daemonic ergotropy is, if the conditional states γS

i
[Equation (A8)] are simultaneously diagonalisable by the same diagonalising unitary and with the
same ordering of eigenvalues in diagonal form. This is however not the case, since both states are
already diagonal but the eigenvalues are not in the same order.

In the same example, the maximum daemonic ergotropy cannot be achieved with d-outcome
measurements.

Appendix C. Proof of Theorem 5

In this Appendix we provide a complete proof of the statement made in Theorem 5, which we
repeat here again for easiness of reading. For a quantum-classical state, that is a state that can be cast
in the form

�SA
qc = ∑

j
σS

j ⊗ |j〉〈j|A (A15)

with a set of orthonormal vectors { |j〉A} and unnormalised states σS
j the following theorem holds.

Theorem A1. For a quantum-classical state �SA
qc , the maximum daemonic ergotropy is

max
M

WD(�
SA, H, M) = ∑

j
W(σS

j , H). (A16)

This value is achieved by performing the projective measurements Pj = |j〉〈j|A on the ancilla A.

Proof. The first claim follows directly from the second claim using Equation (3). Therefore, we prove
the second claim by showing that the daemonic gain achieved through any POVM E with effects Ei
and an arbitrary number of outcomes N has an upper bound given by the value corresponding to the
use of projective measurements. We start by computing the conditional states

γS
k = TrA

[
�SA(I ⊗ Ek)

]
=

d

∑
j=1

σS
j 〈j| Ek |j〉. (A17)

It can be easily seen that post-processing can never increase the daemonic ergotropy. This allows
us to assume, without loss of generality, that all effects are rank-one and use Naimark’s extension
theorem [30] to write

γS
k =

N

∑
j=1

σS
j |〈j|φk〉|2, (A18)

where (|φk〉〈φk|)N
k=1 is the Naimark extension of the operators Ek on the extended ancilla space. Then,

( |φk〉))N
k=1 is an orthonormal basis in the extended ancilla space. We also extend ( |j〉)d

j=1, so ( |j〉)N
j=1 is

another orthonormal basis in the extended ancilla space and set σS
j = 0, ∀j > d. We can now interpret

|〈j|φk〉|2 as entries of a doubly stochastic matrix and apply the Birkhoff-von Neumann theorem [31],
which allows us to express this doubly stochastic matrix as a convex combination of permutation
matrices π(n) =

(
π
(n)
jk

)
jk

. This yields

γS
k =

N

∑
j=1

σj ∑
n

pnπ
(n)
jk (A19)
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with probabilities pn.
We insert this result into the formula of the daemonic ergotropy

WD(�
SA, H, M) = Tr(�S H)− ∑

k
min

Uk
Tr(UkγS

k U†
k H). (A20)

As we are interested in the optimal measurement, our only concern is the second term

N

∑
k=1

min
U

Tr(UγS
k U† H)

=
N

∑
k=1

min
U

Tr(U
N

∑
j=1

σj ∑
n

pnπ
(n)
jk U† H)

≥ ∑
k,j,n

pnπ
(n)
jk min

U
Tr(UσjU† H)

=∑
n

pn ∑
j

min
U

Tr(UσjU† H)∑
k

π
(n)
jk

=∑
j

min
U

Tr(UσjU† H), (A21)

which is bounded from below by the value that is achieved for the projective measurement Pj = |j〉〈j|,
as stated above.
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Abstract: We construct a collision model description of the thermalization of a finite many-body
system by using careful derivation of the corresponding Lindblad-type master equation in the
weak coupling regime. Using the example of a two-level target system, we show that collision
model thermalization is crucially dependent on the various relevant system and bath timescales
and on ensuring that the environment is composed of ancillae which are resonant with the system
transition frequencies. Using this, we extend our analysis to show that our collision model can lead to
thermalization for certain classes of many-body systems. We establish that for classically correlated
systems our approach is effective, while we also highlight its shortcomings, in particular with regards
to reaching entangled thermal states.

Keywords: collision model; thermalization; many-body quantum systems

1. Introduction

Computer simulations of finite many-body systems have been challenging and expanding
predictions of statistical mechanics since their first application to test equilibration of an anharmonic
crystal modeled by a chain of masses with fixed-ends [1]. While standard methods to investigate
equilibration and thermalization of quantum systems are based upon master equations [2], so called
quantum collision models are introduced as versatile computational tools for simulating and studying
open quantum systems [3,4]. The simplest collision model consists of a two-level system undergoing
repeated collisions with environment, or ancilla, two-level systems. It is equivalent to a discrete
time Markovian master equation in Lindblad form for the dynamics of the system, for short collision
times [5]. Here, we address the question of how to generalize the collision models to finite quantum
many-body systems for illuminating their thermalization dynamics.

