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Roman Niestrój, Tomasz Rogala and Wojciech Skarka

An Energy Consumption Model for Designing an AGV Energy Storage System with a
PEMFC Stack
Reprinted from: Energies 2020, 13, 3435, doi:10.3390/en13133435 . . . . . . . . . . . . . . . . . . . 1

Donkyu Baek, Yukai Chen, Naehyuck Chang, Enrico Macii and Massimo Poncino

Battery-Aware Electric Truck Delivery Route Exploration
Reprinted from: Energies 2020, 13, 2096, doi:10.3390/en13082096 . . . . . . . . . . . . . . . . . . . 33

Yang Yang, Yundong He, Zhong Yang, Chunyun Fu and Zhipeng Cong

Torque Coordination Control of an Electro-Hydraulic Composite Brake System During Mode
Switching Based on Braking Intention
Reprinted from: Energies 2020, 13, 2031, doi:10.3390/en13082031 . . . . . . . . . . . . . . . . . . . 51

Li Chen, Yuqi Tong and Zuomin Dong

Li-Ion Battery Performance Degradation Modeling for the Optimal Design and Energy
Management of Electrified Propulsion Systems
Reprinted from: Energies 2020, 13, 1629, doi:10.3390/en13071629 . . . . . . . . . . . . . . . . . . . 71

Yang Yang, Zhen Zhong, Fei Wang, Chunyun Fu and Junzhang Liao

Real-time Energy Management Strategy for Oil-Electric-Liquid Hybrid System based on Lowest
Instantaneous Energy Consumption Cost
Reprinted from: Energies 2020, 13, 784, doi:10.3390/en13040784 . . . . . . . . . . . . . . . . . . . . 91

Yang Yang, Qiang He, Yongzheng Chen and Chunyun Fu

Efficiency Optimization and Control Strategy of Regenerative Braking System with Dual Motor
Reprinted from: Energies 2020, 13, 711, doi:10.3390/en13030711 . . . . . . . . . . . . . . . . . . . . 115

Yongliang Zheng, Feng He, Xinze Shen and Xuesheng Jiang

Energy Control Strategy of Fuel Cell Hybrid Electric Vehicle Based on Working Conditions
Identification by Least Square Support Vector Machine
Reprinted from: Energies 2020, 13, 426, doi:10.3390/en13020426 . . . . . . . . . . . . . . . . . . . . 137

Lu Han, Xiaohong Jiao and Zhao Zhang

Recurrent Neural Network-Based Adaptive Energy Management Control Strategy of Plug-In
Hybrid Electric Vehicles Considering Battery Aging
Reprinted from: Energies 2020, 13, 202, doi:10.3390/en13010202 . . . . . . . . . . . . . . . . . . . . 155
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Abstract: This article presents a methodology for building an AGV (automated guided vehicle)
power supply system simulation model with a polymer electrolyte membrane fuel cell stack (PEMFC).
The model focuses on selecting the correct parameters for the hybrid energy buffering system to
ensure proper operating parameters of the vehicle, i.e., minimizing vehicle downtime. The AGV uses
2 × 1.18 kW electric motors and is a development version of a battery-powered vehicle in which
the battery has been replaced with a hybrid power system using a 300 W PEMFC. The research and
development of the new power system were initiated by the AGV manufacturer. The model-based
design (MBD) methodology is used in the design and construction of a complete simulation model
for the system, which consists of the fuel cell system, energy processing, a storage system, and an
energy demand models. The energy demand model has been developed based on measurements
from the existing AGV, and the remaining parts of the model are based on simulation models tuned
to the characteristics obtained for the individual subsystems or from commonly available data.
A parametric model is created with the possibility for development and determination by simulation
of either the final system or from the parameters of the individual models’ elements (components
of the designed system). The presented methodology can be used to develop alternative versions
of the system, in particular the selection of the correct size of supercapacitors and batteries which
depend on the energy demand profile and the development of the DC/DC converter and controllers.
Additionally, the varying topology of the whole system was also analyzed. Minimization of downtime
has been presented as one of many possible uses of the presented model.

Keywords: fuel cell; automated guided vehicle; hybrid energy storage system; model-based design;
waveforms modeling; autoregressive models of nonstationary signals

1. Introduction

The use of electric drives in various types of vehicles is becoming increasingly popular. The growing
use of such drives is due to the many advantages of electric motors compared to internal combustion
engines. This is particularly evident in closed areas in internal transport where automated guided
vehicles (AGVs) are heavily utilized. High torque, quiet operation, and zero-emissions are just some of
the advantages over other primitive solutions. However, these vehicles have operational problems
such as insufficient work duration and limited ranges. This is caused by the relatively low energy
density of the energy sources used in these vehicles. The development dynamics of the basic energy
sources used in AGVs, such as lithium-ion batteries, does not indicate that this problem will be solved
in the short-term (within the next decade). For this reason, designers are searching for other energy
sources that provide significantly higher levels of energy density while having the same advantages
as modern batteries. One of the proposed solutions is to use hydrogen fuel cell stacks to power

Energies 2020, 13, 3435; doi:10.3390/en13133435 www.mdpi.com/journal/energies1



Energies 2020, 13, 3435

AGVs. However, the power supply system itself, based on a fuel cell (FC), is much more complex than
that of battery power. Usually, the fuel cell is supplemented with a hybrid energy storage system
constituting an energy buffer that eliminates the imperfections associated with using hydrogen fuel
cell stacks. This is due to the operational characteristics of the fuel cell that must produce electricity
after commissioning; thus, the efficiency of electricity generation varies significantly depending on
the load on the fuel cell. It is particularly unfavorable to operate the fuel cell at a very low/high
load or with high dynamics of load change, which significantly reduces the efficiency of this device.
Typically, an energy buffer comprises a battery and a set of supercapacitors with appropriately selected
parameters. Control of the operation of the hydrogen fuel cell, integration of the appropriate battery
size, buffering problems, multidirectional energy conversion, adaptation of electrical energy to various
parameters, and hydrogen storage and supply all have specific characteristics and require appropriate
adjustment of the power supply system to meet these energy demand characteristics. This means
designing an optimal power supply system using a hydrogen fuel cell is a complex task.

As part of the work, the design of a hydrogen fuel cell-based power supply system for an existing
AGV (Formica-1, AIUT Ltd., Gliwice, Poland) powered with a lithium-ion battery was undertaken,
with an effort to preserve the vehicle’s operational characteristics, minimize any structural changes,
and significantly increase the vehicle’s operating time.

Due to the limited number of commercially available FC’s capacities, the fuel cell selection is
usually based on average demand power. The authors note that the main problem in designing the
entire power system based on FC is the correct selection of the energy buffer. Therefore, particular
attention is paid to the selection of a hybrid energy storage system because the correct choice of this
system allows one to adjust the characteristics of the entire system to one’s needs, whilst minimizing
the fuel cell’s power.

The justification for using an energy buffer with an FC is to temper large fluctuations in power
demand and to accumulate energy from regenerative braking. The energy buffer, in this case, corrects
FC deficiencies as the FC is not able to rapidly increase its power output, has a limited peak power,
and is not able to absorb braking energy. The nature of FC’s work dedicates them rather to independent
work in stationary applications. For traction applications, an energy buffer is needed that is tailored
exactly to the nature of the energy demand.

To solve the selection problem for hybrid energy storage system in an AGV powered by a polymer
electrolyte membrane fuel cell stack (PEMFC) outlined in this section, we urge the reader to refer
to the literature review regarding the model-based design for methodologies used, FC modeling,
for discussion on the components utilized, and for an overview of FC-based power systems (Section 2).
Section 3 describes the assumptions of the general methodology for designing the entire system,
and the assumptions, modeling methods, and model bases for the individual subsystems of the entire
AGV, in particular, the energy demand at various operational states, the hybrid vehicle power systems
model such as the FC, DC/DC converter model, as well as supercapacitors and batteries. For the
system’s application (Section 4), details of AGV development research involving the change of the
power supply system from a battery system to a system based on FC is described. Section 4 highlights
the identification of the vehicle’s energy demand at various operating states, the model for this demand,
the use of a power system model with the energy demand model for optimizating the newly developed
power system based on a previously selected FC, and the selection of the structure and parameters of
the buffering system energy. Optimizations were carried out through simulation experiments using
developed models. The last section provides a detailed discussion of the results from earlier studies.

2. State-of-the-Art

Model-based design (MBD) methodology is often used to design complex mechatronic
systems [1,2]. The methodology consists of building computer simulation models of the designed
system and simulating its operation. The use of such a methodology is particularly beneficial in the
design of systems requiring the cooperation of specialists from various fields and systems. In our case,
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the system crosses fields that include mechanical, electrical, and chemical sciences, which address
difficult to describe phenomena and require personalized and very specific system control. A typical
example of such a system is a drive and power supply system for vehicles, such as a power supply
system consisting of a hydrogen fuel cell, battery, supercapacitors, and the respective control systems
and energy flow processes. The purpose of using MBD methodology is to initially plan how to design
a system, its operation, and control its parameters, all whilst meeting the criteria and fulfilling its
desired functions. It is also possible to determine appropriate or optimal technical parameters of the
individual subsystems, such as the technical parameters and the control method. Usually, the complete
model includes not only the designed system, the power supply system, and the drive system, but also
the entire facility on which the designed system is built, as well as external conditions affecting the
operation of the whole. For vehicles, this is usually a power system model, the propulsion system
model, and the entire vehicle model, and often includes the route model and the conditions they
encounter. Depending on the situation, the complexity of the model should be adjusted to obtain
satisfactory results [2,3]. If we have a prototype or a copy of the system available, we can determine
an appropriate model using experimental tests, but if the system is in the concept phase we must
build a model, e.g., a model based on the sum of the general theoretical phenomena occurring in the
system. Likewise, the model for the power supply or propulsion system itself is much more complex,
whilst the model of the routes and the whole vehicle is simplified or considers the relevant data to
enable simulation. For hydrogen-powered electric vehicles, the most important and substantive input
model is the hydrogen fuel cell itself, which forms the entire power supply system as the whole vehicle
is driven and powered by such a system. Usually, choosing the correct system parameters makes
the most sense when the vehicle is traveling along a fixed route or a finite and known set of routes
where the load and driving conditions are set or predictable. With this knowledge, one can accurately
determine the features of the power system. This is the case with certain types of vehicles such as
AGVs or racing vehicles. However, if the load conditions and route conditions are unknown or difficult
to predict, the task is much more difficult, and the results will not be as definitive as expected.

This section describes the problems associated with modeling vehicle system components and is
was divided into two parts: The first concerns the hydrogen cells themselves and the second deals
with the remaining elements of the energy conversion system. In these subsections, the authors focus
primarily on the energy buffer, but FCs are also analyzed because it is the operational features of the
FCs that have a significant impact on the selection of the energy buffer. Another element that affects the
form and characteristics of the energy buffer is the fluctuating nature of energy demand and the need
to recover energy under vehicle braking. Correct and detailed modeling of these sections of the whole
system (and not only the energy buffering system) is, therefore, a condition for completing simulation
experiments from which the energy buffering system will be selected.

2.1. Modeling of the Fuel Cell Stack

A hydrogen fuel cell is an electrochemical device that converts chemical energy via an electrolytic
reaction directly into electricity. For modeling purposes, it is not necessary to know all physicochemical
conditions related to energy production in the FC.

There are several classes of simulation models in the literature, which can be divided into three
sub-groups; electrical, chemical, and experimental. Electric fuel cell models are used to compute power
systems. This model treats the fuel cell as an element of an electrical circuit and does not include
phenomena underlying electrical production. Phenomena such as particle diffusion, mass transport,
and thermodynamic transformations are addressed in a chemical model.

The commonly used generic simulation model using a MATLAB/Simulink system includes two
types of models: Simplified and detailed. Such models include the calculation of the irreversibles that
affect the voltage drop of a cell during operation relative to the theoretical voltage resulting from a
chemical reaction, which in turn results in changes in the energy characteristics. This is influenced
by the following types of irreversibles: Activation losses, fuel crossover and internal currents, ohmic
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losses, mass transport, and concentration losses. The origins and descriptions of these irreversibles,
as well as the modeling method, have been previously discussed [4,5]. When creating a simplified
model, two points from the activation region and two points from the ohmic region are utilized from
the polarization curve. However, for the construction of a detailed model, further data are required,
such as the number of cells, nominal Low Heating Value (LHV) stack efficiency, nominal operating
temperature, nominal air flow rate, absolute supply pressure, and the nominal composition of fuel
and air; these are typically provided in the fuel cell manufacturer’s documentation. When it comes
to modeling fuel cell dynamics, current step and interrupt tests must be completed for a given cell.
The necessary parameters to construct this part of the model are then determined from these tests or can
be obtained directly from the manufacturer’s data, because they depend on the fuel cell itself. If such
tests cannot be performed, the data can be assumed from a recommended range [4]. Occasionally,
the fuel cell manufacturer does not provide basic technical data for the FC, and in this case more tests
on the system are required to determine a full range of parameters. Other parameters obtained in tests
depend on the whole system in which the FC works and its load, and they are specific for a particular
configuration of the system.

Other fuel cell equivalent circuit models for passive mode testing and dynamic mode design
have been compared in [6]. This comparison includes the following dynamic models: Larmie [7],
Dicks–Larminie [5], Yu-Yuvarajan [8], Choi [9], and shows that complex models are not always effective
for practical applications. These four dynamic models are used to simulate the power-generating cell,
whilst the passive equivalent circuit model represents the fuel cell which is not producing electric
power. These models represent the response to an external electric stimulus to determine the condition
of the fuel cell. Additionally, in [6], Page [10], and Garnier [11], passive models are compared.
The work [6] does not present any relationship between passive mode test responses and dynamic
mode performance.

Not all of the fuel cell’s irreversibles are relevant under normal operating conditions.
While commissioning and rated conditions are the most common conditions, overloading is not
a common condition. Some systems do not function under FC operation with such overloading
conditions at all. Therefore, irreversibles that affect work under such unusual conditions are not
considered or modeled at all. However, sometimes this is needed, and irreversible mass transport and
concentration losses must be modeled. A model for mass transport losses in the form of a theoretical
model is presented in [12] and in the form of an empirical model in [4]. This model was developed to
simulate transport phenomena in a proton exchange membrane fuel cell (PEMFC).

The hydrogen fuel cell is complex and expensive, and in systems with high dynamics of power
demand where it is required to supplement such a cell with additional elements such as startup
batteries, buffers, inverters/converters, then the whole system needs to be modified to handle a specific
load. Testing such a system can be completed using a computer simulation model presented later in the
article, but it is also possible to create a physical simulator which is a cheap alternative to testing. Such a
solution built based on a programmable DC power supply, control interface, and software written in
LabVIEW has been proposed for testing the entire system and acts as a guide in the development of
power conditioning equipment [13] with the ability to work in steady-state and transient modes.

2.2. Modeling of the System Using a Fuel Cell Stack

To generate energy in FCs, it is necessary to use a hydrogen tank together with a hydrogen
pressure reduction system and a control valve mediated by a controller to regulate the amount of
hydrogen supplied on an ongoing basis. Oxygen is usually supplied from the air through a fan system
to the fuel cell. It is also possible to supply oxygen from a high-pressure tank similar to the whole
hydrogen supply system.

For large FCs (larger than 10 kW), the installation of the FC itself becomes very complicated and
maintaining balanced operational parameters becomes a problem. These issues are the subject of
separate research, and balance of the plant (BOP) [14] and incorrect configuration and selection of
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inappropriate operating parameters of individual elements of the FC system can lead to insufficient cell
performance and rapid degradation of the cell. A simple solution to the complexity of the installation
on the FC preparation side can be made by using an FC configuration based on a dead-end anode (DEA)
structure. This type of installation, unlike the flow-through anode (FTA) configuration, significantly
simplifies the need to prepare hydrogen and guarantees the appropriate humidity of the cell, ensuring
close to 100% hydrogen use by controlling the (normally closed) purge valve [15,16]. This configuration
is popular for low power FCs, but also developed for higher power applications. DEA installations
operating differently to FTA are not managed by a regulated control valve and have to be purged
periodically by the purge valve [17].

Since the fuel cell itself is an energy generator operating under specific parameters, usually this
produced energy must be adapted to the purposes of the energy demand characteristics. If the power
take-off is not variable, this system may be simpler, but with high variability of energy demand,
it is necessary to consider the electric converter/inverter and energy buffer supplied via batteries or
supercapacitors. Supervising the work of these devices can take place at various levels, most often
at the basic level through ongoing control of the parameters of individual devices, and frequently at
the strategic level by adapting the operating parameters not only to the ongoing demand but also to
future demand.

Modeling the power supply load is a separate problem. A power supply load model takes the
form of a specific load profile based on the behavior of the powered system and optimized with
measurements taken during the experiment or by considering physical phenomena, e.g., a model
outlining the dynamics of a moving object. The choice to develop this model depends on the design
phase. If one has a prototype or physical copy of the system required to be powered, one can choose the
first solution, but if one only has the concept or accurate documentation, the second solution is needed.
Interesting solutions can be found in various works for modeling system fragments or the entire
system oriented at determining specific parameters. An example model for a complete power supply
system for hybrid vehicles is described in [18]. The modeled system consists of a hydrogen power
supply, DC/DC converter, battery, inverter, electric motor, and the vehicle body. A complete model
of the system was developed based on the experimental data. The model was then used to develop
a power management control algorithm for fuel cell hybrid vehicles using a stochastic programing
technique. This approach requires a complete system which can be subjected to a series of experiments.
Another approach is to use model-based design (MBD), where a model is created at the design and
concept stage, and numerical simulation experiments outline various potential solutions and determine
the impact of various parameters on the system’s performance (sensitivity analysis), or to formally
optimize the system or its components [1,2].

Improved modeling of the Proton Exchange Membrane (PEM) fuel cell power stack for electric
vehicles in which a separate oxygen tank supply system was used to improve performance is presented
in [19]. Simulation calculations were oriented towards finding an optimal control strategy for the
pressure that facilitates the output power according to the power demand of the load.

In addition to the holistic approach to modeling the hydrogen fuel cell system, researchers are
interested in individual elements of the system. Furthermore, the hydrogen cell itself, with a series of
tanks, controllers, control valves, and fans supplying air, may include power electronics which process
and adapt energy to meet demand from energy buffering units, including various types of batteries
and supercapacitors. Regulators and controllers are indispensable to these units and operate at various
levels, and often operate with a complex strategy for a given application.

Selecting the power electronics for the FC’s energy conversion system is quite a difficult task.
The situation is additionally complicated by the fact that the energy-receiving system requires
the conversion of energy to different voltages, types of currents, and their power simultaneously.
We chose to only focus on work completed on general modeling of energy flow and power losses, not
energy-electronic phenomena or their modeling. Therefore, only models for average value converters
were assessed, and those cooperating with basic energy buffers and thus implementing alternative
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strategies of constant current and constant output voltage were analyzed. There are no universal
solutions to control of energy flow because the characteristics of the energy demand received from FC
are application dependent. The selection of elements of the entire FC system is of interest to many
scientists. An essential element in the system is the boost converter. A simple model of the cell as an
electrical circuit has been previously described [20]. The model, taking into account a portion of the
irreversibles appropriate to the nature of the application, is used to select the suitable type of DC/DC
boost converter and to select the parameters of the energy storage constituting the energy buffer which
compensates for rapid changes in energy demand. Various connection options (behind or before the
converter) of the supercapacitors are also discussed.

For energy buffers, there has been significant progress in the development of the latest types of
batteries. The multitude of solutions is not conducive when making optimal decisions, especially at
the development stage of the system. Therefore, simple battery models using the most popular battery
types are used. The basic battery models are lithium-ion, lead-acid, nickel-cadmium, and nickel–metal
hydride [21], and their various parameters are also defined, including charge and discharge, temperature
effects, and ageing. This enables the modeling of various connections cells in series and/or in
parallel [22–25].

A “Theoretical Modeling Methods for Thermal Management of Batteries” review has been
previously completed [26]. In addition to typical models, various new approaches are presented,
e.g., in [27,28].

In [27] a novel lumped electrothermal circuit of a single battery cell was presented, including the
extraction procedure of the parameters of the single-cell from experimental evidence and a simulation
environment, given in SystemC-WMS for the simulation of a battery pack.

In [28] a new open-circuit voltage (OCV) model is proposed. The new model can simulate the
OCV curves of a lithium iron magnesium phosphate (LiFeMgPO4) battery at different temperatures.
It also considers both charging and discharging. The most remarkable feature from the different
models, in addition to the proposed OCV model, is their integration into a single hybrid electrical
model. A lumped thermal model is implemented to simulate the temperature development in the
battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of
an actual electric vehicle.

Typically, the problem of choosing a buffer system includes what type of energy buffers will be
selected, the size of the buffer, and the features of individual parts (batteries, supercapacitors). Buffer
hybridization is a common solution which involves a combination of a supercapacitor with a battery
and is outlined in [29]. Various configurations and sets of supercapacitors and batteries together
with DC/DC converters are discussed in several papers [30–32]. The correct selection of the buffer
parameters and the topology of this system allows one to overcome most of the FC’s weaknesses.
Selecting the optimal parameters and topology for these subsystems in the FC is important, as the FC
is strongly dependent on the energy demand characteristics in the system [30,32].

Modeling supercapacitors (SC) requires consideration of the electrical, self-discharge, and thermal
behavior. A comprehensive review of the modeling techniques is described [33–35]

The equivalent mathematical model derived from the electrical model, which was used to simulate
the voltage response of the supercapacitor, is presented in [33].

The review presented in [33] discusses SC modeling, state estimation, and their industrial
applications, intending to summarize recent research progress and stimulate innovative thoughts for
SC control/management. For the SC modeling, state-of-the-art models for electrical, self-discharge,
and thermal behavior are systematically reviewed, where the electrochemical, equivalent circuit,
intelligent, and fractional-order models describing the electrical behavior simulation are highlighted.
For SC state estimation, methods for state-of-charge (SOC) estimation and state-of-health (SOH)
monitoring are covered, together with an underlying analysis of the ageing mechanism and its
influencing factors.
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The models which are described in the literature have various advantages and disadvantages,
ranging from the ease of use down to the complexity of characterization and parameter identification.
Work presented in [35] presents a comprehensive review and compares these models, specifically
focusing on the models that predict the electrical characteristics of double-layer capacitors (DLC),
showing the strengths and weaknesses of different available models and their various areas
for improvement.

Experience in implementing the various applications of the hydrogen fuel cell system is very
helpful when designing a complete system. One can find many interesting descriptions of applications
with different degrees of maturity and covering both stationary and mobile applications in ground,
water, and aerial vehicles. Research has described the various aspects of the whole system and
its hybridization [36–39], current energy management and energy management strategy [40–44],
energy control and processing [45,46], optimization of power systems based on fuel cells for matching
operational parameters [47,48], power transmission in hydrogen cell-powered propulsion systems [49],
and general aspects of the development of hydrogen cell-based systems [50,51].

3. Model of Energy Transfer in the System

A general methodology for building an energy transfer model enabling simulation experiments
when designing a hybrid power supply (HPS) system based on a hydrogen cell stack for an AGV is
shown in Figure 1.

Figure 1. A general methodology for building a model enabling simulation experiments for designing
a hybrid energy storage system with a hydrogen cell stack for an automated guided vehicle (AGV).

Conducting simulation experiments requires the definition of the HPS system in the AGV. Since
these vehicles are designed for close repetitive transport operations over long periods and have known
operating conditions, i.e., speed and load, one can adapt the HPS system to individual needs, such as
the demand for instantaneous power during a specific operating condition. At this stage, the criterion
for assessing the designed HPS system should also be determined. For the next step, it is necessary to
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measure and identify the instantaneous power demand by the AGV at different operating conditions.
These measurements should include the power demand for expected operating conditions over the
planned route. From this, work can be completed on the data preprocessing, modeling, and validation
of the models representing the power demand. These models are identified based on data from
instantaneous power measurements at various operating conditions. Based on a set of such models,
it is possible to simulate the power demand for the new AGV route and other operating conditions.
A detailed discussion on this subject is presented in Section 3.1.

Simultaneously, by the defining power demand models, it is possible to create component models
of the HPS system. It should be noted that these models of HPS can be identified based on additional
measurements or characteristics provided by the manufacturers. More information about creating and
identifying component models of an HPS including a hydrogen cell, models of storage components,
and other auxiliary components, are described in Section 3.2. To validate the hybrid power supply
system model, it is possible to provide the load in the form of played-back real values of instantaneous
power demand and creating comparisons, e.g., concerning the current power supply system installed
in AGV.

The proposed methodology described herein and in further sections of this manuscript allowed
us to design a customized HPS system for operating conditions over a preplanned route. This can
be achieved by conducting simulation experiments to find the optimal solution or a set of possible
solutions which satisfy defined criteria. The optimal criteria can refer to finding the optimal battery or
supercapacitor capacity for the HPS or other objectives. More information on this subject is discussed
in Sections 4.2 and 4.3.

3.1. A Generic Model for Instantaneous Power Demand

This section describes a generic procedure for building a model to compute instantaneous power
demand. This generic model is used to estimate the instantaneous power demand under the AGV’s
different operating conditions during working duty cycles. The model results are used as a load for
the hybrid hydrogen power supply system model discussed in Section 3.2. The use of both models
makes it possible to perform different simulation experiments, which allows one to examine different
configurations of a power supply system with varying parameters. The generic model for instantaneous
power demand is the first part of this model.

The presented methodology for building an instantaneous power demand model, ultimately
to develop a new hybrid vehicle power supply system, depends on the available data sources.
Two possible options defining the data source availability can be distinguished:

• Variant I: Data which describe the full dynamic model of the AGV are available. In this case,
the developed model allows one to implement any scenario of AGV operation and estimate
the instantaneous power demand. The data includes all the dynamic parameters of the vehicle
including the mechanical system of the vehicle transmission system, the model of the control
system, as well as the electric power supply system. It should be noted this is a seldom case and
is a time-consuming modeling activity that requires a lot of information about the considered
object, i.e., access to information about the dynamic parameters of the vehicle, information
about how the vehicle is controlled, including the operation of supervised control system, etc.
Unfortunately, some sections of this information are often unavailable due to companies protecting
their intellectual property.

• Variant II: Only data with selected operating conditions are available, such as the speed of
individual main drives that accompany the measurements of the instantaneous power demand of
the vehicle. It should be noted that the use of this variant is purposeful, especially for AGV which
has a limited number of possible settings of selected operating conditions, e.g., rotation speed of
drives as well as acceleration and braking ramps. In such a case, it is not necessary to identify
the entire domain defined by the space of possible values under the parameters of the operating
conditions but only selected characteristic parameters.
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In the further sections of this script, only variant II is considered. This approach requires one to
define the following operating conditions:

• A speed parameter v of a vehicle or rotational speed of drive or drives. Under stationary conditions,
this parameter should be measured at typical velocities for the type vehicle. For instance, 0.3 or
1.2 m/s are used as standard velocities [52] and some values are set by the manufacturer,
e.g., 0.5 m/s (according to safety requirements [52]), and the maximum speed adjusted to the
maximum permissible load. In this work, the safe velocity value for the maximum load of 1.2 t is
0.8 m/s. Measurements of velocities under transient conditions also allow identification of the
acceleration and deceleration ramps;

• A carried load L with respect to the maximum limit load;
• Description of the characteristic route and driving direction, e.g., straight route ahead, straight

route reverse, right turn, left turn, rotation around the AGV normal axis;
• Information about the inclination of the route (maximum 3% for AGVs according to the

standard [52] on a technical floor); in this study this value has been omitted.

For the aforementioned values, under a combination of operating conditions, a bank of
autoregressive models has been applied. These models are representations of signals which, for selected
operating conditions, represent instantaneous power demand for the selected type of vehicle. The main
task of the models, in detail, is to:

• Represent expected values and variance of the instantaneous power demand under selected
operating conditions;

• Reflect the dynamics of changes in the instantaneous power demand and their frequency
amplitude characteristics.

3.1.1. Models for Stationary Conditions

The autoregressive model of the signal [53–55] of instantaneous power demand is given by
the formula:

M(k) : y(k) = E
{
y
}
+
ε(k) ×Var

{
y
}

A
(
q−1

p

) (1)

where y is the instantaneous power demand, ε is the noise which follows a Gaussian distribution,
A
(
q−1

n

)
is a polynomial of the n order represented by A

(
q−1

n

)
= 1 + a1 × q−1 + a2 × q−2 + an × q−n,

and E
{
y
}
, Var

{
y
}

are the expected value and variance of the instantaneous power demand. The expected
value and variance can be additionally represented by other linear or quadratic functions of f (V, L).
To account for dynamic changes in the instantaneous power demand, the model can be represented in
the frequency domain [55] using the following formula:

M( jω) : Py
(
ejω

)
=
ε(k) ×Var{Y}∣∣∣∣A(

ejω
)∣∣∣∣2 = E{Y}2 + ε(k) ×Var{Y}∣∣∣1 +∑p

k=1 a(k) × e− jωk|2 (2)

where Py
(
ejω

)
represents the power spectral density of the modeled signal. The above model can be

applied under stationary operating conditions.

3.1.2. Models for Nonstationary Conditions

Similarly to stationary conditions, a signal model can be built for the nonstationary conditions [55,56].
This applies to parameters such as acceleration, braking, and emergency braking, etc. The model to
apply for this case has the following formula:

M(k) : y(k) = E
{
yd

}
+
ε(k) ×Var

{
yd

}× En
{
yd

}
A
(
q−1

p

) + Tr
{
y
}

(3)

9



Energies 2020, 13, 3435

where Tr
{
y
}

is the linear model of the acceleration, deceleration ramp, etc. This part of the model can
be determined using a least-squares criterion. En

{
yd

}
is the envelope model established for the signal

after removing the trend from the nonstationary signal yd. The model of the envelope can be evaluated
for the following signal:

En
{
y
}
=

∣∣∣z[k]|+|z[k− 1]|+ · · ·+|z[n−N]
∣∣∣

N − 1
(4)

where
∣∣∣z[k]∣∣∣ is a module of an analytical signal obtained using a Hilbert transform [57] and N is a length

of the moving average filter. The envelope signal can be represented by a regressive model given by
Equation (1). If the envelope is flat and monotonical then a linear model can be used.

After removing the trend and by eliminating the second-order nonstationarity resulting from the
variable variance, the frequency assessment of the model presented in the Equation (2) can then also
be used.

3.1.3. Model Validation

The validation of the model describing the route section under selected operating conditions can
be calculated by using the following measures:

• Using a training data set to develop the model and validation data yval(k) , the following measures
of model compliance can be determined:

ErEnergy =

∣∣∣∣∫ t
0 M(k)dt− ∫ t

0 yval(k)dt
∣∣∣∣∫ t

0 yval(k)dt
100% (5)

where
∫ t

0 M(k)dt is the energy computed for the signal model, and
∫ t

0 yval(k)dt is the energy of the
validation signal.

• The second measures (as a functional feature) of model compliance are executed with the use of
relative error of power in the frequency domain:

ErFreqStruct =
∣∣∣∣Py

(
ejω

)
− Pyval

(
ejω

)∣∣∣∣ (6)

where Py
(
ejω

)
, Pyval

(
ejω

)
are the power spectral densities of the model obtained as an output of the

model and the power spectral density of validation data, respectively. The measure determined
here is a functional assessment in the frequency domain and it determines the difference in signal
power for the frequency components. The selection of the model order is determined, based on
the similarity of the power spectral density characteristics, to reflect the dynamics of the signal
changes by the signal model.

3.1.4. Combining Models

After validating the individual models representing the signal from instantaneous power demand,
a selected scenario can be built which represents the AGV route. Usually, this route is planned and the
AGV moves along the route under established operating condition parameters such as speed, load, etc.

Before creating a power demand model for a selected vehicle scenario, it was necessary to divide
the scenario into appropriate route sections for which appropriate models would be assigned to
generate the instantaneous power demand signals.

An important element when building full waveforms for the entire scenario was the points where
the signals of the partial models would be combined. To combine waveforms of the individual models,
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it is possible to use the following window (Equation (7)), which is a modified version of the window
previously shown in [58], the length of which can correspond to the length of the modeled waveforms:

w(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(
− 1

2 × dl +
1
2

)
×

{
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(
2Π
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[
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2

])}
+ dl, 0 ≤ y < r

2

1, r
2 ≤ y < 1− r

2(
− 1

2 × dr +
1
2

)
×

{
1 + cos

(
2Π
r ×

[
x− 1 + r

2

])}
+ dr, 1− r

2 ≤ y < 1

(7)

3.2. Hybrid Power Supply System Model for the AGV

The model of the hybrid power supply system for the AGV was developed in the MATLAB/Simulink
environment partly using the Simscape Electrical library components. This model is a numerical tool
supporting the selection of elements for the hybrid power supply system. The block diagram of a
hybrid power supply system is shown in Figure 2. The numerical model was built based on this block
diagram (Supplementary Materials). This model could be used to optimize the parameters of the power
supply system after a specific operation scenario for the AGV is chosen (length and diversity of the
route, load, driving dynamics) and after assuming the optimization criteria (for example, minimizing
the capacity of the main energy store).

 
Figure 2. A block diagram describing the hybrid power supply system for the AGV.

The electrical energy source in the hybrid power supply system was the fuel cell stack fueled by
hydrogen. It was assumed that hydrogen was stored in a metal hydrides tank equipped with a pressure
regulator [59]. The flow of hydrogen through the fuel cell stack was regulated by a proportional control
valve. The control signal for this valve was generated using a hydrogen flow regulator. This regulator
was a component of the fuel cell stack controller. The controller additionally protected the stack against
operation from moving outside the safe operating range of the electrical and thermal parameters.
In addition, the fuel cell stack controller contained the SCU (short circuit unit), which periodically
short-circuited the stack and improved its performance [60]. Due to the operation of the SCU, it was
necessary to install an auxiliary supercapacitor in the system, which maintained the supply voltage for
the duration of the stack short-circuit, and additionally provided an energy buffer for rapid changes in
the load current of the stack when the stack was not able to impulsively provide adequate power due
to limitations imposed by its own dynamics and the hydrogen fueling system dynamics.

Electrical energy from the fuel cell stack was supplied to the main AGV power busbars through a
DC/DC Constant Current - Constant Voltage (CCCV) converter working at a Constant Current (CC) or
Constant Voltage (CV) output, where the output current setpoint for CC mode could be invariable
or could be set by the stack load power regulator, which was part of the converter control system.
The method for determining the output current setpoint depended on the configuration of the hybrid
power supply system used and the method of its optimization.
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A lithium-ion battery or supercapacitor could act as the main electrical energy storage. The reasons
for using electrical energy storage (as energy buffer) together with the fuel cell stack, in traction
applications, were the large fluctuations in the power demand and the need to accumulate energy
from regenerative braking. The energy storage, in this case, complemented the deficiencies of the fuel
cell stack, meaning the stack was not able to increase the output power impulsively, had limited peak
power, and was not able to absorb braking energy. The nature of the fuel cell stack was rather dedicated
to independent work in stationary applications. In traction applications, an additional energy storage
device was necessary [30–32].

There was a management system between the main power busbars and the main energy storage,
the primary role of which was to protect the energy storage against operation outside the safe range of
electrical and thermal parameters. The management system also allowed for pre-charging of the main
energy storage with energy from the fuel cell stack after starting the hybrid power supply system,
which was needed when the supercapacitor acted as the energy storage. It was assumed that the energy
storage could also be charged from an external energy source, depending on the adopted configuration
of the hybrid power supply system and the scenario of the AGV operation.

While developing the numerical model for the hybrid power supply system, assumptions were
considered from the practical conditions or were the result of previous preliminary analyses. The initial
selection of the fuel cell stack was guided by the average power demand of the AGV and from economic
criteria. The cheapest fuel cell stack was selected that would meet the AGV requirements according to
preliminary estimates. It was assumed that a horizon fuel cell stack, type H-300, with 300 W power,
a rated voltage 36 V, and rated current of 8.3 A would be used [61]. This stack consisted of 60 PEM
fuel cells connected in series, low-temperature operation, powered by hydrogen from the pressure
tank and oxygen obtained from atmospheric air. The nominal efficiency of the H-300 stack was 40%.
This was a low power fuel cell stack that had a very simple “balance of plant” structure. The stack
was equipped with three fans that provided cooling to the stack with a suitable amount of the air.
The fuel cell stack was equipped with a factory controller that regulated the rotation speed of the
fans by supplying them using the Pulse Width Modulation (PWM) method, and which controlled the
hydrogen two-state valves. This fuel cell stack with factory controller functioned as a dead-end anode
stack [15,16] without external humidification and hydrogen recirculation. It was assumed that the
functionality of this controller could be extended to meet the needs of the power supply system under
development by controlling the proportional hydrogen valve for flow-through anode operation [17],
which was included in the numerical model.

The presented numerical model was primarily used to determine the flow of electrical energy in a
hybrid power supply system, so several simplifications were assumed when developing this model.
It was assumed that the fuel cell operated at a constant temperature and the airflow from which oxygen
was extracted was always sufficient, regardless of the power load of the cell. The assumption regarding
airflow was also fulfilled for the modeled fuel cell in the absence of external restrictions, which has been
previously determined [62], where it was stated that even with the smallest used fan efficiency the cell
worked with an air excess coefficient of ~20. Both thermal phenomena occurring in the hydrogen tank
and the hydrogen release dynamics from the metal hydride storage were not taken into consideration.
It was assumed that the hydrogen in the fueling system always had sufficient pressure to achieve the
required hydrogen flow. Additionally, thermal phenomena in other elements of the power supply
system were deemed to be negligible, assuming that they worked in optimal and constant thermal
conditions. The phenomena related to the pulse operation of power electronic devices in the DC/DC
converter were also not taken into account together with any ageing of the lithium-ion battery.

It was assumed that an external energy source was required to start the hybrid power supply
system, ensuring the power needed to start the fuel cell stack and the stack controller, especially when
the main energy storage was discharged. A low-capacity start-up battery could be used as an auxiliary
energy source, which, if necessary, could be charged from an external source and, after starting the
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power supply system, could be recharged from the main power busbars. The energy needed to start
the power supply system was small; however, the starter battery model was omitted for simplicity.

Modeling of the AGV drive system had been simplified to just model the instantaneous power
demand, while the demand for the power of the components of the drive system (inverters, motors)
during vehicle movement and related to the operation of the vehicle’s control, safety, and signaling
systems also had to be taken into account. The instantaneous power demand model for a selected AGV
operation scenario was created by submitting multiple data samples obtained during measurements
made by a real AGV with different load states and with different operating states, both during steady
driving and in dynamic states (acceleration, braking). The data samples were recorded for an AGV
powered by a standard (factory) lithium-ion battery that was charged from an external source at the end
of the operation. Then the data were subjected to filtering and processing as described in Section 3.1.
It was assumed that the instantaneous power demand for a vehicle powered by a standard battery and
in a vehicle powered by a hybrid power supply system with a fuel cell stack under the same operating
conditions and load conditions was the same. In connection with the adopted method of modeling the
AGV drive system, the phenomena associated with switching power electronic devices in the inverters
of the vehicle’s drive nodes were excluded from the research.

Optimization of the structure and parameters of the hybrid power supply system could be carried
out considering various criteria by setting selected parameters for the numerical model and analyzing
the obtained waveforms, both utilizing experiments performed by trial and error and by automatic
optimization algorithms. Usually, the parameters of the fuel cell stack were assumed at the beginning
of the optimization process because the choice of the stack was not very flexible and the rated powers
of the available stacks were highly graduated. The choice of energy storage was more flexible, so the
parameters of this storage device could be optimized. During the simulation, the ongoing analysis
of the selected waveforms of electrical quantities were carried out in terms of exceeding the defined
criteria (critical values). This analysis is conducted regardless of the applied optimization method
in the numerical model. If such an exceedance occurred during the simulation, then the simulation
would be stopped and the model would return an error code that determined which criterion had
been violated. A total of fifteen different criteria were defined in the numerical model for the various
components of the hybrid power supply system. These criteria are:

• For the fuel cell stack: A minimum voltage, maximum load current, maximum load power, and the
conditions of long-term power overload;

• For the auxiliary supercapacitor: The maximum charging or discharging current;
• For the DC/DC converter: A minimum supply voltage, maximum load power, and the conditions

of long-term power overload;
• For the main energy storage: The maximum charging and discharging current, and the conditions

of long-term overload during charging and discharging;
• For the main power busbars load model (i.e., the AGV power demand model): A minimum

voltage, maximum voltage, and the maximum difference between the achieved power and the
required power.

These criteria resulted from the catalogue of real element parameters of the hybrid power supply
system and the conditions imposed by the elements of the AGV drive system (e.g., for inverters:
The minimum and maximum supply voltage). Not all the criteria needed to be active at the same
time. The selection of active criteria depended on which power supply parameters were unknown in
the design aid process and which were imposed as project assumptions. For example, if the required
minimum DC/DC converter power rating was unknown, then the criteria related to the power overload
of the converter was turned off. If a specific DC/DC converter type needed to be used in the design,
then in this situation the parameters of this converter should have been treated as project assumptions
and the appropriate criteria values in the model were to be set, following the datasheet of the converter.
In addition, the model for the hydrogen fueling system analyzed the hydrogen consumption during
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the simulation and returned the appropriate error code if the hydrogen tank was emptied. In this
situation, the simulation was also stopped.

The numerical model of the hybrid power supply system defined the allowable voltage range
and allowable state-of-charge (SOC) range of the main energy storage. Exceeding the voltage or
state of charge for energy storage was not treated as a critical error and did not stop the simulation.
However, it affected the way the energy storage worked, which was signaled in the model by the
appropriate status signals. If the minimum voltage or the minimum state of charge was exceeded
during discharge, the energy storage could only be charged. If with such limited use of energy storage,
there was an increased power demand from the AGV model, the voltage of the main power busbars
would fall below the criterion value. Similarly, if the maximum voltage or maximum charge was
exceeded during charging, the energy storage could only be discharged. If under this condition,
the AGV model attempted to achieve a return of braking energy to the energy storage, then the voltage
of the main power busbars would rise above the criterion value. Exceeding the criterion values of the
main power busbars voltage was treated as a critical error and stopped the simulation by returning an
appropriate error code. In this situation, the error code had to be analyzed together with the main
energy storage status to detect the reason for stopping the simulation.

The simulation model developed in the MATLAB/Simulink environment was built according to
the block diagram shown in Figure 2. In addition to the blocks outlined in Figure 2, it also contained
elements that allowed one to record the simulation results in the MATLAB for automatic optimization,
and it also contained elements that allowed an ongoing view of waveforms, important parameters,
error and status signals for the trial and error experiments.

To model the fuel cell stack, a block from the Simscape Electrical library was used, which is
described in detail in [4]; the addition of concentration or mass transport losses in accordance with
the method presented in [5] was applied. The losses of concentration or mass transport ΔVtrans are
described by the equation:

ΔVtrans = m × exp(n × IFC) (8)

where the coefficients m and n are selected experimentally and IFC is the stack load current. To tune the
model for the fuel cell stack’s activation area and load losses (ohmic losses), the results of measurements
completed on the real H-300 stack and the genetic algorithm were used. During measurements this
stack operated as a dead-end anode with the factory controller. In addition, the concentration losses
model was experimentally tuned to obtain the appropriate stack voltage drop when overloaded.
The thresholds for stack voltage and current were taken into account, and when they reached the stack
were disconnected from the load by the factory stack controller.

The power of the fuel cell stack’s own needs (“balance of plant”) was modeled as being linearly
dependent on the stack load power. The H-300 stack balance of plant was very simple (containing only
fans, a controller, and hydrogen valves). However, it would be possible to model the balance of plant
for a more sophisticated system, if the power demand characteristics of the components were available.

The fuel cell stack controller model included a hydrogen flow regulator that generated the
FFR(ref) control signal for the hydrogen proportional control valve, which determined the flow through
the anode of the stack. The principle of proportional control for this regulator was derived from
the equations of the fuel cell stack model used in MATLAB presented in publications [4] and [5].
This regulator calculated the hydrogen flow needed to meet the hydrogen needs of the fuel cell stack at
a given load current and a given hydrogen utilization. With a set number of cells in the stack, stack
temperature, pressure and purity of hydrogen, the control principle is described as follows:

FFR(ref) = CFFR ×
IFC(avg)

UH2%(ref)
(9)

where the value of the coefficient CFFR can be determined using the relationships given in [4] or [5].
UH2%(ref) is the percentage setpoint of hydrogen utilization and the input quantity is the average
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current IFC(avg) of the fuel cell stack. This regulator ensured the hydrogen flow when the load current
in the stack increased dynamically, which in turn ensured the rapid opening of the hydrogen control
valve and prevented a voltage drop in the stack. Due to the strong averaging of the stack load current
at the regulator input and the dynamics of the control valve (which was modeled by first-order
inertia), the setpoint of hydrogen utilization by the stack should have been slightly less than the
nominal hydrogen utilization to ensure proper fueling of hydrogen in fast transient states. The nominal
hydrogen utilization could be calculated using the stack’s rated parameters and relationships, as given
in [4]. For an H-300 stack, it was 83%. When starting the hybrid power supply system and its associated
transient states, the flow regulator ensured a sufficiently high initial hydrogen flow. The stack controller
model contained a stack power demand model (power of its own needs), implemented as an array of
values with interpolation that models “balance of plant”. This power demand was included in the
load model of the main power busbars.

The characteristics of an H-300 stack for nominal hydrogen utilization, obtained by the numerical
model and tuned based on the results of the measurements are presented in Figure 3.

 
Figure 3. The characteristics of the H-300 fuel cell stack obtained from a numerical model at a
temperature of 40 degrees Celsius, absolute hydrogen pressure of 1.5 bar, nominal hydrogen utilization
of 83%. The stack’s rated parameters are 36 V, 8.3 A, 300 W, with nominal efficiency of 40%.
(a) The current-voltage characteristic, (b) the fuel flow rate vs. stack load power, (c) the stack load
(gross) power and available (net) power vs. the stack load current, and (d) stack efficiency and system
efficiency (stack efficiency taking into account “balance of plant”).

The “auxiliary supercapacitor” block in Figure 2 also contains the controller that charges the
auxiliary supercapacitor in a precise manner during the power supply system start-up to the required
minimum voltage and then connects it to the output busbars of the fuel cell stack.
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The DC/DC converter model was an average value model that considered the efficiency
characteristics implemented as an array of values with interpolation and a no-load current.
Additionally, it included the characteristics of the output power limitation as a function of the
converter supply voltage. The output power limitation could be used interchangeably with the power
threshold detection (and error code) depending on the purpose of the simulation test. The setpoint of
the output current in CC mode could be constant or it could come from the regulation of the fuel cell
stack load power. It was a Proportional Integral (PI) type, anti-windup regulator.

The model of the main energy storage management system, depending on the state of charge and
voltage of the energy storage, allowed for its normal operation (such as charging and discharging)
or to operate with restrictions (only discharging or only charging). This allowed a pre-charge of the
energy storage after starting the power supply system if this function was needed.

The main energy storage model contained models of supercapacitor or lithium-ion battery,
alternatively selected.

The model of the main power busbar loading system is included in the “AGV” block
shown in Figure 2, which loads the power supply system with the power required by the AGV.
Additionally, the power for the fuel cell’s own need is represented by the “auxiliary DC/DC converter”
block in the same diagram. The power required by an AGV is shown in the value tables, containing
samples of the power demand while driving and samples of the vehicle’s own needs.

The hybrid power supply system model included control signals that enforced the appropriate
order of switching on its elements during start-up, thus mapping the operation of the real system.

4. Optimization Process Use Case

4.1. Automated Guided Vehicle (AGV)

An automated guided vehicle is designed for the transport of goods, materials, and semi-finished
products as part of internal transport carried out in closed production or warehouse halls. The vehicle
is designed to travel at ground level and can transport goods directly by itself by placing a loaded pallet
on the upper loading surface of the vehicle or by pulling an attached transport trolley. The vehicle
moves independently throughout the hall, performing tasks independently without human assistance
in accordance with its pre-planned action and along a planned route. Usually, the vehicle travels
along fixed routes according to a fixed schedule adapted in conjunction with the production cycle.
The reproducible nature of the travel route and loads is important for matching the planned hydrogen
fuel cell stack-based power supply system to the application. The vehicle monitors the surroundings
via a sensor system to avoid collisions with them. The vehicle is powered by a lithium-ion battery
placed in an easily accessible and replaceable cassette and the drive consists of two electric motors.
A low-power AGV (Formica-1, AIUT Ltd., Gliwice, Poland) was used in this research.

4.2. Instantaneous Power Demand Model—Route Scenario

4.2.1. Identification Experiment

Identification of the instantaneous power demand model whose output is the input of the hybrid
power supply system model requires proper planning of the identification experiment. The first step
of these activities was to develop a common test plan for different operating conditions that take into
account various stationary and nonstationary operations carried out on the real AGV.

The experiment was completed for different operating conditions at different route sections.
The experiments are listed in Table 1. Due to the autonomous operation of the AGV control and the
stochastic nature of the interaction between the vehicle surface and the AGV, the selected experiments
were repeated several times and the average results obtained in this way were used for testing the
signal models.
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Table 1. List of conducted experiments using AGV.

No. Operating Conditions Related to Routes Other Operating Conditions

Ex 1–4 Straight route ahead (start, driving with constant speed, stop)

V = 0.3m/s, L = 100%
V = 0.5m/s, L = 100%
V = 0.8m/s, L = 100%
V = 1.0m/s, L = 0%

Ex 5–8 Straight route reverse (start, driving with constant speed, stop)

V = 0.3m/s, L = 100%
V = 0.5m/s, L = 100%
V = 0.8m/s, L = 100%
V = 1.0m/s, L = 0%

Ex 9–12 Slalom route (making three turns by 180 deg)

V = 1.0m/s, L = 0% CW
V = 1.0m/s, L = 0%, CCW
V = 1.0m/s, L = 100% CW
V = 1.0m/s, L = 100% CCW

Ex 13–14 Rotation around its axis V = 0.2m/s, L = 100% CCW, CW
Ex 14 Emergency stop not applicable

During the conducted experiments, the following values were recorded: The voltage and the
current returned by the batteries, the current values recorded on the main drive, and the current value
on the stabilizing converter. Additionally, measurements of the resistance of the drive that was not
directly measured were made. Due to these measurements, it was possible to record the instantaneous
power demand. A schematic of the measuring system is shown in Figure 4. The data were recorded
using an oscilloscope and with a sampling frequency of 100 or 50 kHz, depending on the duration of
the selected route section.

 
Figure 4. Block diagram of the low-power AGV drive system including the oscilloscope probes used to
measure the power demands.

Restrictions on the safety and control of AGV are specified in the standard [52], including various
responsibilities imposed on manufacturers and users. Due to the above reasons, the AGV was equipped
with a logger system to record or monitor selected parameters during operating conditions around
the route.

Selected logger data was used to observe the operating conditions. The data gathered concerned
the rotational speeds of integrated Tekno TO-62 drives (left and right drive nodes according to Figure 4)
equipped with an induction motor (nominal power 1.18 kW), the mechanical transmission with gear
ratio 8.12 with a maximum continuous wheel torque of 25 Nm, and the power with a nominal voltage
of 33 V. This element was also equipped with a 48 VDC nominal brake and a 5000 pulses speed encoder.
The data were recorded using the AGV’s inbuilt logger with a sampling frequency of ~2.5 Hz and
were not synchronized with the instantaneous power demand signals recorded with the use of an
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oscilloscope. The recorded speed data were used to identify the operating conditions associated with
the route section covered and its identification. This is a necessary part of the proposed approach,
in particular, which is forced by conducting measurements in situ conditions where synchronization of
measurements with the logger data (operating condition) was not possible. Figure 5 shows selected
waveforms, speed signals from the logger, and the auxiliary computed signals.

Figure 5. Example waveforms achieved from the logger and the additionally computed auxiliary signals.

To synchronize the measurements and thereby identify individual sections of the route for which
signal models can be developed, the data were preprocessed by determining the auxiliary signals
which were used to enhance the recognition of different operating conditions (some examples are
shown in Figure 5), using resampling methods and identifying common starting points for both sources
of data. For the obtained segments of the labeled measurement data related to route sections and
selected operating conditions, models for stationary and nonstationary conditions were identified
defining the banks of models.

Figure 6 shows the selected labeled measurement data based on previously determined data
labels from the logger and auxiliary data. Based on the data labels, it was possible to segment the
data and create a bank of signal models representing the instantaneous power demand for selected
operating conditions.
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Figure 6. An example of labeling of the measurement results (in this case, the measurement of the
current on the left inverter) based on operating conditions (in this case, based on the speed of straight
route both backwards and forwards).

4.2.2. Instantaneous Power Demand Model for a Selected Scenario

The route scenario presented in Figure 7, developed for the AGV, consists of a section of the slalom
route with the load (marked in red) and the rest of route unloaded.

 
Figure 7. An example scenario of the AGV route for which the instantaneous power demand model is
being built.

For the presented scenario, a signal of instantaneous power demand for a section of the route
without load, shown in Figure 7, was modeled with the use of a set of models. For this section of the
route the following models were prepared:

• Increasing speed models from the stationary vehicle to 1 m/s velocity;
• Models for a constant speed of 1 m/s for where the expected value of instantaneous power demand

was read from the average power demand for the assumed speed;
• Models for decreasing speed from 1 m/s to vehicle stop;
• Models for 90 degrees left turns.
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The needed lengths (number of samples) of the individual waveforms computed by the models
was determined based on information about the time necessary to achieve the required speed (in the
case of braking and accelerating). The model output did not compute any velocity, as this value could
be read from the inverse of the average power demand versus the average velocity which had been
identified based on the collected data sets presented in Table 1. This was determined using the linear
approximation Pinst−ave = C1 × vave +C2, where C1 is 351.4 Ws

m and C2 is 279.3 W (valid for the average
velocities vave between 0.3 and 0.8 m/s). The required number of samples for a constant speed period
could be determined from the required length of the route and sampling frequency.

The waveforms were generated for the considered route section shown in Figure 7 by using
previously listed models. The errors of the individual models are presented in Table 2. An example
assessment of the selected model (with constant speed) for the instantaneous power signal distribution
in the frequency domain is presented in Figure 8. The calculated errors were obtained from the test
measurement data. Next, the individual waveforms generated with signal models were combined
using the window indicated in Equation (7). An example of the joined data from two models is shown
in Figure 9.

Table 2. List of models and their relative errors for the considered scenario.

Model Name ErPwr

Model for increasing speed 3.3%
Model with constant speed 0.51%
Model for decreasing speed 3.1%
Model for turning left 15.2%

Figure 8. A periodogram estimate of Power Spectral Density (PSD) of instantaneous power for a model
with twentieth order and the PSD measurement data for a straight profile at a constant speed.
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Figure 9. The combination of the two waveforms generated from the signal models for nonstationary
and stationary signals (a) without using a prepared window; (b) with the use of window; and (c) with
a used window to combine the two signals from the models.

The relative energy error for the modeled route was mainly (excluding the influence of windowing)
a weighted average of errors for the individual models used to determine the instantaneous power
demand, and the weights of this average resulted from the fraction used of the individual signals in
the whole combined waveform.

The example presented in this section shows the possibility of modeling the instantaneous power
demand using a well-known class of autoregressive models of signals. The proposed approach
requires a simulation experiment by recording the instantaneous power demand for various operating
conditions. The advantage of the presented method is the lack of interference from the AGV software,
including its control system where this information is often unavailable due to company intellectual
property issues, and there is no need to create a dynamic vehicle model.

4.3. An Example of Using the Model to Optimize the Hybrid Power Supply System

To demonstrate the practical use of the numerical model for an AGV hybrid power supply system,
a short model route was designed, as outlined in Figure 7. The AGV moved with a load of 1.2 tons
along a model route (marked in red) and then moved along a route without a load (marked in blue).
The loading and unloading points and control points are marked in green, where the vehicle stopped
for a maximum of a few seconds. When driving without a load, the vehicle accelerated and braked
more rapidly than when driving with a load.

The demand for power (PAGV) for the AGV during the model route was determined by the
measurement results obtained for a real AGV, using the processing methods described in Section 3.
An example of the waveform of the power demand while driving is shown in Figure 10. The results
of measurements for the power demand when the vehicle was stopped were used to model the
AGV stoppage.
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Figure 10. The power demand for an AGV driving on a model route; brown circle—loading point, blue
circle—unloading point, green circles—control points (the points marked with circles coincide with
points in Figure 7).

It was assumed that the model cycle for AGV operation included: Waiting time for the first drive
after starting the power supply system of 30 s, five drives along the model route, a standstill after each
drive, and waiting time for switching off after the driving cycles of 10 s. An example of the AGV’s
power demand waveform during the operation cycle is shown in Figure 11. The standstill time after
driving was one of the parameters that changed during the optimization process and, in this case,
was 255 s. The total electric energy consumption during the entire operation cycle was 131.2 Wh,
with an average power demand of 236 W.

 
Figure 11. The AGV’s demand for power during the model operation cycle.

The optimization aimed to minimize the energy storage capacity and the duration of stops
between drives, assuming that all the energy needed to power the AGV came from the fuel cell stack,
i.e., the state of charge of the energy storage should have been the same after an entire operation cycle
as at its beginning. In the model hybrid power supply system, none of the fifteen electrical parameter
criteria could be violated. It was essential that, during the simulated vehicle operation between the
main energy storage voltage and the threshold (criterion) values of the supply voltage of the load
system, a safety margin of ~3 V was maintained. These threshold values were 30 and 60 V, respectively.
Additional parameters that were tuned in the optimization process and which had an essential impact
on the results obtained were the allowable range of the energy storage voltage (in particular the energy
pre-charge storage voltage), the output voltage of the DC/DC converter in CV mode, and the output
current of the DC/DC converter in CC mode. An important result obtained from the model was the
hydrogen consumption for the assumed operation cycle of the AGV, which allowed one to choose the
required capacity of the hydrogen tank.

The preliminary simulation tests were carried out for the assumed operation cycle, assuming that
the main energy storage was a LiFePO4 battery with a capacity of 10 Ah and a rated voltage of 48 V,
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achieved from a real test bench. This is a low-cost battery that can provide a large enough impulse
discharge current, with an expected value of ~3 C without degradation. This battery is built of sixteen
10 Ah prismatic cells connected in series. The energy storage model was tuned using optimization
methods and the datasheet from the battery cells. It was assumed that the battery was pre-charged
before starting the AGV power supply system (the initial state of charge was 50%). The selected results
of preliminary simulation tests are shown in Figure 12. The results for the turned off SCU are presented
so that transients that are associated with the operation of the SCU do not impair their readability.

 
Figure 12. The results of preliminary simulation tests obtained assuming that the main energy storage
was a LiFePO4 battery with a capacity of 10 Ah; (a) the total demand for power; (b) the load power of
the fuel cell stack; (c) the hydrogen flow rate; (d) the output current of the DC/DC converter; (e) the
voltage of the battery and (f) the state of charge of the battery.

Figure 12a shows the total demand for power Preq, including PAGV power for the AGV and
PAux power for the hybrid power supply system’s own needs. Figure 12b shows the load power of
the fuel cell stack PFC. It can be seen that the stack was utilized optimally and correctly (without
overloading) throughout the entire operating cycle of the AGV stack and was loaded with power close
to the rated power.
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Figure 12c shows the hydrogen flow rate FFR obtained at the control valve output. Integrating
this waveform, after converting it to the standard liters, it can be determined that ~141 L of hydrogen
were consumed during the entire AGV cycle of operation, which corresponds to 423 Wh hydrogen
energy, assuming that the change in enthalpy of formation was equal to the lower heat value [5]. When
considering the energy consumption of the AGV from Figure 12a (~144 Wh), the efficiency of the
hybrid power supply system was 34%. Figure 12d shows the current IDC/DC output waveform of the
DC/DC converter. It can be seen that this converter works permanently in CC mode and the setpoint
of the output current is constant and equal to 5 A. Figure 12e shows the UBatt voltage waveform of
the 10 Ah battery. This voltage was practically constant, which resulted from the relatively rigid
discharge characteristics and the slight changes in the state of charge SOCBatt% for this battery, shown
in Figure 12f. A practically constant voltage of the battery at a constant output current of the DC/DC
converter caused the fuel cell stack to be loaded with constant power throughout the entire operation
cycle. The standstill time needed to restore the battery state of charge to the condition before driving
was 257 s.

The battery used in the preliminary simulation tests had too large a capacity for the energy
demand for the selected scenario of AGV operation, which was uneconomical. In subsequent tests,
the battery capacity was reduced to a value of 0.2 Ah; this still ensured the correct operation of the AGV.
The capacity of the battery was chosen so that its SOC varied from 20% to 80% during the operation of
the AGV. It was assumed that the battery was pre-charged to an SOC of 20%, with an SOC of at least 70%
required to start the vehicle. Therefore, when the power supply system was turned on, the battery was
pre-charged by the fuel cell stack. The results did not change significantly. A slightly poorer utilization
of the fuel cell stack was obtained while the AGV was driving. This was due to greater voltage drops in
the smaller capacity battery, which, with a constant output current of the DC/DC converter, resulted in
a decrease in the stack load power. The consumption of hydrogen increased to ~148 standard liters due
to the initial charging of the battery, which absorbed 7.3 standard liters of hydrogen and lasted ~90 s.
After omitting the supercapacitor pre-charge energy, the system efficiency was similar to previously,
at ~34%. The used battery had a capacity of only 0.2 Ah, which was practically impossible due to too
low current values for batteries with such a small capacity. Simulation tests using a selected scenario
for vehicle operation and a 0.2 Ah battery were not of practical importance but were used to present
the issue and how to use the model as a design aid. Therefore, during these tests, no criterion values
for battery current were determined. A similar battery operation regime with real, higher capacity
could be obtained for the real scenario AGV operation with higher energy demand. The use of battery
capacity in such a work regime seems optimal, but it should also be noted that a battery working
continuously in such a regime can quickly degrade.

Due to the possibility of quick battery degradation, further simulation tests were completed
using a supercapacitor as the main energy storage. The most important advantage of supercapacitors,
outlined in [30,32], is their use as an energy buffer for a fuel cell stack in traction applications due to
their higher power density compared to batteries. Supercapacitors have higher efficiency and a higher
number of charge and discharge cycles without degradation compared to the battery. By optimization,
the criterion for the minimum capacity of the supercapacitor was chosen. The capacity of the selected
SC maintained the voltage of the main power busbars over their required operating range whilst
preserving a safety margin from the criterion values. The results of these simulation tests are given
in Figure 13. It was assumed that the supercapacitor was not pre-charged, so its pre-charging was
implemented by the fuel cell stack on start-up of the power supply system.
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Figure 13. Selected results from the simulation tests obtained using a supercapacitor with a capacity
of 35 F as the main energy storage; (a) the total demand for power and (b) the load power of the fuel
cell stack.

The main difference between the operation of the power supply system with a LiFePO4 battery
and a supercapacitor is due to the different discharge characteristics of these energy storage devices.
The voltage USC of the supercapacitor changes significantly more when discharged than the voltage
UBatt of the LiFePO4 batteries (at least in the SOC range between 20% and 80%). There is a constant
output current of the DC/DC converter in CC mode, resulting in a much worse utilization of the fuel
cell stack due to significantly lower stack load power at a low supercapacitor voltage (Figure 13b).
The presented results were obtained using a real supercapacitor model which consisted of 44 component
supercapacitors with a capacity of 385 F each in a 2P22S connection system (two connected in parallel,
22 in series), which gave a resultant capacity of 35 F and a rated voltage of 61.6 V.

Using a supercapacitor, the hydrogen consumption was now 251 standard liters, of which
19.4 standard liters were required for pre-charging of the supercapacitor. The pre-charge time was
approximately 340 s. The energy consumption of the AGV was 243.7 Wh (Figure 13a) and the hydrogen
energy used for the AGV operation was ~695 Wh. The obtained power supply system efficiency was
similar to that previously shown in the battery case, but the vehicle’s standstill time after driving
required to charge the supercapacitor to its pre-driving condition was 670 s. Such a long standstill time
was due to the low power utilization of the fuel cell stack at low supercapacitor voltage when the stack
provided slightly more power than that of the AGV’s own needs.

Further simulation tests were completed with the fuel cell load power regulator turned on,
which affected the setpoint of the DC/DC converter output current under the CC mode. As a result
of the re-optimization, the capacity of the supercapacitor in the main energy storage was reduced to
24.5 F, obtained by connecting the 2P22S component supercapacitors with a capacity of 270 F each.
The results of the simulation tests are shown in Figure 14. It can be seen that the utilization of the fuel
cell stack was again optimal and correct (Figure 14b). At the same time, a much shorter standstill time
(240 s) after driving is needed to charge the supercapacitor to its pre-driving condition. The hydrogen
consumption was 150 standard liters, of which ~14.5 standard liters are required for the initial charge
of the supercapacitor, which lasts ~200 s. The energy consumption of the AGV is 139.6 Wh (Figure 14a)
and hydrogen energy used for AGV operation was ~406.5 Wh. Again, a system efficiency of ~34% was
obtained, but the required standstill was much shorter than for a 35 F supercapacitor. Improvement
in the use of the fuel cell stack compared to the previous simulation was obtained as the stack load
power regulator increased the setpoint of the DC/DC converter output current in the CC mode at low
supercapacitor voltage, just enough not to overload the stack. The fast transients shown in Figure 14b–d
result from when the supercapacitor was charged to a certain maximum voltage, and the DC/DC
converter then went into CV mode. In this situation, the load power of the fuel cell stack dropped
sharply, and after the converter returned to CC mode, it increased again rapidly.
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Figure 14. The results of simulation tests obtained assuming that the main energy storage is a
supercapacitor with a capacity of 24.5 F and the fuel cell stack load power regulator is turned on;
(a) the total demand for power; (b) the load power of the fuel cell stack; (c) the hydrogen flow rate;
(d) the output current of the DC/DC converter; (e) the voltage of the supercapacitor and (f) the state of
charge of the supercapacitor.

It can be seen that the presented simulation studies achieved the optimization goals and aid the
design of the hybrid power supply system. The given results were valid for the assumed scenario
of the AGV operation. In subsequent simulation tests, how the SCU operation affects the obtained
optimization results was checked.

The SCU short-circuited the fuel cell stack for 100 ms every 10 s. However, transients lasted
longer than 100 ms and were associated, among other things, with the need to recharge the auxiliary
supercapacitor which was partially discharged when supporting the DC/DC converter supply voltage
during stack short-circuit. The obtained results were accurate and similar to those presented in
Figure 14, the main difference was that the standstill time after driving was extended to 250 s to charge
the supercapacitor back to its condition before driving. Hydrogen consumption increased slightly to
155 standard liters and the power supply system efficiency decreased by 0.7%.
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5. Discussion

The energy transfer numeric model for hybrid power supply system was the main objective of
the article. The model consisted of the elements of supply system such as: Power converter, energy
buffer, FC, and control devices. For the load of the supply system, the instantaneous power demand
model was used. This model represents a generic instantaneous power demand for a given route
for stationary and nonstationary conditions for an AGV under experimentally determined selected
operating conditions. The main reason for developing the generic instantaneous power demand model
is its simplicity and the fact that it does not require any additional information about the subsystems of
AGVs and any supplementary information from the AGV manufacturers. It should be emphasized
that the method proposed here could be improved by using further models that consider nonstationary
conditions, i.e., that include nonstationarity of frequency components.

Section 4.3 describes the optimization process of the hybrid power supply system parameters for
a model route and an AGV operation scenario. A similar process of optimization and design-aid can be
completed using the real vehicle operation cycle by obtaining the route parameters and driving scenario
from the vehicle manufacturer or vehicle user. In a situation where the AGV cannot make stops after
driving, which allow for recharging of the main energy storage as described in Section 4.3, it is possible
to minimize the capacity of the energy storage using a numerical model with the appropriate utilization
of a fuel cell stack, under the assumption that the energy storage will be recharged using an external
source after the entire operation cycle of the vehicle. In this situation, a compromise can be made
between the capacity of the main energy storage (lithium-ion battery) and the hydrogen consumption,
to consequently determine the capacity of the hydrogen tank. It is possible to use a stack load power
regulator to intentionally reduce stack utilization and not exceed the assumed hydrogen consumption.

Further development of the presented numerical model, in the part related to the production of
electrical energy, may include issues such as the dynamics of hydrogen release from the metal hydride
storage under various operating conditions, and the dynamics of the cell response to a change in the
hydrogen flow at the control valve output by considering the dynamics of the hydrogen distribution
inside the cell. In the section of the model in which the power demand for the AGV is modeled,
a dynamic model of the vehicle can be used which requires the drive torque for the specific route
conditions, vehicle load, and the traction parameters (speed and acceleration). The hybrid power
supply system power demand can be calculated based on the required drive torque in the dynamic
models for the vehicle’s drive nodes. Further development of the numerical model requires conducting
additional tests on the fuel cell stack together with the hydrogen tank and examination of the real AGV
to collect additional data and verify the extended numerical model.

The overall assessment of the proposed solution was carried out quantitatively for selected model
elements (models of instantaneous power demand and the tuned hydrogen cell model). For other
elements of the model, the assessment is qualitative as it is dependent on the specific instance of
the AGV.

6. Conclusions

The research aim was to develop a model of a hybrid power supply system with a fuel cell stack for
designing an energy storage system. The power supply system model is a numerical tool supporting
the design and optimization of the power supply system following the MBD methodology. The article
presents an example of the process of energy storage optimization for the AGV hybrid power supply
system, which implements an example cycle of operation. Data for the AGV power demand model
were obtained from measurements carried out on a real factory battery-powered AGV. These data were
processed, and allowed the extract models for standard route fragments that can be interpolated under
various load conditions. Based on these fragmentary models, it is possible to develop a power demand
model for any route and optimize the hybrid power supply system for this route.

The conclusions from the generic instantaneous power demand model are:
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• The proposed generic model allows for the determination of the instantaneous electric power for
any route without the need to identify the dynamic drive system parameters;

• The model enables the determination of both stationary and nonstationary operating conditions
using a simple approach with autoregressive models from signals with additional elements used
for modeling the first-order and second-order nonstationarity with the application of additional
linear, quadratic, or autoregressive models;

• Building a generic model for instantaneous power demand is possible since the AGV object is
a system with constant control settings and operating conditions, and the AGV usually moves
along an unchanged route for a long period. For more complex objects, the proposed approach
may not be cost-effective as it would require more identification experiments.

Conclusions related to the model of the hybrid power supply system:

• The model seems to correctly imitate the energy transfer in the hybrid power system.
The waveforms calculated by the model are reliable and all the phenomena visible are correct and
explainable. The effectiveness of the model, however, must be confirmed by measurements of real
cases with the design and optimization of the hybrid power supply system, which will be the
subject of future research;

• The methodology used to model the components of the hybrid power supply system, using a few
original ideas, means that the results of computer simulations are calculated relatively quickly,
even for long routes taken by the AGV.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/13/3435/s1:
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Abstract: The energy-optimal routing of Electric Vehicles (EVs) in the context of parcel delivery is
more complicated than for conventional Internal Combustion Engine (ICE) vehicles, in which the
total travel distance is the most critical metric. The total energy consumption of EV delivery strongly
depends on the order of delivery because of transported parcel weight changing over time, which
directly affects the battery efficiency. Therefore, it is not suitable to find an optimal routing solution
with traditional routing algorithms such as the Traveling Salesman Problem (TSP), which use a static
quantity (e.g., distance) as a metric. In this paper, we explore appropriate metrics considering the
varying transported parcel total weight and achieve a solution for the least-energy delivery problem
using EVs. We implement an electric truck simulator based on EV powertrain model and nonlinear
battery model. We evaluate different metrics to assess their quality on small size instances for which
the optimal solution can be computed exhaustively. A greedy algorithm using the empirically best
metric (namely, distance × residual weight) provides significant reductions (up to 33%) with respect
to a common-sense heaviest first package delivery route determined using a metric suggested by
the battery properties. This algorithm also outperforms the state-of-the-art TSP heuristic algorithms,
which consumes up to 12.46% more energy and 8.6 times more runtime. We also estimate how the
proposed algorithms work well on real roads interconnecting cities located at different altitudes as a
case study.

Keywords: Electric Truck Simulator; Electric Vehicle (EV); Vehicle Routing Problem (VRP);
Traveling Salesman Problem (TSP); least-energy routing algorithm; energy efficiency; EV batteries;
metric evaluation

1. Introduction

Electric Vehicles (EVs) are currently a tiny fraction of the car market, which is dominated by
Internal Combustion Engine Vehicles (ICEVs); however, the growth of the EV market over last ten
years is remarkable, and they are expected to progressively replace ICEVs in the next 20 years.

EVs have high energy efficiency and are sustainable transportation, since their electric motor has
high dynamic performance and they are more environmentally-friendly than ICEVs on the market
today; even when evaluating the emissions generated during electricity production for the charge
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of EVs, their overall Greenhouse Gas (GHG) emission is up to 58% that lower than the emissions of
average mid-size passenger ICEVs [1]. Moreover, the impact on climate change by the production of
electricity and operation of EVs is up to 30% less compared with ICEVs when considering the average
generation of electricity in Europe. In recent years, the landscape of EVs is widening and expands to
domains such as electric racing cars, electric buses, and electric trucks.

In particular, Tesla announced electric trucks will replace existing ICE trucks in the future [2].
The electric truck can accelerate more quickly than conventional diesel trucks because of the
characteristic of the electric motor: high torque at low Rotations Per Minute (RPM) with high efficient.
Furthermore, 98% of the kinetic energy can be recovered with electric energy during regenerative
braking, which makes the electric truck more energy efficient. According to the announcement by
Tesla, electric truck owners can save more than $200,000 over a million miles compared to fuel cost of a
conventional truck.

The optimal energy-efficient delivery route can further improve the energy efficient of electric
trucks. The typical delivery scenario is defined as an electric truck loads all packages for customers at
a depot, visits each customer to deliver their package, and then returns to the depot without payload.
For a conventional ICEV, the “cost” of a path is strongly driven by the distance (even if weight also
matters) and the problem nicely fits into the well-known Traveling Salesman Problem (TSP) using
distance as a metric. However, when considering EVs, the solution is not as straightforward; although
distance obviously matters, the total energy consumption also strongly depends on the order of
delivery as the efficiency of the EV is affected by the total (vehicle + payload) weight. Since the impact
of the package weight on the battery SOC of electric trucks is much higher than that of the ICE trucks
due to the characteristics of battery, the energy-optimal delivery method for electric trucks should
be newly considered. As a matter of fact, one key characteristic of a battery is that it is progressively
less efficient in delivering its energy as its State Of Charge (SOC) decreases [3,4]. A fully charged
lithium-ion battery in EVs has better performance to deliver a high power demand than when it is
partially discharged [5]. As the power consumption of the electrical motor strongly depends on the
total weight, apparently, if we deliver the heaviest package first, the overall vehicle weight is reduced
the most after unloading this package and following such order would be optimal [5]. On the other
hand, it is obvious that the delivery distance should be considered; if we deliver the heaviest package
first and this package has a very long distance from the depot, the battery will be discharged by
carrying the heaviest weight for a long time, which might lead to a non-optimal delivery route if
following the rule of deliver heaviest package first.

One first difference with respect to a plain ICEVs delivery is therefore in terms of metrics: for
EVs, some combination of weight and distance should be considered. However, the most significant
difference (and complication) lies in the fact that the calculation of the optimal energy path cannot be
done incrementally, as the energy cost of a path is “dynamic”, i.e., it depends on the previous choices
as a consequence of the dependence on the residual weight, which means the weight and distance are
the variables during the delivery process.

In this paper, we propose an overall electric trucks delivery simulation framework implemented
by SystemC and SystemC-AMS for the least-energy electric truck delivery routing problem. We first
implement an electric truck simulator with a powertrain model and a non-linear battery model of
the Tesla Semi [6] that adopts the methodology introduced in [3] to trace the SOC evolution during
the package delivery. From the simulation results, we show that a conventional metric for TSP, total
delivery distance, as with any other “static” metric, does not minimize total energy consumption
for an EV delivery. Since only an exhaustive exploration of all path guarantees to find the optimal
path, we evaluate different static metrics (functions of weight and distance) on small graph instances
to assess their quality; then, using the best metric derived in this calibration phase, we show how a
greedy algorithm using that metric can provide significant reductions (up to 33%) with respect to the
common-sense heaviest first package delivery.
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The work is an extension of our previous conference paper [7], the main contribution of this
work is to devise a heuristic algorithm to determine the energy-optimal routing of an electric truck.
This main results encompasses a number of elements that we summarize as follows:

• Implement an electric truck simulator with a powertrain model and a non-linear battery model.
• Explore all delivery paths and evaluate the the correlation between energy consumption and

various delivery metrics.
• Introduce heuristic algorithms using the best metrics, and show simulation results providing

significant reductions of energy consumption.
• Analyze the effects of package weight distribution and number of packages on energy saving.
• Perform the proposed routing methods on the real routing condition, which consider average

road speed, road distance between cities and corresponding road slope.

The paper is organized as follows. Section 2 introduces the motivation for the least-energy electric
truck delivery routing problem. A comparison between the traditional shortest distance route and
heaviest first route presented in this section to illustrate the limitation of distance-based routing method
for the electric truck delivery routing problem. Section 3 describes the EV powertrain model and
battery model used in our simulation framework and the typical vehicle routing problem. Section 4
shows our analysis of the routing problem; we discuss new metric candidates considering both of
delivery distance and package weight. Then, new heuristic methods are proposed including greedy
algorithm and TSP methods. Section 5 firstly shows how to implement the powertrain model of an
electric truck and the related battery model in our simulation; then, the model validation follows.
After that, we compare the energy consumption for the electric truck delivery problem by the metrics
and approximate algorithms. To evaluate our proposal in the real delivery environment, we performed
a case study for the delivery in a province located in Italy. Finally, Section 6 gives the conclusion of
our work.

2. Motivation

In order to clearly illustrate the motivation of this work, we built an example to indicate how
it is not possible to derive an energy-optimal delivery policy simply using a single “static” metric.
Figure 1a shows a simple three-destinational delivery task from a depot (D) with a rough mapping on
the plane, and the distance matrix between any pair of destinations. We assumed symmetry between
node pairs to guarantee the generality.

Figure 1. Example to illustrate the motivation of energy-optimal delivery route exploration cannot
only depend on single static metric: a delivery task (a) and delivery routes for two different delivery
weights (b,c).

To evaluate the energy cost of a delivery path, we use a time diagram that plots the evolution of
the total transported weight over delivery distance. We use weight as a proxy of electric truck power
consumption, since it is proportional to the weight of the vehicle plus the total payload. Notice that it
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is clearly a simplification and does not take into account non-linearities of a battery, but even such
approximation can help reveal the point we are making.

Distance is used as a proxy of time; we assume a constant speed for the deliveries. Again, this is
an approximation of the real setting, where speed can be extremely varying due to the driving habits
and the road traffic. When using a real battery model in the loop, however, the real speed profile of the
vehicle can be accounted for. Therefore, evolution of weight over distance is a proxy of power over
time, and the area of one such curve is then an estimate of the energy consumed for that delivery route.

Figure 1b shows two such delivery routes for a case in which the weights are W1 = 10, W2 = 20,
W3 = 30 and vehicle weight is Wv = 40. The dotted red curve represents a route for which packages
are delivered in heaviest-first order (D → 3 → 2 → 1 → D), whereas the solid blue line denotes
a route with the minimum total distance (D → 1 → 3 → 2 → D). In this specific case, the “min.
total distance” policy works best (smaller area under the curve) and, by exhaustive exploration of the
3!=6 combinations of deliveries, it can be shown to yield the best value of the metric. Notice that the
(D → 3 → 2 → 1 → D) route is not just slightly sub-optimal, and it ranks fourth out of the six routes,
D → 3 → 1 → 2 → D being the worst one.

Figure 1c shows two other waveforms for the same delivery task in which the weights change
to W1 = 30, W2 = 20, W3 = 10, that is, in which the heaviest package corresponds to the closest
destination (node 1). In this case, the red dotted profile of the “heaviest-first” yields the best value of
the metric, while the “min. total distance” yields a slightly worse value. Notice that the blue solid line
corresponds to the same order of delivery (yet with a different cost) as in Figure 1b as the distance has
not changed in the two examples.

Notice also that (due the symmetric distances) there are two paths (i.e., D → 1 → 3 → 2 → D and
D → 2 → 3 → 1 → D) with the same distance but with different “energy” cost, the cost of the path
D → 2 → 3 → 1 → D being larger than the other one shown in Figure 1c. Therefore, an algorithm that
picks edge simply based on distance could even get farther from the optimal solution.

In this straightforward example, although there are several approximations during the power
consumption estimation, it shows the main two critical points raised by our work. Firstly, no simple
single static metric can solve ideally the problem of searching the energy-optimal delivery route.
Secondly, due to the state-dependent characteristic of the cost function, only the brutal exhaustive
exploration can find the optimal solution, but, since this is only feasible for very small instances,
we need to find a provably good static metric that can be used in a heuristic algorithm. According
to the above finding from the motivating example, this static metric should combine both weight and
distance as twinned factors affecting the energy consumption of the EV.

3. Background and Related Work

3.1. Powertrain Model in EV

As is common, the vehicle powertrain model is from the vehicle dynamics. There are four forces
acting on a vehicle driving on a road with θ road slope, as shown in Figure 2: rolling resistance FR,
gradient resistance FG, inertia resistance FI , and aerodynamic resistance FA.

The powertrain model by vehicle dynamics (Pdyna) is described as

Pdyna = Tω = F
ds
dt

= (FR + FG + FI + FA)v

FR ∝ CrrW, FG ∝ Wsinθ, FI ∝ ma, and FA ∝
1
2

ρCd Av2

Pdyna ≈ (α + βsinθ + γa + δv2)mv

(1)

where Crr is the rolling coefficient, W is vehicle weight, θ is road slope, m is vehicle mass, v is vehicle
speed, a is vehicle acceleration, Cd is drag coefficient, and A is the vehicle facial area [8]. The coefficients
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α, β, γ, and δ of the dynamic power Pdyna are coefficients of rolling resistance, gradient, inertia, and
aerodynamic, respectively.

Figure 2. Forces acting on a truck.

In addition to the forces, there are several losses on a rotating motor: a copper loss is proportional
to the square of motor torque and iron and friction loss are related to motor RPM. In addition, there is
a constant loss while the vehicle is operating. The powertrain model of EV (PEV) includes the motor
losses in addition to Pdyna:

PEV = Pdyna + C0 + C1v + C2v2 + C3T2. (2)

where C0, C1, C2, and C3 are the coefficients for constant loss, iron and friction loss, copper loss, and
drivetrain loss, respectively.

EVs and hybrid vehicles mostly use regenerative braking during deceleration. The regenerative
braking converts kinetic energy to electric energy from generation process. The harvested energy
is related to the electromagnetic flux inside of the motor, which is proportional to the motor RPM.
Therefore, the regenerative braking model can be simplified as

Pregen = εTv + ζ. (3)

where ε and ζ are regenerative braking coefficients to model the regenerative power as a function of
the current velocity.

3.2. Battery Model in EV

The EV is normally powered by a battery pack that includes a large number of Lithium battery
cells connected in parallel and series. The battery pack of Tesla Model 3 with long range version
comprises 4416 2170-size lithium-ion cells of 4800 mAh nominal capacity with 46p96s arrangement,
and 800 km range. Tesla Semi truck has a 750 kWh battery pack and weighs about 5.1 tons. To build the
battery pack model directly is a non-trivial task, therefore, the battery pack can be built by composing
the individual battery cell model, and the model must be able to accurately account for the varied
load current and SOC variations of the usable battery capacity to capture the non-ideal discharge
characteristics of battery. We select a circuit-equivalent battery model that can model the effects of load
current magnitude and dynamics on real-time battery usable capacity [9], and then use this model to
compose the whole battery pack model.

Figure 3 depicts the circuit-equivalent model of one battery cell adopted in this work.
The left-hand part for modeling the battery lifetime (usable capacity) and the the right-hand part
represents the transient battery voltage. Notice that the left-hand part also account for current
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magnitude and load frequency dependency on actual battery capacity. The left-hand part comprises a
capacitor C representing the nominal storage capacity of the battery in Ah and a current generator
representing the battery current Ibatt requested by the load. As the available capacity of the battery
is affected by the load current variations distribution, there are two voltage generators on the left
part: one represents the dependency of the battery capacity on the current values, while the other
generator models the dependency on load current frequency. Both decrease the voltage at node SOC,
representing the SOC, for larger current magnitudes and frequencies. The right-part has a variable
voltage generator affected by the SOC of battery, the internal resistance is also influenced by the current
SOC of battery, and two pairs of RC express the instantaneous battery voltage.

The methodology to extract the relationship between SOC and internal resistance, capacitance, and
open circuit voltage is presented in [10], and the implementation of adding two different dependencies
of load current on the left-hand side of model is introduced in [9].

Figure 3. Adopted circuit-equivalent model for one single battery cell.

Based on this single cell model, we derive the battery pack model by ideally scaling all electrical
parameters according to the series/parallel configuration in the pack, which leads to faster simulation
runs and a higher flexibility in the modeling of large battery pack, so that not all cells of a large pack
have to be modeled and simulated individually. Notice that the implementation of battery pack model
is somehow ideal (e.g., cell mismatches are not considered), while this is still more accurate than a
linear battery model that neglects state-dependent battery characteristic.

Given this model, we can track the energy consumed by the EV by applying to the model the
drawn power (as current and voltage waveforms) corresponding to the electrical motor consumption
on a given leg of the route. In the most general case, there is a non-ideal power conversion step
between the electrical motor and the battery. In this case, it suffices to scale the motor current and
voltage according to the converter efficiency η < 1, which can be any complex function of the motor
parameters, i.e., Pbatt = Pmotor · η. We assume the converter efficiency is a fixed valued in this work as
in [3].

3.3. Work Flow of Proposed Methodology

Figure 4 shows the conceptual flow of our methodology for the estimation of the operation range
of EVs. Three descriptive datasets are required as inputs.

Vehicle data includes (1) motor information: motor efficiency by motor torque and RPM, operation
range of motor torque and RPM, (2) vehicle information: weight, drive train and body shape, and (3)
other electrical systems. Facial area of the vehicle affects aerodynamic resistance. Route information
include road distance between cities, road slope, and traffic on each road. Also payload by a delivery
task is given. Route information and vehicle data is used in the vehicle model, which generates
instantaneous power demand (V(t) and I(t)) during delivery.

We implement a battery model from a given battery specification: nominal capacity,
voltage-to-SOC curve, impedance, and structure of the battery pack. Then we combine the vehicle
model and battery model together to conduct simulation, the power demand of given delivery tasks
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over time derived from vehicle model is pass into battery model, finally the battery model computes
the residual SOC of battery pack.

Figure 4. Overall concept of the proposed methodology.

3.4. Vehicle Routing Problem

The vehicle routing problem is formulated as a graph G(V, E, C) where V = {v0, · · · , vN} is the
set of vertices including N destinations and a depot, E = {eij|i,j∈V} is the set of edges between two
vertices vi and vj, and C = {cij|i,j∈V} is the cost related to each edge eij. Vertex v0 is the depot, while
the remaining vertices in V represent customers that need to be served. The TSP consists in finding a
route based at the depot, such that each of the vertices is visited exactly once while minimizing the
overall routing cost.

The formulation of the vehicle routing problem is generalized as the TSP. Because TSP is known
as NP-hard, several approximation algorithms are proposed during last several decades. Christofides
designed an approximation algorithm for TSP using the Minimum Spanning Tree (MST) algorithm,
which obtains approximated results less than 1.5 times the optimal solution [11]. From the general
TSP, there are several variants of TSP to consider various constraints and delivery requirements.
There is a variant of TSP considering a set of potential customers living near secured customers [12].
The salesman finds the shortest path to cover all potential customers within a certain distance from the
path. A fleet of delivery vehicles characterized by different capacities and costs is an important variant
of TSP [13,14]. There is a set of customers and a set of different types of vehicles. Each vehicle has
different capacities in terms of the number of customers and operation cost; the goal is to find a set of
routes for each vehicle minimizing total delivery cost. Some studies consider the number of customers
that each vehicle should be responsible for, but they do not consider the vehicle weight changing with
each delivery.

Recently, the vehicle routing problem with pick-up and delivery considers the situation in which
packages have to be picked-up from one of customers and delivered to another location [15,16].
During the pick-up and delivery process, visiting each pickup and delivery places occurs exactly once
and total package weight during the delivery should not exceed the capacity. This problem considers
the weight of each package; however, it does not consider the energy consumption that changes after
unloading each package.

There is a paper minimizing energy in the vehicle routing problem [17]. This paper solves the
vehicle routing problem using integer linear programming to minimize the product of distance and
weight of each arc. However, there is no result validation using energy simulation. Therefore, there is
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no analysis of energy consumption in the points of view of package weight distribution and routing
methods in the real road condition.

4. Analysis of Routing Algorithms

The examples in Figure 1 suggest that a reasonable metric to track the energy spent on a delivery
path could be to use a quantity that is correlated to the product of distance × weight. More precisely, let
i and j be two vertices of the delivery graph, dij the distance between them, and Wi and Wj the weights
to be delivered, respectively, at i and j. This metric should be proportional to dij × (Wcurrent − Wi),
assuming the edge is traveled in the direction i → j. Wcurrent is the current weight of the vehicle when
reaching node i (Figure 5a); this metric, which we call DxWr hereafter (i.e., distance times residual
weight), uses the information contained in the solid oval circle.

Figure 5. Features of the Target Metric: Generic instance between two nodes i and j (a); and a greedy
decision based on this metric (b).

By accruing this quantity over the delivery sequence, we would therefore be able to measure the
area below the curves in the (weight, distance) space of Figure 1 as a proxy of the total energy spent.

Therefore, as the delivery problem is an instance of TSP, intuitively one could be tempted to run
some TSP heuristic algorithm using the above cost in place of distance as in traditional TSP instances.
Although approximate, (besides also neglecting battery non-idealities), this strategy will leverage
well-consolidated heuristics for the solving the TSP and could be relatively efficient. Unfortunately,
there is a subtlety in this argument. TSP formulations do assume the use of a “static” metric, i.e., whose
value does not depend on the currently built solution, such as distance. As a matter of fact, state-of-the-art
TSP heuristics rely on the calculation of the MST algorithm as a pre-processing. This is because the cost
of a MST is the simplest lower bound for the TSP: it can be shown that the removal of one edge from any
Hamiltonian cycle (i.e., a solution of the TSP) yields a spanning tree [11].

Algorithms to compute the MST systematically grow the tree by greedily picking edges in increasing
order of the cost function, which clearly implies the need of a “static” metric, otherwise it would not
be possible to guarantee global optimality by using local optimal choices (e.g., shortest edge) at each
step. It is therefore immediately clear that the above cost function dij × (Wcurrent − Wi) cannot be used
in a conventional TSP algorithm and in particular based on MST, for two reasons. First, MST runs on
an undirected graph and there is no intuition about in what direction the edge is traversed. Secondly,
and most importantly, MST algorithms take a “local” greedy decision independent of the specific
previous decisions; this is at the basis of greedy algorithms, in which the global optimum is a sequence
of locally optimal choices. Therefore, even replacing the traditional distance-based metric in the MST
with DxWr, it would simply not work, as shown in Figure 5b) (notice that for simplicity we assume
the graph is directed to emphasize the direction of the delivery path).

Consider the decision to be taken at node i, at which we arrive with a given value of Wcurrent.
Without loss of generality, let us assume that there are only two possible choices at i, i.e., nodes j and
k. A MST algorithm based on DxWr, since Wcurrent represents a “state” information of the current
path at i and as such is a fixed value, will then greedily pick the edge with smallest value min(dij, dik)

to decide about whether to grow the MST along j or k. In other words, as Wcurrent does not change,
min((Wcurrent − Wi) ∗ dij, (Wcurrent − Wi) ∗ dik) and min(dij, dik) result in the same choice.
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Therefore, as already shown by the example of Section 2, the energy-optimal (or more precisely,
DxWr-optimal) solution can only be obtained by enumeration of all the possible paths. A greedy, local
metric used for a MST-based TSP algorithm would then result in strongly sub-optimal solutions even
if we should adapt an MST algorithm to use DxWr.

Algorithms Used in Our Analysis

Based on the previous discussion, an exhaustive exploration of all paths to collect the one with
the smallest cumulative DxWr is the only way to achieve the optimal solution. This algorithm has
obviously factorial complexity (O(n!) for n vertices), which is clearly applicable only to small instances
and can be used for evaluating the quality of different approximate algorithms.

Concerning TSP-based algorithms, the computational complexity of the TSP heuristic with the
best approximation, i.e., Christofides’ algorithm, is O(n3), assuming that the graph is fully connected
[11]. Although polynomial, cubic complexity can already be significant as the number of instances
grow in the order to a few tens. Therefore, given the approximations of a TSP-based solution (the
intrinsic approximation of the algorithm plus that of the metric described above), it makes sense to
devise a simpler and greedy algorithm that builds up the cycle as a path, one edge at a time, starting from
the depot, possibly using different greedy metrics. The greedy heuristic would clearly be linear in the
number of nodes. Should some of the greedy heuristics be roughly as approximate as the TSP heuristic,
it would at least guarantee that it can handle larger problem instances.

This choice would allow one to use the DxWr metric that more closely tracks the energy value; by
forming a path, in fact, we can calculate the equivalent of Wcurrent for the path being built. Moreover,
since we start from the depot node, edges have an implicit direction and DxWr can be calculated
correctly. The approximation lies obviously in the fact that the greedy solution is not optimal, and,
unlike the TSP heuristic, the approximation cannot be bounded. Christofides’ algorithm, for example,
can be shown to yield a solution that is no more than 3/2 of the optimal cost.

In our analysis, we therefore compare three classes of algorithms to solve the optimal
routing problem:

1. a set of algorithms based on the exhaustive enumeration of all paths, which are applicable only
to small instances and used to evaluate the quality of the approximations;

2. heuristic greedy algorithms using different metrics;
3. heuristic TSP algorithms using different metrics.

They are listed in Table 1 where algorithms belonging to the three above categories are separated
by a double line in the table. Each algorithm is labeled with an abbreviation for ease of reference in the
simulation results.

Table 1. Exhaustive exploration of paths: list of algorithms.

Name Description

MinD Paths are sorted in order of total length, and the shortest path is selected.

MinDxWr Paths are sorted in order of total D×Wr and the path with the smallest aggregate
value is selected.

Heaviest first Paths are built by greedily choosing vertices in decreasing order of weights.

Shortest first Paths are built by greedily picking edges starting from the depot node in
increasing order of distance.

Smallest DxWr first paths are built by picking edges starting from the depot node in increasing
order of D × Wr.

TSPD TSP heuristic algorithm using distance as a metric.

TSPDxW TSP heuristic algorithm using DxW as a metric.
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The TSPDxW heuristic of the last line requires a further explanation. Given that, as shown above,
using DxWr in a TSP based algorithm would be immaterial as it will coincide with a distance-based
metric, we devised an alternative metric that mimics DxWr but that is suitable for a TSP-based heuristic.
This metric, which we call DxW, assumes: (i) a 50% chance of traveling the edge in each direction; and
(ii) approximates Wcurrent with the total weight (vehicle + payload). This results in a quantity that does
not depend on the currently built solution, and uses also the information about the destination node
(as shown in the dashed oval of Figure 5a), i.e.,

dij × (Wtotal − (Wi + Wj)/2).

Notice that a plain “Shortest first” and “Smallest DxWr” would be the same algorithm. Therefore,
to resolve this problem, for “Smallest DxWr first” algorithm, we used dij ∗ (Wcurrent − Wj), which
considers both: (1) shortest distance first with dij; and (2) heaviest package first by abstracting weight
of the destinations Wj from Wcurrent.

5. Simulation Results

5.1. Simulation Setup

5.1.1. Powertrain Model

We implemented a powertrain model of a Tesla Semi truck from the vehicle specification based
on the presentation by Elon Musk; this is currently the only source of information for the specs as
Tesla is preparing to release the Semi in 2020 or later [6,18]. The powertrain consists of four Model
3 electric motors; each motor is a three-phase AC permanent magnet electric motor with maximum
power of 192 kW from 4700 to 9000 RPM, and maximum torque is 410 Nm below 4500 RPM [19,20].
We estimated curb weight of Semi as the sum of typical weight of class 8 truck and battery pack
weight [21].

We first implemented a vehicle model in ADVISOR (ADvanced VehIcle SimulatOR) [22] by
using the above vehicle specification. Then, we extracted the coefficients of EV powertrain model
with a number of ADVISOR simulations, as described in [23]. Table 2 summarizes the model
coefficients of Tesla Semi. We compared the results computed between the derived power model
and ADVISOR to validate the model we used. Figure 6 shows the difference between the estimation
of power consumption by the ADVISOR vehicle simulator and the powertrain models we derived;
the normalized root-mean-square error is 4.93%.

Table 2. Powertrain model coefficients for Tesla Semi truck.

α 0.098 β 10.1522 γ 1.006 δ 2.5 ×10−5 C0 10000

C1 0.03 C2 0.02598 C3 1.54 ×10−5 ε 0.5912 ζ 0.0
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Figure 6. Powertrain model validation results compared with ADVISOR.

5.1.2. Battery Pack Model

There is no exact specification of battery pack in Tesla Semi truck until now; therefore, we assumed
that each electric motor is connected to one battery pack of Model 3 in our experiments. Each battery
pack is composed of four modules that are connected in series; each module consists of Panasonic
NCR18650B 3400 mAh Lithium battery cells arranged in a 46p24s configuration [24].

Table 3 summarizes the physical electrical parameters of each cell, each module, and the whole
battery pack.

Table 3. Electrical parameters of the battery pack.

Parameters Cell Module Whole Pack

Nominal Capacity 3400 mAh 156.4 Ah 156.4 Ah
Nominal Voltage 3.6 V 86.4 V 345.6 V
Cut-off voltage 2.75 V 66.0 V 264.0 V

We built our battery single cell model based on the measurement data by adopting the method
described in [9]. We assumed such 7104 battery cells in the pack to be ideally balanced in the following
experiments, and then built battery pack model, as indicated in Section 3.2. Concerning the regenerative
braking phase, we assumed that regenerative charging efficiency is 20% in our simulation, i.e., 20% of
the kinetic energy is converted to electric energy and transferred into the battery pack.

5.1.3. Simulation Framework

We adopted the simulation framework proposed in [3], which targets the modeling and simulation
of energy flow in the EV. The simulation framework is built by SystemC and SystemC-AMS, which are
the extension of C/C++ with libraries to describe HW constructs and analog/mixed-signal subsystems.
SystemC-AMS provides different abstraction levels to cover a wide variety of domains, three different
Model of Computations (MoCs) supported by SystemC-AMS that allow the simulation framework to
integrate circuit equivalent battery model and empirical powertrain model simultaneously. Another
main advantage of the SystemC-AMS simulation framework is the fast simulation speed while keeping
the same accuracy with regard to state-of-the-art tools such as Matlab/Simulink, with speedups up to
two orders of magnitude and a high level of accuracy. Such quick estimation of energy consumption
of EV and the battery lifetime give the opportunity to conduct exhaustive exploration in a short time
for different delivery routes in our following experiments.
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5.2. Simulation Results

5.2.1. Comparison Against Exact Results

In this section, we compare the energy consumption of various delivery strategies based on
different policies for a set of small-sized (4–7) instances for which an exhaustive exploration of all the
possible delivery paths is feasible.

For each number of destinations, we randomly generated 50 instances with different distributions
of locations of the depot and of the destinations by uniformly distributing them in a 30 km × 30 km
area. We selected the area for the delivery so that all the delivery sequences can be completed without
exhausting the battery energy before returning to a depot. For each of the 50 instances, package
weights for each destination were chosen as uniformly distributed from 0.1 to 3 ton.

For each problem instance (destination and weight distribution), we calculated by exhaustive
exploration the route yielding the smallest value of energy for a number of metrics. Energy was
calculated by conducting simulation described in Section 5.1. In this test example, a constant speed of
76 km/h was assumed, which was the average truck speed in metropolitan area interstates in the US
in 2015.

Figure 7a shows the energy consumption of the optimal route, averaged over the 50 instances, for
problems with 4–7 destinations and for the set of algorithms described in Table 1.

