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Abstract: We present here the recent advances in exploring new techniques related to interferometric
synthetic aperture radar (InSAR) signal and data processing and applications.

1. Introduction

This Special Issue “InSAR Signal and Data Processing” of Sensors collects eleven articles from
several InSAR researchers over several countries. The selected articles cover both InSAR signal
processing techniques and their practical applications in Earth sciences. Readers of all levels will be
able to gain a better understanding of InSAR as well as the when, the how, and the why of applying
this technology.

2. Special Issue Contents

The first paper [1], “Polarimetric Stationarity Omnibus Test (PSOT) for Selecting Persistent Scatterer
Candidates with Quad-Polarimetric SAR Datasets”, proposes the polarimetric stationarity omnibus
test method for improving the spatial density and the phase quality of persistent scatterer (PS) points.
The experimental results show that the proposed method can achieve the polarimetric optimization of
the interferometric phase of the PS, suppress the sidelobe of the strong scatterer effectively, and hence
better reveal the details of the ground object. The second article [2], “Coherent Markov Random
Field-Based Unreliable DSM Areas Segmentation and Hierarchical Adaptive Surface Fitting for InSAR
DEM Reconstruction”, proposes a novel InSAR digital elevation model reconstruction method using a
digital surface model generated by an InSAR system with a coherent Markov random field technique.
The comparison results shown in the experimental section indicate the superiority of the proposed
algorithm. The third paper [3], “Multibaseline Interferometric Phase Denoising Based on Kurtosis
in the NSST Domain”, and the fourth article [4], “Extended Phase Unwrapping Max-Flow/Min-Cut
Algorithm for Multibaseline SAR Interferograms Using a Two-Stage Programming Approach”, focus on
phase denoising and phase unwrapping techniques of multibaseline InSAR, respectively. The fifth
paper [5], “Mining-Induced Time-Series Deformation Investigation Based on SBAS-InSAR Technique:
A Case Study of Drilling Water Solution Rock Salt Mine”, shows an InSAR case study concerning
salt extraction based on solution mining. The study applies the SBAS-InSAR technique to obtain
the spatial–temporal characteristics of the ground subsidence caused by solution mining activities.
The sixth paper [6], “Phase Difference Measurement of Under-Sampled Sinusoidal Signals for InSAR
System Phase Error Calibration”, discusses the issue related to phase error calibration in spaceborne
single-pass InSAR. The proposed method of the phase difference measurement of the high-frequency
internal calibration signal of the InSAR system is suitable for the phase error calibration. As the
highest elevation permafrost region in the world, the Qinghai-Tibet Plateau (QTP) permafrost is quickly

Sensors 2020, 20, 3801; doi:10.3390/s20133801 www.mdpi.com/journal/sensors1



Sensors 2020, 20, 3801

degrading due to global warming, climate change, and human activities. The seventh article [7],
“Permafrost Deformation Monitoring Along the Qinghai-Tibet Plateau Engineering Corridor Using
InSAR Observations with Multi-Sensor SAR Datasets from 1997–2018”, presents an application using a
time-series InSAR technique with multiple SAR datasets to monitor the permafrost ground deformation
along the QTEP from 1997 to 2018. GaoFen-3 is a new Chinese InSAR remote sensing satellite. The
eighth article [8], “ScanSAR Interferometry of the Gaofen-3 Satellite with Unsynchronized Repeat-Pass
Images”, discusses interferometric analysis and processing methods for GaoFen-3 images in ScanSAR
mode. The ninth paper [9], “A Highly Efficient Heterogeneous Processor for SAR Imaging”, concerns
the hardware design of a SAR signal processor consisting of two 18× 16 heterogeneous arrays that
provide 115.2 GOPS throughput. In the tenth paper [10], “Monitoring the Land Subsidence Area in a
Coastal Urban Area with InSAR and GNSS”, 34 scenes of Sentinel-1A SAR images are used for SBAS
and PS processing to obtain the surface deformation field of a large region spanning the Shenzhen,
China, and Hong Kong Special Administrative Regions. The last article [11], “Safe Helicopter Landing
on Unprepared Terrain Using Onboard Interferometric Radar”, proposes an interferometric radar
survey system for the generation of ground surface topography for helicopter landing sites. The system
generates high-quality three-dimensional terrain surface topography data and estimates the slope of
the site with the required accuracy.

Acknowledgments: The guest editors would like to thank the authors’ contribution to this Special Issue and all
reviewers for providing valuable and constructive comments. In particular, we would like to thank the in-house
editor of the Sensors journal for the administrative support.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Multi-baseline (MB) phase unwrapping (PU) is a key step of MB synthetic aperture radar
(SAR) interferometry (InSAR). Compared with the traditional single-baseline (SB) PU, MB PU is
applicable to the area where topography varies violently without obeying the phase continuity
assumption. A two-stage programming MB PU approach (TSPA) proposed by H. Yu. builds the
link between SB and MB PUs, so many existing classical SB PU methods can be transplanted into
the MB domain. In this paper, an extended PU max-flow/min-cut (PUMA) algorithm for MB InSAR
using the TSPA, referred to as TSPA-PUMA, is proposed, consisting of a two-stage programming
procedure. In stage 1, phase gradients are estimated based on Chinese remainder theorem (CRT).
In stage 2, a Markov random field (MRF) model of PUMA is designed for modeling local contextual
dependence based on the phase gradients obtained by stage 1. Subsequently, the energy of the MRF
model is minimized by graph cuts techniques. The experiment results illustrate that the TSPA-PUMA
method can drastically enhance the accuracy of the original PUMA method in the rugged area, and is
more efficient than the original TSPA method. In addition, the noise robustness of TSPA-PUMA can
be improved through adding more interferograms with different baseline lengths.

Keywords: phase unwrapping (PU); multi-baseline (MB); two-stage programming approach (TSPA);
phase unwrapping max-flow/min-cut (PUMA)

1. Introduction

Interferometric synthetic aperture radar (InSAR) is a powerful tool to reconstruct the digital
elevation model (DEM) or surface deformation of the Earth’s surface [1]. Phase unwrapping (PU), as a
key processing step of InSAR, is the procedure of retrieving the absolute phase through the wrapped
phase. Unfortunately, the traditional single-baseline (SB) PU is an ill-posed problem, i.e., there are
infinite solutions to it, if no extra information is added. In fact, a phase continuity assumption
(also known as Itoh condition) employed by most SB PU methods is that the absolute value of phase
differences between neighboring pixels is less than π [2]. Unfortunately, violent terrain changes and
high system noise frequently fail to observe the phase continuity assumption in reality, so it is still
difficult for SB PU to generate the correct PU result. However, the multi-baseline (MB) PU problem is
well-posed rather than ill-posed, which makes use of the baseline diversity to significantly increase
the ambiguity intervals of interferometric phases. To be specific, MB PU can completely eliminate the
phase-continuity assumption.

Sensors 2020, 20, 375; doi:10.3390/s20020375 www.mdpi.com/journal/sensors5
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In recent decades, the MB PU has been widely investigated. Yu et al. [3] provided a good
review article of MB PU methods, which described that there are mainly two groups of methods:
parametric-based and non-parametric-based methods. The main ideas of these two groups of MB PU
methods both come from machine-learning technology [3]. The methods in the first group utilize the
InSAR probability density function to build a statistical framework based on maximum likelihood
(ML) [4–6] or maximum a posteriori (MAP) criteria [7,8] to find the MB PU result, [9] provided a good
review of the ML- and MAP-based methods, and [10] gave a comparative study of the PU accuracy
between the ML- and MAP-based methods. The methods in the second group translate the MB PU
problem into an unsupervised learning problem. [11] presented a fast cluster-analysis (CA)-based MB
PU method, and [12] further improved it. Besides these two groups of methods, three basic MB PU
methods, i.e., the Chinese remainder theorem (CRT)-based method, projection method, and linear
combination method, were put forward in [13]. [14] proposed the L∞-norm programming criterion
applied to the MB PU. To improve the robustness to noise, [15] presented a closed-form robust
CRT method, and [16] put forward a MB PU method based on the mix-integer optimization model.
More than that, [17] proposed a Kalman filtering-based MB PU method, and a wavelet approach-based
MB PU method was presented in [18]. It should be noted that the major difference between SB and
MB PUs lies in their different processing steps. For the detailed implementation of the SB and MB PU
methods, the readers can refer to [3].

However, most of the aforementioned MB PU methods suffer from poor noise robustness, and the
reason for the noise robustness problem is caused by system noise, surface deformation, or atmospheric
effect [3]. In addition, the ML-, MAP-, and CA-based MB PU methods are all based on machine-learning
techniques, so they usually need to determine some parameters through some extra information
because they do not have clear PU meanings. Under these conditions, these MB PU methods are
quite limited in real application. To solve these problems, Yu and Lan [19] proposed a two-stage
programming-based MB PU method, abbreviated as TSPA, that formulates a connection between SB
and MB PUs, which is also known as TSPA-InSAR technology. In stage 1, TSPA estimates the ambiguity
number difference between neighboring pixels using multiple interferograms with different baseline
lengths based on the CRT formulation. In stage 2, TSPA obtains the final PU result through using the
L1-norm SB PU method, i.e., minimum-cost flow (MCF) PU method [20]. It is noted that there are
several strongly polynomial algorithms that can be applied to solve the MCF model (e.g., minimum
mean cycle-canceling algorithm and network simplex algorithm [21]). More than that, some studies
indicate that the divide-and-conquer criterion can be used to further reduce the computational and
peak memory consumption of the MCF model [22,23]. To further improve the noise robustness of stage
1 of TSPA, [24] proposed a local phase model, which assumes terrain height surface in the neighborhood
pixels can be approximated by a plane. Furthermore, [25] used the unscented Kalman filter (UKF) to
improve the performance of the stage 2 of TSPA reducing the effect of the noise gradient on the PU
results. Furthermore, [26] proposed a technique for applying TSPA to the large-scale MB InSAR data
set based on the MB envelope-sparsity theorem. Compared with most of the aforementioned existing
MB PU methods, the two main contributions of the TSPA method are listed as follows. First, as a MB
PU method, TSPA does not obey the phase continuity assumption by taking advantage of MB diversity.
Second, since TSPA makes the link between SB and MB PUs, many existing classical SB PU methods
can be transplanted into MB domain.

A SB PU algorithm based on graph cuts, referred to as phase unwrapping max-flow/min-cut
(PUMA), was proposed by Bioucas-Dias and Valadao [27]. This algorithm uses a new energy
minimization framework, which is based on the Markov random field (MRF). Under this condition,
the problem of ambiguity number estimation can be translated into computing a sequence of binary
optimizations (i.e., {0, 1}-cut), which can be solved by graph cuts techniques. The reason why
this algorithm is so popular is that the MRF model allows a large family of potential functions
(i.e., consisting of convex potential and non-convex potential), which gives flexibility to handle
effectively both continuous and discontinuous phase features. For convex potentials, the PUMA
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algorithm exactly solves the classical minimum Lp norm PU problem with p ≥ 1. For non-convex
potentials, the potentials with exponent less than one with 0 < p < 1 have been employed to allow
discontinuity preservation [27]. However, as a SB PU algorithm, PUMA is still limited to the phase
continuity assumption, so it is potentially hard for the PUMA algorithm to obtain the correct PU result
in the discontinuous region. Some researchers have already noticed this issue. [28] extended the PUMA
algorithm into MB domain to further increase the discontinuity preserving ability of PUMA, but it is
only less influenced by the phase continuity assumption rather than violating the phase continuity
assumption. Contrarily, as described earlier, TSPA does not need to satisfy the phase continuity
assumption through using two-stage programming. In this case, there is a straightforward idea to
transplant the PUMA algorithm into the MB domain using the TSPA approach.

In this paper, an extended PUMA algorithm for MB InSAR using the TSPA approach, abbreviated
as the TSPA-PUMA method, is proposed, which consists of a two-stage programming procedure.
In stage 1 of TSPA-PUMA, stage 1 of the original TSPA is utilized to estimate the phase gradients
based on CRT without obeying the phase continuity assumption. In stage 2 of TSPA-PUMA, an MRF
model of PUMA with different types of clique potentials is designed for modeling local contextual
dependence based on the phase gradients obtained by stage 1. Subsequently, the energy of MRF
model for SB PU is minimized by computing a sequence of binary optimizations solved by graph
cuts techniques. This paper uses three simulated InSAR data experiments and two real InSAR data
experiments to validate the proposed approach. The results show that the TSPA-PUMA method can
significantly improve the PU accuracy of the original PUMA algorithm in the rugged and mountainous
area, and the noise robustness of TSPA-PUMA can be improved if employing more interferograms
with different baseline lengths.

The rest of this paper is organized as follows. Section 2 reviews the original PUMA method and
analyzes its disadvantages of dealing with steep terrain. In Section 3, the TSPA-PUMA method is
introduced in detail. Besides that, the noise robustness, time complexity, and parameter selection of
TSPA-PUMA are also analyzed. Then, in Section 4, the TSPA-PUMA method is verified by a set of
simulated and real MB InSAR datasets and the corresponding experimental results are discussed in
detail. Finally, Section 5 concludes this paper.

2. Review and Analysis of SB PUMA

2.1. Basic Principle of PUMA

In this section, we will review the original PUMA algorithm in SB case. SB PU can be regarded as
estimating the unknown integral multiple of 2π to be added at each pixel of the wrapped phase image
to restore the absolute phase, given by:

ϕ(s) = ψ(s) − 2k(s)π, (1)

where ϕ(s) is the wrapped phase of the sth pixel, ψ(s) is the unknown absolute phase of the sth pixel,
and k(s) is the unknown ambiguity number of the sth pixel, which is also known as the wrap count.
From (1), we can see that directly solving (1) is an ill-posed inverse problem, because there are two
unknowns in one equation, i.e., there is no unique solution to (1). Similar to other SB PU methods,
the PUMA algorithm also uses the phase continuity assumption to solve this problem. The energy
minimization function for PUMA is given by:

arg min
k(s)

∑
(s,s−1)

w(s, s− 1)·V
(
Δψ(s, s− 1)

)
, (2)

where the indexes s and s− 1 denote two neighboring pixels and w(s, s− 1) is the weighted coefficient,
which can be derived from any kind of quality map in InSAR [29]. V(·) is clique potential, defined by
V(·) = (·)p, and p is the potential exponent, which determines how the phase of the neighboring pixels
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in the clique interact. Note that changes of the MRF model of PUMA depend primarily on choosing
different clique potential V(·). When the corresponding clique potentials are convex (i.e., p ≥ 1),
PUMA exactly solves the classical Lp minimum norm PU problem. In the case p = 2, PUMA will
become the least square method. A drawback of the L2-norm clique potential is that it tends to smooth
discontinuities. L1-norm clique potential (p = 1) performs better than L2-norm clique potential in
preserving discontinuities. The major advantage of PUMA lies its non-convex clique potential with
0< p < 1, which allows an increased probability of sharp transitions. Δψ(s, s− 1) is the absolute phase
gradients, i.e., the absolute phase difference of the neighboring pixels, which is defined by:

Δψ(s, s− 1) = Δϕ(s, s− 1) + 2π·(k(s) − k(s− 1)), (3)

where Δϕ(s, s− 1) is the wrapped phase differences of the neighboring pixels. The PUMA algorithm
aims to estimate the wrap count k(s) that minimizes the phase gradients Δψ(s, s− 1) obtained by
Equation (2), which can be regarded as a binary optimization problem. Initially, the labels of all pixels
are set to zero, i.e., kt=0(s) = 0. At each iteration step, every pixel’s label would either be 1 or 0,
i.e., kt+1(s) = kt(s) + δt+1(s), in which the t denotes iteration and δt+1(s) ∈ {0, 1}, meaning that every
pixel’s label either increases by 1 (phase plus 2π) or 0 (phase remains unchanged). Every iteration
aims to decrease the value of the energy function of Equation (2) as much as possible. After each
iteration, the unwrapped phase is updated, i.e., ψt+1(s) = ϕ(s) + 2π·kt+1(s), and the energy function of
Equation (2) is recalculated. When the energy ceases to decrease, the iteration is terminated, where the
unwrapped phase is estimated, i.e., ψt=end(s) = ϕ(s) + 2π·kt=end(s). The binary optimization problem
in the above referred sequence can be solved by graph cuts from [30], which are computed efficiently
using max-flow/min-cut algorithms. For the convex clique potential (p ≥ 1), because it satisfies the
regularity condition, this binary optimization problem can be solved exactly using the standard graph
cuts algorithm. With respect to the non-convex clique potential (0 < p < 1), because it does not obey the
regularity condition, it is impossible to minimize the energy function of Equation (2) via the standard
graph cuts algorithm. To solve this issue, an approximate version of the graph cuts algorithm is devised
by applying majorize-minimize (MM) approximation, which can cope with the local minima arising
from non-convex potentials. For the detailed implementation of graph cuts-based optimization of the
energy function of Equation (2), the readers can refer to [27].

2.2. Problem Analysis

As described above, the PUMA algorithm aims to estimate the wrap count k(s) that minimizes the
phase gradients Δψ(s, s− 1) obtained by Equation (2) according to the phase continuity assumption.
From Equation (2), we can see that the credibility of the PU result of PUMA is directly related to the
correctness of Δψ(s, s− 1). Unfortunately, violent topographic changes and high system noise frequently
make the phase continuity assumption does not work well. Under this condition, it is difficult to obtain
the correct Δψ(s, s− 1) from the phase continuity assumption. Therefore, if the accuracy of Δψ(s, s− 1)
is too low, no matter what kind of clique potential V(·) is employed, it could be impossible for the
PUMA algorithm to obtain the full correct PU solution. For example, Figure 1a,b show the reference
unwrapped phases with two different baselines, which come from the mountainous area around the
Isolation Peak region of Colorado [31]. Figure 1c,d show two simulated noise-free interferograms of
Figure 1a,b. Table 1 illustrate the major parameters of the simulated system. Figure 1e,f show the
PU results of Figure 1c obtained by the PUMA methods with clique potential exponent 1 and 0.5,
respectively. Figure 1g,h are the errors between Figures 1a and 1e,f, respectively. Figure 1i,j show
the PU results of Figure 1d obtained by the PUMA methods with clique potential exponent 1 and
0.5, and the corresponding errors between Figures 1b and 1i,j are shown in Figure 1g,h, respectively.
To fairly evaluate the PU results, the same reference point and range of the color bar are used in the
PU results obtained by the two PUMA methods of the same interferogram, respectively (similarly
hereinafter in experiments 1, 2 3, 4, and 5). Because the pattern of the fringes in Figure 1c is simple,
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we can see that the two PUMA methods with clique potential exponent 1 and 0.5 both obtain the
correct PU results. However, when the pattern of the fringes in Figure 1d becomes very complicated
which is difficult for the PU process, the PU accuracy of these two methods will significantly decrease.
The reason is that the pattern of the fringes in Figure 1d changes fiercely, which makes the failure
of the phase continuity assumption, i.e., the absolute phase differences between neighboring pixels
are larger than π. Under this condition, even if PUMA with non-convex potential is better than that
with convex potential due to its discontinuity preserving ability, it is still difficult enough for PUMA
with non-convex potential to perform correctly. Therefore, it can be seen that the PUMA method can
find the correct PU result in the area where topography is comparative flat, but in the area where
topography jumps more drastically, PUMA cannot find the correct PU solution anymore, no matter
what kind of clique potential is chosen.

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

(i) (j) (k) (l) 

Figure 1. (a,b) Reference unwrapped phases ((a) short and (b) long baseline length). (c,d) Simulated
wrapped phases of (a,b). (e,f) PU results of (c) obtained by (e) PUMA (clique potential exponent is 1),
and (f) PUMA (clique potential exponent is 0.5). (g,h) Errors between (a) and PU results (e,f). (i,j) PU
results of (d) obtained by (i) PUMA (clique potential exponent is 1), and (j) PUMA (clique potential
exponent is 0.5). (k,l) Errors between (b) and PU results (i,j).
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Table 1. Major parameters of simulated InSAR system and Interferograms.

Orbit Altitude Incidence Angle Wavelength

6885 km 46◦ 0.031 m

Interferogram Baseline Length

Figure 1c 150 m
Figure 1d 330 m

3. TSPA-PUMA Methodfor MB PU

According to the discussion in Section 2, we conclude that the traditional PUMA algorithm is
limited to the phase continuity assumption. In this Section, we will introduce the proposed TSPA-PUMA
method which can break through the limitation of the phase continuity assumption. In this Section,
we only consider the dual-baseline (DB) case for simplicity, and the MB case can be extended easily.
A schematic representation of the proposed TSPA-PUMA is illustrated in Figure 2. In the following,
we will introduce the two stages in the TSPA-PUMA method in detail.

 
Figure 2. Schematic representation of the proposed TSPA-PUMA method.

3.1. Stage 1: Estimating the Phase Gradient

The DB InSAR measurement of a pixel case can be given by:

ϕr(s) = ψr(s) − 2kr(s)·π, (4)

where ϕr(s), ψr(s) and kr(s) are the wrapped phase, absolute phase, and ambiguity number of the
sth pixel in interferogram r (r = 1, 2), respectively. ϕr(s) can be measured by the DB InSAR system,
but ψr(s) and kr(s) are the unknowns in one equation that need to be solved. If the ambiguity number
kr(s) of each pixel in two interferograms can be solved, ψr(s) can be obtained through Equation (4).
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The absolute phases of the two interferograms can be calculated by using the baseline lengths such
as [19]:

B2·(ϕ1(s) + 2π·k1(s)) = B1·(ϕ2(s) + 2π·k2(s)), (5)

where B1 and B2 represent two different normal baseline (also known as perpendicular baseline) lengths.
In this paper, normal baseline length is abbreviated as baseline length. According to Equation (5),
the TSPA-PUMA method maintains the stage 1 of the TSPA, which builds the relationship of phase
gradient information in different interferograms with different baseline lengths, given by:

B2·
(
Δϕ1(s, s− 1) + 2π·Δ̂k1

(s, s− 1)
)
= B1·

(
Δϕ2(s, s− 1) + 2π·Δ̂k2(s, s− 1)

)
, (6)

where Δϕ1(s, s− 1) and Δϕ2(s, s− 1) are the wrapped phase differences between neighboring pixels of
interferogram r (r = 1, 2), Δ̂k1

(s, s− 1) and Δ̂k2(s, s− 1) are the ambiguity number gradient between
neighboring pixels of interferogram r. Note that there are two directions (vertical and horizontal) of
neighboring pixels for Δ̂kr(s, s− 1) and Δϕr(s, s− 1). Because Δ̂k1

(s, s− 1) and Δ̂k2(s, s− 1) belong to the
integer, we can obtain the solution to Equation (6) under some special combination of the baseline
lengths according to CRT [19]. Equation (6) can be solved by the optimization model given by:

arg min
Δ̂kr(s, s− 1)

∣∣∣h(s, s− 1)
∣∣∣

s.t. Δ̂kr(s, s− 1) ∈ integer, r = 1, 2,
(7)

where Δ̂kr(s, s− 1) are the decision variables of interferogram r. It is noted that Δ̂kr(s, s− 1) can be
larger than 1 or less than −1, which implies that the phase continuity assumption does not need to
be satisfied (the phase continuity assumption only allows Δ̂kr(s, s− 1) to be ±1 or 0). h(s, s− 1) is the
auxiliary variables, defined by:

h(s, s− 1) = B2·
(
Δϕ1(s, s− 1) + 2π·k1(s)

)
− B1·

(
Δϕ2(s, s− 1) + 2π·k2(s)

)
. (8)

It can be seen that h(s, s− 1) is the CRT bias, so Equation (8) is to find the ambiguity number
gradient Δ̂kr(s, s− 1)with minimum CRT bias [19]. Under this condition, the phase gradient Δ̂ψr(s, s− 1)
of interferogram r can be estimated by:

Δ̂ψr(s, s− 1) = Δϕr(s, s− 1) + 2π·Δ̂kr(s, s− 1). (9)

3.2. Stage 2: Unwrapping the Phase Gradient Using Graph Cuts Algorithm

Based on the gradient information obtained by Equation (9), the energy minimization framework
based on the MRF model for TSPA-PUMA respectively obtain the final PU solution of each interferogram
r, which is obtained by Equation (10),

arg min
kr(s)

∑
(s,s−1)

wr(s, s− 1)·V
(
Δψr(s, s− 1) − Δ̂ψr(s, s− 1)

)
, (10)

where wr(s, s− 1) is the weighted coefficient of interferogram r, and kr(s) is the decision variable of
interferogram r. From Equation (10), it can be seen that the aim of TSPA-PUMA is to minimize the
difference between the absolute phase gradients Δψr(s, s− 1) and the estimated gradients Δ̂ψr(s, s− 1)
obtained from stage 1 of TSPA-PUMA. Compared with the traditional PUMA algorithm which obeys
the phase continuity assumption, the major improvement of TSPA-PUMA is that it does not need to
follow the assumption, because the ambiguity number gradient Δ̂kr(s, s− 1) obtained by Equation (7)
can be larger than 1 or less than −1. If we transform the phase gradients Δψ(s, s− 1) obtained by the
Equation (3) into DB case, we will obtain:
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Δψr(s, s− 1) = Δϕr(s, s− 1) + 2π·(kr(s) − kr(s− 1)). (11)

Then, if we substitute Equations (9) and (11) into Equation (10), the energy minimization framework
for TSPA-PUMA can be rewritten to:

arg min
kr(s)

∑
(s,s−1)

wr(s, s− 1)·V
(
kr(s) − kr(s− 1) − Δ̂kr(s, s− 1)

)
, (12)

where kr(s) (r = 1, 2) are solutions to Equation (12) of the two different interferograms r.
Because optimization of k1(s) and k2(s) is independent of each other, we can optimize them separately.
Similar to the PUMA algorithm, the minimization of the energy function of TSPA-PUMA obtained
by Equation (12) can be regarded as a jump-move optimization problem. It is worth mentioning
that, with respect to TSPA, the innovative part of TSPA-PUMA lies in stage 2, where the graph cuts
algorithm is used to optimize the energy function of (12). Initially, the ambiguity number of the sth
pixel in interferogram r is set to zero, i.e., kt=0

r (s) = 0. At each iteration, every ambiguity number of
the sth pixel in interferogram r either increases by one (i.e., the ambiguity number pluses one) or zero
(i.e., the ambiguity number remains unchanged), that is, kt+1

r (s) = kt
r(s) + δ

t+1
r (s), where δt+1

r (s) ∈ {0, 1}.
For each pair of neighboring pixels (s, s− 1) in interferogram r, the clique potential to be minimized is
defined as:

E
(
δt+1

r (s), δt+1
r (s− 1)

)
= V

(
kt

r(s) − kt
r(s− 1) − Δ̂kr(s, s− 1) + δt+1

r (s) − δt+1
r (s− 1)

)
. (13)

For the convex clique potential (p ≥ 1), the clique potential obtained by (13) satisfies the regularity
condition, so the standard graph cuts algorithm can be used to optimize them. For the non-convex
clique potential (0 < p < 1), the MM concept [27] is employed to make the non-convex clique potential
obtained by (14) obey the regularity condition, so they can also be optimized by the standard graph
cuts algorithm. According to (13), we have:

E(0, 0) = V
(
kt

r(s) − kt
r(s− 1) − Δ̂kr(s, s− 1)

)
E(1, 1) = V

(
kt

r(s) − kt
r(s− 1) − Δ̂kr(s, s− 1)

)
E(0, 1) = V

(
kt

r(s) − kt
r(s− 1) − Δ̂kr(s, s− 1) − 1

)
E(1, 0) = V

(
kt

r(s) − kt
r(s− 1) − Δ̂kr(s, s− 1) + 1

)
.

(14)

Considering all pairs of neighboring pixels, the energy minimization function of each binary
iteration is given by:

arg min
δt+1

r (s)

∑
(s,s−1)

wr(s, s− 1)·E
(
δt+1

r (s), δt+1
r (s− 1)

)
. (15)

The minimization of (15) can be achieved through a cut on the weighted graph σ = 〈υ, ε〉 with
two terminals α and β. The set of vertices υ represent the pixels in each interferogram, and the set of
edges ε denote the pairs of neighboring vertices in each interferogram. An α− β cut is a set of edges
such that the terminals are separated into two disjoint sets α ∈ 1, i.e., the ambiguity number pluses one,
and β ∈ 0, i.e., the ambiguity number remains unchanged. The cost of the cut equals the sum of its
clique potential between α and β. Then, we construct the elementary graph for each clique potential,
as shown in Figure 3a,b. From Figure 3a,b, it can be seen that the directed edge (s, s− 1) is assigned a
weight of E(0, 1) + E(1, 0) − E(0, 0) − E(1, 1). Moreover, for vertex s, if E(1, 0) − E(0, 0) > 0, then the
edge (α, s) is assigned a weight of E(1, 0) − E(0, 0); otherwise, the edge (s, β) is assigned a weight
of E(0, 0) − E(1, 0). Similarly, for the neighboring vertex s − 1, if E(1, 1) − E(1, 0) > 0, then the edge
(α, s− 1) is assigned a weight of E(1, 1) − E(1, 0); otherwise, the edge (s− 1, β) is assigned a weight of
E(1, 0) − E(1, 1). Finally, the two elementary graphs are merged to obtain a main graph, as shown in
Figure 3c. At every jump-move iteration, the minimum cut problem attempts to find the cheapest cut
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among all cuts separating the terminals, which can be obtained using the max-flow algorithm. That is
to say, every jump-move iteration is intended to reduce the value of the energy function of (15) as much
as possible. When the energy ceases to decrease, the binary jump move is terminated. Finally, we can
obtain the DB PU results, i.e., ψt=end

r (s) (r = 1, 2), which is equal to ϕr(s) + 2π·kt=end
r (s) (r = 1, 2).

  
(a) (b) 

 
(c) 

Figure 3. The elementary graph is constructed, where α and β represent two terminals and (s, s− 1)
represent the two neighboring pixels. (a) In the case of E(1, 0) − E(0, 0) > 0 and E(1, 1) − E(1, 0) > 0.
(b) In the case of E(1, 0)− E(0, 0) < 0 and E(1, 1)− E(1, 0) < 0. (c) A main graph is obtained by merging
the two elementary graphs, where an α− β cut is a set of edges such that the terminals are separated
into two disjoint sets α ∈ 1 (the ambiguity number pluses one) and β ∈ 0 (the ambiguity number
remains unchanged).

3.3. Analysis of the Noise Robustness

It should be noted that stage 1 of TSPA-PUMA is dependent on CRT, which is too sensitive to
measurement bias that is potentially caused by some decorrelation factors, e.g., atmospheric effect
or co-registration error, etc. Considering the atmospheric artifact, this usually shows a strong spatial
correlation [32]. Hence, the effect of atmosphere on the wrapped phases of neighboring pixels should
be close to each other. Because Equation (6) uses the information of wrapped phase difference between
neighboring pixels, the effect of atmosphere could be counteracted in Equation (6). Therefore, stage 1 of
the TSPA-PUMA method does not fear the atmospheric effect. However, it is still sensitive to the noise
levels caused by other decorrelation components. Under this condition, the incorrect phase gradient
information obtained in stage 1 will reduce the accuracy of final PU result directly. Unlike [24,25]
both using filtering-based methods to alleviate the effects of the phase noise on the estimated phase
gradients, in this paper, we resist the influence of the noise in stage 1 of TSPA-PUMA through using
the MB InSAR dataset with different baseline lengths. To be specific, the more interferograms are
involved to estimate the phase gradients based on the CRT formulation, the higher accuracy on
ambiguity number gradient estimation will be obtained (it is because that more observed samples
of interferometric phases from different interferograms with different baseline lengths are involved,
more phase noise can be ignored). Therefore, TSPA-PUMA has good noise robustness if we utilize
enough interferograms. In Section 4.2, we will validate the noise robustness of TSPA-PUMA using the
MB InSAR system with different baseline lengths.

3.4. Analysis of the Time Complexity

It should be noted that the main running time and memory consumption of TSPA-PUMA lies
in stage 2, which is similar to TSPA. In addition, the computational complexity of stage 2 of the
TSPA-PUMA method is close to that of the original PUMA method, due to their similar optimization
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strategy. The time complexity of TSPA-PUMA is R·K·T(n, m), where R is the number of the interferogram
(i.e., R = 2 in DB case), K is the number 2π of multiples (i.e., the number of iterations) and T(n, m) is
the complexity of a max-flow computation in a graph with n nodes and m edges in one interferogram.
Regarding memory usage, TSPA-PUMA requires R·7n bytes. We observe that the computational
burden of TSPA-PUMA lies in computing the max-flow algorithm. However, the max-flow solution in
the graph cuts algorithm has potential for parallelization, which is suitable for GPU acceleration [33].
Under this condition, the time efficiency of TSPA-PUMA can be increased drastically. Therefore, it can
be seen that the total time and space complexities of TSPA-PUMA are practical.

3.5. Analysis of the Parameter Selection

Note that TSPA-PUMA requires only one parameter, i.e., the potential exponent p in stage 2, to be
chosen. The potential exponent p in TSPA-PUMA is similar to that in the traditional PUMA method,
which defines how the phase of the neighboring pixels in the clique interact [27]. As mentioned
earlier, if p ≥ 1, i.e., using the convex potential, PUMA can find the correct PU result in the flat area.
If 0 < p < 1, i.e., using the non-convex potential, PUMA has phase discontinuity preserving ability in
the rugged area. However, in the TSPA-PUMA method, the meaning of potential exponent p seems to
be completely different. The reason is that the phase gradients estimated by stage 1 of TSPA-PUMA can
violate the phase continuity assumption, so stage 2 of TSPA-PUMA does not need to use non-convex
potential to preserve the phase discontinuity. On the contrary, the smaller the potential exponent p is,
the lower accuracy on the final PU result will be obtained (it is because that nonconvex potential grows
much slower than the convex potential, so it allows strong phase noise not to be penalized too much).
Similarly, the larger p the potential exponent is, the accuracy of the final PU result will also be reduced.
This is because, when p > 1, TSPA-PUMA allows the high-quality regions to share the phase gradient
error from the noisy region. According to experimental results, we observe that p = 1, i.e., L1-norm
model, is the best parameter for the TSPA-PUMA method not only in the discontinuous area but also
in the noisy region. In Section 4.5, some detailed experiments on the effect of the potential exponent p
will be presented.

4. Performance Analysis

In this Section, the TSPA-PUMA method is compared with the original PUMA and TSPA methods
through five independent experiments from different aspects. The source codes of PUMA and TSPA are
both from their algorithm designers [34,35]. The implementation environment of these three methods is
MATLAB. Note that the clique potential exponent p of TSPA-PUMA is set to 1 (to be kept in experiments
1–4), and the reason will be given in Section 4.5. The first experiment tests the PU performance of the
TSPA-PUMA method using the simulated DB InSAR dataset in the terrain with the abrupt change.
The second experiment examines the noise robustness of TSPA-PUMA when applied to a simulated
MB InSAR dataset with eight interferograms. The third one verifies TSPA-PUMA through using a real
TanDEM-X DB InSAR dataset with two interferograms. The fourth one examines the effectiveness of
TSPA-PUMA in a real InSAR MB dataset of ALOS PALSAR with four interferograms. The last one
explores the effect of the potential exponent p on the TSPA-PUMA method.

4.1. Experiment 1

The first experiment is also performed on the simulated DB InSAR dataset which is shown in
Figure 1c,d. Figure 4a,b illustrate the vertical and horizontal ambiguity number differences between
neighboring pixels of Figure 1c, estimated by stage 1 of TSPA-PUMA, respectively. Figure 4c,d are
the vertical and horizontal ambiguity number differences between neighboring pixels of Figure 1d,
estimated by stage 1 of TSPA-PUMA, respectively. From Figure 4a,b, we can observe that the estimated
ambiguity number differences are restricted to ±1 and 0, because the fringe of Figure 1c does not fiercely
change, so the phase continuity assumption still holds well. From Figure 4c,d, it can be observed
that some ambiguity number differences are larger than 1 or less than −1, meaning that the phase
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continuity assumption does not hold any more, due to the fringe of Figure 1d with the violent change.
Based on these phase gradients, TSPA-PUMA can overcome the limitation of the phase continuity
assumption. Figure 4e shows the PU result of Figure 1c obtained by TSPA-PUMA by using the gradient
information shown in Figure 4a,b, and Figure 4g shows the errors between Figures 1a and 4e. Figure 4f
is the PU result of Figure 1d obtained by TSPA-PUMA by using the gradient information shown in
Figure 4c,d, and Figure 4h shows the errors between Figures 1b and 4f. From Figure 4g, we observe
that TSPA-PUMA can generate the correct PU result on short baseline as same as the PUMA method.
From Figure 4h, it can be noticed that TSPA-PUMA gives us a flawless PU result using the phase
gradient information of Figure 4c,d. The statistical information of Figure 1k,j, Figure 4g,h is shown in
Table 2, where the root mean-square error (abbreviated as RMSE) of the PU accuracy is given by:

η =

√
1
L
·‖ Ψ̂ −Ψ ‖2 (16)

where Ψ is the vector collecting from the reference unwrapped phase, Ψ̂ is the vector collecting from
the estimated unwrapped phase, L is the length of the vector Ψ and Ψ̂, and ‖ · ‖2 is the quadratic norm.
It is worth mentioning that the units of Ψ and Ψ̂ are both radian in this paper. From Table 2, it can
be seen that RMSEs of Figure 1g,h and Figure 4g are about 0.9, meaning that the three methods all
obtain the correct PU solution of an interferogram with short baseline length. In addition, for the
interferogram with long baseline length, we observe that TSPA-PUMA generates the lower RMSE of
Figure 4h than those of Figure 1k,l obtained by PUMA with potential exponent 0.5 and 1. Therefore,
we can conclude that the TSPA-PUMA method is more effective in the terrain with abrupt change than
the original PUMA method.

 
(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 4. (a,b) Vertical and horizontal neighboring ambiguity number differences of Figure 1c.
(c,d) Vertical and horizontal neighboring ambiguity number differences of Figure 1d. (e) PU results of
Figure 1c obtained by TSPA-PUMA. (f) PU results of Figure 1d obtained by TSPA-PUMA. (g) Errors
between Figure 1a and PU results (e). (h) Errors between Figure 1b and PU results (f).
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Table 2. Statistical information of PU performance in Figure 1g,h,k,l, and Figure 4g,h.

U Method
Short Baseline Long Baseline

Figure RMSE Figure RMSE

PUMA with potential exponent 1 Figure 1g 0.9505 Figure 1k 3.6438
PUMA with potential exponent 0.5 Figure 1h 0.9505 Figure 1l 3.2356

TSPA-PUMA Figure 4g 0.9164 Figure 4h 0.9164

4.2. Experiment 2

The second experiment is also conducted on the simulated interferogram (baseline length is
330 m) which is shown in Figure 1d. To examine the noise robustness of TSPA-PUMA, some phase
noise is added according to the employed probability density function of the noise wrapped phase
in [36]. It is worth mentioning that, in our simulation, we use the general coherence coefficient to
jointly express all the decorrelation components, e.g., atmosphere effect or co-registration error, etc.
Figure 5a shows the simulated interferogram, and the mean coherence coefficient of Figure 5a is 0.75.
The reference unwrapped phase of Figure 5a is Figure 1b. From Figure 5a, it can be found that, due to
the low coherence, the phase fringes are very complicated and PU becomes very tough. Figure 5b is
the PU result of the original PUMA method with potential exponent 0.5, and the corresponding errors
between Figures 5b and 1b are shown in Figure 5c. We can see that several discontinuous variations
are seen clearly in Figure 5c, and RMSE of Figure 5c is up to 9.5992. The reason is that low coherence
of interferogram of Figure 5a aggravates the fringe blurrier, which destroy the phase continuity
assumption, so it is hard for the SB PU methods to perform correctly. Figure 5d is the PU result of the
TSPA-PUMA method based on the DB InSAR dataset used in experiment 1, whose parameters are listed
in Table 1. Figure 5f is the corresponding errors between Figures 5d and 1b. From Figure 5f, we find
that TSPA-PUMA using the DB InSAR dataset also has obvious unwrapping errors in the phase image,
and the RMSE of Figure 5f is 7.6592. The reason is that, although TSPA-PUMA does not obey the phase
continuity assumption in the rugged area, stage 1 of TSPA-PUMA is sensitive to noise level which
produces the incorrect phase gradient information. In this case, TSPA-PUMA cannot obtain the correct
PU result where the fringe is polluted by high noise. Unlike [24,25] who apply the filter-based methods
to suppress the influence of incorrect phase gradients obtained by stage 1 of TSPA-PUMA, in this
paper, we utilize MB InSAR dataset with more interferograms to remove the phase gradient errors.
Major parameters of the MB InSAR system are the same as that used in experiment 1 which is listed
in Table 1, but this time, eight interferograms with different baseline lengths are used to perform the
TSPA-PUMA method (baseline lengths are 70 m, 150 m, 330 m, 471 m, 550 m, 631 m, 753 m and 831 m,
respectively). It should be noted that the number of baselines used in TSPA-PUMA could be any value
theoretically, if the ratio of baseline lengths of different interferograms satisfies the CRT formulation.
However, CRT is sensitive to the baseline length. In other words, different baseline lengths could
result in different performances of TSPA-PUMA. A baseline design criterion was proposed by [37]
to determine the optimal baseline length for MB PU. In this experiment, the choice of eight baseline
lengths satisfies the baseline design criterion proposed in [37]. Figure 5e is the PU result generated
by TSPA-PUMA using MB InSAR dataset, and the corresponding errors between Figures 5e and 1b
is illustrated in Figure 5g. From Figure 5g, we observe that the TSPA-PUMA method using the MB
InSAR dataset alleviates most of unwrapping errors in the PU result, and RMSE of Figure 5g is 3.4297,
which is much lower than the former two methods. This is because that more interferograms are
involved in stage 1 of TSPA-PUMA, the higher accuracy on ambiguity number gradient estimation will
be obtained. Under this condition, the noise robustness of TSPA-PUMA can be improved drastically.
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(a) (b) (c) 

 
(d) (e) (f) (g) 

Figure 5. (a) Simulated wrapped phases of Figure 1b (coherence coefficient is 0.75). (b) PU results of (a)
obtained by PUMA (clique potential exponent is 0.5). (c) Errors between Figure 1b and PU results (b).
(d,e) PU results of (a) obtained by (d) DB TSPA-PUMA and (e) MB TSPA-PUMA. (f,g) Errors between
Figure 1b and PU results (d,e).

To further research into the relationship between the number of interferograms and the noise
robustness of TSPA-PUMA, we utilize seven MB InSAR datasets with different number of interferograms
between 2 and 8 with an increment of 1 to perform the TSPA-PUMA method. The relationship between
the estimation RMSE of TSPA-PUMA and the number of interferograms is tabulated in Table 3.
From Table 3, it can be observed clearly that the RMSE of the TSPA-PUMA performance can be
decreased with the number of interferograms increasing. That is to say, the noise robustness of
TSPA-PUMA can be enhanced through using more interferograms, because when more observed
samples of interferometric phases are involved, the phase noise can be reduced. Therefore, we can
see that TSPA-PUMA has good noise robustness if we utilize enough interferograms with different
baseline lengths.

Table 3. The relationship between the estimation RMSE of TSPA-PUMA and the number of interferograms.

ID Number of Interferograms Baseline Length (m) RMSE

1 2 150 330 7.6592
2 3 70 150 330 6.9732
3 4 70 150 330 471 6.7486
4 5 70 150 330 471 550 6.6240
5 6 70 150 330 471 550 631 4.6023
6 7 70 150 330 471 550 631 753 4.3318
7 8 70 150 330 471 550 631 753 831 3.4297

17



Sensors 2020, 20, 375

4.3. Experiment 3

The third experiment is carried out on a real TanDEM-X DB InSAR dataset with two interferograms
(single-pass) of Weinan of Shaanxi province, China. Figure 6a is the Google Earth image of the study
area (1000× 1000 pixels). We can see that Figure 6a is the area whose topography is mountainous and
rugged. Under this condition, the phase continuity assumption may not work well, which causes
that the SB PU cannot obtain the correct PU solution. Figure 6b,c are the flattened and filtered input
interferograms with short and long baseline lengths, respectively. The major interferometric parameters
of Figure 6b,c are listed in Table 4. Figure 6c,d are the corresponding reference unwrapped phase of
Figure 6b,c, which are generated by the Shuttle Radar Topography Mission (SRTM) digital elevation
model (DEM). Figure 6f,g show the PU results of Figure 6b,c obtained by the PUMA method with
potential exponent 0.5, and Figure 6h,i are the errors between Figure 6d,e and Figure 6f,g, respectively.
Figure 6j,k are the PU results of Figure 6b,c obtained by TSPA, and Figure 6l,m are the errors between
Figure 6d,e and Figure 6j,k, respectively. Figure 6n,o are the PU results of Figure 6b,c obtained
by TSPA-PUMA, and the corresponding errors between Figure 6d,e and Figure 6n,o is shown in
Figure 6p,q, respectively. The statistical information of Figure 6 is listed in Table 5. From Table 5, we can
see that when the baseline length is short and the fringe pattern in the interferogram is simple, the PU
performance of all three methods is similar to each other. However, for the long baseline interferogram,
because the phase variation is rapid, which does not obey the phase continuity assumption, the PU
performance of TSPA and TSPA-PUMA are much better than that of PUMA. Although the PU results
of TSPA and TSPA-PUMA are mainly the same due to their same L1-norm model, their performances
in terms of running time are not comparable. In this experiment, while TSPA-PUMA only takes 65.81 s
for short baseline and 231.72 s for long baseline, the classical TSPA method is ten and eight times
slower for the short and long baseline, respectively. Therefore, it can be seen that the running time of
TSPA-PUMA is practical.

 
(a) 

 
(b) (c) (d) (e) 

(f) (g) (h) (i) 

Figure 6. Cont.
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(j) (k) (l) (m) 

   
(n) (o) (p) (q) 

Figure 6. (a) Google Earth image of the study area. (b,c) TanDEM-X interferograms with different
baseline lengths ((b) short and (c) long baseline length). (d,e) The reference unwrapped phases of (b,c).
(f,g) PU results of (b,c) obtained by PUMA (clique potential exponent is 0.5). (h,i) Errors between (d,e)
and PU results (f,g). (j,k) PU results of (b,c) obtained by DB TSPA. (l,m) Errors between (d,e) and PU
results (j,k). (n,o) PU results of (b,c) obtained by DB TSPA-PUMA. (p,q) Errors between (d,e) and PU
results (n,o).

Table 4. Major interferometric parameters of real DB dataset of TanDEM-X.

Orbit Altitude Incidence Angle Wavelength Latitude longitude

514.8 km 36.6◦ 0.032 m 35.82◦ 109.28◦

Interferogram Figure 6b Figure 6c
Date of Master Channel 2 April 2014 21 October 2012
Date of Slave Channel 2 April 2014 21 October 2012

Baseline Length 130.62 m 370.45 m

Resolution Range (Vertical) 5.46 m Azimuth (Horizontal) 8.15 m
Image Size Range 1000 pixels Azimuth 1000 pixels

Table 5. Statistical information of PU performance in Figure 6h,i,l,m,p,q.

PU Method
Short Baseline Long Baseline

Figure RMSE Time (s) Figure RMSE Time (s)

PUMA with potential exponent 0.5 Figure 6h 0.6871 116.18 Figure 6i 10.0892 303.83
TSPA Figure 6l 0.6114 665.92 Figure 6m 1.91 1941.04

TSPA-PUMA Figure 6p 0.69 65.81 Figure 6q 1.7616 231.72

4.4. Experiment 4

In the fourth experiment, we will examine the effectiveness of TSPA-PUMA in the real MB dataset
of ALOS PALSAR with four interferograms. Figure 7a shows the Google Earth image of the study
area in this experiment, which comes from the Himalayan mountain area. Figure 7b–e are four
interferograms with different baseline lengths (601× 501 pixels). From Figure 7d,e, we can observe that
the coherence values of the two interferograms with long baseline are relatively low, because ALOS
PALSAR acts as a repeat-pass radar interferometer with the inherent accuracy limitations imposed by
temporal decorrelation and atmospheric disturbances. The major interferometric parameters of the
ALOS PALSAR dataset are tabulated in Table 6. Figure 7f–i are the corresponding reference unwrapped
phase of Figure 7b–e, which are obtained from the PALSAR DEM. Figure 7j–m are the PU results of
Figure 7b–e generated by the PUMA method with potential exponent 0.5, and Figure 7n–q are those
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generated by TSPA-PUMA. Figure 8 show the corresponding errors between the PU results of PUMA,
TSPA-PUMA and reference unwrapped phase. The statistical information of Figure 8 is listed in Table 7.
From Table 7, it can be seen that, for the short baseline interferogram (Figure 7b,c), the PU results of the
two methods are similar to each other. However, for the long baseline interferogram (Figure 7d,e),
the PU performance of TSPA-PUMA is much better than that of PUMA, and reason is that TSPA-PUMA
can break through the limitation of the phase continuity assumption. Also, TSPA-PUMA can eliminate
the effects of low coherence through using the MB InSAR dataset with different baseline lengths.

