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Preface to ”Semiconductor Laser Dynamics”

It is my great pleasure to publish this book. All contents were peer-reviewed by multiple referees

and published as papers in the Special Issue ”Semiconductor Laser Dynamics: Fundamentals and

Applications” in the journal Photonics.

These studies provide new and interesting results in different branches of semiconductor

laser dynamics, dealing with the dynamics and stability of semiconductor lasers in a broad sense.

This book offers a small window with a view of the present interests and developments in this lively

field, which forms a fertile ground for innovative ideas.

Daan Lenstra

Editor
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Abstract: With the advent of integrated photonics, a crucial role is played by semiconductor diode
lasers (SDLs) as coherent light sources. Old paradigms of semiconductor laser dynamics, like optical
injection, external feedback and the coupling of lasers, regained relevance when SDLs were integrated
on photonic chips. This Special Issue presents a collection of seven invited feature papers and 11
contributed papers reporting on recent advances in semiconductor laser dynamics.

Keywords: semiconductor laser; dynamics and stability; laser coupling; integrated lasers

1. Introduction

As one of the most widely used coherent light sources today, the semiconductor laser is an
essential component of many optical systems, notably for communication, storage, sensing and
metrological applications but nowadays mainly as parts of photonic integrated systems. They can
be linear Fabry–Pérot or ring-type lasers, operating in narrow linewidth, single frequency or pulsed.
Their numerous applications are ever increasing due to the unprecedented fabrication accuracy and
reproducibility offered by photonic integration technology, allowing total control of the phase and
intensity of the generated laser light. Many of these applications involve the nonlinear dynamics of
the coupled photon inversion system in one way or another. We mention lasers for the generation of
micro-waves or short mode-locked pulses and lasers for the generation of chaotic light in encrypted
communication, as well as linewidth narrowing and frequency stabilization by external optical feedback
and increased modulation bandwidth by optical injection.

In the well-defined embedded setting of integrated lasers, the issues of reproducibility and
long-term dynamical stability are becoming ever more important and should be considered in the
design and fabrication of such laser systems. Since precise control of quantities like optical distance,
group velocity, wave-guide loss, gain and many other relevant parameters is very feasible, knowledge
of the dynamical behaviour of semiconductor lasers in their dependence on parameter values can be
successfully incorporated into the optimal design of these lasers and laser systems.

This Special Issue presents a collection of original state-of-the-art research articles dealing with
the dynamics and stability of semiconductor lasers in a broad sense, sometimes with special emphasis
on their operation in a photonic chip. Specifically, this issue comprises 18 papers dealing with
semiconductor lasers coupled to various kinds of optical perturbations, such as delayed feedback,
delayed coupling and optical injection, etc. Among these papers, seven are invited “feature” papers on
the highly topical subjects of coupled lasers, reservoir computing, injection locking, external optical
feedback and very narrow linewidth lasers. The feature papers are reviewed in Section 2 and the
contributed papers in Section 3.

2. Feature Papers

A long-standing and central problem in semiconductor laser dynamics (SLD) is the influence
of external delayed optical feedback [1]. This is the situation in which part of the output laser light

Photonics 2020, 7, 40; doi:10.3390/photonics7020040 www.mdpi.com/journal/photonics1
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is reflected from an external reflector and coupled back into the laser. The paper by A. Locquet [2]
reviews various aspects of the routes to chaos that can occur under these circumstances. One important
application of delayed optical feedback is found in reservoir computing [3], and the task-independent
computational abilities are the subject of the paper by Harkhoe and Van der Sande [4]. The review
paper by Boller et al. [5] presents an overview of their record-breaking results on linewidth narrowing
in hybrid-integrated diode lasers with feedback from low-loss silicon nitride circuits.

Another equally important and often encountered problem in SLD concerns the semiconductor
laser with optical injection, usually from another laser. The slave laser may exhibit a large variety of
dynamical features; for example, frequency locking to the injected signal, micro-wave oscillations,
chaos and excitability [6]. The invited paper by Torre and Masoller [7] explores the combined effects of
excitability and the emission of extreme pulses with promising applications to sensing. A problem
which is intimately related to laser injection is laser coupling, that is, where each laser injects light
into the other at the same time. The feature article by Perrott et al. [8] compares the cases of true
injection and pure mutual coupling between semiconductor diode lasers in one photonic integrated
circuit. The observed additional types of dynamics in the case of mutual coupling are general features
of coupled lasers, which are studied in the invited paper by Erneux and Lenstra [9]. In the latter article,
the synchronization of mutually delay-coupled quantum-cascade lasers with different pump strengths
is theoretically analyzed. In all the above-mentioned cases of coupled lasers, the coupling was typically
face-to-face. A different type of coupling is treated in the feature paper of Vaughan et al. [10], in which
the dynamical behavior of two laterally coupled semiconductor lasers is theoretically analyzed.

3. Contributed Papers

The contributed papers reflect the importance of optical injection and feedback as the generic
fundamental processes in semiconductor laser systems. The paper by Sortiss et al. [11] describes the
use of injection locking for side-mode suppression with the application to optical communication in
general and optical demultiplexing in particular. Jiang et al. [12] numerically investigate the dynamical
properties of excited-state emitting quantum-dot lasers with optical injection.

In the numerical study by Ebisawa and Komatsu [13], an ingenious combination of three diode
lasers with optical injection and feedback is investigated in order to quantify the orbital instability of
the produced chaotic dynamics in terms of Lyapunov exponents. Jayaprasath et al. [14] numerically
investigate the properties of the chaotic output light that is produced by a semiconductor laser with
delayed external optical feedback, with consequences for the security of chaotic communication.
The security theme is also addressed in the numerical study by Wang et al. [15], who consider the risk
of the bias current as a key for secure communication.

Using the technology described in the invited paper by Ref. [5], the generation of tunable
microwave oscillations by optical sideband injection is described in a paper by Khan and Hoque [16].
Microwave generation is also the theme of the paper by Qi et al. [17], in which a monolithically
integrated laser-photodetector chip was designed and fabricated.

An interesting problem is external feedback in a ring laser since the feedback light from a clockwise
mode will couple into the counterclockwise mode. The optical-feedback sensitivity of such a laser
is studied, experimentally and numerically, by Verschaffelt et al. [18] by applying on-chip filtered
optical feedback. The article by Zhang et al. [19] presents the design and performance of a compact,
highly stable, external-cavity diode laser for use in an optical clock in space.

Vertical-cavity surface-emitting lasers (VCSELs) are well-suited for high-speed data
communication. In the paper by Sanayeh et al. [20], an equivalent circuit model is presented
that accurately describes the dynamic behavior of high-performance VCSELs and applies this to a
simulation of their intrinsic modulation response. The article by Wilkey et al. [21] addresses the
fundamental problem of whether a pair of coupled semiconductor lasers could possess Parity-Time
(PT) symmetry. Based on a rate-equation model, they predict intensity dynamics like those in a
PT-symmetric system.
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4. Outlook and Prospective Further Developments

The collection of papers in this Special Issue on semiconductor dynamics offers only a small
window with a view on the present interests and developments. The field is very much alive and forms
a fertile ground for innovative ideas, of which we have seen a few examples only. Promising novel
developments are to be expected for applications in the sensing of PT-symmetric photonic systems with
exceptional points of operation [22], in photonic neural networks [23] and excitable laser systems [24],
in the metrology of super-stable mode-locked pulse lasers and frequency combs [25] and in the search
for feedback-resistant lasers [26] and integrated non-reciprocal devices [27].

Funding: This research received no external funding.

Acknowledgments: The author acknowledges the assistance from the editorial office of Photonics during the
preparation of the special issue.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: This paper reviews experimental investigations of the route to chaos of a semiconductor
laser subjected to optical feedback from a distant reflector. When the laser is biased close to threshold,
as the feedback strength is increased, an alternation between stable continuous wave (CW) behavior
and irregular, chaotic fluctuations, involving numerous external-cavity modes, is observed. CW
operation occurs on an external-cavity mode whose optical frequency is significantly lower than
that of the solitary laser. The scenario is significantly different for larger currents as the feedback
level is increased. At low feedback, the laser displays periodic or quasiperiodic behavior, mostly
around external-cavity modes whose frequency is slightly larger than that of the solitary laser. As the
feedback level increases, the RF and optical frequencies involved progressively lock until complete
locking is achieved in a mixed external-cavity mode state. In this regime, the optical intensity and
voltage oscillate at a frequency that is also equal to the optical frequency spacing between the modes
participating in the dynamics. For even higher feedback, the locking cannot be maintained and the
laser displays fully developed coherence collapse.

Keywords: semiconductor laser; optical feedback; nonlinear dynamics; bifurcations; chaos

1. Introduction

In this article, the dynamical behavior of semiconductor lasers subjected to optical feedback
from an external mirror, in the long cavity case [1], based on the experimental observations of the
research group I belong to are reviewed. External optical feedback is known to lead to a wealth of
dynamical regimes [1,2], some of which have been exploited in diverse applications such as laser
feedback interferometry [3], reservoir computing [4], physical-layer secure communications [5], and
random-number generation [6]. A classification of the different dynamical regimes of a laser diode
with optical feedback has been proposed as early as 1986 by Tkach and Chraplyvy [7], and is still being
referred to. The classification features five regimes, four of which involve CW dynamics, and only
one, regime IV, corresponds to all other possible dynamics. It has been shown since then that regime
IV actually contains a great variety of dynamical regimes. The sequence of regimes experimentally
observed within regime IV and leading to chaotic behavior as the feedback level is increased will
be focused on, and, when possible, agreement or disagreement with the Lang and Kobayashi rate
equation model will be indicated.

The paper is organized as follows: Section 2 reviews previous experimental studies of routes to
chaos, Section 3 presents the experimental setup, Section 4 discusses modeling considerations, and
Sections 5 and 6 present our observations when the laser is biased close to and far from threshold,
respectively; finally, Section 7 summarizes and discusses the main conclusions.

Photonics 2020, 7, 22; doi:10.3390/photonics7010022 www.mdpi.com/journal/photonics5
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2. State of the Art

Laser diodes subjected to external optical feedback have been the subject of a large number of
publications in the last three decades, focusing either on dynamical behavior or on their use in a variety
of applications. We refer the reader to a book [1] and a review paper [2] for extensive information. We
focus here on experimental investigations of the sequence of dynamical regimes experienced by the
laser as the feedback strength is increased, from CW to chaotic behavior. These routes reveal the way in
which intrinsic time scales of a laser with optical feedback interplay and lead to a variety of sustained
periodic or quasiperiodic oscillations and eventually chaos. Quasiperiodic [8–10], period-doubling [11],
and subharmonic [12] routes to chaos have been reported. Contrary to the quasiperiodic route, which
is reported to occur for a wide range of operating conditions, the period-doubling and subharmonic
routes have been observed for specific, restricted conditions. Of note, the routes have typically been
studied based on observations of a discrete set of feedback levels, and not for continuous tuning.
Hohl and Gavrielides have also observed [13], both experimentally and numerically, an alternating
sequence of CW and chaotic behavior, referred to as a bifurcation cascade, for a laser biased close
to threshold. In their experiment, the optical spectrum was monitored while the feedback level was
continuously tuned.

Previous work from our group has revisited the various routes to chaos observed in the literature,
confirming and complementing, in the case of a laser being biased close to threshold, the bifurcation
cascade route but also providing a different interpretation of the route observed for larger bias currents.
In particular, we show that the route that has been named “quasiperiodic” does not contain the sequence
of regimes expected in such a case as it involves a number of different attractors and their interplay.

3. Experimental Setup

The experimental setup is represented in Figure 1. The laser diodes (LD) considered in this
manuscript are a range of 1550 nm DFB lasers: packaged (different Mitsubishi ML925B11F diodes) and
unpackaged quantum well and quantum dash-based diodes have been used. The temperature of the
laser is stabilized +/− 0.01K and its current +/− 0.01A. The LD is subjected to optical self-feedback
coming from an external mirror (M) placed at distance L from the LD. A variable attenuator, composed
of a linear polarizer (LP) and a quarter-wave plate (QWP), is placed in the external cavity. Fine-grained
rotation of the QWP allows for a quasi-continuous adjustment of the feedback level η. The optical
intensity I is monitored with a fast photodetector, and a multimeter is used to determine the DC
component, VDC, of the laser voltage. In the case of unpackaged lasers, the AC voltage across the
laser diode, VAC, is measured with a real-time oscilloscope (OSC) and enables the monitoring of the
charge carrier density [14,15]. The optical spectrum is tracked with a high-resolution optical spectrum
analyzer. Finally, a heterodyne technique, exploiting the beating of the LD with a stable reference
laser, is used to measure the optical phase. A description of the principles and implementation of the
heterodyne technique can be found in Refs. [14,16].
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Figure 1. Experimental Setup. LD: laser diode, M: mirror, QWP: quarter-wave plate, P: polarizer; BS:
beam splitter, OI: optical isolator, PD: photodetector, BT: bias tee, Amp: amplifier. MM: multimeter,
OSA: high-resolution optical spectrum analyzer, OSC: real-time oscilloscope. The model numbers are
given in Refs. [17,18]. Not represented: the heterodyne scheme used to measure the optical phase
(please refer to Refs. [14,16]).

4. Modeling Considerations

Even though experimental results are our focus, I will also refer to the Lang and Kobayashi (LK)
model [19], which is widely used to interpret the nonlinear dynamics of single-mode laser diodes
subjected to optical feedback. It is based on standard semi-classical rate equation modeling, and no
spatial effects within the laser cavity are taken into account explicitly. The dynamics involve the total
carrier population N(t), an intra-cavity electric field that is only time-dependent and represented
as E(t)exp[iω0t + iφ(t)], where E is the amplitude, φ the slowly-varying phase, and ω0 the angular
frequency of the solitary laser. The terms of the rate equations take into account sources of carrier and
photon gains and losses, as well as a coupling between the amplitude and the phase represented by
the linewidth enhancement factor α. Lang and Kobayashi have added, in the field equation, a term
proportional to the delayed optical feedback. The LK model has proven to be useful in interpreting
numerous experimentally observed dynamical behaviors of a LD, and has also been used for prediction
(e.g., Refs. [20,21]). In particular, the model shows that, as feedback level is increased, potentially stable
CW solutions, named external-cavity modes, and unstable CW solutions, referred to as antimodes,
appear in pairs. The equilibria (ECMs) are spaced in frequency by ~fτ. They are located on an ellipse in
the (N(t), φ(t) − φ(t − τ)) plane, where τ is the round-trip time in the external cavity. ECMs are located
on the lower part of the ellipse and antimodes on the upper part of it, as represented in Figure 2. The
mode that is closest in frequency to that of the solitary laser is called the minimum linewidth mode
(MLM), and denoted ECM 0. Positively shifted ECMs with respect to ECM 0 use positive numbering
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(1, 2, 3 . . . ), while negatively shifted ECMs use negative numbering. The mode with the lowest optical
frequency is the maximum gain mode (MGM).

Figure 2. Locations of the equilibria (ECMs) (circles) and antimodes (crosses) in the (N(t),φ(t) − φ(t −
τ)) plane according to the Lang and Kobayashi (LK) model.

Finally, two time scales are of crucial importance. The first is the relaxation oscillation period,
τRO, which is intrinsic to the laser and represents the period of transient oscillations appearing in a
LD as a result of the interaction between the carrier and photon populations. The second is the delay
introduced by the optical feedback. The frequency of the relaxation oscillations is denoted fRO = 1/τRO,
and the inverse of the delay is called here the delay frequency fτ = 1/τ.

5. Route to Chaos When the Laser Is Biased Close to Threshold

In this section, I present a review of our observations in the case of a laser biased relatively close
to threshold [22,23]. In this case, the sequence of bifurcations displays regular or irregular alternation
between different regimes; this type of sequence will be referred to as a cascade of bifurcations [13].

Hohl and Gavrielides have reported in Ref. [13], for a current of J = 0.99Jth, where Jth is the solitary
laser threshold current, an alternating sequence of CW and chaotic behaviors as the feedback level is
increased. Figure 3 represents three experimental bifurcation diagrams for different currents and cavity
lengths. The probability density function of the extrema of the optical intensity I is represented, using
a color map, as a function of the feedback strength η. In panel (b), we observe a regular alternation
between two distinct regimes: one is characterized by small-intensity fluctuations, while in the other
fluctuations are much larger. This regular alternation is consistent with the optical spectra that have
been observed in Ref. [13]. Hohl and Gavrielides also provide an interpretation, based on LK, in which
slips toward newly created stable maximum gain modes (MGMs) occur regularly as the feedback level
increases and the ellipse grows in size. These slips correspond to abrupt switches to a CW regime,
which itself leads, as η is increased, to more complex behavior, including low frequency fluctuations
(LFF) and fully developed coherence collapse (CC), involving a number of ECMs. The experimental
bifurcation diagrams we have obtained confirm this interpretation and show the robustness of the
alternation between regimes for a range of currents and cavity lengths. Specifically, we have found
that regular or irregular alternations are consistently observed for currents J � 1.6Jth [23].
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Figure 3. Experimental bifurcation diagrams of a Mitsubishi ML925B11F diode with (a) J = 1.58 Jth and
L = 30 cm, (b) J = 1.21 Jth and L = 15 cm, and (c) J = 1.21 Jth and L = 65 cm. From Ref. [22].

As the current is increased above threshold, we find that the bifurcation cascade progressively
disappears. Regions of CW and of large fluctuations are still observed, but not in regular alternation,
as illustrated in panel (a). Above 1.6Jth approximately, no alternation can be observed [22,23], and the
bifurcation structure progressively becomes the one described in the next section.

An increase of the cavity length also leads to a degradation of the regularity of the alternation [23],
as illustrated in panel (c). A possible explanation is that, as the cavity length increases, ECMs become
more closely spaced in frequency and attractor merging is facilitated. This makes it more difficult for
independent attractors to develop, with a significant basin, around a single ECM, and no slip toward a
stable CW regime occurs.

Finally, I would like to point out that numerical simulations based on the Lang and Kobayashi
model lead to bifurcation cascades for a significantly narrower range of parameter values than
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experiments do, indicating a possible limit of the model. Comparisons between numerical and
experimental bifurcation diagrams can be found in Ref. [23].

6. Route to Chaos at Larger Bias Current

In this section, I focus on a review of the experimentally observed bifurcation scenario when the
laser is biased significantly above threshold. Of note, numerous simulated bifurcation diagrams, based
on the LK model, can be found in the literature ([1] and references therein). The first bifurcations
observed in simulations usually correspond, in the long cavity case, to an undamping of the relaxation
oscillations followed by quasiperiodic behavior in which a second timescale, close to the round-trip
time in the external cavity, comes into play. The sequence of bifurcations observed after that is strongly
dependent on the choice of the model parameter values. Experimentally, however, we have found that
a consistent and robust scenario occurs when the current J � 2Jth. Specifically, we have investigated
systematically the route from CW behavior to fully developed coherence collapse, for a range of laser
diodes, both packaged and unpackaged, quantum well- or quantum dash-based. Figure 4 represents
the bifurcation diagram of a LD biased at J = 2.28 Jth, for a cavity length L =30 cm (fτ = 500 MHz,
fRO ~ 7.8 GHz). The bifurcation diagram is significantly different from the ones reported in the
previous section, for lower current, as no alternation between CW and more complex regimes takes
place. We observe a sequence of different regimes leading from CW (region α) to fully developed
coherence collapse (region θ), going through quasiperiodic-like (QP) behavior (region β), limit cycle
(LC) periodic behavior (region γ), a region of intermittency (region δ) involving a subharmonic (SH)
regime, a period-doubled (PD) regime (region ε), and an intermittency region (ζ) between PD and fully
developed CC [17,24].

Figure 4. Experimental bifurcation diagrams of a Mitsubishi ML925B11F diode with J = 2.28 Jth

and L = 30cm. Greek letters indicate regions of existence of various dynamical regimes. α: CW; β:
quasiperiodic-like (QP); γ: limit cycles (LC); δ: multistate intermittency including subharmonic (SH)
behavior, ε: period-doubled (PD), ζ: intermittency between PD and coherence collapse (CC), θ: CC.
Reproduced from Ref. [24], with the permission of AIP Publishing.

The traditional analysis of the optical intensity I alone is insufficient to unravel this complex
sequence of dynamics. For this reason, we have analyzed simultaneously the laser voltage V, the
optical spectrum, and the optical phase φ. Detailed experimental reports and interpretation of the
intensity, phase, and optical spectrum in the various regimes can be found in Refs. [16,17,24,25]; the
main points are focused on here.

The first regime that can be identified experimentally looks quasiperiodic in the time domain
(region β). A study of the optical spectra and optical phase [16] reveals that it actually involves an
alternation in time between a periodic oscillation located around ECM 1 and another ECM, which
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depends on feedback level (e.g., ECM −3 or ECM −4). The quasiperiodic appearance in time therefore
does not result from a torus that would have developed from two successive Hopf bifurcations of
a given ECM, as would be expected in a traditional quasiperiodic (Ruelle-Takens or Curry-Yorke)
route [26], but is rather the result of the interaction between two equilibria (ECMs). In addition, it is
interesting to note that the high frequency of the QP regime is equal to a multiple of the delay frequency
fτ that is close to fRO [25] and it remains locked to that multiple if the current, and thus fRO, is slightly
varied. As the feedback is further increased, and region γ is reached, periodic LC dynamics, located
on a single ECM, are observed, again with frequencies that are (different) multiples of fτ. Specifically,
the last limit cycle of region γ is located around ECM 2 and its RF frequency, measured both from I(t)
and V(t) is equal to 7 GHz, corresponding to 14 times fτ. The previous observations show that there
appears to be locking at the RF level between the intrinsic frequencies fτ and fRO, from the very early
stages of the dynamics.

As the feedback level is increased, the optical frequencies involved in the dynamics also tend to
lock. Indeed, when the PD regime is reached in region ε, the RF frequencies still display locking, as I
and V show period-doubled oscillation at 3.5 GHz, corresponding to a halving of the frequency (7 GHz)
of the last limit cycle of region γ. In addition, a locking occurs at the optical frequency level since
the ECMs participating in the dynamics, as revealed by the optical spectrum and phase [16], are also
separated by 7 GHz. Specifically, ECMS 3, −4, and −11 participate in the period-doubled dynamics: 3
and −11 are separated by 7 GHz, while 3 and −4, and −4 and −11, are separated by 3.5 GHz. Before
this complete locking occurs, for lower feedback in region δ, a partial locking is observed to which 3
ECMS participate: two are separated by 3.5 GHz (e.g., ECMs 0 and −7), and thus exhibit locking, while
the third, ECM 3, does not. The corresponding dynamical regime (region δ) shows a regular alternation
in time between LC and PD oscillations. The duration of the LC and PD oscillations varies with the
feedback level, but the sum of the main frequencies in the RF spectra always adds up to ~fRO (e.g.,
fRO/3 and 2fRO/3), corresponding to a subharmonic regime [12,16,24]. In summary, as the feedback
level is increased, the locking between the dynamical frequencies involved in the laser dynamics
progresses until full locking is attained. This locked regime is not maintained indefinitely, however, as
it is lost to CC. In Ref. [16], the disappearance of the PD regime is interpreted as resulting from a crisis.
To illustrate this point, the experimentally measured optical phase φ(t) and intensity I(t), in the PD
regime, are displayed in Figure 5. We see that the dynamical state moves, as a function of time, from
ECM 3, to ECM −4, to ECM −11, then endures an abrupt repulsion toward ECM 3 again. A possible
interpretation is that an antimode, located close ECM −11, provides the necessary repelling force, in
the direction of its unstable manifold, and thus connects in phase space the distant ECMs −11 and +3.
As the feedback level is raised, the ellipse grows in size, leading to an increase in the distance between
ECM −11 and the closest antimode. When, for some feedback level, the ellipse becomes too wide,
the connection breaks and a boundary crisis to CC behavior occurs. In the CC regime, as reported
in numerous publications, a large number of ECMs are involved [1,2] and the intensity, voltage, and
phase are observed to vary chaotically. Of note, the sequence of bifurcations described in this section
has been observed consistently for a range of quantum well lasers, as well as with a quantum dash
laser, illustrating the generality of the results for these types of quantum confinement. Finally, let me
mention that the most common route to chaos of a semiconductor laser subjected to optical feedback,
which is the one reported in this section, has often been described as a quasiperiodic route. Even
though dynamical behaviors of quasiperiodic appearance are indeed observed, we have shown that
the route actually differs significantly from a traditional quasiperiodic route [26,27] in which a single
equilibrium point undergoes a series of Hopf bifurcations leading to periodic then quasiperiodic
behavior, and finally chaos. In Ref. [16], we have proposed to name the sequence of bifurcations a
crisis route to chaos.
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Figure 5. Period-evolution of the experimentally measured optical intensity and optical phase in the
period-doubled regime (region ε of Figure 4). The top-right panel gives a visual representation of the
ECMs involved. From Ref. [16].

7. Discussion

In this article, I have reviewed the experimentally observed routes to CC of a laser diode subjected
to optical feedback as the feedback level is increased.

When the laser is biased close to threshold, stable dynamics around a single ECM are hardly
observed, with the notable exception of CW behavior on the MGM, which displays a negative frequency
shift with respect to solitary laser frequency. A typical bifurcation diagram consists of an alternation
between complex regimes involving numerous ECMs and regions of stable behavior that occur when
the MGM becomes accessible.

For currents significantly above threshold, the picture is different as some stable attractors develop
around individual ECMs. In particular, for minor feedback, stable limit cycles develop around
ECMs that have a positive frequency shift, which is consistent with the predictions by Masoller
and Abraham [28]. Of note, the RF frequencies, measured from the intensity and voltage, always
display a locking between the relaxation oscillation frequency and the delay frequency. Specifically,
we consistently observe that the first dominant RF frequency that can be identified experimentally is
not the relaxation oscillation frequency fRO but rather a multiple of the delay frequency fτ that is close
to fRO. Of note, by dominant frequency, we either mean the fast frequency, when quasiperiodic-like
behavior is the first observed in the bifurcation sequence, or the actual oscillation frequency, when LC
dynamics are observed first (as reported in Ref. [18], different ECMs can be experimentally selected as
starting states of bifurcation diagrams, resulting in different initial instabilities). Interestingly, similar
locking has also been reported in quantum dot lasers subjected to optical feedback [25].

As the feedback level increases and the ellipse grows, allowing for the coexistence of ECMs
that are distant in frequency, partial then complete locking of the optical frequencies of the ECMs
also occurs. Partial locking takes place in the subharmonic regime. Complete locking occurs in the
period-doubled regime, when the optical intensity and voltage oscillate at a frequency that is also
equal to the optical frequency spacing between the ECMs involved. This type of regime appears to
be a mixed ECM solution, as described by Pieroux et al. in Ref. [29]. Finally, for larger feedback, the
locking is lost as a simple regime involving a limited number of ECMS becomes impossible and the
laser dynamics become chaotic.
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Abstract: Reservoir computing has rekindled neuromorphic computing in photonics. One of the
simplest technological implementations of reservoir computing consists of a semiconductor laser
with delayed optical feedback. In this delay-based scheme, virtual nodes are distributed in time
with a certain node distance and form a time-multiplexed network. The information processing
performance of a semiconductor laser-based reservoir computing (RC) system is usually analysed
by way of testing the laser-based reservoir computer on specific benchmark tasks. In this work, we
will illustrate the optimal performance of the system on a chaotic time-series prediction benchmark.
However, the goal is to analyse the reservoir’s performance in a task-independent way. This is
done by calculating the computational capacity, a measure for the total number of independent
calculations that the system can handle. We focus on the dependence of the computational capacity
on the specifics of the masking procedure. We find that the computational capacity depends strongly
on the virtual node distance with an optimal node spacing of 30 ps. In addition, we show that the
computational capacity can be further increased by allowing for a well chosen mismatch between
delay and input data sample time.

Keywords: semiconductor laser; feedback; delay; reservoir computing; neuromorphic computing

1. Introduction

Artificial neural networks (ANN) have played a significant role in the current artificial intelligence
(AI) boom, especially with the invention of ImageNet [1] as catalyst. ANNs may be efficient and
versatile during operation but they require complex and time-consuming algorithms to train the
connection weights in the large network that forms the ANN. When interested in processing tasks and
data where the temporal evolution is key, standard feed-forward ANNs are not sufficient and one
needs to turn to recurrent neural networks (RNNs). The training of RNNs is a nonlinear problem due
to feedback loops in the network and is far more involved than the training algorithms of feed-forward
networks. Reservoir computing (RC) is a paradigm that solves the training issue of RNNs in an
efficient way.

RC offers a framework to exploit the transient dynamics within an RNN for performing useful
computation. It has been demonstrated to have state-of-the-art performance for a range of tasks
that are notoriously hard to solve by algorithmic approaches, e.g., speech and pattern recognition
and nonlinear control. RC simplifies the training procedure for RNNs considerably. Its training
procedure only acts on the output layer which consists of a linear combination of network states to
generate the desired output signals. The connections of the RNN itself, which is now referred to
as reservoir, remain fixed. During training, only the connections from the network to the output
layer are adjusted. Due to this simplification, RC is very suited as a framework for neuromorphic
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computing activities in photonics. Today, multiple photonic RC systems exist that can provide
a practical yet powerful hardware substrate for neuromorphic computing [2]. Some examples include
a network of semiconductor optical amplifiers [3,4], an integrated passive silicon circuit forming
a very complex and random interferometer, with nonlinearity introduced in the readout stage [5] and
a semiconductor laser network based on diffractive coupling [6]. All these implementations have
one thing in common: they rely on a network of photonic nodes that are spatially distributed and can
be measured simultaneously.

However, the reservoir is not required to be a networked structure. In fact, any dynamical
system with a high dimensional state space can be considered as reservoir substrate. We consider
here specifically a semiconductor laser with delayed feedback as reservoir substrate. The concept of
delay-based RC, using only a single nonlinear node with delayed feedback, was introduced some
years ago by Appeltant et al. [7]. Its operation boils down to a time-multiplexing with the delay
arising from propagation in the external feedback loop, limiting the resulting processing speed.
The system is easily scaled by tuning the delay length and only has one single physical node
reducing the hardware complexity in photonic systems. The first working prototype was developed
in electronics in 2011 by Appeltant et al. [7] and several performant optical systems followed quickly
after that [8,9]. Brunner et al. [10] employed off-the-shelf telecom equipment to experiment with
a single-mode semiconductor laser subjected to optical feedback. The delay time in his experiments
was around 80 ns, which translates to a few meters of fiber. Recently, Takano et al. [11] have presented
a photonic integrated circuit consisting of a distributed-feedback semiconductor laser, a semiconductor
optical amplifier (SOA), a phase modulator, a short passive waveguide and an external mirror for
optical feedback. The external cavity length in this system reached 10.6 mm, corresponding to
a round-trip delay time of 254 ps. Several other types of semiconductor laser have been considered
such as semiconductor ring lasers using the two available directional modes [12] and vertical-cavity
surface-emitting employing the two polarization modes [13]. In this paper, we will only focus on
single-mode Fabry-Péro type quantum-well semiconductor lasers.

The information processing performance of a semiconductor laser-based RC system is related
to its dynamical behaviour both in the absence of external input and in the presence of said input.
After the very first experiment by Brunner et al. [10], other works have focused on understanding the
fundamental properties of semiconductor laser-based RC for non-linear prediction tasks. In Ref. [14], it
has been shown that the conditions to achieve good predictive performance are given by the injection
locking, consistency and memory properties of the system. More specifically, Bueno et al. found that the
lowest prediction error for a non-linear prediction task occurs at the injection locking boundary. Note
that in this work the laser was operating below or close to the solitary lasing threshold. Consistency,
the ability of a system to have a similar response for similar input signals, is widely regarded as key
for good reservoir computing performance [14,15].

While much attention was drawn to the specific dynamical regimes, much less attention
was devoted to the actual pre-processing procedure, which implements the time-multiplexing.
In delay-based RC, the laser response to data samples can be measured sequentially and these
responses will form virtual nodes states. The nodes are now denoted as virtual as they exist
in a time-multiplexed way rather than corresponding to real physical spatially distributed and
interconnected nodes. Specifically, a lot of debate exists on what the optimal size of such a virtual
node should be. In Ref. [7], a rule of thumb was suggested implying that an optimal choice of θ was
around 20% of the internal timescale of the system. In the case of a semiconductor laser with delayed
optical feedback and optical data injection, it is not readily clear which timescale should be taken. In
Ref. [10], the timescale considered corresponds to the relaxation oscillations, and the choice for θ was
200 ps. Nguimdo et al. stated that the node distance could easily be reduced to 20 ps, claiming injection
locking dynamics as the underlying reason [16]. In addition, it is not clear if it is better to fit all virtual
node states exactly into one delay line length as in [7,10] or that a mismatch is beneficial as in, for
example, Ref. [9]. These considerations will have their impact on the processing speed of the RC. The
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effect of the parameters of the masking method on the computational performance of the laser-based
RC can be task-dependent. In the worst case scenario, a bad choice of benchmark can obscure the most
important trends. Therefore, we will analyse these dependencies in a task-independent way. To this
aim, we will perform calculations of the computational capacity from numerical timetraces obtained
from rate equations. Contrary to [14], we will focus on above solitary laser threshold behavior and
limit ourselves to the zero detuning regime.

In Section 2, we introduce the rate equation model that is used for all numerical simulations in this
work. We will also review the necessary pre-processing or masking procedure of delay-based reservoir
computing and the training procedure. By way of example, we analyse the optimal parameters of the
semiconductor laser with delayed optical feedback to tackle a chaotic time-series prediction task in
Section 3. Finally, in Section 4, we analyse the computational performance of the laser-based reservoir
in a task-independent way by calculating computational capacities associated to a set of polynomial
target functions. We investigate how the computational capacity depends on the virtual node distance
and mask length which are defined in the masking scheme.

2. Reservoir Computing with a Semiconductor Laser and Delayed Feedback

2.1. Rate Equation Model

We confine our laser model to the case of a single section Fabry-Pérot device, supporting only
a single transversal mode, single longitudinal mode and a single polarization. The general rate
equations are:

dE
dt

= −1
2
(Γ − g) E +

1
2

ξ(1 + iα)N E + Ef b + Einj + F̃k, (1)

dN
dt

= J − N
T

− g |E|2 − ξN |E|2 . (2)

E is the slowly varying complex amplitude of the electric field. N is the carrier number. Γ, g, ξ

and α are respectively the cavity loss, linear gain, differential gain and the linewidth enhancement
factor. The last term in Equation (1) F̃ is a complex Gaussian white noise term with zero mean and
〈F̃(t) F̃(t′)〉 = β T−1(N +Nthr)δ(t−t′), with β being the spontaneous emission factor. J is the injection
current with respect to the threshold current J = (I − Ith)/e, with I and Ith being the pump and
threshold pump current and e the elementary charge. T is the carrier lifetime. Two terms are added to
the right hand side of Equation (1), namely:

Ef b = η E(t − τ)e−iΩτ (3)

Einj = μE
(

1 + ei[B(t)+Φ0]
)

. (4)

The terms Ef b and Einj represent the optical feedback and injection, with η and μ being the
feedback and injection rates. The feedback has a delay τ and Ωτ is the constant phase mismatch that
arises from the roundtrip. Equation (4) actually models a Mach–Zehnder modulator (MZM), where E
is the complex amplitude of the injected electrical field, B(t) is the masked data and Φ0 is the bias of
the MZM. The frequency detuning between injected signal E and laser field E is assumed in this work
to be zero. The effect of detuning on performance is discussed in Ref. [14]. A schematic illustration of
these mechanisms can be seen in Figure 1. We have numerically integrated these equations using the
Heun method with a time step of 0.5 ps.
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Figure 1. A schematic of the delay based RC with a semiconductor laser which is modelled by
Equations (1)–(4). The data A(t) is multiplied with mask M(t), resulting in masked stream B(t).
The masked stream is modulated unto the output E of an external laser. The Mach–Zehnder modulator
is biased by Φ0, such that it remains in its quasi-linear regime. The modulated stream is multiplied by
the injection rate μ and injected into the laser. The feedback strength in the delay line is controlled by
the feedback rate η.

2.2. Pre- and Post-Processing

The input stage to the delay-based reservoir serves to preprocess the data, such that it corresponds
to the timescales in the reservoir and the intended computation speed. The preprocessing of
a normalised univariate dataset is done in two steps. First, each point of the dataset is sampled
and held for a period τM, the mask length. In Ref. [7], τM was considered to be equal to the delay time
τ such that upon injection the delay line is completely filled with responses to a single data sample.
Nevertheless, in other works such as Refs. [9,17,18], a mismatch was introduced between τ and
τM. We will consider both cases in this work. This datastream, denoted as A(t) in Figure 1, is then
multiplied with a mask M(t), which is periodic over τM and has small temporal features of interval
length θ, resulting in the masked datastream B(t) in Figure 1. As the laser is fed with the masked
stream B(t), it will have different nonlinear responses to these temporal variations. These responses
can be measured sequentially and then form the states of the virtual nodes. The nodes are now denoted
as virtual as they now exist in a time-multiplexed way rather than corresponding to real physical
spatially distributed and interconnected nodes. The time interval θ is also known as the virtual node
separation or node distance. When delay and mask are synchronised, i.e., τ = τM, the node separation
has to be chosen carefully, as it should be in the same range as a timescale or inertia of the nonlinear
node [2]. If θ is much larger than the timescale of the node, the nonlinear node goes into a quasi-steady
state regime for each mask feature, leading to a significant drop in state diversity. When the node
separation is much shorter than the timescale of the nonlinear node, the mask features will be too
fast for the node to follow leading to all virtual nodes having very similar state values and very
low state diversity. In both cases, the time-multiplexing procedure will be unable to form a virtual
interconnected network. In the case considered in Refs. [9,17,18], the virtual network is formed due
to the mismatch between delay τ and mask τM, while the node distance θ is considered to be very
large. The number of virtual nodes N = τM/θ is equally important, as it determines the speed as
well as the performance of the setup. If the number of nodes is small, the performance decreases but
the system speeds up. Higher number of nodes often means a better state diversity, which improves
performances, at the cost of a slower computation speed. In this work, we generate random, but fixed
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masks with four discrete levels, [0, 0.25, 0.75, 1]. Once the mask M(t) is fixed and multiplied with the
datastream A(t), the resulting datastream B(t) is rescaled such that 0 ≤ B(t) ≤ π/2 and the MZM
bias Φ0 is set to π/4. This is to ensure that the MZM is modulating in its quasi-linear regime. The node
separation will be varied throughout the paper.

The output intensity of the semiconductor laser is sampled with a sample period corresponding
to θ; the samples correspond to the end of each virtual node interval. The N samples within the τM
interval correspond to the virtual node values that have responded to a single data sample and they
define the reservoir state. These node values (nodei in Figure 1) are linearly combined using weights wi
to form the output signal y. In training, the goal is to set wi such that y approximates a desired target
signal yexp as well as possible in a least squares sense.

3. Timeseries Prediction

To illustrate the performance of a semiconductor laser with delayed feedback and how it scales
with its system parameters, we have chosen to use a timeseries prediction as a benchmarking task.
We have utilised a timeseries from the Santa Fe competition generated by a far-infrared laser operating
in a chaotic regime [19]. The aim of this task is to predict the next sample in the chaotic time trace.
This dataset has 9093 datapoints of which the first 3005 points are used for training and the subsequent
1005 points are used for testing the performance. The first 5 points are discarded from both stages,
in order to filter out possible transients arising from turning on the injection of data. By comparing the
reservoir’s trained output y with the target yexp for previously unseen input samples, we can quantify
the performance using the normalised mean square error (NMSE), which is defined as:

NMSE(y, yexp) =

〈||y(n)− yexp(n)||2
〉〈||yexp(n)−

〈
yexp(n)

〉 ||2〉 , (5)

where y is the predicted value and yexp is the expected value, n is the discrete time index of the input
samples and the symbols ||...|| and 〈...〉 stand for the norm and the average respectively. The NMSE is
always a positive value, with lower NMSE values corresponding to better performances.

The laser-based RC scheme has a number of parameters that can be tuned to obtain an optimised
reservoir. We have employed a Bayesian optimisation technique [20] combined with the upper
confidence bound acquisition function to scan the parameter space spanned by some of the parameters
that can easily be manipulated in practice. These parameters are: the pump current of the reservoir
laser, J; the feedback rate, η; the injection rate, μ. Table 1 presents the parameter values used during
the simulations. In this section, we chose as node distance θ a value of 20 ps and mask and delay
synchronised (τ = τM). This is following the work of Nguimdo et al. [16]. In this work, N = 200 is
chosen sufficiently large such that state diversity is not compromised. In this section, we do not vary N.
We will analyse the effect of the value of θ later on in Section 4. We have generated only one random
mask and used this for all results presented in this section.

We have performed a Bayesian optimisation over a three dimensional parameter space (feedback
rate, injection rate and pump current). Figure 2 shows two-dimensional projections of the parameter
space. The performance indicator NMSE is colour and size coded in the scatter plot. Better
performances, in other words lower NMSE values, are represented by larger circle markers and
a reddish hue. Worse performances, or higher NMSE values, are represented by smaller markers and
are on the blue side of the colour scale. All plots have the pump current along the x-axis. Figure 2a
illustrates how the NMSE relates to the feedback rate η on the y-axis. Similarly, Figure 2b has the
(total) injection rate μ on the y-axis. The best performances are achieved when the current is around
twice the threshold pump current (see Figure 2a,b). For pump currents above this range, we have
observed that dynamical behavior of the semiconductor laser becomes chaotic and unable to produce
consistent responses for similar inputs. This degrades performance. We find from Figure 2a that as the
pump current is increased, the feedback rate has to be lowered to achieve better performances. This
could be explained as follows. An increase in pump current will increase the overall power emitted
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by the laser diode. As a result, the power of the feedback signal will also increase and will be able to
destabilise the laser more easily. Lowering the feedback rate will therefore reduce the feedback power
and favour consistent behaviour and good performance. As the pump current increases, we observe in
Figure 2b that the injection rate needs to be increased as well to stay in a regime of low NMSE and
good performance. We believe the higher injection power is required here to better injection lock. The
optimal parameter values obtained from the Bayesian optimisation μ = 98.1 ns−1 and η = 7.8 ns−1 at
I = 2.02Ith. In this case, the lowest NMSE equals 1%. Repeating the same analysis with other randomly
generated masks delivers the same optimal parameter values and a variation of the performance
smaller than 0.2%.

Table 1. Parameters used in the Bayesian optimisation for a timeseries prediction task.

Parameters Designation Value Used in Bayesian Optimization

Linewidth enhancement factor α 3.0
Loss Γ 1 ps−1

Threshold gain g 1 ps−1

Differential gain ξ 5000 s−1

Spontaneous emission factor β 10−6

Carrier-lifetime T 1 ns
Threshold pump-current Ith 16 mA

Pump-current I scanned over [Ith; 3Ith]
Feedback rate η scanned over [0; 50 ns−1]
Injection rate μ scanned over [0; 100 ns−1]

Amplitude of injected field E 200
Bias voltage of the MZM Φ0 π/4
Constant feedback phase Ω 0

Node distance θ 20 ps
Number of nodes N 200

Delay time τ 4 ns
Mask length τM 4 ns
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Figure 2. Test results obtained from the Bayesian optimisation for the semiconductor laser with delayed
feedback trained on a time-series prediction task projected in the plane of (a) feedback rate and pump
current or (b) injection rate and pump current. The performance indicator NMSE is coded into the
colour and size of the markers in the scatter plot. A better performance corresponds to a bigger marker
size and a redder colour. Parameters as in Table 1 and θ =20 ps, N = 200, τ = τM =4 ns.

4. Task-Independent Computational Performance

Benchmarking the performance of a semiconductor laser with delayed feedback as an RC by
training it to perform one or several benchmark tasks is useful. However, the system parameters for
which optimal performance is obtained can vary from task to task. As an alternative, a framework
has been introduced to quantify any system’s total information processing capacity in a general
and task-independent way. This computational capacity (CC) is typically split into two main parts:
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the capacity of the system to retain past input samples is captured by the linear memory capacity [21]
and the capacity of the system to perform nonlinear computation is captured by the nonlinear memory
capacity [22]. It has been shown that the total memory capacity is limited by the number of read-out
degrees. In our case, the upper limit corresponds to the total number of virtual nodes N. Due to this
ideal limit, a trade-off between linear and nonlinear memory capacity exists.

To measure the linear and nonlinear capacities, a series of independent and identically distributed
input samples u(n) drawn uniformly from the interval [−1, 1] are injected into the reservoir, with n
a discrete time. Then we train the RC to reconstruct a set of linear and nonlinear polynomial functions
depending on past inputs u(n − i), looking back i steps in the past. In our calculations, the maximum
value of i is 20. We follow the approach of Dambre et al. (Ref. [22]) and take for these functions
Legendre polynomials Pd(u) (of degree d), due to their orthogonality in the interval [−1, 1]. As an
example, we can train the reservoir to reproduce the target signal yexp(n), given by

yexp(n) = P3(u(n − 2))P1(u(n − 4)). (6)

Instead of using the NMSE as we did for the timeseries prediction task, a memory capacity C is
defined to quantify the ability of the RC to reconstruct each of these functions. The memory capacity C
lies between 0 and 1 and is defined as [22]:

C = 1 − 〈(yexp − y
)2〉

〈y2
exp〉

, (7)

where 〈.〉 denotes the average over all samples used for the evaluation of C. As the Legendre
polynomials are orthogonal over the distribution of the input samples, the capacities C corresponding
to different functions will yield independent information. Their sum will give the total computational
capacity (CC), i.e., the total information processing capacity of the RC. We will group the memory
functions by their total degree, which is the sum of degrees over all constituent polynomial functions,
e.g., Equation (6) has total degree 4. Within each degree group, we can sum the memory capacities
C yielding the total memory capacity per degree. We will use this to evaluate the contributions of
individual degrees to the total computational capacity (CC) of the RC (the sum over all memory
capacities per degrees). We have used 10,005 input samples for training. The first five states of the
nodes are discarded to allow for the transient. The approach of Dambre in Ref. [22] does not use
a testing session. Using this procedure, a risk exists of overestimating the memory capacities C due to
the use of data sets with finite length. As explained in Ref. [22], Equation (7) is plagued by a positive
bias. Following Ref. [22], a cutoff capacity Cco is used (Cco ≈ 0.003 for 10,000 test samples) and
capacities below this cutoff are neglected. Typically, for the linear capacities no non-zero capacities
were obtained for i > 13, with i being the number of time steps in the past used in constructing the
nonlinear functions.

Results

We will start by analysing the total CC of our system close to the optimal parameter set that was
obtained in Section 3. We fix all system parameters at the optimum, but we will vary the feedback
strength. The node distance θ is fixed to θ = 20 ps. The delay and mask lengths match (τ = τM).
As calculating a large amount of CC is numerically challenging, we have reduced the number of nodes
to N = 101 to speed up the numerical analysis. This smaller value of N compared to the one used
in Section 3 leads to similar performances on the Santa-Fe benchmark. In addition, the delay time
will be smaller, but we do not observe a change in dynamical regime as compared to the situation in
Section 3. We have generated only one random mask and used this for all results presented in this
section. Repeating the same analysis with other randomly generated masks did not change the findings.
The results are shown in Figure 3. The total memory capacity is maximum around η ≈ 10 ns−1. So the
optimum that was reached in the benchmark task is also the point in parameter space where the total
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CC reaches its peak value. Note that the total CC does not reach its ideal value of N = 101. This
reduction of CC will be discussed later. At the optimal point all memory capacities of degrees higher
than one, i.e., all nonlinear capacities, have increased. The linear memory capacity (degree 1) remains
mainly unaffected by the feedback strength. It is only for higher feedback strengths that the linear
memory capacity degrades. These results illustrate that the Santa Fe timeseries prediction task is a very
diverse task requiring both nonlinear and linear capacities.

Figure 3. Total computational capacity showing the colour-coded contributions of different degrees of
nonlinearity vs. the feedback strength η. Parameters as in Table 1 and μ = 100 ns−1, I = 2Ith, N = 101,
θ = 20 ps and τ = τM = Nθ.

Now, we will investigate the effects of the masking procedure on CC. This time-multiplexing
scheme defines the number of nodes N and their separation in time θ. Together θ and N define the
mask length τM. In Ref. [7], a rule of thumb was suggested implying that an optimal choice of θ

was around 20% of the internal timescale of the system. In the case of a semiconductor laser with
delayed optical feedback and optical data injection, it is not readily clear which timescale should be
taken. In Ref. [10], the timescale considered was related to relaxation oscillations, and the choice for θ

was 200 ps. Nguimdo et al. stated that the node distance could easily be reduced to 20 ps, claiming
injection locking dynamics as the underlying reason [16]. We have opted in Section 3 and above to
use that specific value. We have calculated the memory capacities per degree, while varying the node
distance θ from 5 ps to 50 ps as shown in Figure 4. We observe a clear trend with the highest total CC
at θ = 30 ps. If the node distance is too short the capacity is considerably lowered. For small node
distances, the node states will become highly correlated. This results in effectively having less nodes
available for computation and hence a lower cap on the total computational capacity. A node distance
can also be too long. In that case, the coupling between virtual nodes reduces as transients have died
out. At the optimal value that we have obtained, we would like to point out that the total CC is also
reduced and reaches only about 70% of its maximum value. This can be attributed to the previously
mentioned correlation that is induced between virtual node states through the transient dynamics
which reduces the node state diversity. As a side remark, we want to highlight that changing θ will
change the delay time τ. The range in τ that is covered in Figure 4 goes from from 0.5 ns to 5 ns.
In this entire range, we did not observe a change in dynamical behaviour of the semiconductor laser.
This indicates that the change in CC is only due to the masking procedure and not due to a change in
delay line length.

22



Photonics 2019, 6, 124

Figure 4. Total computational capacity (CC) showing the colour-coded contributions of different
degrees of nonlinearity vs. the node distance θ. Parameters as in Table 1 and μ = 100 ns−1, η = 10
ns−1, I = 2Ith, N = 101 and τ = τM = Nθ.

Finally, we want to investigate if it is possible to remedy the reduction of the CC due to a reduced
state diversity due to inertia of the semiconductor laser. Instead of relying on the dynamics to connect
virtual nodes to each other, an overlap between delay and mask length (τ > τM) can be used as in
Refs. [9,17,18]. However, in those cases the virtual node distance θ was chosen much longer than
any timescale related to internal dynamics of the nonlinear system. In addition, contrary to those
works, we decide to still use a short node distance θ = 20 ps, close to the optimum obtained in
Figure 4. According to Refs. [9,17,18], the mismatch and the node number should be co-primes. This
was ensured by taking N = 101. In Figure 5, we analyse the effect of the delay τ on the CC. The
mask length is kept constant τM = Nθ. We observe clearly that when τ < τM, the CC is reduced
further. However, for τ > τM, we see a slight increase in CC, when the delay and the mask length
have a mismatch of about half a node distance. When τ = (N + 1)θ, an overlap of one virtual node,
the CC has dropped again slightly. For even longer τ, in Figure 6, we can conclude that a general trend
exists to a slightly higher CC, but the ideal value of CC = N is never reached. From an experimental
point of view, this is a very interesting result. Not much care needs to be taken in matching delay and
mask lengths. In fact, a small mismatch even of several virtual nodes can increase the CC and the
computing performance.

Figure 5. Total computational capacity (CC) showing the colour-coded contributions of different
degrees of nonlinearity vs. the delay time τ. Parameters as in Table 1 and μ = 100 ns−1, η = 10 ns−1,
I = 2Ith, N = 101 and τM = Nθ.
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Figure 6. Total computational capacity (CC) showing the colour-coded contributions of different
degrees of nonlinearity vs. the delay time τ. Parameters as in Table 1 and μ = 100 ns−1, η = 10 ns−1,
I = 2Ith, N = 101 and τM = Nθ.

5. Conclusions

We have analysed the computational capacity of semiconductor lasers with delayed feedback
used as substrates for reservoir computing. Our main focus was put on analysing the effect of the
specifics of the masking procedure. We have found that an optimal node distance is found around
30 ps which maximises computational capacity in the case of a perfect match between delay length and
mask length. Nevertheless, due to the fact that a virtual network is created through the dynamics of the
semiconductor laser, the maximum computational capacity is never reached. A mismatch between the
mask length and the delay length can be beneficial for the computational capacity. However, the effect
of the mismatch is rather limited for the values of the node distance analysed. From an experimental
viewpoint, this is an advantage as little care should be placed in designing an exact delay line length.
The computational capacity can be further increased to its ideal theoretical maximum value, if the
mismatch is combined with longer node distances as in Refs. [9,17,18]. However, this would lower the
computation speed of the system significantly as it is inversely proportional to the node distance.
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Abstract: Hybrid integrated semiconductor laser sources offering extremely narrow spectral
linewidth, as well as compatibility for embedding into integrated photonic circuits, are of high
importance for a wide range of applications. We present an overview on our recently developed
hybrid-integrated diode lasers with feedback from low-loss silicon nitride (Si3N4 in SiO2) circuits,
to provide sub-100-Hz-level intrinsic linewidths, up to 120 nm spectral coverage around a 1.55 μm
wavelength, and an output power above 100 mW. We show dual-wavelength operation, dual-gain
operation, laser frequency comb generation, and present work towards realizing a visible-light hybrid
integrated diode laser.

Keywords: semiconductor laser; InP semiconductor optical amplifier; hybrid integration; narrow
intrinsic linewidth; dual-wavelength laser; laser frequency comb; integrated photonic circuits;
low-loss Si3N4 waveguides

1. Introduction

The extreme coherence of light generated with lasers has been the key to great progress in science,
for instance, in testing fundamental symmetries [1,2] and properties of matter [3,4]. While fundamental
research has been, and still is, based on very diverse types of lasers, the development has been different
with applications. Here, with billions of pieces fabricated per year, the diode laser (semiconductor laser)
is by far most prevalent, due to a unique set of advantages. Lithographic fabrication and integration
on a chip reduces mass, size and cost per piece, and the laser lifetimes can reach the 100,000-h level.
Generating light in a semiconductor junction enables ease of operation directly with an electric current,
with up to 85% power efficiency [5]. The wavelength coverage and tunability of diode lasers reaches
from the near-UV into the mid-infrared, while optical integration provides excellent intrinsic stability
vs. mechanical and acoustic perturbations.
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With these advantages, diode lasers are essential for photonics as key enabling technology.
Narrow linewidth and wavelength tunable diode lasers can serve high-end and upcoming applications.
Prominent examples are monitoring and sensing in fabrication [6–8], bio-sensing [9], monitoring the
integrity of civil structures [10,11], laser ranging (LIDAR) for autonomous traffic [12] or sensing of
rotation with optical gyros [13–15].

With sufficient coherence, diode lasers can play a great role in precision metrology and
timing, such as in portable atomic clocks [16–18], including satellite-based GPS systems [19,20].
When integrating narrow-linewidth semiconductor lasers into functional photonic circuits, they may
serve as on-chip light engines, for instance, to drive Raman and Brillouin lasers [15,21,22]. A most
recent development is driving Kerr frequency combs with narrowband diode lasers [23–25] which
complements the frequency combs provided by mode-locked diode lasers [26]. Specifically, if the
combs comprise narrowband comb lines, dual-comb metrology [27,28], spectroscopic detection [29,30]
or dual-comb imaging [31] can move towards chip-based formats [32]. Narrow-linewidth diode lasers
may also be beneficial for fully integrated, chip-based quantum frequency combs that can generate
highly complex entangled optical states [33].

Of widest relevance is the role of diode lasers in communication and information technology,
for instance as key component of the global fiber network [34] or within data centers [35]. By lowering
the phase noise of diode lasers, coherent optical communications based on phase-encoding [36,37]
is expected to increase the transmission rates noticeably [38]. Following the relation between the bit
rate B and symbol rate S (baudrate), B = log2S, quadrature amplitude modulation with 4096 symbols
(QAM 4096) promises a 12-times higher transmission rate. For further increased data rates, diode laser
driven Kerr frequency combs can increase the number of wavelength channels available for coherent
transmission [39]. Similarly, low-noise diode lasers are foreseen as information carriers for processing
of information with optical methods [40,41]. This can be seen from recent progress in integrated
microwave photonics [42–46], photonic analog-to-digital conversion [47] and generation of low-noise
and widely tunable microwave to terahertz signals with integrated diode lasers [48,49].

The absolutely central property in these applications is the laser’s spectral linewidth, which is a
measure for the degree of spectral purity, also called coherence. Narrowing the linewidth increases the
amount of information and precision to be gained in sensing and metrology, and it increases the data
rate through optical interconnects and in optical processing.

As the frequency fluctuations of lasers are caused by a variety of different processes [50]
involving very different time scales, determining the coherence properties of laser light requires
comprehensive measurements [51–54]. A key coherence property and signature of spectral quality is
the Schawlow-Townes limit, also called quantum limit, fundamental linewidth, intrinsic linewidth or
fast linewidth [55–58]. At a given output power, this fundamental bandwidth can only be reduced
by increasing the lifetime of photons in the laser resonator, which is the main approach towards the
various diode laser designs that we present here.

Depending on the application, also the slow linewidth can be of major importance, i.e.,
the linewidth obtained after longer averaging, often named full-width at half-maximum (FWHM)
linewidth. This measure comprises also technical noise such as from thermal drift, or from noise in
the pump current. The FWHM bandwidth can partly be reduced with optimizing the laser design
for highest passive stability, such as provided by photonic integration. Long-term frequency stability
requires that the laser is frequency tunable, such that an electronic servo control can minimize the
detuning from a stable reference used as frequency discriminator [59]. However, to avoid that such
active stabilization adds too much noise on its own, e.g., quantum noise from photo detection in the
frequency discriminator, and to suppress noise also at higher noise frequencies, it remains essential to
reduce the intrinsic laser linewidth [60,61].

The remainder of this manuscript is organized as follows. In Section 2, we describe the state of
the art with respect to narrowing of the intrinsic linewidth of diode lasers. In Section 3, we briefly
discuss the physics of linewidth narrowing. In Section 4, we describe a hybrid InP-Si3N4 laser based
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on two intracavity micro-ring resonators and a single gain section. In Section 5, we show that be
adding a second gain section that both the output power can be significantly increased and the intrinsic
linewidth reduced. In Section 6, we show that, by adding a third intracavity microring resonator,
a record-low intrinsic linewidth can be realized. In Section 7 we describe hybrid lasers producing a
frequency comb or providing widely tunable dual wavelength operation, and discuss the possibility to
extend the oscillating wavelength down into the visible. We conclude with a summary and outlook in
Section 8.

2. State of the Art

The typical FWHM bandwidth of commercially available, integrated diode lasers has remained
for long at relatively high levels around a MHz [62–64], with lowest values of 170 and 20 kHz achieved
so far (at 1.5 μm wavelength [65] and at 850 nm [66], respectively). The lowest intrinsic linewidth
achieved with a monolithic diode laser is about 2 kHz (FWHM 180 kHz) [67]. Much smaller bandwidths
have been obtained with non-integrated lasers that use bulk optical gratings [68]. Miniaturized bulk
components have been very effective as well [69], particularly high-Q whispering gallery mode
resonators [70] or Bragg fibers [61,71,72]. In connection with extensive electronic servo stabilization,
for research purposes, even diode lasers with bulk optical feedback can reach the sub-Hz-range [73–75].
But due to the large size, mass and acoustic perturbation sensitivity, this route remains unattractive
for mobile, handheld and space applications, and in all applications that are to serve big volumes.
Similarly, due to size restrictions, lack of long-term stability or diffraction loss in coupling from free
space to tightly guiding waveguides, even miniaturized bulk optical sources are less suitable to feed
integrated photonic circuitry, e.g., in integrated microwave photonics [46,76,77] or for integrating
optical beam steering [78].

Figure 1. Overview of intrinsic linewidth reported for hybrid or heterogeneously integrated diode
lasers. a-[10], b-[79], c-[80], d-[81], e-[82], f-[83], g-[84], h-[85], i-[86], j-[87], k-[88], l-[89], m-[90], n-[91],
o-[92], p-[93], q-[94], r-[95], s-[96], t-[97], u-[98], v-[99], w-[100], x-[101], y-[102], z-[103], α-[23], β-[104],
δ-[105], ε-[106], γ-[107].

Many orders of magnitude smaller linewidths than with monolithic diode lasers have been
achieved with hybrid and heterogeneously integrated diode lasers, ultimately reaching into the
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sub-kHz-range (see Figure 1). The highest degree of intrinsic coherence so far is generated with
an InP-Si3N4 hybrid integrated diode laser [107]. There, we employed a low-loss Si3N4 waveguide
circuit comprising microring resonators for extending the photon lifetime, imposing single-frequency
oscillation, and wavelength tuning.