Intuitively, it is reasonable to obtain a Markovian dynamics of the system using collisions if the
colliding ancillae do not interact with any other degrees of freedom since such short time interactions
should not allow any significant memory effects. However, the often implicit assumption of stronger
interaction than the system Hamiltonian and the neglecting of the bath Hamiltonian are not always
valid. Furthermore, using the typical formalism, e.g., [5,6] where energy preserving exchange
interactions are considered, results in a dynamics which drives the system to the same state as ancillae,
meaning that the result is independent from the system Hamiltonian and homogenization, rather than
thermalization, is achieved [7,8]. This problem persists and is compounded for the generalization
of collision models for many-body systems [8,9]. Interestingly, [10] derives a Lindblad type master
equation for collisions with arbitrary interaction strengths and collision times and establishes that
the thermal state of a system at the environment temperature with respect to the Hamiltonian Ĥ0

Entropy 2019, 21, 1182; doi:10.3390/e21121182 www.mdpi.com/journal/entropy133
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is an equilibrium state if [Û, Ĥ0 + Ĥbath] where Û is the unitary evolution operator under the total
Hamiltonian. However, setting Ĥ0= Ĥsystem and finding the necessary interaction type and strength
to satisfy this commutation property remains as a challenging open problem so far. At variance
with this and other works that study collision models starting from a “global" unitary picture [9,10],
in this work we propose a master equation derivation inspired by the well-known derivation for a
time-independent system–bath interaction in the weak coupling regime [2].

Despite its drawbacks in describing Markovian open system dynamics, quantum collision models
are still a good candidate for understanding the quantum thermodynamical phenomena from a
microscopic perspective [11]. For example, the microscopic Markovian master equation derivation in
[2] does not account for the information loss of the system about its initial state, while it is evident
using the collision model that the lost information is kept by the entanglement between the system
and ancillae [12]. Another study analyzes the entropy generation and distribution in a collision model
and proves the asymptotic factorization of the total density matrix of system and environment into
the density matrices of the system and the environment for a two level system in the strong coupling
regime [13]. More complex collision models involving ancilla–ancilla collisions allow for the derivation
of completely positive non-Markovian dynamics [14–16]. The controllable degree of non-Markovianity
and its effect on the dynamics of quantum coherence has been examined [17]. Further attempts to
study non-Markovian dynamics are made by using initially entangled ancillae [18], introducing time
overlap of two consecutive collisions [6,19,20] and using a two-spin system in which only one of the
pair interacts with the environment resulting in a Markovian dynamics for the composite system,
while tracing out the spin interacting with the bath gives a non-Markovian dynamics for the remaining
spin [21]. The versatility of collision models has resulted in other interesting research directions, such
as the introduction of collisions with non-thermalized ancillae to study non-equilibrium effects in
quantum thermodynamics [8,11,22–25] and the generation of multi-qubit entanglement via a shuttle
qubit colliding with disjoint qubit registers [26].

This work aims to examine the conditions required for thermalization in a Markovian collision
model using two level ancillae. To this end, we will first carefully examine the microscopic derivation of
a Lindblad master equation for a two level system in the weak coupling regime from [2] and introduce
a time dependent interaction Hamiltonian in Section 2, where we also assess each assumption made
for the derivation and examine their validity. Section 3 examines our collision model for many-body
systems for both non-entangled and entangled energy eigenstates with an example for each of these
cases illustrating how our proposed collisional route to many-body thermalization works. Finally, we
conclude in Section 4.

2. Derivation and Validity of Lindblad Master Equation

We begin by following the microscopic derivation of the Lindblad master equation given in
[2], however allowing for a time-dependent interaction Hamiltonian instead of using the second
order approximation of the unitary evolution operator for the system and the ancilla with respect to
the collision time [21]. The dynamics of the system and the bath is governed by the Liouville-von
Neumann equation

d
dt

ρ(t) = −i[ĤI(t), ρ(t)]. (1)

Integrating this equation with respect to time and plugging in the expression for ρ(t) in the commutator
twice with the assumption of TrB([ĤI(t), ρ(0)])=0 we arrive at

d
dt

ρ(t) = −
∫ t

0
ds[ĤI(t), [ĤI(s), ρ(s)]]. (2)
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Applying the Born approximation by neglecting system–bath entanglement and the effect of the system
on the bath allows us to write an equation for the dynamics of the system by tracing over the bath
degrees of freedom

d
dt

ρs(t) = −
∫ t

0
dsTrB([ĤI(t), [ĤI(s), ρS(s)⊗ ρB]]). (3)