Table 6. Major interferometric parameters of real MB dataset of ALOS PALSAR.

Orbit Altitude Incidence Angle Wavelength Latitude longitude

698.51 km 38.75◦ 0.236m 30.91◦ 94.23◦

Interferogram Figure 7b Figure 7c Figure 7d Figure 7e
Date of Master Channel 18 August 2007 18 August 2007 18 August 2007 18 August 2007
Date of Slave Channel 3 October 2007 3 July 2007 3 January 2008 8 October 2009

Baseline Length 113.36 m 193.15 m 406.00 m 440.68 m

Resolution Range (Vertical) 9.37 m Azimuth (Horizontal) 19.00 m
Image Size Range 601 pixels Azimuth 501 pixels

 
(a) 

 
(b) (c) (d) (e) 

(f) (g) (h) (i) 

Figure 7. Cont.
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(j) (k) (l) (m) 

(n) (o) (p) (q) 

Figure 7. (a) Google Earth image of the study area. (b–e) ALOS PALSAR interferograms with different
baseline lengths ((b) interferogram 1, (c) interferogram 2, (d) interferogram 3, and (e) interferogram 4).
(f–i) The reference unwrapped phases of (b–e). (j–m) PU results of (b–e) obtained by PUMA (clique
potential exponent is 0.5). (n–q) PU results of (b–e) obtained by MB TSPA-PUMA.

 
(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 8. (a–d) PUMA errors of Figure 7j–m. (e–h) MB TSPA-PUMA errors of Figure 7n–q.

Table 7. Statistical information of PU performance in Figure 8a–h.

PU Method
Interferogram 1 Interferogram 2 Interferogram 3 Interferogram 4

Figure RMSE Figure RMSE Figure RMSE Figure RMSE

PUMA with potential
exponent 0.5 Figure 8a 0.8719 Figure 8b 1.1576 Figure 8c 7.4004 Figure 8d 7.4951

TSPA-PUMA Figure 8e 0.8577 Figure 8f 1.0860 Figure 8g 3.4688 Figure 8h 4.6751

4.5. Experiment 5

In the last experiment, we explored the effect of the potential exponent p in stage 2 of TSPA-PUMA
method on the simulated MB InSAR dataset. This experiment examined the PU performance of
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TSPA-PUMA with different potential exponent p ranging from 0.1 to 3 with an increment of 0.5.
A simulated terrain generated by the MATLAB’s membrane function was used to test the relationship
between the potential exponent p and the terrain change. Figure 9a shows the simulated terrain
employed in this experiment (201 × 201 pixels). According to the simulated terrain, we generated
the reference unwrapped phases using d ×membrane, where d is the parameter that determines the
height of the terrain. The larger the value of d is, the higher the terrain is, and thus the terrain changes
more violently. We considered four MB simulated reference unwrapped phases with different ds
(i.e., d1 = 17.5, d2 = 35.0, d3 = 52.5, d4 = 70.0, and unit is radian). Figure 9b–e show four reference
unwrapped phases with different ds, respectively. From Figure 9b–e, we observe that, while the value
of d is getting larger, and the pattern of the fringe becomes denser, which results in the failure of the
phase continuity assumption. We generated two groups of simulated interferograms of Figure 9b–e.
In one group, we simulated four noise-free wrapped phase images, as shown in Figure 9f–i, respectively.
Under the noise-free condition, the fringe change of Figure 9f–i is only related to the topography
changes. In this case, we can test the dependence of the potential exponent p on the steepness of the
terrain. In another group, we simulated four noisy wrapped phase images, in which the phase noise
was added with using 0.75 mean correlation coefficient [35], as illustrated in Figure 9j–m, respectively.
From Figure 9j–m, it can be seen that the pattern of the fringe is destroyed more after the noise
is added. Under this condition, we can examine the effect of the potential exponent p in case of
high-phase noise. We compare the unwrapped phases obtained by TSPA-PUMA using different
potential exponent p with the reference unwrapped phases of Figure 9b–e and obtain the RMSE of
each PU result. Figure 10a shows the RMSE curves of Figure 9f–i with different ds, and Figure 10b is
the RMSE curves of Figure 9j–m with different ds. From the trends of the curves shown in Figure 10a,
we can see that the RMSE curves of the PU results with four different ds are low (below 3× 10−3) and
identical throughout the whole potential exponent scale, meaning that the potential exponent p is not
sensitive to the terrain change. The reason is that, owning to stage 1 of TSPA-PUMA without obeying
the phase continuity assumption, no matter what kind of the potential exponent value is chosen in
stage 2, it is possible for TSPA-PUMA to perform correctly. From the trends of the curves shown in
Figure 10b, we can observe that the PU results with four different ds generate the lowest RMSE when
the potential exponent equals to 1 (p = 1), while when the potential exponent more than 1 or less
than 1 (p > 1 or p < 1), the PU results both have higher RMSE with the different values ds. This is
because that when p > 1, TSPA-PUMA introduces the incorrect phase gradients from the low-quality
regions into the high-quality regions easily, and when the potential exponent is less than 1 (p < 1),
the clique potential of TSPA-PUMA grows much more slowly than that when potential exponent
equals to 1 (p = 1), which allows strong phase noise not be too much penalized. It implies that the
potential exponent p which equals to 1 is the optimal parameter for TSPA-PUMA both in the rugged
and low-quality regions.

(a) 

Figure 9. Cont.
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(b) (c) (d) (e) 

(f) (g) (h) (i) 

(j) (k) (l) (m) 

Figure 9. (a) The examples of simulated terrain obtained by the function membrane in 3D space.
(b–e) reference unwrapped phase with four different ds ((b) d1 = 17.5, (c) d2 = 35.0, (d) d3 =

52.5, (e) d4 = 70.0, and unit is radian). (f–i) The simulated noise-free wrapped phases of (b–e).
(j–m) The simulated wrapped phases of (b–e) with mean coherence coefficient 0.75.

(a) (b) 

Figure 10. (a) RMSE curves of TSPA-PUMA of Figure 9f–i with different potential exponents between
0.1 and 3 with an increment of 0.5. (b) RMSE curves of TSPA-PUMA of Figure 9j–m with different
potential exponents between 0.1 and 3 with an increment of 0.5.

5. Conclusions

In this paper, we extend the classical PUMA algorithm for MB InSAR using the TSPA approach
referred to as TSPA-PUMA, consisting of a two-stage programming procedure. In stage 1 of TSPA-PUMA,
the phase gradients are estimated based on CRT, which does not follow the phase continuity assumption.
In stage 2, an MRF model of PUMA is designed for modeling local contextual dependence based
on the phase gradients obtained by stage 1. Subsequently, the energy of MRF model is minimized
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by performing a sequence of binary optimizations solved by graph cuts techniques. Results of the
simulated and real InSAR data experiments demonstrate that the TSPA-PUMA method can significantly
improve the accuracy of the original PUMA method in the area where topography varies drastically
due to its ability to overcome the limitation of the phase continuity assumption, and is an efficient MB
PU method compared to the original TSPA method. In addition, the noise robustness of TSPA-PUMA
can also be improved through adding more interferograms with different baseline lengths.
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Abstract: Interferometric phase filtering is a crucial step in multibaseline interferometric synthetic
aperture radar (InSAR). Current multibaseline interferometric phase filtering methods mostly follow
methods of single-baseline InSAR and do not bring its data superiority into full play. The joint
filtering of multibaseline InSAR based on statistics is proposed in this paper. We study and analyze
the fourth-order statistical quantity of interferometric phase: kurtosis. An empirical assumption that
the kurtosis of interferograms with different baselines keeps constant is proposed and is named as
the baseline-invariant property of kurtosis in this paper. Some numerical experiments and rational
analyses confirm its validity and universality. The noise level estimation of nature images is extended
to multibaseline InSAR by dint of the baseline-invariant property of kurtosis. A filtering method
based on the non-subsampled shearlet transform (NSST) and Wiener filter with estimated noise
variance is proposed then. Firstly, multi-scaled and multi-directional coefficients of interferograms
are obtained by NSST. Secondly, the noise variance is represented as the solution of a constrained
non-convex optimization problem. A pre-thresholded Wiener filtering with estimated noise variance
is employed for shrinking or zeroing NSST coefficients. Finally, the inverse NSST is utilized to
obtain the filtered interferograms. Experiments on simulated and real data show that the proposed
method has excellent comprehensive performance and is superior to conventional single-baseline
filtering methods.

Keywords: multibaseline interferometric synthetic aperture radar (InSAR); non-subsampled shearlet
transform (NSST); kurtosis; noise level eatimation

1. Introduction

Interferometric synthetic aperture radar is an important extension of synthetic aperture radar
(SAR), which is extensively adopted to topography surveying [1], surface deformation monitoring [2]
and so forth. Multi-baseline interferometry can comprehensively utilize the diversity of interferograms
with different baselines in the same scene to effectively extract the height information of difficult
topography, particularly under the circumstance in which the interferometric phase does not satisfy
phase continuity assumption [3]. The interferometric phase filtering is a critical step in multibaseline
interferometric SAR (InSAR). The interferometric phase is contaminated by massively coherent noise
brought from thermal noise decoherence, baseline decoherence, time decoherence and many other
decoherent factors in practice [4]. The noise directly affects the difficulty of subsequent phase
estimation and the accuracy of the final digital elevation model (DEM). The main motivation of
the interferometric phase filtering is to eliminate noises as much as possible while preserving most of
the detail information.
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As matters stand, the filtering methods of multibaseline InSAR are mainly divided into two
categories. One applies the filtering method of single-baseline InSAR to denoise multiple interferograms
separately. The filtering method of single-baseline InSAR is divided into two parts: the method in
spatial domain and the method in transform domain. Some spatial filters, such as boxcar filter [5],
Lee filter [6], local frequency estimate algorithm [7], optimal integration-based adaptive direction
filter [8], and so forth, denoise along the gradient direction of interferometric phase. Differences
between different methods are the process of detecting the direction and the weight of neighborhood
pixels. The appearance of the nonlocal InSAR estimator (NL-InSAR) [9] makes the method in spatial
domain reach a new stage. It simultaneously estimates the reflectivity, phase, coherence based on
maximum likelihood estimation and the non-local similarity of interferograms. In addition, other
methods based on non-local similarity have also been proposed successively [10]. What drives the
outstanding performance of another part is the different characteristic between signal and noise in
transform domain. It comprises of Goldstein method [11,12], wavelet filter [13,14], InSAR-BM3D [15],
and so forth Wherein, Xu et al. applied the simultaneously sparse regularized reconstruction of
amplitude and interferometric phase to acquire filtered interferograms [16]. InSAR-BM3D, which is
the state of art method in transform domain, extends non-local block-matching 3-D (BM3D) to InSAR
and reaches a great edge-Preserving performance. This kind of method does not put forward more
requirements about the filtering process but focuses on improving the robustness of phase estimation.
The filtering performance is not further improved.

Another category is the multibaseline joint filtering method. The strategy of multibaseline InSAR
filtering methods is divided into two parts. One works on the SAR data stacks. NL-InSAR can be
regarded as a special case of this part, and the number of SAR images is two. The filtered interferogram
is extracted from the covariance matrix. And the covariance matrix is estimated with help of the
average effect of statistically homogeneous pixels which have a similar statistical distribution with
the central pixel [17–20]. The method can obtain despeckled amplitude images, coherence values,
filtered interferograms simultaneously. But its performance is affected by the size of the data set. Large
data sets are easy to obtain a more accurate estimation. Most methods require at least eight SAR
images. Another one works on the InSAR data stacks, that is, a tensor composed of interferograms.
In [21], You et al. proposed a tensor-based filter, which perceived the clean multibaseline InSAR
data as a tensor with a low-rank matrix and drawn support from the Kronecker Basis Representation
(KBR) to transform the filtering process into an estimation of a low-rank matrix. What demonstrates
the potentiality of multibaseline joint filtering is that the method is superior to some state of the art
single-baseline filter, for example, NL-InSAR, InSAR-BM3D, and so forth. But it still needs many
interferograms to ensure the accuracy of the estimation [17,18].

This paper is an exploration of multibaseline interferometric phase filter based on the statistical
characteristic. We propose a new filter on the basis of the NSST filter which is a part of the wavelet filter.
The interferogram contains a large number of edges, fringes and other high-dimensional anisotropies.
The NSST produces a multi-scaled and multi-directional sparse representation to images optimally
and drives a more meticulous depiction of the high-dimensional anisotropies. The interferogram is
decomposed into coefficient components with various scales and directions. the coefficient component
involves little significant information with large amplitude and noise spreading in whole frequency
domain. Coefficients, which are considered as noise are removed immediately, while the significant
information is retained or shrinked. A pre-thresholded Wiener filter [22] is applied to eliminate noise.
Then the inverse NSST is applied to obtain the reconstructed image.

The noise variance, which decides whether the coefficient is zeroed or retained, is a critical
parameter of the Wiener filter. The accuracy of noise variance determines whether the performance
of the wiener filter is optimal. A noise level estimation framework which is conceptually similar
to the method in Reference [23] is proposed based on the kurtosis model in NSST domain and
baseline-invariant property of kurtosis that is proposed and confirmed in this paper. The noise variance
estimation is converted into a modified non-convex optimization problem. Moreover, the proposed
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estimator has higher operation efficiency due to skipping the clustering operation in Reference [23].
Considering the noise variance is space-variant, block estimation is applied. With the help of estimated
noise variance, the wiener filter eliminates noise more accurately. Last but not least, the result of
experiments on simulated data and real data confirms the efficiency and excellent performance of the
proposed method.

2. Method

2.1. Signal Model

In the case of single-look, the probability density function of interferometric phase can be
represented as (1). The interferometric phase satisfies additive noise model in spatial domain, which is
deduced in Reference [13]. It can be expressed as (2).

pd f (φ; γ, φ0) =
1

2π

1 − |γ2|
1 − |γ2|cos2(φ − φ0)

·
{

1 +
|γ|cos(φ − φ0)cos−1[−|γ|cos(φ − φ0)])

[1 − |γ2|cos2(φ − φ0)]1/2

}
,−π < (φ − φ0) ≤ π

(1)

y = x + n, (2)

where x is the ideal phase deduced by the natural topography. y is the observed phase disturbed by
the zero mean noise n, which is assumed to be independent of x. The phase jump ranged from −π to
π, which is induced by the interferometric phase wrapping, derived a high frequency similarity to
noise in frequency domain. Therefore, not surprisingly, it is apt to greatly be confused with noises. It is
desirable that we convert the image to the complex domain to get the continuous complex phase and
filter the real part and the imaginary part respectively. The signal model in the complex domain can be
induced as

exp(jy) = cos(y) + jsin(y). (3)

The real part and the imaginary part can be expressed as

cos(y) = Nccos(x) + nc (4)

sin(y) = Ncsin(x) + ns, (5)

where Nc = π
4 |γ|F( 1

2 , 1
2 ; 2; |γ|2) and F( 1

2 , 1
2 ; 2; |γ|2) is the Gaussian hypergeometric distribution

function. nc and ns are zero-mean random variables, which are generally assumed to additive Gaussian
white noises in the filtering process.

2.2. Denoising Based on NSST

2.2.1. The Nonsubsampled Shearlet Transform

Wavelet is prone to deal with 1-D signals existing pointwise singularities. Nevertheless, it is weak
to handle multidimensional data dominated by distributed discontinuities, such as edges and fringes.
In an effort to solve this problem, the wavelet basis with much higher directional sensitivity and more
flexible shapes is encouraged for effectively capturing the singularity features of multidimensional
data, involving composite wavelets [24], contourlets [25], and so forth. The shearlet transform is
an important part of composite wavelet theory, which merges classical geometry and multiscale
analysis [26–29]. The shearlet provides nearly optimal nonlinear approximation performance and
produces an optimal sparse representation of images with distributed discontinuities. Thanks to its
time-frequency local feature and directional sensitivity, the shearlet transform can be applied in image
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processing, for example, image denoising, image fusion, texture feature extraction, and so forth. In the
context of composite wavelet, the discrete shearlet is defined as

SH(ψ) =
{

ψj,l,k = 2
3j
2 ψ(GlSjx − k) : j ≥ 0,−2j ≤ l ≤ 2j, k ∈ Z

2
}

(6)

S =

(
4 0
0 2

)
, G =

(
1 1
0 1

,

)
(7)

where ψ ∈ L2(R2). S is the anisotropic dilation matrix related to scale transformation. j denotes
the scale parameter in particular, which dominates the refinement of frequency and the redundancy
of basis elements. G is the shear matrix related to geometrical transformation. l denotes the shear
parameter which restricts the orientation of each shearlet element. Moreover, k indicates the shift
parameter to locate distributed discontinuities in spatial domain. Calculating the Fourier transform to
elements ψj,l,k(x), we get

ψ̂j,l,k(w) = 2−
3j
2 ψ(wS−jG−l)e2πiwS−jG−l k. (8)

It has frequency support as (9). The frequency division produced by the shearlet transform is
illustrated in Figure 1.

suppψ̂j,l,k ⊂
{
(w1, w2) : w1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |w2

w1
− l2−j| ≤ 2−j

}
(9)

(a) (b)

Figure 1. (a) The partition of frequency domain; (b) Frequency structure of the shearlet ψ̂j,l,k(w1, w2),
for w1 > 0, w2 > 0.

The asymptotic approximation error of the shearlet transform is N−2(logN)3 when N → ∞ [29].
So it precisely depicts the interferometric fringe. Besides, the shearlet forms Parseval frames in
frequency domain. Its elements are trapezoidal pairs whose area is 2j × 22j and oriention is along
the zero-crossing line with slope of −l2−j [29]. The corresponding orientation in spatial domain is
along the line with slope of l2−j. the shearlet elements can be discriminated by scales, locations and
orientations. In addition, it apace decays in spatial domain. The aforementioned content indicates the
highly directional sensitivity of shearlet, which makes a huge difference in the interferogram filtering.

In practice, the shearlet is shift-variant. The shearlet transform adopts the shift operation of
the window function to realize the directional filtering. It involves a subsampling operation, which
causes spectral aliasing in frequency domain. Thereby the Gibbs distortion occurs in the reconstructed
image. To solve this problem, Easley and Labate proposed the nonsubsampled shearlet transform
(NSST) which is enlightened by the great performance of the nonsubsampled contourlet transform.
The NSST replaces the subsampled operation with convolution in the directional filtering. It is
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shift-invariant and efficiently eliminates the pseudo-Gibbs phenomenon in reconstructed images.
Hereby the reconstructed image is more effective and intuitive. The decomposition procedure primarily
contains two steps as shown in Figure 2.

Step 1: Multiscale Decomposition

The image is decomposed into a high-frequency component and a low-frequency component by
means of non-subsampled pyramid (NSP). Then iteratively execute this step till image is decomposed
into the j scales.

Step 2: direction localization

The core of direction localization is non-subsampled shearing filter banks (NSSFB), which impose
the 2-D convolution of the shearing filter and the high-frequency component on the cartesian domain.
The convolution averts subsampled operation, thereby the NSST is shift-invariant.

Figure 2. Decomposition process of non-subsampled shearlet transform (NSST).

2.2.2. Pre-Thresholded Wiener Filter

On account of the shift-invariant property, the NSST displays great performance in image
denoising, particularly for the texture image. It is also desirable that the NSST filter exploits the
coefficient shrinkage method which is consistent with the wavelet filter. Shearlet gives a sparse
expression to images. That is to say, the intrinsical information of image is concentrated on few
coefficients spreading over each scale with a considerable large amplitude. By contrast, shearlet
coefficients generated by noise widely distribute in shearlet domain and its amplitude is small. Owing
to this feature, a more accurate pre-thresholded Wiener filtering method with known noise variance is
employed to remove the noise component. It consists of two steps:the pre-thresholded operation and
Wiener filter. The pre-thresholded operation ensures the smaller local expected square error (LESE) of
linear approximation, which is represented as

c̃(i, j) =

⎧⎨
⎩c(i, j) σ2

ci,j
> kσ2

n ;

0 otherwise.
(10)

k = 1 +

√
2

(2N + 1)2 (11)

σ2
ci,j

=
1

(2N + 1)2

N

∑
m,n=−N

c2
i−m,j−k. (12)
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Then the Wiener filter obtains the best linear estimation of clean images. It is represented as

ĉ(i, j) = a(i, j)c̃(i, j) (13)

a(i, j) =
max(σ2

c̃i,j
− σ2

n , 0)

σ2
c̃i,j

. (14)

2.3. Noise Level Estimation Based on Kurtosis

The noise variance is the crux of the Wiener filter. The robust noise level estimator [30] designed
by Donoho et al. regards scales median of absolute coefficients as noise variance and is commonly used
in many papers. It is straightforward and expedient but tends to over-filter in interferograms with
high signal-noise ratio (SNR). A more precise noise variance estimator is extremely urgent to improve
the filtering performance of the NSST filter. The most primary innovation of this paper is to introduce
the kurtosis-based noise level estimator in Reference [23] to multibaseline InSAR. The kurtosis and the
noise variance have a certain relationship in the additive Gaussian white noise model. There exist two
unknown variables in the kurtosis model, the number of unknown variables is larger than the number
of equations. The result of the minimization method, such as l1-minimization [31], l2-minimization
[32] and so forth, exists great errors. To solve the problem, Dong et al combine the kurtosis model with
a constraint, in which the kurtosis of images with different structures or statistical behaviors should be
unequal, to improve the estimation accuracy of the noise variance. The K-means clustering process is
applied to classify the whole image into non-overlapping image patches with different structures.

In this section, the kurtosis of the interferometric phase is introduced. And a special property
of the kurtosis is proposed in multibaseline InSAR and is named as the baseline-invariant property.
Along with the idea in Reference [23], the baseline-invariant property is regarded as a constraint to
ensure the accurate estimation of the noise level. The modified method omits the clustering process
and eliminates errors introduced by the fault of the cluster. Efficiency and performance get promoted.
Next, the noise level estimator is introduced in two parts. The first one introduces the kurtosis of the
interferometric phase and two important properties of the kurtosis. In the other part, the noise level
estimation is introduced in detail.

2.3.1. Kurtosis

The image is decomposed into various coefficient components at different scales and directions
by NSST. The research on the distribution of NSST coefficient components is conducive to the further
analysis of images and is a significant topic in image processing. Among them, the research on its
statistics is of great potential. The low-order statistic is weak, even invalid in interferograms which
involve a large amount of textures and detail informations. Consequently, the scholar begins with the
study of its higher-order statistic, such as kurtosis and skewness. In this section, we study and analyse
the kurtosis of interferograms and NSST coefficient components. The kurtosis of a random variable Y
is defined as

κ(Y) =
C4(Y)
C2

2(Y)
− 3, (15)

where Ck(•) is the kth cumulant function. The kurtosis reveals the concentration level of the probability
density function. Intuitively, the kurtosis reflects the sharpness of the probability density distribution,
wherein the kurtosis of the Gaussian distribution is 0. Based on the single-look probability density
function of the interferometric phase, the kurtosis is calculated numerically as a function of the
coherence, as shown in Figure 3. It indicates that the kurtosis is proportional to the coherence.
Obviously, the clean interferogram emerges higher kurtosis when compared with interferograms
disturbed by coherent noise with variable degrees. When the noise is strong enough to destroy the
fringe structure of interferograms, the kurtosis is smaller due to the influence of the noise. In addition,
the kurtosis tends to a negative number when the coherence is close to zero owing to the impact of
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non-Gaussian noises. In contrast, when the coherence is high, the fringe structure of interferograms
plays a primary role. So the kurtosis increases with the improvement of coherence. It should be noted
that NSST coefficient components of interferograms are sparse and its kurtosis is greater than zero.

Figure 3. The kurtosis of interferometric phase.

The proposed method takes advantage of two vital properties of the kurtosis of interferograms.
One is the scale-invariant property, which works well on all natural images, that is, the kurtosis
of coefficient components in the Linear Transform Domain should be held constant at different
scales. It is verified and revised by some work in References [31–33]. A modified description for
the scale-invariant kurtosis assumption is that the stability is effective in clean images throughout
all scales and the variation is the specific impact of noise [32]. The scale-invariant property in the
nonsubsampled shearlet transform can be formalized as (16), where Yi is the ith NSST coefficient
component of the clean image Y.

κ(Yi) = κ(Yj), i, j = 1, 2, . . . , N. (16)

Another property, which is particular to interferograms and can be yielded from an empirical
summary, is proposed in this paper. The kurtosis of images with similar structure or statistical behavior
is assumed to be a constant [23]. Along this line, we suggest that the kurtosis of interferograms
with different baseline keeps constant and denote it as the baseline-invariant property. Then
an interpretation from two perspectives should be introduced. First, It will be explicated further
in terms of the probability density function (pdf). The pdf of the interferometric phase is independent
of baselines, so does the kurtosis. It can be revealed in (1). In other words, the kurtosis of the
interferometric phase is baseline-invariant. However, in virtue of impacts of discretization operation
such as sampling, numerical calculation and so forth, the kurtosis of interferograms with different
baseline fluctuates around a constant in reality. Fortunately, the fluctuation variance is small enough.
So the negative effect of the fluctuation variance can be ignored. On the other hand, as far as
the image is concerned, interferograms of the same topography with different baseline intuitively
have similar texture trends which show similar statistical behaviors. Correspondingly, the kurtosis
maintains invariant in images with similar statistical behaviors, which gives strong support for the
baseline-invariant property of kurtosis in multibaseline InSAR.

Some simulated analyses prove the baseline-invariant property. In order to verify the validity of
that property for various types of interferograms (generated by various topographies), we select the
DEM of five common topography, including Cone, Building, the Northeast plain, China (the elevation
below 500 m, the relief is not more than 200 m), the Sichuan Basin, China, Mangkang Mountain, Tibet,
China (Plateau, the elevation above 500 m, the relief is more than 200 m). All primordial elevation data
are derived from simulated data and Shuttle Radar Topography Mission DEM (SRTM-DEM) elevation
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data which is provided by Geospatial Data Cloud site, Computer Network Information Center, Chinese
Academy of Sciences (http://www.gscloud.cn). The elevation data and typical interferograms of them
are shown in Figure 4.

(a) Cone (b) Building (c) Plain (d) Basin (e) Plateau

Figure 4. Five different topography (top) and their typical interferogram (bottom): (a)–(e) represent
cone, building, plain, basin and plateau respectively.

In the light of the DEM of ground scenes and parameters of multibaseline InSAR simulation
systems as shown in Table 1, we start with projecting the elevation data into the slant coordinate
system. Then we calculate 81 ideal interferograms for each topography when the baseline varies from
50 m to 500 m based on the interferometry principle.

Table 1. Parameters of multibaseline interferometric synthetic aperture radar (InSAR) simulation system.

Parameters Value

Height 642 km
Cental Frequency 3∼9.6 GHz

Bandwidth 100 MHz
Baseline 50∼500 m

Look Angle 34.5◦
Baseline Orientation Angle 5◦

The kurtosis of interferograms with different baseline corresponding to each topography is
calculated and its boxplot is shown in Figure 5. In order to approach to the actual situation, the fringe
density of simulated interferograms should not be too sparse or too dense. Therefore, the system
central frequency for different topography is different. However, in this section, the baseline-invariant
property of the kurtosis of interferograms with different baselineswe is confirmed. In other words,
the fact that the kurtosis of interferograms with different fringe density remains constant is verified.
So the change of the central frequency is not taken into account. We observe the kurtosis standard
deviation of each topography numerically in Table 2. The result implies that the maximum standard
deviation of kurtosis is 0.1056. Considered the influence of numerical calculation and sampling, it is
interpreted that the kurtosis of interferograms with different baseline keeps constant.

Table 2. The standard deviation of kurtosis corresponding to various topography (including Cone,
Building, Plain, Basin, Plateau).

Topograpgy Cone Building Plain Basin Plateau

Standard Deviation 0.006 0.0298 0.1056 0.0442 0.0064
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Figure 5. Boxplot of kurtosis corresponding to various topography.

2.3.2. Noise Level Estimation

In this section, the principle and process of the noise level estimator proposed in this paper is
introduced in detail. The real part and the imaginary part of interferograms are handled respectively.
Taking the real part as an example, it is decomposed into M components in NSST domain. In addition,
the additive noise model applies to all shearlet components.

yi = xi + ni (17)

where yi,xi,ni represents the ith NSST coefficient of the observed phase, ideal phase and noise,
respectively. The variance of yi is represented as

σ2
yi
= σ2

xi
+ σ2

ni
(18)

σ2
ni
= σ2

n · σ2
λi

(19)

C4(yi) = C4(xi) + C4(ni), (20)

where σ2
yi

, σ2
xi

, σ2
ni

is the variance of yi, xi, ni, respectively. σ2
λi

indicates the estimated noise level of the
ith NSST coefficient for a white Gaussian noise of standard deviation 1. It is calculated by the Monte
Carlo Estimation Method. Then we deduce (21) from (18), (19) and (20):

σ4
yi

κ(yi) = σ4
xi

κ(xi) + σ4
ni

κ(ni). (21)

Since the assumption that ni obeys the Gaussian distribution, κ(ni) = 0. Besides, the coefficient
distribution of subband components is generally more centralized than the Gauss distribution, that
is, κ(xi), κ(yi) ≥ 0, because the interferogram is subdivided into subband components with different
scales and directions. The deterministic relationship between noise variance and kurtosis is deduced
from (18) and (21), as shown in (22).

√
κ(yi) =

√
κ(xi)−

σ2
n · σ2

λi

σ2
yi

√
κ(xi). (22)

Equation (22) is the kurtosis model which describes the deterministic relationship between
the kurtosis and the noise variance. The kurtosis and variance of the observed phase yi can be
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calculated directly but the kurtosis of the ideal phase and the noise variance are unknown. The number
of unknown variables is larger than the number of equations, so the noise variance cannot be
determined directly by Equation (22). A large number of texture structures appearing in interferograms
represent similar characteristics with noise in the frequency domain. The existence of texture structure
leads to great errors of the noise variance estimation achieved by the minimization method of (22),
that is, l1-minimization [31], l2-minimization [32]. To solve this problem, Equation (22) and the
baseline-invariant property which acts as another equation are used to jointly estimate the noise
variance. With the help of the new information from the baseline-invariant property, the estimation
with higher accuracy is realized. the baseline-invariant property is represented as√

κ(xk) =
√

κ(xl), k, l = 1, 2, . . . , N. (23)

The form of sqrt is adopted for the convenience of the subsequent solution of optimization model.
The following optimization model is proposed from (22) and (23).

{
σ̂2

n ,
{

κ̂(xj)
}N

j=1

}
= arg min

σ̂2
n ,{κ̂(xi)}N

i=1

{
N

∑
k=1

N

∑
l=1

(√
κ(xk)−

√
κ(xl)

)2

+
N

∑
j=1

M

∑
i=1

⎛
⎝√κ(yj

i)−
√

κ(xj) +
σ2

n · σ2
λi

σ2
yj

i

√
κ(xj)

⎞
⎠

2 }

subject to : κ(xj) ≤ 1
M

M

∑
i=1

κ(yj
i), f or j = 1, 2, 3, ..., N,

(24)

where the superscript j denotes the jth baseline and the subscript i denotes the ith coefficient component.
The first term of optimization function is deduced by the baseline-invariant property of kurtosis and
another one is added for fitting the kurtosis model in (22). Then the constraint is derived from the fact
that the kurtosis of coefficients decreases owing to the noise disturbance as shown in Figure 3.

The aforementioned optimization function is constrained and non-convex optimization problem
with two variables: σ2

n and κ(xj)
N
j=1, which should be considered and optimized simultaneously. This

constrained and non-convex optimization problem can be decomposed into two continuous and
convex optimization sub-problems by fixing one variable to optimize another variable. Firstly, fix the
noise variance σ2

n and then update κ(xj)
N
j=1. The optimization model 1 to be solved is

{
κ(xj)

}N

j=1
= arg min

{ N

∑
k=1

N

∑
l=1

(√
κ(xk)−

√
κ(xl)

)2

+
N

∑
j=1

M

∑
i=1

⎛
⎝√κ(yj

i)−
√

κ(xj) +

(
σ̂2

n · σ2
λi

)
t

σ2
yi

√
κ(xi)

⎞
⎠

2 }

= arg min
{ N

∑
k=1

N

∑
l=1

(√
κ(xk)−

√
κ(xl)

)2
+

N

∑
j=1

M

∑
i=1

κ(yj
i)

+ 2
N

∑
j=1

M

∑
i=1

⎡
⎣√κ(yj

i)

⎛
⎝
(

σ̂2
n · σ2

λi

)
t

σ2
yi

− 1

⎞
⎠√

κ(xj)

⎤
⎦+

N

∑
j=1

M

∑
i=1

⎛
⎝
(

σ̂2
n · σ2

λi

)
t

σ2
yi

− 1

⎞
⎠

2

κ(xj)

}
.

(25)

Ignoring the second item which is independent with κ(xj)
N
j=1. Let

• the vector k ∈ R
N

k =

[√
κ(x1),

√
κ(x2), ...,

√
κ(xN)

]T
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• A is a diagonal matrix of N × N and the diagonal element is

Aii =
M

∑
i=0

⎛
⎝
(

σ̂2
n · σ2

λi

)
t

σ2
yi

− 1

⎞
⎠

2

• B is a symmetric matrix

Bij =

{
N − 1 i = j;

−1 otherwise.

• the vector C ∈ R
N

ci =
M

∑
i=0

2
√

κ(yj
i)

⎛
⎝
(

σ̂2
n · σ2

λi

)
t

σ2
yi

− 1

⎞
⎠ .

Then the optimization function can be simplified as

arg min kT(A + B)k + cTk. (26)

Because A + B is a positive definite matrix, it is a standard convex optimization for quadratic
programming with constraints and can be solved directly.

Similarly, fix κ(xj)
N
j=1 and update σ2

n , we deduce optimization model 2 as shown in (27).

(σ̂2
n)t+1 = arg min

{κ(xi)}N
j=1

N

∑
j=1

M

∑
i=1

(√
κ(yj

i)−
√

κ̂t(xj) +
σ2

n · σ2
λi

σ2
yi

√
κ̂t(xj)

)2

. (27)

Let the partial derivative of function (27) equals to 0 and then we get the noise variance.

2
N

∑
j=1

M

∑
i=1

⎛
⎝√κ(yj

i)−
√

κ̂(xj) +
σ2

n · σ2
λi

σ2
yj

i

√
κ̂t(xj)

⎞
⎠
√

κ̂t(xj)

σ2
yj

i

= 0

σ̂2
n =

∑
ij

(√
κ̂t(xj)−

√
κ(yj

i)

)

σ2
λi
· ∑

ij

√
κ̂t(xj)

σ2

yj
i

. (28)

Iteratively update κ(xj)
N
j=1 and σ2

n , until convergence.
A pivotal assumption of the aforementioned method is that the noise variance remains constant

spatially. Namely, the noise is homogeneous throughout the image space. Yet the interferogram
suffers the coherent noise with spatially variable characteristic. The consistent noise variance induces
unbalanced filtering results. So we further advance the global noise variance to the local noise variance.
Specifically, we divide the image into a certain amount of non-overlapping patches with the same
size and assume the stability of noise variance in each patch and estimate its local noise variance
simultaneously. The noise level estimation procedure can be summarized in Algorithm 1.
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Algorithm 1 Estimating the local noise variance
{
(σ̂2

n)l
}L

l=1

Input: N × M NSST coefficients
{

Yi
j

}M,N

i=1,j=1
of the observed interferograms with N different baselines, the size

of patch m × n and the maximum iteration number Niter.
Initialization:

{
(σ̂2

n)l
}L

l=1=0.

1: Divide all coefficients into L patches whose size is m × n and calculate the kurtosis
{

κl(y
j
i)
}N,M,L

i=1,j=1,l=1
and

variance
{
(σ2

yj
i

)l

}N,M,L

i=1,j=1,l=1
of eath patch.

2: Repeat.
3: Let

{
(σ2

n)l
}L

l=1 equals the solution of the last optimization, update {κ̂l(x)}L
l=1 by optimization function 1.

4: Let {κl(x)}L
l=1 equals the solution of the step 3, update

{
(σ̂2

n)l
}L

l=1 by optimization function 2.
5: Until

{
(σ̂2

n)l
}L

l=1 and {κ̂l(x)}L
l=1 converges or Niter is reached.

6: Return
{
(σ̂2

n)l
}L

l=1.

3. Results

In this section, we validate the efficiency and validity of the proposed method via extensive
experiments on simulated and real interferograms. Experiments consist of three parts. First of all, we
demonstrate the estimation accuracy of noise level on simulated noisy interferograms. It is the crux of
the proposed method. Then, the simulated experiments are conducted. As a promotion of NSST filter,
the developed method is compared with five state of the art single-baseline filters, including: Goldstein
method, local frequency estimate (LFE) algorithm, optimal integration-based adaptive direction filter
(OADF), iterative NL-InSAR and InSAR-BM3D. Finally, the proposed method on real interferograms
will be tested. For simplicity, the proposed method is termed as NSST in the following sections. The
parameters of various filters are set as

• Goldstein: the filtering window size is 32 × 32, α equals 0.9;
• OADF: the filtering window size is 7 × 7;
• LFE: the local frequency estimation window and filtering window are set to 9 × 9;
• NL-InSAR: the iterative number is 10;
• InSAR-BM3D: the parameters are consistent with [15];
• NSST: the decomposition scale equals 5. Each scale contains 16 different directions.

3.1. Noise Estimation Experiments

The key of the proposed method is noise variance estimation. In this section, we verify the
accuracy of the estimated noise variance on simulated data. The original elevation model is a cone,
as shown in Figure 4a. As noted before, the interferometric phase accords with the additive noise
model in complex domain, the real part and the imaginary part are denoised respectively. We generate
three clean interferograms with different baseline. Noisy interferograms are disturbed by the circular
complex standard Gaussian noise. The coherence of noisy interferograms is set to 0.1, 0.3, 0.5, 0.7, 0.9,
respectively. The true noise variance of the real part, for example, is calculated numerically. Compared
with the true value, the estimated noise variance is generated by the proposed method. In order
to further test the robustness of the proposed method, 100 Mont-Calo simulations are conducted.
Statistics of its results are shown in Figure 6, where the black dotted line is the mean of true value in
100 experiments.
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Figure 6. Boxplot of 100 noise level estimation experiments corresponding to each coherence (the black
dotted line is the mean of true value).

The comparison between the estimation and the mean implies the accuracy and stability of the
proposed method. The maximum error rate is calculated to evaluate the estimation accuracy and is
defined as

RM =
max(|σ̂ − σ̄|)

σ̄
× 100 (29)

Where σ̂ denotes the estimated value in 100 experiments, σ̄ indicates the mean of true value.
The result is shown in Table 3. It is obvious that some errors exist in the estimation. The higher the
coherence is, the larger the SNR is. In the case of low coherence, the significant noise level engenders
the confusion of the high-frequency information and the noise, which results in a slight overestimation.
On the contrary, the noise near fringe in interferograms is mistaken for significant pixels owing to its
weak effect to fringes in the case of high coherence. So the estimation is lower than the true value.
We must emphasize that the maximum error rate is controlled within 8.76%. The underestimation is
compensated by the excellent performance of Wiener filter.

Table 3. Maximum error rate of noise level estimation.

Coherence 0.1 0.3 0.5 0.7 0.9

Actual Value 0.7044 0.6830 0.6351 0.5469 0.3632
Maximum Error Rate(%) 3.35 2.37 1.62 3.31 8.76

3.2. Simulated Experiments

In this section, we simulate three interferograms of cone and mountain to assess the performance
of the proposed method. The noise environment comprises two situations: constant and variable
noise variance in spatial domain. It is necessary for comparative experiments within each section.
The experiments in interferograms with unitary noise variance are conducted to inspect the
reconstructed performance for phase jump and phase gradient mutation. We select interferograms
with 400 × 400 pixels, which are generated by cone and contain both phase jump and phase gradient
mutation. Its clean interferograms and noisy interferograms can be shown in Figure 7. Coherence is set
to 0.5. The block operation is omitted because of the constant noise variance. The comparable results
of the interferogram with the shortest baseline are shown in the first row of Figure 8.
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(a) Clean interferograms (b) Noisy interferograms

Figure 7. Clean interferograms and noisy interferograms generated by a cone with coherence of 0.5.
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InSAR-BM3D
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Figure 8. The filter results of the interferogram generated by a cone with coherence of 0.5 (top) and the
statistical result of pixels at the center row (bottom, the black solid line is the true value; the blue dotted
line denotes the mean of 100 experiments; the pale blue shadow is the range of three times standard
deviation near the mean.).

Intuitively, the result of the Goldstein method is incorrect. There are obvious errors in OADF and
LFE. NL-InSAR, InSAR-BM3D and the proposed method all obtain appreciable results. The mean
square error (MSE) between the clean interferogram and the filtered interferogram confirms above
statements. What is more, Table 4 lists the number of residues in the filtered interferogram and the
computation time. Note that the bold font indicates the best performance in the table. Table 4 exhibits
that the proposed method outperforms to others with a running time that is second only to Goldstein
method. The similar MSE are found in InSAR-BM3D but its computation time is about twice as long as
our method. The results in NL-InSAR is superior to Goldstein method, OADF, LFE but its operation
efficiency is the worst due to iterative operation. By and large, a combination of minimum MSE,
minimum number of residues and high efficiency has taken in our method.

Table 4. Performance of various methods.

MSE Residues Times (s)

Noisy Image 1.7897 34492 –
Goldstein 1.853 21041 0.32

LFE 0.7699 1454 113.39
OADF 0.8951 389 59.45

NL-InSAR 0.6577 290 459.33
InSAR-BM3D 0.6014 0 38.02

NSST 0.4954 0 12.68

The second row of Figure 8 displays the mean and standard deviation of 100 Monte Carlo
experiments at the central row of results. Thereinto, the black solid line is the true value. The blue
dotted line denotes the mean of 100 experiments. The pale blue shadow is the range of three times
standard deviation near the mean. The poorest result in Goldstein method is interrelated with fixed

40



Sensors 2020, 20, 551

α and its boundedness to lower SNR. The result of NL-InSAR, InSAR-BM3D and our method for
the stationary phase is close to unbiased estimation, while other methods emerge distinct deviation.
The basic idea of OADF and LFE is the estimation to local direction and frequency of interferometric
phase. So the invalid estimation has contributed to a heavy fluctuation near phase jump and phase
gradient mutation. NL-InSAR produces excellent performance in phase jump but its non-local mean
operation induces the outlier which can be observed on both sides. Nevertheless, it produces excellent
performance in phase jump. Generally, InSAR-BM3D and our method outperform other methods but
our method has higher operation efficiency.

Considering a more complex noise level model in the second experiment, in which the coherence
ranges from 0.1 to 0.9 and increases from left to right at regular intervals. Figure 9 shows clean
interferograms and noisy interferograms with the size of 240 × 240. The image is divided into
9 non-overlapping patches in noise variance estimation procedure. The size of each patch is 80 × 80.

(a) Clean interferograms (b) Noisy interferograms

Figure 9. Clean interferograms and noisy interferograms generated by a cone with coherence ranging
from 0.1 to 0.9.

In this part, a new evaluation index, which is expressed as the pixel-wise Gradient Magnitude
Similarity (GMS) [34,35] between the reference and filtered images, is adhibited to evaluate the filtering
results of various methods. Gradient magnitude is an apparent indication of the difference between
adjacent pixels. The gradient of interferometric phase consists of two parts: the gradient of the local
stationary phase reflects the local slope of topography and the similarity of gradient casts light upon
the similarity of local topography. In addition, the outlier implies phase discontinuity within a phase
period. Similar to the well-known Structure SIMilarity (SSIM) index, the gradient similarity of phase
jump can also reflect the edge-preserving ability of methods. Therefore, it is worth to use GMS as
a new evaluation index. GMS is defined as

GMS(i) =
2Go(i)Gf (i) + λ

G2
o (i) + G2

f (i) + λ
, (30)

where λ is set to 0.0026 to ensure numerical stability. Go and Gf indicate the gradient magnitudes of o
and f . The gradient magnitudes is derived from (31) and (32).

Go(i) =
√
(o ⊗ hx)2 + (o ⊗ hy)2 (31)

Gf (i) =
√
( f ⊗ hx)2 + ( f ⊗ hy)2, (32)

where o and f indicate the original images and filtered images respectively. hx and hy indicate the
Prewitt filter along the horizontal and vertical direction. They are derived from (33).

hx =

⎡
⎢⎣

1
3 0 − 1

3
1
3 0 − 1

3
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3 0 − 1

3

⎤
⎥⎦ , hy =
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3
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0 0 0
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3

⎤
⎥⎦ (33)
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It should be noted that the larger the GMS value is, the higher the quality of the restored image is.
When GMS = 1, the reference image is fully recovered. The mean of GMS map (GMSM) refers to the
overall performance of GMS map.

Figure 10 shows the filtering results, residual graph and GMS map corresponding to six different
filters. Results show that all methods can correctly restore the original phase in the high-coherence
region. However, only InSAR-BM3D and the proposed method get considerable results in the low
coherence region. Besides, as far as the GMS map is concerned, our method has better ability to
maintain the phase gradient, especially in the low-coherence region. The estimated phase of the
proposed method tends to be more stationary and closes to the original phase. Table 5 shows the MSE,
GMSM and computation time. Note that the bold font indicates the best performance in the table.
The performance of various methods can be expressed as (where > denotes better performance):

• MSE: NSST>InSAR-BM3D>NL-InSAR>OADF>LFE>Goldstein
• GMSM: NSST>InSAR-BM3D>NL-InSAR≥LFE>OADF>Goldstein
• Computation efficiency: Goldstein>NSST>InSAR-BM3D>OADF>LFE>NL-InSAR

As a whole, our method is superior to other methods.

Goldstein OADF LFE NL-InSAR InSAR-BM3D NSST

Figure 10. The filter results of the interferogram generated by a cone with variable coherence (top),
the residuals graph (middle) and the Gradient Magnitude Similarity (GMS) map (bottom).

Table 5. Performance of various methods.

MSE Residues GMSM Times (s)

Noisy Image 2.1571 11679 0.8297 –
Goldstein 1.9478 8490 0.8562 0.15

LFE 1.5504 4660 0.8975 39.00
OADF 1.4209 317 0.8684 20.95

NL-InSAR 1.3339 1211 0.8994 96.66
InSAR-BM3D 1.0631 14 0.9103 10.59

NSST 0.9841 9 0.9343 5.07
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We consider a more complex topography to test the performance of various methods.
The elevation data of a steep mountain in Shaanxi Province, China is selected to generate three
interferograms. Coherence is consistent with last experiment. The size of interferograms is 1600× 1600.
The image is divided into 25 non-overlapping patches in noise variance estimation procedure. The size
of each patch is 320 × 320. Interferograms involve dense and sparse fringes. Dense fringes are mostly
located in the region with low coherence, which can better verify the effectiveness of the proposed
method. Figure 11 shows clean interferograms and noisy interferograms.

(a) Clean interferograms (b) Noisy interferograms

Figure 11. Clean interferograms and noisy interferograms generated by a mountain with coherence
ranging from 0.1 to 0.9.

Figure 12 shows the filtered results. Table 6 shows the results are similar to the results of the
previous experiment. Note that the bold font indicates the best performance in the table. The proposed
method produces minimum MSE and maximum GMSM , which prove the prominent filtering
performance of it. The minimum MSE of the proposed method proves that the result of the proposed
method is closer to the true interferometric phase. And the maximum GMSM implies that the result
of the proposed method has fewer outliers and better local stability. The number of residues of the
proposed method is second only to InSAR-BM3D and is very close to InSAR-BM3D. The reduction of
residues is up to 99.97% compared with the residues of noisy image. Moreover, the computation time
of the proposed method is half of the time of InSAR-BM3D. In general, the proposed method not only
has outstanding filtering performance but also has high operation efficiency.

Goldstein OADF LFE NL-InSAR InSAR-BM3D NSST

Figure 12. The filter results of the interferogram generated by a complex topography with variable
coherence (top), the residuals graph (middle) and the GMS map (bottom).
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Table 6. Performance of various methods.

MSE Residues GMSM Times (s)

Noisy Image 2.1870 518970 0.6876 –
Goldstein 1.9655 371334 0.7534 4.30

LFE 1.5598 199348 0.8284 2784.72
OADF 1.4402 9138 0.7828 901.24

NL-InSAR 1.2885 18963 0.8648 5491.40
InSAR-BM3D 1.0564 126 0.9026 543.13

NSST 1.0386 148 0.9213 272.79

3.3. Experiments on Real Interferograms

The original data set is three repeat-orbit InSAR data at Colorado Grand Canyon, USA, which
is obtained by Alos-1 satellite. Figure 13 shows its interferograms. Baselines are 738.182, 1241.066
and 1827.02 m, respectively. The size of interferograms is 6000 × 5910. In noise variance estimation
procedure, each interferogram is divided into 225 non-overlapping patches whose size is 400 × 394.