All hybrid and heterogeneously integrated diode lasers make use of additional waveguide circuits
fabricated in a different, low-loss material platform, while light is generated and amplified in a
semiconductor material gain section. A schematic view of hybrid integrated lasers based on frequency
selection with two or three microring resonators is shown in Figure 2. The low-loss dielectric part of
the circuit increases the photon lifetime of the laser resonator in order to reduce the laser linewidth.
At the same time, the narrowband transmission of resonators imposes single-frequency oscillation
via intracavity spectral filtering. Although the cavity extension is aiming on increasing the photon
lifetime, it should be noted that all integration, whether hybrid or heterogeneous, inevitably causes
extra roundtrip loss due to imperfect optical coupling at the interface between the distinct platforms
and materials, and due to losses in the feedback circuit, both of which decreases the photon lifetime.
It is thus important to reduce coupling as well as propagation loss in the feedback arm.

Figure 2. (left) Schematic view of a hybrid integrated diode laser with two microring resonators
(MRRs) in Vernier configuration for spectrally selective feedback. The lower left part is a semiconductor
double-pass amplifier forming the gain section (red) with electrodes for pumping (gold) and one
of the laser cavity end mirrors. The upper right part is the waveguide feedback circuit showing
Si3N4 waveguides (red), electrode pads and leads (gold) and heaters (black) for tuning the laser.
(right) InP-Si3N4 with three MRRs and a Sagnac loop mirror. (lower) General scheme: Extending
the laser cavity by adding to the gain section of length Lg and double-pass reflectance Ri a long
and low-loss feedback arm of length L f (L f � Lg and R0 � Ri) increases the photon lifetime and
narrows the laser linewidth. The overall feedback reflectance is R0(ω)=R f · T2

f (ω), where R f is the
end mirror reflectance and Tf (ω) is the single-pass transmittance of the Vernier filter having a spectral
bandwidth Δν f .

Besides using Bragg waveguides from Si [85,95,105,108], polymer [88,109], or doped silica
(SiO2) [61,110,111], spectral filtering and extending the cavity length has mostly been based
on microring resonators, employing Si waveguides [83,92,112,113], SiON [79], SiO2 [91] and
Si3N4 [81,86,98]. While initially the linewidth was in the order of hundreds of kilohertz [83,98]
the lowest value obtained with silicon is now 220 Hz [113].
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Using silicon waveguides as feedback circuits is beneficial for several reasons. The relatively high
index contrast, Δn ≈ 2 between the Si core and a SiO2 cladding, allows tight guiding that enables
using sharply bent waveguides without much radiation loss. Furthermore, techniques have been
developed that allow wafer-scale heterogeneous integration with InP gain elements based on molecular
or adhesive bonding [108,114]. There, optical coupling to the gain section is achieved with tapered
vertical transitions [105,115].

However, silicon also introduces a fundamental limitation. The lowest achievable linewidth
becomes limited through nonlinear loss [116] beyond certain intracavity intensities and laser powers,
specifically via two-photon absorption [117]. This limits the linewidth to values above a few hundred
Hertz [108]. The reason is that the photon energy for telecom wavelengths around 1.55 μm (≈0.8 eV) is
close to the relatively small electronic bandgap of silicon (≈1.14 eV, corresponding to 1.1 μm) while the
laser intracavity intensities can become high. Specifically, high intensities easily occur when selecting,
within a wide semiconductor gain spectrum with a laser intracavity spectral filter, single longitudinal
mode oscillation in an optically long laser resonator. The reason is that small-sized (integrated) spectral
filters, in order to resolve single modes of the laser resonator, need to have a high finesse, i.e., they need
to exhibit low loss per filter rountrip. Accordingly, there will be a significant power enhancement in
such filters and, due to tight guiding, also high intensities. Avoiding nonlinear loss by reducing the
laser power with weaker pumping (and subsequent amplification) is not a solution because lowering
the power of a laser oscillator increases the intrinsic linewidth as well [55]. These considerations
indicate that, after transition loss between platforms and other linear loss is minimized with advanced
fabrication, it is ultimately the electronic bandgap of the materials chosen for the passive part of the
circuit which sets the fundamental linewidth limits.

Dielectric materials, such as Si3N4 and silica (SiO2), provide much larger bandgaps than silicon
(≈5 eV and 8 eV, respectively) which safely excludes two-photon absorption. The silica platform,
having weakly doped silica as core material, offers extremely low loss and thus narrow linewidth, such
as shown with feedback from a straight Bragg waveguide grating at 1.064 μm [111]. The drawback
of silica waveguides is its low index contrast, Δn = 10−2 to 10−4, which leads to weak optical
guiding. Weak guiding restricts silica to circuits with low curvature radius, i.e., to large circuits with
relatively low functionality, making sharp spectral filtering for single-mode selection in long laser
resonators difficult.

Ultimate linewidth narrowing of integrated semiconductor lasers is thus most promising with
the Si3N4 platform [118] or other high-contrast and low-loss dielectrics, such as LiNbO3 bonded on
insulator [119], LiNbO3 bonded on silicon nitride [120], Ta2O5 in SiO2 [121] or AlN in SiO2 [122].
A further advantage of high-contrast platforms is that the mode field diameter can be matched to
the relatively small mode field diameter found in semiconductor amplifier waveguides. With Si3N4,
this currently promises coupling loss as low as 0.2 dB [123].

3. Intrinsic linewidth of Extended Cavity Hybrid Integrated Diode Lasers

Single-frequency oscillation of extended cavity diode lasers is readily obtained by narrowband
spectral filtering within the cavity. This was first demonstrated with a free-space cavity extension
and feedback from a bulk diffraction grating [124]. With an integrated waveguide circuit, much
finer narrowband spectral feedback filtering can be achieved with microring resonators in Vernier
configuration. A variety of arrangements for the ring resonators and the semiconductor gain section
is described in [125] for heterogeneously integrated lasers. Determining appropriate design values
for microring radii and power coupling coefficients for a given gain bandwidth is described in [81]
for the example of a hybrid integrated InP-Si3N4 laser with feedback from two waveguide microring
resonators as shown in the upper left panel of Figure 2. A generic scheme for determining the laser
linewidth of such laser, or also with three or more resonators, is shown in the lower panel.

Precisely predicting the intrinsic linewidth of the laser linewidth of hybrid and heterogeneously
integrated diode lasers is difficult for several reasons. The first is the relatively high complexity of
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the laser cavity with its feedback circuitry, as compared to simple Fabry-Perot lasers. Embedding
microring resonators inside a laser cavity means that the temporal response of the cavity cannot be
described with a simple exponential decay law. Another aspect is that the intensity in the gain section,
and thus also the spatial distribution of the inversion density, varies notably with the propagation
coordinate, which is due to a relatively high roundtrip loss. This means that standard simplifications,
for instance, the mean field approximation for the gain section, are not well justified. Furthermore, the
linewidth depends on a larger set of experimental parameters, many of which are not well known,
such as the intrinsic losses in the amplifier waveguide, or the coupling loss between the different
platforms realized after integration. Other parameters are difficult to determine because they depend
on the laser’s operating conditions. Examples are pump current induced temperature changes in the
waveguide of the semiconductor amplifier causing thermally induced phase shifts, or the exact relation
between heater currents and the optical roundtrip length of the microring resonator, both depending
on details of the heat sink design and fabrication.

The most realistic calculation of all laser properties, including the intrinsic laser linewidth is likely
to require numerical methods, such as based on transmission line models [126,127]. We have previously
used numerical methods to calculate the intrinsic linewidth for a laser as in Figure 2, in order to reveal
the detailed influence of coupling losses at the interface of platforms on the linewidth [128]. The
closest approximations using analytic expressions are still given in the early work of Henry [57,129],
Patzak et al. [130], Kazarinov and Henry [131], Koch and Koren [132], Ujuhara [133] and Bjork and
Nilsson [134]. Summarizing all expressions [128] predicts the intrinsic linewidth as

ΔνST =
1

4π
· v2

ghνnspγtotγm(1 + α2
H)

Pb

(
1 + rb

r0(ω)
1−R0(ω)

1−Rb

) · αP

F2 . (1)

In Equation (1), vg = cng is the group velocity in the gain section, hν is the photon energy.
nsp, assuming typical values around 2, is the spontaneous emission enhancement factor that takes
into account the reduction in inversion due to reabsorption by valence band electrons. αH > 0 is
Henry’s linewidth enhancement factor. The factor describes the strength of gain-index coupling in
the gain section [57], a coupling that is caused by the strongly asymmetric gain spectrum provided
by semiconductor junctions [135]. The linewidth increasing effect associated with αH > 0 is that
spontaneous emission events not only add randomly phased contributions to the laser field. These
events, via a reduction of laser inversion, also increase the refractive index, which increases the phase
noise further.

The spatially averaged roundtrip loss coefficient, γm = −1/(2Lg) ln[(RbR0(ω))], is determined by
the output coupling, where Rb = |rb|2 denotes an approximately frequency independent (broadband)
power reflectance of the gain section back facet, and Lg is the length of the gain section. All optical
properties of the feedback arm are lumped into a complex-valued reflectivity spectrum for the electric
field, r0(ω). This spectrum contains the optical length of the feedback arm as a frequency-dependent
phase shift, r0(ω) = |r0(ω)|eiφ(ω), and also the overall power reflectance, R0(ω) = |r0(ω)|2, to include
highly frequency selective filtering or output coupling. The feedback arm reflectance, R0(ω) =

Tf (ω)2R f , is given by the end mirror reflectance, R f , and the transmission spectrum of the intracavity
spectral filter, Tf (ω). The loss coefficient γtot = −1/(2Lg) ln[(RiR0(ω))] is the spatial average of all
loss per roundtrip. Here Ri = RbT2

g T2
c lumps all loss of the remaining roundtrip, i.e., all imperfect

transmission and reflection, into an intrinsic reflectance. The power transmission in a single pass
through the gain section is Tg = e(−γg Lg) < 1, with γg the intrinsic passive loss constant of the gain
waveguide. Tc < 1 specifies the mode coupling loss per transmission through the interface between
platforms. Pb is the output power from the back diode facet. The factor in brackets next to Pb is
bigger than 1 and accounts for additional output power emitted at other ports of the laser cavity, for
instance Pf in Figure 2. The longitudinal Petermann factor, αP, is usually very close to 1, except if
spontaneous emission becomes strongly amplified in a single-pass due to extremely small feedback (if
Rb, R0 	 1) [129,133].
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Linewidth narrowing via cavity length extension is expressed in Equation (1) by the factor F as

F = 1 + A + B, (2)

where

A =
1
τg

·
(

dφ0(ω)

dω

)
(3)

and

B =
αH
τg

·
(

d ln |r0(ω)|
dω

)
. (4)

In Equations (3) and (4), τg = 2ngLg/c denotes the roundtrip time in the gain section, and
φ0(ω) the additional optical phase accumulated by light when travelling forth and back through the
feedback arm.

Term A can be interpreted as the ratio between the optical length of the laser cavity extension and
the optical length of the gain section. Physically, the term describes the factor by which the photon
lifetime of the laser is increased by the additional travel time through the extended cavity, with regard
to the roundtrip time through the solitary diode gain element. It should be noted that the presence of
resonators in a Vernier filter increases the optical length of the feedback arm by a factor that grows
linearly with the number of roundtrips through each resonator. To give an example, we consider
a resonator of geometrical length Lr and effective group index ne f f . For simplicity we assume that
the add and drop ports are separated by half a roundtrip, Lr/2, and that losses are much smaller
than the power coupling coefficient at the add and drop ports, κ2. Then, at resonance, the optical
length of the resonator becomes multiplied with a roundtrip factor of M = 1/2 + (1 − κ2)/κ2, i.e.,
the effective optical length of the resonator becomes ne f f Lr · M. As a consequence, A is biggest, and the
length-related linewidth reduction via F in Equation (1) is strongest, if the laser frequency is resonant
with the Vernier filter frequency.

The term B describes the presence of an additional linewidth reduction mechanism based on
gain-index coupling as expressed by Henry’s factor. However, we note that, due the factor αH in
Equation (4), the B-term based linewidth reduction can only be present, if αH is nonzero, i.e., if the laser
linewidth is already broadened by gain-index coupling (term (1+ α2

H) in the numerator of Equation (1)).
B is biggest at the rising edge of the Vernier filter’s reflection peak, where d ln |r0(ω)|/dω is positive.
The effect can be described as a negative optical feedback mechanism, where making the resonator loss
steeply frequency dependent compensates for spontaneous emission-induced index and frequency
changes [125,136]. Similarly, also the intensity noise can be reduced with frequency dependent
loss [137].

To make an optimum choice of parameters when considering the effects that determine the laser
linewidth, there are two main routes to reduce the linewidth. The first and most effective one is
to increase the photon lifetime and thus the phase memory time of the resonator. However, as the
intrinsic loss in diode laser amplifiers is high, often higher than 90% in double pass due to the typically
very large values of γg ≈ 103 m−1, the light in an extended cavity diode laser essentially performs
only a single roundtrip before it is lost. Increasing the photon lifetime can thus not be achieved with
increasing the reflectance of the feedback circuit, R0. Instead, an optically long feedback arm, L f � Lg,
is required. Via a large value of dφ0(ω)/dω, the feedback essentially works as a double-pass optical
delay line, similar to a delay line in an optoelectronic oscillator [138]. This approach is expected to
yield an approximately quadratic reduction of linewidth vs. increasing length, provided that optical
loss in the feedback (and thus also in the Vernier filter) does not dominate the laser cavity roundtrip
loss. The second route to a narrower linewidth is increasing the laser intracavity power, specifically the
power in the gain section, which means that Pb needs to be increased (or its co-factor in the denominator
of Equation (1) by more power at the other laser ports, e.g., by rising Pf ). Higher intracavity power
improves the ratio of phase preserving stimulated emission over randomly phased spontaneous
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emission. With a given laser cavity design, the roundtrip loss is given, such that increasing the power
requires stronger pumping. Via this route Equation (1) predicts a linewidth narrowing inversely with
increasing output power, i.e., in proportion with X = Pp/Pth − 1, where Pp is the pump power and Pth
is the threshold pump power.

Table 1. Overview of the parameters used in calculating the intrinsic linewidth of hybrid integrated
InP-Si3N4 lasers shown in Figure 3.

Parameter Description Value Unit

λ wavelength 1.55 μm
Pb output power 1.0 mW
αH linewidth enhancement factor 5
ηsp spontaneous emission factor 2.0
Lg Length gain section 700 μm
Rb Power reflection back facet 0.9
R f Power reflection loop mirror 0.5
Tc mode coupling loss 0.9
ng group index gain section 3.6
n f group index Si3N4 section 1.715
γg loss gain section 13 cm−1

Figure 3. Intrinsic laser linewidth of hybrid integrated InP-Si3N4 lasers, calculated as function of the
single-pass optical length of the cavity extension, L f , using Equation (1). The length extension includes
that light performs multiple passes through the resonators of a Vernier filter circuit. See Table 1 for
the value of the parameters used in the calculation. The actual amount of feedback from the extended
cavity arm to the gain section, i.e., the value of Tf , depends on the waveguide loss constant γF in the
feedback circuitry, which we have varied between zero and 100 dB/m. Similar values can be found
in [139].

To give a quantitative estimate on what intrinsic linewidth values can be expected with low-loss
waveguide feedback circuits, such as with using Si3N4 circuits, Figure 3 presents a prediction of the
linewidth vs. the optical length of the cavity extension using Equation (1). The parameters used
in the calculation are given in Table 1. To provide a conservative estimate, and in order to avoid
discussing specifically designed Vernier transmission spectra for each feedback length, the calculations
are performed with setting B to zero. This corresponds to the laser frequency tuned to the center of
the Vernier resonance, such as for maximizing the laser power. If taking B into account, via proper
tuning to exploit the the mentioned negative optical feedback, a factor in the order of α2

H narrower
linewidth may still be achieved. This would require a proper fine-tuning of the laser frequency to
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the low-frequency side of the Vernier resonance, for instance, with an adjustable phase section in
the feedback circuit or with a pump current fine-tuning to provide a phase shift in the gain section.
The calculations show that feedback circuits with less than 2 dB waveguide loss and being 1 m long
promise linewidths as narrow as a few Hertz. Such loss and length requirements appear realistic,
when comparing with previously demonstrated values. The lowest propagation loss observed in Si3N4

waveguides is below 0.1 dB/m [140]. Meter-sized and highly frequency selective coupled-resonator
circuits have been realized as well with the Si3N4 platform [141], such that reaching a 1-Hz-linewidth
seems possible with a dedicated laser design.

In the following we present a set of recent examples of hybrid integrated InP-Si3N4 diode lasers
that we have fabricated and characterized, in order to give an overview on current and future options
for versatile on-chip light sources.

4. Hybrid Lasers with Two Microring Resonators and Single Gain Section

A schematic view of a InP-Si3N4 hybrid laser comprising a single gain section and a Vernier
filter consisting of two microring resonators is shown in Figure 4. For stable operation, such hybrid
lasers are usually assembled in a butterfly package as shown in Figure 4. The package contains a
Peltier element and thermistor for temperature control and stabilization of the laser chip. The bond
pads on the chip are wire bonded to the butterfly pins for electrical access. Single-mode polarization
maintaining fibers are attached to the output waveguides. The fiber is terminated with an angled
facet FC/APC connector to prevent undesired reflections back into the laser. The lasers are operated
after mounting on printed circuit boards that provide multi-channel USB-controlled voltages and
currents to the laser. LabVIEW or Python interfaces simplify retrieving measurement data and enable
a systematic and reproducible characterization of the lasers’ properties. If required, software feedback
loops can be programmed that automatically optimize the laser output during parameter sweeps.

HR AR
InP

Si3N4

output

phase 
section

Tunable 
coupler

microring
 1

microring
 2

Figure 4. (upper left) Photograph of the integrated Si3N4 and InP chips in comparison with a
one-Euro-coin. (upper right) The hybrid integrated laser packaged into a standard butterfly housing.
The generated light leaves the Si3N4 waveguide via a single-mode, polarization maintaining fiber.
(lower) Schematic view of a two-ring hybrid laser. Heaters are indicated by the orange color. The output
fiber is butt-coupled to the output port.

In Figure 5 the fiber-coupled output power of a laser with two microring resonators is shown
as function of the amplifier current. The Vernier filter, having a free spectral range (FSR) of 50 nm,
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was set to a wavelength of 1576 nm, which is near the optimum settings for this laser. This particular
laser, which is shown schematically in Figure 4, possesses a tunable output coupling between the gain
section and Vernier filter, realized as a tunable Mach–Zehnder interferometer. In addition, the cavity
length can be adjusted with a 2π-phase shifter located between gain section and Vernier filter. When
only increasing the amplifier current, while keeping all other laser parameters constant, the output
power shows an overall increase which is, however, interrupted by power drops (blue dots). These
power drops are likely initiated by a rise of temperature in the gain waveguide with increasing pump
current [142], leading to a change in refractive index. This tunes the overall laser cavity length and
eventually brings the oscillating cavity mode out of resonance with the Vernier filter, seen as a power
drop. With further increasing the pump current, a next cavity mode comes into Vernier resonance
(longitudinal mode hop) which increases the output power again. The described mechanism involves
a hysteresis because the index of the gain section is intensity dependent due to gain-index coupling,
and because changing the optical power levels changes also the thermal conditions.

To obtain a continuously increasing output power, we use an automatic readjustment of the optical
cavity length by adjusting the phase section for maximize output power. With the automatic phase
tuning turned on, the laser output is seen to increase approximately continuously with pump current
(red crosses). With the investigated laser we measure a maximum fiber-coupled optical power of
24 mW, which is more than the previous reported values of 1.7 mW [139], 7.4 mW [81], and 10 mW [143]
obtained with similar lasers. When increasing the output coupling from zero to 100%, the threshold
current increases from 8 to 19 mA, and the slope efficiency increases from zero to 0.13 mW/mA.
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Figure 5. Fiber-coupled output power of a hybrid integrated InP-Si3N4 laser measured as function of
the amplifier current (blue circles). The laser wavelength is set to 1576 nm via a Vernier filter formed
by two tunable microring resonators. The tunable output coupler is set to 80% outcoupling. With
automatically maximizing the output via a phase shifter between gain section and Vernier filter (auto
tuning), the output power is steadily increasing with pump current (red crosses).

To demonstrate that the laser can cover a broad spectral bandwidth with single-frequency output,
Figure 6 shows a series of superimposed laser output spectra recorded with an optical spectrum
analyzer. The individual, single-frequency spectra are obtained by tuning both resonators in the
Vernier filter. In the example shown here the wavelength steps are approximately 5 nm. The side mode
suppression ratio is as high as 63 dB, measured with 0.01 nm resolution near 1550 nm wavelength.
The broadest tuning range is observed with the amplifier set to its specified maximum current of
300 mA. We note that the Vernier FSR of 50 nm would normally limit laser operation to a 50 nm wide
interval as well, after which the output wavelength would hop back to the beginning of the interval.
However, we note that also the output coupler is spectrally dependent, and that this dependence can
be tuned. We made use of this extra tunability to extend the spectral coverage by more than a factor of
two, to a range of 120 nm. This exceeds the so far widest range of 75 nm obtained with a monolithically
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integrated InP laser [144] and also the 110-nm range obtained with a heterogeneously integrated InP
laser [113], while also providing an order of magnitude more power at the edges of the tuning range.

Figure 6. Spectral coverage (tuning range) of the hybrid integrated laser obtained with stepwise
tuning the Vernier filter, followed by adjustment of the phase section for maximum power. The output
coupling was set to about 80% and the pump current to its maximum value of 300 mA. The individual
spectra are recorded with 0.1 nm resolution bandwidth as measured with the OSA. The measurements
show a spectral coverage of 120 nm, which is the widest range achieved for hybrid or heterogeneously
integrated InP lasers.

For determining the intrinsic linewidth, we measured the power spectral density (PSD) of
frequency noise with a high-finesse resonator that is slowly locked to the average laser wavelength
(LWA-1k-1550, HighFinesse, Tübingen, Germany). Frequency noise spectra display the squared and
averaged frequency excursions with regard to the average frequency versus the radio frequency, f , at
which they occur. Slow frequency excursions are usually largest, and become smaller with increasing
frequency, often with approximately a 1/ f -law [145], also named flicker noise or technical noise.
At high noise frequencies, the spectrum flattens off to a certain white noise level [53]. The height of
the white-noise level is proportional to the intrinsic laser linewidth with a factor of π if the spectrum
is measured single-sided, and with a factor of 2π for double-sided spectra [145,146]. To obtain the
lowest linewidth, we used a low-noise current source (LDX-3620, ILX Lightwave, Bozeman, USA). For
the PSD measurement, the laser output was set to 10 mW at 1550 nm, with the phase section set to
maximize the output.

Figure 7 shows the measured frequency noise spectrum, displaying 1/ f -noise and levelling off
at 700 ± 200 Hz2/Hz beyond 1 MHz noise frequency. Spurious narrowband peaks can be observed,
which we address to RF-pickup. The intrinsic linewidth determined from the upper limit of the
white-noise part in the spectrum is 2.2 ± 0.7 kHz. This value is clearly smaller than the 24-kHz
linewidth reported before for a similar hybrid laser with 2 ring resonators [86]. We address this mainly
to the higher laser power (24 mW vs. 4.7 mW). We note that, meanwhile, we reliably achieve a fiber
coupled output power above 40 mW, and sometimes above 50 mW, from the described type of laser.
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Figure 7. Single-sided frequency noise power spectral density of a hybrid integrated laser with two
Si3N4 microring resonators as Vernier filter. The spectrum is measured at a wavelength of 1550 nm
with a pump current of 300 mA. Taking the average noise between 1.3 and 3.5 MHz as the upper limit
for the white noise level of the laser, we obtain a white-noise level of 700 Hz2/Hz (dashed line). This
value, via multiplying with π, corresponds to an intrinsic laser linewidth of 2.2 kHz.

5. High Power Hybrid Integrated Lasers with Two Gain Sections

Basically all applications of integrated lasers would benefit from increasing the available output
power. An obvious advantage lies in easier overcoming the pump threshold of integrated nonlinear
oscillators, e.g., parametric oscillators such as Kerr comb generators, or Brillouin lasers. Another
advantage of higher laser power is that the signal-to-noise ratio in the after detection increases
proportional to the optical power, because the RF signal power increases quadratically with the optical
power whereas the RF shot noise power increases linearly. Therefore, higher output power enables,
for instance in sensing, to increase the fundamental sensitivity or speed of detection. Similarly in fiber
communications and microwave photonics, the ultimate (quantum limited) signal-to-noise power
ratio of RF signal transmission through analog photonic links increases in proportion with the optical
power [147].

In addition to the named fundamental noise, of which the influence can be reduced via increased
power, lasers often show excess noise, i.e., power fluctuations caused by technical perturbations.
A standard measure to quantify the total noise is the so-called relative intensity noise, RIN, which
entails measuring the average power fluctuation divided by the average power. The importance of
reducing RIN is given by the circumstance that all optical measurements, e.g. also of wavelength or
linewidth, are finally based on photodetection where RIN forms a limiting factor [72]. Because the RF
powers belonging to RIN and to a signal both grow quadratically with the optical power, whereas the
shot noise power grows only proportionally, the effect of RIN becomes ultimately domninant. In this
case, the noise can only be reduced with reducing the RIN of the laser, which underlines the importance
of lasers with low RIN. Only if RIN is not dominant, the signal to noise ratio can be increased with
increasing the power, and the transition between RIN and shot noise determines the maximum useful
power. Optimum is thus to realize RIN as low as shot noise at maximum power.

Hybrid and heterogeneous integrated diode laser are very attractive for integration in photonic
circuits. However, even if offering ultra-narrow linewidth, such lasers have so far been limited to an
output in the order of 25 mW, and also the RIN-levels should be reduced. Here, we present, a hybrid
integrated diode laser with so far the highest output power, and with a RIN-level close to the shot-noise
(quantum) limit.

The functional design of the waveguide circuit of the laser is shown in Figure 8. To increase the
output power, two 700 μm long prototype semiconductor amplifiers are used, one at each end of the
laser cavity. The HR coated back facets of the gain elements form the two cavity end mirrors. A Si3N4

waveguide circuit is used for low-loss extension of the cavity length by multiple roundtrips through
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two micro-resonators in Vernier configuration (FSR 208 GHz and 215 GHz). The Vernier filter, used
as intracavity frequency selective mirror, is passed twice per cavity roundtrip which yields a longer
cavity length and sharper spectral filtering in comparison to using a Vernier filter inside a loop mirror.
The bi-directional output from a tunable Mach–Zehnder output coupler is superimposed into a single
output waveguide with a second tunable coupler. The pump current to the gain sections as well as the
thermo-optically controlled tuning of the ring resonators and couplers can be individually adjusted.
The output is coupled to a standard polarization maintaining fiber with a coupling loss of 0.5 dB.

Figure 8. (upper) Functional design of the dual-gain laser waveguide circuitry. Two gain sections with
HR coated back facets form the two ends of the laser cavity. The intracavity Vernier filter (frequency
selective mirror) is passed twice per cavity roundtrip. Two tunable couplers (TC) divert the laser output
to a single output port. (lower) Photograph of a dual-gain laser.

Figure 9 shows the output power of this novel type of laser measured versus the total pump
current. When applying a pump current of 300 mA to both gain sections, we achieve a maximum fiber
coupled output power of 105 mW. This corresponds to an on-chip power of 117 mW. To our knowledge
these values are the highest power ever achieved with a hybrid or heterogeneously integrated diode
laser [148]. Comparing with the output from a single gain section integrated with a similar Si3N4

feedback waveguide circuit shows that using two gain sections doubles the output power. Measuring
the output versus tuning of the Vernier filter we observe more than 70 mW of fiber coupled output
across a 100 nm wide range (from 1470 to 1570 nm), with a side mode suppression ratio of more than
50 dB.
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Figure 9. Output power of hybrid integrated diode laser with two gain sections (dual-gain laser)
measured versus the pump current. Data points are connected with dashed lines in order to guide
the eye. The maximum fiber coupled output is 105 mW, which corresponds to 117 mW at the on-chip
output port.

For characterizing the noise properties of the laser we measured frequency noise and intensity
noise. Amplitude spectra of frequency noise are measured at frequencies of up to 30 MHz
(LWA-1k-1550, HighFinesse, Tübingen, Germany). We note that beyond 10 to 20 MHz, the spectra are
dominated by electronic noise and thus cannot be reliably addressed to laser noise. Relative intensity
noise spectra are recorded by sending the laser output power to a fast photodiode and recording the
signal with a 25-GHz-RF spectrum analyzer.

Figure 10 (left panel) shows a frequency noise spectrum recorded with 100 mA pump current to
both gain sections (approximately 40 mW output power). This specific current was chosen because
here the laser shows single-frequency oscillation near the gain maximum without the need to apply
additional tuning voltages across the waveguide heaters. Turning off the heater voltages was found to
reduce pickup noise from the heater drivers. The intrinsic linewidth corresponding to the upper limit
of white noise in the spectrum is about 320 Hz.

Compared to the linewidth of a laser with a single gain section described above, we address the
7-times lower linewidth to two main differences. The first is that the laser power is about 4-times higher,
which should yield an 4-times narrower linewidth. The second difference is that the Vernier filter is not
used as end mirror but as intracavity filter. In this case, with each laser cavity roundtrip, the light has
to pass twice through the Vernier filter, which doubles the effect of cavity length extension. From the
resonator-based part of length extension, given that the resonators have the same lengths and coupling
coefficients (10%) as in the single-gain laser, we estimate that the dual-gain laser possesses a factor of
1.3 longer optical roundtrip length. In Equation (3) this corresponds to a factor 1.3 larger frequency
dependence of the phase shift, which yields a factor of 1.8 linewidth reduction in Equation (2), giving
a total linewidth reduction by a factor of 6.4 in Equation (1), which is in reasonable agreement with
the experimental linewidth ratio. A dependence of the linewidth upon fine-tuning via the B-term in
Equation (4), as seen in si-InP lasers [113] is currently being investigated.

The measured RIN spectrum is shown as the blue trace in the right panel of Figure 10. It can be
seen that the noise is very low, near the electronic background noise (orange trace). The optical noise is
generally at the level of −170 dBc/Hz, except for noise values near −165 dBc/Hz in smaller intervals
below 7 GHz. For comparison we calculate the shot-noise limited RIN from SI,sn( f ) = (2hν)/P0 for
a laser power of P0 = 40 mW at a light frequency of ν = 193 THz, from which we obtain a value of
−172 dBc/Hz. The comparison shows that the laser intensity noise is within a few dB of the shot-noise
level, i.e., the intensity noise is approximately as low as the fundamental quantum limit and almost
free of technical noise.

40



Photonics 2020, 7, 4

Figure 10. (left) Single-sided frequency noise amplitude spectrum of a dual-gain hybrid integrated
laser. The upper limit for the white noise level between 1 and 2 MHz corresponds to an intrinsic
linewidth of 320 Hz. (right) The lowest relative intensity noise (RIN) is about −170 dBc/Hz, which is
close to the electronic background of detection and also close to the calculated quantum (shot noise)
limit of −172 dBc/Hz.

Summarizing these experimental data, hybrid integrated lasers with two gain sections appear
very promising for delivering a so far unmatched combination of highest optical power, ultra-low
linewidth and lowest intensity noise near the quantum limit. Such type of hybrid integrated lasers
therefore look very promising for on-chip optical carrier generation in integrated microwave photonics.
A thorough investigation of detailed properties and implementation in photonic circuits is underway.

6. Hybrid Integrated Laser with Record-Low Linewidth

In the previous sections, intrinsic linewidths below 2.2 kHz and 320 Hz are reported with single
and dual-gain lasers, respectively. Further line narrowing should be possible with further increasing
the laser intracavity power. However, this would require to integrate even more or stronger gain
sections while, according to Equation (1), one expects line narrowing only inversely proportional with
power. A somewhat more attractive option is to extend the cavity length because of two reasons. First,
making use of a given power, it can solely be based on extending the passive part of the laser cavity, i.e.,
the effective length of the Si3N4 circuitry. Second, the linewidth narrowing follows a steeper law, i.e.,
a quadratic decrease of linewidth with increasing cavity length, via the F2-factor in the denominator in
Equation (1). Obtaining a quadratic decrease requires, however, that the active and passive roundtrip
loss, expressed by γm and γtot, do not increase too much with increasing cavity length. The regime of
quadratic reduction of linewidth with cavity length can also be noticed in Figure 3 as a negative slope
of magnitude 2, until the overall loss in the cavity extension (expressed by 1 − R0) becomes relevant
compared to the intrinsic loss as expressed by 1 − Ri.

In pursuing this strategy we follow up an earlier version with a prototype gain element and
290 Hz linewidth [98]. The improved version presented here [107] uses a slightly more powerful gain
element, however, the main difference to the lasers discussed in the previous sections is an about
10-times longer optical cavity roundtrip length of ≈ 0.5 m on the feedback chip. The 1000 μm long
diode amplifier carries a 90% reflective coating at its back facet and is optically coupled with a low-loss
Si3N4 circuit. The circuit comprises three cascaded microring resonators, each equipped with 10%
power couplers. The microring resonators possess radii of R = 99 and 102 μm (average FSR 278 GHz,
quality factor Q ≈ 2000) respectively, and R = 1485 μm (FSR 18.6 GHz, Q ≈ 290,000). The waveguide
end mirror is formed by a Sagnac loop mirror, such that the three micro resonators are passed twice
per laser cavity roundtrip. For low-noise pumping of the gain section we use a battery-driven power
supply (LDX-3620, ILX Lightwave, Bozeman, USA).

Regarding the coarse operation parameters, the laser shows similar properties as the lasers with
two microring resonators. The threshold pump current is about 42 mA and a maximum fiber coupled
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output power from the Sagnac output port is 23 mW at a pump current of 320 mA. The spectral
coverage of the laser with more than 1 mW single-frequency output is wider than 70 nm, with a
side mode suppression higher than 60 dB. Thermo-optic tuning by acting on the heater of the ring
resonators can be done via longitudinal mode hops in steps of 2 nm and 0.15 nm, which are the FSRs
of the small and big microring resonators. Fine tuning can be achieved either with small changes of
the diode pump current, by acting on the heaters of the Mach–Zehnder coupler for the Sagnac loop
mirror, or with a phase section between the microring resonators and the gain section.

Figure 11 summarizes spectral linewidth measurements using delayed self-heterodyne detection
performed with two independent setups. The first uses a Mach–Zehnder interferometer with 5.4 m
optical arm length difference, a 40-MHz acousto-optic modulator, and two photodiodes for balanced
detection. The beat signal is recorded versus time and analyzed with a computer to obtain the power
spectral density of frequency noise. The second uses an arm length difference of 20 km and an 80-MHz
modulator. Here the time-averaged power spectrum of the beat signal is recorded with an RF spectrum
analyzer. The beat spectra resemble Voigt profiles, where the Lorentzian linewidth component is given
by the intrinsic white-noise component in the spectral power density [53]. We obtain the intrinsic
component with Lorentzian fits to the wings of the measured RF line where the Lorentzian shape is
minimally obstructed, i.e., avoiding the low-frequency noise regime near the line center, as well as the
range close to the electronic noise floor. Linewidth measurements are carried out at various different
pump currents at a wavelength near the center of the gain spectrum.

The upper panel of Figure 11 displays an example of a frequency noise spectrum, recorded at
relatively low output power of 3 mW (85 mW pump current). The spectrum shows a number of narrow
peaks due to RF pickup and, after levelling off at about 65 Hz2/Hz, shows a slight rise, likely due
to electronic amplifier noise. In spite of the relatively low laser power, the corresponding intrinsic
linewidth is rather narrow, 210 Hz, which is thus clearly the effect of a long resonator providing a long
photon lifetime. The lower panel of the figure shows how the laser linewidth decreases with increasing
pump power. The latter is expressed as increasing threshold factor, which specifies the normalized
pump power above threshold, X, which is proportional to the laser output power. The various symbols
indicate measurements during up and down scans of the pump current (filled and unfilled symbols,
respectively). The smallest linewidth obtained from the frequency noise spectrum recorded at the
highest pump current of 255 mA [107]) is about 40 Hz, indicated by the round filled symbol at X = 5.17.
The power dependent linewidth is in good agreement with the theoretically expected decrease with
laser power, following a 1/X-power dependence (red fit curve).

An important observation in Figure 11 is that the measured linewidth narrowing does not show
any saturation with output power, while other lasers often display a lowest linewidth-value, or even
an linewidth increase vs. power [108,116,149–151]. A possible explanation for down-scalability of the
linewidth with power, here and even more so with the dual-gain laser, is the absence of noticeable
nonlinear effects in the laser cavity, specifically, in the Si3N4 feedback resonators where the power is
highest. For instance, we estimate [107] that, with output powers of a few tens of mW, several Watt of
power can be present in the microring resonators, which corresponds to intensities of several hundred
MW/cm2. Such intensities would lead to significant nonlinear loss in other waveguide materials,
specifically in semiconductors due to a much smaller bandgap. In the Si3N4 platform, such losses are
many orders of magnitude lower [152]. Stimulated Brillouin scattering (SBS) is another effect that can
manifest as a nonlinear loss in the laser feedback circuit. This process is mediated by optoacoustic
interactions in a medium, and has been observed in various waveguide platforms including silica [15],
silicon [153], and silicon nitride [154]. The strength (or the intrinsic gain) of SBS is mainly dictated by
the material properties, including refractive index, acoustic damping, and photoeleastic constant, as
well as the optoacoustic overlap of the waveguiding structure [155]. This intrinsic gain is very small in
the silicon nitride waveguide geometry used in the feedback circuit. When compared to silicon the
SBS intrinsic gain of silicon nitride is approximately 130 times lower, so the SBS effect is negligible in
the feedback circuit.
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Figure 11. (upper) Example of a single-sided power spectrum of frequency noise recorded with
a hybrid integrated laser with three microring resonators, operating at an output power of 3 mW.
The maximum white noise level of 65 Hz2/Hz between 1 and 2 MHz corresponds to an intrinsic
linewidth of about 210 Hz. (lower) Lorentzian linewidth component measured as function the laser
output power which is proportional to the pump threshold factor, X. The solid curve shows the
theoretically expected inverse dependence on the output power, according to Equation (1). The lowest
linewidth achieved with this laser is 40 Hz, measured with a pump current of 255 mA.

The absence of noticeable nonlinear loss opens the interesting potential for power based linewidth
narrowing to an extent that is not possible with hybrid or heterogeneous integration of silicon-photonic
circuits, or with fully monolithic semiconductor lasers. Summarizing this section, the intrinsic
linewidth of 40 Hz, as is also plotted in Figure 1 as uppermost and latest data point, is the smallest
value ever measured with any hybrid or heterogeneously integrated diode laser. We conclude that
further upscaling of the resonator length to the order of meters on a chip [141] with simultaneously
increased power appears very promising for approaching the 1-Hz linewidth level.

7. Dual-Wavelength, Multi-Wavelength and Visible Wavelength Lasers

So far we have described work on hybrid integrated lasers that provide a continuous-wave output
in the form of a spectrally narrowband, single optical frequency with constant power. However, there is
highest interest also in multi-frequency sources, so-called optical frequency combs or mode-locked light
sources, specifically, for dual-comb sensing [30], metrology [156], coherent optical communications [39],
and microwave photonics [46]. Similarly, dual-wavelength lasers are of great importance for optical
generation and distribution of high-purity microwave and THz radiation, for communication, sensing
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and metrology [157]. Finally, hybrid lasers with high coherence and wavelength tunable output will
find numerous applications when realizing them in various different wavelength ranges. For instance,
improved time-keeping on board of satellites requires narrow linewidth integrated lasers at a larger
variety of wavelengths in the infrared and visible. For instance, operating a Sr lattice clock [158]
requires a narrow linewidth at 698 nm and also at further transitions to provide excitation, re-pumping
or trapping. Other applications for narrow linewidth visible lasers on a chip will be found in quantum
technology and sensing [33,159–161]. Classical sensing benefits as well from visible narrow linewidth
sources, such as cavity-enhanced Raman detection [162] of gases. In the following we report some of
our experimental progress and preparations on hybrid integrated diode comb lasers, dual-frequency
diode lasers and hybrid integrated lasers for the visible range.

7.1. Diode Comb Lasers

For exploiting the full potential in applications, there are two central requirements regarding the
coherence of comb sources. The first is a highly equidistant spacing of the comb lines with fixed mutual
phasing. This is usually fulfilled without additional effort, because mutual phase locking via injection
locking through nonlinear sideband generation is what underlies all mode-locking mechanisms.
The second requirement is that the spectral linewidth of the individual comb lines has to be extremely
narrow, preferably in the kHz range or below. This corresponds to a low jitter in time-resolved
detection, and is also what enables coherent multi-heterodyne (e.g., dual-comb) measurements with
phase sensitivity and maximum signal-to-noise ratio [163].

Most attractive candidates for applications are chip-based diode laser frequency combs [26],
due to their direct excitation with an electric current. However, diode laser combs usually fail to
meet the requirement for narrowband comb lines. Just as with single-frequency lasers, the reason is
a short cavity photon lifetime due to a short cavity length, high optical roundtrip loss, and strong
gain-index coupling. With monolithically integrated diode lasers, even with an extended cavity length,
the linewidths typically remain in the MHz-range [164].

In terms of cavity lifetime and thus the intrinsic linewidth, Kerr combs form a highly promising
alternative to diode laser combs, especially since their recent hybrid integration with diode pump
lasers [23,24] within the same integrated photonic circuit. The reason for a long cavity lifetime is
low roundtrip loss in Kerr resonators, due to fabrication with a dielectric (large electronic bandgap)
waveguide platform. This provides a narrow linewidth of the individual comb frequencies and also
a much wider spectral coverage than with lasers. On the other hand, in Kerr comb oscillators the
photon lifetime cannot be extended much with a longer cavity length, because the oscillation threshold
goes up with the mode volume. The main disadvantage of Kerr comb oscillators, compared to diode
laser combs, is essentially the introduction of an additional pump threshold and a generally higher
complexity. In order to bypass the latter, chip-based frequency comb lasers with an extended cavity
have already been investigated in the form of heterogeneously integrated mode-locked lasers [165,166].
The narrowest intrinsic linewidth reported so far for a passively mode-locked and heterogeneously
integrated InP-Si laser is 250 kHz [26].

In order to provide narrower linewidth in diode laser combs we have investigated comb
generation with a hybrid integrated InP-Si3N4 laser as shown in Figure 12 [167]. We use a standard low
loss Si3N4 feedback circuit to increase the photon lifetime and thereby decrease the intrinsic linewidth of
the individual comb frequencies. With essentially the same basic circuitry as was presented in Section 4
for single-frequency generation, we extend the optical cavity roundtrip length to approximately 6 cm.
However, to generate a frequency comb with mutually phase-locked phases, we adjust the phase
section for achieving equal transmission through the Vernier filter for two neighboring modes as
depicted in the right panel of Figure 12. Once the laser oscillates at these two modes simultaneously
through well-balanced roundtrip losses, nonlinear mixing in the semiconductor gain section generates
further optical sidebands. The newly generated sidebands are amplified in the laser gain, establishing
a frequency comb.
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Figure 12. (left) Schematic diagram of the hybrid waveguide laser. The back facet of the gain element
(RSOA) is HR coated for a reflectance R1 = 90%. The Si3N4 circuit contains a phase section, and a
Vernier feedback circuit (blue shaded area) with an effective power reflectance R0 based on microring
resonators (MRRs) with radii ρ1 = 136.5 μm and ρ2 = 140.9 μm and power coupling coefficient κ2 = 10%.
The phase section and the MRRs can be tuned using resistive electric heaters. (right) Calculated
transmission spectrum of the Vernier filter (solid blue line) and center frequencies of the longitudinal
laser cavity modes (gray solid and dashed lines). The mode frequencies are tuned via the phase
section to establish equal transmission through the Vernier filter for two neighboring modes (1) and (2).
Nonlinear generation of optical beat frequencies is then found to generate a frequency comb.

It is important to note in Figure 12 that the calculated center frequencies of the cold cavity modes
are not exactly equidistant. This is due to the dispersion of the transmission resonance of the microrings.
In Equation (3) this is expressed as non-linear frequency dependence of the roundtrip phase through
the Vernier filter, which corresponds to a frequency dependent cavity length. If the laser would just
display multi-mode oscillation with random mutual phasing, one would observe a distribution of
different beat frequencies in the laser output due to the non-equidistant cold-cavity modes. On the
contrary, if the laser is mode locked, i.e., having mutually phase-locked modes, this would be seen as a
single beat frequency, due to a uniform (equidistant) spacing of the light frequencies.

Figure 13 shows a measured comb spectrum (left panel) comprising 17 lines. The lines are strictly
equidistant with a spacing of 5.5 GHz within the optical resolution of the spectrum. The right panel
displays a calculated spectrum, obtained with a tranmission line model [127] as described in [128].
It can be seen that there is good agreement with the experimental data. To verify the equidistance of the
experimental comb lines more precisely, we recorded the RF mode beating with a fast photodiode and
a RF spectrum analyzer. The measurements show a single and narrowband RF frequency at around
5.5 GHz which corresponds to the beating of directly neighboring modes, and shows narrowband
harmonics of the beat due to beating of modes with non-direct neighbors. The single fundamental beat
frequency shows a narrow intrinsic linewidth of approximately 18 kHz. We recall as described with
Figure 12 that the absence of mode-locking would generate multiple fundamental beat frequencies
due to the non-equidistant spacing of the cold cavity. Having observed a single, narrow linewidth
fundamental beat frequency proves an equal spacing of the generated light frequencies with high
precision, i.e., it confirms that the generated frequency comb is mode-locked (phase-locked).

At this point, one may wonder why laser oscillation off the center of the cold cavity modes is
possible here. The reason is the high laser cavity roundtrip loss, which imposes a wide band width on
the cold cavity mode. As described in Section 3, and to more detail in Ref. [107], the laser roundtrip
losses are high. This is mainly due to the high intrinsic waveguide loss in semiconductor amplifiers,
and due to loss caused by integration with a different waveguide platform, as was expressed as a low
effective reflectance Ri in Figure 2. Our estimates show that Ri is rather small, in the order of a few
percent, with approximately 98% of the light lost per roundtrip. Calculating the according FWHM
spectral bandwidth of the cavity then yields values larger than the mode spacing. This is what enables
mode-locking even far off the mode center frequencies.
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Figure 13. (left) Frequency comb spectrum generated with a hybrid-integrated InP-Si3N4 laser.
The total fiber-coupled output power is 2 mW. (right) Calculated frequency comb spectrum using the
experimental parameters as listed in the appendix of [167]. The calculation is based on a transmission
line model to represent the spatial, spectral and temporal distribution of light and charge carriers in
the gain section, while using an analytically calculated, complex-valued field amplitude reflectivity
spectrum to model the feedback circuit [128].

Having demonstrated frequency comb generation, the central point and main motivation of
the investigation was to narrow the intrinsic linewidth of single comb lines via an extended photon
lifetime gained by hybrid integration with a low-loss Si3N4 circuit. To measure the linewidth of
single comb lines, we performed beat measurements between the hybrid laser and an independent
reference laser. As reference laser we used an extended cavity laser (TSL-210, Santec Corporation, Aichi,
Japan), with an intrinsic linewidth of 6 kHz. This value was determined with delayed self-heterodyne
measurements as described in Section 6. The beat measurements with the hybrid laser yielded very
narrow intrinsic linewidths of the individual comb lines, with an average value as small as 34 kHz.
This values is a factor 7 lower than the previously smallest linewidth for any chip integrated frequency
comb diode laser [26].

We note that the observed linewidth already approaches similar values as Kerr combs pumped
by narrow-linewidth diode lasers [23]. In that sense, the approach to control frequency comb diode
lasers with low-loss hybrid integrated circuits bears much promise, because one can hope to reach
ultra-narrowband linewidth of the comb lines similar to the 40-Hz-level described in Section 6
and further progressing towards the 1-Hz-level as extrapolated in Figure 3. On the other hand,
hard challenges are to be faced. A first challenge is that cavity extension via microring resonators
does not allow to generate wide combs due to sharp frequency selection. A possible path towards
broader comb spectra is using modified feedback circuits with a spectrally flattened transmission.
Another challenge lies in the circumstance that extending the cavity for linewidth narrowing reduces
the cavity mode spacing and thus lowers the generated RF beat frequencies. While this is convenient
for detection with low-speed electronics equipment, certain applications have much stronger interest
in increasing the mode beating frequency into the GHz and THz range. This might require to restrict
oscillation to only a few modes at large spectral distance, in spite of dense cavity mode spacing.

7.2. Dual-Wavelength Lasers

In order to investigate such scenarios we are currently investigating hybrid lasers with two
separately adjustable Vernier filters to provide, in a first step, dual-wavelength sources for generation
of microwave and THz signals. Dual-wavelength sources have been investigated extensively using a
large variety of different approaches. This includes rare-earth-doped bulk solid state lasers [157]
and fiber lasers, the latter yielding linewidths of the microwave beat frequency in the order of
80 kHz [168]. Aiming on applications where size, weight and power consumption are highly important,
rare-earth-doped waveguide lasers have widely been explored as well [169]. However, these lasers

46



Photonics 2020, 7, 4

require optical pumping which introduces additional complexity, whereas semiconductor lasers
operate with direct electronic pumping.

In order to synchronize the frequency fluctuations at the two output wavelengths for providing
a narrow linewidth of the beat, there was early work on DBR lasers with gratings containing two
spatial periods, operated with a single gain section. There was, however, no report on the linewidth
of the individual laser wavelengths or the beat frequency output [170]. A dual wavelength laser at
1.35 μm was reported based on two transverse gratings and where the modes spatially overlap to a
degree that increases with power [171]. Indeed, with FWHM linewidths of 60 MHz for the individual
lasers the beat showed common-mode noise rejection seen as the beat linewidth reducing from 140 to
40 MHz with increasing power. High power output of more than 70 mW was demonstrated with two
separate Bragg lasers, i.e., with two gratings surrounding two gain sections and the output combined
with a Y-junction and being subsequently amplified [172]. However, the intrinsic linewidth of the
individual lasers was not narrower than 900 kHz. A monolithically integrated dual-wavelength
DBR laser in the 1.3 μm range was realized for THz generation [173]. Individual laser linewidths
between 6 and 9 MHz were measured, depending on where the laser operates within its few-nanometer
tuning range. The linewidth of the THz radiation was not given, likely, because it is very difficult to
measure electronically at high THz frequencies. It remained thus open whether operation in the same
cavity, with the same gain section and a dual-period gratings, had synchronized the optical frequency
fluctuations for a line narrowing of the THz signal below the individual optical linewidths. At lower
beat frequencies around 100 GHz, the lowest FWHM linewidth of beat frequencies were generated with
monolithically integrated lasers based on arrayed waveguide gratings (AWG) and reached 250 kHz [48]
and 56 kHz [174]. The work that comes closest to our own investigations is the recent realization of two
hybrid integrated diode lasers with the same Si3N4 waveguide chip, although with separate feedback
circuits [175]. The lasers described here are based on two separate semiconductor gain sections, InP
and GaAs, to obtain simultaneous operation at two largely different wavelengths, near 1.5 and 1 μm.
A promising application would be driving difference-frequency generation at 3 to 5 μm wavelength in
a compact format, such as for mid-IR molecular fingerprint detection. The intrinsic spectral linewidths
of the individual lasers were measured as 18 and 70 kHz, respectively.

In our work in progress, we realized a dual-wavelength laser based on dual Vernier feedback
with a single gain section as shown in Figure 14. Two equally dimensioned Vernier feedback circuits,
each equipped with two tunable microring resonators are used to initiate laser oscillation at two
widely and independently tunable wavelengths. Such tuning may also involve modulation of one
or both of the wavelengths. The same gain chip is used for amplification at both wavelengths.
This aims on synchronizing the influence of index fluctuations on the respective cavity lengths,
i.e., to increase the common-mode noise rejection that reduces the linewidth of the microwave beat
frequency. In order to counteract spectral condensation to a single wavelength via gain competition, the
relative strengths of feedback from the Vernier circuits can be adjusted with a tunable Mach–Zehnder
coupler. The superimposed output can be monitored at two exit ports.

Figure 15 displays two output spectra obtained with an optical spectrum analyzer set to 1 nm
resolution, and one spectrum measured with an RF spectrum analyzer behind a fast photodiode.
The upper panel shows the spectrum after tuning the two wavelengths to a separation of 12 nm
(1.5 THz) measured with the optical spectrum analyzer. The side mode suppression with regard to
the spontaneous emission background is between 40 and 50 dB. The specific spectral shape of the
background, with a minimum at around 1510 nm, is caused by a small path length difference of the
Mach–Zehnder arms of the tunable coupler. This can be concluded because the wavelength of the
minimum is adjustable with the heaters on top of the coupler. The bottom left spectrum shows the
two wavelengths tuned to almost the same value (0.09 nm difference) which is not resolved by the
optical spectrum analyzer. To increase the resolution we sent the laser output to a fast photodiode and
recorded the signal with an RF spectrum analyzer (bottom right panel). The recording shows that the
two wavelengths are tuned to a difference frequency of about 11 GHz.
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Using this laser, ongoing and future measurements aim to measure the linewidth of the beat
frequency and compare it with the intrinsic linewidth of the two individual laser output frequencies.
We expect to observe widely and arbitrary tunable microwave and THz-generation with linewidths
in the tens of kHz range or below. Such experiments might provide one of the lowest RF linewidths
generated by integrated diode lasers in chip-sized format.

Figure 14. Schematic waveguide design of the hybrid integrated dual-wavelength laser. Two separately
tunable Vernier mirrors are used for feedback to the same gain section. A tunable coupler allows
to adjust the relative strength of feedback from the two Vernier mirrors, in order to maintain
dual-wavelength oscillation in spite of gain competition.

Figure 15. (upper) Dual-wavelength optical output spectrum showing operation with a 12 nm
spacing in wavelength. (bottom left) Output wavelength difference tuned to ≈0.1 nm (beat frequency
≈11 GHz), which is below the resolution of the optical spectrum analyzer. (bottom right) The according
beat frequency detected near 11 GHz with a radio frequency analyzer.

7.3. Visible Wavelength Hybrid Integrated Lasers

One of the great promises of Si3N4 waveguide circuits is their excellent transparency in the
near-infrared and visible range. The transmission window coarsely spans from 400 nm to 2.3 μm,
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while the Si3N4 core on its own provides transparency even up to 8 μm. In particular, its transparency
in the visible, where silicon is strongly absorbing, is expected to secure a central function for Si3N4

circuits as well as for hybrid lasers in the visible based on Si3N4 feedback circuits. For applications such
as those named at the beginning of Section 7 visible hybrid Si3N4 diode lasers are of great potential.

Outside the 1.5 μm range, to our knowledge, Si3N4-based hybrid integrated diode lasers have
only been demonstrated in the near-infrared, near 1 μm wavelength [43,111,176], which is of interest
to compete with highly coherent monolithic Nd:YAG bulk ring lasers [177]. So far, there has been
no demonstration of operation in the visible. One of the reasons is that hitherto Si3N4 has primarily
been employed in single-pass applications where loss is less critical [178,179], with the exception of a
resonator-based visible spectrometer [180].

We aim on realizing a visible hybrid laser with narrow linewidth and tunable near 690 nm,
and here we report on the preparation and characterization of appropriate Si3N4 feedback circuits.
Currently under investigation is realizing appropriate waveguide and circuit design parameters, i.e.,
the waveguide cross section, resonator radii and coupling constants. Obtaining appropriate parameters
is much more challenging than near 1.5 μm in the infrared, mainly due to the much smaller wavelength.
For instance, a proper mode field needs to be designed that counteracts potentially increased Rayleigh
scattering while allowing curvatures that extends the Vernier free spectral range for matching a typical
gain bandwidth of about 15 nm. Furthermore, proper waveguide tapers have to be designed for
efficient coupling to an anti-reflection coated optical gain chip that operates in the visible.

Figure 16 gives a coarse overview of current activities. The left panel shows scattered light from a
dual microring resonator Vernier filter designed for TE-polarized red light, recorded with a top view
camera when injected with TE-polarized white light from a supercontinuum source. The insert depicts
an enlarged section of the coupler region with enhanced contrast, and clearly shows that red light is
circulating inside the ring. The right panel displays an example of a measured feedback spectrum,
showing Vernier reflection peaks with a free spectral range of ≈ 10 nm. We note that the optical
spectrum analyzer used does not resolve the much narrower bandwidth of the Vernier reflection peaks
estimated to be around 1.5 pm (1 GHz). Figure 16 confirms for the first time the design and operation
of a Vernier filter for TE-polarized red light.

Figure 16. (left) Top view of a dual microring resonator Vernier filter circuit when injecting
TE-polarized, white light from the left. The two resonators are located on the left-hand side of
the chip, but most light bypasses the resonators. Insert shows a zoom-in of the coupler region with
enhanced contrast, showing red light circulating within the ring. (right) Transmission spectrum of a
Vernier filter recorded with 0.2 nm resolution. The radii of the microring resonators are ρ1 = 1200 and
ρ2 = 1205 μm, with a specified power coupling of 5% for the add and drop ports.

The next set of experiments will concentrate on characterization of losses in the circuit and
losses caused by coupling to the circuit. Thereafter, first feedback experiments aim at demonstrating
laser oscillation.
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8. Conclusions

To summarize, we have investigated a variety of hybrid integrated diode lasers in the 1.55 μm
wavelength range based on InP semiconductor optical amplifiers, using low-loss dielectric feedback
circuits fabricated with the Si3N4 waveguide platform. The fundamental key properties of the latter
are lowest propagation loss, including lowest nonlinear loss due to a wide bandgap, transparency that
reaches also across the visible range, and a high index contrast with the SiO2 cladding. The importance
of these properties is that they are central to introducing a long photon lifetime into otherwise lossy laser
resonators, so that well-defined and tunable spectral properties can be implemented in laser resonators,
such as high-Q filters and interferometers, and that these functionalities can be carried over from
their main current use in the infrared to other spectral ranges, specifically also the visible. The overall
impact is a record increase of coherence properties, i.e., of spectral quality, spectral controllability,
spectral coverage, and output power with low intensity noise with on-chip light generation using
diode lasers.

With this approach, the investigated hybrid lasers make optimum use of the best of two integrated
photonic platforms: (i) semiconductor amplifiers provide all the active optical functions, specifically,
light amplification with wide spectral coverage, highest speed and electrical-to-optical efficiency,
and nonlinear mixing to generate sidebands and optical comb spectra; (ii) Si3N4 provides maximally
passive optical functionalities that enable to propagate, interfere, spectrally shape and store light
without losing it.

The investigated lasers, based on amplification in InP semiconductor gain sections, were selected
to cover and optimize a range of different operational modes of lasers. Specifically, these are
single-frequency operations with ultranarrow intrinsic linewidth, wide spectral coverage, high-power
output, low intensity noise, dual-wavelength and frequency comb operation. State-of-the-art output
properties were presented, such as a record-low intrinsic linewidth of 40 Hz, a record-high output
power above 100 mW, and a record-wide spectral coverage of more than 120 nm. A lowest level of
relative intensity noise (RIN) of −170 dBc/Hz was demonstrated, which is close to the fundamental
shot noise (quantum) limit.

A great benefit of the Si3N4 platform is its compatibility with CMOS fabrication equipment,
which has led to an impressive maturity enabling a reproducible fabricate complex and thus highly
functional circuits. Examples are coherent optical receivers and transmitters [181], optical beamforming
networks [182,183], and circuits which may be expanded to operate entire arrays of lasers [184],
to provide redundancy or to coherently add their outputs via mutual locking [185]. There is also
compatibility with microfluidics [186,187] and, thus, significant potential for lab-on-the chip and bio
sensing applications [188,189].

The excellent compatibility with seamless integration in complex photonic circuits, paired with a
highest performance point to a great potential of hybrid integrated lasers in applications.
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laser with subkilohertz intrinsic linewidth. Opt. Lett. 2012, 37, 1989–1991. [CrossRef] [PubMed]

62. Ward, A.J.; Robbins, D.J.; Busico, G.; Barton, E.; Ponnampalam, L.; Duck, J.P.; Whitbread, N.D.; Williams, P.J.;
Reid, D.C.J.; Carter, A.C.; et al. Widely tunable DS-DBR laser with monolithically integrated SOA: design
and performance. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 149–156. [CrossRef]

63. Lavery, D.; Maher, R.; Millar, D.S.; Thomsen, B.C.; Bayvel, P.; Savory, S.J. Digital coherent receivers for
long-reach optical access networks. J. Lightwave Technol. 2013, 31, 609–620. [CrossRef]

64. Akulova, Y.A.; Fish, G.A.; Koh, P.C.; Schow, C.L.; Kozodoy, P.; Dahl, A.P.; Nakagawa, S.; Larson, M.C.;
Mack, M.P.; Strand, T.A.; et al. Widely tunable electroabsorption-modulated sampled-grating DBR laser
transmitter. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 1349–1357. [CrossRef]

65. Okai, M.; Tsuchiya, T.; Uomi, K.; Chinone, N.; Harada, T. Corrugation-pitch-modulated MQW-DFB laser
with narrow spectral linewidth (170 kHz). IEEE Photonics Technol. Lett. 1990, 2, 529–530. [CrossRef]

66. Price, R.K.; Borchardt, J.J.; Elarde, V.C.; Swint, R.B.; Coleman, J.J. Narrow-linewidth asymmetric cladding
distributed Bragg reflector semiconductor lasers at 850 nm. IEEE Photonics Technol. Lett. 2006, 18, 97–99.
[CrossRef]

67. Spießberger, S.; Schiemangk, M.; Wicht, A.; Wenzel, H.; Erbert, G.; Tränkle, G. DBR laser diodes emitting
near 1064 nm with a narrow intrinsic linewidth of 2 kHz. Appl. Phys. B 2011, 104, 813. [CrossRef]

68. Tunable Diode Lasers, Toptica Photonics Application Notes. Available online: https://www.toptica.com/
fileadmin/Editors_English/11_brochures_datasheets/01_brochures/toptica_BR_Scientific_Lasers.pdf
(accessed on 18 October 2019).