At this point, the dynamics of the system is still, in general, non-Markovian and we have not made
any explicit assumptions about the nature of the interaction. However, the finite time of a given
collision may serve to justify the constancy of the bath density matrix along with the weak interaction
assumption. Putting aside the validity of Born approximation, we need to explicitly assume that the
density matrix of the system does not change significantly during the interaction with a single ancilla,
which is justifiable for short collision times, in order to replace the past states of the system with its
present state and to obtain the Redfield equation

d
dt

ρs(t) = −
∫ t

0
dsTrB([ĤI(t), [ĤI(t − s), ρS(t)⊗ ρB]]). (4)

The standard master equation derivation in [2] for a time-independent interaction Hamiltonian
continues with the assumption that the integrand above vanishes quickly enough to extend the
integral to infinity with negligible difference on the system dynamics. In our case of short time
collisions starting after t = 0, this extension is not an assumption to be checked as the integrand is
explicitly zeroed out for s > t by the time-dependent strength of the interaction Hamiltonian. For
simplicity, we assume that each ancilla interacts with the system once and these collisions start with a
period of τp and a duration of τc.

After explicitly defining our collision model, we can investigate the effects of the finite time
interactions on the dynamics. As in the derivation in [2], we will introduce the interaction Hamiltonian
in the Schrödinger picture

ĤI = ∑
α

Âα ⊗ B̂α (5)

where the Hermitian operators Âα and B̂α act on the system and the bath respectively. After
decomposing the operators Âα into operators Âα(ω) based on the energy transitions with frequency ω

generated on the eigenstates of the system Hamiltonian and plugging the interaction picture interaction
Hamiltonian in Equation (4), we obtain

d
dt

ρs(t) = ∑
ω,ω′

∑
α,β

eit(ω′−ω)Γαβ(ω)
(

Âβ(ω)ρs(t)Â†
α(ω

′)

− Â†
α(ω

′)Âβ(ω)ρs(t)
)
+ h.c.

(6)

where Γαβ(ω) is the one-sided Fourier transform of the reservoir correlation functions

Γαβ(ω) =
∫ ∞

0
dseisωTrB(B̂†

α(t)B̂β(t − s)) (7)

where operators are defined in the interaction picture.
For the evaluation of bath correlation spectra, we must specify our open system setup which

consists of the same basic ingredients as [6,19,20,25]. We first consider a two-level system with
time-independent Hamiltonian

ĤS = hsσ̂z. (8)

135



Entropy 2019, 21, 1182

The reservoir consists of, an in principle infinite number of, two-level systems prepared at an inverse
temperature βb=1/(kBT) for a bath Hamiltonian

ĤB =
N

∑
n=1

hbσ̂zn. (9)

where the index n indicates that the operator acts on the n-th spin of the reservoir. The time-dependent
interaction Hamiltonian in the Schrödinger picture is given by

ĤI =
N

∑
n=1

gn(t)σ̂x ⊗ σ̂xn (10)

where the operator without index acts on the system. For simplicity, we assume that the interaction
strength is exactly zero before and after the interaction, remains constant during the collision, and
has the same magnitude for all collisions. It should be noted that the interaction in Equation (10) is
different from the often considered partial swap case which is known to lead to homogenization [4]
rather than thermalization [7]. Knowing the collision period and duration, we can now define the
time-dependent interaction strengths as

gn(t) = θ(t − (n − 1)τp)θ((n − 1)τp + τc − t)g (11)

where θ denotes the Heaviside step function.
Before explicitly calculating the bath correlation spectra, we can make some simplifications. As

each ancilla has one interaction component in the form of Equation (5), the indices α and β in fact
denote the index of the corresponding ancilla. Also, knowing that all ancillae are prepared in a thermal
state, it is easy to prove that cross correlations vanish and we can arrange Equation (6) in the form

d
dt

ρs(t) = ∑
ω,ω′

N

∑
n=1

eit(ω′−ω)Γn(ω)
(

Ân(ω)ρs(t)Â†
n(ω

′)− Â†
n(ω

′)Ân(ω)ρs(t)
)
+ h.c. (12)

After some manipulation, we find the explicit form of reservoir correlation spectra

Γn(ω) = g2θ(t − (n − 1)τp)θ((n − 1)τp + τc − t)∫ ∞
0 dseisω(ρn

eee2ihbs + ρn
gge−2ihbs)θ((t − s)− (n − 1)τp)θ((n − 1)τp + τc − (t − s))

= g2θ(t − (n − 1)τp)θ((n − 1)τp + τc − t)
∫ t−(n−1)τp

0 ds eisω(ρn
eee2ihbs + ρn

gge−2ihbs) (13)

where ρn
ee and ρn

gg are excited and ground populations of n-th ancilla. It is clear that the bath correlation
spectra are time-dependent and they are zeroed out by the step functions before or after the collision.
We must evaluate this expression for the cases ω=±2hb and ω �=±2hb separately,