Noisy Interferogram 1 Noisy Interferogram 2 Noisy Interferogram 3

Figure 13. The real interferograms with different baseline (the length of baseline increase form left
to right).

Results are shown in Figure 14. Intuitively, the Goldstein method has completely failed. And
the apparent noise remains in the result of OADF and LFE. The excellent results of NL-InSAR,
InSAR-BM3D and the proposed method are similar.

In order to further compare various methods, the low-coherence region in the upper right corner
(row: 1:1000, column: 4910:5910) is cropped to further analysis. Figure 15 presents denoising results of
different methods. Table 7 lists the number of residues, the reduction rate of resides and computation
time. Note that the bold font indicates the best performance in the table. The excellent performance
of the proposed method can be confirmed directly by visual observation. In the proposed method,
the reduction rate of residues (up to 99%) is remarkable and the result is more conducive for the
subsequent phase unwrapping.

Table 7. Performance of various methods.

Residues Residues Reduction Rate Times(s)

Noisy Image 174198 – –
Goldstein 124397 28.59 0.9

LFE 60714 65.15 720.00
OADF 10899 93.74 433.47

NL-InSAR 15866 90.89 2542.23
InSAR-BM3D 16672 90.42 171.69

NSST 1374 99.21 91.57
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Noisy Interferogram Goldstein OADF LFE

Coherence NL-InSAR InSAR-BM3D NSST

Figure 14. The filtered results of the real interferogram with the longest baseline.

Noisy Interferogram Goldstein OADF LFE

Coherence NL-InSAR InSAR-BM3D NSST

Figure 15. The filtered results of the low-coherence reagion (the upper right corner of real interferogram
with the longest baseline (row: 1:1000, column: 4910:5910)).

Eight phase profiles along the phase gradient direction, which involve intact phase period and
satisfy local stationarity, are extracted for contrast. White lines in Figure 16 represent the phase profile at
low-coherence region (line 2 and line 8), high-coherence region (line 1 and line 6), complex topography
region (line 3), the region corresponding to steep topography (line 5), and so forth. As shown in
Figure 17, results of phase profiles are arranged in the order of its position (increase from left to right,
from top to bottom). For simplicity, Figure 17 only exhibits results of NL-InSAR, InSAR-BM3D and the
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proposed method, which are superior to other methods intuitively. As shown in line 3, none of three
methods can recover the real phase correctly at complex topography region.The difficulty is inherent
defect of interferogram with too long baseline. The phase profile at flat region with high-coherence,
which corresponds to line 1 and line 6, is estimated appropriately by NL-InSAR and the proposed
method. However, a few abnormal values arise in the result of InSAR-BM3D. The comparison result of
the number of abnormal values at high-coherence region corresponding to steep topography (line 5)
can be expressed as: the proposed method≥NL-InSAR>InSAR-BM3D. For the low-coherence region
(line 2 and line 8), the proposed method outperforms NL-InSAR and InSAR-BM3D. The proposed
method produces a more stationarity and authentic result. It is consistent with the result in Figure 15.
On balance, the proposed method has the best comprehensive performance.

Figure 16. The real interferogram with the longest baseline(the order of white lines increases from left
to right, from top to bottom).
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Figure 17. The phase profile of white lines in Figure 16 (the red, green and blue solid line represent the
result of NL-InSAR, InSAR-BM3D and NSST, respectively.).
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4. Conclusions

An attempt to the joint filtering method in multibaseline InSAR based on the statistical property of
interferometric phase is proposed in this paper. This paper analyses the high-order statistical property
of interferograms with different baseline and proposes an empirical assumption: the kurtosis of
interferograms with different baseline keeps invariant. Simulated experiments give numerical support
to it. The filtering process of the proposed method involves four parts: the NSST decomposition,
the noise level estimation, pre-thresholded Wiener filter and inverse NSST. NSST gives an optimal
sparse representation of distributed discontinuities, such as fringes of interferograms. We obtain
a series of NSST coefficients at different scales and directions after NSST decomposition. Based on
the kurtosis model in NSST domain and baseline-invariant property of interferograms, the noise
variance of interferograms is represented as the solution of a constrained non-convex optimization
problem. The clean NSST coefficient is estimated by the Wiener filter with the local noise variance
derived by block estimation. The noise estimation experiments prove the validity of the noise level
estimator. Experiments on simulated data and real data prove the edge-preservation performance and
excellent filtering performance of the proposed method. Many coefficient components with the same
kurtosis are obtained by NSST. Sufficient data means that the filtering performance of the proposed
method is not affected by the number of interferograms. The great performance can be acquired when
the number of interferograms is small. However, a large amount of memory is occupied by a large
number of coefficient components. The algorithm has some requirements for memory performance.
But this problem can be alleviated by adjusting the scale of NSST decomposition according to the
actual computer performance.
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Abstract: This letter proposes a radar interferometric survey system for the ground surface of
helicopter landing sites. This system generates high-quality three-dimensional terrain surface
topography data and estimates the slope of the site with the required accuracy. This study presents
the processing algorithms of the radar system for safe helicopter landing using an interferometric
method and also demonstrates the efficiency of the proposed approach based on computer simulation
results. The results of the calculated potential accuracy characteristics of such a system are presented,
as well as one of the variants of the algorithmic implementation of a simulation computer model
implemented on MATLAB. Visual results of modeling using an example of a helicopter landing on
a non-uniform surface relief similar to a real case are shown. The study focuses on the simulation
of a unique on-board radar system, which allows helicopters to land on an unprepared site with a
high degree of safety, having previously determined the presence of dangerous irregularities, inclines,
foreign objects, and mechanisms on the site.

Keywords: interferometric radar; helicopter landing; simulation model

1. Introduction

One of the main causes of helicopter accidents [1,2] is the unreliability of means to ensure their
landing on unprepared landing sites (LSs) in adverse weather conditions during the day and at night
with poor visual visibility. Even in good weather conditions, owing to the dusty surface of the earth,
the pilot and crew are at risk during landing. Massive dust clouds formed by air swirls owing to the
helicopter’s screws substantially mask the LS. At the same time, irregularities with a height of 0.5 m and
more and LSs with slopes more than 15◦ [2] already represent a danger to the landing of the helicopter,
especially in strong winds. Existing on-board systems (satellite navigation systems, on-board radio
altimeters) that most helicopters are equipped with cannot provide necessary information about the
state of the terrain, slopes of the LS, and presence of foreign objects.

Until now, studies have been focused on two main areas of research in this field [3–9]. The first
is the use of laser locators in the safe landing systems of a helicopter (SLSHs). High relief detailing
is achieved and information about the LS relief is displayed on the screen in the cockpit. The main
disadvantages of laser SLSHs are their strong dependence on weather conditions, i.e., it is impossible to
survey the surface of the LS in the conditions of rain, fog, and snow, as well as their high cost compared
to radar systems. The second is the use of radar systems in combination with special processing of
signals reflected from the landing pad. Both continuous and pulsed systems with complex signals are
used. There are several methods that allow information about the elevations of the surface relief to be
isolated from radar data: stereoscopic, interferometric, clinometric, and polarimetric. Stereoscopic
and interferometric methods require two images of the same surface area from different positions, the
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clinometric method works with only one image, and the polarimetric method requires a set of images
taken with different signal polarizations.

Owing to a number of features of these methods, as well as flight regulation requirements [10],
which discuss the need for mandatory flight of the proposed landing zone from several perspectives, a
combination of the stereoscopic and interferometric methods is considered to be suitable for practical
use when evaluating the surface topography.

The purpose of this work is to show the main stages of one of the options for the algorithmic
implementation of a simulation model of the radar SLSH (RSLSH) interferometric method and also to
demonstrate the performance of the proposed solution for safe landing of the helicopter based on the
results of computer simulation.

2. Description of the RSLSH

To ensure a safe landing of the helicopter, a flight test is carried out when approaching it at a
speed not exceeding 15 ms−1, according to flight regulations [10] from a height of approximately 50
to 100 m. During the flyby, a radar survey of the LS is carried out in the form of manual system.
As the carrier moves, line-by-line scanning of the viewing area is performed using a narrow beam
of a receiving-transmitting waveguide slot antenna in the azimuth plane without aperture synthesis;
a wide beam in the slope plane is used to highlight the required area of view of the LS (Figure 1).
It is important to note that during radar observation of the flight station, the helicopter must fly at a
constant height with a constant speed.

 
Figure 1. Imaging geometry of radar safe landing system of a helicopter (RSLSH).

An interferometer with a fixed base [11–13] in the form of a pair of antennae spatially separated
by an interferometric base of a waveguide slot antenna mounted on a tail beam is used as a tool for
measuring the relief of the LS and estimating the presence of foreign objects on the LS. One of the
antennae works for reception and transmission, and the other only for reception.

The operating frequency of the system is selected in the Ka-band, which is caused by minimizing
the size of the antennae, ensuring high resolution of the on-board radar, as well as reducing the effect
of losses on radio wave propagation.

High horizontal resolution Δx = c/(2Δ f sinθ1) is provided by the use of a signal with
a nanosecond duration, where Δ f is the bandwidth of sensing signal; c is the speed of light;
θ1 = arccos(h/r1) is the look angle; h is the flight altitude; and r1 is the slant range.

The resolution in the azimuthal direction is determined by the size of the antenna, since at selected
altitudes of the helicopter and the size of the LS, the radar operates in the azimuth plane in the near
zone of the antennae.
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A one-to-one relationship between the observation parameters and the interferometric phase
difference (IPD) φ at the input of spatially separated receivers, which carries information about the
resolution element, is determined by the relation [12,13]:

zi = h− r1 cosω

√
1−

((
r2

1 + b2 −
(
r1 − λ

4πφ
)2

)
/(2r1b)

)2
− r1 sinα ·

((
r2

1 + b2 −
(
r1 − λ

4πφ
)2

)
/(2r1b)

)
. (1)

where α is the inclination of the baseline from horizontal; λ is the wavelength; and b is the baseline.
In accordance with Equation (1), the resolution of the resolution element is a function of many

variables and theoretically, provided that the individual components are uncorrelated, the resulting
error in estimating the relief of the LS is determined by the sum of the errors of each of the parameters
included in Equation (1), e.g., Equation (2):

σ2
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zr1

+ σ2
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where σ2
zφ̂

, σ2
zh, σ2

zr1
, and σ2

zb are the variance in the resolution element height due to the estimation

error of the phase difference σφ̂, the measurement error of the altitude σh, the measurement error of the
slant range σr1 , and the measurement error of the baseline length σb, respectively.

In order to determine the potential accuracy characteristic of the measurement of the relief of the
LS with the help of the RSLSH, it is necessary to obtain a ratio only for the fluctuation error σzφ̂, since
the remaining errors are inherently systematic and can be compensated for. The determining error of
measuring the relief of the LS, as is known [12–15], is associated with the evaluation of the IPD φ̂ as
seen in Equation (3):

σzφ̂ =
λh tanθ1

4πb cos(θ1 − α)σφ̂; σφ̂ =
1√
2N

√
1− γ2

γ
(3)

where σφ̂ is the root mean square (RMS) error of IPD estimate; N is the number of incoherent integration;
and γ is the correlation coefficient for two received signals in the interferometer.

The used interferometer with a fixed baseline is characterized by the decorrelation of paired
echoes coming to the spatially separated antennae of two receivers γspatial and due to thermal noise in
system γnoise.

For each of the factors, analytical expressions are derived and the resulting correlation coefficient
is determined by using Equation (4), under the assumption that the real surface is a distributed radar
target consisting of a set of independent partial reflectors inside the resolution element whose applets
are distributed according to the normal law [12]:

γ = γspatial · γnoise; γnoise =
1

1+snr−1 ;

γspatial =
(
1− 2b cos(θ1−α)

λr1 tanθ1
Δr

)
· exp

[
−2π2
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σhb cos(θ1−α)
λr1 sinθ1

)2
]

(4)

where Δr is the slant range resolution; σh is the RMS of small irregularities on the surface of a large
relief; and snr is the single-to-noise ratio.

The final expressions for the standard deviation of the estimate of the applicability of the relief
through the standard deviation of the estimates of the IPD are obtained by substituting Equation (4)
into Equation (3).

As a result, with the parameters of the RSLSH: fc = 35 GHz, h = 75 m, θ1 = 30◦ ∼ 60◦, N = 4,
Δr = 0.5 m, Δy = 0.8 m, σh = 7, 77 · 10−3 m, and snr = 13 dB, we have the following dependence of the
standard deviation of the relief estimate on the size of the interferometer base at different look angles
(Figure 2).

According to Figure 2, it is preferable to choose the size of the fixed baseline of the interferometer
to be from 0.48 to 0.57 m, at which the potential values of the accuracy of the measurements of the LS
surface will be in the range of approximately from 6 to 10 cm.
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(a) (b) (c) 

Figure 2. Height estimation error due phase estimation error on the baseline length at different look
angles: (a) α = 0◦; (b) α = 45◦; (c) α = 90◦.

3. Numerical Simulation

3.1. Structure of the Simulation Model

The software package MATLAB is used as the simulation platform; the primary toolset for
radar simulation with this software is the Phased Array System Toolbox, as in [16]. The simulation
process can be divided into the following stages: (1) setting the Digital Elevation Model (DEM) and its
parameters; (2) setting the parameters of the interferometric system;(3) simulation of the trajectory
signal, its processing, and synthesizing the radar images; (4) calculation of the IPD; (5) interferometric
processing to obtain an elevation map as the final output.

3.2. Digital Elevation Model

At this stage, the terrain features are generated according to the phenomenological surface
model [11,12]. Each resolution element on the Earth’s surface is represented by a set of normally
distributed partial scatterers, on which scattering conditions known from the experimental results are
imposed. Illustrative simulation results are shown on the example of a user-defined DEM shown in
Figure 3a. By type, the surface consists of water, sand, soil, grass, and snow, the optical image of which
is shown in Figure 3b.

As a model of the radar cross section (RCS) for surfaces such as grass, trees and snow, an
experimentally obtained full-scale model RCS for various types of surfaces is used, which is valid for
the microwave frequency range from 3 to 95 GHz. It takes into account the standard deviation of fine
surface roughness σh, the look angle on the surface θ, and the wavelength λ, and has the following
form [17] (Equation (8)):

σ0(θ, σh,λ) = A
(
π
2
− θ+ C

)B
exp

[
−D/

(
1 +

0.1σh
λ

)]
(5)

where A, B, C, and D are empirical model coefficients. In [14], the values for these constants are given
in the frequency range from 3 to 95 GHz for the indicated types of surfaces.

The RCS model for surfaces such as soil, sand, and stone is a semi-empirical model of backscattering
of the earth’s surface [18–20] for three types of polarization. For them, backscatters from the four
surfaces are simulated using the semi-empirical model for the backscattering coefficient σ0 in three
polarizations: horizontal (HH), vertical (VV), and cross-polarization (HV) [18]:

σ0
VV = g

cosx θ√
p

[ΓVV(θ) + ΓHH(θ)], σ0
HH = pσ0

VV, σ0
HV = qσ0

VV (6)
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where p =
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(a) 
 

(b) 

 
(c) (d) 

Figure 3. (a) Digital elevation model (DEM) for acquisition 1; (b) optical image of DEM for acquisition
1; (c) radar cross section (RCS) for some types of surface; (d) RCS of DEM for acquisition 1.

3.3. Synthesis of Radar Images and IPD Processing

If we denote the radar images obtained during two intervals or sub-intervals of observations as
.
P1

and
.
P2, we can then obtain an interferogram from their pixel-by-pixel complex conjugate multiplication

using Equation (7):

IP1P2(x, y) =
.
P1(x, y)P∗2(x, y) =

∣∣∣P1(x, y)
∣∣∣ · ∣∣∣P2(x, y)

∣∣∣ exp
{
j
[
φP1(x, y) −φP2(x, y)

]}
(7)

and the interferometric phase difference can be defined as the argument of the multiplication result as
seen in Equation (8):
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N∑
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(8)
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Figure 4 illustrates the interferometric phase difference (IPD) for DEMs, which are rotations by 90,
180, and 270◦ anticlockwise from the acquisition 1 simulation model, respectively.

 
(a) (b) 

(c) (d) 

Figure 4. Interferometric phase difference (IPD) of DEM of (a) acquisition 1; (b) acquisition 2;
(c) acquisition 3; (d) acquisition 4.

The standard interferometric processing followed that described in References [16,17,21–23] and
included: elimination of the linear phase component along the range by subtracting the phase of the
flat Earth from the IPD of the DEM; removing to the effects of the flat surface of the Earth (Figure 5);
and elimination of the phase ambiguity.
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(a) (b) 

(c) (d) 

Figure 5. IPD after removing the flat Earth IPD of (a) acquisition 1; (b) acquisition 2; (c) acquisition 3;
(d) acquisition 4.

As the IPD may significantly exceed two during elevation changes, the recovery of the true phase
difference from the IPD reduces to the interval (−π, π] and must be processed in an approach known
as phase unwrapping (Goldshtein et al. (1988)). The scaling of the unwrapped IPD and generation of
the DEM according to the unambiguous relationship between terrain elevation and change of IPD is
shown in Figure 6.
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(a) (b) 

(c) (d) 

Figure 6. Estimation of DEM of (a) acquisition 1; (b) acquisition 2; (c) acquisition 3; (d) acquisition 4.

Taking into account only the phase component, the error in estimating the topography of the
surface and its histogram in the selected sections (white vertical and horizontal lines in Figure 3a) for
four observations are added in Figure 7a. Here, in order to prevent the graphs from merging into
one, the value errors added a constant component multiple of 0.75 m depending on the observation
number. The standard deviations of the estimation errors are in the range from 0.082 to 0.086 m, which
is consistent with the theoretically calculated value.

 
(a) 

 
(b) 

 
(c) 

Figure 7. (a) combined DEM; (b) standard deviation of the errors; and (c) its histograms.
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4. Conclusions

In this article, we analyzed the algorithm of a proposed radar interferometric remote sensing
system for a helicopter LS surface using an airborne radar. This algorithm helps in obtaining a
high-quality radar image of the LS, which shows surface variation characteristics with sufficient
accuracy to confidently determine the type of LS and the presence of unknown objects on it, by using a
linear 3D model of the surface.

First, after illuminating the LS surface using electromagnetic waves, we obtained radio contrast
patterns according to the backscattering from the resolution elements. Then, the resulting contrast
pattern was superimposed with the phase difference information, covering the resolution elements
of LS. This was the starting point of reconstructing the LS terrain topography. In this approach, the
visualization of man-made objects on the LS is significantly improved. Our work shows that the
measurement accuracy of the variations in the z coordinate was most significantly affected by the error
in the measured phase differences of the interferometer signals. Therefore, the detection probability
increased with an increase in the number of measurements.

Therefore, the proposed method demonstrates the ability to significantly improve the visualization
of man-made objects at a helicopter LS using the phase difference information of the reflected signals
reaching both antennae. However, the detection of sharp variations in LS terrain, such as hills and
ravines, must be performed by considering the background-to-noise ratio. Phase-difference information
helps to highlight large surface roughness in radar images and determine their relative heights.

According to the results of this research, the proposed algorithm can be applied for the safe
landing of a helicopter under conditions of insufficient a priori information on the LS. According to
flight regulations, helicopters fly around an expected landing site to determine the topography, slopes,
and presence of unknown objects; then, the pilot makes a decision about landing.

The results can be a theoretical and implementation basis for the safe landing of a helicopter for
building perspective onboard radar systems, choosing the geometry of LS illumination, and calculating
the optimal performance of the system. This can detect the roughness and disturbing objects on the LS
and increase the reliability of a safe landing in a dusty environment under day and night conditions,
as well as under harsh weather conditions.

In this work, the algorithm of the radar interferometric recording of the surface for the on-board
radar was simulated, which made it possible to obtain a high-quality 3D image of the relief with the
definition of the nature of the relief with the required accuracy.

The results of the simulation of interferometric signal processing RSLSH confirmed the possibility
of its use as a promising tool in determining hazardous irregularities and foreign objects at the landing
site from the resulting differential-phase interferometric images from the helicopter.

The main advantage of using RSLSH compared with other methods of safe landing of a helicopter
on an unprepared site is that it is independent of the weather conditions and time of day.
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Abstract: In recent years, the enormous losses caused by urban surface deformation have received
more and more attention. Traditional geodetic techniques are point-based measurements, which have
limitations in using traditional geodetic techniques to detect and monitor in areas where geological
disasters occur. Therefore, we chose Interferometric Synthetic Aperture Radar (InSAR) technology to
study the surface deformation in urban areas. In this research, we discovered the land subsidence
phenomenon using InSAR and Global Navigation Satellite System (GNSS) technology. Two different
kinds of time-series InSAR (TS-InSAR) methods: Small BAseline Subset (SBAS) and the Permanent
Scatterer InSAR (PSI) process were executed on a dataset with 31 Sentinel-1A Synthetic Aperture
Radar (SAR) images. We generated the surface deformation field of Shenzhen, China and Hong Kong
Special Administrative Region (HKSAR). The time series of the 3d variation of the reference station
network located in the HKSAR was generated at the same time. We compare the characteristics
and advantages of PSI, SBAS, and GNSS in the study area. We mainly focus on the variety along
the coastline area. From the results generated by SBAS and PSI techniques, we discovered the
occurrence of significant subsidence phenomenon in the land reclamation area, especially in the metro
construction area and the buildings with a shallow foundation located in the land reclamation area.

Keywords: time-series InSAR; subsidence; GNSS; coastal urban area

1. Introduction

Traditional geodetic methods represented by levelling or total station geometry are point-based
measurements. In the task of deformation monitoring, the usual operation process is: Firstly, select
representative sites in the monitoring area and set up monitoring stations (observation station or
observation markers), and then set the monitoring period for a single or continuous observation.
From the original geodetic workflow, we can find that the traditional geodetic survey method has
two significant characteristics: The first is the necessity of setting up the observation stations and
observation markers. The other one is the long working time-consuming of each period of observations.
The former characteristic leads to an insufficient spatial sampling rate of monitoring results which is
unable to discover new deformation areas from the monitoring results effectively, especially when
the monitoring scope is relatively extensive, and the latter one limits the temporal sampling rate of
monitoring results of the station or the observation marker. Therefore, in the task of early identification
and monitoring of a deformation area, we need a method that can conduct extensive observation
to the monitoring region in a short period, and provide a reliable result for early identification and
continuous observation of the region where geological disasters occurred. Interferometric Synthetic
Aperture Radar (InSAR) has the advantages of an extensive monitoring area, high temporal resolution,
and all-weather monitoring capability [1–6]. The time-series InSAR (TS-InSAR) technology effectively
weakens the key factors that affect the reliability of InSAR monitoring results: Atmospheric effects and
time-space decoherence [1,7]. InSAR has been widely used by researchers in different fields of research
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over the past decade. InSAR shows significant advantages in various fields of geoscience, including
seismicity research [8–11], volcanic research [12], artificial building deformation monitoring [13],
and surface deformation caused by underground resource exploitation [14,15]. In the case of urban
areas research, Yang Zhang et al. used RADARSAT-2 satellite data to monitor the land subsidence of
Wuhan, China, with Small BAseline Subset (SBAS) [16]. Xiaoqiong Qin et al. used the TerraSAR-X
image to monitor land subsidence along the subway in the urban area of Shanghai, China [17]. Matthew
North et al. studied the response of seasonal soil movement along the British railway and road with
the PSI method [18]. Bing Xu et al. studied the land reclamation area with ENVISAT data [19]. In these
examples, InSAR technology provides researchers with a reliable way of generating land deformation
velocity fields.

The SBAS method is a kind of InSAR time series surface deformation inversion technology
proposed by Berarndino [1] in 2002. To the InSAR differential interferogram, the stability of the
interferometric phase is affected by the temporal baseline of the interferometric pair and the spatial
baseline. Different from the traditional Differential InSAR (D-InSAR) method, SBAS is characterized
by reducing spatial decoherence and screening out the interferometric pairs with higher coherence
by limiting the time baseline and the spatial baseline. One applies the small baseline differential
interferogram to the surface deformation inversion model, which can obtain the deformation time
series of the coherent target, while ensuring that the factors affecting the interferometric quality of
the interferogram are estimated and removed. The PSI method mainly focuses on the target that
maintaining a high coherence in the interferometric data set, which is called “permanent scatterers
(PS)” [9,20,21]. PS usually targets on the artificial buildings and bare stones. PS provides stable
interferometric phase coherence. The PSI method directly executes the inversion model on the
unwrapped differential interferometric phase, so that it can effectively avoid the unwrapping error
caused by the traditional InSAR technology in the phase unwrapping step.

We use SBAS and PSI to study ground deformation in Shenzhen and HKSAR. In Shenzhen,
we mainly study the Qianhai area with the risk of subsidence [19] using both the SBAS and PSI methods.
In HKSAR, we use the SBAS method and Global Navigation Satellite System (GNSS) static network
which consists of a series station that belongs to Hong Kong Continuously Operating Reference Stations,
CORS (SatRef), run by Lands Department of HKSAR. The observation data observed by the GNSS
station are transformed into Receiver INdependent EXchange (RINEX) format. Hi-Target Geomatics
Office (HGO) software was used to generate the geodetic coordinates and the geodetic height under
the WGS-84 coordinate system using the GNSS static network observation mode. The baseline solution
solving step uses the SP3 post-accuracy ephemeris data released from International GNSS Service (IGS)
to provide satellite coordinate information to maximize the accuracy of the baseline solution.

2. Overview of Study Area

The study area includes Shenzhen, China and the HKSAR bordering the south (Figure 1). Shenzhen
is located in the southern part of Guangdong Province, China. As one of the special economic zones of
China, Shenzhen has carried out much urban construction since 1980. In recent years, the construction
area of the city has been transferred from Luohu district in the central part of Shenzhen city to Nanshan
district in Qianhai district in the west. While HKSAR started urbanization earlier, it also carried out a
large number of land reclamation projects to acquire land used for construction. A famous example
is the Hong Kong International Airport, HKIA (Rose Garden Project). The construction project of
the HKIA started in 1992 and was commissioned in 1998. The third runway and associated facilities
will be constructed on the north side of the existing airport. The land reclamation project for the
runway expansion began in 2016 [22]. In the rapid urbanization construction of these two cities,
the land reclamation area is widely distributed in the study area. Since the special economic zone was
built in Shenzhen in the 1980s, the land reclamation area reached 69 km2, while the land reclamation
area in HKSAR is 70 km2. Qianhai district is the hot-spot area for infrastructure construction in
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Shenzhen [23–25]. Since 2006, the Qianhai district has begun reclamation. The land reclamation area of
Qianhai district reached 9.9 km2 in 2009.

 
Figure 1. Location of the study area and the coverage of cropped Sentinel-1A SAR image.

Shenzhen runs eight subway line operators, with a total mileage of 285 km. It is estimated that
by 2022, the Shenzhen Metro will reach 16 operating lines with a mileage of 596 km. The HKSAR
metro system has a mileage of 264 km with 11 operating lines and average daily passenger flow of
5.59 million (2016) [26].

3. Data and Methods

Both GNSS technology and InSAR technology are space geodetic techniques which are capable
of all-weather observation. InSAR technology uses space-based SAR sensor to obtain SAR images,
then generates the displacement phase through performing a differential operation by acquiring the
interferometric phase of the coherence target in the SAR dataset [12,14]. Therefore, InSAR technology
has the advantage of a high spatial resolution, which is suitable for locating the area that assumes
land deformation. However, the satellite has a revisit cycle which is usually about ten days, so InSAR
technology cannot achieve high time resolution monitoring. In principle, the PSI method and the
SBAS method are used for different kinds of targets in the inversion model, the spatial distribution
characteristics between SBAS and PSI inversion results would be different [7]. In areas with extensive
urbanisation, more PS points will be selected in this type of study area.

The GNSS technology can reach a very high temporal resolution observation by setting the
sampling interval up to the second level due to the observed relationship using the ground-mounted
GNSS antenna [27]. CORS stations which are deployed in urban areas can be observed in unattended
conditions by deploying permanent GNSS antennas and receivers. The GNSS technology can form a
certain degree of complementarity with the InSAR technology, which has a satellite revisit cycle.

The GNSS observation data we used in this paper was published by the satellite positioning
reference station network in Hong Kong name “SatRef” (Figure 2) operated by the Survey and Mapping
Office (SMO), Hong Kong Land Department. The reference station network consists of 18 continuous
operating reference station (CORS) distributed in the HKSAR, including 16 reference station and two
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integrity monitoring station. The data services of The Hong Kong Satellite Positioning Reference
Station was launched on February 4, 2010.

 
Figure 2. HK Continuous Operating Reference Station (CORS) network (SatRef).

The SAR image dataset used in this research is a total of 34 frames of SLC (Single Look Complex)
SAR images (Table 1) which generate in the Interferometric Wide Swath (IW) mode from the Sentinel-1A
satellite operated by European Space Agency (ESA). To minimize the orbital error in the interferogram,
the SLC image data orbital parameters are provided with the post-accurate orbit data (POE product)
provided by the ESA. Moreover, the SAR image data were resampled from the original 5 m × 20 m
(range resolution × azimuth resolution) to a ground resolution of 20 m × 20 m (range resolution ×
azimuth resolution) using multi-looks processing.

Table 1. Acquisition date and the relative orbital position of each image relative to the master image
(2017/4/17) of the Sentinel-1A SAR image we used in this paper.

No.
Acquisition

Date
Relative

Position (m)
No.

Acquisition
Date

Relative
Position (m)

1 2016/1/29 164.056 18 2016/12/6 35.492
2 2016/2/10 150.344 19 2017/1/11 123.824
3 2016/3/5 46.199 20 2017/2/4 86.124
4 2016/3/29 27.642 21 2017/2/28 135.102
5 2016/4/22 91.172 22 2017/3/12 89.354
6 2016/5/4 101.625 23 2017/3/24 114.535
7 2016/5/16 59.264 24 2017/4/5 58.529
8 2016/5/28 61.442 25 2017/4/17 0.000
9 2016/6/9 77.456 26 2017/5/11 37.645

10 2016/7/3 53.314 27 2017/5/23 100.012
11 2016/8/20 67.135 28 2017/6/4 38.256
12 2016/9/13 71.373 29 2017/6/28 71.516
13 2016/9/25 15.231 30 2017/7/10 125.536
14 2016/10/7 47.799 31 2017/7/22 118.556
15 2016/10/19 123.272 32 2017/8/3 56.789
16 2016/10/31 106.400 33 2017/9/8 121.120
17 2016/11/12 106.080 34 2017/10/2 64.370
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We intercept the sub-region SAR image data set for PSI data processing (Figure 3). The velocity
distribution map, displacement time series distribution of the SBAS inversion results in the sub-region
part are export as a vector data for spatial analysis.

Figure 3. SAR data coverage of the study area.

In this research, the AW3D digital elevation model was used to remove the topographic phase,
which is one of the critical steps in the interferogram generation workflow. The AW3D digital elevation
product is produced using panchromatic images acquired from the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM) sensor of ALOS satellites. If one uses AW3D data to provide
elevation data for inversion to generate the topographical phase of the study area; then a differential
operation would be executed on the inverted topographic phase and the interferometric phase to
achieve the purpose of removing the topographic phase in the interferometric phase.

Because there is a large amount of vegetation coverage in the study area, the SAR sensor mounted
on the Sentinel-1 satellite works in the C-band with medium ground penetrability. Using the branch
cutting or least square phase unwrapping method, it is possible to generate significant unwrapping
errors, hence we use the minimum cost flow method for phase unwrapping in the SBAS model
(Figure 4). In this research, we use the Delauny Minimum Cost Flow (Delauny-MCF) method to
phase unwrap the coherent targets in each interferogram [28–32]. This method constructs a Delaunay
triangulation as the unwrapped network. Defining the costs on arcs between two adjacent coherent
targets, according to the phase gradient of this pair of adjacent coherent targets, the optimal solution of
the cost function of this network can be solved. Moreover, the optimal phase unwrapped path can be
generated at the same time [28].

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
i, j

�
(x)
i, j

∣∣∣∣Δϕx
i, j − Δφx

i, j

∣∣∣∣p +�
(y)
i, j

∣∣∣∣Δϕy
i, j − Δφy

i, j

∣∣∣∣p
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)
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In (1), Δ denotes a gradient along the azimuth and line of sight (LOS) respectively, �(y)
i, j and

∑
i, j
�
(x)
i, j

defined as the weight and the sum of all suitable rows i and column j. The Delaunay-MCF method is
used to enable the unwrapping path to avoid the more low-coherence regions that may contain phase
jumps, which could lead to unwrapping error.

δϕ
(LP)
m (x, r) ≈ 4π

λ

[
d(LP)(tIEm , x, r) − d(LP)(tISm , x, r)

]
+ 4π

λ
bmΔz(LP)(x,r)

r sinϑ

+[ϕatm(tIEm , x, r) −ϕatm(tISm , x, r)] + Δn(LP)
m (x, r)

(2)

We can express the low-frequency part of a coherent pixel in interferogram no.m as Equation
(2). λ stands for wavelength, bm stands for the space baseline of the interferometric pair and ϑ stands
for the incidence angle of the radar signal of the coherent pixel. d(LP) represents the deformation
component of the interferometric phase δϕ

(LP)
m of the coherent pixel which image coordinate is

(x, r).ϕatm(tIEm , x, r) −ϕatm(tISm , x, r) represents the atmospheric component between the master image

and the slave image and Δn(LP)
m stand for the noise term of the interferometric phase. In the process

of radar signal propagation in the air, due to the influence of ionosphere and resonance caused by
water vapor in the air, a signal propagation delay or path bending in the range is caused. The regional
phase changes in each SAR image due to this reason are called atmospheric phase screens (APS). To the
interferogram, both the influence of the atmospheric phase and the error in satellite orbit error are
low-frequency signals with a typical size of 1km [1]. Therefore, a high-pass filter with the ground
range of 1km will be executed in the SBAS deformation inversion model to weaken the errors from the
atmosphere and orbit. In this research, we use a linear model to invert the deformation.

Figure 4. Data processing workflow with SBAS, PSI, and GNSS.
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4. Data Processing and Result

In this research, RINEX observation data was collected from 18 stations with 26 periods in the
CORS network (Figure 2). The sampling interval is 30 s, and the observation time is 24 h. In this
research, we used the observation mode of GNSS static network for data processing. The average length
of the searched baseline is set to 20 km; all the baseline solutions are none ionosphere combination
fixed solutions. The tolerance of the 3-dimension components of the synchronization loop is:

Wx = Wy = Wz ≤
√

3
5
δ (3)

Finally, we calculate the general change trend of the reference station during the monitoring
period through the static network (Figure 5).

Figure 5. Horizontal and vertical displacement of the Hong Kong CORS network. The arrows and the
vertical lines represent the direction and the magnitude of displacement of the station.

The Sentinel-1A satellite SAR image we used in this research had a revisit period of 15 days.
Therefore, the temporal baseline of the interferometric data set used for the inversion of the SBAS
method was set to 40–360 days. The threshold of the spatial baseline is 55% of the critical baseline,
which is 5889.640 m. In the data processing step, we used the Delauny-MCF method with the phase
unwrapping threshold set to 0.47. After removing the interferogram which has significant unwrapping
error and an orbit error from the initial interferometric data set, 62 pairs of interferometric pairs were
reserved for SBAS data process (Figure 6a). The average elevation accuracy of the SBAS inversion
results (Figure 7) is 3.6 mm.
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Figure 6. (a) Is SBAS interferometric dataset and (b) is a PSI interferometric dataset.

Figure 7. Average vertical velocity distribution of SBAS inversion.

In this research, we use Sentinel-1A SAR data with the PSI method to investigate the coastal area
of Qianhai District of Shenzhen and the eastern part of Shenzhen as the research area at the same time.
In the PSI method, as long as the baseline length of the interferometric pair is not greater than the
critical baseline the baseline of the interferometric pair is not limited, the method of composing the
interferometric data set (Figure 6b) using the same main image is adopted in this paper. Alternative
PS points are filtered using a coherence threshold method, setting 0.75 as the coherence threshold to
extract the PS point in the interferogram of the interferometric data set, a total of 44,464 PS points
(Figure 8) were screened out in the study area with an average inversion elevation accuracy of 6.6 mm.

In the inversion model of SBAS, the inversion of the deformation variables in the model was
performed while inverting the atmospheric influences in the inversion model (Figure 9).

The three-dimensional free network adjustment was performed with the HKCL station as a fixed
point after all the simultaneous observation closure differences met the tolerance requirements, and the
three-dimensional coordinates of the remaining stations were obtained. We projected the InSAR results
from Line of Sight (LOS) to the normal direction of WGS-84 ellipsoid on T430 station. From the time
series of variations on this station (Figure 10), we found that because of the lack of accuracy, the GNSS
result shows more jumps, although it has advantages of a higher temporal resolution. However,
the InSAR result which was generated by two different methods shows consistency both in magnitude
and the trend of variations.
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Figure 8. Permanent Scatterer (PS) point in Qianhai district, Shenzhen.

Figure 9. Atmospheric Phase Screens (APS) and orbit error component (low-frequency component) of
the master image (2017/4/17) of SBAS dataset.
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Figure 10. Time series generated by three different solutions on T430 station.

5. InSAR in Coastal Area

We used the historical archival image data from optical satellite imagery to determined the
reclamation area between the coastline of 1999 which before the land reclamation project and the
coastline of 2016 which the land reclamation project was completed in the sub-study area. The
sub-region covers 455 km2; the land reclamation region covers 22.3 km2, which covers about 5% of
the sub-region area [19]. There are 255,433 targets in the SBAS inversion results, of which 702 targets
have a displacement velocity greater than 10 mm/year, accounting for 0.3% (Figure 11a,b). In the area
obtained by land reclamation, there are 10,039 targets, and there are 376 targets with displacement
velocity greater than −10 mm/year. More than half of the targets with displacement velocity higher
than −10 mm/year are located in the area obtained by land reclamation. There are 44,464 targets in
the PSI inversion results, of which 374 targets points with a displacement velocity over −10 mm/year,
accounting for 0.8%. There are 1519 targets in the area obtained by land reclamation, and 185 targets
with displacement velocity above −10 mm/year (Figure 11c,d). Similarly, more than half of the targets
with an annual deformation rate greater than −10 mm/year are located in the land reclamation area. In
the sub-region, the target with annual deformation rate greater than −10 mm/year by SBAS and PSI
inversion result is mainly located in the area obtained by land reclamation. It is worth noting that
PSI results will are sparser due to the stricter screening conditions of the PS points. The area where
significant subsidence signals appear in the land reclamation area, combined with satellite optical
image information, shows that areas with large surface deformations are mostly located in the area
where the underground construction project in progress or recently completed areas. The following
three regions that are representative of the region are selected for analysis.

Figure 11. Cont.
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Figure 11. SBAS and PSI inversion result histogram in the sub-region and the land reclamation region.

Seen in Figure 12, the Qianhai Bay of Shenzhen acquired more land for urban construction by
various phases of land reclamation projects from 1999 to 2016. The area where the subsidence signal
appears in the SBAS results distributed in the land reclamation area that was generated after 1999.
It is worth noting that the results of InSAR in these areas are missing because of the lack of effective
PS targets in areas where land reclamation was completed in recent years. Moreover, because the
conditions for PS searching are stricter than the calibration of ordinary coherent target points, the result
point density of PSI inversion in the study area was lower than the SBAS results (Table 2). The three
metro lines located in the land reclamation area are Line 1, Line 5, and Line 11. We found that there are
a series of areas that appeared as subsidence signals in the area along the subway.

Figure 12. SBAS result of Qianhai bay. The blue line represents the coastline of 1999, and the pink line
represents the coastline of 2016.
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Table 2. Inversion results between Permanent Scatterer InSAR (PSI) and Small BAseline Subset
InSAR (SBAS).

Land Reclamation
Region (PSI)

All Region
(PSI)

Land Reclamation
Region (SBAS)

All Region
(SBAS)

Target Points 1519 44,464 10,039 255,433
Velocity >−5 mm/y Points 610 6016 1827 9702

Velocity >−10 mm/y Points 185 374 376 702

Among them, there is a significant settlement signal on the north side of the Liyumen station of
Shenzhen Metro Line 1 (Figure 13). Extracting the time series analysis of pixel deformation in time
series InSAR inversion results, we can find that, after November 2016, a trend of continuous subsidence
occurred when the cumulative settlement reached 300 mm. On the sample point #5, #6, which is
relatively far from the subway line, exhibits a relatively gradual change trend (Figure 14). At the same
time, the PSI inversion results show that the PSI #1 sampling points with SBAS #7 sampling points
coincide with a relatively uniform subsidence level and subsidence trend.

The upper cover of the Linhai station of Shenzhen Metro Line 5, which is also located in Qianhai
District, also showed a subsidence zone (Figure 15). The north side of the upper cover of the station
in the cross-validation results of the time series InSAR inversion result show a consistent settlement
trend throughout the monitoring period. Among them, #6 which is closest to the subway line shows
an accelerated subsidence trend after November 2016. Since the PSI results are sparse, there are only
sampling points #1, #4, #6 that have both PSI and SBAS inversion results (Figure 16). At these three
sampling points, the R2 between SBAS results and PSI results can reach 0.6 or higher (Figure 16b,d,f).

Figure 13. Time series InSAR inversion result of Liyumen station.
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Figure 14. Time-series of sampling point in the Liyumen Station region.

Figure 15. Time series InSAR inversion result of Linhai station.
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Figure 16. Time-series of sampling point in the Linhai Station region result.

The Qianhai Enterprise Residence, completed in 2014, showed subsidence during the entire
monitoring period, and the accumulated settlement reached 40 mm (Figure 17). The Qianhai Enterprise
Residence is located in the weak formation area. In the results of two different InSAR inversion methods,
the main subsidence area occurred at the south side of the building. The coefficient of determination,
R2 between the PSI result and the SBAS result on the sampling point #1, #2, #3 (Figure 18b,d,f) can
reach over 0.79, which shows a high consistency between the PSI and the SBAS results. In the whole
monitoring period, the land deformation rate of the settlement trend always tended to be moderate
and, considering the completion time, indicates that the area is possible in a self-consolidation situation
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during the monitoring time. However, due to the active activity of infrastructure activities in the
Qianhai area, the landform changes faster which means that the radar reflection signals provided by
these type of ground targets cannot maintain high coherence between the master image and the slave
image. When using PSI for inversion, fewer PS points were searched. It makes PSI not as good as the
SBAS method in terms of spatial resolution in this application scenario.

Figure 17. Time series InSAR inversion result of Shenzhen Qianhai Enterprise Residence.

  

  

Figure 18. Cont.
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Figure 18. Time-series of sampling point in the Shenzhen Qianhai Enterprise Residence.

6. Conclusions

In this research, 34 frames of Sentinel-1A SAR images were used for SBAS and PSI processing,
and GNSS observation data were used to perform surface deformation observation of the study area.
From the results of data processing, three different methods have the ability to monitor the surface
displacement, no matter the station or regional. The results show that the surface deformation obtained
by the inversion of SBAS and PSI is highly consistent in magnitude and trend. Both PSI and SBAS
show that the subsidence area in the study area was mainly concentrated in Qianhai District, which
has recently completed land reclamation activities. In the reclamation area, especially along the
underground traffic facilities [33] are the area that the subsidence phenomenon mainly concentrated.
However, the TS-InSAR technology, which we mainly focus on, can locate and continuously monitor
the areas with subsidence phenomena without prior information through periodic SAR image data. The
application of TS-InSAR, especially SBAS technology, for surface deformation inversion has a higher
spatial resolution than GNSS technology, hence it has advantages in the subsidence area detection.
Since InSAR technology uses time and spatial filtering to remove the APS of each interferogram [1],
the results of InSAR inversion are more stable than GNSS calculations. Although the GNSS method
can obtain a three-dimensional variation of the station, the GNSS solution results are less accurate in
the vertical direction. In the results, the implementation effect in monitoring the vertical displacement
is not as good as the InSAR. However, GNSS technology has significant advantages in horizontal
displacement monitoring, making it possible to apply GNSS technology to the region where the
deformation signal appears in the InSAR result to obtain the horizontal change information of the
deformation region. In the InSAR inversion results, land subsidence phenomena occur in areas
with frequent human activities, although the current InSAR inversion model in this research does
not distinguish well between the foundation trench excavation and the urban surface subsidence
signal. From the result, we found that the land reclamation area of Qianhai District began to carry
out infrastructure construction within ten years of completion of land reclamation work which with a
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higher risk. However, due to the extensive development of underground projects, such as subways,
and the extensive geological distribution of land reclamation projects and underground caves, it has
also increased the risk of the occurrence of surface deformation.

In terms of data processing, we expect to use GNSS at MIT/GLOBal Kalman (GAMIT/GLOBK)
software for a higher accuracy baseline solution. In the process of collecting GNSS observation data,
it is also possible to add non-synchronous observation data to constitute the asynchronous loop to
enhance the reliability of the GNSS static network. With the use of two orbital SAR images in the same
region for InSAR data processing, it is possible to acquire three-dimensional variations of coherent
targets using InSAR technology.
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Abstract: In the traditional single polarimetric persistent scatterers interferometric (PSI) technology,
the amplitude dispersion index (ADI) is usually used to select persistent scatterer candidates (PSC).
Obviously, based on single polarimetric information, it is difficult to use the statistical characteristics
for comprehensively describing the temporal stability of scatterers, which leads to a decrease in
persistent scatterer (PS) density. Considering that the temporal polarimetric stationarity of PS,
the paper is based on complex Wishart distribution and proposes the polarimetric stationarity
omnibus test (PSOT) for identifying PSC. The nonstationary pixels can be removed by the preset
significance threshold, which reduces the subsequent processing error and the calculation cost. Then,
the exhaustive search polarimetric optimization (ESPO) method is selected for improving the phase
quality of PSCs while suppressing the sidelobe of the strong scatterer effectively. For validating the
effectiveness of the proposed method, we select a time-series quad-polarimetric ALOS PALSAR-1
images in an urban area as experimental data and mainly perform five group experiments for detailed
analysis, including the PSOT+ESPO, ADI+ESPO, ADI+HH, ADI+HV, and ADI+VV. The results
show that the proposed PSOT+ESPO method has a better performance on both PSC selection and
interferometric phase optimization aspects than that of other methods. Specifically, compared to
the last four methods, both the PSCs and PSs identified by the proposed PSOT+ESPO are more
concentrated in the high-coherence region. The PSs with the standard deviation (STD) less than 5mm
in the PSOT+ESPO method account for 94% of all PSs, which is greater than that of the ADI+ESPO,
ADI+HH, ADI+HV, and ADI+VV methods, respectively.

Keywords: persistent scatterers; polarimetric optimization; deformation monitoring

1. Introduction

Interferometric synthetic aperture radar (InSAR) technology is one of the most popular geodetic
techniques with the advantages of high precision, high resolution and all-weather work. Since
Gabriel first used differential InSAR (DInSAR) to obtain deformation information of farmland in
1989 [1], researchers have successively improved DInSAR technology, such as improvement of the
interferometric phase, and separation of multiple-phase signals, including orbital, atmospheric and
residual topographic phases [2–5], etc. However, the accuracy of DInSAR is still affected by factors
such as temporal and spatial decorrelation and atmosphere delay.

Therefore, to overcome the mentioned problems above, Time-series InSAR (TS-InSAR) technology
based on DInSAR technology has gradually developed [6] and mainly includes the persistent scatterers
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interferometric (PSI) [7] and the small baseline approaches (SBAS) [8]. The PSI can identify the targets,
persistent scatterers (PS), with stable scattering characteristics on the ground and monitor the surface
deformation based on the reliable phase and amplitude information. PSI is widely used in volcanoes,
earthquakes, urban subsidence, and landslides [9–14]. Especially in urban areas, artificial buildings in
urban areas can be considered as ideal persistent scatterers (PS) [15], and the PSI technology is based
on the PSs to explore the impact of human or natural activities on cities [16].

However, how to identify PS pixels more steadily is still a widely concerned problem, and it restricts
the application of the PSI technology. More reliable PSs mean that the noise can be suppressed more
effectively, and the accuracy of deformation solution can be improved in the subsequent processing.
Some scholars have done some work in improving PS density. Shanker et al. proposed a method
of maximum likelihood ratio to find more PS, and the average phases of PS pixels clearly show the
slip along the Hayward fault [17]. Foroughnia et al. proposed a novel iterative PSI method (IPSI)
to increase the PS points, which are lost in the PS-InSAR technique due to unwrapping failure [18].
Xiang et al. fully take advantage of the signal amplitude and phase information in the monitored scene
and propose a combined PS selection (CPSS) method [19]. Gheorghe et al. Combine the ascending and
descending SAR images to improve the monitoring density [20]. With the development of tomography
SAR technology, Budillon et al. address the complementarity of the two techniques, and in particular it
assesses the increase of measurement density that can be achieved by adding the double scatterers
from SAR tomography to the persistent scatterer interferometry measurements [21]. These methods
mentioned above are based on single-pol image for the improvement and application of PSI technology.