69. Luvsandamdin, E.; Kürbis, C.; Schiemangk, M.; Sahm, A.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G.
Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express
2014, 22, 7790–7798. [CrossRef]

53



Photonics 2020, 7, 4

70. Liang, W.; Ilchenko, V.S.; Eliyahu, D.; Savchenkov, A.A.; Matsko, A.B.; Seidel, D.; Maleki, L. Ultralow noise
miniature external cavity semiconductor laser. Nat. Commun. 2015, 6, 7371. [CrossRef] [PubMed]

71. Wei, F.; Yang, F.; Zhang, X.; Xu, D.; Ding, M.; Zhang, L.; Chen, D.; Cai, H.; Fang, Z.; Xijia, G. Subkilohertz
linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Pérot
cavity. Opt. Express 2016, 24, 17406–17415. [CrossRef] [PubMed]

72. Morton, P.A.; Morton, M.J. High-power, ultra-low noise hybrid lasers for microwave photonics and optical
sensing. J. Lightwave Technol. 2018, 36, 5048–5057. [CrossRef]

73. Zhao, Y.; Zhang, J.; Stuhler, J.; Schuricht, G.; Lison, F.; Lu, Z.; Wang, L. Sub-Hertz frequency stabilization of a
commercial diode laser. Opt. Commun. 2010, 283, 4696–4700. [CrossRef]

74. Alnis, J.; Matveev, A.; Kolachevsky, N.; Udem, T.; Hänsch, T.W. Subhertz linewidth diode lasers by
stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities.
Phys. Rev. A 2008, 77, 053809. [CrossRef]

75. Stoehr, H.; Mensing, F.; Helmcke, J.; Sterr, U. Diode laser with 1 Hz linewidth. Opt. Lett. 2006, 31, 736–738.
[CrossRef]

76. Roeloffzen, C.G.H.; Zhuang, L.; Taddei, C.; Leinse, A.; Heideman, R.G.; van Dijk, P.W.L.; Oldenbeuving, R.M.;
Marpaung, D.A.I.; Burla, M.; Boller, K.J. Silicon nitride microwave photonic circuits. Opt. Express 2013,
21, 22937–22961. [CrossRef]

77. Marpaung, D.; Roeloffzen, C.; Heideman, R.; Leinse, A.; Sales, S.; Capmany, J. Integrated microwave
photonics. Laser Photonics Rev. 2013, 7, 506–538. [CrossRef]

78. Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Davenport, M.L.; Coldren, L.A.; Bowers, J.E. Hybrid
III-V silicon photonic source with integrated 1D free-space beam steering. Opt. Lett. 2012, 37, 4257–4259.
[CrossRef]

79. Matsumoto, T.; Suzuki, A.; Takahashi, M.; Watanabe, S.; Ishii, S.; Suzuki, K.; Kaneko, T.; Yamazaki, H.;
Sakuma, N. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low
power consumption. In Proceedings of the Optical Fiber Communication Conference 2010, San Diego, CA,
USA, 21–25 March 2010; Optical Society of America: Washington, DC, USA, 2010; p. OThQ5.

80. Nemoto, K.; Kita, T.; Yamada, H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire
waveguide ring resonators. Appl. Phys. Express 2012, 5, 082701. [CrossRef]

81. Oldenbeuving, R.M.; Klein, E.J.; Offerhaus, H.L.; Lee, C.J.; Song, H.; Boller, K.J. 25 kHz narrow
spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity.
Laser Phys. Lett. 2013, 10, 015804. [CrossRef]

82. Keyvaninia, S.; Roelkens, G.; Thourhout, D.V.; Jany, C.; Lamponi, M.; Liepvre, A.L.; Lelarge, F.; Make, D.;
Duan, G.H.; Bordel, D.; et al. Demonstration of a heterogeneously integrated III-V/SOI single wavelength
tunable laser. Opt. Express 2013, 21, 3784–3792. [CrossRef] [PubMed]

83. Hulme, J.C.; Doylend, J.K.; Bowers, J.E. Widely tunable Vernier ring laser on hybrid silicon. Opt. Express
2013, 21, 19718–19722. [CrossRef]

84. Yang, S.; Zhang, Y.; Grund, D.W.; Ejzak, G.A.; Liu, Y.; Novack, A.; Prather, D.; Lim, A.E.J.; Lo, G.Q.;
Baehr-Jones, T.; et al. A single adiabatic microring-based laser in 220 nm silicon-on-insulator. Opt. Express
2014, 22, 1172–1180. [CrossRef] [PubMed]

85. Santis, C.T.; Steger, S.T.; Vilenchik, Y.; Vasilyev, A.; Yariv, A. High-coherence semiconductor lasers based on
integral high-Q resonators in hybrid Si/III-V platforms. Proc. Natl. Acad. Sci. USA 2014, 111, 2879–2884.
[CrossRef]

86. Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; van der Slot, P.J.M.;
Boller, K.J. A hybrid semiconductor-glass waveguide laser. In Proceedings of SPIE; Mackenzie, J.I.,
Jelínková, H., Taira, T., and Ahmed, M.A., Eds.; International Society for Optics and Photonics, SPIE,
Bellingham WA, USA, 2014; Volume 9135, p. 91351B.

87. Duan, G.; Jany, C.; Liepvre, A.L.; Accard, A.; Lamponi, M.; Make, D.; Kaspar, P.; Levaufre, G.; Girard, N.;
Lelarge, F.; et al. Hybrid III-V on silicon lasers for photonic integrated circuits on silicon. IEEE J. Sel. Top.
Quantum Electron. 2014, 20, 158–170. [CrossRef]

88. De Felipe, D.; Zhang, Z.; Brinker, W.; Kleinert, M.; Novo, A.M.; Zawadzki, C.; Moehrle, M.; Keil, N.
Polymer-based external cavity Lasers: Tuning efficiency, reliability, and polarization diversity. IEEE Photonics
Technol. Lett. 2014, 26, 1391–1394. [CrossRef]

54



Photonics 2020, 7, 4

89. Kita, T.; Nemoto, K.; Yamada, H. Silicon photonic wavelength-tunable laser diode with asymmetric
Mach–Zehnder interferometer. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 344–349. [CrossRef]

90. Dong, P.; Hu, T.C.; Liow, T.Y.; Chen, Y.K.; Xie, C.; Luo, X.; Lo, G.Q.; Kopf, R.; Tate, A. Novel integration
technique for silicon/III-V hybrid laser. Opt. Express 2014, 22, 26854–26861. [CrossRef]

91. Debregeas, H.; Ferrari, C.; Cappuzzo, M.A.; Klemens, F.; Keller, R.; Pardo, F.; Bolle, C.; Xie, C.; Earnshaw, M.P.
2 kHz linewidth C-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external
cavity. In Proceedings of the 2014 International Semiconductor Laser Conference, Palma de Mallorca, Spain,
7–10 September 2014; pp. 50–51.

92. Kobayashi, N.; Sato, K.; Namiwaka, M.; Yamamoto, K.; Watanabe, S.; Kita, T.; Yamada, H.; Yamazaki, H.
Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers. J. Lightwave Technol. 2015,
33, 1241–1246. [CrossRef]

93. Tang, R.; Kita, T.; Yamada, H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with
highly asymmetric Mach–Zehnder interferometer. Opt. Lett. 2015, 40, 1504–1507. [CrossRef] [PubMed]

94. Srinivasan, S.; Davenport, M.; Komljenovic, T.; Hulme, J.; Spencer, D.T.; Bowers, J.E.
Coupled-ring-resonator-mirror-based heterogeneous III/V silicon tunable laser. IEEE Photonics J. 2015, 7, 1–8.
[CrossRef]

95. Santis, C.T.; Vilenchik, Y.; Yariv, A.; Satyan, N.; Rakuljic, G. Sub-kHz quantum linewidth semiconductor laser
on silicon chip. In Proceedings of the Conference on Applications and Technology 2015 (CLEO), San Jose,
CA, USA, 10–15 May 2015; CLEO: 2015 Postdeadline Paper Digest; Optical Society of America: Washington,
DC, USA, 2015; p. JTh5A.7. [CrossRef]

96. Komljenovic, T.; Srinivasan, S.; Norberg, E.; Davenport, M.; Fish, G.; Bowers, J.E. Widely tunable
narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top.
Quantum Electron. 2015, 21, 214–222. [CrossRef]

97. Kita, T.; Tang, R.; Yamada, H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for
digital coherent communication system. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 23–34. [CrossRef]

98. Fan, Y.; Oldenbeuving, R.M.; Roeloffzen, C.G.; Hoekman, M.; Geskus, D.; Heideman, R.G.; Boller, K.J.
290 Hz intrinsic linewidth from an integrated optical chip-based Widely tunable InP-Si3N4 hybrid laser.
In Proceedings of the Conference on Lasers and Electro-Optics: San Jose, CA, USA, 14–19 May 2017; Optical
Society of America: Washington, DC, USA, 2017; p. JTh5C.9.

99. Komljenovic, T.; Liu, S.; Norberg, E.; Fish, G.A.; Bowers, J.E. Control of widely tunable lasers with high-Q
resonator as an integral part of the cavity. J. Lightwave Technol. 2017, 35, 3934–3939. [CrossRef]

100. Stern, B.; Ji, X.; Dutt, A.; Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon
nitride ring resonator. Opt. Lett. 2017, 42, 4541–4544. [CrossRef]

101. Verdier, A.; de Valicourt, G.; Brenot, R.; Debregeas, H.; Dong, P.; Earnshaw, M.; Carrère, H.; Chen, Y.
Ultrawideband wavelength-tunable hybrid external-cavity lasers. J. Lightwave Technol. 2018, 36, 37–43.
[CrossRef]

102. Li, Y.; Zhang, Y.; Chen, H.; Yang, S.; Chen, M. Tunable self-injected Fabry-Pérot laser diode coupled to an
external high-Q Si3N4/SiO2 microring resonator. J. Lightwave Technol. 2018, 36, 3269–3274. [CrossRef]

103. Tran, M.A.; Huang, D.; Komljenovic, T.; Liu, S.; Liang, L.; Kennedy, M.; Bowers, J.E. Multi-ring mirror-based
narrow-linewidth widely-tunable lasers in heterogeneous silicon photonics. In Proceedings of the 2018
European Conference on Optical Communication (ECOC), Rome, Italy, 23–27 September 2018; pp. 1–3.

104. Zhu, Y.; Zeng, S.; Zhao, X.; Zhao, Y.; Zhu, L. Narrow-linewidth, tunable external cavity diode lasers through
hybrid integration of quantum-well/quantum-dot SOAs with Si3N4 microresonators. In Proceedings of the
Conference on Lasers and Electro-Optics, San Jose, CA, USA, 13–18 May 2018; Optical Society of America:
Washington, DC, USA, 2018; p. SW4B.2, doi:10.1364/CLEO_SI.2018.SW4B.2. [CrossRef]

105. Huang, D.; Tran, M.A.; Guo, J.; Peters, J.; Komljenovic, T.; Malik, A.; Morton, P.A.; Bowers, J.E. High-power
sub-kHz linewidth lasers fully integrated on silicon. Optica 2019, 6, 745–752. [CrossRef]

106. Xiang, C.; Morton, P.A.; Bowers, J.E. Ultra-narrow linewidth laser based on a semiconductor gain chip and
extended Si3N4 Bragg grating. Opt. Lett. 2019, 44, 3825–3828. [CrossRef]

107. Fan, Y.; van Rees, A.; van der Slot, P.J.M.; Mak, J.; Oldenbeuving, R.; Hoekman, M.; Geskus, D;
Roeloffzen, C.G.H.; Boller, K.J. Ultra-Narrow Linewidth Hybrid Integrated Semiconductor Laser. arXiv 2019,
arXiv:1910.08141.

55



Photonics 2020, 7, 4

108. Santis, C.T.; Vilenchik, Y.; Satyan, N.; Rakuljic, G.; Yariv, A. Quantum control of phase fluctuations in
semiconductor lasers. Proc. Natl. Acad. Sci. USA 2018, 115, E7896–E7904. [CrossRef] [PubMed]

109. Klein, H.; Wagner, C.; Brinker, W.; Soares, F.; de Felipe, D.; Zhang, Z.; Zawadzki, C.; Keil, N.; Moehrle, M.
Hybrid InP-polymer 30 nm tunable DBR laser for 10 Gbit/s direct modulation in the C-band. In Proceedings
of the 2012 International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA,
27–30 August 2012; pp. 20–21.

110. Numata, K.; Camp, J.; Krainak, M.A.; Stolpner, L. Performance of planar-waveguide external cavity laser for
precision measurements. Opt. Express 2010, 18, 22781–22788. [CrossRef] [PubMed]

111. Numata, K.; Camp, J. Precision laser development for interferometric space missions NGO, SGO, and
GRACE Follow-On. J. Phys. Conf. Ser. 2012, 363, 012054. [CrossRef]

112. Kita, T.; Tang, R.; Yamada, H. Compact silicon photonic wavelength-tunable laser diode with ultra-wide
wavelength tuning range. Appl. Phys. Lett. 2015, 106, 111104. [CrossRef]

113. Tran, M.A.; Huang, D.; Guo, J.; Komljenovic, T.; Morton, P.A.; Bowers, J.E. Ring-resonator based
widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron. 2020,
26, 1500514. [CrossRef]

114. Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip
and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [CrossRef]

115. Yariv, A.; Sun, X. Supermode Si/III-V hybrid lasers, optical amplifiers and modulators: A proposal and
analysis. Opt. Express 2007, 15, 9147–9151. [CrossRef]

116. Vilenchik, Y.; Santis, C.T.; Steger, S.T.; Satyan, N.; Yariv, A. Theory and observation on non-linear effects
limiting the coherence properties of high-Q hybrid Si/III-V lasers. In Proceedings SPIE; Belyanin, A.A.,
Smowton, P.M. Eds.; SPIE: Bellingham WA, USA, 2015; Volume 9382, p. 93820N.

117. Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.;
Coen, S.; et al. Nonlinear optical interactions in silicon waveguides. Nanophotonics 2017, 6, 377–392.
[CrossRef]

118. Taballione, C.; Wolterink, T.A.W.; Lugani, J.; Eckstein, A.; Bell, B.A.; Grootjans, R.; Visscher, I.; Geskus, D.;
Roeloffzen, C.G.H.; Renema, J.J.; et al. 8×8 reconfigurable quantum photonic processor based on silicon
nitride waveguides. Opt. Express 2019, 27, 26842–26857. [CrossRef]

119. Poberaj, G.; Hu, H.; Sohler, W.; Günter, P. Lithium niobate on insulator (LNOI) for micro-photonic devices.
Laser Photonics Rev. 2012, 6, 488–503. [CrossRef]

120. Chang, L.; Pfeiffer, M.H.P.; Volet, N.; Zervas, M.; Peters, J.D.; Manganelli, C.L.; Stanton, E.J.; Li, Y.;
Kippenberg, T.J.; Bowers, J.E. Heterogeneous integration of lithium niobate and silicon nitride waveguides
for wafer-scale photonic integrated circuits on silicon. Opt. Lett. 2017, 42, 803–806. [CrossRef] [PubMed]

121. Belt, M.; Davenport, M.L.; Bowers, J.E.; Blumenthal, D.J. Ultra-low-loss Ta2O5-core/SiO2-clad planar
waveguides on Si substrates. Optica 2017, 4, 532–536. [CrossRef]

122. Jung, H.; Xiong, C.; Fong, K.Y.; Zhang, X.; Tang, H.X. Optical frequency comb generation from aluminum
nitride microring resonator. Opt. Lett. 2013, 38, 2810–2813. [CrossRef] [PubMed]

123. Roeloffzen, C.G.H.; Hoekman, M.; Klein, E.J.; Wevers, L.S.; Timens, R.B.; Marchenko, D.; Geskus, D.;
Dekker, R.; Alippi, A.; Grootjans, R.; et al. Low-loss Si3N4 TriPleX optical waveguides: Technology and
applications overview. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–21. [CrossRef]

124. Fleming, M.; Mooradian, A. Spectral characteristics of external-cavity controlled semiconductor lasers.
IEEE J. Quantum Electron. 1981, 17, 44–59. [CrossRef]

125. Komljenovic, T.; Liang, L.; Chao, R.L.; Hulme, J.; Srinivasan, S.; Davenport, M.; E. Bowers, J. Widely-tunable
ring-resonator semiconductor lasers. Appl. Sci. 2017, 7, 732. [CrossRef]

126. Javaloyes, J.; Balle, S. Freetwm: A Simulation Tool for Semiconductor Lasers. Available online: https:
//onl.uib.eu/Softwares/Download/ (accessed on 20 October 2019).

127. VPI Component Maker Photonics. Available online: https://www.vpiphotonics.com/Tools/
PhotonicCircuits/ (accessed on 20 October 2019).

128. Fan, Y.; Lammerink, R.E.M.; Mak, J.; Oldenbeuving, R.M.; van der Slot, P.J.M.; Boller, K.J. Spectral linewidth
analysis of semiconductor hybrid lasers with feedback from an external waveguide resonator circuit.
Opt. Express 2017, 25, 32767–32782. [CrossRef]

129. Henry, C. Theory of spontaneous emission noise in open resonators and its application to lasers and optical
amplifiers. J. Lightwave Technol. 1986, 4, 288–297. [CrossRef]

56



Photonics 2020, 7, 4

130. Patzak, E.; Sugimura, A.; Saito, S.; Mukai, T.; Olesen, H. Semiconductor laser linewidth in optical feedback
configurations. Electron. Lett. 1983, 19, 1026–1027. [CrossRef]

131. Kazarinov, R.; Henry, C. The relation of line narrowing and chirp reduction resulting from the coupling of a
semiconductor laser to passive resonator. IEEE J. Quantum Electron. 1987, 23, 1401–1409. [CrossRef]

132. Koch, T.L.; Koren, U. Semiconductor lasers for coherent optical fiber communications. J. Lightwave Technol.
1990, 8, 274–293. [CrossRef]

133. Ujihara, K. Phase noise in a laser with output coupling. IEEE J. Quantum Electron. 1984, 20, 814–818.
[CrossRef]

134. Bjork, G.; Nilsson, O. A tool to calculate the linewidth of complicated semiconductor lasers. IEEE J.
Quantum Electron. 1987, 23, 1303–1313. [CrossRef]

135. Vahala, K.; Chiu, L.C.; Margalit, S.; Yariv, A. On the linewidth enhancement factor α in semiconductor
injection lasers. Appl. Phys. Lett. 1983, 42, 631–633. [CrossRef]

136. Vahala, K.; Yariv, A. Detuned loading in coupled cavity semiconductor lasers—Effect on quantum noise and
dynamics. Appl. Phys. Lett. 1984, 45, 501–503. [CrossRef]

137. Newkirk, M.A.; Vahala, K.J. Amplitude-phase decorrelation: A method for reducing intensity noise in
semiconductor lasers. IEEE J. Quantum Electron. 1991, 27, 13–22. [CrossRef]

138. Tang, J.; Hao, T.; Li, W.; Domenech, D.; Baños, R.; Muñoz, P.; Zhu, N.; Capmany, J.; Li, M. Integrated
optoelectronic oscillator. Opt. Express 2018, 26, 12257–12265. [CrossRef]

139. Fan, Y.; Epping, J.P.; Oldenbeuving, R.M.; Roeloffzen, C.G.H.; Hoekman, M.; Dekker, R.; Heideman, R.G.;
van der Slot, P.J.M.; Boller, K.J. Optically integrated InP-Si3N4 hybrid laser. IEEE Photonics J. 2016, 8, 1–11.
[CrossRef]

140. Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.;
Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with
wafer bonding. Opt. Express 2011, 19, 24090–24101. [CrossRef]

141. Taddei, C.; Zhuang, L.; Roeloffzen, C.G.H.; Hoekman, M.; Boller, K. High-selectivity on-chip optical
bandpass filter with sub-100-MHz flat-top and under-2 shape factor. IEEE Photonics Technol. Lett. 2019,
31, 455–458. [CrossRef]

142. Buus, J.; Amann, M.C.; Blumenthal, D.J. Tunable Diode Lasers and Related Optical Sources; Wiley: Hoboken, NJ,
USA, 2005.

143. Lin, Y.; Browning, C.; Timens, R.B.; Geuzebroek, D.H.; Roeloffzen, C.G.H.; Hoekman, M.; Geskus, D.;
Oldenbeuving, R.M.; Heideman, R.G.; Fan, Y.; et al. Characterization of hybrid InP-TriPleX photonic
integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent
system. IEEE Photonics J. 2018, 10, 1–8.

144. Latkowski, S.; Hänsel, A.; Bhattacharya, N.; de Vries, T.; Augustin, L.; Williams, K.; Smit, M.; Bente, E. Novel
widely tunable monolithically integrated laser source. IEEE Photonics J. 2015, 7, 1–9. [CrossRef]

145. Stéphan, G.M.; Tam, T.T.; Blin, S.; Besnard, P.; Têtu, M. Laser line shape and spectral density of frequency
noise. Phys. Rev. A 2005, 71, 043809. [CrossRef]

146. Llopis, O.; Merrer, P.H.; Brahimi, H.; Saleh, K.; Lacroix, P. Phase noise measurement of a narrow linewidth
CW laser using delay line approaches. Opt. Lett. 2011, 36, 2713–2715. [CrossRef]

147. Yariv, A. Signal-to-noise considerations in fiber links with periodic or distributed optical amplification.
Opt. Lett. 1990, 15, 1064–1066. [CrossRef]

148. Epping, J.P.; Oldenbeuving, R.M.; Geskus, D.; Visscher, I.; Grootjans, R.; Roeloffzen, C.G.; Heideman, R.G.
High power, tunable, narrow linewidth dual gain hybrid laser. In Proceedings of the Laser Congress 2019
(ASSL, LAC, LS&C), Vienna, Austria, 29 September–3 October 2019; Optical Society of America: Washington,
DC, USA, 2019; p. ATu1A.4.

149. Melnik, S.; Huyet, G.; Uskov, A.V. The linewidth enhancement factor α of quantum dot semiconductor lasers.
Opt. Express 2006, 14, 2950–2955. [CrossRef]

150. Redlich, C.; Lingnau, B.; Huang, H.; Raghunathan, R.; Schires, K.; Poole, P.; Grillot, F.; Lüdge, K. Linewidth
rebroadening in quantum dot semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–10.
[CrossRef]

151. Andreou, S.; Williams, K.A.; Bente, E.A.J.M. Monolithically integrated InP-based DBR lasers with an
intra-cavity ring resonator. Opt. Express 2019, 27, 26281–26294. [CrossRef]

57



Photonics 2020, 7, 4

152. Krückel, C.J.; Fülöp, A.; Ye, Z.; Andrekson, P.A.; Torres-Company, V. Optical bandgap engineering in
nonlinear silicon nitride waveguides. Opt. Express 2017, 25, 15370–15380. [CrossRef]

153. Van Laer, R.; Kuyken, B.; Van Thourhout, D.; Baets, R. Interaction between light and highly confined
hypersound in a silicon photonic nanowire. Nat. Photonics 2015, 9, 199–203. [CrossRef]

154. Gyger, F.; Liu, J.; Yang, F.; He, J.; Raja, A.S.; Wang, R.N.; Bhave, S.A.; Kippenberg, T.J.; Thévenaz, L.
Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. arXiv 2019,
arXiv:1908.09815.

155. Eggleton, B.J.; Poulton, C.G.; Rakich, P.T.; Steel, M.J.; Bahl, G. Brillouin integrated photonics. Nat. Photonics
2019, 13, 664–677. [CrossRef]

156. Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [CrossRef]
[PubMed]

157. Pillet, G.; Morvan, L.; Brunel, M.; Bretenaker, F.; Dolfi, D.; Vallet, M.; Huignard, J.P.; Floch, A.L.
Dual-frequency laser at 1.5 μm for optical distribution and generation of high-purity microwave signals.
J. Lightwave Technol. 2008, 26, 2764–2773. [CrossRef]

158. Takamoto, M.; Hong, F.L.; Higashi, R.; Katori, H. An optical lattice clock. Nature 2005, 435, 321–324.
[CrossRef] [PubMed]

159. Wicht, A.; Bawamia, A.; Krüger, M.; Kürbis, C.; Schiemangk, M.; Smol, R.; Peters, A.; Tränkle, G.
Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space.
In Components and Packaging for Laser Systems III; Glebov, A.L., Leisher, P.O., Eds.; SPIE: Bellingham WA,
USA, 2017; Volume 10085, pp. 103–118.

160. Maze, J.R.; Stanwix, P.L.; Hodges, J.S.; Hong, S.; Taylor, J.M.; Cappellaro, P.; Jiang, L.; Dutt, M.V.G.; Togan, E.;
Zibrov, A.S.; et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008,
455, 644–647. [CrossRef]

161. Nölleke, C.; Leisching, P.; Blume, G.; Jedrzejczyk, D.; Pohl, J.; Feise, D.; Sahm, A.; Paschke, K.
Frequency locking of compact laser-diode modules at 633 nm. In Photonic Instrumentation Engineering
V; Soskind, Y.G., Ed.; SPIE: Bellingham WA, USA, 2018; Volume 10539, pp. 28–33.

162. Wang, P.; Chen, W.; Wan, F.; Wang, J.; Hu, J. A review of cavity-enhanced Raman spectroscopy as a gas
sensing method. Appl. Spectrosc. Rev. 2019, 1–25. [CrossRef]

163. Coddington, I.; Swann, W.C.; Newbury, N.R. Coherent multiheterodyne spectroscopy using stabilized
optical frequency combs. Phys. Rev. Lett. 2008, 100, 013902. [CrossRef]

164. Cheung, S.; Baek, J.; Scott, R.P.; Fontaine, N.K.; Soares, F.M.; Zhou, X.; Baney, D.M.; Yoo, S.J.B. 1-GHz
monolithically integrated hybrid mode-locked InP laser. IEEE Photonics Technol. Lett. 2010, 22, 1793–1795.
[CrossRef]

165. Srinivasan, S.; Davenport, M.; Heck, M.J.R.; Hutchinson, J.; Norberg, E.; Fish, G.; Bowers, J. Low phase noise
hybrid silicon mode-locked lasers. Front. Optoelectron. 2014, 7, 265–276. [CrossRef]

166. Davenport, M.L.; Liu, S.; Bowers, J.E. Integrated heterogeneous silicon/III-V mode-locked lasers.
Photonincs Res. 2018, 6, 468–478. [CrossRef]

167. Mak, J.; van Rees, A.; Fan, Y.; Klein, E.J.; Geskus, D.; van der Slot, P.J.M.; Boller, K.J. Linewidth narrowing
via low-loss dielectric waveguide feedback circuits in hybrid integrated frequency comb lasers. Opt. Express
2019, 27, 13307–13318. [CrossRef]

168. Chen, X.; Deng, Z.; Yao, J. Photonic generation of microwave signal using a dual-wavelength
single-longitudinal-mode fiber ring laser. IEEE Trans. Microw. Theory Tech. 2006, 54, 804–809. [CrossRef]

169. Grivas, C. Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications.
Prog. Quantum Electron. 2016, 45-46, 3–160. [CrossRef]

170. Iio, S.; Suehiro, M.; Hirata, T.; Hidaka, T. Two-longitudinal-mode laser diodes. IEEE Photonics Technol. Lett.
1995, 7, 959–961. [CrossRef]

171. Pozzi, F.; De La Rue, R.M.; Sorel, M. Dual-wavelength InAlGaAs—InP laterally coupled distributed feedback
laser. IEEE Photonics Technol. Lett. 2006, 18, 2563–2565. [CrossRef]

172. Price, R.K.; Verma, V.B.; Tobin, K.E.; Elarde, V.C.; Coleman, J.J. Y-branch surface-etched distributed Bragg
reflector lasers at 850 nm for optical heterodyning. IEEE Photonics Technol. Lett. 2007, 19, 1610–1612.
[CrossRef]

58



Photonics 2020, 7, 4

173. Kim, N.; Ryu, H.C.; Lee, D.; Han, S.P.; Ko, H.; Moon, K.; Park, J.W.; Jeon, M.Y.; Park, K.H. Monolithically
integrated optical beat sources toward a single-chip broadband terahertz emitter. Laser Phys. Lett. 2013,
10, 085805. [CrossRef]

174. Guzmán, R.; Jimenez, A.; Corral, V.; Carpintero, G.; Leijtens, X.; Lawniczuk, K. Narrow linewidth
dual-wavelength laser sources based on AWG for the generation of millimeter wave signals. In Proceedings
of the XXIX Simposium Nacional de la Unión Científica Internacional de Radio, Valencia, Spain,
3–5 September 2014.

175. Zhu, Y.; Zhu, L. Narrow-linewidth, tunable external cavity dual-band diode lasers through InP/GaAs-Si3N4

hybrid integration. Opt. Express 2019, 27, 2354–2362. [CrossRef]
176. Bovington, J.T.; Heck, M.J.R.; Bowers, J.E. Heterogeneous lasers and coupling to Si3N4 near 1060 nm.

Opt. Lett. 2014, 39, 6017–6020. [CrossRef]
177. Kane, T.J.; Byer, R.L. Monolithic, unidirectional single-mode Nd: YAG ring laser. Opt. Lett. 1985, 10, 65–67.

[CrossRef]
178. Hosseini, N.; Dekker, R.; Hoekman, M.; Dekkers, M.; Bos, J.; Leinse, A.; Heideman, R. Stress-optic

modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express
2015, 23, 14018–14026. [CrossRef]

179. Epping, J.P.; Hellwig, T.; Hoekman, M.; Mateman, R.; Leinse, A.; Heideman, R.G.; van Rees, A.;
van der Slot, P.J.; Lee, C.J.; Fallnich, C.; et al. On-chip visible-to-infrared supercontinuum generation
with more than 495 THz spectral bandwidth. Opt. Express 2015, 23, 19596–19604. [CrossRef]

180. Fan, T.; Xia, Z.; Adibi, A.; Eftekhar, A.A. Highly-uniform resonator-based visible spectrometer on a Si3N4

platform with robust and accurate post-fabrication trimming. Opt. Lett. 2018, 43, 4887–4890. [CrossRef]
181. Wang, J.; Chen, S.; Dai, D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division

multiplexed on-chip optical interconnects. Opt. Lett. 2014, 39, 6993–6996. [CrossRef]
182. Liu, Y.; Wichman, A.R.; Isaac, B.; Kalkavage, J.; Adles, E.J.; Clark, T.R.; Klamkin, J. Ultra-low-loss silicon

nitride optical beamforming network for wideband wireless applications. IEEE J. Sel. Top. Quantum Electron.
2018, 24, 1–10. [CrossRef]

183. Visscher, I.; Roeloffzen, C.; Taddei, C.; Hoekman, M.; Wevers, L.; Grootjans, R.; Kapteijn, P.; Geskus, D.;
Alippi, A.; Dekker, R.; et al. Broadband true time delay microwave photonic beamformer for phased array
antennas. In Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP),
Krakow, Poland, 31 March–5 April 2019; pp. 1–5.

184. Oldenbeuving, R.M.; Lee, C.J.; van Voorst, P.D.; Offerhaus, H.L.; Boller, K.J. Modeling of mode locking in a
laser with spatially separate gain media. Opt. Express 2010, 18, 22996–23008. [CrossRef]

185. Fan, Y.; Oldenbeuving, R.M.; Khan, M.R.H.; Roeloffzen, C.G.H.; Klein, E.J.; Lee, C.J.; Offerhaus, H.L.;
Boller, K.J. Q-factor measurements through injection locking of a semiconductor-glass hybrid laser with
unknown intracavity losses. Opt. Lett. 2014, 39, 1748–1751. [CrossRef]

186. Kuswandi, B.; Nuriman; Huskens, J.; Verboom, W. Optical sensing systems for microfluidic devices: A review.
Anal. Chim. Acta 2007, 601, 141–155. [CrossRef]

187. Artundo, I. Photonic integration: New applications are visible. Opt. Photonik 2017, 12, 22–25. [CrossRef]
188. Ymeti, A.; Greve, J.; Lambeck, P.V.; Wink, T.; van Hövell; Beumer; Wijn, R.R.; Heideman, R.G.; Subramaniam,

V.; Kanger, J.S. Fast, Ultrasensitive Virus Detection Using a Young Interferometer Sensor. Nano Lett. 2007,
7, 394–397. [CrossRef]

189. Porcel, M.A.; Hinojosa, A.; Jans, H.; Stassen, A.; Goyvaerts, J.; Geuzebroek, D.; Geiselmann, M.;
Dominguez, C.; Artundo, I. Silicon nitride photonic integration for visible light applications.
Opt. Laser Technol. 2019, 112, 299–306. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

59





photonics
hv

Article

Exploiting the Nonlinear Dynamics of Optically
Injected Semiconductor Lasers for Optical Sensing

Maria S. Torre 1 and Cristina Masoller 2,*

1 Instituto de Física Arroyo Seco and CIFICEN (UNCPBA-CICPBA-CONICET), Universidad Nacional del
Centro de la Provincia de Buenos Aires, Tandil 7000, Argentina; marita@exa.unicen.edu.ar

2 Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22,
08222 Terrassa, Barcelona, Spain

* Correspondence: cristina.masoller@upc.edu

Received: 26 March 2019; Accepted: 19 April 2019; Published: 24 April 2019

Abstract: Optically injected semiconductor lasers are known to display a rich variety of dynamic
behaviours, including the emission of excitable pulses, and of rare giant pulses (often referred to as
optical rogue waves). Here, we use a well-known rate equation model to explore the combined effect
of excitability and extreme pulse emission, for the detection of variations in the strength of the injected
field. We find parameter regions where the laser always responds to a perturbation by emitting
an optical pulse whose amplitude is above a pre-defined detection threshold. We characterize the
sensing capability of the laser in terms of the amplitude and the duration of the perturbation.

Keywords: semiconductor lasers; nonlinear dynamics; optical injection

1. Introduction

Complex dynamical systems often exhibit extreme or rare events. Examples in nature include
earthquakes, hurricanes, financial crises, and epileptic attacks, to name just a few [1]. In recent years
the generation of extreme events in optical systems has attracted attention [2,3], as such systems
serve as experimental platforms for testing the physics of extreme event generation in a controlled
environment, where parameters can be tuned with high precision. In particular, the dynamics of
continuous-wave (cw) optically injected semiconductor lasers has attracted attention, because, under
appropriated conditions, the laser can emit excitable pulses [4,5], or rare giant pulses [6]. Thus, the cw
optically injected laser has been used for testing methods either to suppress [7] or to generate “on
demand” [8] high optical pulses. In addition, in contrast to what can be achieved in other fields, optics
laser systems allow to record long datasets containing large numbers of extreme events. Such optical
“big data” has also been used for testing data analysis tools for extreme event prediction [9–11].

Here, we study the optical pulses emitted by a cw optically injected laser with a different
motivation: we aim at exploiting the capability of high-pulse emission for implementing a laser-based
sensor, able to detect perturbations of the strength of the injected optical field. Let us assume,
for example, an optical perturbation due to the presence, during a certain time interval, of gas
molecules in the beam path from the pump laser (master) to the injected laser (slave) which, due to
light absorption, decrease the injected power. We aim to find appropriated conditions such that
the decrease of the injected power triggers the emission of an optical pulse, high enough to cross a
pre-defined “detection threshold”. In order to precisely detect the optical perturbation, the emission of
the pulse should occur shortly after the injected power decreases, i.e., within a pre-defined “detection
time interval”. In this way, the high pulse emitted will allow detecting the presence of gas molecules
in the master-slave beam path. In other words, our goal is to exploit the laser excitable response for the
detection of a variation of a control parameter, specifically, the decrease of the injected power. In order
to avoid the detection of “false positives” we consider parameters such that the laser intensity, under
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constant injection conditions, is either constant or displays small oscillations, below the detection
threshold. We show that for appropriated parameters, the decrease of the injected power can be
reliably detected as it will trigger, with probability equal or close to one, the emission of a pulse, high
enough to cross the detection threshold, and emitted shortly after the perturbation begins (i.e., within
the detection time interval).

This paper is organized as follows. Section 2 presents the model equations, Section 3 presents the
numerical results and Section 4 presents the discussion.

2. Model

The equations describing the dynamics of an optically injected semiconductor laser are [12–14]:

dE
dt

= κ(1 + iα)(N − 1)E + iΔωE +
√

Pinj, (1)

dN
dt

= γN(μ − N − N|E|2). (2)

Here E is the slow envelope of the complex optical field, S = |E|2 is the intensity, N is the carrier
density, κ is the field decay rate, α is the line-width enhancement factor, and γN is the carrier decay
rate. Δν = Δω/2π with Δω = ωs − ωm is the frequency detuning between the slave laser and the
master laser, Pinj is the injection strength and μ is the injection current parameter (normalized such
that the threshold of the free-running laser is at μth = 1).

We consider a decrease of Pinj at time Tp that has a Gaussian temporal shape centered at Tp,
amplitude, ΔP, and duration, ΔT: Pinj(t) = P0 − ΔP exp[−(t − Tp)2/(2ΔT2)]. To avoid numerical
problems we take Pinj = P0 constant for t >> Tp and t << Tp.

We note that spontaneous emission noise is not included in the model. This is because noise can
trigger the emission of pulses, which will lead to false detections. Further testing using realistic noise
levels is of course necessary, in order to find model parameters such that the laser-based sensor is robust
to noise. This requires that the laser dynamics have reduced sensitivity to random fluctuations [15],
while it has enhanced sensitivity to deterministic perturbations of the injected optical field [16].

3. Results

The model was simulated with a 4th order Runge–Kutta method with an integration step of 1 ps
and the parameters indicated in Table 1. In order to find appropriated injection parameters, first we
varied Δω and Pinj = P0 (no perturbation was applied, i.e., ΔP = 0), and for each set of parameters
long time traces of the intensity dynamics were simulated (5 μs), and the maximum, Imax, and the
average, 〈I〉, intensity value were calculated.

Table 1. Parameters used in the model simulations [6].

Name Symbol Value

Field decay rate κ 300 ns−1

Line-width enhancement factor α 3
Carrier decay rate γN 1 ns−1

Injection current parameter μ 1.96
Frequency detuning Δν variable

Unperturbed injected Power P0 variable
Perturbation amplitude ΔP variable
Perturbation duration ΔT variable
Detection time interval ΔTdet variable

The results are presented in Figure 1 which displays, in color code, the relative height of the
intensity oscillations, ΔI = Imax − 〈Imax〉)/ 〈Imax〉 (where Imax is the height of the highest peak found,
and 〈Imax〉 is the average peak height) as a function of Δν and Pinj. The dark regions indicate either
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injection locking (in the region starting at Δν = 0, right of the red-orange central region, the intensity is
constant and there are no oscillations, Imax = 〈Imax〉 = 0) or period-one solutions (in the dark region to
the left of the red-orange region the intensity dynamics consists of regular oscillations, all the intensity
peaks are equal, Imax = 〈Imax〉 and ΔI = 0).

To operate the laser as a sensor, we need to select an appropriated detection threshold, TH, such
that when the injected optical power is constant, the laser intensity is either constant, or displays
oscillations which are always below the detection threshold. In this way, we avoid the detection of
“false positives”: if Pinj is constant, I(t) < TH ∀ t. In Figure 1 we see that ΔI < 4. Therefore, we chose
a detection threshold proportional to the mean value of the height of the peaks, TH = (1 + c) 〈Imax〉,
with c ≤ 4 being a constant that depends on the parameters. We exclude parameters for which the
distribution of intensity values is long-tailed (i.e., where the laser emits rare giant pulses [6]), because
for such parameters, a very high threshold will be needed in order to avoid false detections; however,
a very high threshold might not detect some of the pulses that can be emitted in response to variations
of Pinj. In the following we consider the following parameters: P0 = 50 ns−2, Δν = −2.29 GHz
(indicated with a circle in Figure 1) which are close to the boundary of the region where large pulses
are emitted, and arbitrarily fix the threshold to TH = 2 〈Imax〉 (while a systematic study is needed to
determine the optimal choice, our simulations suggest that the results are robust with respect to small
variations of the threshold).

Figure 1. Relative height of the intensity oscillations when no perturbation is applied (ΔP = 0),
as a function of the frequency detuning, Δν, and the injection strength, Pinj. The color code displays
ΔI = (Imax − 〈Imax〉)/ 〈Imax〉, with Imax and 〈Imax〉 being the maximum and the average height of the
intensity oscillations, respectively; the symbol indicates the parameters used in Figure 2: Pinj = P0 =

50 ns−2 and Δν = −2.29 GHz.

Figure 2 displays two examples of the intensity time series together with the perturbation of
the injected power. If, within a given detection time interval, ΔTdet, the emitted pulses are below
the threshold TH, the perturbation is not detected (panel a), but if at least one pulse is above TH,
the detection is successful (panel b). As it will be discussed latter, ΔTdet is an important parameter of
the detection system. It starts when Pinj decreases below a given percentage of P0, here taken as 20%.
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Figure 2. Time series of the laser intensity when the variation of the injected power is ΔP = 6.6 ns−2

(a) and ΔP = 11.4 ns−2 (b). In panel (a) we see that the variation is small and the intensity is always
below the threshold, therefore, the variation of Pinj is not detected. In contrast, in panel (b), ΔP is large
enough to trigger the emission of intensity pulses that are high enough to cross the threshold (indicated
with a dashed line).

In order to characterize the sensing capability of the laser, we analyze the effect of the perturbation
parameters: the amplitude, ΔP, and the duration, ΔT. Figure 3 displays the success rate, SR, which is
the percentage of successful detections, as a function of ΔP and ΔT. In this plot, the SR is computed
from 50 time-series with random initial conditions, and we have verified that a larger number of
simulations give very similar results. We note that if the duration of the perturbation is too short,
in general the detection fails because the laser has no time to respond to the perturbation by emitting a
pulse that is high enough. In the other limit, if the duration of the perturbation is too long, the detection
also fails, now due to the fact that the detection time interval, ΔTdet is too short and the laser emits
a pulse at a later time. In between these two limits (if the duration of the perturbation, ΔT, is not
too slow nor too long with respect to the laser response time and to the detection time interval),
we see in Figure 3 that the success rate is close to 1. By increasing ΔTdet we improve the detection of
slow perturbations, however, the minimum perturbation amplitude that is detected remains nearly
unchanged. This is a consequence of the excitable nature of the dynamics: the perturbation has to be
strong enough to trigger a response.

Figure 3. Success rate as a function of the perturbation amplitude, ΔP, and duration, ΔT. The detection
time interval is ΔTdet = 20 ns (a), 100 ns (b). Other model parameters are Pinj = 50 ns−2, μ = 1.75,
and Δν = −1.31 GHz.
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As shown in Figures 4 and 5 the boundary between SR = 0 and SR = 1 can be very sharp: if
the perturbation ΔP is small and Pinj remains above a certain value (here Pinj > P∗

inj = 43 ns−2) the
intensity dynamics remains unaffected. On the contrary, if the perturbation is such that Pinj decreases
below P∗

inj, then pulses are emitted, which can be detected by selecting appropriated values of the
threshold and of the detection time interval.

Figure 4. Success rate when the detection time interval is ΔTdet = 20 ns (a) and 100 ns (b).
The parameters are Pinj = 50 ns−2, μ = 2.064 and Δν = −2.589 GHz.

Figure 5. Success rate as a function of P0 and ΔP. The duration of the perturbation is ΔT = 5 ns (a),
10 ns (b), 20 ns (c), 30 ns (d). The detection time interval is 5 ns.
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4. Discussion

We have numerically studied the dynamics of an optically injected laser and have shown that,
under appropriated conditions, a decrease of the injected power can be detected by the emission of
optical pulses that are high enough to cross a pre-defined detection threshold, and that are emitted
within a pre-defined detection time interval. The model parameters need to be chosen such that the
laser intensity, under constant injected power, has a well-defined maximum value (i.e., the distribution
of intensity values does not exhibit a long tail). In this case, a detection threshold can be defined such
that, in the absence of perturbation, the intensity oscillations are always below the threshold, while at
least one intensity pulse crosses the threshold with probability close or equal to one, if a perturbation
is applied such that the injected power decreases. We have studied the limitations regarding the
amplitude and the duration of the perturbation. In general, due to the excitable nature of the dynamics,
the amplitude of the perturbation needs to be large enough, while its duration needs to be not too
short nor too long. If the perturbation is too fast, the laser has no time to respond by emitting a pulse
high enough, while if the perturbation is too long, the emitted pulse can be delayed with respect to the
detection time interval.

In this study we have considered a Gaussian shape for the perturbation, and it will be important,
for practical applications, to test the performance of the sensor using different shapes and to analyze
how the detection threshold and the detection time depend on the shape of the perturbation.
We have simulated noise-free equations to avoid detecting noise-induced pulses as “false positives”.
Further testing using realistic noise levels is of course necessary, in order to find model parameters
such that the laser dynamics is robust to noise, while is sensitive to deterministic perturbations of the
injected field. An interesting setup to analyze is that of ultra-short optical feedback [17]. Further work
will probably also aim to compare the detection method proposed here, which exploits the excitable
properties of the laser dynamics, with more traditional approaches for sensing.
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Abstract: The mutual and injection locking characteristics of two integrated lasers are compared,
both on and off-chip. In this study, two integrated single facet slotted Fabry–Pérot lasers are utilised
to develop the measurement technique used to examine the different operational regimes arising
from optically locking a semiconductor diode laser. The technique employed used an optical
spectrum analyser (OSA), an electrical spectrum analyser (ESA) and a high speed oscilloscope
(HSO). The wavelengths of the lasers are measured on the OSA and the selected optical mode for
locking is identified. The region of injection locking and various other regions of dynamical behaviour
between the lasers are observed on the ESA. The time trace information of the system is obtained
from the HSO and performing the FFT (Fast Fourier Transform) of the time traces returns the power
spectra. Using these tools, the similarities and differences between off-chip injection locking with an
isolator, and on-chip mutual locking are examined.

Keywords: semiconductor lasers; photonic integrated circuits; injection locking; mutual coupling

1. Introduction

Optical injection locking of semiconductor lasers has been an area of great interest since the early
1980s [1]. The theoretical and experimental study of injection locked semiconductor lasers has resulted
in many applications. For example, injection locking can be used to demultiplex an optical comb [2].
The comb lines can then be modulated individually before recombining the signal to a coherent comb
for use in coherent wavelength division multiplexing [3]. Injection locking can also be used to generate
multiple phase locked coherent outputs [4], which are required for many modern day modulation
formats [5].

Injection locking [1,6,7] involves coupling an external optical signal from one laser into another.
Injection locking is separate from mutual coupling [8–10] in that the light only propagates in one
direction. The source laser is usually referred to as the master laser while the laser to which the light
is injected is referred to as the slave laser. The master laser is often higher powered than the slave
laser. In a typical situation, the discrete lasers of the master–slave system are coupled together using
free-space optics or via optical fibre using an optical isolator to eliminate any optical coupling from the
slave back to the master laser.

Due to the ever increasing demand being put on optical communication networks, there is
a significant move towards developing integrated devices to replace discrete optical components.
Photonic integrated circuits (PICs) offer an effective solution for the advancement of system level
functions at a compact scale. Integration vastly decreases the size of these systems and allows for
lower power consumption and reduced cost. However, the implementation of injection locking in
such a system is not possible without feasible integrated isolators. The resulting PIC without an
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isolator is no longer purely master–slave but is now bidirectional, or mutual. However, stable injection
locking (or asymmetric mutual locking) between two slotted Fabry–Pérot (SFP) lasers on-chip has been
demonstrated for the case where one laser (designated as the master) is much higher powered than
the other laser (designated as the slave) [11]. For lasers that are mutually coupled on a PIC, we are
now referring to the mutual coupling interaction as injection locking, when the powers of the lasers
are highly asymmetric. In this case, we refer to the higher powered laser as the master and the lower
power laser as the slave. In order to reliably enable applications that are based on injection locked
lasers in a PIC, the limits of injection locking a system of integrated semiconductor lasers need to be
studied. To carry out this investigation, it is necessary to develop a technique for efficiently detecting
and measuring optical injection locking. Thus, both the measurement techniques and the results are
presented in this paper.

To begin, a simpler off-chip coupling regime [11] is investigated where the lasers are isolated
from each other on-chip, by reverse biasing the waveguide interconnect between the lasers, and the
light from the master is coupled into the slave through an optical isolator. This prevents the mutual
feedback between the lasers that occurs on-chip, making the injection locking of the system less
complex. Without the feedback, an objective baseline is obtained for the future comparison between
mutually injection locked lasers on-chip.

In this paper, we first investigate the output of an integrated injection locked single facet slotted
Fabry–Perot (SF-SFP) laser [12] using off-chip coupling. Measurements were done using an optical
spectrum analyser (OSA), an electrical spectrum analyser (ESA) and a high speed oscilloscope (HSO).
The behavioural regimes of the lasers as they undergo injection locking and an effective method to
detect injection locking are discussed. The method of detection is then used to study the on-chip
coupling regime where there is feedback between the lasers. New and unexpected laser interactions
are found and reported in this mutual coupling regime.

2. The Photonic Integrated Circuit

The PIC used consisted of two identical (within fabrication tolerances) SF-SFP lasers coupled
together through a 615 μm long waveguide interconnect. A schematic of the full device is shown in
Figure 1. The single facet lasers consisted of a 650 μm long gain section and a 762 μm long mirror
section, comprised of seven etched slots, each with a gap of 1 μm and 108 μm separation between the
slots. The epitaxial structure used was commercially grown 1550 nm laser material on an InP substrate,
with a total active region thickness of 0.4 μm, consisting of five compressively strained AlInGaAs
quantum wells. The device was fabricated using standard processing techniques, similar to [13–15].
The SFPs were controlled by independently biasing their respective mirror, IMirror, and gain, IGain,
sections. Forward or reverse biasing the waveguide interconnect controlled the amplification or
attenuation of the optical signal and hence varied the power coupled between the lasers.

Figure 1. Schematic of the photonic integrated circuit with all variable parameters labelled.
Two single facet slotted Fabry-Pérot lasers are integrated together through a 615 μm variable optical
attenuator/amplifier section.
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The waveguide interconnect between the lasers was referred to as the variable optical attenuator
(VOA). Since it was fabricated on an active substrate, it required a positive electrical bias to overcome
the loss due to the high absorption of the material at 1550 nm. Left unbiased, the VOA was designed
to be long enough to attenuate most of any optical signal that passed through it. Applying a reverse
bias to the VOA further attenuated the signal.

The mirror section biases of both SFPs, IMirror,1, and IMirror,2, were set at 42 mA. At this mirror
section bias, the gain section threshold current, Ithreshold, of the lasers was found to be 20 mA. The gain
section of SFP-2 IGain,2 was set at 24 mA, just above Ithreshold. The free-running optical and electrical
spectra of SFP-2 are shown in Figure 2a,b, respectively. The gain section of SFP-1 was operated between
35 mA and 50 mA, giving it a higher output power than SFP-2. In this bias range, the wavelength of
SFP-1 varied linearly with applied bias; see Figure 2c. Figure 2d is the electrical spectra of SFP-1 over
this bias range. For convenience in the following descriptions, the higher power laser will be referred
to as the master SFP (M-SFP) and the lower power laser referred to as the slave SFP (S-SFP). The VOA
was reverse biased to −1 V, thus removing any on-chip coupling between the lasers on-chip. Setting
one laser lasing, reverse biasing the other laser and recording photocurrent confirmed that the VOA
absorbed all of the light, such that there was no on-chip coupling between the two lasers.

(a) (b)

(c) (d)
Figure 2. (a) the optical spectrum and (b) the electrical spectrum of the free-running S-SFP. Colour
intensity plots of (c) the optical spectra and (d) the electrical spectra from the free-running M-SFP.

3. Off-Chip Experimental Setup

A schematic of the experimental setup is shown in Figure 3 [11,16,17]. The output of each SFP was
fibre coupled using a lensed fibre. The output of the M-SFP was guided through single mode fibre and
a polarisation controller to port 1 of an optical circulator, which provided a greater than 40 dB isolation
between its ports. Port 2 of the circulator was coupled to the output of the S-SFP. The signal from port 3
of the circulator was split in three and fed to an OSA (Yokogawa AQ6370D; Resolution—0.045 nm),
an ESA (HP 8565EC; Bandwidth—50 GHz) and a HSO (Tektronix TDS6154C); Bandwidth—15 GHz
and Sampling rate—40 GS/s), in order to investigate the optical and electrical characteristics of the
signal. The signal was amplified using an erbium doped fibre amplifier (EDFA) before going to the
photodetectors (PD) (Finisar XPRV2022; Bandwidth—33 GHz for the ESA and Finisar XPDV2120;
Bandwidth—50 GHz for the HSO) to obtain a strong signal on the ESA and HSO.
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Figure 3. Experimental setup showing the off-chip coupling scheme between two lasers on the same
integrated device. The waveguide interconnect linking both lasers was reverse biased to −1 V which
removed any coupling between the lasers on-chip. Instead, light from the master laser was coupled
into the slave laser via a polarisation controller and optical circulator.

4. Off-Chip Injection Locking

The M-SFP was swept across resonance with one of the side modes of the S-SFP by varying its
gain section bias, IGain,1 between 35 mA and 50 mA. At each bias step, the output of the S-SFP was
recorded on the OSA, ESA and HSO. The OSA traces were concatenated to create the colour intensity
plot in Figure 4a with master gain section (M-GS) bias on the x-axis, wavelength on the y-axis and the
colour bar represents optical power. Similarly, the colour intensity plot of the ESA traces is shown in
Figure 4b and the colour intensity plot of the HSO traces in Figure 4c. The FFT of the HSO traces in
Figure 4c was performed in Matlab (R2012a) and the result is seen in Figure 4d. The FFT is nearly
identical to the ESA traces in Figure 4b, but, due to the sampling rate of the HSO, the FFT does not
give as high resolution or high frequency as the ESA. The FFT of the HSO traces does not give any new
information but verifies the results obtained on the ESA. The data from the HSO are also important in
the setup because it allows dynamics that are not seen on the ESA to be investigated.

The main mode of the free-running S-SFP had a wavelength of approximately 1557 nm and the
side mode chosen for locking was at approximately 1563 nm, both visible in red in Figure 4a. The M-GS
bias was swept from 35 mA to 50 mA, thus sweeping the M-SFP across resonance with the S-SFP.
The total sweep was approximately 0.285 nm.

For each M-GS bias, the data from all equipment was analysed to determine the characteristics of
the interaction taking place. For example, for a M-GS bias below 40.6 mA, low frequency ESA peaks
are associated with relaxation oscillations, while higher frequency ESA peaks are caused by the beating
of lasing modes from both lasers. Between 40.6 and 46.4 mA, strong beating is observed between the
master and slave lasers. The S-SFP is injection locked for M-GS biases between 46.4 and 48.2 mA,
and then, for higher biases, the S-SFP goes out of locking and beating can again be seen from the ESA
and HSO data.
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(a) (b)

(c) (d)
Figure 4. Colour intensity plots of (a) the optical spectra, (b) the electrical spectra, (c) the time traces and
(d) the FFT (Fast Fourier Transform) of the time traces from the S-SFP for the off-chip coupling scheme.

Figure 5 is a summary of the types of behaviour obtained during injection locking as a function
of M-GS bias. These types of behaviour; (i) beating, (ii) nonlinear interactions (NLI) and (iii) locked,
are similar to those presented in [11].

Figure 5. Summary of the types of behaviour obtained during injection locking as a function of the
master gain section bias, for the off-chip coupling regime.

The figures in Appendix A.1 provide characteristic examples of the data from the OSA, ESA
and HSO demonstrating these types of behaviours. Figure A1 is an example of beating behaviour,
where the lasers are beating together and the detuning between the lasers can be seen on the ESA,
but the lasers do not interact. At smaller detunings where the lasers beat strongly together, nonlinear
interactions occur as is seen in Figure A2. Finally, injection locking is seen in Figure A3, where the
S-SFP is injection locked to the M-SFP and hence lases at the wavelength of the M-SFP.

Now that the known regimes of injection locking a master/slave system have been demonstrated
for the off-chip coupling regime, we will investigate the on-chip coupling regime, where there is
feedback between the lasers.
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5. On-Chip Injection Locking

In order to confirm that this method for detecting injection locking works for the on-chip coupling
regime where there is feedback between the lasers, the circulator was removed and the VOA was
forward biased allowing the lasers to interact on-chip. A schematic of the experimental setup for the
on-chip coupling regime is shown in Figure 6 [11]. The circulator was removed and the VOA was
forward biased to 1.091 V, allowing the lasers to interact on-chip. An optical switch enabled the output
of both lasers to be examined on the ESA, OSA and HSO, as described previously.

Figure 6. Experimental setup showing the on-chip coupling scheme between two lasers on the same
integrated device. The waveguide interconnect linking both lasers was forward biased to 1.091 V,
which allowed the lasers to interact on-chip. An optical switch enabled the output of both lasers to
be examined.

The experiment was repeated, but the removal of the circulator and subsequent mutual coupling
meant that the output of both lasers needed to be recorded. Colour intensity plots of the OSA, ESA and
HSO traces from the M-SFP and S-SFP are shown in Figure 7. The types of behaviour observed were
similar to the off-chip coupling regime, Figure 4; however, some new types of behaviour generated by
the feedback between the lasers were also observed.

When the M-GS bias is below 40 mA, the lasers are coupled but not interacting and the expected
beating between the different lasing modes are seen with the relaxation oscillation peak. At 40 mA,
there is significant beating between a suppressed mode of the master and a dominant mode of the
slave at 1.9 GHz. The corresponding ESA signal is approximately 27.5 dB stronger in the slave than
the master, and can only be seen in the HSO trace of the slave. This will be later referred to as
asymmetric beating.

For M-GS bias between 41 and 45 mA, the expected nonlinear interaction occurs between the
unlocked lasers. The HSO signal from both lasers forms a clear sinusoidal trace. At 45 mA, while the
lasers are still unlocked and beating, the HSO trace shows irregular dynamics with large changes in
the amplitude of the signal. In addition, longer wavelength modes have appeared in both master and
slave lasers near 1567 nm. These longer modes are not due to a temperature increase in the laser; high
resolution OSA data showed that there was no change in the gain peak of the laser from 1563 nm.

At a M-GS bias of 46.6 mA, the interaction changes. Both lasers are now operating highly
multi-mode. The HSO trace of the master and slave appear completely patternless, a behaviour that
will be referred to as aperiodic. At 47.4 mA, the lasers are locked albeit at a longer wavelength of
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1566.5 nm. This shift toward longer wavelength is unexpected and as yet unexplained. At higher
M-GS biases, the lasers return to free-running states.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 7. Output of the master and slave lasers (on-chip coupling scheme). (a) OSA traces from the
master laser, (b) OSA traces from the slave laser, (c) ESA traces from the master laser, (d) ESA traces
from the slave laser, (e) HSO traces from the master laser, (f) HSO traces from the slave laser, (g) FFT of
the HSO traces from the master laser, and (h) FFT of the HSO traces from the slave laser.
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This experiment was repeated for multiple VOA biases between 1.08 and 1.13 V. Figure 8 provides
a summary of the types of behaviour obtained from the M-SFP and the S-SFP during injection locking
as a function of M-GS bias and VOA bias. The dashed line across the graphs represents the data set
discussed above for a VOA bias of 1.091 V. The three types of behaviour identified for the off-chip
coupling regime; (i) beating, (ii) nonlinear interactions and (iii) locked, are also present for the on-chip
coupling regime and new types of behaviour have been generated due to the feedback between the
lasers. Irregular dynamics and aperiodic behaviour are exhibited by both the M-SFP and S-SFP, while
asymmetric beating and pulsing were exhibited by the S-SFP alone.

(a)

(b)
Figure 8. Summary of the types of behaviour obtained from (a) the M-SFP and (b) the S-SFP during
injection locking as a function of M-GS bias, for the on-chip coupling regime.