Γn(ω �= ±2hb, t) = −ig2

(
ρn

ee(exp(i(t − (n − 1)τp)(ω + 2hb))− 1)
ω + 2hb

+
ρn

gg(exp(i(t − (n − 1)τp)(ω − 2hb))− 1)
ω − 2hb

)
(14)

If ω = ±2hb, one of the complex exponentials in the integrand simplifies and gives a linearly
growing term

Γn(ω = −2hb, t) = g2(ρn
ee(t − (n − 1)τp))−

iρn
gg(exp(i(t − (n − 1)τp)(ω − 2hb))− 1)

ω − 2hb

Γn(ω = 2hb, t) = g2(ρn
gg(t − (n − 1)τp))−

iρn
ee(exp(i(t − (n − 1)τp)(ω + 2hb))− 1)

ω + 2hb

(15)
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The final step of the derivation of a Lindblad type master equation is the decomposition of bath
correlation spectra into its real and imaginary parts. The imaginary part results in an additional
Hamiltonian term, the Lamb shift acting on the system. However, as this is not relevant to the
equilibration of the system, we will neglect it in what follows. As we explicitly show in Figure 1 it is
also reasonable to neglect situations where ancillae spins are not on resonance with the system, i.e., we
only consider hb =hs. In this case, the bath correlation spectra consists of a real and linearly growing
term and a rotating term with real and complex parts. The linearly growing term generates a dynamics
similar to a Lindblad master equation with time-independent interactions, while the real part of the
rotating term can be neglected assuming that the relaxation of the system is much slower than the
dynamics of the closed system. The master equation in Lindblad form can be obtained after applying
these assumptions to Equation (12) together with the secular approximation resulting in

d
dt

ρs(t) = Re(Γ(2hs, t))(σ̂−ρs(t)σ̂+ − 1
2
{σ̂+σ̂−, ρs(t)}) + Re(Γ(−2hs, t))(σ̂+ρs(t)σ̂− − 1

2
{σ̂−σ̂+, ρs(t)}) (16)

where the Γ function contains the information about all of the collisions

Re(Γ(ω, t)) = g2
N

∑
n=1

(δ′(ω − 2hb)ρ
n
gg + δ′(ω + 2hb)ρ

n
ee)(t − (n − 1)τp)θ(t − (n − 1)τp)θ((n − 1)τp + τc − t), (17)

where N denotes the number of ancilla spins. The function δ′(ω) is defined as one for ω=0 and zero
elsewhere, not to be confused with Dirac delta function. Note that this equation neglects the case
where the ancilla is not in resonance with the system and it is used throughout Section 3. However, the
off-resonance effects in Figure 1 need to be interpreted using the bath correlation spectrum described
in Equation (14).

0

0.2

0.4

0.6

0.8

1.0

Figure 1. Simulation results for the thermalization of a single two-level system using our collision
model. We show the fidelity of the system with the target thermal state as a function of the bath
ancilla frequency and number of collisions. We clearly see that thermalization occurs when the system
interacts with bath frequencies that are on resonance. We have fixed T=10 mK, g=1 MHz, hs =1 GHz,
t=200 ns, and ρs(0)= |1〉〈1|.

The transition from Equation (12) to Equation (16) takes the secular approximation for granted,
however it can be justified by some assumptions relating three different time scales of the open system
dynamics: The natural evolution times of the system and ancillae and the duration of the collision, all
of which play a critical role in constraining the validity of the derived master equation. We assume
that the interaction vanishes before any significant change on the density matrix of the ancilla can
happen. We also assume that the variation of the system state during one collision is small, which
further constrains the maximum collision time. On the other hand, we also want to eliminate the
rotating terms of the bath correlation spectra by averaging them over multiple periods of the system
dynamics with a slow relaxation of the system which leads to a lower bound of the collision duration.
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After justifying the derivation of Equation (16), it is straightforward to find the
Kubo–Martin–Schwinger (KMS) condition for n-th collision exploiting the fact that the ancillae are
prepared in a thermal state, resulting in vanishing cross bath correlations.

Re(Γn(2hs, t))
Re(Γn(−2hs, t))

= exp(2βhs) =
ρn

gg

ρn
ee

= exp(2βbhs) (18)

The interpretation of this equation is obvious: The thermal state of the system at the inverse bath
temperature βb is the unique steady state of the Markovian dynamics generated by collisions with
ancillae prepared in thermal state [2]. This result was also predicted in complementary works on
collision models [5,25] derived using different parameter regimes.