With the number of multi-polarization satellites increasing, it is necessary to introduce
polarimetric observation for more effectively selecting PS and improving phase quality [22–26].
Polarimetric optimization becomes a direction of using polarimetric images to monitor deformation.
The dual-polarimetric SAR dataset supported by Sentinel-1A and TerraSAR-X has been proved to be
able to obtain more PSs with higher coherence [22,27,28]. It has been demonstrated that the polarimetric
information introduction can increase the PS density. Higher PS density can help to detect more
local deformation information and construct a more robust unwrapping network for removing the
atmospheric phase [29]. To obtain PSs with stable phase, persistent scatterer candidates (PSC) need
to be extracted firstly from full scenes. The effective identification of PSC efficiently extracts most
high-coherence pixels while reducing the subsequent processing error and the calculation cost. Usually,
the traditional PSI technology uses amplitude dispersion index (ADI) as the quality indicator to identify
PSC [30]. However, in traditional PSI technology, the single-pol statistical characteristics are not
comprehensively used for describing the temporal stationarity of scatterers.

In addition, in the urban area, the side lobes of high-intensity scatterers will interfere with nearby
scatterers and even cover up low-intensity scatterers [31]. These problems are challenges when using
PSI technology. In [24,32,33], Navarro-Sanchez et al. propose a general framework for PSI technology
based on the exhaustive search polarimetric optimization (ESPO) algorithm [34]. The ESPO method
optimizes the phase quality while suppressing noise and sidelobe, and allows some scatterers that
are only sensitive to specific polarizations to be detected. However, the computational cost of the
ESPO algorithm increases exponentially with the improvement of accuracy, which also limits the use
of this method.

In this paper, a PSC selection method based on quad-polarimetric SAR image is proposed.
Considering the temporal stationarity of PS, the paper is based on complex Wishart distribution and
proposes the polarimetric stationarity omnibus test (PSOT) for identifying PSCs [35]. The proposed
PSOT method can greatly reduce the amount of calculations of the ESPO algorithm and increase the
number of PSs. The selected PSCs are optimized by ESPO, and it can improve phase quality and reduce
noise and sidelobe. Finally, deformation velocity can be estimated by the PSI technology. The hypothesis
and method are verified on real SAR images, and all experimental results are evaluated quantitatively.
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The rest of this article is as follows. Section 2 presents the basic theory and flowchart of the
proposed method. Section 3 describes the study area and the polarimetric SAR datasets for experiments.
Section 4 is the experimental results and detailed analysis. Finally, Section 5 gives the conclusion.

2. Method

2.1. Persistent Scatterer Candidates Identification Based on Polarimetric Stationarity Omnibus Test (PSOT)

In an ideal situation, for a stable scatterer on the ground, the polarimetric information in time-series
remains unchanged. In this paper, a time-series Polarimetric Stationarity Omnibus Test (PSOT) is
proposed to evaluate whether the polarimetric information of scatterers changes in time. For the
quad-polarimetric sensor, the scattering matrix S can be obtained:

S =

[
SHH SHV

SVH SVV

]
(1)

In a monostatic radar system, the scattering target satisfies the reciprocity and the Sinclair matrix
is restricted to a symmetric matrix, i.e., SHV = SVH. Therefore, 3-dimension Pauli feature vector k is:

k =
1√
2
[SHH + SVV SHH − SVV SHV + SVH]

T (2)

The polarimetric coherence matrix T can be obtained by the cross product between k and its
conjugate transpose [34]

T = ki·ki
† (3)

where † denotes the conjugate transpose.
We supposed that there are k quad-polarimetric observations in time-series, let Σi = Ti

3, (2 ≤ i ≤ k),
and the Xi = nΣ̂i . The Σi (and the Xi) are p by p (p = 3 for quad-polarization image), following the
complex Wishart distribution, i.e., Xi ∼ WT(p, n, Σi). Further, X =

∑k
i=1 Xi ∼WT(p, nk, Σ).

It is supposed that the polarimetric information of the ground scatterers in k observations is
unchanged, i.e., the polarimetric stationarity hypothesis. The complex coherency matrix is stationary
under the polarimetric stationarity hypothesis. In order to evaluate whether all the complex covariance
matrixes are equal when k ≥ 2, the null hypothesis is tested [22]:

H0 : Σ1 = Σ2 = · · · = Σk (4)

For all cases, the statistic Q can be constructed:

Q =

⎧⎪⎪⎨⎪⎪⎩k3k
∏k

i=1|Xi|
|X|k

⎫⎪⎪⎬⎪⎪⎭
n

(5)

where | · | denotes the determinant of the matrix. If the hypothesis is true (“under H0” in statistical
parlance), Q = 1 and it means the polarimetric stationarity.

For the logarithm of the test statistic we get [36]:

ln Q = n

⎧⎪⎪⎨⎪⎪⎩3k ln k +
k∑

i=1

ln|Xi| − k ln|X|
⎫⎪⎪⎬⎪⎪⎭ (6)

Setting ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f = 9(k− 1)

ρ = 1− 17
18(k−1)

(
k
n − 1

nk

)
ω2 = 3

ρ2

(
k

n2 − 1
(nk)2

)
− 9(k−1)

4

(
1− 1

ρ

)2
(7)
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The probability of finding a smaller value of −2ρ ln Q is (z = −2ρ ln qobs)

P
{−2ρ ln Q ≤ z

}
� P

{
χ2( f ) ≤ z

}
+ω2

[
P
{
χ2( f + 4) ≤ z

}
− P

{
χ2( f ) ≤ z

}]
(8)

P
{−2ρ ln Q ≤ −2ρ ln qobs

}
= P

{
Q ≥ qobs

}
is the change probability, 1 − P

{−2ρ ln Q ≤ −2ρ ln qobs
}
=

P
{
Q < qobs

}
is the no-change probability [37,38].

It is worth noting that when the number of looks of the original image is smaller than the matrix
dimension, the coherency matrix is singular and no longer obeys the complex Wishart distribution.
In order to maintain the spatial resolution of the original image and the accuracy of deformation
extraction, a direct way to solve this problem is to adjust the non-diagonal elements for forcing the
polarimetric coherence matrix to be a full rank matrix [39,40]. Therefore, the forced polarimetric
coherence matrix T′ can be expressed as:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀i = j, T′i, j = Ti, j

∀i � j, T′i, j = cTi, j, c = 3
√

min(n/q, 1)
(9)

where Ti, j represents the elements of row i and column j in the original coherence matrix; T′i, j represents
the elements of the forced coherency matrix; n is the Equivalent Number of Looks (ENL); q is the
dimension of matrix T; q = 3 for the quad-polarimetric image. When the forced coherence matrix is
full rank, the equivalent number of looks of the corresponding data n is considered to be 3, which is
equal to the matrix dimension.

2.2. Polarimetric Optimization of PSC Using Exhaustive Search Polarimetric Optimization Method

Usually, traditional single-pol PSI technology is based on a co-polarized polarization (i.e., HH or
VV) image to monitor the ground deformation, because the image quality in co-polarized polarization
is better than that in cross-polarized polarization (i.e., HV). With the support of quad-polarimetric
SAR images, it is possible to find an optimal polarization in the quad-polarimetric signal space [32],
whose phase quality is better than that of the co-polarized polarization (i.e., HH or VV) image.
Navarro-Sanchez et al. proposes the ESPO algorithm for polarimetric optimization in PSI technology,
which can find the optimal polarization to improve phase quality [32].

The quad-polarimetric observation information of the scattering target can be denoted by
the complex scattering vector k. In order to obtain the interferometric phase and coherence of
quad-polarimetric images, we need to convert k to μ using unitary complex vector ω [23]:

μ = ω†k (10)

where † denotes the conjugate transpose; μ denotes a scalar complex scattering coefficient, which is
equal to single look complex (SLC) image. Therefore, we can apply the existing PSI techniques to μ.
For quad-polarimetric image, ω can be parameterized by the four parameters of ω(α, β, δ,ψ), which
depend on the geometry and electromagnetic properties of the scatterers:

ω =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(α)

sin(α) cos(β)ejδ

sin(α)sin(β)ejψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 ≤ α ≤ π/2
0 ≤ β ≤ π/2
−π ≤ δ < π
−π ≤ ψ < π

(11)

The PSI technology generally uses amplitude dispersion index (ADI) Da to identify PSC. In this
regard, the proposed ESPO method purposefully takes the minimum Da of the pixel in the time-series
as the goal of polarimetric optimization. Da can be expressed as [22]:
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Da =
σα
α

=
1∣∣∣ω†k∣∣∣√k− 1

√√√ k∑
i=1

(∣∣∣ω†ki

∣∣∣− ∣∣∣ω†k∣∣∣)2
(12)

where k denotes the number of images, the upper line denotes the average value, and |∗| denotes the
absolute value. In the PSC selection process of PSI, a pixel whose amplitude deviation is less than the
preset threshold can be selected as a PSC. Here we use the exhaustive search polarimetric optimization
(ESPO) algorithm to search for the ω to minimize Da [33].

Figure 1 is the algorithm flow of this paper. The quad-polarimetric image obtained by the satellite
can be denoted as scattering vector k. The complex coherency matrix T, which contains all polarimetric
scattering information of ground object, can be obtained by the cross product between k and its
conjugate transpose. Then the significance level of each pixel is computed with the proposed PSOT
method. Next, the PSCs obeying the polarimetric stationarity hypothesis are selected by setting the
threshold Tots. The optimal SLC image μ can be obtained by the ESPO method, and then k− 1 differential
interferograms can be obtained. In this paper, StaMPS technology is used for the subsequent processing
of PSI on the selected PSCs. PS can be selected by controlling the threshold values (i.e., Tn−max, Tn−std
and Tγ), and downsampling are carried out. Spatial-correlation errors (i.e., DEM, atmosphere and
orbit error) are estimated and removed after 3D phase unwrapping. Finally, the deformation velocity
can be estimated.

 
Figure 1. The flowchart of the proposed method. Tots: significance threshold of polarimetric stationarity
hypothesis test; Tn−max: threshold for the maximum noise allowed for a pixel; Tn−std: threshold for
noise standard deviation; Tγ: threshold for temporal coherence.

3. Datasets

In order to verify the effectiveness of the proposed method, 13 scene quad-polarimetric ALOS
PALSAR-1 images covering the San Fernando Valley CA are used. The coverage of the image is shown
in Figure 2a, the black rectangle shows the spatial area of the original image, and the red rectangle
shows the study area. This paper mainly selects the urban area as the study area, and the main
scattering mechanism is double-bounce scattering (Figure 2b).

The quad-polarimetric PALSAR-1 datasets acquisition time is between June 8, 2006, and August 1,
2009. The temporal and spatial baselines of the dataset are listed in Table 1. The image of April 26,
2007 is selected as the master image. The estimated ENL of the original image is 0.7296.
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(a) 

(b) 

Figure 2. The scope and scattering characteristics of the study area. (a) Scope of the synthetic
aperture radar (SAR) image: The black rectangle shows the spatial range of the original image, and the
red rectangle shows study area; (b) Composite RGB image of the study area—red: |SHH − SVV |2,
green: |SHV + SVH |2, blue: |SHH + SVV |2.

Table 1. Temporal and spatial baselines of ALOS PALSAR-1 quad-polarimetric image.

Date Perpendicular Baseline (m) Temporal Baseline (Days)

20060608 −1129.9990 −322.00199
20060908 749.6921 −230.00109
20070311 1092.7781 −46.00006
20070426 0.0000 0.00000
20070727 1338.2859 91.99989
20071027 2264.7495 183.99958
20080127 2754.1354 275.99899
20080729 518.1668 459.99757
20080913 −1637.5801 505.99824
20081029 −1356.7558 551.99885
20090129 −655.3229 643.99985
20090316 −61.6506 690.00021
20090801 −204.9118 828.00092
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4. Discussion

4.1. Selection of Significance Threshold

By evaluating the polarimetric stationarity of the pixels, the significance level of the hypothesis test
of all the pixels in the study area is obtained in Figure 3. At airports, highways, vegetated areas, and the
foreshortening area, the possibility of maintaining stable polarimetric characteristics is relatively low
(high significance). The nonstationarity of the airport and highway is caused by the randomness
and weakness of the echo signal. The vegetation growth and volume scattering variation make the
vegetation area instable. The nonstationarity of the foreshortening area is caused by the backscatter
signal aliasing.

 
Figure 3. Significance level of polarimetric stationarity in the experimental area.

Except for the regions with a significantly higher significance level (significance level > 0.6),
the remaining areas maintained a certain degree of stable polarimetric characteristics (significance
level ≤ 0.4). The main surface cover types of these areas are urban buildings, and the main scattering
mechanism is double-bounce scattering. Different significance thresholds are used to identify PSC,
and the number and statistical characteristics of selected PSCs (and PSs) are also different. We conducted
further experiments using HH polarization for identifying PSC, and then the PSC was post-processed
using StaMPS to obtain PS. In StaMPS, the noise pixel can be removed by the downsampling parameter
(merge_resample_size), but at the same time, the number of PS pixels will inevitably be reduced.
The resolution of azimuth and ground range direction of the experimental data used in this paper is
3.54 m and 24.1 m, respectively. Therefore, we set the downsampling parameter to 25 m.

For studying the influence of increased significance threshold on the temporal coherence
distribution, different significance (≤ 0.6) are selected for the PSC selection experiment, and the
corresponding temporal coherence distribution of PSC and PS in HH polarization are obtained.
Figure 4a shows that with the decrease of significance threshold, PSC can be greatly reduced. Pixels in
the low-coherence range (< 0.85) are more sensitive to the change of significance threshold, which also
shows that the PSOT can extract PSC effectively. In Figure 4b, the decrease of significance threshold
mainly affects PS with temporal coherence between 0.6–1. The change of significance threshold has
little effect on the number of PS. A higher threshold can extract more PS. Even if the significance
threshold is set to 0.01, which is very strict, the number of PS (HH polarization) can still stay at 28355.

In Figure 5, within the range of significance threshold greater than 0.3, the ratio of Nps (the number
of PS) to Npsc (the number of PSC) are approximately linear. Therefore, it can be considered that the
pixels above the significance threshold of 0.3 have no significant polarimetric stationarity characteristics.
When the significance threshold is less than 0.3, Npsc and Nps drastically decrease, but the ratio
(Nps/Npsc) rapidly increases. It can be considered that the selected PS and PSC with a significance
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less than 0.3 under the polarimetric stationarity hypothesis have polarimetric stationarity. When the
significance is 0.3, the proportion of PS in the total pixels (1080000) is 3.69%, and the proportion of PS
in the PSC is 14.78%. Therefore, the range of significance threshold is 0.1–0.3.

(a) 

 
(b) 

Figure 4. Temporal coherence distribution of persistent scatterer candidates (PSCs) and persistent
scatterers (PSs) in HH polarization under different significance thresholds. (a) PSC; (b) PS.

Figure 5. Changes of the ratio of Nps to Npsc under different significance thresholds. Nps: the number
of PS, Npsc: the number of PSC. The tags in the figure correspond to the number of PS and PSC under
different significance thresholds, namely (Nps/Npsc).
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The temporal coherence is an important indicator for evaluating the phase quality of both PSC
and PS. In order to evaluate the bias of coherence estimation, the paper makes a detailed analysis
on the statistical characteristics of temporal coherence estimation, as shown in Figure 6. Touzi et al.
illustrated the deviation between estimated coherence and true coherence for statistically independent
samples [41]:

d =
Γ(L)Γ

(
3
2

)(
1−D2

)L

Γ
(
L + 1

2

) 3F2

(3
2

, L, L; L +
1
2

, 1; D2
)

(13)

where D is the true degree of coherence, d is the estimated coherence, Γ denotes the gamma function, 3F2

denotes the hypergeometric function, and L is the number of statistically independent samples. Then
the phase standard deviation under different coherence was obtained [36]:

σϕ =

√
1− |D|2
2L|D|2 (14)

The following is to quantitatively analyze the estimated bias and the phase standard deviation
condition of the temporal coherence with different coherence value and number of interferograms.
Figure 6 shows that when the number of samples is 12, the deviation between estimated coherence and
true coherence is very small in the high-coherence region (the main feature of PS). When the coherence
is 0.8, the deviation of coherence is −0.00391, and the variance of estimated coherence is 0.0228, which
shows that the estimated coherence can evaluate the performance of the proposed method.

(a) 

(b) 

Figure 6. Statistical characteristics of temporal coherence estimation with different coherence value
and 12 interferograms. (a) Estimated coherence, true coherence and the bias value; (b) variance of
estimation coherence.
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In order to compare the effect of the PSOT on different polarizations, the thresholds are set to
0.1, 0.2 and 0.3 respectively to select the points in ESPO, HH, HV and VV. The PSC (PS) coherence
distribution of different polarizations at the same threshold can reflect the performance of the ESPO.

Figure 7 shows that the temporal coherence of PSC identified by the PSOT method to the ESPO
polarization is the lowest. For HH and VV polarizations, the PSOT selects more high-coherence
pixels (> 0.7) than VV polarizations, and selects fewer low-coherence pixels (< 0.7). The ESPO selects
less PSC in the coherence range of 0.6–0.85 than other polarizations, and selects the most PSC in the
coherence range of greater than 0.85, which makes the distribution of PS more concentrated in the
high-coherence region.

(a) Significance = 0.1 (b) Significance = 0.2 (c) Significance = 0.3 

(d) Significance = 0.1 (e) Significance = 0.2 (f) Significance = 0.3 

Figure 7. Coherence distribution is selected for different polarizations (ESPO, HH, HV, VV) under
different significance thresholds; above is the coherence distribution of PSC, below is the coherence
distribution of PS; (a,d) significance = 0.1; (b,e) significance = 0.2; (c,f) significance = 0.3.

4.2. Comparison of Different PSC Selection Methods

In order to compare the difference between this method (PSOT+ESPO) and the traditional method,
we compared the performance of amplitude dispersion index (ADI) in selecting PSC for different
polarizations (ESPO, HH, HV, VV). The ADI and the PSOT describe the stability of scatterer from
different angles, so the threshold value is not comparable. However, the purpose of different PSC
selection methods is to select the "optimal" PSC set, so it is more reasonable to compare the distribution
of time coherence in the same number of PSC sets. Based on PSOT, different significance thresholds
(0.1, 0.2, 0.3) are used to select PSC, and then the same number of PSCs for different polarizations are
selected by the ADI to compare. The following table shows the actual thresholds of PSCs selected by
different methods.

Figure 8 shows that the effect of the ADI+ESPO is only better than that of the ADI+HV, which
shows that, with the ESPO method based on ADI index, it is easy to select low-coherence PSC in
the aspect of selecting PSC by mistake. The traditional co-polar HH and VV can effectively select
high-coherence PSC. The main reason is that the co-polar polarization contains most of the scattering
energy of the ground objects. It is worth noting that when the PSOT is used to select PS, the best
performance can be achieved by using the ESPO method to optimize polarization, which is more
concentrated in the region with coherence greater than 0.9. This shows the effectiveness of the PSOT in
PSC selection, and effectively makes up for the shortcomings of the ESPO method. Moreover, under
different confidence thresholds, the PSOT has the same effect and good robustness.
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(a) Significance = 0.1 (b) Significance = 0.2 (c) Significance = 0.3 

Figure 8. PSC temporal coherence distribution is selected for different methods under different
significance thresholds; (a), significance = 0.1; (b), significance = 0.2; (c), significance = 0.3.

To further compare the performance of different methods, it is necessary to compare the coherence
distribution of PS. In this paper, the same PSI process is used to process the PSC obtained by different
methods, and the coherence distribution of PS obtained by various methods (Figure 9).

  
(a) Significance = 0.1 (b) Significance = 0.2 (c) Significance = 0.3 

Figure 9. PS temporal coherence distribution is selected for different methods under different
significance thresholds; (a) significance = 0.1; (b) significance = 0.2; (c) significance = 0.3.

After removing most of the low-coherence PSC, the coherence of PS is mainly distributed in the
range above 0.8. The performance of the ADI+ESPO is equivalent to that of the ADI+HH/VV. This is
because the ESPO method based on ADI is still the statistical information based on a single polarization,
which is easy to greatly reduce the amplitude dispersion index of the scatterer (see the threshold value
in Table 2). This will result in a larger proportion of points that are unstable being selected as PSC,
so the amplitude dispersion index can not identify the PSCs of the ESPO very well. In this method,
the quad-polarimetric information of the scatterer in time-series is considered to represent the stability
of the scatterer, which avoids the limitation of a single measure. It can effectively make up for the
shortcomings of the ADI+ESPO and select PSCs more effectively.

Table 2. The threshold value of different PSC selection methods and the number of selected PSC.

Method Threshold 1 Threshold 2 Threshold 3

PSOT+ESPO 0.1 0.2 0.3
ADI+ESPO 0.1680 0.1773 0.1851
ADI+HH 0.3628 0.3822 0.3985
ADI+VV 0.3750 0.3934 0.4088
ADI+HV 0.3636 0.3830 0.3993

Number of PSC 166081 219006 269638

The performance of the ESPO has been discussed in [22,23,34]. In the experiment in this paper, we
also found that the EPSO method can suppress the side lobe effect to a certain extent, and the texture
of the surface coverage is clearer. We optimized the polarization of the quad-polarization image with
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an accuracy of 6◦. To evaluate the effect of the ESPO, we compared it with three single polarization (HV
and VH are equivalent) respectively. In order to compare the ability of different polarization to retain
details of ground targets, representative buildings and parks were selected for analysis. The effects of
different polarization will be analyzed in terms of intensity details and phase quality.

Figure 10a,b and d shows that ESPO inhibits the sidelobe effect to some extent. In Figure 10,
the building with sidelobe is Oak Tree Aviation Services LLC, Burbank Glendale Pasadena (BUR)
airport and the direction of the building is parallel to the LOS (line of sight) direction (Figure 10e),
therefore the sidelobe effect is very serious in the co-polarized polarization (Figure 10b,d). However,
the signal of BUR is weak in cross-polarized polarization (Figure 10c). ESPO not only suppressed
the sidelobe effect, preserved the scattering information of the building, but also solved the problem
that it was difficult to observe the building in the cross-polarized polarization. For Pierce Brothers
Valhalla in Figure 10f, ESPO preserves scattering information of the park path with clear details and
noise suppression. The noise suppression effect of ESPO is also well reflected in the odd scattering
regions (airport runway, etc.).

 

Figure 10. Intensity images of ESPO, HH, VV and HV polarizations, and Google Earth images of two
ground objects; the red box is Oak Tree Aviation Services LLC and the green box is Pierce Brothers
Valhalla. (a) ESPO; (b) HH; (c) HV; (d) VV; (e) Google Earth image of Oak Tree Aviation Services LLC;
and (f) Google earth image of Pierce Brothers Valhalla. The strong scatterers in the red box show the
effect of ESPO on sidelobe suppression, and the park in the green box shows the effect of ESPO on
noise suppression and detail retention.
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5. Analysis of Deformation Results

After verifying the performance of PSOT in Section 4, combining the constraint degree of
significance threshold on the number of PSs, we select the median value (0.2) of the suggested
significance threshold interval ([0.1 0.3]) for PSC selection. Then the ESPO method is carried out on the
selected PSC, and the PS and time-series deformation is obtained by StaMPS (Figure 11a). In order to
compare the effect of deformation monitored with different method, the ADI+ESPO (or HH, HV, VV)
uses the same post-processing.

 

Figure 11. Mean deformation rate obtained by different methods (a) PSOT+ESPO; (b) ADI+ESPO;
(c) ADI+HH; (d) ADI+HV; (e) ADI+VV; PSOT and ADI are the methods to identify PSC. the left shows
the deformation results of the experimental area, the right is a zoomed-in view of deformation; the
pentagram is position of the North Hollywood Station.
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Figure 11a,d shows that the selected PS density of the PSOT+ESPO is higher than that of the
ADI+HV, and there is less noise. Figure 11a–c,e looks similar, and the effect of deformation needs to
be observed locally. It can be seen that Figure 11c,e has more noise pixels. The PSOT+ESPO and the
ADI+ESPO have fewer noisy pixels. In order to quantitatively analyze the deformation results, we
compared the standard deviation (STD) distribution of the time-series deformation of the five methods
(Figure 12). PSs with larger STD indicate either larger errors (due to atmosphere or unwrapping errors)
or deformation that is non-linear.

Figure 12. STD distribution of time-series deformation results obtained by different methods. STD is
calculated by the residual time series after subtracting the linear component, units of STD is mm.

Figure 12 shows that the STD distribution of time-series deformation obtained by the PSOT+ESPO
is significantly better than the other method. But the ratio of the ADI+ESPO in error points is higher
than ADI+HH/VV, which also indicates that there is a problem of misselection. The PSOT method
proposed in this paper can select the ESPO points more effectively, and the error points are far less than
the ADI+ESPO/HH/VV. Specifically, in Table 3, we can see that only 2393 pixels of the deformation
obtained by the PSOT+ESPO have STD greater than 5. For the specific deformation time-series, select
the corresponding points of the pentagram in Figure 11 for analysis.

Table 3. The mean intensity of each polarization and the polarization-optimized image.

Method PSOT+ESPO ADI+ESPO ADI+HH ADI+HV ADI+VV

Number of PS 39620 35185 38408 23923 39015
Number of PS (STD > 5) 2393 5127 6263 3956 6113

Figure 13 shows that the time-series deformation of different methods. Assuming that the
deformation is linear. Deformation rate estimation of ADI+HV is different from other methods, and its
STD is the largest, so the reliability of this method is the lowest. Figure 13a shows that the time-series
deformation with PSOT+ESPO has a higher linear fitting degree (STD = 1.638 mm) and its deformation
rate estimation is similar to ADI+VV.
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Figure 13. Time-series deformation of the pentagram in Figure 11; (a) PSOT+ESPO; (b) ADI+ESPO;
(c) ADI+HH; (d) ADI+HV; (e) ADI+VV. STD is calculated by the residual time-series after subtracting
the linear component.

In order to compare the efficiency of different methods, the paper records the time consumption of
different methods (Table 4). The ADI+HH/HV/VV methods do not require polarization optimization,
so there is no ESPO time cost. Time consumption for PSI (StaMPS) includes coherence estimation, error
estimation, phase unwinding, deformation estimation and so on. All the programs of these methods
are executed under the condition of single-core processor without parallel processing.

Table 4. Calculation time of the proposed PSC selection and non-selection of PSC (CPU: AMD Ryzen 5
2600 Six-Core Processor × 12, Memory: 64G DDR4, Operation system: Ubuntu 16.04 LTS 64bit).

Time Consumption (h) PSOT+ESPO ADI+ESPO ADI+HH ADI+HV ADI+VV

PSOT 0.080 — — — —
ESPO 8.195 40.230 — — —

PSI(StaMPS) 0.155 0.154 0.173 0.140 0.171
Total 8.430 40.384 0.173 0.140 0.171

The time consumption shown in the figure can be seen that the processing time for different
methods to select the same number of PSC in PSI is equivalent. The PSOT+ESPO method proposed
in this paper (the significance threshold is 0.2) is 79% less than the traditional ESPO for deformation
monitoring. In addition, the calculation amount of the ESPO varies exponentially with accuracy. In this
paper, we use accuracy of 6◦. Reducing the accuracy of ESPO can also reduce the amount of calculation.

The deformation area monitored in this paper is about 3 km2 and the center is North Hollywood
Station. The deformation is funnel-shaped, and the deformation rate is approximately linear. During
the monitoring period, there was no major earthquake damage in the deformation area, and most of
the buildings were built early. North Hollywood Station was also unable to cause the deformation of
such a large area as 3 km2. Therefore, it is speculated that this is the inelastic deformation caused by
groundwater exploitation.

6. Conclusions

The PSI is an important means for InSAR to monitor surface deformation. Improving the density
and phase quality of PS are key problem in PSI. The ADI in the traditional single-pol PSI is difficult to
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describe the statistical characteristics of scatterers, so it is not robust when selecting PSC. In this paper,
we propose a PSOT method to identify the polarimetric stationary scatterers as the PSCs. Experimental
results show that the phase quality of PSCs identified by the PSOT+ESPO is higher than that by the
ADI+ESPO method and traditional single-pol PSI. Through error analysis, the proposed PSOT+ESPO
method can obtain the maximum number of PS, and the deformation estimation is more robust.
Specifically, when the significance threshold is 0.2, 219006 PSCs were selected. After error analysis,
39620 PS remained, accounting for 3.67% of the total pixels (1080000).

Experiments show that the ESPO method can not only achieve the polarimetric optimization of
the PSC interferometric phase, but also suppress the sidelobe of the strong scatterer effectively and
make the details of the ground object clearer. The ESPO improves the coherence of the scatterers by
optimizing the amplitude dispersion index, which will select some incorrect PSC when using the ADI
method. The PSOT method based on the polarimetric SAR image can avoid the unsteadiness of PSC
selected by the ESPO using ADI. Therefore, The PSOT combined with ESPO can identify PSC more
accurately and improve the phase quality.
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Abstract: A digital elevation model (DEM) can be obtained by removing ground objects, such as
buildings, in a digital surface model (DSM) generated by the interferometric synthetic aperture
radar (InSAR) system. However, the imaging mechanism will cause unreliable DSM areas such as
layover and shadow in the building areas, which seriously affect the elevation accuracy of the DEM
generated from the DSM. Driven by above problem, this paper proposed a novel DEM reconstruction
method. Coherent Markov random field (CMRF) was first used to segment unreliable DSM areas.
With the help of coherence coefficients and residue information provided by the InSAR system,
CMRF has shown better segmentation results than traditional traditional Markov random field (MRF)
which only use fixed parameters to determine the neighborhood energy. Based on segmentation
results, the hierarchical adaptive surface fitting (with gradually changing the grid size and adaptive
threshold) was set up to locate the non-ground points. The adaptive surface fitting was superior to
the surface fitting-based method with fixed grid size and threshold of height differences. Finally,
interpolation based on an inverse distance weighted (IDW) algorithm combining coherence coefficient
was performed to reconstruct a DEM. The airborne InSAR data from the Institute of Electronics,
Chinese Academy of Sciences has been researched, and the experimental results show that our
method can filter out buildings and identify natural terrain effectively while retaining most of the
terrain features.

Keywords: coherence coefficient; DEM; DSM; hierarchical adaptive surface fitting; InSAR; markov
random field; residue

1. Introduction

An interferometric synthetic aperture radar (InSAR) has the ability of acquiring a large-area and
high-precision digital surface model (DSM) in all-times and all weather. The information of a digital
elevation model (DEM) is required for many applications, therefore it is necessary to reconstruct a
DEM from a DSM by removing the above-ground objects such as buildings. The DEM reconstruction
is involved in photogrammetry [1,2], laser detection and ranging (LiDAR) [3–6], or InSAR [7–10].
Many methods have been proposed in this subject especially in the field of LiDAR [6], however
reconstruction research based on InSARs is relatively rare. The main reason is that the accuracy of
an InSAR DSM is lower than that of LiDAR due to the unique side looking imaging mechanism of
synthetic aperture radar (SAR). For example, in an InSAR DSM, there can be a lot of layover and
shadow areas in the building scene and the interferometric phase inversion of these areas are not
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reliable, which may generate a lot of points with incorrect extreme elevations in an InSAR DSM.
Therefore, the reconstruction of an InSAR DEM is more challenging than that of LiDAR data.

Wang and Mercer [7] proposed an InSAR DEM reconstruction method based on image pyramid.
Each level needs to be reconstructed in this algorithm, thus the error in the middle level will affect the
next level, which is prone to error accumulation. Jiang [8] combined the slope information and the
image pyramid method to filter non-ground points by calculating the slope between the candidate
points. Zhang and Tao [9] proposed a surface-fitting-based method of an InSAR DEM reconstruction.
The DEM is generated from InSAR DSM by extracting candidate ground points in a fixed-size grid,
adjusting points with a distance of more than the given threshold from fitted surface, and and using
ground points for interpolatio. These methods assume that the point with the minimum elevation in
the fixed-size grid is the ground point, without considering the unreliable DSM points with the large
spike noise belonging to layovers and shadows in the InSAR building areas. When the local minimum
points fall into these unreliable DSM areas, extreme points are selected as the ground points, causing
significant errors in the DEM reconstruction. Therefore, to avoid the adverse effects of these areas on
ground points selection, it would make sense to segment the unreliable DSM area before selecting the
ground point. At the same time, the selection of grid size and threshold in surface fitting may also
significantly affect the reconstruction of the DEM. When the grid size is too large, some ground details
will be lost, and the terrain will be smoothed. When the grid size is too small, the local minimum point
will fall into the building, resulting in reduced DEM reconstruction accuracy.

Unreliable DSM areas mainly include the layover and shadow in a building scene, which can be
segmented by the intensity of pixel gray because of their different brightness in SAR images. Due to
the existence of speckle noise and complex texture characteristics of ground objects, the segmentation
results are not satisfactory in the general image segmentation algorithm. To improve segmentation
performance, the spatial relationship is usually considered. Markov random field (MRF) is recognized
in the field of image segmentation due to its ability to utilize spatial context information [11], and it
has been widely applied in SAR image segmentation [12–14]. In a traditional MRF, the ability of
the neighborhood energy to describe the spatial correlation is insufficient, and the fixed parameter
causes the neighborhood pixels to have the same impact on the central pixel. Moreover, the context
information is not fully utilized [15,16], therefore the segmentation result is prone to misclassification
points. In this paper, considering the potential of interferometric information and the coherence
coefficient and residue information are incorporated into the traditional MRF model for improving
segmentation performance.

Based on the above discussion, this paper proposed a DEM reconstruction method based on
unreliable DSM area segmentation and hierarchical adaptive surface fitting. The contributions of this
paper can be summarized as follows:

(1) In order to avoid the influence of the extreme points in the unreliable DSM areas when performing
DEM reconstruction, segmentation based on the intensity of pixel gray levels in the InSAR
amplitude image (which is helpful for the selection of ground points) was firstly used to identify
the unreliable DSM areas for improving the performance of the subsequent DEM reconstruction.

(2) In order to improve the segmentation performance, we considered the potential of InSAR data
information, such that this paper combined the coherence coefficient and residue information of
interferometric phase with the neighborhood energy of the MRF, and the full use of contextual
relationship was achieved by using the interferometric information between neighboring pixels.

(3) In the general surface fitting-based method, the fixed grid size and threshold will affect the
filtering accuracy. Therefore, a new idea of progressively reducing the grid size and setting
the adaptive threshold is proposed. It can realize the step-by-step filtering of ground points
and the preservation of terrain detail information. At the same time, inverse distance weighted
(IDW) interpolation with coherence coefficient is performed for completing the reconstruction of
the DEM.
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The rest of the paper is organized as follows. In Section 2, details of the proposed method are
described. The experimental results and discussion are in Section 3, and Section 4 is the conclusions.

2. Proposed Method

2.1. Unreliable DSM Areas Segmentation with Coherent Markov Random Field (CMRF) Method

2.1.1. Image Segmentation Based on a MRF Model

A MRF model regards an image as a points set S, and the segmentation label X is a random field
corresponding to S. The spatial relationship between neighboring pixels is constructed by defining
neighborhood cliques η= {ηi j: (i, j) ∈ S,ηi j ∈ S}. According to Bayesian theory, we need to find the
estimate of segmentation label XMAP that maximizes the posterior probability distribution:

X̂MAP = argmaxP(X|Y) = argmax
P(Y|X)P(X)

P(Y)
= argmaxP(Y|X)P(X) (1)

where X is the segmentation label, and Y is the observation image. According to the equivalence of
MRF and Gibbs Random Field (GRF), which can be proved by the Hammersley-Clifford theorem and
the Gibbs theorem, the posterior probability distribution can be represented as:

P(X = x|Y = y) = Z−1 exp(−U(x|y)) (2)

where U is the energy function; and Z denotes the normalizing constant. From Equation (2), it can
be seen that maximizing the posterior probability P(X|Y) means minimizing energy function U(x|y).
Moreover U(x|y) which is called posterior energy in this letter can be decomposed into Equation (3)

U(x|y) = U(y|x) + U(x)
= −∑

s
ln p(ys|xs) +

∑
c∈Vs

Vc(x) (3)

where Vs is a set of all neighborhood cliques; U(y|x) denotes the likelihood energy which represents
the contribution of the pixel itself to the energy; and U(x) denotes the neighborhood energy. Vc(x) is
expressed as Equation (4) [17]:

Vc(x) =
{

0 xi = xj
β xi � xj

(4)

where xi is the segmentation label of pixel i; xj is the segmentation label of pixel j which is neighboring
pixel of i; and β is a parameter to control the contribution between U(y|x) and U(x), which is usually
determined by experience.

As shown in Equation (3), the likelihood energy is related to the likelihood function of pixels.
According to the imaging structure and pixel gray of the building scene in the SAR image, the following
three classes are determined, and the unreliable DSM areas include the layover and shadow areas.

(1) Layover areas: The characteristics of this area are scattered signals of targets at different positions
overlapping at the same distance resolution unit, causing high brightness in the SAR image.

(2) Shadow areas: This area is characterized by an extremely low backscattered signal strength,
which is caused by steep terrain or occlusion by towering targets.

(3) Background areas: The other areas which don’t belong to the layover or shadow in the scene are
grouped into the background, which mainly includes roofs, trees, and bare ground.
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A Fisher distribution model is used to describe the probability distribution of building scenes in
high-resolution SAR images by Tison [18], and it can be described as follows:

pFisher(u) =
Γ(L + M)

Γ(L)Γ(M)

L
Mμ

( L
Mμu)

L−1

(1 + L
Mμu)

L+M , L > 0, M > 0 (5)

where L and M represent the shape parameters; μ denotes the weight parameter; and Γ is the
Gamma function.

After selecting areas of different classes defined above as the supervising information, we can
estimate the parameters as follows:

M =
4R1 − 3R2 − 1
2R1 −R2 − 1

(6)

L =
2(R1 −R2)

−R1 + 2R2 −R1R2
(7)

μ = m1
2(R1 −R2)

4R1 − 3R2 − 1
(8)

where R1 = m2/(m1 ∗m1), R2 = m3/(m1 ∗m2), and m1, m2, m3 are the statistical histogram central
moments of corresponding orders.

Therefore, according to the estimated Fisher probability distribution corresponding to Equation
(5) and the neighborhood energy shown in Equation (4), the class label can be obtained by the
following formula:

X̂ = argminU(x|y)
= argmin(−∑

s
ln p(ys|xs) +

∑
c∈Vs

Vc(x)) (9)

These class labels are firstly obtained by the initial segmentation, and then the labels are updated
iteratively. The neighborhood energy is related to the class labels of the neighboring pixels, and the
likelihood energy is determined by the probability distribution function of the pixel values. The
pixel value and neighboring label are used to calculate the posterior energy of a single pixel, and the
label with the minimum energy value is used as the segmentation result. Finally, iterative solution is
performed until the energy is stable.

2.1.2. CMRF Segmentation

In the traditional MRF model, when the center pixel label and the neighborhood pixel label are
the same, the neighborhood energy is a certain value, and when the labels are different, it is zero. This
results in the adjacent pixels having the same effect on the center pixel [15], therefore it cannot fully
utilized the contextual information. Driven by this problem, this paper redefined the neighborhood
energy model of MRF based on the coherence coefficient and residue information to make full use of
the contextual interferometric information.

The coherence coefficient is used to evaluate the quality of the InSAR interferogram, which is
defined as follows [19]:

γ =

∣∣∣E[s1s2
∗]
∣∣∣√

E
[
|s1|2

]
E
[
|s2|2

] (10)

where s1 and s2 are the interferometric complex image pair; and E represents mathematical expectation.
The interferometric coherence is an elemental parameter for InSAR applications, which is estimated
by comparing the radar echo across several nearby radar images pixels [20]. The related coherent
change detection (CCD) [21], maximum-likelihood (ML) CCD [22], and ML-polarimetric InSAR-CCD
(ML-PolInSAR-CCD) [23] are important applications of satellite earth observation. The coherence
coefficient is related to the characteristics of the scatterers. For example, pixels which belong to shadow
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area tend to have low a coherence coefficient because the scattering signal in these areas is dominated
by noise, while the coherence coefficient in other areas is usually higher than shadow. This property
can be used to distinguish different classes [24]. Meanwhile, the coherence coefficient usually shows
consistency and uniformity in areas with pixels belonging to the same category, which can be used to
further improve the performance of image segmentation. This paper defines a coherence coefficient
distance that measures the difference in coherence between the central pixel and the neighboring pixels,
and it is expressed as follows:

D = |γi − γ j| (11)

where γi is the coherence coefficient of the pixel i; and γ j is the coherence coefficient of pixel j, which is
the neighboring pixel of i.

Furthermore, the residue information of the interferometric phase is also helpful for SAR image
segmentation. Under ideal conditions, the absolute value of the phase gradient should be less than
π. However, due to the existence of low scattering areas such as shadow, smooth roads, and water,
etc., the absolute value of the wrapped phase gradient may be greater than π. This is called the phase
discontinuity point and is known as residue [25]. The residue distribution in the interferometric phase
image is obtained according to the following formula:

ψ1 = W(ϕi, j+1 −ϕi, j)

ψ2 = W(ϕi+1, j+1 −ϕi, j+1)

ψ3 = W(ϕi+1, j −ϕi+1, j+1)

ψ4 = W(ϕi, j −ϕi+1, j)

R = ψ1 +ψ2 +ψ3 +ψ4

(12)

where ϕi, j represents the wrapped phase at the pixel (x, y); and W represents the wrapped phase
operator. When R > 0 it is a positive residue, otherwise it is a negative residue, and R = 0 is the normal
point. The residues are caused by phase discontinuity in low-scattering areas such as shadows. If both
points are residues, they are likely to be divided into shadows, thus residue information can be helpful
for segmenting InSAR amplitude images.

Considering the effects of coherence coefficient and residue information, if the coherence coefficient
distance is small and both points are residues, the possibility of being divided into the same class is
greater, and vice versa.

More specifically, when the class labels are the same between the center pixel and the neighboring
pixel, a small coherence coefficient distance should mean low neighborhood energy, which may increase
the probability of being identified as the same class for the two pixels. Meanwhile, if the center pixel
and the neighboring pixel are both residues, the corresponding neighborhood energy should be lower
than the energy that the two points are not both residues, and it is more likely to be classified into the
same label. When the class labels are different between the center pixel and the neighboring pixel, the
opposite is true. Based on the above analysis, the improved neighborhood energy form is as follows:

Vc−CMRF(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1− e−αD)β xi = xj r(xi) � r(xj)

(1− e−μαD)β xi = xj r(xi) = r(xj)

(e−αD − 1)β xi � xj r(xi) � r(xj)

(e−μαD − 1)β xi � xj r(xi) = r(xj)

(13)

where α is a constant greater than zero and it is used to control the shape of the curve; μ is the weighting
coefficient of the residue information; and r(xi) = r(xj) means that both xi and xj are residues, and
r(xi) � r(xj) means the opposite. Figure 1 shows a curve of the neighborhood energy as a function of
coherence coefficient distance and residue information.
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Figure 1. Curve of the neighborhood energy changing with the coherence coefficient distance and
residue information.

Therefore, Equation (3) is represented as Equation (14) in the CMRF model:

UCMRF(x|y) = −
∑

s
ln p(ys|xs) +

∑
c∈Vs

Vc−CMRF(x) (14)

Equation (9) is represented as Equation (15):

X̂ = argminUCMRF(x|y)
= argmin(−∑

s
ln p(ys|xs) +

∑
c∈Vs

Vc−CMRF(x)) (15)

2.2. DEM Reconstruction Based on Hierarchical Adaptive Surface Fitting

2.2.1. Reconstruction Method Based on Surface Fitting

After removing the points of the unreliable DSM areas, the lowest points of the grids which don’t
belong to the unreliable DSM areas are used for surface fitting to realize DEM reconstruction. Zhang [9]
took the local minimum points in a given grid as the candidate ground points, which were further
optimized by surface fitting. Assuming that the terrain surface is a complex spatial surface, and it can
be approximated by a quadric surface, as shown in the following equation:

z = a0 + a1x + a2y + a3x2 + a4y2 + a5xy (16)

where z represents the value of DEM; and x, y represent the horizontal and vertical coordinates of the
candidate ground points, respectively. According to the least squares method, the parameters of the
surface equation can be determined by the following equation:

A = (MTPM)
−1
(MTPZ) (17)

where A = [a0, a1, · · · , a5]
T, Z = [z1, z2, · · · , zn]

T. M, and P are described as follow:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x1
2 x1y1 y1

2

1 x2 y2 x2
2 x2y2 y2

2

...
...

...
...

...
...

1 xn yn xn
2 xnyn yn

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 0
p2

. . .
0 pn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

where p1, p2, · · · , pn are the weights of the corresponding points. This paper considers that all points
have the same effect on surface fitting, therefore p1 = p2 · · · = pn = 1, and n is the number of points
used for fitting. If the difference between the actual elevation and the fitted elevation is greater than
the given threshold, the point is filtered out; otherwise, the original value remains unchanged.

Considering the continuity of the terrain, this paper added the neighborhood grids, and the fitting
surface of each grid is obtained based on the minimum points which exclude the detected unreliable
DSM points of the 3 × 3 neighborhood grids, as shown in Figure 2. The left part represents the original
DSM data, and the red grid is surrounded by its 3 × 3 neighborhood grids. The point in each grid in
the right part is the local lowest point of the grid, which cannot be the detected DSM unreliable point.
These points in the right part are fitted to the surface of the red grid by Equation (16). The surface
fitting using the minimum points of the neighborhood grids can maintain the characteristics of the
terrain as much as possible.

 

Figure 2. Fitting process with minimum points in neighborhood grids.

In the surface fitting-based method, the choice of grid size is important. As shown in Figure 3,
when the grid size is set to a large value such as l1, the lowest point will not fall near the ridge,
thus it is difficult to completely retain the true terrain at the ridge during subsequent surface fitting.
When the grid size is set to a small value such as l2, the lowest point will fall on the roof of the building,
and the fitted terrain will deviate from the real terrain, resulting in incomplete filtering of the buildings.
At the same time, the threshold in the filtering process is not changed adaptively, which will affect the
reconstruction result.
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Figure 3. Ground points selection for a steep terrain area with buildings. In part (a), buildings and
terrain are shown in different colors. In parts (b) and (c), dashed lines define the grid cells for ground
points selection; the red and blue circles represent the lowest points, and the blue lines represent the
initial terrain constructed with the lowest points.
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2.2.2. Hierarchical Adaptive Surface Fitting

In order to solve the above problem, this paper proposed a hierarchical adaptive surface fitting
method. Inspired by Zhang [9], the performance of the algorithm is improved by the following process.

(1) Hierarchical surface fitting: In the first iteration, the DSM data is first divided evenly by relatively
large-sized grids, and then the minimum elevation points in each grid that are not the unreliable
DSM areas are used as candidate ground points. The candidate ground points are compared
with the surface obtained by fitting the candidate ground points in the 3 × 3 neighborhood grids.
If the difference between the elevation of the candidate ground point and the fitted surface is
greater than the threshold, the candidate point will be marked as non-ground points. Due to
the large mesh size in the first iteration, it cannot represent the true topographic relief well, and
the threshold should be set relatively loosely, filtering out buildings with large elevation values.
In order to further locate potential non-ground points, we continuously reduce the size of the
mesh and repeated the above steps until the mesh size is less than the preset minimum. Figure 4
shows a schematic diagram of the hierarchical surface fitting process.

(2) Determination of adaptive threshold: As mentioned above, considering the influence of grid size
and elevation variance, this paper proposed a method for adaptively determining the threshold,
which is shown in the Equation (20). The basic idea is that smaller grid size and variance of
elevation difference usually correspond to a more reliable fitting result, which means that the
threshold should be relatively strict. Conversely, with the increase of grid size and variance, its
ability to represent real terrain is weakened, indicating that the fitted terrain has large deviations
and the threshold should be relatively loose.

T = μ1 × l + μ2 × σ2 (20)

where l represents the grid size; and σ2 represents the variance of elevation difference. μ1 and μ2

represent the weights of the grid size and variance of elevation difference, respectively.
(3) Interpolation with Coherence-Coefficient-Based IDW: After the ground points have been acquired

by hierarchical surface fitting, the next step is to perform the interpolation with discrete ground
points. In this study, the IDW algorithm was selected to interpolate the ground DEM, and it
determines the weighting coefficient of ground points based on the distance between the known
ground point and the interpolation point. This algorithm searches for ground points within the
initial area, and if the number of ground points meets the set threshold, the search is stopped
and then the weight of the searched ground points is calculated and interpolation is performed;
otherwise the search radius is increased and the search is continued until the condition is satisfied.
Figure 5 shows the algorithm execution diagram. When calculating the elevation of the red box,
which is the point to be interpolated, search for ground points around it. If the number of black
boxes representing the ground points reaches the set threshold, the distance between each ground
point and the point to be interpolated is calculated, and then the weight ωi−IDW is obtained by
Equation (21).