The figures in Appendix A.2 provide characteristic examples of these new types of behaviours;
Figure A4 is an example of asymmetric beating, Figure A5 of irregular dynamics, Figure A6 of aperiodic
behaviour and Figure A7 of mutual injection locking. The biggest difference between the off and
on-chip coupling regimes is that for the off-chip coupling regime when the lasers injection lock,
the S-SFP locks to the M-SFP and both lasers then lase at the wavelength of the M-SFP. However, for the
on-chip coupling regime when the lasers mutually injection lock, both lasers lock to a higher mode.
The locking width is also narrower for the on-chip coupling regime due to the regions of irregular
beating and aperiodic behaviour before the locking region. However, this width can be increased by
increasing the VOA bias.
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Reducing the VOA bias to 1.081 V reduces the coupling between the lasers therefore preventing
the lasers from injection locking. Figure 8 shows that, at the M-GS biases where injection locking would
be expected, the lasers behave aperiodically. However, there is a small region (M-GS = 47.2–48 mA)
where the time traces of the S-SFP show pulsing behaviour, Figure A8. The time trace of the S-SFP,
Figure A8c, shows pulsing at ∼0.94 GHz and a corresponding beat note is observed in the electrical
spectrum. No beating was seen in the electrical spectrum of the M-SFP. The signal obtained on the
HSO (Figure A8c) has a frequency of 0.94 GHz, but it is not a sinusoidal signal. Without the HSO data,
it may have been assumed that the beating between the lasers was sinusoidal. This illustrates how
important the time traces are to fully understand the interaction between the lasers. The modes in the
optical spectrum of the S-SFP are not smooth but have many little peaks close together, as is shown in
the inserts of Figure A8b.

Each piece of equipment provides results that are valuable when investigating the injection
locking of the lasers. Both the ESA and the HSO can be used to identify the locking region, regions of
aperiodic behaviour, and regions of beating between the free-running lasers. However, only the HSO
provides time trace information, which is valuable when investigating aperiodic regimes. The time
traces can be compared with theoretical models to determine the type of dynamical behaviour between
the lasers. The ESA is more sensitive and has a higher bandwidth than the HSO, which is useful to
detect high frequency beating between the lasers. While the ESA and HSO show the beating and hence
the detuning between the lasers, only the OSA provides information on the wavelength and optical
behaviour of the lasers, e.g., the wavelength at which the lasers lase when injection locked.

6. Conclusions

The on and off-chip locking between two integrated lasers have been measured and compared.
The off-chip injection locking of two integrated SF-SFP lasers was used to demonstrate an effective
method to detect injection locking using an OSA, an ESA and a HSO. This same technique was
then used to measure the on-chip injection locking of the two integrated SF-SFP lasers. The on-chip
measurements showed additional types of behaviour generated by the feedback between the lasers that
were not seen in the off-chip coupling region. These include aperiodic and pulsating behaviour, as well
as locking beyond the gain peak at a red shifted mode of the lasers. The gain peak has not shifted.
Instead, the laser interactions result in a suppression of the mode near the gain peak and the lasing
at a mode red shifted far beyond the gain peak. An objective baseline for injection locking has been
obtained, which will be used in future comparisons between mutually injection locked lasers on-chip.
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Appendix A

Appendix A.1. Off-Chip Figures

This section contains characteristic optical spectra, electrical spectra and time traces from the
output of the S-SFP obtained for the off-chip coupling regime. These plots are cross-sections of the
colour intensity plots in Figure 4. The figures describe the three types of behaviours discussed
previously in Section 4; (i) Beating—Figure A1, where the lasers are beating together and the
detuning between the lasers can be seen on the ESA, but the lasers do not interact, (ii) Nonlinear
interactions—Figure A2, where the detuning between the lasers is small enough that they beat strongly
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together, and (iii) Injection locking—Figure A3, where the S-SFP is injection locked to the M-SFP and
hence lases at the wavelength of the M-SFP.

(a) (b)
Figure A1. (a) the optical spectrum and (b) the electrical spectrum of the S-SFP for the off-chip coupling
scheme, for a M-GS = 35 mA. The lasers beat together and are ∼16 GHz apart.

(a) (b)
Figure A2. (a) the optical spectrum and (b) the time trace of the S-SFP for the off-chip coupling scheme,
for a M-GS = 45 mA. The lasers interact nonlinearly and are ∼3.6 GHz apart. In addition, 3.6 GHz
(∼0.03 nm) is less than the resolution of the OSA; therefore, the main mode of the M-SFP and the side
mode of the S-SFP have merged into a single peak in the optical spectrum.

(a) (b)
Figure A3. (a) the optical spectrum and (b) the electrical spectrum of the S-SFP for the off-chip coupling
scheme, for a M-GS = 47.8 mA. The lasers are injection locked.

Appendix A.2. On-Chip Figures

This section contains characteristic optical spectra, electrical spectra and time traces from the
output of the S-SFP obtained for the on-chip coupling regime. These plots are cross-sections of the
colour intensity plots in Figure 7. The figures describe the five new types of behaviours generated by
the feedback between the lasers discussed previously in Section 5; (i) Asymmetric beating—Figure A4,
where the lasers beat together and the S-SFP exhibits strong low frequency beating, (ii) Irregular
dynamics—Figure A5, where the lasers beat together, but the amplitude of the beating is not uniform
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but irregular, (iii) Aperiodic behaviour—Figure A6, where the lasers beat together aperiodically,
(iv) Pulsing—Figure A8, where the lasers beat together aperiodically but the S-SFP exhibits pulsing
behaviour and (v) Mutual injection locking—Figure A7, where the lasers are mutually injection locked
and both lasers have mode hopped to a higher mode (∼1566.5 nm).

(a) (b)

(c) (d)
Figure A4. (a,b) the optical spectra and (c,d) the time traces of the M-SFP and S-SFP, respectively,
for the on-chip coupling scheme, for a VOA bias = 1.091 V and a M-GS = 40 mA. The lasers beat
together asymmetrically and are ∼7 GHz apart.

(a) (b)

(c) (d)
Figure A5. (a,b) the optical spectra and (c,d) the time traces of the M-SFP and S-SFP, respectively,
for the on-chip coupling scheme, for a VOA bias = 1.091 V and a M-GS = 45 mA. The lasers beat
together and are ∼3.8 GHz apart. The beating between the lasers is not uniform but irregular.
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(a) (b)

(c) (d)
Figure A6. (a,b) the optical spectra and (c,d) the time traces of the M-SFP and S-SFP, respectively,
for the on-chip coupling scheme, for a VOA bias = 1.091 V and a M-GS = 46.6 mA. The lasers beat
together aperiodically and are ∼1.6 GHz apart.

(a) (b)

(c) (d)
Figure A7. (a,b) the optical spectra and (c,d) the electrical spectra of the M-SFP and S-SFP, respectively,
for the on-chip coupling scheme, for a VOA bias = 1.091 V and a M-GS = 47.4 mA. The lasers are
mutually injection locked. Both lasers have mode hopped and now lase at ∼1566.5 nm.
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(a) (b)

(c) (d)
Figure A8. (a,b) the optical spectra and (c,d) the time traces of the M-SFP and S-SFP, respectively,
for the on-chip coupling scheme, for a VOA bias = 1.081 V and a M-GS = 47.2 mA. The lasers beat
together aperiodically and are ∼0.94 GHz apart. The S-SFP exhibits pulsing behaviour.
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Abstract: The rate equations for two delay-coupled quantum cascade lasers are investigated
analytically in the limit of weak coupling and small frequency detuning. We mathematically derive
two coupled Adler delay differential equations for the phases of the two electrical fields and show
that these equations are no longer valid if the ratio of the two pump parameters is below a critical
power of the coupling constant. We analyze this particular case and derive new equations for a
single optically injected laser where the delay is no longer present in the arguments of the dependent
variables. Our analysis is motivated by the observations of Bogris et al. (IEEE J. Sel. Top. Quant.
El. 23, 1500107 (2017)), who found better sensing performance using two coupled quantum cascade
lasers when one laser was operating close to the threshold.

Keywords: two delay-coupled lasers; weak coupling limit; optically injected laser

1. Introduction

Compact quantum cascade lasers (QCLs) emitting in the midwave infrared (mid-IR) are the
leading semiconductor laser sources for such applications as absorption spectroscopy in the molecular
fingerprint region [1,2]. Mid-IR spectroscopy has led to new applications in biology and medicine
such as breath analysis, the investigation of serum, noninvasive glucose monitoring in bulk tissue, and
the combination of spectroscopy and microscopy of tissue thin sections for rapid histopathology [3].
Other applications include environmental sensing and pollution monitoring, industrial process control,
and security [4,5].

Recently, a novel gas sensor relying on a pair of mutually injecting QCLs has been analyzed
both experimentally and numerically [6–8]. The sensing performances of the coupled QCLs have
been examined in terms of the injection power, bias currents of the lasers, and their spectral detuning.
High sensitivity is observed if one of the two lasers is biased around the threshold. The main objective
of this paper is to explain these observations by analyzing the rate equations appropriate for two
coupled QCLs. As we shall demonstrate, allowing one laser to operate close to its threshold contributes
to larger domains of stable phase locked states. Physically, the transient response of the intensity of
one laser slows down near its threshold, while the intensity of the second laser is keeping its fast
time scale. Consequently, the fast laser quickly approaches a quasi-steady state regime, and the long
time dynamics of the laser system is controlled by the slow laser. In other words, the coupled QCLs
is becoming an injected laser problem where the fast and slow lasers are acting as master and slave,
respectively. In a different setting, two coupled QCL cavities separated by a gap of 3 μm were studied
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as a monolithic integrated photodetector [9]. An integrated detector is used for spatial sensing of the
light intensity, and its control is again achieved by changing the applied bias.

The dynamics of two mutually delay-coupled semiconductor lasers (SLs), in a face-to-face
configuration, has been a topic of active research [10–14]. The time delay results from the finite
propagation time of the light from one laser to the other one. Of primary interest are the conditions
for stable locking, and systematic studies have been undertaken in order to explore the effects of
key parameters. These led to striking comparisons between experimental and numerical bifurcation
diagrams [15–21]. Most often, the time delay is relatively large compared to the photon lifetime (21 to a
51 mm gap between the lasers) [16–18]. However, systems of two coupled lasers in photonic integrated
circuits have recently been investigated (1–2 mm gap) [11,12]. They revive previous theoretical
investigations of the short coupling regime [22].

In a different optical setting, two laterally coupled semiconductor lasers (no delay) also raised the
interest of researchers for the presence of exceptional points (EPs) in parameter space [23–25]. An EP is
a point where two (or more) eigenvalues simultaneously coalesce. One key difference between EPs
and conventional degeneracies is their higher sensitivity to perturbations. This particular property of
EPs has been proposed for use in sensor applications [26,27].

QCLs, based on intersubband transitions in semiconductor quantum wells, are characterized
by ultrafast (picosecond) carrier lifetimes. An important consequence of this unique property is the
absence of relaxation oscillations (RO) in the transient response of these devices. For conventional
interband diode lasers (IDLs), the ROs are generating undesirable intensity oscillations for quite low
feedback amplitudes. By contrast, dynamical instabilities for QCLs are only possible if the delayed
feedback is strong enough [28,29].

For two coupled lasers operating at close, but distinct optical frequencies, the desired regime is
when the lasers operate in a continuous wave (CW) with their frequency and phase mutually locked.
They are called one color states [30] or compound laser modes (CLMs) [19,22]. To the best of our
knowledge, phase locked states of two delay-coupled SLs have been investigated theoretically with equal or
nearly equal pump parameters. However, the individual laser pump rates are experimentally controlled
variables, and the effects of unequal pumps have been studied for two SLs without delays [23–27,31].

The organization of the paper is as follows. Section 2 introduces the rate equations for two coupled
QCLs, as well as their asymptotic approximation, valid in the limit of weak coupling, weak frequency
detuning, and arbitrary pump parameters. It consists of two delay coupled Adler equations for
the phases of the fields. The CLMs are then investigated in Section 3 in terms of their frequencies.
As functions of the detuning, these frequencies appear as close orbits in the bifurcation diagram. As the
pump parameter of one laser comes close to threshold (P2 → 0), these orbits overlap progressively
larger domains of detuning. In Section 4, the limit P2/P1 → 0 is analyzed in detail taking into account
that our problem now depends on two small parameters, namely P2/P1 and the small coupling rate.
A new asymptotic analysis of the original laser equations is performed and leads to equations for
an optically injected single mode laser where the delay no longer appears in the arguments of the
dependent variables. The stability of the locked states is then analyzed. If one laser is operating slightly
below the threshold, as in the experiments in [7], the locked state is always stable. Last, we discuss in
Section 5 the impact of our results for conventional IDL lasers.

2. Dimensionless Equations

The response of a QCL subject to a delayed feedback is analyzed using rate equations formulated
in [32–34] on the basis of a three level model. In [28], it was shown that these equations for a QCL
subject to delayed optical feedback can be reduced to the classical Lang and Kobayashi (LK) equations
derived for IDLs. The LK equations consist of the rate equations for a conventional SL supplemented
by a term describing the optical feedback of the electrical field. Two key parameters control the
dynamical stability of the laser, namely the ratio of the carrier to photon lifetimes T and the linewidth
enhancement factor α. For a QCL, T is typically an O(1) quantity compared to the large O(103) value of
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an IDL. Moreover, α = 0− 1 for a QCL is relatively small compared to the IDL α = 2.5− 3.5. These two
essential properties of a QCL explain the observed high tolerance with respect to optical feedback.
Mathematically, we therefore consider two coupled LK equations as the rate equations for two QCLs
coupled face-to-face. We use the formulation detailed in [19]. Specifically, the evolution equations are
in terms of the optical fields Ejopt = Rj exp(iφj + iωjt) where ωj is the optical angular frequency of
laser j and the carrier densities Nj (j = 1, 2). Introducing the frequency detuning Δ = ω2 − ω1 and the
averaged frequency ω = (ω1 + ω2)/2, φ1 = Δt/2 + Φ1, and φ2 = −Δt/2 + Φ2, it is mathematically
convenient to reformulate the two fields as:

E1opt = R1 exp(i
Δt
2

+ iΦ1 + iω1t) = R1 exp(iΦ1 + iωt), (1)

E2opt = R2 exp(−i
Δt
2

+ iΦ2 + iω2t) = R2 exp(iΦ2 + iωt). (2)

The rate equations for the amplitudes Rj, phases Φj, and densities Nj are then given by [31]

R′
1 = N1R1 + εR2(t − τ) cos(θ + Φ2(t − τ)− Φ1 − C), (3)

Φ′
1 = −Δ

2
+ αN1 + ε

R2(t − τ)

R1
sin(θ + Φ2(t − τ)− Φ1 − C), (4)

TN′
1 = P1 − N1 − (1 + 2N1)R2

1, (5)

R′
2 = N2R2 + εR1(t − τ) cos(θ + Φ1(t − τ)− Φ2 − C), (6)

Φ′
2 =

Δ
2
+ αN2 + ε

R1(t − τ)

R2
sin(θ + Φ1(t − τ)− Φ2 − C), (7)

TN′
2 = P2 − N2 − (1 + 2N2)R2

2. (8)

In these equations, time t is measured in units of the photon lifetime τp ∼ 10−11s. Prime means
differentiation with respect to t. P1 = O(1) and P2 = O(1) are the pump parameters measuring the
amount of electrical current used to activate the individual lasers. The complex mutual coupling is
accounted for by ε exp(iθ). τ and C ≡ ωτ represent the delay time and the (mean) induced phase,
respectively. The distance L between the lasers is a few centimeters, which then implies that the delay
τ ≡ (L/c)/τp, where c is the speed of light, is around 10. From Equation (3) with R1 = O(1) and
R2 = O(1), we note that N1 needs to be an O(ε) small quantity in order to balance the first two terms in the
right hand side of Equation (3). Similarly, balancing all three terms in the right hand side of Equation (4)
requires that the detuning |Δ| is small like ε. The same conclusions apply for Equations (6) and (7).

We analyze Equations (3)–(8) assuming weak coupling (ε << 1) and small detuning (Δ = O(ε)).
The analysis leads to the following two coupled Adler delay differential equations for the phase of the
electrical fields (see Section 1 of the Supplementary File):

dΦ1

dt
= −Δ

2
+ ε

√
P2

P1
(1 + α2) sin(θ0 + Φ2(t − τ)− Φ1), (9)

dΦ2

dt
=

Δ
2
+ ε

√
P1

P2
(1 + α2) sin(θ0 + Φ1(t − τ)− Φ2) (10)

where
θ0 ≡ θ − C − arctan(α). (11)

These equations were formulated in [8], using the theory developed in [31] for the zero delay
case. They were also the starting point of the investigations in [35]. We mathematically rederived those
equations in a more systematic way by using an asymptotic method where Δ is scaled with respect to
ε. This analysis is necessary as we later consider the case of one laser operating close to its threshold
for which Equations (9) and (10) are no longer valid.
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Equations (9) and (10) with P1 = P2 and θ0 = 0 have been studied in detail [15,36,37].
Particular attention has been devoted to (1) constant phase solutions (Φ1, Φ2) = (0, σ) [36],
(2) compound laser modes (Φ1, Φ2) = (ωt, ωt + σ) [19,36], and (3) time-periodic unbounded solutions
(Φ1, Φ2) = (C/2 + Φ(t),−C/2 + Φ(t)) with < dΦ/dt >= cst [15].

It is worthwhile to briefly review the case of zero delay, which was analyzed in detail [38–40]
since the pioneering work of Winful and Wang [41], who considered the case of zero detuning (Δ = 0),
equal pumps (P1 = P2), coupling phase θ = π/2, and -α replacing α in Equations (4) and (7). If τ = 0,
Equations (9) and (10) can be combined into a single equation for σ ≡ Φ2 − Φ1 given by:

dσ

dt
= Δ + ε

√
1 + α2

[√
P1

P2
sin(θ0 − σ)−

√
P2

P1
sin(θ0 + σ)

]
. (12)

The steady states are the phase locked states. They are shown in Figure 1 for equal and non-equal
pump values. We observe that the size of the locking domain increases as one of the pumps comes
closer to its threshold, a feature for which we again see if the delay is not zero.

Figure 1. Frequency-locked states in the case of zero delay. σ = Φ2 − Φ1 is shown as a function of Δ
(−π < Φ < π). Full and broken lines correspond to stable and unstable branches. θ0 = π/4, ε = 0.02,
α = 1, P1 = 1, and the value of P2 is indicated in the figure.

3. Compound Laser Modes

The compound laser modes or CLMs are the basic solutions of our problem. They are the solutions
of Equations (9) and (10) of the form:

Φ1 = ωt, Φ2 = ωt + σ. (13)

From Equations (1) and (2), we understand that after coupling, the optical frequency ωop is given by:

ωop = ω + ω. (14)

Inserting Equation (13) into Equations (9) and (10) leads to two equations for ω and σ given by:

ω = −Δ
2
+ ε

√
P2

P1
(1 + α2) sin(θ0 − ωτ + σ), (15)

ω =
Δ
2
+ ε

√
P1

P2
(1 + α2) sin(θ0 − ωτ − σ). (16)
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Expanding the trigonometric functions, Equations (15) and (16) are rewritten as:

(
ω +

Δ
2

)
1

ε
√

P2
P1
(1 + α2)

=

(
sin(θ0 − ωτ) cos(σ)
+ cos(θ0 − ωτ) sin(σ)

)
, (17)

(
ω − Δ

2

)
1

ε
√

P1
P2
(1 + α2)

=

(
sin(θ0 − ωτ) cos(σ)
− cos(θ0 − ωτ) sin(σ)

)
. (18)

From Equations (17) and (18), we determine cos(σ) and sin(σ):

cos(σ) =
1

2 sin(θ0 − ωτ)ε
√
(1 + α2)

⎡
⎣

(
ω + Δ

2

)√
P1
P2

+
(

ω − Δ
2

)√
P2
P1

⎤
⎦ , (19)

sin(σ) =
1

2 cos(θ0 − ωτ)ε
√
(1 + α2)

⎡
⎣

(
ω + Δ

2

)√
P1
P2

−
(

ω − Δ
2

)√
P2
P1

⎤
⎦ . (20)

3.1. Equal Pumps

Before we consider the effect of unequal pump parameters, it is worthwhile to first analyze the
case of equal pumps. The expression Equations (19) and (20) are considerably simplified as:

cos(σ) =
ω

sin(θ0 − ωτ)ε
√
(1 + α2)

, (21)

sin(σ) =
Δ

2 cos(θ0 − ωτ)ε
√
(1 + α2)

(22)

and provide a solution in parametric form. We first extract σ = σ(ω) from Equation (21):

σ = arccos

(
ω

sin(θ0 − ωτ)ε
√
(1 + α2)

)
(23)

and then compute Δ = Δ(ω) using Equation (22):

Δ = 2 cos(θ0 − ωτ)ε
√
(1 + α2) sin(σ). (24)

If τ = 0, the expression Equation (24) tells us that the locking domain verifies the inequality:

|Δ| ≤ 2ε
√
(1 + α2) cos(θ0). (25)

The expression Equation (25) is in agreement with Equation (36) in [31]. Figure 2 represents ωτ

and σ as functions of Δτ. The values of the dimensionless parameters are based on the following values
of the original parameters for the photon lifetime τph, the delay τe, the feedback rate εe, and the detuning

|Δe| : τph = 7.5 × 10−12s, τe = 10−10s, εe = 2.8 × 109 s−1, and 0 < |Δe |
2π ≤ 109 s−1. The dimensionless

parameters are then obtained as τ ≡ τe/τph = 13.33, ε ≡ εe × τph = 0.021, and |Δ| ≡ |Δe| × τph ≤ 0.047.
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Figure 2. compound laser mode (CLM) frequencies ωτ and phase difference σ for the case P1 = P2.
They are determined from the parametric solution Equations (23) and (24). The fixed parameters are
θ0 = π/4, τ = 13.33, ε = 0.021, and α = 1. The extrema of ωτ are ωτ− = −0.32 and ωτ+ = 0.22. The
extrema of Δτ are the limit points Δτ = ±ΔτLP = ±0.58.The interval [−ΔτLP, ΔτLP] is the locking
range, i.e., the detuning range where the lasers lock their frequencies.

Figure 3 shows ωτ as a function of Δτ for different values of θ0. The different orbits are bounded
by limit points located at Δτ = ±ΔτLP. These points mark the extreme detuning values where the
two coupled lasers lock to each other. Figure 4 shows ΔτLP > 0 as a function of θ0 for the interval
0 ≤ θ0 ≤ π. ΔτLP is the largest at θ0 = 0 and π. It motivates examining the limit θ0 → 0. Figure 3 with
θ0 = 0.01 suggests that the nearly flat CLM orbit is bounded by two limit points appearing close to
ωτ = 0. Therefore, the locking condition Equation (25) evaluated at θ0 = 0 applies for this case.

Figure 3. CLM frequencies for the case P1 = P2 and for different values of θ0 (indicated in the figure).
The fixed parameters are τ = 13.33, ε = 0.021, and α = 1. As we decrease θ0 from π/2, the double
orbits progressively change into a single orbit.
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Figure 4. The limit point ΔτLP > 0 is shown as a function of θ0. The maximum appears at θ0 = 0 and
π and is given by ΔτLP = ετ

√
1 + α2.

3.2. Unequal Pumps

We are now ready to explore the case of unequal pumps. Using Equations (19) and (20),
we eliminate the trigonometric functions of σ and obtain the following equation for ω:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
sin2(θ0−ωτ)

⎡
⎣ ω

(√
P1
P2

+
√

P2
P1

)
+Δ

2

(√
P1
P2

−
√

P2
P1

)
⎤
⎦

2

+ 1
cos2(θ0−ωτ)

⎡
⎣ ω

(√
P1
P2

−
√

P2
P1

)
+Δ

2

(√
P1
P2

+
√

P2
P1

)
⎤
⎦

2

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= 4ε2(1 + α2). (26)

Equation (26) is equivalent to a quadratic equation for Δ given by:

Δ2

4

(
F2−C1 + F2

+C2

)
+ ΔωF+F−(C1 + C2) + ω2(F2

+C1 + F2−C2)− 4ε2(1 + α2) = 0 (27)

where:

F± ≡
√

P1

P2
±
√

P2

P1
, C1 ≡ 1

sin2(θ0 − ωτ)
, and C2 ≡ 1

cos2(θ0 − ωτ)
. (28)

We only need to explore the domain 0 ≤ θ0 ≤ π since C1 and C2 remain unchanged with −ωτ

replacing ωτ and θ1 = 2π − θ0 replacing θ0. Figure 5 illustrates the case of small values of P2/P1.

The CLM orbits are now close to the line ωτ = −Δτ/2 and are bounded by two critical values of
ωτ = ω±τ. They delimit the domain of real solutions of the quadratic Equation (27). We note that the
CLM orbit increases in size as P2/P1 → 0. An analysis of the discriminant of Equation (27) allows us to
determine ω±τ (see Section 2 of the Supplementary Materials File). They delimit the domain of real
solutions for Δ = Δ(ω). Note that they are not the values of ωτ corresponding to the limits points
±ΔτLP, but are very close if P2/P1 → 0. Figure 6 shows ω±τ as functions of P2/P1. In implicit form,
x ≡ P2/P1 = x(ωτ) satisfies the quadratic equation:

x2 + x
[
−2 cos(2(θ0 − ωτ))− 4ω2

ε2(1 + α2)

]
+ 1 = 0. (29)
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Figure 5. CLMs for small values of P2/P1. P1 = 1, and the value of P2 is indicated in the figure.
The fixed parameters are τ = 13.33, ε = 0.021, θ0 = π/4, and α = 1.

Figure 6. The extrema ωτ± as functions of x = P2/P1 are obtained by solving the quadratic
Equation (29). Their approximations as x → 0 are given by Equation (30) (dotted red lines). The fixed
parameters are τ = 13.33, ε = 0.021, θ0 = π/4, and α = 1. The horizontal dotted lines mark the values
of ωτ− = −0.36 and ωτ+ = 0.22 at x = 1 (P1 = P2) previously documented in Figure 2.

As seen in Figure 6, |ω±τ| → ∞ as x → 0. From Equation (29) and assuming ω2 = O(x−1),
we find the limit:

ω±τ → ± ετ

2

√
(1 + α2)

P1

P2
as x → 0. (30)

The corresponding values of Δτ are given by Δτ± = −2ω±. Therefore, the size of the CLM orbits
satisfies the inequality:

|Δ| ≤ ε

√
(1 + α2)

P1

P2
, (P2/P1 → 0) (31)

Moreover, solving the quadratic Equation (27) and then taking the limit P2/P1 → 0 lead to:

Δ → −2ω ± 4P2

P1

√
4

C1C2
(ω+ − ω) (ω − ω−). (32)
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In summary, we have determined the CLMs and their limits as P2/P1 → 0. Because of the square
roots in Equation (28), the ratio P2/P1 needs to be positive. Therefore, we cannot explore the case of
Laser 2 slightly below the threshold, and a different asymptotic analysis is needed where the ratio
P2/P1 is scaled with respect to ε.

We did not analyze the stability of the CLMs for arbitrary values of the pump parameters.
However, we know that, because of the absence of relaxation oscillations, Hopf bifurcation instabilities
are possible only for large delays [28,29]. This is not the case here. In the limit P2/P1 small, we
note from Equations (9) and (10) that |Φ1| freely increases while Φ2 satisfies a single Adler equation.
In Section 3 of the Supplementary Material File, we show that a Hopf bifurcation is not possible.
Branches of CLMs are either stable or unstable, and their changes of stability occur at the limit points
ΔτLP (saddle node bifurcation points).

4. The Limit of Small Ratios of the Two Pumps

In Section 4 of the Supplementary File, we examine the limit P2/P1 → 0+ and find that our
previous theory becomes invalid as soon as:

P2 = O(ε2/3). (33)

In other words, the two coupled phase Equations (9) and (10) failed to describe the correct
dynamics of the mutually injected lasers if P2 is comparable to ε2/3 or smaller. Section 4 of the
Supplementary Material File describes a new asymptotic analysis taking into account the scaling
Equation (33). We find R1 =

√
P1 and Φ1 = −Δ

2 t, in the first approximation, while R2 and Φ2 ≡
Φ2 +

Δ
2 t satisfy the equations for an optically injected laser:

dR2

dt
= (P2 − R2

2)R2 + ε
√

P1 cos(θ1 − Φ2), (34)

dΦ2

dt
= Δ + α(P2 − R2

2) +
ε
√

P1

R2
sin(θ1 − Φ2) (35)

where:
θ1 ≡ θ +

Δ
2

τ − ω1τ. (36)

The delay τ does not explicitly appear in the arguments of the dependent variables, but its effect
appears in the expression of θ1. Using Equations (1) and (2), the leading expressions of the optical
fields are:

E1opt =
√

P1 exp(iω1t) and E2opt = R2 exp(iω1t + Φ2). (37)

where ω1 is the optical frequency of Laser 1. The expression Equation (37) clearly indicates that Laser
1 and Laser 2 are operating as master and slave lasers, respectively. Equations (34) and (35) are the
equations of an optically injected Class A laser with parameter α [42,43].

The steady state solution for the intensity R2
2 satisfies:

(P2 − R2
2)

2R2
2 +

[
Δ + α(P2 − R2

2)
]2

R2
2 = ε2P1. (38)

From Equation (38), we extract the solution in implicit form:

Δ± = −α(P2 − R2
2)±

√
F (39)

where:

F ≡ ε2P1

R2
2

− (P2 − R2
2)

2 ≥ 0. (40)

The two branches of solution Δ = Δ±(R2
2) are shown in Figure 7.
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Figure 7. Steady state solution Equation (39). The broken straight line Δ = −α(P2 − R2
2) delimits the

branches Δ−(R2
2) and Δ+(R2

2). The parameters are ε = 0.021, α = 1, P1 = 1, and P2 = 0.1.

From Equations (34) and (35), we determine the linearized equations for the steady state
Equation (39) and obtain the following characteristic equation for the growth rate λ:

λ2 − Aλ + B = 0 (41)

where:

A ≡ 2(P2 − 2R2
2), (42)

B ≡ (P2 − 3R2
2)(P2 − R2

2)− 2αR2
2(Δ + α(P2 − R2

2))

+(Δ + α(P2 − R2
2))

2. (43)

The stability conditions are thus given by:

B > 0 and A < 0. (44)

We next analyze these two conditions. Using Equation (39), we computed dΔ±/dR2
2 and

found that:

B = ∓2R2
2

[
ε2P1

R2
2

− (P2 − R2
2)

2

]−1/2
dΔ±
dR2

2
. (45)

The expression Equation (45) relates B to the slope of the steady state branches of solutions,
namely dΔ±/dR2

2. B > 0 for Δ = Δ− because dΔ−/dR2
2 > 0 (see Figure 7). On the other hand, B > 0

for only parts of the branch Δ = Δ+ ,verifying the inequality dΔ+/dR2
2 < 0 (see Figure 7). The critical

points for B = 0 correspond to saddle node bifurcation points characterized by a zero eigenvalue and
a negative or positive real eigenvalue. The condition A < 0 requires that R2

2 > P2/2. The critical points
R2

2 = P2/2 are Hopf bifurcation points provided that B > 0.
Figure 8 shows typical bifurcation diagrams. Note from Equation (42) that the stability condition

A < 0 is always satisfied if P2 ≤ 0, meaning no Hopf bifurcation instabilities. Figure 9 illustrates this
case showing a complete branch of stable steady states.

92



Photonics 2019, 6, 125

Figure 8. Top: Stability diagram in terms of the pump strength P2 and detuning Δ. The domain of a
stable steady states is delimited by two Hopf bifurcation lines. They verify the scaling law |ΔH | → ∞
as P2 → 0. The region c exhibits the coexistence of three steady states. The regions denoted by U
correspond to an unstable steady state. Bottom: Bifurcation diagram for the intensity R2

2 as a function
of Δ. The parameters are ε = 0.021, α = 1, P1 = 1, and the value of P2 is indicated in the figure; H and
SNdenote Hopf bifurcation and saddle node bifurcation points, respectively.

Figure 9. Same values of the parameters as for Figure 8 except P2 = 0.

5. Discussion

In summary, we presented a rigorous asymptotic derivation of two coupled Adler delay
differential equations in the limit of weak coupling and low detunings. This analysis was necessary in
order to evaluate their mathematical validity as the ratio P2/P1 was progressively decreased. It also
suggested an alternative theory when the coupled Adler equations failed to provide the correct
dynamics. This was the case if P2/P1 was small like ε2/3 or smaller, where ε was the coupling strength.

Particular attention was devoted to describe analytically the locking width. The latter strongly
depended on both the coupling strength and delay induced phases and increased in size as P2/P1 → 0.
For very low values of P2/P1, a new asymptotic analysis led to the equations of an optically injected
Class A laser [44]. Laser 1 and Laser 2 were acting as master and slave lasers, respectively.
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The analysis developed in this paper also applies for IDLs, but requires then taking into account
the relaxation oscillations exhibited by the solitary lasers. If we define the relaxation oscillation
frequency as ω =

√
2P1/T where T ∼ 102–103 is the ratio of the carrier to photon lifetimes, we verify

that the derivation of the two delayed Adler phase equations described in this paper remains valid
provided ω2 >> ε. A general theory is more complicated than for QCLs because we need to take into
account different scalings between three small parameters, namely ε, P2/P1, and ω. A preliminary
analysis of the limit P2/P1 → 0 indicated that the coupled laser equations reduced to the rate equations
for an optically injected Class B laser [44] provided that ω and P2/P1 verified specific scalings with
respect to ε. In future work, we plan to investigate this case in more detail.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6732/6/4/125/s1.

Author Contributions: The two authors equally contributed to the investigation of the laser problem and its
mathematical analysis.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yao, Y.; Hoffman, A.J.; Gmachl, C.F. Mid-infrared quantum cascade lasers. Nat. Photonics 2012, 6, 432–439.
[CrossRef]

2. Razeghi, M.; Lu, Q.; Bandyopadhyay, N.; Zhou, W.; Heydari, D.; Bai, Y.; Slivken, S. Quantum cascade lasers:
From tool to product. Opt. Express 2015, 23, 8462–8475. [CrossRef] [PubMed]

3. Isensee, K.; Kröger-Lui, N.; Petrich, W. Biomedical applications of mid-infrared quantum cascade
lasers—A review. Analyst 2018, 143, 5888–5911. [CrossRef] [PubMed]

4. Kosterev, A.; Wysocki, G.; Bakhirkin, Y.; So, S.; Lewicki, R.; Fraser, M.; Tittel, F.; Curl, R.F. Application of
quantum cascade lasers to trace gas analysis. Appl. Phys. B 2008, 90, 165–176. [CrossRef]

5. Rakic, A.D.; Taimre, T.; Bertling, K.; Lim, Y.L.; Dean, P.; Valavanis, A.; Indjin, D. Sensing and imaging using
laser feedback interferometry with quantum cascade lasers. Appl. Phys. Rev. 2019, 6, 021320. [CrossRef]

6. Herdt, A.; Mohr, T.; Lenstra, D.; Elsäßer, W. Injection dynamics of mutually delay-coupled non-identical
quantum cascade lasers. In Proceedings of the International Symposium on Physics and Applications of
Laser Dynamics 2017 (IS-PALD 2017), Paris, France, 15–17 November 2017.

7. Bogris, A.; Herdt, A.; Syvridis, D.; Elsäßer, W. Mid-Infrared Gas Sensor Based on Mutually Injection Locked
Quantum Cascade Lasers. IEEE J. Sel. Top. Quant. 2017, 23, 1500107. [CrossRef]

8. Herdt, A.; Weidmann, M.; Mohr, T.; Lenstra, D.; Elsäßer, W. Theory of delay-coupled nonidentical quantum
cascade lasers. In Proceedings of the Semiconductor Lasers and Laser Dynamics VIII. International Society
for Optics and Photonics, Strasburg, Francja, 22–26 April 2018; p. 106820H.

9. Krall, M.; Martl, M.; Bachmann, D.; Deutsch, C.; Andrews, A.M.; Schrenk, W.; Strasser, G.; Unterrainer, K.
Coupled cavity terahertz quantum cascade lasers with integrated emission monitoring. Opt. Express
2015, 23, 3581–3588. [CrossRef]

10. Han, H.; Shore, K.A. Analysis of high-frequency oscillations in mutually-coupled nano-lasers. Opt. Express
2018, 26, 10013–10022. [CrossRef]

11. Dubois, F.M.; Seifikar, M.; Perrott, A.H.; Peters, F.H. Modeling mutually coupled non-identical semiconductor
lasers on photonic integrated circuits. Appl. Opt. 2018, 57, E154–E162. [CrossRef]

12. Seifikar, M.; Amann, A.; Peters, F.H. Dynamics of two identical mutually delay-coupled semiconductor
lasers in photonic integrated circuits. Appl. Opt. 2018, 57, E37–E44. [CrossRef]

13. Kreinberg, S.; Porte, X.; Schicke, D.; Lingnau, B.; Schneider, C.N.; Höfling, S.H.; Kanter, I.; Lüdge, K.L.;
Reitzenstein, S. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at
ultra-low light levels. Nat. Commun. 2019, 10, 1539. [CrossRef] [PubMed]

14. Jungling, T.; Porte, X.; Oliver, N.; Soriano, M.C.; Fischer, I. A unifying analysis of chaos synchronization and
consistency in delay-coupled semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1501609.
[CrossRef]

94



Photonics 2019, 6, 125

15. Wünsche, H.-J.; Bauer, S.; Kreissl, J.; Ushakov, O.; Korneyev, N.; Henneberger, F.; Wille, E.; Erzgräber, H.;
Peil, M.; Elsäßer, W.; et al. Synchronization of delay-coupled oscillators: A study on semiconductor lasers.
Phys. Rev. Lett. 2005, 94, 163901. [CrossRef] [PubMed]

16. Wille, E.; Peil, M.; Fischer, I.; Elsäßer, W. Dynamical scenarios of mutually delay-coupled semiconductor
lasers in the short coupling regime. In Semiconductor Lasers and Laser Dynamics; International Society for
Optics and Photonics: Bellingham, WA, USA, 2004; pp. 41–50.

17. Erzgräber, H.; Lenstra, D.; Krauskopf, B.; Fischer, I. Dynamical properties of mutually delayed coupled
semiconductor lasers. In Semiconductor Lasers and Laser Dynamics; International Society for Optics and
Photonics: Bellingham, WA, USA, 2004; pp. 352–361.

18. Erzgräber, H.Y.; Krauskopf, B.; Lenstra, D. Mode structure of delay coupled semiconductor lasers: Influence
of the pump current. J. Opt. B 2005, 7, 361–371. [CrossRef]

19. Erzgräber, H.; Krauskopf, B.; Lenstra, D. Compound Laser Modes of Mutually Delay-Coupled Lasers.
SIAM J. Appl. Dyn. Syst. 2006, 5, 30–65. [CrossRef]

20. Erzgräber, H.; Wille, E.; Krauskopf, B.; Fischer, I. Amplitude-phase dynamics near the locking region of two
delay-coupled semiconductor lasers. Nonlinearity 2009, 22, 585–600. [CrossRef]

21. Soriano, M.C.; Garcia-Ojalvo, J.; Mirasso, C.R.; Fischer, I. Complex Photonics: Dynamics and applications of
delay-coupled semiconductor lasers. Rev. Mod. Phys. 2013, 85, 421–470. [CrossRef]

22. Yanchuk, S.; Schneider, K.R.; Recke, L. Dynamics of two mutually coupled semiconductor lasers:
Instantaneous coupling limit. Phys. Rev. E 2004, 69, 056221. [CrossRef]

23. Kominis, Y.; Choquette, K.D.; Bountis, A.; Kovanis, K. Exceptional Points in Two Dissimilar Coupled Diode
Lasers. Appl. Phys. Lett. 2018, 113, 081103. [CrossRef]

24. Gao, Z.; Thompson, B.J.; Dave, H.; Fryslie, S.T.M.; Choquette, K.D. Non-Hermiticity and Exceptional Points
in Coherently Coupled Vertical Cavity Laser Diode Arrays. Appl. Phys. Lett. 2019, 114, 0661103. [CrossRef]

25. Miri, M.A.; Alù, A. Exceptional points in optics and photonics. Science 2019, 363, eaar7709. [CrossRef]
[PubMed]

26. Chen, W.; Özdemir, S.K.; Zhao, G.; Wiersig, J.; Yang, L. Exceptional points enhance sensing in an optical
microcavity. Nature 2017, 548, 192–196. [CrossRef] [PubMed]

27. Gao, Z.; Fryslie, S.T.M.; Thompson, B.J.; Carney, P.S.; Choquette, K.D. Parity-time symmetry in coherently
coupled vertical cavity laser arrays. Optica 2017, 4, 323–329. [CrossRef]

28. Friart, G.; Van der Sande, G.; Verschaffelt, G.; Erneux, T. Analytical stability boundaries for quantum cascade
lasers subject to optical feedback. Phys. Rev. E 2016, 93, 052201 [CrossRef]

29. Jumpertz, L.; Schires, K.; Carras, M.; Sciamanna, M.; Grillot, F. Chaotic light at mid-infrared wavelength.
Light Sci. Appl. 2016, 5, e16088. [CrossRef]

30. Clerkin, E.; O’Brien, S.; Amann, A. Multistabilities and symmetry-broken one-color and two-color states in
closely coupled single-mode lasers. Phys. Rev. E 2014, 89, 032919. [CrossRef]

31. Lenstra, D. Self-consistent rate-equation theory of coupling in mutually injected semiconductor lasers.
In Physics and Simulation of Optoelectronic Devices XXV; International Society for Optics and Photonics:
Bellingham, WA, USA, 2017; p. 100980K.

32. Erneux, T.; Kovanis, V.; Gavrielides, A. Nonlinear dynamics of an injected quantum cascade laser. Phys. Rev. E
2013, 88, 032907. [CrossRef]

33. Gensty, T.; Elsäßer, W.; Mann, C. Intensity noise properties of quantum cascade lasers. Opt. Express 2005,
13, 2032–2039. [CrossRef]

34. Gensty, T.; Elsäßer, W. Semiclassical model for the relative intensity noise of intersubband quantum cascade
lasers. Opt. Commun. 2005, 6256, 171–183. [CrossRef]

35. Vicente, R.; Mulet, J.; Sciamanna, M.; Mirasso, C.R. Simple interpretation of the dynamics of mutually
coupled semiconductor lasers with detuning. Proc. SPIE 2004, 5349, 307–318.

36. Schuster, H.G.; Wagner, P. Mutual entrainment of two limit-cycles oscillators with time delayed coupling.
Prog. Theor. Phys. 1989, 81, 939–945. [CrossRef]

37. Niebur, E.; Schuster, H.G.; Kammen, D. Collective frequencies and metastability in networks of limit-cycle
oscillators with time delay. Phys. Rev. Lett. 1991, 67, 2753. [CrossRef] [PubMed]

38. Adams, M.J.; Li, N.; Cemlyn, B.B.; Susanto, H.; Henning, I.D. Effects of detuning, gain-guiding, and index
antiguiding on the dynamics of two laterally coupled semiconductor lasers. Phys. Rev. A 2017, 95, 053869.
[CrossRef]

95



Photonics 2019, 6, 125

39. Kominis, Y.; Kovanis, V.; Bountis, T. Controllable asymmetric phase-locked states of the fundamental active
photonic dimer. Phys. Rev. A 2017, 96, 043836 [CrossRef]

40. Kominis, Y.; Kovanis, V.; Bountis, T. Spectral signatures of exceptional points and bifurcations in the
fundamental active photonic dimer. Phys. Rev. A 2017, 96, 053837. [CrossRef]

41. Winful, H.G.; Wang, S.S. Stability of phase locking in coupled semiconductor laser arrays. Appl. Phys. Lett.
1988, 53, 1894–1896. [CrossRef]

42. Mayol, C.; Toral, R.; Mirasso, C.R.; Natiello, M.A. Class-A lasers with injected signal: Bifurcation set and
Lyapunov–potential function. Phys. Rev. A 2002, 66, 013808. [CrossRef]

43. Kelleher, B.; Hegarty, S.P.; Huyet, G. Optically injected lasers: The transition from class B to class A lasers.
Phys. Rev. E 2012, 86, 066206. [CrossRef]

44. Tredicce, J.R.; Arecchi, F.T.; Lippi, G.L.; Puccioni, G.P. Instabilities in lasers with an injected signal. J. Opt. Soc.
Am. B 1985, 2, 173–183. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

96



photonics
hv

Article

Stability Boundaries in Laterally-Coupled Pairs of
Semiconductor Lasers

Martin Vaughan 1, Hadi Susanto 2, Nianqiang Li 3, Ian Henning 1 and Mike Adams 1,*

1 School of Computer Engineering and Electronics Engineering, University of Essex, Wivenhoe Park,
Colchester CO4 3SQ, UK; mpvaug@essex.ac.uk (M.V.); idhenn@essex.ac.uk (I.H.)

2 Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
hsusanto@essex.ac.uk

3 School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China;
wan_103301@163.com

* Correspondence: adamm@essex.ac.uk

Received: 30 May 2019; Accepted: 20 June 2019; Published: 25 June 2019

Abstract: The dynamic behaviour of coupled pairs of semiconductor lasers is studied using
normal-mode theory, applied to one-dimensional (slab) and two-dimensional (circular cylindrical)
real index confined structures. It is shown that regions of stable behaviour depend not only on
pumping rate and laser separation, but also on the degree of guidance in the structures. Comparison
of results between normal-mode and coupled-mode theories for these structures leads to the tentative
conclusion that the accuracy of the latter is determined by the strength of self-overlap and cross-overlap
of the symmetric and antisymmetric normal modes in the two lasers.

Keywords: semiconductor lasers; coupled lasers; stability; normal modes; coupled modes

1. Introduction

Arrays of laterally-coupled edge-emitting lasers (EELs) and vertical-cavity surface-emitting
lasers (VCSELs) are used for many high-power or high-brightness applications [1,2]. Other potential
applications include high-frequency modulation [3,4], beam-steering [5] and parity-time symmetry
breaking [6]. The theoretical description of physical phenomena in laser arrays is usually based either
on coupled-mode theory or normal-mode analysis. The former has the advantages of simplicity and
physical insight, although it is not accurate for asymmetric structures [7], and can give erroneous
results for anti-guided structures, as discussed in [8,9]. However, for symmetric structures with weak
coupling between lasers, coupled-mode theory has been applied successfully to analyse the locking
behaviour and dynamics of arrays with two or more elements [3,5,10–22]. The normal-mode approach,
which can provide a more accurate description for a wider range of structures, has been used in
conjunction with a more sophisticated treatment of the electron-photon interaction to describe the
beam switching and ultrafast pulsations in VCSEL arrays [23–25].

Comparisons of the coupled-mode and normal-mode methods have been made in terms of
formalism [26] and of numerical results for bifurcations [17] for two-element arrays with real index
guiding. In this situation, the coupling rate η, which in coupled-mode theory is calculated from
the overlap integral of the lateral fields of the individual lasers [27], is related to the frequencies, νs,
νa, of the symmetric and antisymmetric normal modes by η = (νs − νa)/2. Expressions for η in the
case of purely real index guidance (i.e., ignoring any effects of gain or loss) have been derived for
one-dimensional step-index (slab) waveguides [27] and for circular optical fibres that are weakly
guiding (i.e., the difference between core and cladding refractive indices is much less than either
index) [28]. A simplified expression for the latter that is valid for multimode fibre couplers has
been given by Ogawa [29]. A more general expression for the coupling coefficient between circular

Photonics 2019, 6, 74; doi:10.3390/photonics6020074 www.mdpi.com/journal/photonics97
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cross-section VCSELs with real guidance is also available [30]. Comparison of the dynamics of a
coupled pair of lasers modelled by slab waveguides indicated generally good agreement between
coupled-mode and normal-mode treatments for edge-to-edge spacings greater than the waveguide
width [17]. The only experimental test (to the best of our knowledge) of coupled-mode limits for laser
pairs was performed by comparing predicted and measured far-field visibility of optically-pumped
VCSELs [31]; the results indicated that coupled-mode theory was inaccurate for a spacing between
the two pump spots of less than 13 μm when the modal radius of a solitary VCSEL was estimated as
3.5 ± 0.5 μm. In general, a clear definition of the ranges of parameters where coupled-mode theory is
sufficiently accurate has not been given as yet.

The present contribution is intended to contribute to the discussion of dynamics in laterally-coupled
pairs of EELs and VCSELs by presenting normal-mode theory and modelling for cases where the laser
waveguides are one-dimensional (slab) or two-dimensional (circular cylindrical) structures. In each
case, the guidance is purely real, so that no account is taken of guidance due to the effects of gain. We
give results for the boundaries between regions of stable and unstable behaviour of these coupled pairs
in the plane of normalised pump rate versus normalised spacing between the lasers. The normal-mode
results are compared with those from coupled-mode theory in each case, as well as comparing between
results for the slab and circular guides.

2. Model

The notation used for pairs of identical one-dimensional (slab) and two-dimensional (circular)
waveguides is shown in Figure 1a,b, respectively. In each case, the core (cladding) refractive index is
ncore (nclad) and the edge-to-edge separation is 2d. The slab half-width and cylinder radius are each a.
With this notation, the conventional definitions of the normalised frequency v and the normalised
decay constant of the fields in the cladding w for single solitary guides are:

v2 =
(2πa
λ

)2(
ncore

2 − nclad
2
)

and w2 =
(2πa
λ

)2(
ne f f

2 − nclad
2
)
, (1)

where λ is the free-space wavelength and neff is the effective index of the single solitary guide.

 
 

(a) (b) 

Figure 1. (a) Schematic of two coupled slab waveguides. (b) Schematic of two coupled circular
cylindrical waveguides.

In what follows, we confine attention to the lowest-order normal modes in each of the structures of
Figure 1, ignoring polarisation effects. Due to the symmetry of the waveguides, these modes have even
parity, for the lowest order mode, and odd parity for the next highest. We refer to these as ‘symmetric’
and ‘anti-symmetric’, respectively, and are further distinguished by the fact that the anti-symmetric
mode goes through zero at the origin, whilst the symmetric does not. With the z-axis as the propagation
direction, the total transverse electric field E(x,y,t) can then be expressed as:

E(x, y, t) =
∑

k

Ek(t)Φk(x, y) exp(−iνkt), (2)
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where the suffix k denotes the symmetric (s) and antisymmetric (a) modes, νk is the frequency of mode
k, Ek, Φk are the time-dependent and spatial-dependent field components, respectively, and t is time.
For the one-dimensional slab waveguide of Figure 1a, the confinement is in the x direction, so that the
dependence on y can be neglected.

In order to work with rate equations that are autonomous, we introduce the new field variable:

Ẽk = Ek exp(−iνkt). (3)

The rate equation for Ẽk is then:

dẼk
dt

=
[
i
νk − νk′

2
− κ

]
Ẽk +

c
2ng

(1− iα)
∑

k′
Ẽk′

(
g1Γ1kk′ + g2Γ2kk′

)
, (4)

where κ is the cavity decay rate (=1/(2τp) where τp is the photon lifetime), c is the speed of light, ng is
the group index of the cavity, α is the linewidth enhancement factor, g1, g2 are the mean gains per unit
length in guides 1 and 2, and Γ1kk’, Γ2kk’ are overlap factors in guides 1 and 2, defined as:

Γ jkk′ =

∫
guide: j

Φk(x, y)Φk′(x, y)dxdy, (5)

where j = (1,2) labels the guide and the k,k’ label the modes (s,a). The spatial components of the field
are normalised as: ∫ ∞

−∞

∫ ∞

−∞

∣∣∣Φk(x, y)
∣∣∣2dxdy = 1. (6)

The rate equation for carrier concentration Nj in guide j is:

dNj

dt
= Pj − γNj − c

ng

∑
k,k′

Ẽ∗kẼk′gjΓ jkk′ , j = 1, 2, k = s, a, k′ = s, a, , (7)

where Pj is the pumping rate in the jth guide and γ is the carrier recombination rate. The conventional
linear relationship between gain, gj, and carrier concentration is assumed:

gj = adi f f
(
Nj −N0

)
, (8)

where adiff is the differential gain and N0 is the transparency concentration.

3. Results

For numerical calculations, we use a wavelength of 1.3 μm with core radius (half-width) 4 μm
and refractive indices ncore ≈ nclad = 3.4. Three values of the difference (ncore − nclad) are chosen as
0.000971, 0.002 and 0.0055. From Equation (1), these correspond to normalised frequency v = 1.571,
2.255 and 3.740, respectively. These values have been chosen to explore different regions of operation
of the coupled guides in terms of the transverse modes supported by each solitary guide: the cut-offs
for the first and second higher-order modes of the slab are v = π/2 and π, and those for the circular
cylinder are 2.405 and 3.832, respectively. Hence, these values include operating regions, where 1, 2 or
3 transverse modes of the slab and 1 or 2 modes of the circular cylinder are present. The values of the
other parameters appearing in the rate equations are κ = 327 ns−1, α = 2, γ = 1 ns−1, adiff = 1 × 10−15 cm2

and N0 = 1 × 1018 cm−3.
First, we compare the coupling coefficient η for coupled circular cylindrical guides with the three

values of v. We used industry standard software to numerically compute the normal modes and their
complex two-dimensional field distributions. The results were benchmarked against published data
wherever possible to confirm computational accuracy. For the case of symmetric one-dimensional slab
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waveguides, analytic solutions were used as the benchmark. Figure 2 shows the variation of ηwith
the ratio d/a of edge-to-edge spacing to diameter for these three cases. The discrete points (indicated
by circles, triangles and diamonds) are calculated from the difference of lowest-order normal-mode
frequencies, η = (νs − νa)/2. The dashed lines are fitted to these results using the approximation due to
Ogawa [29] of the form:

η ∝ 1
d1/2

exp
(
−2w

d
a

)
, (9)

where w is given by Equation (1) for the solitary guide. Also shown in Figure 2 (by square symbols) are
the corresponding calculated results for a slab guide with v = 1.571. In this case, the dotted line is fitted
to these results using the analytical form for the coupling rate [27], which yields η ∝ exp(−2wd/a). In
all cases, the constant of proportionality is found by setting the functions equal to the normal-mode
result at d/a = 1. There is a very good level of agreement between the numerical results and the
analytic forms.

Figure 2. Variation of coupling rate with d/a for pairs of circular cylindrical guides with three values of
v and for a slab guide with v = 1.571. Symbols (circles, squares, triangles, diamonds) are calculated
from normal-mode theory; dashed and dotted lines are fitted from analytic results given in the text.

Next, we turn our attention to the behaviour of the overlap factors defined in Equation (5) and
evaluated for the lowest-order symmetric and antisymmetric normal modes. Figures 3–5 show plots of
these versus d/a for coupled circular cylindrical guides with v = 1.571, 2.255 and 3.740, respectively.
Each overlap factor is shown as a ratio to the conventional optical confinement factor ΓS for the
lowest-order mode (LP01) of the corresponding solitary single guide, given by [32]:

ΓS = 1−
(
1− w2

v2

)(
1− K0

2(w)

K1
2(w)

)
, (10)

where K0, K1 are modified Bessel functions. This ratio occurs when rate Equations (4) and (7) are
cast into normalised form for computational purposes. In these figures, the subscript denoting the
guide has been dropped and the values for subscripts k � k′ are given as |Γsa|, since this quantity
has a different sign in each guide. The symbols (circles, triangles, diamonds) in these figures refer to
numerically calculated points, whilst the broken lines are empirical fits used later in the numerical
solutions of the rate equations. It is noteworthy that there is significant structure in the variation of
these overlap factors for low values of d/a in the operating regions considered here, and that the region
of d/a where this structure occurs reduces with increasing v. Plots of the overlap factors for a specific
slab waveguide have been presented in [17], including the detuning between resonant frequencies
of the two lasers, and show somewhat less variation at corresponding d/a values for the case of zero
detuning. In the limit of large d/a, all the ratios of overlap to confinement factors shown in Figures 3–5
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tend to a value of 0.5. In this limit, it can be shown that rate Equations (4) and (7) reduce to the
corresponding equations for the coupled-mode approximation [21]; details of this reduction as well as
other aspects of the normal-mode treatment will be presented elsewhere.

Figure 3. Overlap factors versus d/a for coupled circular cylindrical guides with v = 1.571.

Figure 4. Overlap factors versus d/a for coupled circular cylindrical guides with v = 2.255.

 
Figure 5. Overlap factors versus d/a for coupled circular cylindrical guides with v = 3.740.

Using the results of Figures 2–5, together with similar results for slab guides, rate Equations
(4) and (7) can be solved numerically and the regions of stable and unstable behaviour determined.
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Figures 6–8 show the results of this in terms of Hopf bifurcations in the plane of P/Pth vs. d/a, where Pth
is the threshold value of P for a solitary laser.

Figure 6. Stability boundaries in the plane of P/Pth versus d/a for coupled circular cylindrical guides
with v = 1.571. Curves labelled ‘inf’ are obtained using the values of overlap factors in the limit of
large d/a.

Figure 7. Stability boundaries in the plane of P/Pth versus d/a for coupled circular cylindrical guides
with v = 2.255.

Figure 8. Stability boundaries in the plane of P/Pth versus d/a for coupled circular cylindrical guides
with v = 3.740.

At a given point in the plane, the steady state solutions were found using a nonlinear solver,
started as close as possible to the expected solutions using approximate analytical expressions. These
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solutions yielded a Jacobian matrix, which was then diagonalised to find the eigenvalues. At a Hopf
bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary axis and the real part goes
from negative (stable solution) to positive (unstable solution). A bisection routine was then written to
trace the boundary between stable and unstable solutions using this criterion.

Figure 6 shows results for slab and circular cylindrical guides with v = 1.571, as well as the
corresponding results obtained using the values of overlap factors in the limit of large d/a (labelled ‘inf’).
Figures 7 and 8 show the corresponding results for v = 2.255 and 3.740, respectively. The general
form of the curves in each case resembles those reported in earlier literature on laterally-coupled
lasers [11,13,21], although in some cases the branches of the curves at the lower left of each Figure are
not reported. Stable solutions for the antiphase mode are found to the upper right of the upper branches
(away from the origin) and to the lower left of the lower branches of the curves (near the origin); in
other regions, unstable steady state solutions are found. The results labelled ‘inf’ in Figures 6–8 are
in perfect agreement with those from coupled-mode theory, using the approximation for the Hopf
bifurcation [21]:

P
Pth

=
2αηγ −

adi f f N0

gth

1 +
adi f f N0

gth

. (11)

Comparing the results in Figures 6–8, it is clear that with increasing values of v, the regions of
instability shrink with their limits moving to lower ranges of d/a. This trend follows that of the overlap
factors in Figures 3–5 in their deviation from the value of 0.5 at small d/a. Also, with increasing v,
the curves for the slab and circular cylindrical guides become closer, illustrating the power of this
normalisation. Attempts to achieve a closer match between these curves by choosing differing v values
(in terms of core-cladding index difference) for each, based on matching either the w value or the
coupling rate slope with d/a for the slab and circular guides, met with limited success.

Comparing the curves computed from the normal-mode equations with those from the
coupled-mode approximation (equivalent to the curves labelled ‘inf’) in Figures 6–8 indicates that in
most cases the latter are at lower d/a ranges than the former. For the slab waveguide at the largest value
of v (in Figure 8), the agreement between coupled-mode and normal-mode results is rather closer than
for the other values, and this may result from the limited range over which the normalised overlap
factors deviate from 0.5. It is worth bearing in mind also that higher-order modes (1 for the circle, 2
for the slab) are present in the guides of Figure 8, but we have considered only coupling between the
fundamental modes of each guide (as represented by the lowest-order symmetric and antisymmetric
normal modes of the coupled structure). The theory of coupling between higher-order modes in
coupled optical fibres, including the effects of spin-orbit interaction, has been presented in [33].

4. Discussion

The normal-mode theory for laterally-coupled pairs of identical semiconductor lasers has been
given in terms of rate equations for the lowest-order symmetric and antisymmetric modes in structures
with real index guidance. Both one-dimensional (slab) and two-dimensional (circular cylindrical)
guides have been considered. Attention has been drawn to the important role played by the overlap
factors between the modes in each guide and their variation with guide separation. In the limit of
large separation, these overlap factors, when normalised by the confinement factor of the fundamental
mode in a solitary laser guide, tend to the value 0.5. In this limit, the normal-mode rate equations
reduce to those for the coupled-mode approximation with the corresponding result that the coupling
rate is given by half the difference in frequencies of the symmetric and antisymmetric modes.

Results for the boundaries between regions of stability and instability in the plane of normalised
pump rate versus normalised guide spacing have been presented for slab and circular guides with three
different values of (weakly-guiding) core-cladding refractive index difference and all other parameter
values the same. These results indicate that the ranges of instability shrink with increasing index
difference and their boundaries move to lower values of guide spacing. The coupled-mode results
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become closer to those from the normal-mode theory with increasing index difference and increasing
guide spacing. This behaviour is attributed to the corresponding changes of the normalised overlap
factors with these parameters, in particular their deviation from the limiting value of 0.5. It is, therefore,
postulated that the behaviour of the normalised overlap factors determines the level of accuracy of the
coupled-mode theory, a property that has hitherto not been properly defined.