The leftmost blue bars represent the optimal routes yielding the minimum energy consumption
among all routes, obtained by computing the actual energy consumption per each segment using the
battery model. This is the reference value against which the other results were compared. All the other
bars refer to solutions (i.e., routes) returned by the above algorithms and evaluated using the battery
model. The objective of the simulation was to check how the greedy algorithms (TSP-based or not)
differ from the optimal solution and how the error increases with increased problem sizes. Bars in the
plot are in the same order as in Table 1. For ease of reading, bars referring to path-based algorithms
(first part of the table) are shown as solid bars, whereas those referring to greedy or TSP algorithms are
shown as patterned bars.

Concerning path-based algorithms, we can notice how the MinDxWr metric (third bar from
left) tracks very well the true energy value, much better than distance alone (second bar from left).
Concerning approximation algorithms, as a first general comment, we can see that all algorithms
overestimate the actual energy consumption. Then, we immediately observe that weight alone
(Heaviest-first) tracks quite poorly the actual consumed energy, somehow contradicting the intuition
suggested by the battery property; the distance from the reference is already > 20% even for the
four-destination instance. Although the actual error may differ depending on the weight distribution
(as shown in Figure 1), the results are the average 50 different runs, thus we can safely assume this is
not a good metric. Notice also that the tracking error increases with larger instances.

Another observation is that a traditional TSP with distance metric (second bar from the right)
performs reasonably only for the smallest instance; that average error increases quickly and is already
around 18% for seven destinations. Therefore, we can also rule out this algorithm from the list.

The remaining ones (Smallest DxWr first, Shortest first, and TSPDxW) have errors below 10%,
with the greedy algorithms being below 5% and scaling better with problem size than TSPDxW.
Especially, Smallest DxWr first algorithm saves energy consumption from 6.58% to 12.46% compared
with traditional TSPD algorithm. The gap between the best one and TSPD increases by the number of
destinations.

Figure 7b shows the worst case error among the 50 instances for the same set of algorithms.
Results are consistent with average error, with the maximum error being significantly larger than
the average one. The greedy algorithms have show again the best results, in terms of both error and
scalability. The Smallest DxWr is the only algorithm with worst-case error around 20% (as opposed to
about 30–35% of the others) for the seven-node case.
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(a) Average energy consumption comparison.

(b) Worst energy consumption comparison.

Figure 7. Energy consumption for different metrics (exhaustive exploration).

5.2.2. Comparison by Package Weight Distribution

In this section, we discuss how the error increases with the increased package weight. Figure 8
shows the energy consumption of different metrics by package weight distribution. Each column
means different weight distribution of delivery package: 0.1–0.5, 0.5–1.0, 1.0–1.5, 1.5–2.0, and 2.5–3.0
ton, respectively. In this comparison, one depot and seven destinations were uniformly distributed
in a 30 km × 30 km area, and we extracted average energy consumption of 50 instances by different
metrics. In order not to provide unnecessary information, we do not consider MinDxWr and Heaviest
first metrics here because these metrics show either sufficiently accurate or irrelevant results from the
previous section.

Figure 8. Energy consumption by package weight distribution.

When the weight of the package is less than 0.5 ton, the sum of all package weight can be ignored
in most instances compared with total weight of the electric truck. Thus, all results by different metrics
show less than 10% error. As the range of the package weight increases, however, the effect of the
package weight on the overall energy consumption increases. Therefore, metrics considering distance
only show worse results, namely the exhaustive exploration with distance (minD) and the Traditional
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heuristic TSP (TSPD). On the other hand, heuristic TSP with DxW (TSPDxW) and two other greedy
heuristics show less than 10% error for all weight ranges.

5.2.3. Application to Larger-Scale Instances

We generated a number of instances with 10, 20, 30, 50, and 100 destinations; for each problem
size, we generated 20 random instances and collected the average value of energy and execution time.
In all cases, weights were scaled so that the delivery task could be completed.

Figure 9 compares the absolute energy values for the three competitive algorithms resulting from
the previous section: one TSP with the proposed metric (TSPDxW) and the the two greedy heuristics
(Shortest first and Smallest DxWr first). From the results in Figure 7a we know that all approximations
are overestimations, thus we can assume that lower values of energy imply higher accuracy. In Figure 9,
the Smallest DxWr first shows the best results: its energy consumption is 10% smaller than the TSP
heuristic and 4% smaller than the shortest first one, for the larger 100-node instance.

Figure 9. Greedy and approximate TSP algorithms on large problem instances.

Figure 10 shows the slowdown of the TSP heuristic with respect to the Smallest DxWr first
algorithm. The TSP execution time is obviously independent of the metric used (D vs. DxW). The TSP
heuristic is significantly slower than the greedy method; the slowdown increases for increasing problem
sizes, reaching 8.6 times for the 100 destination case.

Figure 10. Slowdown of TSP heuristics vs. greedy algorithm.

5.3. Case Study: Routing Problem in Real Roads

In the experiments presented in Section 5.2, the distribution of the locations were synthetically
generated on a plane. In this section, we show the routing algorithms in a real case, consisting of a set
of locations taken from a map and for which actual distances, road slope, and road traffic between
destinations are taken into account. We generated 50 instances, in which package weights for each
destination were chosen as uniformly distributed from 0.1 to 3 ton.
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5.3.1. Extraction of Road and Elevation Information

We used Piedmont region in Italy as the delivery destinations. There are 10 destinations in
Figure 11 including a depot. The destinations of the delivery are limited to towns or cities in
the province.

Figure 11. Destinations for deliveries on real roads.

To travel between destinations, we cannot drive on a straight path, but we must use given
roads. There are several route options connecting destinations to each other. Among them, the most
recommended one by Google Maps is picked. We extracted the distance of each route and related
average driving time.

Table 4 shows the altitude information of each city. We extracted average road slope from road distance
and altitude difference between two cities. The average altitude difference among 10 cities is 84 m.

The practical distance of the route, road slope, and driving time are different by direction.
Therefore, we implemented several matrices containing road distance, road slope, and driving
time. The average distance of the roads is 44 km, and the average time for driving the roads is
51 min. The driving time was used to calculate average electric truck velocity. Therefore, the energy
consumption for the delivery was obtained from the practical road distance, velocity, and road slope.

Table 4. Destination information.

City Torino Chivaso Crescentino Asti Chieri

Altitude (m) 216 186 155 126 283

City Alba Bra Carmagnola Torino Airport Rivoli

Altitude (m) 167 277 233 282 400

5.3.2. Simulation Results

Figure 12a shows the average energy consumption of the optimal route in the case study described
in Figure 11 on the 50 instances with routing algorithms described in Table 1. When the number of
destinations was four, we randomly picked one depot and four destinations among the 10 cities in
Figure 11.
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(a) Average energy consumption comparison on real roads.

(b) Worst energy consumption comparison on real roads.

Figure 12. Energy consumption for different metrics (exhaustive exploration) on real roads.

Similar to Figure 7a, the leftmost blue bars (MinE) represent energy consumption by the
energy-optimal routes among all routes. This is the reference value to compare with the other results.
Bars in the plot are in the same order as in Table 1.

As confirmed by the results in Figure 7a, the path-based algorithms using the metric MinDxWr

(third bar from the left) track very well the true energy value, much better than distance alone
(second bar from left), in all simulation results with different number of destinations. Concerning
approximation algorithms, weight alone (Heaviest-first) tracks quite poorly the actual consumed
energy as in Section 5.2. The average error is up to 47.9%.

On the other hand, shortest first and Smallest DxWr first metrics track the actual consumed energy
very well. The average error is less than 10% for all numbers of destinations. Especially, Smallest DxWr

first shows the best results for all different number of destinations. A traditional TSP with a distance
metric (second bar from the right) tracks well only for the smallest instance as in Figure 7a; average
error increases up to 15.0%. TSP with a metric DxW shows better results than distance metric.

Figure 12b shows the worst case error among the 50 instances for the same set of algorithms in
Figure 12a. The results are consistent with average error, but significantly larger. The best algorithms in
Figure 12a (Smallest DxWr first, Shortest first, and TSPDxW) again show the best results, in terms of both
error and scalability. TSPD and TSPDxW methods are not better in some cases (e.g., six destinations)
because triangular inequality is not applicable, and the distance between cities is asymmetric.

6. Conclusions

The total energy consumption for parcel delivery with an electric truck strongly depends on
the order of delivery because battery efficiency is affected by how the transported weight changes
over time. However, it is impossible to consider the transported weight changes with the traditional
routing algorithms, which use “static” metrics such as distance. In this paper, we demonstrate that
the functions of weight and distance as metrics provide significant energy reductions with respect
to the traditional routing algorithms. A traditional TSP with distance metric performs reasonably
only for the smallest instance; average error increases quickly. On the other hand, a greedy algorithm
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minimizing driving distance by residual weight (DxWr) shows better results with almost 10× faster
runtime. We also performed a comparison in the real delivery case, where curved and sloped roads
connect cities. In this case study, the greedy algorithm also shows better results than traditional TSP.
In addition, the package weight affects the result of routing algorithm. As we increase the package
weight distribution, the gain by the proposed method increases.
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Abstract: The electro-hydraulic composite braking system of a pure electric vehicle can select
different braking modes according to braking conditions. However, the differences in dynamic
response characteristics between the motor braking system (MBS) and hydraulic braking system
(HBS) cause total braking torque to fluctuate significantly during mode switching, resulting in jerking
of the vehicle and affecting ride comfort. In this paper, torque coordination control during mode
switching is studied for a four-wheel-drive pure electric vehicle with a dual motor. After the dynamic
analysis of braking, a braking force distribution control strategy is developed based on the I-curve,
and the boundary conditions of mode switching are determined. A novel combined pressure control
algorithm, which contains a PID (proportional-integral-derivative) and fuzzy controller, is used to
control the brake pressure of each wheel cylinder, to realize precise control of the hydraulic brake
torque. Then, a novel torque coordination control strategy is proposed based on brake pedal stroke
and its change rate, to modify the target hydraulic braking torque and reflect the driver’s braking
intention. Meanwhile, motor braking torque is used to compensate for the insufficient braking torque
caused by HBS, so as to realize a smooth transition between the braking modes. Simulation results
show that the proposed coordination control strategy can effectively reduce torque fluctuation and
vehicle jerk during mode switching.

Keywords: electric vehicles; electro-hydraulic braking; braking intention; mode switching; torque
coordinated control

1. Introduction

The electro-hydraulic composite braking system of an electric vehicle (EV) consists of the motor
braking system (MBS) and the hydraulic braking system (HBS), which realize the pure electric,
pure hydraulic, and hybrid braking modes. The composite braking system converts the kinetic
energy of the vehicle into electric energy and ensures braking stability and braking efficiency during
braking [1–4]. The braking modes of the electro-hydraulic composite system switch between each
other as braking conditions vary. However, the MBS and HBS dynamic response characteristics are
not consistent, which leads to total braking torque fluctuations during mode switching, thus affecting
braking safety and ride comfort. Therefore, it is of great significance to study the braking torque
coordination control during braking mode switching.

Current research on the electro-hydraulic composite braking system mainly focuses on the
distribution of braking forces and recovery of braking energy. For example, for the problem of braking
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force distribution in different modes, Sun et al. [5] established the optimal distribution coefficient
response surface by optimizing the distribution coefficient of hydraulic braking torque and regenerative
braking torque offline, which improved braking stability and energy recovery efficiency during braking.
Shi et al. [6] designed a regenerative braking system that can achieve braking energy recovery during
emergency braking. Considering the tire, hydraulic, and motor losses, Sun et al. [7] proposed an on-line
control strategy for electro-hydraulic composite braking force, which improved the regenerative
braking power. For the problem of braking torque coordination control during mode switching,
Okano et al. [8] adopted a filtering algorithm to assign the MBS response to high frequency braking
torque and the HBS response to low frequency braking torque, making full use of the dynamic
characteristics of both systems. He et al. [9] designed a combined controller for torque disturbance
in mode switching, incorporating linear quadratic optimal and sliding mode controllers—the former
controller is used for anti-interference, and the latter is used to compensate the performance index
offset of the nonlinear part—and achieved a good match of the target speed during mode switching.
Considering the influence of the half axle elasticity and backlash nonlinearity of the transmission
system on the control performance and dynamic characteristics of the MBS, Lv et al. [10,11] proposed
an active control algorithm based on a hierarchical structure to realize the clearance compensation
for the transmission system, and Zhang et al. [12] proposed a method of backlash sliding mode
compensation and an elastic double closed-loop PID compensation for the control of a permanent
magnet synchronous motor; the approaches of both research groups effectively compensated for the
influence of the transmission system on the control performance of a permanent magnet synchronous
motor. According to whether the HBS provides braking torque, Yang et al. [13] proposed to reduce
the torque fluctuation by controlling the change rate of the clutch engagement torque and motor
braking torque, and by modifying the target braking torque at different stages during mode switching.
Yu et al. [14,15] proposed a double closed-loop feedback control and motor braking torque modifying
method, based on the differences in the characteristics of the MBS and the HBS, using the motor braking
torque to modify the hydraulic braking torque, thus reducing vehicle jerk during mode switching.
Although the aforementioned research has improved braking torque coordination control during mode
switching, leading to better control of the electro-hydraulic composite braking system and reduced
vehicle jerking, they did not reflect the driver’s braking intention during mode switching; that is,
the motor and hydraulic braking torque cannot be adjusted reasonably according to whether the driver
pays more attention to brake safety or ride comfort.

In this paper, the problem of the total braking torque fluctuation and the jerk of the complete
vehicle is addressed for the electro-hydraulic braking system of a four-wheel-drive pure electric vehicle
with a dual motor. Firstly, the dynamic characteristics of the vehicle during braking are analyzed.
Braking force distribution control strategies that take into account braking safety and regenerative
braking energy recovery are established based on the vehicle state parameter constraints. Then,
a combined control method, which contains a PID controller and a fuzzy controller, is used to control
the brake pressure in each wheel cylinder. Finally, the fuzzy control rules based on the brake pedal
stroke and its change rate are designed to modify the target hydraulic braking torque and to reflect the
driver’s braking intention; that is, the target hydraulic braking torque is modified according to whether
the driver pays more attention to brake safety or ride comfort. At the same time, the rapid response
of the motor braking torque is used to compensate for the insufficient braking torque caused by the
slow response of the HBS, so as to realize the smooth transition of the braking mode, which enhances
braking safety and ride comfort during mode switching.

2. Vehicle Dynamics Model and Braking Force Distribution Control Strategies

2.1. The Electric Vehicle Structure

The pure electric vehicle analyzed in this paper is a front–rear centralized dual-motor driving
system with two three-phase permanent magnet synchronous motors (PMSM), as shown in Figure 1.
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The driving forces are transmitted to the wheels from the motors through final drives I and II.
The vehicle-state variables, such as vehicle speed, braking pedal displacement, and battery state of
charge (SOC), are collected by an electronic control system and transmitted to the vehicle control unit
(VCU) via a controller area network (CAN) bus, and the braking torques required of the MBS and the
HBS are determined by the vehicle control unit. The motor braking torque and hydraulic braking
torque are controlled by the motor control unit (MCU) and hydraulic control unit (HCU), respectively.
The basic parameters of the vehicle are shown in Table 1.

 
Figure 1. Structure of a four-wheel-drive pure electric vehicle.

Table 1. Parameters of the vehicle.

Parameters Value

Vehicle mass (kg) 1800
Rolling radius of tire (mm) 362

Height of the center of mass of vehicle (mm) 560
The distance between the center of mass and front axle (mm) 1600
The distance between the center of mass and rear axle (mm) 1100

2.2. Dynamics Analysis of Braking

When a vehicle is braking, and the air resistance moment, rolling resistance moment, and moment
of inertial generated by the rotating mass are ignored, the normal acting force of the ground on the
front wheel [7] is

FZ1 =
G
(
Lr + zHg

)
L

(1)

The normal force of the ground acting on the rear wheel is

FZ2 =
G
(
L f − zHg

)
L

(2)

where FZ1 and FZ2 are the normal acting force of the ground on the front and rear wheels; L is
wheelbase; Hg denote the height of the center of mass of vehicle; L f and Lr are the distance from the
center of mass to front and rear axles; G is the weight of vehicle; and z represents the braking strength,
and it is the ratio of the vehicle deceleration to the gravitational acceleration.

The dynamic equation of wheel rotation during braking is

Jt
.
ωw = FXbr− (Tm + Th) (3)

where Jt represent the moment of inertia of transmission equivalent to the wheel; FXb denote brake
force of ground; r is the tire radius; Tm is the braking torque acting on the wheel by PMSM I or PMSM
II; Th is hydraulic braking torque; and ωw is angular velocity of the wheel.

53



Energies 2020, 13, 2031

Dynamics equation of the vehicle transmission system during braking is

k1Tm1iO1 + k2Tm2iO2 + k3Th =
G
g

dv
dt

r (4)

where v denote vehicle speed; g is acceleration of gravity; according to the working state of PMSM I,
PMSM II, and HBS, k1, k2, and k3 is 0 or 1; and iO1 and iO2 are the gear ratio of the final drive I.

2.3. The Braking Force Distribution Control Strategies

The distribution of braking force is determined by the braking state of the vehicle and must meet
the requirements of the brake regulations. Due to deceleration during braking of the vehicle, the stable
braking strength provided by the motors varies between 0.086 and 0.2. According to the theory of
braking stability, the braking force distribution curve under the I-Curve can ensure the stability of the
vehicle; that is, to maintain the ability of straight-line driving of the vehicle during braking [16–18].
Therefore, the maximum braking strength provided by the motors in the pure electric braking mode is
determined to be 0.17. The dynamic distribution control strategies based on the I-Curve are shown in
Figure 2.
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Figure 2. Braking force distribution curve of the front and rear axles.

The braking strength at points A, B, C, D, and E in Figure 2 are z(A), z(B), z(C), z(D), and z(E).
I-Curve is the ideal braking force distribution over the front and rear axles. Fb f and Fbr denote the
braking force of the front and rear axles. Fm f _max and Fmr_max denote the maximum braking forces
provided by the PMSM I and the PMSM II. The fixed braking force distribution coefficients of the front
and rear axles are β1 and β2. μ is the road adhesion coefficient.

The minimum speed of the vehicle at which the motors maintain a stable braking torque is vmin;
the maximum speed of the vehicle at which the motors can perform regenerative braking is vmax;
and the maximum state of charge in which the battery can be charged is SOCh. During braking,
the speed of the vehicle and the SOC of the battery should obey the restriction that vmin ≤ v ≤ vmax

and SOC ≤ SOCh, respectively. The motor and hydraulic braking force distribution based on the
braking strength required by driver is as follows:

When SOC < SOCh and vmin ≤ v ≤ vmax:
(1) 0 < z ≤ z(A), in order to guarantee the braking stability of the vehicle during braking,

the PMSM I is given priority to provide braking force, the braking force is provided by PMSM I
individually in this condition.

(2) z(A) < z ≤ z(B), the braking force is provided by PMSM I and PMSM II simultaneously,
and PMSM I provides the maximum braking force, the remaining force is provided by PMSM II.

54



Energies 2020, 13, 2031

(3) z(B) < z ≤ z(C), the HBS starts to provide braking force in this condition, and the braking force
of the front and rear axles are distributed according to the fixed braking force distribution coefficient
β1. PMSM I maintains the maximum braking force and the insufficient braking force of the front axle
is provided by the HBS. The braking force of PMSM II continues to increase with braking strength,
until the maximum braking force of PMSM II is reached.

(4) z(C) < z ≤ z(E), the required braking force is provided by the motor braking system and
hydraulic braking system simultaneously in this condition. Both PMSM I and PMSM II are working at
the maximum braking force that can be supplied, and the insufficient braking force of the front and
rear axles are provided by the hydraulic braking system.

When SOC ≥ SOCh or v < vmin or v > vmax, or z ≥ z(E), the braking force is provided only by
the HBS, and the braking force at the front and rear axles are distributed according to the fixed braking
force distribution coefficient β1 and β2.

3. Modeling and Characteristics Analysis of Braking Systems

In order to obtain the dynamic response characteristics of the MBS and the HBS, a simulation
model was established in MATLAB/Simulink (2016b, MathWorks, MA, USA) based on the mathematical
models of the motor and the hydraulic brake system. In order to accurately control the hydraulic
braking torque, a combined control method, which contains a PID controller and a fuzzy controller,
was designed to control the brake pressure in each wheel cylinder.

3.1. The Modeling of PMSM

The main parameters of the PMSM used in this paper are shown in Table 2. The PMSM is a strong
complex-coupling, high-order, and multivariable nonlinear system [19,20]. In order to realize the
vector control of the motor, the mathematical model of the PMSM in the two-phase rotating reference
frame (d-q axis) was used to establish the simulation model. The three-phase PMSM in the d-q axis can
be described as [21] ⎛⎜⎜⎜⎜⎜⎝ ud

uq

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝ Rs + Ld

d
dt

ωmLd

−ωmLq

Rs + Lq
d
dt

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ id

iq

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝ 0

ωmψ f

⎞⎟⎟⎟⎟⎟⎠ (5)

The electromagnetic torque equation of the PMSM in d-q axis is

Tm = 1.5pn
[
ψ f iq +

(
Ld − Lq

)
idiq

]
(6)

where ud and uq are the armature voltage components in the d-q axis, respectively; id and iq denote the
armature current in the d-q axis, respectively; Ld and Lq represent the equivalent armature inductance
in the d-q axis respectively; ψ f is the rotor flux corresponding to the permanent magnet; Rs represent
the stator resistance; ωm denote the rotational angular velocity of d-q axis; and pn represents the pole
pairs of motor.

Table 2. Key parameters of the motor.

Parameters PMSM I PMSM II

Rated/peak power (kw) 24.5/49 13.5/27
Peak torque (Nm) 155.1 171.9

Rated/peak speed (rpm) 3000/6000 1500/6000

3.2. The Modeling of Hydraulic Components

The hydraulic braking system mainly includes system components, such as the brake master
cylinder, the wheel cylinder, and the brake pedal simulator, as well as the control components, such as
the high-speed on–off valve [22,23]. The structure of the hydraulic braking system used in this
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article is shown in Figure 3. The pressure of the wheel cylinder is adjusted by the high-speed on–off
valve to meet the requirement of the hydraulic braking torque, while the hydraulic braking torque is
directly determined by the pressure in the wheel cylinder; i.e., these components reflect the dynamic
characteristics of the HBS. Therefore, the mathematical models of the high-speed on–off valves and the
brake wheel cylinders are mainly described.

 
Figure 3. The hydraulic braking system (HBS) structure diagram.

3.2.1. The Modeling of the High-Speed On–Off Valve

The pressure of a brake wheel cylinder is controlled by a pair of high-speed on–off valves: the
inlet valve that is normally opened and the outlet valve that is normally closed. The structure of the
outlet valve and the force analysis of the valve core are shown in the Figure 4. The key parameters of
the high-speed on–off valves selected in this paper are summarized in Table 3.

Figure 4. The structure diagram of the outlet valve and the force analysis of the core.

According to the control signals of the vehicle controller, the pressure in the wheel cylinder
is adjusted by the hydraulic controller through the combined control of the inlet and outlet valves.
Through the force analysis of the valve core in Figure 4, the kinetic equation of the valve core can be
obtained [24]: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dv
dt = 1

m f

[
Fm(x, i) −K(x + G0) − FP(x) − bv f − F f − Fj

]
v f =

dx
dt

(7)
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where Fm is the electro-magnetic force; F f denotes the frictional force, it takes an estimated value of
0.01 N in this study; Fj represents the jet force; FP is the flow force of the core assembly; m f is the mass of
the core assembly; K is the stiffness of the return spring; b and x are the velocity viscosity coefficient and
the displacement of the core, respectively; and G0 represents the return spring’s pre-compression force.

Table 3. Main parameters of the high-speed switch valve.

Parameters Value

Return Spring Stiffness (N/mm) 1.6
Moving-iron Mass (g) 15
Initial Air Gap (mm) 0.3

Coil Turns 380
Core Displacement (mm) 0.22

Spring Pre-tightening Force (N) 7

3.2.2. The Modeling of the Wheel Cylinder

During hydraulic braking, the dynamic characteristics of the wheel cylinder piston can be
expressed as a spring–mass–damper system, and its dynamic equation [25] is

pwAp − Fk0 = mp
..
xp + Cp

.
xp + kpxp (8)

where Fk0 represents pre-tightening force; pw denotes the wheel cylinder pressure; Ap is the effective
action area of the piston; mp denotes the mass of piston; xp represents the displacement of piston; Cp is
the damping of the brake; and kp is the equivalent stiffness.

The relationship between the pressure in the wheel cylinder and the hydraulic braking torque in
front and rear axles can be expressed as [13]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Th f = 2pw
πD2

f
4 R f K f

Thr = 2pw
πD2

r
4 RrKr

(9)

where Th f and Thr represent the hydraulic braking torque of the front and rear axles, respectively;
K f and Kr are the brake factors of the front and rear axles; D f and Dr denote the diameter of the front
and rear wheel cylinders; and R f and Rr represent the effective radius of the front and rear wheel
brake discs.

The key parameters of the front and rear brakes is shown in Table 4.

Table 4. Key parameters of front and rear wheel brakes.

Parameters Value

Front/rear brake cylinder diameter (mm) 49/21
Front/rear brake effective factor 0.8

Front/rear brake disc radius (mm) 120
Regulating valve pressure (bar) 150

3.2.3. Design of a Combined Controller for Hydraulic Braking Torque

The HBS should have good control performance to achieve a fast and accurate response to the
hydraulic braking force. A cooperative control strategy is used to improve the response speed and
control the accuracy of the hydraulic braking torque. When the pressure error

∣∣∣Δp(t)
∣∣∣ between the

target pressure and the tracking pressure is larger than the value of the threshold, the PID controller
controls the wheel cylinder pressure to achieve a rapid adjustment. Conversely, when the pressure
error

∣∣∣Δp(t)
∣∣∣ is smaller than the value of the threshold, the fuzzy controller is used to stabilize the
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wheel cylinder pressure near the target pressure and reduce the hydraulic pressure fluctuation [26,27].
The control schematic is shown in Figure 5. Wheel cylinder control is determined by the logical
threshold controller according to the pressure error

∣∣∣Δp(t)
∣∣∣, and then either the PID or fuzzy controller

determines the duty ratio of the high-speed on–off valve. The inlet and outlet valves of the wheel
cylinder are directly controlled by PWM (pulse width modulation). Thus, the tracking pressure of the
wheel cylinder follows the target pressure. A threshold value of 0.5 bar was set for

∣∣∣Δp(t)
∣∣∣ as simulation

results indicated that both the response speed and the control accuracy of the pressure in the wheel
cylinder were optimal at this level.

+
−

Figure 5. The pressure control algorithm of the wheel cylinder.

When the pressure error
∣∣∣Δp(t)

∣∣∣ is larger than the value of the threshold, the PID controller is used
to adjust the pressure in the wheel cylinder, so that the tracking pressure in the wheel cylinder rapidly
responds to the target pressure. The mathematical model of the PID controller [24] is

D(t) = kpΔp(t) + ki

∫ t1

t0

Δp(t)dt + kd
dΔp(t)

dt
(10)

where D(t) is the duty ratio of the PWM signal; kp, ki, and kd are the proportional, integral, and differential
coefficients of the PID controller, respectively; t0 and t1 are the time when the HBS starts and ends
to work.

When the pressure error
∣∣∣Δp(t)

∣∣∣ is smaller than the value of the threshold, the fuzzy controller is
used to adjust the pressure of the wheel cylinder. The opening degree of the inlet and outlet valves are
determined by the target pressure p(t) and the pressure error Δp(t). When the target pressure p(t)
is small (S’) and the pressure error Δp(t) is negative (N), the tracking pressure needs to be reduced,
so that the duty ratio of the inlet valve Din takes a smaller value (S’) and the duty ratio of the outlet
valve Dout takes a larger value (VL’). When the target pressure p(t) is large (VL’) and the pressure error
Δp(t) is positive (P), the tracking pressure needs to be increased, so that the duty ratio of the inlet
valve Din takes a larger value (VL’) and the duty ratio of the outlet valve Dout takes a smaller value
(S’). The fuzzy controller rules for the degree of opening of the high-speed on–off valve are shown in
Tables 5 and 6.

In Table 5, N, Z, and P denote less than zero, equal to zero, and greater than zero, respectively;
whereas S’, MS’, M’, ML’, L’, and VL’ represent small, small medium, medium, medium large, large,
and very large, respectively.

The pressure variation of a wheel cylinder controlled by the combined controller under the input
of a sinusoidal signal is shown in Figure 6. The tracking pressure in the wheel cylinder is precisely
controlled, and the pressure error between the target pressure and tracking pressure is very small.
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Table 5. The fuzzy control rules of the inlet valve.

Din
Δp(t)

N Z P

p(t)

S’ S’ MS’ MS’
MS’ MS’ M’ M’
M’ M’ ML’ ML’

ML’ ML’ L’ L’
L’ L’ VL’ VL’

VL’ L’ VL’ VL’

Table 6. The fuzzy control rules of the outlet valve.

Dout
Δp(t)

N Z P

p(t)

S’ VL’ VL’ L’
MS’ L’ L’ ML’
M’ ML’ ML’ M’

ML’ M’ M’ MS’
L’ MS’ MS’ S’

VL’ MS’ MS’ S’

Figure 6. The response of the wheel cylinder with a sinusoidal input.

3.3. Dynamic Characteristics Analysis of the MBS and the HBS

Using the mathematical models described above, a dynamic model of the electro-hydraulic
composite braking system was built in MATLAB/Simulink, and a separate HBS physical model was
built in the Simulink sub-module, Simscape. The dynamic responses of the MBS and HBS are shown
in Figure 7. Under the input of the same demand braking torque, the response time of the MBS is tm,
the response time of the HBS is th, and the response time difference is Δtmh. Compared with the HBS,
the dynamic response of the MBS is fast, and the braking torque rise time is short, but there is a certain
amount of overshoot. There are two main reasons for the differences in dynamic characteristics: In the
initial stage of the hydraulic braking torque response, the HBS needs high-pressure brake fluid to fill
the circuit and liquid chamber, and during the rising period of the hydraulic braking torque, there are
viscosity resistance, flow force, and orifice compensation of the hydraulic braking system.

Because of the differences in dynamic response characteristics between the MBS and the HBS,
the total braking torque fluctuates significantly during mode switching, which cannot meet the braking
torque required by the driver, and may also lead to an increase in the jerk of the complete vehicle and
the false trigger of the ABS braking, as shown in the simulation part of this study. So it is necessary to
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coordinate the motor braking torque and hydraulic braking torque in the process of mode switching,
to ensure the stability of the braking torque during braking.

mt
ht

mhtΔ

Figure 7. Dynamic response characteristics of the HBS and the motor braking system (MBS).

4. The Torque Coordinated Control Strategy of Mode Switching

4.1. The Condition Analysis of Mode Switching

By controlling the working state of the motor and switching of the HBS coupling valve,
the electro-hydraulic composite braking system of the electric vehicle can realize various braking
modes. According to the braking force distribution control strategies of this paper, the working state
of each component of the braking system of each braking mode are shown in Table 7. Based on the
response differences between the MBS and HBS, and setting aside the discontinuous change due to
brake pedal action, the processes responsible for the torque fluctuation during mode switching mainly
exist in the working conditions that the braking torque step changed. Therefore, the coordinated
control strategy is mainly applied to the braking conditions in which the braking torque of the MBS or
HBS step changes.

Table 7. The working state of each component in the different braking modes.

Mode PMSM I PMSM II HBS of Front Axle HBS of Rear Axle

Pure electric braking • � � �
• • � �

Hybrid braking • • • �
• • • •

Pure hydraulic braking � � • •

In Table 7, “•” represents MBS working or HBS working, and “�” represents MBS not in operation
or HBS not in operation.

4.2. The Design of the Coordination Controller

The dynamic coordination control strategy of brake mode switching developed in this paper is
shown in the Figure 8. Firstly, the target hydraulic braking torque, Th_req, and the target motor braking
torque, Tm_req, are preliminarily distributed based on the vehicle state parameters by the braking force
distribution controller. Secondly, the target hydraulic braking torque is modified through fuzzy control
rules based on the pedal opening and its change rate, to reflect the driver’s braking intention. Then,
the target motor braking torque is corrected by the actual hydraulic braking torque (Th) output by
the HBS, and the rapid response of the MBS is used to compensate for the hydraulic braking torque,
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to achieve a smooth transition of the braking mode. Finally, the HBS and the MBS are controlled by the
hydraulic and motor braking controller, respectively, to respond to the modified target braking torque
T′h_req and T′m_req, and then output the actual hydraulic braking torque, Th, and actual motor braking
torque, Tm, to decelerate the vehicle.
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Figure 8. Dynamic coordination control structure.

4.2.1. The Modification of Target Hydraulic Braking Torque

The target change rates of target hydraulic braking torque during braking are

kh_req =
d
dt

Th_req (11)

where kh_req represents the target change rates of hydraulic braking torque.
During the mode switching, the upper limit of the change rate of the hydraulic braking torque,

kh, is determined by the fuzzy controller, which is designed based on the brake pedal stroke, α, and its
change rate,

.
α. Then the upper limit of the change rate, kh, is compared with the target change rate

kh_req, to determine the modified target change rate.

k′h = min
(
kh_req, kh

)
(12)

The increment of the modified target hydraulic braking torque, ΔTh, can be obtained by the
integration of the modified target change rate. Therefore, the modified target braking torque of the
HBS is

T′h_req = T′h +
∫

min
(
kh_req, kh

)
dt (13)

where T′h_req represents the target braking torque of the HBS modified by the coordination controller;

and T′h is the initial braking torque at the moment when the mode is switched.
During mode switching, the driver’s braking intention is reflected by the brake pedal stroke and

the brake pedal stroke change rate. Then the fuzzy controller outputs the upper limit of the change rate
of the target hydraulic braking torque, so as to realize the modification of the target hydraulic braking
torque. The fuzzy subsets of brake pedal stroke, brake pedal stroke change rate, and the upper limit of
the change rate of the hydraulic braking torque are {VS, S, MS, M, ML, L, VL}; therefore, the input
and output of the fuzzy controller can be described as

{α} = {VS, S, MS, M, ML, L, VL}{ .
α
}
= {VS, S, MS, M, ML, L, VL}

{kh} = {VS, S, MS, M, ML, L, VL}
(14)
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where VS, S, MS, M, ML, L, and VL represent very small, small medium, medium, medium large, large,
and very large, respectively.

The fuzzy control rules are shown in Table 8, and the membership function of input and output
variables of fuzzy controller are shown in Figures 9–11. The fuzzy control rules are formulated based
on the following experiences:

Criterion 1: If α and
.
α are S, then kh is MS. In this case, the brake pedal stroke and its change rate are

small; it can be considered that the driver pays more attention to the ride comfort during mode switching,
and the upper limit of the change rate of the hydraulic braking torque takes a medium-small value.

Criterion 2: If α is S and
.
α is L, then kh is ML. In this case, the braking pedal opening is small and

its change rate is large, which indicates that the driver pays more attention to the braking safety during
mode switching. Therefore, the upper limit of the change rate of the hydraulic braking torque takes
a medium-large value.

Criterion 3: If α is VL and
.
α is S, then kh is L. In this case, the braking pedal opening is very large

and its change rate is small, indicating that the driver pays attention to both braking safety and ride
comfort during mode switching, so the upper limit of the change rate of the hydraulic braking torque
takes a large value.

Table 8. Fuzzy control rules of target hydraulic braking torque change rate.

kh

.
α

VS S MS M ML L VL

α

VS VS S MS M M ML ML
S S MS M M ML ML L

MS MS M M ML ML L L
M M M ML ML L L VL

ML M ML ML L L VL VL
L ML ML L L VL VL VL

VL ML L L VL VL VL VL

α  
Figure 9. Pedal opening degree membership function.

α  
Figure 10. Pedal opening change rate membership function.
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hk

Figure 11. The upper limit of the change rate of the hydraulic braking torque membership function.

According to the modified target hydraulic braking torque T′h_req, the hydraulic controller
determines the duty ratio of high-speed on–off valve, and directly controls the inlet valve and outlet
valve of wheel cylinder through PWM modulation, so as to make the tracking pressure of wheel
cylinders follow the modified target pressure changes.

4.2.2. The Modification of Target Motor Braking Torque

According to the analysis in Section 3.3 of this paper, the response time of the MBS is shorter
than that of the HBS, thus the rapid response of MBS can be used to compensate for the insufficient
braking torque caused by the slow response of HBS, so as to solve the fluctuation of total braking
torque and the jerk of the complete vehicle during brake mode switching. Therefore, during mode
switching, the MBS need to provide the target motor brake torque Tm_req, which is determined by
the braking force distribution controller and additionally provide the difference between the target
hydraulic braking torque Th_req and the current actual hydraulic braking torque Th; that is,

T′m_req = Tm_req + Th_req − Th (15)

The sum of target hydraulic braking torque Th_req and target motor braking torque Tm_req is the
total braking torque Tb_req required by the driver, so Equation (15) can be rewritten as

T′m_req = Tb_req − Th (16)

The motor control parameters id and iq are output by the motor controller according to the
modified target motor braking torque T′m_req, so that the MBS outputs the actual motor braking torque
Tm to act on the vehicle.

According to the braking force distribution control strategy of this paper, the HBS starts to provide
braking torque when the braking strength required by driver is greater than z(B). If the braking torque
required by driver changes, in order to maintain the coordinated compensation ability of the MBS to
the hydraulic braking torque during mode switching, the target braking torque Tm_req allocated by the
braking force distribution controller to the MBS should be smaller than the maximum braking torque
Tm_max that can be provided by the MBS. When the braking torque required by the driver continues to
increase, and the required braking strength satisfy z(B) < z ≤ z(C), the target braking torque Tm_req

determined by braking force distribution controller should increase to Tm_max gradually. If the braking
torque required by driver remains unchanged, the maximum braking torque that can be provided by
the MBS remains at Tm_max at the braking torque distribution stage.

5. Simulation and Analysis

The forward simulation model of a pure electric vehicle was established in MATLAB/Simulink in
this study, as shown in Figure 12. This simulation model includes the PMSM I and PMSM II models,
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the HBS model, the battery model, the vehicle longitudinal resistance model, and the controller model.
Because the switching between different braking modes is similar, a specific mode switching can be
selected for verification and analysis. The same conclusion can be obtained by the simulation of other
switching processes with the proposed torque coordinated control method.

Slip_all

Slip_all

 
Figure 12. The simulation model of the electric vehicle.

The conditions of constant and variable braking strength are simulated to verify the effectiveness
of the dynamic coordination control strategy. For the switching from a constant braking strength,
the mode switching between the pure electric and pure hydraulic braking modes were selected for the
simulation test, and the motor braking switching to a hybrid braking mode was selected for simulation
verification in the mode switching of variable braking strength. In the switching from a constant
braking strength, the motor and hydraulic braking torque with coordination will respond to the
modified target braking torque output by the coordination controller, while the motor and hydraulic
braking torque without coordination will respond to the target braking torque that is assigned by the
braking force distributor. Under the condition of a variable braking strength, the braking torque and
the jerk of the complete vehicle, focusing on safety and ride comfort, were compared, to verify whether
the coordinated control strategy reflects the driver’s braking intention.

5.1. Simulation and Verification of the Constant Braking Strength of Mode Switching

5.1.1. Switch from Pure Hydraulic to Pure Electric Braking Mode

The speed variation condition shown in Figure 13a is designed to verify the effectiveness of the
coordinated control algorithm during pure hydraulic switching to the pure electric braking mode.
In this braking condition, the initial speed of the vehicle is 110 km/h, the initial SOC of the battery is
0.6, and the road adhesion coefficient is 0.8. The braking strength required by the driver is increased
from 0 to 0.15 within 0 to 0.5 s, and then remains constant.

At the start of braking, the speed of the vehicle is too high for the motors to perform regenerative
braking; hence, braking torque is provided by the HBS. After 1.5 s, when the speed of the vehicle has
decreased sufficiently, the braking mode switches to pure electric, and braking torque is provided only
by the MBS. Because of the compensation of the motor braking torque to the hydraulic braking torque,
the SOC with coordination is slightly higher than the SOC without coordination at the start of braking;
moreover, the slow increase of the motor braking torque with coordination during mode switching
resulted in a lower SOC with coordination than that without coordination, as shown in Figure 13a.
As shown in Figure 13b, during the increase of braking strength, the response speed of the HBS is slow
due to the orifice compensation and viscosity resistance within the HBS, hence the total braking torque
without coordination cannot quickly respond to the target total braking torque required by the driver.
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The coordinated total braking torque follows the target total braking torque well because the MBS can
compensate for the insufficient braking torque caused by the slow response of the HBS.

During mode switching, Figure 13c demonstrates that the motor braking torque without
coordination increased rapidly, while the slower responding HBS was still providing a high braking
torque. According to Figure 13d, the rapid increase in total braking torque without coordination
resulted in a 31.29 m/s3 jerk of the complete vehicle. In contrast, the motor braking torque with
coordination increases as the hydraulic braking torque decreases, and the total braking torque is
maintained at a constant level as far as possible. The maximum jerk of the vehicle was 5.91 m/s3; thus,
the ride comfort of the vehicle is improved during mode switching.

(a) (b) 

(c) (d) 
Figure 13. Simulation results of the pure hydraulic switch to a pure motor braking mode under
a constant braking strength: (a) The variation in vehicle speed and SOC, (b) the variation in total
braking torque, (c) the variation in motor and hydraulic braking torque, and (d) the variation in
vehicle jerk.

5.1.2. Switch from Pure Electric to Pure Hydraulic Braking Mode

The speed variation condition shown in Figure 14a is designed to verify the effectiveness of the
coordinated control algorithm during pure electric switching to the pure hydraulic braking mode.
In this braking condition, the initial speed of the vehicle is 25 km/h, the initial SOC of the battery is 0.6,
and the road adhesion coefficient is 0.8. The braking strength required by driver increased from 0 to 0.1
within 0 to 0.5 s, and then remains unchanged.

With the deceleration of the vehicle, the vehicle speed was reduced to 20 km/h at 1.67s, which is
too slow for the MBS to maintain a stable regenerative braking torque; hence, the braking mode is
switched from pure electric to pure hydraulic. Due to the coordination of motor braking torque to
hydraulic braking torque during mode switching, the SOC with coordination is higher than that
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without coordination, as shown in Figure 14a. The simulation results of Figure 14b,c show that the
mode switching without coordination cannot provide the braking torque required by the driver because
of the rapid withdrawal of the motor braking torque, giving a wrong braking felling to the driver,
resulting in a mis-operation by the driver. With coordination, the motor braking torque decreases as
the hydraulic braking torque increases, creating a smooth transition, so that the total braking torque
changes gradually and the speed of vehicle is steadily reduced. According to Figure 14d, the maximum
jerk of the complete vehicle during mode switching with and without coordination was -3.14 m/s3 and
-21.18 m/s3, respectively. Thus, the coordination control strategy improves the vehicle’s safety and ride
comfort during braking mode switching.

(a) (b) 

(c) (d) 

Figure 14. Simulation results of the pure hydraulic switch to a pure motor braking mode under
a constant braking strength: (a) The variation in vehicle speed and SOC, (b) the variation in total
braking torque, (c) the variation in motor and hydraulic braking torque, and (d) the variation in
vehicle jerk.

5.2. Simulation and Verification of Variable Braking Strength of Mode Switching

Under the condition of a variable braking strength, the initial speed of vehicle is 60 km/h, the initial
SOC of battery is 0.6, and the road adhesion coefficient is 0.8. The braking strength required by the
driver is increased from 0 to 0.1 within 0 to 0.5 s, and then remains unchanged. At 1.5 s, the driver
depressed the brake pedal with two different brake pedal stroke change rates, and the braking strength
gradually increases to 0.3. The variation in the braking strength is shown in Figure 15a.

The driver depressed the brake pedal to the same opening with two different brake pedal stroke
change rates; therefore, both the switching processes are switched from pure electric to the hybrid
braking mode. Because the change rate in brake pedal stroke is different, one switching process focuses
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on brake safety while the other focuses on ride comfort. The simulation results in Figure 15 are all
obtained by the coordinated control strategy proposed in this paper. It can be seen from Figure 15a
that since the variation in each braking torque is almost the same for both the safety-focused and
comfort-focused intentions, the SOC changes of the two braking intention are almost the same, but the
SOC with a safety-focused intention is slightly higher than that of the comfort-focused intention.

As shown in Figure 15b, c, since the motor and hydraulic braking torque is modified by the torque
coordination controller according to the different braking intentions of the driver, the coordinated total
braking torque, motor, and hydraulic braking torque that focus on ride comfort are changed more
gently than that focusing on braking safety. As shown in Figure 15d, the jerk of the vehicle during mode
switching that focuses on ride comfort is −4.84 m/s3, while the mode switching that focuses on braking
safety is −9.97m/s3. The simulation results show that the coordinated control strategy of this paper can
modify the motor and hydraulic braking torque reasonably according to the driver’s braking intention,
so as to take into account the braking safety and ride comfort during braking mode switching.

(a) (b) 

(c) (d) 
Figure 15. Simulation results of the pure motor switch to a hybrid braking mode under variable braking
strengths: (a) The variation in the braking strength and SOC, (b) the variation in total braking torque,
(c) the variation in motor and hydraulic braking torque, and (d) the variation in vehicle jerk.

6. Conclusions

The configuration of a four-wheel-drive pure electric vehicle with a dual motor is considered in
this paper, and a braking torque dynamic coordinated control strategy, based on the braking intention
of the driver, is proposed. The dynamic coordinated control strategy effectively reduces the torque
fluctuation and the jerk of the complete vehicle during mode switching.

A controller combining a PID controller and a fuzzy controller is used to adjust the pressure in the
wheel cylinder of the HBS to achieve precise control of the hydraulic braking torque. The brake pedal
stroke and its change rate are used to reflect the braking intention of the driver, and to modify the
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target hydraulic braking torque based on a fuzzy control algorithm according to whether the driver
pays more attention to brake safety or ride comfort. At the same time, the rapid response of the MBS is
used to compensate for the insufficient braking torque caused by the slow response of the HBS, so as to
ensure the ride comfort and stability of the braking during mode switching.

Based on the mathematical model of the electro-hydraulic composite braking system, a simulation
verification platform is constructed. The typical mode switching of the constant and variable braking
strength conditions are simulated to verify the effectiveness of the dynamic coordinated control strategy.
The simulation results show that the torque coordination control strategy described in this paper can
not only modify the motor and hydraulic braking torque according to the driver’s braking intention,
but also significantly reduce the braking torque fluctuation and the jerk of the complete vehicle, thereby
improving ride comfort and safety. The influence of the proposed control strategy on energy recovery
mainly depends on the type of mode switching condition.

Intelligent transportation system (ITS) and vehicle-to-vehicle communication (V2V) are future
development trends; therefore, in future research, the authors will combine ITS to make active
predictions of braking mode. In addition, energy consumption will be considered by reducing the
frequency of mode switching.
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Abstract: Heavy-duty hybrid electric vehicles and marine vessels need a sizeable electric energy
storage system (ESS). The size and energy management strategy (EMS) of the ESS affects the system
performance, cost, emissions, and safety. Traditional power-demand-based and fuel-economy-driven
ESS sizing and energy management has often led to shortened battery cycle life and higher replacement
costs. To consider minimizing the total lifecycle cost (LCC) of hybrid electric propulsion systems,
the battery performance degradation and the life prediction model is a critical element in the optimal
design process. In this work, a new Li-ion battery (LIB) performance degradation model is introduced
based on a large set of cycling experiment data on LiFePO4 (LFP) batteries to predict their capacity
decay, resistance increase and the remaining cycle life under various use patterns. Critical parameters
of the semi-empirical, amended equivalent circuit model were identified using least-square fitting.
The model is used to calculate the investment, operation, replacement and recycling costs of the
battery ESS over its lifetime. Validation of the model is made using battery cycling experimental
data. The new LFP battery performance degradation model is used in optimizing the sizes of the key
hybrid electric powertrain component of an electrified ferry ship with the minimum overall LCC. The
optimization result presents a 12 percent improvement over the traditional power demand-driven
hybrid powertrain design method. The research supports optimal sizing and EMS development of
hybrid electric vehicles and vessels to achieve minimum lifecycle costs.

Keywords: li-ion battery; performance degradation modelling; electrified propulsion; battery sizing;
powertrain optimization; optimal energy management

1. Introduction

With the increasing concerns on the emissions of greenhouse gases (GHG) and other air pollutants,
the automotive and marine industry are adopting hybrid electric or pure electric propulsion systems
for vehicles and marine vessels with large onboard battery energy storage system (ESS) at an increasing
pace. Today lithium-ion batteries (LIBs) become the primary type of batteries used in various electric
ESS due to their significant longer life and much higher energy density. Among different kinds of LIBs,
the LiFePO4 (LFP) battery has been widely used in heavy-duty transportation applications, due to its
lower cost and non-toxicity, well-defined performance, better long-term stability, and capability to
fit for more extensive variations in temperature. The service life of battery ESSs is a critical issue for
various types of electrified vehicles (EV), as well as their marine counterparts. Considerable efforts have
been devoted to capturing the performance degradation and extending the operating life of batteries.
However, there are limited efforts on the quantitative analysis of how battery capacity loss would
influence the optimization on the sizing of key powertrain components and the powertrain energy
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management system (EMS), and how improperly sized powertrain components and an inflexible EMS
would accelerate the battery capacity loss.

Large vehicles, ships and smart local power grids share a common feature that is entirely different
from conventional passenger cars and light trucks, having case-dependent driving and load cycles
and an enormous energy demand. The high power and energy requirements of those applications
can significantly aggravate the total cost of hybrid electric propulsion systems with a large battery
ESS. Though the price of LIBs has been considerably reduced in recent years, it is still one of the most
expensive components in the hybrid electric and pure electric propulsion systems, compared to the
internal combustion engines (ICE) and electrical machines (EM), etc. [1]. The battery ESS is also the
component with the shortest life in the powertrain system, likely needing replacements. The lifecycle
cost of battery ESSs includes investment, operation, replacements, and recycling costs. The cost and
performance of battery ESSs remain the main concerns of adopting hybrid electric propulsion for
heavy-duty vehicular and marine applications. Optimal sizing and energy management of battery
ESSs can reduce the overall lifecycle costs (LCC) of the electrified propulsion system of the vehicle or
vessel, and these tasks cannot be accomplished without an accurate battery performance degradation
model to predict its deterioration rate and the remaining useful life (RUL) of the batteries.

The performance degradation of LIBs are relevant to battery materials, manufacturing quality, use
patterns, and many other factors. The anode and cathode materials used in the LIB are the main factors
that determine battery performance, and hence the degradation during the use of the battery [2–4].
With lower cost and the ability to resist thermal runaway at elevated temperatures, the LFP battery is
popular for light vehicles and the dominant choice for heavy-duty transportation applications. The
use pattern of a LIB, determined by the operating temperature, charge and discharge currents, stage of
charge (SOC) variation in a cycle, working time, etc., can prominently affect the degradation rate and
life of the LIB. Specifically, battery life can be categorized into cycle life and calendar life, in which the
battery will be charged/discharged, and stored, respectively. Battery cycle life performance degradation
is an inevitable process that happens right after the first charge/discharge process. The capacity of
a battery will be reduced due to many reasons. The formation of a solid electrolyte layer (SEI) on
carbon-based anodes, though it can help the active carbon material resist further corrosion from the
electrolyte, will consume available cyclic ions and increase cell impedance [5]. Ramadass, et al. [6]
showed that battery film resistance rises with the cycling numbers. Furthermore, it has been concluded
that battery cyclic capacity fading has a direct link with the thickness of the SEI layer [7]. The loss of
available lithium is the main reason for cyclic capacity decay. Moreover, microscopic electrochemical
side reactions happen all the time inside the battery, leading to reduced calendar life [5].

Temperature, SOC, and operating current rate are key elements causing battery performance
degradation. Operations under high temperatures not only aggravate side reactions and material
exfoliations but also cause battery deformation and affect the battery’s overall performance [8]. Storage
of a battery at an elevated temperature can also accelerate the decay of its calendar life [9]. Battery
charging at a low temperature below −10 ºC decreases its reaction rate, causing Li plating along the
carbon surface. Dendritic Li plate not only consumes available capacity but also can penetrate the
separator and cause inner short circuit [10]. The charge and discharge current rate (Crate) is another
factor that profoundly affects battery life. If a battery is cycled at a higher current rate, a large amount
of Li ions will accumulate on the surface of active materials over a short time. If the diffusion process
of ion is restricted, dendrite Li might be generated [11]. Low Crate, on the other hand, is more favorable
for safer performance and longer life. The SOC indicates the percentage of remaining energy that the
battery can release compared to the rated capacity. The range of SOC variation in a cycle, referred to as
the depth of discharge (DOD), can also affect battery life. Higher DOD means harsher usage of the
battery, thus accelerating its degradation [12]. Battery performance degradation, might be caused by
the loss of active material (LAM) of electrodes, the loss of lithium inventory (LLI), and the increase of
the internal resistance of the cell [13]. The observed degradation involves complicated electro-chemical
processes, making its mathematical quantification very difficult. All of the stated factors must be

72



Energies 2020, 13, 1629

considered if an accurate performance degradation model is to be introduced to predict the remaining
lifetime of the battery under given operating conditions.

The models for capturing battery performance degradation and predicting its RUL can be classified
into the chemistry-physics-based models, or the data-driven, machine-learning-based models. In the
physics-based models, mechanical fatigue and chemical degradation are mathematically quantified
individually [12] or jointly [14]. The thermal analysis [15] and electro-thermal coupled modelling [16]
of LIBs can reveal how temperature affects battery capacity fading. The commonly-used semi-empirical
modelling method is based on the Arrhenius kinetics equations, such as those reported by Bloom,
Cole, Sohn, Jones, Polzin, Battaglia, Henriksen, Motloch, Richardson and Unkelhaeuser [12] and
Wang, et al. [17]. More detailed molecular or atomist models were introduced to describe the
electrochemical reactions and represent battery degradation at a fine-grained level [18,19]. However,
the complexity of an electrochemical model usually led to intensive computation, making their
applications in real-time energy management difficult. The data-driven modelling method was
introduced recently with the advance of machine-learning techniques [13,20]. However, the complete
ignorance of the battery degradation mechanism and the complex inter-linked factors inside of the
machine-learning models may result in irrational prediction outcomes, and the approach requires
careful verification and review for even a slightly different batch of products. Many researchers focused
on modelling the battery capacity fading at different operating temperatures [9,21], different SOC [22],
or their combinations [23]. These modelling methods require a significant amount of battery test
data [17,24] to cover different current rates, temperatures, and depth of discharges, but the time and
efforts needed to conduct these costly experiments remain a significant challenge.

In developing a hybrid electric propulsion system, determining the optimal powertrain component
sizes, particularly of the engine and battery ESS, and developing the optimal power control and energy
management strategy (EMS) are significant challenges. The design of other powertrain and power
system components, such as electric machines and power electronic converters, are directly related
to the engine and the ESS. The growing level of powertrain hybridization with increased battery
capacity for achieving better fuel efficiency and emission improvements further demands the optimal
sizing of powertrain components and optimal EMSs. The performance degradation of the LIB heavily
influences the system performance and LCC of the propulsion system. However, there is not yet a
systematic approach to link battery performance degradation to the optimal design and control of
hybrid electric propulsion systems at present, due to the lack of an accurate battery performance
degradation model [25,26].

This research focuses on the introduction of an accurate LIB performance degradation and life
prediction model that can be used to support optimal component sizing and energy management of
hybrid electric propulsion systems. Specifically, the special cycling experiments and data analysis
of a typical LFP battery is presented; a battery performance degradation and life prediction model
using the obtained experimental data and other supplementary data is introduced, and the use of the
newly introduced battery performance degradation and life prediction model in optimizing the ESS
design and EMS development of a hybrid electric propulsion system of a ferry ship is demonstrated.
The LCC improvements in the globally optimized hybrid propulsion system compared to the pure
energy efficiency driving hybrid system (without considering battery performance degradation), and
compared to the conventional mechanical propulsion system are presented to demonstrate the benefits
of the new method.

2. Battery Performance Degradation Experiments

2.1. Design of the Experiments

In this work, sample commercial lithium-ion phosphate/graphite (LFP/C) prismatic cells with
18 Ah nominal capacity, produced by Liyuan New Energy, were used in the extensive battery cycling
tests at the State-assigned Electric Vehicle Power Battery Testing Center in Beijing, China. These cells
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are designed and built for hybrid and pure electric vehicular and marine propulsion applications. The
detailed specifications of tested LFP batteries are given in Table 1.

Table 1. Tested lithium-ion phosphate/graphite (LFP/C) battery specifications.

Parameter Value

Nominal Voltage 3.2 V
Nominal Capacity 18 Ah

Energy Density 120 Wh/kg
Charge/Discharge Cut-off Voltage 3.6 V/2.5 V

Max. Normal/Fast Charge Current Rate 1 C/2 C
Max. Continuous/Max. 30-sec Discharge Current Rate 3 C/15 C

The main purposes of the tests include (a) measuring battery capacity deterioration through
repeated cycling profiles; (b) supporting battery modelling for the quantitative prediction of battery
performance degradation rates under different use patterns; and, (c) accurately predicting the
(remaining) operation life of the battery in a hybrid electric propulsion system under a given load
profile. Two types of charge and discharge profiles were used in these tests, the cycling test profile and
the capacity test profile. Both types of tests were conducted repeatedly in the environmental chambers
with a controlled temperature at 25 ºC. These battery test cycles consisted of four steps (a) charging at
the designed constant current (CC) followed by a constant voltage (CV) until the current reaches 0;
(b) resting for 20 minutes; (c) discharging at the designed CC until the cut-off voltage is reached; and
(d) resting for 20 minutes. The cut-off voltage, as shown in Table 1, is 3.6 V for charging and 2.5 V
for discharging.

The cycling tests were performed at 1 C charge and 2 C discharge current rates and the capacity
tests were performed at 1/3 C charge and 1/3 C discharge rates, respectively. As usual, 1 C means
fully discharging the battery in 1 hour. The higher current rate (or Crate) can reduce experimental time,
while the lower Crate can better measure the available battery capacity. The tested battery went through
25 cycling tests, followed by a capacity test until the battery reaches its end-of-life (EOL). Following
the general rule used by the automotive industry, the battery’s EOL is defined as the state at which the
measured charge/discharge capacity of the battery falls to 80 percent of its nominal capacity, and the
battery needs to be replaced. The cycling test only needs about 25 percent of the time for conducting
a capacity test, leading to much-reduced experiment time. Moreover, the cut-off voltage during 2 C
discharge in the cycling tests was defined at 3.0 V to prevent potential over-discharge under the high
current rate.

2.2. Experiment Results and Data Analysis

The open-circuit voltages, Voc, of fresh LFP batteries under charges and discharges were measured
under low current rate (1/50 C) before the start of the cycling tests. Based on the measured voltage
variations at such a low current, the differential voltage for capacity analysis could be carried out. The
voltage variation vs. capacity variation, dV/dQ, at different battery SOCs showed distinct peaks as
illustrated in Figure 1. These peaks revealed the anode (C) and cathode (LFP) material phase transitions
during ion’s intercalation and de-intercalation, and also visually qualified the total capacity that this
battery can store at its beginning-of-life (BOL). As the battery is cycled from its BOL to the EOL,
these peaks would shift due to the structural deterioration of the active material and capacity reduction.

The tested battery terminal voltage was measured in each cycle under designed testing profiles.
Testing data obtained during the first 2000 test cycles were used in the performance degradation
modelling and validation. A few typical capacity cycling test data under the 1/3 C current rate
were plotted in Figure 2. The experiment results showed that with the increase in cycling number,
experimental time became shorter, indicating that the battery’s maximum capacity, Qmax, became lower
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and therefore less energy could be stored. The reduced cell voltage with higher cycling numbers
indicated increased inner resistance.

 

0

0.5

1

1.5

2

2.5

3

2

2.5

3

3.5

4

0 20 40 60 80 100

dV
/d

%
Q

(V
/%

)

V
ol

ta
ge

(V
)

SOC(%)

V_chg(V)

V_dis(V)

dV/dQ_chg(V/%)

dV/dQ_dis(V/%)

Figure 1. Battery beginning-of-life (BOL) voltage curves.
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Figure 2. Measured voltage variances under 1/3 C charge and discharge in cycling experiments.

The capacity loss during battery cycle life tests can also be revealed by the differential voltage
analysis, i.e., the dV/dQ ratio of the discharge profiles recorded at a different number of cycles. Figure 3
shows the variations of the differential voltage of the tested C-LFP battery, cycled from its BOL to EOL
at 1/3 C rate. The small peaks of the dV/dQ curves at the bottom shifted to the center as the number of
the charge/discharge cycle increased, leading to a narrower span of the curve with a reduced distance
between the two boundaries, indicating capacity reduction [14].

The measured discharge capacity of tested LIB exhibited a clear decreasing trend as the cycling
numbers grew, as shown in Figure 4.

75



Energies 2020, 13, 1629

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100

dV
d%

Q
(V

/%
)

SOC (%)

Cycle 10
Cycle 500
Cycle 1000
Cycle 1300
Cycle 1500
Cycle 2000

Figure 3. Differential voltages at different number of cycles.

 

50%

60%

70%

80%

90%

100%

110%

0 500 1,000 1,500 2,000 2,500

C
ap

ac
ity

 R
et

en
tio

n 
(%

)

Cycles

Figure 4. Battery capacity measured in different cycle numbers.

The level of battery performance degradation is indicated using a measure of battery state of
health (SOH) in this work. The SOH value measures the ratio of the actual maximum capacity Qmax of
a battery at time t over the rated capacity Qrated of the fresh cell. When the SOH decreases to 80%, the
battery is considered as a dead battery for the transportation applications and is to be replaced to meet
the required power and/or energy demands of the applications.

SOH =
Qmax

Qrated
× 100% (1)

where Qmax is the maximum available discharge capacity a battery can provide when fully charged
at 100% SOC. Qrated is the rated capacity specified by the battery manufacturer, which is 18 Ah in
this study.

The SOC of a battery indicates the remaining available capacity and can be affected by the current
maximum capacity. The actual maximum capacity Qmax will gradually decrease during the usage due
to its ageing phenomena, as shown in Figure 5. For a fresh battery, Qmax is equal to the rated capacity
Qrated.

SOC = SOC0 −
∫ t f

t0

I(t)
3600Qmax

dt× 100% (2)

where to to t f are the start and end time of each cycle (s); dt is the time step (s); SOC0 is the initial SOC
at the beginning; I(t) is the current (A) which is a function of time, assuming discharge current is
positive and charge current is negative; and Qmax is the maximum battery capacity (Ah).
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Figure 5. Cycle-induced capacity loss plotted as a function of ampere-hour throughput (Ah-throughput).
The blue dots indicate data used for building the performance degradation model, while the orange
triangles indicate data used for model validation.

The cycle-induced capacity loss Qloss, as the ratio of the battery’s reduced capacity to its nominal
capacity, is directly linked to the battery’s ampere-hour throughput (Ah-throughput, or Ahth).
Ah-throughput represents the total amount of electric charge of the battery during cycling [24],
and acts as a critical factor in measuring the cyclic capacity loss. The value of Ahth is calculated by:

Ahth = Qmax·DOD·N (3)

where DOD is the depth of discharge DOD = 100− SOC, and N is the cycle numbers.
The relation of measured capacity loss and Ah-throughput from test data is plotted in Figure 5,

showing a clear trend of battery performance degradation.
In the experiments, 2095 cycles of battery testing data have been obtained, including about 2019

sets of cycling tests under a 1 C/2 C charge/discharge current and 76 sets of capacity test data under a
1/3 C charge and discharge current. The 76 sets of capacity test data were used to build the battery
performance degradation model which will be discussed in detail in the following section. Among
them, about 80% of the data (60 cycles) have been used for building the performance degradation
model, shown as the blue dots in Figure 5, while the rest 20% of the test data (16 cycles) were used
for modelling accuracy validation, shown as the orange triangles in Figure 5. The sudden change of
the cycle-induced capacity loss and sharp capacity loss at around 25,000 Ah might be caused by the
cycle-induced material deterioration of the specific LFP battery that was tested.

3. Battery Performance Degradation and Life Prediction Model

The purpose of introducing a battery performance degradation model is to accurately predict the
operation life and resulting lifecycle cost of the battery under different given operating temperatures
and use patterns. In recent years, considerable research efforts have been devoted to understanding the
influence of temperature on battery performance and operating life, and to develop effective thermal
management techniques to allow the battery ESS to operate within the desired range of temperature.
This work thus focuses on modelling the influence of use patterns on the operating life and resulting
lifecycle cost of batteries. Due to the many influencing factors and the not yet fully understood
performance decay mechanism of batteries’ charge and discharge operations, generation of the model
is largely based on experimental data, either by fitting a semi-empirical, multiphysics model [12,19],
or by training an artificial neural network (ANN) using machine learning techniques [13]. The
semi-empirical, multiphysics model combines generic formula related to the degradation mechanism
and detailed model parameters determined by the battery test data, providing a relatively accurate
and straightforward modelling method as used in this work. The RUL of a battery under different use
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patterns is modelled by combining the battery testing data obtained in this research and the results
from the literature [24].

The development of performance degradation models for Li-ion batteries has been reported in
many pieces of literature, forming three main categories:

1. The empirical modelling method that is primarily used in the early study stage of LIB development
due to its simplicity [12]. This modelling method requires a large amount of experimental data
and does not have broad applications.

2. The equivalent circuit model that is capable of capturing the dynamic behaviors of the battery
using resistance and capacitance to represent battery charge/discharge characteristics [27]. These
models are of the semi-empirical, multiphysics type.

3. The electrochemical models that simulate the electrochemical reactions using time and space
coupled partial differential equations to describe the ion diffusion process, overall potential
variation, and current distribution during the charge and discharge of the battery. This type of
model includes the Doyle–Fuller–Newman model [28], the pseudo-two-dimensional model [29],
and the single particle model [30]. However, the use of these more detailed and more accurate
models require extensive numerical computations, thus they are not suitable to serve as an
element in the algorithms for hybrid powertrain control and battery energy management.

The two-order, equivalent circuit battery performance model is thus amended to form the new
model for predicting battery performance degradation in this work. This amended equivalent circuit
performance model is used later for the design and control optimization of hybrid electric powertrain
systems. As shown in Figure 6, the variation of battery capacity and resistance can affect battery
voltage and SOC calculation in each cycle carried out using the equivalent circuit performance model.
The calculation results are fed into the semi-empirical life prediction model to obtain the estimated
remaining useful cycle life.

 

Figure 6. Illustration of battery performance degradation and life prediction model.

3.1. Amended Equivalent Circuit Performance Model

In the equivalent circuit model, the two resistor-capacitor (RC) electrical circuits represent the
activation and concentration depolarizations during battery charge and discharge operations. The
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Ohmic resistance is decided by the internal resistance, Ri. At any required current, I, the voltage drops
for each element can be calculated by:

.
V1 = − V1

R1C1
+

I
C1

(4)

.
V2 = − V2

R2C2
+

I
C2

(5)

Vi = IRi (6)

where V1, V2, and Vi are voltage drops caused by the first RC circuit (R1 and C1), the second RC circuit
(R2 and C2) and the inner resistance (Ri).

The battery output voltage (Vt) is determined by the Kirchhoff’s law:

Vt = Voc −Vi −V1 −V2 (7)

where Voc is the open-circuit voltage. The discharge and charge Voc of an LFP battery is plotted in
Figure 1.

The six parameters of the equivalent circuit model, Qmax, Ri, R1, R2, C1, and C2, are determined by
fitting the battery testing data with minimum root-mean-squared error (RMSE) between the measured
voltage and model output voltage.

min
x

√√
1
n

n∑
i=1

(Vmeas,i(x) −Vsim,i(x))
2subject to : g(x) ≤ 0 (8)

where Vmeas is the measured output voltage, Vsim is the model simulated output voltage, x =

[Qmax, Ri, R1, R2, C1, C2 ]
′ are the unknown parameters, i is the time step from 1 to n, and g(x) is the

constraint on the design variables.
The genetic algorithm (GA) heuristic global optimization algorithm was used to solve the RMSE

minimization problems and to deal with the noise of the test data, as is widely reported [28,30,31].
The algorithm searched all possible solutions and the best results were identified for all unknown
parameters. The variation of battery maximum capacity, Qmax, and inner resistance, Ri, at different
numbers of cycles is plotted in Figure 7.
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3.2. Battery Remaining Lifetime Prediction

The combined study of battery SOC (in each mission cycle with varying Qmax) and SOH (over
the battery lifespan) is important to estimate battery RUL under different use patterns. The cycle life
experiment in this study is for battery cycled at 1C charge and 2C discharge for 100 percent DOD,
therefore, the RUL prediction may not be valid for other charges/discharge patterns. However, to
conduct experiments at a continuously varying current (e.g., from 0.5C to 3C), DOD (e.g., from 10
to 100 percent) and operating temperature would cost years of testing, causing such experiments to
become infeasible. The lack of complete experimental data would be an obstacle to building accurate
battery performance and life prediction models.

This research utilized the 2000 cycling data acquired above and other accessible experimental
results of LFC/C battery from well-cited literatures to deal with the scarcity of battery performance
degradation data, including cycle-life experiments from Wang, Liu, Hicks-Garner, Sherman, Soukiazian,
Verbrugge, Tataria, Musser and Finamore [24], Deshpande, Verbrugge, Cheng, Wang and Liu [14],
and Han, et al. [32] to build the LFP battery cycle life prediction model. These researchers have identified
and successfully illustrated the key features of cycle-induced battery performance degradation under
different cycling patterns. According to previous studies, the calendar life of the battery has a minor
influence on performance degradation [33,34], therefore, it has not been considered in the new model.
It was assumed that the operating temperature of the batteries could be adequately controlled by the
advanced thermal management system of the hybrid electric vehicles and vessels.

The proposed model has considered both voltage and capacity decay in estimating the remaining
cycling numbers of a battery. Based on Arrhenius kinetics, the capacity fading rate is affected by the
previously discussed factors. The earlier study [33] modelled the battery capacity loss by:

Qloss = A·e( −Ea+B·Crate
RT )(Ahth)

z (9)

where, A and Ea are pre-determined coefficients; B is the coefficient of Crate; R is ideal gas constant;
and, T is the temperature in K.

After combining the capacity loss model with a previously defined Ah-throughput equation,
the remaining cycling number of battery (N) can be derived based on the previous function:

N =

⎛⎜⎜⎜⎜⎝ Qloss

A·e( −Ea+B·Crate
RT )

⎞⎟⎟⎟⎟⎠
1
z 1

Qmax·DOD
(10)

The newly introduced battery life prediction model was implemented in MATLAB/Simulink. The
result of total cycling number for the LFP battery, as a function of Crate and DOD, is shown in Figure 8.

The performance degradation rate in the LIB cycling lifespan can be predicted using the battery
performance model, and the RUL can be calculated using the resulting life prediction model. The
former model calculates the battery performance (include current, voltage, SOC, etc.) under a
given charge/discharge profile with updated maximum available capacity Qmax. The predicted
results are fed into the life prediction model to estimate the remaining cycling numbers under the
accumulated deterioration.

The performance degradation of the battery ESS under different use patterns was compared and
shown in Figure 9. Harsh use of the battery with a discharge current rate of 2C at 100% DOD would
result in fast capacity decay, as shown by the blue dash curve. The life of the battery would be extended
if the battery was used gently by reducing the discharge current rate or operating time, as shown by
the other two curves. This quantitative model shows that a more conscious use of the battery ESS may
be an effective way to strike the best balance between reducing engine fuel consumption and lowering
the cost induced by the shortening of battery life due to aggressive battery charges/discharges in a
hybrid electric propulsion system. The quantitative model also supports the more appropriate engine
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and battery ESS sizing in a hybrid powertrain to form the globally optimal design solution considering
the investment, operation, and replacement costs over the entire lifecycle.

Figure 8. Prediction of remaining cycling numbers under different Crate and depth of discharge (DOD).
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Figure 9. Battery state of health (SOH) variation under different usage patterns.

3.3. Model Validation

In this work, about 2000 sets of experimental cycle data of a commercialized LFP battery have been
acquired and used. A large portion (80%) of the capacity test data have been used to build the battery
performance degradation model, and the remaining 20% of data have been used to validate the accuracy
of the introduced models. The life prediction model under different discharging Crate and DOD has
been built for calculating the remaining useful cycle life of the LFP battery. The predicted capacity
loss (Qloss) from the RUL model and the battery testing data are shown in Figure 10. In this figure,
the data points labelled as blue dots were used to build the model, and the data points represented by
the yellow triangles were the original test data for model validation.
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Figure 10. Accuracy of battery performance degradation and lifetime prediction model: blue dots
indicate modelling results, orange triangles indicate validation results.

The predicted capacity losses at the very beginning of battery life were slightly higher than the
measured results. When the capacity deteriorates over 10%, the predicted results showed slightly lower
than the measured values. Ideally, these results would be equal to the measured data, as indicated by
the ideal diagonal line. Overall, the absolute mean percentage error of developed LIB performance
degradation and the life prediction model is about 13%.

4. An Application Example–Lifecycle Cost-based Design Optimization of a Hybrid Electric
Ferry Ship

Li-ion battery ESSs are one of the critical components in a hybrid electric marine propulsion
system. With the battery performance degradation model, the actual life of a given size ESS under the
specific operation profile of the vehicle or vessel can be predicted. Thus, the initial investment cost,
replacement cost, operation cost, and recycling cost of the battery ESS can be calculated. It is, therefore,
possible to perform the optimal design and energy management of the hybrid powertrain system to
achieve minimum LCC of the hybrid electric vehicle/vessel, in addition to higher system efficiency and
lower emissions. This section will compare the total LCC of a hybrid electric propulsion system with
or without using the newly introduced battery performance degradation model.

4.1. Design of a Hybrid Electric Marine Propulsion System

The design optimization of the hybrid electric propulsion system for a medium-size vehicle and
passenger ferry, Skeena Queen, operated by BC Ferries in B.C. Canada, is used as a test platform. The
general information of the ship is given in Table 2.

Daily operation data from the ferry have been collected as shown in Figure 11. The average
sailing speed is about 15 knots as shown in Figure 11a. The total propulsion power requested during a
roundtrip sailing from the four diesel engines has been measured and plotted in Figure 11b, where P1
to P4 represents the power outputs from engine number 1 to 4.
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Table 2. General information about ferry ship Skeena Queen.

 

Skeena Queen

Overall Length 110 m

Car Capacity 92

Passenger and Crew Capacity 450

Maximum Power 4474 kW

Cross Distance 5 nautical miles
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Figure 11. Ferry ship operation profile. (a) Ferry operation speed profile in one day, (b) Power measured
from the four engine shafts in one roundtrip.

The new hybrid electric propulsion system design for this ferry is aimed at improving its fuel
efficiency, reducing emissions, and achieving the minimum LCC. Reducing battery ESS replacements
and extending battery ESS lifetime would contribute to a lower LCC of hybrid conversion. The
proposed hybrid electric propulsion system for the ferry is shown in Figure 12. The conversion is
aimed at producing a series of hybrid powertrains powered by the diesel gen-sets and propelled by
electric motors, using the battery ESS as an energy buffer to store and supply electric power. The new
hybrid propulsion system would improve engine fuel economy and system efficiency, provide more
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flexible operation and redundant power, lower fuel consumption and emissions, eliminate the original
auxiliary gen-sets, and reduce engine operation time during docking.

 
Figure 12. Integrated hybrid electric propulsion system designed for the ferry ship.

4.2. LCC Model Developed for the Hybrid Electric Marine Propulsion System

The new LIB performance degradation and life prediction model can help evaluate the battery
investment, replacement and residual costs during the entire life cycle of the hybrid propulsion systems.
The LCC of the proposed hybrid electric marine propulsion, considering all costs from engines, ESS,
and other electrical machines, can be developed as part of the total ownership costs (TOC) of the vessel.
The main elements of the LCC model include the capital cost (Ccap), operation cost (Cope), and residual
cost (Cresd):

LCC = Ccap + Cope + Cresd (11)

The capital cost (Ccap) includes all the purchase costs for the main propulsion components. The
reinvestment cost of Li-ion battery ESS must be considered due to its short lifespan compared to
engines and other powertrain components.

Ccap = Ceng + Chyb + Cess + Crin (12)

where, Ceng is the engine cost; Cess is the battery ESS cost; Chyb is the cost for hybridization and
electrification, including purchasing the electric motors/generators and power converters; Crin is the
reinvestment cost due to the replacing of battery ESS; Crin is the reinvestment cost, counting for the
replacement cost of battery ESS due to the reduced lifetime. The operation life of battery ESS (Lbat) is
calculated based on the developed battery life prediction model in the previous section.

Crin =

Nt∑
t=0

Cess

(1 + r)t kt (13)

where kt is the replacement frequency, which is a function of the battery lifetime (Lbat). r is the annual
inflation rate. Lbat is the key parameter that determines the reinvestment capital costs. The optimal
result of Lbat must be determined at the system level considering both engine and ESS operation
conditions.

kt = f (Lbat) =

{
1, m = n·Lbat, m ≤ Nt

0, otherwise
(14)

where m is the year when replacement occurs in the whole lifespan Nt, i.e., when the battery life is
ended. n is integer numbers, n = 1, 2, 3 . . .When the battery needs to be replaced in year m, then kt = 1,
otherwise, kt is 0.
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The system operation cost consists of fuel consumption and engine maintenance costs. Other
costs related to ship insurance, registration, etc., are excluded.

Cope =

Nt∑
i=0

C f uel + Cmaint

(1 + r)i (15)

where C f uel, Cmaint are the cost of fuel consumption and engine maintenance. r is the annual inflation
rate. i is the year from 0 to Nt.

The fuel cost is mainly determined by the operating efficiency of the engine that can be affected
by the system design, component sizing, and power control. In this work, it is assumed that engine
maintenance cost is closely related to its working time and the engine size [35].

The residual value (or salvage cost) of replaced Li-ion batteries is nontrivial for this expensive
component. Retired batteries from hybrid vehicles with 80% remaining capability could be reused for
residential energy storage and load levelling in a smart power grid [36]. In this study, the residual cost
is the remaining value in the replaced battery ESS, which is also determined by the replacement time
and residual price.

Cresd =

Nt∑
i=0

prQr

(1 + r)i ki (16)

where pr is the price for the remaining value ($/kWh), Qr is the residual capacity (kWh), and r is the
annual inflation rate.

More detailed information of LCC model, such as the price of marine fuels, the evaluation of fuel
consumption cost and engine maintenance cost, etc. can be found in [35].

4.3. A Comparison of Different ESS Sizing Methods

Two different propulsion system and ESS sizing methods are used and compared, including the
traditional power-demand-based and fuel consumption minimization-driven approach, and the new
minimum LCC-based design using the battery performance degradation model.

The power-demand-based and fuel-economy-driven hybrid electric propulsion design is the
predominant method for designing and sizing the hybrid electric propulsion system [37,38] due to
the lack of an accurate battery performance degradation model. It determines the battery ESS size
based upon the electrical energy required to achieve the best engine fuel economy. Specifically, the
hybrid electric propulsion is design to allow the engine to operate at a higher power level (above 80%
of maximum continuous rated power) to improve fuel economy and reduce air pollutants. For this
purpose, the requested power from battery ESS is needed to substitute engine operation whenever the
engine is operated below an 80% load. Due to the lack of optimal sizing of the ESS, the investment cost
and replacement cost of battery could rise since no considerations have been made to ease the battery
degradation in usage. The approach aims entirely at meeting the electrical energy requirement, the
size of the ESS used in the hybrid ferry is then to be at least 500 kWh with about 1C discharge rate and
80% DOD usage in one roundtrip voyage. Based on acquired experimental results, the battery can last
for 3.8 years. Therefore, the battery ESS would need to be replaced about every four years during the
ship’s operational lifetime.

The use of the LIB performance degradation model in the hybrid electric propulsion system
design enables the optimization-based ESS sizing to achieve the minimum system LCC. The LCC
of the hybrid marine propulsion system includes the initial investment cost of the main powertrain
components; the replacement cost of battery ESS that can be determined by the battery performance
degradation model; the residual cost of battery when it is recycled; the total operational costs over the
20 years of ship operation with engine fuel consumption and maintenance costs. The optimal design
of the ship’s hybrid powertrain involves different size combinations of major powertrain components.
In this study, the size of the battery ESS is the primary variable that needs to be optimized, considering
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both system performance and the total LCC, as battery replacements may occur during the vessel’s
lifespan. A multi-objective optimization problem is formulated as:

min
x

f (x) = w1·LCC
(
C f uel, Lbat, Nt

)
+ w2·memission.

subject to : Emin ≤ x1 ≤ Emax

DODmin ≤ x2 ≤ DODmax

SOCend = SOCtarget

(17)

where x = [x1, x2]
′, x1 is the ESS size and x2 is the DOD in one trip; w1 and w2 are user-defined

weighted factors for total LCC and emissions; LCC is the propulsion system lifecycle cost over 20 years’
operation, which is affected by fuel consumptions (C f uel), battery lifetime (Lbat) and operational time
(Nt); memission is the total mass of emissions (including equivalent CO2, PM and SO2); Emin and Emax

are the minimum and maximum battery ESS capacity; DODmin and DODmax are the minimum and
maximum battery DOD variation, respectively.

The optimal size of battery ESS, for this case, is 670 kWh. With this design, the vessel will consume
284 kg fuel during a round trip sailing, and battery ESS will sustain 7.5 years. This optimized hybrid
propulsion system led to reduced investment cost due to minimum LLC battery ESS size optimization,
supported by the performance degradation model of the LIB. The larger ESS led to a longer lifetime and
improved LCC. Both hybrid propulsion system designs require a higher total capital cost compared to
the traditional mechanical propulsion system. However, the optimized hybrid system requires less
additional investment costs. Under the constrained SOC variation, Crate and DOD, the design leads to
extended battery life and lower placement cost.

A comparison of the LCC for the two different hybrid propulsion design approaches is presented
in Table 3. As a reference, the capital and operational costs of a traditional mechanical propulsion
system were also evaluated and listed. The initial investment cost, battery ESS replacement cost and
battery residual cost (shown as a negative value) compose the total investment cost. The design with
optimal battery ESS size, requires less additional investment cost and lower operating costs over 20
years. Overall, the total LCC of the battery performance degradation considering optimal hybrid
electric propulsion system is 26 percent lower than the original mechanical propulsion system and
represents a 12 percent additional cost-saving over the traditional power-demand-based and fuel
consumption minimization-driven hybrid electric system design.

Table 3. LCC breakdown and comparison for the optimal hybrid propulsion system.

Cost/Increment
Mechanical
Propulsion

Hybrid Propulsion (Minimizing
Fuel Consumption)

Optimal Hybrid Propulsion
(Minimizing Total LCC)

($M) ($M) (%) ($M) (%)

Initial Investment($M) 2 1.88 1.97

Battery Replacement($M) 0 1.38 0.68

Battery Residual($M) 0 −0.53 −0.37

Total Investment 2 2.73 +37% 2.28 +14%

Total Operation (20 yrs) 17.94 14.38 −20% 12.44 −31%

Total LCC 19.94 17.11 −14% 14.72 −26%

5. Conclusions

The optimizations of the size and EMS of the battery ESS in a hybrid electric propulsion system have
been significant interest and focal point of research for years. These optimizations cannot be achieved
without an accurate model for predicting the performance degradation and operating life of the battery
under different use patterns. Traditional and present power-demand based and fuel-economy driven
ESS sizing and EMS optimization methods often led to shortened battery operation life and higher
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overall lifecycle cost of the propulsion system. The Li-ion battery performance degradation model and
its supported battery ESS size optimization, introduced in this work, can effectively address this issue.

The new semi-empirical, amended equivalent circuit model is introduced based on a large set
of 18 Ah LiFePO4 battery cycling experiment data, and learning from previous research, in order to
predict battery capacity decay and resistance increase during its lifespan and the remaining useful cycle
life under various use patterns. The method for calculating the investment, operation, replacement
and recycling costs of the battery ESS using the new model over its lifetime operation under given use
patterns is presented. Validation of the new model using battery cycling experimental data showed
good accuracy with about 13 percent error.

To demonstrate the use and benefits of the newly introduced LFP battery performance degradation
model, the LCC of a hybrid electric passenger and vehicle ferry design using the traditional
power-demand based and fuel-economy driven optimal ESS sizing method and the new overall
LCC minimization method are compared. With the LIB model supported, minimum LCC battery
sizing, the optimized hybrid propulsion system has 12 percent less LCC. The research forms a
foundation for the optimal sizing and EMS development of hybrid electric vehicles and marine vessels
to achieve minimum lifecycle costs.
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Abstract: For the oil–electric–hydraulic hybrid power system, a logic threshold energy management
strategy based on the optimal working curve is proposed, and the optimal working curve in each
mode is determined. A genetic algorithm is used to determine the optimal parameters. For driving
conditions, a real-time energy management strategy based on the lowest instantaneous energy cost
is proposed. For braking conditions and subject to the European Commission for Europe (ECE)
regulations, a braking force distribution strategy based on hydraulic pumps/motors and supplemented
by motors is proposed. A global optimization energy management strategy is used to evaluate the
strategy. Simulation results show that the strategy can achieve the expected control target and save
about 32.14% compared with the fuel consumption cost of the original model 100 km 8 L. Under the
New European Driving Cycle (NEDC) working conditions, the energy-saving effect of this strategy is
close to that of the global optimization energy management strategy and has obvious cost advantages.
The system design and control strategy are validated.

Keywords: oil–electric–hydraulic hybrid system; lowest instantaneous energy costs; energy management;
global optimization

1. Introduction

With the rise and boom of the automobile industry, the number of automobiles has been increasing,
but the related problem of environmental pollution has also been growing. At present, pure electric
vehicles are considered to be the cleanest automobiles, but their core technologies, such as motors
and power batteries, are difficult to make great breakthrough in a short period of time, which has
severely restricted their development. On the other hand, hybrid electric vehicles do not have such
problems and are thus gradually being favored by more people. The main problem that needs to be
solved in hybrid electric vehicles is determining how to make a reasonable allocation among the power
sources under the premise that the demand torque is known. At present, the energy management
strategy for hybrid electric vehicles can be roughly divided into a rule-based energy management
strategy, instantaneous optimization of energy management strategies, and global optimization of
energy management strategies.

Zhou et al. proposed a rule-based energy management strategy that uses dynamic programming
(DP) to select control parameters. The fuel consumption per 100 km of the strategy is 12.7 L, which is
very close to the global optimal value of 12.4 L [1]. Li et al. on the other hand, proposed a logic threshold
strategy optimized via the pseudospectral method, which achieves the goal of reducing battery energy
loss by making supercapacitors perform better with a high specific power performance [2]. Whereas
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Qin et al. proposed an energy management control strategy based on working condition identification,
which reduced fuel consumption by 12.77% compared with that of the strategy without working
condition identification [3]. Meanwhile, Yin et al. proposed a dual-planetary hybrid electric vehicle
as an object of engine torque control. This strategy can optimize the engine operating point while
keeping the final battery state of charge (SOC) value within a reasonable range [4]. Although this
type of energy management strategy has a simple structure and strong practicability, its advantages
and disadvantages are easily affected by the experience of engineering personnel and the working
conditions are poor.

For the instantaneous optimization of energy management strategy, Jiao et al. proposed an adaptive
equivalent fuel consumption minimum strategy (A-ECMS), which obtains the equivalent factor under
current driving conditions based on the equivalent factor map in energy distribution. The fuel consumption
is minimized throughout the driving route, and the battery state of charge (SOC) is kept within a reasonable
range [5]. On the other hand, Zhang et al. proposed an energy management strategy based on the
minimum equivalent fuel consumption. Compared with the rule-based energy management strategy,
it has a significant improvement in terms of fuel economy [6]. Meanwhile, Wang et al. proposed an energy
control strategy that allows both the engine and the motor to operate in an efficient region to improve fuel
economy [7]. Compared with the globally optimized energy management strategy, this strategy has a
small amount of calculation and fast speed, but can only achieve instantaneous optimization.

For the global optimization energy management strategy, Xiang Zhu proposed a DP-based energy
management strategy. Through online simulation, the solution of the multi-neural network model
is determined to be close to the optimal solution obtained by the global optimization algorithm,
and the real-time application of dynamic programming is greatly improved [8]. Meanwhile, Wang et al.
considered the discrete solutions of related variables and the boundary problems of feasible domains
when solving the optimal control problem of hybrid electric vehicle, and systematically studied the
relationship between the optimization accuracy and the computational complexity of the dynamic
programming algorithm. Compared with that of the traditional control strategy, the fuel economy
based on the dynamic planning control strategy increased by about 20% [9]. Although this strategy
can achieve global optimization, it needs to obtain the entire driving conditions in advance, and the
amount of calculation is large, which is difficult to apply to real vehicles.

In this article, Firstly, the oil–electric–hydraulic system requires one to install a hydraulic energy
storage system on the rear axle of the existing oil-electric hybrid vehicle structure, which is proposed
in this article and uses a timely four-wheel-drive structure with independent driving of the front and
rear axles. Secondly, based on this structure, this study focuses on a steady-state energy management
strategy in the driving and braking process, proposes a logic threshold energy management strategy
based on the optimal working curve, and selects the relevant threshold according to the steady-state
efficiency characteristic curve of the key components. The genetic algorithm is used to jointly optimize
the powertrain parameters and logic threshold energy management strategy parameters. Thirdly, for
the driving mode, considering that this article mainly focuses on the fuel economy of the entire vehicle,
and in the logic threshold energy management strategy, the setting of the threshold value is susceptible
to expert experience, the working conditions are poor, the global optimization energy management
strategy has a large amount of calculation, the driving conditions need to be known, and practical
problems, a real-time energy management strategy based on the lowest energy consumption cost
is proposed, whereas for the braking mode, based on the traditional four-wheel vehicle braking
force distribution strategy, a braking-force allocation strategy based on the highest energy recovery
is proposed. Furthermore, a global optimization energy management strategy based on dynamic
programming is used as the basis for evaluating the advantages and disadvantages of other strategies.
Finally, the stateflow-based control strategy model is implemented into the forward simulation model
to verify the effectiveness of the strategy, and the two strategies are simulated and compared.
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2. Oil–Electric–Liquid Hybrid Power System Structure

Unlike a pure electric vehicle, an oil–electric hybrid electric vehicle retains the engine and reduces
the power of the battery. Although the vehicle’s range is increased, the disadvantage of a reduced energy
recovery rate is ignored. Under the same conditions, although the accumulator has a low energy density,
it also has a high power density, which not only can quickly recover and release energy, but also has
higher energy efficiency and can provide greater auxiliary power for the vehicle. If the characteristics
of the high energy density of the storage battery and high power density of the accumulator are
combined, not only can the vehicle’s cruising range be extended, but the energy recovery rate can
also be improved. Therefore, the traditional configuration is equipped with a motor and an external
battery pack on the front axle, and a hydraulic energy storage system on the rear axle. In addition,
continuously variable transmission (CVT) can not only adjust the operating point of the engine and
motor, save fuel consumption, but also improve the ride and stability of the vehicle. Therefore, this
article decided to use CVT transmission. As shown in Figure 1, the new setup is composed mainly of
an integrated starter generator (ISG) motor, high-pressure accumulator, low-pressure accumulator,
hydraulic pump/motor, battery, and continuously variable transmission (CVT). There are clutches at
the connection between the engine and the motor, the hydraulic pump/motor, and the rear axle main
reducer. The clutch status of the front and rear axles can be controlled to make the vehicle work in
different modes. The vehicle working mode is outlined in Table 1.

Figure 1. Structure of oil–electric–hydraulic hybrid power system.

Similar to for a traditional automobile, the maximum demand power of an oil–electric hybrid
electric vehicle is also determined according to the vehicle dynamics index [10]. This study uses
the vehicle’s basic parameters and dynamic indicators of the original model. Based on the vehicle
parameters and different driving conditions, the maximum required power of the vehicle can be
calculated. From these calculations, the total power of the initial power source is determined to be
120 kW.

In addition, the theoretical calculation method and the comprehensive analysis method based on
the cycle condition are used to match the parameters of each key component. The matching results are
listed in Table 2.
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Table 1. Working modes of the hybrid system.

Working Mode
Clutch Status

Description
C1 C2

Motor drive alone Start and low-speed working conditions,
Accumulator pressure reaches the lower limit

Hydraulic drive alone Start and low-speed working conditions,
Improve vehicle efficiency

Engine drive alone Medium and high-speed working conditions.
Increase driving distance

Electro-hydraulic hybrid drive Improve vehicle traffic

Oil-hydraulic hybrid drive High load conditions such as rapid acceleration
and climbing

Oil-electro hybrid drive High load with high battery power and low and
medium load with low battery power

Oil-electro-hydraulic hybrid drive Large power demand and more energy in
batteries and accumulators

Regenerative braking mode Motor or hydraulic pump meets ECE regulations

Friction brake Emergency braking. Provide braking torque for
as much energy recovery as possible

Note: means the clutch is disengaged, means the clutch is engaged.

Table 2. Basic parameters of each key component.

Component Project Parameter Component Project Parameter

Engine Peak power/kW 60 Pump/motor Peak power/kW 40

Peak torque/Nm 140 Peak torque/Nm 105

Motor

Peak power/kW 30

Accumulator

Maximum working pressure/MPa 25

Rated power/kW 15 Minimum working pressure/MPa 15

Peak speed r/min 7000 Volume/L 35
Rated speed r/min 2000

Battery
Voltage level/V 251 Transmission

system

CVT speed ratio range [0.83,2.5]

Power/KW 33 Front axle final drive speed ratio 6

Capacity/Ah 48 Rear-axle final drive speed ratio 3

3. Joint Optimization of Energy Management Strategy and Power System Component Parameters

3.1. Logic Threshold Energy Management Strategy based on Optimal Working Curve

This study is based on the gasoline engine’s universal characteristic curve, and the research object
is the rechargeable oil–electric–hydraulic hybrid vehicle. Pemin_eco and Pemax_eco are used as the logic
threshold parameters for charge-sustaining (CS) stage engine operation to optimize the working area
of the engine. (Pemin_eco, Pemax_eco) = (9 kW, 57 kW) is initially selected, and based on the battery SOC
model, the battery SOC = 0.3 is initially taken as its lower working limit.

In the parallel hybrid system, which includes a variety of working modes, to ensure that the
hydraulic pump can provide sufficient regeneration capacity and improve energy recovery efficiency
during braking, this study chooses the control strategy of preferential use of hydraulic energy and
electric energy. The specific mode selection logic is shown in Figure 2.
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Figure 2. Mode selection logic diagram.

Under the premise of satisfying the power requirements, obtaining the best fuel economy for
the whole vehicle is one of the goals of the hybrid electric vehicle energy management strategy.
Firstly, the optimal working point corresponding to different power requirements in different modes is
obtained via offline optimization, and a MAP table is made. Based on the result of mode selection,
the optimal working point that meets the current vehicle power demand is then determined and
applied, thereby achieving the optimal power system efficiency.

When the hybrid electric vehicle is operating in the hydraulic pump/motor single drive mode, its
operating point is directly determined according to the required power, because the CVT transmission
efficiency model was established by interpolation, and the CVT speed ratio range was obtained, whereas
when the hybrid electric vehicle is operating in the engine or motor alone drive mode, the engine
or motor operating point can be adjusted via continuously variable transmission (CVT). While the
demand power is satisfied, the efficiency of itself is optimized, and the working point corresponding
to the optimal efficiency is the optimal working point of the engine or the motor. Under the condition
that the demand power is satisfied and each key component of the power source is constrained by
itself, the optimization problem, wherein the transmission system efficiency is the objective function, is
solved, and the optimal working curves of the motor and the engine, when either is working alone,
can be obtained. These curves are shown in Figures 3 and 4, respectively.

For hybrid systems, if the CVT efficiency loss is neglected when the engine and motor work
together, Equation (1) is used.

Pr = Pe + Pm = Teωe + Tmωm

ωe = ωm = ωr

ωe_min ≤ ωe ≤ ωe_max

ωm_min ≤ ωm ≤ ωm_max

Ts_min ≤ Te ≤ Te_max

Tm_min ≤ Tm ≤ Tm_max

(1)

Pr, Pe, and Pm represent the vehicle demand power, engine power, and motor power, respectively,
ωe and ωm denote the engine and motor speeds, respectively, icvt indicates the transmission speed ratio,
and Te and Tm refer to the engine and motor torques, respectively.
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Figure 3. Optimal operating curve of motor.

Figure 4. The optimal operating curve of the engine.

When the motor is operating in the drive mode, the efficiency of the hybrid system can be
expressed as

η1 =
Pm + Pe

Pmηd
ηm

+ Pe
ηe

=
(Tm + Ts)(Tmηd
ηm

+ Te
ηe

) (2)

In the formula, ηe, ηm, and ηd are engine efficiency, motor efficiency, and battery discharge
efficiency, respectively.

When the motor is operating in the power generation mode, the efficiency of the hybrid system
can be expressed as

η2 =
[Pe − Pm(1− ηmηc)]

(Pe/ηe)
=

[Te − Tm(1− ηmηc)]

(Te/ηe)
(3)

ηc is the battery charging efficiency
According to Equation (1), there are multiple combinations of (ωr, Tr) on the premise that the

engine and motor torques and speeds meet their constraints. The torques and speeds of the engine and
motor in each combination, and the charge and discharge efficiencies of the engine, motor, and battery
at this operating point can be substituted into Equation (2) or Equation (3) to calculate the total efficiency
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corresponding to each group of operating points. The most efficient combination (ωe, Te), (ωm, Tm)

represents the best operating points of the engine and motor. In this way, the best working curves
of the engine and the motor can be obtained. For the charge-depleting (CD) mode, the best working
curves of the engine and motor combined drive are shown in Figures 5 and 6, respectively.

Figure 5. Optimal operating curve of engine.

Figure 6. Optimal operating curve of motor.

3.2. Multi-objective optimization problems and their conversion

Under the premise of satisfying the vehicle power performance, achieving the Pareto optimal
solution of the two objective functions is equivalent to achieving the two optimal goals for hybrid
electric vehicle energy consumption and vehicle manufacturing cost. This study uses a linear weighting
method to convert a multi-objective function based on energy consumption and vehicle manufacturing
cost into a single objective function:

F(x) = ω1
f uel(x)

f uelunopt
+ω2

cost(x)
costunopt

(4)

where f uelunopt and costunopt represent the initial energy consumption and vehicle manufacturing cost,
respectively, before optimization, and ω1,ω2 are weighted values, wherein ω1 = 0.8 and ω2 = 0.2.

In terms of optimizing variable selection and constraint setting, to make the battery capacity
meet the electric vehicle mileage index, the hydraulic pump/motor has to have sufficient regenerative
braking force, but its corresponding cost should be reduced as much as possible. The optimization
problem then becomes more convenient to solve. This study selects engine peak power Pemax, motor
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peak power Pmmax, ratio max_ f actor of maximum operating power of the engine to its peak power, ratio
min_ f actor of engine minimum operating power to peak power, and CD–CS mode switching value Soc_s.
That is, X = [Pemax, Pmmax, max_ f actor, min_ f actor, Soc_s] are optimized variables for the joint optimization
of energy management strategy parameters and dynamic system parameters. The vehicle’s dynamic
index (maximum speed is 180 km/h, 0~100 km/h acceleration time is 12.46 s, and the maximum
climbable gradient is 40%) is used as an optimization constraint to ensure that the optimization results
meet the vehicle power requirements.

3.3. Energy Management Strategy and Optimization of Power System Components Parameters

After the multi-objective problem is transformed into a single-objective problem, this article
defines the fitness function, which simplifies the manufacturing cost of the whole vehicle power system
to the cost of the engine and the motor. The following Equation (5) is obtained [11–13],

cos t(X) = 849 + 12.236Pemax + 10.888Pmmax (5)

In the formula, Pemax and Pmmax are the peak powers of the engine and the motor, respectively.
Genetic algorithms are then used to optimize energy management strategies and power system

parameters:

1. Because the optimization variables X are continuous variables, the real coding method is selected
to encode the variables, and the upper and lower limits of each variable are set, as listed in Table 3.