ωi−IDW =

1
di

2

N∑
n=1

1
dn2

(21)

where di is the distance between the ground point i and the point to be interpolated; and N is
the number of points participating in the calculation. Finally, the product of the weight and the
elevation of ground point is summed to obtain the elevation of the point to be interpolated.
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Figure 4. Hierarchical surface fitting with decreasing grid.

 

Figure 5. Inverse distance weighted (IDW) algorithm. Black boxes represent ground points, and red
boxes represent points to be interpolated.

Considering the influence of the coherence coefficient, we combine the coherence coefficient and
the inverse distance to improve the determination of the weight. The weight ωi of the ground point i is
expressed as follows:

ωi =

qi
di

2

N∑
n=1

qn
dn2

(22)

where qi is the coherence coefficient of ground point i. The elevation of the point to be interpolated is
estimated with the weighted sum:

h =
N∑

i=1

ωihi (23)

where h represents the elevation of the point to be interpolated; and hi represents the elevation of the
ground point i.

As mentioned above, a DEM reconstruction method based on unreliable DSM area segmentation
and hierarchical adaptive surface fitting was proposed in this method. As shown in Figure 6, in this
method, an InSAR amplitude image is segmented initially, and the InSAR coherence coefficient and
residue of interferometric phase are plugged into the neighborhood energy of the MRF model. Then we
construct the likelihood energy and find the class labels that minimize the sum of the likelihood energy
and the neighborhood energy as the segmentation result of the unreliable DSM areas. Next, the DSM is
divided by a uniform grid and the minimum points of each neighborhood grids, which do not belong
to the unreliable DSM area such as building layover and shadow, are used to fit a quadratic elevation
surface. The difference between the true elevation and the fitted elevation is then calculated, and the
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points that are higher than the designed adaptive threshold are filtered out. Then the grid size changes
step-by-step, iteratively filtering out the non-ground points. The surface fitting and filter is iterated in
turn until the filter effect is not significantly different, or the filtering is stopped when the max number
of iterations are met. Finally, the IDW interpolation combining the coherence coefficient is performed
for completing the reconstruction of the DEM.

Initialize the label of the image and 
model parameters

coherence coefficient residue

construct the likelihood energy construct the neighborhood energy

Get the labels by minimizing the sum of neighborhood energy 
and likelihood energy iteratively 

unreliable DSM areas

InSAR Amplitude

InSAR DSM

 reduce the grid size for hierarchical filtering

set the adaptive threshold

IDW combining coherence coefficient

 InSAR DEM

surface fitting with minimum points exclude detected DSM unreliable  points  
in neighborhood grids

Figure 6. Flowchart of proposed digital elevation model (DEM) reconstruction method.

3. Results

3.1. Testing Data

In this paper, the InSAR data used for experimental verification was obtained by the Ku-band
frequency modulation continuous wave (FMCW) InSAR system of the Institute of Electronics, Chinese
Academy of Sciences in November 2015. The relative flight altitude of this experimental carrier aircraft
was 1500 m, the incidence angle was 45 degrees, and the step size of DSM was 0.06 m. The experimental
area was located in Jishan County, Yuncheng City, Shanxi Province, and belongws to hilly terrain
where the buildings were densely distributed, and the terrain height was between 340 m and 420 m.
The laser detection and ranging (LiDAR) bald earth DEM data from the same region was used as the
reference DEM.

In this experimental data, three sites with buildings densely distributed were selected to evaluate
the reconstruction results. Figure 7 shows the optical images of experimental areas.

3.2. The Segmentation Result of CMRF-Based Unreliable DSM Areas

According to Equations (6)–(8), the parameters of Fisher distribution were calculated in three
areas, and the results are shown in Table 1. Thus, the likelihood energy could be obtained. Then
the image was initially segmented, and its neighborhood energy could be calculated according to
Equation (4). Finally, we found the class labels that minimize the sum of the likelihood energy and the
neighborhood energy. This process needs to be iteratively calculated. An amplitude image of buildings
was selected in the test sites for experiments, and the experimental results are shown in Figure 8.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Optical image of experimental and evaluation areas. (a) Optical image of experimental areas.
(b–d) Optical image of Site A to B.
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Table 1. Estimations of Fisher distribution.

Class M L μ

Layover 10.15 2.05 21.52
Shadow 12.31 5.21 3.72

Background 16.03 3.59 8.17
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Figure 8. (a) The buildings in interferometric synthetic aperture radar (InSAR) amplitude image, and
(b,c) the segmentation results based on traditional Markov random field (MRF) and coherent Markov
random field (CMRF), respectively.

The building scene is shown in Figure 8a. Figure 8b,c are the segmentation results using traditional
MRF and CMRF, respectively, where green represents layover and blue represents shadow, and red
represents background areas.

It can be seen from Figure 8b that segmentation results generated by traditional MRF contain
lots of holes and misclassifications. As shown in Figure 8c, the CMRF method detected most of the
unreliable DSM areas and gave a better visual effect. The reason is that the introduction of coherence
coefficient and residue can help the classifier make use of the interferometric information and better
segment the InSAR amplitude image.

3.3. The DEM Reconstruction Result

In order to verify the effectiveness of hierarchical surface fitting, Figure 9 shows the first filtering
result and the third filtering result. The ground and non-ground points of first filtering results are
shown in Figure 9b,e,h, and the third filtering results are shown in Figure 9c,f,i, where blue represents
the ground points and red indicates non-ground points. It can be seen from Figure 9b,e,h that some
non-ground points are not detected in the first filtering, and some ground points are mistakenly
classified as non-ground points, indicating that the grid size and the threshold of first filtering is too
large. Therefore some non-ground points have not been filtered out, and the large grid size has lost the
terrain detail information, causing some fluctuating ground points to be misidentified as non-ground
points. The third fitting had detected more non-ground points than the first fitting, and the number
of misjudging points was less, which means that buildings can be filtered out step-by-step while
maintaining terrain features, indicating the effectiveness of hierarchical surface fitting.

To verify the effectiveness of the proposed method, experiments were performed using three
test sites. In order to illustrate the necessity of unreliable DSM areas segmentation and hierarchical
adaptive surface fitting, the methods compared in this paper were the original surface fitting, CMRF +
surface fitting, and CMRF + hierarchical adaptive surface fitting. The experimental results are shown
in Figure 10, and the comparison of altimetric profiles are shown in Figure 11.
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Figure 9. Hierarchical surface fitting results. (a), (d), and (g) are the InSAR digital surface model (DSM);
(b), (e), and (h) are the first surface fitting results; and (c), (f), and (i) are the third surface fitting results.

Figure 10g–i show the DEM reconstruction results of the surface fitting method and the
corresponding altimetric profiles are shown as a red line in Figure 11. It can be seen that the
original surface fitting method had incorrect extreme values shown in the black rectangle, and the
buildings were not completely filtered. This is because the unreliable DSM areas were not segmented
in advance. Therefore some points of these areas were selected as ground points, and these points may
be the extremely low points, or the higher points due to improper selection of grid size, thus causing
the deviations in the interpolation result using ground points.

The results of the CMRF + surface fitting method are shown in Figure 10j–l, and the corresponding
altimetric profiles are shown as a yellow line in Figure 11. Since the unreliable DSM areas were
segmented first, and the lowest points in the grids were prevented from falling into these areas,
the reconstruction results had fewer extreme values and the buildings were removed more thoroughly
compared to surface fitting-based method, but there were still some buildings that had not been removed.
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Figure 10. Visual comparison of before and after processing of the InSAR DSM, where (a–c) are
the original DSMs, (d–f) are the reference DEMs obtained by laser detection and ranging (LiDAR),
(g–i) are the reconstructed DEMs based on surface fitting, (j–l) are the reconstructed DEMs based on
coherent Markov random field (CMRF)+surface fitting, and (m–o) are the reconstructed DEMs based
on proposed method.
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Figure 11. Altimetric profile comparison between the DSM, the reconstructed DEM based on different
methods, and the reference DEM, where (a–c) are the altimetric profiles of experimental results
corresponding to Site A–C. The profile position is at the red dashed line in Figure 10g–i.
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The results of the proposed method in this paper are shown in Figure 10m–o, and the corresponding
altimetric profiles are shown as a purple line in Figure 11. It was observed that the buildings had been
completely filtered out and details of the undulating terrain had been retained. The reason is that
the proposed method can gradually filter out the buildings and retain most of the ground points by
keeping the grid size gradually smaller and setting the adaptive threshold, achieving the fine DEM
reconstruction. Comparing the reconstruction results with the reference DEM of LiDAR in Figure 10d–f,
the results of the proposed method are more accurate than other approaches. It confirms that the
proposed method improves the performance of an InSAR DEM reconstruction.

3.4. Quantitative Evaluation

In order to quantify the performance of the proposed method, the three test sites were evaluated
for accuracy, and the experimental methods including surface fitting, CMRF + surface fitting, and the
methods proposed in this paper were used for evaluation. The reconstructed elevation was compared
with the reference elevation to obtain the absolute elevation difference of each point, and finally the
statistical values were calculated as the quantitative evaluation metrics of the DEM reconstruction
result, such as the maximum difference (Max), the minimum difference (Min), and the root mean
square error (RMSE) of the difference which can be expressed by Equation (24):

RMSE =

√√√√ n∑
i=1

(Hi −Zi)
2

n
(24)

where Hi is the elevation of reconstructed DEM for pixel i; Zi is the corresponding elevation of reference
DEM; and n is the number of the pixels involved in the calculation. The comparison results are shown
in Table 2.

Table 2. Accuracy evaluation result.

Method
Min/m Max/m Root Mean Square Error (RMSE)/m

Site A Site B Site C Site A Site B Site C Site A Site B Site C

surface fitting 0.98 1.23 1.64 19.42 15.58 12.6 4.87 5.04 3.98
Coherent Markov Random

Field (CMRF)++surface 0.81 1.01 1.33 3.12 3.79 5.18 2.32 2.76 2.84

the proposed 0.62 0.87 0.67 2.08 1.3 1.03 1.09 0.95 0.97

For the surface fitting algorithm, as shown in Figure 11, the maximum difference between the red
line and the green line was the evaluation index Max, and the maximal Max in the three test sites was
up to 19.42 m and the maximum RMSE was 5.04 m. This is because the unreliable DSM areas were
not filtered in advance, which lead to the wrong selection of the extreme points as the ground points,
as shown in the lowest point of the red line in Figure 11 and the gap between the reconstruction result
and the real result is relatively large. In the CMRF + surface fitting, as shown by the yellow line in
Figure 11, the Max was significantly reduced, showing the necessity of CMRF segmentation, while root
mean square error (RMSE) was further reduced, and the reconstruction performance was improved.
Compared with the above two methods, as shown in the comparison between the purple line and
the green line in Figure 11, the CMRF + hierarchical adaptive surface fitting method proposed in this
paper has obvious advantages in both indicators. The RMSEs of each test site were about 1 m and the
Maxs were between 1 m and 2 m. The performance was significantly improved, which confirms the
effectiveness of the proposed method.

4. Conclusions

In this paper, we proposed a new InSAR DEM reconstruction method in order to accurately
extract a DEM from DSM generated by an InSAR system. The unreliable DSM areas were segmented
in advance at the selection of ground point. Experiments show that the improved CMRF segmentation
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method was more accurate than the MRF method. Then, the hierarchical adaptive surface fitting can
be used to mark ground points and non-ground points step-by-step, making the reconstruction result
more accurate. The comparison results proved the superiority of the proposed algorithm qualitatively
and quantitatively. However, there is still room for improvement. On the one hand, the hierarchical
adaptive surface fitting can consider more interferometric phase information. On the other hand,
the acceleration of the interpolation calculation may need further research.

Author Contributions: Q.Q. designed and performed the experiments; B.W. supervised the research and
contributed to the article’s organization; X.H. contributed to the interpretation of data; Q.Q. drafted the manuscript,
which was revised by M.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Development Department Preresearch Fund (Grant No.61404130308)
and National Natural Science Foundation of China (Grant No.41971329).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Perko, R.; Raggam, H.; Gutjahr, K.H.; Schardt, M. Advanced DTM generation from very high resolution
satellite stereo images. In Proceedings of the PIA15+HRIGI15—Joint ISPRS Conference 2015, Munich,
Germany, 25–27 March 2015; pp. 165–172.

2. Debella-Gilo, M. Bare-earth extraction and DTM generation from photogrammetric point clouds including
the use of an existing lower-resolution DTM. Int. J. Remote Sens. 2015, 37, 3104–3124. [CrossRef]

3. Zhang, K.; Chen, S.C. A progressive morphological filter for removing nonground measurements from
airborne lidar data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [CrossRef]

4. Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborneLiDAR
data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [CrossRef]

5. Cai, S.; Zhang, W.; Liang, X.; Wan, P.; Qi, J.; Yu, S.; Yan, G.; Shao, J. Filtering Airborne LiDAR Data Through
Complementary Cloth Simulation and Progressive TIN Densification Filters. Remote Sens. 2019, 11, 1037.
[CrossRef]

6. Chen, Z.; Gao, B.; Devereux, B. State-of-the-Art: DTM Generation Using Airborne LIDAR Data. Sensors 2017,
17, 150. [CrossRef] [PubMed]

7. Wang, Y.; Mercer, B.; Tao, V.C.; Sharma, J.; Crawford, S. Automatic generation of bald earth digital elevation
models from digital surface models created using airborne IFSAR. In Proceedings of the 2001 ASPRS Annual
Conference, St. Louis, MO, USA, 23–27 April 2001; Available online: http://drmattnolan.org/kuparuk/
kupdem/library/asprs2001_intermap_e.pdf (accessed on 3 March 2020).

8. Jiang, L.; Xiang, M. Derivation of bald earth digital elevation models with X band airborne InSAR. In
Proceedings of the 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, Shanxi, China,
26–30 October 2009.

9. Zhang, Y.; Tao, C.V.; Mercer, J.B. An initial study on automatic reconstruction of ground DEMs from airborne
IfSAR DSMs. Photogramm. Eng. Remote Sens. 2004, 70, 427–438. [CrossRef]

10. Geiß, C.; Wurm, M.; Breunig, M.; Felbier, A.; Taubenböck, H. Normalization of TanDEM-X DSM data in urban
environments with morphological filters. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4348–4362. [CrossRef]

11. Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised Spectral–Spatial Hyperspectral Image Classification with
Weighted Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1490–1503. [CrossRef]

12. Boudaren, M.E.Y.; Lin, A.; Pieczynski, W. Unsupervised Segmentation of SAR Images Using Gaussian
Mixture-Hidden Evidential Markov Fields. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1865–1869. [CrossRef]

13. Duan, Y.; Liu, F.; Jiao, L. Sketching model and higher order neighborhood Markov random field-based SAR
image segmentation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1686–1690. [CrossRef]

14. Nazarinezhad, J.; Dehghani, M. A contextual-based segmentation of compact PolSAR images using Markov
Random Field (MRF) model. Int. J. Remote Sens. 2019, 40, 985–1010. [CrossRef]

15. Zhang, H.; Shi, W.Z.; Wang, Y.J.; Hao, M.; Miao, Z.L. Spatial-Attraction-Based Markov Random Field
Approach for Classification of High Spatial Resolution Multispectral Imagery. IEEE Geosci. Remote Sens. Lett.
2014, 11, 489–493. [CrossRef]

117



Sensors 2020, 20, 1414

16. Wang, F.; Wu, Y.; Zhang, Q.; Zhao, W.; Li, M.; Liao, G. Unsupervised SAR image segmentation using higher
order neighborhood-based triplet Markov fields model. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5193–5205.
[CrossRef]

17. Solberg, A.H.S.; Taxt, T.; Jain, A.K. A Markov random field model for classification of multisource satellite
imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 100–113. [CrossRef]

18. Tison, C.; Nicolas, J.M.; Tupin, F.; Maitre, H. A new statistical model for Markovian classification of urban
areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2046–2057. [CrossRef]

19. Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci.
Remote Sens. 1999, 37, 135–149. [CrossRef]

20. Zebker, H.A.; Chen, K. Accurate Estimation of Correlation in InSAR Observations. IEEE Geosci. Remote
Sens. Lett. 2005, 2, 124–127. [CrossRef]

21. Cha, M.; Phillips, R.D.; Wolfe, P.J.; Richmond, C.D. Two-Stage Change Detection for Synthetic Aperture
Radar. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6547–6560. [CrossRef]

22. Wahl, D.E.; Yocky, D.A.; Jakowatz, C.V.; Simonson, K.M. A New Maximum-Likelihood Change Estimator for
Two-Pass SAR Coherent Change Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2460–2469. [CrossRef]

23. Biondi, F. A new maximum likelihood polarimetric interferometric synthetic aperture radar coherence change
detection (ML-PolInSAR-CCD). Int. J. Remote Sens. 2019, 40, 1–21. [CrossRef]

24. Askne, J.; Hagberg, J.O. Potential of interferometric SAR for classification of land surfaces. In Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993.

25. Dai, Z.; Zha, X. An accurate phase unwrapping algorithm based on reliability sorting and residue mask.
IEEE Geosci. Remote Sens. Lett. 2011, 9, 219–223. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

118



sensors

Article

Mining-Induced Time-Series Deformation
Investigation Based on SBAS-InSAR Technique:
A Case Study of Drilling Water Solution Rock
Salt Mine

Xiangbin Liu 1,2, Xuemin Xing 1,2,*, Debao Wen 3, Lifu Chen 1,4, Zhihui Yuan 1,4, Bin Liu 1,2 and

Jianbo Tan 1,2

1 Laboratory of Radar Remote Sensing Applications, Changsha University of Science and Technology,
Changsha 410014, China; liuxb0219@foxmail.com (X.L.); lifu_chen@139.com (L.C.);
yuanzhihui@csust.edu.cn (Z.Y.); binliu@csust.edu.cn (B.L.); tanjianbo@imde.ac.cn (J.T.)

2 School of Traffic and Transportation Engineering, Changsha University of Science and Technology,
Changsha 410014, China

3 School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China;
wdbwhigg@gzhu.edu.cn

4 School of Electrical and Information Engineering, Changsha University of Science and Technology,
Changsha 410014, China

* Correspondence: xuemin.xing@csust.edu.cn

Received: 9 October 2019; Accepted: 11 December 2019; Published: 13 December 2019

Abstract: Compared to traditional coal mines, the mining-induced dynamic deformation of drilling
solution mining activities may result in even more serious damage to surface buildings and
infrastructures due to the different exploitation mode. Therefore, long-term dynamic monitoring and
analysis of rock salt mines is extremely important for preventing potential geological damages. In this
work, the small baseline subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique
with Sentinel−1A imagery is utilized to monitor the ground surface deformation of a rock salt mining
area. The time-series analysis is carried out to obtain the spatial–temporal characteristics of land
subsidence caused by drilling solution mining activities. A typical rock salt mine in Changde, China
is selected as the test site. Twenty-four scenes of Sentinel−1A image data acquired from June 2015 to
January 2017 are used to obtain the time-series subsidence of the test mine. The temporal–spatial
evolution of the derived settlement funnels is revealed. The time-series deformation on typical
feature points has been analyzed. Experimental results show that the obtained drilling solution
mining-induced subsidence has a spatial characteristic of multiplied peaks along the transversal
direction. Temporally, the large-scale surface settlement for the rock salt mine area begins to
appear in September 2016, with a time lag of 8 months, and shows an obvious seasonal fluctuation.
The maximum cumulative subsidence is detected up to 199 mm. These subsiding characteristics
are consistent with the connected groove mining method used in drilling water solution mines.
To evaluate the reliability of the results, the SBAS-derived results are compared with the field-leveling
measurements. The estimated root mean square error (RMSE) of ±11 mm indicates a high consistency.

Keywords: SBAS-InSAR; deformation; rock salt mine; drilling solution mining; time series

1. Introduction

The reserves of mirabilite deposits of China had been proved to be accumulated up to 1117.20 billion
tons until the end of 2017 [1]. An omnidirectional advanced drilling solution mining is the dominate
exploitation method for most mirabilite mines [2]. The connected groove mining method based on
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an oil pad is applied for most of the drilling solution mining activities. Figure 1 shows the schematic
diagram of the connected groove mining method with two salt wells. It can be seen that each salt
well is built on an oil pad with a dissolution cavity in the mining layer. The single well based on an
oil pad is used to build grooves in the early stages of drilling solution mining (see Figure 1a), which
can promote the side dissolution, control the upper dissolution, and speed up the connection of well
groups. As the process of dissolution, the cavities derived by adjacent salt wells can be connected
and merged in the mining layer (see Figure 1b). After the process of connection dissolution between
different cavities, the fresh water at 40 ◦C is injected through one of the wells (demonstrated as well
1 in Figure 1). Subsequently, the mirabilite layer can be dissolved, and under the water injection
residual pressure, the generated brine can be cramped out from the other well (demonstrated as
well 2 in Figure 1) [2]. Due to the long time of the dissolution process and the certain supporting
effect of the high-pressure injected fresh water to the roof, time lag and suddenness are the obvious
characteristics of the ground deformation related to drilling solution mining activities. Compared to
tunnel mining with the unidirectional propulsion of conventional coal mines, the depth of drilling
solution mining is generally much deeper, and the thickness of the rock salt layer is even thicker.
With a serious influence imposed by the water on the mechanical properties for the salt roof, the
subsidence related to drilling solution mining will be even more severe and destructive [3]. Due
to the omnidirectionality and uncertainty of drilling solution mining, the mechanical properties of
the cavity may become unreasonable, which may induce the overburden or even serious collapse
on the cavity [4,5]. Once the roof of cavity reaches the bottom ground, a sinkhole will be generated
at the surface [6,7], which may induce potential damage to the nearby infrastructures (i.e., houses,
roads, bridges, canals) [8]. Furthermore, the sustained mining of rock salt mines can easily lead to
mechanical changes to the underground rock and water system. This may even cause brine pumping
and land salinizing [9], which shows serious potential for environmental pollution [10]. Therefore, the
long-term spatial–temporal deformation monitoring of rock salt mines is of practical significance to the
prevention of mining-induced safety problems and the assurance of mining environmental protection.

Figure 1. (a) Single well based on an oil pad before the process of dissolution connection, (b) The final
connected groove based on an oil pad after the process of dissolution connection process (data from [2]).

Traditional geodetic monitoring methods, such as total station/prism, photogrammetry, leveling,
and Global Navigation Satellite System (GNSS), have been widely applied in mining-induced
deformation monitoring. Those methods are proven to be of high accuracy. However, due to
the poor spatial–temporal resolution, those methods still have deficiencies in observing the overall
ground surface subsidence of the mining area [11]. In addition, expensive labor force, and frequently
in situ observation are necessary for the monitoring of mining area, which will consume an enormous
amount of financial resources and inevitably aggravate the potential safety problems.

Interferometric Synthetic Aperture Radar (InSAR) offers a novel earth observation approach. It can
provide wide spatial coverage, high imaging resolution, and non-intrusive surveying. Differential
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InSAR (D-InSAR), as an extension of InSAR in terms of monitoring ground deformation, is mainly
applied in ground deformation monitoring along the line of sight (LOS) of a radar satellite. The new
monitoring approach is an important complement to the traditional geodetic surveying methods [12].
D-InSAR is widely applied to detect and monitor earthquake deformation [13], glacial shift [14],
volcanic activity [15], and landslides [16], as well as man-made activities such as mining subsidence [17]
and urban settlement caused by groundwater overdraft [18]. However, the unavoidable influences
of the temporal and spatial decorrelation and atmospheric delay have brought restrictions on its
application, especially on mining areas vulnerable to decorrelation. Small baseline subset InSAR
(SBAS-InSAR) is an advanced InSAR technology proposed by Berardino [19], which utilizes the least
squares (LS) and singular value decomposition (SVD) methods to obtain the deformation rates at the
high coherence points based on the multi-scene of differential interferometric images. Although a large
amount of successful cases using SBAS technology in coal mine areas have been published [20,21], the
application in rock salt drilling solution mining has been rarely mentioned in previous studies.

The Sentinel−1 satellite, equipped with a C-band SAR sensor, is an Earth observation satellite
launched by the European Space Agency’s Copernicus Program in 2014. Sentinel−1A SAR data have
the advantages of large global coverage and a short revisit period (12 days), which can be downloaded
free of charge on the website (https://scihub.copernicus.eu/) [22]. Sentinel−1A SAR data have been
widely and successfully applied in the monitoring of mining-induced subsidence [23,24]. In this work,
a typical rock salt mine in Changde, China was selected as the test site. In order to verify the feasibility
and reliability of the SBAS technique and Sentinel−1A imagery for the deformation monitoring of
rock salt mines, we use SBAS and Sentinel−1A images to perform a case study. The time-series
characteristics of the subsidence sequences related to drilling solution mining activities are revealed.

2. Methodology

Suppose N + 1 SAR images covering the same area are acquired in repeat orbits at different dates
(T0, T1, . . . , TN). Then, M interferometric pairs can be produced according to certain spatial–temporal
baseline thresholds, where M satisfies the inequality (N + 1)/2 ≤ M ≤ N(N + 1)/2. Each of these
interferometric pairs is generated by the two-orbit D-InSAR processing. In the processing, all images
are registered and resampled to the same image first. Then, an external digital elevation model (DEM)
is used to remove the topographic phase, and consequently, phase unwrapping is carried out for each
interferometric pair. The unwrapped phase at pixel (x, r) in the i-th (i = 1, 2, . . . , N) interferogram
can be written as [19].

δϕi = φB(x, r) −φA(x, r) ≈ 4π
λ

Δd +
4πB⊥
λr sin θ

Δh(x, r) + Δϕi,res(x,r) (1)

where λ, θ, and B⊥ represent the SAR coordinate of the high coherence point, the radar wavelength,
the radar incidence angle, and the perpendicular baseline of the two SAR acquisitions, respectively;
Δd = d(TA, x, r) − d(TB, x, r) is the time-series displacements along the LOS direction at date TA and
TB respectively, with respect to the start time (i.e., d(T0, x, r) ≡ 0); Δϕi,res(x,r) is the residual phase,
including the phase noise, the atmospheric delay, and the high-pass (HP) deformation component;
Δh(x, r) represents the topographic error of the external DEM.

The deformation component Δd is of the main interest. The functional relationship between Δd
and the deformation parameters can be written as [25]

Δd =
s∑

k=l+1

vk(Tk − Tk−1) (2)

where l and s define the index of the master image at time TA and slave image at time TB, respectively
for the i-th interferometric pair. vk defines the linear velocity for each temporal unit, which varies
across different temporal units. According to Equations (1) and (2), we need to estimate N number

121



Sensors 2019, 19, 5511

of vs. as well as the unknown DEM error parameter Δh (in total N + 1 unknown parameters) in M
generated functions. To solve the singular mathematical problem, the SVD algorithm and LS method
are suggested here [26,27]. After the unknown parameter being estimated (v and Δh), integration over
each temporal period is carried out to obtain the low-pass (LP) deformation component on all the high
coherence points. Considering that the atmospheric delay phase component is a temporally random
high frequency signal, it is spatially related to the low frequency signal. In contrast, the nonlinear
deformation phase is a low-frequency signal both spatially and temporally [28,29]. Accordingly, in order
to pick up the HP deformation component from the residual phase, a temporally high-pass filtering
and a spatially low-pass filtering need to be applied. The final deformation on each coherent point will
be obtained through summarizing both the LP deformation and HP deformation. The experimental
flow of SBAS processing is shown in Figure 2.

Figure 2. Experimental flow of small baseline subset (SBAS) algorithm.

In this work, the LOS deformation is converted to the vertical component in order to compare
with the in situ leveling measurements (the horizontal displacement is omitted in the experiment,
which will be discussed in Section 3.1), according to the following function [30]:

De f vertical= De f LOS/ cosθ (3)

where De f LOS represents the LOS deformation and De f vertical represents the vertical component.

3. Experiments

3.1. Study Area and Geological Background

In this work, a typical water-soluble rock salt mine in Changde, Hunan Province is selected as
our test site. Figure 3 shows the location of the test area. Figure 3a,b shows the corresponding study
areas on a map of China. Figure 3c shows the optical images of the mine area. It can be seen from
Figure 3c that the rock salt mine area is located in the Liyang Plain of Hunan Province, with a total
area of 5.7 km2. The red rectangle represents the spatial coverage of ascending Sentinel−1A images,
whereas the white rectangle is the selected subset of interest in this work. Due to the location in the
middle of the plain, the rock salt mine has a typical flat terrain characteristic, surrounded with dense
pounds, natural water systems, and artificial channels. It is also located close to a wide area of surface
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rice fields. Since 2002, the long-term mining activities in this area have caused great damage to the
surrounding environment and underground geological stratum (see Figure 4).

 

Figure 3. Study area overview. (a,b) Regional scale in China of the test mine. (c) The location of the
study area. (d) Corresponding amplitude image of the area with the mining region of interest outlined
in the white rectangle. (e) In situ picture of the drilling solution wellhead in (d).

 

Figure 4. In situ pictures of ground ruptures in the rock salt mine. (a) The underground brine flowing
into the cultivated land, inducing land salinization. (b,c) Accumulated deformation induced road
surface cracks. (d,e) Cracks on resident houses (f) Gradually formed stagnant water area, with a
settlement even deeper than 1.5 m.

Figure 5 illustrates the geological distribution of the test rock salt mine [31]. The strata encountered
in drilling solution mining mainly includes the Quaternary System and Lower Tertiary System.
The distribution of the strata from top to bottom is as follows: Holocene, Upper Pleistocene, Middle
Pleistocene, and Lower Pleistocene. The total thickness of the strata is 77.95–138.55 m. The Lower
Tertiary System consists of Eocene and Paleocene, with a total thickness of 562.96 m. The lithology
of the Eocene Formation mainly includes mudstone, dolomite, siltstone, gypsum, glauberite, and
thenardite. The extracted thenardite (Na2SO4, 62.76%–78.8%) and mirabilite of this mine are present in
the salt-bearing section of the Xingouzui Formation of the Tertiary System (E2x3), with a cumulative
thickness of 8.21–14.23 m. The fault structure of the mining area is mainly F10 fault, located in the south,
with a stratum fault distance of 30–70 m and a 3–16 cm fracture zone. It is filled with fibrous gypsum
cementation. After the south plate rises, F10 destroys the continuity of the seam in the south wing of
the syncline and causes the minerals to dissolve. Therefore, F10 constitutes the natural boundary in
the south of the mining area. A concealed fault F12, with a dip angle of 75◦, belongs to the SEE (South
East East) normal fault. The roof, floor, and interlayer of the ore bed, containing a small amount of
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anhydrite dolomitic mudstone, are mainly muddy dolomitic glauberite, which belongs to the weak
layered rock mass. The rock, with poor stability, is easy to soften and collapse.

 

Figure 5. Geological map of the rock salt mine. (a) The plane geological distribution of the test rock
salt mine (E2X represents the Lower Tertiary Eocene Xingouzui Formation). (b) Vertical distribution of
the comprehensive geological formations (data from [31]).

In order to prevent mining accidents and natural environment pollution caused by mining-induced
roof collapse, hot water combined with the connected groove mining method based on an oil pad
is utilized to extract thenardite in this salt mine. During the period from June 2016 to January 2017,
the groove connection was completed in the test mine. Different cavities below different wells were
mutually dissolved and connected (see Figure 1). The dissolution and transport channels of minerals
were formed during this period. Since then, the stage of the upper dissolution started. The shape of the
cavity started to change along the upper direction, which developed along the vertical deeper direction.
During this stage, the side dissolution rate was significantly reduced, whereas the upper dissolution
rate became twice as fast as the side dissolution, which performed as a significant ground subsidence
along the vertical direction [32]. Therefore, the horizontal displacement is omitted in our experiment.

3.2. SAR Acquisitions and Data Processing

A total of 24 repeat-pass ascending Sentinel−1A images of the test rock salt mine area were
collected. These acquisitions covered the period from 15 June 2015 to 30 December 2016. The parameters
of these images are listed in Table 1. SARScape 5.2 and ENVI 5.3 were used to generate the unwrapped
small baseline interferometric pairs. The subsequent procedures, including high coherence points
identification and the LP–HP deformation component estimation, were carried out through MATLAB.
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Table 1. List of the interferometric pairs and their parameters (Ascending).

Drilling Water-Soluble Rock Salt Mine (Orbit No. 11)

No.
Acquisition

Date
(yyyy/mm/dd)

Vertical
Baseline

(m)

Temporal
Baseline

(days)
No.

Acquisition
Date

(yyyy/mm/dd)

Vertical
Baseline

(m)

Temporal
Baseline

(days)

0 2015/06/15 26.89 −216 12 2016/05/16 −15.15 120
1 2015/07/09 88.17 −192 13 2016/07/03 −19.95 168
2 2015/08/02 1.87 −168 14 2016/08/20 22.27 216
3 2015/08/26 −36.04 −144 15 2016/09/25 −55.61 252
4 2015/09/19 −33.99 −120 16 2016/10/07 −21.78 264
5 2015/10/13 43.37 −96 17 2016/10/19 57.01 276
6 2015/12/24 121.57 −24 18 2016/10/31 54.31 288
7 2016/01/17 0 0 19 2016/11/12 42.52 300
8 2016/02/10 95.00 24 20 2016/11/24 0.96 312
9 2016/03/05 −23.73 48 21 2016/12/18 −20.47 336
10 2016/03/29 −48.43 72 22 2016/12/30 20.89 348
11 2016/04/22 39.75 96 23 2017/01/11 71.62 360

The thresholds for the spatial–temporal baseline of the interferometric combination were empirically
set to 150 m and 360 days, respectively. In the two-pass D-InSAR processing, all the rest of the images
were registered and resampled to the super master image. In order to remove the topographic phase, a
1-arc-second Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM, ~30 m spacing)
provided by NASA was utilized. In addition, a Gaussian filter [33] was selected to suppress the phase
noise. After the flat Earth phase removal and phase filtering processing, a polynomial fitting method
was used to remove the orbital error; then, a relatively stable reference point was selected (see Figure 6a)
and minimum cost flow [34] method was utilized to unwrap the wrapped interferometric deformation
phases. Finally, a total of 58 unwrapped differential interferograms were generated. During the
processing, based on a coherence threshold of 0.45 and amplitude dispersion threshold of 0.35, a total of
5559 high coherence candidates for the test mine were selected.

Figure 6. (a) Digital elevation models (DEM) errors (the solid black square represents the reference
point for phase unwrapping). (b) Deformation rates.

4. Results and Discussion

4.1. Overall Deformation Results

The DEM error and the linear deformation rate of the high coherence points were obtained, which
are shown in Figure 6. Through our quantitative analysis and statistics, the total number of the high
coherence points, with the absolute DEM error values within the range of 0 m to 10 m, account for
86%, whereas the number within the range of 10 m to 20 m only account for 14% (blue to green color,
as shown in Figure 6a). It is in good agreement with the accuracy of SRTM DEM data with 30-m
resolution [35]. From Figure 6b, we can see an obvious subsidence bowl in the central region where the
rock salt mine is located, with the color gradually changing from blue to red inwardly. According to our
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analysis, the subsidence rate of most coherence points is distributed within the range of 50 mm/year to
75 mm/year, with the maximum value of up to 109 mm/year.

According to [36], the accuracy of the retrieved topographic residuals is related to the thresholds
of the perpendicular baseline and the quality of the differential interferogram. The accuracy of the
DEM error will degrade the accuracy of the InSAR time-series deformation. Due to this, we controlled
the spatial baseline threshold and selected the interferometric pairs strictly (the threshold was set as
150 m in our experiment). The external SRTM DEM had 30 m resolution, which is relatively high.
Moreover, in order to show the correlation of the DEM error and the deformation, we conducted a
simulated experiment. According to the phase contribution of DEM error, δϕ = 4π

λ
B⊥

R sin θ · Δh, and the
relationship between phase and the deformation velocity, δϕ = 4π

λ v(TB − TA), the error of deformation
velocity caused by a 20 m DEM error was only 5 mm/year. Consequently, compared to the large
estimated subsidence (a maximum deformation velocity of 109 mm/year), the influence of DEM error
on the deformation time series was ignored in our case study.

Figure 7 shows the overall time-series deformation of the rock salt mine. From the spatial
characteristics of the color distribution, we can see that the obvious subsiding points were densely
distributed in the center part of the images, where the rock salt mine was located (with a dark orange
to red color in the subsidence bowl). The spatial distribution characteristics of the subsiding pixels in
the mining area appeared as disperse zonal distribution in the northwest part and an overall sheet-like
distribution in the central and southeast part. The reason for this phenomenon is that the drilling
solution mining method based on connected well groups was utilized in the middle and southeast part,
which induced a dissolution connection of different cavities underground; thus, the surface subsidence
performed to be multi-subsiding bowls (see A, B, and C in Figure 6). Meanwhile, in the northwest
of the area, the single well drilling solution method was adopted, which resulted in disperse zonal
distribution characteristics.

As the temporal color variation shows in Figure 7, a temporal characteristic of seasonal fluctuation
could be found (which will be analyzed quantitively in Section 4.2). For the period from 9 July 2015 to
10 February 2016, the subsidence velocity was relatively stable (which will be mentioned as the time
lag in Section 4.2). From 5 March to 3 July 2016, a slow increase of subsiding occurred, while for the
period from 3 July to 19 October 2016, a rapid subsiding dominated the deformation. The subsidence
bowl started to appear on 5 March 2016. Since then, an obvious large subsiding velocity began to occur
in the mining area. By 11 January 2017, the maximum subsidence in the bowl was accumulated to
199 mm.

By September 2016, large-scale subsidence began to occur. Subsidence bowls A, B, and C were
gradually generated by rapid mining activities through multiple wells. Since B and C were connected by
well groups, the caverns were interconnected underground. As the increasing of mineral exploitation,
the volume of the caverns increased gradually, leading to more serious movements on the top edge of
the chamber and closer distance between different caverns. Sequentially, funnels B and C would be
merged into a large subsidence bowl.
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Figure 7. Time-series deformation (with reference to 15 June 2015).

4.2. Discussions

As discussed in Section 4.1, the overall time-series deformational characteristics of the test rock
salt mine follows spatially multi-distributed bowls and a temporal 8-month time lag, with a subsequent
annual fluctuation. The reasons for the subsiding characteristics are supposed to be as follows:

(1) The process of the brine extraction was conducted by injecting solvent followed by rock salt
dissolution, which takes a longer time than traditional coal mining activities; in addition, the
depth of the drilling solution mining was deeper than that of common coal mines (the depth
of wells in this study area was 200–500 m), which induced the lagging appearance of ground
surface subsidence.

(2) The relationship between the solubility and the solvent temperature in Table 2 shows that the
dissolution of mirabilite is significantly vulnerable to temperature [2,37]. The solubility under
30 ◦C is almost four times that of under 0–10 ◦C. This indicates that under the circumstance of
high temperature in the warm season, the mineral dissolution was considerably rapid, inducing
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a larger amount of brine extraction. On the contrary, for the cold season (the period of 24
December 2015 to 25 March 2016), the low temperature in winter suppressed the dissolution rate
for the mirabilite.

(3) The spatially multi-peak phenomenon was mainly due to the drilling solution mining method
based on connected well groups and its comprehensively multi-direction advancing mode (which
will be discussed in Section 4.2).

Table 2. Solubility of thenardite at different temperatures (g/100 g H2O).

Mineral
Temperatures (◦C)

0 10 20 30 40 50 60 70 80 90 100

Thenardite (Na2SO4) 5.0 9.0 19.4 40.8 48.8 46.7 45.3 44.1 43.7 42.9 42.5

In order to further reveal the characteristics of temporal deformation variation, five feature points
(HCP1 to HCP5 shown in Figure 7) were selected for quantitive analysis. The extracted time-series
deformation is illustrated in Figure 8a.

 

Figure 8. (a) Time-series deformation of feature points at drilling water-soluble rock salt mine (HCP1 to
HCP5). (b) Correlation diagram of the deformation rate with the solvent temperature and the average
air temperature.
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From Figure 8a, we can see for the total period (15 June 2015 to 11 January 2017) that all the five
feature points show similar temporal variations: a generally subsiding trend with an obvious seasonal
fluctuation. HCP4 showed the most serious subsiding, with an accumulative subsidence of 148 mm
until 11 January 2017, whereas HCP3 was relatively more stable, with the maximum deformation of
48 mm. For the cold season from 24 December 2015 to 10 February 2016 in stage A, and 19 October 2016
to 1 January 2017 in stage B, a relatively slow deformation trend occurred, with a small fluctuation of 11
mm and 12 mm, respectively. From 29 March 2016, a significant subsiding trend started. The seasonal
fluctuation of the deformation in a rock salt mine was suggested to be mainly due to the dissolution
rate of mirabilite and thenardite in water. The dissolution rate of thenardite was directly affected by
the temperature of the solvent. In the production process of the rock salt mine, combined with the
connected groove mining method based on an oil pad, hot water was suggested to be used as solvent
to increase the dissolution. The hot water transported from the processing industry was pressurized
by the injection pump, metered at the control station, and then directly injected into the well after
distribution. According to our investigation, the temperature of the fresh water solvent injected into
the well was about 40 ◦C. However, during the transportation from the processing industry and the
injection process into the well through the injection pump, the solvent temperature was vulnerable
to the air temperature. In summer, the temperature of fresh water could be well insulated. On the
contrary, in winter, due to the decrease of external temperature, the temperature of fresh water was
easy to decrease. Consequently, the high temperature in the warm season accelerated the dissolution
of rock salt, which lead to the increase of subsidence. In contrast, the low temperature in cold seasons
suppressed the process of water dissolution, inducing the slow or even uplifting trend of deformation.
Three small uplifts for the five feature points can be found in the position pointed by the black arrows in
Figure 8a, which showed good consistency with the measurements detected from Figure 7. The uplift
phenomenon was mainly related to the aforementioned low temperature in cold seasons and the
increase of rainfall (from 26 August to 19 September 2015, 19 October to 31 October 2016, and 17
January to 10 February 2016, as shown in Figure 9) [38].

 

Figure 9. The temperature and precipitation in the study area (from 6 June 2016 to 31 January 2017).

In order to further prove the aforementioned hypothesis that the seasonal fluctuation of our
obtained deformation was related to the temperature of solvent, we tried to obtain the temperature of
the solvent during our observation period. Due to the limitation of the unavailable solvent temperature
data, we used the principle of heat transfer and hydrodynamics introduced in [39] to derive the
temperature of the solvent in our experiment. The temperature difference between the pipe inlet and
outlet water can be written as:

Δt = tg − to =
kgL

(
tp − tk

)
GC

(4)
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where tg represent the temperature of the pipe inlet water, which was treated as a constant (40 ◦C in our
experiment); to represents the pipeline outlet water temperature, which was the unknown temperature
of the solvent injected into the cavity; kg is the heat transfer coefficient of the pipeline, which could
be indexed according to the pipe material; tp is the average temperature, which could be calculated
according to tp =

(
tg + to

)
/2; tk is the ambient air temperature; L is the length of the pipeline, G is the

mass flow of hot water (both L and G could be provided by the mining company); and C is the specific
heat capacity of the hot water, which could be indexed from the standard industry document provided
by the mining company.

Formula (4) can be transferred to

tg − to =
kgL

((
tg + to

)
/2− tk

)
GC

(5)

and then to can be estimated through Equation (5).
We added the obtained solvent temperature into the correlation analysis between the deformation

velocities and the external air temperature, which is shown in Figure 8b. The five feature points on
the graph are the time-series settlement points mentioned above. As can be seen from the figure,
the temperature of the solvent was highly related to the external air temperature, and the linear
deformation velocity also showed high correlation with the solvent temperature. In warm seasons, the
subsidence rates of the mining area increased with the air temperature, whereas in cold seasons, the
subsidence rates showed obvious dropping with the decrease of the temperature. This result proves
the aforementioned hypothesis.

To further interpret the mechanics, we analyzed the accumulated number of coherence points in
Figure 7. The statistical result is shown in Figure 10. It can be easily seen that the jumping happened at
10 February 2016, when the accumulated subsidence was above 30 mm, indicating a nearly 8-month
period of stable surface condition. During the first 8 months, the subsidence was lower than 30 mm,
which was mentioned as the time lag above. Since then, the number keeps increasing until 11 January
2017. From 5 March 2016, the increasing of the number of the high coherence points with subsidence
above 60 mm began. Until January 2017, the accumulated number accounted for about 22%. From May
2016, the number of high coherence points, with subsidence above 90 mm and 120 mm, started
increasing until January 2017, accounting for 8% and 2%, respectively. As mentioned above, the
suggested reasons for the long time of the lagging phenomenon was mainly related to the rock salt
dissolution delay and a much deeper mining depth in the process of drilling solution mining [3].

Figure 10. Percentage of accumulated number of coherence points with subsidence in the rock salt
mine (with reference to 15 June 2015).
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It can be seen from Figure 10 that the shape of the statistical curve performs to be a waveform
curve. According to the principle of hydraulic transmission, in the process of drilling solution mining,
the pressure generated by the new injected fresh water played a supporting role on the roof of the
cavern; accordingly, the subsidence of the ground surface would be decreased [40]. This is also one of
the reasons why the statistical curve is flat. With abundant precipitation in the rock salt mine area
throughout 2016, the underground volume of the shallow aquifer was increased by the supplement of
the nearby river network; thus, a small uplift of the ground surface appeared. This is another reason
why the fluctuations occurred in the statistical curve. For example, from August to October 2016, high
temperature and low rainfall dominated in the test area, as shown in Figure 9. Combined with the
water evaporation in shallow aquifer, the ground surface subsidence was more serious. Accordingly,
the cumulative number of pixels, with the subsidence greater than 30 mm, 60 mm, 90 mm, and 120 mm,
increased rapidly, as shown in Figure 10. However, from 19 October 2016 to 31 October 2016, the
external temperature decreased continuously. Combined with the large amount of precipitation, the
slow dissolution rate of rock salt lead to the small uplift of the ground surface. Consequently, the
cumulative number of ground surface subsiding pixels was significantly reduced for this period.

To further discuss and analyze the growing process of the typical subsidence bowls detected in the
test mine, the profile analysis along the transversal and longitudinal directions (see the transversal line
l1 and longitudinal lines l2, l3 and l4 in Figure 7) was carried out. The results are shown in Figure 11.
We can see that obvious multi-peak phenomenon occurred along the transversal and longitudinal
directions. According to our measurements, the peak subsidence along the l1 direction was 140 mm,
142 mm, 191 mm, 129 mm, and 128 mm on the fifth, ninth, 16th, 25th, and 29th pixels, whereas 129 mm
and 113 mm at the third and 10th pixels along l2 direction. The maximum subsidence of 191 mm
and 137 mm were detected at the 12th and 11th pixels along the l3 and l4 directions, respectively.
The multi-peak phenomenon along the transversal and longitudinal directions was mainly related
to the drilling solution mining method based on connected well groups and its comprehensively
multi-direction advancing mode.

Figure 11. Profiles of the subsidence bowl in Figure 7. (a) Along the l1 direction, (b) along the l2
direction, (c) along the l3 direction, and (d) along the l4 direction.

4.3. Accuracy Assessment

In order to verify the reliability of the monitoring results obtained by SBAS technology in this
work, an in situ leveling method was carried out to compare with the obtained InSAR measurements.
The locations of leveling points (CP1 to CP10) are marked with red solid rectangles in Figure 12.
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To perform an accurate comparison, we transferred the generated LOS deformation into vertical
displacement according to Equation (3) and extracted the measurements that coincided temporally
with our SAR acquisition dates.

 

Figure 12. Locations of the benchmarks in the rock salt mine (the corresponding amplitude images are
shown in the red rectangle in the southeast corner).

Figure 13 shows the comparison results. Obviously, the leveling points of the mining area are
continuously subsiding during the period of observation. The most serious subsidence occurred at
CP3 in the rock salt mine, with a magnitude of 136 mm, which showed good consistency with the
obtained SBAS measurements. According to our calculation, the final root mean square error (RMSE)
of the rock salt mine is ±11 mm, accounting for 8% of the corresponding maximum deformation
value. The result indicates that the SBAS results maintain a good consistency with that of the leveling
measurements. It’s also verified that SBAS-InSAR is feasible in the time-series deformation monitoring
of rock salt mines.

Figure 13. Times-series deformation results compared with leveling measurements on the benchmarks
(the locations of CP1 to CP10 are shown in Figure 12). (a) from 2 August 2015 to 13 October 2015.
(b) from 2 August 2015 to 3 July 2016. (c) from 2 August 2015 to 18 December 2016.

5. Conclusions

In this study, the SBAS-InSAR technique with Sentinel−1A imagery was used to obtain the
spatial–temporal characteristics of the ground subsidence caused by drilling solution mining activities.
To reveal the triggering mechanisms of the spatial–temporal ground subsidence, a typical rock salt
mine in Hunan Province, China was detected, and its SBAS-derived time-series subsidence maps were
obtained. The maximum cumulative subsidence was detected up to 199 mm.