Future work in this subject will include extension of the normal-mode theory for coupled lasers to
include the influence of polarisation and the effects of higher order modes.
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Abstract: Optical injection locking has been demonstrated as an effective filter for optical
communications. These optical filters have advantages over conventional passive filters, as they can
be used on active material, allowing them to be monolithically integrated onto an optical circuit.
We present an experimental and theoretical study of the optical suppression in injection locked
Fabry–Pérot and slotted Fabry–Pérot lasers. We consider both single frequency and optical comb
injection. Our model is then used to demonstrate that improving the Q factor of devices increases
the suppression obtained when injecting optical combs. We show that increasing the Q factor while
fixing the device pump rate relative to threshold causes the locking range of these demultiplexers to
asymptotically approach a constant value.

Keywords: injection locking; optical filter; semiconductor laser; optical comb

1. Introduction

The demand for higher information transfer rates has led much research into evolving the
current infrastructure in place for data transmission. Previous wavelength division multiplexing
(WDM) networks were rigid in nature, with fixed channel spacings and bit rates throughout the
network. Flexible or elastic optical networks have been proposed as superior, more energy- and
bandwidth-efficient alternatives to standard WDM systems, which allow the optical bandwidth and
modulation formats used to be dynamically adjusted to meet the requirements of each node in the
network [1–4]. Transmission speeds of greater than 10 Tb/s with spectral efficiencies of 7.7 b/s/Hz
have been achieved under laboratory conditions [5], which shows promise that these networks will
be able to deliver future transmission speed requirements. These flexible networks have been made
realisable due to advances in transmitting and receiving optical super channels, using narrowly-spaced
coherent optical combs [5–7]. As well as reducing power consumption and the amount of individual
components required, optical combs offer advantages such as allowing the WDM channels to be more
densely packed and simplifying the digital signal processing [8].

The power consumption and cost of coherent comb sources can be further reduced through
photonic integration. Designs using monolithically-integrable injection locked gain switched lasers
have previously demonstrated coherent combs on InP, with optical spacings between 4 GHz and
10 GHz [9,10]. The use of these optical combs however requires each comb line to be demultiplexed, in
order to enable each frequency to be individually modulated with data. However, standard integrable
arrayed waveguide grating technologies suitable for demultiplexing combs with spacings below
10 GHz have yet to be demonstrated on active material and are impractical due to their large size and
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cost. As a result, new integrated demultiplexers that use optical injection locking to demultiplex were
developed [11–14]. These optical filters operate by injection locking each line in the optical comb to a
slave laser, as illustrated in Figure 1a. The injection locked slave laser provides amplification to the
targeted carrier in the comb, whereas the other comb lines passing through the slave laser can undergo
optical loss. In addition, using optical injection means the demultiplexer can track small frequency
drifts without any active control or device tuning, as long as they are within the locking tongue of the
slave laser.

Figure 1. (a) Illustration of a photonic integrated circuit for demultiplexing optical combs. The comb is
first split equally using a multimode interferometer, and then, individual slave lasers are frequency
locked to specific lines in the comb. (b) Illustrations of the fields inside a laser cavity, with reflecting
mirrors r1 and r2.

Numerical models for simulating the demultiplexing of these coherent combs have been
previously presented in [15–17]. In all cases, single-mode rate equation approaches were used to
model the suppression of the unlocked comb lines from these demultiplexers, which are not sufficient
to describe multimode devices such as Fabry–Pérot (FP) lasers. Optical suppression due to injection of
a single wavelength has previously been modelled in many other works, such as in [18], where they
used a multimode rate equation approach to model the effect of the bias currents and spontaneous
emission coupling factor on the suppression of the unlocked modes in FP lasers. The work in [19] used
a similar model to study how detuning and the injected mode relative to the gain centre affect the
suppression. Neither of these multimode approaches however investigated optical comb injection.

In this paper, we present a new model for simulating the optical spectra and suppression of comb
lines, based on the multimode FP model [20], and the steady state solutions of the rate equation models
presented in [21,22]. To our knowledge, the side mode suppression ratio (SMSR) of a slave laser under
optical injection from a comb has not previously been studied using a multimode model. Our model
is used to simulate the optical spectra of optically-injected FP lasers, slotted FP lasers [23,24], and a
1 × 2 demultiplexer, as in [25], and these simulations are shown to be in good agreement with our
experimental results. We then use the model to comment on how demultiplexer performance can be
improved, by investigating the effect of the Q factor of devices on the SMSR obtainable. We show that
improving the Q factor can increase the SMSR of injected optical combs beyond 30 dB and that when a
fixed pump rate relative to the threshold is used, the locking ranges of these high Q demultiplexers
remain suitable for their application.

2. Description of the Model

The laser model adopted in this work has previously been proven to accurately replicate the
characteristics of lasers with multimode and single-mode lasing [20,26,27]. In this section, we will first
summarize the model, then describe how the model was altered to include optical injection.
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Consider the electric fields within a laser cavity of length L as shown in Figure 1b, and let Ea1 and
Ea2 represent the electric fields propagating to the right at Boundaries 1 and 2; similarly for Eb1 and
Eb2. The fields at the interfaces can be related to one another by:

Ea1 = r1Eb1, Ea2 = Ea1e(Γ−iθ)L + δ+,

Eb1 = Eb2e(Γ−iθ)L + δ−, Eb2 = r2Ea2,

where Γ is the gain per unit distance of the laser cavity, θ is the propagation constant, and δ+ and
δ− are the contribution of the spontaneous emission to the fields as they travel to the left and right.
The intensity of the field at the left facet |Eb1|2 is then given by:

|Eb1|2 =
|δ−|2 + |δ+|2g2r2

2 + δ∗−δ+gr2e−iθL + δ−δ∗+gr2eiθL

(1 − r1r2g2)
2 + 4g2r1r2 sin2 (θL)

, (1)

where g = eΓL represents the single-pass gain seen by the fields in the cavity. We assume that the
time-averaged contributions of the terms δ∗−δ+ and δ−δ∗+ are zero, and we also assume the magnitude
of the spontaneous emission in both directions is equal, so that |δ−|2 = |δ+|2 = |δ|2. Defining φ = θL
and integrating over one period from φ = −π

2 to φ = π
2 give the power from one longitudinal mode

in the laser. Hence, the power in each mode of the laser I is given by:

I =
∫ φ= π

2

φ=− π
2

|δ|2 (1 + g2r2
2
)

(1 − r1r2g2)
2 + 4g2r1r2 sin2 (φ)

dφ. (2)

This integral can be evaluated as:

Im =
π|δm|2

(
1 + g2

mr2
2m
)

1 − r2
1mr2

2mg4
m

, (3)

where now the subscript m has been added to indicate that values for the gain, reflection, and
spontaneous emission coupling to each mode can differ across the longitudinal modes in the laser.
The reflections r1m and r2m for the different laser cavities considered in the following section were
calculated using a one-dimensional transmission matrix method [28]. The modal gain dependence is
modelled as:

gm = exp
[

nσm − αint
2

L
]

, (4)

where αint is the cavity loss, L is the length of the gain section of the laser, σm is the gain shape of the
laser material, and n is the number of free carriers. The gain line shape in the model was chosen to be
of the form:

σm(λ) = ae
−
(

λ−λc√
2μ

)2

, (5)

where here, λc gives the centre gain wavelength and a and μ are used as fitting parameters to
approximate the measured gain. Figure 2 shows the gain gm compared with the measured gain
of the InGaAs semiconductor devices tested, and although the asymmetry of the real device gain is not
represented, good qualitative agreement is observed around the peak modal gain.
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Figure 2. Comparison between measured device gain (left vertical axis) from a Fabry–Pérot (FP) laser
calculated using the Cassidy gain method [29] and the gain gm implemented in the model (right
vertical axis).

The spontaneous emission in the model is defined as in [20], by the term Bm:

π|δm|2 = Bm =
βspn
τp

(
g2

m − 1
ln g2

m

)
, (6)

where βsp is the spontaneous emission factor and τp is the photon lifetime. The number of free carriers
n is modelled by:

dn
dt

= N − n
τc

− 2n ∑
m

σm Im. (7)

Here, N is the rate of injected carriers, τc is the carrier lifetime, and 2n ∑m σm Im takes into account the
number of carriers recombining due to stimulated emission in the laser material. The steady state
value for the carriers is:

n =
N

1
τc
+ 2 ∑m σm Im

. (8)

As rate equation models predict the locking range and power in the slave laser under optical
injection more accurately [30], the optical injection in the model uses results derived from a rate
equation approach. To derive the required results, we start with the standard injection locking rate
equations as reported in [21,22]:

dE(t)
dt

=
γg − γc

2
E(t) + fdE1(t) cos [Δωt − φ(t)] , (9)

dφ(t)
dt

=
γg − γc

2
αH + fd

E1(t)
E(t)

sin [Δωt − φ(t)] . (10)

Here, γg and γc are the rates of cavity gain and cavity losses, fd is the longitudinal mode spacing, αH is
the linewidth enhancement factor, and Δω = ω1 − ω0 is the difference between the natural frequencies
of the master and slave laser. In the steady state, Equation (9) gives us a relation between the growth
and decay rates inside the laser:

γc − γg = 2 fd
E1(t)
E(t)

cos [Δωt − φ(t)] . (11)
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To relate the steady state solution for the amplitude in Equation (11) to the optical power in the FP
modes, we note that one can write the power E2 in terms of the saturation power of the gain medium
by [21]:

E2
0 =

(
γg0

γc
− 1

)
E2

sat = (gm − 1) E2
sat, (12)

where gm = γg0/γc is the amount by which the unsaturated gain in the laser exceeds the cavity losses.
By assuming that the laser growth rate inside the cavity saturates under injection in the form [21],

γg =
γg0

1 + E2/E2
sat

, (13)

we can eliminate the unknown saturation power level E2
sat using Equations (12) and (13) and find:

γc − γg =
E2(gm − 1)− E2

0(gm − 1)
E2(gm − 1) + E2

0
= 2 fd

E1

E
cos [Δωt − φ(t)] , (14)

where the last equality follows from Equation (11). A first-order approximation assuming that E1 	 E0

is given in [21] as:

E2(ω1) ≈ E2
0

[
1 +

2gm

(gm − 1)
fdE1

gmcE0
cos [φL(ω1)]

]
. (15)

Hence, using Equation (15), we can describe how the power in an injection locked mode in the FP
model varies with detuning, assuming that our injected optical field strength is small.

From Equation (10), we can also determine the range of frequencies for which the slave laser will
be frequency locked. Using Equation (11) in Equation (10), we can determine the locked phase φL of
the slave relative to the master:

Δω = − fd
E1(t)
E(t)

(sin [φL(ω1)] + αH cos [φL(ω1)]) , (16)

φL(ω1) = − arcsin
(

Δω
/{

fd
E1(t)
E(t)

√
1 + α2

H

})
− arctan αH . (17)

The range of frequencies for which the slave laser is locked to the master laser can then also be shown
to be [22,31]:

ω0 −
√

1 + α2
H

v
2L

EInj

E0
≤ ω1 ≤ ω0 +

v
2L

EInj

E0
. (18)

Hence, using the above, the optical power in each mode of the slave laser can be calculated by
solving Equations (3) and (8), including the change in optical power as described by Equation (15)
when the slave laser is within the locking conditions. In the following section, the optical mode powers
were convolved with a Voigt function to create the wideband spectra presented.

As a steady state solution is presumed in Equation (8), the dynamical regions of operation of
the slave laser, which arise at different injection strengths and detunings, are omitted by the model.
However, it will be shown in the following discussion that under these assumptions, this simple model
can still accurately model the behaviour of the SMSR of the slave lasers under injection and can even
be used to predict qualitatively the suppression obtainable through injection locking a slave laser to a
single injection frequency or to one of the lines of an injected optical comb.
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3. Comparison between the Experiment and Model

In the following section, experimental results are presented and compared side by side with
the corresponding simulated experiments. The experimental setup used to perform the injection
locking experiments is shown in Figure 3. The device under test (DUT) was mounted on a
temperature-controlled brass chuck. A tunable laser source (TLS) was used as the master laser.
The devices were optically coupled by collecting the light from the uncoated facets using a lensed
fibre. To generate the optical combs used in some of the results presented, the components inside
the dashed section in Figure 3 were included in the setup. In these cases, an RF signal generator
was used to intensity modulate the master laser signal passing through a LiNbO3 Mach–Zehnder
modulator (MZM). An erbium-doped fibre amplifier (EDFA) was used to amplify and control the
optical power injected into the device. The output from the slave laser was measured on an optical
spectrum analyser (OSA). Polarisation controllers (PC) were used before the MZM and the DUT to
maintain polarisation throughout the experiments, as both the comb generation and optical injection
aspects of the experiment depend strongly on phase [32]. As the coupling efficiency between the
lensed fibre and the devices tested was unknown, our calculated results are presented using the ratio
of the injection strength to the slave laser power (i.e, Iinj/Islave) and assume the coupling efficiency
was one in all cases.

Figure 3. Setup used to measure the intensity plots of the optical injection locking experiments. Dashed
lines indicate the additional setup used when injecting optical combs. TLS: tunable laser source, MZM:
Mach–Zehnder modulator, RF Gen: RF Generator, Iso: Isolator, PC: polarisation controller, EDFA:
erbium–doped fibre amplifier, OSA: optical spectrum analyser, DUT: device under test.

Figure 4 shows a comparison between the measured and the calculated results of a 700 μm-long FP
laser under optical injection, as the wavelength of the master laser is swept from 1568.95 nm–1569.05 nm
in each case. Figure 4a shows the measured spectrum from the FP device, biased at 45 mA (2.5-times
the threshold). The mirrors of the device were cleaved facets, each with an estimated reflection of 30%.
At 1568.938 nm, the slave laser locked to the master laser and remained frequency locked for 0.031 nm
(or 3.87 GHz). While locked, the side modes of the slave laser were suppressed, and the SMSR was
larger than 20 dB over a span of 3.6 GHz, with a maximum SMSR of 35.77 dB.

Figure 4. Experimental and calculated injected wavelength sweeps of a 700-μm FP device. In both
cases, the slave laser was biased at 2.5-times the threshold. (a) Experimental sweep, for an injected
power of −12.5 dBm and free running slave power of −4 dBm. (b) Calculated sweep, for an injection
ratio of 1.33 × 10−3.
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The simulated results of the same FP sweep are shown in Figure 4b. The optical spectra were
calculated by solving Equations (3) and (8), including the change in optical power as described by
Equation (15) when the slave laser was within the locking conditions. The parameters used in all the
calculations presented are contained in Table 1. The unlocked injected signal was amplified by the
single-pass gain of the laser at that wavelength. The output spectrum was then convolved with a
Voigt profile to simulate the measured spectra on the OSA, in order to compare the results directly.
The refractive index (≈ 3.5) of the slave laser was used as a fitting parameter to line up the modes
of the simulated spectra with the experiment. The simulated slave laser was biased at 2.5-times the
threshold, and the injected wavelength sweep matched that in the experimental trace. The optical
spectrum of the slave laser underwent sharp transitions at 1568.933 nm and 1568.978 nm, unlike in the
experimental case, as the model only calculated the locked steady state solutions. The complicated
dynamics at the locking boundaries cannot be replicated using the steady state assumption in the
model. The optical suppression seen as the slave laser reached a maximum of 35.1 dB and had an
SMSR of over 20 dB over the whole locking range of 3.74 GHz, which are in good agreement with
the experiment.

Table 1. Parametrised values used in the model, unless otherwise stated. The photon lifetime τp was
used to normalise the carrier lifetime τc, which is typically 2–3 orders of magnitude larger than τp.
We have chosen values for αH and β to match those in similar works [18,28]. Values for a, σ, and αint

were obtained through fitting our expression for gain to that which was measured, shown in Figure 2.

Parametrised Values Used in Calculations

αH 3.5 a 78.2
τp 1 σ 1.411
τc 100 αint 1.27
β 10−6

Other small discrepancies between the simulated and measured traces are present; in the
experimental trace, we see that the apparent thickness of each of the modes grows slightly on the edges
of the injection region. This is due to the beating of the slave laser with the injected light, causing
nearly degenerate four-wave mixing peaks to appear on all modes of the slave laser [33], at frequencies
that could not be resolved on the OSA used. This occurs at very small frequency detunings due to
the weak injected power used [34], and its effect is to broaden slightly what is measured on the OSA.
Our model cannot reproduce four-wave mixing due to the steady state assumption.

Thermal tuning in the model is shown and compared with the experiment in Figure 5.
The experimental trace presented in Figure 5a has been taken from [12]. The slave laser used in
this experiment was a two-section, single-mode tunable, slotted Fabry–Pérot (SFP) laser. The slots
in these lasers refer to etches made along the ridge of the laser, typically around 1 μm wide, which
provide optical feedback and increase mode selectivity [23,24]. The temperature of the two-section
laser was swept over 2 ◦C, with a constant injected wavelength at 1563.35. At 20.9 ◦C, the slave laser
frequency locks for approximately 0.24 ◦C of the temperature sweep. The SMSR from the experiment
was >20 dB over a frequency span of 1.29 GHz. The matching simulated result in Figure 5b shows
the slave device lock for 0.4 ◦C, with >18 dB SMSR over a frequency span of 0.95 GHz. Thermal
tuning was introduced into the model by varying the optical path length of the laser material to match
the 0.1 nm/◦C seen in the experiment, as well as allowing the centre of the material gain to red shift
with increasing temperature. The SMSR predicted by the model was slightly lower than experiment,
likely due to the limitations in using a one-dimensional transmission matrix to describe the slot in the
device [35]. The optical power in the mode that undergoes the frequency locking has a strong impact
on the amplification the injected signal sees when locked, and the mismatch in the power of that mode
could be the cause of the different SMSRs predicted.
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Figure 5. Experimental and calculated temperature sweeps of an optically-injected 600 μm-long
two-section slotted FP device, with a single etched slot in the centre of the device separating the
sections. In each case, the slave laser was under optical injection at a wavelength of 1563.36 nm.
(a) Experimental sweep from [12]. (b) Calculated sweep for an injection ratio of 6.13 × 10−4.

As a final example, results from a 1 × 2 demultiplexer as shown in Figure 6a were simulated.
A two-line optical comb, as shown in Figure 6b, was injected. Each line of the two-line optical comb
locked to the two side modes of the SFP laser, with the centre of the comb (8 dB lower) also interacting
with the slave laser’s side mode as it tuned.

Figure 6. (a) Comb demultiplexer, featuring a 1 × 2 multimode interferometer (MMI) and two SFP
lasers [25]. (b) Optical comb injected into the demultiplexer. This two line comb was generated by
biasing the MZM at the point where the carrier is suppressed, giving two strong lines.

In the experimental trace in Figure 7a, maximum SMSRs of 18.4 dB and 20.6 dB were achieved
as the two strongest comb lines locked to the side mode of the slave laser. The slave laser in the
demultiplexer remained locked for spans of 2 GHz and 2.5 GHz, respectively. The straight through
line (8 dB lower than the two comb lines) is amplified slightly as it passes over the side mode; however,
it does not stably lock to the side mode. In the simulated trace in Figure 7b, the results obtained are
quite similar. The SMSRs were obtained as the comb locked to the side mode, 22.1 dB and 22.9 dB, and
the slave laser was locked over 3.2 GHz in each case. The model did predict that the centre line of the
comb locked to the side mode; however, at 8 dB less peak power, the injected power was not sufficient
to suppress the main lasing mode. The locking ranges in the simulated case were larger than in the
experiment again, as bi-stable and dynamical locking regions are included in Equation (18), but the
suppression seen in the model closely resembled what was measured. As the SMSRs obtained when
demultiplexing these optical combs do not meet the 30-dB figure required for most telecommunications
applications, the following section investigates how the SMSRs of devices can be improved.
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Figure 7. (a) Experimental and (b) calculated injected comb sweeps of an optical demultiplexer, as
shown in Figure 6a, with an injected optical comb as shown in Figure 6b. Due to the optical coupling
of the lensed fibre, both outputs of the multiplexer could not be measured simultaneously.

4. The Effect of the Cavity Quality Factor on Optical Comb Demultiplexing

We now wish to use our model to identify the parameters of the slave laser, which can be optimised
in order to increase the slave laser’s demultiplexing ability. In the case of passive resonators, the
quality factor (or Q factor) is related to the frequency selectivity of the resonator, with higher Q cavities
acting as better frequency filters than those with low Q. As a result, we start by investigating how the
Q factor of the laser cavity affects the SMSR of the injected optical comb. In the following, we vary the
Q of an FP laser by varying the reflection of the facets and measuring the Q of the equivalent lossless
cavity, given by:

Q =
2nlω

c
−1

ln [R1R2]
. (19)

Figure 8a compares the SMSR achieved as the Q of the laser cavity is improved, when injecting a
three-line 12.5-GHz optical comb into an FP laser for high and low injection ratios. The slave laser was
biased at three-times the threshold for each Q value used, to avoid influencing the results by increasing
the pumping of the slave. As the power of the free running slave laser was not constant as the Q factor
of devices was increased and a fixed injection strength was used throughout, hence the injection ratios
are given for the lowest Q factor in each plot in Figure 8. Figure 8a shows that for the lower injection
ratio, the SMSR increases with the improved cavity quality factor up until Q = 31 × 103, with a similar
behaviour for the slightly higher ratio. As Q increased past this point, the other longitudinal modes
in the laser cavity became less suppressed due to the optical injection, and as a result, eventually,
the unlocked FP modes became stronger than the unlocked comb lines passing through the cavity.
As shown in the red dashed line in Figure 8a, stronger injected optical powers suppressed the unlocked
FP modes up to a higher Q value. For a qualitative comparison, the SMSR obtainable from a passive
FP cavity with equivalent Q is also plotted in Figure 8a, in a blue dotted line. Notably, the increase in
SMSR seen by the injection locked FP laser sees a similar growth rate as the passive case.
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Figure 8. Calculated results from optical comb injection simulations, of a 700-μm FP laser. (a) Plot
showing how the SMSR of the output spectrum varies as the Q of the laser cavity increases, for
two different injection ratios, assuming zero detuning and biased at 3.0-times the threshold. The
higher injection ratio was initialised at 16.9 × 10−3 and the corresponding lower injection ratio at
10.1 × 10−3. For qualitative comparison, the side mode suppression ratio (SMSR) from a passive cavity
with equivalent Q is also plotted. (b) Intensity plot of how SMSR varies versus detuning and the Q
factor, for an injection ratio of 6.7 × 10−3, at a current of 2.5-times the threshold. The white regions
indicate where the slave laser was unlocked. (c) Plot of the locking range of the FP laser versus Q, for
the same injection ratios and parameters as in (a).

The SMSR obtainable also varied with the detuning between the slave laser and the injected
optical comb. Figure 8b shows a colour map of how the SMSR varied as the detuning and Q factor
were varied. The importance of the detuning between the slave and master is highlighted, and as
the Q factor of the laser increased, the gradient in the SMSR over the detuning increased notably.
At Q = 37.5 × 103 (marked with the vertical dotted line), we see that the SMSR varied by a maximum
of 10 dB as the detuning was varied. As a result, even though the slave laser can account for some
frequency drift in either the injected comb or its lasing frequency, we have shown that drift can still
strongly impact the output SMSR.

An investigation into the behaviour of the locking range of the laser as its quality factor is
improved is presented in Figure 8c, for the two injection ratios used in Figure 8a. From the comparisons
of the model with the experiment in Section 3, we expect the locking range of real devices to be slightly
smaller than what is predicted here. However, the trend shown in Figure 8c is encouraging, as for
higher Q, the locking range tends to a constant value.

We can conclude that higher Q cavities increase the SMSR obtainable. We have found that
improving the Q of laser cavities increased the SMSR at a rate comparable to a passive demultiplexer.
At higher Q values, the unlocked modes in the FP laser required a higher injected power to be
suppressed, and as a result, the side modes became stronger than the unlocked comb lines. The locking
range of the slave laser varied slowly in high Q cavities; however, the effect of detuning the slave laser
relative to the injected comb increased in sensitivity as Q increased.

5. Conclusions

In the above, a numerical model for simulating the mode suppression in weakly-optically-injected
semiconductors was presented. The model was compared with experimental optical injection
wavelength sweeps, and although the simulations omitted dynamical regions of operation, good
agreement was observed for both single-mode and multimode devices. Experimental and theoretical
results for the SMSR obtainable when injecting an optical comb were also presented, and the effect of
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the Q factor of the slave laser on the demultiplexed comb output was investigated theoretically. It was
found that increasing the Q factor of the device does increase the output SMSR and that for a fixed
pump rate relative to the threshold, the locking range of the devices tends asymptotically to a fixed
value with increasing Q.
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Abstract: We numerically investigate the nonlinear dynamic properties of an exclusive excited-state
(ES) emission quantum dot (QD) laser under optical injection. The results show that, under suitable
injection parameters, the ES-QD laser can exhibit rich nonlinear dynamical behaviors, such as injection
locking (IL), period one (P1), period two (P2), multi-period (MP), and chaotic pulsation (CP). Through
mapping these dynamic states in the parameter space of the frequency detuning and the injection
coefficient, it can be found that the IL occupies a wide region and the dynamic evolution routes
appear in multiple forms. Via permutation entropy (PE) calculation to quantify the complexity of
the CP state, the parameter range for acquiring the chaos with high complexity can be determined.
Moreover, the influence of the linewidth enhancement factor (LEF) on the dynamical state of the
ES-QD laser is analyzed. With the increase of the LEF value, the chaotic area shrinks (expands) in
the negative (positive) frequency detuning region, and the IL region gradually shifts towards the
negative frequency detuning.

Keywords: quantum dot lasers; excited-state; nonlinear dynamics; optical injection

1. Introduction

Under external perturbations, semiconductor lasers (SLs) can exhibit various nonlinear dynamical
behaviors, such as the period one (P1), period two (P2), multi-period (MP), and chaos (CO) etc. [1–5],
which has attracted much attention due to their potential applications in photonic microwave
amplifiers [6], optical frequency converters [7], wireless optical fiber communication [8], all-optical
logic gates [9], laser Doppler velocimeters [10], secure optical communication, and random bit
generation [11–13].

Among different types of SLs, a self-organized SL with quantum dot (QD) structure has turned
out to be very promising [14–17] due to such unique properties as low relative intensity noise [18],
a small linewidth enhancement factor (LEF) [19,20], and high temperature stability [21]. For the QD
lasers, three-dimensional quantum confinement gives rise to discrete energy levels for electrons and
holes. Under a relatively low bias current, the recombination of electrons and holes in the ground-state
(GS) results in sole GS emission. As the bias current is increased, the population of the excited-state
(ES) increases. When the current exceeds the secondary threshold, the QD lasers simultaneously emit
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in both the GS and the ES. Moreover, when the bias current is high enough, the QD lasers may emit
solely in the ES [22]. In recent years, the nonlinear dynamics of the QD lasers subject to external
perturbations have received considerable attention [23–29]. For a QD laser emitting solely in the GS,
Erneux et al. have theoretically and experimentally investigated its dynamic response under optical
injection, and the results show that the laser has similar dynamic features to the Class A laser [23].
Goulding et al. have reported the excitability after introducing optical injection, and the excitable
pulses and the random conversion between the stable and unstable states were observed [24]. Carroll
et al. have experimentally studied the instabilities resulted by optical feedback and the irregular power
drop-outs and the periodic pulsations are presented [25]. For the case of a QD laser simultaneously
emitting in the GS and the ES, Viktorov et al. have reported the low-frequency inverse phase fluctuation
phenomenon of the ES and GS lasing intensities caused by optical feedback [26]. Olejniczak et al. have
theoretically demonstrated that the ES lasing intensity shows regular picosecond pulses and pulse
packages when the wavelength of injection light is close to the lasing wavelength of the GS mode [27].
For a QD laser emitting solely in the ES under high bias currents, a tunable all-optical gating has been
implemented after introducing optical injection [28], and the hysteresis phenomenon has also been
observed by scanning the injection power along different variation routes [29].

Recently, relevant investigations demonstrated that, through adopting some special techniques
during the manufacture, QD lasers can emit exclusively in the ES [30–32], named as ES-QD lasers in
this work. Different from ordinary QD lasers, such ES-QD lasers always emit in the ES while the GS is
suppressed totally [30]. Compared with ordinary QD lasers, ES-QD lasers possess higher differential
gain, a smaller relaxation oscillation (RO) damping rate, a and smaller K-factor [30,31], which are
helpful for enhancing the modulation response and the nonlinear dynamical properties [30–35].
The modulation speeds of ES-QD lasers can reach 25 Gbps (on-off keying (OOK)) and 35 Gbps
(pulse-amplitude modulation (PAM)) [30,32]. Meanwhile, ES-QD lasers possess broad modulation
bandwidths and low chirp-to-power ratios [33]. In addition, through introducing optical feedback,
diverse nonlinear dynamic states, such as the periodic and chaotic states, have been observed in
the ES-QD lasers [34,35]. Besides the modulation and optical feedback, optical injection is another
frequently used external perturbation technique. We have noted that related research on the nonlinear
dynamics of ES-QD lasers under optical injection is rarely reported. In this work, based on a theoretical
model of ES-QD lasers [33,36–38], after taking into account optical injection, the nonlinear dynamics
of ES-QD lasers under optical injection are investigated. The mapping of the dynamical states in the
parameter space of frequency detuning and the injection coefficient is presented, and the effect of the
linewidth enhancement factor (LEF) on the nonlinear dynamics of ES-QD lasers is also discussed.

2. Theoretical Model

A schematic diagram of the carrier dynamics for ES-QD lasers is shown in Figure 1. Here, charged
electrons and holes are regarded as the neutral excitons (electron-hole pairs), and the differences among
QDs are neglected, i.e., there is only one QD ensemble in the active region [38]. By electric pumping,
the carriers are directly pumped into the reservoir (RS) plane. Through Auger processes, some carriers
are captured from RS to ES during the time of τRS

ES , and then some carriers relax from ES to GS during
the time of τES

GS [37]. Additionally, due to the thermal excitations, some carriers in GS (ES) escape to
ES (RS) during the time of τGS

ES (τES
RS) [37]. It is assumed that the system is in quasi-equilibrium and

the carrier number in each energy level satisfies the Fermi–Dirac distribution. It is worth noting that
this model ignores the direct carrier capture path from RS to GS. The stimulated radiation can occur
in ES or GS for ordinary QD lasers, but only the ES lases in the ES-QD lasers [33]. After referring to
References [33,36–38] and taking optical injection into account, the rate equations for optical injection
ES-QD lasers can be described by the following:

dNRS
dt

=
ηI
e
+

NES

τES
RS

− NRS

τRS
ES

(1− ρES) − NRS

τ
spon
RS

, (1)
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where abbreviations RS, ES, and GS stand for the reservoir, the excited-state, and the ground-state,
respectively, and superscript spon represents the spontaneous emission. The value N denotes the
carrier number, S is the photon number, and φ is the electric field phase. The value I denotes the
bias current, η represents the current pumping efficiency, and e represents the elementary charge of
an electron. The value Γp denotes the optical confinement factor. The values τp and τspon represent the
photon lifetime and the spontaneous decay time, respectively. The value vg is the group velocity of
light, and τin is the round-trip time of light in a cavity of length L. The terms ρGS (=NGS/2NB) and ρES
(=NES/4NB) represent the occupancy probabilities of carriers in GS and ES, where NB denotes the total
QD number. The terms 1 − ρGS and 1 − ρES are the Pauli-blocking factors [38,39], which correspond to
the probabilities of empty QD state in GS and ES. The value S0 is the photon number of the free-running
ES-QD laser. The value K is the injection coefficient and Δν represents the frequency detuning between
the injection light and the free-running ES-QD laser. The gain coefficient, gES, of ES is expressed
as follows:

gES =
aES

1 + ξ S
VS

NB

VB
(2ρES − 1), (6)

where aES denotes the differential gain of ES, ξ represents the gain limiting factor, VB is the total volume
of QDs, and VS denotes the intra-cavity laser field volume.

Figure 1. Schematic diagram of the carrier dynamics for the ES-QD lasers. GS: ground-state; ES:
excited-state; RS: reservoir.

Numerical methods for the solution of ordinary differential equations are the main tools to
investigate the nonlinear dynamical systems [40,41]. In this work, a desktop PC with a six-core
processor (AMD Ryzen 5 1600X, Advanced Micro Devices Inc., Santa Clara, CA, USA) and 16GB
installed memory is used to perform the simulation, and we adopt the ode45 solver (Fourth-Fifth order
Runge–Kutta algorithm, where the fourth-order provides the candidate solutions and the fifth-order
controls the errors) in MATLAB software to solve the above differential equations, after taking into
account the accuracy and speed of the calculations. Since the step size will affect the simulation
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results [40], we use the adaptive step size in numerical simulations. The used parameters for the
ES-QD laser during the simulations are given in Table 1 [33,38].

Table 1. Simulation parameters of the QD laser.

Symbol Parameter Value

ERS RS recombination energy 0.97 eV
EES ES recombination energy 0.87 eV
EGS GS recombination energy 0.82 eV
τRS

ES Capture time from RS to ES 12.6 ps
τES

GS Relaxation time from ES to GS 5.8 ps
τES

RS Escape time from ES to RS 5.4 ns
τGS

ES Escape time from GS to ES 20.8 ps
τ

spon
RS RS spontaneous decay time 0.5 ns
τ

spon
ES ES spontaneous decay time 0.5 ns
τ

spon
GS GS spontaneous decay time 1.2 ns
τp The lifetime of photon 4.1 ps
L Cavity length 5 × 10−2 cm

aES Differential gain of ES 10 × 10−15 cm2

ξ Gain limiting factor 2 × 10−16 cm2

Γp Optical confinement factor 0.06
NB Total QD number 1 × 107

α Linewidth enhancement factor 1.3
vg Group velocity of light 8.57 × 107 m/s
VB Total volume of QDs 5 × 10−11 cm3

η Current pumping efficiency 0.15

3. Results and Discussion

Figure 2a shows the power-current (P-I) curve of the free-running ES-QD laser. Obviously,
the threshold current (Ith) of the laser is about 92.0 mA. As the current increased from 92.0 mA to
250.0 mA, the output power increased linearly. Figure 2b displays the variations of the carrier number
in ES and GS with the current. From this diagram, it can be seen that the carrier numbers in ES and
GS are almost constant for the laser biased above the threshold, and the former is larger since the
degeneracy of ES is twice that of GS [33]. Furthermore, by using small signal analysis, the relaxation
oscillation (RO) frequencies of the ES-QD laser at different bias currents can be obtained, as shown in
Figure 2c. With the increase of the current, the RO frequency increases nonlinearly. In the following
discussion, the current of the laser is fixed at I = 184.0 mA (= 2Ith) and the corresponding RO frequency
is about 7.60 GHz.

 

×

NES

NGS

Figure 2. Output power (a), carrier number (b), and relaxation oscillation (RO) frequency (c) of the
ES-QD laser as a function of the bias current.

Our simulations demonstrate that after introducing an optical injection, the ES-QD laser can exhibit
different dynamical states. Figure 3 shows the time series, power spectra, and phase portraits of the
ES-QD laser, under optical injection with frequency detuning Δν = −14.00 GHz and different injection
coefficient K. For K = 0.30 (Figure 3a1–a3), the time series behaves as a periodic oscillation whose
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fundamental frequency is about 14.26 GHz, which can be captured from the power spectrum, and the
trajectories of phase portrait show a clear limit cycle feature. As a result, it can be determined that
the ES-QD laser operates at the period one (P1) oscillation. For K = 0.33 (Figure 3b1–b3), the periodic
waveform with two peak intensities can be clearly observed in the time series, the sub-harmonic
frequency (about 7.13 GHz) appears in the power spectrum, and the corresponding phase portrait
possesses two loops that are intertwined together. Under this case, the ES-QD laser exhibits the period
two (P2) oscillation. For K = 0.49 (Figure 3c1–c3), multiple peaks with different intensities emerge in
the time series, multiple new frequency components appear upon the power spectrum, and the phase
portrait shows the overlap alternation of multiple loops. Therefore, the dynamics of the ES-QD laser
can be judged as the multi-period (MP) state. For K = 0.64 (Figure 3d1–d3), the peak intensity of the
time series behaves as an irregular fluctuation, the associated power spectrum broadens, and the phase
portrait exhibits a strange attractor. Based on these features, the dynamic state of the ES-QD laser
can be determined to be the chaotic pulsation (CP) state. When K is increased to 0.90 (Figure 3e1–e3),
the time series shows a stable output, no obvious peak can be observed in the power spectrum, and the
corresponding phase portrait shows a stable point. Further calculation shows that, under this condition,
the lasing frequency of the ES-QD laser is just the frequency of the injection light. As a result, it can be
judged that the ES-QD laser operates at the injection locking (IL) state.

 

×

Figure 3. Time series (first column), power spectra (second column), and phase portraits (third column)
of the ES-QD laser for Δν = −14.00 GHz and different K, where K = 0.30 (a1–a3), K = 0.33 (b1–b3),
K = 0.49 (c1–c3), K = 0.64 (d1–d3), and K = 0.90 (e1–e3).

Figure 4 shows a bifurcation diagram for observing the dynamical evolution of the ES-QD laser
with the injection coefficient K at Δν = −14.00 GHz. As shown in this diagram, when the injection
coefficient K increases from 0 to 0.32, the output waveform has two extreme values and the ES-QD laser
can be judged to operate at the period one (P1) oscillation. When the injection coefficient K increases
from 0.32 to 0.47, the output waveform has four extreme values and the laser can be determined to be

123



Photonics 2019, 6, 58

the period two (P2) oscillation. Further increasing the injection coefficient K from 0.47 to 1, the ES-QD
laser presents the multi-period (MP), the chaotic pulsation (CP), and the injection locking (IL).

Figure 4. Bifurcation diagrams of the ES-QD laser for Δν = −14.00 GHz.

The above results are obtained under different K for a fixed Δν = −14.00 GHz. Next, in order to
understand the nonlinear dynamical evolution of the ES-QD laser more comprehensively, a mapping
of the dynamic states in the parameter space of K and Δν is presented in Figure 5a, where different
colors represent different dynamical states. As shown in this diagram, some dynamic states including
injection locking (IL), period one (P1), period two (P2), multi-period (MP), and chaotic pulsation (CP)
can be observed for the ES-QD laser, under different injection parameters. It is worth noting that
a large area of IL appears in the map due to optical injection. In the positive frequency detuning
region, around Δν = 4.00 GHz, the P1-P2-MP-IL dynamic evolution is exhibited with the increase of the
injection coefficient, but the CP does not emerge. In the negative detuning region, around Δν = −4.00
GHz and Δν = −14.00 GHz, the typical dynamic evolutions of P1-P2-IL and P1-P2-MP-CP-MP-IL are
presented with the increase of the injection coefficient, respectively. It can be seen that the ES-QD laser,
under optical injection, can output abundantly dynamical states and exhibit multiple forms of dynamic
evolution routes. In addition, we have noticed that the CP state mainly exists in the regions of 0.48 < K
< 0.68 and −15.00 GHz < Δν < −13.00 GHz. In order to further explore the characteristics of the CP
state, we have calculated the normalized permutation entropy (PE), hs, to quantify the complexity of
the CP signal, and the PE is defined as follows [42,43]. The time series {S(m), m = 1, 2, . . . , N} are firstly
reconstructed into a set of D-dimensional vectors after choosing an appropriate embedding dimension
D, and then we study all D! permutation π of order D. For each π, the relative frequency (# means
number) is determined as follows:

p(π) =
#
{
m|m ≤ N −D, (Sm+1, . . . , Sm+D) has type π

}
N −D + 1

. (7)

The PE is given by
h[p] = −

∑
p(π) log(p(π)). (8)

Then, the normalized PE is further defined as follows:

hs =
h[p]
hmax

=
−∑ p(π) log(p(π))

log(D!)
, (9)

where hs = 0 and hs = 1 represent a completely predictable process and a completely stochastic process
with uniform probability distribution, respectively. We use a 670 ns length of the time series and the
embedding dimension D = 6 to calculate the PE. Figure 5b displays the complexity of the CP in the
parameter space of K and Δν, where different colors represent different complexity values. From this
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diagram, it can be observed that the CP state with a high complexity of 0.95 < hs < 0.98 is mainly
located at the regions of 0.55< K < 0.67 and −14.50 GHz < Δν < −13.30 GHz.

 K

Δ
ν

α

K 

Δ
ν

hs

Figure 5. (a) Nonlinear dynamics distribution and (b) corresponding chaotic region complexity
distribution of the ES-QD laser in the parameter space of injection coefficient and frequency detuning.
IL: injection locking, P1: period one, P2: period two, MP: multi-period, CP: chaotic pulsation.

It is well known that the linewidth enhancement factor (LEF) is one of key parameters that affects
the spectral linewidth, the mode stability, as well as the nonlinear dynamics of SLs under external
perturbations [44–46]. The above results were obtained under a fixed LEF value of 1.3. In Reference [33],
it is pointed out that the differential gain of each energy level and the energy separation between
resonant and non-resonant states will have a profound impact on the LEF value. As a result, it is
necessary to investigate the effect of the LEF on the nonlinear dynamics of ES-QD lasers. Figure 6
shows the mappings of the nonlinear dynamic behaviors in the parameter space of Δν and K under
different α. For α = 0.5 (Figure 6a), in the region of Δν > 0, the injection locking (IL), period one (P1),
period two (P2), and multi-period (MP) can be observed, while in the region of Δν < 0, besides IL, P1,
P2, and MP, a chaotic pulsation (CP) region (brown) can be found nearby (Δν = −10.00 GHz, K = 0.45),
and is surrounded by the MP state. Additionally, as shown in this diagram, the stable IL region (dark
blue) almost symmetrically distributes in both sides of Δν = 0. For α = 1.0, 1.5 (Figure 6b,c), with the
increase of the LEF value, the area of the P2 region (light green) increases significantly, the IL region
slowly moves towards the range of Δν < 0, and the CP region shifts to nearby (Δν = −15.00 GHz,
K = 0.6). For α = 2.0, 2.5, and 3.0 (Figure 6d–f), as the LEF value increases, the IL region gradually
shifts to the negative detuning side and asymmetrically distributes in both sides of Δν = 0, but its area
is approximately unchanged. In addition, the area of the CP region gradually expands (shrinks) in
the range of Δν > 0 (Δν < 0), and finally predominantly distributes nearby (Δν = 6.00 GHz, K = 0.25).
Moreover, the area of the P2 region is approximately unchanged and the area of the MP region
(orange) gradually shrinks. It can be seen that the change of LEF value profoundly affects the dynamic
distribution of the ES-QD laser under optical injection.

In addition, it should be pointed out that the classical Fourth-Fifth order Runge–Kutta method
is used for numerical simulation in this work. Relevant research shows that different numerical
simulation methods will affect the discrete behavior of nonlinear systems and may obtain different
results [41]. As a result, we will concern and verify the validity of different numerical simulation
methods by combining experimental observations in our next research.
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Figure 6. Mappings of the nonlinear dynamics distribution of the ES-QD Laser in the parameter space
of injection strength and frequency detuning for different LEF, where (a) α = 0.5, (b) α = 1.0, (c) α = 1.5,
(d) α = 2.0, (e) α = 2.5, and (f) α = 3.0. IL: injection locking, P1: period one, P2: period two, MP:
multi-period, CP: chaotic pulsation.

4. Conclusions

In summary, the nonlinear dynamics of an exclusive ES emission QD laser under optical injection
have been investigated numerically. The results show that, under suitable optical injection parameters,
the ES-QD laser can exhibit a series of nonlinear dynamical behaviors such as injection locking (IL),
period one (P1), period two (P2), multi-period (MP) and chaotic pulsation (CP). Through mapping
these dynamic states in the parameter space of Δν and K, the typical dynamic evolution routes of
P1-P2-IL, P1-P2-MP-IL, and P1-P2-MP-CP-MP-IL are observed. The IL region has a large area and
the CP is mainly distributed in the regions of 0.48 < K < 0.68 and −15.00 GHz < Δν < −13.00 GHz.
Through the PE calculation to quantify the complexity of CP state, the CP with a high complexity 0.95
< hs < 0.98 is located at the regions of 0.55 < K < 0.67 and −14.50 GHz < Δν < −13.30 GHz. In addition,
the influence of the linewidth enhancement factor (LEF) on the dynamic behavior distributions of
the ES-QD laser is also discussed. With the increase of the LEF value, the CP region moves to the
positive frequency detuning range and distributes nearby (Δν = 6.00 GHz, K = 0.25), the area of the
MP gradually shrinks, and the IL region gradually shifts to the negative frequency detuning range
and its area is approximately unchanged. Compared with the dynamical characteristics of distributed
feedback (DFB) lasers under optical injection, the dynamical evolutionary trends are similar, but the
chaotic region of DFB lasers is larger and the IL region for DFB lasers will gradually disappear with
the increase of LEF [45]. These differences may be due to the three-dimensional restriction of carriers
in QD lasers. We believe that this work would be helpful for understanding the nonlinear dynamics of
ES-QD lasers under optical injection and then exploiting related applications.
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Abstract: We numerically studied the chaotic dynamics of a laser diode (LD) system with optical
injection, where a chaotic signal, which is generated by an LD with optical feedback, is applied to
the drive current of the master LD. To quantify the orbital instability of the slave LD, the Lyapunov
exponent was calculated as a function of the optical injection ratio between the master and slave
LDs and the optical feedback ratio of the applied signal. We found that the Lyapunov exponent
was increased and the orbital instability was enhanced by applying a chaotic signal when the
inherent system without the applied signal was in a “window”. Next, we investigated the orbital
instability of the slave LD in terms of statistical and dynamical quantities of the applied chaotic signal.
The maximal value of the Lyapunov exponent for a certain range of the injection ratio was calculated
and we showed that a chaotic pulsation is suitable for enhancing the orbital instability of the LD
system. We then investigated chaos synchronization between the LDs. It is concluded that the orbital
instability of an LD with optical injection can be enhanced by applying chaotic pulsation without
chaos synchronization.

Keywords: laser chaos; semiconductor laser; chaotic laser diode; optical injection

1. Introduction

Since the chaotic oscillation of a laser diode (LD) [1–7] has a high frequency and broad bandwidth,
its potential applications, such as physical random bit generation [8–11], reservoir computing [12–14],
decision-making [15], and chaotic communication [16–19], have been widely studied. In these
applications, more chaotic oscillation can contribute to increasing the performance, for example,
randomness in random bit generation, a high bit rate in security in chaotic communication. Various
methods of generating chaotic oscillation with a broad bandwidth and large chaotic property have been
studied, for example, using a master–slave LD system with frequency detuning [20,21], an external
feedback system with dual feedback [22], or an external feedback system with random feedback [23].

We previously proposed a method using a master–slave LD system with a random signal applied
to the drive current of the LDs [24]. In the optical injection system, which consists of master and
slave LDs, various dynamics of the slave LD appear. For a small optical injection ratio, the slave laser
oscillates stably, periodically or quasi-periodically. Then, the dynamics develop into a chaotic state with
increasing optical injection ratio, and periodic oscillation is observed between chaotic states, which is
called a “window”. In a window, the chaotic dynamics are concealed. We have shown numerically
that the chaotic dynamics are revealed by applying a pseudorandom signal to the drive current of
the master LD, and the chaotic property, that is, the orbital instability of the slave LD, is enhanced by
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increasing the standard deviation of the applied random signal. The orbital instability of a chaotic
system can be controlled by applying a statistical random signal to a deterministic chaotic system.

In this work, a deterministic chaotic signal is adopted as the applied signal. We numerically
investigate an optical injection system with unidirectional coupling from a master LD to a slave LD by
applying a signal, which is generated by the chaos source LD with external optical feedback, to the
drive current of the master LD. First, we compare the system with an applied chaotic signal and the
system with an applied random signal having the same mean and standard deviation as the chaotic
signal. It is shown that, in the window, the chaotic dynamics of the slave LD are revealed by the
applied chaotic signal as well as the applied pseudorandom signal. Moreover, the applied chaotic
signal more greatly enhances the orbital instability of the slave LD than the applied pseudorandom
signal. Next, to explore the factor causing the enhanced orbital instability of the slave LD, we estimate
the orbital instability of the slave LD in terms of statistical and dynamical quantities of the applied
chaotic signal. Then, we discuss the suitable conditions of the applied chaotic signal for enhancing the
orbital instability of the LD system, and the chaos synchronization between the applied signal and
LD system.

2. Chaotic Laser System and Lyapunov Exponent

We consider the optical injection system consisting of two laser diodes (LDs), that is, a master LD
(LD1) and a slave LD (LD2) in Figure 1a, which are driven by a DC source. The optical coupling from
LD2 to LD1 is restricted by an optical isolator (ISO) and the coupling ratio is controlled by a variable
attenuator (VA). An external signal is electronically applied to the drive current of LD1, which is
generated by an external applied signal source, and the amplification of the applied signal is controlled
by a variable electric attenuator and an amplifier. In the following sections, we consider three kinds of
applied signals, that is, a chaotic signal, a pseudorandom signal and a DC. The applied pseudorandom
signal, and applied DC are generated by a signal generator, and the chaotic signal is generated by
an external chaos source LD (LD0) with optical feedback whose ratio is controlled by VA (Figure 1b).
The chaotic signal is detected and converted into electric signal by a photo detector (PD). Since actual
electric circuits have a frequency response and a cutoff frequency, impacts of the frequency band of the
applied signal are needed to consider like Refs. [24,25]. In this work, we ignore the frequency response
of the electric circuit to focus on the impacts of chaotic signal. The dynamics of LD0, LD1 and LD2 are
described by the following rate equations [26,27]:

dA1(t)
dt

=
1
2

GNn1(t)A1(t), (1)

dφ1(t)
dt

=
1
2

αGNn1(t), (2)

dn1(t)
dt

= [1 + g · C(t)](p − 1)Jth − γn1(t)− [Γ + GNn1(t)]A2
1(t), (3)

dA2(t)
dt

=
1
2

GNn2(t)A2(t) + κinj A1(t − τinj) cos[ωτinj + φ2(t)− φ1(t − τinj)], (4)

dφ2(t)
dt

=
1
2

αGNn2(t)− κinj
A1(t − τinj)

A2(t)
sin[ωτinj + φ2(t)− φ1(t − τinj)], (5)

dn2(t)
dt

= (p − 1)Jth2 − γn2(t)− [Γ + GNn2(t)]A2
2(t), (6)
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dA0(t)
dt

=
1
2

GNn0(t)A0(t) + κfb A0(t − τfb) cos[ωτfb + φ0(t)− φ0(t − τfb)], (7)

dφ0(t)
dt

=
1
2

αGNn0(t)− κfb
A0(t − τfb)

A0(t)
sin[ωτfb + φ0(t)− φ0(t − τfb)], (8)

dn0(t)
dt

= (p − 1)Jth − γn0(t)− [Γ + GNn0(t)]A2
0(t), (9)

where A(t), φ(t), and n(t) are the amplitude, the phase of the laser field, and the carrier number
above the value for the solitary LD, respectively. The subscripts 1, 2, and 0 denote LD1, LD2, and LD0,
respectively. GN is the differential optical gain, α is the linewidth enhancement factor, γ is the carrier
decay rate, and Γ is the cavity decay rate. The angular frequency of the solitary LD is described as
ω = 2πc/λ, where c is the velocity of light and λ is the wavelength. The drive current of the system
without an applied signal is expressed as pJth.

Equations (1)–(3) describe the dynamics of LD1. The external signal is applied to ensure that
the drive current of LD1 is above the threshold [1 + g · C(t)](p − 1)Jth, where A0 is the amplitude of
LD0, g is the amplification coefficient, and C(t) = a · A0(t)2 represents the applied signal for LD1,
which is normalized by the parameter a. Equations (4)–(6) describe the dynamics of LD2, which has
the optical injection from LD1. The second terms on the right side of Equations (4) and (5) describe
the optical injection from LD1 to LD2. A1(t − τinj) and φ1(t − τinj) are the amplitude and phase of
the laser field injected into LD2 from LD1, respectively. Equations (7)–(9) describe the dynamics of
LD0, which has the optical feedback. The second terms on the right side of Equations (7) and (9)
describe the optical feedback for LD0. A0(t − τfb) and φ0(t − τfb) are the amplitude and phase of
the laser field fed back from the external cavity to LD0, respectively. τinj is the injection time from
LD1 to LD2, and τfb is the round-trip time of the external cavity for LD0. The injection and feedback
coefficients are expressed as κinj = (1 − r2

0)rinj/r0τin and κfb = (1 − r2
0)rfb/r0τin, respectively, where

rinj is the injection ratio of the output injected into LD2 to the output of LD1, rfb is the feedback ratio
of the output fed back from the external cavity to LD0, and τin is the round-trip time in the inner
cavity. In our simulation using the Runge–Kutta method, where the step size is 1ps, the following
values are assigned to the parameters, which are taken from Ref. [26]: GN = 2.142 × 104[s−1], α = 5.0,
λ = 635[nm], c = 3.0 × 108[m/s], γ = 0.909[ns−1], Γ = 0.357[ps−1], r0 = 0.556, τin = 8.0[ps−1],
Nsol = 1.708 × 108, τfb = 5.0[ns] and τinj = 5.0[ns]. The initial values A(0) and n(0) are the convergent
values of the solitary LD, and φ(0) = 0 is utilized. Then, the pseudorandom signal is generated by the
Mersenne Twister random number generator [28] and Box–Muller transform [29].

Figure 1. Schematic diagram of the optical injection LD system with an applied chaotic signal which
consists of (a) master-slave LD system and (b) applied signal source.
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In this study, the maximal Lyapunov exponent is estimated to quantify the orbital instability
of the chaotic LD. We describe how to estimate the maximal Lyapunov exponent by linear stability
analysis [30–32]. When we estimate the Lyapunov exponent of LD2, the small variations δA2(t), δφ2(t)
and δn2(t) of the dynamic variables of Equations (4)–(6) from the reference orbit, respectively written
as As2(t), (ωs2(t)− ω)t and ns2(t), are considered. Since LD2 is the optical injection system, δA2(t),
δφ2(t), and δn2(t) for LD2 satisfy

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dδA2(t)
dt

dδφ2(t)
dt

dδn2(t)
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Jinj

⎛
⎜⎜⎝

δA2(t)

δφ2(t)

δn2(t)

⎞
⎟⎟⎠ . (10)

Here, Jinj is the Jacobian matrix of order 3 × 3, and is given in the Appendix A. In this work, the time
delay terms, A1(t − τinj) and φ1(t − τinj), are dealt with as external parameters since these parameters
are not the dynamic variables of LD2 but those of LD1; in other words, the dynamics of LD2 is
approximated using only three variables of LD2. On the other hand, when we estimate the Lyapunov
exponent of LD0, since LD0 is the optical feedback system, the small variations δA0(t), δφ0(t), δn0(t),
A0(t − τfb) and φ0(t − τfb) of Equations (7)–(9) from the reference orbit, respectively written as As0(t),
(ωs0(t)− ω)t, ns0(t), As0(t − τfb) and (ωs0(t − τfb)− ω)(t − τfb), are considered. Then, δA0(t), δφ0(t),
δn0(t), δA0(t − τfb) and δφ0(t − τfb) satisfy

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

dδA0(t)
dt

dδφ0(t)
dt

dδn0(t)
dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= Jfb

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δA0(t)

δφ0(t)

δn0(t)

δA0(t − τfb)

δφ0(t − τfb)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where Jfb is the Jacobian matrix of order 3 × 5, and is given in the Appendix A. These equations
are calculated numerically using the Runge–Kutta method, where the step size is 1 ps, and the

norm Dj =

√
∑t

(
δ2

Ai(t) + δ2
φi(t) + δ2

ni(t)
)

(i = 0, 2 j = 1, 2, 3, · · · ) is calculated by the method in

Refs. [33,34]. The subscript j indicates the time section [(j − 1)τ, jτ) and the term in the square root is
the summation in the range of [(j − 1)τ, jτ), where τ indicates the injection time τinj for LD2 or the
feedback time τfb for LD0. Since the norm between the chaotic orbit and the reference orbit is gradually
large and the local approximation can not be used, we initialize and replace the small variation δAi(jτ),
δφi(jτ) and δni(jτ) with δAi(jτ)/Dj, δφi(jτ)/Dj and δni(jτ)/Dj, respectively, at intervals of τ. The rate
of increase in the norm is considered and the Lyapunov exponent is represented by

λLSA =
1

Nτ

N

∑
j=1

ln
Dj+1

Dj
. (12)

We use the discrete optical outputs Ai(t), φi(t) and ni(t) (i = 0, 1, 2), which are sampled
at intervals of 10 ps over 5 μs. Here, to show the robustness of λLSA against initial conditions,
we investigate λLSA plotted against length of time series for the calculation of λLSA . We consider the
LD used in the figure of Section 3.2, which has the parameters rinj = 0.06 and rfb = 0.10 as a typical
example, and show the mean of λLSA in Figure 2. The error bars represent the standard deviations.
The number of this population is a thousand and the initial value of A2(t) are given randomly in the
range of [0.9× A2(0), 1.1× A2(0)]. As the length increases, λLSA converges and the standard deviation
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sufficiently becomes small; for example, the standard deviation for 5 μs is 0.025. In this work, we adopt
5 μs as the length of time series, and the results shown in the following figures are not means but
values which are obtained by a single calculation. Then, in the following numerical simulations, some
λLSA diverge when A2 → 0 or A0 → 0 and are not shown in the following figures.

Figure 2. Mean of Lyapunov exponent plotted against length of time series for numerical simulation.
The error bars represent standard deviations.

3. Orbital Instability of Chaotic Laser Diode with Chaotic Applied Signal

3.1. Mean and Standard Deviation of Applied Signal

In this section, we investigate the orbital instability of LD2 by applying a chaotic signal to the
drive current of LD1. The chaotic signal is normalized to a value of [0, 1] using the parameter a in
Equation (3). The Lyapunov exponent λLSA is plotted against the optical injection ratio rinj in Figure 3.
In Figure 3a, the black circles and red squares indicate λLSA of LD2 without any applied signal and
with an applied chaotic signal for g = 5.0 and rfb = 0.05, respectively. The mean and standard
deviation of the applied chaotic signal are 0.113 and 0.080, respectively. The gray plots are the extrema
of the intensity of LD2 without any applied signal, which shows the bifurcation diagram. When LD2
has no applied signal, for small rinj, LD2 oscillates stably or periodically and the corresponding λLSA
is nonpositive. With increasing rinj, the intensity of LD2 has a large number of extrema and the
dynamics are chaotic, with positive λLSA. Then, a large window is observed between the chaotic
states around rinj ∼ 0.10 and small windows are observed for some other rinj, where LD2 oscillates
periodically and the corresponding λLSA is nonpositive. However, chaotic dynamics appear upon
applying a chaotic signal to the drive current of LD1, and λLSA > 0, as shown by the red squares in
Figure 3a. This phenomenon is similar to that observed when by applying a pseudorandom signal
in Ref. [24]. In addition, it seems that the red squares in Figure 3a shift slightly away from the black
circles in the negative direction of rinj.

Next, we consider the applications of a pseudorandom signal with a mean of 0.113 and standard
deviation of 0.080, which are the same values as those of the applied chaotic signal, and DC with
C(t) = 0.113. In Figure 3a, the blue diamonds and purple triangles indicate λLSA of LD2 with the
pseudorandom signal and with the applied DC, respectively. Since the mean of the drive current
increases by the applied signal for both plots, the chaotic dynamics of the injection system are enhanced
and the plots are shifted away from the black circles in the negative direction of rinj. When the applied
signal is a DC but not a pseudorandom signal, windows are observed.
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In Figure 4, we confirm that the distribution of λLSA is shifted away from the intrinsic distribution
in the negative direction of rinj by applying a signal to the drive current of LD1, which is a DC and
pseudorandom signal with a standard deviation of 0.10 in Figure 4a,b, respectively. The black circles,
red squares, blue diamonds, and purple triangles indicate g · C(t) = 0, 0.10, 0.50 and 1.00, respectively.
The gray plots show the bifurcation diagram for the intrinsic system without the applied signal.
With increasing applied signal, the shift of the plots increases. Thus, the orbital instability is sensitive
to the mean of the applied signal for the DC or pseudorandom signal.

However, the orbital instability is not always sensitive to the mean of the applied signal for
a chaotic signal. In Figure 3b, we show λLSA for the system with the chaotic applied signal of rfb = 0.20,
where the mean and standard deviation of the signal are 0.108 and 0.102, respectively. The black circles,
red squares, blue diamonds, and purple triangles indicate the injection system without any applied
signal, with the chaotic signal, with the pseudorandom signal with a mean of 0.108, and standard
deviation of 0.102, and with DC with a mean of 0.108, respectively. The plots for the system with
the applied pseudorandom signal and the applied DC are shifted away from the black circles in the
negative direction of rinj. Since the mean of the applied signal is larger than that in Figure 3a, the shift
of the plots is larger. On the other hand, when the chaotic signal is applied, the plots are shifted
away from the black circles in the positive direction of rinj. Therefore, it is considered that the factor
contributing to the enhanced orbital instability is not the mean or standard deviation but another factor.