2. The algorithm parameters are set, such that the maximum evolution algebra is 40, the population
size is 100, the number of elites is 8, the crossover probability is 0.3, and the original population is
randomly generated.

3. The number of iterations is checked for whether it reaches the maximum. If not, the vehicle simulation
model is run to output the optimal fitness value and average fitness value of the contemporary
population, and the process is continued. Otherwise, the optimal solution to the previous
generation is outputted, and the process is ended.

4. The optimal fitness value is checked for whether it is less than or equal to the set target fitness
value. If yes, the optimal fitness value and its corresponding optimal individual are outputted,
and the process is ended. Otherwise, the current population is selected, crossed, and mutated.

Table 3. Optimization variable interval.

Variable Unit Description Optimization Interval

Pemax kw Engine peak power [50,70]
Pmmax kw Motor peak power [20,40]

max_factor kw Engine maximum operating power factor [0.7,0.95]
min_factor kw Engine minimum operating power factor [0.15,0.3]

SOC_s - CD-CS Mode switching value (battery) [0.3,0.4]

The optimization results of the genetic algorithm are shown that the fitness value decreases with
the evolution of the population, and finally converges to 0.93. The corresponding optimal individuals
are

(
Pemax, Pmmax, max_ f actor, min_ f actor, Soc_s

)
= (57.32, 32.68, 0.89, 0.16, 0.32)

According to the comparison of the simulation results of the unoptimized and GA-optimized in
Table 4, the manufacturing cost of the whole vehicle power system is reduced by 1.7%, and the energy
cost per 100 km is reduced by 8.3%.

Finally, to verify whether the parameter matching result of the power system is reasonable,
the vehicle facing-forward simulation model is established based on the MATLAB/Simulink platform,
and dynamic simulation results showed that the acceleration time to 100 km is 11.8 s, and the maximum
speed is 177 km/h. The maximum grade is 40.24%, and the speed is 30km/h. At the time, the maximum
gradeability can reach 39.78%; in summary, the optimized hybrid system parameters can meet the
vehicle dynamic performance requirements.
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Table 4. Comparison of simulation results.

Engine
Peak Power

Motor Peak
Power

Engine
Minimum Factor

Engine
Maximum Factor

Mode
Switch SOC

Power
System Cost

Energy
Cost

Before
optimization 60 30 0.15 0.95 0.3 13,227 32.3

After
optimization 57.3 32.7 0.16 0.89 0.32 13,003 29.6

4. Energy Management Strategy based on the Lowest Instantaneous Energy Cost

4.1. Energy Management under Driving Conditions

In this article, the minimum instantaneous energy consumption cost is the objective function; the
vehicle travel demand torque Tr, vehicle speed v, hydraulic accumulator Soc1, and battery Soc are the
state variables; the hydraulic pump/motor torque Tpm, motor torque Tm, engine torque Te, and CVT
speed ratio icvt are the control variables. Because this study deals with not only hydraulic regenerative
braking, but also motor regenerative braking [14], the hydraulic energy is equivalent to electric energy
when the cost of hydraulic energy consumed is calculated, and the instantaneous cost is

Cost =
1

3600

(
j f

Pebe

1000ρ
+ je

(
Pm

ηmηb
+

Ppm

ηpm

))
(6)

where Cost is the sum of the costs of fuel, electricity, and hydraulic energy consumed per unit time
(yuan/s), j f is the price of gasoline (yuan/L), and je is the price of electrical energy (yuan/kw·h). Pe,
Pm, Ppm represents the output power of the engine, motor, hydraulic pump/motor (kw). be is the
fuel consumption rate (g/(kw·h)); ρ is the density of gasoline

(
g/cm3

)
; ηm and ηb represent the

motor, battery efficiency; ηpm represents the mechanical efficiency of the hydraulic pump/motor in
motor mode.

The objective function and constraints can be expressed as

min
(
Cost

(
Tpm, Tm, Te, icvt

))
(7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Te + Tm) · icvti0ηcvt + Tpm · i1 = Treq

0 ≤ ne ≤ nemax

0 ≤ npm ≤ npmmax

Te ≤ Temax(n)∣∣∣Tm
∣∣∣ ≤ Tmmax(n)

Te + Tm ≤ Tcvt_in_max
Tpm ≤ Tpmmax(n)

Pm
(ηmηb)

≤ Pbmax

0.83 ≤ icvt ≤ 2.50

(8)

To obtain the optimal values of each power source and transmission under different vehicle
conditions, the grid traversal algorithm is used to solve any set of state variables, and the MAP table is
made to facilitate real-time control. The algorithm flow is shown in Figure 7.

For different drive modes, the optimization results are different. In the single power source
mode, because the hybrid system scheme adopted in this study does not have a transmission on
the rear axle of the vehicle, the operating point cannot be optimized in the hydraulic pump/motor
drive mode. Therefore, this study examines only the optimization of energy cost in the purely electric
mode and engine driving mode. In the purely electric mode, the parts related to the engine and
the hydraulic pump/motor in the optimization Algorithm 6 and Constraint Condition 8 are omitted,
and the results shown in Figure 8a,b can be obtained via offline optimization. Similarly, for the engine
mode, the optimization results are shown in Figure 9a,b.
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Figure 7. Grid traversal algorithm flow chart.

Figure 8. Cont.
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Figure 8. Optimization results in the purely electric mode: (a) target torque of motor; (b) target speed
ratio of continuously variable transmission (CVT).

Figure 9. Optimization results in the engine mode: (a) target torque of engine; (b) target speed ratio
of CVT.
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The hybrid drive mode includes the electro–hydraulic hybrid drive, oil–electric hybrid drive,
and oil–electro–hydraulic hybrid drive. For each mode, corresponding changes are similarly made
to the optimization algorithm and constraints, and offline optimization is performed to produce the
results shown in the Figures 10–12.

Figure 10. Optimization results in the electro-hydraulic hybrid drive mode: (a) hydraulic pump/motor
target torque; (b) motor target torque; (c) target speed ratio of CVT.
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(a)

(b)

(c)

Figure 11. Optimization results in oil–electro hybrid drive mode: (a) engine target torque; (b) motor
target torque; (c) CVT of target speed ratio.
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(c)

Figure 12. Cont.
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(d)

Figure 12. Optimization results in oil-electro-hydraulic hybrid drive mode: (a) hydraulic pump/motor
target torque; (b) engine target torque; (c) motor target torque; (d) CVT target speed ratio.

4.2. Energy Management under Braking Conditions

For a hybrid electric vehicle with a regenerative braking system, regarding the distribution of
the braking force, it is necessary to solve the problems of not only the distribution of the braking
force of the front and rear axles but also the distribution of the regenerative braking force and the
frictional braking force. Thus, considering the high efficiency of the hydraulic regenerative braking
system for recovering energy, this study uses the hydraulic pump/motor as the main way and the
motor as the auxiliary way of providing the regenerative braking force. At the same time, the friction
braking force is used to coordinate and to meet the driver’s demand braking force to achieve maximum
energy recovery.

Figure 13 shows the braking force distribution curve designed for the oil–electric–hydraulic
hybrid electric vehicle. The OABCD curve is a braking force distribution curve for when the hydraulic
accumulator is SOC1 < 1 and the battery SOC > 0.9, the OA′BB′CD curve for when the hydraulic
accumulator is SOC1 < 1 and the battery SOC ≤ 0.9, and the OA′B′CD curve for when the hydraulic
accumulator is SOC1 = 1 and the battery SOC < 0.9. Point A indicates the maximum braking force
that can be transmitted to the rear wheel when the hydraulic pump/motor is working alone; point A′
indicates the maximum braking force that can be transmitted to the front wheel when the ISG motor
is working alone. Meanwhile, point B indicates the sum of the maximum braking forces that can be
transmitted to the wheels when the hydraulic pump/motor and motor are simultaneously operating.
B′, C, D are the intersections of the I curve and the braking strengths.

When the structural scheme of the hybrid system presented in this article is analyzed, the working
point of the motor can be adjusted via the CVT transmission, but the working point of the hydraulic
pump/motor cannot be adjusted, and thus the operating point of the motor can only be optimized.
This inference considers that in the regenerative braking mode in which all motors participate, only the
braking force distribution strategy is different and that there is no influence on the optimization process.
Therefore, this section needs only to optimize the motor operating point in the motor regenerative
braking mode. In this section, the kinetic energy recovered is used as the objective function, and the
target torque of the generator and the CVT target speed ratio are optimized.
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Figure 13. Braking force distribution curve of hybrid vehicles.

The objective function is
min(Pbηcvtηmηb) (9)

In the formula, Pb represents the braking power required to be transmitted from the motor to
the wheel.

The constraints are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tm = Tmb/(icvti1η)
0 < n ≤ 6000
|Tm| ≤ Tmax(n)∣∣∣Pbηcvtηmηb

∣∣∣ ≤ Pbmax
0.83 ≤ icvt ≤ 2.50

(10)

The optimization results are shown in Figure 14.

Figure 14. Cont.
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Figure 14. Optimization results in the regenerative braking mode: (a) target torque of motor; (b) target
speed ratio of CVT.

4.3. Analysis of Simulation Results

To verify that the energy management strategy proposed in this article is effective in each mode,
this study simulates under a driving cycle composed of multiple New European Driving Cycle (NEDC)
working conditions. The results are shown in Figure 15.

Figure 15. Cont.
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Figure 15. Simulation result: (a) vehicle speed following curve; (b) hydraulic accumulator state of
charge (SOC) trajectory curve; (c) battery SOC trajectory curve; (d) torque distribution curve.

108



Energies 2020, 13, 784

As can be seen from Figure 15a, the driver model based on the PI controller has higher control
accuracy. From a comparison of (a) and (b), it can be found that during the driving process, when the
hydraulic accumulator SOC1 > 0, the hydraulic accumulator releases energy. Therefore, the hydraulic
mode-based drive mode selection strategy proposed in this article achieves the expected control effect.
From a comparison of (a), (b), and (c), it can be seen that during the braking process, the hydraulic
accumulator SOC1 or the battery SOC has a significant rise, which indicates that the braking force
distribution strategy not only can meet the braking demand but also can fully recover energy. It can
also be seen from (c) that the battery SOC can still be maintained within a reasonable range after
falling to a certain value. It can also be seen from (a), (d) that the torque distribution of the engine,
the motor, and the hydraulic pump/motor can satisfy the torque demand of the entire vehicle. In the
whole simulation process over the driving distance, because the hydraulic accumulator SOC1 returns
to the initial state, the energy consumption includes only electric energy and fuel, wherein the electric
energy is 5.88 degrees, the fuel is 4.99 L, and the total energy consumption cost is 38 yuan. Compared
with the fuel consumption cost of the original model 100 km 8 L, the strategy proposed in this article
saves costs by about 32.14%.

4.4. Simulation Comparison under Two Different Strategies

To better compare the proposed strategy with the minimum energy consumption cost strategy,
the initial Soc of the battery is selected to be 0.8, and the initial value of the hydraulic accumulator Soc1

is set to 1. Furthermore, the DP-based global optimized energy management strategy is simulated
under the NEDC working conditions. The results are shown in Figure 16.

Figure 16. Cont.
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Figure 16. Cont.
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Figure 16. Simulation results of the energy management strategy based on dynamic programming (DP):
(a) battery Soc; (b) accumulator Soc; (c) motor torque; (d) engine torque; (e) hydraulic pump/motor
torque; (f) CVT speed ratio.

The simulation result Figure 16 shows that the DP-based energy management strategy can extend
the cruising range by rationally utilizing the electric energy and can also maintain the balance when
the battery Soc is low. The control effect of the strategy is also good, which can provide a certain
evaluation point for the advantages and disadvantages of other strategies. Therefore, this strategy is
compared with the instantaneous energy consumption cost minimum energy management strategy.
The simulation results are shown in Figure 17.

Figure 17. Comparison of simulation results under two strategies: (a) battery SOC versus time curve;
(b) energy consumption cost versus time curve.
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It can be seen from Figure 17 that the instantaneous optimized energy management strategy has a
faster rate of lowering the Soc in the pre-simulation battery, uses more power, and lowers the energy
consumption cost, which has obvious cost advantages compared with the global optimized energy
management strategy. When the battery Soc drops to around 0.3, its value is balanced, and the energy
consumption cost increases significantly and gradually exceeds the energy consumption cost under
the global optimized energy management strategy.

5. Conclusions

In this study, a new type of oil–electric–hydraulic hybrid power system is examined as the research
object, and a driving mode based on hydraulic energy and electric energy is selected. A logic threshold
energy management strategy based on the optimal working curve is proposed, and then the linear
weight method is adopted. The multi-objective function, which aims at the energy consumption cost
and the manufacturing cost of the whole vehicle power system, is converted into a single objective
function, the optimization variables are selected, and the constraints are set. The genetic algorithm
is used to optimize the energy management strategy parameters and power system components.
The optimized power system parameters can meet the power performance requirements of the vehicle.

Aiming at managing energy when the vehicle is under driving condition, a real-time energy
management strategy based on the lowest instantaneous energy consumption cost is proposed.
The strategy uses the instantaneous energy consumption cost in the single power source driving
mode or the hybrid driving mode as the objective function and utilizes the grid. The ergodic method
solves the target values of different vehicle demand torques and vehicle speeds to form a MAP table for
real-time control. For braking conditions, based on the braking force distribution strategy and ECE
regulations for traditional four-wheel-drive vehicles, a braking force distribution strategy based on
the highest energy recovery is proposed. The simulation results show that the energy management
strategy proposed in this article can achieve reasonable distribution of torque and achieve the expected
control effect, and saves about 32.14% compared with the fuel consumption cost of the original model
100 km 8 L.

Simulation analysis of global optimization energy management strategy based on dynamic
programming is performed, and the results prove that this strategy can be used as the basis for evaluating
other strategies. The simulation comparisons under the NEDC working conditions show that the
energy-saving effect of the real-time energy management strategy based on the minimum instantaneous
energy consumption cost is similar to that of the global optimized energy management strategy.
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Abstract: The regenerative braking system of electric vehicles can not only achieve the task of braking
but also recover the braking energy. However, due to the lack of in-depth analysis of the energy
loss mechanism in electric braking, the energy cannot be fully recovered. In this study, the energy
recovery problem of regenerative braking using the independent front axle and rear axle motor drive
system is investigated. The accurate motor model is established, and various losses are analyzed.
Based on the principle of minimum losses, the motor control strategy is designed. Furthermore, the
power flow characteristics in electric braking are analyzed, and the optimal continuously variable
transmission (CVT) speed ratio under different working conditions is obtained through optimization.
To understand the potential of dual-motor energy recovery, a regenerative braking control strategy
is proposed by optimizing the dynamic distribution coefficient of the dual-electric mechanism and
considering the restrictions of regulations and the I curve. The simulation results under typical
operating conditions and the New York City Cycle (NYCC) proposed conditions indicate that the
improved strategy has higher joint efficiency. The energy recovery rate of the proposed strategy is
increased by 1.18% in comparison with the typical braking strategy.

Keywords: electric vehicle; dual-motor energy recovery; regenerative braking system; CVT speed
ratio control; motor minimum loss; energy consumption and efficiency characteristics; braking
force distribution

1. Introduction

Given the limitations of oil resources and the importance of environmental protection, governments
around the world have enacted stringent regulations on fuel consumption and emissions. Electric
vehicles, as environmentally friendly vehicles, have attracted a considerable amount of attention from
researchers and corporations, and regenerative braking technology as one of the key technologies
of energy conservation and emission reduction has been widely studied and applied [1–3]. The
regenerative braking system can use the motor to convert the braking kinetic energy into electric energy
and store it in the battery. This electric energy can be released during the driving process, which can
not only improve the energy utilization rate and extend the driving range but also reduce the driver’s
range anxiety. Therefore, maximization of the braking energy recovery under safe braking conditions
has been the focus and challenge of energy management of electric vehicles.

Zhang et al. proposed an improved regenerative braking control strategy for rear-drive electric
vehicles. In the deceleration braking test, the improved regenerative braking efficiency could reach
47% [4]. Cheng et al. verified a new series control strategy, and the experimental results confirmed that
the steady and dynamic contribution of the strategy to the improvement of energy efficiency reached
58.56% and 69.74%, respectively [5]. Itani et al. compared flywheels with supercapacitors as the second
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energy source of front axle driven electric vehicles, and the results demonstrated that ultra-capacitors
performed better in weight, specific energy and specific power. It was more convenient to reuse the
braking energy and provided a solution to reduce the damage of the large current to batteries during
regenerative braking [6]. For the control of specific components, Yuan et al. proposed a new scheme of
the line control dynamic system considering the functional requirements of regenerative braking in the
structural development stage and adopted the current amplitude modulation control to improve the
accuracy of hydraulic regulation and eliminate vibration noise. The maximum regeneration efficiency
of the bench test was 46.32% of the total recoverable energy [7]. Chen proposed a feedback hierarchical
controller that tracked the desired speed and distributed the braking torque to four wheels to improve
the energy recovery [8]. In terms of overall optimization, Deng et al. analyzed the relationship between
the battery, motor, CVT and comprehensive efficiency, and proposed a regenerative braking control
strategy for the CVT hybrid electric vehicle. In comparison with the typical strategy, the average
power generation efficiency of the motor increased by 2.91% [9]. Shu et al. developed a maximum
energy recovery energy management strategy and used the sequential quadratic programming (SQP)
algorithm to optimize the CVT ratio control strategy, which achieved a good control effect [10]. To
expand the scope of braking energy recovery, Bera et al. used the motor and hydraulic system to
jointly adjust the braking process of an anti-lock braking system (ABS) and obtained a good effect [11].
The above literatures have all conducted relevant studies on the improvement of energy recovery
in the regenerative braking process, which has improved the regenerative braking performance of
vehicles. However, there are a greater number of studies on a single model than on a joint model and
more studies on regenerative braking of a single motor than on regenerative braking of vehicles with a
dual-motor drive system.

As a key device of the regenerative braking system, the efficiency of the motor directly affects
energy recovery. Hence, improving the efficiency of the motor is conducive to the increase of energy
recovery. Many scholars have conducted relevant studies on improving motor efficiency. Tripathi et al.
conducted a detailed study on the model-based loss minimization algorithm (MLMA), and the results
confirmed that this method could not only effectively improve motor efficiency but also exhibit good
dynamic performance [12]. Uddin et al. used a model-based loss minimization algorithm (LMA) to
compare the efficiency of permanent magnet synchronous motors based on direct torque flux linkage
control (DTFC) and vector control (VC). The simulation results showed that the former had higher
efficiency [13]. Inoue et al. studied the control performance of the permanent magnet synchronous
motor (PMSM) drive system based on current control and direct torque control. Their results showed
that the latter, combined with the control law of the M-T framework, had the advantages of control
stability [14]. Wang et al. introduced the integral balance of the sine value of the torque angle such
that the speed and the electromagnetic torque could be controlled to converge at the same time by
adjusting the speed only once and to obtain the optimal dynamic response of the speed [15]. Vido
and Le Ballois [16] and Lee et al. [17] also conducted relevant studies and improved the efficiency of
the motor to a certain extent. The above literatures have conducted research on the efficiency of the
motor and obtained various results. However, in the process of regenerative braking, it is necessary to
analyze the influencing factors of motor loss to maximize system efficiency.

To minimize the power loss in the process of electric braking, this study analyses the automobile
with an independent motor drive system of the front and rear axles. First, the accurate motor model
is established, and various losses are analyzed. Based on the principle of minimum loss, the motor
control strategy is designed. The characteristics of power flow in the electric braking process are
analyzed, and the combined efficiency model of the front and rear axles is established. The optimal
transmission ratio of CVT under different working conditions is obtained through optimization, and
the input and output characteristics of the front and rear axles are analyzed. Finally, by optimizing the
brake force distribution coefficient of the front and rear motors and considering the ECE regulations
and I curve as the limit, a new control strategy of dual motor regenerative braking is proposed to
maximize the energy recovery.
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2. Hybrid Electric Vehicle System Structure and Parameters

In comparison with pure electric vehicles and fuel cell vehicles, hybrid electric vehicles are widely
used in production and by consumers without the disadvantages of short driving range, long charging
time, high fuel cell price and difficult hydrogen re-filling [18]. The structural schematic diagram of the
hybrid vehicle system studied here is shown in Figure 1, and it should be noted that the schematic
diagram is not the layout of the real vehicle.

Figure 1. Schematic diagram of dual motor hybrid electric vehicle. ISG—Integrated Starter Generator.

This configuration can be driven by the engine alone or by the motor. During high power demand,
the motor and the engine can work simultaneously to meet the needs of the vehicle. The front axle
and rear axle of this configuration have motors, which can make the vehicle exhibit better dynamic
performance in pure electric mode and can recover more energy when braking. The vehicle controller
is responsible for collecting the speed, brake pedal, brake master cylinder pressure and other signals
and corresponding responses. When the brake pedal signal is detected, the driving state of the car
is quickly determined, and the control signal is sent to the lower controller through the controller
area network (CAN) bus. The lower controller makes correlation identification according to the
control signal and sends signals to the hydraulic control unit and motor control unit according to the
established algorithm to complete the driver’s instructions. The vehicle parameters and component
parameters are shown in Table 1.

Table 1. Vehicle data and main components parameters.

Name Description Value

Vehicle

Curb weight
Windward area
Wheel radius

Wheelbase

1800 kg
2.5 m2

0.335 m
2.7 m

The ISG motor

Peak power
Rated power

Maximum torque
Number of pole pairs
Armature resistance
d/q axis inductance

Magnet flux linkage iron losses resistance

28 kW
14 kW

89.13 N·m
6

0.017 ohm
0.00021 H
0.037 Wb

0.008 w + 1.8 ohm
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Table 1. Cont.

Name Description Value

Rear axle motor

Peak power
Rated power

Maximum torque
Pole of pairs

Armature resistance
d/q axis inductance
Magnet flux linkage
Iron losses resistance

27 kW
13.5 kW

171.9 N·m
8

0.012 ohm
0.00012 H
0.042 Wb

0.011 w + 1.9 ohm

Lithium-ion battery pack Rated capacity 38.43 Ah

CVT Speed ratio range [0.4, 2.5]

3. Motor Loss Model and Control Strategy

3.1. Motor Loss Model

Permanent magnet synchronous motors with the high-power density and high-efficiency
advantages of small volume and light quality have been widely used in new energy vehicles [19]. To
obtain a more accurate model, it must be considered that the iron loss in the model is important. Hence,
the equivalent iron loss resistance is introduced parallel to the magnetizing branch in the circuit [20],
as depicted in Figure 2. Certain idealized conditions are assumed; for example, saturation is ignored,
and the electromotive force is sinusoidal [18]. Motor losses mainly include mechanical losses, copper
losses, iron losses and stray losses. Since stray losses are difficult to measure and control and account
for a small percentage of the total loss [21], they are not considered in this study.

Figure 2. d-q axes equivalent circuits for the PMSM model with iron losses.

In steady-state, the voltage balance equation of the d-q axis is as follows:

ud = Rcid −ωψq (1)

uq = Rciq +ωψd (2)
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Here, Rc is the stator winding resistance, uq and ud are the d-q axis components of the stator
voltage, id and iq are the d-axis and q-axis current components, respectively, ω is the angular velocity
of the stator, and ψd and ψq are the d-q axis components of the stator flux, respectively. The permanent
magnet flux ψa has the following relationship:

ψd = Ldiod +ψa (3)

ψq = Lqioq (4)

The electromagnetic torque can be calculated using Equation (5).

Te =
3
2

p
(
ψdioq −ψqiod

)
=

3
2

p
[
ψaioq +

(
Ld − Lq

)
ioqiod

]
(5)

where p is the number of pole pairs, iod and ioq are the d-q axis magnetization current components,
respectively, and Ld and Lq are the d-q axis inductance components, respectively. For surface-mounted
permanent magnet synchronous motors, Ld = Lq.

Then, copper loss and iron loss can be calculated by the Equations (6) and (7), respectively.

Pcu =
3
2

Rc

⎡⎢⎢⎢⎢⎣(iod −
ωLqioq

R f

)2

+

[
ioq +

ω(ψa + Ldiod)

R f

]2⎤⎥⎥⎥⎥⎦ (6)

PFe =
3
2

R f
(
i2cd + i2cq

)
=

3
2

R f

⎡⎢⎢⎢⎢⎣(−wLqioq

R f

)2

+

(
ω(ψa + iodLd)

R f

)2⎤⎥⎥⎥⎥⎦ (7)

When the motor is working, the load and power factor are the key factors influencing the size
of the copper loss. Therefore, when the current speed and torque are given, the current optimal iod
(minimum loss) can be obtained:

iod = −
ψaLdω

2
(
Rc + R f

)
RcR2

f +ω
2L2

d

(
Rc + R f

) (8)

Mechanical loss has an approximately linear relationship with motor speed [22]. By setting
the value of K as constant, the mechanical loss model of permanent magnet synchronous motor can
be obtained:

PM = Kn (9)

3.2. Motor Control Strategy

The motor control method has an important influence on motor performance. Hence, it is
necessary to improve it to get higher motor efficiency. In comparison with most conventional
proportional-integral-derivative (PID) control method, to obtain better performance and reduce energy
losses here, the motor speed loop adopts the sliding mode control and the current loop uses the
minimum loss control method (LMA). The total efficiency of the former motor for ηisg is set as

ηisg
(
ioq

)
=

Teω
Teω+ Pcu + PFe + PM

=
3
2 pψaioqω

3
2 pψaioqω+ Pcu

(
ioq

)
+ PFe

(
ioq

)
+ PM

(10)

It can be observed that the total efficiency is a quadratic function of the stator q-axis excitation
current. By using the mathematical method, it is observed that there is always a value of ioq, which can
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minimize the total loss under different torque and electric angular speed. When the motor loss is set to
be the lowest, it is as follows:

γ =
∂Pisg_loss

∂ioq

∂T
∂iod
− ∂Pisgloss

∂iod

∂T
∂ioq

= 0 (11)

The constraints are ⎧⎪⎪⎪⎨⎪⎪⎪⎩ w1 = T = 3
2 p

[
ψaioq +

(
Ld − Lq

)
ioqiod

]
w2 = γ =

∂Pisg_loss
∂ioq

∂T
∂iod
− ∂Pisgloss

∂iod

∂T
∂ioq

(12)

The voltage state equation of the d-q axis can be obtained by calculating the time derivative of
each side of the loss constraint as follows:( .

w1
.

w2

)
=

(
X11 X12

X21 X22

)(
Ud
Uq

)
+

(
Y1

Y2

)
(13)

The elements X11, X12, X21, X22, Y1 and Y2 are, respectively:

X11 =
3PRc

(
Ld − Lq

)
ioq

2Ld(Rs −Rc)
(14)

X12 =
3pRc

[
ψaioq +

(
Ld − Lq

)
ioqiod

]
2Ld(Rs + Rc)

(15)

X21 =
9P

2LdRc

⎡⎢⎢⎢⎢⎣2⎛⎜⎜⎜⎜⎝ R f R2
c

R f + Rc
+ L2

qω
2

⎞⎟⎟⎟⎟⎠(Ld − Lq
)
iod +

R f R2
c

R f + Rc
ψa + Ld

(
2Ld − Lq

)
ψaω

2

⎤⎥⎥⎥⎥⎦ (16)

X22 =
9P

(
Ld − Lq

)
2LdRc

⎛⎜⎜⎜⎜⎝ R f R2
c

R f + Rc
+ L2

qω
2

⎞⎟⎟⎟⎟⎠ioq (17)

Y1 =
3P

2LdRc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−R f Rc(L2

d−L2
q)

LdLq(R f Rc)
ioqiod − R f Rc

R f +Rc
ψaioq

+
(LdLq)(L2

di2oq−L2
qi2od)ω

idiq − ψaω(ψa+2Ldioq−Ldiod)
Lq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (18)

Y2 = X21

[
−R f iod +

Lqωioq(R f +Rc)
Rc

]
+ X11

[
−R f iod − Ldωioq(R f +Rc)

Rc
− ωψa(R f +Rc)

Rc

] (19)

If all the above influential elements depend on the motor parameters and state, assuming that
the X and Y elements meet the braking requirements, the output equation of the controller can be
expressed as follows:

(
Ud
Uq

)
=

(
X22 −X12

−X21 X11

)( .
w1−Y1.
w2−Y2

)
∣∣∣∣∣∣ X11 X12

X21 X22

∣∣∣∣∣∣
(20)

To obtain the stable torque closed-loop output, the PI (Proportional-Integral) algorithm is used
as follows: ( .

w1
.

w2

)
=

(
KPtΔT + KIt

∫
ΔTdt

−KPγΔγ+ KIγ
∫

Δγdt

)
(21)
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where ΔT = T∗ − T and Δγ = γ∗ − γ can be brought into the above equation to get

Ud =

(
KPtΔT + KIt

∫
ΔTdt−Y1

)
X22 +

(
KPγΔγ+ KIγ

∫
Δγdt−Y2

)
X12

X11X22 −X12X21
(22)

Uq =
−
(
−KPγΔγ+ KIγ

∫
Δγdt−Y1

)
X21 +

(
−KPtΔT −KIt

∫
ΔTdt−Y2

)
X11

X11X22 −X12X21
(23)

The optimal PI parameters can be obtained after multiple debugging. The overall control model
of the motor is shown in Figure 3.

Figure 3. Minimum loss control model of motor.

The analysis shows that when the motor runs without load, the copper loss accounts for a small
proportion, and the iron loss increases linearly with the increase of the speed. When the motor is
loaded, the copper loss of the motor increases in square shape relative to the load torque, while the iron
loss increases slowly. The efficiency of the former PMSM can be simulated in Simulink, as depicted in
Figure 4.

Figure 4. Efficiency map of the ISG.
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4. Optimization of the Electric Braking Power Flow Efficiency and the Braking Force Distribution

4.1. Optimization of the Electric Braking Power Flow Efficiency

4.1.1. Power Flow Analysis of Electric Braking

To improve the recovery of braking energy, it is necessary to analyze the loss of power flow in the
process of electric braking. Here, the electric braking system is mainly composed of a front and rear
motor, battery pack, CVT transmission, clutch and other vehicle parameters. The parameters of each
component are shown in Table 1. Furthermore, as both front and rear motors can participate in the
process, it means that more energy can be recovered, and the driving range can be effectively increased.
The power flow of the vehicle’s electric braking loss is shown in Figure 5.

Figure 5. Schematic diagram of power loss during regenerative braking.

The overall efficiency of the vehicle’s electric brake energy recovery can be calculated using
Equation (24):

η =

(
P f + Pr

)
− P f t − Prt − Pisg_loss − Ppmsm_loss − Pcvt_loss − Pbattery_loss

P f + Pr
(24)

Among them, η is the total efficiency of the electric brake of the whole vehicle, P f and Pr are
the front and rear axle braking input powers, respectively; P f t and Prt are the front and rear axle
transmission power losses, respectively; Pisq_loss and Ppmsm_loss are the power loss of the front and rear
motors, respectively; Pcvt_loss is the CVT transmission loss; Pbattery_loss is the battery charging power loss.

As the power loss of the driving system is primarily related to the speed, whereas the loss of the
motor and the inverter is a function of the electric angular speed and torque and the CVT loss is related
to the input torque and the speed ratio, the equation can be rewritten as Equation (25).

η =

[
βTω f + (1− β)Tωr

]
−Q f _loss

(
β,ω f , i

)
−Qr_loss(β,ωr) −Qt_loss(v) −Qb_loss(SOC)

βTω f + (1− β)Tωr
(25)

where T is the braking torque of the vehicle; β is the distribution coefficient of forward and backward
torque; ω f and ωr are the front and rear motor angular velocity, respectively; i is the CVT transmission

speed ratio; v is the speed; Q f _loss
(
β,ω f , i

)
is the CVT-ISG combined loss; Qr_loss(β,ωr) is the loss of the

rear motor; Qt(v) is the loss of the transmission system; and Qb(SOC) is the loss of the battery.
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4.1.2. Establishment of the Joint Efficiency Model and Optimization of the CVT Speed Ratio

The combined front axle model is mainly composed of CVT and front motor and hence, its loss is
calculated as Equation (26):

P f _loss = Pcvt_loss(Tcvt_in,ωcvt_in) + Pisg_loss(ωcvt_out, Tcvt_out) (26)

P f _loss is the total power loss of the front axle. Tcvt_out is the input torque of the front motor. ωcvt_in
and ωcvt_out are CVT input and output speed, respectively. The torque loss of the CVT mainly includes
the slip loss of the steel belt, the loss caused by the deformation of the belt wheel and the slip loss of
the metal sheet [23]. When the speed is fixed at 2000 rpm, its efficiency changes, as shown in Figure 6.
It can be observed that the efficiency of CVT is mainly related to the speed ratio. When the speed ratio
is approximately 1, the efficiency reaches a maximum, but when it is less than 1, there is a significant
decline in the efficiency.

Figure 6. Transmission efficiency of the CVT.

Through the established CVT-ISG joint efficiency model, the CVT speed ratio with the highest
joint efficiency can be determined. When the number ratio is 1.5, the joint efficiency changes are shown
in Figure 7.

Figure 7. CVT–ISG motor combined efficiency at a speed ratio of 1.5.

It can be found that the efficiency of the combined model in the region with high speed and low
torque is lower than that of the single motor model. Since the CVT has lower efficiency in the region
with low torque, it results in lower overall efficiency. Further, under different torques and rotating
speeds, the combined efficiency changes with the CVT speed ratio. By seeking the CVT speed ratio
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that makes the combined efficiency reach maximum, the system efficiency can be maximized. The
results are shown in Figure 8.

Figure 8. Optimal CVT ratio under different working conditions.

Therefore, by calculating the braking power of the motor through the pedal’s opening degree, the
optimal CVT speed ratio under this braking torque can be obtained under the combined efficiency
model. However, it should be noted that when the vehicle starts, the motor speed should be set greater
than 500 rpm, and the speed ratio should be adjusted to the maximum to protect the motor from
irreversible damage. When the vehicle is in an emergency braking state (z > 0.7), the CVT speed ratio
should be adjusted to the minimum to ensure the safety and stability of the vehicle.

The rear axle joint model is mainly composed of a motor, which is relatively simple and similar to
the front axle motor model. Therefore, it is not to be introduced separately.

4.1.3. Input and Output Characteristics of the Front and Rear Axis Joint Models

According to the joint model established above, the input and output characteristics of the front
and rear axles are analyzed to provide a basis for formulating the braking force distribution strategy.

The braking strength allocated by the front axle during simulation is set to 0.3, and the energy
recovery and energy consumption rate of the front axle braking system at different initial velocities are
depicted in Figure 9.

 
(a) (b) 

Figure 9. (a) Energy recovery rate and (b) energy loss rate of front axle braking system at different
vehicle speeds.

It can be found that the higher the initial braking speed, the higher the energy recovery rate. This
is because when the vehicle is at a higher speed, the motor is in an efficient working area, and the
energy recovered is more than when it is at a lower speed. With the increase of the initial braking
speed, the energy loss rate of the motor, CVT and battery decreases slowly, and the biggest loss is the
motor loss. This indicates that the loss of the front axle is relatively small at higher speeds.

Under the same conditions, the characteristics of the rear axle joint model are depicted in Figure 10.

124



Energies 2020, 13, 711

 
(a) (b) 

Figure 10. (a) Energy recovery rate and (b) energy loss rate of rear axle braking system at different
vehicle speeds.

In comparison with the combined loss model of the front shaft, the recovery rate of the rear shaft
is relatively higher, because there is no CVT to affect the efficiency of the motor, so the recovery rate is
higher. Further, the loss rate of the rear shaft is lower than that of the front shaft, but the larger torque
will cause the larger charging current of the battery, larger battery loss and lower charging efficiency.

4.2. The Braking Force Distribution Strategy with the Maximum Joint Efficiency

4.2.1. Front and Rear Motors Braking Force Distribution

Since the front and rear motors are different, it implies that the optimal operating range of the
motor is different during the braking process. It is necessary to adjust the braking force of the front
and rear motors to achieve a higher recovery rate. The utilization efficiency of regenerative braking of
front and rear shafts is defined as follows:

ηsys =
Pin fηin f + Pinrηinr

Pin f + Pinr
(27)

where Pin f and Pinr are the braking power of the front and rear shafts, respectively. ηin f and ηinr are the
combined braking efficiency of front and rear axles, respectively. A biaxial regenerative braking model
was established.

Max ηsys =
Pin fηin f + Pinrηinr

Pin f + Pinr
=

Tin fηin f + Tinrηinr

Tin f + Tinr
(28)

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ Pin f ≤ Pin f _max
0 ≤ Pinr ≤ Pinr_max
0 ≤ Tin f ≤ Tin f _max
0 ≤ Tinr ≤ Tinr_max

q = Tinr
Treg

Pinr = (1− q) × Preg

nin f = f
(
Tin f , n f

)
ninr = f (Tinr, nr)

(29)

where q is the braking force distribution coefficient of the rear axle; Pin f _max and Pinr_max are, respectively,
the maximum braking power that the front and rear axles can provide. Preg is the total regenerative
braking power. The distribution coefficient of the optimal posterior axis is calculated as shown in
Figure 11.
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Figure 11. Optimal rear axle distribution coefficient.

It can be observed that the surrounding dark blue part is the separate working area of the front
motor during regenerative braking, the middle bright yellow part is the separate working area of the
rear motor during regenerative braking and the remaining part is the joint working area of the front
and rear axle joint model.

4.2.2. Vehicle Braking Force Distribution Strategy

Based on the above analysis, the mode switching point of regenerative braking of the front and
rear axles can be obtained by fitting the boundary of the separate working area of the rear axles. Thus,
the relationship between braking torque and speed is

Tq(v) = 19.06· cos
(
v× 1.052× 10−3

)
− 13.15 sin

(
v× 1.052× 10−3

)
− 41.29 (30)

As illustrated in Figure 12, when the regenerative braking torque of the vehicle is located in the
envelope region of the curve and the coordinate axis, i.e., when

∣∣∣Tq(v)
∣∣∣ > |Tb|, the rear axis is used for

braking alone. When the braking torque is outside the curve, that is,
∣∣∣Tq(v)

∣∣∣ < |Tb|, the braking force
is allocated according to the p-value, and the peak power peak torque of the front and rear motors
should be limited by the threshold value to prevent overload of the front and rear motors. Considering
the braking stability and regulatory restrictions, the braking force distribution strategy is as follows:

Figure 12. Front and rear axle braking force distribution coefficient boundary curve.

(1) When z < 0.2, the braking force is distributed by the distribution coefficient of the rear shaft.
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1� Braking torque |Tb| ≤
∣∣∣Tq(v)

∣∣∣ ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Fr =

Tb
r

F f = 0
Fμ f = 0
Fμr = 0

(31)

Fr is the rear axle braking force; F f is the braking force of the front axle; Fμ f is the hydraulic
braking force of the rear shaft; Fμr is the hydraulic braking force of the front shaft; r is the vehicle
radius; v is the speed of the vehicle. At this point, the braking force will be provided by the rear motor
alone. The front motor and the hydraulic braking system of the front and rear shafts do not participate
in the braking.

2� Braking torque |Tb| >
∣∣∣Tq(v)

∣∣∣ ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Fregr = q× Tb

r
Freg f = (1− q) × Tb

r
Fμ f = 0
Fμr = 0

(32)

The braking force is distributed through the distribution coefficient q of the rear shaft. At this
point, the front motor starts to participate in the regenerative braking, while the hydraulic braking
system still does not participate in the braking.

When the braking strength is between 0.15 and 0.8, the Economic Commission of Europe (ECE)
regulations stipulate that the curve of the rear axle using the adhesion coefficient should not be above
the front axle. Hence, if the set distribution is reasonable, it should be considered here. According to
the braking force distribution strategy in this study,

β = 1− q (33)

The relationship between the braking value and ECE braking regulations can be obtained [22],
and the relation curve between the braking force distribution coefficient and the braking intensity z
can be illustrated as shown in Figure 13. When the speed is 30 km/h and 100 km/h, it can be seen that
the curve changes within the range permitted by regulations.

Figure 13. The relationship of the β and z when no-load.

The upper limit curve A is to ensure that the adhesion coefficient of the front axis meets the
requirements. Curve B is to limit the locking order of the front and rear wheels of the car. When the
β value appears above curve B, the front wheels can always be locked to the rear wheels in braking.
However, when the β value is lower than the curve C, the adhesion coefficient of the rear axis will be
insufficient and hence, the contact value should be kept above the curve C at all times.
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(2) 0.2 < z ≤ 0.5
At this point, the braking force will be distributed according to the I curve. If the braking torque

provided by the front and rear motors is insufficient to meet the braking task, the remaining braking
power required will be supplemented by the hydraulic braking system.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Fr =
Tb·i

r
F f = mgz− Fr

Fμr = Fr − Fregr

Fμ f = F f − Freg f

(34)

where i represents the braking force distribution coefficient under the I curve.
(3) z > 0.5
When the braking strength is greater than 0.5, the braking stability is most important. Therefore,

reducing the braking force of the motor at a constant speed gradually withdraws the motor from the
braking work. Simultaneously, the missing braking force is supplemented by the hydraulic pressing
force to ensure that when z= 0.7, the motor completely exits the braking, without affecting the hydraulic
pressure to provide the full braking force in case of emergency braking. The specific allocation strategy
is shown in Figure 14.

Figure 14. Braking force distribution diagram.

5. Vehicle Performance Simulation and Analysis

Based on the joint loss model, the simulation model of the whole system was established in
Simulink/MATLAB, as shown in Figure 15. The simulation analysis was conducted under typical
working conditions and cyclic working conditions, respectively, to verify the effectiveness of the strategy.
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Figure 15. Vehicle simulation model.

5.1. Simulation of Typical Braking Conditions

The initial condition of the vehicle speed is 100 km/h and the SOC (State of charge) value of the
power battery is 0.7. In addition, the influence of other resistances other than braking force, such as
wind resistance, is not considered temporarily in the braking process. According to the analysis of
power flow on the above analysis, the loss of each component in the braking process is made into an
energy consumption diagram as shown in Figure 16.

 
Figure 16. Brake energy flow diagram.

5.1.1. Braking Strength z = 0.2

When the braking strength is 0.2, the change in SOC and the overall efficiency during the entire
process from the beginning of braking to the end are depicted in Figure 17a and the loss of key
components is depicted in Figure 17b.
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(a) 

(b) 

Figure 17. Simulation results when the z = 0.2. (a) Change in the SOC and joint efficiency; (b) Energy
loss of the key components.

It can be found that at the initial time, the joint efficiency decreases slowly, the efficiency is higher,
and the energy can be fully recovered. According to the data in the figure, at this time, the loss of
braking energy mainly comes from the motor. Since the front motor has a short working time, the
focus is on the rear motor, which is the same as the CVT loss. It can be seen that 298.745 kJ energy has
been recovered from the driver stepping on the brake pedal to the vehicle parking, 395.71 kJ energy
has been lost and the recovery rate has reached 43.02%.

5.1.2. Braking Strength z = 0.4

When the braking strength is 0.4, the change in SOC and the overall efficiency during the entire
process from the beginning of braking to the end are depicted in Figure 18a and the loss of key
components is depicted in Figure 18b.
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(a) 

 
(b) 

Figure 18. Simulation results when the z = 0.4 (a) Change in the SOC and joint efficiency (b) Energy
loss of the key components.

When the braking starts, the regenerative braking efficiency of the dual motors has a short period
of platform area, and the efficiency is relatively high. As the speed decreases, the electric braking
efficiency decreases, while the mechanical braking proportion increases. According to the data in
the figure, due to the addition of hydraulic braking, the energy loss of most regenerative braking is
hydraulic braking loss accounting for 69.06%. Both the front and rear motors are in the peak operating
state. The loss of the front motor is higher than that of the rear motor due to the CVT, and the loss
of the front and rear motors is smaller than that of the rear motor when the braking strength is 0.2
because the motor has a shorter working state.

5.1.3. Braking Strength z = 0.6

When the braking strength is 0.6, the change in SOC and the overall efficiency during the entire
process from the beginning of braking to the end are depicted in Figure 19a and the loss of key
components is depicted in Figure 19b.
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(a) 

(b) 

Figure 19. Simulation results when the z = 0.6. (a) Change in the SOC and joint efficiency; (b) energy
loss of the key components.

It can be observed that at this point, due to the gradual withdrawal of the motor braking, the
increase in SOC is not large. According to the data in the figure, the hydraulic braking loss accounts
for a larger proportion, accounting for 85.64%. Furthermore, due to the short braking time, the overall
loss of the front and rear motors decreases in comparison with the braking strength, and the CVT loss
also decreases.

From the simulation of typical working conditions, it can be observed that despite the braking
strength of 0.2, 0.4 or 0.6, the SOC increases to different degrees during the braking process, and the
lower the braking strength and the longer the braking time under the same speed, the more energy
will be recovered.

5.2. Cycle Simulation

To verify the distribution strategy in this study, NYCC was selected for cycle simulation, and the
ideal braking force distribution method of motor first braking was compared. The braking torque,
power, total system efficiency and SOC of the front and rear motors are analyzed. NYCC has the
characteristics of low speed, high acceleration and frequent braking, and its braking environment and
braking strength can be obtained as shown in Figure 20 [24].
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(a) (b) 

Figure 20. NYCC (a) operating speed and (b) braking strength.

The braking torque changes of the front and rear motors are depicted in Figure 21. To recover
energy more efficiently, the rear motors often work in the state of peak torque, whereas the front motors
often work in the state below the rated torque, so as to not be involved in braking as frequently as the
rear motor.

(a) (b) 

Figure 21. The torque of (a) the front and (b) rear motors.

The braking power changes of the front and rear motors are shown in Figure 22. It can be seen
that the maximum power of the front motor is approximately 6.7 kW and that of the rear motor is
approximately 14.8 kW. The braking frequency of the rear motor is relatively large. In comparison
with the ideal braking strategy, the front motor did not participate in the braking in the early stage and
the rear motor braking power increased.

 
(a) (b) 

Figure 22. The power of (a) the front and (b) rear motors.

The efficiency and SOC changes are depicted in Figure 23. The overall efficiency of the rear motor
can reach approximately 0.8 when it works alone. As the selection of the CVT speed ratio can adjust
the efficiency of the front motor, the overall efficiency of the front and rear motors is higher when they
work together to effectively recover energy. After the complete working condition, the SOC rises by
approximately 0.003.
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(a) (b) 

Figure 23. The changes in (a) joint efficiency and (b) SOC.

From the changes in efficiency and SOC, it can be observed that under the condition of low
braking strength, the braking force distribution method discussed here has a high recovery efficiency
and can recover maximum energy. Additionally, the motor loss minimization algorithm was adopted
to maximize the use of the front and rear motors, system efficiency and SOC were improved, and the
energy recovery of NYCC increased by 1.18% in comparison with the typical braking strategy.

6. Conclusions

(1) In this study, the front axle and rear axle independent motor drive system vehicle was
considered as the research objective, the accurate motor model was established, various losses were
analyzed and a new motor control method was proposed based on the principle of minimum loss.

(2) The characteristics of power flow in the process of electric braking were analyzed in detail, the
combined efficiency model of the front axle (CVT–ISG) and rear axle (PMSM) was established, the
braking force distribution of the front and rear motors was optimized based on the input and output
characteristics of the front and rear axles. It was found that the optimal braking force distribution
coefficient of the front and rear axles will change with the change of the working conditions. According
to this change rule, a dual-motor regenerative braking force distribution strategy based on the optimal
braking energy recovery was designed.

(3) In the MATLAB/Simulink simulation platform, the double motor regenerative braking system
model was developed, and the simulation analyze was carried out under three typical braking
conditions and NYCC conditions, respectively. It was observed that when the braking strength was
0.2, the braking energy recovery rate could reach 43.02%, and the energy recovery rate of the improved
strategy was 1.18% higher than that of the typical braking strategy under NYCC conditions, which
verify the effectiveness of the strategy proposed in this study.
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Abstract: Aimed at the limitation of traditional fuzzy control strategy in distributing power and
improving the economy of a fuel cell hybrid electric vehicle (FCHEV), an energy management strategy
combined with working conditions identification is proposed. Feature parameters extraction and
sample divisions were carried out for typical working conditions, and working conditions were
identified by the least square support vector machine (LSSVM) optimized by grid search and cross
validation (CV). The corresponding fuzzy control strategies were formulated under different typical
working conditions, in addition, the fuzzy control strategy was optimized with total equivalent
energy consumption as the goal by particle swarm optimization (PSO). The adaptive switching of
fuzzy control strategies under different working conditions were realized through the identification
of driving conditions. Results showed that the fuzzy control strategy with the function of driving
conditions identification had a more efficient power distribution and better economy.

Keywords: fuel cell hybrid electric vehicle; least squares support vector machines (LSSVM); driving
conditions identification; power distribution

1. Introduction

The introduction of a power battery can make up for the shortcomings of fuel cell hybrid electric
vehicles (FCHEV), such as the inability to recover braking energy, slow start speed and soft output
characteristics. The dual power source (fuel cell and battery pack) can make the fuel cell hybrid
electric vehicles (FCHEVs) produce a better power performance, but how to make the power source
power distribution more reasonable and better improve the economy is a research difficulty. Based
on previous experience, researchers developed rule-based energy management algorithms, such as
thermostatic control strategy (TCS) [1] and a power following control strategy (PFCS) [2,3]. Fuzzy
control strategy (FCS) [4–6] and fuzzy control strategy optimized by other algorithms [7] can adapt to
the requirements of vehicle nonlinear control and effectively distribute the power between the power
sources of fuel cell hybrid vehicles. However, due to the lack of road condition information, they are
difficult to further improve the working efficiency and the economy of power sources in complex
working conditions. Another control strategy based on optimization, such as dynamic programming
(DP) [8–10], are widely used in hybrid electric vehicle energy management strategy because they can
achieve global optimization. However, those methods will increase the computational burden and
make it difficult to realize the online application. In order to simplify the calculation, some strategies,
such as equivalent consumption minimization strategy (ECMS) [11–13], Pontryagin minimum principle
strategy (PMPS) [14,15] and stochastic dynamic programming (SDP) [16], further improve the energy
management performance on the basis of effectively reducing the calculation amount. For some
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intelligent algorithms, such as particle swarm optimization (PSO) [17] and genetic algorithm (GA) [18],
the fuel economy can also be improved by optimizing some relevant parameters based on the rule-based
control strategy.

Working conditions have a profound impact on the economy and power source performance of
FCHEVs. Ahmadi et al. [19] investigated the influence of driving patterns, and they found that various
driving patterns under different conditions could affect the degradation of a fuel cell, and then affect
the economy of the fuel cell vehicles. Raykin et al. [20] investigated the influence of driving patterns
under different working conditions and an electric power supply on the well-to-wheel energy use and
greenhouse gases of a plug-in hybrid electric vehicle (PHEV). When formulating the FCHEVs’ energy
control strategy, some references mentioned that they took single working condition into account,
and there were certain limitations in improving the economy under different working conditions.
Moreover, they did not consider the efficient working area of a fuel cell (FC) and battery pack to give
full play to their respective advantages. Under the condition that working conditions can be identified,
the energy management strategy of FCHEV should be adjusted according to the actual situation to
achieve efficient and reliable power distribution among power sources, improve economy and extend
the service life of power sources.

A lot of scholars have studied working condition identification. References [21–24] based on
a fuzzy control recognizer, realized the identification of driving conditions. However, membership
functions and rules of the fuzzy controller were selected and formulated based on personal experience,
and the ideal effect could be achieved after multiple debugging. Clustering methods also play a role
in the field of driving conditions recognition [25,26]. In [25], working conditions were divided into
five typical working conditions by way of a clustering analysis method, then working conditions
were identified by a Euclid approach degree. Yu et al. [26] identified high impact factors affecting
pattern characteristics from static and quasi-static environment and traffic information, then proposed
a trip/route division algorithm based on data clustering method. However, the selection of initial
clustering center affected the clustering analysis results. Recently, machine learning has been further
applied. Neural networks, such as back-propagation (BP) neural network [27] and learning vector
quantization (LVQ) neural network [28,29], involve first, characteristic parameters that have an
important influence on driving conditions being selected as the input, then, the identification period
of the working condition samples are classified. After training the samples, the prediction of future
working conditions can be realized. However, the accuracy of neural network depends on its structure.
Chen [30] et al. proposed an improved hierarchical clustering algorithm to divide the driving cycle
data into four groups, and then applied a support vector machine (SVM) to predict driving conditions
based on the clustering results.

The least square support vector machines (LSSVM) based on support vector machines (SVM),
compared with SVM, can complete a prediction in a shorter time and has a great generalization ability.
Moreover, LSSVM is not subject to the set of algorithm structures and has good robustness in handling
regression and classification problems.

In order to improve the performance of FCHEV, this paper proposes a driving condition recognizer.
By extracting feature parameters and segmenting recognition segments from driving conditions
information, LSSVM optimized by CV is used to realize working condition recognition. Energy
management controllers based on a fuzzy control under different working conditions are established
and optimized. Combined with the driving conditions identification, the energy management
controller adopts corresponding fuzzy control strategy according to driving conditions to improve the
performance of FCHEV.

2. Vehicle Structure and Parameters

The FCHEV was a front-drive vehicle with the structure shown in Figure 1. The fuel cell system
was connected to the Controller Area Network (CAN) bus through a one-way DC/DC converter,
while the battery pack was directly connected to the CAN bus. The motor drives the vehicle through
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the final drive and differential. The complete vehicle parameters of a fuel cell hybrid electric vehicle
are shown in Table 1.

Figure 1. Fuel cell hybrid electric vehicle transmission structure diagram.

Table 1. Vehicle parameters.

Parameters Value

Vehicle mass (kg) 1315
Vehicle size (mm) 4760 × 1815 × 1530

Wind resistance coefficient, CD 0.264
Frontal area, A (m2) 1.97

Rolling resistance coefficient, f 0.018

Battery pack:
Rated capacity (Ah) 24
Rated Voltage (V) 450

Fuel cell stack:
Peak output power (kW) 60

Rated voltage (V) 150
Rated current (A) 200

In this paper, the vehicle model of FCHEV was established in AVL Cruise, as shown in Figure 2,
and the control strategy model was established in Matlab/Simulink, shown in Figure 3. In Figure 2,
the overall simulation model includes driver module, fuel cell system, power battery pack, motor and
controller, one-way DC/DC converter, final drive, and energy management module. The blue line and
red line represent mechanical connection electrical connection, respectively.
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Figure 2. Vehicle structure diagram in AVL Cruise.

Figure 3. Control module in Simulink.

2.1. Fuel Cell Module

The fuel cells in this paper were proton exchange membrane fuel cells (PEMFC), and they were
built out of membrane electrode assemblies (MEA), which included the electrodes, electrolyte, anode
catalyst layer, cathode catalyst layer (CCL), and gas diffusion layer (GDL). The detailed modeling
process is found in references [31,32]. In the fuel cell component, in addition to the fuel cell, there was a
simple compressor model, and its properties are shown in Table 2. The compressor delivered hydrogen
continuously to the fuel cell stack, which generated electricity to drive the motor.
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Table 2. Compressor properties.

Parameters Value

Compressor pressure ratio 1.1
Compressor response time (s) 2.0

Compressor idle mass flow (kg/s) 0.002
Compressor efficiency (%) 91.5

The voltage of the fuel cell electrochemical model is calculated as follows:

Ufc = Uoc − η0 − j0R (1)

η0 = Vact + VCCL + VGDL (2)

j0R =
Ist

Aarea
R (3)

where Ufc is the output voltage, Uoc is the ideal open circuit voltage, η0 is the cathode voltage loss,
Vact is the activation over potential, VCCL is the voltage loss caused by the oxygen transmission loss in
the cathode catalyst layer (CCL), VGDL is the voltage loss caused by the oxygen transmission loss in
the anode catalyst layer, j0 and Ist are the electric flow density and current of the stack, while Aarea is
the effective area of the fuel cell, R is the ohmic internal resistance of the fuel cell. The activation loss
can be defined as follows.

Vact = bTf · arcinh(
(

j0
ja )

2

2 ccc
cci
(1− exp(− j0

2 j∗ ))
) (4)

where bTf is the Tafel slope which describes the speed of the chemical reaction, and ccc is the oxygen
concentration in the cathode channel, while cci is the oxygen concentration at the channel inlet.
Moreover, ja and j* can be defined as

ja =
√

2i∗SpcbTf (5)

j∗ = SpcbTf/lCCL (6)

where i* is the volumetric exchange current density, and Spc is the CCL proton conductivity, in addition,
lCCL is the thickness of the CCL.

The voltage loss VCCL can be defined as

VCCL =

Spcb2
Tf

4FDCCLccc
(

j0
j∗ − ln(1 +

j20
j2∗B2 ))

1− j0
j∗l

ccc
cci

(7)

where F is the Faraday constant, DCCL is the oxygen diffusion coefficient in the CCL. j* l and B can be
defined as

j∗l =
4FDGDLcci

lGDL
(8)

B = 2arctan(
ĵ0

2arctan( ĵ0

2arctan(
ĵ0

2arctan(
ĵ0√
2 ĵ0
2

)

)
)
) (9)

where DGDL is the oxygen diffusion coefficient in the GDL, while lGDL is the thickness of GDL.
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The voltage loss VGDL can be defined as

VGDL = −bTf ln(1− j0
j∗l

ccc
cci

) (10)

Assuming that the fuel cell stack consists of n fuel cell cells, the output power of the fuel cell
stack is

Pfc = n× (Ufc × Ist) (11)

The efficiency of fuel cell stack can be expressed as follows:

ηfc = (Uoc −Ufc)/Uoc (12)

The single fuel cell properties are shown in Table 3.

Table 3. The properties of a single fuel cell.

Properties Value Properties Value

Nominal voltage (V) 0.6 Ohmic resistance (Ohm) 1.08 × 10−4

Cell area (m2) 0.01 Oxygen diffusion coefficient in
the GDL (m2/s) 3.4 × 10−6

Ideal open circuit voltage (V) 1.23 Oxygen diffusion coefficient in
the CCL (m2/s) 3 × 10−7

Tafel slope (V) 0.03 Crossover current (A/m2) 1.05 × 10−4

CCL proton conductivity (S/m) 3.0 Volumetric exchange current
density (A/m3) 736.974

Catalyst layer thickness (m) 1.0 × 10−5 GDL thickness (m) 2.5 × 10−4

2.2. Power Battery Pack

The lithium battery selected in this paper had a capacity of 24 Ah and a rated voltage of 3.3 V,
and its specific parameters are shown in Table 4. Its equivalent circuit model adopted the Rint model,
as shown in Figure 4a. The voltage of the battery output to the CAN bus is:

Uout = Uocv − IbR0 (13)

where UOCV is the open circuit voltage of lithium battery, UOut is the output voltage, Ib and R0 are the
current and ohmic internal resistance of lithium battery respectively.

Table 4. Battery parameters.

Type Lithium Iron Phosphate Battery

Normal Voltage 3.3 V
Normal Capacity 24 Ah

Upper/lower cut-off voltage 3.65 V/2 V
Operating temperature −5–50 ◦C
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Figure 4. Battery model and parameters relationship: (a) Rint equivalent circuit model; (b) relationship
of the relevant parameters of the lithium battery.

SOC, an important parameter of a lithium battery, is expressed by the following equation:

SOC(t) = SOC0 − ηIΔt
Cp

(14)

where η is the coulomb efficiency, in this paper, η = 1, SOC0 was the initial value, sampling time Δt = 1
s, and CP was the actual capacity of the battery. Through experiments, the parameters relationships of
the battery are shown in Figure 4b.

3. Typical Driving Conditions

Working conditions of a vehicle have an important impact on economy and power distribution.
Therefore, a more efficient energy management strategy can be developed by predicting the future
working conditions.

In this paper, three typical driving conditions were selected, namely UDDS (Urban Dynamometer
Driving Schedule), EUDC (Extra Urban Driving Cycle) and US06 (Highway Driving Schedule),
as shown in Figure 5, which corresponded to an urban condition, suburban condition and highway
condition, respectively. In an urban working condition, the vehicle speed is low and frequent parking
occurs. The average vehicle speed is less than 35 km·h−1, moreover, the vehicle is in a state of low
power output. The speed is fast in highway conditions, and the average speed is about 70 km·h−1,
in addition, the output power of the car is relatively large. The suburban working condition is in the
middle of the two, with an average speed of about 60 km·h−1.

Figure 5. Typical driving cycles: (a) city driving cycle—UDDS; (b) rural driving cycle—EUDC;
(c) highway driving cycle—US06.
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3.1. Selection of Working Condition Characteristic Parameters

The selection of characteristic parameters of working conditions is the key to accurately identifying
future working conditions. In principle, more characteristic parameters is more helpful for prediction,
but that requires high computational power. In contrast, too few characteristic parameters cannot
cover the information of working conditions, which may lead to a large prediction deviation. Many
scholars have studied the selection of characteristic parameters of driving conditions [25,30,33–35].
Based on some research and the importance of each parameter in driving conditions identification, six
common characteristic parameters were selected, i.e., acceleration time/total time (rc), deceleration
time/total time (rdc), time of uniform speed/total time (ru), average speed (va), average acceleration (ac)
and average deceleration (adc). Six characteristic parameters of three working conditions are shown in
Table 5.

Table 5. Characteristic parameters of typical working conditions.

Types of Driving Conditions rc/% rdc/% ru/% va/(km·h−1) ac/(m·s−2) adc/(m·s−2)

UDDS 34.30 28.55 18.21 31.51 0.58 −0.73

EUDC 28.12 11.25 45.25 62.63 0.35 −0.89

US06 33.83 32.67 27.67 77.32 0.86 −0.91

3.2. Dividing of Working Condition Samples

The time length of the working conditions samples, namely, the identification cycle and update
of identification cycle, will also have an impact on the working condition recognition. The specific
segmentation of the working condition recognition samples is shown in Figure 6. �T is the identification
period, therefore, six characteristic parameters in this period of time can be calculated to identify the
working conditions of this sample. While �s is the update of the period, that is, the time difference
between the beginning of the previous cycle segmentation and the beginning of the current cycle
segmentation. If �T is too long, although it contains more information, it will increase useless
information and calculation burden, which will reduce the effect of recognition. If �T is too short,
it will not accurately reflect the real situation of working conditions. Similarly, a too small �s leads
to frequent cycle switching, which will cause a burden on the processor, while a too large �s is not
conducive to the timely switching of working conditions. References [35,36] studied in detail the effect
of �T and �s on the accuracy of working conditions identification. Based on considering the accuracy
and calculation cost, �T = 100 s, �s = 3 s.

Figure 6. Selection of working condition samples.
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4. Working Condition Identification Model Based on LSSVM

4.1. Least Squares Support Vector Machine

LSSVM is able to classify samples by mapping them into high-latitude feature Spaces. LSSVM
replaces the inequality constraints of problems in SVM with a set of linear equality constraints,
thus simplifying the solution of Lagrange multipliers. A training set is considered with n data samples
to be (Xi, yi), where input data Xi ∈ Rn, output data yi ∈ R. A linear function in the high-level feature
space will be used to fit the samples.

y(Xi) = ωTϕ(Xi) + b (15)

where ϕ(X) is a nonlinear mapping function, ω is the weight vector in the feature space, and b is the
bias term.

According to the principle of structural risk minimization and taking into account the complexity
of function and fitting error, the optimization problem of LSSVM can be expressed as:

min
ω,b,ξ

J(ω, ξ) = 1
2ω

Tω+ 1
2 C

n∑
i = 1
ξ2

i

s.t y(X) = ωTϕ(X) + b + ξi i = 1, 2, . . . , n
(16)

where ξi is the error variable and C is the penalty factor.
Converting Equation (16) to unconstrained functions by building Lagrange functions and solving

this Lagrange function, the classification prediction model of LSSVM can be obtained, as shown
in Equation (8), and its structure is shown in Figure 7. Combined with Section 3, six characteristic
parameters are taken as the input of the LSSVM, and the output is the working condition categories:

y = sign(
n∑

i = 1

αiyiK(X, Xi) + b) (17)

where the radial basis function (RBF) is selected as the kernel function, namely
K(X, Xi) = exe(−‖X −Xi‖2/(2σ2)), α is the Lagrange multiplier.

Figure 7. The LSSVM structure diagram.
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4.2. The Influence of Key Parameters on the Accuracy of LSSVM

If σ→0, then K(X, Xi)→0, which means that all the mapped points have the same distance
from each other, that is, there is no clustering phenomenon. However, If σ→∞, then K(X, Xi)→1,
which means that all sample points will be divided into the same class and cannot be distinguished.
As for the penalty factor C, if C is too large, ξi→0, the tolerance of samples between boundaries is very
low, and there are less misclassifications, which means the fitting of samples is good, however, the
prediction effect is not always good; on the other hand, if the value of C is too small, there are more
samples between two boundaries, resulting in a greater possibility of misclassification, and the fitting
of samples decreases.

The accuracy of LSSVM’s model depends on the kernel parameter σ and the penalty factor C.
A too large σwill reduce the model’s accuracy, but a too small σwill lead to overfitting. The penalty
factor C will affect the error and complexity of the model. Therefore, in this study, the cross-validation
method was used to obtain the optimal parameters.

4.3. The K-Fold Cross-Validation for Optimizing LSSVM

Cross-validation has been widely used to estimate prediction errors. In this work, K-fold
cross-validation combined with grid search was applied to optimize LSSVM, which could overcome
the limitations of the holdout validation [37]. The steps to optimize LSSVM were as follows:

(1) Establish grid coordinates. Let a = [–10, 10], b = [–10, 10], and the step size is 0.5, then the mesh
points of the model parameters are σ = 2a and C = 2b respectively. In this work, the exponential
function was selected to divide the grid, which would ensure that the parameter value was
not negative.

(2) Divide the sample data and calculate the test error. The training data are divided into K subsets
(K = 10, which means that the CV is 10-fold cross-validation method). For each group (σ, C) in the
grid, a 10-fold cross validation method was applied to iterate the training data 10 times, and the
mean value of the mean square error (MSE) of the test results under this group of parameters
could be obtained.

(3) Get the optimal combination of parameters. Repeat (2) to replace the parameter σ and
C, and calculate the mean square deviation of the training model under all the parameter
combinations in the grid in turn. After comparing one by one, the parameter combination
corresponding to the minimum mean square deviation is the optimal parameter combination in
the grid interval.

In order to present equidistant grid search results more clearly, grid coordinates (σ, C) are converted
to logarithmic coordinates (log2σ, log2C).

5. Fuzzy Energy Management Strategy Based on Working Condition Identification

Fuzzy control based on the theory of fuzzy mathematics, fuzzes the actual input and output, and
formulates rules through experience. These kinds of simulation of a human’s approximate reasoning
and comprehensive decision-making process has good robustness and adaptability. Fuzzy energy
management strategies [4–6] developed by some researchers were aimed at a single working condition.
In addition, fuzzy control rules based on personal experience are difficult to deal with complex
multi-working conditions. Therefore, on the basis of condition identification, three fuzzy energy
management strategies were formulated to deal with urban, suburban and expressway conditions,
respectively. Besides, PSO is used to optimize the fuzzy control under various working conditions
with total equivalent energy consumption as the objective function, and the adaptive switching effect
is achieved through the identification of working conditions. It should be noted that the following
fuzzy controller and optimization take the urban working condition as an example.
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5.1. Fuzzy Controller Design

(1) Selection of input and output variables of fuzzy controller.

The SOC of the battery pack and the total power demand Pr of FCHEV were selected as the input
of the fuzzy controller, while the output is the output power Pfc of the fuel cell. The power demand
relationship is as follows:

Pb = Pr − Pfc (18)

where Pb is the output power of the battery, and Pr includes the power of the drive motor and the
power consumed by accessories.

(2) Fuzzy distribution of input and output variables.

The range of FCHEV’s total power demand Pr is [0, 60] (kw), and its fuzzy subsets are very small,
small, medium, large and very large, i.e., {VS, S, M, L, VL}; the SOC range of power battery is [0, 1],
and the fuzzy subsets are {VL, L, M, H, VH}, representing very low, low, medium, high and very high;
the range of fuel cell’s output power Pfc is [0, 50] (kw), hence its fuzzy subsets {VL, L, M, H, VH}
represent very low, low, medium, high and very high.

(3) Fuzzy control rules.

The fuzzy control rules of FCHEV are formulated according to the following principles:

1� When the SOC of the power battery is too low, the output power of the fuel cell should not only
meet the requirements of driving the vehicle, but also charge the battery to make the SOC of the
power battery rise to a reasonable range (SOC = 40–80%).

2� When the SOC of the power battery and the demand power are both medium level, the fuel cell
acts as the active power source and changes with the demand power. SOC of battery fluctuates in
a reasonable range, which is beneficial to prolonging battery life.

3� When SOC is too high, the power battery acts as the main power source, and the output power of
the fuel cell is as small as possible to reduce the SOC to a reasonable range.

4� When the demand power is too large, the power battery and fuel cell provide output
power together.

5.2. Fuzzy Controller Optimization Based on PSO

As an optimization algorithm, PSO is a solution to reducing the influence of making fuzzy control
strategy based on personal experience. In this paper, the membership functions of the input and output
of the fuzzy controller were selected as the parameters to be optimized, and the objective function was
total equivalent energy consumption (TEEC) of the power sources, i.e.,{

minE(x) = Efc(x) + Eb(x)
s.t. Gi(x) ≥ 0, i = 1, . . . , m

(19)

where Efc(x) and Eb(x) are the equivalent electric energy consumption of the fuel cell and electric energy
consumption of battery, respectively, while Gi(x) is the constraint condition of the vehicle, such as the
time of acceleration and SOC fluctuation range of the battery pack.

The distributions of control rules under urban working condition before and after optimization
are shown in Figure 8.
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Figure 8. Control rules under a city driving condition. (a) before optimization; (b) after optimization.

5.3. Fuzzy Energy Management Based on Condition Identification

After identifying working conditions by LSSVM, the corresponding fuzzy control rules are selected
by the fuzzy controller according to the working conditions. The flow chart of the energy management
strategy based on working conditions identification is shown in Figure 9. Firstly, the characteristic
parameters were extracted from the working condition information and sample segmentations were
determined, and then working condition identifications were carried out by LSSVM. Fuzzy control
strategies were optimized under three working conditions, and corresponding fuzzy control rule was
selected under a specific working condition to realize the adaptive switching of the control strategy
under complex working conditions.

Figure 9. Flow chart of energy management strategy.

6. Results and Discussion

6.1. Results of Working Conditions Identification

The samples of three typical working conditions were divided into 730 samples, of which 547
were training samples and the other 183 were validation samples.

Figure 10a describes the iterative optimization process of LSSVM’s parameters under grid search
and cross-validation. Among the 183 validation samples shown in Figure 10b, the recognition accuracy
reached 98.36%. The key parameters of LSSVM optimized by CV were σ = 2.64, C = 25.61. Figure 10c
shows the randomly generated driving conditions, where the LSSVM could identify the random
driving conditions with an accuracy of 100%.
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Figure 10. Results of working conditions recognition by LSSVM: (a) iterative process of training samples;
(b) validation samples identification result; (c) identification result of mixed working conditions.

6.2. Fuzzy Control Energy Management Strategy Based on Driving Conditions Identification

In order to verify the effectiveness of the proposed energy management strategy, it was compared
with the power follow control strategy in the efficiency of fuel cell stack, the SOC fluctuation of battery
pack and the economy, at medium SOC level (SOC = 60%) and high SOC level (SOC = 85%).

6.2.1. The Initial SOC of Battery Pack Was 60%

As shown in Figure 11a, the vehicle speed of the proposed fuzzy control strategy (FC1) can well
follow the real vehicle speed. In Figure 11b, for total equivalent energy consumption, the power
following control strategy (PFCS) was 3.99 (kW·h), which was 5.26% higher than that of the traditional
fuzzy control strategy (FC2) (3.78/kW·h). In Figure 11c,d and Table 6, the average efficiency of the fuel
cell stack of the FC2 was 67.62%, which was 2.05% higher than that of PFCS. The fluctuation range of
SOC of FC2 was 58.56–61.55%, which was gentler than that of PFCS, for the ΔSOC of FC2 improved by
6.67% compared with PFCS.

In Figure 11b, for total equivalent energy consumption, FC1 was 3.65 (kW·h), which was 3.44%
lower than that of FC2. In Figure 11c,d and Table 6, the average efficiency of the fuel cell stack for
FC1 was 68.71%, which was 1.09% higher than of FC2. The fluctuation range of SOC of the FC1 was
58.15–61.00%. Compared with FC2, the ΔSOC of FC1 improved by 0.47%, which was conducive to the
durability of the battery pack. Therefore, when the SOC initial value was 60%, the FC1 was better
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than the FC2 and PFCS in improving the efficiency and durability of power sources and the economy
of FCHEV.

Figure 11. Comparison of results when SOC = 60%: (a) comparison of vehicle velocity; (b) comparison
of overall equivalent energy consumption; (c) comparison of fuel cell stack efficiency; (d) comparison
of SOC.

Table 6. Comparison of results of mixed random driving conditions when SOC = 60%.

Strategies TEEC (kW·h) SOC Range (%) ΔSOC (%) AEFCS (%)

PFCS 3.99 Min: 57.19 Max: 67.18 9.99 65.57
FC1 3.65 Min: 58.15 Max: 61.00 2.85 68.71
FC2 3.78 Min: 58.56 Max: 61.88 3.32 67.62

Note: Total equivalent energy consumption (TEEC); average efficiency of fuel cell stack (AEFCS); ΔSOC = SOCmax
− SOCmin; power following control strategy (PFCS); proposed fuzzy control (FC1); traditional fuzzy control (FC2).

6.2.2. The Initial SOC of the Battery Pack Is 85%

As shown in Figure 12a, the speed of FC1 can also follow the actual speed well, which is similar
to the case of SOC = 60%. In Figure 12b, for total equivalent energy consumption, the PFCS was
4.45 (kW·h), but the figure for FC2 was 3.95 (kW·h), which was 11.24% lower than that of PFCS.
In Figure 12c,d and Table 7, the average efficiency of the fuel cell stack of the FC2 was 68.22%,
which was 2.66% higher than that of PFCS (65.56%). The fluctuation range of SOC of PFCS was
80.55–86.12%, while the range of SOC for FC2 was 74.80–85.00%, so the ΔSOC of PFCS improved by
4.63% compared with FC2.
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Figure 12. Comparison of results when SOC = 85%: (a) comparison of vehicle velocity; (b) comparison
of overall equivalent energy consumption; (c) comparison of fuel cell stack efficiency; (d) comparison
of SOC.

Table 7. Comparison of results of mixed random driving conditions when SOC = 85%.

Strategies TEEC (kW·h) SOC Range (%) ΔSOC (%) AEFCS (%)

PFCS 4.45 Min: 80.55 Max: 86.12 5.57 65.56
FC1 3.85 Min: 75.64 Max: 85.00 9.36 68.62
FC2 3.95 Min: 74.80 Max: 85.00 10.20 68.22

In Figure 12b, for total equivalent energy consumption, FC1 was 3.85 (kW·h), which was 2.53%
lower than that of FC2. In Figure 12c,d and Table 7, the average efficiency of the fuel cell stack for
FC1 was 68.62%, which was 0.40% higher than of FC2. The fluctuation range of SOC of the FC1 was
75.64–85.00%, which meant the ΔSOC of FC1 improved by 0.84% compared with FC2, so FC1 was
more conducive to the durability of the battery pack. Therefore, when SOC = 85%, PFCS was better
than FC1 and FC2 in controlling the fluctuation of SOC, on the other hand, FC1 showed that it had
better performances on the average efficiency of the fuel cell stack and the economy than the other two
control strategies.

To summarise, in order to verify the effectiveness of the proposed fuzzy control strategy, it was
compared with the traditional fuzzy control and power following control strategy in the case of
SOC = 60% and SOC = 85%. It can be seen form Tables 6 and 7, when SOC = 85%, the total equivalent
energy consumption of PFCS, FC1 and FC2 were much more than these of SOC = 60%, particularly for
PFCS, where the largest difference of the equivalent energy consumption occurred between SOC = 60%
and SOC = 85%. At a high SOC level (SOC is above 80%), the battery pack has sufficient power,
and the braking energy recovery rate of the FCHEV is low, so as to avoid overcharging of the battery
pack. In terms of the operating efficiency of the fuel cell stack, when SOC = 85%, though the average
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efficiency of the fuel cell stack of FC1 is slightly lower than that of SOC = 60%, the figure for FC1 is still
the highest, which indicates the stability of the proposed fuzzy control to maintain the high efficiency
of the fuel cell stack. As for the fluctuation of SOC, the expected SOC range of the battery pack of
FCHEV was 40–80%, which can prevent the overcharging and over-discharging of the battery pack,
thus extending the life of the power battery. It can be seen from Figure 12d that more hydrogen was
consumed to reduce the fluctuation of SOC, so the SOC of PFCS was kept above 80%. Although the
fluctuation of SOC became smaller, it did not fall rapidly to the expected range, which showed that the
power distribution of PFCS was insufficient at a high SOC level. On the contrary, the SOC of FC1 and
FC2 decreased from 85% to 75.64% and 74.80% respectively, moreover the fluctuation of SOC for FC1
was smaller, which was more conducive to extending the life of the power battery. It was noted that at
a high SOC level, the performance gap between FC1 and FC2 had narrowed. However, at a high SOC
level or medium SOC level, the proposed fuzzy control strategy showed the better performances on
the working efficiency of fuel cell stack, controlling SOC fluctuation and the economy of FCHEV.

7. Conclusions

In order to deal with the influence of complex working conditions on economy and power
distribution between power sources on FCHEV, an energy management strategy based on driving
condition identification was developed.

(1) After selecting the characteristic parameters and dividing the working condition samples of three
typical driving conditions, working conditions identification were realized by LSSVM.

(2) Fuzzy control rules under different working conditions were formulated, and the total equivalent
energy consumption of power sources were taken as the objective function to optimize fuzzy
control rules by PSO, and the adaptive switching of the fuzzy control could be realized on the
basis of working condition identification.

(3) Simulation results showed that at high SOC level or medium SOC level, the proposed fuzzy control
strategy had the ability to recognize the future driving condition, showed a better performance
than the traditional fuzzy control strategy and power following the control strategy on improving
the working efficiency of the fuel cell stack, controlling the fluctuation of SOC of battery pack and
enhancing the economy of FCHEV.

(4) The future work is to establish more complete vehicle driving conditions, and choose different
working condition predictors to compare their performance of working conditions prediction, so
as to choose a more reliable and efficient working condition predictor.
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Abstract: A hybrid electric vehicle (HEV) is a product that can greatly alleviate problems related to the
energy crisis and environmental pollution. However, replacing such a battery will increase the cost of
usage before the end of the life of a HEV. Thus, research on the multi-objective energy management
control problem, which aims to not only minimize the gasoline consumption and consumed electricity
but also prolong battery life, is necessary and challenging for HEV. This paper presents an adaptive
equivalent consumption minimization strategy based on a recurrent neural network (RNN-A-ECMS)
to solve the multi-objective optimal control problem for a plug-in HEV (PHEV). The two objectives
of energy consumption and battery loss are balanced in the cost function by a weighting factor
that changes in real time with the operating mode and current state of the vehicle. The near-global
optimality of the energy management control is guaranteed by the equivalent factor (EF) in the
designed A-ECMS. As the determined EF is dependent on the optimal co-state of the Pontryagin’s
minimum principle (PMP), which results in the online ECMS being regarded as a realization of
PMP-based global optimization during the whole driving cycle. The time-varying weight factor and
the co-state of the PMP are map tables on the state of charge (SOC) of the battery and power demand,
which are established offline by the particle swarm optimization (PSO) algorithm and real historical
traffic data. In addition to the mappings of the weight factor and the major component of the EF
linked to the optimal co-state of the PMP, the real-time performance of the energy management control
is also guaranteed by the tuning component of the EF of A-ECMS resulting from the Proportional
plus Integral (PI) control on the deviation between the battery SOC and the optimal trajectory of
the SOC obtained by the Recurrent Neural Network (RNN). The RNN is trained offline by the SOC
trajectory optimized by dynamic programming (DP) utilizing the historical traffic data. Finally,
the effectiveness and the adaptability of the proposed RNN-A-ECMS are demonstrated on the test
platform of plug-in hybrid electric vehicles based on GT-SUITE (a professional integrated simulation
platform for engine/vehicle systems developed by Gamma Technologies of US company) compared
with the existing strategy.

Keywords: hybrid electric vehicles (HEVs); battery life; multi-objective energy management; adaptive
equivalent consumption minimization strategy (A-ECMS); pontryagin’s minimum principle (PMP);
particle swarm optimization (PSO); recurrent-neural-network (RNN)

1. Introduction

Nowadays, the growing energy dilemma and environmental problem are initiating a revolution
and innovation within the automobile industry. Hybrid electric vehicles (HEVs) have more of a
degree of freedom for vehicle power distribution thanks to invertible energy storage devices and
electric machines [1]. To ensure that all hybrid components work cooperatively, a lot of energy

Energies 2020, 13, 202; doi:10.3390/en13010202 www.mdpi.com/journal/energies155
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management strategies have been proposed. Generally speaking, an energy management control
strategy can be categorized as a rule-based (RB) control strategy [2] and an optimization control
strategy. The former is realized easily but the fine control performance is not guaranteed. The latter
usually is categorized as instantaneous optimization, such as the equivalent consumption minimization
strategy (ECMS) [3], model predictive control (MPC) [4], and global optimization including dynamic
programming (DP) [5,6] and pontryagin’s minimum principle (PMP) [7–9]. DP can obtain a globally
optimal solution in theory, but has a serve computational burden and cannot be used in real-time due to
the requirement of knowing the global driving cycles in advance. PMP converts energy management to
a minimizing Hamilton function, thus greatly reducing the computational burden and making it easier
to implement. Despite this, it is still difficult to solve the numerical solution because the dynamic of
the co-state is a function of the battery’s state of charge (SOC), which is nonlinear. In order to overcome
the unknown driving information in advance, MPC is used to solve the energy management optimal
control problem [10], which can predict driving information in the fixed prediction horizon. With the
development of artificial intelligence, many intelligence algorithms have been applied to predict the
driving information in MPC in order to obtain a closer to global optimum solution. For example,
the neural network is used in [11] to predict demand power, which makes full preparation for the
design of the energy management strategy. The radial basis function neural network (RBF-NN) is
trained in [12] using engine working points that is optimized offline utilizing a distributed genetic
algorithm. ECMS is applied to search the instantaneous minimum cost function and can be applied in
real-time, which is evolved in PMP. Thus, ECMS can obtain more closely to a globally optimal solution
by appropriately choosing the equivalent factor. [13] employed the shooting method of PMP to gain
the initial co-state and then used the proportional integral (PI) controller to adjust the equivalent factor
to guarantee that the SOC has a better trajectory in real time.

Most of the literature only regard minimizing fuel consumption as the optimization objective
of energy management problem. In reality, the fading of a battery capcity and the shortening of its
life due to the frequenct charge and discharge of a battery when the HEV is running, is inevitable.
Furthermore, changing a battery before the HEV is scrapped will significantly increase the usage
cost of a HEV. Many studies also have shown that battery life is responsible for the fuel economy
of HEVs [14]. Thus it is necessary to consider battery life when designing an energy management
control strategy. There are many factors that impact the battery life, such as a battery’s thermal
management, driving conditions, environment temperature, regional climate, and so on [15]. For this,
many ways have been proposed to prolong the battery life for HEVs. In [16], in order to extend the
service life of the battery, ultra-capacitors are also equipped to protect the battery by optimizing the
distribution of current and using ultra-capacitors to buffer the excessive charge and discharge flow of
the battery. [17,18] took fuel consumption and battery capacity loss together into the cost function and
solved this multi-objective optimization problem for HEV using PMP and DP, respectively. [19] derived
a causal energy management strategy under consideration of battery life for HEV, which effectively
reduces battery wear with a reasonable penalty on fuel economy by using ECMS. The distinguishing
features of plug-in HEVs (PHEV) over the conventional HEVs are a large variation range of SOC and
the repeated charge and discharge of the battery. Moreover, it has been shown that a large depth
of discharge (DOD) and frequent use can accelerate the decay of battery life [20]. Consequently,
research on the energy management control problem for PHEV considering the battery life is more
attractive. [21] established an electrochemical mechanism model for the battery capacity attenuation
of PHEV, and formulated a multi-objective optimal energy allocation problem that can be solved by
shortest-path stochastic dynamic programming (SP-SDP) while achieving satisfactory vehicle fuel
economy and extending battery life. [22] used a genetic algorithm to optimize the energy management
strategy aimed at minimum fuel consumption and battery capacity degradation. [23] presented a
model predictive control (MPC) strategy and analyzed the Pareto optimal front of the cost function
comprised by the equivalent fuel consumption and battery capacity fade during the charge sustaining
mode of the battery. [24] further provided the impact of the estimated SOC by the battery management
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system on the performance of MPC. [25] studied the nonlinear model predictive control for the energy
management of a power-split hybrid electric vehicle (HEV) to improve battery aging while maintaining
the fuel economy at a reasonable level. [26] employed the shooting method of PMP to obtain the optimal
depth of discharge (DOD) and constructed a reference SOC with the optimal DOD, and then, a model
predictive controller was used to optimize the conflict between the energy consumption cost and the
equivalent battery life loss cost in a moving horizon. [27] used SDP and particle swarm optimization
(PSO) to numerically solve the multi-objective optimal control problem under the consideration of the
tradeoff between energy consumption and battery loss. The dynamic loop nest optimization of PSO
and SDP was used to obtain offline an optimal solution according to the statistical characteristic of the
real historical traffic data. The optimal solution was constructed as look-up mappings on different road
segments and battery SOC so that in the online implementation of the management control strategy
the power demand assignment can be obtained by these mappings without computational burden
according to the current driving mode, system states, and road information.

It should be noted that it is necessary to keep a balance between fuel consumption and battery
capacity loss in the design of the energy management control strategy for the economy of PHEV,
while the designed management strategy should be integrated to global near optimization and the
real-time performance. For this, both a globally sub-optimal and implementable energy management
strategy, so-called recurrent neural network-based adaptive equivalent consumption minimization
strategy (RNN-A-ECMS), is proposed in this paper for a power-split PHEV considering the battery life.
Three efforts have been made. Firstly, RNN with long short term memory (LSTM) is trained utilizing
the historical global optimal SOC trajectory that can be obtained by DP and real historical traffic
data. Secondly, the maps of the weighting factor and main component of the ECMS’ equivalent factor
(EF) depending on power demand and battery SOC are obtained by PMP and PSO utilizing the real
historical traffic data. The PSO is employed to search the weight factor and co-state of PMP, ensuring
the vehicle’s optimal economic performance, and the map of the PMP’s co-state is converted into the
main component’s map of the ECMS’s EF. Thirdly, the maps of weight factor and the main component
of the EF and the model of the well-trained offline RNN are inserted into the core structure of A-ECMS
to carry out the energy management control strategy responsibilities for online implementation.

The remainder of this paper is organized as follows. The PHEV mathematical model is given in
Section 2. The optimal control problem is formulated in Section 3. Then, RNN-A-ECMS is designed
in Section 4. The simulation result and the comparison with SDP-PSO are given to demonstrate the
effectiveness of this approach in Section 5. Finally, the conclusion is summarized in Section 6.

2. PHEV Model Description

The power-split PHEV with a planetary gear set (PGS), shown in Figure 1, is analyzed in this
paper. The powertrain of the PHEV mainly consists of the engine, the battery, motor, and generator.

...
...nbpInverter

Electrical Path
Mechanical Path

Engine

Motor

Generator

Planet Gear

Differ

Figure 1. Plug-in hybrid electric vehicle (PHEV) powertrain system architecture.
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Considering the aerodynamic drag and rolling friction force, the longitudinal dynamic equation
of the vehiclecan be written as [28]:

Mv̇ =
η f Ttrac − Tbr

Rtire
− Mg (μr cos α + sin α)− 1

2
ρACdv2, (1)

where M is the PHEV mass. v denotes the velocity of the PHEV. η f is the transmission efficiency of the
differential gear. Ttrac and Tbr are the traction torque and brake torque, respectively. g is the gravity
acceleration. μr is the coefficient of rolling resistance. α is the grade of the road. ρ is the air density.
A is the frontal area of vehicle. Cd is the drag coefficient.

The PGS containing the sun gear, carrier gear, and ring gear respectively connecting to the
generator, engine, and motor is a core component of PHEV, which allows the PHEV to run not only the
series mode in which the engine provide power to generator to charge the battery or to motor through
an inverter to drive the vehicle but also the parallel mode in which the engine directly propels the
vehicle together with the motor. Under the assumption of rigid connections in the powertrain and
without friction loss, the PGS speed and torque relationships are described as:

Tr =
Rr

Rr + Rs
Tc, Ts =

Rs

Rr + Rs
Tc, (2)

(Rr + Rs)ωc = Rrωr + Rsωs, (3)

where Tr, Tc, and Ts are the torques of ring gear, carrier gear, and sun gear, and ωr, ωc, and ωs are the
speeds of ring gear, carrier gear, and sun gear, respectively. Rs and Rr are the teeth number of sun
gears and ring gears, respectively. With the assumption that the connecting shafts are rigid, the speed
relationship between planetary gear set and powertrain is described as follows:

ωc = ωe, ωr = ωm, ωs = ωg, (4)

where ωe, ωm, and ωg are the speeds of engine, motor, and generator, respectively. In addition,
the motor speed can be computed by the following equation:

ωm =
g f

Rtire
v, (5)

where Rtire and g f are the tire radius of PHEV and the ratio of differential shaft.
Energy consumption chosen as one part of optimization objective contains fuel consumption ṁ f

and electricity consumption ṁelec which are defined as follows.

ṁ f uel = BSFC(ωe, Te) · Te · ωe · 10−5/36, (6)

ṁelec = s · Pelec/Hl , (7)

where Te is the torque of engine. BSFC is brake specific fuel consumption. Hl is the lower heating
value of the fuel. s is EF. Pelec is the total battery power, which can be expressed as follows:

Pelec = Pb + Pl = Pb + I2
b · Rb, (8)

where Pl is the internal loss power of the battery, Ib and Rb are the current and equivalent internal
resistance, respectively. Pb is the electrical load at the terminals, which can be written as follows:

Pb = ηkm
m Tmωm + η

kg
g Tgωg, (9)
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where ηm and ηg are the efficiency of the motor and generator, respectively. Tm and Tg are the motor
torque and generator torque, respectively. km/kg = 1 when the motor/generator is in a discharging
state, otherwise km/kg = −1.

Moreover, it has been shown the battery performance is affected by both storage time and usage,
often categorized as Calendar life and Cycle life. Calendar life is the ability of the battery to withstand
degradation over time, which may be independent of how much or how hard the battery is used. While,
cycle life includes deep cycle life and shallow cycles. Deep cycle life is the number of discharge-recharge
cycles the battery can perform in the charge-depleting (CD) mode. For example, one complete deep
discharge with starting at 90% SOC, ending at 30% SOC, and recharging back to 90% SOC would
complete one full cycle. Shallow cycles refer to SOC variations of only a few percent. These smaller
variations occur throughout CD and charge-sustaining (CS) mode because the battery frequently takes
in electric energy from the engine via a generator and from regenerative braking, and passes energy
to the electric motor to power the vehicle. These frequent shallow cycles cause less degradation than
deep cycles, but still affect battery life. Therefore, the management to the battery shallow cycle in
operating modes should also be considered in order to minimize the battery life degradation in the
discharge/charge cycles together with the minimization of energy consumption. There are many
factors affecting battery life, such as temperature, Ah-throughput, and depth of discharge. With usage,
battery performance in power and energy capacity can degrade. To get the depletion degree of battery
capacity, the effective Ah-throughput (Ahe f f ) is defined as [14,20]:

Ahe f f (t) =
∫ t

0
σ(Ib, Tbatt, SOC) · |Ib(t)| dt, (10)

where Tbatt is the battery temperature. σ(·) is called as severity factor, which describes the aging effect
of any cycle the battery undergoes with respect to the nominal cycle, which is described as follows.

σ(Ib, Tbatt, SOC) =
γ(Ib, Tbatt, SOC)

Γ
=

∫ EOL
0 |Ib(t)| dt∫ EOL

0 |Inom(t)| dt
, (11)

where γ(·) is the battery duration (Ah-throughput) corresponding to a given sequence of current,
temperature, and SOC. Γ is the total Ah-throughput corresponding to the nominal cycle, called as the
nominal battery life, which is expressed as:

Γ =
∫ EOL

0
|Inom(t)| dt, (12)

where Inom is the current profile under nominal conditions and EOL denotes the battery end of life.
The battery life is regarded as the end when Ahe f f = Γ. Then, it may be regarded that the capacity
loss is as Qloss% = Ahe f f /Γ. Thus, prolonging the battery life is equivalent to decreasing the depletion
degree of battery capacity, which is also equivalent to minimizing the effective Ah-throughput. It
should be worth mentioning that the severity factor σ(·) in this paper is obtained by the same approach
as in [27], the fitting based on the experimental data.

Moreover, SOC dynamics in the energy management problem can be described as follows:

˙SOC = − Ib
Qb

= − Pb
Qb · UOC

, (13)

where UOC is open circuit voltage, and Qb is the battery capacity.

3. Optimization Problem Formulation

The energy management control for PHEVs is actually an optimization problem, which in this
paper is to distribute power among the engine, motor, and generator meeting the power demand of
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the driver while minimizing energy consumption and prolonging battery life. To this end, the whole
objective function can be written as follows:

J =
∫ t f

0

{
(1 − θ(t))

ṁ f (t) + ṁelec(t)
Ω

+ θ(t)
σ(t) · |Ib(t)|

Λ

}
dt, (14)

where θ(t)∈ [0, 1] is a weight factor balancing two contradict objectives. Ω and Λ are introduced to
make normalization, which are the optimal energy consumption with no consideration of battery loss,
and the target effective Ah-throughput only the considering battery loss, respectively. The optimization
is to calculate the control input u of the motor torque and the generator speed:

u∗ =
[

T∗
m, ω∗

g

]
= arg min

u∈U
J (15)

subject to the dynamic constraint in Equation (13) and the physical conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SOCmin ≤ SOC ≤ SOCmax

ωe,min ≤ ωe ≤ ωe,max

ωm,min ≤ ωm ≤ ωm,max

ωg,min ≤ ωg ≤ ωg,max

Te,min(ωe) ≤ Te ≤ Te,max(ωe)

Tm,min(ωm) ≤ Tm ≤ Tm,max(ωm)

Tg,min(ωg) ≤ Tg ≤ Tg,max(ωg)

. (16)

It should be noted from Equations (7) and (14) that the determinations of two factors θ, s play
an important role in satisfying the objective and seeking the optimal solution in the actual operation
of PHEV.

The weight factor θ(t) should balance the energy consumption and the battery aging in real
time according to the operating mode and current state of the vehicle, which yields a Pareto front.
Consequently, the determination of θ(t) is also an optimization problem. For this, in this paper,
θ(t) will be offline optimized by PSO and PMP utilizing historical traffic data, and then established as
a map table about the battery SOC and power demand.

The EF s(t) should be chosen to be linked to the optimal co-state of the PMP for guaranteeing more
closely the global optimal solution of the energy management control problem. For this, in this paper,
the major component of the s(t) is determined by the optimal co-state of the PMP that is optimized
offline by PSO, and the tuned component will then be obtained by the PI controller of the deviation
between the actual SOC and the reference trajectory of he SOC from a well-trained RNN by historical
traffic data.

4. RNN-Based Adaptive Energy Management Strategy

In order to ensure that the designed management strategy is integrated, for global near
optimization and real-time performance, in this paper, ECMS is used as the core algorithm of energy
management. Considering the uncertainty of the driving condition, a RNN-based adaptive ECMS
(RNN-A-ECMS) energy management strategy is designed. The design process of RNN-A-ECMS can
be divided into the offline design part and the online implementation part.

The offline design includes two parts. One is the offline training of the recurrent neural network
(RNN), in which the base set of the reference SOC is first generated by the DP algorithm using
historical speed profile data, and then the RNN is trained by the reference SOC from the base set, as
well as road and vehicle speed information extracted from historical traffic information. The other
is offline optimizing the weight factor θ(t) and the co-state of the PMP corresponding to the major
component of EF s(t) using PSO, and then to establish the maps of the weight factor and the major
component of the EF of A-ECMS.
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In the online part, the implemented energy management control strategy includes three parts:
The core ECMS with the weight factor θ(t), mapping table considering the battery life, the adaptive
mechanism of EF s(t) combining the main component mapping table and a PI controller, and a
well-trained RNN generating the SOC reference according to current traffic information and vehicle
states. The sketch of the design process is shown in Figure 2.
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Figure 2. The sketch of the design process of the recurrent neural network- (RNN) based adaptive
equivalent consumption minimization strategy (A-ECMS).

It is worth mentioning that in the actual operation of PHEV the energy management control is not
complicated and has no computing burden, but the near-global optimality can be guaranteed because
of the existence of RNN and the adaptability of the equivalent factor and weighted factor.

The details of the offline design for RNN predicting the SOC reference and maps of the weight
factor and the major component of EF are as follows.

4.1. Prediction Model of SOC Reference of RNN

PHEV is different from HEV with the distinguishing feature of a larger battery capacity and being
recharged from the power grid. Thus, it is favorable for fuel consumption and battery health to plan
ahead a reasonable reference SOC trajectory, which is obtained based on the historical data and current
traffic information. More specifically, the average speed v̄ of current driving information, distance D,
and the SOC of the previous step are chosen as the input of RNN. The average speed (v̄) is equal to the
distance traveled every ten seconds of PHEV divided by the time. The SOC of the previous step is
obtained by the DP optimization and historical traffic data. DP is the global optimization algorithm
that can convert the continuous optimization control problem into finding an optimal decision problem
for n segments under the known driving cycles. Therefore, by using the historical driving cycles of
traffic data, the optimal SOC trajectory obtained from the optimal control sequence of DP optimization
can be served as the required SOC of the previous step. At this point, the detail is as follows:
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Optimization is regarded as the search for a control decision variable so as to minimize the cost
function in Equation (17) while satisfying the constraint condition of Equation (16):

J =
n−1

∑
k=0

L [x(k), u(k), k] =
n−1

∑
k=0

ṁ f uel(k) · Δt, (17)

where n and L represent the duration of the driving cycle and instantaneous fuel consumption,
respectively. Δt is the increment of time step and chosen as 1s in order to alleviate the computational
burden. According to the Behrman’s optimal principle, the optimal control problem described as
Equation (17) can be decomposed into a series of single level decision problems. The specific steps are
as follows:

Step n − 1 : J∗ [x(n − 1)] = min
u(n−1)

{L [x(n − 1), u(n − 1), n − 1] + G [x(n)]} , (18)

Step k(0 ≤ k ≤ n − 2) : J∗ [x(k)] = min
u(k)

{L [x(k), u(k), k] + J∗ [x(k + 1)]} , (19)

where J∗ [x(k)] is the optimal cost of the step k. x(k) is the state variable SOC. G [x(n)] is the cost of
the step n. The solution of DP algorithm can be divided into the backward and forward process. In the
backward process, optimal control u of each step is solved reversely according to the Equations (18)
and (19). In the forward process, the optimal control sequence solved by the backward process is
substituted into the system state equation to calculate the optimal SOC trajectory, which is regarded as
the base sets of training RNN prediction model.

As SOC, distance, and vehicle speed are a sequence about time, RNN is chosen as the predictive
model. Although it might be difficult to learn long-term dependence due to the vanishing gradient
problem resulting from the gradient propagation of the recurrent network over many layers, Long
Short Term Memory (LSTM) can overcome the gradient disappearance in the basic RNN when it
introduces a forgetting mechanism. Thus, LSTM can more accurately predict the SOC reference than
the basic RNN.

The structure of RNN with LSTM is shown in Figure 3, where xi represents the input of LSTM
including the average speed v̄i, distance Di, and the SOC of the previous step. SOCi is the output
of LSTM representing the current SOC reference. The bottom of Figure 3 is the relationship among
hidden layers which are named long and short term memory units.