The mechanical deformational characteristics of the rock salt mine were obtained through
analyzing the time-series deformation maps, the temporal variations of selected feature points, the
cumulative number of the coherence points, and the profiles of the subsidence bowls. Spatially, the
distribution of the subsidence in the rock salt mine appeared as discrete strip-shaped in the northwest
part and an overall sheet-like shaped distribution in the central and southeast part. Furthermore, the
subsidence bowls were with multiple peaks along the transversal and longitudinal directions. This is
related to the drilling solution mining method based on connected well groups, and its comprehensively
multi-direction advancing mode. Temporally, the cumulative deformation variation curve of the rock
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salt mine showed a waveform characteristic, with a time lag of 8 months. The suggested reasons for
this were that the pressure generated by the new injected fresh water played a supporting role on the
roof of the cavern the large depth and thickness of the rock salt mine, and the process of rock salt
dissolution induced the time delay in a combined manner. In addition, according to our measurements,
the subsidence was greatly affected by the solvent temperature during the drilling solution mining
process; thus, it showed obvious seasonal fluctuations. The reasons were supposed as the variations of
the dissolution rate for mirabilite and thenardite. The high temperature in warm seasons accelerated
the dissolution of rock salt, which led to the increase of subsidence. In contrast, the low temperature in
cold seasons suppressed the process of water dissolution, inducing the slow or even uplift trend of
the deformation.

Compared to the field leveling deformation measurements, the final accuracy was estimated to
±11 mm. The good consistency with the field measurements shows the feasibility and reliability of the
SBAS technology and Sentinel−1 imagery in the application for the rock salt mine monitoring.
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Abstract: Phase difference measurement of sinusoidal signals can be used for phase error calibration
of the spaceborne single-pass interferometric synthetic aperture radar (InSAR) system. However,
there are currently very few papers devoted to the discussion of phase difference measurement of
high-frequency internal calibration signals of the InSAR system, especially the discussion of sampling
frequency selection and the corresponding measuring method when the high-frequency signals are
sampled under the under-sampling condition. To solve this problem, a phase difference measurement
method for high-frequency sinusoidal signals is proposed, and the corresponding sampling frequency
selection criteria under the under-sampling condition is determined. First, according to the selection
criteria, the appropriate under-sampling frequency was chosen to sample the two sinusoidal signals
with the same frequency. Then, the sampled signals were filtered by limited recursive average filtering
(LRAF) and coherently accumulated in the cycle of the baseband signal. Third, the filtered and
accumulated signals were used to calculate the phase difference of the two sinusoidal signals using
the discrete Fourier transform (DFT), digital correlation (DC), and Hilbert transform (HT)-based
methods. Lastly, the measurement accuracy of the three methods were compared respectively by
different simulation experiments. Theoretical analysis and experiments verified the effectiveness of
the proposed method for the phase error calibration of the InSAR system.

Keywords: interferometric synthetic aperture radar (InSAR); phase error calibration; phase difference
measurement; under-sampling; coherent accumulation

1. Introduction

Phase difference measurement of sinusoidal signals [1–9] is one of the most important research
topics in applications such as phase error calibration of the spaceborne single-pass interferometric
synthetic aperture radar (InSAR) system [10–13], power system monitoring [14], radio frequency
communication [15], and laser ranging [16]. For the spaceborne single-pass InSAR system, a possible
interferometric phase error can arise from relative phase differences between the two receiver channels,
because the two signal receivers are not identical mechanically or thermally, and the signal path length
from receiving antenna to electronics is vastly different because of the 60 m baseline [12]. Therefore,
an internal calibration signal with common reference is distributed to the antennas over an optical
fiber cable to the deployed antenna [10–13], and the phase difference of the internal calibration signals
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(usually sinusoidal signals) received separately from the primary and secondary antennas needs to
be measured. More than that, the frequency of the calibration signal is generally high. For example,
the frequency of the calibration signal of the InSAR system on the Shuttle Radar Topography Mission
(SRTM) is as high as 263 MHz [10]. Due to the limitation of the A/D converter itself, the sampling
frequency cannot be made too high, so the signal can only be sampled by under-sampling [17].

Regarding the phase difference measurement of sinusoidal signals, many different methods have
been proposed, including discrete Fourier transform (DFT) [18,19], digital correlation (DC) [20], Hilbert
transform (HT) [21], least squares (LS) [22], independent component analysis (ICA) [23], and zero
cross detection (ZCD) [24] based methods. In Reference [18], considering the negative frequency
contribution, a new DFT-based algorithm for phase difference measurement of extreme frequency
signal is proposed. The phase difference calculation formula under different windows is deduced in
detail. Compared with the traditional DFT-based phase difference measurement algorithm, the new
algorithm has stronger spectral leakage suppression capability and higher precision. In Reference [19],
considering the spectral superposition of real signals, a new modulation and DFT-based estimation
method is proposed which obtains the phase difference by combining the estimated signal frequency
and four DFT samples of the modulated signal. However, the above DFT-based phase difference
measurement methods have a drawback in that a complete sampling cycle is required for calculation.
In Reference [20], an all-digital phase measurement method based on cross-correlation analysis is
proposed, and the measurement errors caused by sampling quantization, intrinsic white noise, and
non-whole-cycle sampling are analyzed. This method is named the digital correlation (DC)-based
method in this paper. In Reference [21], a phase difference estimation method based on data expansion
and HT is proposed. This method obtains the phase difference estimation by data expansion, HT,
cross-correlation, autocorrelation, and weighted phase averaging which can suppress the end effect of
the HT effectively. In Reference [22], a new algorithm for phase difference measurement of sinusoidal
signals based on LS is proposed. The algorithm uses digitized samples of the input signal and can
determine the amplitude and phase of the two signals simultaneously. Compared with the DFT-based
method, this algorithm not only has the advantages of good filtering characteristics and high precision,
but also filters out high-frequency components, direct current components, and white noise and can
adjust the length of the data window according to the requirements of accuracy and calculation speed.
In Reference [23], a robust phase difference measurement method is proposed which uses ICA to
separate sinusoidal signals and noise and has strong robustness and accuracy. The ZCD-based method
proposed in Reference [24] has a relatively simple principle and is relatively easy to implement in
hardware and software, but it is susceptible to interference from noise and harmonics and has poor
real-time performance.

However, there are currently very few papers devoted to the discussion of phase difference
measurement of high-frequency internal calibration signals of the InSAR system, especially the
discussion of sampling frequency selection when the high-frequency signals are sampled under the
under-sampling condition. Under such conditions, the initial phases of the sampled signal and the
original high-frequency internal calibration signal will be the same, opposite or irrelevant which
is different from the general situation. Therefore, the selection of the sampling frequency becomes
very important.

In response to the problems mentioned above, the phase difference measurement of high-frequency
sinusoidal signals is discussed in this paper, and the corresponding sampling frequency selection
criteria under the under-sampling condition is also determined. According to the previous analysis, the
DFT-based method is the classical frequency domain measurement method which can be realized by
fast Fourier transform (FFT) and can effectively suppress the influence of random noise and harmonics.
The DC-based method is the classical time domain measurement method which has a strong ability to
suppress random noise; the HT-based method can make real-time measurement of phase difference,
and, with the progress of the computer and signal processing technology, the method will continue
to overcome the difficulty in instrument design and improve the measurement accuracy. In view of
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the advantages and representativeness of these three methods, we chose to apply them to the phase
difference measurement of high-frequency signals in the phase error calibration of the InSAR system
and analyzed and compared them. The specific application process was as follows: Firstly, according
to the selection criteria, the appropriate under-sampling frequency was chosen to sample the two
sinusoidal signals with the same frequency. Then, the sampled signals were filtered by the limited
recursive average filtering (LRAF) and coherently accumulated in the cycle of the baseband signal.
Thirdly, the filtered and accumulated sampled signals were used to calculate the phase difference of
the two sinusoidal signals by using the DFT-, DC-, and HT-based methods. Lastly, the measurement
accuracy of the three methods were compared, respectively, by the different simulation experiments.
The experimental results showed that the proposed method in this paper is suitable for the phase
difference measurement of the high-frequency internal calibration signals in the InSAR system and can
improve the accuracy of the phase difference measurement results.

2. Selection of Sampling Frequency

In this section, the selection criteria of the sampling frequency for the sinusoidal signal under the
under-sampling condition is deduced by mathematical formulas and diagrams.

Considering a sinusoidal signal s(t) and its mathematical expression:

s(t) = A cos(2π f t + ϕ) (1)

where A is the unknown amplitude, f the frequency, t the time, and ϕ the unknown initial phase
(−π < ϕ ≤ π). Assuming that the sinusoidal signal is sampled with the frequency fs, it can be known
from the Nyquist sampling theorem that fs must be greater than or equal to 2 f to accurately recover the
original signal. Especially when it is necessary to measure the phase difference between two sinusoidal
signals, fs must be much larger than 2 f . However, when the signal frequency itself is very high, as
the signal frequency increases, the sampling frequency will also become higher and higher. When
the sampling frequency is high to a certain extent, it will be difficult to achieve under the existing
equipment and technical conditions, which makes it difficult to sample the high frequency signal.
Therefore, it is necessary to reduce the sampling frequency according to the band-pass sampling
theorem [25], that is, to use the under-sampling method to sample the signal. Next, we will discuss the
selection of the sampling frequency and its value range.

The spectrum of the signal s(t) is shown in Figure 1a, where ω means the angular frequency, f is
the frequency of the signal, the vertical upward arrow represents the amplitude spectrum, and the
solid black dot represents the phase spectrum. Figure 1b is the spectrum of the sampled signal ss(t).
The spectral expression of the sampled signal, ss(t), is as follows:

Ss(ω) =
(
πe− jφδ(ω+ 2π f ) + πejφδ(ω− 2π f )

)
∗

fs
+∞∑

n=−∞
δ(ω− n · 2π fs)

= π fse− jφ
+∞∑

n=−∞
δ(ω+ 2π f − n · 2π fs)+

π fsejφ
+∞∑

n=−∞
δ(ω− 2π f − n · 2π fs)

(2)
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(a) (b) 

 
(c) (d) 

Figure 1. Signal spectrum schematic: (a) Original signal spectrum; (b) signal spectrum after sampling;
(c) signal spectrum after low-pass filtering (case 1); (d) signal spectrum after low-pass filtering (case 2).

Obviously, in order to avoid spectral aliasing of the sampled signal, the following condition must
be met between the sampling frequency, fs, and the signal frequency, f :

− f + n fs � f , n = 1, 2, 3, · · · (3)

That is:

fs �
2 f
n

=
f

n/2
, n = 1, 2, 3, · · · (4)

After passing through a filter with a gain of 1/ fs and a passband range of 0 ∼ 0.5 fs, the rest is the
spectrum of the baseband signal. At this time, there may be two cases, as shown in Figure 1c,d, where
the part marked with “1n” is the result of shifting the spectrum of the original signal to the right by n
times, and the part marked with “2n” is the result of shifting the spectrum of the original signal by
n times.

(1) In the case shown in Figure 1c, the condition as follows must be met:

0 < f − n fs < 0.5 fs, n = 1, 2, 3, · · · (5)

That is:
f

n + 0.5
< fs <

f
n

, n = 1, 2, 3, · · · (6)

The resulting baseband signal spectrum at this time is:

Y(ω) = πe− jφδ(ω+ 2π f − 2πn fs) + πejφδ(ω− 2π f + 2πn fs) (7)

The reconstructed baseband signal after inverse Fourier transform is:

y(t) = cos(2π( f − n fs)t + ϕ) = cos(2π f0t + ϕ0) (8)

where f0 is the frequency of y(t) and ϕ0 is the initial phase of y(t). Then, as can be seen from
Equation (8): {

f0 = f − n fs
ϕ0 = ϕ

(9)
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That is to say, the initial phase of the baseband signal, y(t), is the same as the initial phase of the
signal s(t).

(2) In the case shown in Figure 1d, the condition as follows must be met:

0 < − f + n fs < 0.5 fs, n = 1, 2, 3, · · · (10)

That is:
f
n
< fs <

f
n− 0.5

, n = 1, 2, 3, · · · (11)

The resulting baseband signal spectrum at this time is:

Y(ω) = πe− jφδ(ω− 2π f + 2πn fs) + πejφδ(ω+ 2π f − 2πn fs) (12)

The reconstructed baseband signal after inverse Fourier transform is:

y(t) = cos(−2π( f − n fs)t−ϕ) = cos(2π f0t + ϕ) (13)

As can be seen from Equation (13):

{
f0 = − f + n fs
ϕ0 = −ϕ (14)

That is to say, the initial phase of the baseband signal, y(t), is opposite to the initial phase of the
signal, s(t).

From the above analysis, the following conclusions can be drawn: high-frequency sinusoidal
signals can be reconstructed based on the frequency and initial phase of the low frequency baseband
signal, and the phase difference of the two sinusoidal signals with the same frequency can be measured
by selecting the sampling frequency that satisfies the conditions of Equations (6) or (11).

3. Signal Processing Based on Limited Recursive Average Filtering and Coherent Accumulation

In this section, the signal processing process based on limited recursive average filtering (LRAF)
and coherent accumulation (CA) under under-sampling conditions is discussed. For a detection system,
the preprocessing of the collected signals is an essential part in the whole measurement process. If
we want to measure the phase difference, the collected signals should be preprocessed to eliminate
the effects of the noise to some extent. In order to minimize the influence of the noise on the phase
difference measurement, the preprocessing step used in this paper is divided into two parts: LRAF
and CA.

3.1. Signal Sampling

For the case where the frequency of the calibration signal in the InSAR system is high,
under-sampling should be selected to sample the signal according to the band-pass sampling
theorem [25]. Therefore, the two sinusoidal signals with the same frequency can be sampled by
selecting the appropriate sampling frequency according to the selection criteria described in Section 2.
Here, we assume that the sampling frequency satisfies the condition in Equation (6), the total length of
the sampled signal is N points, the number of sampling points in the baseband signal’s period is N0,
and the relationship between N and N0 is N = m ·N0 (m is a positive integer). Then, the two sampled
signals are:

ŝ1(kT) = A1 cos(2π( f0 + n fs)kT + ϕ1) + n1(kT)
= A1 cos(2π f0kT + 2πnk + ϕ1) + n1(kT)
= A1 cos(2π f0kT + ϕ1) + n1(kT), k = 0, 1, 2, · · · , N

(15)
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ŝ2(kT) = A2 cos(2π( f0 + n fs)kT + ϕ2)++n2(kT)
= A2 cos(2π f0kT + 2πnk + ϕ2) + n2(kT)
= A2 cos(2π f0kT + ϕ2) + n2(kT), k = 0, 1, 2, · · · , N

(16)

where T is the sampling period (T = 1/ fs), n1(kT) and n2(kT) are the noises of the two receiving
channels, and the physical meaning of other parameters are shown in the explanation part of Equation (1)
in Section 1.

3.2. Limited Recursive Average Filtering

There are many ways to remove signal noise, including the seasonal model method, autoregressive
summation moving average model method, limited recursive average filtering method, etc. In this paper,
the LRAF method was used to deal with high-frequency interference. In this method, Nw sampling
points continuously obtained from each receiving channel were treated as a queue; then, the abnormal
sampling points with clearly distorted amplitudes were deleted according to the preset threshold,
and then the remaining sampling points in the queue were arithmetically averaged. The calculated
arithmetic average value was taken as the new sample value of the sampling point at the center of the
queue, so that the filtering function was implemented. The process was done point by point. When a
new sampling point was obtained, it was placed at the end of the queue, and the sampling point at the
beginning of the original queue (first in first out, FIFO) was discarded, and then the same operation as
before was performed.

The specific steps for performing the LRAF process on s1(kT) and s2(kT) are as follows:

(1) Observing the characteristics of the sampling signals from the two receiving channels, determining
the maximum allowable amplitude difference among adjacent sampling points, respectively,
recorded as the threshold values Ath1 and Ath2;

(2) The length a of the queue, Nw, is determined based on the total number of samples in a baseband
signal period;

(3) From the first sampling point, the limited average filtering is performed point by point. The
queue corresponding to the ith sampling point is [i−Nw/2, · · · , i, · · · , i + Nw/2], the abnormal
sampling points whose amplitudes are clearly distorted are deleted according to Ath1 and Ath2,
then the remaining sampling points in the queue are arithmetically averaged, and then the
calculated arithmetic average value is taken as the new sample value of the ith sampling point.

3.3. Coherent Accumulation

Coherent accumulation refers to the addition or accumulation of the signal-to-noise ratio equal to
the signal-to-noise ratio of a single pulse multiplied by the pulse number of the pulse train. In this
paper, a pulse was equivalent to a signal with a baseband period length. Theoretically, CA improves
the signal-to-noise ratio by a factor of N (N is the number of accumulated pulses). By coherently
accumulating the filtered signal with the period T0(T0 = N0/ fs) of the baseband signal, y(t), more
Gaussian noise can be further filtered out, i.e.,:

ŝ1a(kT) = A1 cos(2π f0kT + ϕ1) + A1 cos(2π f0(k + N0)T + ϕ1)

+ · · ·+ A1 cos(2π f0(k + (m− 1)N0)T + ϕ1) + n1a(kT),
k = 0, 1, 2, · · · , N0 − 1

(17)

ŝ2a(kT) = A2 cos(2π f0kT + ϕ2) + A2 cos(2π f0(k + N0)T + ϕ2)

+ · · ·+ A2 cos(2π f0(k + (m− 1)N0)T + ϕ2) + n2a(kT),
k = 0, 1, 2, · · · , N0 − 1

(18)

Most of the noise interference was already filtered out at this time, so the filtered signals, ŝ1a(kT)
and ŝ2a(kT), can be directly used for the next processing step: phase difference measurement.
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4. Phase Difference Measurement

At present, the measurement methods used to estimate the phase difference between two
sinusoidal signals can be divided into two categories. The first category is the model-based parametric
measurement algorithm, such as the LS, HT, and correlation analysis methods. The second is the
model-based non-parametric measurement algorithm, such as the DFT method. In this paper, the DFT,
DC, and HT methods were used to measure the phase difference of the signals that were processed by
LRAF and CA, and the performance of these methods are compared and analyzed in Section 5. Below
we introduce the three methods separately.

4.1. DFT-Based Method

Among the many phase difference measurement methods, the DFT-based method is widely
used because of its physical meaning, simple implementation, high measurement accuracy, and fast
response speed. This method can transform the signal from the time space to frequency domain
and can effectively suppress the influence of random noise and harmonics. The DFT operations are
performed on the accumulated signals s1a(kT) and s2a(kT) separately, so that the initial phases ϕ1 and
ϕ2 of the two sinusoidal signals can be obtained by:

ϕ1 = ∠
{
DFT(ŝ1a(nT))

∣∣∣
k=1

}
= ∠

{(
N0−1∑
n=0

ŝ1a(nT)e− j 2π
N0

nk
)∣∣∣∣∣∣

k=1

}
(19)

ϕ2 = ∠
{
DFT(ŝ2a(nT))

∣∣∣
k=1

}
= ∠

{(
N0−1∑
n=0

ŝ2a(nT)e− j 2π
N0

nk
)∣∣∣∣∣∣

k=1

}
(20)

Then, the phase difference between the two sinusoidal signals is obtained based on the initial
phase of the two sinusoidal signals:

ϕ = ϕ2 −ϕ1 (21)

4.2. DC-Based Method

The DC is a digitized version of the correlation analysis method. In the DC-based method,
because the correlation between the noise signal and the effective signal is very small, the method
has a good noise suppression ability. Using correlation analysis to calculate the phase difference is
considered to be one of the optimal phase difference calculation methods which has the advantages of
fast calculation speed, strong anti-noise interference ability, and high accuracy. In this method, the
phase difference is obtained by sampling the two noised sinusoidal signals in a full cycle and then
performing cross-correlation operations on them. The analytical expression for the cross-correlation
operation of the two signals is as follows:

Rxy(τ) =
1

T0

∫ T0

0
ŝ1a(t)ŝ2a(t + τ)dt (22)

where Rxy(τ) is the correlation coefficient of the two signals ŝ1a(t) and ŝ2a(t), τ is the time delay between
the two signals, T0 is the period of the baseband signal y(t). Ideally, the signal and noise are not
related to each other, and the noises of the two receiving channels are also uncorrelated. Therefore,
when τ = 0, the correlation coefficient Rxy(τ) will reach the maximum value, and its expression can be
simplified as:

Rxy(0) =
A1A2

2
cos(ϕ2 −ϕ1) (23)
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Thus, the phase difference between the two sinusoidal signals is:

ϕ = ϕ2 −ϕ1 = arccos
(

2Rxy(0)

A1A2

)
(24)

4.3. HT-Based Method

The HT-based method can make real-time measurement of the phase difference and improve the
measurement accuracy. The HT technology was successfully applied to the instantaneous frequency
measurement of signals very early, but its application to phase difference measurement is rarely seen.
The phase difference measurement method based on HT can make real-time measurements of phase
difference, and with the progress of computer and signal processing technology, the method will
continue to overcome the difficulty in instrument design and improve the measurement accuracy.
Therefore, it is more suitable for intelligent detection equipment and other modern detection equipment.

Suppose that the HT of s1a(kT) and s2a(kT) are y1(t) and y2(t), respectively, and let:

z1(t) = s1a(kT) × y2(t) (25)

z2(t) = s2a(kT) × y1(t) (26)

z = z1(t) − z2(t) (27)

r1(t) = s1a(kT) × s2a(kT) (28)

r2(t) = y1(t) × y2(t) (29)

r = r1(t) + r2(t) (30)

At last, the phase difference between the two sinusoidal signals can be obtained by:

ϕ = ϕ2 −ϕ1 = arctg
z
r

(31)

5. Experiments and Results

In order to verify the effectiveness of the method proposed in this paper, some experiments were
carried out using simulated data. The parameters used in the experiments are shown in Table 1.

Table 1. Parameters used in the experiments.

Parameters Value Size

signal-to-noise ratio (SNR) 2 dB
signal frequency ( f ) 200 MHz

sampling frequency ( fs) 33 MHz
total length (N) 10,240

number of points in one baseband signal period (N0) 1024
amplitude of signal 1 (A1) 0.25
amplitude of signal 2 (A2) 0.2

initial phase of signal 1 (ϕ1) 30◦
initial phase of signal 2 (ϕ2) 45◦

One of the two simulated sinusoidal signals with noise is shown in Figure 2a. Figure 2b shows
the zoomed-in view of one cycle of Figure 2a. Figure 2c is one cycle of the signal filtered by LRAF, and
Figure 2d is one cycle of the signal filtered by CA. Comparing Figure 2c,d with Figure 2b, respectively,
it can be seen that both the LRAF and CA have obvious filtering effects, because the noise is greatly
weakened, but the effect of CA is better than the LRAF.
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Figure 2. Comparison of the signals before and after limited recursive average filtering and coherent
accumulation: (a) simulated sinusoidal signal with noise; (b) zoomed-in view of one cycle of (a); (c)
one cycle of the filtered signal by limited recursive average filtering (LRAF); (d) one cycle of the filtered
signal by coherent accumulation (CA).

Ten thousand phase difference measurement simulation experiments were carried out, and the
phase difference measurement errors by the DFT, DC, and HT-based methods before and after the LRAF
and CA are shown in Figure 3. Figure 3a shows the measurement error of the conventional DFT-based
method, Figure 3b shows the measurement error of the DFT-based method after performing the
LRAF, and Figure 3c shows the measurement error of the DFT-based method after performing the CA.
Figure 3d shows the measurement error of the DC-based method, Figure 3e shows the measurement
error of the DC-based method after performing the LRAF, and Figure 3f shows the measurement error
of the DC-based method after performing the CA. Figure 3g shows the measurement error of the
HT-based method, Figure 3h shows the measurement error of the HT-based method after performing
the LRAF, and Figure 3i shows the measurement error of the HT-based method after performing
the CA. It can be seen from Figure 3a–c that the preprocessing of the received signal had the most
obvious effect on the DFT-based method for the measurement accuracy improvement, and the coherent
accumulation had a significant effect which reduced the error by five times, but the LRAF had no effect
at all. However, the contribution of these two filtering strategies to the DC- and HT-based methods
was not as obvious as the DFT-based method. From Figure 3d–i, we know that the phase difference
measurement accuracy of the DC- and HT-based methods had only a certain degree of improvement
after the LRAF and CA completed, and the degree of improvement for the two methods was similar.
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Figure 3. Phase difference measurement error by discrete Fourier transform (DFT)-, digital correlation
(DC)-, Hilbert transform (HT) based methods before and after the limited recursive average filtering
and coherent accumulation: (a) measurement error of the traditional DFT method; (b) measurement
error of the DFT method after performing the limited recursive average filtering; (c) measurement
error of the DFT method after performing coherent accumulation; (d) measurement error of the
traditional DC method; (e) measurement error of the DC method after performing the limited recursive
average filtering; (f) measurement error of the DC method after performing coherent accumulation;
(g) measurement error of the HT method; (h) measurement error of the HT method after performing
the limited recursive average filtering; (i) measurement error of the HT method after performing the
coherent accumulation.

Figure 4 shows the effect of the preprocessing on the performance of the DFT-, DC-, and HT-based
phase difference measurement methods under different SNRs. In this experiment, the total number
of accumulation cycles was 10, and the SNR varied from 1 dB to 50 dB. Figure 4a,b shows the mean
and standard deviation of the measurement error of the phase difference which is measured by the
DFT-based method after adding different preprocessing steps, respectively. It can be seen from the
two figures that, when the SNR varies from 1 dB to 50 dB, the mean and standard deviation of the
measurement error gradually decreased and approached zero at last. However, the measurement
accuracy was not improved after the two received signals were filtered by the LRAF, but it was greatly
improved after the two received signals were filtered by the CA. More than that, the measurement
error of the phase difference was almost negligible when the SNR was greater than 12 dB. Therefore,
we can conclude that the CA is very helpful for the performance improvement of the DFT-based phase
difference measurement method if the SNR of the signal is poor, while LRAF does not make much
sense. Figure 4c,d shows the mean and standard deviation of the measurement error of the phase
difference which is measured by the DC-based method after adding different preprocessing steps,
respectively. Figure 4e,f shows the mean and standard deviation of the measurement error of the
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phase difference which is measured by the HT-based method after adding different preprocessing
steps, respectively. From Figure 4c–f, we know that the phase difference measurement accuracy of
the DC- and HT-based methods is better than the DFT-based method, but it has only a certain degree
of improvement after the LRAF and CA are completed, and the degree of improvement for the two
methods is similar. Similar to the DFT-based method, the measurement error of the phase difference is
almost negligible when the SNR is greater than 12 dB. Therefore, we can conclude that LRAF and CA
do not contribute much to the performance improvement of the CA- and HT-based phase difference
measurement methods. In general, when the signal-to-noise ratio of the signal is greater than 12 dB, the
phase difference measurement can be directly performed using the DFT-, DC-, and HT-based methods.

Figure 4. The effect of the preprocessing on the performance of the DFT-, DC-, and HT-based
phase difference measurement methods with different SNR: (a) mean of the measurement error of
the DFT-based method; (b) standard deviation of the measurement error of the DFT-based method;
(c) mean of the measurement error of the DC-based method; (d) standard deviation of the measurement
error of the DC-based method; (e) mean of the measurement error of the HT-based method; (f) standard
deviation of the measurement error of the HT-based method.
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Figure 5a,b show the mean and standard deviation of the phase difference measurement error
with a SNR of 2 dB and an accumulative cycle number from 1 to 100, respectively. As can be seen from
Figure 5a,b, the mean and standard deviation of the phase error also become smaller and smaller as
the accumulative cycle number increases, and even negligible when the accumulative cycle number is
greater than 20.

Figure 5. Effects of the different accumulation cycles on each method: (a) mean of measurement error;
(b) standard deviation of measurement error.

Table 2 shows the mean and standard deviation of the measurement error by different phase
difference measurement methods with a SNR of 2 dB and an accumulative cycle number of 10. As
can be seen from the table, the measurement accuracy was improved after LRAF and CA compared
with the direct measurement of the phase difference of the original sinusoidal signal. However, it can
also be seen that LRAF had no effect on the DFT-based method but had an effect on the other two
phase difference measurement methods; CA can greatly help improve the accuracy of various phase
difference measurement methods and has the most obvious effect on DFT method. However, it can be
seen that LRAF had no effect on the DFT-based method but had an effect on the other two methods; CA
is helpful for improving the measurement accuracy of various phase difference measurement methods
and had the most obvious effect on the DFT-based method.

Table 2. The mean and standard deviation of the measurement error by different phase difference
measurement methods.

Measurement
Methods

Measurement Error
Original
Signal

LRAF Only CA Only LRAF and CA

DC-based method
Mean (◦) −0.0281 −0.0276 −0.0235 −0.0217

Standard deviation (◦) 0.6852 0.6391 0.6348 0.6292

DFT-based method
Mean (◦) −0.0644 −0.0601 −0.0365 −0.0305

Standard deviation (◦) 1.9611 1.9578 0.6257 0.6252

HT-based method
Mean (◦) −0.0451 −0.0426 −0.0357 −0.0361

Standard deviation (◦) 0.7114 0.6447 0.6374 0.6278

6. Discussion

According to the experimental results in Section 5, both LRAF and CA can effectively filter out
noise, but the effect of CA is much better than LRAF. We think that this is mainly because CA makes
use of the consistency of the waveform of each period of the sinusoidal signal, but LRAF only uses the
method of finding the local average of the adjacent sampling points, and the filtering effect is limited.
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Secondly, both LRAF and CA can help the DFT-, DC-, and HT-based phase difference measurement
methods improve their measurement accuracy, but they are not very helpful for the DC- and HT-based
methods. The main reason may be that the DC- and HT-based phase difference measurement methods
themselves have a strong ability to suppress random noise.

Third, when the SNR is small, both LRAF and CA have obvious filtering effects on the signal, but
when the SNR is large, the preprocessing has no effect on the measurement accuracy. That is because
LRAF and CA only play the role of filtering or suppressing noise; the noise in the signal is relatively
small when the SNR is relatively large, so there is no noise that can be filtered even with LRAF and CA.

Fourth, the number of CA cycles has a great influence on the phase difference measurement results.
The higher the number of cycles, the more obvious the filtering effect and the higher the accuracy of
the corresponding phase difference measurement. This is in line with the law: the larger the number of
samples, the more accurate the measurement results.

In addition, it is worth mentioning that the effects of LRAF and CA were only verified on the DFT-,
DC-, and HT-based phase difference measurement methods in this paper, so further work can be done
in the future to verify them on other phase difference measurement methods, such as the least squares
(LS) method, independent component analysis (ICA) method, and zero cross-detection (ZCD) method.

7. Conclusions

In order to solve the phase difference measurement problem of the high-frequency internal
calibration signal of the InSAR system, a phase difference measurement method based on LRAF and
CA under under-sampling conditions was proposed in this paper, and the sampling frequency selection
criteria under the under-sampling condition were determined. Experimental results confirmed the
validity of the method. Through theoretical analysis and experiments, the conclusions obtained in this
paper are as follows:

(1) The sampling frequency used to under-sample high-frequency sinusoidal signals should meet
the conditions in Equations (6) or (11).

(2) Both LRAF and CA can effectively filter out noise, but the effect of CA is much better than LRAF.
(3) Both LRAF and CA can help the DFT-, DC-, and HT-based phase difference measurement

methods improve their measurement accuracy, but they are not very helpful for the DC- and
HT-based methods.

(4) When the SNR is small (<12 dB under the simulation condition of this paper), both LRAF and CA
have obvious filtering effects on the signal, but when the SNR is large, the preprocessing has no
effect on the measurement accuracy.

(5) The number of CA cycles has a great influence on the phase difference measurement results. The
higher the number of cycles, the more obvious the filtering effect and the higher the accuracy of
the corresponding phase difference measurement.

In summary, the phase difference measurement method proposed in this paper is suitable for the
phase difference measurement of the high-frequency internal calibration signal of the InSAR system for
phase error calibration. This method can effectively filter out noise in the sinusoidal signal, improve
the phase difference measurement accuracy of the sinusoidal signal, and greatly reduce the phase error.
The simulation experiments in Section 5 demonstrate the effectiveness of the proposed method.
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Abstract: As the highest elevation permafrost region in the world, the Qinghai-Tibet Plateau (QTP)
permafrost is quickly degrading due to global warming, climate change and human activities.
The Qinghai-Tibet Engineering Corridor (QTEC), located in the QTP tundra, is of growing interest
due to the increased infrastructure development in the remote QTP area. The ground, including the
embankment of permafrost engineering, is prone to instability, primarily due to the seasonal freezing
and thawing cycles and increase in human activities. In this study, we used ERS-1 (1997–1999),
ENVISAT (2004–2010) and Sentinel-1A (2015–2018) images to assess the ground deformation along
QTEC using time-series InSAR. We present a piecewise deformation model including periodic
deformation related to seasonal components and interannual linear subsidence trends was presented.
Analysis of the ERS-1 result show ground deformation along QTEC ranged from −5 to +5 mm/year
during the 1997–1999 observation period. For the ENVISAT and Sentinel-1A results, the estimated
deformation rate ranged from−20 to +10 mm/year. Throughout the whole observation period, most of
the QTEC appeared to be stable. Significant ground deformation was detected in three sections of the
corridor in the Sentinel-1A results. An analysis of the distribution of the thaw slumping region in the
Tuotuohe area reveals that ground deformation was associated with the development of thaw slumps
in one of the three sections. This research indicates that the InSAR technique could be crucial for
monitoring the ground deformation along QTEC.

Keywords: InSAR; Qinghai-Tibet Engineering Corridor; deformation; permafrost

1. Introduction

Permafrost, defined as soil or rock ground that remains frozen (ground temperature below 0
◦C) for two or more consecutive years [1,2], has the potential to affect the global climate [3,4], carbon
balance [5], and water-heat balance [6]. The Qinghai-Tibet Plateau (QTP) has the largest extent of
permafrost outside the polar regions, with 50% of the QTP’s area underlain by permafrost. With the
implementation of western development strategy and the One Belt and One Road strategy, several key
engineering projects have been conducted on this fragile and harsh environmental plateau, such as the
Qinghai-Tibet Railway (QTR) [7,8], the Qinghai-Tibet Highway (QTH) [9], oil pipelines [10] and electric
transmission lines [11]. Along the QTR from the Chumaerhe to Fenghuo Mountain is the significant
section of Qinghai-Tibet Engineering corridor (QTEC) [12,13]. In recent years, with the global warming,
the increase of human activities, and the operation of permafrost engineering, the permafrost has
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become seriously degraded, intensifying the permafrost engineering instability, land desertification
and soil moisture loss [14]. Therefore, long-term permafrost measurement along the QTEC is of great
importance for permafrost environment protection, climate change and cold-region hazard prevention.

Traditional geodetic measurement methods such as levelling and the global position system
(GPS) surveys, can achieve high-precision monitoring. However, these point-based geodetic measured
methods are limited to discrete points on fixed routes and are time consuming. Compared with those
methods, the satellite remote sensing provides a valuable tool for observing large and hard-to-access
areas with high spatial and temporal resolution [15]. Synthetic aperture radar interferometry (InSAR) is
a promising technique that can be used to monitor slow ground deformation with millimeter accuracy
by analyzing the phase information from two SAR images [16]. Due to the advantages of large coverage,
high resolution and measurement accuracy, InSAR has been used to measure surface deformation over
larger areas induced by earthquake [17], volcanoes [18], and land subsidence [19,20]. It has also been
adopted to determine the ground deformation in permafrost regions [15,21,22].

To mitigate the intrinsic limitations of the traditional differential InSAR (DInSAR) (spatial-temporal
decorrelations and atmospheric delay) [23], time-series InSAR techniques such as persistent scatterer
interferometry (PSI) [24,25], the small baseline subset interferometry (SBAS) [26,27], multi-temporal
InSAR (MTInSAR) [28], have been proposed by analyzing the time series interferometric phase on
stable objects, such as buildings, rocks and roads.

Due to the merits of time-series InSAR, many studies have used it to retrieve surface deformation
information related to permafrost thawing and freezing in QTP [29–39] (Table 1) and other permafrost
regions [21,22,40].

Table 1. Permafrost deformation studies in the Qinghai-Tibet Plateau (QTP) using synthetic aperture
radar interferometry (InSAR) technologies.

Study Areas InSAR Method SAR Dataset Observation Period
Deformation

Rate
(mm/year)

References

Beiluhe PSI ENVISAT August 2003–May
2007 −20 to 3 [29]

Beiluhe IPTA and SBAS ALOS-1 and
ENVISAT

November
2004–December 2010 −20 to 20 [30]

Beiluhe SBAS ALOS-1 June 2007–December
2010 −20 to 20 [31]

Beiluhe SBAS ENVISAT April 2003–July 2010 −16 to 2 [32]

Tanggula PSI ENVISAT February
2007–September 2009 −10 to 0 [33]

Yangbajing MTInSAR TerraSAR-X December
2011–November 2012 −30 to 10 [34]

Yangbajing SBAS ENVISAT May 2007–September
2010 −50 to 10 [35]

Wudaoliang SBAS ALOS-1 May 2007–March
2009 −2 to 0 [36]

Beiluhe MTInSAR TerraSAR-X July 2014–March
2017 −20 to 0 [37]

Wudaoliang-
Fenghuo Mountain MTInSAR Sentinle-1A November

2017–December 2018 — [38]

Northwestern Tibet NSBAS (new small
baseline subset) ENVISAT 2003–2011 −4 to 4 [39]

The studies listed in Table 1 preliminarily explored the deformation of the permafrost region
using time-series InSAR. Unfortunately, the most of the above-mentioned literatures have only focused
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on permafrost deformation monitoring in QTP over a short period of time such as from 2004 to 2009
with ENVISAT images or from 2007–2010 with ALOS-1 images, or from 2014 to 2016 with TerraSAR-X
images. Long-term Permafrost thaw deformation on the QTP and the relationship between permafrost
deformation and QTP engineering are still poorly quantified and understood. It is necessary to
focus on the latest development and the temporal evolution of ground deformation of the permafrost
region in QTP. With the launch of new SAR satellites such as Sentinel-1A/B [41], more SAR images
with short repeat cycles (six days) can be obtained, which are suitable for determining the ground
deformation in permafrost regions. Daout et al., developed a method to enhance InSAR performances
for such difficult terrain conditions and construct an 8 year timeline of the surface deformation over
a 60,000 km2 area [39]. Rouyet et al. used the InSAR to investigate the seasonal ground deformation in
and around Adventdalen with TerraSAR-X StripMap Mode (2009–2017) and Sentinel-1 Interferometric
Wide Swath Mode (2015–2017) SAR images [15]. Combining the archived SAR images, long-term
ground deformation in the permafrost region can be determined.

The objectives of this paper were to retrieve the surface deformation along QTEC from the
Wudaoliang to the Tuotuohe section over a 20-years period using time-series InSAR technique and to
analyze temporal evolution of the QTEC deformation. More than 90 SAR images, including ERS-1,
ENVISAT, and Sentinel-1A, were collected to jointly retrieve the feature of ground deformation from
1997 to 2018. A hybrid time-series methodology taking advantage of the merits of PSI and SBAS
was used to identify more measurement points [42]. Moreover, a piecewise deformation model
combining a seasonal deformation term related to active layer thawing and freezing and linear
subsidence component related to permafrost thawing is introduced. The spatiotemporal feature of the
ground deformation along the QTEC and its relationships with permafrost engineering and permafrost
distribution were analyzed.

2. Study Area and Datasets

2.1. Study Area

The permafrost region along the Wudaoliang-Tuotuohe section of QTEC was chosen as the study
area. The area is in the in the Hoh Xil mountain area between the Kunlun Mountain and Tanggula
Mountain ranges and is the source area of the Yangtze river, which is in the northern part of the
QTP [12]. The QTR is a high-elevation railway connecting Xining to Lhasa, with the length of 1956
km. About 550 km length of the QTR is laid on the discontinuous permafrost [7]. The QTR from
Wudaoliang to Tuotuohe section began to construct in 2001 and completed in 2006. Figure 1 provide
a topographic map of the study area, with an average elevation of more than 4500 m above the sea level.
Underground ice developed extensively in this region [5]. Several thermokarst lakes have developed,
such as Zuonai Lake, Kusai Lake and Salt Lake (Figure 1). The active layer thickness (ALT) varies from
0.8 to 4 m with a mean of about 2 m [43]. The typical ground features in our study area can be classified
into six landcover types: alpine meadow, alpine desert, Thermokarst Lake, QTR, QTH, and electric
transmission power line (Figure 2). This area is dominated by sub frigid semi-arid climate with the
mean temperature of about −3.8 ◦C [44]. The annual mean precipitation varies from 50 mm to 400 mm,
concentrated in the summer season [36]. The amplitude of Sentinel-1A, shuttle radar topography
mission (SRTM) digital elevation map (DEM) data [45] and the slope of the QTEC are show in the
bottom of Figure 1. In the QTEC, several permafrost engineering structures have been constructed that
have considerably influenced the stability of the permafrost. In the SAR images, the QTR is a bright
line as shown in Figure 1. The other engineering structures cannot be easily observed in medium
resolution SAR images.
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Figure 1. Top: Coverage of radar data stacks (black squares) on the shuttle radar topography mission
(SRTM) digital elevation map (DEM) over the study area. The black lines show the Qinghai-Tibet
Railway (QTR). The green points represent the railway station in the study area. The blue polygons are
the large lakes. Bottom: the amplitude of Sentinel-1A, DEM, and slope of the selected Qinghai-Tibet
Engineering corridor (QETC) section from Wudaoliang to Tuotuohe.

Within the QTEC coverage, several key developmental projects have been constructed, such as
QTR, QTH, and electric transmission power line (Figure 2d–f). Due to the constructions of those
permafrost engineering structures, the original hydrothermal balance of permafrost has been destroyed
and the permafrost has begun to degrade. Studies have showed that the ground deformation rate of
the permafrost along QTR can reach −10 mm/year in some sections [46]. The study area is an overlap
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of the available SAR images. About 110 km of the QTEC region from Wudaoliang to Tuotuohe was
selected as the study object. The daily air temperature in Wudaoliang weather station from 1997 to
2018 was collected. Figure 3 shows the daily air temperature in our study area from 1997 to 2018.

 

Figure 2. Field photos of the study area in August 2014. (A) alpine meadow, (B) alpine desert,
(C) thermokarst lake, (D) QTR, (E) Qinghai-Tibet Highway (QTH), and (F) electric transmission
power line.

Figure 3. Daily air temperature in Wudaoliang from 1997 to 2018.

2.2. Datasets

To reveal the ground deformation in the study area in the selected 20-year period, SAR images
from three different satellites were collected. There are ERS-1 SAR images acquired from October
1997 to December 1999; ENVISAT SAR images from November 2004 to July 2010, and Sentinel-1A
SAR images from April 2015 to December 2018. The coverages of the above SAR stacks are shown in
Figure 1. The amplitude of the Sentinel-1A along QTEC is show in the bottom of Figure 1. The QTR
and QTH can been easily observed due to their strong back scattering. The acquisition parameters
of the three SAR images are listed in Table 2. Unfortunately, time gaps, where no SAR images are
acquired, exist 2002–2004 and 2009–2015. SRTM DEM data with a spatial resolution of 30 m were
adopted to remove the topographic phase.
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Table 2. SAR image numbers and parameters used in this study.

Sensors
Start and
End Date

Acquisitions
(n)

Incidence
Angle (◦) Polarization

Pixel
Spacing/

Range (m)

Pixel Spacing/
Azimuth (m)

ERS-1 1997-04-24 to
1999-12-30 9 19.3~26.5 VV 7.9 3.9

ENVISAT 2004-11-18 to
2010-07-15 39 18.6~26.2 VV 7.8 4

Sentinel-1A 2015-04-13 to
2018-12-17 40 30.7~37.6 VV 5 20

3. Methodology

3.1. InSAR Processing

Studies have demonstrated that the main challenges and limitations of the InSAR technique in
detecting the ground deformation in the permafrost region are the serious temporal decorrelation and
non-linear deformation trends caused by the seasonal thaw-freeze process of active layer [31,37,46,47].
It is difficult to obtain sufficiently stable measurement points due to the above limitations. In this study,
the small baseline strategy was applied to suppress the temporal decorrelation.

Firstly, all the SAR images were co-registered. Then, a multi-temporal InSAR data processing
strategy was used to retrieve ground deformation. Considering the different attribute of SAR stacks
with different wave lengths, different small baseline strategies were adopted for those SAR stacks [48].
Through previous studies, the temporal decorrelation is serious in permafrost region, so the temporal
baseline (350 days) is no longer than one year. Consideration the orbit accuracy of different sensors
and the time sampling of SAR images, the normal baseline threshold values are 800 m, 500 m,
and 200 m for ERS, ENVISAT and Sentinel-1A, respectively. For ERS-1 and ENVISAT, the multi-looking
with 5 × 1 looks in the azimuth and range direction was performed, respectively. For Sentinel-1A,
the multi-looking with 1 × 4 looks in the azimuth and range direction were performed. After all the
interferograms have been generated, each of the interferograms were checked, and the interferograms
with serious temporal decorrelations were rejected for deformation retrieval. Finally, we obtained
a total number of 17 ERS-1 interferograms (normal baseline < 800 m and temporal baseline < 350
days), 105 ENVISAT ASAR interferograms (normal baseline < 500 m and temporal baseline < 350
days), and 131 Sentinel-1A interferograms (normal baseline < 200 m and temporal baseline < 350 days).
Figure 4 shows the spatial and temporal baseline configuration of the three SAR stacks. The differential
interferometric phase is generated by removing the topographic phase from the interferograms using
the SRTM DEM data. To suppress the noise in the interferograms, the Goldstein filtering method was
applied [49].
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Figure 4. Generated interferometric pairs of (A) ERS-1, (B) ENVISAT, and (C) Sentinel-1A. All the
lines represent the interferograms used to monitor the time-series ground deformation. All the points
represent the SAR images.

3.2. Seasonal and Long-Term Deformation Model

The thaw-freeze process of the active layer is complex and correlated with many factors, such as
vegetation, snow, soil moisture, soil properties and temperature [7]. In permafrost regions, the seasonal
deformation component is larger than the annual deformation. Therefore, using an appropriate seasonal
phase model to monitor the thawing-freezing process of the permafrost is essential. Mathematical
models, such as the sinusoidal model [33,36,50] and cubic term model [31] have been proposed
to retrieved the seasonal deformation of permafrost. However, the seasonal deformation term is
much complicated and is closely related to Environmental and climatic factors, such as temperature,
soil moisture. These environmental and climatic factors should be considered. Liu et al. [51] introduced
a seasonal model based on the Stefan model in the Alaska permafrost region, which describes the
relationship between the thaw depth and the square root of the accumulated degree days of thawing
(ADDT). The Stefan equation is widely used to estimate the thaw depth. This deformation model is
based on the cumulative temperature and is reasonable, which have been successfully applied in QTP
regions [37,38]. In this study, we adopted a deformation model combining a linear subsidence term for
the long-term permafrost thaw subsidence and seasonal deformation term for the seasonal thawing
and freezing of the active layer.

The deformation model is defined as follows:

ds = R·t + At·
√

ADDT(t1) −A f ·
√

ADDF(t2) + ε (1)
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where, R is the long-term deformation rate, At and Af are the thawing and freezing deformation
coefficients, respectively; and ADDT and ADDF are the accumulated degree days of thawing and
freezing, respectively. ADDT reaches its the maximum at the end of the thawing season. The daily ADDT
and ADDF were calculated based on the air temperature measured at the Wudaoliang Meteorological
station. Due to the sporadic acquisitions of ERS-1 images, a deformation model without a seasonal
term was used for ERS-1 datasets.

3.3. Calculation of ADDT and ADDF

The thawing and freezing onsets of the active layer are fixed as 1 May and 15 September,
respectively [21,37]. However, the freezing and thawing onsets change every year in the QTP.
Error would occur if we assume that the thawing and freezing onsets were the same in every year.
In QTP, the length of freezing season is longer than the of thawing season. Generally, a uniform
thawing and freezing onsets of the active layer are chosen based on temperature observation data.
In this study, we first used the following model to monitor temperature:

T(t) = a0 + a1 cos(t·w) + a2 sin(t·w) (2)

where, T (t) is the temperature on day t. a0, a1, a03, and w are the parameters. For each year, we used
this model to monitor the annual temperature and identify the thawing and freezing onsets in each year.

Figure 5 shows the time-series temperature of each year from 1997 to 2018. Most of the 20 years of
temperature data were modeled accuracy with a coefficient of determination (R2) > 0.9 and root mean
square error (RMSE) < 2.7. Figure 5 shows that the onsets of thawing and freezing changed every
year. Through the monitoring results, we identified the onsets of thawing and freezing and relatively
accurately calculate the ADDT and ADDF each year.

 
Figure 5. Seasonal pattern temperature of each year from 1997 to 2018 and the monitored models
each year.

3.4. Time-Series InSAR Method

3.4.1. Coherence Point (CP) Selection

CPs are those points with high coherence and stable amplitude value during the whole observation
period. In permafrost area, the ground feature includes four types: permafrost engineering,
Thermokarst Lake, alpine meadow, alpine desert (Figure 2). In order to exclude the water bodies,
vegetated areas and other decorrelated areas from the CPs, the thresholds of coherence and the
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dispersion of amplitude are both used to identify the CPs. In this paper, the coherence threshold value
is 0.65 and the dispersion amplitude threshold value is 0.25.