Figure 3. Bifurcation diagram and Lyapunov exponent plotted against injection ratio when
(a) rfb = 0.05 and (b) rfb = 0.20. The black circles, red squares, blue diamonds, and purple triangles
indicate the system without the applied signal, with the applied chaotic signal, with the pseudorandom
signal, and with applied DC, respectively. The gray plots are the local maximal values of the intensity
of LD2 without the applied signal.
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Figure 4. Bifurcation diagram and Lyapunov exponent plotted against injection ratio with (a) applied
DC and (b) applied pseudorandom signal. The black circles, red squares, blue diamonds, and purple
triangles indicate g · C(t) = 0, 0.10, 0.50 and 1.00, respectively. The gray plots are the local maximal
values of the intensity of LD2 without the applied signal.

3.2. Optical Feedback Ratio and Optical Injection Ratio

Here, to consider the effect of the applied chaotic signal, we show the orbital instability of the
system with the applied chaotic signal as a function of the optical feedback ratio rfb of LD0 and the
optical injection ratio rinj from LD1 to LD2. Figure 5 shows λLSA plotted against rfb and rinj. According
to the previous discussion, the mean of the applied signal may contribute to the orbital instability of
LD2. Thus, all the applied signals in this subsection are normalized by the parameter a in Equation (3),
and the mean of the applied signal is fixed as g · C(t) = 0.5 and 5.0, shown in Figure 5a,b, respectively.
When the amplitude of the applied chaotic signal is small, rfb makes a small contribution to λLSA for
small rinj (Figure 5a). With increasing rinj, when rfb is large, λLSA increases gradually. For larger rfb,
λLSA has a peak around rinj ∼ 0.14. On the other hand, when the amplitude of the applied chaotic
signal is large, rfb makes a larger contribution to λLSA (Figure 5b) than that in Figure 5a. The window
around rinj ∼ 0.10, which is observed in the inherent system without the applied signal, is not observed,
the peak around rinj ∼ 0.05 is shifted in the positive direction of rinj and the peak around rinj ∼ 0.14
gradually becomes large.
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Figure 5c shows the maximal value of λLSA in the range of 0 < rinj ≤ 0.20 and the corresponding
optical injection ratio r′inj plotted against rfb for g · C(t) = 0.5. When rfb ≤ 0.04, λLSA has the maximal
value at r′inj ∼ 0.058. On the other hand, when rfb ≥ 0.04, λLSA depends on rfb, and 0.10 ≤ r′inj ≤ 0.15,
where the window is observed in the inherent system without the applied signal. Similarly, we shows
the maximal value of λLSA in the range of 0 < rinj ≤ 0.20 and the corresponding optical injection ratio
r′inj plotted against rfb for g · C(t) = 5.0. When rfb ≤ 0.03, λLSA has the maximal value at r′inj ∼ 0.037.
Then, the maximal value of λLSA depends on rfb. Since the maximal value of λLSA gradually increases
and saturates with increasing rfb, it is controlled by rfb of the applied chaotic signal. In the next section,
we discuss some quantities of the applied signal to study the conditions of the applied signal that
cause large orbital instability of LD2.

Figure 5. Lyapunov exponent of the system with the applied chaotic signal as a function of the feedback
ratio of LD0 and the injection ratio from LD1 to LD2 when (a) g · C(t) = 0.5 and (b) g · C(t) = 5.0,
and maximal value of Lyapunov exponent in the range of 0 < rinj ≤ 0.20 and corresponding optical
injection ratio r′inj as a function of rfb when (c) g · C(t) = 0.5 and (d) g · C(t) = 5.0.

4. Orbital Instability against Statistical and Dynamical Quantities of Applied Signal

First, we study the applied chaotic signal, which is generated by LD0 with optical feedback.
Figure 6 shows the extrema of the intensity of LD0 and the Lyapunov exponent λLSA plotted against
the optical feedback ratio rfb. Different symbols are used for different ranges of rfb, that is, purple
down-pointing triangles, blue up-pointing triangles, green diamonds, orange squares, and red circles
indicate λLSA for 0 < rfb ≤ 0.040, 0.040 < rfb ≤ 0.080, 0.080 < rfb ≤ 0.120, 0.120 < rfb ≤ 0.160 and
0.160 < rfb ≤ 0.200, respectively. In the range of 0 < rfb ≤ 0.040, the fluctuation of the intensity is
small and λLSA is small. With increasing rfb, λLSA inceases for 0.040 < rfb ≤ 0.120 and gradually
decreases for 0.120 < rfb.
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Figure 6. Bifurcation diagram and Lyapunov exponent of LD0. Purple down-pointing triangles, blue
up-pointing triangles, green diamonds, orange squares, and red circles indicate λLSA for 0 < rfb ≤ 0.040,
0.040 < rfb ≤ 0.080, 0.080 < rfb ≤ 0.120, 0.120 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200, respectively. The
gray plots are the local maximal values of the intensity of LD0.

Next, we study the orbital instability of LD2 with the applied chaotic signal for statistical and
dynamical quantities of the applied chaotic signal to show the characteristics of the applied chaotic
signal that can control the orbital instability of LD2. The maximal values of λLSA of LD2 in the
range of 0 < rinj ≤ 0.20 for certain rfb of LD0 are calculated and plotted against the standard
deviation, skewness, kurtosis, Lyapunov exponent, bandwidth, and mode of the histogram of LD0
in Figure 7. The symbols correspond to those in Figure 6. In the range where the orbital instability
of the applied signal is small (0 < rfb ≤ 0.040), the maximal value of λLSA does not vary with rfb
(purple down-pointing triangles in Figure 7). We then consider the range of 0.040 < rfb ≤ 0.200
where the orbital instability of the applied chaotic signal is sufficiently large. The correlation between
the maximal value of λLSA and the standard deviation of the applied signal is low in Figure 7a. On
the other hand, in Figure 7b–d, the maximal value of λLSA is nonlinear with the skewness, kurtosis,
and Lyapunov exponent of the applied signal in the range of 0.040 < rfb ≤ 0.200, respectively. The plots
for 0.040 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200 have different gradients: thus, it is difficult to identify
λLSA from the statistical quantities. However, in Figure 7e–f, the maximal value of λLSA is linear to
the bandwidth and mode of the histogram of the applied signal in the range of 0.040 < rfb ≤ 0.200.
Therefore, we can identify λLSA from these quantities. Since the large bandwidth and small mode of
the histogram of the applied signal contribute to the large Lyapunov exponent, the orbital instability
of LD2 can be enhanced by applying a chaotic pulsation having a broad bandwidth.
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Figure 7. Maximal value of Lyapunov exponent in the range of 0 < rinj ≤ 0.20 plotted against
(a) standard deviation, (b) skewness, (c) kurtosis, (d) Lyapunov exponent, (e) bandwidth, and (f) mode
of histogram of LD0.

Next, we discuss the shift of the maximal value of λLSA upon applying the chaotic signal in
Figure 5. We consider the optical injection ratio r′inj0, which is r′inj for the inherent system without
the applied signal, and introduce the difference Δr = r′inj − r′inj0. Figure 8 shows Δr plotted against
statistical and dynamical quantities of the applied chaotic signal, that is, the standard deviation,
skewness, kurtosis, Lyapunov exponent, bandwidth, and mode of the histogram of LD0 as in Figure 7.
In the range where the orbital instability of the applied signal is small (0 < rfb ≤ 0.040), Δr is small for
most plots. However, in the range of 0 < rfb ≤ 0.010, the orbital instability of LD2 is reduced since LD0
oscillates periodically or quasi-periodically. Since an additional optical injection is needed to obtain
similar orbital instability, Δr becomes large. In the range of 0.040 < rfb ≤ 0.160, the orbital instability
of LD2 is enhanced in the range of 0.09 � rinj � 0.13, where a window can be observed in the inherent
system, and the plots are concentrated around Δr ∼ 0.07.

The correlation between Δr and the standard deviation, skewness and kurtosis of the applied
signal is low in Figure 8a–c, respectively. In Figure 8e,f, Δr is nonlinear to the bandwidth and mode
of the histogram of the applied signal in the range of 0.040 < rfb ≤ 0.200, respectively. The plots for
0.040 < rfb ≤ 0.160 and 0.160 < rfb ≤ 0.200 have different gradients. On the other hand, Δr seems to
depend on the Lyapunov exponent of the applied signal in the range of 0.040 < rfb ≤ 0.200 (Figure 8d).
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Figure 8. Optical injection ratio where the Lyapunov exponent is maximum in the range of
0 < rinj ≤ 0.20 plotted against (a) standard deviation, (b) skewness, (c) kurtosis, (d) Lyapunov exponent,
(e) bandwidth, and (f) mode of histogram of LD0.

Finally, we discuss the chaos synchronization between LDs. For example, we assume the
application of the present system to chaotic secure communication that is a digital scheme by using
a difference of the orbital instability of chaotic LD [18]. The scheme is hardware-dependent, where the
key to communication is based on the parameter of the LD system. LD1 and LD2 act as the transmitter
and receiver LDs, respectively. Then, LD0 is the driver used to control the dynamics of LD1 and the
message is modulated by LD0 and applied to LD1. The orbital instability of LD2 is controlled by
LD0 through LD1 and corresponds to the digit. The proper receiver quantifies from only the optical
intensity of LD2 at a certain interval, for example, using the method in Ref. [32], and compares the
quantified orbital instability with the predetermined threshold to decide the digit. Since the dynamics
of LD2 are decided by the parameters of three LDs, it is difficult for eavesdroppers to decode the digit
with only the transmitting signal. However, if LD2 synchronizes with the other LDs, the eavesdropper
can estimate the digit from the transmitting signal. Thus, we investigate the chaos synchronization
between LD2 and the other LDs. In Figure 9, we calculate the correlation coefficient between the LDs
plotted against rfb and rinj to quantify the chaos synchronization. Figure 9a,b show the correlation
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coefficients between LD0 and LD2 and between LD1 and LD2, respectively. The correlation coefficient
is expressed as

ρi2 = max
Δt

〈
(Ii(t)− 〈Ii〉)(I2(t + Δt)− 〈I2〉)

〉
√〈

(Ii(t)− 〈Ii〉)2
〉〈
(I2(t + Δt)− 〈I2〉)2

〉 , (13)

where Ii and I2 indicate the optical outputs of LDi (i = 0, 1) and LD2, respectively, and 〈·〉 indicates the
ensemble average. The roundtrip time of the external cavity τfb and the trip time of the injection light
from LD1 to LD2 τinj, have the same value, and the correlation coefficient is calculated in the range
−10τfb ≤ Δt ≤ 10τfb. Figure 9c,d show the maximal value of ρ02 and ρ12 in the range of 0 < rinj ≤ 0.20
and the corresponding optical injection ratio r′′inj plotted against rfb. In Figure 9a,c, the correlation
coefficient ρ02 between LD0 and LD2 is small in the entire range and the maximum is 0.11, showing
that LD2 does not synchronize with LD0. On the other hand, as shown in Figure 9b,d, the correlation
coefficient ρ12 between LD1 and LD2 is larger than that in Figure 9a. For all rfb, the correlation
coefficient is small in the range of rinj ≤ 0.05. With increasing rinj, the correlation coefficient becomes
larger since the orbital instability of LD2 is enhanced (rinj ∼ 0.05). With further increase of rinj,
the correlation coefficient becomes small again in the range of rinj ≥ 0.10, where a window can be
observed in the inherent system. Since the maximal correlation coefficient between LD1 and LD2 is
0.40, chaos synchronization between LD1 and LD2 is not achieved. Therefore, it is concluded that the
orbital instability of LD2 can be controlled by varying the parameters of LD0, which generates the
applied chaotic signal, without chaos synchronization between the LDs.

Ρ

Figure 9. Correlation coefficient as a function of the feedback ratio of LD0 and the injection ratio from
LD1 to LD2: (a) between LD0 and LD2 and (b) between LD1 and LD2, and maximal value of correlation
coefficient in the range of 0 < rinj ≤ 0.20 and corresponding optical injection ratio r′′inj as a function of
rfb: (c) between LD0 and LD2 and (d) between LD1 and LD2.
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5. Conclusions

We numerically studied the orbital instability of a chaotic laser diode (LD) system with optical
injection, which consists of the master LD (LD1) and slave LD (LD2). The drive current of LD1 is
modulated by the chaotic applied signal, which is generated by LD0 with optical feedback. First,
we showed that chaotic behavior in the window is actualized by applying the chaotic signal as well as
a pseudorandom signal. The optical injection ratio required to oscillate LD2 chaotically is decreased by
applying the pseudorandom signal or DC but increased by applying the chaotic signal.

Next, we investigated the maximal value of the Lyapunov exponent of LD2 in the range of
0 < rinj ≤ 0.20 as a function of the optical feedback ratio of LD0 and the optical injection ratio from
LD1 to LD2. When the amplitude of the applied chaotic signal is sufficiently large and the inherent
system without the applied chaotic signal is in the window, the Lyapunov exponent of LD2 can be
controlled by varying the optical feedback ratio of LD0.

Then, we discussed the effect of statistical and dynamical quantities of the applied chaotic
signal on the orbital instability of LD2. The bandwidth and mode of the histogram of the applied
chaotic signal are linear to the maximal value of the Lyapunov exponent of LD2. It was shown that
the orbital instability of LD2 can be enhanced efficiently by applying a chaotic pulsation having
a broad bandwidth.

Finally, we investigate the chaos synchronization between LDs. The LDs do not synchronize with
each other. It was shown that the orbital instability of the chaotic LD can be controlled without chaos
synchronization. Since it is difficult to estimate the dynamics of LD0 from the optical intensity of LD1,
the characteristics is useful to the application of chaotic LD like a secure communication.
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Appendix A. Jacobian Matrix

The Jacobian matrix on the right side of Equation (10) is defined as

Jinj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ fA2

∂A2

∂ fA2

∂φ2

∂ fA2

∂n2

∂ fφ2

∂A2

∂ fφ2

∂φ2

∂ fφ2

∂n2

∂ fn2

∂A2

∂ fn2

∂φ2

∂ fn2

∂n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where fA2, fφ2, and fn2 indicate the function for the right side of Equations (4)–(5), respectively. Then,
the matrix used in our work described by

Jinj =

⎛
⎜⎜⎜⎜⎜⎝

1
2

GNn2(t) −κinj A1(t − τinj)Sinj(t)
1
2

GN A2(t)

κinj
A1(t − τinj)

A2
2(t)

Sinj(t) −κinj
A1(t − τinj)

A2(t)
Cinj(t)

1
2

αGN

−2[Γ + GNn2(t)]A2(t) 0 −γ − GN A2
2(t)

⎞
⎟⎟⎟⎟⎟⎠ . (A2)
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Here, Sinj(t) = sin[ωτinj + φ2(t)− φ1(t − τinj)] and Cinj(t) = cos[ωτinj + φ2(t)− φ1(t − τinj)]. Similarly,
since the matrix on the right side of Equation (11) is defined as

Jfb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂ fA0

∂A0

∂ fA0

∂φ0

∂ fA0

∂n0

∂ fA0

∂Afb

∂ fA0

∂φfb

∂ fφ0

∂A0

∂ fφ0

∂φ0

∂ fφ0

∂n0

∂ fφ0

∂Afb

∂ fφ0

∂φfb

∂ fn0

∂A0

∂ fn0

∂φ0

∂ fn0

∂n0

∂ fn0

∂Afb

∂ fn0

∂φfb

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

where fA0, fφ0 and fn0 indicate the function for the right side of Equations (7)–(9), respectively,
the matrix used in our work described by

Jfb =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

GNn0(t) −κfb A0(t − τfb)Sfb(t)
1
2

GN A0(t) κfbCfb(t) κfb A0(t − τfb)Sfb(t)

κfb
A0(t − τfb)

A2
0(t)

Sfb(t) −κfb
A0(t − τfb)

A0(t)
Cfb(t)

1
2

αGN − κfb

A0(t)
Sfb(t) κfb

A0(t − τfb)

A0(t)
Cfb(t)

−2[Γ + GNn0(t)]A0(t) 0 −γ − GN A2
0(t) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Here, Sfb(t) = sin[ωτfb + φ0(t)− φ0(t − τfb)] and Cfb(t) = cos[ωτfb + φ0(t)− φ0(t − τfb)].
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Abstract: The influence of intra-cavity propagation delay in message encoding and decoding using
chaotic semiconductor lasers is numerically investigated. A message is encoded at the transmitter
laser by a chaos shift keying scheme and is decoded at the receiver by comparing its output with
the transmitter laser. The requisite intra-cavity propagation delay in achieving synchronization of
optical chaos is estimated by cross-correlation analysis between the transmitter and receiver lasers’
output. The effect of intra-cavity propagation delay on the message recovery has been analyzed from
the bit error rate performance. It is found that despite the intra-cavity propagation delay magnitude
being less, it has an impact on the quality of message recovery. We also examine the dependency
of injection rate, frequency detuning, modulation depth and bit rate on intra-cavity propagation
delay and associated message recovery quality. We found that the communication performance
has been adequately improved after incorporating intra-cavity propagation delay correction in the
synchronization system.

Keywords: chaos synchronization; intra-cavity propagation delay; secure optical communication;
semiconductor lasers

1. Introduction

The development of high-speed, secure optical communication has been an important field of
research in recent times and has been gaining momentum due to both the requirement scenario and
the relevant technological advances [1–11]. The possibility of realizing secure optical communication
using chaotic laser systems has attracted much attention after the realization of chaos synchronization
in nonlinear systems [12]. Semiconductor diode lasers are best suited devices to produce broadband
chaotic output and, thus, enable optical encoding and decoding processes [13–32]. A typical secure
optical communication scheme involves two semiconductor lasers acting as transmitter laser (TL)
and receiver laser (RL), in which the transmitter’s output intensity is rendered chaotic through
optical feedback. Messages masked in the chaotic output of the transmitter can be decoded at the
receiver, by achieving synchronization between TL and RL optical outputs. In solid-state lasers,
the encoding and decoding binary bit-sequences had been demonstrated by Colet and Roy [33].
A square wave message embedded with erbium-doped fiber ring laser, where the chaotic signal
generated by optical feedback, was experimentally demonstrated in 1998 [1]. Message encoding and
decoding using a system of chaotic external-cavity semiconductor lasers have been demonstrated [34].
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Chaos communications using semiconductor lasers with optical feedback, optical injection locking,
and optoelectronic feedback were reported, and compared [19,35].

Chaos modulation (CMO) [1,36–38], chaos masking (CMA) [39–41], and chaos shift keying
(CSK) [42–45] synchronization schemes have been proposed for encoding and decoding of messages in
laser systems. In the CSK scheme, two separated states corresponding to bit sequences (“1” and “0”) of
a message are sent to a receiver laser and based on the synchronization between TL and RL, the message
is decoded at the receiver [42]. A real data, video signal transmission in chaos communication
using the system of semiconductor lasers was demonstrated by Annovazzi-Lodi et al. [46]. In 2005,
a field-based experiment of chaos-based optical communication by CSK scheme of encoding using
semiconductor lasers with the optical fiber networks has been demonstrated [4]. In spite of all existing
work, to implement secure optical communication in practical use needs extensive studies, for example,
improvement in synchronization while allowing parameter mismatch between transmitter and receiver
laser, robustness in communications and enhancement of the degree of security [47]. A good message
recovery is possible if the synchronization between transmitter and receiver laser is best. In a recent
study the synchronization quality is shown to be affected by intra-cavity propagation delay (τPD) in
chaotic semiconductor lasers [48,49].

In this article, we discuss our numerical investigations on the effect of intra-cavity propagation
delay on the message encoding and decoding using uni-directionally coupled semiconductor lasers.
Based on the CSK scheme, we encode 1.2 Gbit/s bit rate (BR) message with the chaotic output of
the transmitter laser and transmit to receiver laser. The message is decoded at the receiver laser and
studied the effect of intra-cavity propagation delay τPD on message recovery. The message recovery
quality has been evaluated and characterized by bit error rate (BER) analysis of the recovered message.
We have systematically investigated the influence of intra-cavity propagation delay in the message
recovery process, by considering various coupling rates, detunings, modulation depths, and bit rates
of the encoded message. The BER of the recovered message has been reduced after considering
intra-cavity propagation delay correction in the receiver laser system.

2. Theory and System Model

The system under investigation consists of an external cavity semiconductor laser serving as the
transmitter laser (TL), and another solitary semiconductor laser playing a role of receiver laser (RL).
The TL is rendered chaotic by the external cavity optical feedback, and the chaotic output of TL is
uni-directionally injected to RL. For our numerical analysis both TL and RL are modeled by suitably
adapting the Lang–Kobayashi (L–K) rate Equations [13]. L–K model comprises of the laser rate
Equations for slowly varying complex electric field E(t) and carrier density N(t) for both the lasers.
The rate Equations for TL and RL are;

ĖT(t) =
1 + iα

2

[
GT(t)− 1

τp

]
ET(t) + κET(t − τext)e−iωTτext +

√
2βT NT(t)ξT(t) (1)

ṄT(t) =
JT
e
− NT(t)

τn
− GT(t)|ET(t)|2 (2)

ĖR(t) =
1 + iα

2

[
GR(t)− 1

τp

]
ER(t) + ηET(t − τf )e

−i(ωTτf +Δωt) +
√

2βRNR(t)ξR(t) (3)

ṄR(t) =
JR
e
− NR(t)

τn
− GR(t)|ER(t)|2 (4)
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In these equations, the indices T and R refer to the transmitter and receiver lasers respectively. J is
the lasers’ injection current, e = 1.602 × 10−19 C is the electron charge. G(t) = g0(N(t)− Nth)/(1 +

ε|E(t)|2) is the optical gain, where carrier number at threshold Nth = 1.5 × 108, linear gain coefficient
g0 = 12 × 103, gain saturation coefficient ε = 5 × 10−7, linewidth enhancement factor α = 3.8, carrier
life time τn = 2 ns, photon life time τp = 2 ps. The lasers are operated at the wavelength λ = 830 nm.
The frequency detuning between the laser is Δω = ωT − ωR = 2πΔ f , and the external-cavity round
trip time is τext = 10 ns. The Gaussian noise sources ξ is with zero mean and unity variance [14].
Spontaneous emission rate β = 10−6 ns−1. κ is the transmitter laser’s feedback rate and η is the
injection rate between TL and RL. Throughout our investigations, the time of flight (τf = 0) between
TL and RL is kept zero. The time step is 0.2 ps in our simulations.

The message signal is modulated (encoding message) with bias current of transmitter laser by
CSK method [42]. In the first term of Equation (2), for encoding purpose the bias current of TL JT can
be modified to JT = Jm(1 + bM(t)), here b is modulation depth, M(t) is pseudo random sequence,
i.e., M(t) = 1/2(−1/2) for a “1” (“0”) bit and Jm is bias current of transmitter laser.

The synchronization quality and the associated time delay between the transmitter and receiver
laser are estimated by performing cross-correlation (CC) analysis between the outputs of transmitter
and receiver laser. The CC in terms of time-shift (Δt) is given by

C(Δt) =
〈[IT(t − Δt)− 〈IT〉][IR(t)− 〈IR〉]〉√〈[IT(t − Δt)− 〈IT〉]2〉〈[IR(t)− 〈IR〉]2〉

(5)

where the expectation denoted by 〈...〉 is calculated via time average and IT,R =|ET,R|2 is the
total intensity output of the laser. In CC analysis plot, the prominent peak value evaluates the
synchronization quality, and location of the peak corresponds to the time delay between TL and RL
output. For the ideal case, C would be 1, which relates to perfect synchronization condition.

3. Chaos Synchronization

In this section, we establish the chaos synchronization between the transmitter and receiver
laser and present the influence of intra-cavity propagation delay τPD in the chaos synchronization.
The transmitter and receiver laser rate equations, Equations (1)–(4), are numerically solved using the
Runge-Kutta algorithm. We consider the chaos shift keying (CSK) scheme for encoding of message
signal [37]. The transmitter laser’s pump magnitude is modulated with a message and transmitted
to the receiver laser. A digital message signal with 1.2 Gbit/s bit rate is encoded at the transmitter
laser with modulation depth b = 0.2. In the simulation, we keep the parameter values as, κ = 9 ns−1,
τext = 10 ns, Jm = 1.10Ith, JR = 1.08Ith, η = 15 ns−1, Δ f = 0, and τf = 0. Although a higher bias
currents of laser provides less distortion in the output intensities by the relaxation oscillation as well as
provide higher modulation bandwidth, the influence of intra-cavity propagation delay τPD is found to
be more significant in the chaos synchronization of semiconductor lasers when the lasers are operated
at low bias currents. Hence, we kept low bias currents for the TL and RL in our investigations.

The time evolution output of the transmitter (black trace) and receiver laser (red trace) are
obtained and shown in Figure 1. Here, the TL’s time evolution output (black trace) contains both chaotic
component arising due to the optical feedback and the message components due to the modulation
of bias current. The difference between the laser’s intensity is shown by the grey trace. The red trace
(receiver laser) and grey trace (TL-RL) in Figure 1 are shifted vertically for clarity. Figure 2a shows the
chaotic attractor of the transmitter laser in the phase space of the intensity and the carrier density. And,
Figure 2b corresponds to the chaotic attractor of the receiver laser. The attractors in the transmitter and
receiver lasers show the moderately different orbit since generalized synchronization and also due to
the encoded message signal at the transmitter laser.
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Figure 1. Time traces of the transmitter and receiver lasers: The black (red) traces correspond to TL
(RL) output (chaotic intensity including message signal) respectively for Jm = 1.10Ith, JR = 1.08Ith,
κ = 9 ns−1, η = 15 ns−1, Δ f = 0, τext = 10 ns, and τf = 0. The grey trace corresponds to the difference
between the intensities of the transmitter and receiver lasers.

Figure 2. Chaotic attractors in the phase space of the laser’s intensity output and the carrier density.
(a) Transmitter laser and (b) Receiver laser.

The synchronization quality and the time delay between the coupled lasers are estimated by
performing cross-correlation (CC) analysis between TL and RL. From the CC analysis, the prominent
peak value (Cm) evaluates the synchronization quality, and location of the peak in time corresponds to
the time delay between TL and RL output. A large value of Cm indicates that good synchronization
has been achieved. The obtained normalized correlation coefficients is illustrated in Figure 3. The inset
figure shows the expanded cross-correlation plot near zero and it can be seen clearly that, although the
time of flight (τf ) between transmitter and receiver laser is set to zero, the prominent correlation peak
is not occurring exactly at zero. This peak shift in time, named as intra-cavity propagation delay (τPD),
is eventually due to the propagation of transmitter laser’s output within the receiver’s cavity [48],
and it is found to be 32.8 ps in this case. The corresponding maximum correlation (Cm) value is found
to be 0.85. Essentially, this intra-cavity propagation delay time correction should be incorporated
in order to obtain a better synchronization between transmitter and receiver laser. Experimental
observation of this additional-time delay has been recently demonstrated in chaos synchronization of
coupled semiconductor lasers. It is shown that such additional time delay is not arbitrary in character
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but has a definite functional dependence on a parameter such as injection rate [50]. Despite the
intra-cavity propagation delay magnitude is in the order of pico-seconds, cannot be discounted as
marginal addition of knowledge and hence in this work we have systematically carried out its effect
on secure optical communication using diode lasers.
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Figure 3. Cross-correlation coefficient between transmitter and receiver laser for κ = 9 ns−1,
η = 15 ns−1, Δ f = 0, τext = 10 ns, and τf = 0. The inset figure shows the expanded version of
CC plot near zero in time scale. The intra-cavity propagation delay τPD is found to be 32.8 ps.

To further characterize the intra-cavity propagation delay and synchronization properties, we have
analyzed the robustness of synchronization and the associated τPD against variations of the coupling
parameters. The maximum correlation coefficient Cm and τPD are computed in the plane of the
injection parameters (frequency detuning (Δ f ) versus injection rate (η)). Thus we obtained two maps
for maximal correlation Cm variation and intra-cavity propagation delay τPD which are displayed
in Figure 4 and 5, respectively. In Figure 4, we observe that a stronger injection is needed to
obtain synchronization for larger detuning and shows asymmetry with respect to the zero detuning.
The maximal correlation of Cm ≥ 0.93 (dark red) is expected for higher injection. For lower injection
with larger detuning, lower degrees of correlation (blue region) is observed. The shape of the
synchronization region is similar to the one reported for different schemes using edge emitting
semiconductor lasers [15].
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Figure 4. Maximum cross-correlation coefficient Cm map in the injection parameters (frequency
detuning Δ f , injection rate η) plane for keeping κ = 9 ns−1, τext = 10 ns, and τf = 0.
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Figure 5. Intra-cavity propagation delay τPD map in the injection parameters (frequency detuning Δ f ,
injection rate η) plane for keeping κ = 9 ns−1, τext = 10 ns, and τf = 0.

The correlation time-shift (intra-cavity propagation delay τPD) required to obtain the maximum
correlation value Cm in the plane of injection parameters is shown in Figure 5. For a lower injection
near zero detuning, high positive magnitude of τPD is observed (orange color region). The τPD takes
the negative value (yellow region) for positive detuning above +20 GHz with variations of injection
rates. Whereas in the negative detuning region, τPD is observed positive as well as negative with higher
magnitudes as negative detuning increased and found to decrease for higher injection rates. In Figure 5,
at low injection rates and moderately away from the zero detuning region, the intra-cavity propagation
delay value found high in magnitude (in the order of 104 ps) since the quality of synchronization
is worse in those regions. The asymmetry in the results with respect to the detuning is due to the
influence of asymmetry of synchronization performance Cm (Figure 4), which is determined by the
nonzero linewidth enhancement factor and external injection [51,52].

In Figure 6, we show the trend of maximum correlation coefficient Cm (Figure 4) and the associated
τPD (Figure 5) for keeping Δ f = 0 with η variation, which is indicated vertical dashed line in Figures 4
and 5. The Cm and τPD for a range of injection rates are shown in Figure 6. The magnitude of τPD
(blue trace) decreases from 56.4 ps to 0.4 ps with increasing injection rate, and the respective Cm

value (red trace) found to increase from 0.75 to 0.98. The decreasing nature of τPD for higher injection
indicates that the injected signal dominates the dynamics and has greatly controlled the receiver laser’s
independent emission [53].
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Figure 6. Transmitter-receiver maximum correlation coefficient Cm (red trace) and the associated
intra-cavity propagation delay τPD (blue trace) as a function of injection rate for keeping Δ f = 0,
κ = 9 ns−1, τext = 10 ns, and τf = 0.
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The horizontal dashed lines in Figures 4 and 5 indicate the frequency detuning Δ f variation at
η = 15 ns−1. The dependence of Cm and the corresponding τPD on the frequency detuning variation
for keeping η = 15 ns−1 are shown in Figure 7. The simulated results demonstrate that the RL is
driven into the chaotic state only for frequency detuning within −5 GHz to +5 GHz. It can be seen
that the degree of synchronization Cm (red trace) gradually increases and then decreased when the Δ f
varied from negative to positive. The associated τPD (blue trace) found lesser near zero detuning and
found increasing for higher values of negative detunings. In addition, τPD consistently decreases with
increasing positive detuning. Also, a better synchronization and lesser magnitude of τPD can be seen
near injection-locking boundaries for moderate injection.
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Figure 7. Transmitter-receiver maximum correlation coefficient Cm (red trace) and the associated
intra-cavity propagation delay τPD (blue trace) as a function of frequency detuning for keeping
η = 15 ns−1, κ = 9 ns−1, τext = 10 ns, and τf = 0.

Additionally, the mapping of Cm and the associated τPD in the plane of TL’s feedback rate κ and
injection rate η are shown in Figure 8. We kept the other parameters the same as in Figure 1. The dark
red boundary in Figure 8a indicate that a good synchronization quality (Cm > 0.9) can be obtained
between TL and RL, which is due to the larger injection rate. And in those regimes, the associated τPD
take positive values as well as found to decrease (light green boundary in Figure 8b) as the injection
rate increases. It is evident from Figure 8a that the quality of synchronization also depends on the
κ, wherein which for higher values of κ, stronger injection is a necessary condition to achieve good
synchronization between TL and RL.
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4. Secure Optical Communication

In this section, we investigate the effect of τPD on the message encoding and decoding based
on chaos synchronization between the transmitter and receiver laser. As described in the previous
Section 3, the transmitter laser’s pump magnitude is modulated with a message and transmitted to the
receiver laser. The message recovery is performed by subtracting the receiver laser output from the
transmitted output signal and then filtering the difference using a fifth-order Butterworth filter.

A digital message signal with 1.2 Gbit/s bit rate is encoded at the transmitter laser. In Figure 9a,
we present the original message m(t) (red) together with the recovered message m′(t) (blue). The eye
diagram, Figure 9b, shows that the message is successfully recovered with less error, where the eye
diagram is very open. Apart from the synchronization performance, the quality of the recovered
message would also depend on the chaos pass filtering [54]. The recovered message is shown in
Figure 9 obtained prior to the intra-cavity propagation delay τPD correction in the receiver laser.

Figure 9. Results of unidirectional message encoding and decoding using CSK scheme for Jm = 1.10Ith,
JR = 1.08Ith, κ = 9 ns−1, η = 15 ns−1, Δ f = 0, τext = 10 ns, and τf = 0 under transmitter-receiver
configuration. (a) The original message m(t) (red) and the recovered one m′(t) (blue), and (b) the eye
diagram of the recovered message. The digital message transmitted at 1.2 Gbit/s bit rate with b = 0.2
modulation depth.

To quantify the recovered message quality, BER is evaluated and expressed as
exp(−Q2/2)/

√
2πQ. The quality factor is defined as Q = ξ1 − ξ0/σ1 + σ0 where ξ1(ξ0) is the mean

power of bits “1” (“0”), and σ1(σ0) corresponding standard deviation. It must be stated that the lesser
BER value indicates the message recovery quality is better in the communication system. The BER of
the recovered message prior to the τPD correction in the receiver laser is 5.43 × 10−12. The evaluated
intra-cavity propagation delay τPD is corrected in receiver laser’s output and we repeated the message
recovery process. Thus, the obtained BER value is found to be 4.10 × 10−12, which is evidently lesser
than that of the BER of the recovered message signal obtained prior to the τPD correction to the receiver
laser output. To further compare the influence of τPD and communication performances with the other
schemes such as chaos masking (CMA) and chaos modulation (CMO), the BER is measured for each of
the schemes. For CMA scheme, the Cm and τPD are found to be 0.82 and 27.6 ps, respectively. The BER
value prior to the τPD correction is 4.70 × 10−3, and after the correction it is 4.59 × 10−3. In the case of
CMO, the Cm is measured to be 0.85 and the corresponding τPD is 28.2 ps. And the BER value without
(with) the τPD correction is 1.28 × 10−1 (1.27 × 10−1). It is evident that the τPD, although small value
in relative scales, has a noticeable and measurable effect on the recovery of a message in all three
schemes. To ascertain if τPD correction is going to be a non-ignorable quantity in the recovery process
we repeated this study for various injection rates and frequency detunings between TL and RL.

We focus our investigation on the influence of the intra-cavity propagation delay τPD on
message encoding/decoding for various injection rates η between the transmitter and receiver laser.
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The encoding message signal at 1.2 Gbit/s bit rate with a modulation depth of b = 0.2, Δ f = 0, and the
injection rate η is varied from 10 ns−1 to 70 ns−1. The effect of τPD on the quality of message recovery
with varying η is shown in Figure 10. For each of the values of η, the quality of signal recovery as
evaluated in terms of BER, prior to (after) the τPD correction is shown in a red (blue) trace. We make
two inferences from Figure 10. First, the BER is found to decrease up to the injection rate of η = 17 ns−1

and BER increases for stronger injection. For stronger injection, the receiver tends to exactly reproduce
the transmitter output, which consists of the chaotic output carrier together with the message signal.
Hence, when stronger injection is applied, apart from the chaotic carrier subtraction, a part of the
message signal itself will be eliminated in the process of decoding the signal [27,28]. Secondly, it is
evident from Figure 10 that the BER value is consistently less (blue trace) if message recovery is carried
out after the τPD correction to the receiver’s output, which is implying that quality of the message
recovery will improve if the intra-cavity propagation delay correction is incorporated in the receiver
laser system.
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Figure 10. Estimation of BER values of the recovered messages as a function of injection rate for
BR = 1.2 Gbit/s, b = 0.2, and Δ f = 0. Red and blue traces correspond to BER value prior to and after
the intra-cavity propagation delay τPD correction, respectively, in the receiver laser.

Next, we investigate the role of frequency detuning on quality of message recovery and thus
the influence of intra-cavity propagation delay τPD. The injection rate is kept as η = 15 ns−1 and
varied frequency detuning Δ f . The obtained results are presented in Figure 11. It is evident from
the figure that, the BER of the recovered message is found lesser near zero detuning. For Δ f range
−2 GHz to −5 GHz, where the better correlation found between TL and RL (see Figure 7), the quality
of message recovery is worse (BER is more) since the receiver exactly reproduces the transmitter
chaotic carrier output together with the message signal [27,28]. As we have seen from Figure 7 that the
synchronization quality is very sensitive while varying frequency detuning, where that affects message
recovery excessively. The analysis of message recovery is restricted within the −5 GHz to +5 GHz
detuning boundaries in the Figure 11 since RL is driven into the chaotic state only for Δ f within
−5 GHz to +5 GHz. As far as the influence of τPD in the message recovery is concerned, in comparison
with the BER (red trace) prior to the τPD correction, the BER is found to decrease (blue trace) after τPD
correction in the recovery process.
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Figure 11. Estimation of BER values of the recovered messages as a function of frequency detuning for
BR = 1.2 Gbit/s, b = 0.2, and η = 15 ns−1. Red (blue) trace correspond to BER value prior to (after) the
τPD correction in the receiver laser.

To further investigate the effect of intra-cavity propagation delay on communication performance,
Figure 12 shows the BER of the recovered message for a different modulation depth of 1.2 Gbit/s bit
rate message signal. Other parameters kept the same as in Figure 9. BER of the recovered message
is evaluated for different message depth values, for before (red trace) and after (blue trace) the
τPD correction in the recovery process, and shown in Figure 12. Prior to the τPD correction, as the
message depth gradually increased from 0.01 to 1, the BER decreases dramatically from 0.12 to
5.29× 10−21. Moreover, there is a consistent improvement in the quality of message recovery (BER 0.12
to 1.80 × 10−21) after the τPD correction (blue trace) as compared to the quality of signal recovery
performed without the correction (red trace).
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Figure 12. Estimation of BER values of the recovered messages as a function of a modulation depth
for BR = 1.2Gbit/s message signal. Red (blue) trace correspond to BER value prior to (after) the τPD

correction in the receiver laser.

Figure 13 shows the BER of the recovered message for different message bit rates at modulation
depth b = 0.2. As shown in Figure 13, the BER is increased as the bit rate increases (blue and red
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trace) for both before and after the correction cases. The BER performance for lager message bit rate is
worse than that for the lower case. For lower message bit rates (≤6 Gbit/s), the high-quality chaos
communication is obtained, where the BER is sustained to be the order of 10−9. As also noticed that
the BER performance of the recovered message is improved (see inset of Figure 13) when incorporating
the intra-cavity propagation delay correction in the message recovery process.
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Figure 13. Estimation of BER values of the recovered messages for different bit rates at modulation
depth b = 0.2. Red and blue traces correspond to BER value prior to and after the τPD correction,
respectively, in the receiver laser.

We observe that, considering BR = 1.2 Gbit/s with b = 0.2 in Figure 10, the quality of message
recovery is modest in the region η between 12 ns−1 to 18 ns−1 for keeping Δ f = 0 and other lasers’
parameters same. Next in Figure 11 the message recovery quality is adequate and appropriate near
zero detuning. In Figure 12, modulation depth beyond 0.05, the message recovery quality improves
satisfactorily. Finally in Figure 13, it’s evident that bit rate less than 6 Gbit/s better quality of chaos
communication is obtained.

5. Conclusions

To summarize, we have numerically shown the role of intra-cavity propagation delay in message
encoding and decoding using chaotic semiconductor lasers. Based on the chaos shift keying scheme,
a digital message signal of 1.2 Gbit/s bit rate with a modulation depth of 0.2 is encoded at the
transmitter laser and is recovered at the receiver by comparing its output with the transmitter laser.
We found that despite the magnitude of intra-cavity propagation delay τPD is less, it has an impact on
the quality of message recovery. The influence of τPD and the associated bit error rate of the recovered
message signal is carried out for different values of injection rates. The results convey that, τPD
correction in the recovery process does improve the quality of message recovery. Next, the influence of
frequency detuning on τPD and thus on the message recovery is investigated. The quality of message
recovery shows an improvement after the τPD correction. Furthermore, we have presented the effect
of τPD on the quality of message recovery for the range of modulation depths and message bit rates.
We note that recovered message quality found to increase (BER is less) after the τPD correction for each
value of modulation depths and bit rates. Although, the τPD magnitude (order of pico-seconds) is much
less, it does have an effect in the signal recovery, where we find the effect is also less. Nevertheless,
we emphasize that, in long-haul communication, where more than one receiver laser is considered
in the communication system, the τPD would have noticeable effect, since it is a dynamically arising
time delay in the system and has an accumulative nature as TL output propagates through multiple
receiver lasers in the cascading configuration [48]. However, the study of τPD influence in the long-haul
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communication system is beyond the scope of our present study. In conclusion, we can emphasize that
the intra-cavity propagation delay correction needs to be incorporated to the receiver laser in order
to achieve a better quality of message recovery in a system of synchronized chaotic semiconductor
diode lasers.
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Abstract: In this study, we have proposed and numerically demonstrated that the bias current of
a semiconductor laser cannot be used as a key for optical chaos communication, using external-cavity
lasers. This is because the chaotic carrier has a signature of relaxation oscillation, whose period can
be extracted by the first side peak of the carrier’s autocorrelation function. Then, the bias current
can be approximately cracked, according to the well-known relationship between the bias current
and relaxation period of a solitary laser. Our simulated results have shown that the cracked current
eavesdropper could successfully crack an encrypted message, by means of a unidirectional locking
injection or a bidirectional coupling. In addition, the cracked bias current was closer to the real value
as the bias current increased, meaning that a large bias current brought a big risk to the security.

Keywords: chaos; semiconductor lasers; chaotic communication; communication system security

1. Introduction

The secure optical chaos communication process has received considerable attention due to its
excellent features, such as hardware encryption, high transmission rate, long transmission distance,
and compatibility with the existing fiber networks. The first field experiment of optical chaos
communication was demonstrated in the commercial optical networks of Athens, which achieved
a rate of 1 Gb/s with a transmission distance over 120 km [1]. Considering the robustness and cost,
external-cavity semiconductor laser (ECL) is a promising chaotic transceiver, due to its simple structure,
which is capable of integration. Photonics integration of chaotic ECL has become a research focus and
some integrated chaotic semiconductor lasers have recently been reported [2–5].

Chaos-based communication can be realized only when the parameters of chaotic transceivers are
matched. A parameter match means that the parameter values of a chaotic transmitter and receiver
can ensure synchronization, and realize message encoding and decoding [6–8]. Thus, the parameters
of chaotic lasers are generally considered to be key in optical chaos communication [9]. Multi-user
communication is the trend of secure chaos communication. Current semiconductor integration
technology can manufacture massive lasers with matched internal parameters, which means that the
laser internal parameters are public. Therefore, for ECLs like chaotic transceivers, the controllable
external parameters, including bias current, external-cavity length, and feedback strength should be
selected as the keys, to ensure security. For example, Paul et al. proposed the external-cavity length
as a key [10]. However, this is unsafe because the laser chaotic oscillation contains external-cavity
resonances, leading to signature of feedback time delay, which exposes the external cavity length [11,12].
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Many efforts have been made to suppress or eliminate the time delay signature, to enhance security by
increasing the complexity of feedback cavity, such as double-mirror feedback [13], polarization-rotated
feedback [14], fiber Bragg grating (FBG) feedback [15], chirped fiber Bragg grating (CFBG) feedback [16],
random grating feedback [17], and feedback phase modulation [18]. Nevertheless, from the viewpoint
of integration, the external cavity length is fixed, which is then also unsuitable for acting as a key, once
the ECL is integrated. By comparison, the laser bias current is easy to adjust. However, for a solitary
laser, the bias current is related to the relaxation oscillation frequency (f RO). Therefore, the safety of
using a bias current as a key, is worthy of a detailed investigations.

In this study, we numerically analyzed the relaxation oscillation signature (ROS) in a chaotic laser,
as a function of the bias current, and then used it to crack the optical chaos communication, based on
external-cavity lasers. The risk of a bias current in chaos communication was also analyzed.

2. Theoretical Model

Figure 1 shows the schematic diagram of the optical chaos communication system, with a pair of
mutually-coupled, authorized external-cavity lasers (SL1 and SL2). Two kinds of eavesdroppers were
considered. Eavesdropper EveA was disguised as an authorized transceiver which was bidirectionally
coupled with the transmitter SL1 (in this way, EveA could not only eavesdrop the message but could also
send false information to SL1). Eavesdropper EveB simply tapped the transmitted signal from SL1 and
unidirectionally injected into the eavesdropping laser SLEB. Note that the ECLs of the communication
users and eavesdroppers had the same structure and the same semiconductor lasers. In addition,
we simulated the spectra of SL1 with and without considering SL2. It was found that the relaxation
oscillation frequency did not show any obvious change. For brevity, we omitted the equations of SL2

in this manuscript.

 

Figure 1. Schematic diagram of two kinds of eavesdroppers: EveA acted a disguiser that was
bidirectionally coupled to the transmitter, and EveB tapped and unidirectionally injected the
transmitted light to its laser. SL—semiconductor laser; OC—optical coupler; OI—optical isolator;
EDFA—erbium-doped optical fiber amplifier; I—bias current. SL1 and SL2 are lasers of legal users.

The ECLs were modeled by the following Lang–Kobayashi equations [19].
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where E(t) is the complex amplitude of optical field and N(t) represents the corresponding carrier
density. The subscripts ‘1′, ‘A’, and ‘B’, represent the legal user, EveA, and EveB, respectively. I is the
bias current. k is the amplitude feedback strength. τ = 5 ns is the feedback delay time. Ith = 12 mA is
the laser threshold current. kA,B = 0.447 is the amplitude coupling strength. Note that, we set kA = 0 in
the EveB simulation. τc = 19 ns represents the coupling delay time. Δω = ω1 − ωA,B = 0 denote the
detuning angular frequency of the legal user’s laser and the eavesdropper’s laser. The other intrinsic
parameters are listed as follows—transparency carrier density N0 = 0.5 × 105 μm−3, differential gain g =
2.125 × 10−3 μm3ns−1, gain saturation parameter ε = 1 × 10−5 μm3, carrier lifetime τN = 2.2 ns, photon
lifetime τp = 1.6 ps, linewidth enhancement factor α = 6.0, round-trip time in laser cavity τin = 7.3 ps,
active layer volume V = 100 μm3, and the elementary charge q = 1.602 × 10−19 C. The fourth-order
Runge–Kutta method, with a step of 2.5 ps was used to solve these equations in the simulation.

The relaxation frequency of the solitary laser without external feedback could be calculated
according to the following formula [20]

fRO =
1

2π

(
(I/Ith − 1)
τNτp

(1 + gN0τp)

) 1
2

. (4)

For a bias current I = 1.6Ith, the used laser had a relaxation frequency of 2.35 GHz.

3. Results

3.1. Principles of the Cracking Process

When moderate optical feedback was applied, the laser generated chaotic oscillation. Figure 2a
plots the RF spectrum of laser intensity chaos, which was obtained with a fixed bias current I1 =

1.6Ith and an amplitude feedback strength k1 = 0.08. The spectrum obviously had a dominant peak
around the relaxation frequency. This meant that the chaotic carrier had a signature of laser relaxation
oscillation. More interestingly, the relaxation oscillation frequency or period could be clearly extracted
from the autocorrelation function (ACF) of the temporal waveform which was the inverse Fourier
transform of the power spectrum. As shown in Figure 2b, the ACF trace had a side peak closest to the
main peak. The location of this side peak was 0.367 ns, corresponding to a frequency of 2.72 GHz,
which was the relaxation frequency of the laser with feedback. Note that the slight increase of the
relaxation frequency was caused by the optical feedback [20]. Therefore, the signature of relaxation
oscillation was quantitatively characterized by the side peak of ACF—the location read the relaxation
oscillation period (τRO) and the height indicated the visibility of the ROS.

 

Figure 2. (a) Power spectrum and (b) the autocorrelation function (ACF) trace of the external-cavity
semiconductor laser (ECL) output with a bias current I1 = 1.6Ith and an amplitude feedback strength of
0.08. Arrows denote the f RO and τRO, respectively. The inset plots the temporary waveform of the
ECL output.
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Figure 3 plots the signature of relaxation oscillation, as a function of the bias current, which
was separately obtained at different feedback strengths k1 = 0.08 (circles), 0.1 (triangles), and 0.12
(squares). Figure 3a plots the location of the ACF side peak and also plots the solitary laser’s relaxation
period, in black line, which was calculated from Equation (4). Compared to the solitary laser, the
external feedback light reduced the relaxation period. The stronger was the amplitude feedback
strength, the greater was the decrease of τRO. However, the reduction was quite small. Figure 3b
depicts the height of relaxation oscillation as a function of the bias current. The greater the bias
current or lower the amplitude feedback strength, the more pronounced were the observed relaxation
oscillation characteristics. This indicated that one could easily identify the ROS from the ACF of laser
intensity chaos.

 

Figure 3. Relaxation oscillation signature (ROS) as a function of the bias current of ECL: (a) location
τRO and (b) height of the ACF side peak. The black curve in (a) the plots τRO of the solitary laser
calculated from the formula of the relaxation period.

According to the rule of the aforementioned relaxation oscillation characteristics, the cracking
process was implemented with the following formulas (Equations (4)–(6)). It consisted of three main
stages: (1) extracting the relaxation oscillation period τRO; (2) calculating the initial bias current IE0, and
(3) decreasing IE from IE0. First, τRO was obtained from the power spectrum or the autocorrelation curve
of the transmitter chaos carrier, by an eavesdropper; Figure 2. With this τRO, the initial bias current
of eavesdropper (IE0) could be calculated using Equation (4)—the formula for relaxation oscillation
in the solitary laser without external feedback. Based on the principle of relaxation oscillation in
Figure 3a, the bias current of the eavesdroppers was gradually reduced from IE0, until the chaos was
synchronized and then the hidden message was deciphered. The advantages of this method were as
follows: IE0 could be obtained immediately from the relaxation oscillation period, which narrowed
the range of the crack space. On the other hand, the optical feedback light reduced the relaxation
oscillation period in the chaotic laser, which indicated the crack direction. As a result, the eavesdropper
could crack the secret keys faster than the brute-force attack, using our proposed method.

s( f ) =
∣∣∣FT

{
P(t)

}∣∣∣2, (5)

fRO = find(s( f ) = maximum), (6)

where P(t) is the intensity time-series of chaotic laser and FT{} denotes Fourier transform.

3.2. Cracking Results

In the simulation, chaos masking was adopted to encrypt the message (binary pseudorandom
sequences), for its simple structure. The electrical message was applied on an electro-optical modulator,
to modulate a continuous-wave semiconductor laser, with a data rate of 2.5 Gb/s, of which the
wavelength and polarization was identical to the transmitter laser, and then the generated optical
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message was masked into the optical chaos carrier, through an optical coupler. The external modulation
index was 0.05. Furthermore, the decoded messages were obtained by a fourth-order low-pass
Butterworth filter. We estimated the bit error rate (BER) of the deciphered data, by calculating the Q
factor of the eye diagram. The BER threshold of 1.8 × 10−3 was used to evaluate the quality of the
chaotic communication [21]. That is, the message could be decoded when BER was lower than the BER
threshold. Here, we set the bias current of the transmitter as I1 = 1.6Ith. The eavesdropper extracted the
τRO of 0.367 ns from the chaos carrier, and the IE0 was considered to be 1.8Ith, according to Equation (4).

Figure 4 gives the eavesdropping results, including the chaotic temporal waveforms and the
corresponding eye diagrams of the outputs of SL1 and Eve, with different bias current IE = 1.8Ith and
1.616Ith. For the eavesdropper EveA, when the IEA declined to 1.616Ith, the chaos synchronization was
established because of the matched bias current between the SL1 and SLEA. As a result, the opened eye
diagram and the BER of 3.12 × 10−5 meant that EveA had already decoded the message under this
scenario, shown in Figure 4(a1,a2). It is worth nothing that the cracking could be achieved by only
reducing the bias current of 2.2 mA, with several attempts by EveA.

For the eavesdropper EveB, as shown in Figure 4b, the message was decoded with a BER of
1.875 × 10−5 and the system was cracked by utilizing the bias current of IEB = 1.8Ith. The reason
was that EveB achieved a high-quality chaos synchronization with SL1, through a unidirectional
injection. Compared with EveA, EveB directly cracked the system, with a bias current of 1.8Ith. The
results also proved that the security of bidirectionally-coupled synchronization was higher than the
unidirectionally-coupled synchronization, in the optical chaos communication [22].

 

Figure 4. Examples of eavesdropping with an initial cracked bias current of 1.8Ith. (a1) Temporal
waveform of synchronized chaos (red and light blue) and (a2) the decoded signal (blue) of EveA

with IEA = 1.616Ith; (b1) temporal waveform of synchronized chaos (red and light blue) and (b2) the
decoded message (blue) of EveB with IEB = 1.8Ith. The red line is the transmitted chaos carrier with the
encoded message.

To better qualify the bias current crack range of this communication system, a more careful analysis
has been carried out in Figure 5. Figure 5a shows the BER as a function of the bias current mismatches
(ΔI = IE − I1). BER threshold is marked with red dash line. It is obvious that cracked ΔI values ranged
from −0.25 to 0.25. Additionally, as the IE decreased, the BER gradually decreased to a minimum, and
then rose to an unchanged value. The point where BER reached a minimum meant that the IEA was
the closest value to I1. Thus, EveA broke this communication system without knowing the bias current
and the cracked area resembled the shape of the letter ‘V’, with the bias current mismatches.
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Figure 5. BER as a function of ΔI between the transmitter and the eavesdropper: (a) EveA and (b) EveB.
The blue and yellow shaded areas denote the cracked areas.

As shown in Figure 5b, the BER of SL1 and EveB was always over the BER threshold, which indicated
a better eavesdropping, compared with EveA. Unlike the bidirectionally-coupled synchronization in
the EveA, a small mismatch induced a dramatic loss, and the unidirectional injection synchronization
in EveB scheme showed a better robustness. Unfortunately, this robustness increased the possibility of
the optical chaos communication system being cracked [22].

4. Discussion

In our system, the bias current of eavesdropper was determined by the τRO of temporal waveform.
However, as can be seen from Figure 3a, with an increasing bias current, the cracked bias current
was closer to the real value, which meant that the larger the bias current, the more dangerous the
secure optical chaos communication becomes. In addition, a transmitter using the bias current of
the ECL as a key, was proposed in the mutually-coupled laser system in our scheme, and the τRO

was extracted from the chaos carrier. Thereafter, the bias current was an unsafe key in the optical
chaos communication. However, τRO could be eliminated in some chaos generation methods, such as
delayed self-interference [23], optical heterodyning of two ECLs [24], and short-cavity VCSEL [25].
In these methods, it was suitable to use the bias current as a key, because an eavesdropper could not
achieve the τRO from the chaotic waveform. Hence, eliminating the ROS of ECL could be the direction
for future development.

5. Conclusions

In summary, we have analyzed the security of the bias current used as a key in secure optical
chaos communication. The τRO and bias current of ECL have been studied in detail. With an increase
in bias current, the τRO of ECL always approaches that of a solitary laser. Due to this relationship, two
eavesdropping scenarios have been proposed and the results have demonstrated that the bias current
used as a key was unsafe in the chaos secure communication, based on the synchronization with the
mutually coupled chaotic laser. Results showed that, without the knowledge of the bias current, the
eavesdropper could intercept the data from the legal user.
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Abstract: The generation by optical injection locking of spectrally unadulterated microwave
signals using waveguide based external cavity semiconductor lasers (WECSL) is demonstrated.
A tunable frequency of 2–11 GHz, limited by the modulator’s bandwidth and the photodetector (PD),
was created as proof-of-experiment by the injection locking of the two WESCLs. A single sideband
(SSB) phase noise of −75 dBc/Hz from the generated carrier at 10 kHz offset and a phase noise
variance at an optimum injection ratio region was 0.03 rad2, corresponding to 1.7◦, were observed.
The main feature of this approach is the consolidation of the upsides of microwave generation at low
phase noise with a broad tuning range and the capacity of hybrid photonic integration. In addition,
the injection locking characteristics were used to determine the Q factor of the complicated optical
cavities with unknown inner losses.

Keywords: optical injection locking; microwave carrier generation; hybrid photonic integration;
locking range

1. Introduction

Recently, photonic production and distribution of microwave carriers attract a wide interest due
to its massive ability for distribution and noticeably very high-frequency operation [1–3], utilizing
methods based on optical frequency combs, mode-locked lasers, heterodyne optical phase-locked
loops and sideband-injection locking. Frequency-comb generators typically require a large, stabilized
cavity, yielding systems that are comparatively bulky and complex [4]. The large number of modes
and the small mode-spacing emitted by the mode-locked laser needs to be filtered before injecting the
slave laser, otherwise it may prevent the single-mode stability of injection lock [5]. In heterodyning
between two separate single frequency lasers, all the phase noise from each laser is directly transferred
into the microwave carrier. Moreover, such scheme is rather bulky and suffers from large frequency
drift of the microwave carrier [2]. Optical side frequency injection locking offers such a capability;
the optical phase noise generated by spontaneous emission cancels when a slave laser is injected with
a side frequency derived from the master laser.

Optical injection locking technique has generally been utilized to create narrow linewidth
microwave carriers employing distributed feedback (DFB) semiconductor lasers [6,7], fiber lasers [8]
or external cavity diode lasers (ECDL) [9]. Customarily, two lasers are utilized in an optical injection
locking procedure. Light is injected from one laser, termed as the master laser, into the other laser,
termed as the slave laser. At the point when the frequency of the slave laser is guided adjoining the
frequency of the master laser, the slave laser begins lasing on that of the master laser. This occasion is
called optical injection locking.

Photonics 2019, 6, 81; doi:10.3390/photonics6030081 www.mdpi.com/journal/photonics169
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Most of the optical methods presented in carrier generation in the previous works were centered
around extensive tunability and low phase noise of the generated carriers still require minimization.
The likelihood to consolidate different optical parts by means of photonic integration is generally
considered as one of the key empowering advancements for what is to come [10]. Photonic integration
technology attracts a great deal of attention due to its potential benefits concerning its cost-effective
volume production and small footprint [11].

A diode laser has recently been reported where an optical gain chip has been coupled to an external
cavity that has been integrated into a waveguide chip. This chip was fabricated using Si3N4/SiO2

waveguide technology (TriPleXTM) with a box shaped cross section [12]. The optical gain chip joined to
the waveguide chip was alluded as waveguide based external cavity semiconductor laser (WECSL) [13].
With TriPleXTM, higher integration levels and hybrid combinations with other commercially available
platforms (for instance InP and SOI) are also possible through on-chip, low loss spot-size convertors.
As the WECSL is essentially a filter cavity with a gain medium, it can make use of the great potential
of hybrid photonic integration.

External cavity lasers are known to offer an astounding overall performance regarding its optical
power (mW) [14,15] linewidth (kHz) [13] and tuning range (THz) [14] rather than different sorts of
of lasers like the DFB lasers [16] or external cavity diode lasers (ECDL) [9]. It is recommended that
lasers possess large frequency tunability to have great potential in optical injection locking scheme [8].
Moreover, an integrated laser module would be suitable for most well known optical injection locking
scheme, namely the side frequency injection locking scheme, explained in detail in [7,11]. In this paper,
a glass-based waveguide circuit to create a hybrid semiconductor-glass laser has a great perspective to
be used in a side frequency injection locking scheme for the first time.

The organization of this paper is as follows. Section 2 presents the characteristic of the WECSL
used for the injection-locked loop. Section 3 gives the optical injection locking principle. Sections 4
and 5 provide the experimental demonstration and experimental results, respectively. A summary is
presented at the end of this paper.

2. Characteristic of The Wecsl

The detailed characterization of the WECSL used in our scheme was presented by R.
M. Oldenbeuving et al. [13]. In a WECSL, an optical “gain chip”, developed in Fraunhofer
Heinrich-Hertz-Institut [13], is integrated to an outer mirror coordinated into a waveguide chip,
as shown in Figure 1.

Optical 
output

superluminescent diode 
(SLD)

gain chip+external cavity
(WECSL)

Figure 1. Photograph of the WECSL setup.

The schematic outline of the entire waveguide chip is shown in Figure 2. The waveguide chip
accommodates a dual micro-ring resonator (MRR) structure [17], termed as an MRR mirror, which
can be combined with a directional couplers. This magnificent combination acts as a frequency
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selective mirror. Moreover, a bi-directional coupler launches light from a straight waveguide into
a “measurement channel” in order to monitor the performance of the laser and mirror.