The memory cell ct that retains data of the time step (t − 1) plays a important role in the LSTM
model. Keeping the value or resetting the value of the cell ct is managed by several gates. Specially,
forgetting, reading, and outputting the new cell value are decided by the forget gate ( ft), input gate (it),
input modulation gate (gt), and output gate (ot), which are defined as follows:

ft = F
((

wh f wx f

)
·
(

h[t − 1, :]
x[t, :]

)
+ b f

)
, (20)

it = F
((

whi wxi

)
·
(

h[t − 1, :]
x[t, :]

)
+ bi

)
, (21)

gt = tanh

((
whg wxg

)
·
(

h[t − 1, :]
x[t, :]

)
+ bg

)
, (22)

ot = F
((

who wxo

)
·
(

h[t − 1, :]
x[t, :]

)
+ bo

)
. (23)

Moreover, the calculations on the cell update and output are defined as follows:

ct = ft � ct−1 + it � gt, (24)
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ht = ot � tanh(ct), (25)

where � denotes the multiplying each element and the w matrices are the network important
parameters. ht is the hidden state and employed to compute the current output and the next step
hidden state. The LSTM can perfect to solve the vanishing gradients. The activation function F and
tanh are the nonlinearity functions of logistic sigmoid and hyperbolic tangent, respectively.
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Figure 3. Structure of Long Short Term Memory (LSTM).

4.2. Control Parameters Optimization Based on PSO-PMP

To improve adaptability to the changes in driving conditions, a kind of adaptive EF s(t) is selected,
which can be updated by a PI controller in real-time. The specific formulation is as follows:

s(t) = s0 + δs = s0 +
[
Kp(SOCre f − SOC) + Ki

∫ t

0
(SOCre f − SOC)dt

]
, (26)

where s0 is the initial value of equivalent factor s(t) (major component of EF) and δs is the tuning
component of EF. SOC, SOCre f represent the actual SOC and the reference SOC trajectory from the
RNN, respectively. Kp, Ki are proportional and integral coefficients, respectively, which are determined
using the estimation method for the upper and lower bounds of the EF presented in [29] and calibration
with trials similar to [13].

In order to more closely obtain the global optimal solution of the energy management control
problem, the s0 is determined by the co-state λ(t) of the PMP optimized offline by PSO. In the PMP,
minimizing the objective function is converted to minimizing the Hamiltonian function:

H(SOC(t), u(t), λ(t), θ(t)) = (1 − θ(t))
ṁ f (t)

Ω
+ θ(t)

σ(t) · |Ib(t)|
Λ

+ λ(t) · ˙SOC, (27)

where λ(t) is the co-state, and its dynamics can be described as:

λ̇(t) = −∂H(SOC(t), u(t), λ(t), θ(t))
∂SOC

. (28)
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The optimal control trajectory is given by:

u∗ =
[

T∗
m, ω∗

g

]
= arg min

u∈U
H(SOC(t), u(t), λ(t), θ(t)), (29)

where the weighting factor θ(t) and the co-state λ(t) are obtained offline by PSO.
The flowchart of PSO is shown in Figure 4.
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Figure 4. Particle swarm optimization (PSO) flowchart.

In PSO, considering the optimization time and convergence efficiency, the number of swarm N
and the maximum iteration km is set as 5, 15, respectively. In order to facilitate online looking-up table,
SOC is discretized as [0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9]. As the range of power
demand of the studied PHEV is 0 kW to 50 kW and usually locates in 0 kW to 30 kW, power demand is
discretized as [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50]. Thus, in the PSO algorithm,
the swarm is defined as X1 = θswarm, X2 = λswarm, and the initialization swarm θ0

swarm and λ0
swarm

are denoted as two [20 × 13 × N]-dimensional tensors. The velocities of θswarm, λswarm are V1 and V2

which are also two [20 × 13 × N]-dimensional tensors. The update principles of the velocities V1, V2

and positions X1, X2 during the iterations are described as follows:

Vk+1
1i = wVk

1i + c1r1

(
Pk

1i − θk
swarm

)
+ c2r2

(
Gk

1i − θk
swarm

)
, (30)

Vk+1
2i = wVk

2i + c1r1

(
Pk

2i − λk
swarm

)
+ c2r2

(
Gk

1i − λk
swarm

)
, (31)

Xk+1
1i = Xk

1i + Vk+1
1i , (32)
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Xk+1
2i = Xk

2i + Vk+1
2i , (33)

where i = 1, 2, ..., N is the current number of swarm and k = 1, 2, ..., km is the current iteration step.
w, c1, and c2 are particle inertia and acceleration constants, respectively. r1, r2 ∈ [0, 1] are uniformly
distributed random values. P1/P2 is the individual extremum and G1/G2 is global extremum.

Figure 5 shows the optimization result of the fitness function, which can converge to a constant.
The maps of θ and λ according to the battery SOC and the power demand are shown as Figure 6.

×

Figure 5. Fitness value.

(a) Weight Factor (b) Co-state

Figure 6. Maps of weighting factor and co-state.

From Figure 6, it can be seen that both weighting factor θ and co-state λ have a complex functional
relationship with SOC and power demand. However, some qualitative conclusions can be drawn,
for example, when the power demand is higher than 30 kW and SOC is less than 0.5, the weight factor
has larger value. Meanwhile, when the power demand is lower than 10 kW and SOC is larger than 0.7,
the co-state has a smaller value. According to the objective function defined in Equations (14) and (7),
the evaluation of battery aging is more important than that of energy consumption in optimization
than if the θ had a larger value, and then the engine would be used more. Similarly, if the co-state
had a smaller value, namely, the corresponding EF was smaller, it means that the evaluation of fuel
consumption would be more important than that of electrical consumption in the optimization of
energy consumption, which would lead to more use of the battery-powered motor.

5. Simulation Verification on GT-SUITE Test Platform

The effectiveness of the proposed energy management strategy in this paper is demonstrated on
the GT-SUITE test platform. The detail of the PHEV system with the proposed energy management
control strategy in the simulation is shown in Figure 7. Where the PHEV model is established in
GT-SUITE environment so as to more realistically simulate the real PHEV powertrain. The proposed
energy management control strategy is constructed in MATLAB/Simulink (MathWorks, Natick, MA,
USA) which computes the required torque of motor T∗

m and the required speed of generator ω∗
g . Then,

165



Energies 2020, 13, 202

it can send the two control variable to PHEV in real-time. In Figure 7, the module of cost function
consists of energy consumption and battery life characterized as effective Ah-throughput, which are
balanced by the weight factor θ.

Drive cycle

A-ECMS

θ

reference

speed

ω

SOC

SOC
b

I fuel

consumption

Cost Function

Energy

consumption

Battery

life

GT_SUITE

MATLAB/Simulink

MAP1

MAP2

RNN Model

D

−

v

v

Figure 7. Simulation environment.

In simulation, the parameters and specifications of model components are listed in Table 1.

Table 1. PHEV model parameters.

Notation Meaning Parameters

M Vehicle mass 1460 kg
A Frontal area 3.8 m2

Cd Air drag coefficient 0.33
ρ Air density 1.293 kg/m3

Rtire Radius of the tire 0.2982 m
μ Coefficient of rolling resistance 0.015

Qb Battery maximum charge capacity 6.5 Ah
Pm, max Motor max power 50 kw
Pg, max Generator max power 30 kw

Je Inertia of the engine crankshaft 0.16 kg · m2

Jm Inertia of the motor 0.035 kg · m2

Jg Inertia of the generator 0.0265 kg · m2

g f Final differential gear ratio 40,113
Rs Sun gear teeth number 30
Rr Ring gear teeth number 78

Moreover, the historical traffic data used in training RNN and offline optimization of DP and
PSO is from the real driving cycles provided by [30]. Then, the driving cycles, used in testing RNN
and verifying the effectiveness of the online implementation of the designed energy management
control strategy, are also from the historical traffic data provided by [30]. Additionally, the Urban
Dynamometer Driving Schedule (UDDS) and New European Driving Cycle (NEDC) were chosen as
the test driving cycles. However, it is worth pointing out that the actual traffic routes of the HEV [30]
is 28 km from home to office and back from office. In research, it is assumed that the PHEV is charged
once after a day’s commute, namely, SOC is the maximum of 0.9 before going to work in the morning
and SOC is about 0.4 after 28 km, close to the minimum 0.3. Accordingly, the distances of both UDDS
and NEDC are too short to fully verify the effectiveness and practicability of the proposed control
strategy, because the SOC change is too small for such a short distance. For this regard, both UDDS
and NEDC are repeated up to 28 km.

Firstly, because the precision of the RNN model has a significant impact on the adaptability of
the energy management strategy, the constructed RNN is verified by a comparison between the basic
RNN and LSTM. The third week of traffic data not used in training is chosen as the testing set. Figure 8
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shows the comparison between the two in three evaluation indexes, mean absolute error (MAE), mean
radial error (MRE), and root mean square error (RMSE), which are defined as follows:

MAE =

I
∑

i=1
|Fi − Ti|

I
, (34)

MRE =

I
∑

i=1
|Fi − Ti|/Ti

I
, (35)

RMSE =

√√√√√ I
∑

i=1
|Fi − Ti|2

I
, (36)

where I is the total number of prediction point, Fi is the prediction value of the battery SOC, and Ti is
the true value of the battery SOC.

MAE MRE RMSE
0

0.005

0.01

0.015

LSTM

Basic RNN

Figure 8. Comparison of basic RNN and LSTM.

It is obvious from Figure 8 that the LSTM has better precision than the basic RNN. That is
because LSTM introduces the forgetting mechanism based on the basic RNN, which can capture
long-term dependencies.

To verify the applicability of the proposed strategy on a real driving cycle on the third Monday
week dating from [30], Urban Dynamometer Driving Schedule (UDDS) and New European Driving
Cycle (NEDC) were chosen as the test driving cycles. Meanwhile, to demonstrate the advantage of the
proposed energy management control strategy in performance improvement, the comparison results
among the proposed strategy (RNN-A-ECMS), the SDP-PSO energy management strategy proposed
in [27], and the conventional charge depleting-charge sustaining (CD-CS) strategy are given based on
the same simulation environment. In the CD-CS mode strategy, the threshold SOC switching from
charge depleting (CD) to charge sustaining (CS) mode was set as 0.35 instead of the lowest value 0.3 so
as to avoid excessive discharging of the battery.

Figures 9–11 show the simulation results and comparisons among the three strategies under the
three driving cycles, respectively. Figure 9a–d are the operating results of the PHEV with the proposed
RNN-A-ECMS strategy, where it can be seen that the actual vehicle speed profile could greatly track
the reference speed profile, see Figure 9a, which guarantees the drivability due to low power demand
(Figure 9b), the engine not working long (Figure 9c), and the torque and speed of engine, motor, and
generator matching with the power demand of the driver and the PHEV working in pure electric mode
most of the time (Figure 9d). Figure 9e–h are the comparisons on SOC trajectory, fuel consumption,
effective Ah-throughput, and equivalent fuel consumption including electricity consumption. It
indicates that the proposed energy management strategy had a better control performance: The
actual SOC curve was closest to the reference SOC predicted by RNN (Figure 9e). Fuel consumption,
effective Ah-throughput, and equivalent fuel consumption all were much lower than that of CD-CS
although the effective Ah-throughput of the proposed RNN-A-ECMS was a little more than that of the
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SDP-PSO, the fuel consumption of RNN-A-ECMS was much lower than that of the SDP-PSO, so that
the equivalent fuel consumption of the RNN-A-ECMS was the lowest.
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Figure 9. Simulation and comparison results under a real driving cycle.
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Similar simulation results can be seen from Figures 10 and 11. Although UDDS and NEDC are
not in the database used by RNN, the driveability and control performance are also satisfied in these
two conditions.
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Figure 10. Simulation and comparison results under Urban Dynamometer Driving Schedule (UDDS).

It shows that RNN with LSTM have a stronger generalization ability than the basic RNN.
Moreover, the weight factor and the initial value of equivalent factor are converted into a 2-dimension
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table, which can obtain the different θ and s0 according to the real-time traffic information to adapt the
different driving conditions and get the optimal solution and better control performance.

To further demonstrate the advantage of the proposed energy management control strategy in the
performance improvement, the comparison results among the RNN-A-ECMS, the SDP-PSO [27], and
the CD-CS strategy are given under multiple driving cycles.

Firstly, the simulation result in another driving cycle on the second Monday week dating from [30]
is shown in Figure 12. Table 2 shows the simulation comparison results of the three strategies in the
driving cycles of the workdays in the second week, which include the fuel consumption per hundred
kilometers FC [L/100 km], battery Qloss, and final SOC SOC f in.

From Figure 12, it can be seen that the final SOC of the RNN-A-ECMS was 0.42 which is lower
than the final SOC of the SDP-PSO strategy, which was 0.49, and the final SOC of the CD-CS strategy
was always 0.35. The lower average final SOC could reflect that RNN-A-ECMS was more dependent on
battery for driving than the SDP-PSO. It may lead to that the battery Qloss of RNN-A-ECMS was slightly
higher than that of the SDP-PSO. However, the fuel consumption of the RNN-A-ECMS is greatly lower
than that of the SDP-PSO because the battery is frequently involved in driving in RNN-A-ECMS. It
indicates that RNN-A-ECMS sacrifices small battery loss to greatly increase fuel consumption. Without
the optimization management for either fuel consumption or the battery aging in the CD-CS strategy,
no matter what driving conditions the electrical power is first used to propel the vehicle until the
CD-CS switching threshold value of the SOC and then engine works while retaining the threshold
level of SOC, as a result, both the battery Qloss and the fuel consumption are the highest.

Table 2. Simulation comparison results.

Day
CD-CS SDP-PSO RNN-A-ECMS

FC Qloss SOC f in FC Qloss SOC f in FC Qloss SOC f in

Mon 3.175 6.477 × 10−4 0.35 2.614 6.185 × 10−4 0.48 2.496 6.203 × 10−4 0.32
Tue 3.798 7.615 × 10−4 0.35 3.311 7.343 × 10−4 0.52 3.203 7.412 × 10−4 0.36
Wed 3.054 7.025 × 10−4 0.35 2.745 6.831 × 10−4 0.43 2.599 6.865 × 10−4 0.39
Thu 3.531 6.902 × 10−4 0.35 3.029 6.579 × 10−4 0.41 2.925 6.688 × 10−4 0.35
Fri 2.967 7.143 × 10−4 0.35 2.450 6.712 × 10−4 0.39 2.314 6.836 × 10−4 0.33

ave 3.305 7.032 × 10−4 0.35 2.829 6.730 × 10−4 0.45 2.707 6.800 × 10−4 0.35

According to the average of the second week in Table 2, it can be calculated that the fuel
consumptions of the RNN-A-ECMS and the SDP-PSO were reduced by 18.1% and 14.4% compared
with that of the CD-CS strategy, respectively. The battery losses of the two strategies were also
reduced by 3.3% and 4.3%, respectively. Meanwhile, the fuel consumption was reduced by 4.3%,
however, battery loss only sacrificed 1.03% between the two strategies. It means that the RNN-A-ECMS
calculating different weight values for different SOC and power demand could be a better solution to
the multi-objective optimization problem than the SDP-PSO.
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Figure 11. Simulation and comparison results under the New European Driving Cycle (NEDC).
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Figure 12. Comparison result between the proposed RNN-A-ECMS and the stochastic dynamic
programming (SDP)-PSO strategy.

6. Conclusions

This paper proposed a novel sub-optimal and real-time energy management control strategy
RNN-A-ECMS to distribute power demand between the engine and electric machines while
considering the fuel consumption and battery aging. Prolonging the battery life and decreasing
the fuel consumption were contradictory. Thus, the energy management strategy including battery
aging should be regarded as a multi-objective optimization problem. In order to gain the Pareto
optimal set, PMP and PSO were used in this paper to solve the multi-objective optimal problem
offline, and the time-varying weight factor and the major component the ECMS’s EF were obtained
as two maps depending on power demand and SOC. In order to enhance adaptation to uncertain
driving conditions, RNN with LSTM was trained offline using historically optimal SOC trajectory
resulting from DP, and a PI controller was used to form the adaptive mechanism of the adaptive EF. In
the implementation of the control strategy, the values of weighting factor and the major component
of equivalent factor were generated online by looking up the two maps according to the current
SOC of the battery and power without computational burden. Meanwhile, the equivalent factor was
adjusted by the PI controller in order to make the actual SOC trajectory close to the optimal SOC
trajectory, which could ensure that the real-time energy management strategy was closer to the optimal
energy management strategy. The simulation verification and comparison with the existing strategy,
which were implemented on GT-SUITE test platform, showed that the proposed energy management
strategy in this paper possessed the effectiveness and adaptability to various driving cycles and had
the advantage in compromising multi-objective of decreasing the fuel consumption and prolonging
battery life.
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Nomenclature

M Vehicle mass [kg].
g Gravity acceleration [m/s2].
A Frontal area [m2].
Cd Air drag coefficient [−].
ρ Air density [kg/m3].
Rtire Radius of the tire [m].
μr Coefficient of rolling resistance [−].
α Grade of the road [−].
v Velocity of the vehicle [m/s].
η f Transmission efficiency of the differential gear [−].
g f Gear ratio of differential shaft [−].
Ttrac Traction torque [Nm].
Tbr Brake torque [Nm].
Rs/Rr Sun/Ring gear teeth number [−].
Ts/Tr/Tc Torque of sun/ring/carrier gear [Nm].
Te/Tm/Tg Torque of engine/motor/generator [Nm].
Te,max/Tm,max/Tg,max Max torque of engine/motor/generator [Nm].
Te,min/Tm,min/Tg,min Min torque of engine/motor/generator [Nm].
ωs/ωr/ωc Speed of sun/ring/carrier gear [rad/s].
ωe/ωm/ωg Speed of engine/motor/generator [rad/s].
ωe,max/ωm,max/ωg,max Max speed of engine/motor/generator [Nm].
ωe,min/ωm,min/ωg,min Min speed of engine/motor/generator [Nm].
ηm/ηg Efficiency of the motor/generator [−].
Pm, max/Pg, max Max power of motor/generator [kW].
Pm/Pg Power of motor/generator [kW].
Je/Jm/Jg Inertia of engine/motor/generator [kg · m2].
BSFC Brake specific fuel consumption [g/kWh].
ṁ f uel Fuel consumption [g/s].
ṁelec Electricity consumption [g/s].
Hl Lower heating value of the fuel [J/g].
Pelec Total battery power [W].
Pb Output power of the battery [W].
Pl Internal loss power of the battery [W].
Ib Current of the battery [A].
Rb Equivalent internal resistance of the battery [Ω].
UOC Open circuit voltage of the battery [V].
Qb Battery maximum charge capacity [Ah].
Γ Nominal battery life [−].
Inom Battery current profile under nominal conditions [A].
EOL Battery end of life [−].
Ahe f f Effective Ah-throughput [Ah].
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σ Severity factor of relative aging effects of battery[−].
Tbatt Battery temperature [◦C].
SOC State of charge of the battery [−].
SOCmax/SOCmin Max and min SOC of the battery [−].
v̄ Average speed of the vehicle of current driving information [m/s].
D Distance the vehicle traveled [m].
ct Memory cell of RNN [−].
ht Hidden state of RNN [−].
ft Forget gate of RNN [−].
it Input gate of RNN [−].
gt Input modulation gate of RNN [−].
ot Output gate of RNN [−].
F Nonlinearity functions of logistic sigmoid [−].
tanh Nonlinearity functions of hyperbolic tangent [−].
θ Weight factor [−].
λ Co-state factor of PMP [−].
s Equivalence factor [−].
s0 Major component of equivalence factor [−].
δs Tuning component of equivalence factor [−].
SOCre f Reference of SOC [−].
Kp Proportional coefficient of PI [−].
Ki Integral coefficient of PI [−].
X1, X2 Position of particle [−].
V1, V2 Velocity of particle [−].
P1, P2 Individual extremum of particles [−].
G1, G2 Global extremum of particles [−].
c1, c2 Acceleration constants in update principles of PSO [−].
w Inertia constant in update principles of PSO [−].
r1, r2 Uniformly distributed random values in update principles of PSO [−].
km Maximum iteration step of PSO [−].
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Abstract: The public-transport sector represents, on a global level, a major ecological and economic
concern. Improving air quality and reducing greenhouse gas (GHG) production in the urban
environment can be achieved by using electric buses instead of those operating with internal
combustion engines (ICE). In this paper, the energy consumption for a fleet of electric buses Solaris
Urbino 12e type is analyzed, based on the experimental data taken from a number of 22 buses, which
operate on a number of eight urban lines, on a route of approximately 100 km from the city of
Cluj-Napoca, Romania; consumption was monitored for 12 consecutive months (July 2018–June 2019).
The energy efficiency of the model for the studied electric buses depends largely on the management
of the energy stored on the electric bus battery system, in relation to the characteristics of the route
traveled, respectively to the atmospheric conditions during the monitored period. Based on the
collected experimental data and on the technical characteristics of the electric buses, the influence of
the atmospheric conditions on their energy balance was highlighted, considering the interdependence
relations between the considered atmospheric conditions.

Keywords: electric bus; battery; energy efficiency; environmental conditions

1. Introduction

Urban public transport plays a very important role in society, as it is the current means of transport
serving a significant number of people every day. The sustainable tendency of urban mobility is to
transport as many people daily as possible, with ecological, nonpolluting means of transport, which
will have a direct effect not only on the reduction of the greenhouse gases (GHG), but also on the
reduction of the environmental noise, traffic congestion, and the infrastructure vibration due to the
vehicles equipped with internal combustion engines (ICE).

Most electric vehicles adopt AC motors due to their higher reliability and longer service life.
Various electric motors and batteries used in electric vehicles are still subject to research, and innovative
strategies are explored to compete with thermal-engine technology [1].

Due to the tendency of the big cities agglomeration, there is a need to increase the number of
buses in the public transport fleets, and if the bus fleet is not renewed with environmentally friendly,
nonpolluting means of public transport, it will result an increase of the environmental pollution
(chemical and acoustic) that would affect the health of the population. Also, by renewing the bus fleet
park of the public transport companies, the aim is to encourage the use of the environmentally friendly,
nonpolluting means of transport, to the detriment of using personal cars in urban traffic.

In [2], Grijalva et al. noted that a bus used at the nominal occupancy level could replace up to
40 personal cars from urban traffic.

Regarding the problems mentioned above, the main solution for eliminating them is to replace
the classic buses equipped with ICE with silent and nonpolluting electric buses.

Energies 2019, 12, 4535; doi:10.3390/en12234535 www.mdpi.com/journal/energies177
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However, this solution has two major drawbacks: the high purchase price of an electric bus (which
can be double compared to a classic bus with the same capacity [3], but which can be compensated
by accessing European non-reimbursable funds [4]), respectively the autonomy of the electric bus,
which depends on the capacity of the batteries that equip this bus and on the charging strategy (fast
charging between buses route, respectively slow charging overnight) [5]. Because the batteries are
the most expensive elements of an electric bus [6,7] and also have a considerable mass (between
1500 and 3000 kg) [8,9], the energy store in them must to be used to the maximum. The energy
consumption for the electric bus varies according to a large number of parameters (the technology used
in the construction of the electric bus, the experience of the driver, the traffic conditions, atmospheric
conditions, the altitude profile of the route, the degree of the boarded passengers, etc.) between 1.0
and 3.5 kWh/km [10–14].

The batteries of the electric buses are recyclable, and their major advantage is the operational costs
with electricity that is much cheaper than conventional fuels [3], respectively the maintenance costs
that practically do not exist for a period of up to 10 years [15]. The most important feature of a battery
pack is to store a maximum amount of energy in a volume and at a minimum mass, in order to ensure
the maximum autonomy [16].

In [17], Demircali et al. studied a virtual model for a battery of an electric vehicle, directly
dependent on the ambient temperature, showing that, with the increase or decrease of this temperature,
the energy stored in the battery is changed.

The energy consumption for the electric vehicles is influenced by the atmospheric conditions, not
only from the point of view of the direct influence on the storage capacity of the batteries, but also from
the point of view of the increase of the energy consumption due to the supply of the auxiliary systems
(heating, ventilation, and air-conditioning in the vehicle), as demonstrated by Iora et al., in [18].

In [5], Vepsäläinen et al. showed that the optimal energy consumption of an electric bus takes
place at an ambient temperature of 20 ◦C. However, the studies of Qian et al. [19] showed that ambient
temperature plays an important role in the battery life of an electric vehicle and, therefore, implicitly
on the energy storage capacity. Thus, the increase or decrease in ambient temperature above certain
thresholds lead to the more frequent use of cooling or heating, resulting in premature aging of the
battery and the reduction of its storage capacity.

In different climatic zones, the ambient temperature can directly influence the efficiency of an
electric vehicle, having the effect of increasing the energy consumption due to the use of air-conditioning
systems for cooling or heating [10,20–25]. In [24], Yuksel et al. showed, by analyzing the energy
consumption according to the ambient temperature during more than 7000 trips in six regions of the
US, that the energy consumption for extreme values of the ambient temperature can be doubled (–30 ◦C
to +40 ◦C), but it is kept at optimum values for a thermal regime between +17 and +27 ◦C.

Zhu et al. [26] showed that, under extreme temperature conditions (–30 ◦C to +40 ◦C), the energy
efficiency of the electric bus batteries is low and, at the same time, the degradation of the battery
characteristics is accelerated. These authors demonstrate the importance of the thermal management
of the batteries which, regardless of the atmospheric conditions, must ensure an optimum temperature
on the surface of the batteries around +30 ◦C.

The studies conducted by Jardin et al. in [27] showed that the optimum operating temperature for
an electric bus based on energy consumption (kWh/km) is in the range between +20 and +25 ◦C, the
maximum consumption being at low ambient temperatures.

The main objective of this work is to highlight the energy consumption and, respectively, the
energy recovered for a fleet of 22 electric buses, Solaris Urbino 12e type, which operate on eight urban
lines, on a route about 100 km from the city Cluj-Napoca, Romania. The consumption was monitored
for 12 consecutive months (July 2018–June 2019). The temperate climate that characterizes most of
the cities located in the continental area of Europe implies the existence of four seasons with extreme
differences of environment temperatures (from –30 ◦C in the winter months and up to +40 ◦C in the
summer months) [28–30], differences that can have a significant impact on the electric buses autonomy.
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2. Materials and Methods

2.1. Electric Bus Model

2.1.1. Electric Bus Model Data

Electric buses use electric propulsion based on an electric motor powered by rechargeable batteries
via a voltage inverter. The battery-charging strategy involves the use of slow-charging stations
(overnight), with a power of 40 kW and a full battery life between 4 and 6 hours, respectively,
fast-charging stations (between races) with a power of 230 kW, and a charging time to ensure the
autonomy required for a 10 to 20 minute ride [13].

The values for the main technical characteristics of the electric buses Solaris Urbino 12e model
(Figure 1) that were used to carry out the study presented in this paper are listed in Table 1 [9,31].

 
Figure 1. Solaris Urbino 12e electric bus fleet (author photo).

Table 1. Technical characteristics of the electric buses.

Parameters Unit Value

Length/Width/Height m 12.00/2.55/3.25
Distance from hitch to front axle m 9.30

Wheelbase m 5.90
Nominal/Loaded Weight kg 13,800/18,000

Number of passenger’s seats/total - 23/70
Motor (type) - Electric asynchronous

Maximum engine power kW 160
Maximum engine torque Nm 1450

Inverter input voltage Vcc 687
Inverter output voltage Vca 3 × 380

Batteries (type) - Li4Ti5O12 (LTO)
Battery capacity kWh 210
Battery voltage Vcc 687

Energy consumption
summer/winter kWh/km 1.00/2.00

Autonomy (producer) km 105
Autonomy (real) km 75–150
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2.1.2. Battery Pack Data

The battery pack acts as a chemical storage unit for the electricity required to operate the motors
that provide the bus propulsion. At the same time, the energy from the batteries must supply the
auxiliary systems (cooling, heating, ventilation, lights, multimedia, telematics, etc.) under extreme
ambient temperature values, ranging from –30 ◦C to +40 ◦C.

The basic unit of the battery pack is the cell. A number of “n” cells arranged in a series-parallel
grouping form a module [32,33]. In the present case, for the studied Solaris Urbino 12e buses, the
standard battery pack consists of eight modules interconnected in parallel that provide the nominal
voltage of 690 Vcc at the terminals of the battery pack and which is applied as the input voltage to the
system of the voltage inverter. The inverter converts the direct current (DC) voltage into a three-phase
alternating current (AC) voltage (3× 380 Vac) which supplies the electric propulsion motors. To increase
the autonomy, the electric buses are powered by a system of 3 to 6 battery packs, connected in parallel,
to increase the value of the current and thus of the stored energy [34].

The Li4Ti5O12 (LTO) batteries that equip the electric buses (Figure 2) are batteries with superior
thermal stability, high energy storage capacity in cells, and a high lifespan (expressed through
charge–discharge cycles) [9,35]. LTO batteries have the following advantages: operating safety,
longevity, performance, and power density, but have a low energy density and are expensive [36].

 
Figure 2. LTO batteries that equip the Solaris Urbino 12e electric buses (author photo).

The virtual model for the basic cell of the battery pack is shown in Figure 3, and, based on this
model, the electrical equations that describe the characteristics of cells, modules, and of the battery
packs were formulated [34,37–42].

Figure 3. Equivalent circuit models (ECM) of the battery cell.
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The voltage at the terminals of a cell (Ucell) is calculated with the following equation [38]:

Ucell = Uocv − Icell·Rohmic −
∑n

i=1

Qi

Ci
, (1)

where Uocv (V) is the voltage of the open circuit of the open-circuit voltage cell (OCV), Icell (A) is the
current at the cell terminals, Rohmic (Ω) is the internal resistance of the cell, Qi (W) is the load capacity
of the cell, and Ci (F) is the capacity of the cell capacitor.

The load capacity of the cell is expressed by the following equation [38]:

Qi =

∫
ICi ·dt =

∫ (
Icell − Qi

Ri·Ci

)
·dt, (2)

where ICi (A) is the current through the cell capacitor, and Ri (Ω) is the resistance of each
resistor–capacitor (RC) element of the cell.

The electrical voltage at the terminals of a battery module (Umodule) is calculated according to the
number of cells connected in series (nseries), using the following relation:

Umodule = Ucell·nseries. (3)

The electric current at the terminals of a battery module (Imodule) is calculated according to the
number of cells connected in parallel (nparallel), using the following relation:

Imodule = Icell·nparallel. (4)

The state of charge (SOC) of a battery module Qmodule (%) is calculated based on the number of
cells and on the charge level of each cell Qcell (%), respectively, on the number of cells connected in
parallel (nparallel), using the following relation [38]:

Qmodule = Qcell·nparallel = Qmax·SOC·nparallel, (5)

where Qmax (%) is the maximum loading degree of each RC element of the cell.
The power of a battery module Pmodule (W) is calculated according to the number of cells and

to the power of each cell Pcell (W), respectively, according to the number of cells connected in series
(nseries), using the following relationship:

Pmodule = Pcell·nseries = Ucell·Icell·nseries. (6)

The lost power of a battery module (Ploss, module (W)) is calculated using the following relation:

Ploss,module =
(
I2
cell·Rohmic +

∑n

i=1
I2
Ri
·Ri

)
·nseries. (7)

Instant charge of the battery is given by the following relation, based on the Coulomb-Counting
algorithm [43]:

Q(t) = Q0 −
∫ t

0
Ibatt(t)dt, (8)

where Q0 is the initial battery charging status, and Ibatt (A) is the current at the battery.
The SOC of the battery is expressed as a percentage of the maximum charge capacity, Qmax [43,44]:

SOC(t) = 100%·Q(t)
Qmax

. (9)
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Similarly, depth of discharge (DOD) of the battery is expressed as a percentage of total capacity
consumed [43]:

DOD(t) = 100%·Qmax −Q(t)
Qmax

. (10)

The functional characteristic of the battery cell is shown in Figure 4, and the values of the main
characteristic parameters of the battery pack that equip the electric buses are shown in Table 2 [39,45].

Figure 4. Battery characteristics.

Table 2. Technical characteristics of the electric batteries.

Parameters Unit Value

Cells
Nominal cells capacity Ah 26
Nominal cells voltage V 3.7
Nominal cells energy kWh 0.0962

Modules
Nominal modules energy kWh 6.25

Number of modules - 8
Mass of module kg 42

Pack

Nominal packs capacity Ah 58.8
Nominal packs voltage V 687
Nominal packs energy kWh 41.22

Number of modules - 3–6
Mass of pack kg 485

2.1.3. Electric Machine

Electric buses are powered by an electric motor, asynchronous motor (ASM) type, which operates
in electric-motor mode, consuming battery power, or in generator mode, recovering the energy when
descending slopes or in particular braking situations. The operating characteristic of the electric
propulsion system is described by the motor torque diagram vs. speed, for all the possible traction
regimes (Figure 5) [38,46,47].
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Figure 5. Motor speed-torque diagram (traction modes).

The torque of the electric motor is maximum from the start and remains constant until it reaches
a constant speed corresponding to the cruise speed. The power of the electric motor increases
linearly until maximum, and then it descends simultaneously with the decrease of the motor torque
(Figure 6) [48,49].

Regenerative braking involves the partial recovery of the kinetic energy and the storage of this
energy in the battery to increase the range of the electric buses. During the regenerative braking,
the electric motor turns into a generator and charges the batteries. The kinetic energy of the electric
buses depends on their mass and speed, but only half of this energy, at most, can be recovered, and
this depends on the generator’s ability to produce electricity, respectively, on the battery’s charging
capacity [50,51].

Figure 6. Motor speed-torque/power characteristic.

2.2. Environment Model

2.2.1. Ambient Temperature

The meteorological data regarding the temperature history for Cluj-Napoca, related to the
monitored period (July 2018–June 2019), were taken from the archive of the weather station rp5.ru [52].
The average daily values for temperature were calculated as the average values for the electric buses
operating at hourly intervals, from the beginning of the program (5:00 a.m.) to the end of the program
(11:00 p.m.), based on daily records of variations in temperature values, obtaining the results that are
presented in Figure 7.
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Figure 7. The average daily temperature values recorded for the monitored period.

2.2.2. Ambient Humidity

Similar to the temperature history (See Section 2.2.1), compared to the monitored period
(July 2018–June 2019), data were taken regarding the values for the atmospheric humidity [52].
The average values for the atmospheric humidity were calculated as the average values for the electric
buses operating at hourly intervals, based on daily records of the variations for the atmospheric
humidity values, obtaining the results that are presented in Figure 8.

 
Figure 8. The average daily atmospheric humidity values recorded for the monitored period.

2.2.3. Pressure and Air Density

Similar to the temperature history (see Section 2.2.1), compared to the monitored period
(July 2018–June 2019), data were taken regarding the atmospheric pressure values [52]. The average
values for the atmospheric pressure were calculated as the average values for the electric buses
operating at hourly intervals, based on the daily records of the atmospheric pressure values’ variations,
obtaining the results that are presented in Figure 9.
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Figure 9. The average daily atmospheric pressure values recorded for the monitored period.

The average daily air-density value (Figure 10) was calculated based on the average daily
recordings of the thermal values, using the following relation [53]:

ρair =
p− 0.378·u·ps

287.05·T , (11)

where ρair is the average daily air density (kg/m3), p is the average daily atmospheric pressure (Pa),
u is the average daily relative humidity (-), ps is the saturation pressure (Pa), and T is the absolute
temperature (K) relative to the average daily ambient temperature (T (K) = t (◦C) + 273.15).

The saturation pressure was calculated using the following relation [54]:

ps =
e(77.3450+0.0057·T− 7235

T )

T8.2 . (12)

 
Figure 10. The calculated average daily air density values for the monitored period.
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2.3. Energy Balance

2.3.1. Energy Consumption

The energy consumption of the electric buses is influenced by a number of factors, such as:
increasing the total mass of buses by loading the passengers, the consumption generated by the
auxiliary systems that cause a significant increase in the amount of energy consumed by the batteries (air
conditioner equipment, multimedia equipment, lighting equipment, telematics equipment, auxiliary
equipment), some of these factors being not dependent on the distance traveled by the electric
buses [55–57]. At the same time, the altitude profile of the route can influence the energy consumption.
This increases during periods of acceleration or ascent of the ramps and decreases when descending the
slopes or when the bus decelerates, reaching negative values (the energy is transferred from the electric
motor that works in generator mode, to the battery). The data collected for the monitored period
(July 2018–June 2019) showed an average daily distance traveled between 100 km (one driver/electric
bus) and 200 km (two drivers/one electric bus).

In addition to these factors, there are climatic parameters (ambient temperature, atmospheric
humidity, air pressure, and density) that have a major influence on the energy consumption of the electric
buses. The experimental data recorded during the monitored period include the atmospheric conditions
characteristic for all seasons with extreme values during a calendar year (ambient temperatures between
–15 ◦C in January 2019 and +32 ◦C in August 2018, respectively humidity values between 14% in
November 2018 and 100% in most months of the year).

Yuan et al. in [58], consider that it is difficult to obtain real traffic data on the energy consumption
for electric buses, and standards for defining this consumption and registration procedures are used to
evaluate the energy consumption (ISO 8714-2002 Electric road vehicles—Reference energy consumption
and range—Test procedures for passenger cars and light commercial vehicles [59], respectively, GB
18386-2017 Electric vehicles—Energy consumption and range—Test procedures [60]).

In this paper, the data on the energy consumption were recorded by real-time monitoring of bus
operation in the city of Cluj-Napoca, which is achieved through the system of tracking and monitoring
the traffic Thoreb [61], a system that allows the observation of buses in real-time by monitoring
on a digital map based on the signals generated by the Global Positioning System (GPS) modules
installed on the buses and transmitted to the dispatchers using the General Packet Radio Service
(GPRS) technology. At the same time, from the bus controller area network (CAN), data regarding the
technical status of the buses, the distance traveled, the energy consumption, the number of passengers
transported, etc. are collected and sent to the dispatchers [13].

The evaluation of the energy consumption data on the electric buses for the monitored period
(July 2018–June 2019) was performed with a Boxplot graph (Figure 11 and Table 3) which, based on the
initial data, generates a statistical model for each monitored month.
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Figure 11. Boxplot analysis of energy consumption (kWh/km).

Table 3. Boxplot analysis of energy consumption (kWh/km).

Month μ SD Min Q1 Med Q3 Max

July 2018 1.13 0.07 0.98 1.09 1.13 1.18 1.27
August 2018 1.16 0.08 1.04 1.10 1.16 1.22 1.39

September 2018 1.08 0.08 0.97 1.00 1.08 1.12 1.29
October 2018 1.16 0.11 0.94 1.07 1.16 1.23 1.42

November 2018 1.48 0.25 1.02 1.34 1.48 1.60 1.93
December 2018 1.82 0.17 1.52 1.69 1.82 1.92 2.20

January 2019 1.91 0.19 1.56 1.76 1.89 2.02 2.26
February 2019 1.59 0.17 1.33 1.44 1.59 1.77 1.90

March 2019 1.35 0.18 1.10 1.20 1.33 1.45 1.67
April 2019 1.34 0.10 1.16 1.27 1.34 1.41 1.47
May 2019 1.31 0.07 1.14 1.24 1.31 1.35 1.43
June 2019 1.31 0.06 1.19 1.26 1.31 1.35 1.43

2.3.2. Regenerative Braking Energy

Similar to the energy consumption of the electric buses, the energy recovered through the
regenerative braking was recorded for the monitored period (July 2018–June 2019).

The evaluation of the data regarding the energy recovered by the regenerative braking of the
electric buses for the monitored period was performed with a Boxplot graph (Figure 12 and Table 4)
which, based on the initial data, generates a statistical model for each monitored month.
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Figure 12. Amount of the energy recovered by regenerative braking (kWh/km).

Table 4. Amount of the energy recovered by regenerative braking (kWh/km).

Month μ SD Min Q1 Med Q3 Max

July 2018 0.43 0.05 0.35 0.38 0.42 0.46 0.53
August 2018 0.40 0.05 0.29 0.37 0.41 0.44 0.47

September 2018 0.42 0.02 0.39 0.41 0.43 0.44 0.46
October 2018 0.43 0.03 0.36 0.41 0.44 0.45 0.49

November 2018 0.37 0.04 0.29 0.35 0.37 0.40 0.45
December 2018 0.29 0.04 0.20 0.27 0.30 0.33 0.34

January 2019 0.29 0.03 0.22 0.26 0.29 0.31 0.35
February 2019 0.35 0.04 0.26 0.32 0.37 0.39 0.41

March 2019 0.41 0.05 0.33 0.37 0.39 0.44 0.52
April 2019 0.48 0.05 0.34 0.44 0.48 0.53 0.57
May 2019 0.50 0.05 0.41 0.47 0.49 0.53 0.60
June 2019 0.50 0.05 0.39 0.47 0.50 0.53 0.61

2.3.3. Total Energy Balance

The energy balance recorded during the monitored period (July 2018–June 2019) for the Solaris
Urbino 12e electric buses, depending on the atmospheric conditions (ambient temperature, atmospheric
humidity, air pressure, and density) is shown in Table 5 and Figure 13.
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Figure 13. The energy balance of the Solaris Urbino 12e electric bus.
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3. Results

As the costs associated with the integration into the urban transport system of the electric buses
are high, it is necessary to carry out studies and research in order to provide the best solution in relation
to their optimal use, taking into account the particularities imposed by the zoning characteristics
(length and the gradient of routes, the flow of the transported passengers, the loading infrastructure,
the volume of traffic, the characteristics of the environment, etc.).

The study of the energy performances for the 22 electric buses during the monitored period
(July 2018–June 2019) highlighted their behavior at different values of the climatic parameters
(temperature, humidity, atmospheric pressure, and air density).

The climatic parameters were monitored during a calendar year and give a clear picture regarding
the atmospheric conditions and their influence on the energy consumption, respectively, on the energy
recovery during the operation of the electric buses.

The parameters resulting from the behavior of the driver are invariable, difficult to estimate and
impossible to generalize because they are psychological factors specific to each individual. However,
taking into account the data on variations in atmospheric pressure and air density, there is the possibility
to correlate human behavior with these variations, so that in the situation of increasing these values,
the behavior of drivers becomes more active, and in the situation of decreasing these values, behavior
becomes more passive.

From the results captured in Table 5 and in Figure 13, the average annual values of the climatic
parameters can be obtained, as follows: the average annual temperature, 11.6916 ◦C; the average annual
humidity, 75.3083%; the average annual atmospheric pressure, 726.6333 Torr; average annual energy
consumption of 1.3716 kWh/km; average annual energy recovery, of 0.4016 kWh/km. Taking these
into account, in Figures 14–18 the variations of the respective parameters are presented, as monthly
average values obtained, compared with their annual average values.

Figure 14. Monthly average temperature variation vs. average annual temperature.
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Figure 15. Monthly average humidity variation vs. average annual humidity.

Figure 16. Monthly average atmospheric pressure variation vs. average annual atmospheric pressure.

 
Figure 17. Variation of average monthly energy consumption vs. average annual energy consumption.
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Figure 18. Variation of average monthly energy recovery vs. annual average energy recovery.

A summary of the obtained results, as the interdependence between them and the influence
parameters on them, is captured in Figure 19. Thus, for each considered month from the monitored
period (July 2018–June 2019), the influence of the atmospheric conditions on the energy efficiency of the
studied electric buses was highlighted. Also, for each considered month, the reciprocal link between
temperature, humidity, atmospheric pressure, and air density is captured in Figure 19. Thus, it was
found that with the increase of the temperature, there is a reduction in air density, a slight decrease in
atmospheric pressure, and the recorded humidity showed a reduce tendency. The recorded values of
the humidity show that, with its increase, the air density increases, and the atmospheric pressure is
reduced. It also notes that the increase in pressure indicates an increase in air density.

Regarding the energy consumption of the electric buses, it can be seen that it increases with
decreasing the temperature and the atmospheric pressure, but the same tendency exists in the situation
of increasing the air humidity and the air density (Table 6 and Figure 19). The energy recovered by the
regenerative braking of the electric buses increases with the increase of the temperature and decreases
with the increase of the air humidity, air density, and atmospheric pressure. Also, it can be seen that
energy recovery largely compensates for the energy consumption of the electric buses.

Table 6. Data for energy consumption and energy recovery vs. atmospheric conditions.

Energy
Consumption

(kWh)

Energy
Recovery

(kWh)

Temperature
(◦C)

Humidity (%)
Atmospheric

Pressure (Torr)
Air Density

(kg/m3)

1.1384 0.4293 20.8806 74.7451 723.4645 1.1346
1.1582 0.4024 22.9064 68.6548 727.0193 1.1321
1.0859 0.4233 17.0466 68.9433 729.0666 1.1620
1.1645 0.4288 13.1774 70.6838 728.8581 1.1775
1.4642 0.3844 5.9866 82.6733 730.0066 1.2136
1.7943 0.2959 –0.4645 93.0290 727.6258 1.2367
1.9076 0.2877 –1.9354 93.4451 721.3612 1.2331
1.5870 0.3532 2.2250 80.7000 729.9035 1.2246
1.3475 0.4098 7.8096 62.1258 726.4741 1.1979
1.3383 0.4758 12.2600 61.7166 724.9633 1.1755
1.3061 0.5018 14.6064 80.0064 722.5193 1.1602
1.2719 0.4924 22.2733 69.4200 727.0833 1.1351
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Figure 19. Matrix scatter plot.

4. Discussion

In the summer months (July 2018, August 2018, and June 2019), it resulted in high energy
consumption compared to the average monthly values, due to the use of the air-conditioning system,
when the ambient temperature exceeded 30 ◦C. This temperature threshold was imposed from the
construction of the electric buses and results in the automatic operation of the air-conditioning until
the ambient temperature in the passenger compartment drops below 25 ◦C. Regarding the recovered
energy, an increase of it with the increase of the ambient temperature was noticed, under the conditions
of maintaining low values of the atmospheric humidity, which facilitates the braking capacities of the
electric buses on a dry road, respectively the increase of the electrical resistance of the braking system,
preventing the energy losses through braking rheostats. In the summer months, characterized by the
average monthly temperature values (see Table 5) higher than the annual average, with 79.61% in
July 2018, 79.61% in August 2018, and 98.43% in June 2019 (see Figure 14), the atmospheric humidity
is higher than the annual average by 0.25% in July 2018, lower by 9.57% in August 2018, and with
9.31% in June 2019 (see Figure 15), and the atmospheric pressure is lower than the annual average
by 0.39% in July 2018, higher by 0.09% in August 2018, and with 0.04% in June 2019 (see Figure 16),
resulting in lower energy consumption compared to the average annual consumption, by 17.62% in
July 2018, 15.43% in August 2018, and 3.04% in June 2019 (see Figure 17), and a higher amount of
energy recovered compared to its annual average, with 7.05% in July 2018, 21.99% in June 2019, and
lower by 0.41% in August 2018 (see Figure 18).

From the recorded results, it can be seen that the autumn months (September 2018 and October
2018) are the months with low energy consumption, mainly due to the thermal conditions, with values
of temperature of approx. 20 ◦C, but also with low values of the atmospheric humidity, being generally
dry weather, which facilitates the movement of the electric buses with a minimum of energy consumed
and a maximum recovered energy. During these months, the monthly average temperatures (see
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Table 5) were higher than the annual average, with 59.09% in September 2018 and with 14.61% in
October 2018 (see Figure 14), with lower atmospheric humidity compared to that annual average
with 11.69% in September 2018 and with 7.58% in October 2018 (see Figure 15), and the atmospheric
pressure higher than the annual average, with 0.28% in September 2018 and with 0.33% in October
2018 (see Figure 16), resulted in a lower energy consumption than the average annual consumption,
with 21.99% in September 2018 and with 5.43% in October 2018 (see Figure 17), and a higher amount of
energy recovered compared to its annual average, with 4.56% in September 2018 and with 7.05% in
October 2018 (see Figure 18).

Since November 2018, the cold season has started, which, due to the decrease of the ambient
temperature, especially in the time periods from the beginning of the work program (from 5:00 a.m. to
8:00 a.m.), respectively in the periods after the end of the work program (from 8:00 p.m. to 11:00 p.m.),
resulted in an accelerated increase of the average energy consumption. Due to the increase of the
atmospheric humidity and the reduction of the grip due to the wet road, the value of the recovered
energy decreased. November 2018 was characterized by monthly average values of the temperature
lower than the annual average value with 57.23% (see Figure 14), the atmospheric humidity higher
than the annual average with 12.47% (see Figure 15), and the atmospheric pressure compared to the
annual average by 0.50% higher (see Figure 16), resulted a higher energy consumption than the average
annual consumption, by 5.71% (see Figure 17), and a lower amount of recovered energy compared to
its annual average, with 5.39% (see Figure 18).

The winter months (December 2018 and January 2019) were the months with the lowest
temperatures in the entire monitored period. In addition to the negative temperatures of the day, the
start of the working program for the electric buses took place below the freezing threshold. Electric
buses, which are connected overnight to the external slow-charging stations, and the batteries are
heated by the thermal management system, consume, on the cold winter days (with temperatures below
−10 ◦C) up to 10% of the energy from the batteries, for heating the interior passenger compartment,
only in the interval of preparation for the buses’ departure on the route. Thus, combined with the
increased of the daily consumption and the wet road conditions, it is reached that, during the cold
season, the consumption increase by 2 to 2.5 times compared to the periods with the lowest values
of consumption, and the energy values recovered will near zero. During these months, the monthly
average temperatures (see Table 5) were lower than the annual average by 101.71% in December 2018
and by 106.84% in January 2019 (see Figure 14), the humidity was higher than the annual average
with 27.34% in December 2018 and with 25.75% in January 2019 (see Figure 15), and the atmospheric
pressure was higher than the annual average, with 0.28% in December 2018 and lower, with 0.71% in
January 2019 (see Figure 16). The result was a higher energy consumption than the average annual
consumption, with 29.77% in December 2018 and 38.52% in January 2019 (see Figure 17), and a reduced
amount of energy recovery compared to its annual average, by 27.80% in December 2018 and by 25.31%
in January 2019 (see Figure 18).

The transition from extremely low winter temperatures to thermal relaxation took place in
February 2019, which started with low temperatures, especially in the early morning, but also with
a slight increase in temperatures in the second half of the day, which have to lead to a reduction in
energy consumption. Due to low values of the atmospheric humidity and the lack of precipitation,
respectively, on a dry road, the amount of energy recovered during this period also increased. February
2019 was characterized by monthly average values of the temperature lower than the annual average
value by 81.18% (see Figure 14), the atmospheric humidity higher than the annual average by 6.76%
(see Figure 15), and the atmospheric pressure compared to the annual average higher with 0.44% (see
Figure 16). In February it resulted in higher energy consumption than the average annual consumption,
with 16.65% (see Figure 17), and a reduced of the energy recovery compared to its annual average,
with 25.31% (see Figure 18).

The spring months (March 2019 and April 2019) began with accelerated warming of the weather,
with the reduction of the atmospheric humidity, environmental aspects that led to the gradual reduction
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of the energy consumption to normal values and to the increased of the energy recovery. Even though,
during the two months, the mornings were colder, with temperatures around 0 ◦C, the thermal regime
did not influence the electric bus batteries when the buses started on the route. During these months,
the monthly average temperatures (see Table 5) were lower than the annual average by 29.86% in March
2019 and higher by 0.93% in April 2019 (see Figure 14), with lower atmospheric humidity compared to
the annual average, with 17.41% in March 2019 and with 20.99% in April 2019 (see Figure 15), and the
atmospheric pressure was lower than the annual average, with 0.06% in March 2019 and with 0.20%
in April 2019 (see Figure 16), and it resulted in lower energy consumption compared to the average
annual consumption, with 5.22% in each of the two months (see Figure 17), and a reduced amount of
energy compared to its annual average by 0.41% in March 2019 and by 19.50% higher in April 2019
(see Figure 18).

The transition to the hot season at summer temperatures began in May 2019, a month characterized
by positive thermal values throughout the operating range of the electric buses, respectively by the
average values of the atmospheric humidity. These climatic factors allowed us to achieve average energy
consumption within the normal limits specified by the manufacturer, cumulating with maximum
energy recovery for the entire monitored interval. May 2019 was characterized by monthly average
values of the temperature higher than the annual average value, with 29.15% (see Figure 14), the
atmospheric humidity higher than the annual average by 3.97% (see Figure 15), and the atmospheric
pressure lower than the annual average by 0.61% (see Figure 16). In May, it resulted in lower energy
consumption than the average annual consumption, by 6.68% (see Figure 17), and an amount of
recovered energy higher than its annual average, with 24.48% (see Figure 18).

5. Conclusions

The energy efficiency of the electric buses was evaluated for 12 consecutive months (July 2018–June
2019), based on the weather conditions in Cluj-Napoca city, Romania, conditions that are specific to
the vast majority of continental Europe, taking into account other area features, such as the loading
infrastructure, traffic conditions, altitude profile of the traveled routes, the degree of loading with
passengers, and the traffic management.

Based on our findings, the following conclusions can be drawn:

• The climatic parameters influence the consumption and energy recovery for the electric buses;
• The energy consumption of the electric buses increases with the decreasing of the temperature

and the atmospheric pressure, but the same tendency exists even if the humidity and density of
the air increase;

• The energy recovered by the regenerative braking of the electric buses increases with the increase
of the temperature and decreases with the increase of the air humidity, its density, and the
atmospheric pressure;

• Energy recovery largely compensates the energy consumption of the electric buses;
• The variations of the monitored parameters, obtained as monthly average values, compared with

their annual average values, highlight the interdependence of these quantities;
• Average energy consumption, within the normal limits specified by the manufacturer and

maximum energy recoveries, was obtained on the transition to the warm season;
• The energy consumption of the electric buses increases when the buses accelerate or when the

buses climb the ramps, and it decreases when the buses decelerate or descend from the ramp.

The authors intend to develop various models to describe other influences on the energy balance
of the electric buses, to use them in their modeling, simulation, and exploitation. In addition, based on
the collected experimental data and on the technical characteristics of the real model of the electric
buses, the authors have already highlighted, with promising results, the influence of the atmospheric
conditions on their energy balance, taking into account the interdependence of the climatic parameters
(ambient temperature, atmospheric humidity, air pressure, and air density).
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Abstract: Modelling, simulation, and validation of the 12-volt battery pack using a 20 Ah
lithium–nickel–manganese–cobalt–oxide cell is presented in this paper. The cell characteristics
influenced by thermal effects are also considered in the modelling. The parameters normalized
directly from a single cell experiment are foundations of the model. This approach provides
a systematic integration of actual cell monitoring with a module model that contains four cells
connected in series. The validated battery module model then is utilized to form a high fidelity 80
Ah 12-volt battery pack with 14.4 V nominal voltage. The battery cell thermal effectiveness and
battery module management system functions are constructed in the MATLAB/Simulink platform.
The experimental tests are carried out in an industry-scale setup with cycler unit, temperature
control chamber, and computer-controlled software for battery testing. As the 12-volt lithium-ion
battery packs might be ready for mainstream adoption in automotive starting–lighting–ignition
(SLI), stop–start engine idling elimination, and stationary energy storage applications, this paper
investigates the influence of ambient temperature and charging/discharging currents on the battery
performance in terms of discharging voltage and usable capacity. The proposed simulation model
provides design guidelines for lithium-ion polymer batteries in electrified vehicles and stationary
electric energy storage applications.

Keywords: battery modelling and simulation; battery testing cycler; battery thermal model;
lithium-ion polymer battery; SLI battery

1. Introduction

Lead–acid-based batteries have a long-term historical usage in the automotive and stationary
standby power market, ranging from 12-volt high-power such as automotive starting–lighting–ignition
(SLI) applications, low-power applications such as emergency lighting or uninterruptible power
supplies (UPSs) for individual computers, to high-power, high-voltage electric energy storage in
renewable energy systems or UPSs telecommunications facilities. Typical lead–acid batteries have
several problems including high self-discharge rate, relatively heavy and large, and shallow depth
of discharge (DOD). For the past decades, lithium-ion batteries have been widely used in portable
electronics due to their features of high energy density, high discharge power, and long cycle life. The
emerging applications of the lithium-ion batteries to electric-drive vehicles and large-scale energy
storage systems for renewable energy make them a promising solution for challenges of environmental
preservation and resource conservation [1,2]. The lithium-ion battery is also a suitable replacement for
the conventional 12-volt SLI lead–acid battery; for example, Porsche offers an option of a lithium-ion SLI
battery [3], and some medium-duty truck manufacturers use a lithium-ion battery for 12/24 V electrical
systems [4,5]. The lithium-ion polymer battery uses a high conductivity semisolid (gel) polymer
electrolyte instead of a liquid electrolyte. The battery cell voltage depends on the electrode material
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chemistries. The lithium–metal–oxide-based (such as LiCoO2) cell has 2.5–2.8 V fully discharged
voltage and 4.2 V fully charged voltage, while the lithium–iron–phosphate-based (such as LiFePO4)
cell has 1.8–2.0 V fully discharged voltage and 3.6–3.8 V fully charged [6,7]. The lithium polymer
battery has higher specific energy than do other lithium-based batteries [6]. The polymer electrolyte
gives the lithium polymer battery more stable performance under vibration conditions. These two
features have led to the promotion of lithium polymer batteries in electric-drive vehicle applications.

The lithium-ion batteries, however, still encounter some roadblocks that complicate their
applications. One of the major roadblocks is temperature influence on the operation of lithium-ion
batteries. The operating temperature of a battery is the result of ambient temperature augmented by
the heat generated by an electrochemical reaction. Operating temperatures from −20 ◦C to 60 ◦C is a
typically acceptable range for lithium-ion batteries [8]. Pesaran et al. [9] presented that the optimal
temperature range for lithium-ion batteries is from 15 ◦C to 35 ◦C, which is similarly comfortable for
humans. To avoid a severe temperature gradient that might lead to different degradation rates and
unbalanced cells, 5 ◦C should be set as the maximum temperature difference from cell to cell within a
module [9,10]. The impacts of temperature can generally be considered as low and high temperature
effects [11]. At low operating temperatures, the lithium-ion batteries experience slow chemical reaction
and charged transfer-rate, which decrease ionic conductivity and diffusivity [12,13]. Therefore, the
battery energy capacity and power are reduced at low temperatures. At high temperatures, the energy
capacity and power are degraded, respectively, due to loss of the reduction of active materials and
increase of internal resistance [14]. Self-ignition and even explosion caused by thermal runaway
may happen if the temperature is too high. The effects caused by low battery temperature mostly
occur during low ambient temperatures, while the effects induced by high battery temperature could
occur either in low or high ambient temperatures. For an example, the battery temperature could
highly increase at a large discharging current even in a low ambient temperature environment. The
ambient temperature dominates in low temperature effects, and the battery internal temperature
during operations plays a more important (than ambient temperature) role in high temperature effects.

The battery cell characteristics are determined by the electrode materials, electrolyte materials, cell
size and shape, as well as the operating conditions including temperature, charging, discharging current,
etc. The cell characteristics are essential parameters in battery pack design, thermal management
system design, and battery management control. The battery cell characteristics typically are acquired
through a series of charging and discharging experimental tests, which are time-consuming and require
several pieces of equipment, such as a cycler, temperature chamber, and device for data acquisition.
Analytical approach uses certain numbers of cell parameters gathered from less experimental tests to
form a mathematical model. The battery model is also helpful for predicting parameters that cannot
be directly measured by any sensors, such as state of charge (SOC), state of health (SOH), and state
of life (SOL). Model-based estimation algorithms are usually used to compute or estimate theses
parameters [15,16]. Nevertheless, a high-fidelity battery model is required to obtain accurate simulation
results. Many battery models have been developed ranging from simple models with a few parameters
to complex models having a large number of parameters [17–27]. The common battery modelling
approaches are electrochemical, mathematical or analytical, and electric circuit-based model [28,29].

This paper describes the development and validation of an electric circuit-based Simulink model
of the lithium–nickel–manganese–cobalt–oxide (LiNiMnCoO2)-based cell with 3.6 V nominal voltage
and 20 Ah capacity. The thermal effects on cell characteristics are also considered in the model. The
experiments apply several charging and discharging currents to the battery cell and module that are
enclosed in a chamber with controlled temperatures of −20 ◦C, −10 ◦C, 0 ◦C, 20 ◦C, and 50 ◦C as the
ambient temperatures. The experimental data are used to calibrate the model parameters. A 12-volt
battery pack (14.4 V, 80 Ah) model is built based on validated simulation models of a battery cell and
module. This SLI-type pack has four parallel-connected modules where each module (14.4 V, 20 Ah)
consists of four cells connected in series. As the 12-volt lithium-ion battery packs might be ready for
mainstream adoption in automotive SLI, micro-hybrid (or stop–start engine idling elimination), and
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UPS applications, this paper investigates the ambient temperature effect on the battery performance in
terms of discharging voltage and usable capacity. The proposed simulation model provides design
guidelines for lithium-ion polymer batteries in electric-drive vehicle and stationary UPS applications.

2. Battery Modelling from Cell to Pack

A high-fidelity single cell model is a foundation to form a reliable battery module and pack
with statistical confidence. The equivalent circuit technique is commonly used for electrochemical
impedance characterizations in a cell model. This study uses parameters normalized directly from
single cell experiments, which provide a systematic integration of actual cell monitoring with a module
model. The approach begins with single cell model development and validation. A module with four
cells connected in series is also validated. A high fidelity SLI battery pack model is then achieved.

2.1. An Enhanced Equivalent Electric Circuit Cell Model

The equivalent electric circuit approach has been adopted by many researchers to model battery
cells ranging from lead–acid to lithium-ion batteries. The most commonly used equivalent electric
circuit models are the Thevenin-based model [17–19], impedance-based model [20–22], and the
runtime-based model [23,24]. The Thevenin-based model can predict battery response to the transient
load at a certain SOC due to a series resistor and resistor–capacitor parallel network in the model. An
impedance-based model is formed by an AC-equivalent impedance model in the frequency domain
and the electrochemical impedance spectroscopy method. The runtime-based model utilizes a capacitor
and controllable current source to predict battery capacity, SOC, runtime, and open circuit voltage
(OCV). The battery operation time and DC voltage response under a constant discharge C-rate also
can be simulated by the runtime-based model. The advantages of the runtime-based model and
Thevenin-based model are combined in a model presented by [26], as shown in Figure 1. Based on [27],
an equivalent electric circuit model with improved features is presented in this paper. In the developed
Simulink model shown in Figure 2, three inputs (discharging current, initial SOC ranging from 0 to 1,
and battery capacity) replace the battery runtime model. Since the initial SOC is an input variable, the
developed model can simulate batteries that are not fully-charged. The OCV is calculated according to
real-time SOC, which is predicted from three inputs to the model. Subtracting both voltages of the
resistor-capacitor (RC) parallel networks and series resistor (RS) from the OCV gives the cell terminal
voltage (Vt), which is an output of the developed model. The real-time SOC, OCV, RC value, RC
parallel network voltages, and series resistor voltage are calculated by five developed submodels.

Figure 1. Thevenin with runtime-based model.
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Figure 2. Developed cell model with three inputs.

Equation (1) calculates the real-time SOC, in which SOC0 denotes the initial SOC, I denotes the
discharging current, and UC denotes the usable capacity. A submodel calculating SOC is presented
in Figure 3a, in which three inputs are SOC0, I, and UC and output is real time SOC. Equation (2) is
derived from numbers of experimental discharging curves using the method presented in [26] that
provides relationship between the SOC and OCV. The interpolation–extrapolation lookup method is
applied to calculate and determine the most suitable RC values, as a submodel presented in Figure 3b.
The transient response of the battery cell voltage in the developed model is computed by the voltages
of RC parallel networks. Equation (3) calculates the voltages of RC parallel networks in the s-domain,
as a submodel shown in Figure 3c. For a typical lithium–metal–oxide polymer cell, the series resistor
is 0–0.01 ohms in the 20%–100% SOC range, and 0.01–0.06 ohms within the 0%–20% SOC range [26].
Therefore, the developed model uses 0.001 ohms for 20%–100% SOC and 0.03 ohms for 0%–20% SOC
in all discharging currents. The voltage on the series resistor (VS) is calculated by Equation (4) where
RS is the series resistor resistance, and a submodel is presented in the Figure 3d. Equation (5) calculates
the terminal voltage (Vt) of the battery cell. A more detail description of the submodels and their
paraments is presented in [30].

SOC = SOC0 −
∫

I
UC× 3600

dt (1)

OCV = −1.031e−35×SOC + 3.685 + 0.2156× SOC− 0.1178× SOC2 + 0.3201× SOC3 (2)

V =
(1

s

)[ I
C
− V

RC

]
(3)

VS = I×RS (4)

Vt = OCV−V1 −V2 −VS (5)
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Figure 3. Simulink submodels for developed cell model: (a) Calculation of R and C value; (b)
Calculation of SOG; (c) Calculation of RC parallel voltage; (d) Calculation of VS.

2.2. Cell Thermal Model

The lithium-ion polymer cell thermal model was built in the Simulink battery block platform,
which implemented similar equations as those discussed in Section 2.1 with thermal effects. In the
discharge model (i∗ > 0), Equations (6)–(11) are implemented to represent the temperature effect on the
battery model parameters [31]. The temperature tab requires several parameters, which are determined
by battery discharging test under 20 ◦C ambient temperature. The initial cell temperature is set to the
ambient temperature because each cell is cooled down or warmed up to the ambient temperature
before starting the discharging test. The “nominal ambient temperature T1 (◦C)” parameter is the
ambient temperature during nominal operations. It is assumed that all parameters in the parameters
tab are obtained at 20 ◦C ambient temperature. The procedures of establishing the cell thermal model
in the Simulink platform are presented in [32]. Figure 4 shows the Simulink battery cell discharging
model considering ambient temperature effects.

f1(it, i∗, i, T, Ta) = E0(T) −K(T)· Q(Ta)

Q(Ta) − it
·(i∗+ it) + A· exp(−B·it) −C·it (6)

Vbatt(T) = f1(it, i∗, i, T, Ta) −R(T)·i (7)

E0(T) = E0

∣∣∣∣∣Tref +
∂E
∂T

(T− Tref) (8)

K(T) = K

∣∣∣∣∣∣Tref · exp
[
α

(
1
T
− 1

Tref

)]
(9)

Q(Ta) = Q
∣∣∣∣∣Ta +

ΔQ
ΔT
·(Ta − Tref) (10)
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R(T) = R

∣∣∣∣∣∣Tref · exp
[
β

(
1
T
− 1

Tref

)]
(11)

where: Tref (K) nominal ambient temperature, T (K) cell or internal temperature, Ta (K) ambient
temperature, E/T (V/K) reversible voltage temperature coefficient, α Arrhenius rate constant for the
polarization resistance, β Arrhenius rate constant for the internal resistance, (Ah/K) maximum capacity
temperature coefficient, CΔQ/ΔT (V/Ah) nominal discharge curve slope.

Figure 4. Battery cell thermal model in Simulink.

2.3. Battery Module and Pack Model

A battery module model containing four cells connected in series was created in the Simulink
platform, as shown in Figure 5. The controlled current source, four battery cells, breakers with control
algorithms to perform the battery management system (BMS) function, and voltage measurement with
scopes are the four submodels in the module model. The charging and discharging current to each cell
model are generated by the controlled current source sub-model, which has two parameters, namely
DC source type and zero initial amplitude (A). The controlled current source block is connected to a
constant block for generating a continuously constant charging or discharging current. A value in the
constant block is the constant charging/discharging current. The pulse generator block is applied to
generate a pulse charging/discharging current. Cell breaker, bypass breaker, cell voltage tag, and cell
control tag form a BMS submodel for each cell. When the cell is charged to a voltage higher than 4.3 V
or discharged to a voltage lower than 2.3 V, the control tag opens the cell breaker and closes the bypass
breaker to prevent the cell from becoming over-charged or over-discharged. Each submodel contains
one pair of tags for the breakers. Figure 5 shows only one pair of tags for a better display. Each cell
voltage curve is shown in its scope and a terminal voltage is displayed in total voltage scope. All the
parameters in this model are determined from the continuous and pulse discharge tests. A more detail
description of the submodels and their paraments is presented in [33].
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Figure 5. A Simulink battery module model consisting of four series-connected cells.

3. Experiment and Model Validation

The lithium-ion polymer cells used in this study were EiG ePLB C020
lithium–nickel–manganese–cobalt–oxide-based cathode and graphite-based anode with 3.6 V
nominal voltage and 20 Ah capacity. Figure 6 shows the test equipment using in this study, namely
a Digatron charge/discharge cycler, a computer with Digatron Battery Manager 4 (BM4) software
(Battery Manager 4.0, Digatron Power Electronics Inc., Shelton, CT, USA) [34], and an Envirotronics
temperature chamber. A fixture was designed to restrain the battery cells and cycler output cables
inside the chamber. Three experimental procedures included calibration of battery cell model
parameters, validation of the four series-connected battery module, and validation of the battery cell
thermal model.

Figure 6. Battery experimental test setup: (a) Cycler and chamber; (b) cell testing; (c) module testing.

3.1. Battery Cell Model Calibration and Validation

An initial battery performance evaluation test was conducted on 27 cells disassembled from a
hybrid electric vehicle battery pack. Each cell was charged to 4.17 V and then fully discharged to 2.46
V using 1 C rate in the initial evaluation test. The cell model parameter determination, correlation, and
validation utilized six cells with best performance in the initial evaluation test. Figure 7a shows an
experimental curve generated by averaging curve data for each testing case (1/3, 1/2, 1, 1.5, and 2 C
discharging current). These tests were used to calibrate the cell model parameters. The determination
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of cell model parameters is presented in [30]. Examples of simulated and experimental discharging
curves are shown in Figure 7b. A 7% or less discrepancy between simulations and experiments existed
in the 0% to 80% DOD range during constant current discharge.

Figure 7. Examples of simulated and experimental discharging curves: (a) Averaged constant current
discharging curves from tests; (b) simulated and test constant current discharging curves; (c) simulated
and test constant current discharging curves; (d) simulated and test pulse discharging.

3.2. Cell Thermal Experiment and Validation

To ensure the battery cell completely cooled down or warmed up to a specific ambient temperature,
the battery cell was kept charging by a small current to sustain its voltage in the neighbor of 4.17
V. The temperature chamber was then set to a specific temperature for 15 minutes before applying
the discharging current. The validation process consisted of 12 discharging tests, which were 10
A, 20 A, and 40 A constant discharging currents, and each discharging test was conducted under 4
different ambient temperatures (−20, −10, 0, 20, and 50◦C). The simulated discharging curves from each
discharging current with specified ambient temperature were compared to corresponding experimental
discharging curves. Examples of comparisons between simulated and experimental discharging curves
using constant currents, 10 A, 20 A, and 40 A, under four different ambient temperatures are shown in
Figure 8. A full comparison results is shown in [32]. In each discharging test, the experimental and the
simulated discharging curves matched well in the range from 0% to 80% DOD (assuming 100% DOD at
2.5 V). The discrepancy between each comparison was under 7%. From the range of 80% to 100% DOD,
the discrepancy became much larger. This large discrepancy might be due to the fact that battery model
parameters were acquired in the nominal voltage of 3.6 V. The accuracy of the model was acceptable
because most of the batteries only used up to 80% DOD. The experimental and simulated discharging
time to reach 2.5 V were correlated in most test cases. Under higher ambient temperature (50 ◦C), the
battery usable capacity increased so the total discharging time was longer than 1 hour for the one
C-rate (20 A) discharging test. A similar phenomenon occurred in the one-half C-rate (10 A) test, which
showed more than two hours discharging time. However, the Simulink model could not simulate
the increase of battery usable capacity under high ambient temperature. Table 1 summarizes two
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correlated data under different ambient temperatures and discharging currents; discharging voltage at
50% DOD (assuming 100% DOD at 2.5 V) and total discharging time to reach 2.5 V are compared.

Figure 8. Examples of comparisons between simulated and experimental 20A discharging curves in
battery module: (a) 0 ◦C; (b) 50 ◦C.

Table 1. Summary of comparisons between experimental and simulation results.

Discharging Current

10 A 20 A 40 A

Ambient
Temp (◦C)

Experiment Simulation Experiment Simulation Experiment Simulation
V (50% DOD) Dis. time (s) V (50% DOD) Dis. time (s) V (50% DOD) Dis. time (s)

–20 3.15; 4200 3.15; 4000 3.05; 2072 3.07; 2010 2.95; 1076 3.02; 1020
–10 3.17; 4955 3.22; 4945 3.14; 2410 3.16; 2319 3.07; 1220 3.12; 1235
0 3.32; 5660 3.37; 5893 3.38; 2835 3.32; 2856 3.17; 1427 3.26; 1436
20 3.56; 7143 3.57; 7193 3.54; 3533 3.54; 3595 3.45; 1712 3.46; 1788
50 3.71; 7602 3.80; 7175 3.62; 3701 3.76; 3600 3.52; 1745 3.68; 1799

3.3. Battery Module Experiment and Validation

For the module testing, four series-connected cells formed a battery module, where the four cells
were numbered from #1 to #4. This section was abstracted from [33]. The inconsistency of the cells was
taken into account in the experiments and analytical models. All tests were conducted at a constant
temperature of 25 ◦C in the chamber. Figure 6c shows the assembled-module experimental setup in
the cycler. The four cells selected for the experiments had slightly different aging, internal resistance,
and voltage, although they performed very similarly to each other (voltage variation between four
cells was smaller than 0.08 V) under loads, as the example shows in Figure 9a. At any specific time,
the difference between the highest and lowest voltage among the four cells was always no larger
than 0.08 V. Figure 9b indicates that the module terminal voltage measured by the cycler was higher
than the summation value of each cell terminal voltage (measured by individual voltmeter) during
continuous charging. This phenonium might be due to internal resistances existing in the connecting
wires between cells. The difference between cycler measurement and summation voltage became
larger as the charging current increased (0.04 V for 10 A, 0.1 V for 20 A, 0.25 V for 30 A, and 0.5 V
for 40 A). In continuously constant current discharge tests, each cell had very similar 10 A and 20 A
discharging voltage curves. At any timeframe, the difference between the highest and lowest voltage
among the four cells was always no larger than 0.15 V, as the example shows in Figure 9c. The internal
resistances in the connecting wires between cells resulted in that module voltage measured by the
cycler always being lower than the summation value of each cell terminal voltage measured by each
individual voltmeter. As the discharging current increased, the voltage difference between the cycler
measurement and summation became larger (0.05 V for 10 A, 0.2 V for 20 A, 0.3 V for 30 A, and 0.5 V
for 40 A). This discrepancy was clearly observed during the 40 A discharging test shown in Figure 9d.
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Figure 9. Examples of cell and module charging/discharging curves from tests: (a) Individual cell
voltage in 20 A charging; (b) module voltage in 20 A charging; (c) individual cell voltage in 40 A
discharging; (d) module voltage in 40 A discharging.

Comparing the simulated module voltage curves with experimental voltage curves generated
by the summation of four individual cells was conducted for module model validation. The module
voltage curve measured by the cycler was not used for comparison because it was affected by the
resistance of the connecting wires. Figure 10a–d shows that all the simulated curves matched well with
the experimental ones during continuous charging and discharging. An up to 9% discrepancy occurred
at the end of each charging and discharging cycle. Figure 10e and f indicate that simulated pulse
charging and discharging curves matched with the experimental ones, particularly in the beginning of
the cycle. The largest discrepancy was 7.8%, which occurred at the end of the 30 A pulse discharge
curve. The validation of the developed battery module model presented an acceptable discrepancy.

The BMS function was simulated in the battery module model with predefined initial conditions.
In one example of 25 A continuous charge current to the model, Cell #4 reached 4.3 V earlier than
other cells because Cell #4 had a higher initial voltage. Therefore, the BMS opened the cell breaker
and closed the bypass breaker to prevent Cell #4 from being overcharged. The voltage of Cell #4 then
dropped to 4.08 V, as shown in Figure 11a. In the other example of 35 A continuous discharge current,
Cell #4 reached 2.3 V first because it had a lower initial voltage. The BMS opened the cell breaker and
closed the bypass breaker to prevent Cell #4 from being overdischarged. The Cell #4 voltage then
increased back to 2.8 V.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Comparisons of module simulated and experimental charging/discharging curves:
(a) Simulated and test of 20 A charging in module; (b) simulated and test of 20 A discharging
in module; (c) simulated and test of 40 A charging in module; (d) simulated and test of 40 A discharging
in module; (e) simulated and test of 20A pulse charge in module; (f) simulated and test of 30A pulse
discharge in module.

Figure 11. Demonstration of BMS functions: (a) 25 A continuous charging; (b) 35 A
continuous discharging.

4. Twelve-Volt Battery Pack Model

The new designed or future vehicle needs an SLI battery with a higher capacity to support
increasing vehicle accessory or auxiliary loads [35,36]. Additionally, the 12-volt battery pack could
become a building module to form a high-voltage battery pack (such as 48-volts or higher) used in
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electrified vehicle and stationary electric energy storage for renewable energy. An 80 Ah SLT-type
battery pack with 14.4 V nominal voltage is proposed in this study. This battery pack contains four
modules connected in parallel where each module (14.4 V, 20 Ah) has four ePLB-C020 cells connected
in series. A Simulink model of the proposed battery pack is shown in Figure 12.

Figure 12. Simulink model of an 80 Ah SLI-type battery pack.

The model scope displays the battery pack voltage, which is a summation of each module voltage.
Both simulated battery pack and module have the same shapes of constant current charging/discharging
voltage curves. Obviously, the pack has four times charging/discharging durations of the module. The
pack voltage curves have large fluctuations in each pulse during 20 A pulse charge simulation (180
seconds charge, 120 seconds pause, and repeat) and 30 A pulse discharge simulation (180 seconds
discharge, 120 seconds pause, and repeat), as indicated in Figure 13. Figure 14 shows the simulated
discharging curves of a 14.4 V 80 Ah SLI battery with one C-rate (20 A) and two C-rate (40 A) under
five ambient temperatures.

Figure 13. Voltage curves of the 80 Ah SLI battery pack during pulse charging and discharging
simulations: (a) Charging; (b) discharging.
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Figure 14. Simulated discharging curves of a 14.4 V 80 Ah SLI battery under five ambient temperatures:
(a) One C-rate (20 A); (b) two C-rate (40 A).

5. Conclusions

Modelling, simulation, and validation of SLT-type 12-volt lithium-ion polymer battery are
presented in this paper. The MATLAB/Simulink-based modelling starts from using parameters
deduced directly from single cell experiments, which provide convenient integration with actual cell
monitoring, to a module containing four cells connected in series. A validated module model is utilized
to model a high fidelity 80 Ah SLI-type battery pack with 14.4 V nominal voltage. The battery cell
thermal effectiveness and battery management system functions are also considered. The experimental
tests are carried out in an industry-scale setup with a charge/discharge cycler, temperature chamber,
and computer-controlled software for battery testing.

In the cell-level model validation, either with or without thermal effectiveness, the experimental
and the simulated discharging curves match well in the range from 0% to 80% DOD (assuming 100%
DOD at 2.5 V). The discrepancy between each comparison is under 7%. From the range of 80% to
100% DOD, the discrepancy becomes much larger. The module model validation indicates a 9% or
less discrepancy in all continuous and pulse charge/discharge simulation results. An 80 Ah SLI-type
battery pack model with 14.4 V nominal voltage then can be achieved with statistical confidence.

The 12-volt lithium-ion battery packs might be ready for mainstream adoption in automotive
SLI, stop–start engine idling elimination, and UPS applications. Additionally, the 12-volt battery pack
could become a building module to form a high-voltage battery pack (such as 48-volts or higher)
used in electrified vehicle and stationary electric energy storage for renewable energy. The proposed
simulation model provides design guidelines for lithium-ion polymer batteries in electric-drive vehicle
and stationary energy storage applications.
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Abstract: Estimating the state of charge (SOC) of Li-ion batteries is an essential task of battery
management systems for hybrid and electric vehicles. Encouraged by some preliminary results
from the control systems field, the goal of this work is to design and implement in a friendly
real-time MATLAB simulation environment two Li-ion battery SOC estimators, using as a case
study a rechargeable battery of 5.4 Ah cobalt lithium-ion type. The choice of cobalt Li-ion battery
model is motivated by its promising potential for future developments in the HEV/EVs applications.
The model validation is performed using the software package ADVISOR 3.2, widely spread in the
automotive industry. Rigorous performance analysis of both SOC estimators is done in terms of
speed convergence, estimation accuracy and robustness, based on the MATLAB simulation results.
The particularity of this research work is given by the results of its comprehensive and exciting
comparative study that successfully achieves all the goals proposed by the research objectives. In this
scientific research study, a practical MATLAB/Simscape battery model is adopted and validated based
on the results obtained from three different driving cycles tests and is in accordance with the required
specifications. In the new modelling version, it is a simple and accurate model, easy to implement in
real-time and offers beneficial support for the design and MATLAB implementation of both SOC
estimators. Also, the adaptive extended Kalman filter SOC estimation performance is excellent and
comparable to those presented in the state-of-the-art SOC estimation methods analysis.

Keywords: lithium-ion cobalt battery; state of charge; state of energy; adaptive EKF SOC estimation;
linear observer SOC estimation; MATLAB; Simscape

1. Introduction

Currently, hybrid and electric vehicles (EVs) represent a means of transport with low CO2

emissions. Also, soon, the energy required for these vehicles is expected to be provided by clean,
renewable energy sources, such as solar panels. An essential feature of EVs is the recovery of energy
they would lose during braking. Of various energy storage systems (ESS), “electrochemical batteries
are devices that store chemical energy converted then into electricity to power the electric vehicles;
they are preferred over capacitors and flywheels, due to their higher energy density” [1]. Based on a
wide range of powers, three main categories are mentioned in [1], namely “EVs light electric vehicles
with a power demand of less than several kilowatts, sedan vehicles, including electric sedan hybrid
vehicles (HEVs) with a power up to 100 kW and heavy vehicles, used for public transport, with a
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power exceeding 100 kW”. For electric powertrains, the “lithium-ion (Li-ion) battery represents a
good choice for EVs/HEVs” [1]. Today, it is already becoming a reality that, “among the batteries with
low memory effects”, the Li-ion outperforms the most popular nickel-based technologies. They excel
by “lighter weight, high density of energy, long life and low self-discharge rate” [1]. However,
HEVs/EVs continue to be powered for a long time by both nickel-metal hydride (Ni-MH) batteries and
lithium-ion [1–12]. The strengths and weaknesses in “terms of cost, specific energy and power, safety,
life span performance for the main different chemistries” are analyzed in [1]. Hard research work
is being carried out in the field of lithium-ion batteries to increase their energy density, and to take
advantage of the advancement of anode and cathode material technologies. The “common materials
used for the positive electrode are cobalt oxide, manganese oxide, iron phosphate, nickel manganese
cobalt oxide and nickel cobalt aluminum oxide” [1]. Among them, lithium nickel-manganese-cobalt
oxide battery is a suitable choice for EVs since it offers “an excellent trade-off between safety, capacity
and performance” [1]. The most popular cobalt Li-ion (Li-ion Co) battery “used in consumer products
was believed to be not robust enough”; nevertheless, due to its “high energy density”, this “computer
battery” power nowadays “the Tesla Roadster and Smart Fortwo ED small cars”. The behaviour of the
battery changes during deep cycles when “its capacity decreases rapidly” and, it is also sensitive to
“high mechanical, thermal or electrical stresses” [6,10]. Specifically, the power of the battery “decreases
drastically in cold weather”, and “when operating at high temperatures, its performance and life
cycle visibly deteriorate” [10]. To avoid these situations and to extend the battery life, a “cooling
and heating” system is usually installed. [6,10]. Additionally, the lithium-ion battery is “vulnerable
to short-circuiting and overcharging” which could lead to a “combustion reaction, explosion and
fire” as is mentioned in [6,10]. Thus, to “prevent overcharging of batteries in hazardous situations”,
the battery management system (BMS) monitors the battery cells through a “precise voltage control
system” [10]. Particular progress is being made today in “lithium-air” and in “nanotechnologies”
batteries, as they “have a higher energy density due to oxygen being a lighter cathode and a freely
available resource”, as mentioned in [13]. Of course, new technology also means high costs, but battery
prices are gradually declining over time, as the manufacturing capacity of batteries becomes expanding
as well. The Li-ion Co battery is an essential component of BMS which has as its primary function
“improving battery performance, extending its life and operating safely” [3,10–12]. Therefore, it must
continuously monitor, through the sensors, the internal parameters of the battery, such as the SOC,
temperature, cells’ currents balance and voltage [3,10].

SOC as an internal battery state, is a priority task for BMS to monitor, as it severely affects battery
health and battery life [2,3,5–7,10–12]. In references [2,3,6–12] is defined as an “available battery
capacity”, which cannot be measured directly; therefore, an estimation technique is needed to prevent
hazardous situations and to improve battery performance [3,10,11]. Mostly, the battery SOC estimation
techniques are model-based, as is well documented in [7–24].

In conclusion, motivated by some preliminary results of our research, published in [10–12],
this article focuses on the selection of the Li-ion Co battery model, the design and implementation of
two real-time SOC estimators on a MATLAB simulation platform. The other chapters of this paper
are structured as follows. In Section 2 are described the BMS, the selection criteria, the parameters of
the battery and identifies the main disturbances that affect the functionality and the battery life. Also,
is made a detailed analysis of state of the art on SOC measurement and estimation methods reported in
the literature, and at the end of the same section are presented some modelling aspects and validation
of Li-ion Co battery. In Section 3 are designed and implemented in MATLAB an adaptive extended
Kalman filter (AEKF) and a linear observer (LOE) SOC estimators. The MATLAB simulations result,
and rigorous performance analysis are presented at the end of the section. Section 4 is assigned for
discussions, and Section 5 concludes the research paper contributions.
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2. Lithium-Ion Battery-Cell Modelling and Validation

In this section, we focus our attention on the following topics regarding the Li-Ion batteries cells
and packs:

(1) BMS—definition, multitask safety functions, hardware and software components.
(2) Battery selection criteria.
(3) Battery parameters test.
(4) Disturbances that affect battery functionality and the life span.
(5) Measurement and estimation.
(6) Cell modelling and validation test.

2.1. Battery Management System; Definition, Multitask and Safety Functions, Hardware and
Software Components

A most comprehensive and mature Battery Management System (BMS) is an analogue-digital
multitasking safety functions device integrated into the battery control system structure. The main
task is to perform “a variety of safety functions to prevent the voltage, temperature and current in
the battery cells from exceeding the specified limits”, as stated in [16]. The hardware components
include those regarding “the safety circuitry, sensors, data acquisition, charging and discharging,
control, communications and thermal management” [12]. In most automotive applications, the BMS
performs tasks regarding “the safe operation and reliability of the battery, protecting battery cells and
battery systems against damage, as well as battery efficiency and service life” [16]. Besides, it achieves
interfacing, protection, control voltage, fault detection diagnosis and isolation (FDDI) and performance
management functions, as is revealed in [16]. In a centralized configuration, it combines “into a single
printed circuit board (PCB)” up to three module levels into hierarchical architecture, such as at the first
level is located “the battery cell monitoring unit” (“data acquisition”), at the second one is the “module
management unit” (“cell supervisor circuit” and at the highest level is the “package management unit”
(“central management unit”) [16]. Thus, the required tasks can be managed and distributed among
different subcomponents through PCB connected to the battery cells. Moreover, its advanced modular
topology, known as “the master-slave-topology” is an exciting feature [16].

The advantage of this configuration consists of reducing to a minimum “the functions and the
elements of the slaves” such that the “master” to implement only the functions related to the battery
system [16]. One of the most critical parameters controlled by the BMS is the temperature inside the
battery. As it was mentioned in the Introduction section, temperature significantly affects battery
performance and, for most cases, when it exceeds the maximum limits, it leads to “fire and explosion”,
known as “thermal runaway” process; it is an “irreversible process” with a significant heat “dissipated
from the battery cells casing” [16]. In a battery pack, the battery’s cells can be connected in series, parallel
or as mixt combinations to “adapt the voltage level and the battery capacity” to meet the requirements
of an HEV/EV or stationary storage applications. Moreover, the primary constraint of the functionality
of any BMS, regardless of its chemistry, is the maximum cell voltage measured on the cell monitoring
unit. Of the Li-ion batteries, “lithium-iron-phosphate cells are one of the lowest voltage batteries with
a maximum of 3.65 V, while for the widespread nickel-manganese-cobalt cells the maximum voltage is
4.2 V” [16]. At least one “communication interface” uses a “CAN-bus communication line for easy
interfacing with other controllers in the car environment” [16]. Moreover, currently, the “wireless”
devices “operating via wireless networks have promising potential to significantly reduce wiring,
connectors and cable effort during assembly” [16].

However, it is possible to disturb the wireless network by “electromagnetic noise inside the car
and outside entities, which can create safety and security issues” [16].

For each safety issue, it is necessary to prevent “the deep discharge and the overcharge” of the
battery’s cell. Thus, the SOC of the battery pack is one of the most critical parameters estimated that
keeps the “track” of the energy flow and reacts anytime when it is not operating within the specified
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range [16]. If SOC exceeds the limits, an alarm signal shall be sent as soon as possible to the “vehicle
systems” concerned to prevent possible damage. Also, the battery cells need protection from possible
damage generated during a “deep discharge”, such as dangerous “internal short circuits” [16].

Like, in the case of an overload, the information is sent to “propulsion controller” that decides to
“stop charging the battery” anytime if the “maximum limit value is reached” [16]. Among the main
software components of the BMS are highlighted the following [12]:

1. Estimation and monitoring the battery SOC/SOH.
2. The currents balancing algorithm.
3. FDDI estimation techniques.

These components control the hardware operations, receive signals from sensors and “implement
in real-time the estimation of SOC, SOH algorithms and of possible faults using FDDI techniques” [10].
Also, the BMS fulfil the task of estimation and monitoring the battery internal and insulation
resistances [10,11].

Soft battery failures are detected using FDDI estimation techniques and identify defective
components and “abnormal” functionality. In [10] are mentioned the sensor voltage faults (gain and
drift) in measured terminal battery voltage, sensor current faults, sensor temperature faults, and fan
motor faults. The estimation of sensor faults is particularly useful for improving the “reliability” of
BMS [10]. Well, “several faults” have their roots in defective components, “safety component failures
or human errors” [10]. Usually, the fault can be persistent, intermittent, unique or overlap with other
faults, for which its root cause may be a faulty cable connection, a sensor bias (voltage, current) or a
temperature drift [10]. A faulty fan is detected only when a complete dc motor failure occurs.

2.2. Battery Selection Criteria

The main battery selection criteria in all HEV/EVs applications can be found in [10], including
“energy and power density, capacity, weight, size, lifespan, cost and memory effect” features that make
the difference for selecting any battery. Of these, power and capacity are necessary to optimize the
design of the battery, selecting the most suitable cells and package size, able to be adapted to a custom
application [10]. Furthermore, given that most HEVs/EVs operate for different climatic conditions of
harsh operation and stress caused by abuse and vibration, the size of the battery needs to be adequate
to provide a certain amount of energy [10]. Additionally, some constraints can be imposed on the
capacity of the battery in terms of “depth of discharge (DOD), SOC, discharging rate and generative
braking charge”, as is stated in [10].

2.3. Battery Parameters Test

Mainly, the Li-ion battery life span depends significantly on SOC real-time estimation, aging
effects, temperature operating conditions and frequency “of the changes in operating cycles” [10].

Also, internal DC resistance and insulation resistance are among the most critical parameters of the
battery that have a significant impact on battery life. Related to first battery parameter, in reference [10]
the life cycle is defined as “the number of the cycles performed by the battery before its internal
resistance increases 1.3 times or double than its initial value when was new”. The main factors that
affect the internal resistance are revealed in reference [11], including “the conductor and electrolyte
resistances, ionic mobility, temperature effects and changes in SOC”.

Related to the second battery parameter, in reference [10] is stated that the “high voltages
components, electrical motor, battery charger and its auxiliary device deal with a large current and
insulation”; thus, the “insulation issues” are under investigation during the” battery design stage” [10].
The harsh “working conditions” detailed in [11], have a significant impact on “fast aging of the power
cable and insulation materials”, decreasing drastically “the insulation strength” and “endanger the
personnel”. Thus, it needs to ensure safe operating conditions for personnel are required to evaluate
the insulation conditions for entire HEV’s BMS. Many details about the insulation standards can you
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can find in [11]. In conclusion, to ensure the insulation security of on-board BMS, it is necessary to
“detect the insulation resistance and raise the alarm in time” as is mentioned in [10].

2.4. Disturbances that Affect the Battery Operation and the Life Span

In “real life”, the primary disturbances affecting battery operation and life are well-identified
in [10], and include:

Chemical changes—leading to damage to the battery cells.
Active chemicals depletion—take place under different operating conditions, as was mentioned

in the Introduction section.
Temperature—battery operation significantly depends on the temperature, which also affects the

performance of the battery.
Pressure—is affected by the temperature that increases the internal pressure inside the battery cell.
DOD—is related to SOC and depends on operating temperature conditions and discharge rate,

becoming “proportional to the amount of active chemicals” [10].
Charging level limits—the full charge of the battery must be prevented to keep the battery safe.
Charging rate—to keep the battery safe, discharging the battery at high rates should be avoided.
Voltage—to counteract “undesirable chemical reactions” inside the battery cells the values of the

battery terminal voltage must be within a specified range [10].
Cell aging—cell aging is mainly affected by the current flow through the battery cells, as well as

by the heating and cooling processes of the cells.
Coulombic efficiency (CE)—is an important performance indicator of the charging efficiency of

the battery through which the electrons are transferred inside the battery. The CE rating of Li-ion
batteries exceeds 99% and is among the highest values of any rechargeable battery.

Electrolyte loss—it has a significant impact on the capacity of the cells whenever there is a
reduction in the active chemicals inside the battery.

Internal and insulation resistances—their impact was described in the previous subsection.

2.5. Li-Ion Battery SOC—State of the Art of Measurement and Estimation Methods Reported in the Literature

Basically, “the battery model, estimation algorithm selection, and cells balancing” have a high
impact on SOC accuracy and robustness, as is stated in [17]. Also, in [17] the authors investigate
several existing SOC estimation techniques reported in the literature field and analyze their “issues and
challenges”. In reference [17] are well summarized the main Li-ion battery SOC estimation techniques
related to HEVs/EVs field, including:

(1) Conventional direct measurement methods.
(2) Adaptive filter algorithms.
(3) Learning algorithms.
(4) Non-linear observers.
(5) Hybrid methods.

Our investigations are motivated by the lack of a sensor capable of measuring the battery SOC
and therefore it is necessary to estimate it. Several measurement methods and estimation techniques
are well documented and summarized in [12,16–18].

2.5.1. Conventional Direct Measurement Methods

(1) Laboratory tests and chemistry dependent methods. In the literature are reported the main four
cell modelling methods that are briefly presented in [10]. Among these we highlight the following:

• A laboratory method for determining SOC—even if it is not suitable for the field of
HEV applications, it is still one of “the most accurate SOC measurement” methods [10].
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This method consists of completely discharging the battery, recording the “discharged
ampere-hours” and then determining the “remaining cell capacity available”.

• Chemistry-dependent methods for other chemistries—unsuitable for Li-ion batteries.
• Open-circuit voltage (OCV) method. This method uses “the stable electromotive force (EMF)

of the open circuit” and the SOC relationship to “estimate the SOC value”, as is stated in [17].
In [10] are presented in detail some reasons why this method is inadequate for the dynamic
estimation of the Li-ion battery SOC. Moreover, since its OCV = f (SOC) characteristic is
almost flat for a considerably broad range of SOC values, it isn’t easy in this approach to
estimate SOC more accurately [18].

• Terminal voltage measurement method. The terminal voltage of the Li-ion battery is “based
on the voltage drops on the internal impedances when the battery is discharging. Thus the
EMF of the battery is proportional to the terminal voltage” [18]. Moreover, since the “EMF of
the battery is approximately linearly proportional to the battery SOC, the terminal voltage is
also approximately linearly proportional to SOC” [18]. The “disadvantage of this approach
is a large estimated error in the terminal voltage of the battery at the end of battery discharge;
it is due to a sharp drop of the terminal voltage” [18].

(2) Electro-chemical method. In this approach, it is “estimated the average amount of Li concentration
in the positive or negative electrodes” using “partial differential equations“ [17]. These models
may achieve an “accurate terminal voltage prediction”, but “it would be difficult to measure all
the required physical parameters on a cell-by-cell basis in a high-volume consumer product” [8].

(3) Impedance direct measurement method. In this approach, the “measurements provide knowledge
of several parameters, the magnitudes of which may depend on the SOC of the battery” [18].
Since the “battery impedance parameters and their variations with SOC are not unique for all
battery systems” it is required many impedance experiments to identify its parameters [18].

(4) SOC Estimation spectroscopy method. This method uses the battery impedance and
internal resistance “to describe the intrinsic electric characteristic under any current excitation,
if temperature, SOC and SOH are fixed”, but “it is not suitable for use in HEVs/EVs” applications [17].
The reason you can find in the same reference [17]. According to [17], “it is tough to measure online
electrical impedance spectroscopy over a wide range of AC frequencies at the different charge and
discharge currents, especially when the SOC and impedance relationship is not stable, and the
cost is expensive”. Also, is mentioned in the previous subsection that the internal resistance of the
Li-ion battery is measured in direct current (DC) and requires the “value of the voltage and current
at a small-time interval” [17]. Then, the battery SOC “may be indirectly inferred by measuring
present battery cell impedance” [10] and the battery internal resistance correlated “with known
impedances at various SOC levels” [8,18].

(5) Ampere-hour counting method. Based on this method is calculated “the amount of charge that
flows in and out of the battery” [10]. In this approach, the SOC is estimated directly in an open loop,
so the SOC estimate is not accurate due to the current measurement errors. Instead, in a closed
loop, the same method can estimate the SOC more accurate [8,10]. The SOC estimate accuracy
degrades the accuracy significantly when the battery is not “fully discharged after a complete
charging cycle”. Since in the most cases, the battery doesn’t perform a full charge followed
by a full discharge, “a significant drift is difficult to avoid”, and thus, since “the signal drifts,
the efficiency of coulomb counting decreases” [10]. Also, the Ampere-hour (Ah) counting method
becomes “less effective when the battery self-discharges is subject to temperature changes” [10].
The “unknown initial value of battery SOC, capacity fading, self-discharge rate, and current
sensor errors are the main sources of errors for Ah counting method” [17]. The presence of “an
accurate measurement sensor and a predefined calibration point can overcome the method’s
drawbacks” [17]. Additionally, the estimation error “can be maintained at a low value by defining
a correction factor and a re-calibration point” [10]. It is worth mentioning that this method is more
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accurate compared to other SOC calculation methods [10,17]. The most significant advantage of
the Ampere-hour counting method is its low power computation cost, and it is secure and reliable
when the sensor current measurements are accurate, and a re-calibration point is accessible [10,17].

(6) Model-based method. Since the “previous mentioned methods are not appropriate for online
SOC estimation and to achieve an accurate online SOC estimate value, suitable battery models
need to be developed” [17]. Among the most suitable models for online SOC estimation are
the electrochemical and equivalent circuit models (ECMs) [10,11,17]. More details about ECMs
models you can find in [3,4,7–12,17]. In closing, “an ideal ECM should be able to simulate the
actual battery terminal voltage to any charging or discharging battery input current”, as is stated
in [17].

2.5.2. Adaptive Filter Estimators

The adaptive filter estimators improve the “accuracy and the robustness of the battery SOC
estimation significantly and reduce” drastically the impact of measurement and process noises on
the battery model [17], such those developed in [7–12,14,18]. Among the Kalman filtering estimation
techniques in the field literature the Kalman filter [KF], extended Kalman filter (EKF) [4,7–9,11,17,18],
adaptive Kalman filter (AEKF) [17], fading Kalman filter (FKF) [17], unscented Kalman filter
(UKF) [12,14,18], sigma-point Kalman filter (SPKF) [17] and particle filter (PF) are reported [17].