3.4.2. Topographic and Orbit Error Removal

The atmospheric delay is influential in high latitude mountainous regions. Our study area has
an average elevation of over 4400 m with some mountains. In the mountainous areas, the stratified
troposphere can produce serious atmospheric delays in the interferograms. Obvious residual orbital
phase was in some interferograms. In this paper, to remove those phase ramps, we applied a phase
ramps correction model combining a biquadratic model for orbital phase ramps and a linear model for
elevation dependents errors [52]:

ϕ(x, y)ramp = a0 + a1·x + a2·x2 + a3·x·y + a4·y + a5·y2 + a6·h + ε(x, y) (3)

where, ϕ(x, y)ramp is the modeled phase ramps, ε(x, y) is the random phase error, ai represents the
estimated parameters. The interferograms with obvious phase ramps were corrected using this model.
After that correction process, we assumed that most of the topography related phase errors (DEM error
and atmospheric delay) have been removed.

3.4.3. Atmospheric Phase Screen (APS) Removal

The residual phases for each interferogram were calculated by subtracting the estimated LP
deformation and topographic error phase from the differential interferograms and unwrapped by the
sparse Minimum Cost Flow (MCF) method [53]. The atmospheric phase was considered to consist
of two components: topography related and non-topographic related [54]. The two components
were estimated separately. The topography related component can be estimated by the M-estimated.
The non-topographic related atmospheric phase component is highly correlated in space but poorly in
time, which can be estimated from the resultant phase based on the low pass filtering operation in
spatial domain and high pass filtering operation in the temporal domain. After removing the APS
from each interferogram and applying additional least-square estimation, we obtained the time-series
deformation map.

3.4.4. Parameter Estimation

After identification of the CPs, all the CPs were connected to further remove the effects of the
atmospheric delay. The differences of those differential interferometric phase between the neighboring
CPs in the ith interferograms can be written as:

Δϕi
model = Δϕde f ,i(ΔR, ΔA) + Δϕtopo,i(Δτ) + Δεi (4)

where, Δϕi
model is the model phase difference of the neighboring two CPs in the ith interferograms.

ΔR and ΔA are the differential rate of linear deformation and seasonal deformation (Equation (1)),
respectively; Δϕtopo,i is the residual topographic phase due to the DEM error (Δτ); Δεi denotes the
phase noise.

The identified CPs were firstly connected based on the Delaunay triangulation network. Then,
the differential phase of all the edges were calculated, which is beneficial to further remove atmospheric
and orbital errors. The parameters ΔR, ΔA, and Δτ were optimally estimated for all of the edges
using the periodogram approach [24]. After the differential parameters of all the edges had been
estimated, a quality test was performed to reject links with temporal coherence lower than the threshold.
In our experiment, the temporal coherence the threshold value is 0.7. Moreover, the edges with the
length larger than 3 km were also rejected to mitigate the spatially-correlated phase errors, such as
atmospheric delay. Then, a reference point was selected and we used the least-squares estimation to
derive the parameters (R, A, and τ) of each point. We applied the temporal coherence as a weighting
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function during the inversion process. The estimated R and A are along the slant light of sight (LOS)
direction. We assumed that the detected deformation is in vertical direction, and the LOS estimated
deformation was converted to the vertical direction by dividing the cosine of the average incidence
angles. The specific procedures of the approach are illustrated in Figure 6.

 
Figure 6. The flowchart of the time-series InSAR approach.

4. Results and Analysis

4.1. InSAR Results

Using the time-series InSAR method described above, the estimated average ground deformation
rate along QTEC from the Wudaoliang to Tuotuohe sections using three C-band SAR stacks from
1997 to 2018 have been generated, including the deformation rate from 1997 to 1999 calculated with
ERS-1 data (see Figure 7a), the deformation rate from 2004 to 2010 calculated using ENVISAT data (see
Figure 7b), and the deformation rate from 2015 to 2018 calculated using Sentinel-1A data (see Figure 7c).
The reference point (red star, Figure 7) was selected at the railway bridge. Negative deformation
velocity represents an increasing distance with time away from the radar satellite; and positive
deformation velocity indicates a decreasing distance towards the radar satellite. About over 100 km of
the QTEC have been monitored. 40,760 CPs were detected for the ERS-1 along QTEC, and 125,522
CPs were detected for the ENVISAT, 217,096 CPs were selected for the Sentinel-1A. Figure 7d–f depict
the estimated DEM errors of ERS-1, ENVISAT, and Sentinel-1A, respectively. The estimated DEM
error ranged from −20 m to 10 m in most of the study area, which is consistent with the relative
accuracy of the SRTM DEM. Most of the CPs are corresponded to QTR and QTH embankments,
rocky mountains, and other artificial engineering structures. Before the 1999, the QTR and QTH were
not completely constructed and few CPs were detected for ERS-1 data. For the Sentinel-1A, more SAR
images are collected per year and more interferograms with less baseline were generated, so more CPs
were detected.
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.

Figure 7. Estimated average ground deformation rate along the QTEC in (a) 1997–1999, (b) 2004–2010,
and (c) 2015–2018 derived from the ERS-1, ENVISAT and Sentinel-1A data, respectively. The red star is
the reference point. (d–f) are the corresponding estimated DEM error.
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The ground deformation rate along the QTEC ranges from −10 to +10 mm/year during the
1997–1999 observation period derived from ERS-1 data. For the ENVISAT and Sentinel-1A experiments,
the estimated deformation velocity was primarily in the range of −20 to +10 mm/year. The spatial
distribution of the deformation before 2004 was quite different from those after 2004, and the
deformation rate of the ERS-1 was inaccurate due to the few SAR datasets and heterogeneous
spatial-temporal baseline.

In this study, we choose the QTR as an example to analyze the deformation of permafrost
engineering. Figure 8 shows the deformation rate profile of QTR (from points P1 to P1 in Figure 7c)
from 1997 to 2018. Through the above result, we found that before the opening of the QTR in 2006,
the ground deformation along was relatively minimal. After the opening of the QTR, the overall mean
deformation rate at the beginning and the end of QTR was within 10 mm/year. Four regions with
obvious ground deformation in recent year have been detected. Regions A (Beiluhe) and B (south
of Fenghuo Mountain) showed an obvious subsidence area, with the largest deformation rate being
15 mm/year. From 2015 to 2018, two more QTR section with ground deformation, Region C (Tuotuohe)
and D, were detected, with the maximum ground displacement velocity over 17 mm/year. In some
sections of the QTR, some cracks were found on the embankment shoulder and slopes through our
field investigation. Long term monitoring is necessary in those areas. The surface subsidence along
the embankment of QTR was primarily in the range of −20 mm/year to 5 mm/year. Human activities,
such as embankment construction and railway operation, disrupt the original hydrothermal balance of
the active layer, contributing to the obvious ground settlements [31].

Figure 8. Deformation rate profile along the QTR, from point P1 to point P2 in Figure 7c.
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4.2. Regional Analysis

Obvious deformation along QTEC was detected in three areas as enclosed by the red dashed ellipses
in Figure 7 corresponding to the regions prone to subsidence based on previous investigations [37,46],
i.e., Beiluhe, Fenghuo Mountain, and Tuotuohe areas. To analyze the deformation pattern along the
QTEC, the detected obvious ground deformation regions in Beiluhe (Figures 9 and 10), Fenghuo
Mountain (Figure 11), and Tuotuohe (Figure 12) are analyzed in detailed. A closer analysis of those
three areas is provided below.

4.2.1. Beiluhe

The Beiluhe basin region is in the tundra of Hoh Xil and is underlain by cold permafrost. The terrain
is relatively flat and most of the slope is less than 40◦. The soil moisture content in the surface is
high in the summer season and can reach 0.3 [55]. The vegetation coverage ranges from 0.3 to 0.9,
which would contribute to serious temporal decorrelation. The Beiluhe permafrost region has been
undergoing serious ground deformation in recent decades [5,7].

Figure 9 shows the mean LOS displacement rate in the Beiluhe permafrost region. Most of the
selected points were located on the embankment of QTR and QTH. Fewer CPs are located on the
alpine meadow areas due to serious temporal decorrelation. The primary displacement rate was in
the range of −6 to 5 mm/year during 1997–1999 from ERS-1 dataset. The ENVISAT and Sentinel-1A
results showed obvious ground deformation trend, with the larger deformation rate of −10 mm/year
and −15mm/year respectively. Most of the deformation points are in the south of the region, which is
consistent with the finding reported in previous studies [37,43].

Figure 9. Permafrost ground deformation rate at the Beiluhe region from InSAR in 1997–2018. (a) ERS-1
1997–1999, (b) ENVISAT 2004–2010, (c) Sentinel-1A 2015–2018, and (d) the corresponding Google map.

During the field investigations in 2014 and 2015, some surface cracks or fissures of about 20 cm
along the QTEC and alpine meadow regions were found in the Beiluhe regions, as shown in Figure 10a–c.
The long-term active layer thawing-freezing effect caused long cracks in the alpine meadow areas.
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Figure 10. Field photos with surface cracks and fissures in the Beiluhe region (March 2015). (a) Photo
taken at the point M1 in Figure 9d. (b) and (c) Photos taken at the point M2 in Figure 9d.

4.2.2. Southern of Fenghuo Mountain

The Fenghuo Mountain, with an average elevation of more than 5000 m, is to the southeast of
Hoh Xil, 380 km away from the city of Golmud. The 1.33 km long QTR Fenghuo Mountain tunnel was
successfully traversed on 19 October, 2002. Figure 7 shows that the ground along the QTR Fenghuo
Mountain tunnel was stable from 2004 to 2018 and no obvious deformation trend has detected. In the
south of Fenghuo Mountain, visible ground displacement was found per the InSAR results. Figure 11
shows the mean LOS displacement rate at the south of the Fenghuo Mountain region. The ERS-1
result in Figure 11a shows that the ground is stable and the displacement rate is mostly less than
−5 mm/year. During 2004–2010, the InSAR results showed obvious ground deformation in the north.
During 2015–2018, the surface deformation was more severe, and obvious deformations have occurred
throughout the region. The largest was −20 mm/year during 2015–2018. Most of the QTR embankment
showed a minor deformation rate.
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Figure 11. Permafrost ground deformation rate in the south of Fenghuo Mountain from InSAR during
1997–2018. (a) ERS-1 1997–1999, (b) ENVISAT 2004–2010, (c) Sentinel-1A 2015–2018, and (d) the
corresponding Google map.

4.2.3. Tuotuohe

The average elevation of Tuotuohe region is about 4780 m. The ALT ranges from 1 to 4 m. Figure 12
shows the average deformation rate of Tuotuohe region during 1997–2018 from the ERS-1, ENVISAT
and Sentinel-1A datasets. In the ERS-1 and ENVISAT deformation results (Figure 12a,b respectively),
no obvious deformation area was found. From 2015 to 2018, serious deformation was found in this
area, marked by red dotted ellipses. The largest deformation rate was over −20 mm/year per the
Sentinel-1A results. Subsiding regions were found around the embankment of the QTR, which will be
analyzed in the following section.

Figure 13 shows the time series displacement of the three selected points in this region. Because the
number of the ERS was small, the timeseries displacements were analyzed for ENVISAT and sentinel-1A.
The long-term subsidence was probably caused by melting of ground ice near the permafrost table [21].
The seasonal trend was remarkable, reflecting the effects of the thawing and freezing of the active
layer. Points A, B and C exhibited the accumulative deformation less than 40 mm from 1997 to 2010.
For the Sentinel-1A results, the time series displacement of the three points showed a similar seasonal
trend, with the deformation rates of −8.5 mm/year, −20.1 mm/year and −11.9 mm/year, respectively.
The accumulative displacement of Point B was 120 mm from 2015 to 2018. With time, deformations in
parts of the Tuotuohe regions intensified. An increasing deformation trend was found in this region.

167



Sensors 2019, 19, 5306

Figure 12. Permafrost ground deformation rate in the Tuotuohe region from InSAR during 1997–2018.
(a) ERS-1 1997–1999, (b) ENVISAT 2004–2010, (c) Sentinel-1A 2015–2018.

Figure 13. Time-series deformation of Point A, B, and C from 2004–2010 (ENVISAT) and 2015–2018
(Sentinel-1A). The hollow triangle indicates the time-series displacement using the InSAR method,
and the black polylines denote the modeled deformation.

4.3. Deformation Analysis

4.3.1. Deformation and Permafrost Thermal Regimes

In the last 2010s, the permafrost in QTP underwent serious degradation due to global warming.
During the period from 1961 to 2007, the observed air temperatures over the QTP showed a rising
trend, with a mean increasing rate of 0.037 ◦C/year [56]. Against the background of global warming,
the air temperatures over the QTP continued to rise. The ground deformation was a manifestation
of the degeneration of the permafrost. The mean annual ground temperature (MAGT) is often
used for permafrost thermal regime mapping on a large scale. The MAGT is correlated with the
elevation, local slope, soil properties, vegetation, location, and other factors [43]. Lu et al. [57] proposed
a relationship model between MAGT and the elevation, latitude and slope aspects from 29 boreholes

168



Sensors 2019, 19, 5306

along the QTEC from Beiluhe to Fenghuo Mountain. The multi-correlation coefficient is significant
with a value of 0.936. The study area in Lu et al. [57] is the same as our study site and the model is easy
to application. So, the model is used to monitor the MAGT and evaluate the stability of the permafrost
in our study site.

The modeled MAGT of the study site is shown in Figure 14. The modeled MAGTs were the
lowest for the Fenghuo Mountain areas with the temperature of less than −2.0 ◦C and the highest
for the river valley areas Tuotuohe with the temperature above 0 ◦C. For the Beiluhe basin areas,
the relatively warm MAGTs ranged from −2.0 to 0 ◦C. The modeled MAGTs are consistent with the
latest researches on MAGTs in QTP [58,59]. Comparing Figures 7 and 14, we found that the subsiding
regions are consistent with the ground with high MAGT value; the Tuotuohe and Beiluhe regions have
experienced undergone serious ground deformation in recent years. High MAGTs would contribute to
the acceleration of permafrost thawing and then increase the settlement of the ground.

Figure 14. Map of the modeled mean annual ground temperature (MAGT) along the QTEC from
Wudaoliang to Tuotuohe.

4.3.2. Deformation and Thaw Slumping

Thermokarst lakes have been developing along the QTEC as a result of increased human activity
and ongoing climate warming [60]. The thermokarst lakes and thaw slumping have been observed more
frequently in permafrost areas, such as the Beiluhe region and Fenghuo Mountain [61]. Thaw slumping
has occurred near the embankments of QTR and QTH. In the regions with obvious ground deformation
in our study area, some thaw slumps have been observed in the Tuotuohe region through the time
series SAR amplitude maps.

Figure 15 shows the time-series amplitude maps of the Tuotuohe area from 2007 to 2018, the same
area as that shown in Figure 12. At least three areas, marked as R1, R2 and R3, underwent thaw
slumping throughout the whole observation period. By comparing Figures 12 and 15, we found that
from 2007 to 2018, the areas experiencing thaw slumping in the three regions have increased by 0.435,
0.679, 0.317 km2, respectively (Table 3). The distributions of thaw slumps areas are consistent with
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the ground deformation. The formation of thaw slumps may be initiated by several processes that
expose ice-rich permafrost sloping terrain, which contributes to serious ground deformation [59].
The observed increase in areas of thermokarst lakes or thaw slumping regions indirectly validates our
retrieved ground deformation result.

 

Figure 15. The time-series amplitude maps of Tuotuohe area, the same location as that shown in
Figure 9: (a) 26 July 2007, (b) 30 July 2009, (c) 15 July 2010, (d) 5 August 2016, (e) 2 July 2018, and (f)
water regions between 26 July 2007 and 7 August 2018. The blue polygon indicates 26 July 2007 and the
red polygon indicates 7 August 2018. The yellow arrows indicate the water regions: R1, R2, and R3.

Table 3. Areas of regions R1, R2 and R3 between 2007-07-26 and 2018-08-07.

Region
Areas (km2)

26 July 2007 7 August 2018 Change

R1 0.023 0.458 0.435
R2 0.068 0.747 0.679
R3 0.244 0.561 0.317

5. Discussion

We think that most of the embankments and foundations of the permafrost along QTEC are
stable, but some sections are still experiencing obvious deformation. Based on the 20 years of InSAR
observations, at least three regions have been identified as undergoing serious ground deformation,
consistent with the previous studies in the QTP [30,31]. The ground deformation tends to expand.
The embankments of QTR and QTH around Fenghuo Mountains should be reinforced as should points
A, B and C near the Tuotuohe regions.

To evaluate the estimated results, the levelling measurement data should be collected. Because
it is difficult for us to collect the levelling data in QTEC region, the estimated results could not be
directly validated. However, several pieces of ground deformations evidences have been found in
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our field investigations that indirectly verifies the results. In the Beiluhe sections, visible fissures
have been found in the QTR subgrade and alpine meadow region (Figure 10). We also compared
our results with the previous studies in the QTP permafrost area (Table 1). In the Beiluhe area,
several studies have been conducted on the deformation of permafrost using InSAR. Chen et al. [31]
retrieved the ground deformation along the QTR in the Beiluhe area using C- and L-band small
SAR interferometry. The estimated surface deformation rate along embankment ranges from −20 to
+20 mm/year. Li et al., [32] monitored the surface deformation in the Beiluhe area using InSAR with
ENVISAT images. The deformation velocity near the QTR embankment was larger than −10 mm/year.
Similarly, our previous studies in the Beiluhe regions with TerraSAR-X ST mode images showed
the similar deformation trends, with the deformation rate ranging from −20 to 0 mm/year [37].
Our retrieved ground deformation rate is consistent with those studies. The small differences between
our findings and those reported by the previous studies are due to the following aspects: (1) different
band SAR images and the InSAR processing method were used, which contributed to this difference,
and (2) the observation periods were difference. Despite these case studies being conducted at different
time periods, the gradual subsidence trends were all in the order of centimeters per year, similar to our
reported subsidence trends. Most of the previous studies used the SAR images acquired before 2010.
In this study, the latest ground deformation along QTEC were obtained.

There are three limitations in this study. Firstly, due to the complexity of the permafrost thawing
and freezing process, monitoring the ground deformation using a physical equation was challenging.
Linear [29,46], cubic polynomial [31], seasonal [33,36,49], and equation with climatic factors [35] and
temperature [21,37,51] phase models have been used. These models have been applied successfully in
some permafrost regions. Many other factors, such as vegetation coverage, soil moisture, snow cover,
and solar radiation, should be considered in the future when monitoring the permafrost deformation.

Another limitation of the InSAR applications on permafrost regions is the temporal
decorrelations [31,46]. The permafrost surface experiences dynamic environmental conditions and
severe climate change from summer to winter season, which result in the dramatic temporal variations
in the ground surface. Many studies used the SAR datasets acquired in the winter season [21,51] or use
the L-band SAR images [62] to suppress the temporal decorrelations. Some methods and advanced
methods have been proposed to solve this difficulty. Daout et al., 2017 used a PCA approach to help
for the unwrapping in the decorrelated permafrost environment [39]. With the launches of satellites
with long-wavelength SAR sensors such as ALOS-2, and the shortening of the satellite revisit cycle,
and the development of advanced algorithm, InSAR technology (distributed scatterer interferometry,
DSI) [63], the temporal decorrelation will be largely suppressed.

Last, comparing the estimated deformation rate and DEM error term, we found that they are the
trade-offs for the ERS-1 images. We think at least two factors contribute to this. Firstly, a covariance
exists between the temporal and perpendicular baseline, especially for ERS-1 data. The smaller the
spatial perpendicular baseline, the higher the quality of the interferograms. The smaller the temporal
baseline, the higher the quality of the interferograms. However, in the permafrost areas, the quality
of the interferograms would be better between two images acquired in the same season with large
temporal baseline and some interferograms with small temporal baseline are rejected due to serious
temporal decorrelation. Secondly, in the permafrost region, the deformation may be correlated with
the topography. Most of the subsiding areas are the plane regions (Beiluhe and Tuotuohe). In the
mountainous areas, the deformation rate is small and stable. More SAR images with short revisit cycle
are needed in the future research.

6. Conclusions

In this paper, we presented an application using the time-series InSAR technique with multisensory
SAR datasets to monitor the permafrost ground deformation along the QTEC from 1997 to 2018.
A deformation model combining a linear subsidence term and seasonal deformation term was adopted
in the time-series InSAR method to exploit the permafrost ground deformation. Three deformation rate
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maps along a 100 km stretch of the QTEC were generated from 9 ERS-1, 39 ENVISAT, and 41 Sentinel-1A
images. The three independent InSAR measurement results showed a consistent deformation trend
and most of the ground surface along the QTEC was stable with the deformation rate ranging from
−10 to 10 mm/year. The conclusions are summarized as follows:

(1) Before the operation of the QTR, the QTEC from Wudaoliang to Tuotuohe was in stable with
a deformation velocity of less than −5 mm/year from ERS-1 images. The embankment of the
engineering structure was considered stable. The thawing and freezing of the active layer were
the main deformation driving-forces. After the QTR started operation and the human activities
increased, some sections of the QTEC were underwent obvious deformation, and the deformation
has increased more recently.

(2) From 2015 to 2018, obvious deformation was found in three areas: Beiluhe, southern of Fenghuo
Mountain, and Tuotuohe, with the large deformation rates of over −20 mm/year. Real-time
deformation monitoring must be conducted in these sections. The subsiding areas are consistent
with the permafrost areas with large MAGTs.

(3) This work demonstrated the potential of the time-series InSAR for the surveillance of the state of
QTEC on a large scale. Interferometric decorrelation is still one of the problems for time-series
InSAR monitoring of the ground deformation in permafrost region. With the proposed innovative
methods and newly-launched SAR systems with shorter revisit cycles (Sentinel-1A/1B and
TerraSAR-L), higher temporal sampling allows us to better characterize the ground deformation
related to the process of permafrost thawing and freezing.

In future work we will focus on investigating the three-dimension deformation in permafrost
regions using multiple satellites SAR images, and retrieving the geophysical parameters of permafrost
such as the active layer thickness, on a larger scale.
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Abstract: Gaofen-3 is a Chinese remote sensing satellite with multiple working modes, among which
the scanning synthetic aperture radar (ScanSAR) mode is used for wide-swath imaging. synthetic
aperture radar (SAR) interferometry in the ScanSAR mode provides the most rapid way to obtain a
global digital elevation model (DEM), which can also be realized by Gaofen-3. Gaofen-3 ScanSAR
interferometry works in the repeat-pass mode, and image pair non-synchronizations can influence
its performance. Non-synchronizations can include differences of burst central times, satellite
velocities, and burst durations. Therefore, it is necessary to analyze their influences and improve
the interferometric coherence. Meanwhile, interferometric phase compensation and rapid DEM
geolocation also need to be considered in interferometric processing. In this paper, interferometric
coherence was analyzed in detail, followed by an iterative filtering method, which helped to improve
the interferometric performance. Further, a phase compensation method for Gaofen-3 was proposed
to compensate for the phase error caused by the unsynchronized azimuth time offset of image pair,
and a closed-form solution of DEM geolocation with ground control point (GCP) information was
derived. Application of our methods to a pair of Gaofen-3 interferometric images showed that these
methods were able to process the images with good accuracy and efficiency. Notably, these analysis
and processing methods can also be applied to other SAR satellites in the ScanSAR mode to obtain
DEMs with high quality.

Keywords: Gaofen-3 satellite; ScanSAR; interferometry; interferometric coherence; phase
compensation; DEM geolocation

1. Introduction

Launched on 10 August 2016, Gaofen-3 is a Chinese high-resolution remote-sensing satellite with
a C-band multi-polarization synthetic aperture radar (SAR) payload [1]. Since then, it has been widely
used in ocean surveillance, land management, ship detection, disaster reduction, and so on [2–8]. It can
also be used with the SAR interferometry technique to extract a digital elevation model (DEM) of the
Earth. SAR interferometry utilizes image phases, which contain topographic information, to obtain
three-dimensional coordinates of the Earth’s surface. Because of its outstanding performance, it has
become an important DEM mapping technique.

Gaofen-3 works in a sun-synchronous orbit, and its altitude is about 755 km. The revisiting period
of Gaofen-3 is 29 days. Gaofen-3 can work in many working modes with different resolutions and
swath characteristics, such as stripmap mode, spotlight mode, and scanning synthetic aperture radar
(ScanSAR) mode. In the spotlight mode, the resolution is 1 m and the swath is 10 km × 100 km. In the
ultra-fine stripmap mode, the resolution is 3 m and the swath is 30 km. In the standard stripmap mode,
the resolution is 25 m and the swath is 130 km. In the narrow ScanSAR mode, the resolution is 50 m
and the swath is 300 km. In the wide ScanSAR mode, the resolution is 100 m and the swath is 500 km.
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Among these modes, the ScanSAR mode is important as it can achieve wide-swath SAR images. SAR
interferometry in ScanSAR mode can be used for wide-area topographic mapping because of this
capability. This technique is worthy of in-depth research as a rapid global DEM-mapping method. In
SAR interferometry, at least two images are needed, and this paper only considered two. The two SAR
images used for Gaofen-3 interferometry are achieved in a repeat-pass mode.

For spaceborne remote sensing toward the Earth, the ScanSAR mode was first used in Spaceborne
Imaging Radar-C (SIR-C) to acquire several experimental data. The SIR-C system was installed on a
space shuttle and the mission was carried out in 1994 [9]. The Canadian satellite RADARSAT launched
in 1995 was the first spaceborne SAR system with an operational ScanSAR mode [9]. Subsequently, SAR
interferometry in ScanSAR mode has been deeply studied and widely used. The concept of ScanSAR
interferometry was proposed in 1995 by Guarnieri [10]. He detailed ScanSAR interferometry and
verified the interferometric method using simulated ERS-1 SAR data [11]. Bamler presented a ScanSAR
interferogram using real RADARSAT data for the first time in 1999 [12], and in 2002, a complete
description of RADARSAT ScanSAR interferometry was published [13]. In 2000, the Shuttle Radar
Topography mission (SRTM) was carried out to map the world’s landmass. This project demonstrated
the rapid mapping ability of ScanSAR interferometry, which was able to map the landmass of the Earth
in 10 days [14]. SAR interferometry in ScanSAR mode has also been used in other satellites, such as
ENVISAT [15,16], ALOS [17], ALOS-2 [18], and TerraSAR-X [19]. The Gaofen-3 satellite can also work
in ScanSAR mode, and it is necessary to study its interferometry. In the above studies, the master and
slave images used the same observing parameters. However, in Gaofen-3 ScanSAR interferometry,
the images are unsynchronized and may have different pulse repetition frequencies (PRFs), velocities,
and burst durations. These differences, together with the burst central time difference, influence the
interferometric coherence. It is necessary to analyze these influences and present a corresponding
filtering method to improve the interferometric coherence. Between the master and slave images, the
unsynchronized azimuth time offset causes a phase error when there is no phase adjustment during
imaging; thus, interferometric phase compensation is needed. This compensation is a problem that has
not yet been studied. From the compensated interferometric phase, we can determine the DEM. In
DEM geolocation integrated with the absolute phase calculation and calibration, the most efficient
method is to determine a closed-form solution. It is necessary to derive a closed-form solution for
DEM geolocation combined with absolute phase calculation and phase error compensation.

This paper discusses several questions in Gaofen-3 ScanSAR interferometry, and is divided into
seven sections. Section 2 analyzes the interferometric performance of Gaofen-3 in ScanSAR mode.
Section 3 presents the iterative filtering method to improve interferometric performance. Section 4
proposes a compensation for the interferometric phase in Gaofen-3 ScanSAR interferometry. Section 5
derives a closed-form solution of DEM geolocation with ground control point (GCP) information.
Processing experiments with Gaofen-3 interferometric images in ScanSAR mode were made to verify
the analyses and methods in Section 6. Conclusions are drawn in Section 7.

2. Interferometric Model and Performance of Gaofen-3

The ScanSAR mode is a SAR mode with a width swath. By beam scanning, ScanSAR can observe
several sub-swathes simultaneously. These sub-swathes are located at different points along the
range direction. Together, they can cover a whole wide swath. Because only a single beam is used
in ScanSAR, the observing time must be separated and allocated to different sub-swathes. Thus, for
a single sub-swath, the observing signals are in the burst mode. During bursts, signal pulses are
transmitted to the sub-swath, but no signal pulses are used between bursts. In burst mode, the azimuth
resolution is decreased. ScanSAR can cover a width swath but with low resolution. Thus, ScanSAR is
suitable for rapid mapping, but not suitable for subtle measurement. ScanSAR interferometry is based
on the ScanSAR mode, so it has similar characteristics.

The ScanSAR interferometry of Gaofen-3 works in a repeat-pass mode. The two images achieved
from the two passes may be unsynchronized. In this paper, we used a pair of Gaofen-3 interferometric
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images over Kunlun Mountain. These images were achieved in ScanSAR mode for wide-swath remote
sensing. The main parameters are listed as Table 1.

Table 1. Main parameters of the Gaofen-3 interferometric images. PRF: pulse repetition frequency.

Parameters Master Image Slave Image

Central frequency (GHz) 5.4 5.4
Center look angle (◦) 34.7 34.7

PRF (Hz) 1185.637085 1190.421753
Satellite velocity (km/s) 7.5674 7.5679

Band width (MHz) 30 30
Pulse width (μs) 45 45

Pulse number 100 100

In the parameters, the PRFs and velocities are different. Burst durations are decided by PRFs and
pulse numbers, so they were also different. Because there was no burst synchronization between the
two images, a burst central time difference also existed. These unsynchronized characteristics influence
interferometric performance.

From the ScanSAR principle, the ScanSAR mode observes the Earth’s surface only in bursts. It is
different from the normal stripmap mode, which uses continuous observation. Thus, the interferometric
performance of the ScanSAR mode needs to consider these burst characteristics in the signal model.
The burst characteristics also include the above-mentioned unsynchronizations. This paper analyzed
the interferometric performance of the ScanSAR signal model [20]:

s(t, τ) =
N∑

n=0
rect

( t−Tc−nTd
Tb

)
·�D Vd(rp, tp)W(t− tp − tx) exp

[
− j 4π
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]2
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where t is the slow time, τ is the fast time, Vd is the scattering coefficient, W(·) stands for azimuth
envelope, a(·) stands for pulse envelope, rect(·) stands for rectangular function, rp is the vertical
distance from the orbit to target p, tp is the moment when the vertical sight line passing target p, tx is
the time offset caused by squint, vr is the equivalent velocity, Tc is the burst central time, Td is the burst
cycle time, Tb is the burst duration, and k is the pulse modulation rate.

The ScanSAR signal can be processed by the extended chirp scaling (ECS) algorithm [20–22]. In
this algorithm, the signal is first translated into the range-Doppler domain and processed along the
range dimension, and then processed by azimuth scaling and focusing. The range processing includes
chirp scaling, bulk range cell migration correction (RCMC), range compressing, and second-range
compressing. After range processing, we retrieve the processed signal in the range-Doppler domain.
Considering a single burst, the processed signal can be expressed as follows [20–22]:

S( ft, τ) =
�

D Vd(rp, tp)A exp(− j2π fttp)sinc
[
kTr

(
τ− 2rp

cD( ftre f )

)]
·Wa( ft − ftx)Wb( ft − ftc) exp

(
− j

4πrp f0D( ft)
c

)
drpdtp

(3)

where
sinc(x) = sin(πx)/(πx) (4)
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where ft is the azimuth frequency, A is a constant coefficient, Tr is the pulse duration of the transmitted
signal, and f0 is the central frequency of the chirp signal.

By azimuth scaling processing, the second phase term of the range processed signal can be
transformed as follows:
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where rpre f is the referenced range distance.
In order to focus the signal along the azimuth dimension, the signal can be processed by the

spectral analysis (SPECAN) algorithm [20,23]. According to the algorithm, the signal needs to be
transformed into the time domain. In this domain, the signal can be dechirped by multiplying
exp( jπkat2). The dechirped signal is expressed as [20,23]:
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The signal can then be transformed by Fourier-transform (FT) along the azimuth dimension. The
transformed signal is [20,23]:
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By multiplying exp( jπkat′2), the azimuth phase of the signal can be compensated. This is the last
step of the SPECAN algorithm. At this stage, we can acquire the focused image, the expression of
which can be approximated by the following equation [20,23]:

S(t′, τ) =
�

D Vd(rp, tp)A′sinc
[
kTr

(
τ− 2rp

cD( ftre f )

)]
W

(
Tc − tp − tx

)
exp

(
− j

4πrp f0
c

)
· exp

[
jπka(t′ − tp)

2
]

exp
[
− j2πka(t′ − tp)(Tc − tp)

]
sinc

[
kaTb

(
t′ − tp

)]
drpdtp

(11)

In ScanSAR interferometry, the interferometric image pair can also be expressed as Equation (11)
with slow time ti, fast time τi, target time tpi, target range rpi, burst central time Tci, Doppler modulation
rate kai, burst duration Tbi and equivalent velocity vri instead of t′, τ, tp, rp, Tc, ka, Tb, and vr, where
the subscript “∗i” means the image index. “i = 1” indicates the master image and “i = 2” means the
slave image.
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After image co-registration, the slave image can be expressed as:

S2p(t1, τ1) =
�

D Vd(rp1, tp1)A′sinc
[
kTr

(
τ1 − 2rp1

cD( ftre f )

)]
sinc

[
ka2vr1

vr2
Tb2

(
t1 − tp1

)]
W

(
Tc2 − tp2 − tx

)
· exp

(
− j

4π f0rp2
c

)
exp

[
jπ

ka2v2
r1

v2
r2

(t1 − tp1)
2
]

exp
[
− j2π

ka2v2
r1

v2
r2

(t1 − tp1)(
vr2Tc2

vr1
− tp1)

]
drp1dtp1

(12)

Then we substitute Equations (11) and (12) into the expression of interferometric coherence [24,25]:

γ(t1, τ1) =
< S1(t1, τ1) · S∗2p(t1, τ1) >√

< S1(t1, τ1) · S∗1(t1, τ1) >< S2p(t1, τ1) · S∗2p(t1, τ1) >
(13)

We can get:
γ(t1, τ1) = γa(t1, τ1) · γb(t1, τ1) (14)

γa(t1, τ1) =
{∫

T exp
[
− j2πka1(t1 − tp1)(Tc1 − vr2Tc2

vr1
)
]
sinc

[
ka1Tb1

(
t1 − tp1

)]
· sinc

[
ka1

vr2Tb2
vr1

(
t1 − tp1

)]
dtp1

}/√∫
T sinc2

[
ka1Tb1

(
t1 − tp1

)]
dtp1/√∫

T sinc2
[
ka1

vr2Tb2
vr1

(
t1 − tp1

)]
dtp1

(15)

γb(t1, τ1) =

{∫
R sinc2

[
kTr

(
τ1 − 2rp1

cD( ftre f )

)]
exp

(
− j

4π f0(rp1−rp2)

c

)
drp1

}
/{∫

R sinc2
[
kTr

(
τ1 − 2rp1

cD( ftre f )

)]
drp1

} (16)

where γb is the coherence caused by the baseline and γa is the coherence caused by burst central time
difference. γb is the same as the corresponding coherence in stripmap mode, and γa can be simplified
as follows:

γa(t1, τ1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min(Tb1, T′b2)/

√
Tb1T′b2, |Tc1 − T′c2| ≤ |Tb1−T′b2|

2
1√

Tb1T′b2

[
min(Tb1, T′b2) −

(
|Tc1 − T′c2| − |Tb1−T′b2|

2

)]
, Tb1+T′b2

2 > |Tc1 − T′c2| > |Tb1−T′b2|
2

0, |Tc1 − T′c2| ≥ Tb1+T′b2
2

(17)
where T′c2 = vr2Tc2/vr1 and T′b2 = vr2Tb2/vr1.

From Equation (17), we can see that the interferometric coherence is influenced by the burst central
time difference |ΔT| =

∣∣∣Tc1 − T′c2

∣∣∣. The difference needs to be kept low relative to the burst duration.
The interferometric coherence is also influenced by the burst duration difference as a secondary
factor. The velocity difference and PRF difference relate to the burst central time difference and burst
duration difference.

3. Increasing the Interferometric Coherence by Iterative Filtering

From the analysis of ScanSAR interferometry above, when the burst central time difference is
non-negligible, the reduction of coherence should be considered. In this situation, the interferometric
coherence can be increased by signal filtering.

In this method, the focused images should be transformed to the signal forms expressed in
Equation (8). After that, the echoes from each target in the corresponding signal possess the same
azimuth range, which facilitates the application of the filtering method. This filter can be expressed as:

f (t) = rect
[

1
min(Tb1, T′b2) − |ΔT|+ |Tb1 − T′b2|/2

(
t− Tc1 + T′c2

2
± |Tb1 − T′b2|

4

)]
(18)
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where the sign ‘±’ is determined by the property of Tc1 − T′c2 and Tb1 − T′b2 to be positive or negative.
When using this filter, the azimuth time array of the slave image should be calibrated as the time array
of the master image.

Multiplying the transformed signals by this filter, the burst central times of the master and slave
images become equal, leading to an increased coefficient γa.

In most cases, we do not actually know the burst central time difference, and so the filter is not
precise. In this situation, iterative searches are required to find an accurate filter. The steps are shown
in the following diagram (Figure 1).

Figure 1. The iterative filtering method diagram.

In these steps, the master and slave images are first inversely processed to the signals in Equation
(8). The signals can then be filtered to remove the signal parts irrelevant to interferometry. The selection
of filters depends on the coherence value. We should choose the filter with the best coherence. After
signal filtering, we can continue interferometric processing. The interferometric phase can then be
obtained with better coherence.

During the ScanSAR signal processing, some other windows can also increase interferometric
coherence (such as the Hanning window). Thus, in the iterative filtering method, a combined filter
fc(t) = f (t)·hanning(t) can be used to get better interferometric performance. In the combined filter,
f (t) is the above-mentioned rectangular window, and hanning(t) is a Hanning window.

4. Phase Compensation of Gaofen-3 Interferometry

It was stated in Section 2 that a compensation phase exp( jπkat′2) is required in the standard steps
of ScanSAR imaging for interferometry. However, this step is not carried out because the Gaofen-3
ScanSAR images are used mainly with their amplitude information [26]. Thus, the phase exp( jπkat′2)

182



Sensors 2019, 19, 4689

is not important in this situation. However, these images can still be used for interferometry if further
corresponding processing is done. In this section, we analyzed the influence of this characteristic and
designed a phase compensation method for the images.

In practical images, there is an unsynchronized azimuth time offset Δt between the master and
slave images. After range processing and azimuth scaling for a ScanSAR echo, considering Δt, the
signal in the time domain can be expressed as follows:

S(t, τ) =
�

D Vd(rp, tp)Asinc
[
kTr

(
τ− 2rp

cD( ftre f )

)]
W

(
t− tp − Δt + ftx

ka

)
·rect

[
1

Tb

(
t− tp − Δt + ftc

ka

)]
exp

(
− j

4πrp f0
c

)
exp

[
− jπka(t− tp − Δt)2

]
drpdtp

(19)

Multiplied by exp( jπkat2) and transformed by FT, the focused image is:

S(t′, τ) =
�

D Vd(rp, tp)A′sinc
[
kTr

(
τ− 2rp

cD( ftre f )

)]
W

(
Tc − tp − tx

)
exp

(
− jπka(tp + Δt)2

)
· exp

(
− j

4πrp f0
c

)
exp

[
j2πka(tp + Δt− t′)(tp + Δt− ftc

ka
)
]
sinc

[
kaTb

(
t′ − tp − Δt

)]
drpdtp

(20)

If the image is compensated by a multiplying factor exp( jπkat′2), we can describe the image as:

S(t′, τ) =
�

D Vd(rp, tp)A′sinc
[
kTr

(
τ− 2rp

cD( ftre f )

)]
W

(
Tc − tp − tx

)
exp

(
− j

4πrp f0
c

)
exp

[
jπka(t′ − tp − Δt)2

]
exp

[
− j2πka(t′ − tp − Δt)(− ftc

ka
)
]
sinc

[
kaTb

(
t′ − tp − Δt

)]
drpdtp

(21)

From this equation, we can see that the azimuth time offset Δt can be handled by azimuth shifting,
and the interferometric phase will not be influenced.

However, if the phase term is not compensated, the interferometric image S1(t1, τ1) · S∗2p(t1, τ1)

will have an uncompensated phase term:

P(t1) = exp
(
j2πka1t1Δt− jπka1Δt2

)
= exp( j2πka1t1Δt) · exp

(
− jπka1Δt2

)
(22)

This phase term is useless and will influence the interferometric phase. It can be divided into two
terms: exp(− jπka1Δt2) is a constant term, and only the linear phase term exp( j2πka1t1Δt) is needed
for compensation.

However, this compensation is not sufficient, because the velocities and PRFs are different in
Gaofen-3 interferometric images. In this situation, Δt is a variant along the azimuth direction. Without
considering high orders, variant Δt can be approximated as Δt = Δt0 + ktt1. The main term of P(t1)

then becomes exp( j2πka1t1Δt0) · exp( j2πka1ktt2
1). In the main term, exp( j2πka1t1Δt0) is compensated in

the above-mentioned step as a linear phase term, so the second-order sub-term exp( j2πka1ktt2
1) should

be compensated along the azimuth direction sequentially.

5. DEM Geolocation of Gaofen-3 Interferometry

The above sections discussed the coherence of Gaofen-3 ScanSAR interferometry, and proposed
several methods to solve unsynchronized problems. Together with these discussions, the interferometric
processing steps can be expressed as Figure 2.
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Figure 2. The interfeometric processing diagram. DEM: digital elevation model.

In the processing, the interferometric images are iteratively filtered to increase their coherence.
After co-registration and interferometry, an interferometric phase image can then be achieved. The
phase image should be processed by flat Earth removal, phase denoising, and phase unwrapping in
sequence. After phase compensation and DEM geolocation, a Gaofen-3 DEM can then be retrieved.

DEM geolocation is the last step of interferometric processing. Using the compensated unwrapped
phase together with the system geometric parameters and the payload parameters, the DEM of the
Earth’s surface can be extracted. This processing is based on three equations [27,28]:

v · (T− S) = λ fdcrs/2 (23)

|T− S| = rs (24)

|T− Sb| = rs + λφ/4π (25)

where v =
(
vx, vy, vz

)
is the velocity of the satellite, T =

(
Tx, Ty, Tz

)
is the position of the target,

S =
(
Sx, Sy, Sz

)
is the position of the satellite in the first pass, and Sb =

(
Sbx, Sby, Sbz

)
is the position of

the satellite in the second pass. These four vectors are defined in Earth-centered fixed coordinates.
λ is the wave length, fdc is the Doppler central frequency, rs is the range distance, and φ is the
interferometric phase.

By solving Equations (23)–(25), the target coordinates T can be obtained. One of the calculation
methods able to solve the equations involves using the Newton iteration method, but this method
remains time intensive. In a Gaofen-3 interferometric situation, another calculation method requires a
closed-form solution to be acquired [28,29]. Because this kind of method does not use iteration, its
calculation efficiency is better. According to the Gaofen-3 parameter settings, we can describe the
closed-form solution as follows:

T = (c1xTz + c0x, c1yTz + c0y, Tz), Tz = (−cb ±
√

c2
b − 4cacb)/(2ca) (26)

where the sign “±” is determined by the satellite’s looking direction. In Equation (26), the parameters
can be expressed as [28]:

ca = c2
1x + c2

1y + 1, cb = 2c1xc0x + 2c1yc0y − 2Sxc1x − 2Syc1y − 2Sz,

cc = c2
0x + c2

0y − r2
s − 2Sxc0x − 2Syc0y + S · S (27)
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The parameters c0i and c1i (i = x, y) in the above equations are expressed as:

c0i = m0ir1 + m1ir2, c1i = −m0ivz −m1i(Sz − Sbz) (28)

where

M =

[
m0x m1x
m0y m1y

]
=

[
vx vy

Sx − Sbx Sy − Sby

]−1

(29)

r1 = λ fdcrs/2 + v · S, r2 =
{
S · S− Sb · Sb + [λφ/(4π)]2 + λφrs/(2π)

}
/2 (30)

During processing, the absolute interferometric phase φ is required. However, from the
compensated unwrapped phase, only the relative phase can be achieved. A system phase φ0

should be compensated to the relative phase. We use GCPs to determine the phase φ0. The point
heights can be derived from known DEM data, such as SRTM DEM. The height of a GCP can be
expressed as:

|T| = h (31)

Combining and solving Equations (23), (24), and (31), we can find coordinates T of a GCP. The
closed-form solution of the equations is the same as Equation (26), except that some parameters should
be replaced:

M =

[
m0x m1x
m0y m1y

]
=

[
vx vy

Sx Sy

]−1

(32)

r2 = (S · S + h2 − r2
s )/2 (33)

Substituting the GCP coordinates into Equation (25), we can find the absolute interferometric
phase φ of a GCP. Subtracting the relative interferometric phase from φ, phase φ0 can be obtained.
Phases φ0 from multiple GCPs can be then averaged. We can then acquire the absolute interferometric
phase image of all the points by compensating the average phase φ0.

In the above method, system errors are not considered. In presence of some system errors, the
system phase φ0 varies along the range and azimuth directions, and it can be expressed as φe(t1, r1).
From the system phases of GCPs, some system errors can be estimated and then compensated for,
including the azimuth phase error discussed in Section 4. Thus, the phase compensation discussed in
Section 4 can be combined with the DEM geolocation processing.

The system phase φe(t1, r1) can be expressed as:

φe(t1, r1) = φ0 + kae1t1 + kae2t2
1 + kre1r1 + kc1t1r1 + kc2t2

1r1

kae1 = 2πka1Δt0 + kab1, kae2 = 2πka1kt + kab2
(34)

where kre1, kab1, kab2, kc1, and kc2 are phase error coefficients caused by baseline error.
If we obtain the system phase values of multiple GCPs, we can estimate the compensation

coefficients using the least square method:

K = (P
′
P)
−1

P
′
Φe (35)

K = (φ0, kae1, kae2, kre1, kc1, kc2)
′, Φe = (φe1, · · · ,φei, · · · ,φeN)

′ (36)

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 t11 t2
11 r11 t11r11 t2

11r11

· · · · · · · · · · · · · · · · · ·
1 t1i t2

1i r1i t1ir1i t2
1ir1i

· · · · · · · · · · · · · · · · · ·
1 t1N t2

1N r1N t1Nr1N t2
1Nr1N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(37)

where the subscript “*i ” means the GCP index, and “N” is the number of GCPs.
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With the estimated compensation coefficients, we can calculate the system phase φe of each
master image pixel according to Equation (34). The compensated phase image can then be acquired by
compensating phase φe; at the same time the influence of azimuth phase error and baseline error can
be weakened.

Based on the above discussions, GCPs are used to acquire absolute phase and compensate phase
error. Because the GCP data are their three-dimensional coordinates in the geodetic coordinates
system, we still need to find the positions of the GCPs in the phase image before the above geolocation
processing. First, the GCP coordinates should be transformed from the geodetic coordinates to
Earth-centered fixed coordinates. Then, for each GCP, its azimuth time tp and range distance rs need to
be calculated. These two parameters can determine the position of each GCP in the phase image.

In the calculation of a GCP’s tp and rs, the corresponding satellite position can be approximated as
S = S0 + v0tp, where S0 and v0 are the satellite position and velocity at the reference time t0. Thus, we
can calculate the azimuth time tp as follows:

tp = (−pb ±
√

p2
b − 4papc)/(2pa) (38)

pa = |v0|2 − 4|v0|4/(λ2 f 2
dc), pb = −2 · v0 · (Tp − S0) + 8|v0|2 · v0 · (Tp − S0)/(λ2 f 2

dc),

pc =
∣∣∣Tp − S0

∣∣∣2 − 4 · [v0 · (Tp − S0)]
2/(λ2 f 2

dc)
(39)

where the sign “±” is determined by the squint angle of a GCP and Tp is the coordinates of the GCP.
The approximation “S = S0 + v0tp” does not consider the velocity variation. In order to decrease

this influence, we must make a new approximation as S = S02 + v02tp2, where S02 and v02 are the
actual satellite position and velocity at the reference time t0 + tp. We repeat the calculation as Equations
(38) and (39), and a new azimuth time tp2 can thus be obtained. With the same method, we can acquire
a third new azimuth time tp3. Thus, the final azimuth time “tp f = tp + tp2 + tp3”, which refers to t0, can
be determined. Range distance rs at the azimuth time tp f can be calculated with Equation (24). Thus,
the GCP can be located in the phase image. From the GCP coordinates, we can obtain the approximate
height of the nearest grid point. The above geolocation and compensation can then be carried out.

6. Results and Discussion

The above sections analyzed the coherence of ScanSAR interferometry and studied several
problems in Gaofen-3 processing. In this section, we carried out a simulation and practical
interferometric processing to explain the analysis and processing methods. For interferometric
processing, we used the above-mentioned Gaofen-3 interferometric images over Kunlun Mountain.
From the interferometric processing, the iterative filtering method, phase compensation, and DEM
geolocation were verified.