In Figure 1 we simulate our collision model sweeping through a range of frequencies for the
bath ancillae and show the final state fidelity between the system and its target thermal state. The
simulation consists of the unitary evolution of the system and ancillae during the collision time with
the sum of system, bath, and interaction Hamiltonians described above and the ancillae are traced out
after each collision without interacting again with the system or other with ancillae. We clearly see
that when the ancillae are close to resonance the collision model leads to thermalization of the system.
Conversely, when the ancillae are far detuned from hs we find the system dynamics are almost frozen.
This result can be predicted theoretically by calculating the real part of bath correlation spectrum
without assuming resonance. Equation (14) has two terms which are inversely proportional to the
difference between the transition frequency ω and ±2hb. Assuming a small detuning from either 2hb
or −2hb, the other term becomes negligibly small. After dropping the small term, evaluating the real
part for the other part gives

Re(Γn(∓2hs, t)) =
ρn

ee,ggg2sin(δt)
δ

, δ = ∓2hs±2hb (19)

ignoring the Heaviside step functions and taking the beginning of each collision as t = 0. Its limit for
δ → 0 recovers the case of resonance. The off-resonance dynamics depend heavily on the product δτc.
As the average of sine function over a period is zero, we can conclude that the effect of the dissipative
term should be negligible if the product δτc = 2kπ where k is an integer and the dynamics is slow
enough. On the other hand, in the case where the product is an odd multiple of π, the average of
sine function is not zeroed out and we observe thermalization as seen in Figure 1. Furthermore, it is
straightforward to prove that the fastest thermalization is achieved in the case of resonance using
the identity

sin(δt)
δ

≥ t, t ≥ 0. (20)

The results in Figure 1 confirm the range of validity of our master equation and are in keeping
with other results in the literature [25]. Furthermore, the clear importance of on-resonance ancillae
indicates that, under suitable constraints, only particular bath frequencies are relevant for ensuring
the system thermalizes. Thus, we can exploit this feature to explore the requirements for achieving
thermalization for many-body systems.

3. Thermalization of Finite Many-Body Systems

3.1. Classically Correlated Systems

Let us consider the 1D Ising chain described by the Hamiltonian

ĤS =
N

∑
i=1

hiσ̂zi +
N−1

∑
i=1

Jiσ̂ziσ̂z(i+1). (21)
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As stressed in the previous section, to achieve thermalization we require the driving frequency of the
system and the ancillae to be the same. In the case of interacting many-body systems, it should be
clear that there will be a range of frequencies, each of which will be related to the various transition
frequencies of the many-body system. Thus, to examine the requirements to reach thermalization we
use the expression of the interaction Hamiltonian in the form

ĤI =
N

∑
i=1

Ni

∑
n=1

∑
ω

gi,n(t)σ̂xi(ω)⊗ σ̂x(i,n) (22)

where sum over ω denotes the decomposition of each spin-ancilla collision operator into the different
energy transitions it generates. We can make a temporary simplification to make the illustration of
many-body system thermalization easier by replacing the ancillae with a set of harmonic oscillators
forming a continuous spectrum prepared at an inverse temperature βb =1/(kBT). In this case, we can
find the energy transitions generated by each term of the interaction Hamiltonian with a partition of
the Hilbert space of the whole system based on each nearest neighbor configuration with respect to a
reference spin denoted as i. We can write all terms of the system Hamiltonian involving i-th spin as

Ĥi = (Ji−1σ̂z(i−1) + hi + Jiσ̂z(i+1))σ̂zi (23)

where i �= 1, N as the first and last spins of the Ising chain do not have a left and right neighbor,
respectively. The Hamiltonian at the end points i = 1, N can be found by omitting the term
corresponding to the lacking neighbors i=0, N + 1 in the above equation.

We can now define the transition frequencies generated by flipping the i-th spin in terms of the
state of neighbor spins

ω
(∣∣∣↑i−1↑i+1

〉)
= 2(Ji−1 + hi + Ji),

ω
(∣∣∣↑i−1↓i+1

〉)
= 2(Ji−1 + hi − Ji),

ω
(∣∣∣↓i−1↑i+1

〉)
= 2(−Ji−1 + hi + Ji),

ω
(∣∣∣↓i−1↓i+1

〉)
= 2(−Ji−1 + hi − Ji). (24)

Decomposing the operator σ̂x as
σ̂xi = σ̂−i + σ̂+i, (25)

we obtain two dissipators for each term of the interaction Hamiltonian. The frequencies in Equation (24)
correspond to the transitions generated by σ̂−i while their negatives correspond to σ̂+i. Expressing the
frequencies as a function of nearest neighbor configuration for each spin results in the master equation

d
dt

ρs =
N

∑
i=1

∑
{si}

(
γi(ω(si))D(ρs, σ̂

si
−i) + γi(−ω(si))D(ρs, σ̂

si
+i)
)

. (26)