The KF was developed by Rudolph Kalman in 1960 and currently has become the most popular
estimation algorithm. It is an “optimum state estimator and intelligent tool” for linear systems [17].
Its EKF version is also a KF applied to the linearized dynamics of a non-linear system by using the
first-order Taylor’s series expansion around the current value of the state estimate in each step of the
algorithm, as developed in the next section and in [7–9,17]. A combination of KF state estimator and
Ah Coulomb counting method can be used to “compensate for the non-ideal factors that can prolong
the operation of the battery” [17]. The KF SOC estimator is the most used since it can estimate the
battery SOC more accurately even if when the battery is affected by external disturbances mentioned
in previous subsections.

Although, if the dynamics of Li-ion battery model are “highly nonlinear”, “linearization error may
occur due to the lack of accuracy in the first-order Taylor series expansion under a highly non-linear
conditions” [17]. The simplicity of the SOC EKF estimator design and implementation motivates
researchers to apply this estimation technique for different Li-ion battery models, as in [4,7–9,11,16–24].
In [16] an exciting research project that performs a detailed and rigorous analysis of state of the art on
Li-ion BMSs, including also a detailed presentation of the main SOC estimation techniques, among
them the adaptive Kalman filtering techniques, is presented. Similarly, [17] presents an intense study of
state of the art on Li-ion battery SOC estimation for electric vehicles that completely reviews of all the
existing SOC direct measurement and estimation techniques reported in the field literature. Similarly,
in [18] a brief review describing the SOC estimating methods for the same Li-based batteries is provided.
In [19], the authors proposed a dual EKF for state and parameter estimation for a first-order EMC RC
Li-ion battery model. The SOC simulation results reveal an excellent accuracy of the SOC estimate,
but the robustness algorithm robustness is not investigated. Comparing the SOC simulation results
obtained in current research work and in [19], one can observe an excellent accuracy, and the robustness
of the algorithm developed in our research for several scenarios. In [20], the authors use an improved
non-linear second-order RC EMC battery model and based on this model have developed an EKF
algorithm to estimate the Li-ion battery SOC. The simulations are conducted on the MATLAB platform
using two different driving cycles current profiles, namely Urban Dynamometer Driving Schedule
(UDDS) and HWFET. The results are compared to those obtained by a Coulomb counting method
and reveal an excellent SOC accuracy, but degradation is visible in the robustness performance to
changes of battery model parameters values provided by two datasets, compared to the SOC estimator
robustness performance designed in our research, for many scenarios introduced in Section 3. In [21]
is developed a new application “model-based fault diagnosis scheme to detect and isolate the faults
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(FDDI) of the current and voltage sensors applied in the series battery pack based on an adaptive
extended Kalman filter (AEKF)”. The AEKF algorithm is designed to estimate the magnitude of
the faults. The FDDI scheme is validated in the MATLAB/Simulink platform, and the result of the
simulations demonstrates the “effectiveness” of the proposed FDDI for “various fault scenarios using
the “real-world driving cycles”.

The AEKF is an EKF with an adaptive feature, i.e., in the new design the EKF algorithm updates
at each step the process and measurement noise covariance matrices to increase the accuracy of EKF
SOC estimation. The same feature is also added to the EKF algorithm developed in our research
that is very useful to increase the accuracy and the robustness of the SOC EKF estimator. In fact,
by updating the noise covariance matrices, a new retuning procedure of the EKF parameters is not
more required unlike the time consuming “trial and error” strategy. In the reference [21] you can see
the effectiveness of the AEKF algorithm that estimates accurately four injected faults, the first is a fault
assigned to a sensor current, and the other three faults are assigned to three different voltage sensors.
The robustness of the FDDI technique is demonstrated for a 20% change in the SOC initial value and
a current profile corresponding to a UDDS driving cycle. Unfortunately, the MATLAB simulations
results don’t show the SOC estimated values, very useful to analyze the impact of each fault on the
SOC estimation performance. In the reference [22] “an experimental approach is proposed for directly
determining battery parameters as a function of physical quantities”. The battery model’s parameters
are dependent on SOC and of the discharge C-rate. This approach is exciting since the battery model’s
parameters “can be expressed by regression equations in the model” to derive “a continuous-discrete
dual EKF SOC state and parameters estimates” [22]. A “standard correction step” of the EKF algorithm
is applied to “increase the accuracy of the estimated battery’s parameters” [22]. The EKF simulation
results with the experimental results for several operating scenarios reveal a high accuracy and the
robustness of the estimator for correct identification of the battery parameters. In the reference [23] an
adaptive fading EKF (AFEKF) is proposed for Li-ion battery SOC estimation accuracy and convergence
speed. The AFEKF SOC estimator combines both structures AEKF and a fading EKF (FEKF). A FEKF
“adopts a variable forgetting factor least square (VVFFLS)” to identify the Li-ion battery parameters [23].
The AFEKF estimator can reduce the SOC estimation error of less than 2%. Also, in our research,
we add the same feature to the proposed AEKF SOC estimator, and the MATLAB simulation results
reveal a high SOC estimation accuracy and robustness for many scenarios including three driving
cycles tests UDDS, FTP and EPA-UDDS. Comparing the MATLAB simulation results obtained in [23]
to those obtained in our research work, for same UDDS cycle, you can notify that the SOC estimator
designed in [23] performs better in terms of accuracy. Instead, the proposed estimator in the current
research performs better in terms of robustness and convergence speed. The speed convergence and
robustness performance are revealed for a 20% decrease in SOC initial value in [23] and 30% in our
case study.

In [24] an exciting online EKF SOC Li-ion internal resistance parameter estimator to “overcome
defects from simplistic battery models” is developed. The battery is a first-order ECM RC model for
which the internal resistance is dependent on SOC, temperature and aging effects.

For an accurate real-time internal resistance, the EKF estimated values “can be distinguished well”
and also “improve the accuracy of SOC and SOH estimation” [24]. The internal resistance test device
consists of a dc power supply source, a dc voltmeter, a pulse control switch and a microcontroller unit
that controls the testing procedure, the dc power source, the switching time and voltage measurement.
The EKF estimator is conceived as parameter estimator. Hence, its model is like for EKF state estimator.
Still, in this case, the internal resistance dynamic is given by a slow varying first-order differential
equation that has injected a Gaussian process noise. The EKF estimator can also estimate at the same time
the SOC of Li-ion battery; thus, it is designed as a dual state-parameter EKF algorithm. The simulation
results indicate an excellent accuracy of SOC estimate, for “a repeated current constant-constant voltage
of 3200 mA discharge current and 1600 mA charging current, and the estimation error is smaller than
3%” [24]. Unfortunately, a new estimation result from a performance comparison is not possible since
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the input current profiles used in current research work (UDDS, FTP and EPA-UDDS) are entirely
different than the current profile used in [24].

A viable alternative to EKF SOC estimator can be the unscented Kalman filter (UKF) and sigma
point Kalman filter (SPKF) that avoid the linearization of nonlinear dynamics of the battery model;
thus, they are more accurate and robust than EKF [10,11,14,17]. Also, a particle filter (FP) method is
used to estimate the states, estimating the “probability density function” of a nonlinear dynamics of
the Li-ion battery model, using a Monte-Carlo simulation technique, such as developed in [12,17].

2.5.3. Learning Methods

In this category the artificial neural networks (ANN), support vector machine (SVM), extreme
machine learning (ELM), genetic algorithm (GA) and fuzzy logic (FL), well documented in [17],
can be highlighted.

2.5.4. Linear and Nonlinear Observers

The nonlinear observers (NLO), sliding mode observer (SMO) and proportional-integral observer
(PIO) are proposed to estimate the SOC of Li-ion batteries, and a detailed description can be found
in [17].

2.5.5. Hybrid Methods

The hybrid method is a combination of two or more algorithms’ structures, such as an EKF-Ah
algorithm, an adaptive EKF (AEKF) and a support vector machine (SVM), like the one developed
in [17].

2.6. Li-Ion Battery Cell—Model Selection, Validation and Case Study

In this section, we are focused on the generic Li-ion Co cell model description in a bidimensional
continuous and discrete-time state-space representation. Since “the new technologies heavily depend
on battery packs, it is therefore important to develop accurate battery cell models that can conveniently
be used with simulators of power systems and on-board power electronic systems”, such is mentioned
in [25]. The Li-ion Co battery model adopted in this research paper is a generic MATLAB/Simscape
nonlinear model suggested in [25] and depicted in Figure 1.

Figure 1. The non-linear Li-ion Co battery generic model (see [25]). (it is common picture met in the
literature, it is not copyright issues!).

In this schematic the battery is modeled by a controlled voltage source E, which is a no-load
voltage (open circuit voltage (OCV)) [25], given by:

E = OCV = f(E0, K, Qmax, t) = E0 −K
Qmax

∫
idt

Qmax −
∫

idt
+ Aexpe(−Bexp

∫
idt) (1)
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On the internal resistance is dissipated the power losses Ploss, useful to design the thermal model
in the next section to simulate the temperature effects on the battery, given by:

Ploss(t) = Rinti2(t) (2)

The battery terminal voltage Vbatt is related to OCV according to following highly non-linear
dynamic relationship:

Vbatt(t) = E−Rinti(t) = E0 −K
Qmax

∫
idt

Qmax −
∫

idt
+ Aexpe(−Bexp

∫
idt) −Rinti(t), (3)

where the meaning of all the variables and coefficients can be found in Table 1. Additionally, we attach
the Coulomb counting equation to define the SOC of the battery, which is an important battery internal
state supervised by BMS. It delivers a valuable “feedback about the state of health of the battery (SOH)
and its safe operation”, as is mentioned in [10]. The battery SOC is defined in [10] as:

SOC =
Remaining capacity

Rated capacity
(4)

Table 1. Description of Li-ion cobalt voltage model variables.

Variable Description Unit Value

E No-load voltage (OCV) V -
E0 Battery constant voltage V 8.0259 volts
K Polarization voltage V 0.001834 volts

Qrated Rated battery capacity Ah 5.4 Ampere-hours
Aexp Exponential zone amplitude V 0.35904 volts
Bexp Exponential zone time constant inverse (Ah)−1 3/(Ah) = 3/(3600As)
Rint Internal resistance of the battery Ω 0.0133 ohms

i(t) = Ibatt

Battery direct current (dc) input profile
If i(t) ≥ 0 is discharging current

If i(t) < 0 is charging current
A

UDDS,
EPA UDDS, FTP, constant
discharge/charge current

Vbatt Battery terminal voltage V Vnom = 7.4 V∫
idt Actual battery charge Ah -

SOC Battery state of charge unitless 0–100%
OCV Battery open circuit voltage (no-load voltage) V It is function of battery SOC

ηdisch, ηch
Coulombic efficiency coefficients for

discharging and charging cycles unitless ηdisch= 0.795
ηch= 0.875

The battery SOC is 100% for a battery fully charged and, 0% for a battery fully empty. Typically,
the battery SOC can be defined for a positive current discharging cycle as:

SOC(t) = 100(1− ηdisch
Qrated

t∫
0

i(τ)dτ) (%), i(τ) ≥ 0 (5)

where ηdisch is the Coulombic efficiency of the discharging cycle, while Qmax represents the maximum
capacity of the battery capacity, typically 1.05Qrated, close to those provided in the battery manufacturer’s
specs. The relation (5) can be written as a first order differential equation that, together with Equations (1)
and (3), will be particularly useful for SOC state estimation in the next section of this research paper,
i.e.:

d
dt
(SOC(t)) = −100

ηdisch × i(t)
Qrated

, i(t) ≥ 0 (6)

It is worth mentioning that for a discharging cycle, the battery current in (6) is positive and for a
charging cycle it is negative.
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2.6.1. Li-Ion Cobalt MATLAB Simscape Model

A full representation of the generic battery model, dependent on the temperature and aging
effects, is developed in MathWorks (Natick, MA, USA; www.mathworks.com) in the MATLAB
R2019b/Simulink/Simscape/Power Systems/Extra Sources Library-Documentation. The MATLAB
Simscape Li-ion cobalt battery cell specifications are shown in Table 2.

Table 2. Li-ion Cobalt cell specifications.

Lithium-Ion Battery Cell LiCoO2

Rated capacity (Ah) 5.4
Maximum capacity (Ah) 5.6

Nominal voltage (V) 7.4
Cut-off voltage (V) 5.25

Fully charged voltage (V) 8.307
Nominal discharge current (A) 1.1

Exponential zone [Voltage (V) Capacity (Ah)] [7.91]
Internal resistance (ohms) 0.0133

Capacity (Ah) at nominal voltage 5.2

The MATLAB Simscape model of a generic battery is beneficial to set up a particular choice of
battery chemistry and operation conditions that take into consideration the thermal model of the battery
(internal and environmental temperatures) and also its aging effects. The battery terminal voltage,
current and SOC can be visualized to monitor and control the battery SOH condition. The nominal
current discharge characteristic according to a choice of the Li-ion Co battery having a nominal capacity
of 5.4 Ah and a nominal voltage of 7.4 V is shown in Figure 2.

(a) (b) 

Figure 2. Nominal discharge characteristic of Li-ion Co at 0.2037C-rate (1.1 A)-MATLAB generic model.
(a) In hours (minutes) (b) In Ampere-hours (Ah).

This characteristic corresponds to a constant discharge current of 0, 2037C-rate (0.2037 × 5.4 Ah =
1.1 A). The first battery characteristic from the top side of Figure 2 provides useful information about
the estimated coefficients of the open-circuit voltage (OCV) included in Table 1, i.e., E0 = 8.0259 V,
Rint = 0.01333 Ω, K = 0.001834 V, Aexp = 0.35904 V, and Bexp = 3 (Ah)-1. To show the evolution of the
battery terminal voltage for different input current profiles, at the bottom of same Figure 2 other three
nominal current discharge characteristics for three constant discharging currents (6.5, 13 and 32.5 A)
are shown. These characteristics reveal that for the highest constant discharging current of 32.5 A,
the discharging time of the battery decreases drastically to 10 min compared to 54 min corresponding
to the smallest discharging current of 6.5 A. The same trend can be seen in Figure 3, where for a
nominal discharging constant current of 1.08 A the Li-ion Co battery needs almost six hours to be fully
discharged. The Simscape model of a generic battery set up for a Li-ion Co battery is shown in Figure 4.
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Figure 3. Nominal characteristic for a constant current discharge of 1.08 A—details.

Figure 4. The Simscape model of the generic 5.4 Ah and 7.4 V Li-ion Co battery (without temperature
and aging effects).

2.6.2. Li-Ion Cobalt Model in Continuous Time State Space Representation

The purpose of this section is to select and design the most suitable Li-ion Co battery model,
which excels in simplicity, accuracy and is easy to implement in the MATLAB real-time simulation
environment. Specifically, an accurate battery model is useful to develop in the following section the
proposed real-time SOC estimators, which must also be of high precision and robustness. Related to
SOC is the DOD, defined in [10] as:

DOD(t) = 100(1− SOC(t)) (%) (7)

The SOH is another internal battery derived parameter defined in [10] “as the ratio of the maximum
charge capacity of an aged battery to the maximum charge capacity when this battery was new”,
as is also mentioned in [2,26]. The “actual operating life of the battery is affected by the charging
and discharging rates, DOD, and by the temperature effects” [10]. Also, in [10] is stated that “the
higher the DOD is, the shorter is the life cycle”, and to attain “a higher life cycle, a larger battery is
required to be used for a lower DOD during normal operating conditions”, as is stated in [2,11,12].
Another important parameter for BMS in HEVs/EVs is the state of energy (SOE). From “engineering
perspective, the SOE is more useful since it takes battery terminal voltage into account, which can
predict the available energy for HEVs/EVs” [26].

While SOC indicates “the remaining capacity of the battery, the SOE indicates the remaining
energy stored in the battery”, as is defined in [26]:

SOE(t) = 100(1− ηsdisch
Ea

t∫
0

Vbatt(τ)iL(τ)dτ) (%), iL(τ) ≥ 0 (8)

or equivalent to:
d
dt
(SOE(t)) = −100

ηsdischVbatt(t) × iL(t)
Ea

, iL(t) ≥ 0 (9)
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where Ea, iL(t), ηsdisch represent the available battery energy, the load current and the “battery energy
efficiency” respectively [26]. The input-output battery model Equation (1) is a simplified version of the
original Shepherd’s combined model that follows the development from [25] and [27–29] replacing:

E(t) = E0 −K
Qmax

∫
idt

Qmax −
∫

idt
+ Ae(−B 1

Qmax

∫
idt) (10)

by:

E(t) = E0 − K
∫

idt
SOC(t)

+ Ae(−B(1−SOC(t))) (11)

where A and B are two empirical parameters that are determined by a curve fitting procedure.
The advantage of new version is to get a simplified OCV nonlinear model dependent only on SOC,
as is developed in [26].

In the case study, we follow the development from [25] corrected by making small changes to increase
the model accuracy, as is suggested in [26]. The development from [25] has the advantage to determine
the battery model parameters by extracting the values based on simple algebraic manipulations, directly
from the battery type OCV curve specifications provided by manufactures [7,10–12,25]. According to
(11), the input-output battery generic model Equation (3) in continuous time becomes:

Vbatt(t) = E−Rinti(t) = E0 − K
∫

i(t)dt
SOC(t)

+ Aexpe(−BexpQmax(1−SOC(t))) −Rinti(t), (12)

Let’s now assign two state variables to the description (12):

x1(t) = SOC, x2(t) = Aexpe((−BexpQrated/ηSOC)×(1−x1(t)))

u(t) = Ibat(t) is the input current profile
y(t) = Vbat(t), is the battery terminal voltage

(13)

Therefore, a new modelling version is developed for designing and implementing the Li-ion Co
battery model. In the new version, the model is described in continuous time in a two-dimensional
representation of the state space as:

dx1(t)
dt = −( ηSOC

Qrated
) × u(t)

dx2(t)
dt = −Bexpx2(t) × u(t)

dx3(t)
dt = −( ηSOE

Ea
) ×Vbatt(t) × u(t)

y(t) = E0 − K
∫

i(t)dt
x1(t)

+ x2(t) −Rintu(t)

(14)

and it is implemented in Simulink in the next subsection. The advantage of this representation is the
model simplicity, its accuracy and easy to implement in real time.

2.6.3. Li-Ion Model in Discrete Time State Space Representation

To design both SOC estimators based on the adopted generic Li-ion Co battery model, the state
space Equation (13) will be converted in discrete time representation. For SOC estimation purpose,
a full Li-ion Co model in discrete time space representation is given in (15) and (16):

x1(k + 1) = x1(k) − Ts(
ηSOC
Qrated

) × u(k)
x2(k + 1) = x2(k) − TsBexpx2(k) × u(k)

(15)

y(k) = E0 − Ku(k)Δt
x1(k)

+ x2(k) −Rintu(k) (16)

229



Energies 2020, 13, 2749

x1(k) � x1(kTs) , x2(k) � x2(kTs) , u(k) � u(kTs),
y(k) � y(kTs), k ∈ Z+

where k ∈ Z+, is a positive integer number, Δt = Ts is the sampling time, set to 1 s in all MATLAB
simulations.

2.6.4. Model Validation on ADVISOR MATLAB Integrated Platform

The validation of the Li-ion Co battery model is tested by using one or more driving cycles under
different realistic driving conditions required for battery simulation tests. A collection of such of
driving cycles profiles is stored in a large database of the US National Renewable Energy Laboratory
(NREL) Advanced Simulator (ADVISOR) integrated into a MATLAB simulation environment [10].
The ADVISOR simulator is recommended by the excellent results obtained in [10] and by the fact that
so far it has been one of the most used software design tools in the HEV/EV automotive industry,
as mentioned in [11,29–32]. More details about this integrated ADVISOR MATLAB platform can be
found in [10]. Among the three options of ADVISOR input battery models we choose a NREL Rint
internal resistance installed on a hypothetical car model selected from the ADVISOR database, necessary
for the validation of the Li-ion Co battery proposed in the case study, such in [10]. The proposed Li-ion
Co battery model given by the Equation (14) and integrated into an HEV BMS structure is validated by
using three of the most common driving cycles tests provided by Simulink and ADVISOR database,
such as an Urban Dynamometer Driving Schedule (UDDS), Environmental Protection Agency (EPA)
UDDS, and FTP/FTP-75 [10]. The Li-ion Co battery SOC tests result compared to those obtained by an
NREL’s internal resistance Rint lithium-ion battery model SOC installed on a midsize hypothetical car,
for the same driving cycles tests and in the same initial conditions, like in [10] for a UDDS driving cycle
test. Like [10], the hypothetical midsize car has almost the same characteristics. The “midsize town
car is selected as an input vehicle on the integrated platform under same standard initial conditions
SOCini = 70%, modelled in Simulink” in Figure A1 (Appendix A), and shown as an “ADVISOR page
setup” in Figure 5 [10]. An Urban Dynamometer Driving Schedule (UDDS) test is used to validate the
battery model in this section and the other two driving cycles tests, FTP (FTP-75), and UDDS-EPA are
used in Section 3 for validation of the MATLAB SOC simulations results for both proposed estimators.
The UDDS driving cycle profile in (mph) and the discharging battery current (A) are represented on
the top and the bottom graphs from the same Figure 6 [10].

For performance comparison purposes, Figure 7 shows the corresponding SOC curves for the
proposed Li-ion Co battery model design (red colour) and the ADVISOR SOC estimator (blue colour)
on the same graph. The SOC simulations are performed for the same initial conditions (SOCini = 70%)
and reveal an excellent SOC accuracy and an estimation error less than 2% between the battery model
selection and NREL ADVISOR Rint battery model. The result confirmed by the second source from the
first line of Table 3 (battery model vs. ADVISOR Rint model), for which the mean absolute error (MAE)
is 0.0658. Other two sources can confirm the model validation by performing same comparisons for
UDDS-EPA driving cycle test that will be developed in Section 3.3.2 with the statistical results shown
in Table A1 from Appendix A. The third FTP driving cycle test will be developed in Section 3.3.3 and
statistical results are shown in Table A2 from the same Appendix A.

The results reveal an estimate value less than 2%, MAE = 0.0235 (Table A1) and MAE = 0.0285
(Table A2) respectively. The MATLAB simulation results of all three tests for UDDS, UDDS-EPA and
FTP driving cycles, for same initial conditions show an excellent accuracy for adopted battery model
versus ADVISOR Rint and an estimation error less than 2%, confirmed by the results from Table 3,
Tables A1 and A2 from Appendix A. Since from three different sources, the simulation results converge
to an average error of less than 2% and show an accurate estimate value, we can conclude that these
results validate the Li-ion Co battery. This outstanding result is encouraging to use the validated
proposed battery model as a support for building “robust, accurate and reliable real-time battery
estimators”, both developed in Section 3. Further, in Figure A2a,b shown in Appendix A, you can see
the statistics obtained for the SOC generated by the proposed Li-ion Co battery model and for SOC
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estimated by the generic ADVISOR Rint Li-battery model. Figure 8 shows the Simulink model of the
adopted generic model that implements the set of Equation (13).

 
Figure 5. The setup ADVISOR page of the input HEV midsize car.

 

Figure 6. UDDS driving cycle input profile.
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Figure 7. The UDDS test on the ADVISOR 3.2 integrated MATLAB platform. SOC battery model
versus Li-ion ADVISOR battery SOC.

 
Figure 8. Simulink generic selected battery model.

The block from the top side of Simulink diagram calculates the SOC, OCV and battery terminal
voltage Vbatt, shown in detail in Figure 9a,b. For a constant discharging current of 1C-rate (5.4 A),
the battery terminal voltage, the OCV-SOC battery characteristic, and SOC are represented in
Figure 10a–d. Furthermore, the adopted battery model generates the SOC that is shown in Figure 11a–c
for three different driving conditions, namely for a UDDS, an FTP-75 and a constant 1C-rate (5.4 A)
discharging current.

It is worth mentioning that a 100 Ah rated pack capacity Li-ion battery model is integrated
in a MATLAB-Simulink SimPower Systems library, very helpful to be used for designing and
implementation of different HEVs and EVs powertrains configurations, such is suggested in the EV
application shown in Figure A3 from Appendix A.
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(a) 

 
(b) 

Figure 9. (a) The detailed generic battery Simulink model; (b) The generic battery terminal voltage.

  
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. The battery model full discharging cycle at 1C-rate (5.4 A); (a) battery terminal voltage;
(b) OCV vs. SOC characteristic; (c) terminal voltage vs. SOC; (d) battery SOC.

 
(a) 

 
(b) 

 
(c) 

Figure 11. Battery SOC for three different current profiles; (a) For UDDS driving cycle current profile;
(b) For a FTP-75 current profile; (c) for a 1C-rate (5.4 A) discharging current profile.
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2.7. Li-Ion Cobalt Battery Thermal Model

The dynamics of thermal model block is described by the following equation:

mcp
dTcell(t)

dt
= hA(Tamb − Tcell(t)) + RintI2(t) (17)

where m—the mass of the battery cell [kg]; cp—the specific heat capacity [J/molK]; S—the surface area
for heat exchange [m2]; Tcell(t)—the variable temperature of the battery cell [K]; Tamb—the ambient
temperature [K]; Rint—the value of internal resistance of the battery cell [Ω]; I(t)—the input charging
and discharging profile current [A].

For simulation purposes, the battery temperature profile and the robustness of the proposed SOC
battery estimators, are tested for the following approximative values, closed to a commercial battery
type ICP 18,650 series:

S = 4.4E− 3 [m2], m = 0.043 [kg], cp = 925 [J/kgK]

h = 5 [w], Rint = 0.01333 [Ω], Tini = 293.15 [K]

An accurate simplified thermal model is given in MATLAB R2019b library, at MATLAB/Simulink/
Simscape/Specialized Power Systems/Electric Drives/Extra Sources/Battery, for a lithium-ion generic
battery model, implemented in Simulink as is shown in Figure 12:

Tcell(s) =
RthPloss + Tamb

Tcs + 1
(18)

where Tcell(s)—the internal temperature of the cell [◦K] in complex s-domain (the Laplace transform).
Rth—thermal resistance, cell to ambient (◦C/W). Tc—thermal time constant, cell to ambient (s).
Ploss � RintI2-the overall heat generated (W) during the charge or discharge process [w]. Tamb—the
ambient temperature set up by the user [K].

Figure 12. The detailed Simulink diagram of the thermal model block.

The internal resistance and the polarization constant Rint(T) and K(T) respectively vary with
respect to temperature according to Arrhenius relationships:

K(T)= K|Tref
exp(α( 1

Tcell
− 1

Tref
)),α = E

RT
Rint(T) = Rint|Tref exp(β( 1

Tcell
− 1

Tref
)), β = E

RT
(19)
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where Tref—the nominal ambient temperature, in K. α—the Arrhenius rate constant for the polarization
resistance. β—the Arrhenius rate constant for the internal resistance.

For simulation purpose for implemented thermal block in Simulink, we use the following
approximative values for the Li-ion battery thermal model parameters:

Rth = 6 [◦C], Tc = 2000 [s],α = β = E
R , E = 20 [kJ/mol] − activation energy

R = 8.314 [J/molK] − Boltzman constant

The ambient temperature profile and the output temperature of the Simulink thermal model
described by the Equations (18) and (19) are shown in Figure 13a,b, respectively. The evolution of the
internal resistance of the battery cell Rint (T) and of polarization constant K(T), at room temperature
Tref = 293.15 [K], is shown in Figure 14a,b.

  
(a) (b) 

Figure 13. (a) The ambient temperature profile; (b) The output temperature of the thermal model block.

  
(a) (b) 

Figure 14. (a) The internal battery Rint at ambient temperature (20 degC); (b) The polarization constant
at ambient temperature (20 degC).

The output temperature of the thermal model for changes in ambient temperature is shown in
Figure A4a, and the effects on internal battery resistance Rint and polarization constant K are presented
in Figure A4b,c, shown in Appendix A.

3. Li-Ion Co Battery State of Charge Estimation Algorithms

Almost all BMS HEV/EV systems in the automotive industry have integrated emergency systems
that indicate the available battery capacity. As the SOC is not directly measured, its estimation is
required. For estimating SOC, several methods for estimating adaptive filtering are developed in
the field literature, among which the Kalman filters are the most used. More details about battery
modelling, linear and nonlinear Kalman filter estimators, especially for state and parameter estimation,
can be found in [4,7–12,14,15,26–37]. For performance comparison purposes, in this actual study,
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we develop two well-suited real-time SOC estimators, namely an Adaptive Extended Kalman Filter
(AEKF) with the process and measurement noises correction, and a linear observer estimator (LOE)
with a constant Luenberger gain.

3.1. Li-Ion Cobalt Battery-Adaptive Extended Kalman Filter SOC Estimator

As we mentioned in the previous section, the most suitable method for estimating SOC in real-time
is the Coulomb counting method. The main disadvantage of this estimation technique is the difficulty
of “predicting” the most appropriate initial SOC value of the battery, which could lead to an increase
in time of the SOC estimation error and to a new “SOC calibration” based on “OCV measurement” [5].
However, “it is tough to measure the battery OCV in real-time and, consequently, a small OCV error
may lead to a significant battery SOC difference”, as is stated in [5].

Thus, one is thinking of improving the Coulomb metering method, a viable alternative is using an
EKF SOC real-time estimator, suitable for a wide range of HEV/EVs applications. Besides, the adopted
version of an adaptive EKF (AEKF) real-time estimator combines the advantages of both the Coulomb
counting method and battery OCV calibration [5]. More precisely, the AEKF SOC estimator is an EKF,
as is developed in detail in [7,8,10] with the performance improved in [5,30].

Additionally, the AEKF algorithm makes a recursive correction of the Gaussian process and
measurement noises that simplifies the tuning procedure significantly. In [17], the correction is beneficial
to calculate the Kalman gain of the AEKF SOC estimator, which leads to optimal results for the SOC
estimation, as is shown in [5]. Furthermore, AEKF algorithm can improve its estimation performance
by using “a fading memory factor to increase the adaptiveness for the modelling errors and the
uncertainty of Li-ion battery SOC estimation, as well as to give more credibility to the measurements”,
as is stated in [5,7].

As we mentioned in the previous section, the AEKF requires a dynamic state-space representation
model of Li-ion Co battery, in order “to develop a simulation model for the emulation of a nonlinear
battery” behaviour [17]. The AEKF algorithm is based on the linearized model of the battery, as is
developed in [5,7–10,17,26]. In our research paper, for the case study, we adopt the AEKF algorithm
developed in [17] and is presented briefly in Table 3. For more details, the reader can refer to the
papers [7–9]. The discrete-time state-space representation of the generic Li-ion Co battery model,
required to design and implement in real-time the AEKF SOC estimator, is given by the Equations (20)
and (21), further simplified to a unidimensional SOC state-space discrete-time representation:

x1(k + 1) = x1(k) − Ts(
ηSOC

Qrated
) × u(k) (20)

y(k) = E0 − Ku(k)Δt
x1(k)

+ Aexpe((−BexpQrated/ηSOC)×(1−x1(k))) −Rintu(k)
x1(k) � x1(kTs) , SOC (k) � SOC (kTS)→ x1(k) = SOC (k)
u(k) � u(kTs), Ibat(k) � Ibat(kTs) → u(k) = Ibat(k)
y(k) � y(kTs), Vbat(k) � Vbat(kTs)→ y(k) = Vbat(k)
k ∈ Z+

(21)

where Ibat(k), Vbat(k) are the battery input current profile and terminal voltage at the discrete time k,
Δt = Ts is the sampling time, set to 1 in MATLAB simulations. In this representation the state space
Equation (17) and input-output Equation (18) depends only on SOC, the first equation is linear and the
second one is highly nonlinear. The proposed algorithm AEKF follows the same steps such in [5,7–9]
combined with the approach developed in [17], as is shown below:

AEKF SOC estimation algorithm steps:
[AEKF 1.1] Write Li-ion Co battery discrete-time nonlinear generic model equations:

SOC(k + 1) = SOC(k) − Ts(
ηSOC

Qrated
) × u(k) (22)
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y(k) = E0 − Ku(k)Δt
SOC(k) + Aexpe((−BexpQrated/ηSOC)×(1−SOC(k)) −Rintu(k)

u(k) = Ibat(k) , y(k) = Vbat(k)
(23)

[AEKF 1.2] Write the unidimensional Li-ion Co battery model in discrete-time state space
representation:

x(k + 1) = x(k) − Ts(
ηSOC

Q ) × u(k) + w(k) = f(x(k), u(k)) + w(k)
y(k) = E0 − KΔt

x(k)u(k) + Aexpe((−BexpQ/ηSOC)×(1−x(k)) −Rintu(k) + r(k) = g(x(k), u(k)) + v(k)
u(k) = Ibat(k), y(k) = Vbat(k)

(24)

where the process w(k) and measurement output v(k) are white uncorrelated noises of zero mean and
covariance matrices Q(k) and R(k) respectively, i.e.,

w(k) ∼ (0, Q(k)), v(k) ∼ (0, R(k))
E(w(k)w( j)T) = Q(k)δkj, E(v(k)v( j)T) = R(k)δkj

δkj =

®
0, k � j
1, k = j

´ (25)

[AEKF 2] Initialization:
The initial value of SOC is estimated as a Gaussian random vector of the mean and covariance

values given in (26).
For k ≥ 0 set

x̂0 = E[x0] − the initial mean value
P̂x0 = E[(x0 − x̂0)(x0 − x̂0)

T] − the initial state covariance matrix
(26)

[AEKF 3] Linearize the Li-ion Co nonlinear dynamics and calculate the Jacobian matrices:
The nonlinear dynamics of Li-ion Co battery is linearized around the most recent estimation state

value x̂(k|k) and x̂(k|k− 1) respectively, considered as an operating point. The Jacobian matrices of the
linearization are given by:

A(k) = ∂ f (k,x(k),u(k))
∂x(k) |x̂(k|k) = 1

B(k) = −ηSOC
Q

C(k) = ∂g(k,x(k),u(k))
∂x(k) |x̂(k|k−1) =

K
x2(k) |x̂(k|k−1) +

AexpBexpQ
ηSOC

exp(−BexpQ
ηSOC

(1− x(k)))|x̂(k|k−1)

(27)

For k ∈ [1,+∞) do
[AEKF 4] Prediction phase (forecast or time update from (k|k) to (k + 1)|k):

x̂(k + 1|k) = A(k)x̂(k|k) + B(k)u(k)
P̂(k + 1|k) = A(k)P̂(k|k)A(k)T + α−2kQ(k)

(28)

Remark: In this phase, the predicted value of the state vector x̂(k + 1|k) is calculated based on the
previous state estimate x̂(k|k) and the state covariance positive definite matrices P̂(k|k) and P̂(k + 1|k)
(unidimensional in the case study) are affected by a fading memory coefficient α.

[AEKF 5] Compute an updated value of Kalman filter gain:

K(k) = α2kP̂(k + 1|k)H(k)T(H(k)α2kP̂(k + 1|k)H(k)T + R(k))
−1

(29)

[AEKF 6] Correction phase (analysis or measurement update):
The Li-ion Co battery SOC estimated state is updated when an output measurement is available

in two steps:
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[AEKF 6.1] Update the SOC estimated state covariance matrix:

P̂(k + 1|k + 1) = (I −K(k)H(k))P̂(k + 1|k) (I −K(k)H(k))T + α−2kK(k)R(k)K(k)T (30)

[AEKF 6.2] Update the SOC estimated state variable:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k)(y(k) − g(x̂(k + 1|k), u(k), k) (31)

[AEKF 7] Adaptive process and measurement noise covariance matrices correction in two steps:
For k >= L, the length of the window’s samples, compute:
[AEKF 7.1] Output variable error and the correction factor:

Err(k) = ymes(k) − g(>x(k|k), uk)

c(k) =

k∑
i=k−L+1

Err(k)ET
rr(k)

L

(32)

[AEKF 7.2] Measurement noise correction:

R(k) = c(k) + H(k)P(k|k)H(k)T (33)

[AEKF 7.3] Process noise correction:

Q(k) = K(k)c(k)K(k)T (34)

The AEKF estimator is easy to implement since its “recursive predictor-corrector structure that
allows the time and measurement updates at each iteration” [5]. The tuning parameters of AEKF SOC
estimator are the following: Q(0) and R(0), P̂x0 , the fading factor α and the window length L, obtained
by a “trial and error” procedure based “on designer’s empirical experience” [5]. It is worth noting
that step 7 of the estimation algorithm simplifies substantially the procedure of tuning parameters
without to affect the AEKF algorithm convergence. Moreover, the covariance matrices Q(0) and R(0)
are chosen as positive definite diagonal matrices, and then during MATLAB simulations, both matrices
are adaptively updated using the correction Equations (33) and (34). For simulation purposes, to test
the effectiveness of the AEKF SOC estimator we set up the Kalman filter estimator parameters for all
three driving cycle profile tests to the same values, i.e., Q(0) = 5E− 4, R(0) = 0.2E− 3,∝= 1.001, P̂x0 =

1E− 10, L = 10 samples.

3.2. Li-Ion Cobalt Battery-Linear Observer SOC Estimator with Constant Gain

Linear and non-linear observers can estimate the states of the control systems. A linear observer
estimator can be used to estimate SOC, as it is easy to adapt to the Li-ion Co battery model. Compared
to AEKF SOC estimator performance, the proposed linear observer (LOE) SOC estimator seems to
have a fast convergence rate and high estimation accuracy, as mentioned in [18]. It is easy for design
a MATLAB/Simulink implementation. Besides, it is robust to changes in the initial value of SOC,
to changes in the battery internal resistance and polarization constant due to temperature effects.
Furthermore, it has a high capability of compensating the effects of nonlinearity and uncertainty
exhibited by Li-ion Co battery model. The main drawback of LOE SOC is its inability to filter the
measurement noise, so it is not robust to the measurement noise level compared to AEKF that has this
great feature. The proposed linear observer relies on the determination of the appropriate feedback
that achieves better SOC estimation accuracy. The following equations describe the dynamics of the
linear observer estimator (LOE):
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dSOC(t)
dt = −( ηSOC

Qrated
) × u(t)

Vbatt(t) = E−Rinti(t) = E0 − K
∫

idt
SOC(t) + Aexpe(−BexpQmax(1−SOC(t))) −Rintu(t)

u(t) = i(t)

(35)

Thus, Equation (35) describes the dynamics of Li-ion Co battery generic model that is
unidimensional and dependent only on battery SOC. In this development, the input-output battery
terminal voltage equation is linearized around a SOCop battery operating point, retaining only the
first order term of Taylor series:

Vbat(SOC) = Vbat(SOCop) + (
dVbat

dSOC
)|SOCop(SOC− SOCop) (36)

In discrete time, the LOE battery SOC is described by the following equations:

SOC(k + 1) = SOC(k) − Ts×ηSOC
Qnom u(k) = A× SOC(k) + Bu(k)

Vbat(SOC(k)) = αSOC × SOC(k) + kSOC,uSOC(k)u(k) + kuu(k) + E0,op = C× SOC(k) + g(SOC(k), u(k))

A = 1, C = αSOC, B = −Ts×ηSOC
Qnom , g(SOC(k), u(k)) = kSOC,u × SOC(k)u(k) + ku × u(k) + E0,op

(37)

where the values of the coefficients αSOC, kSOC,u, ku and E0,op depend on the linearization operating
point SOCop. For example, if the operating point is SOCop = 60%, these coefficients get the following
values: αSOC = 0.0019,kSOC,u = 0.000077,ku = −0.0133 and E0,op = 8.0146. The Equation (37) are
showing that the current output battery terminal voltage Vbat(SOC(k)) and its future evolution are both
determined solely by its current state SOC (k) and the battery current input u(k). If the battery generic
model system Equation (37) is observable, then the output battery terminal voltage can be used to steer
the SOC(k) state of the observer. After linearization, it is easy to see that the pair (A, C) = (1,αSOC)

is observable, since αSOC � 0, regardless of the battery operating point. The observer model of the
physical system of the Li-ion Co battery is then typically derived from the Equation (37). Additional
terms may be included in order to ensure that, on receiving successive measured values of the Li-ion Co
battery u(k) = i(k) input and Vbat(SOC(k)) output, the model’s state S̄OC(k) converges to SOC(k) of
the battery. In particular, the output of the observer V̄bat(SOC(k)) may be subtracted from the battery
output Vbat(SOC(k)) and then is multiplied by a constant gain L to produce a so-called Luenberger
observer, defined by the following equations:‘SOC(k + 1) = A× S̄OC(k) + L(Vbat(k) − V̄bat(k)) + Du(k)

V̄bat(k) = C× S̄OC(k) + g(S̄OC(k), u(k))
(38)

The linear observer SOC estimator is asymptotically stable if the SOC state error:

eSOC(k) = S̄OC(k) − SOC(k)→ 0 when k→∞ (39)

For a Luenberger observer, the SOC state estimation error satisfies the following relationship:

eSOC(k + 1) = (A− LC)eSOC(k) (40)

The asymptotically condition (41) is satisfied only if (A-LC) is a Hurwitz matrix, so all the
eigenvalues of this matrix are located in z-plane inside of the unit circle |z| = 1. For an unidimensional
system, such in our case, A-LC must satisfies the relationship:

−1 < A− LC < 1→ −1 < 1− L ∗ αSOC < 1
L ∈ (0, 2

αSOC
)

(41)
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For MATLAB simulations L is set to 1, 10, and 100 to analyze the performance of the LOE
estimator in terms of convergence speed, robustness and SOC estimation accuracy for same driving
conditions tests, UDDS, UDDS-EPA and FTP-75, like the AEKF SOC estimator developed in the
previous subsection. The Simulink models of the LOE SOC, Li-ion Co battery model, thermal model
block and the input driving cycles current profiles are shown in Figure 15. The battery model and the
LOE SOC estimator block is detailed in Figure 16, and the Simulink model of thermal block is shown
in Figure 12.

Figure 15. The Simulink diagram of the combined Li-ion Cobalt battery model and LOE block located
to the top side and, the Simulink diagram of thermal model block located in the bottom side.

 
Figure 16. The detailed Simulink diagram of the combined Li-ion Co battery and LOE models.
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3.3. Real-Time MATLAB Simulation Results

In this section, an extensive number of simulations, conducted on MATLAB software platform,
is performed to validate the battery model and to analyze the performance of both proposed AEKF and
LOE SOC estimators. The performance of both, AEKF and LOE SOC estimators is analyzed in terms of
accuracy, robustness, convergence speed and real-time implementation simplicity. Robustness is tested
for changing driving conditions by performing tests based on each of the three most commonly used
driving cycle profiles provided in the ADVISOR-MATLAB platform, namely UDDS, UDDS-EPA and
FTP described in Section 2. Furthermore, for each driving cycle profile, the robustness of both SOC
estimators are testing the following four scenarios:

� R1-scenario—changes in SOCini from 70% for UDDS and UDDS-EPA, 80%-FTP, driving cycles
tests to:

� R11—for SOCini = 100%
� R12—for SOCini = 40%

� R2-scenario—changes in SOC initial value and in measurement sensor noise level

� R21—for SOCini = 100%, noise measurement level σ = 0.01(increased from 0.001)
� R22—for SOCini = 40%, noise measrement level, σ = 0.01(increased from 0.001)

� R3-scenario: changes in SOC initial value and in the value of the battery nominal capacity due to
aging and/or temperature effects.

� R31—for SOCini = 100%, Qnom = 2.7 Ah (decresed from 5.4 Ah)
� R32—for SOCini = 40%, Qnom = 2.7 Ah (decresed from 5.4 Ah)

� R4-scenario: changes in SOC initial values and temperature effects on internal resistance Rint and
on polarization constant K

� R41—for SOCini = 100%, Rint = Rint(T) changes from Rint = 0.01333 [Ω], K = K(T) changes
from K = 0.0099892 [V]

� R42—for SOCini = 40%, Rint = Rint(T) changes from Rint = 0.01333 [Ω], K = K(T) changes
from K = 0.0099892 [V]

Also, the statistical errors in terms of standard deviation (MATLAB command std, σ), root mean
squared error (RMSE), mean squared error (MSE) and mean absolute error (MAE) defined for each
driving cycle test by the Equations (42)–(44), are summarized in one table.

RMSE =

Õ
N∑

i=1
(SOÛC (i) − SOCBattery_model(i))

2

N
(42)

MSE =

N∑
i=1

(SOÛC (i) − SOCBattery_model(i))
2

N
(43)

MAE =

N∑
i=1
|SOÛC (i) − SOCBattery_model(i)|

N
(44)

N− number of samples.
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3.3.1. Test 1-UDDS Driving Cycle Profile

A. Li-ion Co generic model accuracy performance

In Figure 17 the following MATLAB simulation results are shown:

(a) UDDS driving cycle current profile for SOCini = 70%
(b) LOE battery SOC estimate versus the battery model SOC and ADVISOR SOC estimate
(c) AEKF battery terminal voltage estimate versus battery cell model terminal voltage
(d) AEKF battery SOC estimate versus battery model SOC and AVISOR SOC estimate

  
(a) (b) 

  
(c) (d) 

Figure 17. Li-ion Co battery model SOC accuracy performance (a) The UDDS current profile; (b) LOE
SOC estimate vs. battery model SOC and ADVISOR SOC estimate; (c) AEKF estimate terminal
voltage versus battery model terminal voltage; (d) AEKF SOC estimate versus battery model SOC and
ADVISOR SOC estimate.

The simulation results reveal that the battery SOC is very accurate with respect to ADVISOR SOC
estimate for same SOC initial value, like in Section 2.6.4. Also, the AEKF and LOE SOC estimators are
very accurate compared to battery model SOC. Additionally, the Figure 17c reveals a strong ability of
the AEKF SOC estimator to predict the battery terminal voltage.

B. Robustness of AEKF and LOE SOC Estimators

• R1-scenario

A great robustness of AEKF and LOE SOC estimators for this scenario is shown in Figure 18a,c,
for R11, and in Figure 18b,d for R12.

243



Energies 2020, 13, 2749

 
(a) (b) 

(c) (d) 

Figure 18. SOC Estimators robustnsess-Scenario R1; (a) AEKF for R11; (b) AEKF for R12 (c) LOE for
R11; (d) LOE for R12.

• R2-scenario

The MATLAB simulation results shown in Figure 19a–d indicate a great robustness of AEKF SOC
estimator compared to LOE SOC.

(a) (b) 

Figure 19. Cont.
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(c) (d) 

Figure 19. The robustness of AEKF and LOE SOC estimators-Scenarion R2 (a) AEKF for R21; (b) AEKF
for R22; (c) LOE for R21 (d) LOE for R22.

The AEKF SOC estimator has a great ability to filter the measurement noise, thus AEKF SOC
estimator outperforms the LOE SOC regarding the robustness performance to changes in noise level.

• R3-scenario

About the MATLAB simulations shown in Figure 20a–d it is worth highlighting the great
robustness performance for both SOC estimators for this scenario.

(a) (b) 

  
(c) (d) 

Figure 20. The SOC estimators’ behaviour for R3-scenario (a) AEKF for R31; (b) AEKF for R32; (c) LOE
SOC for R31; (d) LOE SOC for R32.
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• R4-scenario

The output temperature profile of thermal model and the effects of temperature changes on
the internal resistance Rint and polarization constant are shown in Figure A4. For this scenario,
the MATLAB simulation results depictured in Figure 21a–d show an excellent robustness performance
for both SOC estimators.

 
(a) (b) 

 
(c) (d) 

Figure 21. AEKF and LOE SOC estimators robustness performance for R4-scenario; (a) AEKF for R41;
(b) AEKF for R42; (c) LOE SOC for R41; (d) LOE for R42.

The statistical errors corresponding to all four scenarios developed for UDDS driving cycle test
are summarized in Table 3.

Table 3. AEKF and LOE SOC Estimators-statistical errors.

Cycle
Test

Accuracy

SOCest
Initial
Value

(%)

Statistic Errors

RMSE
AEKF

RMSE
LOE

MSE
AEKF

MSE
LOE

MAE
AEKF

MAE
LOE

Std
AEKF

(%)

Std
LOE
(%)

UDDS

Battery model
vs. ADVISOR 70 0.4693 0.5500 0.2538 0.3026 0.0029 0.0658 2.66 1.37

AEKF/LOE 70 0.0325 0 0.0000036 0 0.0018 0 2.6 1.37

R1-scenario
R11 0.04225 0.1746 0.000384 0.0305 0.0131 0.1289 3.28 13.1
R12 0.0492 0.1551 0.0033 0.0240 0.0270 0.1057 4.47 10.1

R2-scenario
R21 0.0463 0.2638 0.00044 0.0696 0.0145 0.2595 3.69 5.3
R22 0.0576 0.1573 0.0029 0.0247 0.0038 0.1088 4.03 10.14

R3-scenario
R31 0.0471 0.1832 0.000504 0.0335 0.0168 0.1723 3.6 6.9
R32 0.0367 0.2811 0.000717 0.0790 0.0124 0.2655 2.97 8.5

R4-scenario
R41 0.0459 0.2528 0.00041 0.0639 0.01329 0.2473 3.73 5.96
R42 0.0498 0.1636 0.0054 0.0267 0.0252 0.1195 4.89 9.82
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The results of statistical errors performance analysis for all scenarios from Table 3, for UDDS
driving cycle test, indicate that the AEKF SOC estimator surpasses the LOE SOC estimator in the
competition for robustness performance.

3.3.2. Test 2: UDDS-EPA Charging Current Profile

A. Cobalt Li-ion generic model accuracy and validation

The MATLAB simulation results are shown in Figure 22:

(a) UDDS-EPA driving cycle current profile
(b) LOE SOC estimate versus battery model SOC and ADVISOR SOC estimate
(c) AEKF battery terminal voltage
(d) AEKF SOC estimate versus battery model SOC and ADVISOR SOC estimate
(e) A great SOC accuracy of battery model versus ADVISOR SOC estimate is revealed in Figure 22b.

 
(a) (b) 

 
(c) (d) 

Figure 22. Li-ion Co battery model SOC accuracy performance and validation; (a) UDDS-EPA driving
cycle; (b) LOE SOC estimate vs. battery model SOC and ADVISOR SOC estimate; (c) AEKF battery
terminal voltage estimate vs. battery model terminal voltage; (d)AEKF SOC estimate vs. battery model
SOC vs. ADVISOR SOC.

Like UDDS driving cycle, the MATLAB simulation results presented in Figure 22b,d reveal
that the Li-ion Co battery model fits very well, within a 2% SOC error, the experimental setup
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ADVISOR-MATLAB platform SOC estimate. So, once again these results certainly confirm the validity
of the generic lithium-ion cobalt battery model.

B. Robustness of AEKF SOC Estimator

To keep the manuscript lenght reasonable, for the second driving cycle test, we show only the
results for SOCini = 40%, i.e., for R12, R22, R32, and R42-scenarios.

• R1-scenario

The MATLAB simulation results shown in Figure 23a,b indicate an excellent robustness
performance for both SOC estimators.

(a) (b) 

Figure 23. The robustness of AEKF and LOE SOC estimators for R1-scenario; (a) AEKF for R12 (b) LOE
for R12.

• R2-scenario

A great robustness for both SOC estimators for this scenario and R22 case is also shown in
Figure 24a,b.

  
(a) (b) 

Figure 24. The robustness of AEKF and LOE SOC estimators for R2-scenario; (a) AEKF SOC for R22
(b) LOE SOC for R22.
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• R3-scenario

The MATLAB simulation results depicted in Figure 25a,b reveal a great robustness performance
for the AEKF SOC estimator compared to the LOE SOC estimator that has small changes in SOC
estimate accuracy.

  
(a) (b) 

Figure 25. Robustness performance of AEKF and LOE SOC estimators for R3-scenario; (a) AEKF SOC
for R32; (b) LOE SOC for R32.

• R4-scenario:

For this scenario is considered the output temperature profile of thermal model and the effects of
temperature changes on the internal resistance Rint and polarization constant K shown in Figure A4.
The MATLAB simulation results of AEKF and LOE SOC estimation robustness performance are
presented in Figure 26a,b.

  
(a) (b) 

Figure 26. Robustness of AEKF and LOE SOC estimators for R4-scenario (a) AEKF SOC for R42;
(b) LOE SOC for R42.

For this scenario, the simulation results shown in Figure 26 indicate a great robustness performance
for both SOC estimators. The statistical errors RMSE, MSE, MAE and standard deviation are
summarized in Table A1 in Appendix A.

249



Energies 2020, 13, 2749

Like UDDS, the result of the performance analysis, for all the scenarios included in Table A1,
indicates once again that the AEKF SOC estimator remains the most suitable SOC estimator as compared
to LOE SOC estimator.

3.3.3. Test 3: FTP-ADVISOR Driving Cycle Current Profile

A. Battery model SOC accuracy and model validation

The FTP driving cycle current profile for testing the battery is shown in Figure 27a. For generic
battery model validation, the AEKF SOC estimate, the Li-ion Co battery model SOC and the
ADVISOR-MATLAB Rint Li-battery SOC estimate are shown on the same graph in Figure 27b.

  
(a) (b) 

  
(c) (d) 

Figure 27. Li-ion Co battery model SOC accuracy performance and validation. (a) The FTP driving
cycle current profile; (b) AEKF SOC estimate vs. battery model SOC; (c) AEKF terminal voltage estimate
vs. battery terminal voltage; (d) LOE estimate vs. battery model SOC vs. ADVISOR SOC estimate.

Similarly, the same graphs related to LOE SOC estimator performance are shown in Figure 27d.
Furthermore, the SOC accuracy of the battery Li-ion Co model revealed by MATLAB simulation

results are supported by the experimental results shown in Figure 28 for same FTP driving cycle test
performed on the ADVISOR-MATLAB platform.

250



Energies 2020, 13, 2749

 
Figure 28. FTP driving speed cycle of the input HEV midsize car; HEV car speed cycle; estimated Rint
Li-ion battery SOC on NREL ADVISOR- MATLAB platform, and current profile (from the top to the
bottom).

B. AEKF and LOE SOC estimators robustness

• R1-scenario

In Figure 29a,b are depicted the simulation results for both SOC estimators that reveal a great
robustness performance for LOE SOC compared to AEKF SOC estimator.

  
(a) (b) 

Figure 29. Robustness performance of AEKF and LOE SOC estimators for R1-scenario; (a)AEKF SOC
for R12; (b) LOE SOC for R12.

• R2-scenario

For this scenario, the simulation results shown in Figure 30a,b indicate a great robustness for
AEKF SOC estimator compared to LOE SOC.
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(a) (b) 

Figure 30. AEKF and LOE SOC estimators - robustness performance for R2-scenario (a) AEKF SOC for
R22; (b) LOE SOC for R22.

• R3-scenario

For the third scenario, the results presented in Figure A5a,b in Appendix A show a slight
superiority of the LOE SOC estimator compared to the AEKF SOC estimator.

• R4-scenario

The output temperature profile of thermal model and the effects of temperature changes on
the internal resistance Rint and polarization constant are shown in Figure A4a–c, and the results of
MATLAB simulations are presented in Figure A6a,b (both figures in Appendix A). From Figure A6,
it seems that the LOE SOC estimator performs better than AEKF SOC estimator. Also, the statistical
errors for FTP ADVISOR driving cycle are summarized in Table A2 form Appendix A. As in the first
two driving cycles, for the FTP driving cycle test the result of the robustness performance analysis
based on the statistical errors included in Table A2 confirms again that the AEKF SOC estimator
performs better than its competitor LOE SOC estimator. Thus, based on the statistical results of the
three tables, it can now decide that the most appropriate SOC estimator for this type of HEV application
is the AEKF SOC estimator which shows an absolute superiority compared to the LOE SOC estimator,
due to its ability to filtrate the measurement noise, as well as more robust to the aging effects on the
Li-ion Co battery.

4. Discussions

During this research, we have substantially enriched our experience in designing, modelling,
implementing and validating Li-ion batteries, developing and implementing real-time SOC estimation
algorithms in a friendly and attractive MATLAB-Simulink environment. Now we try to summarize
some of the most relevant aspects that have captured our attention during this research.

4.1. SOC Estimators’ Convergence Speed

The analysis of the convergence speed performance of both SOC estimators can be done visually
by examining the graphs strictly related to SOC. In almost all the graphs, the AEKF SOC estimate
reaches the true value of Cobalt Li-ion battery model SOC after 40–190 s, when decreasing the SOC
initial value from 80% to 40% or 16–150 s for an increase from 80% to 100%, as shown in Figure 31a,b
by zooming at the beginning of the transient, which obviously is a rapid convergence speed.

Compared to AEKF SOC estimator, the convergence speed of LOE SOC estimator can be controlled
by choosing the most appropriate value for the observer gain. For high gain values, the LOE SOC
estimator becomes much faster as can be seen for the FTP driving cycle test, where the observer gain
is 100. For the UDDS driving cycle, the observer gain is 10 and, for performance analysis purpose,
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the observer gain for UDDS-EPA driving cycle is intentionally set to 1. For this case, the LOE SOC
estimator reaches the true value of the battery model SOC after 400 s, much higher as compared to
AEKF SOC estimator.

(a) (b) 

Figure 31. AEKF SOC estimation convergence speed; (a) for a decrease SOC initial value; (b) for an
increase initial value.

4.2. SOC Estimation Accuracy

The MATLAB simulation results shown in the previous section reveal, in most cases, an excellent
SOC estimation accuracy of AEKF SOC estimator after the estimate reaches the battery model SOC true
value. Still, in some cases, due to unsuitable values for the tuning parameters, the AEKF SOC estimate
is biased compared to LOE SOC estimator. On the other hand, the LOE SOC estimator accumulates a
significant estimation error during the transient. Regarding the EKF SOC estimator, we observed that
the SOC accuracy depends on a “trial and error” empirical adjustment procedure of tuning parameter
values. Unfortunately, this procedure takes a lot of time. Moreover, a new readjustment procedure
is required when changing the driving conditions and SOC initial value, as well as when aging and
temperature effects take place. The adopted version AEKF due to its adaptive features attenuates the
tuning procedure of the parameters significantly.

4.3. SOC Estimator-Measurement Noise Filtration

An important aspect that we also observed in this research is the measurement noise filtration by
both estimators. Only the AEKF has this ability to filtrate the measurement noise compared to LOE
SOC estimator, as you can see, for example, in Figure 30b.

4.4. SOC Estimators-Real Time Implementation

As we mentioned in the previous section due to its “predictor-corrector structure”, the AEKF SOC
estimator becomes a recursive algorithm, “more simple to implement in real time and computationally
efficient” [10]. Also, the LOE SOC structure is simple and easy to design and implement in
real time, in particular due to its linearized structure and having a single parameter needed for
adjustment. In addition, the proposed generic lithium-ion cobalt battery model is simple, easy
to design and quickly to implement in real time, based directly on the manufacturer’s battery
specifications. MATLAB-Simulink software platform provides a valuable and practical Simscape
SimPower Systems library, helpful to be used for designing and implementation of different HEVs and
EVs powertrains configurations.
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4.5. SOC Estimators-Statistical Errors Analysis

The results from the first line (RMSE, MSE, MAE) provide the accuracy of the battery model SOC
and ADVISOR estimate, beneficial for Li-ion Co battery model validation performed in Section 2.6.4 for
first UDDS driving cycle test and for third one FTP-75. The validation of the battery model for second
UDDS-EPA driving cycle test is proved in Section 3.3 based on the MATLAB simulation results shown
in Figure 22. The statistical errors from Table 3, Tables A1 and A2 are valuable to compare the results of
both SOC estimators to those obtained in the field literature by similar algorithms SOC estimators, for
same driving cycle tests, and same performance error indicators (RMSE, MSE, MAE). In Section 2.5.2
the state of the art analysis focused on adaptive filters SOC estimators reported in the literature is
made. For this analysis, Table 3, Tables A1 and A2 provide valuable information to compare the results
obtained by AEKF SOC estimator, in terms of accuracy and robustness performance, developed in
actual research work to those obtained in [18–24] for similar conditions, especially for same input
current cycle profiles. Unfortunately, it was possible to make only a partial analysis since many
researchers use different input current profiles and different error indicators that do not match with
those used in our research. But, for the cases that match with our current profile, the information
collected in all three Table 3, Tables A1 and A2 corresponding to each input current cycle profile can be
useful to analyse all similar situations. Thus, the present research work can be a valuable source of
inspiration for readers and researchers.

5. Conclusions

In this research paper, among the most relevant contributions the following may be highlighted:

• Model selection—MATLAB Simscape Li-ion cobalt nonlinear model, simple, practical, accurate,
easy to implement in real-time (Section 2.6.1)

• Model development in continuous time state-space representation (Section 2.6.2)
• Model development in discrete time state-space representation (Section 2.6.3)
• Model validation based on three different driving cycles tests, using ADVISOR 3.2 software tool

(Section 2.6.4)
• Model implementation in MATLAB R 2019b Simulink environment (Simulink diagram from

Figures 8 and 9, Section 2.6.4)
• Thermal model design and Simulink implementation (Simulink diagram from Figure 12 Section 2.7)
• Adaptive Extended Kalman Filter SOC estimator with fading feature—Design and MATLAB

implementation, Section 3.1)
• Linear observer SOC estimator-Design and Simulink implementation (Simulink model diagram

from Figure 16, Section 3.2)
• MATLAB SOC simulations (Section 3.3)
• Performance analysis (SOC accuracy and robustness)—Table 3, Tables A1 and A2 for statistical

errors

The case study is a 5.4 Ah Li-ion Cobalt battery, of high simplicity and accuracy, easy to be
implemented in real-time and to provide beneficial support to build two real-time AEKF and LOE SOC
estimators. For a good insight on the realistic battery life environment, the case of the battery internal
resistance and polarization coefficient as parameters temperature-dependent is also investigated. Both
parameters are updated dynamically through a simplified thermal model designed in Section 2.7.
The robustness and accuracy of both SOC estimators is investigated in detail, for three most used
driving cycles tests in the automotive industry (UDDS, UDDS-EPA and FTP) and changes in:

� SOC initial value (“guess” value)
� SOC initial value and driving conditions
� SOC initial value, temperature effects on internal resistance and polarization constant,

and driving conditions.
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� SOC initial value, nominal value of battery capacity due to aging effects/temperature effects and
driving conditions.

Based on the statistical errors calculated for each driving cycle test in terms of RMSE, MSE and
MAE, it was possible to choose from both competitors the most suitable SOC estimator. The result
of overall performance analysis indicates that the AEKF SOC estimator performs better than LOE
SOC estimator.

In the future work, we continue our investigations on lithium batteries regarding an improved
modelling approach by “integrating the effect of degradation, temperature and SOC effects” [10],
and for possible extensions to more accurate adaptive neural fuzzy logic SOC estimation techniques.
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Abbreviations

Ni-Cad nickel cadmium
Ni-MH nickel metal hydride
Li-ion Co lithium-ion cobalt
EV electric vehicle
HEV hybrid electric vehicle
BMS battery management system
ADVISOR advanced vehicle simulator
EPA environmental protection agency
UDDS urban dynamometer driving schedule
FTP-75 Federal test procedure at 75 F
SMO sliding mode observer
LOE linear observer estimator
RMSE root mean squared error
MSE mean squared error
MAE mean absolute error
OCV open-circuit voltage
SOC state of charge
SOE state of energy
SOH state of health
DOD depth of discharge
NREL National Renewable Energy Laboratory
UKF unscented Kalman filter
AUKF adaptive unscented Kalman filter
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Appendix A

Appendix A.1. Figures

Figure A1. The Simulink block diagram of a hypothetical midsize town car-the diagram includes the
following blocks: differential, clutch, gear, battery system, transmission and accessories

 
(a) 

 
(b) 

Figure A2. The UDDS test on the ADVISOR 3.2 integrated MATLAB platform; (a) The plot of statistic
errors for Li-Ion CO2 battery model, (b)The plot of the statistic errors for Advisor Li battery Rint model.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure A3. (a) Electric Vehicle simulation model application. (b) motor speed in RPM; (c) battery SOC
(%); (d), US fuel economy; (e) motor torque (Nm); (f) discharge battery current profile.

 

(a) 

Figure A4. Cont.
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(b) 

 
(c) 

Figure A4. Temperature effects on Rint and K. (a) output temperature profile; (b) internal battery
resistance Rint; (c) polarization constant K.

  
(a) (b) 

Figure A5. Robustness performance of AEKF and LOE SOC estimators for R3-scenario; (a) AEKF SOC
for R32; (b) LOE SOC for R32.
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(a) (b) 

Figure A6. Robustness of AEKF and LOE SOC estimators for R4-scenario; (a) AEKF SOC for R42;
(b) LOE SOC for R42.

Appendix A.2. Tables

Table A1. AEKF SOC Estimator—statistic errors.

Cycle
Test

Accuracy

SOCest
Initial
Value

(%)

Statistic Errors

RMSE
AEKF

RMSE
LOE

MSE
AEKF

MSE
LOE

MAE
AEKF

MAE
LOE

Std
AEKF

(%)

Std
LOE
(%)

UDDS-
EPA

Battery model
vs. ADVISOR

70 0.2621 0.2630 0.0173 0.0180 0.0224 0.0285 7.22 4.29

AEKF/LOE 70 0.0325 0.0898 0.0000036 0.0004 0.0018 0.000459 2.6 7.35
R1-scenario R12 0.2290 0.2031 0.0212 0.4126 0.0726 0.1896 18.8 11.14
R2-scenario R22 0.2289 0.2013 0.2123 0.0405 0.0786 0.1879 18.8 11
R3-scenario R32 0.2290 0.2311 0.0212 0.0534 0.0786 0.2251 18.87 7.4
R4-scenario R42 0.2341 0.2041 0.0130 0.0416 0.0792 0.1913 19.55 11

Table A2. AEKF and LOE SOC Estimators—statistical errors.

Cycle
Test

Accuracy

SOCest
Initial
Value

(%)

Statistic Errors

RMSE
AEKF

RMSE
LOE

MSE
AEKF

MSE
LOE

MAE
AEKF

MAE
LOE

Std
AEKF

(%)

Std
LOE
(%)

FTP

Battery model
vs. ADVISOR

70 0.0819 0.0834 0.0028 0.0043 0.0264 0.0235 4 4.29

AEKF/LOE 70 0.0011 0.00063 0.00312 0.00006 0.008627 0.00067 4.3 2.82
R1-scenario R12 0.2392 0.0.0913 0.4280 0.0083 0.0082 0.0488 4.1 10
R2-scenario R22 0.0753 0.1004 0.00037 0.01 0.00169 0.0633 4.34 10.47
R3-scenario R32 0.0793 0.2651 0.0006 0.0703 0.0220 0.1297 4.27 21.3
R4-scenario R42 0.0683 0.0913 0.000198 0.0083 0.0071 0.0488 5.39 10.17
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Abstract: Measurements such as current and terminal voltage that are typically used to determine
the battery’s state of charge (SOC) are augmented with measured force associated with electrode
expansion as the lithium intercalates in its structure. The combination of the sensed behavior
is shown to improve SOC estimation even for the lithium ion iron phosphate (LFP) chemistry,
where the voltage–SOC relation is flat (low slope) making SOC estimation using measured
voltage difficult. For the LFP cells, the measured force has a non-monotonic F–SOC relationship.
This presents a challenge for estimation as multiple force values can correspond to the same SOC.
The traditional linear quadratic estimator can be driven to an incorrect SOC value. To address these
difficulties, a novel switching estimation gain is used based on determining the operating region
that corresponds to the actual SOC. Moreover, a drift in the measured force associated with a shift of
the cell SOC–expansion behavior over time is addressed with a bias estimator for the force signal.
The performance of Voltage-based (V) and Voltage and Force-based (V&F) SOC estimation algorithms
are then compared and evaluated against a desired ±5% absolute error bound of the SOC using a
dynamic stress test current protocol that tests the proposed estimation scheme across wide range of
SOC and current rates.

Keywords: state-of-charge estimation (SOC); linear quadratic estimator; lithium ion battery;
iron phosphate; cell expansion; force

1. Introduction

The primary function of the battery management system (BMS) is to provide an accurate state of
charge (SOC) estimation. The SOC represents the amount of charge in ampere-hours (Ah) remaining
in a cell divided by its total capacity [1,2]. The BMS traditionally uses current, voltage, and sometimes
temperature measurements to estimate the SOC to plan future actions and to prevent over-charging
or discharging of cells. Generally, manufacturers provide conservative estimates of remaining
energy, since an overestimation of SOC can leave the vehicle stranded. In the case of unmanned
air vehicles (UAV), overestimation of SOC might prevent the vehicle from safe landing, since landing
maneuvers require very high power, which typically cannot be achieved at very low SOC levels [3].
Underestimating SOC, on the other hand, wastes valuable resources and adds cost and weight to the
vehicles, which is critical for robotic platforms.

From the lithium ion batteries, lithium ion iron phosphate (LFP) has been considered for UAV,
hybrid electric vehicles (HEV), and electric vehicles (EV) due to their capacity for fast charging,
high power capability, and long cycle life [4]. LFP batteries consists of graphite as the negative
electrode and lithium iron phosphate (metal oxide) as the positive electrode [5]. Due to the relative
flat half-cell potential the positive electrode exerts (also known as the phase-separating cathode active
material) [6], the open circuit voltage (OCV) has a relatively flat slope through most of its operating
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SOC range (10–95%), as shown in Figure 1. The phase transitions in the graphite material correspond to
the different voltage plateaus with respect to SOC, as shown in Figure 1a. This makes SOC estimation
difficult under noisy environments [7,8] and inexpensive sensing, such as robotic and automotive
applications. Previous work has suggested strain or stress (pressure or force) measurements to augment
terminal voltage for SOC estimation [9]. Specifically, the graphite in the negative electrode expands
when the lithium ions are intercalating into it, and the positive electrode contracts as the lithium
ions leave it causing a change of thickness in the components of the battery [10]. This change in
thickness causes the battery to swell. Therefore, the overall observed cell swelling is the summation
of the swelling from the positive and negative electrodes. When the cells are constrained to a fixed
displacement, as typical in automotive packs, the battery swelling results in an increased force on the
fixture. This swelling force can be measured using a load cell [9].

(a)

(b)

Figure 1. Measured voltage and force for the 20 Ah A123 lithium ion iron phosphate battery cycled
under low current rate C/20. (a) Measured discharge (blue), charge (red), and average of discharge
and charge (black) voltage for a C/20 cycle. For military robots such as the Packbot shown above,
SOC estimation is critical to avoid the robot getting stranded. Lithium ion iron phosphate (LFP)
batteries are typically used for operation of this robot due to the high power required. (b) Measured
discharge (blue), charge (red), and average of discharge and charge (black) force for the under current
rate C/20. The experimental battery fixture consists of: (1) load cell (force sensor); (2) movable plate;
(3) lithium ion battery; (4) two aluminum end-plates; (5) temperature sensor. For generalization of
the results to the other cell sizes, the force measurements can be converted to pressure by diving the
force by the surface area of our battery (Ab) , which is the width (wb = 0.161 m) times the length
(lb = 0.227 m) of the battery, Ab = wb × lb m2.

The structural changes of this expansion have been studied from the electrode mechanics point of
view with respect to strain/OCV coupling [10,11]. The overall volume change of this expansion results
in a monotonic function of SOC for a nickel manganese cobalt (NMC) graphite cell [12]. By measuring
the force produced by the expansion and including it in the estimation algorithm, improved SOC
accuracy can be achieved as compared to voltage based methods [9,13]. The greatest benefits were
observed in the 30–50% SOC region, where the voltage slope was relatively flat, but also at the low
SOC level, where voltage drops very fast and is challenging to have an accurate model as the battery
ages. The change in measured force vs. SOC over many cycles can also inform better estimates of the
battery state of health (SOH) [14]. For the LFP-graphite cell studied here, the anode (negative electrode
which is graphite) expands during charging but the simultaneous higher contraction rate of the
cathode (positive electrode which is LFP) results in a combined cell contraction in the middle SOC
range. The overall result is a non-monotonic F–SOC behavior, as shown in Figure 1b. Due to the
F–SOC non-monotonicity, SOC estimation based on measured force is challenging since multiple
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SOC equilibrium points can correspond to the same measured force. Additionally, all mechanical
measurements (force, pressure, or displacement) even after calibration exhibit drift associated with
small changes in material and a shift in the SOC–expansion behavior as the battery ages. Loss of
cyclable lithium causes a shift in capacity and a change in the SOC–expansion behavior of the cell.
This capacity loss shifts the stoichiometric ratio associated with lithium concentration in each electrode
and hence changes the electrode expansion [15] as a function of lithium intercalation (Coulombs stored)
and the measured force/pressure versus SOC as the unknown drift addressed here. Moreover the LFP
pouch cells used here are supported by poron sheets [16] between the cells instead of the spacers used
in [13]. Thermal expansion of the battery and fixture and viscoelastic response of the compliant poron
pad introduces an additional aging and drift factor. Predicting and modeling this aging behavior
requires extensive resources and is currently by-passed by estimating this unknown bias as proposed in
this article. As can be appreciated, the drift is a general problem of measuring the mechanical behavior
(force, pressure, or displacement) of all batteries and it is not just a battery chemistry (LFP)-related issue.

Battery cell balancing is critical to extend the range of battery powered vehicles, the pack operating
lifetime, and charge and discharge power limits [17]. To achieve fast and accurate cell balancing,
accurate SOC estimation is needed [18]. Voltage-based SOC estimation for the LFP chemistry is
particularly challenging since the voltage is relatively flat with respect to SOC. The proposed method
improves the SOC estimation using leveraging information about the cell expansion and contraction
during charging and discharging. Cell-to-cell variability due to aging, as well as the resulting
changes in the measured force, was not investigated, but should be the focus of future research.
The influence of cell balancing or imbalanced cells in a module whose force is measured should also
be further investigated following the initial work by [19]. Since there would typically be only one force
(or strain) measurement in a pack of series connected cell, cell balancing techniques [20] will be of
high importance.

In this paper, we demonstrate the improvement in the SOC estimation of LFP batteries by using
mechanical in addition to electrical measurements that can be implemented in packs or modules of
both hard encased and pouch cells [21]. A novel solution to the multiple equilibrium SOC points is
proposed based on the piecewise linear (PWL) F–SOC characteristic approximation that is further used
in a switching gain model-based linear quadratic estimator (LQE) design that consists of a combination
of force and voltage measurements [22]. Due to the drift that appears in most force measurements,
as shown in Figure 2, the SOC may not be accurately estimated. Therefore a bias state is added to
the LQE in order to capture the drift in the force measurement due to un-modeled changes in battery
swelling or creep of the plastic materials. Experimental validation is also performed on the model-based
(LQE) controller design using the combinations of force and voltage measurements during realistic
battery electric vehicle usage profiles including the Dynamic Stress Test (DST). The performance of
a controller designed with a “perfect” model is compared to one with model mismatch in the OCV
and F–SOC PWL fit. The simulated model mismatch captures the typical modeling uncertainties or
changes in the cell expansion and open circuit voltage due to aging [23].

2. Experimental Setup and Force Behavior

The battery considered here for the experimental validation is an A123 20 Ah lithium iron
phosphate pouch cell with a voltage range of 3.6–2 V. The fixture, as shown in Figure 1b, consists of
an active battery cell (3) (with a temperature sensor on top of it (5)) and a dummy (inactive) cell with
a compliant rubber pad in between. The active battery cell and inactive cell consists of a laminated
aluminum pouch cell and the rubber pad is a Poron 4701-30 from Rogers, which is 1.14-mm thick.
The temperature sensor is a multimeasurand GE sensor that consists of three resistance temperature
detectors (RTDs) and one eddy current expansion sensor [21]. The dummy cell and the rubber pad is
used as a stress absorber to emulate the conditions a cell might experience in a pack configuration.
The purpose of the dummy cell is to simulate the compliance of the whole system. The stiffness of
poron is much less than that of the battery, thus the compression of the dummy cell is negligible in
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terms of the whole system. Therefore, the dummy cell can be used without complicating the force
measurement. The dummy cell is held tight by an aluminum bottom end-plate (4), and a movable
plate is placed on top of the active cell. This plate has one degree of freedom in the vertical direction
with the force sensor (1) placed on top of it. On top of the force sensor, the fixed top aluminum
end-plate is bolted to the bottom end-plate to simulate the behavior of a constrained battery pack
with fixed distance between the end plates. The force sensor is an Omega (LC305-500) load cell sensor
(strain gauge type). The sensor has a 2225 N full scale range with an accuracy of 4.45 N. The load cell
and voltage are digitized and recorded by Data Translation DT-9828, which has a voltage accuracy
of 2 millivolts. In this paper, the force sensor is used because it is cheaper than the displacement
sensors [15], but also less accurate. For example, the accuracy of the displacement sensor used in [15]
is 1 μm, which corresponds to 0.35 N of compressive force on the poron, while for the Omega force
sensor used the accuracy is listed as a percentage of full scale range (4.45 N). The force only accuracy
is the important reason for integrating force and voltage information along with performing the
bias estimation.

Figure 2. Drift in the force sensor can be observed by comparing the force vs. SOC for two C
20 cycles

which were conducted two months apart with three cycles done in between them with the same
battery. The force measurements have a minimum of 3 N and a maximum of 6 N drift across the
entire SOC range. The drift could be caused by thermal expansion of the battery, pad, and fixture
[13], capacity change, or a combination of all four throughout the life of the cell and module on which
measurements are performed. Adjustments in the fixture and changes in the preload will cause larger
changes in measured force but can also be modeled as a sensor drift. For generalization of the results
to the other cell sizes, the pressure is shown.

The force plotted against SOC (F–SOC) and the open circuit voltage vs. SOC (OCV–SOC) are
measured experimentally using a pulse–relax profile. Specifically, a CCCV charge is applied followed
by a pulse–relax discharge profile, with the current rate of C

20 for 12 min (which results in a 1% SOC
change) followed by a 1 h of rest period to eliminate the influence of the internal resistance and
electrolyte polarization of the battery. The data points at the end of the rest are used to obtain the
discharge F–SOC and OCV–SOC. The test is then repeated using charge pulses of equal duty cycle.
The average between the measurements at the same SOC from the charge and discharge datasets is
obtained for the F–SOC, as shown in Figure 1b. The average F–SOC shown in Figure 1b is modeled in
Section 3 and is the best fit parameters that match the force inflection points. An average fit is also
obtained from data for OCV–SOC and shown in Figure 3a. The values of the fit for the OCV–SOC
(average of discharge and charge) and F–SOC can be found in Appendix C.

An important consideration is the drift observed in the measured force between repeated tests
as shown in Figure 2. Two average force cycles with an applied current of C

20 at different test dates
are shown. These cycles have approximately a minimum 3 N and a maximum 6 N of drift in between
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the second test (performed on 06/2017) and first test (performed on 04/2017). This measurement
was taken with the same cell. The drift could be caused by thermal expansion of the battery, pad,
and fixture, capacity change or a combination of all four throughout the life of the cell and module
on which measurements are performed. That is the reason we have treated the observed bias as an
unknown variable. We assume that this unknown/uncertain-origin drift evolves slower than the force
measurement from the charge/discharge changes and we therefore can estimate it as an unknown
constant bias in real time. This drift in force can affect the SOC estimation if not compensated and,
thus, estimation of the sensor bias is used to improve the practical force based SOC estimation.

Figure 3. A piecewise linear approximation of the (a) open circuit voltage and (b) cell swelling force
was fit to the experimental measured values for the A123 Lithium Iron Phosphate Battery Cell. The gray
dots correspond to the average of measured data at each SOC point from the charge and discharge
cycles at the C

20 rate (see Figure 1). The orange line represents the PWL fit. The horizontal solid lines
represent the inflection points of the cell swelling force. The horizontal dashed black lines represent the
inflection points of the cell swelling force used for the developed observers. RI , RII , and RIII represent
the force slope regions determined by our PWL model. For the PWL force model, we assume bL = c3

and bH = c5 since the changes in voltage and force slopes are due to the intrinsic phase transitions in
the material of the battery electrodes [15]. Assessment of the SOC estimator robustness is performed
by imposing b̂L 
= bL and b̂H 
= bH to capture model mismatch for the force and voltage behavior. For
generalization of the results to the other cell sizes, the pressure is shown.

For the SOC estimation development, tuning, and comparison, two models with two different
levels of fidelity are used:

• The simulation model includes the nonlinearities and hysteresis for the electric characteristics
detailed in Section 5.

• The observer model ignores hysteresis and uses piecewise linear approximations of the
nonlinearities detailed in Section 5.

In the next section, the simulation model is detailed and its efficacy is highlighted in Figure 4 based
on a modified DST cycle [24] that is scaled for a 20 Ah Li-ion battery, as shown in Figure 4a. The DST
was chosen because it has a current profile that has the combination of the following C-rates and is
representative of usage in an electric vehicle: C/4, C/2, 1C, and 2C. If the utilization of the electrode is
relatively uniform, the C-rate should not influence the swelling significantly. The electrode expansion
depends on the bulk concentration of the electrode solid phase, as opposed to the terminal voltage
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which depends on the surface concentration [25] and therefore is less sensitive to C-rate. The theory
for determining up to what current density the electrode utilization is uniform can be found based
on the porous electrode models by Fuller Doyle and Newman [26] and Newman and Tobias [27].
The largest expected contribution of C-rate dependence (or more precisely root mean square (RMS)
current) on the result is through thermal expansion of the cell. The experimental profile consists of a
Constant-Current/Constant-Voltage (CCCV) charging protocol at a rate of 1C until the battery is fully
charged. After a rest period of 30 min, a 1C rate discharge current is applied until it reaches 61% SOC.
After the second rest period of 2 h, the modified DST cycle is applied. The resulting voltage, temperature,
force, and SOC are shown in Figure 4b–e, respectively. The SOC is calculated by Coulomb counting using
a high resolution current sensor and assumed to be the true SOC.

(a)

(b)

(c)

(d)

(e)

Figure 4. Comparison of open loop simulation model results (denoted by the color orange) and
experimental measurement of voltage, temperature, force, and SOC obtained from the 20 Ah battery
during the Dynamic Stress Test (DST) inside an environmentally controlled chamber set at 25 ◦C
ambient conditions. (a) Current profile scaled for the 20 Ah A123 battery. (b) Comparison of the open
loop model terminal voltage and measurement. (c) Measured battery temperature. (d) Comparison of
the open loop modeled force and measured force. After 30 min of rest, the un-modeled dynamics in
force excited by cycling of the cell to decay to zero. For generalization of the results to the other cell
sizes, the pressure is shown. (e) Comparison of state of charge (SOC) measurement.
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3. Simulation Model

The models described here include the drift present in our force data and higher dynamics such
as hysteresis present in our voltage. These models were simulated to validate the robustness of
our developed estimators for analysis purposes before the experimental implementation. After this
validation, the estimators were used with experimental data and their performance was evaluated.
The battery model used for our simulations is presented in the following subsections. The SOC (z) is
simply modeled as

dz
dt

= − I
Cb

, (1)

where Cb is the cell capacity.

3.1. Cell Swelling Force Model

The force measured at the load cell is modeled using a static non-linearity Fsim(z), which is a
function of state of charge, with additive bias and noise terms given by

F(z) = Fsim(z) + vF + fd (2)

where F(z) (N) is the measured force that relies on Fsim(z), which is the PWL model of the average
F–SOC behavior; vF is the measurement noise; and fd is a constant drift or bias (assumed to be constant
but unknown) value present in our force measurement. A piecewise linear representation of the
average F–SOC behavior is given by

Fsim(z) = C(z)z + C0(z) =

⎧⎪⎨
⎪⎩

αmz + αm0, if z ≤ bL
βmz + βm0, if bL < z ≤ bH
γmz + γm0, otherwise

(3)

where αm, βm, and γm are the slope parameters; αm0 is the preload or the force sensed at zero state
of charge; and bL and bH denote the SOC where a change in the sign of the slope in the PWL model
occurs as shown by the solid gray vertical lines in Figure 3. These parameter values can be found
in Appendix C and can be adjusted to simulate model uncertainty and mismatch. The parameters
βm0 and γm0 in the PWL model are uniquely determined from the other parameters via constraints of
piecewise continuity

βm0 = (αm − βm)bL + αm0 (4)

γm0 = (βm − γm)bH + (αm − βm)bL + αm0. (5)

The operating regions R represent the force slope regions determined by our PWL model. The first
region is defined as RI : ẑ ∈ [0, b̂L), the second region is defined as RII : ẑ ∈ [b̂L, b̂H ], and the third
region is defined as RIII : ẑ ∈ (b̂H , 1]. The operating regions are shown in Figure 3.

3.2. Terminal Voltage Model

The terminal voltage in volts is modeled as

VT = Voc(z)− IR − V1 − V2 − Vh + vV , (6)

where R[Ω] is the total equivalent series resistance, I is the discharge current applied to the battery,
V1 and V2 are the voltages due to the two resistance and capacitance (RC) pairs, and vV represents the
V measurement noise. The OCV characteristic, Voc(z), is SOC dependent and modeled using

Voc(z) = V0 + d(1 − exp(− f z)) + h
(

1 − exp
(
− −k

1 − z

))
+ gz +

3

∑
i=1

av,i arctan
(
− z − bv,i

cv,i

)
, (7)
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where V0, g, d, f , h, k, av,i, bv,i, and cv,i are tuned parameters found in Appendix C. The electric
equivalent circuit (EC) battery model [28,29] is used for the simulation in our observer validation.
In this study, voltage hysteresis (Vh) [30] is also considered for the simulation model

dV1

dt
=

−V1

R1C1
+

I
C1

(8)

dV2

dt
=

−V2

R2C2
+

I
C2

(9)

dz
dt

= − I
Cb

(10)

dVh
dt

= −
∣∣∣∣∣γh I

Cb

∣∣∣∣∣Vh +

∣∣∣∣∣γh I
Cb

∣∣∣∣∣H(z, sgn(I)) (11)

where V1 and V2 are the voltages of the RC equivalent circuits, R1 and R2 are the resistors, C1 and C2 are
the capacitors of the RC equivalent circuits, Vh is the hysteresis voltage, γh is the hysteresis rate constant,
and H(z, sgn(I)) is a function of SOC and the sign of current (sgn(I)) following [30]. The function
H(z, sgn(I)) is taken to be half the difference between the charge and discharge OCV measurements,
and the parameter values can be found in Appendix A. Although the EC model parameters depend on
the battery’s SOC and temperature, in this paper, we do not take this dependency into consideration.
The constant parameters of the EC model can be found in Table 1. The dynamic equations developed
for charge/discharge as well as the measurements in Equations (2) and (6) is used to simulate the
battery behavior, and it is numerically discretized with a time step of Ts = 1 s.

Table 1. Battery Equivalent Circuit Parameters and its values.

Parameters Values

R 1.5 mohms
R1 1.4 mohms
C1 13,014 farad
R2 2.7 mohms
C2 143,000 farad
γh 0.00054

4. Voltage Model Parameterization

Before using our model for SOC estimation, the average Force–SOC and OCV–SOC needs to be
obtained and model parameterization of the equivalent circuit parameters is required using a pulsed
current profile such as the Hybrid Pulse Power Characterization (HPPC) [28]. The pulse current was
obtained and the nonlinear programming solver fmincon was used to find the parameters provided in
Table 1. To verify that the parameters are correct, different initialization values were used. From the
different initialization values used, fmincon converged to the parameters provided in Table 1.

5. SOC Estimation Model

The linear quadratic estimator (LQE) also known as the steady-state Kalman filter is used for state
estimation. The goal of the observer is to find a gain K that converges the initial state to the true state
of the system using linear filter equation with measurement error feedback

x̂t+1 = Ax̂t + But + K(yt − ŷt) (12)

where the estimated output equation is given by

ŷt = C(x̂t)x̂t − C0(x̂t)− Dut (13)
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with C(x̂t) the slope of the estimated measurement and C0(x̂t) the affine parameter based on our
model and shown in Figure 3. The matrix D is the direct transition (or feedthrough) term. The error
dynamics are governed by the eigenvalues of A − KC, which depends on the chosen gain K so that
it is stable and achieves fast convergence of the SOC estimation error e = z − ẑ. We use the Discrete
Algebraic Riccati Equation (DARE) to find our gain K on all our developed observers. The DARE is
defined as

P = APAT − APCT
[
CPCT + R

]−1
CPAT + Q (14)

and solved for the estimation error covariance matrix P. In this equation, Q is the process noise
covariance matrix (size nxn) and R ∈ R

ny is the measurement noise covariance matrix (size mxm).
The values of the diagonal elements of R are chosen based on actual sensor measurement noise variance
and Q is tuned so that the desired transient is achieved. The solution of the estimation error covariance
(P) for the Kalman filter converges to the solution of Equation (14) for t → ∞ if (A, C) is detectable.
In this case, the asymptotically stable observer gain is then computed [31] as

K =
[
CPCT + R

]−1
CPA. (15)

5.1. Voltage Only Observer Design

In the case of voltage only estimation, we neglect the hysteresis dynamic term. This represents a
typical model mismatch in voltage measurements. The states of the observer are x̂t = [V̂1, V̂2, ẑ]T given
by the discretized version of Equations (8)–(10) and the PWL approximation of the nonlinearities in
voltage measurement ŷt is given by the equations in Appendix B. The values of the parameters in the
voltage and force models can be found in Appendix C. The gain K for this observer is given as

KV =
[
K1 K2 K3

]T
(16)

The values for the gains Ki with i = 1–3 are obtained by tuning the Q matrix. The gain KV is found
for the eight regions in which the voltage is divided: R1: z ∈ [0, c0], R2: z ∈ (c0, c1], R3: z ∈ (c1, c2], R4:
z ∈ (c2, c3], R5: z ∈ (c3, c4], R6: z ∈ (c4, c5], R7: z ∈ (c5, c6], and R8: z ∈ (c6, 1].

The main challenge in this system is the slow convergence of the estimation error due to the almost
zero output gain (in C) especially the C(1,3) that corresponds to the dV

dz in Equation (18). Increasing the
Kv gain to compensate for the low state to output gain C governed by dV

dz will amplify voltage sensor
noise. Therefore, another observer is developed that uses voltage and force measurement since SOC
and bias in the force signal are unobservable by force measurement only.

5.2. Voltage and Force Observer Design

In the case of force and voltage estimation, the states of the observer are x̂t = [V̂1, V̂2, ẑ]T

and ŷ = [V̂T , F̂]T given by the equations in Appendix B. The gains for the V&F observer have the
following format

KVF =

[
K11 K21 K31

K12 K22 K32

]T

(17)

and the gain KVF is found for the eight regions of the voltage, as explained in the previous subsection.
The modeled force used for the state estimator, F̂, is given by

F̂sim(ẑ) = ĈdF(ẑ)ẑ + Ĉ0(ẑ) =

⎧⎪⎨
⎪⎩

αmẑ + αm0, if ẑ ≤ b̂L
βmẑ + βm0, if b̂L < ẑ ≤ b̂H
γmẑ + γm0, otherwise

(18)
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where ẑ is the estimated SOC from our observer and b̂L and b̂H are the inflection points that are shifted
by −10%, as shown by the dashed black lines in Figure 3 to emulate model uncertainty and aging.
In the case of a “perfect” model, b̂L = bL and b̂H = bH .

Switching Logic in Observer Design

The gain (K) of the LQE depends on the relationship between the estimated state and the slope
of the measurement. In the case of a monotonic function, the estimated state will converge to the
true state value when the estimator gain is chosen so that the error dynamics are stable. In the
case of a non-monotonic function, the estimated state and the true state can have different slopes
in the force output depending on the operating region. Therefore, the estimator gain would have
a wrong sign which would lead to the divergence of the estimated state of charge from the true
state. This is due to the traditional LQE using the modeled slope at the region of the estimated state.
For example, consider the case where the model initialization occurs in the middle section of the SOC
range (force decreases and cell contracts as SOC increases), whereas the actual SOC is in the high
SOC range (force increases and cell swells as SOC increases); the traditional approach will lead to
divergence of the estimated SOC state from the actual SOC due to the difference in slope. To address
this difficulty, an algorithm was developed that uses a window of past measurements force data to
identify the slope of the non-monotonic F–SOC. The observer gain will need to switch based on a
judicious combination of the information at hand, namely

(a) the modeled slope ĈdF from Equation (18) of the F–SOC relation based on the estimated state ẑ; and
(b) the estimation of the slope by using the measured force with respect to the Coulomb counting

based SOC, dF̃
dz (DFDZ).

Therefore, the output error injection gain K is a function of the state estimate and the estimated
force derivative, e.g., K(ẑ, d̃F

dz ), using two sources of information due to its importance in the
convergence of the estimation error. The DFDZ is computed as a line fitting problem based on
the moving window of past force measurements and the Coulomb counting based SOC integration
(z̃) over the moving window. The fitted DFDZ line F̃ = dF̃

dz z̃ + F̃0 parameters are computed using the
least-squares estimation as [

dF̃
dz
F̃0

]
k

= (LT
k Lk)

−1
L

T
k Fk (19)

where F̃0 is the affine parameter in Equation (18). The moving window of force measurements and the
design matrix respectively are defined as follows

Fk =

⎡
⎢⎢⎢⎢⎣

Fk−n
Fk−n+1

...
Fk

⎤
⎥⎥⎥⎥⎦ , Lk =

⎡
⎢⎢⎢⎢⎣

z̃k−n 1
z̃k−n+1 1

...
...

z̃k 1

⎤
⎥⎥⎥⎥⎦ (20)

where k represents the discrete-time measurement index and n is the number of past samples.
The Coulomb counting based SOC integration is computed as

z̃k = z̃k−1 − Ik−1Ts

Cb
. (21)

The integration is initialized with z̃k−n = 0. The moving window provides the dF̃
dz computation as

the average slope in a window of n prior values of force which causes a delay δ in the switching logic
as a function of the window size n, as shown in Figure 5d. We can see that for n = 150 the δ is smaller
compared to n = 450, but, with smaller n, the estimated slope is more susceptible to noise. We chose
n here to be 150 samples with a discretized time of 1 s. The reasoning behind choosing this window
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size is explained in Section 5.3. Due to this delay and the fact that during this time the actual and the
estimated state can be in different segments of the SOC, which could cause divergence, the gain is set
to zero when the estimated slope dF̃

dz has a different sign from the modeled slope. Therefore, the system
will run open loop for both voltage and force when there is slope mismatch. This is done in order to
avoid instability issues.

Figure 5. Simulation (without bias in the force measurement) for the Switch Observer V&F developed
in our previous work [22]. This figure shows the impact of high gains corresponding to solution of the
linear quadratic estimator using Q1 = diag([2, 0.1, 0.1]) and R = diag([1, 1]) with moving windows of
length (MW) = 150 and MW = 450. If the gain is lowered by using Q2 = diag([2, 0.1, 1e − 2]), as shown
by the purple dashed line, the error is decreased by 5% with same 150pt moving window length.
(a) Comparison of the simulated state of charge (SOC). (b) Comparison of the state of charge (SOC)
error with the dashed lines representing the target ±5% bound. (c) Comparison of the simulated force.
For generalization of the results to the other cell sizes, the pressure is shown. (d) Comparison of the true
slope with the estimated slope dF̃

dz and observer output. Due to the greater delay (δ) before applying
the zero gain for the MW = 450 case, a higher error in SOC estimation occurs during the transition from
RII to RI . (e) Comparison of the feedback gain K32 from force to SOC based on the switching logic.
When the observer and estimated slopes mismatch, the gain is set to zero.
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The switching logic for our gain (K(ẑ, d̂F
dz )) is given by the following rules:

KVF(3, 2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

KRI if dF̃
dz > 0 and ẑ < b̂L

KRII if dF̃
dz < 0 and b̂L < ẑ < b̂H

KRIII if dF̃
dz > 0 and ẑ > b̂H

0 otherwise.

(22)

Note that the gains KRI , KRII , and KRIII are not constant. The set of gains KRI consists of the
four gains that correspond to the four regions in voltage in region RI , KRII consists of the two gains
that correspond to the two regions in voltage in region RII , and KRIII consists of the two gains that
correspond to the two regions in voltage in region RIII , as shown in Figure 3. The gains are therefore
a function of ẑ and dF̃

dz and they switch to the corresponding region depending on the value of the
estimated slope and estimated SOC.

5.3. SOC Estimation Error during Switching

Going open loop, during the time interval when there is a slope mismatch, is not sufficient to
avoid divergence of the estimated state of charge with high feedback gain. To verify this, we analyze
the Luenberger Observer for the SOC state using the measured force only. The goal of this analysis is to
determine the impact of the gain K on divergence of the state estimate when the true model and state
estimate are operating on opposite regions of the output non-linearity. Using Equations (12) and (13),
we can write the error dynamic (e = z − ẑt) for the observer assuming x̂ is in RI and x is in RII as:

êt+1 = Aêt − K(yt − ŷt) = Aêt − K(βmx + βm0 − αmx̂ − αm0 + αmx − αmx) (23)

êt+1 = (A − Kαm)êt − K((βm − αm)x + βm0 − αm0). (24)

From this error dynamic equation, we notice the error converges to a non-zero quantity so that e
tends toward zero only when x = bL, and the steady state error ess = ((βm − αm)x + βm0 − αm0)/αm is
independent of the gain K. In the case, where the sign of the model is updated based on the measured
slope of the force signal ( d̃F

dz ), the growth in SOC estimation error is bounded by the number of samples
in the filter or the moving window size (MW). If the current is bounded (which it is in our case),
then the divergence in the state estimate is bounded by the integral of the current and the switching
time δ. When the estimator model is updated to the correct slope, the observer begins to converge
again. However, noise in the measurement of force could still result in divergence of the estimate if
the gain K is too high. This is shown in Figure 5. We can see that just by changing the MW = 150
to MW = 450 by using the same gains given by Q = diag([2, 0.1, 0.1]) and R = diag([1, 1]). This is
because the gain is large and the delay in dF̃

dz crossing zero is 1 min greater than MW = 150. Therefore,
the divergence in SOC, because of the slope mismatch, will grow for a longer period of time with
increasing filter length and a higher error is achieved due to the delay in switching the gain to zero.

Now, if we decrease the gain by using Q = diag([2,0.1,1 × 10−2]) and R = diag([1, 1]) without
bias estimation and n = 150, we notice that at the same region the error decreases by 5%. Therefore,
low gains should be used to avoid the divergence and a window size of 150 is chosen since this is the
lowest window that provides sufficient noise rejection. The previous error dynamic analysis can be
done for the other mismatch slope areas to determine the minimum SOC state estimation error.

5.4. Bias Influence in SOC Estimation

In this section, the proposed estimation is tested under biased force measurements. In Figure 6,
the simulated force data have a bias or drift of 3 N present in the force measurement. This drift in force
affects the SOC estimation, as shown in Figure 6. Application of the switched model observer based
on voltage and the force measurements based on previous work [22] without taking into account the
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bias estimation results in error larger than 5%. Therefore, we assumed a constant bias state ( f̂d,t) that is
given by

fd,t+1 = fd,t (25)

Figure 6. Simulation assuming accurate modeling using Switch Observer V&F Bias observer with an
emulated bias of 3 N and 10 % (0.1) initial SOC error. (a) Comparison of the simulated state of charge
(SOC). Is clear from the results that Switch Observer V&F without bias estimation diverges from the
simulated SOC. Therefore, bias estimation is needed in the developed observer. (b) Comparison of
the state of charge (SOC) error with the dashed lines representing the target ±5% bound. SOC errors
greater than 20% are obtained with the Switch Observer V&F without bias estimation. It is shown that
with bias estimation the SOC error is within the 5% estimation error bound (EEB). (c) Comparison of
the simulated force and observer outputs. The bias state permits deviation in the force output, without
compromising SOC estimation. For generalization of the results to the other cell sizes, the pressure
is shown. (d) Comparison of the simulated terminal voltage. (e) Comparison of the true slope with
the estimated slope dF̃

dz and observer output. (f) Comparison of the feedback gain K32 from force to
SOC based on the switching logic. As shown in region A, denoted by the black dashed horizontal lines,
when the observer and estimated slopes mismatch, the gain is set to zero. (g) The observer estimates
the bias state which converges to the true bias as shown by the black horizontal dashed lines.
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where fd,t is the constant bias or drift term that augments the electrical states. The estimator now
estimated the electrical states (except hysteresis) and the force drift with x̂t = [V̂1, V̂2, ẑ, f̂d,t]

T .
Therefore, the gains for the V&F Bias observer have the following format

K =

[
K11 K21 K31 K14

K12 K22 K32 K24

]T

(26)

The values for K1i and K2i with i = 1–4 are obtained by tuning the Q and R matrices.