6.1. Iterative Filtering Method

In Section 2, we discussed the interferometric performance related to the burst central time
difference and burst duration difference. The relationship between the burst central time, burst
duration difference, and the coherence is shown in Figure 3.
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Figure 3. The relationship between the ratio of burst central time difference to shorter burst duration
and coherence.

In Figure 3, “k” is a coefficient and k = T′b2/Tb1, which means the ratio of burst durations. We
express the ratio of burst central time difference to shorter burst duration as “kc”. Considering k = 1,
the coherence is only influenced by the burst central time difference. In this situation, if kc = 0, the
coherence is not influenced. With an increase of kc, the coherence decreases linearly. When kc exceeds
1—that is to say, when the burst central time difference exceeds the burst duration—the coherence
is reduced to 0. The interferometric processing will fail in this decorrelation situation. Considering
k = 1.2, the coherence will be influenced by burst duration difference. In this situation, when kc is
within 0–0.1, the coherence value is 0.91 and is mostly lower than that in “k = 1” situation. When kc is
from 0.1 to 1.1, the coherence decreases linearly, but it is better than that in the k = 1 situation. When
kc exceeds 1.1, the coherence reduces to 0. For the images in this paper, k was near 1.004. Thus, the
coherence of these images was mainly influenced by the burst central time difference.

In Gaofen-3 interferometric images, it is difficult to maintain a zero burst central time difference.
As a consequence, interferometric coherence will be more or less influenced. When the burst central
time difference is relatively large, the iterative filtering method described in Section 3 can be used to
alleviate the influence.

Two interferometric images, shown in Figure 4, were used to verify the filtering method. These
two interferometric images were cut from the Kunlun Mountain images with a relatively big burst
central time difference.
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(a) (b) 

Figure 4. Gaofen-3 SAR images. (a) The master image; (b) the slave image.

Filtering the two images with different burst central time differences |ΔT|, we found different
coherence values after interferometry. This coherence was estimated from the interferometric images.
|ΔT| versus coherence is shown in Figure 5.

(a) 

Figure 5. Cont.
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(b) 

Figure 5. |ΔT| versus coherence processed from the two images shown in Figure 4. (a) Results when
using rectangular filters; (b) results when using combined filters.

From Figure 5, when we used the rectangular filters, and |ΔT| used in the filters reached 70 pixels,
the interferometric coherence increased by 0.05. When we used the combined filters, and |ΔT| used in
the filters reached 70 pixels, the interferometric coherence increased by 0.02. With these two kinds of
filters, the best |ΔT| values were all 70 pixels. With the rectangular filters, the decorrelation caused by
the burst central difference was 70/582 = 0.12, and the coherence caused by other factors was 0.55, where
582 was the azimuth band sample. Thus, the coherence increases by 0.12× 0.55 = 0.066 theoretically,
and the experiment result of 0.05 was close to the theoretical value. From Figure 5b, when the burst
central time difference used in the combined filters was 0 pixels, the coherence was better than that
of the value shown in Figure 5a. This is because the Hanning window decreased the amplitude of
the unsynchronized signal part. When the burst central time difference used in the combined filters
was 70 pixels, the coherence was better than that of the value shown in Figure 5a. This means that the
Hanning window increased the coherence. Thus, it was suitable to use combined filters in the iterative
filtering method.

6.2. Phase Compensation

In Gaofen-3 ScanSAR interferometry, as discussed in Section 4, a linear phase term and a
second-order phase term should be compensated along the azimuth direction. By first applying
this compensation method with a linear phase term on a pair of Gaofen-3 interferometric images
(Figure 6a,b), we can get a compensated interferometric phase, as shown in Figure 6. These images
were also cut from the Kunlun Mountain images.
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(a) 

 
(b)  

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. The linear compensation results. (a) The master image; (b) the slave image; (c) the original
denoised interferometric phase (rad); (d) the compensated denoised interferometric phase (rad); (e) the
original unwrapped phase after flat Earth removal along the range direction (rad); (f) the compensated
unwrapped phase after flat Earth removal along the range direction (rad).
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After interferometry, the original denoised interferometric phase is shown in Figure 6c. Figure 6d
shows the compensated denoised interferometric phase, Figure 6e shows the original unwrapped phase
after flat Earth removal along the range direction, and Figure 6f shows the corresponding compensated
phase. From these figures, we can see that the compensation solved the phase’s linear slope along
azimuth direction.

In the above figures, the velocity of the master image was 7.5674 km/s and its PRF was 1185.6 Hz,
while the velocity of the slave image was 7.5679 km/s and its PRF was 1190.4 Hz. As discussed in
Section 4, these differences resulted in a second-order term along the azimuth direction. Compensating
the Gaofen-3 interferometric phase with a second-order term, we obtained the following results.

In these figures, Figure 7a shows the second-order compensated denoised interferometric phase,
and Figure 7b shows the second-order compensated unwrapped phase after flat Earth removal along
the range direction. From the results, second-order compensation was able to solve the phase curving
effect along the azimuth direction.

 
(a) 

 
(b) 

Figure 7. The second-order compensation results. (a) The second-order compensated denoised
interferometric phase (rad); (b) the second-order compensated unwrapped phase after flat Earth
removal along the range direction (rad).

In the interferometric phase, we found periodic lines. These lines were located at the areas where
different bursts intersected. The burst central time difference in these areas neared the burst cycle
time. Thus, based on the discussion in Section 2, the coherence in these areas was 0 and normal
interferometric phase stripes could not be formed. This influence can be overcome by bursts aligned
between the master and slave images before ScanSAR burst splicing. This aligning method is the
best method. However, if we cannot obtain the interferometric images before burst splicing, the
interpolation method can be used to fill in the invalid areas.

6.3. DEM Geolocation

From the above processing, a compensated unwrapped interferometric phase image was achieved.
Subsequently, the satellite position and velocity during the observing time, as well as the Doppler
central frequency and the target range distance were obtained from the Gaofen-3 information file.
We then chose several GCPs in the master image. GCP height information can be obtained from a
known DEM. According to the method in Section 5, we obtained the DEM of the tested Earth’s surface
as follows.
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In Figure 8, Figure 8a shows the Gaofen-3 DEM, with imaging coordinates covering a 9 km (range)
× 20 km (azimuth) area, and Figure 8b shows the top view of the Gaofen-3 DEM. The geographical
characteristics of the DEM were coincident with those of the master image. Compared with the SRTM
data of the same area (Figure 9), the achieved DEM matched the SRTM DEM (a 30 m × 30 m grid) [30].

 
(a) 

(b) 

Figure 8. Gaofen-3 DEM after geolocation. (a) Gaofen-3 DEM in imaging coordinates; (b) top view of
the Gaofen-3 DEM (m).

Figure 9. Shuttle Radar Topography mission (SRTM) DEM of the same area (m).
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In order to evaluate the Gaofen-3 DEM quantitatively, we chose 10 check points from the SRTM
DEM, marked with “+” in Figure 9. The height comparisons of the Gaofen-3 DEM and the SRTM DEM
for these check points are listed in Table 2.

Table 2. Height comparisons of the Gaofen-3 DEM and the SRTM DEM for check points.

Index 1 2 3 4 5 6 7 8 9 10

Gaofen-3 DEM (m) 4496 4466 4489 4593 4584 5090 5061 4911 4683 4643
SRTM DEM (m) 4472 4454 4533 4630 4597 5050 5029 4923 4657 4633

Height difference (m) 24 12 −44 −37 −13 40 32 −12 26 10

As seen in Figures 8 and 9, the Gaofen-3 DEM was coarser than the SRTM DEM. As shown in
Table 2, the average height precision of the Gaofen-3 DEM was about 25 m, and the maximum height
error of the check points reached 44 m (absolute value). Height errors of the SRTM DEM samples were
lower than 16 m. These results occurred because of the differences between the Gaofen-3 and SRTM
interferometry. The Gaofen-3 DEM was acquired in ScanSAR mode and its grid was about 160 × 160 m,
while the SRTM DEM was acquired in stripmap mode, and its grid was about 30 × 30 m; Gaofen-3 has
a coarser grid. Gaofen-3 features repeat-pass interferometry and SRTM uses single-pass interferometry,
so the coherence of Gaofen-3 should theoretically be lower than that of SRTM. Consequently, the
Gaofen-3 DEM’s quality was in accord with Gaofen-3′s system characteristics. As the geographical
characteristics of these DEMs were consistent, the accuracy of the Gaofen-3 DEM was verified.

By applying the above-mentioned interferometric processing to a wide area, we obtained the
Gaofen-3 DEM as Figure 10.

 

Figure 10. Gaofen-3 DEM covering a 70 km (range) × 35 km (azimuth) area (m).

The produced DEM was also of Kunlun Mountain, covering a 70 (range) × 35 km (azimuth) area.
ScanSAR interferometry is suitable for this kind of wide-area mapping. Further, wide-area mapping
can be dealt with by block processing and splicing, and the above 70 × 35 km area can be treated as
a block.

7. Conclusions

This paper discussed interferometric analyzing and processing methods for Gaofen-3 images in
ScanSAR mode. The conditions for ScanSAR interferometry are more rigorous than those of normal
stripmap SAR interferometry. We analyzed the coherence in ScanSAR interferometry in detail to
determine these conditions. From the analysis, the burst central time difference between the master
and slave images was shown the coherence. In order to reduce the influence, we presented an iterative

193



Sensors 2019, 19, 4689

filtering method able to remove the signal parts irrelevant to interferometry, so as to increase the
coherence. The analysis and the filtering method can also be influenced by burst duration difference
and velocity difference, which should be incorporated in the analysis and filters. In Gaofen-3 ScanSAR
interferometry, the phase error along the azimuth direction is severe. We analyzed the cause of the
phase error, and correspondingly proposed a linear phase compensation and a second-order phase
compensation to determine the right interferometric phase. In the DEM geolocation of Gaofen-3
interferometry, we derived a closed-form solution with GCP information. Without complex iteration in
the method, a closed-form solution was able to efficiently retrieve a DEM of the Earth’s surface. These
methods were applied to Gaofen-3 ScanSAR images and returned good results. These methods could
also help to realize ScanSAR interferometry for other similar satellites.
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Abstract: The expansion and improvement of synthetic aperture radar (SAR) technology have greatly
enhanced its practicality. SAR imaging requires real-time processing with limited power consumption
for large input images. Designing a specific heterogeneous array processor is an effective approach to
meet the power consumption constraints and real-time processing requirements of an application
system. In this paper, taking a commonly used algorithm for SAR imaging—the chirp scaling
algorithm (CSA)—as an example, the characteristics of each calculation stage in the SAR imaging
process is analyzed, and the data flow model of SAR imaging is extracted. A heterogeneous array
architecture for SAR imaging that effectively supports Fast Fourier Transformation/Inverse Fast Fourier
Transform (FFT/IFFT) and phase compensation operations is proposed. First, a heterogeneous array
architecture consisting of fixed-point PE units and floating-point FPE units, which are respectively
proposed for the FFT/IFFT and phase compensation operations, increasing energy efficiency by
50% compared with the architecture using floating-point units. Second, data cross-placement and
simultaneous access strategies are proposed to support the intra-block parallel processing of SAR
block imaging, achieving up to 115.2 GOPS throughput. Third, a resource management strategy for
heterogeneous computing arrays is designed, which supports the pipeline processing of FFT/IFFT
and phase compensation operation, improving PE utilization by a factor of 1.82 and increasing energy
efficiency by a factor of 1.5. Implemented in 65-nm technology, the experimental results show that
the processor can achieve energy efficiency of up to 254 GOPS/W. The imaging fidelity and accuracy
of the proposed processor were verified by evaluating the image quality of the actual scene.

Keywords: heterogeneous array; SAR imaging; data cross-placement; computing resource management

1. Introduction

Aerospace synthetic aperture radar (SAR) can be all-time and all-weather to obtain high-precision
microwave images and other value-added products over large areas, and it has an extensive range
of applications in remote sensing, environmental monitoring, geographical mapping, war zone
surveillance, precision guidance, and reconnaissance [1–4].

Extensions and modifications of the SAR technology have significantly increased its practicality
and applications. The demand for high-resolution and wide-swath (HRWS) SAR imaging is growing,
especially in the areas of ocean observation, geological survey, and environmental protection. In 1978,
the United States launched the first spaceborne SAR named Seasat-1. It is a satellite specifically
designed for telemetry of the Earth’s oceans, and is aimed at realizing the possibility of global satellite
monitoring of the oceans and determining the system requirements for marine remote sensing satellites.
RADARSAT-1 was successfully launched in Canada in 1995 [5]. It not only provided Canada with a
large amount of all-weather and all-time SAR data, but also provided useful information for commercial
and scientific users in disaster management, agriculture, mapping, hydrology, forestry, oceanography,
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ice research, and coastal monitoring. In January 2006, Japan launched the Advanced Land Observing
Satellite (ALOS) [6]. The Phased Array type L-band Synthetic Aperture Radar (PALSAR) that it carried
was an L-band SAR sensor that is not affected by atmospheric conditions, cloud cover, and other
related conditions, so it can be used for ground observations around the clock. In June 2007, the Terra
SAR-X was launched by the German National Space Center. Its X-band SAR radar reliably provided
high-resolution weather conditions and wide-area radar images with superior geometric accuracy over
any other spaceborne SAR sensor [7]. Moreover, for both civil and military applications, it is desired to
monitor moving targets, including ground moving target indication/ground moving target imaging
(GMTI/GMTIm) [8,9].

For SAR processing systems, SAR imaging time accounts for most of the processing time, and
directly brings a significant impact on system throughput and rapid response capability. The imaging
delay of SAR will seriously affect the subsequent image processing, such as content analysis, risk
diagnosis, and feature extraction. SAR imaging efficiency plays a very important role in the SAR system
platform, and it can directly affect the throughput and rapid response capability of the entire platform.

Spaceborne and airborne real-time SAR imaging is the most direct and effective real-time imaging
implementation approach, which can quickly provide SAR image data for SAR applications while
significantly reducing the communication burden of air-to-ground data links [10]. At the same time,
the working environment of spaceborne and airborne imaging systems is harsh, and the power
consumption of the processor is also severely limited. Therefore, real-time and low power consumption
are two essential items that must be met by spaceborne/airborne SAR imaging processors.

Since SAR imaging requires a large amount of two-dimensional parallel computing, it is difficult
for a single multi-core central processing unit (CPU) to meet its real-time requirements. The SAR
imaging scheme with multiple CPU nodes has high power consumption and low processing efficiency,
and cannot be applied in spaceborne/airborne SAR processing. Generally, heterogeneous schemes
such as CPU + GPU, CPU + DSP (s), and CPU + FPGA (one or more) can meet the performance
requirements of real-time processing, but their power consumption is above 10 W, or even more than 100
W. A dedicated chip that fully implements the imaging algorithm can achieve better results in real-time,
and low power consumption and is suitable for applications with strict power constraints, but the
scheme hardens the algorithm, resulting in poor flexibility. ASIP (Application Specific Instruction Set
Processor) is a dedicated processor solution between a general-purpose processor and an application
specific integrated circuit (ASIC). This processor combines the flexibility of a general-purpose processor
and the efficiency of an ASIC. In order to achieve a good trade-off between flexibility and processing
efficiency, the development of a dedicated processor that is capable of fully implementing the SAR
imaging process is an effective solution to meet its power consumption and real-time requirements for
spaceborne/airborne SAR processing.

The chirp scaling algorithm (CSA) is one of the most commonly used algorithms for SAR
imaging [11]. Its calculations mainly include Fast Fourier Transformation/Inverse Fast Fourier
Transform (FFT/IFFT), phase multiplication, interpolation, etc., especially FFT/IFFT operations account
for the highest proportion. The accuracy requirements and computing flow of these operations are
different. Therefore, how to design an array structure and storage structure suitable for such processing
is a key issue to be solved.

With the progress of integrated circuit (IC) technology, more processing units and memory blocks
can be integrated on a single chip. Based on the abundant computational and memory resources on the
chip, to make full use of bandwidth resources, this paper proposes a heterogeneous array structure that
efficiently supports CSA imaging processing by combining block parallelism and pipeline processing
while buffering the intermediate results on-chip.

It can support the parallel and pipeline processing and increases the maximum utilization of
computing units. Moreover, we have designed an on-chip multi-level data buffer structure matching
the heterogeneous array structure to ensure data supply for pipeline processing. This solution can
reduce the complexity of the system while improving real-time performance.
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The paper is organized as follows. Section 2 outlines related work and background. Section 3
analyzes the characteristics of CSA and proposes the design of the processor. Section 4 presents the
heterogeneous architecture implementations. We present the evaluation of experimental results in
Section 5, and the conclusions in Section 6.

2. Related Work

Digital signal processors (DSPs), CPUs, and graphics processing units (GPUs) have respective
advantages in real-time SAR processing. As the system adopts CPU, it has good flexibility and
portability [12]. However, their power efficiency for computing is quite low, which is a bottleneck in
real-time SAR applications. Due to GPU’s powerful parallel computation capability and programmability,
the new method makes full use of GPU’s powerful computation ability, which effectively improves the
real-time quality of SAR scene generation [13–16]. At present, the GPU + CPU method can effectively
combine the advantages of the two processors to improve imaging efficiency [17,18]. However, the
average power consumption which is up to 150 W, limits the application of GPU in micro air vehicles.

Nowadays, high capability DSPs easily realize many complex theories and algorithms on hardware,
and promote the development of SAR technology [19–21]. In 2003, Hanover University implemented
a SAR real-time processing system using a multi-DSP architecture. This system uses highly parallel
digital signal processor technology (HiPAR-DSP) for SAR signal processing [22]. The Indian Space
Research Organization (IRSO) developed the SAR Specialized Processor (NRTP) based on Analog
Devices’ DSP multiprocessor, which approximates the real-time imaging of SAR [23]. However, for
some applications with strictly constrained power, DSP has lower energy efficiency, resulting in lower
imaging efficiency.

The rapid development of field-programmable gate array (FPGA) has been one of the most
important technologies of realizing digital signal processing. With its rich on-chip memory and
computational resources, FPGA can be configured as a SAR imaging platform to meet the high
throughput rate SAR signal processing requirements [24–26]. An FPGA based on fault-tolerant
architecture (Xilinx Virtex-II Pro) is applied to SAR processing systems [27,28]. In 2006, the University
of Florida developed a high-performance heterogeneous spatial computing framework based on
hardware/software interfaces. In this architecture, the CPU is responsible for scheduling and task
management, and the FPGA acts as a coprocessor for computational acceleration [29]. With the rapid
development of storage capacity and computing power of commercial FPGAs, SAR real-time imaging
systems can all be built by FPGA (Xilinx Virtex-6) [30]. However, for highly complex algorithms, the
development cycle of FPGA is relatively long.

For the real-time requirements and physical implementation limitations of SAR imaging, ASIC
implementation is generally employed [31,32]. The Massachusetts Institute of Technology (MIT)
Lincoln Laboratory uses bit-level systolic-array technology to design a SAR signal processor with high
throughput and low power consumption [33]. The jet propulsion laboratory has also developed an
airborne SAR processing system using a VLSI+SOC (very large scale integration+system on chip)
hardware solution [10]. The processor’s low power consumption and small size make it suitable for
small SAR imaging systems.

In general, the DSP solution is used to implement SAR imaging through software programming.
Since the DSP is designed for general purposes, this implementation has high flexibility and a short
design cycle. It is more suitable for real-time SAR imaging than a CPU, but for low power applications,
it is still not the most suitable choice. The ASIC solution for SAR imaging has the optimal power and
performance for a single computational process. However, SAR imaging is a combination of multiple
calculations on one device, which causes the design cost and power consumption of SAR imaging to
soar, the design cycle to become longer, and poor flexibility. ASIP makes a good trade-off between the
high flexibility of a general purpose processor and the high processing efficiency of an ASIC, and can
be tailored and optimized for a certain type of algorithm or domain application to meet constraints
such as performance, area, and power consumption. Moreover, it can effectively reduce design cycles
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and the design risk. Thus, many advantages of ASIP make it a very important implementation method
in the field of signal processing.

Making trade-offs between speed, cost, power consumption, and flexibility, ASIP design
methodology in the design of SAR real-time signal processing system can not only satisfy the
real-time and performance requirements of aerospace systems, but also shorten the lead time of the
processors. ASIP, when designed with a specific architecture with higher parallelism and higher
complexity, also has good scalability. Therefore, we have designed a dedicated processor that can fully
implement the SAR imaging process to meet the power consumption and real-time requirements of
the application environment.

3. Processor Architecture Design

The CSA is one of the most commonly used algorithms for SAR imaging [11]. Compared with
other algorithms, the CSA has the advantages of a simple operation process, low computational
complexity, and high imaging efficiency. On the other hand, the CSA improves the fidelity of the
image, especially the preservation of the phase information. Moreover, the CSA can adapt to different
radar scanning modes, for example, spotlight, strip-map, scan SAR, sliding spotlight, Tops, and Mosaic
modes [34,35].

3.1. CSA Flow Analysis

The imaging principle of the CSA is shown in Figure 1. The CSA can be divided into three
modules according to functions, or divided into seven steps according to the operation sequence.
The algorithm is executed step by step, and in the algorithm process, we perform the alternating
operation of FFT/IFFT and phase compensation. To perform a SAR imaging, four Fourier transform
and three-phase multiplication are needed.

Figure 1. Chirp scaling algorithm (CSA) flow chart. SAR: synthetic aperture radar.

The Q-point FFT/IFFT can be decomposed into 2Q log2 Q real multiplications and 3Q log2 Q real
additions [36]. Table 1 lists the computation quantity of the seven-step operation.

From Table 1, we can see that the proportion of FFT(IFFT) in all operations is:

W =
(2 + 2 + 3 + 3)NM log2 M + (2 + 2 + 3 + 3)NM log2 N

10NM log2 M + 10NM log2 N + 18NM
(1)
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For different imaging matrix sizes, the proportion W of FFT(IFFT) is slightly different, as shown in
Table 2. It can be shown from Table 2 that the W values are basically above 90% and can reach up to
95% as the matrix size becomes larger. Therefore, accelerating the FFT/IFFT operation will inevitably
reduce the imaging time and optimize the imaging efficiency.

Table 1. Computational statistics of CSA.

Calculation Content Step Real-Multi Real-Add Total

Azimuth-FFT 1 1 2NM log2 M 2 3NM log2 M 5NM log2 M
CS Factor-Multi 3 2 4NM 2NM 6NM

Range-FFT 3 2NM log2 N 3NM log2 N 5NM log2 N
RC Factor 4-Multi 4 4NM 2NM 6NM

Range-IFFT 5 5 2NM log2 N 3NM log2 N 5NM log2 N
AC Factor 6-Multi 6 4NM 2NM 6NM

Azimuth-IFFT 7 2NM log2 M 3NM log2 M 5NM log2 M

Total - 4NM log2 M +
4NMlog2 N + 12NM

6NM log2 M +
6NM log2 N + 6NM

10NM log2 M +
10NM log2 N + 18NM

1 FFT: Fast Fourier Transformation; 2 M: Azimuth direction sample numbers; N: Range direction sample numbers; 3

CS Factor: Chirp Scaling Factor; 4 RC Factor: Range Compensation Factor; 5 IFFT: Inverse Fast Fourier Transform. 6

AC Factor: Azimuth Compensation Factor.

Table 2. Computational load statistics.

Image Size 256 × 256 1024 × 1024 4096 × 4096 16,384 × 16,384 65,536 × 65,536

FFT Computational
Load

107 2.1× 108 4.1× 109 7.6× 1010 1.2× 1012

Phase Compensation
Computational Load

106 1.8× 107 3× 108 4.8× 109 1.2× 1010

W-Value 89.8% 91.7% 93% 94% 94.7%

3.2. Computation Flow Strategy

In the imaging process, we take the block imaging method and perform parallel processing
between blocks. In the algorithm process, four FFT/IFFT and three phase operations are pipelined
according to the algorithm flow, while each multi-range (multi-azimuth) FFT/IFFT and phase operation
can be parallel processing individually. To organize the pipeline processing of two types of operations
in SAR imaging, we designed a calculation process based on space–time flow (ST-Flow), as shown in
Figure 2. At a time, in space, multi-line FFT/IFFT can be performed in parallel, and phase compensation
operation can be calculated simultaneously at multiple points, so no calculation unit is idle. On the
timeline, data is continuously fed into the processing unit, and the calculation unit does not have a
stall due to waiting for data. With this ST-Flow, SAR imaging can be done in a continuous process.

 
Figure 2. SAR imaging flow.
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3.3. Heterogeneous Arrays

CSA includes scalar operation for phase multiplication and vector operation FFT (IFFT). As Table 2
shown, FFT/IFFT operations account for up to 95% of SAR imaging, so accelerating the FFT/IFFT
operation efficiently is the most important approach for imaging processors.

The fixed-point FFT/IFFT operation with lower accuracy has a small loss of imaging accuracy,
and can significantly improve the processing throughput. In [37], the quantization error power of
the fixed-point processing CSA was evaluated in detail. The analysis results showed that as the
word length increases from 12 to 16, the quantization error power remains essentially unchanged,
and the imaging quality with a 15 or 16-bit word length is very close to that of a single precision
floating-point. Therefore, we design PE arrays to support 12-bit, 14-bit, and 16-bit fixed-point FFT/IFFT.
For applications with lower accuracy requirements, low-bit width operation can be selected.

However, the phase compensation operation requires high precision and must use floating-point
arithmetic operations. Based on the earlier description and discussion, a heterogeneous array is
designed, which includes two types of computing units named PE and FPE. PE is used for FFT/IFFT
operation and FPE is used for phase compensation operation.

Since the operation ratio of FFT/IFFT against phase compensation is approximately 9:1, the
configuration of PE and FPE should also follow this proportional relationship. For smaller matrix sizes,
the ratio is near 90%; to meet the different matrix sizes, we design the processing array, in which the
ratio of PE and FPE is 8:1, as shown in Figure 3.

 
Figure 3. PE array structure diagram. PE: computing unit for FFT/IFFT operation in a heterogenous array.

In CSA flow, each range/azimuth FFT/IFFT operation is relatively independent, and there is no
data dependency between range/azimuth, so each range/azimuth FFT/IFFT operation can be performed
in parallel. Moreover, in the FFT/IFFT operation, each butterfly operation is relatively independent,
and multiple butterfly operations can be performed in parallel. The phase compensation process
performs independent operations at a single point so that multiple independent operations can be
performed in parallel.

In CSA flow, four FFT/IFFT and three phase operations are data dependent; they are processed in
the pipeline. As shown in Figure 4, to establish a pipeline between the FFT and the phase operation,
the parallel FFT/IFFT differ by 1/8 computation cycles.
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Figure 4. Pipeline between FFT/IFFT and phase operation.

3.4. Data Placement and Simultaneous Access

In the FFT/IFFT process, the data transfer has a bit-reverse address sequence. To support this
data access pattern, we use a multi-bank distributed data placement strategy, as shown in Table 3.
According to the calculation requirements, one row of PE parallel performs 16 butterfly operations, and
needs to provide 32 data at the same time. Therefore, data access is performed in parallel. As shown in
Figure 5, 32 data are simultaneously accessed from Bank 0 and Bank 1 in the first cycle. In the second
cycle, data are read simultaneously from Bank 2 and Bank 3. Bank selection and the address in a
bank are generated to follow each step in the FFT/IFFT processing flow. Although each PE performs a
different FFT/IFFT operation, they use similar data placement and access strategies.

Table 3. 4096 points input data storage in four banks.

Bank_NO. Input Data Storage Status in Bank

Bank_0 0–15 64–79 - -
Bank_1 16–31 80–95 - -
Bank_2 32–47 96–111 - -
Bank_3 48–63 112–127 - 4080–4095

Bank_

Bank

Bank

Bank

(PE0_0~PE0_15)

Figure 5. 16 PEs perform base-4 butterfly operation timing diagram for four banks.

There is no special requirement for the sequence of data in the phase compensation calculation
process; therefore, as shown in Figure 6, the calculation process only needs to access the data in parallel.
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Bank_

Bank

(FPE0_0~FPE0_15)

(FPE1_0~FPE1_15)

 
Figure 6. 32 FPEs perform phase operation for two banks. FPE: computing unit in a heterogeneous
array used for phase compensation operation.

4. Architectural Implementations

4.1. Overall Architecture

A highly efficient heterogeneous processor for SAR imaging is designed. Figure 7 shows the
top-level architecture of the proposed SAR imaging processor. This section describes the overall
hardware block diagram and functional modules. Essentially, the architecture consists of three major
components: a hybrid–PE array, an on-chip buffer module, and a data systolic engine.

Figure 7. Top-level architecture of processor.
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To meet the throughput requirement of SAR imaging, two identical sets of heterogeneous arrays
are implemented, which can perform different block imaging processing computations in parallel.
Each of the heterogeneous arrays contains 16 × 16 PEs and 2 × 16 FPEs. The number ratio of PE and
FPE satisfies the proportional relationship of 8:1.

To feed the processing array with adequate data supply, three types of buffers are implemented
on chip. In a processing array, all the data banks for 16-line PEs and two-line FPEs are organized as
a 264-KB data buffer with two sub-buffers, each of which contains 32 banks for PEs and one bank
for an FPE. A 32-KB twiddle factor dedicated local buffer (Local-TF buffer) and a 16-KB phase factor
dedicated local buffer (Local-PF buffer) for the phase compensation operation is also implemented
inside a processing array.

To organize the data transfer between off-chip RAM and on-chip buffers, a data systolic engine is
implemented. With this data systolic engine, the input raw image echo can be read and the imaging
output can be written back following the processing flow.

4.2. Heterogeneous PE Arrays

Each PE pipelined performs a four-point butterfly operation in six cycles, and all of the PE in a
row parallel perform butterfly operations in a block. During the FFT/IFFT operation, all 64 input data
are sent to one row of PEs in two cycles from the data buffer, and the 64 output data are written back to
the data buffer in two cycles.

In a heterogeneous array, as shown in Figure 7, PEs are interconnected to pass a twiddle factor, the
Local-TF buffer distributes the twiddle factor to the PE from top to bottom. The twiddle factor passes
two rows down each cycle, and the required twiddle factors are assigned to 16 rows of PEs in eight
cycles. Besides, each PE supports zero-padding to expand the raw data to an integer power of two.

During the phase compensation operation, the two input data banks send 32 input data to two
rows of FPEs (32 FPEs) in parallel. The Local-PF buffer passes and distributes the phase compensation
factor from bottom to top.

4.3. Alternate Systolic-Memory and On-Chip Buffer Organization

Since on-chip memory space is limited, all of the radar echo data is stored in the external memory
first. As shown in Figure 8, the data systolic engine (DSE) fetches the data from dynamic random
access memory (DRAM) and pushes the data into on-chip memory. To hide the communication latency
of data transfer between DSEs and arithmetic components, we employ the alternate systolic technique.
In order to avoid DSE competition in hardware resources, we use two alternate systolic memory
modules for each of the input/output interfaces for the whole system. At the same time, we adopt
two DSE channels for input data and weight at the input end. The proposed memory architecture can
provide 4 GB/s of read/write memory bandwidth at 250-MHz frequency to satisfy the data requirements
of the processor.

As shown in Figure 8, our storage architecture consists of three layers: DRAM, a data transfer
engine system, and an on-chip buffer. Since the on-chip storage resources are limited in size, all the
pending radar echo data is first stored in off-chip memory (DRAM). During data processing, the data
is first cached by the data transfer engine system into the on-chip buffer, and then sent to the PE
array for processing by the on-chip buffer. As shown in Figure 8, in order to hide the communication
latency between the off-chip memory and the on-chip buffer, we use the double-buffered data alternate
transmission method.
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Figure 8. Memory hierarchy architecture. (a): Input Port; (b): Output Port.

4.4. Resource Controller

The resource controller is responsible for allocating the execution unit and arranging the access
flow of the on-chip buffer.

Two imaging blocks are respectively assigned to two arrays for parallel processing. The FFT/IFFT
and phase compensation operations are involved in the intra-block processing, so the PE is assigned to
the FFT/IFFT during the calculation and the FPE is assigned to the phase compensation operation.

According to the designed data mapping and access strategy, in order to support the parallel
access of data, the resource controller allocates bank and bank addresses for each range of data.
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When performing range FFT/IFFT, each row of data is stored in four banks according to a distributed
storage strategy.

As shown in Figure 9, we take a row of 1024 points as an example (r = 1024). When performing
FFT/IFFT, 1024 points are segmented and stored in four banks according to the distributed storage
strategy. A total of 16 consecutive points are used as a segment, in which approximately 0 to 15
are placed in Bank_0, 16 to 31 are placed in Bank_1, 32 to 47 are placed in Bank_2, and 48 to 63 are
placed in Bank_3; the above operation is repeated until all data of 256 segments are stored. A base-4
FFT/IFFT operation at 1024 points requires a total of five levels of operation. The calculation process
uses multi-bank parallel data access. Taking the first stage as an example, data 0 to 31 is read from
Bank_0 and Bank_1 in the first cycle, and data 992 to 1023 is read from Bank_2 and Bank_3 in the
second cycle. The latter four levels of the operational data access process are similar to the first level.

Similarly, when performing azimuth FFT/IFFT, each azimuth of data is stored in four banks
according to the storage strategy (taking 1024 points as an example, a = 1024). The data access process
is similar to the FFT/IFFT range.

r

a

r

a

 
Figure 9. Data access pattern.

SAR imaging is a continuous process with huge differences in operational density between
FFT/IFFT and the phase compensation operation. For the characteristics of the computational process,
we have designed a way to organize the processing of SAR imaging in space and time flow (ST-Flow),
as shown in Figure 10.

Taking 1024 points FFT/IFFT as an example, each FPE performs a one-point phase compensation
operation in one cycle, and all the FPE in a row parallel perform phase compensation operations.
During the phase compensation operation, all 16-input data are sent to one row of FPEs in one cycle
from the data buffer, and 16 output data are written back to the data buffer in one cycle. It can be
seen that the 1024-point phase compensation operation requires 64 cycles. In order to satisfy the task
saturation and parallelism of the parallel pipeline between phase compensation and FFT/IFFT, the
resource controller sets the start time for each row of PE to be delayed by 64 cycles from the previous
row. Considering the different matrix sizes, the ratio of PEs to FPEs is configured to be 8:1, so for larger
matrices, the FPE will be idle. During the processing of the FPE, it is necessary to wait for the PE to
complete the FFT operation before starting the processing of the next frame.
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Figure 10. Space–time flow (ST-Flow) of imaging processing.

5. Processor Performance Evaluation

We implemented the SAR imaging processor at 65-nm CMOS (complementary metal oxide
semiconductor) technology with 1.2 V of supply voltage using Synopsys tools. Figure 11 shows the die
photograph of the chip. In the evaluation, the CS imaging algorithm is selected as the benchmark.

5.1. Performance Analysis

In this section, we configure the processor with fixed-point PE and single-precision floating-point
FPE. We evaluate the processor performance at 200 MHz with different fixed-point lengths. The test
echo data matrix size is 16,384 × 16,384. We perform two operations in parallel on the heterogeneous
PE, which can take advantage of the computing power and increase the throughput. When the CSA is
processed in heterogeneous PE mode, the throughput is achieved to 115.2 Giga operations per second
(GOPS), with 463 mW of power consumption. As shown in Table 4, when all the imaging processes
use single-precision floating-point units, the power consumption of the processor is up to 713 mW,
and its energy efficiency is only 67% of the fixed/floating point heterogeneous imaging mode. Also,
the processor can reduce a small amount of power consumption when selecting low-bit fixed-point
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FFT/IFFT operation. The processor consumes 463 mW for 16-bit fixed-point FFT/IFFT and reduces to
454 mW for 12-bit fixed-point FFT/IFFT, as shown in Table 4.

PLL

Buffer A&B
TF Buffer &PF Buffer 

PE Array

PE Array

C
on

tr
ol

le
r

REGs

 

Figure 11. Die photograph of the chip.

Table 4. System performance assessment with different fixed-point length FFT.1

PE Bit-Width (Bits) 12 14 16 Single-Precision Floating

Throughput (GOPS) 115.2 115.2 115.2 115.2
Power (mW) 454 459 463 713

Energy efficiency (GOPS/mW) 0.254 0.250 0.240 0.16
1 Table 4 provides statistics on throughput, power consumption, and energy efficiency for the entire heterogeneous
processor.

5.2. Array Utilization Analysis

As shown in Table 5, we can see that in the algorithm processing, the ST-flow two-dimensional
parallel pipeline achieves better array utilization than one-dimensional time-based computational flow
(TI-flow). The high utilization of the array can increase the throughput of the system. The time-based
computational flow (TI-flow) that is employed in existing processors is inefficient for SAR imaging
processing. As shown in Table 5, in the ST-Flow mode, the FFT operation and the phase mean (PM)
operation are pipelined, the throughput reaches 115.2 GOPS, the resource utilization rate can reach
98.8%, and the energy efficiency is 0.24 GOP/mW. In TI-Flow mode, the FFT operation and the PM
operation are executed sequentially, the throughput is only 62.6 GOPS, the resource utilization rate is
54.3%, and the energy efficiency is only 0.16 GOP/mW. Compared with the TI-Flow mode, the resource
utilization in ST-Flow mode significantly increases, the throughput increases by 84.5%, and the average
power consumption only increases by 21.2%.

Table 5. Array utilization with ST-flow and time-based computational flow (TI-flow). GOPS: Giga
operations per second.

- ST-Flow
TI-Flow

FFT Phase Compensation Overall

Array utilizations 98.8% 88.9% 11.1% 54.3%
Throughput (GOPS) 115.2 102.4 12.8 62.6

Power (mW) 463 435 317 382
Energy efficiency (GOP/mW) 0.24 - - 0.16

5.3. Analyzes of Array Scalability

We analyze the performance of a single heterogeneous array, as shown in Figures 12 and 13. On
the horizontal (X) axis, the numbers 5, 9, 18, and 36 represent the array scales of 5 × 4, 9 × 8, 18 × 16,
and 36 × 32, respectively.
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As the size of the array increases, the throughput and imaging efficiency of the system increase
significantly, but the power consumption of the processor also rises sharply. In general, the power-delay
product and energy efficiency of large PE arrays are better than those of small PE arrays. On the other
hand, the array size must be closely matched to the buffer size; an oversized or undersized array
configuration will result in wasted PE resources or low memory bandwidth utilization. Therefore, the
size of a single heterogeneous processing array is designed to be 18 × 16 after a trade-off between the
chip implementation complexity and processing performance.

Figure 12. Power consumption and imaging time with different array sizes.

Figure 13. Energy efficiency and power-delay product with different array sizes.

5.4. Comparison with Other Schemes

Table 6 lists the SAR imaging time for different sizes of input. For the ordinary SAR radar
(for instance, the Chinese Gaofen-3 satellite, pulse repetition frequency: 2000 Hz), the real-time
processing time of 16,384 × 16,384 SAR raw data requires 8 s. The proposed scheme can meet the
real-time requirements.

The power consumption and SAR imaging time for other studies are also listed in Table 6.
As can be seen from Table 6, the power consumption of the proposed scheme is the smallest, because
the proposed scheme can completely realize the entire SAR imaging process without additional
microcontroller unit (MCU) or CPU. Similar to [15], the Mobile-GPU architecture uses a lower power
cost (5 W) to achieve better real-time performance. Compared with [15], the proposed architecture is
better in performance-to-power ratio and improves by a factor of 230.4. From the real-time performance
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perspective, the CPU + GPU scheme is the best, but its power consumption exceeds 300 W. The
real-time performance of the proposed scheme is only 8.6% of [17], but the performance-to-power
ratio improves by a factor of 63.4. Table 7 shows the comparison of the proposed scheme and related
research in real-time performance. As can be seen from Table 7, compared with [15], the speedup ratio
reached 21.33.

Table 6. Comparison with previous works.

Architectural
Model

Operating
Frequency

Power
Consumption

SAR Imaging
Algorithms

Frame Size
SAR Signal

Processing Time (s)

Proposed solution 200 MHZ 463 mW CS

1024 × 1024 0.04
2048 × 2048 0.15
6472 × 3328 0.68

16,384 × 16,384 8.2
30,000 × 6000 5.54

32,768 × 32,768 32.9

GPGPU [14] - >500 W Omega-k 30,000 × 6000 8.5

CPU + GPU [18] - 345 W CS 32,768 ×32,768 2.8

Mobile-GPU [16] 2.3 GHZ 5 W CS 2048 × 2048 3.2

Microprocessor +
FPGA [15] - 68 W CS 6472 × 3328 8

CPU + ASIC [28] 100 MHZ 10 W - 1024 × 1024 -

Table 7. Speed-up ratio to previous works.

Architectural
Imaging

Time
Imaging Time in

Proposed Solution
Speed-Up

Ratio
Frame Size

CPU + ASIC [28] - 0.04 s - 1024 × 1024
Mobile-GPU [16] 3.2 s 0.15 s 21.33 2048 × 2048

Microprocessor + FPGA [15] 8 s 0.68 s 11.76 6472 × 3328
GPGPU [14] 8.5 s 5.54 s 1.54 30,000 × 6000

CPU + GPU [18] 2.8 s 32.9 s 0.086 32,768 × 32,768

5.5. SAR Imaging Quality Evaluation

We compared the scene SAR imaging results of different fixed-point length FFT. Radar data were
obtained from RADARSAT-1 of Canada (width: 50 km; resolution: 6 m) [38]. The imaging effect is
shown in Figure 14.

For the actual scenes, the mean square error (MSE), peak signal-to-noise ratio (PSNR) [39],
structural similarity index (SSIM) [40], and radiometric resolution (RL) [41] are commonly adopted to
evaluate SAR imaging quality.

Sufficient imaging accuracy can be achieved with single-precision floating-point imaging.
Fixed-point processing methods will cause a certain loss of precision. We take the single-precision
floating-point imaging as the test reference to evaluate the fixed-point FFT SAR image quality.

The MSE is adopted to calculate the squared intensity difference between the pixels of the
partial fixed-point image and the pixels of the full single-precision floating-point image. The PSNR is
essentially the same as the MSE, but it is associated with the quantized gray level of the SAR image.
The MSE and PSNR are calculated as shown in Formulas (2) and (3):

MSE =
1

M×N

M∑
i=1

N∑
j=1

( f ′(i, j) − f (i, j))2 (2)
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PSNR = 10 log10
Q2 ×M×N∑M

i=1
∑N

j=1( f ′(i, j) − f (i, j))2 (3)

where f ′(i, j) and f (i, j) represent the image pixels to be evaluated and the reference image pixels,
respectively; M, N represent the length and width of the image, respectively. Q represents the gray
level of the image (Q = 255).

  
(a) (b) 

  
(c) (d) 

Figure 14. The scene SAR imaging results for different fixed-point length FFT. (a) 12-bit fixed-point
FFT; (b) 14-bit fixed-point FFT; (c) 16-bit fixed-point FFT; (d) single-precision float-point FFT.

PSNR and MSE are simple and straightforward SAR image quality assessments based on the
visibility of errors. Due to the PSNR index not being exactly the same as the visual quality seen by
the human eye, the evaluation requirements of the human visual system (HVS) cannot be met [40].
Therefore, we also adopt SSIM (the Structural Similarity Index) to evaluate the SAR images. As shown
in Formula (4):

SSIM(x, y) =

(
2ϕxϕy + ε1

)(
2δxy + ε2

)
(
ϕ2

x + ϕ2
y + ε1

)(
δ2

x + δ2
y + ε2

) (4)

where δ2
x represents the fixed-point image variance, and δ2

y represents the single-precision floating-point
image variance; ϕx represents the mean value of the fixed-point image, and ϕy represents the mean
value of the single-precision floating-point image. The SSIM value range is [0, 1], and the larger the
SSIM value, the smaller image distortion.

RL is also a very important evaluation indicator. RL is adopted to evaluate the minimum variation
of target reflection that radar sensors can distinguish. As shown in Formula (5):

RL = 10 log10

(
α
β
+ 1

)
(5)

where α represents the standard deviation of the image, and β represents the mean value of the image.
Table 8 lists the loss of precision due to the different data widths. As can be seen from Table 8, the

PSNR value of a partial 16-bit fixed-point image can reach 29.1 dB, the results show that the partial
16-bit fixed-point image and the single-precision floating-point image differ only by 0.02 and 0.05
dB on the two indexes of SSIM and RL, respectively. For the actual scene SAR imaging, compared
with a single-precision floating-point image, the accuracy loss of a partial 16-bit fixed-point image is
within 2%.
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Table 8. Quantitative evaluation of actual scene SAR imaging.

FFT Pro-Acc 1 PSNR 2 (dB) MSE 3 (dB) SSIM 4 (dB) RL 5 (dB)

Single-precision float-point ∞ 0 1 4.99
12-bit fixed-point 13.7 2765.2 0.23 4.11
14-bit fixed-point 22.4 377.4 0.77 4.71
16-bit fixed-point 29.1 81.8 0.98 4.94

1 FFT pro-acc: FFT processing accuracy; 2 PSNR: peak signal-to-noise ratio; 3 MSE: mean square error; 4 SSIM:
Structural Similarity Index; 5 RL: Radiometric Resolution.

Phase is also important information for a SAR image. The phase mean (PM) and phase deviations
(PD) are estimated by the method proposed in [42]. Table 9 lists the phase precision with different
fixed-point SAR imaging. As can be seen from Table 9, the loss of phase precision with partial 16-bit
fixed-point imaging is less than 3%.

Table 9. Phase information evaluation of actual scene SAR imaging.

FFT Pro-Acc 1 PM 2 PD 3

Single-precision float-point 0.00244◦ 3.3026◦
12-bit fixed-point 0.00916◦ 3.3054◦
14-bit fixed-point 0.00398◦ 3.3032◦
16-bit fixed-point 0.00252◦ 3.3026◦

1 FFT pro-acc: FFT processing accuracy; 2 PM: phase mean; 3 PD: phase deviation.

For the point target imaging quality evaluation, we adopted the point target simulation echo data.
We compared the point target SAR imaging results for FFT with different fixed-point lengths, as shown
in Figure 15. For the point target image, spatial resolution (RES), peak side lobe ratio (PSLR) and
integrated side lobe ratio (ISLR) are commonly adopted to assess imaging quality [38,43]. Table 10
shows the results of the point targets imaging quality assessment and comparison.

  
(a) (b) 

  
(c) (d) 

Figure 15. The point target SAR imaging results for different fixed-point length FFT. (a) 12-bit fixed-point
FFT; (b) 14-bit fixed-point FFT; (c) 16-bit fixed-point FFT; (d) single-precision float-point FFT.

Table 10. Quantitative evaluation of point target SAR imaging.

FFT Pro-Acc 1
Azimuth Direction Range Direction

RES 2 (m) PSLR 3 (dB) ISLR 4 (dB) RES (m) PSLR (dB) ISLR (dB)

Single-precision
float-point 4.74 −12.91 −9.64 2.58 −13.31 −9.96

12-bit fixed-point 5.43 −5.68 −2.99 3.71 −5.88 −3.22
14-bit fixed-point 4.81 −11.85 −8.22 2.83 −11.55 −9.09
16-bit fixed-point 4.77 −12.86 −9.53 2.61(m) −13.28 −9.93
1 FFT pro-acc: FFT processing accuracy; 2 RES: spatial resolution; 3 PSLR: peak side lobe ratio; 4 ISLR: integrated
side lobe ratio.
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For partial 16-bit fixed-point imaging, in the azimuth direction, the PSLR and ISLR precision loss
of the image are 0.3% and 0.8%, respectively; the RES precision loss is 0.2%. In the range direction, the
PSLR and ISLR precision losses of the image are 0.2% and 0.2%, respectively; the RES precision loss
is 0.7%.

According to the actual scene and the point target image quantization analysis, as shown in
Tables 8–10, the partial 16-bit fixed-point imaging accuracy is close to the single-precision floating-point
imaging accuracy, which meets the requirements of on-orbit SAR imaging applications.

6. Conclusions

This paper proposes a heterogeneous imaging processor using fixed-floating point heterogeneous
parallel acceleration technology to perform SAR imaging in the aerospace field. The processor consists
of two 18 × 16 heterogeneous arrays that provide 115.2 GOPS throughput. To improve energy efficiency,
each array supports fixed-floating hybrid calculations to take full advantage of computing resources,
which can increase the throughput of imaging processing by 1.82 times. At the same time, the PE
array can be partitioned by rows through a sensible algorithm-to-hardware architecture mapping,
process the imaging process in parallel, provide high-utilization hardware resources, and improve the
efficiency by a factor of 1.5. A single processor requires 8 s and consumes 463 mW to process SAR raw
data with a granularity of 16,384 × 16,384, which meets the limits real-time and power consumption of
the on-orbit SAR imaging platform. The proposed solution also has good scalability, by extending the
size of the processor array, the real-time requirements of larger-scale SAR imaging can be met.
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