Here, {si} is a short hand notation for the respective arguments of the frequencies in Equation (24),
corresponding to the set of basis vectors of the Hilbert space of the neighbor spins of i-th spin. The
notation σ̂

si
±i implies that this operator can be decomposed as

σ̂
si
−i = |↓〉i 〈↑|i ⊗ |si〉 〈si|

σ̂
si
+i = (σ̂si

−i)
† (27)

and D(ρ, ô) is defined by

D(ρ, ô) = ôρô† − 1
2
{ô† ô, ρ}. (28)
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Although Equation (26) is derived for a continuous set of harmonic oscillators, each term
appearing in the double sum is similar to the master equation for a two-level system with the driving
frequency depending on the nearest neighbor configuration. Therefore, the implementation of a
similar master equation with collisions generating one spin flip operations with ancillae driven at the
frequencies of single spin transitions, as illustrated in Figure 2, is possible if the secular approximation
is valid such that the ancillae cannot generate any transitions other than those corresponding to its
driving frequency. The results of Section 2 on the KMS conditions for the bath correlation spectra
can be generalized for the master equation of 1D Ising model and this ensures that if all ancillae are
prepared at an inverse temperature βb, the thermal state of the system at the same temperature is a
steady state of the master equation [2]. However, the uniqueness of the stationary solution requires
additional constraints. A sufficient condition for the uniqueness can be stated as follows [27,28]:

Condition 1. Let L be the Lindblad superoperator describing the time derivative of the density matrix and
σ̂±i(ω(si)) operators the generators of L. The dynamical semigroup generated by L is relaxing in the sense that
it drives the density matrix to a unique final state as time tends to infinity regardless of the initial state if the
linear span of the generators is an adjoint set and the bicommutant of the generators is the set of all bounded
operators acting on the Hilbert space of the system.

(a) (b)

Figure 2. Sketch of our proposed collision model thermalizing (a) a two-spin Ising model and (b) a
many-body spin model. Complete thermalization requires separate ancillae each corresponding to a
spin flip transition frequency of the system.

In order to check the applicability of Condition 1 to the thermal bath with local system–bath
interactions, we start by checking the adjoint property of the linear span of generators. As established
in [27], this follows since σ̂+i(ω(si)) = σ̂†

−i(ω(si)), meaning that the adjoint of each generator is also a
generator. The second property is easy to prove using the fact that σ̂± operators only commute with
themselves and the identity operator and the only operator commuting with all σ̂±i(ω(si)) for all i
and si is the identity operator.

To simulate thermalization for a two-site Ising model, Equation (21) with N = 2, we require
collisions corresponding to the one-spin flip transition frequencies as illustrated in Figure 2a. As each
of the spin has a single neighbor, there are two nearest neighbor configurations, resulting in a total of
four energy transitions for the whole system. For larger systems, each spin in the bulk of the chain has
four different energy transitions and requires more ancillae to successfully thermalize, as shown in
Figure 2b.

We implement our collision model for the two-site Ising chain, considering when the collisions
with the various ancillae happen “sequentially”, i.e., the whole system collides with one of the ancillae
corresponding to one of the energy transitions at a time and the colliding ancilla is subsequently traced
out before the next collision occurs. We also consider “simultaneously” occurring collisions where
the whole system interacts with all of the four ancillae corresponding to different energy transitions
at once, after which they are traced out. The minimum energy states are up-down and down-up
states and these states cannot be prepared by a local master equation as the collisions are identical,
verifying the effect of the system Hamiltonian on open system dynamics resulting in a global master
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equation. In Figure 3 we show that our collision model gives rise to thermalization for interacting
systems. Furthermore, as the cross bath correlations vanish for a thermal bath, we expect that a time
overlap between the collisions (such as that which occurs in the simultaneous collision case) does not
change the form of the equation, and our numerical results confirm that both approaches generate an
almost identical evolution.

Figure 3. Simulation of a 2-spin Ising model with parameters h1 = h2 = 500 MHz and J = 1 GHz and
corresponding transition frequencies ω1 = ω3 = 1.5 GHz and ω2 = ω4 = 0.5 GHz. All ancilla-system
spin coupling strengths are set as 1 MHz and the collision times are fixed as 400 ns. Fidelity after each
step consisting of one collision for each one spin transition frequency with respect to the thermal state
of the system at the temperature of ancilla spins Tb = 10 mK. The initial state is the thermal state of the
system at infinite temperature.

3.2. Entangled Systems

The Ising model considered in the previous analysis has eigenvectors which are product states
without any entanglement among the spin sites. In this section we elaborate on the validity of our
collision model for realizing thermalization in more generic many-body systems, particularly those
that exhibit entanglement. Addressing such an issue in full generality is a formidable task. Indeed,
unlike in the case of non-entangled eigenstates where the generation of single-spin transitions for each
interacting neighbor configuration was sufficient, even determining the minimum necessary number
of collisions for the uniqueness of the equilibrium state is difficult for entangled states. As such we
will restrict to a specific example in this section.