6. Simulation Results without Model Mismatch in F–SOC and OCV–SOC

The standard Dynamic Stress Test (DST) profile is repeated back to back and modified by adding
a constant current to periodically recharge the battery at 1/6 C rate, exercising a wider range of SOC,
as shown in Figure 4a. A measurement noise variance of 5 mV for voltage and 0.05 N for force was
chosen based on the variance of the experimental data. As for the drift value, we chose a value of 3 N
based on the monthly drift observed between repeated characterization experiments. Our observer
works if the initial error in bias is within 3 N. The LQE estimator is initialized with an SOC error
of ±10% in order to evaluate convergence. In the case of the DST cycle, the true SOC state may
be approaching the estimated value or diverging from the true SOC value depending on the initial
SOC estimation error. The objective is to stay within the ±5% estimation error bound (EEB) for SOC
denoted by the dashed lines in the Figure 6b. We chose to simulate initial conditions around 60–80%
and the SOC swing of the whole cycle around 20–80% SOC. This range was chosen due to the challenge
associated with flat OCV–SOC profile present for voltage (around 40–60%) and the negative slope
in F–SOC (around 35–70%). Therefore, the simulated “measured” data are initialized at 61% SOC.
The weights chosen to obtain the gains K1i with i = 1–4 and K2i with i = 1–4 are shown in Table 2.
The gain K32 is shown in Figure 6f to illustrate when the algorithm uses the estimated slope mismatch
to zero the observer gain and run open loop.

Table 2. Control weights for the different sensors using the simulated data. V, terminal voltage; V&F,
fusion of both sensors; V&F Bias, fusion of both sensors with bias state.

Models Q R

V diag(2, 10, 2) 50
V&F diag(2, 0.01, 0.01) diag(50,10,000)

V&F Bias diag(2, 0.1, 0.01, 4) diag(50,10,000)

The SOC estimation using the V measurement and V&F measurement with and without the bias
state estimation are shown in Figure 6a. In all three cases, a 10% initial estimation error is assumed.
The inflection points in the force with respect to SOC are denoted by the dotted horizontal lines in
Figure 6a. In this case, the correct values for bL and bH are used for the simulated data and the observer.
The switched model applies zero gain (as shown in Figure 6f in Region A) when the model slope
(based on ẑ) does not agree with the estimated slope using the least squares on the moving window with
Equations (19) and (20). Using the previously developed V&F observer without bias estimation [22],
the SOC error does not remain within the ±5% bound with a 3 N bias in the measurement, even though
the error in the force signal is small, as shown in Figure 6a,c. For the proposed switching force-and
voltage-based LQE with bias (Switch Observer V&F Bias) before t = 50 min there is an SOC estimation
error of 10%, even though the force estimation is matching our simulated data, due the error in bias
state estimation shown in Figure 6g. Between t = 25 and t = 42 min, there is a slope mismatch
in dF̃

dz due to the delay of our moving window. After t = 42 min, the slopes match again, and the
correct non-zero feedback gain is applied and the state of charge estimation error convergences within
our ±5% EEB, as shown in Figure 6b. Even though both the proposed switching force and voltage
based LQE (Switch Observer V&F Bias) and the LQE based on voltage (Observer V) estimate voltage
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accurately (as shown in Figure 6d, it can be observed that the Switch Observer V&F Bias has faster
convergence than the estimate based on V alone, as shown in Figure 6b. The faster convergence is due
to the addition of the force signal that produces a lower output error injection gain from V to SOC in the
regions where the voltage signal has flat slope. It can be appreciated from Figure 6g that the bias term
is able to estimate the drift value slowly in our force measurement. The slow convergence of the bias
estimate to the 3 N value denoted by the dotted black line can be seen in Figure 6g. Therefore, as time
progresses, the estimated force converges to the modeled data, as shown in Figure 6c. This is due to
the chosen inflection points in F–SOC function being the same as the modeled data (b̂L = bL = c3 and
b̂H = bH = c5). We can observe that the estimated bias value oscillates around the true bias value.
The model error is being attributed to the bias state by the estimation algorithm. The Switch Observer
V&F Bias has lower root mean square error (RMSE), faster time convergence to the denoted SOC EEB
(referred to as Time to 5% EEB in Table 3), and reduced maximum absolute SOC error after the force
measurement has converged to an SOC error (referred to as Max SOC Error in Table 3) compared to
Observer V as shown in Table 3. Therefore, the advantage of Switch Observer V&F Bias is the fast
convergence in the region of 40–60% SOC while having more accurate SOC estimation due to the low
RMSE values.

Table 3. Comparison of the RMSE index for different initial estimate error and different sensors using
the simulated data. V, terminal voltage; V&F Bias, fusion of both sensors with bias state.

Initial SOC Error Parameters Observer V Switch Observer V&F Bias

Time to 5% EEB [min] 67.81 42.44
+10% Max SOC Error [%] 3.32 3.22

RMSE 0.0394 0.0337

Time to 5% EEB [min] 41.33 7.86
−10% Max SOC Error [%] 5.15 1.54

RMSE 0.0321 0.0185

7. Simulation Results with Inflection Point Mismatch in F–SOC and OCV–SOC

In reality, we do not have a “perfect” model that captures the battery data. Moreover, during aging,
the capacity loss shifts the inflection points as compared with the fresh cell. Therefore, to simulate
a more realistic application model mismatch is included in the F–SOC and OCV–SOC observer by
shifting the inflections points bL and bH of by −10% (b̂L and b̂H) to represent capacity loss on the
negative electrode [15]. During capacity loss, these inflections points shift for both functions of F–SOC
and OCV–SOC because they correspond to the electrochemical and mechanical model having the same
phase transitions. The aging effect on the swelling as the battery is cycled is that the inflection points
will shift by approximately 10%. The proposed V&F bias SOC method will work if the initial unknown
bias is within 3 N. The bias estimator will converge to the true value, when the SOC is outside the
middle region (where there is a multiplicity of state of charge). A larger error in the initial bias will
be “corrected” by visiting 100% or 0% SOC based on the cell voltage feedback. In the middle region
(RII), the feedback of force error is split between the SOC and bias in the middle region without a
strong feedback from the terminal voltage and therefore can have a persistent SOC error. Checking
the observer performance under inflection points mismatch due to capacity loss is important since
it captures the robustness needed as the battery ages. Therefore, we want to check the performance
of the developed Switching Observer V&F Bias under this model mismatch and both voltage and
force have −10% inflections points shift. We initialize our simulated “measured” data at 61% SOC.
The weights chosen to obtain the gains K1i with i = 1–4 and K2i with i = 1–4 are shown in Table 4.
The gain K32 for feedback of the force error to the SOC state is shown in Figure 7f. The results from the
“perfect” model observer (Switch V&F Bias), as shown in Figure 6, are compared with the observer
with inflection mismatch (Switch V&F Bias Mismatch).
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Figure 7. Simulation of the impact of model mismatch in the inflection points of the force vs. SOC
curve. A 10% error in b̂L and b̂H is tested for the observer (Switch Observer V&F Bias) with an emulated
bias of 3 N and 10% (0.1) initial SOC error. (a) Comparison of the simulated state of charge (SOC).
(b) Comparison of the state of charge (SOC) error with the dashed lines representing the target ±5%
bound. The SOC error converges to within the ±5% error bound. The largest SOC errors are observed
near the switching points denoted by the horizontal dashed lines in Figure 7a. (c) Comparison of the
simulated force and observer output. For generalization of the results to the other cell sizes, the pressure
is shown. (d) Comparison of the simulated terminal voltage and observer output. (e) Comparison of
the true slope with the estimated slope dF̃

dz and observer output. (f) Comparison of the feedback gain
K32 from force to SOC based on the switching logic. The gain is set to zero when there is mismatch in
the estimated slope and that based on the observer SOC. (g) The Bias state estimate converges slowly.
The impact of model mismatch in the inflection points of the force vs. SOC curve can be seen by
comparing the (Switch Observer V&F Bias Mismatch) and (Switch Observer V&F Bias) which uses
the correct value. The accurate observer converges to the true value of 3 N, denoted by the dashed
horizontal line whereas mismatch leads to a constant over-estimate of about 1 N.
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Table 4. Estimation Weights for the different sensors using the simulated data with and without model
mismatch. V&F Bias fusion of both sensors without mismatch; V&F Bias Mismatch, fusion of both
sensors with model mismatch.

Models Q R

V&F Bias diag(9, 0.01, 0.005, 3) diag(50,10,000)
V&F Bias Mismatch diag(9, 0.01, 0.005, 3) diag(50,10,000)

The SOC estimation using the V measurement and V&F Bias measurement with 10% initial
estimation error are shown in Figure 7a. The inflection points in the force with respect to SOC are
denoted by the dotted horizontal lines in Figure 7a. As shown in Table 5, we obtain lower RMSE,
faster convergence to the desired SOC estimation error bound (EEB), and smaller absolute SOC error
after the force measurement has converged to an SOC error value for the V&F Bias observer compared
to V&F Bias Mismatch observer when initialized at 10%. For −10% SOC initialization, the V&F Bias
Mismatch observer has lower RMSE and lower time convergence to the desired SOC estimation error
bound (EEB) compared to V&F Bias, as shown in Figure 7b. The force bias estimate for V&F Bias
Mismatch converges faster to the constant bias value of 3N. Due to this faster convergence, the RMSE
and the convergence to the desired SOC estimation error bound (EEB) is lower for the model with
mismatch due to the initial condition. In both −10% and 10% SOC initialization, the maximum
absolute SOC error after the force measurement has converged to an SOC error lower for V&F Bias
than V&F Bias Mismatch. The non-zero state estimation error is due to the mismatch present in the
F–SOC and OCV–SOC function (bL 
= c3 and bH 
= c5). To understand this, we need to analyze the
error dynamics equation. We know from Section 3 the form of our model and the observer form is
given in Equation (12). Therefore, denoting our error as e = x − x̂ and using our model and observer
model equations, we obtain the dynamic error equation as

ė = (A − KC)e − KΔCx̂ − KΔC0 (27)

where ΔC = C − Ĉ and ΔC0 = C0 − Ĉ0. From the dynamic error equation, we notice that the bias
error and the SOC error will not converge to 0 due to the terms −KΔC0. Therefore, the bias will
converge to a value that is not the true value of the drift due to this error, as shown in Figure 7g.
The SOC error will converge to a value but it will not converge to 0, as shown in Figure 7b, due to the
model mismatch. The magnitude of the estimation error varies depending on the force region we are
operating in. The SOC estimation error, due to model mismatch, will grow as the force sensor drift
increases due to the terms −KΔC0. For the given model tuning and 10% shift in the force curve with
respect to SOC, the force-based observer only achieves better SOC estimation than the voltage only
case if the uncorrected force sensor drift is less than 3 N initially.

Table 5. Comparison of the RMSE index for different initial estimate error and different sensors using
the simulated data with and without model mismatch. V, terminal voltage; V&F Bias, fusion of both
sensors; V&F Bias Mismatch, fusion of both sensors with model mismatch.

Initial SOC Error Parameters Observer V&F Bias Switch Observer V&F Bias Mismatch

Time to 5% EEB [min] 42.5 42.55
+10% Max SOC Error [%] 2.79 3.01

RMSE 0.0327 0.0377

Time to 5% EEB [min] 8.38 5
−10% Max SOC Error [%] 2.38 4.31

RMSE 0.0200 0.0177
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8. Experimental Data Results Using F–SOC and OCV–SOC

With a 10% initial error in our SOC estimate, we obtain the results shown in Figure 8. The observer
was initialized to 51% SOC, whereas the true state was 61% SOC, to highlight the performance in the
middle SOC region where voltage based techniques are less effective. The current waveform discussed
in Section 2 was applied to the battery and the observer. As in the simulated results, the proposed
Switch Observer V&F Bias has faster convergence than the SOC estimation based on V alone as
shown in Figure 8b. The V&F Bias observer exhibits lower RMSE, faster time convergence to the
denoted SOC estimation error bound (EEB), and reduced maximum absolute SOC error, as shown
in Table 6 compared to V observer. The bias term oscillates around the estimated bias value of 6.8 N,
as shown in Figure 8g. These larger oscillations in the bias could be due to our force data having
additional dynamics besides the bias term. According to [13], the force has a dynamic term that is
temperature dependent, and the ambient chamber temperature may oscillate within ±1 ◦C. Therefore,
this dynamic term should be added to our force model. There are some large errors in SOC estimation
(approximately around 15%) at low SOC. This is due to our piecewise linear (PWL) fit.

Table 6. Comparison of the RMSE index for different initial estimate error and different sensors for
data validation. V, terminal voltage; V&F Bias, fusion of both sensors.

Initial SOC Error Parameters Observer V Switch Observer V&F

Time to 5% EEB [min] 95.5 0.18
+10% Max SOC Error [%] 11.89 11.79

RMSE 0.0741 0.0611

Time to 5% EEB [min] 6.95 6.54
−10% Max SOC Error [%] 11.89 11.79

RMSE 0.0594 0.0574

In the area near 20% SOC, the PWL fit is less accurately, as shown in Figure 1, which results in
increased SOC estimation error of around 10%. To better capture the non-linearity, the piecewise linear
approximation could be further divided into more regions to provide a better fit. The weights chosen
to obtain the gains K1i with i = 1–4 and K2i with i = 1–4 are shown in Table 7. The gain K32 that
satisfies sign or is zero is shown in Figure 8f. The bias estimation state is initialized at 10 N.

Table 7. Control Weights for the different sensors for data validation: V,terminal voltage; V&F Bias,
fusion of both sensors.

Models Q R

V diag(5, 0.1, 0.1) 50
V&F Bias diag(1,1×10−2,0.09,50) R = diag(50,10,000)
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Figure 8. Experimental validation of the developed observer (Switch Observer V&F Bias) with 10%
(0.1) initial SOC error. The offline experimentally measured current, voltage, and force data were
fed into the model to assess performance. (a) Comparison of high accuracy coulomb counting based
state of charge (SOC) with observer estimates. (b) Comparison of the state of charge (SOC) error with
the dashed lines representing the target ±5% bound. The observer with force bias state estimation
demonstrates better performance. The large error at low SOC for both observers is due to model
mismatch the piecewise linear OCV–SOC fit at low SOC. (c) Comparison of measured and estimated
force. (d) Comparison of the experimental and observer modeled terminal voltage. (e) Comparison of
the estimated slope dF̃

dz and observer model. (f) Comparison of the feedback gain K32 from force to SOC
based on the switching logic. (g) The Bias state estimate fluctuates around the average value (denoted
by the horizontal dashed line). This could be due model mismatch, where the force error is exciting the
bias state estimate.

9. Conclusions

In this paper, a new switching estimator design for a battery with the lithium ion LFP chemistry
that integrates the non-monotonic F–SOC relation is proposed, verified by simulation, and validated
using experimental data with respect to the SOC estimation accuracy. The estimator is based on
switching PWL models that are scheduled according to the identified slope of the F–SOC operating
point with a bias state in order to capture the drift exerted by the fixture and battery in our force
measurement. Two different sensor scenarios, namely V and V&F Bias fusion, are compared, where it
is concluded that the V&F Bias sensor improves the rate of SOC estimator convergence. This is
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due to the information added from the steeper, hence more informative, F–SOC characteristic than
OCV–SOC relation despite large errors in the voltage and force models. The bounds on SOC estimation
accuracy depend on the chosen inflection points of the F–SOC function. If they are correct, then the
accuracy is better for the observer with both F and V than V only. Our future work will focus on
determining if the drift on our force measurement is due to creep exerted by the poron and thermal
expansion of the fixture or due to creep exerted by a degraded battery influenced by compressive
stresses [32], or a combination of both. The thermal expansion term and swelling dynamic as a function
of temperature will be considered. Data from an aged swelling cell will be used with the developed
SOC estimator and the State of Health of the battery (SOH) will be estimated through the capacity fade.
The inflection point model mismatch on the F–SOC function will be further studied in an aged cell since
the inflection points change as the battery degrades or fades. Due to the tight manufacturing tolerances,
the variability in thickness should not be a significant contributor to force measurement uncertainty.
In terms of aging, the expected variability in the cell expansion is a subject of future studies. Cell-to-cell
variability due to aging in the resulting force should also be investigated in future work based on
initial findings from [14,15]. Finally, the measured force is the result of all cell’s expansion (summation)
in a constrained module, therefore different levels of degradation for individual cells when charged in
series would result in smoothing (convolution) of the force sensed on the module-level.
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Abbreviations

The following abbreviations are used in this manuscript:

V terminal voltage
SOC, z state of charge
LFP lithium ion iron phosphate
F force
LQE linear quadratic estimator
DST Dynamic Stress Test
BMS battery management system
Ah ampere-hours
UAV unmanned air vehicles
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OCV open circuit voltage
NMC nickel manganese cobalt
SOH state of health
PWL piecewise linear
CCCV Constant-Current/Constant-Voltage
DFDZ force derivative or slope of the measured force with respect to the SOC
N Newton
EEB estimation error bound
Max maximum
RMS root mean square
RMSE root mean square error
RTDs resistance temperature detectors
DARE Discrete Algebraic Riccati Equation
MW moving window
HEV hybrid electric vehicle
EV electric vehicle
HPPC Hybrid Pulse Power Characterization

Appendix A. Voltage Hysteresis State H Function

H(z, sign(I)) = sign(I)(a12z12 + a11z11 + a10z10 + a9z9 + a8z8 + a7z7 + a6z6 + a5z5

+ a4z4 + a3z3 + a2z2 + a1z + a0) (A1)

where ai with i = 0–12 are the tuned parameters and their values are found in Table A1.

Table A1. Voltage hysteresis state H function parameters and its values.

Parameters Values Parameters Values Parameters Values

a12 8662.54 a8 319,201.70 a4 9255.46
a11 −57,939.63 a7 −234,698.07 a3 −1381.64
a10 170,685.13 a6 117,809.10 a2 127.23
a9 −291,398.86 a5 −40,316.61 a1 −6.53

a0 0.16

Appendix B. Discrete Terminal Voltage Model

The discrete terminal voltage measurement equation is defined as

VT,t = Ṽoc(zt)− IR − V1,t − V2,t + vV,t (A2)

where vV,t is the V measurement noise. The piecewise linear (PWL) approximation of the OCV
characteristic is modeled as

Ṽoc(zt) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζzt + ζ0 if zt ≤ c0

ηzt + η0 if c0 < zt ≤ c1

θzt + θ0 if c1 < zt ≤ c2

κzt + κ0 if c2 < zt ≤ c3

σzt + σ0 if c3 < zt ≤ c4

μzt + μ0 if c4 < zt ≤ c5

ϕzt + ϕ0 if c5 < zt ≥ c6

λzt + λ0 if zt ≥ c6

(A3)

where ζ, η, θ, κ, σ, μ, ϕ, and λ are the slope parameters; ζ0 is the minimum voltage sensed at fully
discharged state; and c0, c1, c2, c3, c4, c5, and c6 are the piecewise point parameters. The parameters
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η0, θ0, κ0, σ0, μ0, and λ0 are uniquely determined from the other parameters via constraints of
piecewise continuity.

η0 = (ζ − η)c0 + ζ0 (A4)

θ0 = (η − θ)c1 + (ζ − η)c0 + ζ0 (A5)

κ0 = (θ − κ)c2 + (η − θ)c1 + (ζ − η)c0 + ζ0 (A6)

σ0 = (κ − σ)c3 + (θ − κ)c2 + (η − θ)c1 + (ζ − η)c0 + ζ0 (A7)

μ0 = (σ − μ)c4 + (κ − σ)c3 + (θ − κ)c2 + (η − θ)c1 + (ζ − η)c0 + ζ0 (A8)

ϕ0 = (μ − ϕ)c5 + (σ − μ)c4 + (κ − σ)c3 + (θ − κ)c2 + (η − θ)c1 + (ζ − η)c0 + ζ0 (A9)

λ0 = (ϕ − λ)c6 + (μ − ϕ)c5 + (σ − μ)c4 + (κ − σ)c3 + (θ − κ)c2 + (η − θ)c1 + (ζ − η)c0 + ζ0 (A10)

The OCV characteristic and its PWL approximation are shown in Figure 3. Note that c3 and c5

also correspond to the inflection points in the PWL approximation of the force. The reason for this is
that both functions of F–SOC and OCV–SOC have the same inflection points due to the electrochemical
and mechanical model having the same phase transitions.

Appendix C. Force and OCV Function Values that Represent Average Data

Table A2. Parameter values for the F–SOC function that represent average data. This model is also
used for PWL F–SOC without model mismatch (bL and bH) and with model mismatch (b̂L and b̂H).

Parameters Values Parameters Values Parameters Values

αm 63.11 γm 21.78 b̂L 0.34
αm0 1641 bL 0.35 b̂H 0.69
βm −29.53 bH 0.7

Table A3. Parameter values for the OCV–SOC function in Equation (7).

Parameters Values Parameters Values Parameters Values

V0 −2.4354 av,1 0.0206 av,3 0.0166
d 0.1162 bv,1 0.2321 bv,3 0.6799
f 5.7469 cv,1 0.0626 cv,3 0.0306
h 1.2942 av,2 5.6185
k 3.0014 × 10−4 bv,2 −0.0513
g −0.0098 cv,2 0.0406

Table A4. Parameter values for the PWL OCV–SOC function in Equation (A3) without model mismatch.
Same values are used with model mismatch except for c3 = 0.34 and c5 = 0.69.

Parameters Values Parameters Values Parameters Values

ζ 9.232 μ 0.02836 c3 0.35
ζ0 2.622 ϕ 2.264 c4 0.6511
η 0.3899 λ 0.03506 c5 0.7
θ 0.4922 c0 0.06 c6 0.9767
κ 0.2724 c1 0.1516
σ 0.5515 c2 0.2528
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Abstract: This paper proposes a method for the combined estimation of the state of charge (SOC) and
state of health (SOH) of batteries in hybrid and full electric vehicles. The technique is based on a set
of five artificial neural networks that are used to tackle a regression and a classification task. In the
method, the estimation of the SOC relies on the identification of the ageing of the battery and the
estimation of the SOH depends on the behavior of the SOC in a recursive closed-loop. The networks are
designed by means of training datasets collected during the experimental characterizations conducted
in a laboratory environment. The lithium battery pack adopted during the study is designed to
supply and store energy in a mild hybrid electric vehicle. The validation of the estimation method is
performed by using real driving profiles acquired on-board of a vehicle. The obtained accuracy of the
combined SOC and SOH estimator is around 97%, in line with the industrial requirements in the
automotive sector. The promising results in terms of accuracy encourage to deepen the experimental
validation with a deployment on a vehicle battery management system.

Keywords: battery; state of charge; state of health; artificial intelligence; artificial neural networks;
hybrid vehicles; electric vehicles; estimation

1. Introduction

The automotive industry is recently dedicating increasing attention to sustainability, with the
objective of mitigating the negative effects of vehicular mobility on the environment. Carmakers cope
with the always more stringent regulations about CO2 emissions, focusing their efforts on the
development of advanced powertrain architectures [1,2]. Solutions based on the adoption of full
electric (battery electric vehicles (BEVs)) powertrains or on the combination of an internal combustion
engine (ICE) and electric traction (hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs)) are now
established as reliable alternatives to conventional powertrains [3,4]. They exploit batteries as the
primary energy source in BEVs or as an auxiliary source in HEVs and PHEVs [5]. In the automotive
industry, the most common battery technology exploits lithium because of its remarkable advantages
in terms of the energy density, fast charging, low maintenance, and long lifetime allowances. Moreover,
lithium-based solutions allow for obtaining powerful, compact, and light configurations together
with satisfactory levels of autonomy, which is currently settled in the order of a few hundreds of
kilometers [6]. However, the reliability and performance of these type of batteries are strongly
influenced by the management of the charging and discharging phases. It is indeed well known that an
appropriate handling of these operations is mandatory to avoid the occurrence of overcharging or deep
discharging, that would lead to permanent or hardly reversible damages of the pack. A continuous and
accurate monitoring of the battery state takes on significant importance to extend the battery lifetime,
effectively plan the trip route and charging stops, optimize the energy flow management of HEVs [7,8],
and mitigate psychological effects, such as the range anxiety that is commonly experienced by a large
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number of BEV drivers [6]. The main parameters to be assessed for a correct battery monitoring are
the residual available energy in the pack, known as state of charge (SOC), and the degradation suffered
by the battery, indicated by the state of health (SOH) [9]. As is well known, these two states cannot be
directly measured, since the technology to make a sensor that plays the equivalent role of a fuel gauge
is not available. Therefore, the adoption of some estimation techniques becomes mandatory [10,11].
Typically, carmakers exploit look-up tables (LUTs), where the SOC and SOH behavior is mapped during
the preliminary experimental characterizations conducted in a laboratory environment. These tests
are done following the so-called direct methods, which are based on ampere-hour counting or the
measurement of the internal impedance and open circuit voltage of the battery [10,12]. However,
the adoption of LUTs may have a high computational cost and imposes the storage of a huge amount
of data in the electronic control unit memory, particularly in the case of the SOH estimation. A further
class of methods exploits model-based techniques for the real-time assessment of both the SOC and
SOH [13]. The most common are the Kalman filter [14] and its derivations, namely the extended
(EKF) [15] and unscented Kalman filters (UKF) [16,17], the adaptive particle filter (APF) [18], and the
smooth variable structure filter (SVSF) [19]. Although these solutions can be implemented in real time
on a vehicle, they may suffer problems of inaccuracies if the reference model is not completely and
accurately tuned in all the possible operating conditions. An alternative and promising approach to
overcome this limitation is represented by artificial intelligence (AI). In most cases, these solutions
adopt artificial neural networks (ANNs) and allow getting rid of the model while obtaining satisfactory
levels of accuracy and reliability, provided that the networks are properly trained. An extensive
literature is dedicated to the methods for the estimation of the SOC [20–23] or SOH [24–27] with AI.
Nevertheless, to the best of the author’s knowledge, very few works deal with the combined estimation
of the SOC and SOH and most of them describe model-based techniques [28–30].

This paper proposes a technique for the combined estimation of the SOC and SOH with a set of five
ANNs: four regression networks dedicated to the SOC estimation and one classification network for the
SOH identification. The method is independent by the battery model and is designed with a training
phase conducted with datasets obtained from the preliminary laboratory experimental characterizations.
The SOC estimation exploits four nonlinear autoregressive neural networks with exogenous input.
Each of them is associated with a specific class of ageing (SOH) of the battery. The correct estimation
among the four outputs is selected according to the SOH identification, which is obtained separately
by a classifier that is done with a pattern recognition neural network. The SOH estimator provides a
class of ageing among four possibilities, ranging from 80% to 100% with a step of 5%. A further class
is associated to exhausted batteries and covers the range from 0% to 80% of the SOH, where 80% is
the degradation threshold in the automotive sector. The output of the SOH classifier is used to select
the correct SOC estimation among the four outputs of the regression ANNs, while the SOC estimation
is used as an input for the SOH classifier in a closed-loop recursive architecture. The SOH estimator
is an algorithm which is triggered only when a specific battery load condition in terms of the mean
charging/discharging capacity request in a predefined time window is detected. This procedure allows
reducing the training dataset of the SOH neural classifier to only one specific case. This aspect represents
a relevant advantage in terms of a size reduction of the training dataset and a consequent time saving
during the dataset collection and learning procedures. Additionally, the size of the network is smaller
with a consequent reduction of the memory occupation when deployed on the battery management
system (BMS).

The paper describes the design of the two estimators and the validation phase is conducted with
the adoption of driving cycles acquired on a mild hybrid electric vehicle. The performance of the
SOC estimator is evaluated by comparing the temporal evolution of the expected and estimated state
of charge, whereas the SOH classifier accuracy is measured by using a confusion matrix, a common
evaluation tool of classification algorithms.

The novel contributions of this work are as follows: a) the proposal of a combined estimation of
the SOC and SOH with ANNs, allowing to make the method independent from the model and valid
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for every operating condition, provided that the network training dataset is complete and accurate;
and b) the proposal of an SOH estimation method that is triggered only when a specific load condition
corresponding to a predefined charging/discharging current profile is detected: this results in a compact
algorithm that can be trained with a dataset that is smaller with respect to what would be needed in
the case of a reproduction of the whole set of ageing conditions.

2. Method

The proposed method aims to provide a combined estimation of both the SOC and SOH of a
battery. The approach is equally valid for a battery pack, module, or for the single cell.

Figure 1 illustrates the overall layout of the method that is composed of two subsystems: the SOC
estimator, consisting of four regression ANNs, that is illustrated in the top left dashed box, and the SOH
estimator, that exploits a neural classifier, that is reported in the bottom right dotted box. As is well
known, the behavior of the two parameters is connected: the SOC of a battery is strongly influenced
by the ageing, as well as the SOH estimation needing the information of the SOC variation during
the charging/discharging operations. This motivates the adoption of a recursive loop architecture,
where the SOC output is provided as an input to the SOH classifier and vice-versa. Both algorithms
were trained on the basis of the preliminary experimental characterizations conducted in a laboratory.
The two subsystems are described in detail in the following sections.

Figure 1. Overall method architecture. Dashed box: state of charge (SOC) estimation. Dotted box: state
of health (SOH) estimation. i(t): charging/discharging current. v(t): voltage at battery terminals. T(t):
battery temperature. E(t): energy request. SOH classes: 1: (100 ÷ 95)%; 2: (95 ÷ 90)%; 3: (90 ÷ 85)%; 4:
(85 ÷ 80)%.

The battery pack considered for the study is composed of 168 cells (the cell model is Kokam SLPB
11543140H5, its characteristics are reported in Table 1) in the configuration 12p14s (p: parallel, s: series).
The pack has a nominal voltage of 48 V, a nominal capacity of 60 Ah, and is designed for a mild hybrid
electric vehicle with a peak electric power of around 20 kW, obtained considering a discharge rate of
around 7C in nominal conditions.
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Table 1. Main characteristics of the battery cell.

Typical Capacity (@0.5C, 4.2 V ÷ 2.7 V, 25 ◦C) 5 Ah

Nominal Voltage 3.7 V

Cut-off voltage 2.7 V

Continuous current 150 A

Peak current 250 A

Cycle life (Charge/Discharge @ 1C) >800 cycles

Charge
condition

Max. Current 10 A

Voltage 4.2 V ± 0.03 V

Operating
Temperature

Charge 0–40 ◦C
Discharge –20–60 ◦C

Mass 128.0 ± 4 g

Dimension
Thickness 11.5 ± 0.2 mm

Width 42.5 ± 0.5 mm

Length 142.0 ± 0.5 mm

2.1. SOC Estimation

The SOC estimator consists of four parallel regression ANNs (dashed box in Figure 1) working on
the same inputs. Each network is associated with a specific ageing condition: SOH class 1 (from 100%
to 95%), SOH class 2 (from 95% to 90%), SOH class 3 (from 90% to 85%), and SOH class 4 (from 85% to
80%). The threshold of 80% was decided considering that in the automotive sector, a battery has to be
considered exhausted when the capacity or power fading is higher than 20%. The step of 5% is aligned
with the typical precision that can be reached when dealing with the SOH estimation problem [31,32].

Each of the four regression ANNs receive, simultaneously, the following signals as inputs:
charging/discharging current (i(t) [A]), voltage at battery terminals (v(t) [V]), and temperature
(T(t) [C]). They provide four different outputs: ˆSOC1(t), ˆSOC2(t), ˆSOC3(t), and ˆSOC4(t). The final
SOC estimation ( ˆSOC(t)) is obtained with a downstream selector that is operated by a signal fed back
from the SOH classifier output, that is running separately, as indicated in Figure 1.

The structure of the four SOC estimators is the nonlinear autoregressive neural network with
exogenous input (NARX) architecture. Typically, this layout is adopted for prediction tasks and finds
an application in industrial engineering fields as well as in other sectors, namely linguistic search
engines or weather forecasting. However, its effectiveness has been demonstrated also for estimation
tasks and has been presented as an effective solution to estimate the SOC of lithium batteries in [21],
where an additional comparison with other ANN architectures in terms of the computational cost
and estimation accuracy is provided. The scheme of the NARX is reported in Figure 2, where the
two adopted configurations are illustrated: an open-loop configuration (a), often indicated also
as the series–parallel (SP) mode, that is adopted during the training procedure, and a closed-loop
configuration (b), or equivalently the parallel (P) mode, that is the final architecture adopted for the
estimation when the network is deployed on the vehicle for the real-time execution.

The output of the regression is defined as

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(1)

where y(n) ∈ R and x(n) ∈ R denote the output (state of charge) and inputs (current, voltage, and
temperature) of the NARX model at the discrete timestep n, respectively, dx and dy are the input and
output memory delays used in the model, respectively, and ϕ is the function, generally non-linear,
represented by the ANN. During the regression computation, the next value of the dependent output
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signal y(n) is regressed on the previous dy values of the output signal and previous dx values of the
independent (exogenous) input signal. In the open-loop configuration, the output regressor is

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(2)

A supervised training procedure is conducted using the measured output as the target.
This approach allows for enriching the information to be processed by the network and permits
using a common static backpropagation algorithm, the Levenberg–Marquardt in this case, for the
training process, since the resulting network has a purely feedforward architecture.

Figure 2. Nonlinear autoregressive neural network with exogenous input (NARX) architecture.
(a) Series–parallel (SP) mode (open-loop configuration) adopted during the training. (b) Parallel
(P) mode (closed-loop configuration) adopted for the estimation when the network is deployed.
HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

In the first second of computation, the value of the algorithm output is not stable and is
unpredictable. Therefore, if this value is fed back and provided as input to the ANN, it generates an
estimation divergence over time. To avoid the occurrence of this irremediable condition, during the
first second of estimation the feedback of the estimated SOC is replaced by the last estimation value
(SOCINIT in Figure 2b) recorded on a non-volatile memory at the previous shut down of the vehicle.
After 1 second, when the output has become stable, the SOC input of the network switches from the
previously recorded value to the real feedback of the estimation so that the regular operation of the
algorithm can start.

Referring to Figure 2b and indicating with n = n0 the time instant when the feedback signal
switches from SOCINIT to the estimated output, the characteristic equations of the model are written as

y(n) = ϕ[SOCINIT; x(n− 1, x(n− 2), . . . , x(n− dx))], n < n0 (3)

and
y(n) = ϕ

[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
, n ≥ n0 (4)

The four networks have the same size in terms of layers, neurons, and delays and adopts the
same activation functions. All these parameters have been designed with a trial and error approach
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aimed to maximize the estimation accuracy and avoid the risk of overfitting. Specifically, each network
has one layer with eight neurons, the delays dx and dy are equal to two, the activation function in the
hidden layer (HAF) and output layer (OAF) are the hyperbolic tangent and linear functions respectively,
and the training function is the Levenberg–Marquardt function.

During the design phase, the training precision is evaluated by computing the mean square error
(MSE) that reached a value of 1 × 10−13 as indicated in the small box embedded in Figure 3, and the
estimation accuracy is measured with the maximum relative error (MRE), that is computed as

MRE [%] = max
1<i<n

(∣∣∣∣∣∣SOCexp(i) − SOCest(i)

SOCexp,max = 1

∣∣∣∣∣∣
)
× 100 (5)

Figure 3. Comparison performance between the estimation (dashed line) and expected values (solid
line) of the SOC in the case of an SOH = 100%. The obtained maximum relative error (MRE) is equal
to 0.35%. The small box in the bottom left indicates the trend of the mean square error during the
training phase.

This parameter reached the value of 0.35% as indicated in Figure 3, where the comparison between
the estimation (dashed line) and the expected value (solid line) of the state of charge is reported in
the case of a new battery (SOH = 100%). This plot wants to represent an indication of the training
evaluation during the design phase.

The time length of the training dataset for the four regression ANNs is 13 h.
A more detailed description of the overall method results is reported in the final section of

the paper.

2.2. SOH Estimation

The degradation of the battery is estimated with an algorithm reproducing a pattern recognition
classifier with an ANN. Since the algorithm is proposed for the automotive sector, the method considers
20% as the maximum admitted capacity fading. Therefore, the considered life cycle of the battery
ranges from an SOH of 100% when the battery is new to an SOH of 80% when the battery has to be
considered exhausted. The proposed solution aims at quantifying the degradation suffered by the
battery by identifying the five different levels of ageing which correspond to the five classes provided
as an output by the classification algorithm. The first class covers the interval of ageing below the level
of 80% (assumed as the threshold of the maximum degradation of the battery) of the SOH. The other
four classes are equally distributed between 80% and 100% with four intervals of 5%, a percentage that
is considered as consistent with the reasonable level of accuracy that can be reached when dealing
with the problem of the SOH estimation.
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As in the case of the SOC network design, the proposed algorithm for the SOH estimation
exploits a preliminary experimental characterization phase conducted on the battery in a laboratory
environment. The obtained results are used to build the training dataset to be adopted for the learning
phase of the neural classifier. Specifically, the data of interest are recorded in a specific battery load
condition corresponding to a mean request of 12 Ah in an interval of time of 120 s. This condition
was selected because it can be detected quite frequently during a common driving cycle of an electric
or hybrid vehicle. Afterwards, the network is trained with the dataset corresponding to this specific
operating condition obtained at different values of temperature. Therefore, when the algorithm is
deployed on the vehicle, it is called to estimate the level of ageing whenever the same condition is
detected during the real driving cycle. This implies that when driving the vehicle, consecutive buffers
of 120 s are analyzed back-to-back by a control logic that is implemented in the “Triggering load
detection” block in Figure 1. As soon as the specific load condition of interest (mean capacity request
of 12 Ah in 120 s) is detected, the classifier is triggered and provides the SOH classification as an
output. Therefore, the estimation rate is not continuous over time, but it is produced in a discrete
and not time deterministic way, only in correspondence with the detection of the predefined known
load condition. The output of the estimator is kept equal to the last SOH estimation if the triggering
condition is not occurring.

Figure 4 reports a part of the ANN training dataset obtained by the preliminary experimental
characterization conducted on the battery. Subplot “a)” illustrates the behaviour of the degradation of
the battery as a function of the number of discharging cycles at different values of temperature [33].
The discharging is conducted with the predefined load above-mentioned. Subplot “b)” reports the
coupling effects between the SOH, capacity, SOC, and battery voltage. In this test, the temperature
is set to 25 ◦C and the variation of the capacity is motivated by the difference in the time needed to
discharge the battery at the different levels of ageing.

The time length of the training dataset covering all the considered levels of ageing is equal to
916 h obtained from 27,494 buffers with a duration of 120 s.

The SOH classifier works on discrete inputs, the so-called predictors, that are extracted in the
“Feature extraction” block in Figure 1 from the time histories of the following signals: current, voltage,
temperature, SOC, and energy. The latter is obtained from the “Energy computation” block in Figure 1
and is defined as

E =

∫ t0+tb

t0

v(t)i(t)dt (6)

where t0 is the initial time of the buffer and tb is the time length of the processed buffer that is set equal
to 120 s.

The list of the extracted predictors is state of charge variation (-) (ΔSOC), voltage variation (V)
(ΔV), requested energy (Wh) (E), and mean temperature (◦C) (T).

The architecture of the classifier is illustrated in Figure 5. The training phase of the neural classifier
is performed exploiting the scaled conjugate gradient (SCG) backpropagation training function [27].
This algorithm is designed to minimize the cost function including the difference between the estimated
and expected outputs. This approach gives a good performance over a large number of pattern
recognition problems that may include numerous parameters and guarantees a low performance
degradation while reducing the training error. Additionally, this function is characterized by a relatively
low computational cost and memory requirements [21], and its ability to provide well-separated classes
in data mining and classification problems has been proven in many research works [34].
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Figure 4. Battery experimental characterization for the SOH estimation. (a) SOH as a function of the
number of discharging cycles and of the temperature. (b) Behavior of the SOH as a function of the
voltage, capacity, and SOC. The temperature in this case is set equal to 25 ◦C.

 
Figure 5. Pattern recognition a feed-forward artificial neural network (ANN) architecture for the SOH
classification. HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

The classifier is composed of one input, two hidden and one output layer. As in the case of the
SOC network design, the number and size of the hidden layers is defined heuristically, by means
of a trial and error procedure. Specifically, the hidden layers consist of ten neurons each, HAF is a
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hyperbolic tangent sigmoid, and OAF is a normalized exponential function. The performance of the
training process is evaluated by means of the cross-entropy cost function, that at the end of the training
process is equal to 1 × 10−3, after around 3000 training epochs.

3. Results and Discussion

The validation of the method is conducted in two separate phases: (a) an analysis of the
performance of the SOH identifier and (b) an evaluation of the accuracy of the overall SOC estimation
that includes the ageing classification.

3.1. SOH Classification

As is described above, the classification algorithm is called to identify the class of degradation only
when a specific load condition is detected during the driving operations. To evaluate the effectiveness of
the method, a profile corresponding to the specific charging/discharging profile was created artificially
to have an exhaustive number of occurrences in the different operating conditions to test.

The profile is reported in Figure 6, where it has a duration of 5000 s and includes 42 different
consecutive buffers with the time length of 120 s and a mean capacity request of 12 Ah. The profile
was cycled until reaching a total duration of 50 h, to sweep the range of the SOC of the battery,
corresponding to 1500 buffers of 120 s, for each class of ageing. The resulting timeseries was
provided to the LUT representing the battery. This LUT was tuned after the preliminary laboratory
experimental characterization and allows for extracting the predictors provided to the classifier in the
five ageing conditions.

Figure 6. Current profile created to validate the SOH classifier. The profile is replicated until reaching
the total duration of 50 h and a number of buffers of 1500 for each class of ageing.

The resulting validation dataset is therefore composed of 7500 different buffers with a time length
of 120 s each. The resulting profile represents the different operating conditions at different degradation
levels and is given as an input to the classifier.

The tool adopted to evaluate the accuracy of the SOH estimation is the confusion matrix reported
in Figure 7. The classified and actual ageing condition instances are reported in the rows and columns,
respectively. The values contained in the main diagonal cells indicate the correct classifications, whereas
the off-diagonal cells report the number of the misclassifications. The overall obtained estimation
accuracy is equal to 2.4%, which is equal to the number of misclassifications (178 buffers) over the total
number of tested occurrences (7500 buffers). This result is aligned with the expected accuracy.
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Figure 7. Evaluation of the SOH classification performance. Confusion matrix obtained for the ANN
trained with the scaled conjugate gradient (SCG) algorithm. The cell in the grey background indicates
the overall accuracy of the method.

3.2. SOC Estimation

The second part of the validation is dedicated to the evaluation of the accuracy of the SOC
estimation. To this end, the profiles illustrated in Figure 8 have been adopted as validation timeseries.
The subplot “a)” reports the current profile, and the subplot “b)” illustrates the behavior of the battery
terminal voltage at different levels of ageing. The voltage is only an occurrence of the many possibilities
that are associated to a class of degradation. The plots in the right part of the figure are zoomed-in areas
with a time length of 2000 s. When providing these timeseries to the SOC estimation block (dashed box
in Figure 1), the regression ANNs will provide four different outputs. The one corresponding to
the correct ageing level of the battery is then selected according to the output of the SOH classifier
(dotted box in Figure 1).

Figure 8. ANN validation datasets recorded from a real mild hybrid vehicle. (a) Current i(t). (b) Voltage
v(t) at four different degradation levels corresponding to the four SOH classes.
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The results obtained in the five ageing levels are illustrated in Figure 9, where for each SOH
class, the estimated SOC, on the blue line, is compared with the expected value, on the red line.
The expected value is the one obtained from the preliminary experimental characterization conducted
in the laboratory. The estimation error is reported in the lower subplot for each case. The accuracy of the
estimation is demonstrated by the error that is limited to a maximum value of 3%. The results obtained
for the class of ageing going from 0% to 80% (subplot “e”) demonstrate that the algorithm keeps being
valid also under the threshold of 80%. The reported test has been conducted at a temperature of around
25 ◦C. A more exhaustive validation of the method should be conducted in a climatic test chamber to
evaluate the accuracy of the estimation at different environmental conditions.

 
Figure 9. SOC estimation at different degradation levels. Red line: expected value. Blue line: estimation.
Error indicates the difference between the estimated and expected values. (a): ageing class 1 (SOH:
95 ÷ 100%); (b): ageing class 2 (SOH: 90 ÷ 95%); (c): ageing class 3 (SOH: 85 ÷ 90%); (d): ageing class 4
(SOH: 80 ÷ 85%); (e): ageing class 5 (SOH: 0 ÷ 80%).
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4. Conclusions

This paper presented a method for the combined estimation of the state of charge and state of
health of batteries with artificial intelligence. The technique is valid at the cell, module, and pack levels
and is suitable for adoption in the automotive sector in the case of hybrid and full electric vehicles.
The design procedure of the algorithm and specifically the training phase of the artificial neural
networks were presented. The method was demonstrated to be effective in terms of the estimation
accuracy when tested on real driving cycles extracted from the acquisition on-board of an electric
vehicle. The estimation error of the combined method is around 3%. The good potential and the
promising results encourage the adoption of the proposed method for deployment in a vehicle battery
management system for a real-time battery monitoring.
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Abstract: The state of charge (SOC) and state of health (SOH) are two crucial indicators needed
for a proper and safe operation of the battery. Coulomb counting is one of the most adopted and
straightforward methods to calculate the SOC. Although it can be implemented for all kinds of
applications, its accuracy is strongly dependent on the operation conditions. In this work, the behavior of
the batteries at different current and temperature conditions is analyzed in order to adjust the charge
measurement according to the battery efficiency at the specific operating conditions. The open-circuit
voltage (OCV) is used to reset the SOC estimation and prevent the error accumulation. Furthermore,
the SOH is estimated by evaluating the accumulated charge between two different SOC using a recursive
least squares (RLS) method. The SOC and SOH estimations are verified through an extensive test in
which the battery is subjected to a dynamic load profile at different temperatures.

Keywords: Coulomb counting; lithium-ion battery; open circuit voltage; state of charge; state of
health; temperature

1. Introduction

Lithium-ion (Li-ion) batteries have prevailed over other energy storage types during the last decade
due to the longer lifetime, higher efficiency and energy density [1]. This fact has driven its gradual
integration in many applications from consumer electronics e.g., smartphones or power banks to renewable
storage systems or electric vehicles.

However, Li-ion batteries may experience a fast degradation or even become hazardous if operated out
of the limits specified by the manufacturer [2]. Therefore, a battery management system (BMS) to monitor and
control the state of the battery is required. Besides keeping the battery within the operative limits, to estimate
the state of charge (SOC) and the state of health (SOH) accurately is an essential function of the BMS.

Numerous methods for SOC estimation have been proposed in the literature, with diverse complexity
and accuracy [3]. The coulomb counting relies on the current monitoring and calculates the net charge
transferred, to estimate the SOC [4]. The relationship between the open-circuit voltage (OCV) and the
SOC can also be used as an estimator if the battery is in a long-enough rest period [5]. Equivalent circuit
models and extended Kalman filtering can be applied to calculate the OCV and estimate the SOC during
the operation of the battery [6,7]. The accuracy of the model parameters affects the performance of the
method, hence dual/joint extended Kalman filters method estimates SOC and model parameters at the
same time, increasing the method performance but also its complexity [8]. The model parameters are
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easy to obtain, however, they are affected by factors such as SOC, current rate (C-rate), temperature or
degradation level. The combination of these variables may affect the SOC estimation accuracy [9,10].
These methods are most widely used for online battery monitoring, however, more advanced methods
are being developed proving their effectiveness under controlled environments. The complexity of the
implementation in practical applications and the robustness of these methods is, however, one of the great
challenges that still needs to be solved in this area. Meanwhile, Coulomb counting remains as one of the
most accepted and widespread methods in the market for all types of applications.

Coulomb counting method stands out for its simplicity, however, its accuracy is compromised by the
error accumulation during the incremental calculation of the transferred charge in a long time operation.
Moreover, the method depends on the initial value of SOC and the actual capacity. OCV can be used in
combination with coulomb counting to minimize the error and provide a reliable starting point for the
estimation [11]. The capacity of the battery depends on the C-rate and the temperature, additionally, there
are losses during the charging and discharging process and, to a lesser extent, due to the self-discharge.
All these factors must be taken into account during the SOC estimation to improve the accuracy.

This paper presents an approach that improves the method described above providing accurate
results throughout the range of temperatures and battery load. The OCV-SOC relationship at different
temperatures is used for the SOC estimation during the idling periods, minimizing the cumulative error
due to the integration of current. The presented method provides better precision results with a very low
computational complexity, therefore representing an evolution of the classic Coulomb counting algorithm.
The influence of the different operating conditions is analyzed at the beginning of life (BOL) of the battery
in order to implement a correction mechanism. The SOH is evaluated with a recursive least squares
method [12] and updated for a reliable SOC estimation. The method is verified through an extensive test
based on a real driving pattern at different temperatures.

2. Experimental

In this work, Lithium Nickel Manganese Cobalt Oxide (NMC) batteries are used to validate
the proposed method. The battery’s nominal voltage is 3.6 V and the nominal capacity 3.4 Ah.
The upper/lower cutoff voltage is 4.2 V/2.65 V. Figure 1 shows the set-up used to test the batteries.
A thermal test chamber is used to control the temperature of the battery. The battery test system charges
and discharges the cells with a predefined current profile and the host computer collects the measurements
from the battery, with one second resolution.

Nothing to see here

Ba ery Test System
Digatron MCT

Thermal Chamber

Li-ion Cell

Monitoring PC

BTS-600 Software

Figure 1. Battery test bench.
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The experimental procedure is shown in Figure 2. The tests were designed to age the cells simulating
a real scenario of cycling at different temperatures. A series of driving cycles and characterization tests
were conducted for this purpose.

To carry out the aging process the cells are distributed in three groups and subjected to successive
discharge cycles according to the World Harmonized Light-duty Vehicle Test Procedure (WLTP) for class B
vehicles at three different temperatures (15 ◦C, 25 ◦C and 35 ◦C). The batteries are charged to 90% SOC
with 0.2C (i.e., 0.68 A) just after each driving cycle followed by a rest period before repeating the aging
procedure. As shown in Figure 3 each described discharging/charging cycle takes 2 h to complete. After a
week of testing equivalent to 84 driving cycles, the cells are characterized by a reference performance test
(RPT). This test consists of a first full cycle at low current to stabilize the battery followed by another cycle
to measure the capacity and efficiency of the cell.

The OCV-SOC relationship is measured both at beginning of life state (BOL) and after 350 full
cycles, which corresponds to 6.5%, 7.35% and 7.65% capacity fade for the cells aged at 15 ◦C, 25 ◦C and
35 ◦C, respectively.

The battery is charged and discharged at a constant low rate of 0.2C until the upper and lower cutoff
voltage is reached. The OCV-SOC curve is obtained by averaging the values of both, charge and discharge
curves. The OCV-SOC relationship is measured at 5 different temperatures (5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C and
40 ◦C).
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Figure 2. Aging test procedure.
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Figure 3. World Harmonized Light-duty Vehicle Test Procedure (WLTP)-based aging cycle. Current profile
(red) and voltage response (blue).

3. SOC Determination

Battery capacity can be represented by different terms. The rated capacity (Qrated) represents the
capacity that a fresh new battery is capable of delivering from a fully charged state until it is completely
discharged, reaching the cut-off voltage under a determined C-rate and ambient temperature.

However, as the battery degrades, its capacity is reduced respect to the BOL condition, so the actual
capacity (Qact) is used to describe the capacity at a determined degradation state, C-rate and temperature.

Hence the SOC can be defined as the ratio between the remaining capacity (Qrem) and the actual
capacity, usually expressed as a percentage:

SOC =
Qrem

Qact
. (1)

The charge variation between two different points in time can be calculated by integrating the current,
what is commonly known as Coulomb counting:

q =
∫ t

t0

Ibdt (2)

Thus the SOC at a determined time can be expressed as the SOC of a previous time plus the charge
variation between both points in time.

SOCt = SOCt0 +
q

Qact
(3)

The Coulombic efficiency of the battery during the charging and discharging processes depends
on the current applied and the battery temperature during operation. Lower battery temperatures lead
to a maximum capacity decrease while C-rate effect would have influence mainly at low temperatures.
The actual capacity is established at the reference conditions (0.2C and 25 ◦C), this causes an inaccuracy

304



Energies 2020, 13, 1811

when estimating the SOC at any other condition. A compensation factor, denoted as c fi,t, is introduced in
the current integration process to normalize the SOC estimation to the reference conditions.

q =
∫ t

t0

c fI,T Ibdt. (4)

Figure 4a,b show the charge and discharge capacity at different temperature and current conditions.
While temperatures above 20 ◦C have a minor influence on the measured capacity, lower temperatures
produce a decrease in both charging and discharging capacity. High currents also lead to a capacity
reduction, mostly at low temperatures. The compensation factor is defined as the ratio between the
capacity at the reference condition and the capacity at the actual operating condition. In this work this
relationship is assumed to be constant with the degradation of the battery and it is measured at BOL state.
Figure 4c,d show the compensation factor values used by the proposed algorithm, the red dot represents
the reference conditions (0.2C and 25 ◦C) to establish Qact, so that c f0.2C,25 ◦C = 1.

(a) (b)

(c) (d)

Figure 4. Charge and discharge capacity under different conditions (a) charge capacity, and (b) discharge
capacity. Compensation factor for charging and discharging processes under different conditions (c) charge
compensation factor, and (d) discharge compensation factor. The red dot represents the reference conditions
(0.2C and 25 ◦C).

Once the use of Coulomb counting at different operation conditions is solved and the actual SOC can
be estimated from the SOC of a previous time, the challenge is to avoid the cumulative errors produced by
the incremental estimation. OCV-SOC relationship is used to set a new estimation starting point when the
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battery is at a rest period. Generally, a long relaxation time is required to measure the OCV [9], however,
measuring it at shorter rest periods can minimize the cumulative error. Figure 5 shows the OCV curves
measured at different temperatures. The five curves show the same behavior within the 0.2–0.8 SOC range,
however, lower temperatures show higher voltages at the lower end of the curve and lower voltages at the
higher end. The error produced by using the OCV-SOC relationship to estimate the SOC at a different
temperature could be unacceptable in these SOC ranges, especially for SOC higher than 0.8. Thus is
convenient to measure the OCV at different temperatures and interpolate the battery temperature to obtain
the SOC.
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Figure 5. Open-circuit voltage (OCV)-state of charge (SOC) relationship for different temperatures.

4. SOH Determination

In many applications it is of high importance to know the degradation level of the battery, as it
determines the maximum capacity the battery is able to deliver. Furthermore, when the SOC estimation
method is based on the capacity integration, knowledge of the actual capacity is crucial to ensure an
accurate estimation.

Performing a full charge and discharge cycle at low current is the easiest and obvious method to get
the actual capacity; however, this procedure is time-consuming and incompatible with the normal use of
the battery and thus not suitable for online estimation in most cases.

As an alternative, it is possible to measure the partial capacity between two known SOC levels to
infer the total capacity. Therefore, in this work it is proposed the use of Equation (3) taking advantage of
the SOC estimated by OCV, resulting in:

Qest =
q

ΔSOC
(5)

where,
ΔSOC = SOCOCVupdate

t − SOCOCVupdate
t0

. (6)
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Hence, it is possible to estimate the actual capacity of the battery by measuring the transferred charge
without affecting the normal operation of the battery. The accuracy of the method will depend on the
magnitude of ΔSOC as well as on the q measurement error, which is influenced by operating conditions
(current and temperature) and the self discharging effect.

In order to minimize the error, a recursive least squares filter is used to determine the actual capacity
from previous estimations as addressed in [12]. A forgetting factor is included to give less weight to
older samples.

5. Proposed Algorithm and Verification

The flow chart shown in Figure 6 describes the process for estimating the SOC and SOH of the battery.
First of all, the actual values of current, voltage and temperature are collected. If the current is different
from zero, the algorithm measures the accumulated charge, compensating the temperature and the current,
and estimates the SOC from it. If the value of the current is zero for a minimum time of 25 min, it is
then considered to be on idle state and a look-up table is used to estimate the SOC from the OCV and
temperature. Hence the active periods of the battery begin and end with an OCV-based SOC estimation.
If the magnitude of the SOC increment is sufficient for a capacity estimation, the SOH is updated.

It , Vt , Tt

Start

SOC Update

SOC

OCV-SOC Update
q

Current integration

RLS SOH

SOC 

State

Qact

SOCt0

Idle

> SOCmin

Data
Aquisition

Cha / Dis

Figure 6. Flowchart of the proposed estimation algorithm.

A verification test using the aged cells was designed to acquire experimental data at dynamic
conditions. As shown in Figure 7a sequence of WLTP cycles at different SOC levels is used to verify the
algorithm for SOC and SOH estimation. A total of 58 cycles were performed at different temperatures,
with one hour of resting between cycles and charge periods. The voltage, current and temperature of the
battery are logged with 1 Hz.
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Several times during the test, the battery is fully charged (CC-CV) to the 100% SOC, this state is
used to evaluate the error of the method. Figure 8 displays the results for the three cells aged at 35 ◦C,
25 ◦C and 15 ◦C respectively. Figure 8a,c,e compare the absolute SOC error of the traditional Coulomb
counting method with the proposed method, before and after updating the estimation using the OCV.
The error using only Coulomb counting constantly increases with time as it is accumulated in every
iteration. The use of OCV to update the estimate limits the maximum error to 5% while the compensation
factor reduces it below 2.5% during the next cycle. The error after the OCV update is negligible although it
could be higher in SOC areas where the OCV presents a less steeper slope.

Figure 8b,d,f display the actual capacity estimation during the verification test under different
capacity starting values. Throughout the test, the four estimations converge around the same value with
a maximum estimation error of 0.05 Ah for the cell aged at 25 ◦C. An insufficient rest time makes the
algorithm over-valuate ΔSOC which results in an underestimation of the capacity. This test was limited to
one hour rest time for practical reasons, however, longer relaxation periods are expected to reduce the gap
in a real application.
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Figure 8. SOC deviation measured at fully charge state (a) SOC deviation (35 ◦C aging), (c) SOC deviation
(25 ◦C aging) and (e) SOC deviation (15 ◦C aging). Actual capacity estimation using the proposed method
and different starting values (b) actual capacity estimation (35 ◦C aging), (d) actual capacity estimation
(25 ◦C aging) and (f) actual capacity estimation (15 ◦C aging).
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6. Conclusions

An improved coulomb counting method for estimating the SOC and SOH of Lithium-ion batteries
is proposed in this work. The coulombic efficiency of charging and discharging processes of the NMC
batteries used was studied for different working conditions, as well as the effect of the temperature on the
OCV. The results of this analysis are the key to develop a simple but accurate estimation algorithm.

The use of the OCV-SOC relationship allows us to reset the SOC estimation more frequently and thus
to reduce the accumulated error. Moreover, it provides an effective mechanism for those applications
which never or rarely reach the low or high ends of the SOC range.

The relaxation period affects the estimation of the SOC and SOH. In this work the effectiveness of
the proposed method was demonstrated for resting times as low as one hour, obtaining absolute errors
below 3% in the SOC estimation. However, the results also reflect that the relaxation time depends on the
operating conditions, requiring longer periods for lower temperatures. In future improvements of this
algorithm, the use of dynamic conditions for setting the minimum relaxation time will be considered.
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Abstract: In this paper, a co-estimation scheme of the state of charge (SOC) and available capacity is
proposed for lithium–ion batteries based on the adaptive model-based algorithm. A three-dimensional
response surface (TDRS) in terms of the open circuit voltage, the SOC and the available capacity
in the scope of whole lifespan, is constructed to describe the capacity attenuation, and the battery
available capacity is identified by a genetic algorithm (GA), together with the parameters related
to SOC. The square root cubature Kalman filter (SRCKF) is employed to estimate the SOC with the
consideration of capacity degradation. The experimental results demonstrate the effectiveness and
feasibility of the co-estimation scheme.

Keywords: state of charge; available capacity; adaptive model-based algorithm; square root cubature
Kalman filter; joint estimation

1. Introduction

Nowadays, energy crises and environmental damage have become the main concerns of society,
and require being tackled with high attention [1]. Transportation electrification provides a possible
manner to reduce emissions and dependence upon fossil fuels. Electric vehicles (EVs) and hybrid EVs
(HEVs) are promising solutions, which however, require electrical energy storage systems to completely
or partially replace propelling power supplied by traditional internal combustion engines [2]. In this
context, applications of lithium–ion batteries have been intensively spurred due to their numerous
advantages, such as their wide environmental temperature operation capability, high energy density,
long lifespan and their large charge/discharge current [3]. For lithium–ion batteries, the state of charge
(SOC) and available capacity, usually provided by battery management systems (BMSs), are crucial
parameters for evaluation of the electrical performance of the battery, as well as for the control of
the vehicle.

Typically, estimation methods of the SOC can be divided into four categories, including the
coulomb counting method, and characterization parameter-based methods such as the open circuit
voltage (OCV) method, model-based methods and data-driven methods. Amongst them, the coulomb
counting method [4] and OCV method [5] have been widely applied in BMSs of EVs, because of
their simplicity and ease of implementation, whereas the former is prone to the production of large
accumulated errors, due to interferences or uncertainties of current sensors/transducers and inaccurate
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initial values, and the latter is not suitable for online estimation, as it usually costs long shelving time
to acquire the OCV value. With the development of computation technologies and machine learning,
a variety of artificial intelligence-based, data-driven methods, such as neural networks [6] and support
vector machines [7], are proposed for SOC estimation by establishing black-box models. Data-driven
methods feature a strong nonlinear mapping capability with high accuracy; however, these approaches
show high complexity, and require a considerable amount of training data. Alternatively, model-based
methods have been widely investigated and applied for SOC estimation, thanks to the capabilities
of online application, high precision and the independence of initial values. Conventional modeling
manners mainly include electrochemical models and the equivalent circuit models (ECMs). Compared
with complicated electrochemical models, ECM is commonly used to describe the electrical behavior
of batteries, and subsequently to estimate the SOC due to its simplification and preferable precision.
Yanwen Li et al. proposed a multi-model probability fusion algorithm to describe the battery’s electrical
characteristics, and subsequently estimate the SOC [8]. In model-based methods, the combination
of the battery model and the intelligent filtering algorithm is a hotspot in SOC estimation research.
The frequently used filtering algorithms include Kalman filtering (KF) [9], the H-infinity filter (HIF) [10],
particle filter (PF) [11], and their various extensions. In particular, the extended KF (EKF) is widely
employed to execute SOC estimation using a first-order Taylor expansion on the basis of the battery’s
nonlinear model [12]. Nonetheless, the second and higher order expansion is usually neglected, thus
leading to slow a convergence rate, and even divergence. The unscented KF (UKF) is exploited to
estimate battery SOC, based on the recursive unscented transformation to approximate the nonlinear
observation without Taylor polynomial expansions [13]. The UKF shows better estimation precision
and robustness than the EKF in strong, nonlinear systems [14]. On the basis of the radial–spherical
cubature criterion, the cubature Kalman filter (CKF) leverages a set of volume points to approximate
the mean and covariance of states with additional Gaussian noise [15]. Although CKF outperforms
EKF and UKF in terms of filtering divergence and estimation error, it is susceptible to inaccurate, initial
difference and disturbances, and is difficult to guarantee a symmetric and nonnegative definition of the
covariance matrix all the time. HIF is applied in state estimation and model parameters identification
of batteries, due to its good, anti-interference performance in high nonlinear systems [16]. PF exhibits
attractive advantages in solving nonlinear, non-Gaussian distribution problems, and highlights more
application potential than EKF. Thus, it has been widely developed and applied in multifarious fields,
such as batteries, robotics and navigation systems [17]; however, it is limited by strong dependence
upon noise and time-varying parameters of the system.

In addition, battery aging is an irreversible process with operation, where the most intuitive
appearance is a decline of capacity and the increase of internal impedance [18]. In general, the attenuation
process is nonlinear, complex, and even difficult to predict. To attain it, a body of algorithms have
been successfully proposed and applied to achieve capacity estimation, mainly including experimental
analysis methods and model-based methods. The most direct and easiest manner of evaluating the
capacity is to conduct the calibration test [19]. However, it is obviously time-consuming, and only
supports offline estimation. Additionally, the battery’s impedance variation also highlights the capacity
degradation trend [20]. However, the online electrochemical impedance measurement is not suitable for
practical applications, due to its exceptional complexity of experiment. Motivated by these difficulties
and constraints, incremental capacity analysis (ICA) is introduced to conduct capacity estimation
by evaluating the increment of capacity in a certain charging interval [21]. Similar algorithms also
include differential voltage analysis (DVA), with the help of analyzing the variation characteristics
of voltage curves in predetermined charge/discharge operations [22]. Yes, they can reflect the aging
mechanism of batteries, and highlight preferable accuracy; nonetheless, they are intractable to apply
in practice, as chances of encountering the interval with predetermined current are seldom. Since it
is time-consuming to measure and determine the battery capacity directly; model-based estimation
approaches may supply an indirect manner to evaluate it. The model-based methods can leverage
adaptive algorithms (such as joint estimation approaches [23] and fuzzy logic algorithms [24]) to
identify the battery capacity.
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These algorithms are easy to be implemented, and meanwhile demonstrate preferable accuracy;
whereas, in the model-based approaches, the battery capacity is regarded as a key parameter or state
variable, and is obtained by parameter identification, or estimated together with the SOC, with an
established circuit model or electrochemical model. From this point of view, the model accuracy can
directly affect the estimation accuracy of our battery capacity.

The above-mentioned state estimation methods are mostly developed for either SOC or capacity
estimation individually, rather than for both simultaneously. SOC refers to the residual capacity rate
over nominal values, while SOH represents the nominal capacity value with operations. To a certain
extent, battery capacity shows the same significance as SOC, and essentially, they are tightly coupled
with each other [25]. Apparently, SOC estimation based on the known and unchanged capacity exhibits
certain limitations in practice. A common knowledge is that the internal parameters of batteries change
with degradation. The internal resistance will increase, and the capacity decreases gradually, thus
resulting in the challenges and difficulties of estimating the SOC reliably and robustly. Consequently,
it is critical to update the model parameters, particularly the capacity, in a timely manner. Motivated
by this, a joint estimation scheme is proposed in this study to improve the estimation accuracy of the
SOC and capacity in the entire lifespan of the battery. Firstly, a second-order resistance–capacitance
(RC)-based ECM is established, and the co-estimation scheme of SOC and the battery capacity is
presented. In it, the square root cubature Kalman filter (SRCKF) algorithm is employed to estimate
the SOC; meanwhile, the battery capacity, as one of the key model parameters, is identified by the
genetic algorithm (GA), based on the constructed three-dimensional response surface (TDRS). Finally,
the estimation results of the SOC and battery capacity are verified by different experimental validations
over their entire lifespans. This study dedicates to the following two contributions: 1) A novel capacity
estimation method based on a TDRS is proposed, and the model parameters are updated synchronously;
and 2) based on the capacity and parameters revision, a co-estimation scheme is established for the
SOC and capacity estimation simultaneously against different degradation statuses.

In the remainder of this study, Section 2 details the second-order RC model and the experiment test
profiles. In Section 3, the co-estimation scheme of both capacity and SOC is elaborated. The validation
results are exhibited and discussed in Section 4. Finally, Section 5 draws the main conclusions and
looks to future works.

2. The Lithium–Ion Battery Model and the Experimental Details

2.1. Battery Modeling and Analysis

To better estimate battery states, various mathematical models have been established, including
electrochemical models [26] and ECMs [27]. However, they differ greatly in accuracy, computation
complexity and reliability. Considering the precision and complexity of models, a second-order
RC-based ECM, as shown in Figure 1, is deployed in this work, thanks to its relatively satisfactory
precision and acceptable computation intensity [28]. As can be seen, it contains two parallel RC
networks connected in series topology to characterize the battery polarization. Based on Figure 1,
the circuit equation can be built, as:

.
Us = − Us

RsCs
+

I
Cs

(1)

.
Ul = − Ul

RlCl
+

I
Cl

(2)

Ut = Uocv −Us −Ul −ReI (3)

where Rl and Cl indicate the internal resistance and capacitance of electrochemical polarization, while
Rs and Cs denote the internal resistance and capacitance of the concentration polarization.

315



Energies 2020, 13, 1410

Figure 1. The second-order resistance–capacitance (RC) equivalent circuit model.

Us and Ul denote the voltage drop across RsCs and RlCl, respectively; Ut indicates the terminal
voltage; I is the loading current; Uocv stands for the open circuit voltage; and Re represents the internal
ohmic resistance. In addition, the SOC denotes the ratio of available remaining capacity over the rated
capacity (the maximum available capacity), as:

SOC(t) = SOC(t0) −
∫ t

t0
ηcI(t)dt

QN
(4)

where SOC(t) indicates the SOC value at t, respectively; SOC(t0) stands for the SOC value at t0; QN is
the rated capacity of battery; and ηc represents the columbic efficiency.

2.2. Experiments

The basic specifications of the battery are illustrated in Table 1. The battery’s nominal voltage
is 3.6 V, and the nominal capacity is 2.55 Ampere hour (Ah). To characterize the battery’s electrical
performance, some prerequisite experiments are conducted, including an accelerated aging test,
performance test, and dynamic test. The accelerated cycle life aging test is carried out at 25 ◦C, which
is divided into seven stages. They are separated by the cycles 0, 30, 60, 90, 120, 150 and 180 (defined as
cyc0, cyc30, cyc60, cyc90, cyc120, cyc150 and cyc180 hereinafter). The battery cell is charged by means
of the constant current-constant voltage (CCCV) scheme with the current rate of 1 C, and discharged
by means of constant current (CC), with the current rate of 2 C in each cycle. Here, C denotes the rated
capacity value of the battery with the unit of Ah. The performance tests, including the capacity test
and hybrid pulse power characterization (HPPC) test, are carried out periodically during the cycle life
test. In addition, a typical dynamic test based on the urban dynamometer driving schedule (UDDS) is
executed to verify the performance under dynamic operating conditions. Figure 2 shows the decay
variation of the discharge capacity. It can be clearly observed that the discharge capacity basically
remains unchanged from cyc0 to cyc30, and it tends to decline faster after 30 cycles, and the amount of
electric energy decreases faster as the cycle number increases. After 180 cycles, the maximum discharge
capacity decreases from the initial 2.614 Ah to 1.129 Ah, which remains only 44.3% of the nominal
capacity. The discharge capacity decreases to 1.97 Ah at the fifth stage (cyc120), which is 77.25% of the
nominal capacity. When the capacity drops to 80% of the rated value, the battery should be abandoned;
and therefore, only the experimental results of the first five aging stages are applied to analyze and
verify the performance of proposed algorithm in this work.

Table 1. The specifications of the battery cell.

Material Ternary Lithium–Ion Battery

Nominal capacity 2.55 Ah
Nominal voltage 3.6 V

End-of-charge voltage 4.2 V
End-of-charge current 51 mA

End-of-discharge voltage 2.5 V
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Figure 2. The decay of battery cell discharge capacity under 180 cycles.

Furthermore, battery degradation not only features the capacity reduction, but also embodies
the variation of the OCV-SOC relationship. The relationship curve between OCV and SOC at various
aging status is presented in Figure 3. It is apparent that the OCV–SOC relationship curve changes
gradually as the cycle number increases. When the SOC is more than 20%, the trend of the curves
remains basically the same. However, when the SOC is less than 20%, especially under 10%, the OCV
changes significantly. Generally, to protect and extend the battery life of EVs, the battery discharge
cut-off SOC is usually set to 10% or 20%. When the SOC ranges from 20% to 60%, the OCV at different
aging status differs obviously, and the maximum difference value is 20 mV. When the SOC is more
than 60%, the OCV values at different aging statuses are relatively close, and the maximum difference
is within 10 mV.

Figure 3. The relationship curve of the open circuit voltage (OCV) and state of charge (SOC) at different
aging stages.

3. The Joint Estimation of SOC and Battery Capacity

The framework of the joint capacity and SOC co-estimation is shown in Figure 4. It mainly includes
four parts: the strategy module, the modeling module, the capacity and parameters estimation module,
as well as the SOC estimation module. First, the strategy module starts to accumulate the experimental
data until the length of data is more than the preset threshold. Then, the capacity estimation module
employs the GA to conduct the parameter identification and capacity estimation, based on the acquired
data and the established model. After finding the model parameters and capacity, the SOC estimation
module is triggered to estimate the SOC based on the SRCKF. Note that the modeling and parameters
estimation modules are not invoked every time. The detailed co-estimation procedure is elaborated in
the following.

3.1. The Capacity Estimation Algorithm

The battery capacity is deemed to be a significant parameter that needs to be identified. Firstly,
based on the OCV–SOC curves illustrated in Figure 3, a TDRS with respect to the capacity, SOC and
OCV, is constructed, as plotted in Figure 5. Next, the TDRS is imported into the established battery
model. Finally, the usable battery capacity is incorporated into the battery model parameters, and is
identified by the GA [29].
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Figure 4. The scheme of the SOC and battery capacity co-estimation algorithm for lithium–ion batteries.

Figure 5. The three-dimensional response surface via capacity–SOC–OCV.

By this manner, the problem of usable battery capacity estimation can be transformed into the
problem of searching the optimal OCV–SOC relationship match on the built TDRS by applying the
optimization algorithm. It is worth noting that the ambient temperature plays an important influence
on battery capacity. However, the temperature influence is not taken into account in this study, as the
battery system onboard is generally equipped with a good thermal management system, thereby
ensuring the temperature variation is within ±5 ◦C [30].

In consideration of accuracy and complexity, a fifth-order polynomial function is selected to
describe the relationship among OCV, SOC and capacity, as:

UOCV(SOC, Ca,i) = α1,i × SOC5 + α2,i × SOC4 + α3,i × SOC3 + α4,i × SOC2 + α5,i × SOC + α6,i (5)

where Ca,i represents the available battery capacity at the ith capacity point.
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α j,i( j = 1, · · · , 6) denotes the fitting coefficient of OCV and SOC at the ith capacity point, which is
no longer a constant, and is herein defined as a quadratic function of Ca,i, as:

α j,i = b2,iC2
a,i + b1,iCa,i + b0,i (6)

where bt,i(t = 0, 1, 2) denotes the capacity coefficient. The above equation can be rewritten into a
matrix form, as:

[α1,i,α2,i,α3,i,α4,i,α5,i,α6,i]
T = Γ ×

[
C2

a,i Ca,i 1
]T

(7)

where Γ refers to a 6× 3 capacity coefficient matrix, which can be obtained by the polynomial fitting,
and the results are described in Equation (8).

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14.2473 −57.3965 61.0568
−39.1366 155.6827 −165.5359
38.9053 −151.7664 161.0539
−16.8787 63.8408 −66.9571

3.0020 −10.7412 11.42.84
−0.1149 0.2951 3.2020

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Now, according to Equations (5)–(8), a nonlinear relationship can be built among OCV, capacity
and SOC. Once the SOC is determined, it will be a deterministic mapping function between OCV and
SOC. Together with Equations (1)–(3), the capacity identification can be conducted simultaneously
with other parameters, including those of the RC networks. During the parameters identification,
the variation of model parameters is eventually reflected by the difference between the estimation
result and the terminal voltage. Based on the OCV model, the discrete mathematical expression of the
second-order RC-based ECM can be reformulated as:

Ut,k = Uocv,k(SOCk, Ca) −
{
exp(−Δt/τs)Us,k + Rs[1− exp(−Δt/τs)]Ik

}
−

{
exp(−Δt/τl)Ul,k + Rl[1− exp(−Δt/τl)]Ik

}
− IkRe

(9)

where Δt indicates the time interval, and both τs = RsCs and τl = RlCl belong to time constants. As can
be seen from Equation (9), the TDRS based on the OCV model in Equation (5) is imported into the ECM.
Hence, the difference of relationship between SOC and OCV at different capacity levels is eventually
highlighted by the estimation results of the terminal voltage. In this manner, the battery capacity can
be added into the model parameter series for identification. To attain it, the GA is employed to find the
optimal combination of model parameters and capacity, in which the optimal parameter group to be
identified can be expressed as:

θoptimal = [Re, Rs, Rl, Cs, Cl, Ca] (10)

During the identification process, the minimum root mean squared error (RMSE) of the terminal
voltage is taken as the fitness function, as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ(θoptimal) = min|RMSE|

RMSE =

√
N∑
k
[Ut,k−Ût,k(θoptimal)]

2

N

(11)

where Ut,k and Ût,k(θoptimal) represent the measured terminal voltage and the estimated terminal
voltage at step k, respectively.
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In addition, the constraints of optimization algorithm are subject to:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
20% ≤ SOC ≤ 100%
0.005 Ω ≤ Re, Rs, Rl ≤ 0.1 Ω
0.5 s ≤ τs ≤ 1000 s
0.5 s ≤ τl ≤ 1000 s

(12)

The setting of these constraints is explained as follows. In practical applications, to avoid the
over-charge and over-discharge of the battery, the range of the SOC is generally set to 20% to 100%
for guaranteeing proper operation and extending the service life of batteries [31]. The upper limits
of internal ohmic resistance Re, internal resistance Rl of electrochemical polarization and internal
resistance Rs of the concentration polarization are determined in terms of the specifications of batteries
and the technical parameters supplied by the manufacturers. Their low limits are all determined to be
0.005 Ω, based on the parameter calculation of ECM introduced in [32], as well as the experimental
analysis. Meanwhile, the range of Cl and Cs can be deduced to be 100 F to 104 F. In addition, τl and τs

are time constants, where τl = RlCl and τs = RsCs. Hence, the range of τl and τs can be limited with
0.5 s to 1000 s. In summary, when the above-mentioned battery model parameters and capacity are
identified, these parameters will be transmitted into the SOC estimation module. However, it is worth
noting that the parameter identification based on the GA requires a certain amount of data to obtain
an ideal identification result. Therefore, the capacity estimation method proposed in this paper only
runs when the data length reaches a pre-set condition, and the determination of data length will be
discussed in the next section.

3.2. The SOC Estimation Algorithm

After obtaining the model parameters and battery capacity, the SRCKF is proposed to attain the
estimation of battery SOC with the cyclic recurrence based on the established second-order RC ECM.
In comparison with the traditional cubature Kalman filter (CKF), the SRCKF can directly perform
iterative update in the form of calculating the square-roots of the covariance matrices during the
filtering process, which determines the non-negative definite value of the covariance matrix, and avoids
the divergence of filter [33]. In general, a discrete nonlinear dynamic system with enhanced noise can
be modeled, as: {

xk+1 = f (xk, uk) + wk
zk = h(xk, uk) + vk

(13)

where xk ∈ Rn and zk indicate the system state vector and the system output at time k, respectively. f (·)
and h(·) denote the nonlinear system state function and nonlinear measurement function, respectively.
wk stands for random process noise indicating uncertain input. vk denotes the observation noise,
which is generally employed to simulate sensor noise affecting the output measurement. Additionally,
the corresponding covariance of wk and vk are Qk and Rk, respectively. Based on the established ECM,
the time-discrete state equation and measurement equation can be respectively expressed, as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Us,k+1
Ul,k+1

SOCk+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp(−Δt/τs) 0 0
0 exp(−Δt/τl) 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Us,k
Ul,k

SOCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs(1− exp(−Δt/τs))

Rl(1− exp(−Δt/τl))

−ηcΔt/Ca

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦Ik +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1,k
w2,k
w3,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Ut,k = Uocv,k(SOCk, Ca) +
[
−1 −1 0

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Us,k
Ul,k

SOCk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+ [−Re]Ik + vk (15)

where the system state variable xk =
[

Us,k Ul,k SOCk
]T

, input variable uk = Ik and system output
zk = Ut,k. In this study, The SRCKF algorithm is adopted to estimate the SOC, of which the general
process is summarized in Table 2, where n is the state dimension, and m denotes the total number
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of volume points, which number is twice those of the state dimension. The sample [1] indicates a
complete set of fully symmetric points, of which the set of points is obtained through the complete
permutation of elements of the n-dimensional unit vector e = [1, 0 · · · 0]T and the alteration of the
element symbol. [1]g represents that the point is centered at the gth point of [1]. x̂k and ẑk are the
predicted state and measurement, respectively. SQ,k−1 and SR,k denote the square-roots of the process
noise covariance matrix Qk−1 and the measurement noise covariance matrix Rk, respectively.

Table 2. The process of SOC estimation based on the square root cubature Kalman filter (SRCKF)
algorithm.

(a) Initialization: {
x̂0|0 = E[x0]

P0|0 = E
[
(x0 − x̂0|0)(x0 − x̂0|0)T

] (16)

Determine the initial value S0|0 of the square roots of the error covariance matrix by the Cholesky
decomposition:

S0|0 =
[
chol(P0|0)

]T
(17)

(b) Calculate the basic cubature points and weight:

ξg =

√
m
2
[1]g, (g = 1, 2, · · · , m) (18)

(c) Iteration:
for k = 1, 2, · · · , N

Time update:

Step 1: calculate the cubature points:

Xg,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (19)

Step 2: calculate the propagated cubature points:

X∗g,k|k−1 = f (Xg,k−1|k−1, uk) (20)

Step 3: calculate the predicted state:

x̂k|k−1 =
1
m

m∑
g=1

X∗g,k|k−1 (21)

Step 4: calculate the state-weighted center matrix:

χ∗k|k−1 =
1√
m

[
X∗1,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]
(22)

Step 5: calculate the square-root of the prediction error covariance matrix:

Sk|k−1 = Tria
([
χ∗k|k−1, SQ,k−1

])
(23)

Measurement update:
Step 1: recalculate the cubature points:

Xg,k|k−1 = Sk|k−1ξg + x̂k|k−1 (24)

Step 2: update the propagated measurement cubature points:

Zg,k|k−1 = h(Xg,k|k−1, uk) (25)
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Table 2. Cont.

Step 3: estimate the predicted measurement:

ẑk|k−1 =
1
m

m∑
g=1

Zg,k|k−1 (26)

Step 4: evaluate the measurement-weighted center matrix:

ζk|k−1 =
1√
m

[
Z1,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]
(27)

Step 5: estimate the square root of the innovation covariance matrix:

Szz,k|k−1 = Tria
([
ζk|k−1, SR,k

])
(28)

Step 6: update the state-weighted center matrix:

χk|k−1 =
1√
m

[
X1,k|k−1 − x̂k|k−1 · · · Xm,k|k−1 − x̂k|k−1

]
(29)

Step 7: estimate the cross-covariance matrix:

Pxz,k|k−1 = χk|k−1ζ
T
k|k−1

(30)

Moreover, update the Kalman gain, state and square root of the error covariance
Step 1: estimate the Kalman gain matrix:

Wk =
Pxz,k|k−1/ST

zz,k|k−1

Szz,k|k−1
(31)

Step 2: estimate the final updated state:

x̂k|k = x̂k|k−1 + Wk(zk − ẑk|k−1) (32)

Step 3: update the corresponding square-root of the error covariance matrix:

Sk|k = Tria
([
χk|k−1 −Wkζk|k−1, WkSR,k

])
(33)

End

4. Verification and Discussion

4.1. Verification Study on Different Data Lengths

In this section, different data lengths are selected to investigate the effectiveness of the proposed
co-estimation algorithm. Actually, the experimental data at different aging stages can be chosen to
verify the SOC estimation of different data lengths. Nonetheless, based on the estimated capacity,
the estimation error of battery capacity is maximum at cyc30. Hence, to better verify the performance
of the proposed estimation algorithm, the battery after being cycled 30 times is chosen as the test target,
and the current schedules acquired based on the UDDS experiment are repetitively operated until
the terminal voltage reaches the cut-off voltage designated by the manufacturer. Note that when the
data length is less than the pre-set threshold value, the SOC module still uses the previously identified
capacity and parameters to conduct the estimation.

Figure 6 shows the current profiles under the UDDS experiment. It can be clearly found that
the entire discharging process takes around 554 min. To evaluate the influence incurred by different
data lengths when identifying the model parameters, the data with the duration of 65, 84, 130 and
200 min (defined as 65 min, 84 min, 130 min and 200 min, respectively) are randomly selected as the
test target, and the remaining data are applied for SOC estimation. Note that when the data length is
554 min (total loading profile process), the SOC is estimated without the update of the capacity value
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and parameters. Table 3 compares the battery capacity estimation results with respect to different
data lengths.

Figure 6. The urban dynamometer driving schedule (UDDS) current.

Table 3. The estimation results and errors of the battery capacity corresponding to various data lengths.

Data Length Estimated Capacity/Ah Absolute Error/Ah Relative Error/%

65 min 2.4366 0.0955 3.7716
84 min 2.4710 0.0611 2.4130
130 min 2.4854 0.0467 1.8443
200 min 2.5065 0.0256 1.0110

The actual capacity 2.5321 Ah is measured through the calibration test, and the estimated capacity
ranges from 2.4366 Ah to 2.5065 Ah. It can be observed that data duration shows certain influence
on the estimation results, and the estimated error of the battery capacity decreases by 2.7606%, from
3.7716% to 1.011%, after increasing the data length.

Based on the obtained capacity, the detailed results of the SOC and estimation error with different
identification data lengths are presented in Figure 7, and the statistic results are provided in Figure 8.
As demonstrated in Figure 7, when the date length increases from 54 min to 200 min, the estimated
SOC can quickly converge to the reference value according to the updated parameters and capacity,
and the maximum absolute error decreases from 3.643% to 0.989%. When the data length reaches
200 min, the estimation errors are restricted within a small range, less than 1%. Besides, Figure 7
also shows the SOC estimation results without considering the capacity’s update. The maximum
absolute error, the mean absolute error and the RMSE are 2.538%, 1.661% and 1.737%, respectively.
It is apparent that the estimated SOC looks more divergent without the capacity update, thereby
manifesting the advance of the joint estimation algorithm. From Figure 8, we can find that when
the data length increases from 65 min to 200 min, the maximum absolute error, mean absolute error
and RMSE decrease from 3.643%, 2.331%, 2.498% to 0.989%, 0.234%, 0.319%, respectively. The results
demonstrate that as the calculated data length increases, the estimated SOC becomes closer to the
reference value, and this is mainly because the GA shows a global optimization ability, and when more
input data samples are referred, the prediction results will be more accurate. Hence, appropriately
increasing the duration of data is beneficial for improving the accuracy of capacity identification and
SOC estimation. Nonetheless, it is appreciably time-consuming when increasing the amount of data to
estimate the battery capacity. To balance the relationship between error and calculation time, the data
duration of 200 min is considered as the preferred length. In the following, the estimated results with
the data length of 200 min are all adopted for SOC estimation and comparison.
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(a) (b) 

Figure 7. The results of SOC estimation based on various data lengths: (a) SOC estimation results; (b)
SOC error.

Figure 8. Comparison of the battery SOC estimation results of different data lengths.

4.2. SOC Estimation under Various Degradation Stages

To verify the feasibility of the proposed co-estimation scheme, the battery cells are experimentally
and circularly tested with the UDDS current at different aging levels. According to the estimation
algorithm of capacity addressed previously, the pre-set data length is 200 min. Table 4 and Figure 9
compare the estimated results of battery capacity at different aging stages (fresh, nearly fresh, slightly
cycled, severely cycled and lifespan exceeded), of which the number of cycles ranges from 0 to 120,
with 30 as the interval. As illustrated in Table 4, the battery capacity declines with the cycling operation.
The proposed algorithm enables that the maximum relative and absolute errors are less than 1.011%
and 0.026 Ah when the battery is cycled for 30 times, thereby indicating its preferable capability of
estimating the battery capacity at different aging statuses. Furthermore, the estimated results can also
commendably reflect the decay trend of battery capacity.

Table 4. The estimated results and errors of the battery during the entire lifespan.

Cycle Number Actual Capacity/Ah Estimated Capacity/Ah Absolute Error/Ah Relative Error/%

cyc0 2.5478 2.5344 0.0134 0.5259
cyc30 2.5321 2.5065 0.0256 1.0110
cyc60 2.3788 2.3655 0.0133 0.5591
cyc90 2.1779 2.1758 0.0021 0.0964
cyc120 1.9655 1.9551 0.0104 0.5291

After finding the model parameters including the capacity value, the estimated SOC results
at different aging status are demonstrated in Figure 10, and the statistic results are summarized in
Figure 11. As Figure 10 suggests, it is obvious that when the battery ages, the total discharging time
gradually decreases under the same operating conditions. The initial SOC is 20%, with the error of 80%,
and the estimated SOC at various aged status can all converge to the reference values. Figure 10 also
reveals that the maximum absolute error of SOC is restricted within 1% after the correction of the initial
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SOC error, even when the battery is aged, and the convergence time is less than 120 s. As discussed
previously, the accuracy of SOC estimation is heavily influenced by the battery degradation. Without
considering the update of battery capacity, the SOC estimation error increases towards higher numbers
of cycles. In this study, the updated battery capacity is exploited to assist in improving the SOC
estimation in the entire lifespan. As can be found in Figure 11, the maximum value of absolute error,
mean absolute error and the RMSE are 0.987%, 0.484% and 0.566%, respectively, occurring in cyc30.
The reason is that when the cycle number is 30, the estimation error of capacity reaches 1.011%, thus
leading to the worst SOC estimation. Even so, the maximum absolute error of SOC is still restricted
within 1.1% after the correction of initial SOC. As the number of battery cycles increases, the estimated
SOC error does not increase obviously, manifesting that the updated capacity value contributes to the
SOC estimation. From this point of view, regular updates of battery capacity in the aging process are
imperative to improve the accuracy of SOC estimation.

 
(a) (b) 

Figure 9. Capacity value of measurement and estimation at various degradation extents. (a) Estimation
results; (b) Relative error.

 
(a) (b) 

Figure 10. The results of SOC estimation with the aged battery cell: (a) SOC estimation results;
(b) SOC error.

Figure 11. The estimated errors of the SOC corresponding to the aging battery cell.
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5. Conclusions

In this study, a model-based adaptive joint estimation algorithm of SOC and capacity is proposed
for lithium–ion batteries. The SOC estimation is implemented based on a second-order ECM, with
the SRCKF algorithm considering the capacity degradation and parameters variation. The battery
capacity is imported into the model parameter group, and it is jointly identified by the GA and the
constructed TDRS. After obtaining the parameters and the capacity, the SOC is accurately estimated by
the SRCKF. Through the experimental validations in terms of different degradation status, varying
duration of recorded data and various dynamic operating conditions, the preferable performance of the
proposed method is satisfactorily verified. The experimental results elucidate that the co-estimation
approach can improve the SOC estimation accuracy in the entire battery lifespan cycle with the update
of capacity, even in the cases of aged batteries and under complicated operating conditions.

In addition, this paper only investigates the SOC and capacity estimation for battery cells.
However, the capacity and SOC of battery packs are also particularly critical in practical applications,
and they will certainly be our research focus in the future.
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Abstract: Accurate, real-time estimation of battery state-of-charge (SoC) and state-of-health
represents a crucial task of modern battery management systems. Due to nonlinear and battery
degradation-dependent behavior of output voltage, the design of these estimation algorithms should
be based on nonlinear parameter-varying models. The paper first describes the experimental
setup that consists of commercially available electric scooter equipped with telemetry measurement
equipment. Next, dual extended Kalman filter-based (DEKF) estimator of battery SoC, internal
resistances, and parameters of open-circuit voltage (OCV) vs. SoC characteristic is presented under
the assumption of fixed polarization time constant vs. SoC characteristic. The DEKF is upgraded
with an adaptation mechanism to capture the battery OCV hysteresis without explicitly modelling it.
Parameterization of an explicit hysteresis model and its inclusion in the DEKF is also considered.
Finally, a slow time scale, sigma-point Kalman filter-based capacity estimator is designed and
inter-coupled with the DEKF. A convergence detection algorithm is proposed to ensure that the two
estimators are coupled automatically only after the capacity estimate has converged. The overall
estimator performance is experimentally validated for real electric scooter driving cycles.

Keywords: electric vehicle; lithium-ion battery; estimation; Kalman filter; state-of-charge;
state-of-health; resistance; open-circuit voltage; battery capacity

1. Introduction

Modern battery management systems (BMSs), among other functionalities, include a number
of algorithms for estimating key battery state variables such as state-of-charge (SoC) and remaining
available charge capacity, and model parameters such as internal resistance [1]. The SoC estimate can
be used for predicting the current vehicle range, as well as for identification of current battery operating
point which is important from the standpoint of ensuring battery safety. On the other hand, the internal
resistance and capacity estimates are the main indicators used for tracking the battery degradation
level, i.e., estimation of battery state-of-health (SoH) [2]. Furthermore, almost every battery model
parameter is changing with battery degradation, so that for robust SoC and SoH estimation, those
changes should be accurately tracked, as well.

Battery state and parameter estimation algorithms are often based on Kalman filters (KF), which
in its basic linear version represent an optimal recursive solution for estimating hidden states of a linear,
time-varying Gaussian system (i.e., probabilistic inference) [3]. While the Gaussian assumption holds
in many cases based on the central limit theorem, the battery model is inherently nonlinear, which
calls for application of nonlinear KF forms. Two of the most widely used nonlinear KFs are extended
Kalman filter (EKF) and sigma-point Kalman filter (SPKF) [3]. The EKF relies on analytical linearization
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of the model around a time-varying operating point (i.e., an expected value of the estimated random
state), while SPKF statistically linearizes the model around several operating points (depending on the
number of states that are estimated).

Topic of state and parameter estimation of Li-ion battery cells has been addressed by many
previous studies. One of the first implementations of dual extended Kalman filter-based (DEKF)
estimator of SoC and resistance parameters can be found in [4]. Researchers have been upgrading the
estimators ever since, e.g., using an adaptation mechanism for process noise variance recalculation [5],
or applying more advanced filters such as SPKF [6] or particle filter (PF) [7]. These approaches are based
on the assumption of constant model parameters/characteristics such as the SoC-dependent open-circuit
voltage (OCV) characteristic Uoc(SoC) or battery remaining capacity. Since those parameters are in fact
dependent on SoH [8] and temperature [9], they should be estimated as well, for accurate and robust
overall estimation.

There are several studies that account for Uoc(SoC) variation with SoH by implementing the
offline identified response surface model of Uoc with respect to SoC and remaining capacity [10–12].
Authors in [13] use the model migration method to adapt an offline trained model. An obvious
disadvantage of this approach is related to the need of having a large data set from previously conducted
aging experiments on the same cell type, as well as lack of temperature dependency in the response
surface model. This disadvantage is tackled in this paper by describing the characteristic Uoc(SoC)
with a model whose parameters are estimated along the rest of model states and parameters within
the DEKF structure. Moreover, this approach includes an adaptation mechanism of Uoc(SoC) which
allows for identification of Uoc(SoC) hysteresis profile.

Remaining capacity estimators based on EKF and PF can be found in [14], while a recursive
approximate least-squares approach is proposed in [15]. In both cases the characteristic Uoc(SoC) is
again considered as a constant-parameter dependence. Dual estimation of SoC and capacity can be
found in [16], where authors use multiscale estimation with the online identified model, which can be
regarded as a next step towards complete estimator. Certain weaknesses of that approach include:
(i) Still an offline identified Uoc(SoC) map is used, (ii) capacity estimate shows considerable variations
in steady state, and (iii) the capacity estimator needs to be turned on manually after 25 min in order
to ensure overall estimator stability. The multiscale estimator presented in this paper improves the
capacity estimation accuracy and flexibility by using a more accurate SPKF and automated turning on
the capacity estimator by means of applying a convergence detection algorithm.

Finally, a fully-electric scooter-based experimental verification of the proposed battery estimators
is conducted, including consideration of different temperature operating points.

2. Experimental Setup

The experimental setup includes the fully-electric scooter Govecs S2.6+, powered by the 3.3 kW
BLDC electric motor and the battery pack of 400 Li-Ni0.33Mn0.33Co0.33O2 (Li-NMC) cells, connected
in the 20 × 20 matrix [17], with the total nominal voltage of 72 V, and the total energy capacity of
4.1 kWh. Battery pack is equipped with BMS which provides basic battery measurements and estimates
accessible through the scooter CAN bus.

Electric scooters became an attractive transportation solution in urban areas with mild climate
conditions, thus contributing to the current transport electrification effort aimed at reducing traffic
congestion, and air and noise pollution. There are already several strong electric scooter manufacturers
in the EU (and worldwide), e.g., Govecs, Ujet, Hrowin, Torrot, etc. NMC-type Li-ion batteries represent
a preferred energy storage solution in scooter applications [17], because they offer favorable energy
density, while not experiencing high loads (in terms of battery C-rate) and not operating in extreme,
particularly low temperature conditions, in those applications.

For the research purposes, the scooter has been equipped with the measurement and telemetry
system illustrated in Figure 1. The system is built around the Artronic SkyTrack telemetry module,
custom-programmed for the acquisition and storage of measurement data, as well as for communication

330



Energies 2020, 13, 540

with the server through GPRS connection in real time. The measurement system consists of voltage
and current measurement on battery output nodes, and acquisition of data available from the scooter
CAN bus. The battery current is measured by using a precise, low-offset current transducer (LEM CAB
300, [18]), while the battery voltage is measured through a 12-bit analogue input of the telemetry module.
Those two measurement values are sampled every 0.1 s and stored in the module. Selected values
from the scooter internal CAN bus, such as battery voltage, current and temperature, vehicle’s
distance travelled, motor on/off flag, as well as the vehicle’s current GPS coordinates and longitudinal
velocity are stored with the sample rate of 1 s. GPRS connection is used to send data relevant for
real-time tracking of scooter, such as its GPS coordinates, battery SoC, and other diagnostic parameters.
The whole measurement dataset, including the fast current and voltage measurements, is stored in the
telemetry module memory card and can be occasionally downloaded through USB connection to a
local PC.

 
Figure 1. Scooter measurement and telemetry system.

3. Battery Pack Model

This section first presents a battery mathematical model used as a basis for SoC estimator design.
Next, models employed for estimation of battery internal parameters used by the SoC estimator are
presented. Finally, two offline identification experiments are described, which have been conducted to
determine battery model parameters that are considered as constant or used in estimator verification.

3.1. Mathematical Model

The battery model used in this research is based on the equivalent-circuit model (ECM) showed in
Figure 2, which consists of (i) a voltage source dependent on the battery SoC, i.e., the OCV characteristic
Uoc(SoC), (ii) an ohmic resistance Rohm which models voltage drops in the electrolyte and electrical
contacts, and (iii) a single polarization RC term (Rp and Cp) which models the slow battery dynamics,
i.e., diffusion process. It should be noted that the diffusion process is more accurately modelled with
the Warburg element [19] which is here avoided due to the complexity, but it can be approximated by a
single or more RC elements connected in series (a single RC element is usually used as a good trade-off
between simplicity and accuracy [20]). Moreover, note that the polarization resistance Rp in Figure 2
models all voltage drops that are not related to the ohmic one, including that related to charge transfer.
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Figure 2. Battery equivalent circuit model used in the DEKF.

The above ECM can be described by the following discrete-time time-varying state-space
mathematical model [4]:[

SoC(k)
ip(k)

]
=

⎡⎢⎢⎢⎢⎢⎣ 1 0

0 e
− Tu
τp(SoC(k−1))

⎤⎥⎥⎥⎥⎥⎦[ SoC(k− 1)
ip(k− 1)

]
+

⎡⎢⎢⎢⎢⎢⎣ − Tu
Cn

1− e
− Tu
τp(SoC(k−1))

⎤⎥⎥⎥⎥⎥⎦ib(k− 1) (1)

Ub(k) = Uoc(SoC(k)) −Rohm(k)ib(k) −Rp(k)ip(k) (2)

where Tu is the filter sampling time, Cn is the battery capacity, τp = RpCp is the polarization term time
constant, and k is discrete sample step.

3.2. OCV Model

Since the battery OCV is a nonlinear function of SoC, and to a lower extent temperature [9] and
SoH [8], it is desirable to describe it using a parametric model such as the one used in [4]:

Uoc(SoC) =
[

K0 K1 K2 K3 K4
][

1 − 1
SoC −SoC ln(SoC) ln(1− SoC)

]T
= kocxoc (3)

where vector koc contains Uoc-model parameters that need to be estimated.

3.3. Model of Internal Resistance Parameters

The presented ECM has two resistance parameters in its model. Both of those resistances are
known to depend on SoH and temperature [21]. So, it is important to have them estimated along
with the model states. Since there is no resistance model feasible for online estimator implementation,
resistances are modelled as random-walk variables:[

Rohm(k)
Rp(k)

]
= I·

[
Rohm(k− 1)
Rp(k− 1)

]
+ r (4)

where I is the identity matrix, and r is the vector containing variances of both resistances. Other variable
model parameters, such as those from Equation (3), can be modelled using this approach, as well.