5 mm

IN

OUT-1

C

R 1

R 2

OUT-3
OUT-2

(a)

(b)

Gain chip

Figure 2. Schematic of the tunable reflector waveguide chip. (a) Complete chip of the waveguide The
waveguides are depicted in white, electrical contacts are yellow, and the heaters are grey. (b) Dual
micro-ring resonators, R1 and R2, where “C” is marked as coupler, “IN” is marked as the input port
of the waveguide chip, “OUT − 1” and “OUT − 2” are marked as output ports of the computation
channel, and “OUT − 3” marks the output port of the WECSL. (Reproduced with modification by
permission from Laser Physics Letters [13]).

To characterize the mirror, the spectrum from 1500 to 1600 nm from a superluminescent diode
(SLD) (Thorlabs S5FC1005S) was inserted to the input port of the waveguide chip (“IN” port in Figure 2).
The MRR-mirror’s response was measured using a fiber coupled SLD and butt-coupled via a PM-fiber
to the input port on the waveguide chip. The reflected spectrum of the MRR mirror is measured at the
output port of the measurement channel (“OUT-1” port of Figure 2) using an optical spectrum analyzer
(OSA). The resonant frequency of the highest peak of the MRR corresponds to the lasing frequency,
which is tuned by shifting the resonant frequency, i.e., via thermo optical effect by heating the MRRs.
The WECSL can be tuned over the entire telecommunication C band region (1530–1565 nm) [13].

3. Side Frequency Injection Locking

Different strategies proposed to date depending on optical injection locking techniques and side
frequency injection locking can produce unadulterated microwave carriers. Moreover, the framework
dependent on it has shown high stability and tunability for the carriers [18]. The mechanisms of
the side frequency injection locking technique are discussed in this section. The master laser light is
divided into two parts. One part of the light is frequency modulated to form optical side frequencies
and one of the side frequencies is chosen by a filter and infused into the slave laser. The slave laser is
injection-locked onto the side frequency of the master laser. The other part of the light from the master
laser is heterodyned with the light from the injection-locked slave laser to produce the microwave
carrier. The schematic of this lockup mechanism is shown in Figure 3.
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Figure 3. Schematic of side frequency injection locking. ML, master laser; OC, optical coupler; OFM,
optical frequency modulator; SL, slave laser; PD, photodetector.

As described in [19], the frequency range in which the frequency of the slave laser turn out to
be rigidly settled to the side frequency of the master laser is called the injection locking range or
locking bandwidth. The locking extent can be dictated by concurrent tuning the side frequency of
the master laser and checking the RF beat spectrum. At the point when the side frequency of the
master laser is tuned towards the frequency of the free-running slave laser, the slave laser suddenly
begins to sway along the side frequency of the master laser and injection-locked beat spectrum appears.
Tuning the side frequency away from the slave laser breaks the locking. While in locking condition,
the laser dynamics of the slave laser are governed by the infused light. However, the locking range is
administered by the infusion proportion and the quality of the laser cavity [20]. The infusion proportion
is characterized as the proportion between the infused optical power from the side frequency of the
master laser and the optical yield of the free-running slave laser. The injection locking bandwidth,
Δνlock, is expressed as [19]

Δνlock =
ν0

Q

√
Pinj

Ps
(1)

where ν0 is the frequency of the light output of the slave laser, Q is the quality factor of the slave lasers
cavity, Pinj is the injection power of the side frequency of the master laser and Ps is the output power of
the slave laser. The infusion proportion R is characterized as the proportion between the externally
infused optical power, Pinj, and that discharged from the slave laser, Ps. In [19], an articulation for half
of the locking bandwidth was introduced. The articulation in Equation (1) is modified to represent the
full locking bandwidth.

4. Experimental Demonstration

An experiment was carried out to verify the proposed approach. The schematic of the employed
experimental setup is shown in Figure 4.
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Figure 4. Schematic of the experimental setup for injection locking of WECSLs. Highlights point
out the spectra at various points. ML, master laser; OC, optical coupler; MZM, Mach–Zehnder
modulator; EDFA, erbium doper fiber amplifier; VOA, variable optical attenuator; SL, slave laser; PD,
photo-detector. The optical power from the master laser is injected into the slave laser at Point A.

The waveguide chips of the master and slave lasers were butt-coupled to single mode fibers
(SMFs). Two identical but separate WECSL lasers were used as a master laser and slave laser. The center
frequencies of both lasers were around 194.05 THz. Four Erbium doped fiber amplifiers (EDFAs) were
used from two different manufacturers, namely Alcatel (type 1686WM) and Firmstein Technologies
Inc. (type PR25R). The fiber-coupled optical power of the master laser was measured to be 18.8 dBm.
The amplified output power of the master laser was coupled out via 10% port of the 10:90 optical
coupler (OC). Its output was modulated by a Mach–Zehnder modulator (MZM) (Avanex powerLog
FA 20) biased at its half wave voltage Vπ = +5V, and modulated by a 20 dBm RF reference signal
. The values of the bias voltage and the RF reference signal were chosen to suppress the optical
carrier and to maximize the modulation side frequencies with first-order harmonic suppression of
8.2 dB. The output light from the modulator was passed through an isolator and again amplified
using two EDFAs. Afterwards, the light passed through a variable optical attenuator (VOA) before
it was split in a 3 dB coupler. The optical output from the 3 dB coupler was injected into the slave
laser through an SMF. The fiber-coupled optical power of the free-running slave laser and the master
laser before inserting to the slave laser (at Point A in Figure 4) were measured to be −16.8 dBm
and 4.3 dBm, respectively. The total optical power at the positive first-order side frequency was
3.9 dBm. The remaining 90% optical power from the 10:90 coupler and the amplified output of
the slave laser from the 3 dB coupler was combined in another 3 dB coupler, which finally went to
a PD (Discovery Semiconductor DSC20S) and a microwave beat signal was observed using an RF
spectrum analyzer (Agilent MXA N9020A). The optical signals were detected by an optical spectrum
analyzer (Ando AQ6317) with a resolution of 0.01 nm. In this experiment, the wavelength and injection
current of the optical carrier from the master laser were set to 1532.43 nm and 56 mA, respectively.
The first-order modulation side frequency at the output of the MZM was tuned from 2 to 12 GHz
using an RF reference. The natural wavelength of the slave laser was fine tuned so that it locked to the
first-order side frequency. The slave laser can be tuned by either heating the MRR or injection current
of the WECSL.

5. Experimental Results

In this section, we present the experimental investigation of the side frequency injection locking
technique. We also investigated the performance of the injection-locked technique by measuring
various parameters such as the locking range and phase noise of the injection-locked WECSL.
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5.1. Locking Range

In the experiment, the injected power was attenuated with steps of 0.5 dB using a VOA. For each
injected power, the locking range was measured by sweeping the side frequency of the master laser
such that the sweeping range was higher than the full locking bandwidth, as shown in Figure 5. When
the side frequency of the master laser is outside of the locking bandwidth, multiple beat signals would
appear at the output of the PD, as shown in Figure 5a,d. As soon as the side frequency of the master
laser comes within the locking bandwidth, injection lock occurs and unadulterated beat signal is
generated. Moving the side frequency of the master laser within this locking range would not break
this lock, as shown in Figure 5b,c.

- 125

- 115

- 105

- 95

- 85

- 75

Frequency (GHz) 

RF
 p

ow
er

 (d
Bm

)

11.87910.609 11.244
- 125

- 115

- 105

- 95

- 85

- 75

Frequency (GHz) 

RF
 p

ow
er

 (d
Bm

)

11.87910.609 11.244

(a) (b)

- 125

- 115

- 105

- 95

- 85

- 75

Frequency (GHz) 

RF
 p

ow
er

 (d
Bm

)

11.87910.609 11.244
- 125

- 115

- 105

- 95

- 85

- 75

Frequency (GHz) 

RF
 p

ow
er

 (d
Bm

)

11.87910.609 11.244

(c) (d)

Figure 5. Injection locking range measurement for an injection power of −18.7 dBm: multiple beat
signals indicate no locking (a,d); and single beat signal indicated locking occurs (b,c).

The optical power of the slave laser (without injection locking) before coupling with the circulator
(at Point A in Figure 4) was measured by the OSA to be Ps−measured = −16.8 dBm. The amplified
optical power of the master laser through the circulator was measured to be Pinj−measured = 4.3 dBm.
The design of the waveguide cross section used in this experiment has a mode field diameter (MFD)
of 0.9 μm× 1.3 μm, which is smaller than that of the MFD of the single mode fiber (SMF) of 10.5 μm
(www.thorlabs.com). Due to the modal mismatch between the MFD of the waveguide and the MFD of
the SMF, the infusion power of the side frequency of the master laser, Pinj and the output power of the
slave laser, Ps must be calculated considering coupling efficiency between the SMF and the waveguide.
Assuming no lateral and angular misalignments of the fiber axis relative to the waveguide axis and
no space between the end-faces of the SMF and the waveguide, the coupling efficiency between the
waveguide and the SMF is calculated as [21]

η =
4(

ω0x

ω1
+

ω1

ω0x

)(
ω0y

ω1
+

ω1

ω0y

) (2)

where ω0x and ω0y are the MFD of the waveguide in the x and y axes, respectively, and ω1 is the MFD
of the SMF. Using the values of MFD of the waveguide and the SMF in Equation (2), the coupling
efficiency, η, was calculated as 4% (−14 dB). Thus, the actual power injected from the side frequency
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(considering 15% or −8.3 dB power fraction in the side frequency compared to the center frequency) of
the master laser is Pinj = −18.6 dBm and the actual output power of the slave laser is Ps = −2.4 dBm.
Figure 6 shows the expected locking characteristics for the WECSL.
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Figure 6. Experimental measurement and theoretical calculation of locking bandwidth versus injection
power. The circle indicates the measured values. The dashed line indicates the theoretical fit for a Q
value of 6.2 × 104.

The locking bandwidth increases with an increase of injection power (or injection ratio, R),
or decreasing the attenuation. No locking was observed below an injection ratio of −21.2 dB.
The experimental measurements of locking bandwidths are compared with the theoretical calculation
from Equation (1) and also plotted in Figure 6. The theoretical value of the Q factor for the WECSL was
calculated as 1.6 × 104 [13]. The fit curve in Figure 6 is plotted for a Q value of 6.2 × 104. This leads
to a calculated laser linewidth of 148 kHz, which is comparable to the measured laser linewidth of
25 kHz [13] and shows a good agreement with the Q factor determined by calculation.

5.2. Phase Noise

To investigate the improvement of the beat linewidth the phase noise measurements of the
generated carriers were performed. The phase noise of the generated carrier was measured for both the
free running (red line) and the injection-locked (black line) cases, and the results are shown in Figure 7.
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Figure 7. Phase noise of the beat signal in free-running and injection-locked measurement at the
modulation frequency of 10 GHz.

The operating conditions (i.e., injection current and temperature) of the individual WECSL were
kept unchanged during both the free-running and injection-locked measurements. When the slave
laser was successfully injection-locked, a beat signal of 10 GHz was observed with a single sideband
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(SSB) phase noise of −75 dBc/Hz at 10 kHz frequency offset from the carrier. This gives a 25 dB
lower SSB phase noise compared to the free running measurement. The phase noise variance for the
injection-locked carrier was calculated by following the procedure in [22] by integrating the spectral
density of the phase noise from offset frequencies 10 kHz to 1 MHz. With an optimum injection ratio,
the phase noise variance is 0.03 rad2, corresponding to 1.7◦.

5.3. Frequency Stability

Injection locking of the slave WESCL with the sideband of the master WESCL significantly
improves its frequency stability. An injection ration of 22 dB was used for frequency stability evaluation
of the injection lock loop. The measured frequency stability during a period of one minute with the
MaxHold function of RF-SA is shown in Figure 8.
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Figure 8. Measured frequency stability during a period of one minute with the MaxHold function of
the RF-SA.

The standard deviation of the injection-locked microwave frequency during this period was
found to be 900 kHz. In free running condition, this stability degraded to 514 MHz. The operating
conditions (i.e., injection current, temperature) of each WESCL were exactly the same for the both
free-running and injection-locked condition. By applying a voltage as it were to the ring heater with
radius R1 = 5.0 nm, the wavelength switches of the ring’s FSR estimate with radius R2 (i.e., 4.0 nm) are
anticipated to alter. For a voltage step from 0 V to 2.3 V, a stable and reproducible wavelength switch
was noted from λ = 1552.2 nm to λ = 1548.2 nm [13].

5.4. Frequency Tunability

As mentioned above, the external cavity of the WECSL used in the demonstration is a tunable
micro-ring resonator (MRR) mirror. The MRR’s resonance frequencies can be tuned by heating the MRR,
resulting in faster tuning than tuning by injection current. The continuous frequency tuning of the
injection-locked loop was investigated, while observing the beat signal of the two lasers. Wavelength
tuning mechanism, heating of MRRs to modify their refractive index, is relatively coarse and it was
implemented by injecting the generating optical side frequencies using a MZM. The RF reference signal
for the MZM is provided by an RF oscillator (Avanex PowerLog FA 20), which can be tuned with
a sub-kHz precision over a wide range (a few kHz to 20 GHz) of frequencies. This results in tuning the
optical side frequencies, which ultimately tunes the microwave beat signal (as shown in Figure 9) from
2 to 11 GHz with a sub-kHz precision.
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Figure 9. The spectra of the generated microwave carrier tuned from 2 to 11 GHz.

Because of the limited bandwidth of the PD, we could not observe frequencies higher than
11.2 GHz signal.

6. Conclusions

Generation of an unadulterated microwave signal using WECSL by means of optical injection
locking is experimentally demonstrated. These measurements show that the injection locking
behavior of the WECSL agrees with the existing theory on injection locking. The locking range
of the injection-locked loop is also demonstrated. The phase noise performance of the generated
microwave carrier was also observed. An SSB phase noise of −75 dBc/Hz was observed at a 10 kHz
offset from the generated microwave carrier. It was found that the phase noise variance at an optimum
injection ratio region was 0.03 rad2, corresponding to 1.7◦, which is suitable for many applications
where a very low phase noise of the generated carriers are required such as in a satellite reception
system. The experimental tuning range is obliged by the working scope of the modulator and the
PD. The development of modulators capable of operating up to 300 GHz [23] and PD facilitate in
producing frequencies exceeding 500 GHz [24] has already been reported. By properly choosing the
higher-order side frequency of the master laser and optical injection locking the slave laser on that
frequency, PD output as large as hundreds of GHz is obtainable, which may find application in radio
over fiber system, medical imaging and spectroscopy in the pharmaceutical industry.
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Abstract: An Indium-phosphide-based monolithically integrated photonic chip comprising of an
amplified feedback laser (AFL) and a photodetector was designed and fabricated for on-chip photonic
and microwave generation. Various waveforms including single tone, multi-tone, and chaotic signal
generation were demonstrated by simply adjusting the injection currents applied to the controlling
electrodes. The evolution dynamics of the photonic chip was characterized. Photonic microwave
with frequency separation tunable from 26.3 GHz to 34 GHz, chaotic signal with standard bandwidth
of 12 GHz were obtained. An optoelectronic oscillator (OEO) based on the integrated photonic chip
was demonstrated without using any external electrical filter and photodetector. Tunable microwave
outputs ranging from 25.5 to 26.4 GHz with single sideband (SSB) phase noise less than −90 dBc/Hz
at a 10-kHz offset from the carrier frequency were realized.

Keywords: photonic integrated circuit; microwave generation; laser dynamics; optoelectronics oscillator

1. Introduction

Photonic microwave technologies have important applications in the field of radio over fiber
system, radar, lidar, unmanned driving, etc. The development of photonic microwave technologies
has received much attention. The generation of photonic microwave signals is generally based on
discrete devices, including multiple active and passive devices, which are bulky, costly and lossy.
With the development of photonic integration technology, photonic integrated chips are showing their
potential in photonic microwave generation and processing [1,2], with the possibility to greatly reduce
the system complexity, footprint, performance, and the cost.

To generate photonic microwave, at least two laser modes or sidebands are required, so that
the heterodyning signal after photodetection will produce a microwave signal corresponding to
the mode separation between the modes. Among various types of photonic integrated microwave
generators, dual-mode semiconductor lasers are typical ones. Many dual-mode structures have been
proposed, including the integration of two semiconductor lasers in series [3,4] or parallel [5], integrated
feedback cavity lasers [6,7], etc. By controlling the mode separation between the two modes, photonic
microwave with frequency ranging from GHz to THz can be obtained [3,7]. However, due to the
lack of the necessary phase correlation between the laser modes, the heterodyning signal usually
has a linewidth on the order of several or tens of MHz, which limits their potential applications in
many fields. To address the problem, many techniques such as optical injection locking [8,9], electrical
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modulation [10], or optoelectronic oscillation [11] have been proposed, which have greatly improved
the signal quality of the integrated photonic microwave source to a level comparable or even superior
to that obtained from electrical devices.

Another type of photonic microwave is the chaotic signal, which can be generated by
using semiconductor lasers under optical injection [12,13], optical feedback [14,15] or optoelectric
feedback [16,17]. Photonic integration technology provides a solution to combine the laser cavity and
the feedback cavity or injection sources into a single chip [7,18–20] so that the needs for free-space or
fiber-based feedback/injection are eliminated. Chaotic signals with bandwidth over tens of GHz have
been demonstrated [21,22].

In the above-mentioned structure, however, external photodetectors were required to generate
the microwave signal. In order to further include more functionality, the photodetectors have been
integrated on-chip [23,24]. In [23,24], the photodetectors were integrated with two distributed feedback
(DFB) lasers which were combined by a multimode interference (MMI) coupler. The tuning range of
the on-chip-generated microwave signal could reach several tens of GHz. However, the active and
passive integration requires additional regrowth process. Besides, the use of the MMI coupler resulted
in a long device length of several mm.

In this paper, we present a simple Indium-phosphide(InP)-based monolithically integrated
photonic microwave generator comprising of an amplified feedback laser (AFL) and a photodetector
for on-chip photonic and microwave generation. The integrated photonic chip shares the same active
material, no additional regrowth is required. The total length of the chip was only about 1.17 mm.
By adjusting the injection currents applied on the controlling electrodes, microwaves with various
waveforms including single tone, multitone and chaotic signal could be realized. Tunable microwave
ranging from 26.3 GHz to 34 GHz, chaotic signal with standard bandwidth of 12 GHz were obtained.
Furthermore, an optoelectronic oscillator (OEO) was constructed using the integrated photonic chip.
Thanks to the multifunctionality of the integrated chip, there was no need for external lasers source,
external microwave filter or external photodetector in the OEO system. Tunable microwave outputs
ranging from 25.5 GHz to 26.4 GHz, with single sideband (SSB) phase noise of less than −90 dBc/Hz at
10 kHz offset from the carrier frequency were demonstrated.

2. Device Structure and Fabrication Process

The integrated laser-photodetector-chip comprises an amplifier feedback laser and a photodetector,
as shown in Figure 1a. The AFL consists of a DFB section, a phase section, and an amplifier section.
The DFB section functions as a laser source, while the phase section and the amplifier section forms an
integrated feedback cavity, allowing the adjustment of the feedback phase and the feedback strength
through current injection. The AFL can work in single-mode (S), period one (P1) state, period two
(P2), chaos (C) state and dual-mode (D) state by controlling the bias currents. Normally, simple
control of the amplifier’s bias current will suffice to go through all of the states [7]. The on-chip
integrated photodetector directly converts the various dynamic states from the optical domain into
the electrical domain. The lengths of the DFB section, the phase section, the amplifier section,
and the photodetector section are 300 μm, 240 μm, 510 μm, and 30 μm, respectively. Each adjacent
section was electronically isolated by a 20-μm-long isolation region to prevent the electric crosstalk
between adjacent sections. The AFL section and the photodetector section shared the same multiple
quantum wells (MQWs) structure, which was grown on an S-doped n-type InP substrate by using
metal-organic chemical vapor deposition (MOCVD). The schematic illustration of the monolithically
integrated laser-photodetector chip is shown in Figure 1b. The epitaxial structure consists of six pairs
of compressively strained InGaAsP MQWs sandwiched between two 120-nm-thick InGaAsP separated
confinement heterostructure (SCH) layers. A gain-coupled Bragg grating was defined holographically
on the upper-SCH layer of the DFB section. Then a p-InP cladding and a p-InGaAs contact layer were
regrown by MOCVD. A 3-μm-wide ridge waveguide was fabricated by wet etching. The electrical
isolation region between two adjacent sections was formed by etching the p-InGaAs contact layer
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off, followed by He+ ion implanting, which provided a ~6 kΩ electrical resistance. A Ti-Au metal
layer was sputtered on the p-type InGaAs contact layer to form a p-contact. Then the substrate is
thinned, and Au-Ge-Ni/Au was evaporated on the backside. Finally, n-contact was formed after rapid
thermal annealing.

Figure 1. (a) Microscopic picture; (b) schematic diagram; and (c) test system diagram of the integrated
laser-photodetector chip. EA: electrical amplifier; EC: electrical coupler; OSA: optical Spectrum
analyzer; OSC: oscilloscope; ESA: electrical spectrum analyzer).

3. Experimental Setup and Results

3.1. Dynamic States

The integrated laser-photodetector chip was mounted on a ground-signal-ground (GSG) subcarrier
with the S-electrode connected to the p-contact of the photodetector to extract the on-chip electrical
signal, as shown in Figure 1c. An electrical amplifier (EA) with 27-dB gain was used to boost the
electrical signal. After passing through a DC block, the amplified electrical signal was split into
two parts by a 50:50 electrical coupler to monitor the temporal waveforms and the RF spectra by
using a real-time oscilloscope (OSC) (Tektronix DPO70000SX, 70-GHz bandwidth, Tektronix, Inc.
Beaverton, OR, USA) and an electrical spectrum analyzer (ESA) (Agilent PXA N9030 A, 50-GHz
bandwidth, Agilent Technologies Inc. Santa Clara, CA, USA), respectively. The optical spectra were
measured by coupling the emission light from the photodetector-side using an optical signal analyzer
(OSA) (Advantest Q8384, 0.01-nm resolution, Advantest Corporation, Tokyo, Japan). During the
measurement, the working temperature was maintained at 20 ◦C by a thermo-electric cooler (TEC).
Under −2.5 V bias condition, the on-chip photodetector had a −3 dB bandwidth of approximately
13 GHz (−10 dB bandwidth of ~26.5 GHz), which was measured by a 50-GHz vector network analyzer
(VNA) (HP 8510c, Hewlett-Packard, Palo Alto, CA, USA ).

When characterizing the dynamic states of the chip, the injection currents of the DFB section and
phase section were fixed at (IDFB, IPhase) = (78, 3) mA, and the dynamic state was controlled by tuning
the amplifier section’s injection currents. Figure 2 shows the optical spectra, radio frequency (RF)
spectra, temporal waveforms and phase portrait of the device outputs under different amplifier currents.
When IA = 0 mA, the chip works at the single-mode (S) state (Figure 2a) with side-mode suppression
ratio (SMSR) > 55 dB. The corresponding temporal waveform shows a constant level. Accordingly,
the phase portrait is a small spot. The RF spectrum reveals the characteristic relaxation-oscillation
frequency of the DFB laser is around ~9 GHz, as shown in Figure 2(a-ii). When IA increases to
9 mA, as shown in Figure 2(b-i), the chip enters into the period-one (P1) state, and the temporal
waveform shows a single period oscillation trace. The P1 state is also confirmed from the RF spectrum
and the phase portrait as well, where a fundamental frequency appears around 5.5 GHz and the
trajectories of phase portrait show clear limit cycle feature. Further increasing IA to 18.5 mA, the chip
is driven into the chaos (C) state, which can be confirmed from Figure 2c. The optical spectrum
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has been considerably broadened and the corresponding power spectrum covers a broad frequency
range. Besides, the temporal waveform fluctuates dramatically, and the phase portrait shows a widely
scattered distribution in a large area. As shown in Figure 2(c-ii), the chaotic electrical signal obtained
from the on-chip photodetector has a standard bandwidth up to 12 GHz, where the standard bandwidth
is defined as the span between the DC and the frequency where 80% of the energy is contained with
the power spectrum. Further increasing IA from 18.5 mA to 24.5 mA, the output gradually evolves out
of the C state and into a dual-mode (D) state. A typical optical spectrum of the dual-mode emission is
presented in Figure 2(d-i). The RF spectrum in Figure 2(d-ii) shows an oscillation peak at ~26.3 GHz,
corresponding to the dual-mode spacing. Due to the amplitude imbalance and the lack of coherence of
the two laser modes, the temporal waveform does not show a well-defined sinusoidal shape, and the
corresponding phase portrait also shows a limit cycle feature, but the traces are broadened compared
to the P1 state.

Figure 2. Various dynamic states of the output of the integrated laser-photodetector chip at VPD = −2.5 V,
IDFB = 78 mA, IPhase = 3 mA when IA varies from top to bottoms as (a) 0 mA (S state); (b) 9 mA
(P1 state); (c) 18.5 mA (C state); (d) 24.5 mA (D state). (a-i)–(d-i): optical spectra, (a-ii)–(d-ii): RF
spectra, (a-iii)–(d-iii): temporal waveforms, and (a-iv)–(d-iv): phase portraits of various dynamic
states, respectively.

In our previous work [7,25,26], we have theoretically and experimentally demonstrated that in
the dual-mode state, the beating frequency of the AFL’s emission increases with the increase of the
feedback strength as IA increases. The relationship between the frequency of the on-chip generated
microwave signal and IA of the integrated laser-photodetector chip was investigated by increasing IA

from 24.5 mA to 50.5 mA with a 2-mA step. When IA was fixed at 42.5 mA, the RF spectra were shown
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in Figure 3a, and the 3 dB linewidth of the beating RF signal was 7.6 MHz. As shown in Figure 3b,
the on-chip generated microwave signal can be tuned from 26.3 GHz to 34 GHz.

Figure 3. When VPD, IDFB, and Iphase were fixed at −2.5 V, 78 mA, and 3 mA, respectively, (a) the RF
spectra with IA = 42.5 mA, Inset: 100-MHz zoom-in view; and (b) the beating RF frequency when IA

varied from 24.5 mA to 50.5 mA.

3.2. High-Quality Microwave Signal Generation

The dual-mode AFL can function as an active microwave photonic filter (MPF) and a pump source
to start the optoelectronic oscillation in an optoelectronic oscillator (OEO) [11,27]. However, a discrete
photodetector is still needed to achieve O/E conversion. By using the integrated laser-photodetector
chip, a frequency tunable OEO with on-chip microwave generation capability was constructed.

The system diagram of the proposed OEO is shown in Figure 4, which contains an optical feedback
loop (O-Loop) and an optoelectronic oscillation loop (OE-Loop). When working, the dual-mode
signal travels through a circulator (Cir), a 99:1 optical coupler (OC), a 0.3-km-long single-mode fiber,
a Mach-Zehnder modulator (MZM) driven by the amplified beating signal, which was extracted
from the on-chip integrated photodetector and amplified by two electrical amplifiers (EA) with a
total gain of ~60 dB (OE-Loop). Then, the modulated dual-mode light was sent to a 1-km-long
single-mode fiber and injected back to chip through port 1 of the Cir to accomplish the O-Loop and
OE-Loop. The dual-loop configuration performs a fine mode selection, which helps to suppress
the unwanted cavity modes and improve the side-mode suppression ratio (SMSR) of the oscillation
modes. With the assistance of O-Loop, two kinds of injection locking will happen inside the integrated
laser-photodetector chip simultaneously. One is the delayed self-injection locking of an individual
mode by its fiber-delayed replica. The delayed self-injection will considerably reduce the laser
linewidth [9,28]. Besides, the equivalent bandwidth of the MPF will also be narrowed due to the
narrowed beating signals. The other one is the mutual-injection locking between laser modes and the
modulation sidebands. As a result, two laser modes will be synchronized at a fixed mode spacing
and phase difference. Accordingly, high-quality beating signal originated from the dual-mode will
be generated. The oscillation frequency was determined by the dual-mode spacing, which can
be tuned with the injection current of IA. In the O-Loop, the polarization controllers (PCs) were
used to match the polarization state between the feedback signal to the MZM and the integrated
laser-photodetector, and the variable optical attenuator (VOA) was used control the feedback strength,
respectively. The output signal was monitored through an OSA and an ESA.
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Figure 4. Schematic diagram of the optoelectronic oscillator (OEO) based on the integrated
laser-photodetector chip. EA, electrical amplifier; OC, optical coupler; EC, electrical coupler; Cir,
circulator; MZM, Mach-Zehnder modulator; PC, polarization controller; VOA, variable optical
attenuator; OSA, optical spectrum analyzer; ESA, electrical spectrum analyzer.

When IDFB, IPhase, and IA were biased at 75 mA, 1.5 mA, 42 mA, respectively, the integrated
laser-photodetector chip exhibited a dual-mode emission with a mode spacing of 26.05 GHz.
The dual-mode optical signal was converted to the electrical domain by the on-chip photodetector
and served as the oscillation seeding to start the optoelectronic oscillation. At an optical feedback
power of −12 dBm (measured at port 1 of the Cir), the OEO started to oscillate at the beating frequency.
Figure 5a shows the generated microwave signal. The inset shows the zoom-in view of this signal in a
1-MHz span. The SSB phase noise spectrum of the obtained microwave signal was measured by the
build-in phase noise module of the ESA. As shown in Figure 5b, the SSB phase noise of the 26.05 GHz
signal is −92.2 dBc/Hz at a 10-kHz frequency offset of the carrier frequency. Other spurious modes
have a maximal phase noise of <−73 dBc/Hz, indicating a good spectral purity of the OEO.

Figure 5. (a) The RF output from the OEO, Inset: zoom-in view in a frequency range of 1 MHz; (b) single
sideband (SSB) phase noise spectrum of the generated 26.05 GHz microwave signal.

By tuning the injection current of IA from 40 mA to 46 mA, the output frequency of the OEO can
be continuously tunable from 25.5 GHz to 26.4 GHz, as shown in Figure 6a. The SSB phase noise of the
generated microwave signals was all below −90 dBc/Hz at a 10-kHz frequency offset over the whole
frequency tuning range, as shown in Figure 6b. Due to the limited bandwidth of the photodetector,
a further increase of the frequency tuning range was not attained. A widely frequency-tunable OEO
can be expected if the bandwidth of the integrated photodetector can be further optimized.
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Figure 6. The OEO’s (a) RF spectrum; (b) SSB phase noise at the 10 kHz offset from the carrier
frequency, with IA varied from 40 mA to 46 mA, when VPD, IDFB, and IPhase were fixed at −2.5 V, 75 mA,
and 1.5 mA.

4. Discussion

Compared with [24], the integrated photonic chip is smaller, which only includes an AFL and a
photodetector. The dual-mode light is generated by the AFL, which oscillates in the same resonant
cavity. So, the phase correlation between the two modes is usually better than [24] in terms of optical
linewidth and heterodyning microwave signal. With this integrated chip, both optical and electronic
chaotic signal can be directly generated. The proposed frequency tunable OEO based on the integrated
laser-photodetector chip shows a further step toward highly integrated on-chip OEO system. The small
frequency adjustment range of the system can be improved by optimizing the material structure of the
detector, adopting PIN photodiodes (PIN-PD) or uni-traveling-carrier photodiodes (UTC-PD) type
detector structure using the butt-joint growth technique to increase the bandwidth of the detector.

5. Conclusions

In conclusion, we demonstrated an InP-based monolithically integrated photonic chip including
an AFL and a detector for on-chip photonic and microwave generation. The device shows rich dynamic
states, including single tone, multi-tone, and chaotic signal. The output optical signal can be directly
converted into electrical signals by the on-chip photodetector. Single-tone photonic microwave signal
with a frequency tunable from 26.3 GHz to 34 GHz and chaotic signal with a standard bandwidth
of 12 GHz was obtained. An OEO based on the integrated photonic chip was built. High-quality
microwave signal tunable 25.5 GHz to 26.4 GHz were obtained without the using of external electrical
filters and photodetectors. SSB phase noise less than −90 dBc/Hz at a 10-kHz offset from the carrier
frequency over the entire frequency range was realized.
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Abstract: We discuss the sensitivity to optical feedback of a semiconductor ring laser that is made
to emit in a single-longitudinal mode by applying on-chip filtered optical feedback in one of the
directional modes. The device is fabricated on a generic photonics integration platform using
standard components. By varying the filtered feedback strength, we can tune the wavelength and
directionality of the laser. Beside this, filtered optical feedback results in a limited reduction of the
sensitivity for optical feedback from an off-chip optical reflection when the laser is operating in the
unidirectional regime.

Keywords: semiconductor ring laser; optical feedback; laser stability

1. Introduction

Many studies have shown that semiconductor lasers are very sensitive to optical feedback, i.e.,
to part of the laser light being reflected back into the laser cavity with a delay [1–6]. Such coherent
optical feedback (COF) is often difficult to avoid in practical systems, as it can be caused, for example,
by reflections from a fiber tip or from other boundaries between materials with different refractive
indices in the optical system to which the laser beam is coupled. COF can lead to linewidth narrowing
for very weak feedback [2], but for larger feedback strengths it will typically introduce unwanted
instabilities in the laser output [3]. For example, it has been shown that COF can lead to linewidth
broadening [4], chaotic intensity fluctuations [5] and coherence collapse [6].

In order to avoid or suppress the COF-induced instabilities, several approaches have been
investigated [7–9]. The most straightforward way to avoid them is to place an optical isolator with
a large isolation ratio at the output of the laser. This works well to avoid COF-induced dynamics,
but is an expensive approach as the isolator needs magneto-optic materials that—for technological
reasons—cannot easily be integrated on the laser chip. Moreover, the optical isolator needs to be
accurately aligned with the laser chip to avoid propagation losses of the emitted beam. Because of the
high cost of such external isolators, there is considerable interest in other approaches to achieve the
goal of suppressing the COF-induced dynamics in a semiconductor laser.

A laser with a ring-shaped cavity is inherently interesting for the purpose of suppressing feedback
dynamics, as any externally reflected light will be re-injected in the cavity in the direction opposite to
that of the initially emitted beam: imagine such a ring laser to emit in the clockwise (CW) directional
mode, optical feedback will then result in part of this beam being coupled into the counterclockwise
(CCW) directional mode. In [7], a weak optical isolator is integrated in the laser cavity in order to make
one of the directional modes dominant, such that the COF is injected in the directional mode that is
switched-off, hence reducing its destabilizing effect. But this approach requires complex components in
the laser cavity to achieve the required weak optical isolation, making the laser system difficult to control.
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Another ring-laser based device was studied in [9], where the fabrication process of the semiconductor
ring laser (SRL) is optimized to such a degree that coupling between the directional modes through
backscattering is very low. This results in unidirectional operation (i.e., the laser emits in one of the
directional modes) of the fabricated SRLs, which leads to a strong suppression of feedback-induced
dynamics [8] as compared to a Fabry–Perot laser fabricated on the same chip. However, when using
generic integration platforms—which are not optimized for one specific purpose—the backscattering
will typically be much higher, resulting in bidirectional operation (i.e., the power in the two directional
modes being roughly equal) of fabricated SRLs [10,11].

In this paper, we investigate the feedback sensitivity of an SRL that we designed and fabricated
using the generic JeppiX fabrication platform [12]. Because of a substantial amount of backscattering
between the directional modes, the SRL itself will typically emit bidirectionally. In this design, we
included on-chip filtered optical feedback (FOF) paths that have been shown [11] to make the SRL emit
in a single-longitudinal mode. Controlling the FOF also allows us to tune the emitted wavelength
of the SRL. Moreover, as we will discuss in the next sections, the FOF in this SRL has as a side effect
that it makes the emission (somewhat) unidirectional. Based on the above mentioned work in [8] on
unidirectional SRLs, we thus expect our SRL design to be less sensitive to optical feedback from off-chip
reflections. In order to check the effectiveness of this approach, we experimentally and numerically
study in this paper the sensitivity of our SRL design to undesired external optical feedback.

The remainder of the paper is structured as follows. In Section 2 we describe the layout of the SRL
and we detail the experimental setup. The results of the experiments and numerical simulations are
shown in Section 3, whereas Section 4 is devoted to the discussions of the results. Finally, we end the
paper with conclusions in Section 5.

2. Materials and Methods

2.1. Layout of the SRL

The layout of the device is illustrated by the picture shown in Figure 1. It has been fabricated
using the standard building blocks from the Oclaro foundry, and a detailed description of the layout is
given in [11]. As can be seen in Figure 1, the SRL has a racetrack-shaped geometry and optical gain is
provided by two semiconductor optical amplifier (SOA) sections that are electrically interconnected.
The laser cavity also contains two 2 × 2 multi-mode interference (MMI) couplers, which each couple
50% of the light out of the cavity. The outputs of the top MMI are coupled to the edges of the laser chip
such that the CW and CCW modes can be measured. The bottom MMI in Figure 1 couples to two
FOF branches. Each of these branches consists of a phase shifter (PS), an SOA and a distributed Bragg
reflector (DBR). These components can be electrically tuned by adapting the current injected in the
attached contact pad, such that we have control over the center wavelength (by changing the DBR
current), the strength (by changing the SOA current) and the phase (by changing the PS current) of the
FOF. Feedback arms 1 and 2 are used to control the FOF into the CW and CCW directions, respectively.

 
Figure 1. Image of the semiconductor ring laser with filtered feedback, in which the different laser and
feedback components are indicated.
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2.2. Experimental Setup

To measure the static and dynamic characteristics of the SRL, we used the setup that is schematically
depicted in Figure 2. The SRL was mounted on a temperature-controlled heat sink, with which we
stabilized the temperature of the laser chip at 21 ◦C. In principle, each of the contact pads visible in
Figure 1 can be connected to a current source using electrical contact probes, but for the work presented
in this paper only the laser pad and the SOA pad in feedback arm 2 were contacted. This allowed us to
change the laser’s injection current Ilaser and the current ISOA1 that controls the strength of the FOF of
arm 2. It should be noted that we have obtained similar results when using FOF from feedback arm 1,
with the difference being that the roles of the CW and the CCW modes are then reversed. Light emitted
in the CW and in the CCW direction was collected outside the laser chip using lensed fibers. Light
emitted in the CCW direction was sent through a feedback loop, and was coupled back with a time
delay of about 50 ns into the CW directional mode. The COF feedback loop consisted of a circulator, an
external SOA, an optical bandpass filter, a 2 × 2 single-mode splitter and a polarization controller. The
circulator directed the CCW light from the laser towards the external SOA. The current ISOA2 injected
in this external SOA was used to control the COF strength. Next, the amplified light was sent through
a tunable bandpass filter with a bandwidth of 0.3 nm of which the center wavelength was tuned to
the SRL’s wavelength. This tunable filter was needed to remove the amplified spontaneous emission
noise—introduced by the external SOA—from the feedback signal. The polarization controller was
used to adjust the polarization of the re-injected light such that it matched the emitted polarization
direction. Light was re-injected into the SRL chip using the third port of the circulator. The splitter
coupled 50% of the light out of the feedback loop such that we could measure its temporal and spectral
properties. The optical spectrum was measured with a scanning spectrum analyzer set at a resolution
of 0.02 nm. Time traces of the intensity fluctuations were measured using a 12 GHz photo-detector
coupled to a fast oscilloscope of which the input bandwidth was set at 13 GHz in the experiments
discussed in Section 3.

 

 

Figure 2. Schematic of the experimental setup. LF, lensed fiber; SOA2, semiconductor optical amplifier
used to tune the coherent optical feedback (COF) strength; TF, tunable optical bandpass filter; Det,
fast opto-electronic detector; PC, polarization controller.

2.3. Rate-Equation Model

The behavior of the SRL under the effect of FOF and/or COF can be simulated using different
models [13,14]. In this work, we used a two-directional mode rate equation model of the SRL [15],
extended with Lang–Kobayashi terms, to take into account the optical feedbacks [16]. The equations of
this models are:

.
E

cw
= κ(1 + iα)[NGcw − 1]Ecw − (kd + i kc)Eccw + η1Eccw(t− τ1) +

√
Dξcw, (1)

.
E

ccw
= κ(1 + iα)[NGccw − 1]Eccw − (kd + i kc)Ecw + η2 Ecw(t− τ2) +

√
Dξccw, (2)

1
γ

.
N = μ− N −N

(
Gcw

∣∣∣Ecw
∣∣∣2 + Gccw

∣∣∣Eccw
∣∣∣2). (3)

Equations (1) and (2) describe the evolution of the slowly varying complex electric fields Ecw and
Eccw of the CW and CCW directions, respectively. The number of carriers, N, is described by Equation
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(3). We have limited ourselves to one longitudinal mode (LM). The values of the different parameters
are as follows: κ = 200 ns−1 is the field decay rate, α = 3.5 is the linewidth enhancement factor, μ = 1.2
is the normalized injection current, γ = 0.4 ns−1 is the carrier inversion decay rate. The effect of the
backscattering is taken into account using the dissipative backscattering parameter kd = 0.2 ns−1 and
the conservative backscattering parameter kc = 0.88 ns−1 which have been used for both of the two
directional modes. The differential gain functions are given by:

Gcw = 1− s
∣∣∣Ecw

∣∣∣2 − c
∣∣∣Eccw

∣∣∣2, (4)

Gccw = 1− s
∣∣∣Eccw

∣∣∣2 − c
∣∣∣Ecw

∣∣∣2, (5)

where s = 0.005 is the self-saturation and c = 0.01 is the cross-saturation between the two directions of
the same LM. η1 represents the strength of the COF. τ1 is the delay time of the COF which is measured
in our setup to be 50 ns. η2 represents the strength of the FOF. As the FOF couples the CW mode
back into the CCW mode, we only include an FOF term in Equation (2). The bandwidth of the filter
in the feedback loop is adiabatically eliminated from Equation (2) as this filter bandwidth is much
larger than the bandwidth of the fluctuations in Ecw and Eccw. τ2 is the propagation time in the FOF
section which is integrated on the chip and is very small. Therefore, we take τ2 equal to zero in the
simulations. Here it is important to mention that the feedback scheme in this study is different from the
feedback scheme which has been discussed in [17,18], where self-feedback has been investigated. The
last terms in Equations (1) and (2) represent the effect of spontaneous emission noise coupled to the
CW/CCW modes [18,19]. D represents the noise strength expressed as D = D0(N + G0N0/κ), where D0

is the spontaneous emission factor, G0 = 10−12 m3s−1 is the gain parameter, N0 = 1.4 × 1024 m−3 is the
transparency carrier density. ξi (t)(i = cw, ccw) are two independent complex Gaussian white noises
with zero mean and correlation 〈ξi(t)ξ∗j

( .
t
)
〉 = δi j

(
t− .

t
)
. Time is rescaled to photon lifetime τph = 5 ps.

3. Results

3.1. Experimental Results

Using the setup of Figure 2, we first measured the static characteristics of the studied SRL.
The output power of the two directional modes is shown in Figure 3 as a function of the laser injection
current (without pumping the SOAs in the FOF arms). The threshold current of this device was 34 mA.
For all currents not too far above threshold, the power in the two directional modes was roughly equal,
showing that this SRL always operates in the bidirectional regime [13], which indicates that there
was a substantial amount of backscattering in SRLs fabricated on the used platform. For some laser
bias currents, the SRL emitted in a single longitudinal mode, but for most values of the laser injection
current, the laser emitted multiple longitudinal modes. The longitudinal mode spacing was measured
to be 0.2 nm. The DBRs in the FOF arms have a peak intensity reflection of 0.58 and a reflection
bandwidth of 2 nm. In [11] we have shown that a sufficiently large amount of feedback in either of the
FOF channels resulted in single longitudinal mode operation, that the wavelength of the emitted mode
could be changed by changing the DBR center reflection wavelength, and that this wavelength could
be fine-tuned using the phase shifters in the FOF arms.
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Figure 3. Output power of the two directional modes versus laser injection current while the current in
the filtered optical feedback (FOF) section is equal to 0 mA.

If we only applied FOF in one of the arms, the FOF had an additional effect that made the SRL
somewhat unidirectional. This is illustrated by the measurement shown in Figure 4, where we plot
the power in the two directional modes as a function of the current ISOA1 injected in the SOA of FOF
arm 2 in Figure 1. The laser current Ilaser was kept constant, as shown in Figure 4, at a value of 60 mA.
For low values of ISOA1, most power was emitted in the CW direction. But as ISOA1 was ramped up, the
power in the CCW direction gradually increased at the expense of the power in the CW direction. This
is to be expected from the feedback configuration used in this experiment as the FOF in feedback arm 2
coupled light from the CW direction into the CCW direction. The power distribution over the two
directional modes is further detailed at the right-hand side of Figure 4, where we plot the ratio between
the power in the CCW direction and the power in the CW direction. This so-called directional mode
suppression ratio (DMSR) increased most strongly when ISOA1 increased from 0 to 11 mA, and then
continued to increase at a slower pace for still higher values of ISOA1.
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Figure 4. Output power of the two directional modes versus current injected in the semiconductor
optical amplifier (SOA) in the FOF arm 2 (left) and directional mode suppression ratio as a function of
the SOA current in the FOF arm (right) at a laser injection current of 60 mA.

Based on Figure 4, we identified three interesting bias points (indicated by the black arrows)
at which we wanted to investigate the sensitivity to COF. The first bias point, BP1, corresponds to
ISOA1 = 0 mA, as in that case there was no FOF and we measured the feedback sensitivity of the SRL
itself. The second bias point, BP2, that we would further investigate corresponds to ISOA1 = 11 mA,
as in this case the FOF clearly favored the CCW directional mode. Finally, the third selected bias
condition, BP3, corresponds to ISOA1 = 30 mA and in this case the directional mode suppression ratio
was greatest. For BP2 and BP3, the SRL emitted a single longitudinal mode whose wavelength of
1551.555 nm was determined by the reflection spectrum of the DBR in feedback arm 2. For BP1, the
output of the SRL was also single-mode but the emission wavelength of 1538.405 nm was determined
by the gain maximum.

Next, we measured time traces of the intensity in the CCW direction for different values of the
current ISOA2 injected in the external SOA. We first calibrated the amplification of the external amplifier
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by measuring the power transmitted through the external SOA as a function of its bias current (while
keeping the laser current Ilaser and the FOF current ISOA1 constant). For small values of ISOA2, the CW
intensity was rather constant with some noise-induced fluctuations around the steady state. This is
illustrated in Figure 5 (left) at a setting (Ilaser, ISOA1, ISOA2) = (60 mA, 11 mA, 500 mA). Increasing ISOA2

eventually led to undamping of the relaxation oscillations as illustrated in Figure 5 (middle) for (Ilaser,
ISOA1, ISOA2) = (60 mA, 11 mA, 600 mA). This marks the onset of the COF-induced dynamics. For
larger values of the COF strength, the feedback-induced dynamical fluctuations became stronger and
more complex as illustrated in Figure 5 (right) for (Ilaser, ISOA1, ISOA2) = (60 mA, 11 mA, 700 mA).

In order to quantify the strength of the feedback-induced dynamics in a simple way, we used
the following metric: we extracted the rescaled STD as the ratio between the standard deviation of
the laser intensity fluctuations σlaser and the mean value of the detector signal. Calculating this ratio
is equivalent to rescaling the time traces such that the average value of the detector signal is equal
to one. We performed this rescaling of the STD to make the extracted values independent of the
average power coupled to the read-out fiber. The noise of the oscilloscope and the photo-detector are
compensated for when extracting the value of σlaser from the time traces by assuming that the noise of
these sources is Gaussian and is independent from the fluctuations in the laser’s intensity. To perform
this compensation, we measured a time trace of the detector signal (using the same oscilloscope settings
as when measuring the laser’s intensity) without optical input to the detector. From this time-trace,
we determined the standard deviation σdet of the detector and oscilloscope noise (the mean value of
the detector and oscilloscope noise was measured to be close to zero). Using the standard deviation
σtimetrace extracted from the intensity time trace, we estimate the standard deviation of the intensity

fluctuations σlaser to be σlaser =
√
σ2

timetrace − σ2
noise.

In Figure 6 we plot the value of the rescaled STD for the three bias conditions BP1, BP2 and BP3
mentioned above. The COF signal strength, plotted on the horizontal axis of Figure 6, was changed by
changing ISOA2 and was obtained by measuring the optical power after the splitter in Figure 2 when
the feedback loop was open. For each of the bias conditions, the STD was small for small values of
the COF strength, as there were not yet any feedback-induced dynamics in the time traces. When
increasing the COF strength, we can see in Figure 6 that the onset of the feedback-induced dynamics
was lowest for bias condition BP1, i.e., without FOF to stabilize the laser. When FOF was applied
(see measurements for BP2 and BP3 in Figure 6), the onset of the COF dynamics was shifted to larger
values of the feedback strength, but this shift was not large for BP2 and BP3: the shift in the onset
when comparing BP1 to BP2 was roughly a factor of 2 and was thus rather modest as compared to the
suppression of feedback dynamics in strongly unidirectional SRLs [7,8]. Moreover, when increasing
the FOF strength from BP2 to BP3, we actually observed a slight drop in the onset of the COF dynamics.
The experiments thus show only a limited effectiveness of the proposed FOF scheme to suppress
these dynamical fluctuations, and this effectiveness is furthermore dependent on the exact value of
the applied FOF strength. The reason behind these observations will be clarified based on numerical
simulations of the system in Section 3.2.
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Figure 5. Time traces of the laser’s output as measured by the detector in the setup of Figure 2 at a laser
injection current of 60 mA and an SOA current in the FOF path of 11 mA for different strengths of the
COF by changing the current injected in SOA2 in the COF path: ISOA2 = 500 mA (left), ISOA2 = 600 mA
(middle) and ISOA2 = 700 mA (right).
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Figure 6. Rescaled STD from time traces of the laser’s output as a function of the COF signal strength as
measured after the splitter in Figure 2 for different values of the ISOA1 (which controls the FOF strength).

3.2. Results from Numerical Simulations

Using the rate-equations that have been introduced in Section 2.3, we performed a series of
numerical simulations that mimic the experiments described above. In these simulations we set the
normalized injection current to 1.2 and we selected particular values for the FOF and COF strengths in
order to simulate time-traces of the directional powers. We remark here that we have obtained similar
behavior for other values of the pump strength. From these time traces, we then extracted the STD of
the intensity fluctuations in a similar manner to that used in the experiments represented in Figure 6.
We show in Figure 7 (left) the simulated time traces when the strength of the COF was η1 = 0.4 ns–1

(as this is a good setting to show the effect of the FOF on the onset of the laser dynamics). In the red
time trace of Figure 7 (left), FOF was not used whereas the FOF strength was set to 2 ns–1 in the blue
time trace of Figure 7 (left). Using FOF, the intensity fluctuations in the time trace became smaller as
compared to the case without FOF. We also notice that the average intensity in the CCW direction
increased due to the FOF, as it enhances the CCW mode (see also Figure 4). As a result, the rescaled
STD was smaller for the trace in Figure 7 (left) corresponding to η2 = 2 ns–1.

The rescaled STD of the time traces was measured in the experiments to be 0.02. We used this
value to estimate D0 to be 2 × 10−6 ns−1 in order to find the same rescaled STD in the simulations
without COF. Similarly to the experiments, we started by calculating the mean value and the STD
of the time traces without FOF (η2 = 0 ns−1). We increased the strength of the COF by increasing η1

from 0 to 1.0 ns−1 in steps of 0.05 ns−1 while the rest of the parameters were fixed (η2 = 0 ns−1). Next,
we repeated the calculations of the mean value and the STD of the time traces, but this time with FOF
by setting η2 to 3 ns−1, 5 ns−1 and 8 ns−1, while the rest of parameters were kept unchanged. We plot
the rescaled STD from the simulations in Figure 7 (right) as a function of the COF strength η1. At low
values of the COF strength, the STD is relatively small and remains approximately constant when
changing the COF strength. The onset of COF-induced dynamics is visible in these curves as the point
at which the STD starts to rapidly increase with increasing COF strength. Similarly to the experiments,
the onset happened first for the laser without FOF around η1 = 0.2 ns−1. When FOF was applied, the
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onset first shifted to larger COF strengths, but this shift is albeit rather limited. When further increasing
the FOF strength, the onset of the dynamics shifted erratically and we did not observe a continuous
increase in the onset. These numerical results thus agree qualitatively with our experimental trends
and observations discussed in Section 3.1, and show that the FOF scheme presented in Figure 1 does
not really help to reduce the COF-induced dynamics.
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Figure 7. Simulated time traces in the CCW direction when the COF strength is η1 = 0.4 ns–1 without
FOF in red and with FOF using η2 = 2 ns–1 in blue (left). Standard deviation of the simulated time
traces of the laser’s output as a function of the COF strength η1 for different values of the FOF strength
η2 (right).

To further elucidate the stabilizing effect of the FOF on the SRL’s dynamical behavior, we computed
and analyzed the so-called Lyapunov exponents, λi, from the model described in Equations (1)–(3)
without noise (setting D = 0). By studying the Lyapunov spectrum, we tried to understand how FOF
influences both the stability and complexity of the chaotic dynamics that might have arisen. For the
computation of the Lyapunov exponents, we applied the ideas of Farmer [20] to our case. Specifically,
we integrated the corresponding delay differential equations with an Euler method. This converts
the original delay differential equations in a map. We computed the Lyapunov exponents of this
map. Only a finite portion of the infinite set of λi can be determined by such a numerical analysis. In
Figure 8, we present the five largest Lyapunov exponents vs. the COF strength η1. Due to the field
nature of the equations, one exponent will always be zero. If only the maximal exponent is zero, the
SRL will be emitting in a continuous wave. If two exponents are zero, while the others are all negative,
the laser output will be periodic. If more exponents are zero, the dynamics can correspond to either
periodic or quasi-periodic behavior. Once the maximal Lyapunov exponent becomes positive, the
SRL will be operating chaotically. From Figure 7 (right) and Figure 8 (left), in the case of no filtered
feedback, the increase of the STD around η1 = 0.1 to 0.4 ns–1 can be attributed to a bifurcation from
continuous wave emission to periodic oscillations. It is only later, after a regime of quasi-periodic
behavior, that the laser became chaotic (around η1 = 0.8 ns–1). With FOF ( η2 = 3.0 ns–1), in Figure 8
(middle), below η1 = 0.7 ns–1, the SRL with filtered feedback was continuously lasing except for some
very small windows of periodic behavior. While this seems to indicate that the SRL would be more
stably lasing, the negative Lyapunov exponents were now much smaller in amplitude. This indicates
that the SRL would be much easier to destabilize due to noise, for example. The bifurcation to chaotic
behavior hardly moved and still appeared at feedback strengths around η1 = 0.8 ns–1. However, its
accompanying positive Lyapunov exponents were increased significantly, indicating a more complex
and less damped dynamical chaotic behavior. For η2 = 8.0 ns–1 (Figure 8 (right)), it is clear that
the large region of chaos shifted to lower values of η1 (η1≈ 0.4 ns–1). Around η1 = 0.2 ns–1, the
laser was first destabilized as a small window of mildly chaotic behavior appeared (i.e., only one of
the Lyapunov exponents was positive). This onset of chaotic oscillations corresponds to the abrupt
change in the rescaled STD observed numerically in Figure 7 (right) and experimentally in Figure 6 for
ISOA1 = 30 mA. To conclude, with filtered feedback, the dynamical behavior of the SRL was altered
considerably. For some values of the filtered feedback this led to a larger but less stable continuous
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wave regime and chaos which was more complex. Because of the larger continuous wave regime,
the feedback sensitivity was somewhat reduced as compared to the device without FOF.
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Figure 8. The five largest Lyapunov exponents: without FOF (i.e., η2 = 0 ns–1) (left), with FOF (i.e.,
η2 = 3 ns–1) (middle) and with large FOF strength (i.e., η2 = 8 ns–1) (right).

4. Discussion

The above results show that the filtered feedback has only a marginal beneficial effect regarding
feedback sensitivity of the SRL. Even more, in several cases the filtered feedback leads to a further
destabilization of the laser dynamics. One reason that comes to mind as to why the addition of the
filtered feedback does not deliver the desired outcome, is the fact that the SRL is not operating in
an ideal unidirectional emission regime, i.e., the CW mode in which the COF signal is reinjected is
not fully turned off. To investigate if this might be the issue, we have considered an ideal SRL with
no backscattering between the two counter-propagating modes (i.e., kd = kc = 0) in the numerical
simulations. In this case, the SRL without any feedback operates in a unidirectional regime with the
full output power concentrated either in the CW or CCW mode. In Figure 9, we show the results from
a numerical analysis of the Equations (1)–(3) for kd = kc = 0. The left-hand side of Figure 9 shows
rescaled STDs obtained from time traces using the procedure described above. For all cases, we find
that the STD increases for low COF strengths, which are even lower than in Figure 7. The right-hand
side of Figure 9 shows the five largest Lyapunov values describing the noiseless dynamics of the SRL in
the case of filtered feedback. Again, at a very low feedback strength (η1 > 0.05 ns–1), the SRL becomes
chaotic. It is clear that even in the case of no backscattering, the filtered feedback actually destabilizes
the SRL. This indicates that—for the device layout studied here—a feedback signal in the quiescent
directional mode is coupled (through the FOF branch) sufficiently strongly to the dominant directional
mode in order to invoke delay-induced dynamical fluctuations.
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Figure 9. Standard deviation of the simulated time traces of the laser’s output as a function of the
COF strength (left) and the five largest Lyapunov exponents (right) with FOF (η2 = 3 ns–1) when the
backscattering is set to zero.
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5. Conclusions

In this paper we studied—both experimentally and numerically—an SRL in which on-chip filtered
optical feedback is used to tune the wavelength, to enforce single-longitudinal mode operation and to
enhance the directionality of the laser. More particularly, we focused on the sensitivity to coherent
optical feedback from a longer off-chip delay path, and we initially speculated that the FOF might result
in a higher tolerance to COF. However, our experiments and modeling show that the FOF does not
result in a substantial shift of the COF-induced dynamics towards higher COF strengths. We attribute
this to the fact that the COF signal after reinjection into the SRL is coupled back into the lasing mode
via the filtered feedback. Even when the backscattering would be reduced strongly, our simulations
show that this will not result in a beneficial effect for the studied SRL with FOF configuration.
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Abstract: The National Time Service Center of China is developing a compact, highly stable,
698 nm external-cavity diode laser (ECDL) for dedicated use in a space strontium optical clock.
This article presents the optical design, structural design, and preliminary performance of this
ECDL. The ECDL uses a narrow-bandwidth interference filter for spectral selection and a cat’s-eye
reflector for light feedback. To ensure long-term stable laser operation suitable for space applications,
the connections among all the components are rigid and the design avoids any spring-loaded
adjustment. The frequency of the first lateral rocking eigenmode is 2316 Hz. The ECDL operates near
698.45 nm, and it has a current-controlled tuning range over 40 GHz and a PZT-controlled tuning
range of 3 GHz. The linewidth measured by the heterodyne beating between the ECDL and an
ultra-stable laser with 1 Hz linewidth is about 180 kHz. At present, the ECDL has been applied to the
principle prototype of the space ultra-stable laser system.

Keywords: external-cavity diode laser; interference filter; laser diode; laser stabilization;
space optical clock

1. Introduction

Compared to most other types of laser, diode lasers are cheap and simple to use; they also have a
high power and cover a large wavelength range. They have therefore become attractive light sources
with versatile applications in many fields of optical technology and experimental physics, such as
optical atomic clocks, precision measurement, astrophysics, and quantum communication [1–5].
With this wide spectrum of applications, it is not surprising that lasers are used in very different
environments, with one of the most demanding being space [6].

In 1980, Lang and Kobayashi [7] applied external-cavity feedback technology to diode lasers.
The increased external cavity can narrow the laser line width, and The wavelength can be tuned
by changing the external cavity length. In The following years, Soviet scientists, for The first time,
used a diffraction grating to feed back part of the output light of the diode laser to the active region,
narrowing the linewidth of the laser to 1.5 MHz [8]. Common external-cavity diode laser (ECDL)
designs such as the Littrow [9,10] and Littman–Metcalf configurations [11,12] use diffraction gratings
for wavelength selection. Those lasers require precise alignment and are therefore sensitive to acoustic
and mechanical disturbances, particularly when a spring-loaded kinematic mount is used to align the
grating or feedback optics [13]. Another design uses a narrowband interference filter (IF) placed in a
linear cavity as a frequency-selective component [14–16]. Because The wavelength of the transmission
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maximum depends on the angle of incidence, where the angle is the angle of incidence and the
maximum wavelength is the transmitted wavelength at normal incidence, the wavelength can be
tuned by turning the filter. This leads to a sensitivity of dλ

/
dθ = 0.017 nm/mrad, which is 60 times

better than that of the Littrow configuration. Thus, the laser design is in principle less sensitive to
mechanical vibrations and disturbances. With these advantages, the interference-filter configuration
was chosen for the PHARAO [17,18] and SOC2 [19] projects for space laser systems.