We begin our discussion by reminding that the matrix representation of any Hamiltonian has an
eigenvalue decomposition in the form

Hs = UDU† (29)

where D is a diagonal matrix with the values of eigenenergies on the diagonal, U is a unitary matrix
such that its columns are the eigenstates of the Hamiltonian. Following our master equation derivation,
each term of the interaction Hamiltonian is decomposed into different energy transitions, giving rise
to operators in the form

Âkl =
∣∣ψ′

k
〉 〈

ψ′
l
∣∣ (30)

where
∣∣ψ′

k
〉

denotes the k-th eigenstate of the Hamiltonian, which is also denoted by the k-th column of
the matrix U. This simple form of the energy transition operators can also be expressed in the basis
consisting of the Kronecker product of the bases of the subsystems as

Âkl =
N

∑
i=1

N

∑
j=1

aij,kl |i〉 〈j| (31)
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where N is the dimension of the Hilbert space of the system and states i and j are selected from the
basis constructed by the Kronecker product of the subsystems, therefore these states are not entangled.
Knowing that the k-th column of the matrix U is equal to

∣∣ψ′
k
〉
, we can write

aij,kl = U∗
kiUlj (32)

where Uab denotes the element of U at the a-th row and b-th column.
The existence of coefficients aij,kl indicates that there is a one-to-one linear map from the vectors

in the basis of eigenstates to the vectors in the Kronecker product basis. Furthermore, we can vectorize
the indices i and j into one index u and the indices k and l into another index v. By these reductions,
we can express our linear map in the form of a matrix M such that

Muv Av = xu (33)

where the vectors A and x are the vectorized representations of an operator in the basis of eigenstates
and in the Kronecker product basis, respectively, with the sum running over the repeated index v. As
the matrix M represents a one-to-one linear map, its inverse exists and any vector Au can be expressed
in the form

M−1
uv xv = Au. (34)

Using this expression, we can conclude that a single subsystem transition generated by the interaction
Hamiltonian, which can be expressed with a vector xv, with one non-zero element can generate
multiple energy transitions by the multiplication by the inverse of the matrix M used for conversion
into eigenstate basis. In this case, the thermalization conditions depend on the structure of the matrix M,
however the thermalization of any many-body system is in principle possible with a sufficient number
of energy transitions generated by the collisions with two-level ancillae driven at the corresponding
transition frequencies, the appropriate choice of interaction Hamiltonian, and the validity of our
assumptions for the master equation.

As a concrete example consider a two-spin anisotropic XY-model with Dzyaloshinskii–Moriya
(DM) interaction in z-direction

ĤXY = J(σ̂x1σ̂x2 − σ̂y1σ̂y2 + σ̂x1σ̂y2 − σ̂y1σ̂x2) (35)

with the eigenstates and eigenenergies [29]

|ψ1,2〉 =
|↓↓〉 ± |↑↑〉√

2
, |ψ3,4〉 =

|↓↑〉 ∓ i |↑↓〉√
2

;

E1,3 = 2J, E2,4 = −2J.
(36)

Using the definition of operators Âkl , we can express the one spin flip operators as

|↓↓〉〈↑↓| = −i(Â13 + Â23 − Â14 − Â24)/2

|↑↑〉〈↑↓| = i(Â13 − Â23 + Â14 − Â24)/2

|↓↓〉〈↓↑| = (Â13 + Â23 + Â14 + Â24)/2

|↑↑〉〈↓↑| = (Â13 − Â23 + Â14 − Â24)/2. (37)

We can then describe the spin ladder operators acting on the first site as

σ̂−1 = |↓↑〉 〈↑↑|+ |↓↓〉 〈↑↓|

=
1
2
(Â31 − Â32 + Â41 − Â42 + i(−Â13 − Â23 + Â14 + Â24))

σ̂+1 = σ̂†
−1. (38)
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It is clear that the Â41 and Â32 terms of the ladder operators and their Hermitians generate state
transitions with non-zero energy difference. Other state transitions are between the states with the
same energy which cannot be generated via with collisions with ancilla spins which do not have
internal energy as we have assumed hs, hb >> g. If the zero energy transitions were allowed, we
could make transitions from any state of the system to another state using intermediate transitions,
impling the uniqueness of the thermal state as the equilibrium point of the dynamics [30]. In our
case, this condition is not satisfied, and this leads to the equilibrium state of the system exhibiting an
initial state dependence. Our numerical simulations in Figure 4 show that if the system is initially
prepared in some thermal state, but not in equilibrium with the bath, a Gibbsian thermal state at the
environment temperature is achieved. However, it is not guaranteed for generic non-equilibrium
initial states, such as |1〉〈1|. We understand this as follows: the choice of initial state as a thermal state
at some temperature guarantees that the population of the states having the same energy is equal, thus
implying that the zero frequency transition terms will not contribute to the dynamics of the system
even if they are generated by the collisions. This means we can assume that the zero frequency terms
exist and consequently the equilibrium state is the thermal state at the environment temperature.