3.4. Identification Experiments

The battery model parameters that are assumed to be constant or used in estimator verification
should be determined by means of specific (targeted) offline identification tests.

3.4.1. Battery OCV Curve

The curve Uoc(SoC) has been identified during low- and constant-load experiments (during
which the vehicle was in rest, while only considerable battery load was scooter headlight), in which
case any voltage drop in the battery can be neglected due to the low current (~C/50), so that the
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measured voltage Ub can be taken as the OCV Uoc. The SoC was estimated by Coulomb counting, i.e.,
by integrating the measured current. The battery capacity was also identified in this experiment by
integration of measured current during the process of full battery discharge, which gave Cn = 49.57 Ah.
Graphical illustration of the identification experiment and related results are shown in Figure 3.
The identified curve Uoc(SoC) has been used in validation of Uoc estimation results (see next sections).

 
Figure 3. (a) Low- and constant-load experiment: Current, voltage, and SoC responses, and illustration
of (b) capacity and (c) Uoc(SoC) identification.

Polarization Time Constant

This parameter can be identified during the battery relaxation periods, i.e., parts of driving cycle
where current has dropped to zero and remained equal to zero for at least 15 min. The relaxation
transients to be identified were extracted from the voltage response (see Figure 4a,b) and approximated
with the ECM model shown in Figure 4c.

The identified values of relaxation time constant τp(SoC) are shown in Figure 4d. These values
were then approximated with a 3rd-order polynomial in dependence on SoC, and that polynomial
was later used for calculation of τp at every estimator step based on the current, slowly changing SoC
working point.

It is important to note that the polarization time constant can also vary with battery temperature
and aging [22,23]. These effects are neglected in the estimator problem formulation in this paper,
i.e., parameters of the characteristic τp(SoC) are not estimated online. This is motivated by the
following main reasons: (i) τp is not directly involved in the ECM voltage equation (see Equation (2)),
thus making it weakly observable in the proposed estimator design; ii) error in τp will cause an
error in voltage modelling during the transient periods (i.e., before voltage has relaxed), so that the
polarization dynamics may influence estimator accuracy only in transient conditions. As needed, the
slow temperature- and aging-influenced polarization dynamics can be accounted for in the estimator
design either by extending the τp characteristic with the temperature and SOH inputs or by considering
τp as an additional parameter to be estimated, which is a subject of future work.
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Figure 4. Illustration ofτp identification procedure: (a) Measured battery voltage responses, (b) extracted
voltage relaxation periods, (c) illustration of typical Li-ion cell voltage response after the current steps
with the approximation equation, taken from [1], and (d) τp(SoC) identification results.

4. State and Parameter Estimator

This section deals with design, parametrization, and verification of the SoC estimator. It is
designed as a dual state and parameter estimator, thus allowing for accompanying estimation of
selected ECM parameters (i.e., the battery internal resistances and OCV parameters). A special attention
is devoted to estimation of battery OCV hysteresis based on two complementary approaches (adapting
the OCV parameters to current sign change or using an explicit hysteresis model).

4.1. DEKF-Based State and Parameter Estimator

States and parameters of the ECM are estimated with the DEKF, as a well-known
approach in the model-based estimation problems where model states and slowly varying
model parameters are to be estimated simultaneously [1]. The DEKF equations are
not listed here due to paper size constraints, and they can be found in [24]. DEKF
consists of two filters operating in parallel based on the state and parameter models:

State estimator state-space model: Parameter estimator state-space model:

x(k) = f(x(k− 1), u(k− 1), w(k− 1)) θ(k) = θ(k− 1) + r(k− 1)
y(k) = h(x(k), u(k),θ(k), v(k)) y(k) = h(x(k), u(k),θ(k), v(k))

where x and u are the vectors of model states and inputs, respectively, w is the vector of state variances
(with the corresponding covariance matrix Qx), θ is the vector of model parameters with their variances
contained in vector r (with the corresponding covariance matrix Qθ), h is the model output function
(the same output function is used in both state and parameter models), y is the measured model output
vector with measurement noise and corresponding covariance matrix denoted by v and R, respectively.
The complete, discrete-time state-space model for simultaneous state and parameter estimation then
reads (cf. Equations (1)–(4)):

x̂ =

[
SoC(k)
ip(k)

]
=

⎡⎢⎢⎢⎢⎢⎣ 1 0

0 e
− Tu
τp(SoC(k−1))

⎤⎥⎥⎥⎥⎥⎦[ SoC(k− 1)
ip(k− 1)

]
+

⎡⎢⎢⎢⎢⎢⎣ − Tu
Cn

1− e
− Tu
τp(SoC(k−1))

⎤⎥⎥⎥⎥⎥⎦(ib(k− 1) + w) (5)
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θ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Rohm(k)
Rp(k)
kT

oc(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = I·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rohm(k− 1)
Rp(k− 1)
kT

oc(k− 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+ r (6)

y(k) = Ub(k) = kocxoc −Rohm(k)ib(k) −Rp(k)ip(k) + v (7)

The state estimator model, given by Equations (6) and (8), is considered linear in state equation
under the assumption that the nonlinearity of function τp(SoC) can be neglected. The only nonlinearity
resides in the output equation of the state estimator, related to the xoc term (see Equation (3)), so that
an EKF is finally used as a model state estimator. On the other hand, the parameter estimator model,
given by Equations (7) and (8), is linear, so that the estimator reduces to KF.

4.2. Estimator Parametrization

The DEKF needs to be properly parametrized. For instance, appropriate statistic parameters such as
process and output noise covariances Q and R should be determined offline. Polarization time-constant
τp was assumed to be degradation-invariant and used as the identified SoC-dependent profile (see
previous section), while battery capacity was in this case taken as a constant value that was measured
as described in the previous section. This section also describes an estimator adaptation mechanism
that indirectly compensates for the influence of unmodelled hysteresis of curve Uoc(SoC).

4.2.1. DEKF Covariance Matrices Parametrization

The measurement variable in the DEKF model is the battery output voltage Ub (see Equation (8)).
Its measurement noise has been estimated by approximating the voltage measurement error histogram
with normal distribution, as shown in Figure 5a. The parameter μ identified in Figure 5a is the voltage
noise mean value (expectation), while σ is the standard deviation which, after being squared, yields the

measurement covariance R =
(
53·10−3

)2
mV2. The parameter Lstat in Figure 5a is the result of Lilliefors

normality test. Further in this paper, we calculate Lstat for estimator voltage residuals and compare it
to the calculated Lstat = 0.0436 of voltage sensor noise (see Figure 5a) to check how similar they are,
i.e., how accurate is the estimator.

Figure 5. (a) Estimated voltage sensor noise, (b) amplitude of current sensor noise with respect to
measured current, taken from [18].

The process noise relates to the current sensor noise, as can be seen from Equation (6). The current
is in this case measured with LEM CAB 300 sensor, whose datasheet specifies a linear relation between
measured current and magnitude of its measurement error (see Figure 5b). The standard deviation
of current sensor noise can be estimated as a value three times lower than the noise magnitude,
and covariance matrix is then the diagonal matrix of current sensor noise variances:

σx =
1.75
350
·1
3
·ib → Qx = diag

(
σx

2, σx
2
)
= diag

(( ib
600

)2
,
( ib

600

)2)
(8)
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4.2.2. Adaptation Mechanism

The relatively simple battery model given by Equations (1) and (2) does not take into account
some secondary, but generally influential effect such as the hysteresis of OCV curve Uoc(SoC) [25].
Since the hysteresis cannot be directly measured in this case, an adaptation mechanism is introduced in
the form of single-step increase of the elements of parameter covariance submatrix Qθ[3, 7; 3, 7] when
the start or end of charging is detected. This approach allows faster convergence of the Uoc parameters
(written in koc), which abruptly change when the sign of battery current (or SoC derivative) occurs due
to the existence of hysteresis of Uoc(SoC) curve. Note that the battery current for the given scooter
changes its sign only when the scooter is exposed to change from normal driving to charging or vice
versa, because it does not incorporate regenerative braking.

4.3. Estimation Results

The presented DEKF was validated based on the recorded scooter real city driving cycle data
consisting of seven load cycles (i.e., charge/discharge cycles) lasting for 150 h in total. The obtained
estimation results are shown in Figure 6. Since the battery SoC cannot be measured, and there is no
fully reliable SoC estimate available, the DEKF accuracy is evaluated by analyzing a posteriori voltage
residual, i.e., difference between the recorded voltage Ub and the voltage calculated from output
Equation (8) using a posteriori estimated states and parameters. The perfectly accurate filter would
reduce the voltage residual to the voltage sensor noise, i.e., the residual mean value, standard deviation,
and Lstat would be close to the values from Figure 5a.

 
Figure 6. DEKF verification results: (a) Voltage residual histogram including normal distribution fit,
(b,d) estimated resistances Rohm and Rp, (c) estimated and recorded Uoc(SoC) curves for a long set of
real-life discharging and charging cycles.

Figure 6a shows the voltage residuals histogram including the corresponding normal distribution
fit and its parameters. Residual mean value is low, while standard deviation and Lstat are larger
than those of the voltage sensor noise. The estimated values of resistances Rohm and Rp are shown in
Figure 6b,d, respectively, vs. SoC and color-mapped with respect to battery temperature. These results
point out that both resistances show negative correlation with respect to temperature (note: ρX,Y stands
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for correlation coefficient between vectors X and Y, and are obtained by using the MATLAB function
corrcoef), which is expected for the Li-ion cell resistances [21]. As of the correlation with respect to
SoC (based on visual inspection of Figure 6b,d), both Rohm and Rp do not seem to be correlated with
SoC, which is an expected result for the particular SoC range, based on the estimator results from the
available literature [16,21,26] in which resistances more significantly depend on SoC only at the very
low and very large SoC bands. The estimated Uoc curves during charging and discharging intervals are
shown in Figure 6c, along with the “measured” one adopted from Figure 3c. Evidently, the estimated
and “measured” curves are in good agreement, and a relatively small hysteresis is apparent (i.e.,
the charging and discharging curves do not overlap).

The two sets of estimated Uoc(SoC) curves from Figure 6c have been averaged and shown as
dotted lines in Figure 7a. Half of the difference between those two curves yields the estimate of battery
hysteresis voltage which is shown in Figure 7b. The estimated hysteresis voltage trend is in line
with the results from the literature (e.g., [25]), except in the low-SoC region (SoC < 20%), where the
estimated hysteresis is larger than what would be expected based on the literature.

 
Figure 7. (a) Replot of Figure 6c with added average values of estimated Uoc(SoC) curves for charge
and discharge periods, (b) estimated hysteresis voltage.

Now, when the hysteresis voltage is known, the adaptation mechanism may be omitted, and the
hysteresis can be accounted for directly through a proper Uoc(SoC) model extension. A complex,
dynamic hysteresis model [27] is not necessary in this case, because the particular scooter does not
support regenerative breaking (i.e., its battery is not exposed to often changes of current sign). A simple,
instantaneous hysteresis model can be described by introducing an auxiliary variable s described as [4]:

s(k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, ib(k) > 3

√
Qx

−1, ib(k) < −3
√

Qx

s(k− 1), ib(k) <
∣∣∣∣3 √

Qx

∣∣∣∣
(9)

(where 3
√

Qx is the current sensor noise amplitude calculated using the current sensor variance from
Equation (9)) and using it to modify the output equation (cf. Equation (8)):

y(k) = Ub(k) = Uoc(SoC(k)) −Rohm(k)ib(k) −Rp(k)ip(k) + s(k)M0(k) + v (10)

where M0 is the hysteresis voltage value obtained from data shown in Figure 7b by means of 10th-order
approximation polynomial. Described hysteresis is used instead of the adaptation mechanism in the
rest of the paper.
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5. Battery Capacity Estimation

This section presents the battery remaining charge capacity estimator, and its integration into
the overall SoC and capacity estimation algorithm. The capacity estimator is supplemented with a
convergence detection algorithm to perform automatic coupling of the capacity estimator with the
SoC estimator after the capacity estimate has converged. Finally, the complete estimation algorithm is
verified for real driving battery load cycles.

5.1. Capacity Estimation Model

Since the battery capacity parameter is not directly involved in the model output equation (i.e.,
Equation (8)), it is not convenient to estimate it as another random-walk parameter in the DEKF [15].
Instead, the model for capacity estimation could be defined as [15]:

C(k) = C(k− L) + rC (11)

SoC(k− L + 1) − SoC(k) =
Tu

C(k)

k∑
j=k−L+1

ib( j) + vSoC(k) (12)

where C(k) is capacity, rC is random walk noise for capacity parameter model with the corresponding
covariance QC, L is the number of basic (DEKF) sampling steps between two capacity estimates, and
vSoC is measurement noise of SoC signal difference with the corresponding covariance RSoC.

The model output is the SoC difference between two capacity estimates, while its input is the
cumulative sum of battery current between those time instances. The SoC, as an output term, cannot
be measured, but can be estimated by using the previously designed DEKF (both, estimates of SoC
mean value and its variance are available). By looking at Equation (13) it can be seen that capacity
estimate cannot be updated at the same rate as DEKF, because the signal-to-noise ratio of SoC estimate
would be too low for the SoC dynamics being much slower than the current dynamics. The capacity
estimator is therefore executed every L time steps, where L is in the range of 600–6000, i.e., 1 to 10
min. The overall estimator, i.e., the previously discussed DEKF extended with the capacity estimator,
is shown in Figure 8.

 
Figure 8. Overall algorithm for dual SoC and remaining charge capacity estimation.

5.2. SPKF-Based Capacity Estimator

Since the battery capacity model output equation is distinctively nonlinear, the EKF-based
estimator application has been found to give too noisy estimates with slow convergence rate. This is
an expected result since EKF uses analytic linearization through Taylor series expansion around the
current operating point, i.e., around the state variable (in this case capacity C) mean value. Another,
more coherent approach to this problem is statistical linearization which linearizes the model at
multiple points drawn from prior distribution of C. The estimator derived using this approach is
called SPKF [3]. There is a couple of SPKF versions which differ in calculation of sigma-points for
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linearization; in this paper, the method called central-difference Kalman filter (CDKF) is used because
it provides simple parametrization without compromising accuracy [3]. Comparison between EKF-
and SPKF-based capacity estimation, shown in Figure 9, clearly illustrates the benefits of using SPKF
when compared to EKF.

 
Figure 9. Comparison between EKF- and SPKF-based capacity estimation, where the estimated capacity
is not fed back to DEKF-based state and parameter estimator.

It is important to note that in the case shown in Figure 9 the capacity estimates were not fed back
into the state model of the DEKF, i.e., into Equation (6). If this were the case, i.e., if the state model of
DEKF was updated with capacity estimates every L time stamps, the estimator would not converge to
correct estimates, as shown in Figure 10a–c. This is because every model parameter is estimated in a
coupled manner, so there are multiple parameter combinations where output voltage residual would
be minimized. For instance, Figure 10d shows an estimate of Uoc(SoC) which is narrower than the
actual curve, because the capacity is estimated higher than the actual one.

 
Figure 10. SPKF-based capacity estimation with capacity adaptation of the DEKF from the start, i.e.,
tstart = 0: (a–c) estimated capacity vs. time with zooms, (d) estimated and measured Uoc(SoC) curves.

The capacity estimate feedback to the DEKF should be, therefore, turned on with some delay, i.e.,
until capacity estimate convergence is detected. For that purpose, capacity convergence detection
algorithm has been designed, as presented in the next subsection.
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5.3. Capacity Convergence Detection Algorithm

The capacity convergence detection algorithm is based on monitoring of the normalized estimation
error (NEE) [28]:

εy(k) = (y(k) − ŷ(k))P−1
y (y(k) − ŷ(k))T (13)

where y(k) is the SoC estimate generated by the DEKF, ŷ(k) is the SoC calculated from the SPKF model
output, and Py is the SPKF innovation matrix (which is regularly calculated as a part of SPKF; note
that it is a scalar in the particular case of single estimated parameter—the capacity). The convergence
algorithm monitors the NEE, and when it is lower than some predefined value during some predefined
number of consecutive time steps, the convergence is claimed.

5.4. Capacity Estimation Results

Results of SPKF-based capacity estimation algorithm with delayed and automatically calculated
(through capacity convergence detection algorithm) start of capacity update (i.e., tstart) within the DEKF
state model (version with hysteresis model included was used) are shown in Figure 11. The capacity
estimates plotted versus time are shown in Figure 11a along with the “measured” capacity (see
Figure 3b for details about capacity identification). Capacity convergence has automatically been
detected after 2.9 h and from that point on, SPKF has been coupled to the DEKF. Figure 11b shows
capacity estimates during the discharge periods plotted versus SoC and color-mapped with respect to
temperature. Capacity shows expected (based on the [29]) positive correlation with the temperature.

 
Figure 11. SPKF-based capacity estimation with automatic convergence detection: (a) Capacity
estimates vs. time, (b) capacity estimates vs. SoC and temperature.

Figure 12 shows the same plots as in the case of Figure 6, but instead of using the adaptation
mechanism the estimator relies on the explicit hysteresis model and has the capacity estimation
included. The voltage residual is shown in Figure 12a together with the usual statistics. This residual
has higher Lstat value than the one from Figure 6a, which may be explained by the influence of added
capacity estimation. The estimates of Rohm and Rp, plotted in Figure 12b,d with respect to SoC and
temperature, respectively, are similar to those from Figure 6b,d, but with slightly higher correlation
with temperature for both resistances. Finally, it should be noted that there are no distinguishable sets
of estimated Uoc curves in Figure 12c (unlike in Figure 6c), because estimated Uoc(SoC) now describes
the central curve while the hysteresis is accounted for in the model (see Figure 7 and Equations (10)
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and (11)). Estimated Uoc(SoC) is slightly larger than the recorded one (see Figure 3c for details about
Uoc(SoC) identification) because the latter is discharge Uoc(SoC) curve while we estimate the average
Uoc(SoC) since hysteresis is explicitly modelled in this case. The overall estimation algorithm is
parametrized as given in Appendix A.

 
Figure 12. DEKF verification results with added hysteresis model and capacity estimation: (a) Voltage
residual histogram including normal distribution fit, (b,d) estimated resistances Rohm and Rp,
(c) estimated and recorded Uoc(SoC) curves.

6. Conclusions

An algorithm for dual estimation of battery state-of-charge (SoC) and remaining charge capacity
has been proposed, which is aimed to be accurate over the whole battery lifetime and real-driving
conditions including varying ambient temperatures. This was achieved by simultaneous estimation of
relevant battery degradation-dependent parameters such as internal resistances and parameters of
open-circuit voltage vs. SoC characteristic, Uoc(SoC).

To this end, the dual extended Kalman filter-based SoC estimation algorithm has been extended to
estimate parameters of the characteristic Uoc(SoC) along with the resistance parameters. This extension
allows the DEKF to adapt for Uoc(SoC) variations and capture its hysteresis without explicitly modelling
it. The latter can be useful in cases when the exact hysteresis profile is not known in advance or when
it needs to be updated at the given state-of-health level without a specific identification experiment.

Next, a battery capacity estimator has been designed as a separate estimator, as it is based on a
different model than the one that has been used in the DEKF design. Moreover, capacity estimation
is meant to be executed on a significantly slower time scale than the DEKF. It has been shown that
the EKF-based capacity estimator gives rather inconsistent estimates with a slow convergence rate,
which is explained by a distinctively nonlinear capacity model. Capacity estimator has, therefore, been
designed by using a sigma-point Kalman filter (SPKF). Furthermore, it has been demonstrated that
SoC and capacity estimators (i.e., DEKF and SPKF, respectively) cannot be started in a coupled manner,
unless it is ensured that both estimators have converged. A capacity convergence detection algorithm
has, therefore, been designed to automatically couple the two estimators.
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Finally, the overall estimator has been successfully verified based on real driving cycle data
acquired by using a fully electric scooter equipped with a telemetry measurement system. The DEKF
output voltage estimation residual distribution was confirmed to be close to the voltage measurement
noise, while resistance estimates showed expected correlations with temperature. The estimated
capacity was shown to be close to the measured one and expectedly correlated with temperature,
as well.

Future work will be directed towards further extensions and verifications of the proposed estimator
to account for temperature- and aging-dependent variations of the polarization time constant τp and
further analyze the sensitivity of estimator for broader operating conditions (e.g., wider temperature
range), respectively. The emphasis will be on using the estimator to track battery degradation features
in support of modelling the battery degradation process.
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Abbreviations

BMS Battery management system
DEKF Dual extended Kalman filter
ECM Equivalent circuit model
EKF Extended Kalman filter
KF Kalman filter
NEE Normalized estimation error
OCV Open-circuit voltage
PF Particle filter
SoC State-of-charge
SoH State-of-health
SPKF Sigma-point Kalman filter

Appendix A. Estimator Parameters

The overall estimation algorithm is parametrized as given in Table A1.

Table A1. List of estimator parameters.

Parameter Description and Its Mathematical Notation Value

Variance of Rohm estimation, Qθ[1, 1]
(
0.85·10−8

)2

Variance of Rp estimation, Qθ[2, 2]
(
0.85·10−8

)2

Variance of Uoc(SoC) estimation, Qθ[3, 7; 3, 7]
(
0.85·10−7

)2

Initial SoC, SoC(0) 93
Initial polarization current, ip(0) 0

Initial polarization resistance, Rohm(0) 50·10−3

Initial polarization resistance, Rp(0) 25·10−3

Initial Uoc parameter, K0 69
Initial Uoc parameter, K1 78·10−3

Initial Uoc parameter, K2 −10
Initial Uoc parameter, K3 0.87
Initial Uoc parameter, K4 −0.88

Scaling factor of submatrix Qθ[3, 7; 3, 7] bump in adaptation mechanism (see Section 4.2.2) 1010

NEE threshold value (see Section 5.3) 100
Consecutive time steps NEE has to be lower than the above threshold (see Section 5.3) 10

Ratio between SPKF and DEKF sampling time, L (see Section 5.1) 3000
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Abstract: In order to improve the convergence time and stabilization accuracy of the real-time state
estimation of the power batteries for electric vehicles, a fuzzy unscented Kalman filtering algorithm
(F-UKF) of a new type is proposed in this paper, with an improved second-order resistor-capacitor (RC)
equivalent circuit model established and an online parameter identification used by Bayes. Ohmic
resistance is treated as a battery state of health (SOH) characteristic parameter, F-UKF algorithms are
used for the joint estimation of battery state of charge (SOC) and SOH. The experimental data obtained
from the ITS5300-based battery test platform are adopted for the simulation verification under
discharge conditions with constant-current pulses and urban dynamometer driving schedule (UDDS)
conditions in the MATLAB environment. The experimental results show that the F-UKF algorithm is
insensitive to the initial value of the SOC under discharge conditions with constant-current pulses, and
the SOC and SOH estimation accuracy under UDDS conditions reaches 1.76% and 1.61%, respectively,
with the corresponding convergence time of 120 and 140 s, which proves the superiority of the joint
estimation algorithm.

Keywords: power batteries; improved second-order RC equivalent circuit; fuzzy unscented Kalman
filtering algorithm; joint estimation

1. Introduction

The power batteries serving as the power supply for electric vehicles (EVs) have direct effects
on the overall performance of EVs, and the battery overcharge may cause overheating or even an
explosion, while the battery over-discharge may result in accelerated aging and permanently reduced
capacity [1]. Concerning the issues of safety usage, the state estimation of batteries available for safety
precautions can facilitate the elimination of safety hazards, which means the state of charge (SOC) and
state of health (SOH) joint estimation is of great significance for the research on power batteries [2].

Lots of scholars have proposed many SOC estimation methods, such as the open circuit voltage
method [3,4], the Coulomb counting method [5], the neural network method [6] and the Kalman filtering
algorithm [7]. Among them, the open circuit voltage method was to first establish a corresponding
function of the open circuit voltage and the SOC and then obtain the SOC by measuring the open circuit
voltage after the battery was stationary [8]; the Coulomb integral method, which discretizes the current
flowing through the battery and sums it up, and obtains the SOC value by simple division [9]; the
neural network method optimizes the relevant parameters of the SOC estimation algorithm and solves
complex abstract problems through autonomous learning [7]; a series of Kalman filtering algorithms
based on the extended Kalman filtering algorithm optimize autoregressive data processing, which can
make the optimal estimation in the minimum variance sense for the state of the dynamic system [10,11].

The estimation methods in the SOH are mainly divided into two categories: One is to start
with the characteristic parameters of the battery, and the other is to analyze the aging characteristics
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and electrochemical reaction characteristics of the battery [12]. The former mainly uses the direct
measurement method, obtaining the current SOH by obtaining aging characteristic parameters such as
capacity and ohmic internal resistance [8,13]. There are also methods such as neural networks [14] and
fuzzy logic [15], which can directly estimate the SOH of the battery through data training without an a
priori model. The latter uses an electrochemical model method [12] that models the internal physical
and chemical reactions during the charging process and designs an estimator for SOH estimation.
There is also a method based on an equivalent circuit model [16] that establishes a circuit that reflects
internal variables for SOH estimation.

All of the above algorithms are only a single estimate for the SOC or the SOH, ignoring the close
relationship between the SOC and the SOH. The SOC estimate is affected by battery aging—as the
battery ages, inaccurate SOC estimates can affect the SOH correction. Therefore, a joint estimate of
the SOC and the SOH is necessary. The literature proposes an online SOH estimation method for the
lithium battery using the constant-voltage (CV) charge current, as proposed in reference document [17],
which can ensure the estimation error of less than 2.5%. However, it is difficult to accurately estimate
the true state of the lithium battery by merely estimating the value of the SOH. Another SOC and
SOH joint estimation method applicable to the cycle life of lithium-ion batteries for EVs, as proposed
in reference document [18], involves an SOC and SOH identification using offline state estimators
with different time scales; this requires substantial data to ensure asymptotic convergence without the
real-time update.

Reference document [19] analyzed the error sources from the four angles of measurement, model,
algorithm and state parameters for the SOC estimation. Finally, the author put forward new concerns in
the practical application of SOC estimation. A multi-time-scale observer of the SOC and the SOH for a
lithium-ion battery with coupled fast and slow dynamics was proposed in the reference document [16].
The authors used a deterministic transformation of the extended Kalman filter. The paper made an
effective estimation of the SOC and the SOH by strictly characterizing the stability of estimation error.
Three model-based filtering algorithms [20] were used to estimate the SOC, and the tracking accuracy,
calculation time, robustness, etc., were analyzed and compared. Experimental results showed the
advantages of three algorithms; the unscented Kalman filtering (UKF) algorithm has a good stability
and the Particle filter (PF) algorithm, in the early stage has extreme rapidity. This article gave a
combination of the two algorithms to improve the accuracy of the research direction.

In this paper, full consideration was given to the estimation error caused by the change in ohmic
resistance during the service of power batteries, and the constant ohmic resistance was replaced by
that of gentle variations resistance so as to propose a joint estimation algorithm of the power battery
SOC and SOH based on a fuzzy control trace-free Kalman filter. This algorithm uses two complete
fuzzy unscented Kalman filtering (F-UKF) algorithms to estimate the SOC and ohmic resistance of the
battery at the same time. First of all, the use of a fuzzy controller can effectively reduce the impact
of observation noise under complex conditions and to further improve the accuracy of battery SOC
estimation. Secondly, the fuzzy controller is used to make a real-time correction of the variance matrix
of the observed noise so as to finally realize the estimation of the battery ohmic internal resistance;
experiments show that the joint estimation algorithm is not affected by the initial value of SOC, and it
still has good convergence speed and tracking accuracy under complex conditions.

The rest of this paper is organized as follows: Section 2 introduces the model of lithium battery,
open circuit voltage, SOC calibration experiment, and parameter identification. Section 3 reviews the
implementation method of traceless Kalman filtering, fully considers the intrinsic coupling relationship
between the SOC and the SOH, puts forward the fuzzy and traceless Kalman filter algorithm on
the basis of traceless Kalman filtering, and uses two F-UKF algorithms to estimate the SOC and
ohmic internal resistance at the same time. Section 4 discusses the relevant experimental process and
conclusions, and Section 5 summarizes the full text.
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2. Model for the Lithium Battery

2.1. Setup of Equivalent Circuit Model for the Lithium Battery

An accurate battery model can effectively describe the external features and characteristics of
internal electrochemical reactions, which is of great significance for the SOC and SOH evaluation of
power batteries [21]. In this paper, the SOC is defined as the ratio between remaining battery capacity
and nominal battery capacity under the same environmental conditions and specified discharge
rate [22]:

SOC =
Qres

QN
× 100% (1)

In which Qres is the remaining battery capacity after the discharge of partial electric quantity and
QN is the nominal battery capacity.

Through the comparative analysis of differences between old and new batteries, the researchers
found that the ohmic resistance and actual maximum battery capacity have more significant changes
due to the SOH variations, and SOH is defined as follows from the perspective of ohmic resistance [23]:

SOHR =
R0(end) −R0(t)
R0(end) −R0(0)

× 100% (2)

In which SOHR is the battery SOH, which defined based on the ohmic resistance R0; R0(end) is
the ohmic resistance when the actual maximum battery capacity drops to 80% of the nominal battery
capacity; R0(t) is the ohmic resistance of the battery at t; and R0(0) is the ohmic resistance upon the
battery delivery from the factory.

The proposed improved second-order Resistor-capacitor (RC) equivalent circuit model based on the
equivalent circuit model [24,25] is shown in Figure 1. The high capacitance Cp and current-controlled
current source (CCCS) on the left side characterize the battery capacity, SOC and running time.
The second-order RC circuit on the right side simulates the internal polarization characteristics of the
battery, R1 and C1 describe the concentration polarization characteristics of the battery, while R2 and C2

describe the electrochemical polarization characteristics of the battery. The voltage-controlled voltage
source (VCVS) simulates the nonlinear relationship between the open-circuit voltage and Usoc, which
links the circuit parts on both sides.

 

R

R R

CC

U U

i

LUSOCoc UUpC

SOCU

i

Figure 1. Improved second-order resistor-capacitor (RC) equivalent circuit model.

Based on the improved second-order RC equivalent circuit model for the lithium battery, select
x = [SOC U1 U2]T as the state variable to obtain the following continuous state space equation:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.
SOC

.
U1.
U2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 − 1

R1C1
0

0 0 − 1
R2C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

SOC
U1

U2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− ηQN

− 1
C1− 1
C2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ · i (3)
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In Equation (3), QN is the nominal battery capacity and η is the charge–discharge efficiency of the
battery. The discretized state equation and observation equation are as follows:{

x(k + 1) = A · x(k) + B · i(k)
UL(k) = Uoc(SOC) −U1(k) −U2(k) −R0 · i(k) (4)

In which T is the sampling period of the system, with A and B expressed as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 exp(− T

R1C1
) 0

0 0 exp(− T
R2C2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− η·TQN

R1(1− exp(− T
R1C1

))

R2(1− exp(− T
R2C2

))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

2.2. Open-Circuit Voltage and SOC Setting Experiments

The procedures of open-circuit voltage and SOC setting experiments for the lithium battery
at a normal temperature (25 ◦C) based on the ITS5300 battery test platform (ITECH ELECTRONIC
CO., LTD., Nanjing, China) are as follows: Charge the battery until the full-load capacity is reached
before the 3-hour standing and record the open-circuit voltage of the battery, discharge the battery for
6 minutes at a discharge rate of 1 C (40 A), and repeat the above steps until the cutoff voltage is reached.
The fitting of open-circuit voltage curve corresponding to the SOC variations of lithium battery was
completed via the MATLAB software (2017a, The MathWorks, Inc, Natick, MA, USA), which showed
that the fitting curve had the minimum root-mean-square error when the polynomial order was 5.
The fitting curve is shown in Figure 2, and the function expression is as follows.

Uoc(SOC) = 3.2821 · SOC5 − 10.3004 · SOC4 + 13.0068 · SOC3 − 7.9724 · SOC2 + 2.4054 · SOC + 2.9752 (6)

 
Figure 2. Fitting curves of the open-circuit voltage and state of charge.

2.3. Parameter Identification of the Lithium Battery Model

In accordance with the improved second-order RC equivalent circuit model, the Bayesian
identification algorithm based on the least-square equation was adopted for the identification of
resistance and capacitance parameters of the equivalent circuit model. Taking the parameters to be
estimated as random variables, the Bayesian identification algorithm achieved the optimal estimation
indirectly through the observation on other related parameters [26,27].
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Kirchhoff’s law should be adopted to obtain the following Laplace’s equation of the improved
second-order RC equivalent circuit model:

Uoc(s) −UL(s) = i(s) · ( R1

R1C1s + 1
+

R2

R2C2s + 1
+ R0) (7)

The equation obtained using the bilinear transformation method is as follows:

d(k) = −k1d(k− 1) − k2d(k− 2) + k3i(k) + k4i(k− 1) + k5i(k− 2) (8)

In which i(k) is the system input, d(k) = UOC(k) − UL(k), and the final derivation of the Bayesian
identification algorithm is as follows.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ̂(k) = θ̂(k− 1) + K(k) ·
[
z(k) −HT(k)θ̂(k− 1)

]
K(k) = Pθ(k− 1)HT(k) ·

[
HT(k)Pθ(k− 1)H(k) + 1

σr2

]−1

Pθ(k) =
[
I −K(k)HT(k)

]
· Pθ(k− 1)

(9)

The initial value of θ(0) is 0, and the initial value of covariance matrix Pθ (0) is a·I, among which
a is a small positive number and I is a 5-order unit matrix. Use the recursion Formula (9) of the
Bayesian identification algorithm to estimate the model parameters and then calculate the resistance
and capacitance values of the model via Equation (8). In practical applications, it is necessary to
consider the amount of calculation and the length of time for parameter identification. The joint
estimation algorithm designed in this paper has a large amount of computation. Therefore, the mean
value of the online identification result was selected as the parameter identification result. The results
are shown in Table 1.

Table 1. Online identification result based on the Bayesian identification algorithm.

Model Parameter Maximum Value Minimum Value Average Value

Ohmic internal resistance R0 (mΩ) 1.704 0.923 1.278

Concentration polarization internal resistance R1 (mΩ) 0.0603 0.1189 0.0927

Concentration polarization capacitor C1 (KF) 6.017 3.021 3.821

Electrochemical polarization internal resistance R2 (mΩ) 0.248 0.176 0.219

Electrochemical polarization capacitance C2 (KF) 3.281 2.683 2.746

3. SOC and SOH Joint Estimation Based on F-UKF

3.1. Unscented Kalman Filtering Algorithm

The unscented Kalman filtering algorithm adopts the linear Kalman filter framework instead
of the traditional linearization for nonlinear functions, with the nonlinear transfer of mean value
and covariance completed via unscented transformation in the one-step prediction equation [7,28].
The unscented Kalman filtering algorithm is applicable to the nonlinear dynamic systems described
with the following state-space equation:{

x(k + 1) = f [x(k), u(k)] + e(k)
y(k) = g[x(k), u(k)] + v(k)

(10)

In which f is the function of nonlinear state equation and g is the function of nonlinear observation
equation. Assume that e(k) has the covariance matrix Q and v(k) has the covariance matrix R; thus, the
essential operation steps of the unscented Kalman filtering algorithm for a random variable X at the
different time K are shown in Figure 3.
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Figure 3. Essential operation steps of the unscented Kalman filtering algorithm.

3.2. Fuzzy Unscented Kalman Filtering Algorithm

The application of the unscented Kalman filtering algorithm should have been based on the
already known statistical characteristics of process noises and observation noises; however, the
insufficient estimation accuracy caused by the difficulty in noise determination during the use of power
batteries required the introduction of adaptive filtering technique for algorithm optimization [29,30].
With reference to the unscented Kalman filtering algorithm, the covariance matching technique based
on the fuzzy inference system was adopted in this section to effectively improve the accuracy of
real-time observation noise estimation.

Assume that the statistical characteristics of process noises are already known, implement the
recursive correction of observation noise variance based on the calculation of real-time ratio between
the theoretical and actual covariances of observation errors.

Calculate the theoretical covariance N(k) and actual covariance M(k) of observation errors first,
among which i = k − n + 1.

N(k) =
2n∑

i=0

ωi
c · εy(k|k− 1) · εy

T(k|k− 1) + V(k) (11)

M(k) =
1
n

k∑
i

[y(i) − y(i|i− 1)] · [y(i) − y(i|i− 1)]T (12)
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The input value G(k) of the fuzzy controller is a ratio between the theoretical and actual covariances
of observation errors, while its output value α(k) is the adjustment factor of observation noise variance.
Take the adjusted observation noise variance V̂(k) into the unscented Kalman filtering algorithm to
calculate the new observation-error covariance matrix P̂y(k|k − 1) and then update the Kalman filter
gain and state-error covariance matrix with the updated P̂y(k|k − 1).

G(k) =
M(k)
N(k)

(13)

V̂(k) = α(k) ·V(k) (14)

As a kind of uncertainty reasoning method, the fuzzy controller is composed of three parts. First,
initiate the fuzzy processing in accordance with the input membership function shown in Figure 4 for
the input value G(k) of the fuzzy controller to obtain the corresponding fuzzy index.

kG

IS IM IB

Figure 4. Input membership function.

Second, concerning the fuzzy controller with a single input/output, the correspondent fuzzy rules
are relatively simple. The greater observation noise will result in the greater actual covariance M(k)
and G(k), while the change in theoretical covariance N(k) is subject to the variation of observation
noise variance V(k). In order to keep the variation consistency between N(k) and M(k), adjust α(k) to
enlarge V(k) when the observation noise becomes greater, so that the decreased G(k) will approach 1.
The decreased observation noise will result in the decreased actual covariance M(k) and G(k). Therefore,
α(k) should be adjusted accordingly to decrease V(k) so that the enlarged G(k) will approach 1. The fuzzy
rules established in accordance with the above derivation process is shown in Table 2.

Table 2. Fuzzy rules.

Input fuzziness Input Small (IS) Input Middle (IM) Input Big (IB)

Output fuzziness Output Small (OS) Output Middle (OM) Output Big (OB)

Finally, initiate the anti-fuzzy processing in accordance with the output membership function
shown in Figure 5 for the output fuzziness to obtain the output value α(k) of the fuzzy controller.
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Figure 5. Output membership function.

The diagram of working principle using the fuzzy controller for the adjustment of observation
noise variance matrix is shown in Figure 6.
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Figure 6. Structure diagram of the fuzzy controller.

3.3. Design and Implementation of the SOC and SOH Joint Estimation Algorithm

The following state-space equation can be used to express the improved second-order RC
equivalent circuit model:{

x(k + 1) = Ax(k) · x(k) + Bx(k) · i(k) + ex(k)
y(k) = Uoc(SOC(k)) −U1(k) −U2(k) −R0 · i(k) + vx(k)

(15)

In which x(k) is the state variable; y(k) is the predicted terminal voltage of the battery; ex(k) is the
process noise, with the mean value of zero and variance Ex(k); vx(k) is the observation noise, with the
mean value of zero and variance Vx(k); and Ex(k) and Vx(k) are irrelevant.

The gradual increase of ohmic resistance in a non-linear way is unnoticeable within a short period,
which means the ohmic resistance of the battery at two adjacent moments can be taken as the constant
value. Therefore, the state equation and observation equation for the estimation of ohmic resistance
can be expressed as follows:{

R0(k + 1) = R0(k) + eR(k)
y(k) = Uoc(SOC(k)) −U1(k) −U2(k) −R0(k) · i(k) + vR(k)

(16)

In which R0(k) is the state variable; y(k) is the predicted terminal voltage of the battery; eR(k) is the
process noise, with the mean value of zero and variance ER(k); VR(k) is the observation noise, with the
mean value of zero and variance VR(k); and ER(k)and VR(k) are irrelevant.

352



Energies 2019, 12, 3122

The optimal estimated value of the battery SOC was adopted in the joint estimation algorithm for
the one-step-ahead prediction of ohmic resistance; meanwhile, the optimal estimated value of ohmic
resistance was also available for the one-step-ahead prediction of the battery SOC, and the above
mutual application facilitated the acquisition of the estimated battery SOC and ohmic resistance closer
to the actual values.

The flowchart of the SOC and SOH joint estimation algorithm based on F-UKF is shown in
Figure 7.

kkx

−− kkx −− kkR

kkR

kV R

∧
kV x

∧

Figure 7. Flowchart of the joint estimation algorithm.

(1) Parameter initialization. First, initialize the corresponding parameters of the F-UKF algorithm for
the battery SOC estimation; then, initialize the corresponding parameters of the F-UKF algorithm
for the ohmic resistance estimation, and the ohmic resistance should be close to the actual value
to ensure the fast convergence of the battery SOC.

(2) Obtain the terminal voltage UL(k) and working current i(k) of the battery at the time k through the
voltage-current acquisition module.

(3) Obtain the estimated value of the battery SOC at the time k through the recursion formula using
the F-UKF algorithm based on the above terminal voltage and working current at the time k.

(4) Obtain the estimated value of ohmic resistance at the time k through the recursion formula using
the F-UKF algorithm based on the estimated value of battery SOC and working current at the
time k.

(5) Take the value of SOC(k) obtained from step (3) into the nonlinear functions of open-circuit
voltage and the battery SOC to obtain the open-circuit voltage UOC(k) at the time k; repeat the
steps (2), (3), (4) and (5) for the real-time estimation of the battery SOC and ohmic resistance.

4. Experimental Verification and Result Analysis

The ITS5300-based battery test platform available to verify the proposed SOC and SOH joint
estimation algorithm is shown in Figure 8. The nominal capacity of a single lithium iron phosphate
battery is 40 Ah, and the corresponding performance parameters are shown in Table 3. In order
to measure the terminal voltage and working current of the battery, the software of IT9320 battery
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test system (ITECH ELECTRONIC CO., LTD, Nanjing, China) was used to simulate the discharge
conditions with constant-current pulses and the urban dynamometer driving schedule (UDDS) driving
cycles, and the MATLAB software was adopted for the simulation verification and analysis of the joint
estimation algorithm proposed in this paper.

 

Figure 8. Battery test platform.

Table 3. Parameters of the lithium iron phosphate battery.

Nominal Capacity (Ah) 40

Battery voltage (V) Charge cutoff voltage 3.6
Discharge cutoff voltage 2.0

Cycle life (times) 80% DOD ≥2000
70% DOD ≥3000

Standard charge–discharge current (A) 0.3C

Maximum charge current (A) 3C

Maximum discharge current (A) 4C

Operating temperature (◦C) −25–55

4.1. Sensitivity Verification of the F-UKF Algorithm against Initial Values

Concerning the estimation of the battery SOC and ohmic resistance using the F-UKF algorithm, it
was difficult to obtain the accurate initial values of battery SOC, but the values of ohmic resistance
were relatively stable without violent fluctuations. The lithium iron phosphate battery was charged
until the battery SOC reached 85% of the initial state before the experiment. Under the discharge
conditions with constant-current pulses, the different initial values of the battery SOC were set to verify
the F-UKF sensitivity against initial values. In the MATLAB software, the respective initial values
of the SOC were set to 40%/0% and 85% for the F-UKF algorithm and the ampere-hour integration

354



Energies 2019, 12, 3122

method, with the sampling period and discharge rate set to 1 s and 0.5 C (20 A) for the 500-second
simulation experiment.

The simulations under discharge conditions with constant-current pulses shown in
Figures 9 and 10 indicate that the different initial values of battery SOC converged to the vicinity of
reference value after a period of filtering iteration. Though the greater deviation of SOC initial values
resulted in a longer convergence time, the stabilized values could follow the reference value well, and
the estimation error was extremely small. Therefore, the F-UKF algorithm proposed in this paper is
insensitive to the initial values.

 
Figure 9. State of charge (SOC) estimation curve based on the fuzzy unscented Kalman filtering
algorithm (F-UKF) under discharge conditions with constant-current pulses.

 

Figure 10. SOC estimation error curve based on F-UKF under discharge conditions with
constant-current pulses.

4.2. Joint Simulation Verification of UDDS Driving Cycles

The lithium iron phosphate battery was charged until the battery SOC reached 85% of the initial
state before the experiment.

The software of IT9320 battery test system was used to compile the pulse current driving cycles
before the acquisition of terminal voltage and working current from UDDS driving cycles. In the
MATLAB software, the initial values of SOC were set to 80% for the F-UKF and joint estimation
algorithms and 85% for the ampere-hour integration method, respectively. The initial value of ohmic
resistance was set to 1.50 mΩ for the joint estimation algorithm, which was greater than the reference
value of 1.278 mΩ.

The simulations of UDDS driving cycles shown in Figure 11 indicate that the convergence time of
SOC from the initial 80% to the vicinity of reference value based on the F-UKF algorithm was about 170
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s, while the UKF algorithm was about 185 s. The SOC estimation error of the F-UKF algorithm after
convergence could be controlled within 2.82%, while the estimation error of the UKF algorithm was
about 2.93%. Since the noise of UKF was random white noise, the F-UKF algorithm that introduces
adaptive technology was to adjust the noise instead of eliminating the noise. It can be seen that the
convergence performance of the F-UKF algorithm was not only better than the UKF algorithm, but the
estimation accuracy was also relatively improved in complex conditions.

 
(a) (b) 

Figure 11. (a) SOC estimation curve of urban dynamometer driving schedule (UDDS) driving cycles
based on the F-UKF and UKF algorithms. (b) SOC estimation error curve of UDDS driving cycles based
on the F-UKF and UKF algorithms.

The simulations of UDDS driving cycles shown in Figure 12a indicate that the convergence time
of SOC from the initial 80% to the vicinity of reference value based on the F-UKF algorithm was about
170 s, while the corresponding convergence time with an increased rising velocity based on the joint
estimation algorithm was about 120 s. Therefore, the convergence performance of the joint estimation
algorithm was better than that of the F-UKF algorithm under complex conditions. Figure 12b shows
that the respective SOC estimation errors of the F-UKF algorithm and the joint estimation algorithm
after convergence were less than 2.82% and 1.76%. Therefore, the tracking performance of the joint
estimation algorithm was better than that of the F-UKF algorithm in terms of the SOC estimation.

 
(a) (b) 

Figure 12. (a) SOC estimation curve of UDDS driving cycles based on the F-UKF and joint estimation
algorithms. (b) SOC estimation error curve of UDDS driving cycles based on the F-UKF and joint
estimation algorithms.
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The simulations of UDDS driving cycles shown in Figures 13 and 14 indicate that the convergence
time of ohmic resistance from 1.50 mΩ to the vicinity of reference value (1.278 mΩ) based on the joint
estimation algorithm was about 140 s, and the corresponding battery SOH was about 89.87% of the
reference value after stabilization. Figure 15 shows that the maximum SOH estimation error based on
the joint estimation algorithm was 1.61%, and the SOH estimation error was less than 1.20% over time.

Figure 13. Ohmic resistance estimation curve of UDDS driving cycles based on the joint
estimation algorithm.

Figure 14. State of health (SOH) estimation curve of UDDS driving cycles based on the joint
estimation algorithm.

 
Figure 15. SOH estimation error curve of UDDS driving cycles based on the joint estimation algorithm.
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5. Conclusions

In order to implement the real-time state estimation of power batteries for EVs, taking account
observation noises and gradually changed ohmic resistance, an improved second-order RC equivalent
circuit model was established in this paper for the SOC and SOH joint estimation using the fuzzy
unscented Kalman filtering algorithm (F-UKF). The experimental data obtained from a test bench
was adopted for the simulation to verify the convergence and stability of the F-UKF algorithm and
to achieve the required design effects. The experimental data were obtained by the ITS5300 battery
test platform, and the proposed joint estimation algorithm considered the influence of ohmic internal
resistance change and noise error.
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Abstract: The investigation and improvement of the cooling process of lithium-ion batteries (LIBs)
used in battery electric vehicles (BEVs) and hybrid electric vehicles (HEVs) are required in order to
achieve better performance and longer lifespan. In this manuscript, the temperature and velocity
profiles of cooling plates used to cool down the large prismatic Graphite/LiFePO4 battery are presented
using both laboratory testing and modeling techniques. Computed tomography (CT) scanning was
utilized for the cooling plate, Detroit Engineering Products (DEP) MeshWorks 8.0 was used for
meshing of the cooling plate, and STAR CCM+ was used for simulation. The numerical investigation
was conducted for higher C-rates of 3C and 4C with different ambient temperatures. For the
experimental work, three heat flux sensors were attached to the battery surface. Water was used
as a coolant inside the cooling plate to cool down the battery. The mass flow rate at each channel
was 0.000277677 kg/s. The k-ε model was then utilized to simulate the turbulent behaviour of the
fluid in the cooling plate, and the thermal behaviour under constant current (CC) discharge was
studied and validated with the experimental data. This study provides insight into thermal and flow
characteristics of the coolant inside a cooing plate, which can be used for designing more efficient
cooling plates.

Keywords: heat and mass transfer; thermal analysis; Lithium-ion battery; micro-channel cooling
plate; battery thermal management; MeshWorks; CFD

1. Introduction

The collective effects of global warming, environmental degradation, and energy crisis have
prompted attention towards clean and sustainable energy [1]. However, there is inconsistency
of renewable energy harvesting, since it depends on the effects of climate, which could result in
complications in providing sufficient electricity in contrast with traditional nonrenewable energy
sources. This has led to an interest in developing large-scale energy storage systems (ESS), for which
batteries show promise [2]. Among the available secondary batteries, lithium-ion and lead-acid are
broadly considered as effective candidates for energy storage systems. In the automotive industry,
plug-in hybrid electric vehicles (PHEVs), hybrid electric vehicles (HEVs), and battery electric vehicles
(BEVs) commonly utilize lithium-ion batteries (LIBs) [3]. The widespread use of LIBs is the result of 1)
high specific power and energy densities [4]; 2) high nominal voltage and low self-discharge rate [5];
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and 3) long cycle-life and no memory influence [6,7]. All these characteristics are required for electric
vehicles (EVs) to achieve desirable driving range and vehicle speed [8]. In addition to the driving range
and vehicle speed, the life cycle of the LIBs is also a critical factor in EVs. Some important factors in
determining the allowable discharging and charging currents (also known as C-rates) and the batteries’
life cycle are battery materials, working temperature, and assembling process. Current research on
enhancing the life cycle of a battery has mainly been focused on the improvement in the materials
and assembling technology, with a specific goal to obtain desired energy density. In addition, little
attention has been directed toward the advancement and change of battery cooling systems (BCS) [9].

Pouch-type LIBs are being commonly utilized in new EVs. However, many problems in their
safety and life span remain. First, when using the pouch-type lithium-ion battery, particularly in
cases of high discharge rate, high heat generation may occur [10]. This type of battery expands due
to overheating when the heat is not removed promptly. In some cases, the LIB may even burst and
explode. In addition, these pouch-type batteries are connected either in parallel or in series within the
LIB packs or modules, which also generate high amount of heat during both discharging and charging.
Therefore, a good battery thermal management system (BTMS) is necessary [11]. The heat of LIBs
increases when EVs accelerate and experience fast charging. If this generated heat is not adjusted or if
it is overtaken by the rate of heat production, the battery pack temperature drastically increases. A high
operating temperature of lithium-ion batteries can lead to capacity fade of the battery [12]. The impact
of high working temperatures on the execution of a LIB, particularly for cylindrical battery cells (Sony
18650), was researched by Ramadass et al. [13] and the prismatic LIB cell (A123 20 Ah) was explored
by Panchal et al. [14]. The authors found that the capacity fading is not the main negative impact
related to high working temperatures of the battery; it also may lead to the explosion of the electrolyte.
In addition, thermal runaway of a LIB cell can cause the whole LIB pack to fail [15]. In addition,
there is a major effect on the electrochemical behaviors in terms of the degradation of electrolyte,
electrodes, separator, and the life cycle cost [14,16]. Hence, a robust BTMS is required, to achieve
better LIB pack performance in low-temperature conditions and a better lifespan in high-temperature
conditions [12,17,18]. A typical operating range is between 20 ◦C and 40 ◦C [19], and an extended
range is between −10 ◦C and +50 ◦C for certain applications [20].

Based on the coolant utilized in the BTMS, the BTMS can be divided into (1) air-, (2) fluid- or
liquid-, and (3) phase change material (PCM)-based. For the air-based BTMS, cooling of the batteries
is done by airflow passing between the batteries in a module or pack. The stream of air can come
from the motion of the vehicle, and these types of systems are called natural air-cooled BTMS. If the
airflow is generated by power-operated equipment, then these systems are called forced-air BTMS.
The air streaming direction for air-based BCSs is usually 90 degrees to the axes for cylindrical batteries.
Fluid-based BTMS utilizes coolants in the liquid phase, and such systems typically use power-operated
equipment to move the coolant flow. In the PCM cooling method, the cooling is provided by the
latent heat of the PCM, while in air- and liquid-cooling methods, the cooling is provided by sensible
cooling. The advantages and disadvantages of air, fluid and PCM cooling are: (1) the air-cooling
method is simple and lightweight [21]; (2) the water-cooling method is more efficient since it absorbs
more heat, and takes less volume, yet more complexities are involved, including high weight and
cost [22]; (3) in comparison with the air-cooling strategy, the liquid-cooling strategy provides better
cooling performance owing to the high thermal conductivity of water compared to air [23]; and (4)
because of the low thermal conductivity of air [24], a high speed of air is required in order to provide
adequate cooling for LIBs [25,26]. The advantage of PCM over fluid and air-based strategies is better
temperature consistency throughout the battery pack. Most recent examples of EVs and HEVs that
utilize air-based cooling systems are the Toyota Prius, the Nissan Leaf, and the Honda Insight [27].
A very noted use of fluid-cooling systems for thermal management of LIBs is in Tesla vehicles, including
the Roadster. These cooling techniques utilize a 50/50 mixture of water and glycol to keep the battery
pack temperature within the appropriate limits [28]. Both the Chevrolet Bolt and BMW i3 utilize a
bottom-cooling plate in their battery packs, with the cooling medium being a water-glycol solution
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for the Chevrolet and a refrigerant for the BMW [29]. The objective of this study is to conduct a
reverse engineering study to experimentally investigate the design and heat generation of the 20 Ah
lithium-ion battery with the cold plate. Subsequently, heat flux data and developed CAD modeling
will be used to numerically characterize the thermal and flow behaviors of coolant in the cold plate at
different inlet coolant temperatures and higher C-rates. The study provides insight into thermal and
flow characteristics of the coolant inside a cooing plate which can be used for future improvements of
the cooling plate.

2. State of the Art

According to the research by several scholars from all over the world, there are numerous papers
available on BTMS with air, water, and PCM cooling, and battery modeling in the open literature [28–33].

Al-Hallaj et al. [34] were the first to utilize a PCM experiencing a solid to fluid change, and the
authors used the PCM to cool down the 18,650 cylindrical-shaped lithium-ion batteries. In the BCS,
they utilized a paraffin blend of pentacosane and hexacosane as the PCM. Moreover, for a passive
cooling strategy, PCM-based BTMS is less expensive, requires smaller volume, and accomplishes
preferred temperature consistency over air and fluid-based BTMS. The authors additionally utilized a
commercial finite-element (FE) software, PDEase2D™, to simulate the thermal behavior of EV battery
modules with a PCM BTMS. The authors claimed that the research was important for EV performance
under cold conditions, or in space applications where the battery working temperature drops greatly
when an orbiting satellite moves from the light to the dark side of the earth.

Zhang et al. [35] worked on the simulation of pouch-type LIB with thermal management using
a cooling plate approach. The authors used a 22 Ah battery and developed a computational fluid
dynamics (CFD) model using ANSYS Fluent. The authors studied the effect of inlet mass flow rate,
difference in temperature, and pressure drop at 4C discharge rate, with the end goal of improving the
efficiency and economy of the cooling plate. Their results demonstrated that the increase in mass flow
rate of coolant reduced the maximum temperature and temperature difference of cells, but when mass
flow rate exceeded 0.003 kg/s, then the economy of the cooling plate worsened.

Omkar et al. [36] developed a PCM/cooling-plate-coupled BTMS using CFD. The authors used
LiFePO4/C as a battery and determined the heat generation in simulation. They varied several factors
in simulating battery and cold plate, such as the inlet mass flow rate, PCM, thermal conductivity,
direction of flow, water cooling, to know the impact on the cooling execution of module. The authors
concluded that as the space between adjoining batteries increased, the most extreme temperature had
little change, yet the temperature field was uniform.

Chen et al. [37] worked on the comparison of four diverse cooling strategies, including air cooling,
indirect fluid cooling, direct fluid cooling, and fin cooling for LIB cells. The authors evaluated the
effectiveness on the basis of coolant parasitic power utilization, temperature difference in a cell, the
most extreme temperature rise, and extra weight utilized for the cooling strategy. The authors found
that (1) to keep the same average temperature, an air cooling strategy needed two to three times
more energy than other techniques; (2) an indirect liquid cooling strategy had the lowest maximum
temperature rise; (3) a fin cooling system includes an approximately 40% higher weight of cell, and (4)
indirect fluid cooling is more efficient than direct fluid cooling.

Lu et al. [38] worked on BTMS of thickly pressed EV batteries with forced-air cooling systems to
investigate the air cooling capacity on the temperature consistency and hotspots alleviation of a smaller
battery pack subject to different airflow rates as well as airflow paths. The authors used 252 cylindrical
lithium-ion batteries (32650). Their numerical outcomes demonstrated that the effective improvement
in heat transfer exchange zones between air-coolant and battery surfaces could bring down the highest
temperature and improve the most extreme temperature variation in the thickly pressed battery box.
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In another study, Qian et al. [39] worked on thermal performance of a thermal management system
(TMS) of LIBs by using a minichannel cooling method. The authors utilized a fluid cooling technique
based on mini-channel cold plate and later a 3D numerical model was developed. They investigated
the effects of the direction of flow, the mass flow rate at the inlet, the impact of number of channels,
and the channel width on the thermal performance of the pack. Their outcomes demonstrated that at
5C discharge, the TMS based on minichannel cooling plates was effective in cooling productivity and
controlling the battery temperature. They also found that a five-channel cold-plate was sufficient to
control the temperature by increasing the mass flow rate at the inlet.

Jarrett et al. [40] developed a CFD model of a battery cooling plate while considering the impact
of working conditions on the ideal design of electric vehicle battery cooling plates. The authors
considered three important performance measurements: (1) average temperature, (2) temperature
consistency, and (3) drop in pressure. They identified that out of these three, temperature consistency
was the most sensitive to the working conditions, particularly the circulation of the heat flux input and
the flow rate of the coolant.

Zou et al. [41] worked on an experimental study on multiwalled carbon nanotube (MWCNT)-based,
graphene-based and MWCNT/graphene-based PCM to enhance the thermal performance of lithium-ion
BTMS. Their results demonstrated that a composite PCM mass ratio of 3:7 of the MWCNT/graphene
could display the best synergistic improvement for the heat transfer effect, for which the thermal
conductivity was increased by 31.8%, 55.4% and 124% compared to graphene-based composite PCM,
MWCNT-based composite PCM and pure PCM respectively.

Greco et al. [42] developed a heat-pipe-based BTMS arranged in a sandwiched pattern to improve
the cooling for EVs. The authors also built a 1D model utilizing the thermal circuit technique. The
proposed model was contrasted to an analytical solution in view of variable partition and CFD
simulations in 3D. They found that the higher surface contact of the heat pipes allowed a better cooling
management compared to forced convection cooling.

Liang et al. [43] researched the thermal execution of a BTMS under various ambient temperatures
using heat pipes. The authors examined impacts of environment temperature, coolant flow rate,
coolant temperature, and start-up time on the thermal execution of BTMS. They also claimed that the
power utilization can be minimized by diminishing run time of HP-BTMS.

Lastly, Wang et al. [44] experimentally examined a high capacity LiFePO4 battery pack at high
temperatures and quick discharge using a novel fluid cooling method. They designed and developed
thermal silica plate-based BTMS. Their test results demonstrated that adding the thermal silica plates
significantly improved the cooling limit. This can enable the most extreme temperature distinction to
be controlled at 6.1 ◦C and decrease the highest temperature by 11.3 ◦C in the battery module.

In the above paragraphs, various methods of lithium-ion BTMS have been studied, and the
cooling plates cooling method demonstrates various practical application prospects. The main research
contents of the existing literature on the cooling plate cooling methods include the impact of flow
direction and mass flow rate. However, as a key part of the cooling system, the effect of external
temperature (or boundary conditions) within mini channels was seldom studied. Therefore, in this
paper, a cooling plate design and development was done in such a way that it gives maximum cooling
close to the anode and the cathode, as the greatest heat production is close to electrodes of LIBs during
high acceleration of EVs. A comprehensive examination and modeling was conducted on the cooling
plate in the LIB system. From this, the investigation under the rates of 3C and 4C (constant current
discharge), and operating conditions of 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C was assessed in detail. In our
previous CFD studies (Panchal et al. [45,46]), we designed and developed a cooling plate with only one
channel composed of a single inlet and outlet, and put one on both the top and bottom of the battery to
cool it down during the discharging rates of 1C, 2C, 3C, and 4C, and diverse cooling temperatures.
In this paper, STAR CCM+was used for CFD simulation and then the simulated results were validated
with experimental data of various temperature and velocity profiles. The results of this research
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can assist in the design, development and optimization of a cooling-plate cooling system. The data
generated is also helpful in battery thermal modeling and EVs development.

The rest of the manuscript is organized as follows. Section 3 introduces the experimental studies
including laser scanning, heat flux locations on the surface of the battery, experimental plan and
procedure. Section 4 explains the cooling plate physical model in detail, provides geometry and
boundary conditions as well as meshing. Section 5 analyzes the results of the numerical calculation,
specifically, the effect of inlet mass flow rate on the temperature and velocity profiles of the cooling
plate mini channels. Section 6 presents a summary of the conclusions.

3. Experimental Studies

Here, the lab testing details are given through the laser scanning, test set-up, heat flux distributions,
and testing plan and procedure.

3.1. Reverse Engineering

For reverse engineering, we used a 25S2P battery pack in an EV. The battery pack and reverse
engineering are shown in Figure 1.

 

Figure 1. Reverse engineering approach: taking out battery cell from pack.

3.2. Laser Scanning

The 3D laser-scanning machine used for this work is shown in Figure 2. It consists of probe,
Light Emitting Diode (LED) indicators, wide stable joints, dampener, stable base, etc. The laser probe
has an accuracy of ±25 μm (±0.001 in); field depth: 115 mm (4.5 in); width of effective scan: near
field 3.1 in (80 mm), far field 5.9 in (150 mm); minimum point spacing: 40 μm (±0.0015 in); scan
rate: 280 fps (frames/second), 280 fps × 2000, point/line = 560,000 points/sec; and laser class: 2 M.
Arm specifications were measuring range: 1.8 m (6 ft); volumetric accuracy: ±0.034 mm (±0.0013 in);
single point repeatability: 0.024 mm (0.0009 in); and seven-axis movement. After scanning the
microchannel cooling plate, the image was transferred into CAD using DEP MeshWorks 8.0 software.
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Figure 2. Laser scanning set-up.

3.3. Battery Description, Experimental Set-up and Heat Flux Locations

The test set-up utilized for this work is explained in detail in our previously published paper [47].
In this work, a different cooling plate configuration was used. Three heat flux sensors were attached
on the principle surface of the battery (one near the anode, one near the cathode, and one near the mid
body) and the sensor measurements were used for simulation. The heat flux sensor location is shown
Figure 3. A pouch-type 20-Ah-capacity LIB cell was utilized for the testing and model validation.
Table 1 organizes the LIB cell technical details. The battery cell was placed between two cooling plates
to form a sandwich structure.
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(a) (b) 

Figure 3. Heat flux sensors locations near (a) cathode and (b) anode.

Table 1. Technical details of 20 Ah lithium-ion battery (LIB) cell.

Specification Value Unit

Material for electrolyte Carbonate based -
Material for anode Graphite -

Material for cathode LiFePO4 -
Voltage (nominal) 3.3 V

Dimensions 7.25 (t) × 160 (w) × 227 (h) mm
Capacity of the cell (nominal) 20 Ah

Discharge power 1200 W
Energy (nominal) 65 Wh

Specific energy 131 Wh/kg
Energy density 247 Wh/L

Operating temperature −30 to 55 ◦C
Mass of the cell 496 g
Specific power 2400 W/kg

Maximum discharge 300 A
Internal resistance 0.5 mΩ

Volume 0.263 L
Storage temperature −40 to 60 ◦C

Number of cycles Min. 300, approx. 2000 Cycles
Maximum charge 300 A

3.4. Test Plan

In the experiment, four different fluid inlet temperatures were chosen for the water-cooling
strategy: 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C. Two distinctive discharge currents were selected: 60 A and 80 A
(3C and 4C). The charge current is 20 A (1C). The testing sequence is presented in Table 2. The test
layout and experimental uncertainty are available in our previously published paper [47].

Table 2. Testing sequence.

Working Fluid Operating Temperature (◦C) Charge Current Discharge Current

Water

5 20 A 60 A, 80 A
15 20 A 60 A, 80 A
25 20 A 60 A, 80 A
35 20 A 60 A, 80 A

4. Cold Plate Cooling System Modeling

4.1. Governing Equations

The fluid stream in this test was considered turbulent because the Reynold’s number was 8700. As
such, the stream was modeled by Reynolds-averaged Navier–Stokes Equations (RANS). STAR CCM+
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software was used for the CFD simulation. In this investigation, the realizable k-ε turbulence model
was utilized because of the strengths of the model, which include reasonable precision for an extensive
variety of flows and its demonstrated capacity in heat transfer and stream examination. The equations
used in STAR CCM+ for turbulent kinetic energy and eddy viscosity were:
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In the above equations, Sk and Sε are user-defined source terms. YM is the contribution of the
fluctuating dilatation in compressible turbulence to the overall dissipation rate. Gk is the production
of turbulence kinetic energy due to the average speed gradients. Gb is the generation of turbulence
kinetic energy due to buoyancy. C1ε, C2ε, and C3ε represents the model constants, σk and σε are the
turbulent Prandtl numbers for k and ε, respectively. The turbulent (or eddy) viscosity was computed
by combining k and ε as follows:

μt = ρCμ
k2

ε
(3)

where Cμ is a constant. The model constants C1ε, C2ε, Cμ, σk and σε have default values of: C1ε = 1.44,
C2ε = 1.92, Cμ = 0.09, σk = 1.0 and σε = 1.3.

4.2. CFD Modeling Details Using STAR CCM+

In a CFD simulation, the boundary condition “wall” is considered at locations where the stream
cannot penetrate and includes walls, the ceiling, and the floor. The accompanying parameters were
chosen for the model development: (1) the stream is incompressible, turbulent, and steady state; (2)
water is selected as the working medium with 997.56 kg/m3 density; (3) The mass flow rate at each
channel is 0.000277677 kg/s, while the aggregate mass flow rate at all nine channels is 0.002499003 kg/s;
(4) the area at each channel is 5.272 × 10−7 m2; (5) the dynamic viscosity of 0.00088871 Pa s; (6) the
specific heat is 4181.72 J/kg K; (7) the thermal conductivity is 0.62 W/m K; and (8) the turbulent Prandtl
number is 0.9. In addition to this, the thermal conductivity of the outlet aluminum cover is 237 W/m K,
the density of cover is 2702 kg/m3, and specific heat is 903 J/kg K. The selected parameters for model
set-up were (1) flow: turbulent; (2) fluid: incompressible; (3) time: steady state; (4) realizable K-epsilon
(RANS); (5) two-layer wall: y+wall treatment (y+ ≈ 5); (6) solver: segregated; (7) convection: second
order; (8) turbulence intensity: 0.01 (default); and (9) turbulent viscosity ratio: 10.0 (default).

4.3. Meshing in DEP MeshWorks 8.0

The meshing of the area was a crucial step because different lattice parameters, such as quality
criteria, mesh size, the shape of the elements, and the number of nodes have a significant impact on the
result accuracy and the numerical solution. Here, the meshing was done using DEP MeshWorks 8.0
software. The screenshot of DEP MeshWorks during meshing of cooling plate is shown in Figure 4.
Meshing in all nine-inlet channels of the cooling plate and meshing in the top portion of the cooling
plate, which is specifically designed for this prismatic battery cooling, is shown in Figure 5. This design
provides maximum cooling in this region because the heat production is the highest near the electrodes.
In order to accurately represent the heat and flow transfer characteristics, the mesh was refined at
regions of high geometrical deviations. Furthermore, P1, P2, and P3 areas for all cases for the heat flux
sensor (HFS) is shown in Figure 6.
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Figure 4. MeshWorks 8.0 screenshot during meshing of cooling plate.

 
Figure 5. Meshing in inlet channels in DEP MeshWorks 8.0.

 
Figure 6. Heat flux sensor (HFS) positions for model development.

5. Results and Discussion

This section presents on the results obtained from investigations for a specific prismatic LIB at
various higher discharge currents of 60 A (3C) and 80 A (4C) for water cooling at working conditions
of 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

5.1. Temperature Contours at 3C (60 A) Discharge

The temperature contours determined from STAR CCM+ CFD at 60 A discharge current and 5 ◦C,
15 ◦C, 25 ◦C, and 35 ◦C working temperatures are shown in Figures 7–10. As previously mentioned,
three heat flux sensors were put on the main surface of the battery: one was situated close to the positive
terminal or cathode, the second was situated close to the negative terminal or anode, and the third was
situated at the center of the cell. Figure 7 demonstrates the simulation results at 60 A discharge current
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and 5 ◦C coolant inlet temperature with heat flux near cathode = 2347.7 W/m2, anode = 2259.5 W/m2,
and mid surface = 539.3 W/m2. Similarly, Figure 8 shows temperature contours at 60 A discharge
current and 15 ◦C coolant inlet temperature with heat flux values near cathode = 1711.8 W/m2, anode=
2351.6 W/m2, and mid surface = 548.4 W/m2. It is observed that the temperature contours and trends
are similar with the inlet being cold and outlet being hot. During the battery operation at high C-rates,
the generated heat from the battery is conducted to the cooling plate. As the coolant flows inside from
the inlet, the heat is absorbed continuously with increments in coolant temperature along the flow path.
The maximum temperature of coolant is observed at the outlet surface, as expected. Figure 9 shows
temperature contours at 60 A discharge current and 25 ◦C coolant inlet temperature with heat flux
values near cathode = 1597.3 W/m2, anode = 1851.6 W/m2, and mid surface = 413.0 W/m2. Figure 10
demonstrates temperature contours at 3C discharge rate and 35 ◦C coolant inlet temperature with heat
flux values near cathode = 1468.4 W/m2, anode = 1579.9 W/m2, and mid surface = 340.6 W/m2.

  

(a) 

  

 

(b) 

Figure 7. Temperature profile at 60 A and 5 ◦C with heat flux values near cathode = 2347.7 W/m2,
anode = 2259.5 W/m2, and mid surface = 539.3 W/m2. (a) Top view and (b) bottom view.
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(a) 

  

 

(b) 

Figure 8. Temperature profile at 60 A and 15 ◦C with heat flux values near cathode = 1711.8 W/m2,
anode = 2351.6 W/m2, and mid surface = 548.4 W/m2. (a) Top view and (b) bottom view.

 

(a) 

Figure 9. Cont.
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(b) 

Figure 9. Temperature profile at 60 A and 25 ◦C with heat flux values near cathode = 1597.3 W/m2,
anode = 1851.6 W/m2, and mid surface = 413.0 W/m2. (a) Top view and (b) bottom view.

The result for temperature from simulation for 4C discharge rate and ambient temperature of 35
◦C showed 38.12 ◦C, which is 2.85% higher or lower than experimental values for similar boundary
conditions. The result for temperature from simulation for 3C discharge rate and ambient temperature
of 5 ◦C showed 7.93 ◦C, which is 2.19% higher or lower than experimental values for similar boundary
conditions. It is also noted that working temperature had a great impact on battery discharge capacity.
As the working temperature rose from 5 ◦C to 35 ◦C, the temperature contour values also increased
for a particular C-rate. The general cooling patterns are identical, demonstrating more noteworthy
contrasts at the inlet of the cooling plate where the water is coldest. The temperatures differ with the
inlet working condition temperature, yet the overall pattern remains generally consistent. Table 3 gives
the summary of inlet and outlet water temperatures at 60 A discharge current and working temperature
conditions of 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C. Table 3 also provides the difference in experimental and
simulated values obtained from STAR CCM+ software. It is additionally seen that the simulated values
are higher than experimental values because of the assumption of ideal wall conditions of adiabatic
wall at non-heat-transferring boundaries. In the actual experiment, a small amount of heat transfer
could be observed at some places where insulation was provided.

Table 3. Water inlet and outlet temperature at 60 A and 80 A with different working temperature.

Working
Fluid

Working
Temperature

(◦C)

Difference between
Experimental

and
Simulated Values

Water Inlet and Outlet Temperature (◦C)

60 A 80 A

Inlet Outlet Inlet Outlet

Water

5
Experimental (◦C) 5.7391 7.9307 5.1435 7.7029

Simulated (◦C) 7.93 9.35 7.70 10.25
Difference (%) 38.17 17.90 49.70 33.07

15
Experimental (◦C) 15.1377 16.7696 15.0906 16.9376

Simulated (◦C) 16.76 18.84 16.93 19.75
Difference (%) 10.72 12.35 12.55 16.60

25
Experimental (◦C) 25.0992 25.9614 25.0984 26.3445

Simulated (◦C) 25.96 28.47 26.34 29.3
Difference (%) 3.43 9.66 4.95 11.22

35
Experimental (◦C) 34.4912 34.9092 34.2555 35.2637

Simulated (◦C) 34.90 37.29 35.26 38.12
Difference (%) 1.19 6.82 2.93 8.10
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(a) 

 

 

(b) 

Figure 10. Temperature profile at 60 A and 35 ◦C with heat flux values near cathode = 1468.4 W/m2,
anode = 1579.9 W/m2, and mid surface = 340.6 W/m2. (a) Top view and (b) bottom view.

5.2. Temperature Contours at 4C (80 A) Discharge

Figure 11 shows temperature contours at 80 A discharge current and 5 ◦C water inlet temperature
with heat flux values near cathode = 3112.2 W/m2, anode = 3072.8 W/m2, and mid surface = 764.1 W/m2.
Figure 12 shows temperature contours at 80 A discharge current and 15 ◦C water inlet temperature with
heat flux values near cathode = 2419.0 W/m2, anode = 2887.1 W/m2, and mid surface = 697.3 W/m2.
Figure 13 demonstrates temperature contours at 80 A discharge current and 25 ◦C water inlet
temperature with heat flux values near cathode = 2309.3 W/m2, anode = 2648.2 W/m2, and mid surface
= 611.1 W/m2. Figure 14 shows temperature contours at 80 A discharge current and 35 ◦C water inlet
temperature with heat flux values near cathode = 2160.2 W/m2, anode = 2101.5 W/m2, and mid surface
= 471.8 W/m2. It is noted that, as the battery discharged, the flowing water inside the cooling plate
got heated because the heat was first conducted to the cooling plate and subsequently transferred
to the coolant by convection. The joule heating is the dominant factor for heat generation. As the
discharge current changed from 60 A to 80 A, there was an increase in temperature values as well.
The pattern observed was that increased discharge currents and increased ambient temperatures
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resulted in higher temperatures in the cooling plate. Table 3 gives the outline of inlet and outlet water
temperatures at 80 A discharge current and different working temperature conditions of 5 ◦C, 15 ◦C,
25 ◦C, and 35 ◦C. Table 3 also provides the difference in experimental and simulated values obtained
from STAR CCM+ software. It was also found that the simulated values were higher than experimental
values. In addition, the general cooling patterns were identical, similar to the results discussed in
Section 5.1. There were noteworthy temperature differences at the inlet of the cooling plate where the
water was coldest.

 

 

(a) 

  

 

(b) 

Figure 11. Temperature profile at 80 A and 5 ◦C with heat flux values near cathode = 3112.2 W/m2,
anode = 3072.8 W/m2, and mid surface = 764.1 W/m2. (a) Top view and (b) bottom view.
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(a) 

  

 

(b) 

Figure 12. Temperature profile at 80 A and 15 ◦C with heat flux values near cathode = 2419.0 W/m2,
anode = 2887.1 W/m2, and mid surface = 697.3 W/m2. (a) Top view and (b) bottom view.
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(a) 

 

 

(b) 

Figure 13. Temperature profile at 80 A and 25 ◦C with heat flux values near cathode = 2309.3 W/m2,
anode = 2648.2 W/m2, and mid surface = 611.1 W/m2. (a) Top view and (b) bottom view.
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(a) 

 

(b) 

Figure 14. Temperature profile at 80 A and 35 ◦C with heat flux values near cathode = 2160.2 W/m2,
anode = 2101.5 W/m2, and mid surface = 471.8 W/m2. (a) Top view and (b) bottom view.

5.3. Velocity Contours at 3C (60 A) and 4C (80 A) Discharge

The investigations of velocity contours can provide insights into future design considerations by
comparing contour results of velocity and comparing with respective contour results of temperatures.
The velocity contours at 60 A and 80 A discharge currents and 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C working
temperatures appear in Figures 15 and 16. The velocity contours were identical in all the cases, in
accordance with general trends, given the low temperatures associated in the modeling that would
have had a minimal impact on the water density. These results might be influenced by the lower y+
value, wall functions and turbulence model utilized. It was also observed that the velocity distribution
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at the inlet to the cooling plate and the outlet from the cooling plate was curved with relatively higher
velocity gradients.

 

 

 

Velocity profile at 60 A_5 °C Velocity profile at 60 A_15 °C 

 

 

 

 

Velocity profile at 60 A_25 °C Velocity profile at 60 A_35 °C 

Figure 15. Velocity profile at 60 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

 

 

 

 

Velocity profile at 80 A_5 °C  Velocity profile at 80 A_15 °C  

Figure 16. Cont.
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Velocity profile at 80 A_25 °C Velocity profile at 80 A_35 °C 

Figure 16. Velocity profile at 80 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

5.4. Transient Temperature Profiles of Water Flow and Voltage Distributions

Figures 17 and 18 show the transient behavior of water flowing inside the cooling plates at 60 A
and 80 A constant current discharges with various working temperatures of 5 ◦C, 15 ◦C, 25 ◦C, and 35
◦C. As discussed earlier, the increase in temperature was due to the joule heating I2R from the LIB
during discharge.

 

Water temperature profile at 60 A_5 °C  Water temperature profile at 60 A_15 °C  

 

Water temperature profile at 60 A_25 °C Water temperature profile at 60 A_35 °C 

Figure 17. Transient temperature profile of water flow at 60 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.
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Water temperature profile at 80 A_5 °C  Water temperature profile at 80 A_15 °C  

 

Water temperature profile at 80 A_25 °C Water temperature profile at 80 A_35 °C 

Figure 18. Transient temperature profile of water flow at 80 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

It was discovered that the working temperature had a great impact on the battery performance.
At lower discharge currents, the battery capacity was close to the manufacturer’s supplied data sheet,
but as discharge current increased, there was a decrease in the discharge capacity. Further, when
the working temperature changed from 35 ◦C to 5 ◦C, there was a more prominent decrease in the
discharge capacity. Consequently, it is clear that as the working temperature decreased, the battery
discharge capacity also decreased. These effects (reduction in battery discharge capacity) can be seen
in Figures 19 and 20, which present the discharge/charge profiles at 60 A and 80 A constant current
discharges (and charge current being 20 A) with various working temperatures of 5 ◦C, 15 ◦C, 25 ◦C,
and 35 ◦C.

 

Discharge/charge voltage profile at 60 A_5 °C  Discharge/charge voltage profile at 60 A_15 °C 

Figure 19. Cont.
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Discharge/charge voltage profile at 60 A_25 °C Discharge/charge voltage profile at 60 A_35 °C 

Figure 19. Discharge/charge voltage profile at 60 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

  

Discharge/charge voltage profile at 80 A_5 °C  Discharge/charge voltage profile at 80 A_15 °C  

  

Discharge/charge voltage profile at 80 A_25 °C Discharge/charge voltage profile at 80 A_35 °C 

Figure 20. Discharge/charge voltage profile at 60 A with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C.

6. Conclusions

This paper presented a numerical model using STAR CCM+ for CFD simulations at high C-rates
and diverse working temperatures of the liquid (water) with 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C. We discovered
that the temperature distributions within cooling plate channels increased with C-rates (3C to 4C).
As C-rate increased, the heat flux values measured near the anode, the cathode, and the middle surface
also increased. The cooling patterns obtained from simulation were similar to the experimental values
with slightly higher values. The velocity plots were identical for all cases. There results provide
valuable information on the design considerations that must be made for battery cooling systems
in EVs.
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Nomenclature

Cμ constant
C1, C2, C3 constant for model
C cell potential or cell voltage (V)
I current (A)
Gk turbulence kinetic energy generation due to the mean velocity gradients
Gb turbulence kinetic energy generation due to buoyancy
k turbulent kinetic energy (J)
L characteristic dimension (m)
P pressure (Pa)
Pr Prandtl number
Prt Turbulent Prandtl number
Re Reynold’s number
Sk and Sε user-defined source terms
t time (s)
T temperature (◦C or K)
V speed (m/s)
V average velocity (m/s)
vs mean fluid velocity (m/s)
y+ enhanced wall treatment
ω turbulent eddy frequency (1/s)

YM
the contribution of the fluctuating dilatation in compressible turbulence to
the overall dissipation rate

Greek Symbols
ν kinematic fluid viscosity (m2/s)
λ Reynold’s stress
ρ density (kg/m3)
μ dynamic fluid viscosity (Ns/m2)
∇ gradient operator
σk and εk Turbulent Prandtl numbers for k and ε
Subscripts
sim simulated
act actual
Superscripts
◦ degree
+ Related to wall treatment
Acronyms
BCS Battery cooling system
BEV Battery electric vehicle
BTMS Battery thermal management system
C Capacity
CC Constant-current
CV Constant-voltage
CT Computed tomography
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CAD Computer aided design
CFD Computational fluid dynamics
DEP Detroit Engineered Products, Inc.
EV Electric vehicle
ESS Energy storage system
FE Finite element
HEV Hybrid electric vehicle
HFS Heat flux sensor
HPBTMS Heat pipe battery thermal management system
LIB Lithium-ion battery
LiFePO4 Lithium iron phosphate
LED Light emitting diode
MeshWorks Popular proprietary software package used for CAD and mesh generation
MWCNT multi-walled carbon nanotubes
PC Personal computer
PCM Phase change material
PHEV Plug-In hybrid electric vehicle
RE Reverse engineering
RANS Reynolds-Averaged Navier-Stokes

STAR CCM+
Simulation of Turbulent flow in Arbitrary Regions-Computational
Continuum Mechanics + (C++ based)

TMS Thermal management system
1D One-dimensional
2D Two-dimensional
3D Three-dimensional

18650
IFR 18650 cylindrical valence cells (“I” stands for Li-ion rechargeable, “F”
stands for the element “Fe” which is Iron, “R” indicates that the cell shape is
round, 18650 means 18 mm diameter and 650 means 65 mm height)

25S2P 25 series 2 parallel
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Abstract: Battery-powered electric buses currently face the challenges of high cost and limited
range, especially in winter conditions, where interior heating is required. To face both challenges,
the use of thermal energy storage based on metallic phase change materials for interior heating,
also called thermal high-performance storage, is considered. By replacing the battery capacity through
such an energy storage system, which is potentially lighter, smaller, and cheaper than the batteries
used in buses, an overall reduction in cost and an increase of range in winter conditions could be
reached. Since the use of thermal high-performance storage as a heating system in a battery-powered
electric bus is a new approach, the requirements for such a system first need to be known to be
able to proceed with further steps. To find these requirements, a review of the relevant state of the
art of battery-powered electric buses, with a focus on heating systems, was done. Other relevant
aspects were vehicle types, electric architecture, battery systems, and charging strategies. With the
help of this review, requirements for thermal high-performance storage as a heating system for a
battery-powered electric bus were produced. Categories for these requirements were the thermal
capacity and performance, long-term stability, mass and volume, cost, electric connection, thermal
connection, efficiency, maintenance, safety, adjustment, and ecology.

Keywords: electric buses; thermal energy storage; latent heat storage; metallic phase change material;
cabin heating

1. Introduction

The latest reports on global warming show a significant increase in the worldwide average surface
temperatures on earth compared to the pre-industrial era. Since this effect is related mainly to the rise
of human CO2 emissions from burning fossil fuels, such as coal, oil, or gas, reducing the use of them
seems to be a way to restrict global warming.

In terms of public transport, buses using diesel fuel are the dominant vehicle category. Out of the
80,519 buses registered in Germany, a total of 78,472 (a relative portion of 97.5%) are diesel-fueled buses,
amounting to a large majority. Toward the aim of protecting the climate and reducing local emissions
like NOx or noise, replacing diesel-fueled buses with battery-powered electric buses could have positive
effects. However, the number of fully electric buses, which is 228 and therefore contributing to an
amount of 0.28% to the total amount of buses, is currently insignificant [1].

Since public transport is often uneconomical and has to be subsidized, low costs for the acquisition,
energy consumption, and maintenance of public transport are highly relevant. However, prices for
electric buses are currently roughly double that of diesel buses. Additionally, high investments in
the charging infrastructure are necessary. Besides the costs, the range of electric buses is limiting the
application possibilities in public transport, since not every tour can be served if the buses cannot
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be readily charged. Since the interior heating capacity can exceed the necessary power for traction
in low ambient temperatures, the range issue becomes even worse if interior heating is required on
low ambient temperatures and heating systems using electric energy are used. A further description
of these challenges is given in Section 2.4. As an example, the dependence of the required heating
capacity on the ambient temperature of a 12 m city bus is shown in Figure 1. By way of comparison,
the energy demand for the traction of a 12 m city bus is in the magnitude of 1.1 kWh/km. [2]

Figure 1. Dependence of the specific heating demand of a 12 m bus on the ambient temperature [2].

Since the prices for batteries are high (up to approx. 930 €/kWh, see Section 2.1.3) and the energy
densities are limited (up to 160–180 Wh/kg, see Section 2.1.3), using a high battery capacity is part of
the two described issues and currently low usage of electric busses. Therefore, replacing the battery
capacity with a more lightweight and more affordable energy storage method could be a solution to
solve this problem.

As mentioned, interior heating has a huge contribution to the energy consumption of an electric
bus in winter conditions. To overcome the problem of the high cost and limited range in winter
conditions, the use of thermal high-performance storage (THS) made of metallic phase change materials
(mPCM) could be a potential solution, as already described in past publications. The idea is to charge
the THS and the battery simultaneously, where the energy stored in the THS is provided to the cabin
while driving. By doing so, no electric energy from the battery has to be used and therefore the range
can be increased. Furthermore, no battery capacity needs to be available for heating and therefore
can be designated only for driving. Metallic phase change materials are selected as the main choice
since they offer high thermal conductivities at high energy densities and low cost. The high thermal
conductivity enables the potential for fast charging, which can be very relevant. The maximum storage
temperatures are intended to be 600–700 ◦C [3,4].

Since the application of THS as a heating unit in electric buses is a new approach, the requirements
for such a system must first be known to be able to proceed with further steps, such as conceptual
designing or experimental investigation. Therefore, this review aimed toward finding these
requirements. To do so, first, the relevant state of the art of battery-powered electric buses is
shown. The relevant aspects are vehicle types, electric architecture, battery systems, charging strategies,
and especially heating systems. With the help of this knowledge, the requirements for THS are
established and discussed.

2. State of the Art of Electric Buses

2.1. Electric Buses in General

2.1.1. Common Vehicle Types

Buses can be generally divided into different categories, which mainly comes from their use
case or their size. In terms of their use case, categories are airport buses, city buses, regional buses,
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and coaches for traveling. The main differences between these kinds of buses are, e.g., the range,
comfort for passengers, door sizes, engine power, and the type of construction (low floor or high
floor) [5–8]. In terms of size, buses can be categorized into small buses (<6 m), mini-buses (6–8 m),
midi-buses (8–10.6 m), standard buses with two axles, (10.6–13.5 m), double-decker buses (10–11 m),
standard buses with three axles (13.5–15 m), articulated buses (17.5–19 m), and double-articulated buses
(21–26.2 m) [9]. Since battery-powered electric buses have mainly been used as city buses, the focus
will be put on this category. A detailed overview of battery-powered electric buses that are currently
available on the market is given by Faltenbacher et al. [9]. As the state of the art in this category,
the EvoBus eCitaro is highly regarded in the authors’ view. The eCitaro comes with a maximum battery
capacity of 292 kWh, offering a maximum range of about 280 km under ideal conditions. Additionally,
innovative features are, e.g., the detection of occupancy by using mass sensors integrated into the axles,
which is used for thermal management purposes, or the use of a CO2 heat pump, as further described
in Section 2.3.3 [10].

2.1.2. Electric Architecture

Regarding the electric architecture, a DC intermediate circle is typically used in combination with
DC/DC converters and DC/AC converters for the electric consumers. The typical voltages are 650 to
750 VDC for the battery relative to the intermediate circle. The typical voltages of electric consumers,
such as an air conditioner or air compressor, are 400 VAC. Additionally, there is a 24 VDC voltage
level for electric consumers that have a lower electric power demand. Components with high power
consumption, such as a fully electric resistance heater (see also Section 2.3.2), are typically operated
with high voltages, either on the high voltage DC level or with the 400 VAC level. An example of a
battery-powered bus electric architecture is shown in Figure 2 [2,11].

Figure 2. The basic setup of the electric architecture of a battery-powered electric bus (without a control
system) [2].

2.1.3. Battery Systems Used in Electric Buses

Regarding battery systems in battery-powered electric buses, only battery systems based on
lithium-ion batteries are currently used. A basic distinction is made for high-energy batteries and
high-power batteries. High-energy batteries typically have higher energy at a lower power density.
High-power batteries typically have higher power densities but lower energy densities. An overview
of electric energy storage technologies with a focus on battery technology is shown in Figure 3.
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Figure 3. The energy density and power density of different electric energy storage systems with a
focus on battery technology, plotted as a Ragone diagram [12].

As one state-of-the-art manufacturer of batteries for bus applications, Akasol is highly regarded
in the authors’ view, and is the battery supplier for the aforementioned EvoBus eCitaro, among others.
Batteries from this supplier that are used in buses can use either NMC (lithium nickel manganese cobalt
oxide) for high-energy batteries or LTO (lithium titanate) for high-power batteries, or a combination
of both [13]. The cost for NMC is stated to be approx. 420 $/kg (≈389 €/kWh), and for LTO, the cost
is approx. 1005 $/kg (≈931 €/kWh) [14]. Another battery type that is often used is LFP (lithium iron
phosphate) [9]. The price of this type of battery is stated to be 580 $/kWh (≈537 €/kWh).

Regarding an ultra-high-energy battery, Akasol is offering the AKM CYC battery system with
a capacity of 42 kWh, a mass of 230 to 260 kg, and a volume of 17.85 L per battery pack, resulting
in a gravimetric energy density of 162 to 183 Wh/kg and a volumetric energy density of 235 Wh/L.
A continuous performance of 20 to 32 kW is stated, resulting in a power density of 77 W/kg to
139 W/kg. These values are in good agreement with the numbers for the high-energy batteries shown
in Figure 3 [15]. Regarding an ultra-high-power battery system, Akasol is offering the AKM POC
battery system. For the AKM 53 POC, a capacity of 35.3 kWh at a weight of 333 kg, a volume of 25.05 L,
and a continuous performance of 60 kW are stated. This results in a gravimetric energy density of
106 Wh/kg, a volumetric energy density of 141 Wh/L, a gravimetric power density of 180.2 W/kg, and a
volumetric power density of 240 W/L. However, the peak performance of discharging is stated as being
270 kW, leading to a power density of 811 W/kg (1078 W/L). For charging, the peak performance is
106 kW, offering a power density of 318 W/kg (423 W/L). The peak performance of this battery system
is in agreement with the numbers given in Figure 3 [16].

Furthermore, the latest numbers regarding future estimations of battery systems for electric buses
are given in the literature. For the batteries of the eCitaro, Akasol is planning to raise the capacity
in 2020 by replacing the currently used battery packs with the latest battery technology, enabling a
maximum capacity of 330 kWh. Another step that might be taken within the next few years is to
replace the currently used NMC batteries with solid oxide batteries. This would allow for a maximum
capacity of up to 400 kWh within the same space due to a higher gravimetric energy density, according
to EvoBus [10].

One last thing that must be considered regarding batteries for electric buses is their lifetime.
Buses are typically in operation for 12 to 14 years, as reported by Schwarzer [17]. Due to degradation,
the batteries have to be changed after about half of the bus’s operation time. As a criterion for changing
the battery, a state of charge (SOC) of 80% is recommended. Factors to consider that come along with
changing the battery are the high cost for a new battery and ecological aspects, such as high CO2

emissions during the production process. To at least partially overcome this, batteries from electric
buses are considered to be used as stationary energy storage as a second-life application [2,18].
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2.2. Charging Strategies for Electric Buses

2.2.1. Overnight Charging

In an overnight charging scenario, buses are fully charged at the bus terminal. Since the charging
is typically done at night, outside the service hours of city buses, it is called overnight charging. In this
scenario, the energy needed for the whole service is stored within one charge. Regarding the charging
infrastructure, only one location, which is normally the bus terminal, needs to be equipped. However,
buses suitable for this scenario require high energy storage capacities. For this reason, the battery types
used for this scenario are high-energy batteries (see Section 2.1.3). A visualization of the described
charging scenario is shown in Figure 4 [2].

Figure 4. Illustration of the overnight charging strategy with the charging infrastructure located at the
bus terminal [2].

2.2.2. Opportunity Charging at Final Stops

During opportunity charging at final stops, in addition to the charging at the bus terminal,
charging is done at the final stop of a city bus´s route. For this, the regular stop at the final stop is
used. Stop times at final stops can be within the range of a few minutes up to 20 or 30 min, according
to Berthold [19]. Buses being operated in such a scenario require lower energy storage capacities
compared to buses operated in an overnight charging scenario. However, the effort required for the
installation of the charging infrastructure rises since more locations than just the bus terminal have to be
equipped. For this scenario, high-power batteries are typically used (see Section 2.1.3). A visualization
of the described charging scenario is shown in Figure 5 [2].

Figure 5. Illustration of the overnight charging strategy combined with opportunity charging at a final
stop, with the charging infrastructure located at the bus terminal and the final stop [2].

2.2.3. Opportunity Charging at Multiple Stops

Another variation of the opportunity charging scenario is the opportunity charging scenario
taking place at multiple stops, as illustrated in Figure 6. Besides the installation of the charging
infrastructure at the bus terminal and the final stops, the charging infrastructure at regular bus stops
is installed. Since the stop times at regular stops are pretty short (typically within the range of 20 to
90 s, according to Cundill and Watts [20]), high charging powers are required to be able to recharge
significant amounts of energy. Regarding the charging infrastructure, an even higher amount of effort
is necessary since more locations have to be equipped; however, the storage capacities of the buses can
be lowered. For this charging scenario, ultra-high-power batteries are required (see Section 2.1.3) [2].
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Figure 6. Illustration of the overnight charging strategy combined with opportunity charging at
intermediate stops and the final stop, with charging infrastructure located at the bus terminal,
at intermediate stops, and the final stop [2].

2.3. Heating Systems for Electric Buses

For providing the high thermal capacity necessary for interior heating, as shown in Figure 1,
three main solutions are currently used in battery-powered electric vehicles. These solutions are fuel
heaters, electric heaters, and heat pumps. Another solution found in the literature and regarded as
relevant for conducting the requirements of THS is thermal energy storage proposed by Fraunhofer
(Kratzing) and Konvekta (Best). However, this solution is currently in the development and field testing
stage. The three state-of-the-art heating solutions and the thermal energy storage in development
are further described within the next sections. Additionally, the typical architecture of the thermal
management system of a battery-powered electric bus is shown.

2.3.1. Fuel Heater

Fuel heaters burn a liquid fuel and provide the released heat of the burning process to the air,
or in most cases, to the vehicle’s cooling fluid. Regarding the fuels used, in general, all kinds of liquid
fuels, such as diesel, gas, ethanol, bio-fuel, etc., can be used. However, diesel is usually considered
as the main choice. The benefit of using fuel heaters as the heater for battery-powered electric buses
is the fact that no electric energy from the battery is needed for heating purposes. A negative aspect
of burning fuels is local emissions, which is in contradiction with the local emission-free purpose of
using an electric bus. The fuel consumption of a fuel heater for a 12 m standard bus is about 2.9 L/h,
with a thermal output of 24 kW, according to the manufacturer, at an efficiency of about 76.5% to
79.5%, according to Sonnekalb et al. [21,22]. Considering a city bus’s average speed of 12 km/h (SORT
(Standardised on-road test cycles) heavy urban cycle [23]), this would result in fuel consumption of
24.2 L/100 km.

Typically, fuel heaters are available with different performance levels. Adjustment is mostly done
using a simple ON/OFF operation. Regarding the conditions for switching on or off, the temperature
of the cooling fluid is measured. According to Valeo, switching on is done when the cooling fluid
temperature falls below 70 ◦C, while switching on is done when it goes above 85 ◦C. Communication
with the vehicle is realized by using the CAN (Controller area network) interface, and the electric
power supply is provided by connecting to the 24 V supply of the vehicle [22,24].

When it comes to maintenance, fuel heaters require at least a yearly service. However, due
to the formation of soot, cleaning can be necessary more often. To keep this cleaning frequency as
low as possible, a minimum burning period of 2 min is implemented during operation. Regarding
maintenance and self-protection of the heater, a minimum volume flow of the cooling fluid through
the heater is required to ensure a high enough heat transfer and to prevent the heater from overheating.
Furthermore, a bimetal switch is used to realize a switch-off function at a temperature of 135 ◦C.
Figure 7 shows the assembly of a fuel heater from Eberspächer (Esslingen, Germany) [24].

The dimensions of a fuel heater by Eberspächer with a thermal output of 24 kW are 600 mm ×
230 mm × 222 mm, which is a volume of 30.6 L. The mass of such a system is stated to be 18 kg [22].

392



Energies 2020, 13, 3023

Figure 7. Detailed view of the assembly of a fuel heater from Eberspächer [22].

2.3.2. Electric Heater

Electric heaters, as shown in Figure 8, transform electric energy into thermal energy, which is
transferred to the air or the vehicle’s cooling fluid. Regarding heating elements, PTC (Positive
Temperature Coefficient)-heaters or resistance heaters are used. The benefit of electric heaters is that it
is an easy technology and there is a lack of emissions from heating. However, electric energy from the
battery is used, leading to a potentially high range reduction when heating is required due to the direct
transformation of electric energy to thermal energy (at an efficiency of about 98% without considering
the battery’s efficiency).

Figure 8. Detailed view on the assembly of the electric water heater Thermo AC/DC from Valeo [25].

Just as with the aforementioned fuel heaters, electric heaters are available with different
performance levels. Furthermore, adjustment is typically done using ON/OFF operation with switch-on
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and switch-off temperature thresholds (e.g., 68 ◦C and 75 ◦C, respectively, for the Valeo Thermo AC/DC).
For the electric power supply, electric heaters can either be connected to a DC with typical voltages of
600 to 750 VDC or to 400 VAC. For communication with the vehicle, the CAN interface is used, as well
as the 24 V power supply of the bus [11,25].

Regarding maintenance, at least a yearly service is required. To simplify servicing, typical wearing
parts, such as cartridge heaters, are designed to be exchangeable, as shown in Figure 8. Regarding the
self-protection of the heating unit, a minimum volume flow of the cooling fluid, a trail of the cooling
fluid pump of at least 2 min, and a switch-off threshold of 125 ◦C are implemented [25].

The dimensions of an electric heater from Valeo with a thermal output of 20 kW are 578 mm ×
247 mm × 225 mm, which is a volume of 32.1 L. The mass of such a system is stated to be 15 kg [11].

A special version of an electric heater uses braking resistance. Every bus should have a continuous
braking unit according to German traffic regulations. In terms of electric buses, this continuous braking
unit is typically conducted as an electric resistance heating unit. In the case of the EvoBus eCitaro, it is
connected to the vehicle’s cooling fluid circle. Due to this, it can be used for heating purposes. Further
description of this is given in Section 2.3.5 [26,27].