As the atomic clock with the highest performance index in the world, the measurement accuracy
of a strontium atomic optical clock has entered the order of 10−19 [20]. In the microgravity environment
of space, the performance of optical clocks is expected to be further improved [21]. The National
Time Service Center (NTSC) of China is conducting research on the space Sr atomic optical clock.
In the strontium atomic optical clock system, the wavelength of the clock transition 1S0 →3 P0 is
698 nm, and The natural linewidth is only 1 mHz. The linewidth of the detection light must reach the
order of Hz or even sub-Hz. We use an ultra-narrow linewidth laser to detect the clock transition line.
The ultra-narrow linewidth laser (also called clock laser) was obtained by locking the laser frequency
to a high-finesse optical reference cavity by means of the Pound–Drever–Hall (PDH) technique [22].
The ECDL developed in this paper is used as the light source of an ultra-narrow linewidth laser system
which is aimed to has a free-run linewidth at the level of 500 kHz or less. At present, commercial
semiconductor lasers at 698 nm have wavelength tuning capabilities up to 10 nm. However, due to the
use of an elastically loaded adjustment device, the structure is not very stable and usually needs to be
readjusted every month to ensure good optical feedback and correct wavelength. Although The laser
developed in this paper does not have a wide range of tuning capabilities, it has a stable structure and
is one of the best choices to meet our special applications.

The objective of the present study is to develop and characterize a prototype of a 698 nm
interference-filter external-cavity diode laser (IF-ECDL). The developed ECDL is compact and robust,
and it will be planned for use in China’s space Sr atomic light clock system in the future.

2. Working Principle of the IF-ECDL

In the IF-ECDL, the interference filter provides wavelength selection, and a partially reflective
mirror provides optical feedback, as shown schematically in Figure 1. The interference filter is
composed of alternating layers of dielectric material that can transmit a narrow frequency band
while reflecting the light of other wavelengths. The narrowband interference filter is actually a thin
Fabry–Perot etalon with only one transmission peak in the visible range, also known as a line filter.
The bandpass section of an interference filter is made by the repetitive vacuum deposition of thin layers
of partially reflecting dielectric compounds on a glass substrate. Dielectric layers are arranged to form
reflective cavities. The spacer region is designed to be λ0/2 thick, where λ0 is the central wavelength
of the filter. This allows light that meets the reflection boundary conditions to be reinforced and
transmitted by the cavity. The rejected light is reflected by the layers of dielectric material. The laser
light generated by the semiconductor laser is collimated into parallel light by a lens, and then incident
on the interference filter at a certain angle θ. Using the multi-beam isotropic interference theory,
the wavelength λ at the peak of the transmittance is

λ = λmax

√
1 − sin2θ

n2
IF

(1)

where nIF is the interference filter’s effective index of refraction, and λmax is the transmission
wavelength value of the narrow-band filter when the beam is normally incident, and is also the
maximum limit wavelength value in the tuning range of the narrow-band filter.
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Figure 1. Schematic of interference-filter external-cavity diode laser (IF-ECDL). LD: laser diode;
CL: collimating lens; IF: interference filter; L1: cat’s-eye lens; PZT: piezotube; OC: partially reflective
out-couple mirror; L2: re-collimating lens.

Assuming that the outgoing light intensity of the bare laser diode is I, then the total light intensity
transmitted through the interference filter is given by the Airy formula

IT = I0
1

1 + FIFsin2(θ/2)
(2)

where FIF is the fineness of the IF. By rotating the angle of the interference filter placed in the ECDL
resonator cavity with respect to the laser, the wavelength of the laser exiting the IF-ECDL is tuned.
Using the IF for frequency selection, a single longitudinal mode laser can be obtained.

3. Design of the IF-ECDL

3.1. Optical Design

A semiconductor laser diode (LD) with a central wavelength of 698 nm is anti-reflection coated
on its output facet and is combined with an external cavity, leading to a large tuning range for the
wavelength. The cavity length of the LD is 750 μm, and The reflectance of the two surfaces are 1 for
the back face and 3 × 10−4 for the AR coated face. The light coming from the LD is collimated by a
collimating lens (CL) with a focal length of 4.02 mm and a numerical aperture of 0.6. To collect as
much light from the diode as possible, the CL must have a large numerical aperture.

The optical feedback is provided by a combination of a cat’s-eye lens (L1) with a focal length
of 15.29 mm and a partially reflective out-couple mirror (OC) with 30% reflectivity in focal distance.
This cat’s-eye configuration is less sensitive to misalignments of the OC compared to the case of
feedback with no such lens. A cat’s-eye reflector decreases the sensitivity to optical misalignment and
maximizes the feedback efficiency. The overall external-cavity length from the LD output facet to the
OC front facet is 50 mm and corresponds to an axial mode spacing of

ΔFSR =
c

2L
= 3 GHz. (3)

The optical length of the external cavity is tuned with a piezotube (PZT) of 9 mm in length and
with internal and external diameters of 5 and 10 mm, respectively. Applying a voltage of 100 V to the
PZT changes the length of the external cavity by 1.4 μm. For a given optical mode, a variation Δl in
the optical path l of the external cavity yields a relative frequency detuning of

Δν

ν
= −Δl

l
(4)

allowing the PZT to tune the laser frequency with a response of −120 MHz/V.
The final optical component in the optical path is a re-collimating lens (L2) with a focal length of

11 mm, which is used to re-collimate the out-coupled laser. To narrow the output beam, the L2 focal
length is chosen to be smaller than the L1 focal length.
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An IF is placed inside the external cavity between the CL and L1 and is used for coarse wavelength
tuning. It is part of a resonator that forces the laser to maintain a stable single mode and reduces
the linewidth. The IF is made of a substrate that is coated with many dielectric layers on one side
and anti-refection coated on the other side [23]. It has a 0.48 nm super-narrow passband and a
peak transmission of 96%, and its measured spectrum is shown in Figure 2. The wavelength of
the transmitted light is changed by adjusting the angle of the IF. Compared with the Littrow and
Littman–Metcalf configurations, the IF and cat’s-eye reflector replace the grating used to select the
laser wavelength and form an external cavity, making it relatively easily to adjust the laser frequency
and optimize the optical feedback. Furthermore, because The IF and cat’s-eye reflector are insensitive
to the incident angle [15], the present design has a higher mechanical stability than those of the Littrow
and Littman–Metcalf configurations.

Figure 2. Measured transmission spectrum of interference filter (IF) with 6◦ angle of incidence.
Data provided by manufacturer (Alluxa, Santa Rosa, CA, USA). The IF has a peak transmittance
of up to 96% and a bandwidth of ∼0.48 nm(294.2 GHz).

3.2. Structural Design

The aim of the structural design of the ECDL is to provide a good mechanical environment for
the optical components installed inside. The design should be able to resist external mechanical inputs,
thereby ensuring the reliability and stability of the laser. Structural factors such as structural stability,
machining and assembly accuracy, mechanical robustness, weight, and size should be considered in
the design process.

The mechanical structure of the ECDL is shown in Figure 3. The mechanical parts comprise a
laser base, a mount for the LD and CL, a mount for L1 and the PZT, a mount for L2, and a mount for
the IF. In The present design, most of the parts are made of aluminum alloy, which is relatively light
and has a consistent rate of thermal expansion, thereby reducing the effects of thermal stress on the
optical components. The choice of material in this design was made primarily for principle verification;
other material options that satisfy environmental requirements include AlSiC and Ti.
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Figure 3. Computer-aided design view of the ECDL shown schematically in Figure 1. A sectional view
is presented here to reveal the internal structure.

To ensure long-term stable laser operation suitable for space applications, the connections among
all the components are rigid, and The design avoids any spring-loaded adjustment. The LD is fixed
rigidly to its bracket by a retaining ring. Except for the IF, the mounts of the other optical components
are cylindrical structures with the same outer diameter. All the mounts are inserted into the laser base
after the components are mounted and locked by M2.5 screws. After setting the required angle of the
IF holder, it is fixed to the platform of the laser base by two M3 screws. All the lenses, including CL,
L1, and L2, are adjustable along the optical axis only; they are adjusted to their required positions and
then fixed in place using slow-setting glue.

The laser base is machined from a solid aluminum block to ensure that the laser is stable, robust,
and insensitive to outside interference. Figure 4 shows a photograph of the laser, the outer envelope
of which is 75 mm × 65 mm × 39 mm. Because The laser frequency depends on the length of the
cavity, precise temperature control of the laser is necessary [9,24]. A small hole with a diameter of
3 mm and a depth of 5 mm is found at the end of the laser base close to the LD; in this hole is placed a
negative-temperature-coefficient thermistor for detecting variations in temperature of the LD. A Peltier
thermoelectric cooler with dimensions of 40 mm × 40 mm × 4 mm is attached to the surface of the laser
base to stabilize the temperature of the cavity and LD. To ensure a laser output height of 20 mm from
the optical table, this ensemble is fixed on the optical platform with four M4 Teflon screws. The optical
platform acts as a heat sink, as illustrated in Figure 4.
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Figure 4. Photograph of the ECDL, which has been applied to space narrow-linewidth-laser
demonstration systems.

3.3. Simulation of Eigenmodes and Stress Distribution

The structural design of the laser should have a high fundamental frequency and good dynamic
characteristics to prevent structural damage caused by resonance of the low-frequency coupling during
launch. We used finite element modeling to verify that the ECDL design is satisfactory. To reduce the
amount of data needed for analog operation, we simplified the laser model appropriately. The model
retains the physical structure of the laser, the optics, and The mounting brackets, but omits details
such as chamfers and fillets. The overall structural material of the laser is aluminum alloy, the optical
lens material is fused silica, and The PZT material is PZT-5A; the properties of these materials are
given in Table 1. The simulation results are shown in Figure 5, where the lateral rocking frequency
of the first eigenmode is 2316 Hz. Because The first-order natural frequency of the module at the
aerospace standard component level exceeds 70 Hz, the modal analysis shows that the design meets
the requirements. However, the eigenfrequency is too high, indicating that the structural design of the
laser requires further optimization.

Table 1. Material properties.

Material ρ (kg/m3) σp EY M (109 Pa)

Aluminum 6063 2700 0.33 69
Fused silica 2203 0.17 73.1
PZT-5A 7750 0.31 53

Another issue is that the gravitational environment differs between space and the laboratory.
The lab-mounted laser undergoes a tiny deformation once in microgravity. To reduce this effect,
we adopted an integrated external cavity structure to reduce the relative mechanical deformation as
much as possible. In addition, no adjustable elastic mechanical structure was used. The cantilever
length and mass are reduced as much as possible while maintaining the mechanical strength. Figure 6
shows the displacement of the ECDL under a vertical acceleration of 1 g. The maximum deformation
clearly occurs at L2 but is only 0.01 μm. When the optical board with the laser mounted is placed
face up and back up, the performance of the optical system remains the same, indicating that this
small deformation has no effect on the performance of the ECDL. We also analyze the deformation
of two major components, IF and OC, that affect ECDL performance under the action of gravity
along the optical axis (z axis). Among them, the deformation of IF is 0.003 μm. This deformation
is mainly a translation in the direction of light transmission and has no effect on the angle of the IF.
The deformation of OC is 0.005 μm. This deformation will increase the length of the external cavity
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and affect the frequency of the output laser. This slight shift results in a frequency change of only
0.4 GHz. This deviation can be corrected by adjusting the voltage of the PZT.

Figure 5. The frequency of the first lateral rocking eigenmode is 2316 Hz.

Figure 6. Displacement of the ECDL under action of gravitational field.

4. Test Results

After adding the external cavity to the diode laser, iterative focal adjustment and external-cavity
alignment were implemented to optimize the optical feedback. Optimum alignment was accomplished
when the threshold was reduced to a minimum [25]. The variation of output power with laser diode
current as measured using an optical powermeter is shown in Figure 7 both with and without an
external cavity. The threshold current of the ECDL is 30 mA, and The diode current shifts the laser
output power by 0.91 mW/mA. As can be seen in Figure 7, the threshold current was reduced by
approximately 10 mA compared to the bare tube, and The output optical power was increased by
15 mW at a laser current of 65 mA. The output surface of the laser diode we used was coated with
an anti-reflection coating, and The reflectivity was only 10−4 orders of magnitude. In principle,
the main reason for increasing the output laser power after increasing the external cavity was to
reduce the threshold current: (1) adding an external cavity is equivalent to an increase in cavity length;
(2) introducing optical feedback to help increase the stimulated emission suppresses the spontaneous
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radiation. These results indicate that the external-cavity semiconductor laser of the present design
achieves strong optical feedback and completes good alignment [25].

Figure 7. Output power versus laser diode current as measured using an optical powermeter at a
controlled laser temperature of 22.3 ◦C.

The effect of injection current and temperature on the output wavelength of the ECDL was
investigated. It can be seen in Figure 8 that, like the laser diode, the ECDL also has a mode hopping
interval. It is necessary to avoid this mode hopping interval when the laser is working. The wavelength
dependence on the injection current at a fixed temperature of 22.3 ◦C is shown in Figure 8a. The current
adjustment range corresponding to the ECDL’s no mode hopping interval is about 9 mA, and the
corresponding frequency varies by approximately 43 GHz. From this, the frequency tuning rate
of the injection current can be calculated to be approximately 4.8 GHz/mA. Figure 8b shows the
wavelength dependence on temperature at a fixed current of 64 mA. The coefficient of the frequency
with temperature is 25 GHz/◦C, and The non-mode hopping interval is 1.7 ◦C. The laser frequency can
be tuned over a wide range by changing the temperature, but this adjustment is very rough, and it takes
a long time for the laser temperature to become completely stable. With increasing injection current
or temperature, the wavelength increased (frequency decreased). This is because the temperature of
the laser diode increases as the injection current increases. The effective refractive index increased,
leading to an increase in the optical length of the internal cavity. When the wavelength increased
and entered the edge of the range selected by the interference filter, the operating mode competed
with neighboring modes and mode hopping occurred. The range of continuous non-hopping mode is
mainly determined by the FSR of the internal cavity and the full width at half maximum (FWHM) of
the interference filter.

208



Photonics 2020, 7, 12

Figure 8. (a) Relationship of the fine tuning current and the output wavelengths. The injection current
adjustment step size is 1 mA. (b) Wavelength dependence on temperature at a fixed current of 64 mA.
The temperature change step size is 0.01 ◦C.

To determine the long-term stability of the IF-ECDL, we used a wavelength meter
(WS7; HighFinesse) to monitor the frequency fluctuations of the laser during free running. The results
obtained over a period of 18 h indicated good passive long-term stability, and The maximum deviation
in laser frequency was only 200 MHz. Figure 9 shows the frequency stability of the ECDL derived from
the Allan deviation. The measurements were conducted in an air-conditioned laboratory in which the
temperature fluctuated by roughly 1 ◦C about an average of roughly 22 ◦C.
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Figure 9. Long-term frequency fluctuations of the free-running 698 nm ECDL.

To determine the linewidth of the ECDL, we performed an optical heterodyne beat experiment
involving the IF-ECDL and a 698 nm ultra-stable laser with an ultra-narrow linewidth. The spectrum
of the beat signal is shown in Figure 10b. The full width at half maximum of the Lorentzian fit is
180 kHz. The linewidth of the ultra-stable laser is only ∼1 Hz [26], and this was obtained by locking
the laser frequency to a high-finesse optical reference cavity by means of the Pound–Drever–Hall
method [22]. The linewidth of the beat signal can be considered to be the linewidth of the IF-ECDL
because the latter is far wider than the linewidth of the ultra-stable laser. Therefore, the linewidth of
the ECDL is roughly 180 kHz.

(a) (b)

Figure 10. (a) Beat experiment involving the IF-ECDL and an ultra-stable laser with the linewidth of
about 1 Hz. (b) Spectrum of beat signal between ECDL and a 698 nm laser with ultra-narrow linewidth.
The injection current of the laser during the measurement is 64 mA, and The temperature is 22.3 ◦C.
The resolution bandwidth of the spectrum analyzer is 10 kHz, and The sweep time is 1.29 s. The black
line shows the power spectrum of the beat signal, and The red line indicates a fitted line.
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5. Conclusions

In summary, this paper presents the design of a compact and robust ECDL for space applications.
This ECDL was created without using any position adjusters, taking advantage of insensitivity to
misalignment. As a wavelength-selective element, the laser uses an IF rather than a diffraction grating.
The frequency of the first lateral rocking eigenmode is 2316 Hz. The ECDL emits 35 mW of laser power
at a wavelength of 698 nm with a linewidth of around 180 kHz. In future work, we will conduct an
adaptive test of the mechanical and thermal environment of the ECDL and optimize the design to
make it more suitable for use in space.
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Abstract: In this work, a general equivalent circuit model based on the carrier reservoir splitting
approach in high-performance multi-mode vertical-cavity surface-emitting lasers (VCSELs) is
presented. This model accurately describes the intrinsic dynamic behavior of these VCSELs for
the case where the lasing modes do not share a common carrier reservoir. Moreover, this circuit
model is derived from advanced multi-mode rate equations that take into account the effect of
spatial hole-burning, gain compression, and inhomogeneity in the carrier distribution between the
lasing mode ensembles. The validity of the model is confirmed through simulation of the intrinsic
modulation response of these lasers.

Keywords: high-speed VCSELs; multi-mode VCSELs; intrinsic laser dynamics; equivalent circuit
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1. Introduction

Vertical-cavity surface-emitting lasers (VCSELs) offer an excellent solution for many high-speed
data communication challenges. Moreover, VCSELs have special features such as high integration
level, low electrical power consumption, low divergence angle, simple packaging, low fabrication
cost, high modulation speed at low currents, and good beam quality. These features led to the growth
of the VCSEL market for a wide variety of applications, which are not only limited to the field of
communications but also extends to consumer applications such as laser printers and optical mice [1,2].
Nowadays, despite the intensive research conducted to understand the underlying physics behind
the multi-mode (MM) behavior in oxide-confined MM VCSELs and their impact on the intrinsic laser
dynamics, many ambiguities still exist concerning the nature of the abnormal multi-peak phenomenon
and the notches occurring in the small-signal modulation response of these VCSELs. These multiple
local maxima which appear in their intrinsic dynamic response deviate substantially from the standard
single-mode (SM) model normally applied to characterize these MM devices. The measured total
small-signal modulation response of a laser is the result of the superposition of the intrinsic and the
extrinsic responses. The need to accurately de-embed and analyze the intrinsic laser dynamic behavior
of VCSELs becomes indispensable to understand and study their extrinsic chip behavior. However,
since the intrinsic response is attributed to the structure and geometry of the VCSEL intrinsic region and
lasing cavity, the only way to isolate its effects is by accurately modeling it. Hence, sufficient modeling
and accurate parameter extraction strategies are needed for a reliable de-embedding approach of each
of the intrinsic and extrinsic responses from the overall system response. This detailed understanding
of the VCSELs modulation response enables further optimization of these lasers for next generation
high-speed devices. Furthermore, analyzing and modeling these lasers enable the enhancement and
optimization of their design and performance.
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Recently, an advanced and accurate MM small-signal model, which is based on the carrier reservoir
splitting approach, was developed [3,4]. This rate equation-based model enables the extraction of
reliable information from the intrinsic dynamics of high-speed MM VCSELs, as it takes into account the
effect of spatial hole-burning (SHB), gain compression, and inhomogeneity in the carrier distribution
between the modes. Using these MM rate equations also ensures deeper understanding of the device
MM laser dynamics and gives a better access to the nonlinear modal competition behavior for the
carrier density in the active region for such high-performance VCSELs.

Accurate modeling is important for both device engineers and circuit designers. Device engineers
require a model that simulates complex physical phenomena, resulting in long and complex simulation
times, and circuit designers need a simple and relatively accurate model that can be implanted in
a circuit simulator and drivers with fast computational time. Hence, detailed analysis of VCSEL
operating characteristics is crucial to the design of high-speed optical links. Traditionally, the intrinsic
dynamics of a laser have been analyzed using a direct solution of the rate equations. This method
gives accurate results; however, it has some disadvantages as numerical optimization techniques
that minimizes the difference between measured and modeled data can vary depending upon the
optimization method and starting values and as the device–circuit interaction cannot be easily taken
into account [5]. An alternative approach to that of using the rate equations to model the VCSELs’
intrinsic dynamics is to transform these equations to an equivalent circuit model, in which electrical
components model the different physical effects that contribute to the overall system response [5–8].
This technique presents several advantages, including that the circuit model gives an intuitive idea
of the physics of the device and the modulation response and can be easily interfaced to the VCSEL
standard parasitic network [5,8].

Circuit modeling includes an electronic and an optical part and permits the optimization of the
devices’ dynamic characteristics including the device–circuit interaction, and performance can be
obtained using a general circuit simulator. For example, to improve the f 3dB intrinsic modulation
bandwidth of VCSELs, an intrinsic equivalent circuit model can be employed to accurately simulate the
dynamic behavior inside the laser cavity and to understand in depth the effect of each device physical
element on this intrinsic 3-dB frequency. Thus, using this advanced model and bearing in mind the
relation between the circuit elements and the real word physical device layout, various simulations
can be conducted by altering the values of some circuit components and by tracking the change
in the resulting intrinsic 3-dB bandwidth. It was noticed that, inside our latest generation of MM
VCSELs with highest carrier and photon densities, the common carrier reservoir splits up as a result of
numerous effects such as mode competition, carrier diffusion, and SHB. Besides the well-understood
mechanisms which control the strength and the form of relaxation oscillation frequency (e.g., carrier
diffusion, nonlinear gain suppression, and carrier transport effects), the contribution of codominant
higher-order modes is still under discussion. In general, these VCSELs are fabricated with a small
circular aperture diameter, allowing only few modes to rise under operation. Hence, most of these
transverse lasing modes are spatially localized in two main regions and therefore can be confined
either in the center of the active region or are localized more towards the peripheral boundary of the
carrier reservoir. Constituently, these lasing modes can be grouped into two mode ensembles: the
central mode ensemble and the peripheral mode ensemble. For SM VCSELs, the solution of the rate
equations is straight forward and the fitting procedure for parameter extraction is simple. For MM
VCSELS, however, and as shown in Reference [4], even for two-mode ensembles, the analysis becomes
very complex and the parameter extraction and development of an analytical intrinsic modulation
expression becomes rigorous.

In this work, a general compact and comprehensive equivalent circuit model for MM VCSELs,
which is based on our latest novel MM rate equations model, i.e., the carrier reservoir splitting approach,
is presented. This circuit model has all the advantages of simple and fast simulation procedures of
circuit modeling and still incorporates advanced features of lasing modes interactions given by the
advanced MM rate equations model. Most importantly, the proposed equivalent circuit model can
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reproduce the delicate measured intrinsic modulation response. The validity of the model is confirmed
through simulations and plots of the intrinsic modulation response of a two-mode ensembles VCSEL
equivalent circuit model. These simulation results are later compared to the experimentally measured
intrinsic modulation response of our high-performance VCSELs.

2. Rate Equations

Small-signal advanced MM rate equations for high-speed MM VCSELs, which are based on mode
competition for carrier density in the active region, were recently developed [3,4]. In order to map these
rate equations to the proposed equivalent circuit model, we quickly review the different derivation
steps leading to the system’s intrinsic modulation response and interaction matrices. We first linearize
a system of differential equations that represent the rates of change in the carrier and photon reservoir
densities and rewrite them to get the rate coefficients above lasing threshold, which are

μNiNi = δJthi /δNi + vgaiSi (1)

μNiSi = vggthi − vgapi Si (2)

μSiNi = ΓivgaiSi (3)

μSiSi = Γivgapi Si (4)

where i represents the ith mode in the corresponding carrier or photon reservoirs; gthi is the gain at
threshold; ai and api are the differential gain and the negative gain derivatives, respectively; Ni is the
carrier density; and Si is the photon density in the active region and the optical cavity. Moreover, Γi is
the confinement factor, vg is the group velocity, and Jthi is the carrier recombination density due to
spontaneous emission or losses. The system’s relaxation oscillation frequency ωRi and the damping
factor γi in terms of the simplified rate coefficients can be introduced as

ω2
Ri = μNiNiμSiSi + μNiSiμSiNi (5)

γi = μNiNi + μSiSi (6)

For SM VCSELs, the resulting rate coefficients can be expressed in a matrix form as

(
jω+ μNN μNS
−μSN jω+ μSS

)(
dN
dS

)
=

(
dJ
0

)
(7)

where J is the driving current density. For MM VCSELs, the matrix representation of the SM model can
be expanded to include the various interactions between the different carrier and photon reservoirs.
When expanded, the matrix representation for the case of two lasing modes ensembles, which is for
most purposes sufficient to describe the intrinsic dynamics of the reservoir splitting in MM VCSELs,
is expressed as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
jω+ μN1N1 μN1N2 μN1S1 μN1S2

μN2N1 jω+ μN2N2 μN2S1 μN2S2

−μS1N1 0 jω+ μS1S1 0
0 −μS2N2 0 jω+ μS2S2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
dN1

dN2

dS1

dS2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dJ1

dJ2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

The interaction between the two carrier reservoir densities N1 and N2 can be written as shown
in Equations (9) and (10), where s12 and s21 represent the spatial dependency of the two interacting
carrier reservoirs.

μN1N2 = s21 · vgaS2 � s21 · μN2N2 (9)

μN2N1 = s12 · vgaS1 � s12 · μN1N1 (10)
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Similarly, the interaction coefficients representing cross reabsorption can be written as

μN1S2 = s21 · vgagth2 = s21 · μN2S2 (11)

μN2S1 = s12 · vgagth1 = s12 · μN1S1 (12)

For a system having any number of mode ensembles (m-mode ensembles), the matrix in
Equation (8) can be further expanded and generalized into the interaction matrix shown in Equation
(13).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jω+ μN1N1 · · · μN1Nn μN1S1 · · · μN1Sn
...

. . .
...

...
. . .

...
μNnN1 · · · jω+ μNnNn μNnS1 · · · μNnSn

−μS1N1 · · · −μS1Nn jω+ μS1S1 · · · −μS1Sn
...

. . .
...

...
. . .

...
−μSnN1 · · · −μSnNn μSnS1 · · · jω+ μSnSn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dN1
...

dNn

dS1
...

dSn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dJ1
...

dJn

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

From the interaction matrices shown in Equations (7), (8) and (13), the intrinsic modulation
responses of SM and MM VCSELs can be obtained. These can be used to model the intrinsic dynamics
of VCSELs, but for MM VCSELs, they can be quite complicated to solve analytically and require
either complex numerical calculations or the neglection of some minor physical effects. Alternatively,
equivalent circuit modeling, presented in Section 3, can be adopted.

3. Equivalent Circuit Modeling

3.1. Review on the Single Mode Model

The standard equivalent electrical circuit model of a SM (single-mode) VCSEL intrinsic dynamic
operation is shown in Figure 1, which is well established and can be found in different literatures [5,8].
This model can be easily integrated into the small-signal cascaded network model of the VCSEL diode
that includes the source, cables, submout parasitics, and laser chip parasitics that represent the extrinsic
laser dynamics (e.g., Figure 1 in Reference [8]). The different components in this circuit represent
different elements of the rate equations. For example, the capacitance C is the sum of the space-charge
capacitance of the heterojunction and the charge storage in the active layer. The small-signal photon
storage is modeled by the inductance L. The small-signal photon density is proportional to the current
over L and thus can be used as the output variable representing the optical output intensity. Using
the interaction matrix in Equation (7), the intrinsic modulation response for SM VCSELs, HSM(ω) is
found as

HSM(ω) =
hν
e
ηd

ω′R2

ω2
R + jωγ−ω2

(14)

where ηd is the differential quantum efficiency andω
′
R

2 = vggthμSN. The relaxation oscillation frequency
ωR usually replaces ω′R for standard physical device parameters and is a common approximation for
the SM modulation approach [9]. By comparing the rate equation-based transfer function in Equation
(14) with the calculated electrical transfer function of the circuit model shown in Figure 1, the latter can
be written as

HSM,elec(ω) =
Iout

Iin
=

1/LC

1/LC + R1b/LR1aC + jω(1/R1aC + R1b/L) −ω2 (15)

Comparing the two transfer functions, the interaction matrix in Equation (7) can be rewritten in
term of its electrical circuit model equivalent, and the equivalencies acquired can be used afterwards to
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develop the MM VCSEL equivalent circuit model. Equations (16a) and (16b) show the comparison
between the rate equation-based matrix and its electrical circuit model equivalent:

(
jω+ μNN μNS
−μSN jω+ μSS

)(
dN
dS

)
=

(
dJ
0

)
(a)


(
jω+ 1/R1aC 1/L

−1/C jω+ R1b/L

)(
Cvc/q

LiL/q

)
=

(
ηIdI/qVo

0

)
(b)

(16)

where ηI is the electrical efficiency, vc is the voltage over the capacitance, and iL the current in the
inductance. Moreover, ηIdI/Vo is represented by the current source Iso in Figure 1. Solving the matrix
in Equation (16b) leads to Equations (17) and (18):

jω
Cvc

q
+

vc

qR1a
+

iL
q
=
ηIdI
qVo

(17)

iL =
vc

R1b + jωL
(18)

Replacing iL in Equation (17), the node equation of the circuit shown in Figure 1 can be obtained as

vc jωC +
vc

R1a
+

vc

R1b + jωL
− ηIdI

Vo }

Iso

= 0 (19)

This SM model resembles a simple second-order low-pass filter. Moreover, in most literatures,
the adapted SM based equivalent circuit model can only reproduce a single resonance peak and thus
fails to replicate the delicate small-signal data (abnormal multi-peaks and the notches) of modern
high-speed MM VCSELs accurately.

 
Figure 1. Standard equivalent electrical circuit model of a SM VCSEL intrinsic dynamic operation [5,8].

3.2. Two-Mode Model

To analyze the intrinsic behavior of high-performance MM VCSELs, a suitable equivalent circuit
model is developed. In this section, we derive this model for a MM VCSEL having two mode ensembles.
This model will be later expanded to comprise a system of any number of mode ensembles (Section 3.3).
Using the relations in Equations (9)–(12) and the equivalencies that were extracted from Equation (16),
the interaction matrix shown in Equation (8) is converted to its circuit model equivalent, shown in
Equation (20).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jω+ 1
R1aC1

s21 . 1
R2aC2

1
L1

s21 . 1
L2

s12 . 1
R1aC1

jω+ 1
R2aC2

s12 . 1
L1

1
L2

− 1
C1

0 jω+
R1b
L1

0

0 − 1
C2

0 jω+
R2b
L2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1vc1
q

C2vc2
q

L1iL1
q

L2iL2
q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ηIdI1
qVo1
ηIdI2
qVo2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(20)
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Solving the matrix in Equation (20) leads to the following relations:

jω · C1vc1

q
+

vc1

R1aq
+ s21 · vc2

R2aq
+

iL1

q
+ s21 · iL2

q
=
ηIdI1

qVo1
(21)

jω · C1vc1

q
+

vc1

R1aq
+ s21 · vc2

R2aq
+

iL1

q
+ s21 · iL2

q
=
ηIdI1

qVo1
(22)

iL1 =
vc1

R1b + jωL1
(23)

iL2 =
vc2

R2b + jωL2
(24)

Replacing iL1 and iL2 in Equations (21) and (22), the node equations for the two-mode VCSEL
model can be obtained as shown in Equations (25) and (26).

s21

(
vc2

R2a
+

vc2

R2b + jωL2

)

⎫⎪⎪⎬⎪⎪⎭

I12

+ vc1 jωC1 +
vc1

R1a
+

vc1

R1b + jωL1
− ηIdI1

Vo1 }

Iso1

= 0 (25)

s12 ·
(

vc1

R1a
+

vc1

R1b + jωL1

)
⎫⎪⎪⎬⎪⎪⎭

I21

+ vc2 jωC2 +
vc2

R2a
+

vc2

R2b + jωL2
− ηIdI2

Vo2 }

Iso2

= 0 (26)

Using the node equations in Equations (25) and (26), the two-mode VCSEL equivalent circuit
model can be obtained, as shown in Figure 2. In this circuit, we can consider, just like in the SM
model, that Iso1 = ηIdI/Vo1 and Iso2 = ηIdI/Vo2 and that s21I12 and s12I21 are dependent current sources,
which represent the interaction of the two carrier reservoirs with each other. This is an important
aspect to consider, as it has been recently shown in MM VCSELs that the split carrier reservoirs of the
lasing mode ensembles overlap and impact each other [3,4].

 
Figure 2. Equivalent electrical circuit model of a two-mode multi-mode VCSEL intrinsic
dynamic operation.

3.3. M-Mode Model

Similar to the two-mode model equivalent circuit analysis, the electrical circuit equivalent matrix,
shown in Equation (27), for a MM VCSEL with m-mode ensembles can be derived. From this matrix
representation, the set of node equations (grouped in Equation (28)) can be obtained, following the
same derivation procedure of the two-mode model case. Using these node equations, the m-mode
equivalent electrical circuit model, depicted in Figure 3, can be developed.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jω+ 1
R1aC1

· · · sm1 · 1
RmaCn

1
L1

· · · sm1 · 1
L1

...
. . .

...
...

. . .
...

s1m · 1
R1aC1

· · · jω+ 1
RmaCm

s1m · 1
L1

· · · 1
Lm

− 1
C1

· · · 0 jω+
R1b
L1

· · · 0
...

. . .
...

...
. . .

...
0 · · · − 1

Cm
0 · · · jω+

Rmb
Ln

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1vc1
q
...

Cmvcm
q

L1iL1
q
...

LmiLm
q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ηidI1
qVo1

...
ηidIm
qVom

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

m∑
i=2

si1 ·
( vci

Ria
+ vci

Rib+ jωLi

)

⎫⎪⎪⎬⎪⎪⎭

I1i

+ vc1 jωC1 +
vc1
R1a

+ vc1
R1b+ jωL1

− ηIdI1
Vo1 }

Iso1

= 0

...
m−1∑
i=1

sim ·
( vci

Ria
+ vci

Rib+ jωLi

)

⎫⎪⎪⎬⎪⎪⎭

Imi

+ vcm jωCm + vcm
Rma

+ vcm
Rmb+ jωLm

− ηIdIm
Vom }

Isom

= 0

(28)

 
Figure 3. Equivalent electrical circuit model for an m-mode multi-mode VCSEL intrinsic
dynamic operation.

4. Circuit Simulation Results

In order to derive the total small-signal modulation response HTOT(ω) of a MM VCSEL, its intrinsic
transfer function Hint(ω) is multiplied by the extrinsic transfer function of its parasitic network Hpar(ω).
This extrinsic response was recently developed for high-performance MM VCSELs [10]. In physical
real-world devices, the intrinsic dynamic behavior is usually embedded in such a cascaded network
that includes different parasitic elements, such as the submount and laser chip parasitics. The laser chip
parasitics, also called the extrinsic response, play one of the most critical roles in limiting the intrinsic
modulation speed, as their low-pass filter characteristics shunts the modulation current outside the
active region at high frequencies and since the extrinsic response is attributed to the structure and
geometry of the VCSEL chip; the only way to isolate its effects is by modeling it with an electrical
equivalent circuit, of which electrical components represent the different physical effects that contribute
to the overall system response. Having an equivalent circuit for the intrinsic response, as shown in
this work, enables the combination of both the extrinsic and intrinsic modulation responses in the
overall cascaded network of the entire link. Figure 4 shows the calibrated total small-signal modulation
response of a 980-nm MM oxide-confined VCSEL with an aperture diameter of ~7 μm measured by a

219



Photonics 2020, 7, 13

40-GHz vector network analyzer (VNA-HP8722C). The curves describe the measured total relative
modulation response data S21 for various driving currents at room temperature. The modulation
current is increased gradually up to 14 mA. Thermal rollover is reached at around 17 mA. The maximum
total 3-dB bandwidth of the device including chip parasitics is found to exceed 32 GHz at 14 mA.

Figure 4. Calibrated total (intrinsic and extrinsic) small-signal modulation response of a 980-nm MM
oxide-confined VCSEL with an aperture diameter of ~7 μm: The curves depict the measured relative
response data (S21) for various driving currents at room temperature.

In order to de-embed the pure intrinsic modulation response Hint(ω) from the total modulation
response, either the direct rate equations solution or the proposed equivalent circuit model derived
in this work can be used. As shown in Reference [4], even though it is very accurate, the calculated
Hint(ω) is very complex to implement and an advanced fitting procedure is required to determine its
physical parameters. Alternatively, the equivalent circuit model presented in this work has fewer
fitting parameters compared to the rate equation model on one side, and secondly, it can be easily
integrated in the overall system cascaded network.

To validate the proposed MM equivalent circuit model, MATLAB Simulink® was used to compute
the intrinsic modulation response of the two-mode ensembles VCSEL circuit model shown in Figure 2.
Results are presented in Figure 5 for three different driving currents. The curves represent the pure
intrinsic small-signal modulation response of a two-mode ensembles VCSEL. The values of the circuit
parameters used in this simulation are shown in the inset of Figure 5. These are a set of possible
mathematical solutions that were extracted from fitting the intrinsic modulation response of the circuit
model into its measured counterpart depicted in Figure 4. The parameter n shown in the inset of
Figure 5 represents the injection current inhomogeneity factor, i.e., n and 1 − n are the fractions of the
injection carrier densities in each carrier reservoir, and values have been experimentally determined in
Reference [4] for different currents. In the model shown in Figure 2, this parameter will distribute the
total current on Iso1 and Iso2 accordingly. This represents the inhomogeneity in the injection current
distribution between the lasing mode ensembles. For the first two mode ensembles (LP01 and LP11),
s12 = 0.67 and s21 = 0.94 and were adopted from Reference [11]. At this point, it is important to
mention that the chip-parasitics Hpar(ω) need to be de-embedded from the total measured small-signal
modulation response before comparing it to the simulated pure intrinsic response shown in Figure 5.
As shown in Figure 5, the intrinsic small-signal modulation response replicates a typical MM VCSEL
intrinsic response with the multi-peaks and notches in the curves at low frequencies. It is worth noting
that the advanced circuit for a two-mode ensembles VCSEL depicted in Figure 2 shows a much more
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realistic modulation response of MM VCSELs compared to using the SM VCSEL circuit in Figure 1,
which was traditionally used in various literatures. Using the SM intrinsic modulation response model
(Equation (14)) is acceptable as an approximation for low-speed MM VCSELs sharing the same carrier
reservoir. However, in high-speed and high-performance VCSELs, using this simple model gives rise
to a lot of discrepancies when modeling the intrinsic performance of these MM VCSELs [3,4].

Figure 5. Simulation results of the relative intrinsic modulation response for three different driving
currents using the two-mode VCSEL equivalent circuit model shown in Figure 2. Inset: testing
parameters used in the two-mode VCSEL equivalent circuit model simulation.

5. Conclusions

In this study, a general, compact, and comprehensive equivalent circuit model based on the
carrier reservoir splitting approach and that accurately describes the intrinsic dynamic behavior of
MM VCSELs was presented. The model includes the case where the lasing modes do not share a
common carrier reservoir and was derived from advanced MM rate equations that take into account
the effect of spatial hole-burning, gain compression, and inhomogeneity in the carrier distribution
into the different lasing modes. The validity of the model was confirmed through simulations of the
intrinsic modulation response of a VCSEL having two lasing mode ensembles at different driving
currents compared to measured data. This model can be expanded to include any number of mode
ensembles. Moreover, this equivalent circuit model can be easily integrated in the overall system
cascaded network that represents the extrinsic and intrinsic dynamics of MM VCSELs.
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Abstract: We report on the numerical analysis of intensity dynamics of a pair of mutually coupled,
single-mode semiconductor lasers that are operated in a configuration that leads to features reminiscent
of parity–time symmetry. Starting from the rate equations for the intracavity electric fields of the two
lasers and the rate equations for carrier inversions, we show how these equations reduce to a simple
2 × 2 effective Hamiltonian that is identical to that of a typical parity–time (PT)-symmetric dimer. After
establishing that a pair of coupled semiconductor lasers could be PT-symmetric, we solve the full set of
rate equations and show that despite complicating factors like gain saturation and nonlinearities, the rate
equation model predicts intensity dynamics that are akin to those in a PT-symmetric system. The article
describes some of the advantages of using semiconductor lasers to realize a PT-symmetric system and
concludes with some possible directions for future work on this system.

Keywords: parity–time symmetry; semiconductor laser; intensity dynamics

1. Introduction

Semiconductor lasers (SCLs) with optical injection and feedback, as well as coupled SCLs, have
been basic paradigms for investigating nonlinear dynamics for the last several years [1]. The dynamical
response of these SCL systems has been shown to include low frequency fluctuations (LFFs), periodic
doubling routes to chaos, and the occurrence of unstable attractors, and the dynamics have been
exploited for chaotic encryption, random number generation, linewidth reduction, and optical waveform
production [2]. Independent of these studies on SCLs, there has been enormous interest in systems that are
described by non-hermitian Hamiltonians that arise in open systems, i.e., systems that are coupled to the
environment [3–11]. Typically, the Hamiltonian in quantum mechanics is hermitian because one deals with
closed systems, and the hermiticity leads to real eigenvalues, orthogonal eigenfunctions, unitary evolution,
and conservation of probability. As soon as one deals with realistic systems, by including, say, dissipation,
one has to work with non-hermitian Hamiltonians, and the varying dynamics that result in systems that
are described by such Hamiltonians have attracted much attention in recent years. Part of this interest is
driven by the fundamental physics inherent in such systems and part of of it by their predicted applications.
The optics community has been particularly interested in one type of non-hermitian Hamiltonians called
the parity–time (PT) symmetric Hamiltonians, which are a class of Hamiltonians that are symmetric under
combined operations of parity (P) and time-reversal (T). The pioneering work of Bender and co-workers,
and others [6–11], demonstrating that a non-hermitian Hamiltonian may have a real energy spectrum
provided it is parity (P) and time-reversal (T) symmetric, has led to tremendous interest in experimental
realizations of PT-symmetric laboratory systems [12–19]. Many experimental realizations have been in the
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optical domain, largely because PT symmetry requires systems with balanced gain and loss, which are
ubiquitous in optics. Thus, much effort has been put into developing integrated structures with appropriate
gain and loss properties. The typical PT-symmetric dimer [12] consists of two coupled oscillators wherein
the gain in one oscillator is exactly equal to the loss in the other. The resulting 2 × 2 Hamiltonian matrix
that describes this system then has complex diagonal elements, which are complex conjugates of each
other and represent gain and loss in each oscillator, and the off-diagonal elements are real and equal and
represent the coupling between the oscillators.

In a typical PT-symmetric system, say a pair of evanescently coupled waveguides in which one
waveguide has gain and the other an equal amount of loss [12], one finds that as the gain/loss parameter
is varied, there is a critical value, called the PT threshold, at which the eigenvalues of the Hamiltonian
transition from being real to complex. In the regime where the eigenvalues are real, the norm of the
wavefunction is bounded, and once the eigenvalues are complex, the norm grows abruptly. In our work,
we use this abrupt transition as a metric for the PT threshold.

One outcome of the studies on PT symmetry is that many of the features of these systems are a
result of the exceptional point (EP) behaviors of the underlying Hamiltonian [20–23]. Coupled lasers are
especially attractive for the experimental realization of PT-symmetric models and exceptional point (EP)
behaviors, and a few recent experiments have fabricated synthetic microcavity lasers on an integrated chip
and reported the PT-symmetric properties of the system [24]. The laser configuration is typically designed
to exploit the balance between the gain and loss of the lasers in order to extract unexpected behaviors that
arise when the system undergoes an abrupt PT phase transition or, more generally, approaches an EP. It is
anticipated that the outcomes of our work will be important for systems described by non-hermitian rate
equations, local and nonlocal, and their laboratory implementations.

In this paper, we report a realization of a time-delayed, non-hermitian system in a bulk optical system
that is comprised of two optically coupled semiconductor lasers (SCLs), and a numerical investigation of
the properties of this system. In particular, we show that the rate equation model that is typically used
to describe these coupled lasers [25] can, under certain conditions, lead to an effective non-hermitian
Hamiltonian that is strongly reminiscent of the Hamiltonians that arise in the study of conventional
PT-symmetric systems. Our work demonstrates that the coupled SCL system possesses many of the
features that PT-symmetric systems do. We note that our system is completely classical, and yet it
has features of PT symmetry because many aspects of PT symmetry are a result of the characteristics
of exceptional points in the governing Hamiltonian. The predictions of our numerical work can be
implemented in commercially available, off-the-shelf SCLs, since it does not require any specially fabricated
components with tailored properties. Furthermore, as we will show, the important PT parameters can be
easily controlled in the laboratory, making coupled SCLs very useful for studying PT symmetry.

Among the key features of our system are the fact that unlike other PT-symmetric systems, which rely
on coupling a system with gain to an identical one with loss, our configuration couples two lasers in which
the frequency detuning between the two lasers and the coupling strength between them, respectively,
are the relevant parameters. The advantage is that in contrast to other systems where a precise balance
between gain and loss has to be engineered, our system always has the frequency detuning of one laser
exactly equal and opposite in sign to the frequency detuning of the second laser, thereby guaranteeing
that the diagonal elements of the effective PT Hamiltonian are equal and opposite in sign. PT-symmetric
systems are of interest for making materials with unidirectional optical propagation [26], single mode
lasing action [27], and the spontaneous generation of photons in a PT-symmetric medium by a vacuum
field [28]. Due to the miniature size of SCLs and well established fabrication methods for incorporating
several lasers and associated components on chips, our work may lead to PT-symmetric photonics on
a chip.
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2. Numerical Model

Our system is described by a rate equation model that is based on the Lang–Kobayashi model [25]
wherein we assume that the two lasers are nearly identical in all of their characteristics, single-mode, and
operate at slightly different frequencies, ω1 and ω2. We write the rate equations in a frame that is rotating
at the average frequency θ of the two lasers, i.e., θ = (ω1 + ω2)/2 [29]. The rate equations describing the
normalized complex electric fields, E1,2(t), and the normalized excess carrier densities, N1,2(t), may be
written as follows [29]:

dE1

dt
= (1 + iα)N1(t)E1((t) + iΔωE1(t) + κ exp(−iθτ)E2(t − τ), (1)

dE2

dt
= (1 + iα)N2(t)E2((t)− iΔωE2(t) + κ exp(−iθτ)E1(t − τ), (2)

T
dN1

dt
= J1 − N1(t)− (1 + 2N1(t))|E1(t)|2, (3)

T
dN2

dt
= J2 − N2(t)− (1 + 2N2(t))|E2(t)|2, (4)

where α is the linewidth enhancement factor [28], τ is the time delay in coupling due to physical separation
between the lasers, J1,2 is the injection current above threshold, and T is the ratio of the carrier lifetime
to the photon lifetime. The model used in Equations (1)–(4) is a phenomenological model [30,31] that
has been quite accurate in modeling the dynamical response of semiconductor lasers subject to optical
injection and in reproducing the intensity response of mutually coupled SCLs. A detailed and rigorous
model has been described in Ref. [29] for bidirectionally coupled SCLs, where the authors start from
Maxwell’s equations, apply appropriate boundary conditions, and obtain the time evolution of electric
field amplitudes in each laser cavity. Equations for the time evolution of the carrier inversion in each
laser are also obtained. Ref. [29] has shown that under the assumptions of (i) weak coupling between the
lasers, (ii) both lasers operating at nearly identical optical frequencies, (iii) both lasers having equal gain
coefficients despite a slight detuning between them, and (iv) neglecting multiple feedbacks, the rigorous
model reduces to the phenomenological model.

The important and relevant PT parameters for our work are κ and Δω, which describe the coupling
coefficient and the frequency detuning between the lasers, respectively. Note that in Equation (2), the
coupling term accounts for the mutual coupling between the two lasers, and a phase accumulation term
has been added to account for the time taken for the light to travel from one laser to the other. In our
system, Δω physically represents the frequency pulling that is typical of coupled lasers operating at
slightly different frequencies, and κ produces amplification of light in each laser.

To motivate the connection to non-hermitian Hamiltonians in general, and PT-symmetry in particular,
the rest of this paper will focus on the zero-delay case. The effects of time-delay are profound and will be
discussed in a future article. When the SCLs are operating in steady state, above threshold, the inversion
above transparency is zero, i.e., N1,2 = 0 [32]. Therefore, Equations (1) and (2) reduce to

[
Ė1

Ė2

]
=

[
iΔω κ

κ −iΔω

] [
E1

E2

]
, (5)

where the 2 × 2 effective Hamiltonian is isomorphic to typical PT-symmetric Hamiltonians under a π/2
rotation about Pauli matrix σy, with the difference being that the diagonal elements of the matrix that
normally represent gain/loss terms [12] are replaced in Equation (5) by frequency detuning between the
two lasers. The SCL model is a rate equation model, in contrast to typical PT systems that are studied
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by invoking the Schroedinger equation. Thus, the complex i that occurs in the Schroedinger equation
is missing in our model (such systems are referred to as anti-PT systems). In our system, the diagonal
elements, instead of contributing to amplification or attenuation of light, now give rise to temporal
oscillations in the field. The off-diagonal elements, instead of determining the frequency of exchange
between the two oscillators, now contribute to laser intensity growth.

The eigenvalues, λ, of the effective 2 × 2 Hamiltonian above are given by λ = ±
√

κ2 − Δω2.
For values of |Δω| < κ, the eigenvalues are real, and for |Δω| > κ, the eigenvalues are complex. Thus, the
point at which |Δω| = κ marks the PT threshold.

The reduction of the rate equations to the simplified 2 × 2 effective Hamiltonian answers the question
of why one might expect PT-symmetric behavior in coupled SCLs. The question still remains as to whether
the full rate equation model also exhibits PT-symmetric features. We will show below that despite the
simplifying assumptions made to get Equation (5) and the differences in the conventional PT model and
our system, the coupled SCL system does behave like a PT-symmetric system. In fact, our work to date
indicates that the coupled SCL system is a very robust PT system and that the signatures of PT symmetry
persist even without some of the simplifying assumptions.

3. Results

Having motivated the existence of PT-symmetric behavior in a pair of coupled SCLs, we now
investigate whether the system retains any features of PT symmetry when the full set of laser rate
equations is solved numerically. We restrict our discussion to the zero time-delay case, i.e., τ = 0, to focus
on the PT symmetry aspects of the system. The key signature we look for is whether there is an abrupt
change in the intensities of the lasers at the PT threshold, i.e., when |Δω| = κ. In Figure 1a are shown
the real parts of the two eigenvalues of Equation (5) vs. Δω when τ = 0, as well as the imaginary parts
of the eigenvalues vs. Δω. It is seen that at |Δω| = κ, there is an abrupt change in the real eigenvalues
to non-zeros values. At the same time, the imaginary parts of the eigenvalues transition from non-zero
to zero values at |Δω| = κ. It is clear from the behavior of the eigenvalues that as in all PT-symmetric
systems, there is a threshold at which the eigenvalues transition from purely imaginary to purely real.
The solutions for Equation (5) have the form exp(λt), and so the real parts of the eigenvalues lead to
amplification or decay of the laser intensities, depending on whether the real parts of the eigenvalues are
positive or negative, respectively. Since the real parts take both positive and negative values (see Figure 1a,
for example), the linear model gives physical results only if the real part of the eigenvalues is negative.
For positive values of the real part of the eigenvalues, the solutions would diverge, and this unphysical
result is a consequence of neglecting gain saturation. In a realistic laser system, gain saturation will prevent
the laser intensities from growing to unphysical values, as shown later in Figure 2a.

Since the eigenvalues of the effective Hamiltonian in Equation (5) are given by
√

κ2 − Δω2, the
eigenvalues can be swept from real to complex by sweeping κ and holding Δω constant. In Figure 1b are
shown the real and imaginary parts of the eigenvalues of the 2 × 2 effective Hamiltonian as a function of
κ for a constant Δω = 0.2. Once again, it is seen that at the PT threshold, i.e., κ = Δω, the eigenvalues
undergo a transition from real to imaginary. Thus, a pair of coupled SCLs provide multiple methods
by which the PT threshold can be accessed, either by sweeping κ or by sweeping the relative detuning
through either injection current modulation or temperature variation. The observations in Figure 1a,b
are the characteristic behaviors for the eigenvalues of a PT-symmetric system. The regime where the
time delay is non-zero leads to more complex behavior since the effective Hamiltonian now becomes
infinite-dimensional instead of a simple 2 × 2 matrix, and this will be the subject of another article. As one
illustration of the effect of time-delay, we show the real and imaginary parts of the eigenvalues of the
effective Hamiltonian for a time delay τ = 85 in Figure 1c, when κ is swept and Δω is fixed at 0.2. Since one
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cannot show all the eigenvalues of an infinite dimensional system, we show the behavior of the dominant
eigenvalue, i.e., eigenvalue with the largest real part, since the real part leads to laser intensity growth. It
is observed that the real part of the eigenvalues shows a growth at Δω = κ, but there are also multiple
other transitions for κ < Δω. The real part of the eigenvalues changes sign at all these transitions, and so
the picture is quite different from Figure 1b.
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Figure 1. Real and imaginary parts of eigenvalues of the effective Hamiltonian (a) vs. Δω for τ = 0, (b) vs.
κ for τ = 0, and (c) vs. κ for τ = 85. The parity–time (PT) threshold is Δω = κ = 0.2 for all three plots.

The results in Figure 1 are obtained with simplifying assumptions, including the neglect of population
dynamics and gain nonlinearities. We next investigate whether the features of PT symmetry persist if
the full set of rate equations is numerically solved, which then includes gain saturation and population
dynamics. In the simulations, all time scales are in units of the photon lifetime, taken to be 10 ps. For all
simulations, we take α = 4, but note that the results are insensitive to the value of α. We also take the
initial values for the intracavity electric fields to be the same for both lasers, chosen such that the lasers are
operating at about 3%–5% above the lasing threshold. In Figure 2a are the intensities of the two lasers for
a coupling strength κ = 0.2 and τ = 0. The relative detuning, Δω, is scanned, and we observe that for
|Δω| > κ, the intensities of both lasers remain bounded, and this is the regime in which the eigenvalues of
the effective Hamiltonian are complex. At the PT threshold, |Δω| = κ, there is an abrupt increase in the
intensities of both lasers, consistent with the simplified 2 × 2 model. This observation is an indicator of
the robustness of the PT-symmetric behavior of this system since the PT features persist in the presence
of nonlinearities and population dynamics. It is surprising and remarkable that the predictions of the
rate equation model match those of the 2 × 2 effective Hamiltonian so well since not only does the rate
equation model include gain saturation and associated nonlinearities, and population dynamics, but it
also assumes each laser is operating on a single longitudinal mode. However, in practice, it is unlikely that
for the coupling strengths used here, the two lasers would still be single-mode.

To ensure that the abrupt change in the lasers’ intensities is not an artifact of our simulations, we
varied the relative detuning between the lasers by scanning the injection current to one of the SCLs since
sweeping the pump changes the optical frequency of these lasers. Of course, varying the injection current
also changes the output intensity of the laser, and so both lasers cannot be set to the same initial intensities.
The dependence of the intensity and optical frequency of the lasers is given by

ω(ΔJ) = ωo − kΔJ, (6)

I(ΔJ) = Ithr + ηΔJ, (7)
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where ωo is the optical frequency at the lasing threshold, Ithr is the lasing threshold intensity, and ΔJ is the
injection current with the threshold injection current subtracted. The slopes are intrinsic characteristics of
the SCLs and were taken to be k = 1.84 GHz/mA and η = 0.55 mW/mA.

In Figure 2b, we show a case for κ = 0.0027, where the two lasers are operated at different initial
output intensities, one at 2% above threshold and the other at 30% above threshold. The injection current
to this latter, higher intensity laser is varied linearly, and it is seen that at the PT threshold, i.e., when
Δω = κ, there is an abrupt increase in the intensity of the other SCL. This, once again, is a clear feature of
the PT-symmetric properties of this system.
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Figure 2. Intensities of the two lasers from numerical simulations of Equations (1)–(4). The vertical, dashed
line indicates the PT threshold. (a) As a function of Δω for κ = 0.2, τ = 0. The intensities of the two lasers
are indistinguishable from each other since we assume identical lasers and operating conditions. The red
line is the intensity averaged over 10 ns to account for detector bandwidth; (b) as a function of Δω for
κ = 0.0027 when injection current to one laser (shown in green) is swept to vary its optical frequency;
intensities are averaged over 10 ns; (c) as a function of κ for a Δω = 0.2, τ = 85, intensities averaged over
10 ns.

Finally, to gain some insights into the limits of this numerical model for investigating PT symmetry,
we show one example of the outcome of the numerical simulations for a non-zero time delay, when the
coupling, κ, is strong so that the rate equation model is not valid. In Figure 2c, τ = 85, Δω = 0.2, and κ is
swept, and we note that the intensities of both lasers increase as the PT threshold is crossed. However,
one does not observe the sharp transition that is characteristic of PT-symmetric systems, and also, there
are slow oscillations in the intensities of both lasers. This behavior, for κ > Δω, is not predicted by the
eigenvalues picture obtained from the 2 × 2 effective Hamiltonian. The principal causes for this are that
the infinite dimensional nature of the system, which is not captured by the 2 × 2 effective Hamiltonian,
and that the rate equation model assumes weak coupling, which starts to break down for the strong
couplings used here. We note that the time delay can cause the intensities of the two lasers to become
chaotic. However, we are only interested in the global, average behavior of the intensities and not in the
dynamical regimes, and the averaging over 10 ns hides the chaotic behaviors. This average behavior is
more representative of the predictions of Equation (5).

In order to gain some further insight into the properties of this system, we re-write the rate equations
for the field in terms of equations for the time evolution of the intensity and phase of the two lasers.
The complex electric fields are written in terms of a real amplitude and a real phase modulation term as
E1,2(t) = A1,2(t)eiφ1,2(t). Inserting this into the rate equation model and separating the real and imaginary
components, the time evolution of the phases is given by
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φ̇1,2(t) = αN1,2(t)±Δω + κ
A2,1(t − τ)

A1,2(t)
sin(φ2,1(t − τ)− φ1,2(t)− θτ). (8)

The time evolution of the phase difference, Δφ = φ1 − φ2, is given by

Δ̇φ(t) = α(N1 − N2) + 2Δω + κ( A2(t−τ)
A1(t)

sin(φ2(t − τ)− φ1(t)− θτ)

−κ( A1(t−τ)
A2(t)

sin(φ1(t − τ)− φ2(t)− θτ).
(9)

To establish the connection to PT symmetry in the SCL system, we follow an approach similar to the
one above and assume that carrier inversion is negligible, i.e., N1,2 = 0, and that the time delay is zero, i.e.,
τ = 0. For identical lasers, with A1 = A2, the time evolution of the phase difference simplifies to the Adler
equation [33],

Δ̇φ(t) = 2Δω − 2κsin(Δφ(t)). (10)

The above equation suggests that the phase locking condition is given by |Δω| < κ, which is the exact
same condition that governs the PT threshold for a system with zero time-delay. This analysis establishes
that the regime where the phase locking condition is satisfied is also the regime wherein the eigenvalues
of the effective Hamiltonian are real, while the regime in which the phases are unlocked is the regime
where the eigenvalues of the effective Hamiltonian are complex. This analysis, within the assumptions of
neglecting population dynamics and zero time-delay, establishes the equivalence of the PT threshold and
the phase locking condition [34].

4. Discussion

We have shown in this work that a pair of mutually coupled semiconductor lasers can serve as
a template for investigating parity–time symmetry. The advantage of this system is that one does not
need to fabricate a system in which the gain and loss are exactly balanced. As shown in this paper, the
gain/loss terms are now replaced by the relative detuning between the lasers, which are identically equal
and opposite in sign for a pair of SCLs. Since the optical frequency of an SCL is easily controlled via
temperature or injection current, and as the coupling between the two lasers can also be easily controlled
and measured, the coupled SCL system offers advantages over other PT-symmetric systems where to
alter the coupling, one needs to fabricate a new system. Our work has shown how the rate equation
model that describes the coupled SCL system can be reduced to a simple 2 × 2 effective Hamiltonian,
which is identical to the typical PT-symmetric dimer. We then showed that the predictions of this simple
effective Hamiltonian are reproduced by the full rate equation model, despite the latter having additional
complexities such as population dynamics and gain nonlinearities. The model has some limitations, such
as the assumption that both lasers operate on a single longitudinal model and that the coupling is weak.
However, our results indicate that the features of PT symmetry are very robust and still evident in the rate
equation model.

Among possibilities for further exploration, the SCL model for PT symmetry allows the inclusion of
quantum noise due to spontaneous emission, as well shot noise in the carrier inversion. In the context of
SCL dynamics, there are instances where noise plays a critical role, and it is, a priori, difficult to know when
it will be important. Typically, it is only during a comparison of experiments and numerical simulations
that the influence of noise is revealed. The effect of noise can be studied by augmenting Equation (2) with
appropriate Langevin terms to account for spontaneous emission and shot noise in the inversion. The
PT-symmetric SCL system is different from other PT systems since population dynamics are inextricably
intertwined with the intensity dynamics. To get a handle on the properties of the system, it is instructive

229



Photonics 2019, 6, 122

to look at the populations and how they influence the intensities of the lasers. Our system allows us to
make the coupling term purely real, complex, or purely imaginary, thereby offering further richness in the
parameter space for probing the properties of the system. In summary, the use of commercially available,
low-cost SCLs means that our PT system is flexible enough to add additional oscillators, whereas other
systems do not offer this simplicity of extension since each additional oscillator requires fabrication of the
entire array from scratch.
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