Figure 4. Simulation of a 2-spin anisotropic XY model with J = 1 GHz with different initial states of
the system. Collision time is set as 400 ns with an ancilla-system interaction strength of 1 MHz. Fidelity
after each collision between an ancilla driven with the sole non-zero transition frequency of the system
ω = 4 GHz and the first spin of the system each one spin transition frequency with respect to the
thermal state of the system at the temperature of ancilla spins Tb = 10 mK.

Another possible issue regarding thermalization of entangled many-body systems by our collision
model is the additional terms of the master equation due to the non-vanishing bath cross correlations
arising due to the decomposition of each term of the interaction Hamiltonian acting on a single
subsystem into multiple energy transition terms, which implies that the bath operator of those energy
transition terms are the same. For this reason, the positive definiteness of the bath correlation matrix
for every frequency needs to be asserted for the uniqueness of the equilibrium state [27].

In summary, our example of two spin anisotropic XY model shows that our collision model
can generate multiple energy transitions without the explicit calculation of the M matrix. Although
thermalization is not guaranteed, this analysis nevertheless provides insight about how an entangled
many-body system with non-degenerate energy levels can be thermalized as long as the secular
approximation used in the master equation derivation remains valid and the bath correlation matrix is
positive definite.

4. Conclusions

In this work we have presented a collision model using two level ancillae that leads to
thermalization in the weak coupling regime, even for certain finite many-body systems. By carefully
assessing the relevant timescales present, we showed that when the ancillae are tuned inline with
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the transition frequencies of the system, thermalization can be achieved. This is at variance with
other schemes commonly examined in the literature where system and environment interact via a
partial swap [6,20]. Our master equation derivation for 1D Ising model can be straightforwardly
generalized to N-dimensional spin lattices by redefining the sums over the Hilbert space of neighbor
spins. In the case of Ising spin lattices with more than one dimension, the system can be tuned to be
an integrable or non-integrable system depending whether the external magnetic fields are turned
off or on respectively [31] and our collision model achieves thermalization in both of the cases. If the
eigenstates of the system Hamiltonian are entangled, our collision model gives valuable insight on the
dependence of equilibrium state on the initial condition; in particular reveals the conditions to engineer
Gibbsian thermal state at the environment temperature. Remarkably, for entangled eigenstates, the
decomposition of single-spin transition operators into multiple energy transition operators may remove
the necessity of bath interaction with each spin in the system.

Beyond the clear interest in understanding the phenomenology of thermalization using a collision
model and its possible extensions to non-Markovian and non-equilibrium dynamics, our collision
model also can be viewed as a versatile and implementable artificial environment acting as a
temperature knob, as similarly considered in [30,32]. Contrary to the artificial temperature knob
proposal in [30], our proposal satisfies the KMS condition for thermalization instead of an optimized
approximation depending on tunable system parameters and it is promising to be scalable for large
many body systems. The proposal in [32] relies on a similar idea to our proposal; its authors propose
to sweep all possible energy transitions of the system with a slowly varying bath Hamiltonian strength,
which can be considered as a different way of obtaining the effect of ancillae colliding to a subsystem
with different bath Hamiltonian strength. Obviously, making use of only relevant transition frequencies
leads to much faster thermalization and it is possible to get rid of some timescale constraints of [32] as
the ancillae are supposed to be prepared in a thermal state for a time independent bath Hamiltonian
before the collision in our proposal.

Our proposal can also lead to the cooling of the target system if it is possible to keep ancilla spins
colder than the environment temperature. Indeed we mention two possible methods of spin cooling
for the preparation of a cold environment that our scheme is well suited to. The first one is the use of
frequent measurements on a two-level system interacting with a non-Markovian environment which
brings the mean energy of interaction Hamiltonian to zero in order to reduce the total energy of the
two-level system and its environment [33]. The application of this idea may suffer from the challenges
posed by the necessary minimum frequency of the measurements. Another idea is to use quantum
coherent or entangled two-level systems [34–36] to engineer the temperature of a two-level target
system, which can then be used as an ancilla for the many-body system to be thermalized.

Our results can have practical significance for suggesting design principles of quantum
thermalizing machines for finite many-body systems. Such devices would be compact as they can
consist of few ancillae as artificial environment; they would be fast as they can engineer the target
thermal state with high fidelity after a small number of collisions describing a unitary route to
thermalization. These properties can be valuable for quantum thermal annealing [30] and quantum
simulation applications [37], for example using superconducting circuits.
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35. Dağ, C.B.; Niedenzu, W.; Özaydın, F.; Müstecaplıoğlu, O.; Kurizki, G. Temperature Control in Dissipative
Cavities by Entangled Dimers. J. Phys. Chem. C 2019, 123, 4035–4043. [CrossRef]
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