2.3.3. Heat Pump

By using heat pumps, the heating capacity can be provided with a COP (Coefficient of performance)
of greater than 1 due to the use of a refrigerant circle that is mostly driven by an electric compressor [28].
Regarding the heat source, ambient air is used, while the heat sink is the air provided to the cabin.
The electric energy for powering the compressor is taken from the vehicle’s traction battery. Most heat
pumps used within existing vehicles nowadays use R134a as a refrigerant; however, the use of R134a
has been prohibited in newly registered vehicles since 2017 due to its high global warming potential
(GWP). Recently introduced heat pumps use CO2 as the refrigerant [28–33].

Using CO2 as a refrigerant requires higher process pressures; however, this leads to benefits
regarding the thermal output. The COP values stated by Konvekta are 4 for an ambient temperature of
15 ◦C, 2.5 at 0 ◦C, 2.2 at −5 ◦C, and 2 at −10 ◦C [28,34]. Figure 9 shows a comparison of the performance
as a function of the ambient temperature between heat pumps designed for buses with R134 and R744
(which is CO2) as the refrigerant. It can be seen that the thermal output that can be provided by a CO2

heat pump is higher compared to a heat pump using R134a. Additionally, the thermal output can be
provided for temperatures as low as −20 ◦C, while for the heat pump using R134a, a thermal output for
temperatures as low as about −5 ◦C is stated. Referring to Basile et. al, the operation of a heat pump
using R134a as refrigerant is not useful [34]. However, Lee [35] states that for electric vehicles (not
buses), the operation of a heat pump using R134 could be possible, even below, even below −10 ◦C.
Besides the positive effect of an overall reduction in energy consumption for heating using heat pumps,
the range reduction is less compared to using electric heaters for heating. However, electric energy
from the battery still must be used for heating. Additionally, the efficiency of a heat pump decreases
with decreasing ambient temperature, which increases the heating demand. Furthermore, for very
low temperatures of around −10 ◦C or less, an additional heating system is required, even when
using a CO2 heat pump, since the thermal output cannot fulfill the heating demand of the vehicle
anymore. Another aspect that must be considered is the icing of outer heat exchangers within specific
temperature ranges, which leads to a reduction in efficiency and requires a defrosting system [28,36].
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Figure 9. Comparison of the thermal outputs of heat pumps for bus heating using R134a vs. R744 as
the refrigerant [37].

Regarding the adjustment of the thermal output, several performance levels can typically be set.
This is done via frequency adjustment of the compressor. An optional infinitely variable control is
possible, too. When the adjustment is done using defined performance levels, surplus produced heat
must be extracted to the ambient air. For the electric power supply, the heat pump system is connected
to the DC level. Since the compressor is working with three-phase 400 AC, a frequency converter is
used in between. Communication with the vehicle is done via the CAN-interface [31,38].

Since a heat pump is a more complex system than a fuel heater or an electric heater, as seen in
Figure 10, maintenance is essential. Regular maintenance is required on a six-monthly basis. For safety
reasons, permanent monitoring of all sensors and checks of the plausibility of the measured values is
done. In case of any irregularities, the heat pump will be switched off [38,39].

Figure 10. Detailed view of the assembly of the Revo-E heat pump from Valeo [38].

The dimensions of a REVO-E heat pump from Valeo with a thermal output of 16 kW (cooling
power of 25 kW) and R134a as the refrigerant are 2800 mm × 2091 mm × 406 mm, which is a volume of
2377 L. The mass of such a system is stated to be 272 kg [29]. The dimensions of an UltraLight 500 heat
pump from Konvekta with a thermal output of 18.2 kW (cooling power of 20 kW) and CO2 as the
refrigerant are 2124 mm × 2045 mm × 366 mm, which is a volume of 1590 L; the mass of this heat pump
could not be found in the design proposal [33].
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2.3.4. Thermal Energy Storage

Very recently, a thermal energy storage system for the interior heating of an electric city bus
was proposed by Fraunhofer and Konvekta. The basic idea is the same as it is for the use of THS.
The thermal energy storage and the battery can be electrically charged simultaneously, where the
stored heat is used for interior heating to keep the electric energy stored in the battery for driving. For
this thermal energy storage, a prototype was built and investigated in a laboratory. A field test on a
real bus is planned but has not been conducted yet [40,41].

Regarding the storage material, paraffin wax is used within this storage system. The melting
temperature of this material is about 69–71 ◦C, the storage capacity is 260 kJ/kg (sensible and latent
heat within the temperature range of 62–77 ◦C), the densities are 0.88 kg/L (solid) and 0.77 kg/L (liquid),
the heat conductivity is 0.2 W/mK, and the maximum working temperature is 100 ◦C [40].

The storage is designed to be in a rectangular shape. For charging, electric resistance heaters
(720 VDC) are used, while for discharging, pipe–slat heat exchangers are brought directly into the
storage material. Regarding the discharging medium, the cooling fluid of the vehicle is used. The
conceptual design of the storage setup is shown in Figure 11, while an outer view of the installed
storage is shown in Figure 11.

Figure 11. Conceptual design of the thermal energy storage prototype using paraffin wax for heating
an electric bus from Fraunhofer and Konvekta [40].

For integration into the bus, a modular design with six modules is planned. Each module should
have a storage capacity of 2.25 kWh, a charging power of 20 kW at 680 VDC, and a storage density of
39 Wh/kg. The positioning of the storage modules is intended to be spread over the interior of the
vehicle, as shown in Figure 12 [40].

Figure 12. Intended positions of the thermal energy storage modules (red) within the interior of a
bus [40].

Regarding the potential benefits of the storage system, a high lifetime with more than 16,000 full
cycles, no need for an exchange due to degradation, and a much lower cost compared to batteries is
stated. However, with a very low gravimetric energy density of 39 Wh/kg, the weight is a potential
disadvantage of this system. Furthermore, the volumetric energy density of the storage system could
be quite low since the density of the phase change material itself is low and the need for slats for
improving the charging and discharging behavior requires volume as well. A specific volumetric
energy density is not given within the design proposal [40].
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2.3.5. Thermal Management Architecture

To give an idea of how the aforementioned components are implemented into an electric-powered
city bus, the architecture of the thermal management is described within this section. As an example,
the thermal management architecture of the EvoBus eCitaro is shown in Figure 13.

The relevant components for the interior heating are the CO2 heat pump on the roof of the bus, the
braking resistance in the rear, the additional heater in the rear, the floor heater, and the frontbox. The
other components shown in Figure 13 are more connected to cooling functions and thermal management
of the battery, and therefore are not further described. The CO2 heat pump on the roof delivers heat to
the interior through the air that flows into the cabin from the top. The braking resistance serves to
heat the interior, alongside its use for energy recuperation and emergency braking. The additional
heater is used as a fuel heater burning diesel fuel (or biodiesel fuel in the case of second-generation
heaters). The additional heater can be used at very low temperatures when the thermal capacity of
the heat pump is not sufficient and no extra electric energy should be used for heating to maintain
the range of the bus. To bring the heat from the braking resistance and the additional heater into the
interior of the vehicle, both are connected to a cooling fluid circle. The cooling fluid circle is connected
to floor heaters within the passenger cabin and to the frontbox within the driver’s cabin, which are
heat exchangers used to bring the heat from the cooling fluid into the cabin [26].

Figure 13. Thermal management architecture of the EvoBus eCitaro [26]. HVAC: heating, ventilation,
and air conditioning.

2.4. Challenges Regarding the Use of Electric Buses

As reported in the introduction, the spread of electric buses is currently very limited. Reasons
for this are, in the authors’ opinion, two main facts: the high investment costs and the limited
ranges, which are dependent on the ambient temperature, especially when heating is required. To
emphasize both aspects, this section provides further information beyond that which is provided in
the introduction.

The first challenge to be discussed is the high investment cost for battery-powered electric buses
compared to conventional diesel buses. As reported by Knote, prices are roughly twice as high for
battery-powered electric buses compared to diesel buses [2]. Since public transport is not economical
for traffic enterprises in most cases, subsidization is mostly required to keep a high level of public
transport services. A reason for the high investment cost of battery-powered electric buses is the high
prices for the batteries, as described in Section 2.1.2. When considering a battery price of 500 €/kWh,
which is at the lower end of the range given in Section 2.1.2, the battery price for the discussed example
of the eCitaro would be about €146,000. Since a 12 m diesel bus costs approx. €240,000 to €350,000 [2],
the battery alone accounts for about half of the cost of a whole conventional diesel bus.
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The second challenge to be discussed is the insufficient range of battery-powered electric buses
in non-ideal ambient conditions, especially in winter conditions when interior heating is required.
A further explanation of this issue is given in Figure 14. On the x-axis of Figure 14, the distance of
a city bus’s daily tour relative to the range of a battery-powered electric city bus is given. On the
y-axis, the number of tours relative to the tours that can be covered is given. Therefore, the blue line
represents the relative number of tours covering the given distance as a function of the relative number
of tours that can be covered with a city bus offering the range given on the x-axis. To show the number
of tours that electric city buses can cover, grey bars are given using the EvoBus eCitaro as an example.
As before mentioned, this bus is offering a range of 280 km under ideal ambient conditions, which is
stated to be 20 ◦C. Referring to the diagram, a range of 280 km is sufficient to cover 70% of all tours
within the German bus transport system. However, when interior heating is required, the range of the
bus decreases if heaters consuming electric energy are used, and therefore the number of tours that
could be covered with the bus decreases as well. Using an ambient temperature of about −10 ◦C as an
example, interior heating of about 1.4 kWh/km is required, according to Figure 1. Since the eCitaro
is offering an electric CO2 heat pump, the electric energy consumption is reduced. According to the
manufacturer, a COP of about 2 can be reached at an ambient temperature of −10 ◦C, leading to energy
consumption of about 0.7 kWh/km for heating [33]. Together with an energy consumption of 1.04
kWh/km for traction (calculated based on the battery capacity and maximum range), the overall energy
consumption would be approx. 1.74 kWh/km, leading to a maximum range of approx. 167 km. As can
be seen in the diagram, a range of 167 km would be sufficient for only about 10% of all tours.

Figure 14. The distance of daily tours in the German bus transport system that need to be covered as a
function of the relative number of tours that can be covered by a bus with the given range [2].

Due to the described range reduction when interior heating is required, the usability of electric
city buses is strongly dependent on the ambient conditions. For traffic enterprises, this would mean
that electric buses can only be used on tours with low distances if the buses are to be used throughout
the year and no charging infrastructure for opportunity charging is to be built.

Based on the above discussion regarding the challenges faced, it can be concluded that providing
a low-cost energy storage system for interior heating can have a major impact on the spread of
battery-powered electric buses. Besides lowering the cost for the buses itself, it could reduce the
necessity of installing opportunity charging infrastructure, which is currently vital if relevant ranges
are to be offered independent of the ambient conditions. However, installing opportunity charging
infrastructure is neither possible at any location nor affordable.
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3. Requirements for Thermal High-Performance Storage

The requirements for THS are separated into eleven different categories. The derivation for each
category is described within each respective section.

3.1. Thermal Capacity and Performance

Thermal capacity and performance are described together within one section since both are
influenced by the same parameters, where performance refers to the charging (electric power) and
discharging (thermal output) performances. Both are influenced by the purpose, vehicle size, climate
conditions, and charging strategy. Figure 15 visualizes the influence of these parameters.

Figure 15. Influencing parameters regarding the requirements for thermal capacity and performance
of THS.

The term “purpose” refers to whether the THS is used as the only heating system within the
vehicle or whether it should be used as an additional heating system complementing the heat pump.
If it is used as the only heating system, it has to cover any heating demand from the vehicle. If it is
used as a complementary system, it only has to cover the gap between the maximum thermal output
of the heat pump and the heating demand of the vehicle.

The vehicle size is highly relevant since the heating demand of a vehicle is strongly dependent on
its interior volume, as described by Grossmann [42]. Since this fact is regarded as trivial, no further
description is given.

Regarding climate conditions, two basic thoughts must be considered. The first one is that a bus,
especially a city bus, is typically used in one fixed location. Since the climate conditions for one location
are well known and do not change significantly over the typical lifetime of a bus, THS can be adopted
precisely for these conditions. However, climate conditions can vary greatly between locations. For
example, there would be a huge difference between the climate conditions of a city in Scandinavia,
such as Oslo or Stockholm, and a city in southern Europe, such as Rome or Madrid. The second
thought to be considered is that the thermal output for heating varies greatly depending on the ambient
temperature, as already shown in Figure 1. Since a bus is used throughout the year, as well as typically
throughout the day, the heating demand can vary greatly throughout both a year and a day. A very
strong variation over the year is typically connected to areas with a very continental climate, such as in
Central Northern America (e.g., Winnipeg in Canada) or central Asia (e.g., Astana in Kazakhstan).
High variations of the temperature throughout a day often occur in desserts, and therefore in cities
built in desserts, e.g., in Las Vegas (USA) or Tehran (Iran) [43–46].

To clarify the effect of different charging strategies on THS, some basic calculations were conducted
based on the assumptions on two extreme scenarios: one extreme overnight charging scenario and
one extreme opportunity charging scenario. For the extreme overnight charging scenario, it was
assumed that the overall daily drive time of a bus was 17 h and the following time for charging was
7 h. Assuming a very cold winter day with a very low ambient air temperature (e.g., in Scandinavia,
Canada, etc.), this led to an energy demand for heating of 425 kWh (assumed required thermal output of
25 kW, which is sufficient for −25 ◦C, according to Valeo; assuming an average speed of 17 km/h (SORT
easy urban), this would lead to a heating demand of 1.47 kWh/km, which would be sufficient for about
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−15 ◦C according to Figure 1). To charge THS with such a high capacity within 7 h, a charging power
of 60.7 kW would be necessary. Out of these values, two indicators can be calculated that relate the
storage capacity to the charging power vs. the discharging power. For charging power, it is 7 kWh/kW,
while for discharging, it is 17 kWh/kW. The boundary conditions for the extreme opportunity charging
scenario are a drive time of 0.47 h (28 min) and a charging time of 0.05 h (3 min), according to data
regarding public transport in Amsterdam [47]. Using the same climate conditions as described for the
extreme overnight charging scenario, the required storage capacity and charging power are 11.7 kWh
and 234 kW, respectively. The aforementioned indicators were calculated to be 0.05 kWh/kW for
charging and 0.47 kWh/kW for discharging. Comparing the indicators for both scenarios, there is
a factor of about 140 for the charging indicator and 36 for the discharging indicator between both
scenarios. Based on this, it can be concluded that the requirements for THS regarding storage capacity
and charging/discharging performance vary greatly depending on the charging scenario.

From the given descriptions, it can be concluded that no specific requirement regarding capacity
and performance can be stated. Capacity and performance have to be specifically chosen for the given
scenario such that the THS is neither oversized nor undersized. Due to this, THS has to be designed to
meet its specific purpose.

3.2. Long-Term Stability

The parameters that influence the long-term stability of THS are visualized in Figure 16. The main
influences are the climate conditions, purpose, lifetime of the bus, and a potential substitution during
the lifetime.

Figure 16. Influencing parameters on the requirements for the long-term stability of THS.

The first parameter is the climate conditions, which significantly influence THS since they
determine whether there is a heating demand at all (heating demand only occurs below an ambient
temperature of 15 ◦C according to Figure 1). If there is no heating demand, the THS does not need to
be in operation.

The second parameter is the purpose. If the THS is used as the only heating system, it is in
operation any time there is a heating demand. If it is used in addition to a heat pump, it is regularly
only used if the thermal output of the heat pump is insufficient. To emphasize the influence of this,
the climate data of Stuttgart is considered as an example. According to a test reference year dataset
from the German Meteorological Service, temperatures of 15 ◦C or below occurred for 73% of that year.
However, temperatures of −10 ◦C or below (the minimum temperature a CO2 heat pump is sufficient
as the only heating system according to Section 2.3.3) only occurred for 0.05% of that year.

The third parameter is the typical use time of a bus. With a yearly average mileage of about
57,000 km, according to Goebelt, an overall expected mileage over the lifetime of a bus (see Section 2.1.3)
is 684,000 km to 798,000 km [48]. Considering an average speed of 12 km/h according to the SORT
heavy urban cycle, the overall expected use time for a bus is 57,000 to 66,500 h [23].

Based on the aforementioned aspects, the expected lifetime was calculated based on use in Stuttgart
for both cases. Considering a use time of the bus of 66,500 h and the probability of a heating demand
of 73%, an overall long-term stability of 48,545 h would be required, which expresses an extreme
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maximum value for this location. Combining the lifetime of 57,000 h with the probability of 0.05%, a
long-term stability of 28.5 h would be the result, which expresses an extreme minimum value for this
location. A final thought on the long-term stability is the fact that THS could be substituted within the
lifetime of a bus, similar to what is done with a battery, as described in Section 2.1.3. The parameter
influencing this decision would probably be the cost. If it is cheaper to replace the THS after a while
than manufacturing new THS that would last for the whole lifetime of a bus, a replacement would
probably be preferred.

Based on the aforementioned discussion, it was concluded that the requirement for long-term
stability cannot be generally described. Some particular use cases might not need much long-term
stability. However, there are potentially many use cases that require long-term stabilities of several
thousand or even tens of thousands of hours. Since the development of THS should be done in a way
that as many use cases as possible can potentially be covered, long-term stability of several thousand
or tens of thousands of hours is stated as the primary requirement in this category.

3.3. Mass and Volume

As is generally known, mass and volume are properties of high relevance in mobile applications,
especially for vehicles. However, a more detailed look at both factors for buses leads to the conclusion
that mass is regarded as more relevant for application in battery-powered electric buses than volume.
Following reasons were found to explain why volume should not be rated as high as mass:

• The roof of a bus, which offers lots of space, is typically used for components like the air
conditioner/heat-pump and for energy storage, such as batteries. Furthermore, THS could be
placed on the roof.

• Components like ticket machines are sometimes installed within the interior of a bus, leading to a
reduction in the number of seats. Due to this, installing extra components within the interior does
not seem to matter much.

• Seats above wheel cases are often less spacious compared to the other seats within a bus and
therefore are often less comfortable for passengers. Replacing these seats with other components
should therefore not matter significantly.

• The space below seats often is not used at all.
• Battery electric buses typically have a higher weight compared to diesel buses, leading to a

reduction of the vehicle’s load capacity and therefore to a reduced number of allowed passengers.
Comparing the EvoBus eCitaro (with 10 battery packs) with the regular Citaro (12 m standard-bus
with two doors) as examples, the empty weight is 13,700 kg compared to 11,415 kg and the
maximum number of passengers is 89 compared to 105. Therefore, mass seems very relevant for
battery-powered buses [49–52].

• Mass affects energy consumption during traction. Since energy consumption correlates with the
CO2 footprint and operating cost, the mass of the vehicle should be as low as possible.

Based on the above reasons, a requirement for THS is that the mass needs to be minimized.
Volume should also be kept as low as possible; however, this is regarded as a secondary concern.

Since the intention is to replace the state-of-the-art heating systems with THS, it can also be
concluded that THS should be more lightweight than these systems. In the case of replacing an electric
heater, the mass of the THS has to be lower than the mass of the electric heater plus the required battery
capacity. Since the energy densities of batteries vary greatly between battery types (see Section 2.1.3),
no general conclusion can be given. However, two examples were calculated for the extreme charging
scenarios described in Section 3.1 to determine whether THS should replace an electric heater.

For the opportunity charging scenario, 11.7 kWh is required for heating. Since it is a quick
charging scenario, high-power batteries are assumed to be used with a gravimetric energy density of
106 Wh/kg, leading to a battery mass of 110.4 kg. Adding the weight of the electric heater of 15 kg leads
to an overall weight of 125.4 kg for the heating system, which would be a gravimetric energy density of
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about 93.3 Wh/kg overall. Therefore, switching to THS in this scenario would require a higher energy
density than 93.3 Wh/kg. For the overnight charging scenario, 425 kWh is required for heating. In this
case, high-energy batteries would be used with an assumed energy density of 170 Wh/kg, leading to a
battery mass of 2500 kg. Together with the electric heater, an overall mass of 2515 kg and an overall
gravimetric energy density of 169 Wh/kg would result. Therefore, switching to THS in this scenario
would require a higher gravimetric energy density than 169 Wh/kg.

3.4. Cost

Regarding the cost, it is important what viewpoint is taken to determine the requirements. Possible
viewpoints could be the one of a manufacturer of the heating system, a manufacturer of a bus, or the
user of a bus, which is normally the transport operator. For a manufacturer, it would, e.g., be important
to produce THS as cheap as possible to be able to offer attractive prices and keep the margin as high as
possible. In the authors’ view, the cost borne by the end user is regarded to be relevant, since the end
user is the one that decides what kind of heating system they would like to have. In terms of buses,
the end user would be the transport operator. For a transport operator, the total cost of ownership is
relevant. The main influences on this are the cost for purchase and therefore the manufacturing cost,
the energy cost while in operation, the maintenance cost, and the decomissioning cost. The influence
of these four parameters is expressed in Figure 17.

Figure 17. Influencing parameters regarding the cost requirements of THS.

The requirement for a THS is to keep the sum of these four cost categories as low as possible.
However, the cost of manufacturing and the cost of maintenance are in tension with each other.
A product of higher quality typically requires higher manufacturing effort and therefore a higher cost
but could lead to lower demand for maintenance and therefore a lower maintenance cost. Regarding
the energy cost, the primary energy cost, which is defined as the consumption of electric energy for
heating, and the secondary energy cost must be considered. Regarding the secondary energy cost, a
possible example is the energy consumption from traction due to weight penalties or advantages is
meant. Decommissioning could either result in a cost or an income since used batteries are often used
for second-life purposes.

3.5. Electric Connection

Out of the descriptions within Section 2.1.2, the heating system for charging the THS should
preferably be operable at the 650 to 750 VDC level. A second option could be to use a DC/AC
converter and operate at 400 VAC if having a DC-compatible heating system is inefficient or not
possible. Furthermore, it should be connectable to a 24 VDC level for the energy supply of minor
energy consumers, such as sensors or control electronics. Additionally, communication with the vehicle
should be possible via the CAN interface.

3.6. Thermal Connection

Integration into the thermal management system can be done using two different solutions.
The first one is to directly heat the air blown into the vehicle’s cabin, while the second one is to
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transfer heat into a cooling fluid circle, which spreads the thermal energy throughout the interior of
the bus. Both solutions could lead to sufficient results. Since the THS is more intended to replace a fuel
heater or an electric heater in 12 m or larger buses, an integration that involves a connection to the
cooling fluid of the vehicle is regarded as the preferred solution and therefore considered to be the
primary requirement.

3.7. Efficiency

The efficiency of a heating system, i.e., the ratio of used thermal energy to charged electric energy,
is directly connected to the consumption of electrical energy or fuel. Since lower consumption has
positive ecological and economic effects, the efficiency of THS should be as high as possible. To give a
specific number, the efficiency of an electric heater powered using a battery is considered. Considering
a heater with an efficiency of 98% (see Section 2.3.2) and battery losses of 6.9%, according to the
measurements of Berthold, an overall efficiency of about 91.2% would be the result [19]. Therefore,
THS should have an efficiency of at least about 90%.

3.8. Maintenance

As discussed earlier, maintenance is conducted for all heating solutions currently used within a
bus. Based on this, it was concluded that maintenance should be necessary for THS. As such, the related
requirement for THS is that it should be designed in a way that means maintenance is as easy as
possible, especially for wearing parts, where the wearing parts in THS could be, e.g., the electric heaters
or the housing of the phase change material.

3.9. Safety

Since THS liquid metals with temperatures that are potentially higher than 600 ◦C are used, safety
is an important criterion, in particular regarding the risk of fire or burns. Regarding the risk of fire in
buses, some guidelines are given within the VDV 2303 regulations. Other relevant documents for the
safety of buses are the European guidelines 2001/85/EG and 95/28/EWG. One basic conclusion drawn
from these guidelines is that components with high surface temperatures or hot liquids have to be
kept away from burnable parts within the interior of buses. For THS that is, e.g., positioned within
the interior of the vehicle, this would become relevant and has to be considered. Other important
considerations regarding safety are to prevent liquid metal from flowing out uncontrollably from the
storage and to manage the isolation of electric components that are relevant for the charging of the
THS [53–55].

Another safety aspect is the protection of storage from unwanted damage. Just as with the
state-of-the-art heating systems, the safety mechanism that, e.g., keeps the THS from overheating needs
to be implemented.

3.10. Adjustment

Looking at the adjustment of the known heating solutions, it is noticed that it is typically kept
simple. Because of this, the adjustment of a THS regarding thermal output should also be kept as
simple as possible; a kind of on/off solution seems sufficient.

3.11. Ecology

The last requirement for THS is that it should be as ecologically safe as possible. In particular,
no critical raw materials or toxic materials should be used. Furthermore, the CO2 footprint should be
as low as possible. Besides the energy consumption in operation, the energy consumption during the
manufacturing process should also be as low as possible. Additionally, recyclable materials should be
used wherever possible.
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4. Conclusions

The present paper provides the basics for the development of thermal energy storage using
metallic phase change material for use within a heating system in battery-powered electric buses.
This was done by providing a review of selected topics on battery-powered electric buses, leading to
the following conclusions:

• Current battery-powered electric buses have drawbacks compared to conventional diesel buses
due to their high investment costs and limited range. The investment costs are typically double
that of conventional diesel buses. The range is typically limited to below 300 km and becomes
even lower when interior heating is required and electric heating systems are used for heating;
in such a case, the range can be cut by more than half, which can lead to ranges that prevent
electric buses from a year-round use. Because of this, the spread of battery-powered electric buses
is currently very low (e.g., only 0.28% of buses within Germany are battery-powered).

• The described limitations mainly result from the use of costly battery systems, which can easily
cost €100,000–200,000, about half of the overall cost of a conventional diesel bus.

• The charging of a battery-powered electric bus can either be done using “overnight charging,”
which requires lower installation costs for the charging systems but requires high-capacity
energy-storage systems. The other charging strategy is “opportunity charging,” which leads
to higher installation costs for the charging systems but requires low-capacity energy-storage
systems. Depending on the charging scenario, either high-energy batteries or high-power batteries
should be used.

By utilizing knowledge of the state of the art on battery-powered electric buses, requirements
regarding thermal energy storage with metallic phase change material were produced. The main
requirements are the following:

• The storage capacity and performance of a thermal energy storage system with metallic phase
change material has to be easily adaptable since it is strongly dependent on the given scenario;
storage capacities might vary between 11.7 kWh and 425 kWh, with the installed electric charging
power varying between 60.7 kW and 235 kW.

• The long-term stability of thermal high-performance storage should allow for at least several
thousand hours of use. However, maintenance is allowed to reach this, where the ease of
maintenance for wearing parts should be considered.

• Mass and the associated gravimetric energy density is regarded as being more relevant than
volume and the associated volumetric energy density since volume for additional components
seems to be readily available in a bus; however, mass limits the maximum number of passengers
and affects energy consumption for traction. The gravimetric energy density of THS should
reach values higher than about 100 Wh/kg for extreme opportunity charging scenarios and values
higher than about 180 Wh/kg for extreme overnight charging scenarios to be comparable with a
conventional electric heater using electric energy from the traction battery.

• The integration into the thermal management architecture could either be done via integration
into the airflow provided to the vehicle’s interior or via integration into the liquid cooling circle;
however, integration into the liquid cooling circle is regarded as the preferred solution since most
of the currently used heating systems are integrated into the liquid cooling circle. Thermal energy
storage using metallic phase change materials could simply replace the current heating systems if
integration into the liquid cooling circle is possible.

• The efficiency of a thermal energy storage system using metallic phase change materials should
be as high as possible, namely in the range of 90% or more, if possible.

• The heat supply system of the storage system should ideally be adaptable to a DC intermediate
circle with voltages of about 650 to 750 VDC; alternatively, a connection to a 400 VAC level could
also be possible.
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• The use of thermal energy storage using metallic phase change materials should aim to minimize
the overall cost, which is made up of the manufacturing cost, energy cost, maintenance cost,
and decommissioning cost.

• Thermal energy storage using metallic phase change materials should be designed in such a way
that no safety issues, especially regarding burning or leakage of liquid metal can occur; also,
it should be equipped with safety devices to prevent the system from overheating, for example.

• Ecological aspects must be considered when designing thermal high-performance storage:
if possible, recyclable raw materials, no toxic materials, and no critical raw materials should be
used; additionally, the energy costs during manufacturing should be as low as possible.
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Abstract: This paper proposes a method for the combined estimation of the state of charge (SOC) and
state of health (SOH) of batteries in hybrid and full electric vehicles. The technique is based on a set
of five artificial neural networks that are used to tackle a regression and a classification task. In the
method, the estimation of the SOC relies on the identification of the ageing of the battery and the
estimation of the SOH depends on the behavior of the SOC in a recursive closed-loop. The networks are
designed by means of training datasets collected during the experimental characterizations conducted
in a laboratory environment. The lithium battery pack adopted during the study is designed to
supply and store energy in a mild hybrid electric vehicle. The validation of the estimation method is
performed by using real driving profiles acquired on-board of a vehicle. The obtained accuracy of the
combined SOC and SOH estimator is around 97%, in line with the industrial requirements in the
automotive sector. The promising results in terms of accuracy encourage to deepen the experimental
validation with a deployment on a vehicle battery management system.

Keywords: battery; state of charge; state of health; artificial intelligence; artificial neural networks;
hybrid vehicles; electric vehicles; estimation

1. Introduction

The automotive industry is recently dedicating increasing attention to sustainability, with the
objective of mitigating the negative effects of vehicular mobility on the environment. Carmakers cope
with the always more stringent regulations about CO2 emissions, focusing their efforts on the
development of advanced powertrain architectures [1,2]. Solutions based on the adoption of full
electric (battery electric vehicles (BEVs)) powertrains or on the combination of an internal combustion
engine (ICE) and electric traction (hybrid/plug-in hybrid electric vehicles (HEVs/PHEVs)) are now
established as reliable alternatives to conventional powertrains [3,4]. They exploit batteries as the
primary energy source in BEVs or as an auxiliary source in HEVs and PHEVs [5]. In the automotive
industry, the most common battery technology exploits lithium because of its remarkable advantages
in terms of the energy density, fast charging, low maintenance, and long lifetime allowances. Moreover,
lithium-based solutions allow for obtaining powerful, compact, and light configurations together
with satisfactory levels of autonomy, which is currently settled in the order of a few hundreds of
kilometers [6]. However, the reliability and performance of these type of batteries are strongly
influenced by the management of the charging and discharging phases. It is indeed well known that an
appropriate handling of these operations is mandatory to avoid the occurrence of overcharging or deep
discharging, that would lead to permanent or hardly reversible damages of the pack. A continuous and
accurate monitoring of the battery state takes on significant importance to extend the battery lifetime,
effectively plan the trip route and charging stops, optimize the energy flow management of HEVs [7,8],
and mitigate psychological effects, such as the range anxiety that is commonly experienced by a large
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number of BEV drivers [6]. The main parameters to be assessed for a correct battery monitoring are
the residual available energy in the pack, known as state of charge (SOC), and the degradation suffered
by the battery, indicated by the state of health (SOH) [9]. As is well known, these two states cannot be
directly measured, since the technology to make a sensor that plays the equivalent role of a fuel gauge
is not available. Therefore, the adoption of some estimation techniques becomes mandatory [10,11].
Typically, carmakers exploit look-up tables (LUTs), where the SOC and SOH behavior is mapped during
the preliminary experimental characterizations conducted in a laboratory environment. These tests
are done following the so-called direct methods, which are based on ampere-hour counting or the
measurement of the internal impedance and open circuit voltage of the battery [10,12]. However,
the adoption of LUTs may have a high computational cost and imposes the storage of a huge amount
of data in the electronic control unit memory, particularly in the case of the SOH estimation. A further
class of methods exploits model-based techniques for the real-time assessment of both the SOC and
SOH [13]. The most common are the Kalman filter [14] and its derivations, namely the extended
(EKF) [15] and unscented Kalman filters (UKF) [16,17], the adaptive particle filter (APF) [18], and the
smooth variable structure filter (SVSF) [19]. Although these solutions can be implemented in real time
on a vehicle, they may suffer problems of inaccuracies if the reference model is not completely and
accurately tuned in all the possible operating conditions. An alternative and promising approach to
overcome this limitation is represented by artificial intelligence (AI). In most cases, these solutions
adopt artificial neural networks (ANNs) and allow getting rid of the model while obtaining satisfactory
levels of accuracy and reliability, provided that the networks are properly trained. An extensive
literature is dedicated to the methods for the estimation of the SOC [20–23] or SOH [24–27] with AI.
Nevertheless, to the best of the author’s knowledge, very few works deal with the combined estimation
of the SOC and SOH and most of them describe model-based techniques [28–30].

This paper proposes a technique for the combined estimation of the SOC and SOH with a set of five
ANNs: four regression networks dedicated to the SOC estimation and one classification network for the
SOH identification. The method is independent by the battery model and is designed with a training
phase conducted with datasets obtained from the preliminary laboratory experimental characterizations.
The SOC estimation exploits four nonlinear autoregressive neural networks with exogenous input.
Each of them is associated with a specific class of ageing (SOH) of the battery. The correct estimation
among the four outputs is selected according to the SOH identification, which is obtained separately
by a classifier that is done with a pattern recognition neural network. The SOH estimator provides a
class of ageing among four possibilities, ranging from 80% to 100% with a step of 5%. A further class
is associated to exhausted batteries and covers the range from 0% to 80% of the SOH, where 80% is
the degradation threshold in the automotive sector. The output of the SOH classifier is used to select
the correct SOC estimation among the four outputs of the regression ANNs, while the SOC estimation
is used as an input for the SOH classifier in a closed-loop recursive architecture. The SOH estimator
is an algorithm which is triggered only when a specific battery load condition in terms of the mean
charging/discharging capacity request in a predefined time window is detected. This procedure allows
reducing the training dataset of the SOH neural classifier to only one specific case. This aspect represents
a relevant advantage in terms of a size reduction of the training dataset and a consequent time saving
during the dataset collection and learning procedures. Additionally, the size of the network is smaller
with a consequent reduction of the memory occupation when deployed on the battery management
system (BMS).

The paper describes the design of the two estimators and the validation phase is conducted with
the adoption of driving cycles acquired on a mild hybrid electric vehicle. The performance of the
SOC estimator is evaluated by comparing the temporal evolution of the expected and estimated state
of charge, whereas the SOH classifier accuracy is measured by using a confusion matrix, a common
evaluation tool of classification algorithms.

The novel contributions of this work are as follows: a) the proposal of a combined estimation of
the SOC and SOH with ANNs, allowing to make the method independent from the model and valid
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for every operating condition, provided that the network training dataset is complete and accurate;
and b) the proposal of an SOH estimation method that is triggered only when a specific load condition
corresponding to a predefined charging/discharging current profile is detected: this results in a compact
algorithm that can be trained with a dataset that is smaller with respect to what would be needed in
the case of a reproduction of the whole set of ageing conditions.

2. Method

The proposed method aims to provide a combined estimation of both the SOC and SOH of a
battery. The approach is equally valid for a battery pack, module, or for the single cell.

Figure 1 illustrates the overall layout of the method that is composed of two subsystems: the SOC
estimator, consisting of four regression ANNs, that is illustrated in the top left dashed box, and the SOH
estimator, that exploits a neural classifier, that is reported in the bottom right dotted box. As is well
known, the behavior of the two parameters is connected: the SOC of a battery is strongly influenced
by the ageing, as well as the SOH estimation needing the information of the SOC variation during
the charging/discharging operations. This motivates the adoption of a recursive loop architecture,
where the SOC output is provided as an input to the SOH classifier and vice-versa. Both algorithms
were trained on the basis of the preliminary experimental characterizations conducted in a laboratory.
The two subsystems are described in detail in the following sections.

Figure 1. Overall method architecture. Dashed box: state of charge (SOC) estimation. Dotted box: state
of health (SOH) estimation. i(t): charging/discharging current. v(t): voltage at battery terminals. T(t):
battery temperature. E(t): energy request. SOH classes: 1: (100 ÷ 95)%; 2: (95 ÷ 90)%; 3: (90 ÷ 85)%; 4:
(85 ÷ 80)%.

The battery pack considered for the study is composed of 168 cells (the cell model is Kokam SLPB
11543140H5, its characteristics are reported in Table 1) in the configuration 12p14s (p: parallel, s: series).
The pack has a nominal voltage of 48 V, a nominal capacity of 60 Ah, and is designed for a mild hybrid
electric vehicle with a peak electric power of around 20 kW, obtained considering a discharge rate of
around 7C in nominal conditions.
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Table 1. Main characteristics of the battery cell.

Typical Capacity (@0.5C, 4.2 V ÷ 2.7 V, 25 ◦C) 5 Ah

Nominal Voltage 3.7 V

Cut-off voltage 2.7 V

Continuous current 150 A

Peak current 250 A

Cycle life (Charge/Discharge @ 1C) >800 cycles

Charge
condition

Max. Current 10 A

Voltage 4.2 V ± 0.03 V

Operating
Temperature

Charge 0–40 ◦C
Discharge –20–60 ◦C

Mass 128.0 ± 4 g

Dimension
Thickness 11.5 ± 0.2 mm

Width 42.5 ± 0.5 mm

Length 142.0 ± 0.5 mm

2.1. SOC Estimation

The SOC estimator consists of four parallel regression ANNs (dashed box in Figure 1) working on
the same inputs. Each network is associated with a specific ageing condition: SOH class 1 (from 100%
to 95%), SOH class 2 (from 95% to 90%), SOH class 3 (from 90% to 85%), and SOH class 4 (from 85% to
80%). The threshold of 80% was decided considering that in the automotive sector, a battery has to be
considered exhausted when the capacity or power fading is higher than 20%. The step of 5% is aligned
with the typical precision that can be reached when dealing with the SOH estimation problem [31,32].

Each of the four regression ANNs receive, simultaneously, the following signals as inputs:
charging/discharging current (i(t) [A]), voltage at battery terminals (v(t) [V]), and temperature
(T(t) [C]). They provide four different outputs: ˆSOC1(t), ˆSOC2(t), ˆSOC3(t), and ˆSOC4(t). The final
SOC estimation ( ˆSOC(t)) is obtained with a downstream selector that is operated by a signal fed back
from the SOH classifier output, that is running separately, as indicated in Figure 1.

The structure of the four SOC estimators is the nonlinear autoregressive neural network with
exogenous input (NARX) architecture. Typically, this layout is adopted for prediction tasks and finds
an application in industrial engineering fields as well as in other sectors, namely linguistic search
engines or weather forecasting. However, its effectiveness has been demonstrated also for estimation
tasks and has been presented as an effective solution to estimate the SOC of lithium batteries in [21],
where an additional comparison with other ANN architectures in terms of the computational cost
and estimation accuracy is provided. The scheme of the NARX is reported in Figure 2, where the
two adopted configurations are illustrated: an open-loop configuration (a), often indicated also
as the series–parallel (SP) mode, that is adopted during the training procedure, and a closed-loop
configuration (b), or equivalently the parallel (P) mode, that is the final architecture adopted for the
estimation when the network is deployed on the vehicle for the real-time execution.

The output of the regression is defined as

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(1)

where y(n) ∈ R and x(n) ∈ R denote the output (state of charge) and inputs (current, voltage, and
temperature) of the NARX model at the discrete timestep n, respectively, dx and dy are the input and
output memory delays used in the model, respectively, and ϕ is the function, generally non-linear,
represented by the ANN. During the regression computation, the next value of the dependent output
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signal y(n) is regressed on the previous dy values of the output signal and previous dx values of the
independent (exogenous) input signal. In the open-loop configuration, the output regressor is

y(n) = ϕ
[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
(2)

A supervised training procedure is conducted using the measured output as the target.
This approach allows for enriching the information to be processed by the network and permits
using a common static backpropagation algorithm, the Levenberg–Marquardt in this case, for the
training process, since the resulting network has a purely feedforward architecture.

Figure 2. Nonlinear autoregressive neural network with exogenous input (NARX) architecture.
(a) Series–parallel (SP) mode (open-loop configuration) adopted during the training. (b) Parallel
(P) mode (closed-loop configuration) adopted for the estimation when the network is deployed.
HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

In the first second of computation, the value of the algorithm output is not stable and is
unpredictable. Therefore, if this value is fed back and provided as input to the ANN, it generates an
estimation divergence over time. To avoid the occurrence of this irremediable condition, during the
first second of estimation the feedback of the estimated SOC is replaced by the last estimation value
(SOCINIT in Figure 2b) recorded on a non-volatile memory at the previous shut down of the vehicle.
After 1 second, when the output has become stable, the SOC input of the network switches from the
previously recorded value to the real feedback of the estimation so that the regular operation of the
algorithm can start.

Referring to Figure 2b and indicating with n = n0 the time instant when the feedback signal
switches from SOCINIT to the estimated output, the characteristic equations of the model are written as

y(n) = ϕ[SOCINIT; x(n− 1, x(n− 2), . . . , x(n− dx))], n < n0 (3)

and
y(n) = ϕ

[
y(n− 1), y(n− 2), . . . , y

(
n− dy

)
; x(n− 1), x(n− 2), . . . , x(n− dx)

]
, n ≥ n0 (4)

The four networks have the same size in terms of layers, neurons, and delays and adopts the
same activation functions. All these parameters have been designed with a trial and error approach
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aimed to maximize the estimation accuracy and avoid the risk of overfitting. Specifically, each network
has one layer with eight neurons, the delays dx and dy are equal to two, the activation function in the
hidden layer (HAF) and output layer (OAF) are the hyperbolic tangent and linear functions respectively,
and the training function is the Levenberg–Marquardt function.

During the design phase, the training precision is evaluated by computing the mean square error
(MSE) that reached a value of 1 × 10−13 as indicated in the small box embedded in Figure 3, and the
estimation accuracy is measured with the maximum relative error (MRE), that is computed as

MRE [%] = max
1<i<n

(∣∣∣∣∣∣SOCexp(i) − SOCest(i)

SOCexp,max = 1

∣∣∣∣∣∣
)
× 100 (5)

Figure 3. Comparison performance between the estimation (dashed line) and expected values (solid
line) of the SOC in the case of an SOH = 100%. The obtained maximum relative error (MRE) is equal
to 0.35%. The small box in the bottom left indicates the trend of the mean square error during the
training phase.

This parameter reached the value of 0.35% as indicated in Figure 3, where the comparison between
the estimation (dashed line) and the expected value (solid line) of the state of charge is reported in
the case of a new battery (SOH = 100%). This plot wants to represent an indication of the training
evaluation during the design phase.

The time length of the training dataset for the four regression ANNs is 13 h.
A more detailed description of the overall method results is reported in the final section of

the paper.

2.2. SOH Estimation

The degradation of the battery is estimated with an algorithm reproducing a pattern recognition
classifier with an ANN. Since the algorithm is proposed for the automotive sector, the method considers
20% as the maximum admitted capacity fading. Therefore, the considered life cycle of the battery
ranges from an SOH of 100% when the battery is new to an SOH of 80% when the battery has to be
considered exhausted. The proposed solution aims at quantifying the degradation suffered by the
battery by identifying the five different levels of ageing which correspond to the five classes provided
as an output by the classification algorithm. The first class covers the interval of ageing below the level
of 80% (assumed as the threshold of the maximum degradation of the battery) of the SOH. The other
four classes are equally distributed between 80% and 100% with four intervals of 5%, a percentage that
is considered as consistent with the reasonable level of accuracy that can be reached when dealing
with the problem of the SOH estimation.

414



Energies 2020, 13, 2548

As in the case of the SOC network design, the proposed algorithm for the SOH estimation
exploits a preliminary experimental characterization phase conducted on the battery in a laboratory
environment. The obtained results are used to build the training dataset to be adopted for the learning
phase of the neural classifier. Specifically, the data of interest are recorded in a specific battery load
condition corresponding to a mean request of 12 Ah in an interval of time of 120 s. This condition
was selected because it can be detected quite frequently during a common driving cycle of an electric
or hybrid vehicle. Afterwards, the network is trained with the dataset corresponding to this specific
operating condition obtained at different values of temperature. Therefore, when the algorithm is
deployed on the vehicle, it is called to estimate the level of ageing whenever the same condition is
detected during the real driving cycle. This implies that when driving the vehicle, consecutive buffers
of 120 s are analyzed back-to-back by a control logic that is implemented in the “Triggering load
detection” block in Figure 1. As soon as the specific load condition of interest (mean capacity request
of 12 Ah in 120 s) is detected, the classifier is triggered and provides the SOH classification as an
output. Therefore, the estimation rate is not continuous over time, but it is produced in a discrete
and not time deterministic way, only in correspondence with the detection of the predefined known
load condition. The output of the estimator is kept equal to the last SOH estimation if the triggering
condition is not occurring.

Figure 4 reports a part of the ANN training dataset obtained by the preliminary experimental
characterization conducted on the battery. Subplot “a)” illustrates the behaviour of the degradation of
the battery as a function of the number of discharging cycles at different values of temperature [33].
The discharging is conducted with the predefined load above-mentioned. Subplot “b)” reports the
coupling effects between the SOH, capacity, SOC, and battery voltage. In this test, the temperature
is set to 25 ◦C and the variation of the capacity is motivated by the difference in the time needed to
discharge the battery at the different levels of ageing.

The time length of the training dataset covering all the considered levels of ageing is equal to
916 h obtained from 27,494 buffers with a duration of 120 s.

The SOH classifier works on discrete inputs, the so-called predictors, that are extracted in the
“Feature extraction” block in Figure 1 from the time histories of the following signals: current, voltage,
temperature, SOC, and energy. The latter is obtained from the “Energy computation” block in Figure 1
and is defined as

E =

∫ t0+tb

t0

v(t)i(t)dt (6)

where t0 is the initial time of the buffer and tb is the time length of the processed buffer that is set equal
to 120 s.

The list of the extracted predictors is state of charge variation (-) (ΔSOC), voltage variation (V)
(ΔV), requested energy (Wh) (E), and mean temperature (◦C) (T).

The architecture of the classifier is illustrated in Figure 5. The training phase of the neural classifier
is performed exploiting the scaled conjugate gradient (SCG) backpropagation training function [27].
This algorithm is designed to minimize the cost function including the difference between the estimated
and expected outputs. This approach gives a good performance over a large number of pattern
recognition problems that may include numerous parameters and guarantees a low performance
degradation while reducing the training error. Additionally, this function is characterized by a relatively
low computational cost and memory requirements [21], and its ability to provide well-separated classes
in data mining and classification problems has been proven in many research works [34].
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Figure 4. Battery experimental characterization for the SOH estimation. (a) SOH as a function of the
number of discharging cycles and of the temperature. (b) Behavior of the SOH as a function of the
voltage, capacity, and SOC. The temperature in this case is set equal to 25 ◦C.

 
Figure 5. Pattern recognition a feed-forward artificial neural network (ANN) architecture for the SOH
classification. HAF: hidden activation function. OAF: output activation function. w: weight. b: bias.

The classifier is composed of one input, two hidden and one output layer. As in the case of the
SOC network design, the number and size of the hidden layers is defined heuristically, by means
of a trial and error procedure. Specifically, the hidden layers consist of ten neurons each, HAF is a
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hyperbolic tangent sigmoid, and OAF is a normalized exponential function. The performance of the
training process is evaluated by means of the cross-entropy cost function, that at the end of the training
process is equal to 1 × 10−3, after around 3000 training epochs.

3. Results and Discussion

The validation of the method is conducted in two separate phases: (a) an analysis of the
performance of the SOH identifier and (b) an evaluation of the accuracy of the overall SOC estimation
that includes the ageing classification.

3.1. SOH Classification

As is described above, the classification algorithm is called to identify the class of degradation only
when a specific load condition is detected during the driving operations. To evaluate the effectiveness of
the method, a profile corresponding to the specific charging/discharging profile was created artificially
to have an exhaustive number of occurrences in the different operating conditions to test.

The profile is reported in Figure 6, where it has a duration of 5000 s and includes 42 different
consecutive buffers with the time length of 120 s and a mean capacity request of 12 Ah. The profile
was cycled until reaching a total duration of 50 h, to sweep the range of the SOC of the battery,
corresponding to 1500 buffers of 120 s, for each class of ageing. The resulting timeseries was
provided to the LUT representing the battery. This LUT was tuned after the preliminary laboratory
experimental characterization and allows for extracting the predictors provided to the classifier in the
five ageing conditions.

Figure 6. Current profile created to validate the SOH classifier. The profile is replicated until reaching
the total duration of 50 h and a number of buffers of 1500 for each class of ageing.

The resulting validation dataset is therefore composed of 7500 different buffers with a time length
of 120 s each. The resulting profile represents the different operating conditions at different degradation
levels and is given as an input to the classifier.

The tool adopted to evaluate the accuracy of the SOH estimation is the confusion matrix reported
in Figure 7. The classified and actual ageing condition instances are reported in the rows and columns,
respectively. The values contained in the main diagonal cells indicate the correct classifications, whereas
the off-diagonal cells report the number of the misclassifications. The overall obtained estimation
accuracy is equal to 2.4%, which is equal to the number of misclassifications (178 buffers) over the total
number of tested occurrences (7500 buffers). This result is aligned with the expected accuracy.
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Figure 7. Evaluation of the SOH classification performance. Confusion matrix obtained for the ANN
trained with the scaled conjugate gradient (SCG) algorithm. The cell in the grey background indicates
the overall accuracy of the method.

3.2. SOC Estimation

The second part of the validation is dedicated to the evaluation of the accuracy of the SOC
estimation. To this end, the profiles illustrated in Figure 8 have been adopted as validation timeseries.
The subplot “a)” reports the current profile, and the subplot “b)” illustrates the behavior of the battery
terminal voltage at different levels of ageing. The voltage is only an occurrence of the many possibilities
that are associated to a class of degradation. The plots in the right part of the figure are zoomed-in areas
with a time length of 2000 s. When providing these timeseries to the SOC estimation block (dashed box
in Figure 1), the regression ANNs will provide four different outputs. The one corresponding to
the correct ageing level of the battery is then selected according to the output of the SOH classifier
(dotted box in Figure 1).

Figure 8. ANN validation datasets recorded from a real mild hybrid vehicle. (a) Current i(t). (b) Voltage
v(t) at four different degradation levels corresponding to the four SOH classes.

418



Energies 2020, 13, 2548

The results obtained in the five ageing levels are illustrated in Figure 9, where for each SOH
class, the estimated SOC, on the blue line, is compared with the expected value, on the red line.
The expected value is the one obtained from the preliminary experimental characterization conducted
in the laboratory. The estimation error is reported in the lower subplot for each case. The accuracy of the
estimation is demonstrated by the error that is limited to a maximum value of 3%. The results obtained
for the class of ageing going from 0% to 80% (subplot “e”) demonstrate that the algorithm keeps being
valid also under the threshold of 80%. The reported test has been conducted at a temperature of around
25 ◦C. A more exhaustive validation of the method should be conducted in a climatic test chamber to
evaluate the accuracy of the estimation at different environmental conditions.

 
Figure 9. SOC estimation at different degradation levels. Red line: expected value. Blue line: estimation.
Error indicates the difference between the estimated and expected values. (a): ageing class 1 (SOH:
95 ÷ 100%); (b): ageing class 2 (SOH: 90 ÷ 95%); (c): ageing class 3 (SOH: 85 ÷ 90%); (d): ageing class 4
(SOH: 80 ÷ 85%); (e): ageing class 5 (SOH: 0 ÷ 80%).
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4. Conclusions

This paper presented a method for the combined estimation of the state of charge and state of
health of batteries with artificial intelligence. The technique is valid at the cell, module, and pack levels
and is suitable for adoption in the automotive sector in the case of hybrid and full electric vehicles.
The design procedure of the algorithm and specifically the training phase of the artificial neural
networks were presented. The method was demonstrated to be effective in terms of the estimation
accuracy when tested on real driving cycles extracted from the acquisition on-board of an electric
vehicle. The estimation error of the combined method is around 3%. The good potential and the
promising results encourage the adoption of the proposed method for deployment in a vehicle battery
management system for a real-time battery monitoring.
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Abstract: Electric cycling is one of the major damage sources in lithium-ion batteries and extensive
work has been produced to understand and to slow down this phenomenon. The damage is related to
the insertion and extraction of lithium ions in the active material. These processes cause mechanical
stresses which in turn generate crack propagation, material loss and pulverization of the active
material. In this work, the principles of diffusion induced stress theory are applied to predict
concentration and stress field in the active material particles. Coupled and uncoupled models are
derived, depending on whether the effect of hydrostatic stress on concentration is considered or
neglected. The analytical solution of the coupled model is proposed in this work, in addition to
the analytical solution of the uncoupled model already described in the literature. The analytical
solution is a faster and simpler way to deal with the problem which otherwise should be solved in a
numerical way with finite difference method or a finite element model. The results of the coupled
and uncoupled models for three different state of charge levels are compared assuming the physical
parameters of anode and cathode active material. Finally, the effects of tensile and compressive stress
are analysed.

Keywords: diffusion induced stress; hydrostatic stress influence on diffusion; electrode particle model;
battery mechanical aging; li-ion battery

1. Introduction

Lithium-ion batteries are actually one of the most widespread rechargeable energy-storage
systems [1]. They have a large field of application from small electronic systems up to electric vehicles
in automotive and industrial applications [2,3]. Indeed, they can span a great capacity and power
range with a good energy density and long lifetime.

Safety and batteries performance have been analysed through modelling and experimental tests
in the last decades [4,5]. Progressive damage with charge/discharge cycles is the major weak point of
lithium ion cells, since it affects the lifetime considerably [6]. The lithium ions are stored/withdrawn in
the active material of the electrodes through insertion/extraction processes. These processes must be
studied at a micrometre scale, at which active material of both electrodes appears as a particulate matter,
as depicted in Figure 1a. Insertion/extraction processes induce expansion/contraction of the active
material particles, and in turn mechanical stress which damage the electrode structure. The electrode
damage causes indirectly the increase of solid electrolyte interface (SEI) growth which in turn affects
the battery performance and the available capacity [7]. Stress and strain due to insertion/extraction
processes are recently investigated via in-situ measurements in battery electrodes [8–10]. However,
the lack of experimental stress measurements in active material particles does not allow to validate the
results derived in this work.
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Figure 1. Battery scheme at micrometer scale and focus on the lithium intercalation mechanism in
anode particles (a). Stress and deformation of the active material particles during lithium insertion
(b) and extraction (c). Blue shadows depict the lithium concentration (blue means high concentration,
white means low concentration). Concentration level affects tension (arrows pointing toward each other)
and compression (arrows pointing away from each other) of radial and hoop stress. The concentric lines
show expansion or shrinking of the particle: they are evenly spaced in the undeformed configuration.

These type of stresses are described originally by Prussin [11] as chemical stress or diffusion
induced stress (DIS), which manages the interaction between chemical and mechanical problem. Later,
Larché and Cahn [12,13] and Chu and Lee [14,15] studied the interaction between thermodynamic of
diffusion and stress.

Several continuum models of diffusion induced stress were proposed in the last decade, each of
them highlights some particular features. The models mainly divide in two groups: the coupled models
consider the influence of the hydrostatic stress on the lithium ions diffusion, namely “pressure diffusion
effect,” and the uncoupled models neglect this effect.

Cheng and Verbrugge presented an uncoupled model for stress evolution in spherical particle
in Reference [16] and they studied the effect of surface mechanics in nanometre particles, showing that
tensile stress may be significantly reduced in magnitude or even be reverted to a state of compression
with small particle radius [17].

Christensen and Newman were among the first to study DIS models applied to lithium ions
cell [18–20] deriving a stand-alone electrode particle model. Meanwhile, Zhang et al. performed a
numerical implementation of coupled DIS problem, and studied the influence of the aspect ratio of an
ellipsoidal particle of lithium manganese oxide (LMO) on stress [21]. Later they studied the stresses
which arise both from concentration gradient and heat generation in cathode particles, assumed as
ellipsoidal with varying aspect ratio [22]. The basis of DIS theory applied to lithium-ion cells are clearly
explained in Reference [23–25] for different geometry domain. Recently Bagheri et al. presented the
numerical results of coupled DIS problem for galvanostatic and potentiostatic insertion in spherical
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LMO particle [26]. Eshghinejad et al. presented a continuum model which couples diffusion and
mechanics of ions intercalation for non-dilute solutions [27], according to Haftbaradaran et al. [28],
and solved it with a finite elements (FE) model. Eshghinejad et al. highlighted that compressive stress
results in lower lithium ions solubility and thus lower achievable capacity. Recently Wu et al. extended
the study of diffusion induced stress to the interaction with other particles. Indeed, they developed a
three-dimensional particle network model in a FE platform and a multiscale model which considers
the stress in the particle as the superposition of the concentration gradient induced stress and the stress
which comes from the interaction with other particles [29].

Tensile hoop stress due to insertion/extraction processes is the driving force for the analytical
crack propagation model described by Deshpande et al. [30]. The authors described the capacity
reduction rate due to electrolyte decomposition on the new free surfaces created by the cracks.
Other works performed numerical analysis to predict crack propagation in active material with
a stochastic approach [31] and considering the effect of current rate [32]. Grantab et al. developed
a numerical method for studying lithiation-induced crack propagation in silicon nanowires that
accounts for the effects of pressure-diffusion on the stress, and compared the results with an uncoupled
model [33].

A continuum model of diffusion-mechanical problem in spherical geometry is presented in
this paper. The model described in Section 2 gives a tool to estimate the stresses and strains in
active material particles during lithiation/delithiation on the basis of particle size and mechanical
properties with specific assumptions. Furthermore the model takes into account the hydrostatic stress
influence on lithium diffusion, namely the “pressure diffusion effect”, which couples mechanical and
diffusive problem. The hydrostatic stress effect is highlighted comparing the results of the coupled
and uncoupled model, which considers or neglects the stress influence, respectively. The definition of
an equivalent diffusion coefficient which accounts for the hydrostatic stress effect allows to derive an
analytical solution even for the coupled model, still not available in literature, as far as the authors
know. The results of the analytical model are compared with numerical results in literature in Section 3.
Furthermore, lithium concentration and stress are derived in galvanostatic insertion and extraction
with different state of charge (SOC) for anode and cathode insertion material in Section 3. It is
highlighted that tensile stresses are the driving force for crack propagation, and thus solid electrolyte
interface (SEI) growth and capacity fade. On the other hand, compressive stresses induce a reduction
of lithium flux which in turn affects the achievable capacity.

2. Problem Formulation

The mechanical stresses which arise in the active material particles are directly linked to lithium
intercalation/de-intercalation phenomena which occur over charge/discharge cycling. For this reason,
this model works just for intercalation materials, and not for conversion material, such as Silicon,
since lithium ions would interact with host material differently. The particle is assumed spherical,
isotropic and linear elastic, and the current density is assumed uniform all over the particle surface.
These assumptions make the problem axisymmetric, leading to a one-dimensional problem in the
radial coordinate. A couple of boundary conditions are given: traction-free condition is applied on the
outer surface of the particle, thus neglecting the interaction with surroundings, and a fixed central
point is imposed to prevent rigid body motion.

The lithium ions diffuse gradually in the particle during insertion and extraction. The ions
diffusion makes the lithium concentration inhomogeneous along the particle radius, as shown in
Figure 1b,c.

The concentration gradient causes a mechanical stress state in analogy to temperature gradient.
Therefore, the areas with greater concentration gradient are affected by larger deformation compared
to the areas where the gradient is lower. Therefore, a diffusion-elastic problem must be studied, since
the stress state described by the elastic problem depends on the concentration level which is described
by the diffusive problem.
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The concentration level in insertion and extraction affects the sign of the stresses. Referring to
insertion in Figure 1b, the greater concentration of the outer layers causes a tensile radial stress all
over the particle because the surface expands more than the core. The hoop stress is compressive in
the outer layers and tensile in the core because the greater deformation of the surface is prevented by
the core. In extraction (Figure 1c) the particle shrinks, and the radial stress is compressive because
the concentration level decreases along the radius. The hoop stress is tensile in the surface and
compressive in the core because the greater expansion of the core is prevented by outer layers which
are characterized by a lower concentration level.

2.1. Mechanical Problem

Strains are characterized by an elastic and a chemical contribution, which is expressed according
to Prussin [11] in Equation (1).

εch =
Ω
3

C(r), (1)

where Ω is the partial molar volume, which describes the volume variation of the solution host
material and intercalated lithium. C is the lithium concentration field within the particle. The total
strain is expressed as the sum of elastic strain and chemical strain [11], so the constitutive equations
are expressed in spherical coordinates in Equations (2) and (3).

εr =
1
E

(
σr − 2νσc

)
+

ΩC
3

, (2)

εc =
1
E

[
(1 − ν)σc − νσr

]
+

ΩC
3

, (3)

where E and ν are the Young modulus and Poisson ratio. The last term in Equations (2) and (3) couples
the mechanical and chemical aspects. It is worth noting that this expression is written in analogy to
an elastic-thermal problem, so the diffusivity part of the equation is totally equivalent to a thermal
problem if the concentration field is replaced by the temperature and the partial molar volume is
replaced by thermal expansion coefficient.

It is useful to rearrange the constitutive equations in terms of stresses for later purposes:

σr =

E
[(

εr − ΩC
3

)
(1 − ν) + 2ν

(
εc − ΩC

3

)]
(1 + ν)(1 − 2ν)

, (4)

σc =

E
[(

εc − ΩC
3

)
+ ν

(
εr − ΩC

3

)]
(1 + ν)(1 − 2ν)

. (5)

The congruency equations, which relate strain and displacement are:

εr =
du
dr

, (6)

εc =
u
r

. (7)

The characteristic time of solid elastic deformation is much smaller than the diffusion of atoms
in solids, for this reason the mechanical equilibrium is reached much faster than the diffusive one,
and the elastic problem is treated as a quasi-static problem: the transient is not considered, and the
equilibrium is assumed to be reached instantaneously.
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The mechanical equilibrium equation over a spherical domain is given by Equation (8) according
to References [16,17,26,34].

dσr

dr
+

2
r

(
σr − σc

)
= 0. (8)

The mechanical stress state within a spherical particle is completely described by the set of
Equations (4)–(8). The elastic problem is solved for the displacement replacing the congruency
equations (Equations (6) and (7)) in the constitutive ones (Equations (4) and (5)), and the latter in the
equilibrium equation (Equation (8)).

This leads to a second order differential equation (Equation (9)) depending on displacement and
concentration field.

d2u
dr2 +

2
r

du
dr

− 2u
r2 =

1 + ν

1 − ν

Ω
3

dC
dr

. (9)

Equation (9) is solved for the displacement integrating it twice. A first integration leads to:

du
dr

+
2u
r

+
∫ r

0

2u
r2 dr −

∫ r

0

2u
r2 dr =

1 + ν

1 − ν

Ω
3

C(r) + C1. (10)

The displacement field is got in Equation (11) multiplying Equation (10) for r2, integrating another
time and rearranging the terms.

u(r) =
1 + ν

1 − ν

Ω
3

1
r2

∫ r

0
C(r)r2 dr +

C1

3
r +

C2

r2 . (11)

The constants C1 and C2 are obtained imposing the boundary condition for r = 0 and r = R.
The first boundary condition is null displacement at the center of the sphere which leads to C2 = 0.
This result is obtained solving limr→0 u(r), since Equation (11) is not defined for r = 0.

The second boundary condition is derived from the behaviour on the surface. When free expansion
is considered, the radial stress must vanish on the surface. This condition is got solving Equation (12)
according to the constitutive equation (Equation (4)).

(
du
dr

∣∣∣∣
r=R

−1
3

ΩC(R)
)
(1 − ν) + 2ν

(
u(R)

R
− 1

3
ΩC(R)

)
= 0. (12)

The displacement and its derivative valued for r = R are replaced in Equation (12). Then
Equation (12) is solved for C1, leading to:

C1 = 2
1 − 2ν

1 − ν

Ω
R3

∫ R

0
C(r)r2dr. (13)

At this stage all the boundary conditions are set, and the displacement field is expressed in
Equation (14).

u(r) =
Ω

3(1 − ν)

[
(1 + ν)

1
r2

∫ r

0
C(r)r2 dr + 2(1 − 2ν)

r
R3

∫ R

0
C(r)r2 dr

]
. (14)

Therefore Equation (14) is replaced in the congruency equations (Equations (6) and (7)) and radial
and hoop strains are obtained in Equation (15).

⎧⎪⎨
⎪⎩

εr(r) = 1+ν
1−ν

Ω
3

[
− 2

r3

∫ r
0 C(r)r2 dr + C(r)

]
+ 2Ω

3
1−2ν
1−ν

1
R3

∫ R
0 C(r)r2 dr

εc(r) = 1+ν
1−ν

Ω
3

1
r3

∫ r
0 C(r)r2 dr + 2

3 Ω 1−2ν
1−ν

1
R3

∫ R
0 C(r)r2 dr

. (15)
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Then, the stresses are derived replacing the strain equations (Equation (15)) in the constitutive
ones (Equations (4) and (5)).

⎧⎪⎪⎨
⎪⎪⎩

σr(r) = 2Ω
3

E
1−ν

[
1

R3

∫ R
0 C(r)r2 dr − 1

r3

∫ r
0 C(r)r2 dr

]

σc(r) = Ω
3

E
1−ν

[
2

R3

∫ R
0 C(r)r2 dr + 1

r3

∫ r
0 C(r)r2 dr − C(r)

]
.

(16)

Finally, the hydrostatic stress, defined according to Equation (17), is obtained. The value of
hydrostatic stress is the coupling factor between elastic and diffusion in the diffusive problem.

σh(r) =
σ1 + σ2 + σ3

3
=

σr + 2σc

3
=

2ΩE
9(1 − ν)

[
3

R3

∫ R

0
C(r)r2 dr − C(r)

]
. (17)

The results of the mechanical problem, namely the displacement, the strains and the stresses in
Equations (14)–(17) depend on the concentration field, that is solved in the diffusion problem.

2.2. Diffusive Problem

The diffusive equation is derived with the thermodynamic approach described by Chu and
Lee [15] and later adopted by most of the works concerning stress in intercalation materials [21–26].
Chemical potential gradient is the driving force for mass transport. The chemical potential of a solute
in an ideal solution subjected to stress is written in Equation (18) according to Chu and Lee [15].

μ = μ0 + RgTln(C)− σhΩ, (18)

where μ0 is a constant, Rg the universal constant of gasses, C the concentration field, T the temperature,
σh the hydrostatic stress experienced by the particle and Ω the partial molar volume. The expression
of chemical potential in Equation (18) is formulated for dilute solution and does not take into account
non ideality: namely the lithium migrates among interstitial sites and the structure of the host material
is not modified by the intercalation process. The flux of lithium ions inside the particle due to the
chemical potential is expressed in Equation (19) according to Reference [15].

J = −MC
∂μ

∂r
, (19)

where M is the mobility of the solute.
The mass conservation law of lithium ions in radial coordinate is introduced in Equation (20) [15].

∂C
∂t

+
1
r2

∂(r2 J)
∂r

= 0 (20)

2.3. Uncoupled Problem

At first the uncoupled problem is solved, so the hydrostatic stress term in the chemical
potential expression in Equation (18) is neglected, allowing to decouple the elastic problem from
the diffusive one.

This simplified version of chemical potential is replaced in Equation (19). Therefore, the lithium
ions flux is expressed as Equation (21).

J = −D
∂C
∂r

(21)

where D is the diffusion coefficient, defined as D = MRgT.
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Finally Equation (21) is replaced in the mass conservation law (Equation (20)), and the diffusion
equation in radial coordinate is derived in Equation (22).

∂C
∂t

=
D
r2

∂

∂r

(
r2 ∂C

∂r

)
(22)

Diffusion Equation (22) is written in perfect analogy with thermal diffusion, if concentration field
is replaced by the temperature one.

Equation (22) is associated to a couple of boundary conditions which describe two possible
cell operations: constant voltage (potentiostatic operation, Equation (23)) or constant current
(galvanostatic operation, Equation (24)).

A constant lithium concentration equal to CR is imposed at the cell boundary over time with
potentiostatic operation. The diffusion Equation (22) has a singularity for r = 0, so the second boundary
condition prescribes a finite concentration value at the centre of the sphere. Finally, a constant initial
concentration value C0 is prescribed for t = 0 across the domain.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂C
∂t = D

r2
∂
∂r

(
r2 ∂C

∂r

)
C(r, 0) = C0, for 0 ≤ r ≤ R

C(R, t) = CR, for t ≥ 0

C(0, t) = f inite, for t ≥ 0

(23)

A constant lithium flux, proportional to the current density, is applied on the external surface
of the particle over time in galvanostatic operation. The lithium flux goes from the particle surface
radially toward the centre, so the flux must be zero for r = 0. An initial concentration value C0 is
present all over the particle, as defined before.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C
∂t = D

r2
∂
∂r

(
r2 ∂C

∂r

)
C(r, 0) = C0, for 0 ≤ r ≤ R
∂C(r,t)

∂r

∣∣∣∣
r=R

= I
FD , for t ≥ 0

∂C(r,t)
∂r

∣∣∣∣
r=0

= 0, for t ≥ 0

(24)

The solutions of the problem in Equations (23) and (24) are derived analytically by variable
separation. However the solutions are well known in the literature [16] and are reported in
Equation (25) for potentiostatic operation and in Equation (26) for galvanostatic operation.

C(r, t)− CR
C0 − CR

= −2
∞

∑
n=1

(−1)n+1

πnx
sin(nπx) e−n2π2τ , (25)

C(r, t) = C0 +
IR
FD

[
3τ +

x2

2
− 3

10
− 2

x

∞

∑
n=1

(
sin(λnx)

λ2
nsin(λn)

e−λ2
nτ

)]
. (26)

The solutions are normalized according to the dimensionless characteristic time expressed as
τ = Dt/R2 and to the radial position x = r/R. λn are the positive roots of the transcendent equation
λn = tan(λn). CR is the concentration value on the particle surface, C0 is the initial concentration, F is
the Faraday constant, I is the current density and R is the radius of the particle.

The concentration solutions in Equations (25) and (26) are replaced in Equations (14)–(17) to get
displacement, strains and stress expressions for the uncoupled model.
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2.4. Coupled Problem

The lithium ion flux for the coupled problem reported in Equation (27) is obtained by replacing
the chemical potential (Equation (18)) in lithium flux (Equation (19)).

J = −D
(

∂C
∂r

− ΩC
RT

∂σh
∂r

)
. (27)

Finally, the concentration equation for the coupled problem is derived in Equation (28) replacing
Equation (27) in the mass conservation law (Equation (20)).

∂C
∂t

= D
[

∂2C
∂r2 +

2
r

∂C
∂r

− Ω
RgT

∂C
∂r

∂σh
∂r

− ΩC
RgT

(
∂2σh
∂r2 +

2
r

∂σh
∂r

)]
. (28)

Equation (28) cannot be solved analytically as Equation (22), so the flux expression in Equation (27)
is rearranged in order to obtain an expression similar to Equation (21) which brings back to a
concentration equation analogue to Equation (22), whose analytical solution is already known.

The term ∂σh
∂r in Equation (27) is written according to the chain rule method as: ∂σh

∂r = ∂σh
∂C

∂C
∂r .

Then the hydrostatic stress in Equation (17) is differentiated with respect to the concentration: ∂σh
∂C =

− 2ΩE
9(1−ν)

. Finally, the lithium flux is expressed in Equation (29) factoring the term ∂C
∂r .

J = −D
(

1 +
2Ω2EC

9RgT(1 − ν)

)
∂C
∂r

(29)

Equation (29) is similar to the expression of lithium ions flux derived for the uncoupled problem
(Equation (21)), but the diffusion coefficient is multiplied by a new factor. So, the equivalent diffusion
coefficient for the coupled problem is introduced in Equation (30), in accordance with Chu and Lee [15].

Deqvn(r) = D
(

1 +
2Ω2EC

9RgT(1 − ν)

)
= D(1 + k · C). (30)

The equivalent diffusion coefficient is composed by the physical diffusion coefficient D and by an
artificial contribution k · C due to the hydrostatic stress effect. This factor is always greater than one,
both for material with positive and negative fraction molar volume. Thus, hydrostatic stress effect
always enhances lithium diffusion decreasing the concentration gradient within the particle.

This result can be derived even with general boundary conditions on the surface, that is, a general
form of C1. The displacement in Equation (11) as a function of C1 (C2 = 0) is replaced in the expression
of the radial and hoop stress, and the hydrostatic stress is calculated according to Equation (17).
After some calculations it gives:

σh(r) =
2ΩE

9(1 − ν)

[
C(r) + C1

3(1 − ν)

2(1 − ν)Ω

]
(31)

Even in this condition the derivative of the hydrostatic stress with respect to the concentration
has the same value computed before, leading to the same artificial diffusion contribution.

Lithium ion flux of the coupled problem in Equation (32) is formally similar to the flux of the
uncoupled problem in Equation (21): namely it is equal to a coefficient multiplied for the derivative of
the concentration with respect to the radius.

J = −Deqvn
∂C
∂r

(32)

This observation allows to derive the same diffusion equation of the uncoupled problem
(Equation (22)) introducing the new diffusion coefficient Deqv instead of the physical diffusion
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coefficient. Therefore, the same solutions derived for the uncoupled problem can be used also for the
coupled one replacing the physical diffusion coefficient with the equivalent diffusivity.

The concentration solutions reported in Equations (25) and (26) become non-linear because
the equivalent diffusion coefficient depends itself on concentration. Thus, an iterative calculation,
described in Figure 2 must be performed as follows:

• The concentration field is calculated according to the physical diffusion coefficient.
• The equivalent diffusion coefficient is calculated for each radial position with the concentration function.
• A new concentration function is computed with the equivalent diffusion coefficient computed in

the previous iteration.

The iterations go on until the maximum difference between the concentration computed in the
kth iteration and k − 1th is below a certain threshold. This iterative computation converges in few
iterations to a stable value.

Figure 2. Iterative calculation procedure.

Once the concentration field is obtained, it is replaced in Equations (14)–(17) to get displacement,
strains and stresses expressions for the coupled model.

3. Results and Discussion

In this section, the numerical results derived with the model explained in Section 2 are presented.
The concentration functions for galvanostatic and potentiostatic insertion are compared with the results
available in literature derived through numerical simulation. Then, concentration and stress function
computed with the analytical model are presented in case of galvanostatic operation. The comparison
between the coupled and uncoupled model highlights the hydrostatic stress influence on lithium
diffusion. The results are derived according to the physical parameters reported in Tables 1 and 2,
referring to anode and cathode materials.
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Table 1. Graphite properties (anode).

Parameter Symbol Value Unit Reference

Diffusion coefficient D 2 · 10−14 m2/s [35,36]
Partial molar volume Ω 3.42 · 10−6 m3/mol [37]

Maximum concentration Cmax 3.18 · 104 mol/m3 [37]
Young modulus E 15 GPa [18]

Poisson ratio υ 0.3 - [18]
Particle radius R 5 · 10−6 m [18]

Table 2. LixMn2O4 (LMO) properties (cathode).

Parameter Symbol Value Unit Reference

Diffusion coefficient D 7.08 · 10−15 m2/s [21,26]
Partial molar volume Ω 3.497 · 10−6 m3/mol [21,26]

Maximum concentration Cmax 2.29 · 104 mol/m3 [21,26]
Young modulus E 10 GPa [21,26]

Poisson ratio υ 0.3 - [21,26]
Particle radius R 5 · 10−6 m [21,26]

3.1. Compatibility between Model Assumptions and Real Material

Graphite and lithium manganese oxide (LMO) are chosen as case study for anode and cathode
intercalation materials respectively. The compatibility between the assumptions of the analytical model
and real active materials is discussed in this section. The linear elastic assumption is respected for
all the insertion materials, because they show slight deformation. There are two aspects to discuss:
geometry and homogeneity assumptions.

About the geometry assumption, it is necessary to understand how a sphere is capable to represent
the random geometry of the active material particles. For some materials, such as NMC or graphite the
real particle geometry is close to a sphere, as showed by SEM images in Reference [37–39], but for other
materials, such as LMO or LCO, particles shape is more elongated and irregular. However, a modelling
approach must overcome the statistical variation of the samples and give reasonable and general results
which can be valid for the entire samples population. For this reason, an ideal geometry which can be
extended and representative of all the other particles is adopted in this work, according the following
reasoning. Simulations confirm that greater particle size results in higher stress, because of longer diffusion
path. Hence, the radius is chosen so that the ideal spherical particle adopted in simulation circumscribes
the mean real particle, once the statistical distribution of the particle size of a powder is known. In this
manner, it is possible to give a safe estimation of the stress in the powder particles based on their size,
overcoming the limit of the random distribution of the particles shapes. The results of the simulation at
least overestimate the real stress in the particles of a powder, since a bigger spherical equivalent particle is
used to simulate all the different particles shapes present in a powder.

For what concerns different ideal geometries, Zhang et al. studied the influence of the aspect ratio
of an ellipsoidal LMO particle on the stress [21,22]. The results show that the stresses computed with
aspect ratios different from one (one corresponds to the sphere) are ±10% of the stress computed with
spherical geometry. Hence, spherical geometry minimizes the error due to the statistical distribution
of the particle shape [21].

Some works analysed the stress over a realistic particle geometry extracted from SEM images [40–43].
The results show that the main difference between realistic particle and ideal spherical particle resides in
the stress concentrations in notches. In future works, it is meaningful to study a generalized notch factor,
based on the statistical analysis of powder samples, which can be representative of the notching effect
of different active material particles. Indeed, stress concentration due to notching effect causes cracks
propagation: the main reason for electrode damage and capacity fade.
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Moreover, a recent work [44] demonstrated how the assumptions of spherical geometry and
isotropic and linear elastic material are accurate for LCO and graphite, since they found a good
agreement between the macroscopic deformation predicted by their numerical model and the
experimental measurements conducted on pouch cell. Finally, spherical assumption is widely accepted
among several works [20–22,26,45].

The second aspect concerns the homogeneity assumption. This aspect can be still divided in two
issues: phase transition during Li insertion and inhomogeneity of primary particles. Phase transition
occurs in some materials when lithium content exceeds the equilibrium concentration. Lithium ions
begin to intercalate in different type of interstices above the equilibrium concentration, modifying the
crystallographic structure: this leads to a stress and concentration jump between the two phases
because they are characterized by different physical parameters. Christensen et al. pointed out that
LMO shows a single phase in the 4V plateau, and the transformation in cubic-tetragonal phase occurs
with deep discharge [20]. In LCO, which has a negative partial molar volume, Li poor phase has a
larger partial molar volume than the lithium rich phase [46]. Therefore, as the second phase starts to
form during the discharge process, the magnitude of stress starts to decrease—phase change leads to a
safer condition in this case.

However, a simple general approach which considers phase transition in our model is the
following: it is necessary to change the physical parameters according to the concentration level with a
moving boundary concept. When the concentration level exceeds the equilibrium concentration of a
phase in a certain radial position, equilibrium concentration and physical parameters (Young modulus,
Poisson ratio and especially partial molar volume) must be changed with the physical parameters of the
new phase. During insertion the “boundary” between the two phases moves towards the core, and the
physical parameters must be changed accordingly. So, phase transition can be implemented in the
model in Section 2 tuning the input parameters, but the framework of the model remains unchanged.

The particles of some materials, such as NMC, are synthesized from primary particles [39].
However, it is hard to model the influence of randomly distributed primary particles which compose
secondary particle, and because of the random orientation of primary particles, secondary particles
are usually assumed as a continuum material [47,48]. However, Wu et al. [49] tried to consider the
influence of primary particle on the stress.

3.2. Comparison with the Results of Numerical Models in Literature

The analytical solution of DIS problem was proposed by Cheng et al. [16] according the uncoupled
formulation. As far as the authors know, analytical solution of the coupled problem are still not available
in literature. Generally, the finite difference method [18,20,21,23,24] or FE simulations [16,21,27,33] in
commercial codes were adopted in order to solve the DIS problem in the coupled formulation. Following
the procedure explained in Section 2, the analytical solutions of the standard diffusion problem are used to
get the solution of the DIS coupled problem via an iterative computation, which is a much simpler way
compared to solve the whole coupled equation (Equation (28)) with finite difference method or building
up a FE analysis.

The concentration function computed with the analytical model in galvanostatic and potentiostatic
insertion are compared with the results derived via finite different method by Bagheri et al. [26] in Figure 3.
A good agreement is achieved between the analytical model proposed in this work and Reference [26]
derived via numerical computation. Furthermore the concentration trend with and without “stress effect”
matches with the results of Zhang et al. [21] and Christensen et al. [19]. Moreover the results of the
uncoupled model matches with the model derived by Cheng et al. [16]. Even the stress functions fits
faithfully the numerical results available in the literature, since they depend uniquely on concentration.
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Figure 3. Concentration level as a function of dimensionless radial position for different time constants
τ in galvanostatic (a) and potentiostatic (b) insertion. The analytical model is reported with solid
(coupled) and dashed (uncoupled) lines. The solution of the numerical model [26] is reported in
discrete radial coordinates with dots (coupled) and crosses (uncoupled).

The lack of stress measurements in insertion material particles makes the results in this work
impossible to be validated experimentally, as pointed out even by other authors [26], and mathematical
modelling is the only way to make these computations.

3.3. Insertion under Galvanostatic Control

Concentration level and the stress functions in galvanostatic insertion are computed with the
analytical model proposed in Section 2 assuming null initial concentration. The results are derived for
three different SOC levels: 25%, 50%, 75%. The SOC level is calculated according to Zhang [26,50] as:

SOC =

∫ R
0 c(r)r2dr∫ R
0 cmaxr2dr

· 100. (33)

The current density over the particle surface is 3 A/m2, which corresponds roughly to 2C.
The temperature is assumed to be constant at 298 K. The results for anode and cathode particles whose
physical parameters are listed in Tables 1 and 2 are reported in Figures 4 and 5.

The concentration level normalized with the maximum concentration value which can be stored
in the active material particles is reported in Figure 4a. So, when the normalized concentration is equal
to the unity all the available sites in the particle are occupied by lithium ions. Radial, hoop and Von
Mises stress are reported in Figure 4b–d for graphite particles. The same data are reported in Figure 5
for LMO particles.

The pressure diffusion dependence determines a greater equivalent diffusion coefficient which
allows a faster lithium diffusion within the particle. In particular enhances mass transport from areas
subjected to compression to areas subjected to tensile stress. This fact makes the lithium concentration
gradient predicted by the coupled model lower if compared to the uncoupled model, as shown in
Figures 4a and 5a. Remembering the thermal analogy, lower gradient means lower stress, so the
coupled model predicts a lower stress state, as highlighted in Figures 4b–d and 5b–d; the differences
between the two model are up to 40%. The differences between the stresses computed with the three
SOC levels are small (the maximum is 15% for graphite and 7% for LMO), this suggests that the active
material particles experience similar stresses during almost the whole SOC range.

The comparison between the results obtained for anode (Figure 4) and cathode (Figure 5) shows
the influence of the diffusion coefficient. Indeed, the slight difference in the diffusion coefficient
between LMO and graphite produces an important increase of the concentration gradient in the
cathode particles, which in turn causes a serious increase of the stress. Consequently, a greater
equivalent stress makes the coupling between mechanical and diffusion aspect stronger.

434



Energies 2020, 13, 1717

Figure 4. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic insertion in anode material. Dashed lines refer to the uncoupled model and
solid lines refer to the coupled model.

Figure 5. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic insertion in cathode material. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model
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This results in a greater difference between the concentration computed with the coupled model
or the uncoupled one in LMO because the mechanical component in the chemical potential (Equation
(18)) becomes greater.

3.4. Extraction under Galvanostatic Control

The galvanostatic extraction is modelled assuming an initial concentration within the particle
equal to Cmax, namely SOC 100%, and surface current density equal to −3 A/m2. The extraction
determines a reduction of the SOC level, and the result for SOC equal to 75%, 50% and 25% are reported
in Figures 6 and 7 for anode and cathode material, respectively. Concentration is reported in Figure 6a,
radial, hoop and Von Mises stress are reported in Figure 6b–d for graphite. The same data are reported
in Figure 7 for LMO.

Figure 6. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic extraction in anode material. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model.

The same conclusions made for insertion about the differences of concentration and stress state
between the coupled and uncoupled model can be made also for extraction. The differences between
the stress computed with the coupled and uncoupled model are up to 35%. In Figures 6c and 7c
it is highlighted that the particle experiences tensile hoop stress on its surface during galvanostatic
extraction, which is supposed to be the driving force for crack propagation in active material [30].
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Figure 7. Lithium concentration (a), radial stress (b), hoop stress (c) and Von Mises stress (d) for different
SOC levels in galvanostatic extraction in cathode cathode. Dashed lines refer to the uncoupled model
and solid lines refer to the coupled model.

3.5. Evolution of Von Mises Stress in Time

The continuous evolution in time of the Von Mises stress is shown in Figure 8. The hydrostatic
stress effect homogenizes the lithium concentration within the particle, so the stress values computed
by the coupled model are lower than the uncoupled one, in accordance with Reference [21]. On the
contrary, for high extraction time the stress predicted by the coupled model tends to the uncoupled one.

Figure 8. Von Mises stress as a function of insertion (a) and extraction (b) time. The results are derived
with physical parameters of Table 2.
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3.6. Influence of Hydrostatic Stress on Concentration

Hydrostatic stress influence always enhances lithium diffusion. This assertion is justified from
a quantitative point of view by the artificial contribution to the equivalent diffusion coefficient in
Equation (30). This contribution is always positive regardless of the insertion or extraction operation,
time constant or radial position, so the coupled model is always characterized by a greater diffusion
coefficient which decreases the concentration gradient within the particle, as showed in Figures 4a–7a.

This concept is qualitatively explained in Figure 9. Indeed, the chemical potential in Equation (18)
can be split in the concentration contribution (μC = RgT ln (C)) and the hydrostatic stress contribution
(μσ = −Ωσh) as follow: μ = μC + μσ. In case of insertion, referring to Figure 9a, the concentration C2

at r + dr is greater than the concentration C1 at r − dr for a generic radial coordinate r, resulting in a
positive concentration contribution. In the same way the hydrostatic stress σh,2 at r + dr is lower than
the hydrostatic stress σh,1 at r − dr, resulting in a positive hydrostatic stress contribution. This analysis
can be extended to all the radial coordinates from zero to R because both concentration and hydrostatic
stress are monotonic. Therefore, both the contributions are concordant due to the shape of concentration
and hydrostatic stress functions showed in Figure 9a, and concur to the incoming flux. This analysis is
also valid for extraction, as explained in Figure 9b. In this case, concentration, hydrostatic stress and
thus chemical potential contributions are the opposite, resulting in an outgoing flux.

Figure 9. Hydrostatic stress influence on lithium diffusion for insertion and extraction operation.
The qualitative trend of the lithium concentration (red) and the hydrostatic stress (green) for insertion
(a) and extraction (b) are reported in the graphics. The chemical potential is split in concentration
contribution and hydrostatic stress contribution whose increments are valued for a general radial
position r. The stress and concentration contributions for a general radial coordinate are graphically
reported with green and red arrows which goes from the lower to the higher value (c). The lithium flux
due to the chemical potential difference is reported with the blue arrows (c).

On the other hand, hydrostatic stress influences the concentration level in the particle.
Tensile hydrostatic stress allows to store a greater amount of lithium ions, on the contrary compressive
hydrostatic stress determines a reduction of the storable lithium ions. These differences are highlighted
comparing the results with the uncoupled model, which neglects the influence of the hydrostatic stress
on the lithium concentration. Referring to Figure 10a, black arrows mark the border between positive
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and negative hydrostatic stress. This trend matches with the differences in concentration function
computed with the two models in Figure 10b: where the hydrostatic stress is positive the concentration
level of the coupled model is higher than the uncoupled one, where the hydrostatic stress is negative
the coupled model predicts a lower concentration level compared to the uncoupled model. About this
issue it is worth noting that the model in this work assumes free expansion of the particle surface,
neglecting the interaction with its surroundings.

Figure 10. Hydrostatic stress (a) and concentration (b) in cathode material. Black arrows show
the points where the hydrostatic stress changes sign which partially reflect the turnaround of the
concentration function. Dashed lines refer to the uncoupled model and solid lines refer to the
coupled model.

A more accurate model should consider the surface constraints of the particle which are supposed
to generate an increase in the compressive stress and in turn lower achievable concentration values.
Future works should be carried out in order to confirm this hypothesis.

4. Conclusions

The stress state within active material particle of graphitic anode and LMO cathode are computed
with coupled and uncoupled model according to DIS theory, assuming no constraints on the external
surface. The analytical solution of the coupled model is proposed in this work defining an equivalent
diffusion coefficient composed by a physical term and by an artificial contribution connected to the
hydrostatic stress. This definition allows to exploit the analytical solutions of the uncoupled model
even for the coupled one with an iterative calculation, since the equivalent diffusion coefficient depends
itself on concentration.

The results derived with the analytical solution of the coupled model are compared with the
solutions derived with numerical methods in literature and show a good agreement. The analytical
solution proposed in this work is easier and requires a lower computing time if compared to strongly
non-linear FE method or finite difference method. The concentration function and the stress state
within the particle are computed for three SOC levels: 25%, 50%, 75%. The differences between the
stresses computed with the different SOC levels are small: this fact suggests that particles experience
almost the same stress state during about the whole SOC window. The differences between the
stress state in LMO and graphite is mainly due to diffusion: a smaller diffusion coefficient causes
higher lithium concentration gradient, and higher stress consequently (up to 40%), according to
thermal analogy concept. Thus, the coupling factor Ωσh in chemical potential becomes higher and the
differences between coupled and uncoupled model are not negligible.

Finally, it is pointed out that tensile stress, in particular tensile hoop stress which occurs on the
particle surface during extraction, is the driving force for crack propagation, which in turn damages
the active material and accelerates the SEI growth. On the other hand, compressive hydrostatic stress
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influences the lithium solubility decreasing the achievable capacity, namely the lithium ions which can
be stored in the host material. An increase of compressive stress is expected if surface constraints are
considered, because the particle expansion is prevented. Future works should analyse this issue which
can result in a not negligible achievable capacity reduction.
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Abbreviations

The following abbreviations are used in this manuscript:

C Concentration mol/m3

C0 Initial concentration mol/m3

Cmax Maximum concentration mol/m3

Cr Surface concentration mol/m3

D Diffusion coefficient m2/s
Deqv Equivalent diffusion coefficient m2/s
E Young Modulus MPa
F Faraday constant 96485.332 As/mol
I Current density A/m2

J Lithium flux mol/m2s
M Mobility mol· s/Kg
r Radius m
R Particle radius m
Rg Gas constant 8.3145 J/mol K
SOC State of charge -
T Temperature 298 K
u Displacement m
x Normalized radial coordinate -
εc Hoop strain -
εch Chemical strain -
εr Radial strain -
μ Chemical potential J/mol
μ0 Reference chemical potential J/mol
υ Poisson ratio -
σc Hoop stress MPa
σh Hydrostatic stress MPa
σr Radial stress MPa
τ Characteristic time -
Ω Partial molar volume m3/mol
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Abstract: After determining the optimum composition of the butyronitrile: ethylene carbonate:
fluoroethylene carbonate (BN:EC:FEC) solvent/co-solvent/additive mixture, the resulting electrolyte
formulation (1M LiPF6 in BN:EC (9:1) + 3% FEC) was evaluated in terms of ionic conductivity and
the electrochemical stability window, as well as galvanostatic cycling performance in NMC/graphite
cells. This cell chemistry results in remarkable fast charging, required, for instance, for automotive
applications. In addition, a good long-term cycling behavior lasts for 1000 charge/discharge cycles
and improved ionic conductivity compared to the benchmark counterpart was achieved. XPS sputter
depth profiling analysis proved the beneficial behavior of the tuned BN-based electrolyte on the
graphite surface, by confirming the formation of an effective solid electrolyte interphase (SEI).

Keywords: lithium-ion batteries; non-aqueous electrolyte; nitrile-based solvents; butyronitrile; SEI
forming additives; fast charging

1. Introduction

Thanks to their excellent performance characteristics, lithium ion battery (LIB) cells find application
in a broad spectrum of different fields, comprising the consumer and automotive industries as well as
application in small portable devices, like mobile phones or laptops [1–4]. The main reason behind the
broad field of application relates, among other reasons, to the high specific energy and energy density
of LIBs [5–7] and the numerous cell materials, that can be employed [8].

In standard LIBs, organic carbonate-based non aqueous aprotic electrolytes are employed.
Although given as state of the art electrolytes, they display several disadvantages (e.g., moderate ionic
conductivity and low flash points) [9–12]. To further advance state of the art battery electrolytes, many
solvent classes were comprehensively investigated to replace organic carbonates [9,13–24]. Nitriles
and other cyano-compounds display high ionic conductivity as well as low temperature cycling
performance [25–34]. Nevertheless, many examples of this class of compounds are known for being
incompatible with metallic lithium and not able to form an effective solid electrolyte interphase (SEI)
on graphite [35–40]. For this reason, the presence of SEI forming electrolyte additive(s) is inevitably
required to enable their application in graphite based LIBs [41].

In the case of organic carbonate-based electrolytes, ethylene carbonate (EC) is typically involved in
the formation of the SEI on graphite in the first charge/discharge cycles [42]. In addition to EC [43,44],
other SEI forming agents on graphite were reported in the literature, e.g., lithium difluoro-(oxalate)borate
(LiDFOB), vinylene carbonate (VC) or fluoroethylene carbonate (FEC) [45–53] and many more. Among
them, VC and FEC are preferred as SEI additives on graphite anodes for organic carbonate-based
electrolytes [9,13].
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In this contribution, butyronitrile (BN)-based electrolytes containing EC, FEC or both as
co-solvents/functional additives are considered for fast charging application in lithium-nickel-
manganese-cobalt-oxide (NMC)/graphite cells. The investigations were mainly performed in full cell
setup. The optimum BN:EC:FEC solvent/co-solvent-functional additive ratio was investigated in terms
of long-term cycling and C-rate performance in NMC/graphite cells. The obtained electrochemical
results were correlated to the surface analysis of the graphite electrodes via XPS measurements.

2. Experimental Section

2.1. Electrolyte Formulation

All considered electrolytes were formulated using volume percent (vol.%) in an argon-filled
glovebox (MBRAUN, Garching, Germany) with a water and oxygen content below 0.1 ppm.
BN 99% (MERCK, Darmstadt, Germany), lithium hexafluorophosphate (LiPF6, BASF, battery grade,
Ludwigshafen, Germany), FEC (BASF, battery grade, Ludwigshafen, Germany) and EC 99.8%
anhydrous (MERCK, Darmstadt, Germany) were used as received. As reference electrolyte, 1M
LiPF6 in EC:DMC (1:1 wt.%) (LP30, BASF, battery grade, Ludwigshafen, Germany) was used.

2.2. Preparation of T44 Graphite and Lithium Manganese Oxide Electrodes

The composition of graphite electrodes was as follows: 87 wt.% T44 graphite (Imerys, Paris,
France) 8 wt.% polyvinylidene difluoride (PVdF, Arkema, Colombes, France) and 5 wt.% conductive
additive Super C65 (Imerys, Paris, France). T44 graphite was used as the active material due to its
high BET surface area, leading to a pronounced reduction of the electrolyte [54] The LiMn2O4 (LMO)
electrodes were composed of 80 wt.% LMO (Toda, Hiroshima, Japan), 10 wt.% PVdF and 10 wt.% Super
C65. In the fabrication process of the electrodes, PVdF was dissolved in N, N-dimethylformamide 99.8%
anhydrous (DMF, Alfa Aesar, Haverhill, MA, USA). Subsequently, conductive additive (Super C65) and
active material (T44 or LMO) were added to the solution and mixed with a dissolver. The suspension
was thereafter coated with a special film applicator, on a copper foil (negative electrodes; T44; 120 μm
wet thickness) and on aluminum foil (positive electrodes; LMO; 100 μm wet thickness). The coated
foils were dried in an oven (Binder, Tuttlingen, Germany) at 80 ◦C overnight. The obtained electrodes
were cut with a punching tool (Hohsen Corp. Osaka, Japan) into a diameter of 12 mm and thereafter
dried at 120 ◦C in vacuum for 24 h in a Buchi Glass Oven 585 with a rotary vane pump vacuum
(Büchi, Flawil, Switzerland). After weighting (Sartorius laboratory balance; Sartorius, Göttingen,
Germany), the resulting electrodes had an active mass loading between 2.5 and 3 mg cm−2 [53]. For the
investigations in the full-cell setup, balanced NMC111 (Litarion, Kamenz, Germany) and graphite
electrodes (Litarion, Kamenz, Germany) both 12 mm diameter, were used.

2.3. Electrochemical Measurements

2.3.1. Cell Set-Up

The electrochemical measurements were performed in a two electrode, coin cell (2032) (Hohsen
Corp. Osaka, Japan), setup as well as in three-electrode T-cell setup (Swagelok® Solon, OH, USA).
The NMC was used as the working electrode (WE), graphite as the counter electrode (CE), whereas
lithium foil (Albemarle, Charlotte, NC, USA) was taken as the reference electrode (RE).

2.3.2. Linear Sweep Voltammetry Measurements

The electrochemical stability window of the considered BN-based electrolytes was determined by
means of linear sweep voltammetry (LSV) using a VMP3 potentiostat (Bio-Logic, Seyssinet-Pariset,
France). A lithium manganese oxide (LMO) based electrode was used as WE, whereas lithium foil
was used as the CE and RE. The measurements were performed in the potential range between the
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open circuit potential (OCP) and 5.0 V vs. Li/Li +, using a scan rate of 100 μV s−1 at room temperature
(20 ◦C).

2.3.3. Cyclic Voltammetry Measurements

Cyclic voltammetry (CV) measurements were carried out at room temperature, using a Bio-Logic
VMP3 potentiostat, in the potential range from 0.02–2.00 V vs. Li/Li+. The cells were cycled with a scan
rate of 20 μV s−1. T44 graphite was used as WE. Lithium foil was used as the CE and RE.

2.3.4. Galvanostatic Measurements

Measurements were carried out at 20 ◦C by means of battery cycler (MACCOR Series 4000, Tulsa,
OK, USA). The cathode limited NMC/graphite cells (20% capacity-oversized anode) were cycled for
five formation cycles at 0.1C in a voltage range between 3.00–4.30 V. After the formation sequence, cells
were cycled with a charge and discharge rate of 372 mA g−1 (1C). For the C-rate evaluation, C-rate of the
charge step, the discharge step and of both the charge and the discharge steps was always altered after
five cycles in the following manner: five cycles with a C-rate of 1C followed by a C-rate of 0.2C, 1C, 2C,
5C, 10C, 15C, 20C followed by 30 cycles with a C-rate of 1C. During the performance assessment of the
charge behavior, the C-rate of the charge step was altered, and the C-rate of the discharge step was set
to 1C. The performance assessment was based on the discharge capacity. In the discharge performance
evaluation, the C-rate of the discharge step was altered, and the C-rate of the charge step was set to 1C.
In the charge/discharge performance rating, the C-rate of the charge step as well as the C-rate of the
discharge step were altered in afore mentioned way. During the 5C performance evaluation, the C-rate
was set to 1C after the formation sequence for 10 cycles followed by 95 charge/discharge cycles with 5C
for each charge and discharge step. During the long-time cycling evaluation, the C-rate of the charge
and discharge step was set to 1C after the formation procedure. Furthermore, a current-limited CV
step of 0.05C was introduced to the galvanostatic cycling procedure, for the 1000 cycle measurement.

2.4. Conductivity Measurements

AC impedance measurements were used to determine the conductivity of the considered BN-based
electrolyte formulations. All measurements were carried out on a Solartron 1260A (AMETEK, Berwyn,
PA, USA) impedance gain phase analyzer, connected to a Solartron 1287A (AMETEK, Berwyn, PA,
USA) potentiostat using a customized cell having two stainless steel disk-electrodes. A frequency range
from 1 kHz to 1 MHz using an AC amplitude of 20 mV was applied to the cell for each temperature
(−40 to 60 ◦C), which was regulated via a climate chamber.

2.5. X-ray Photoelectron Spectroscopy (XPS) Analysis

For the XPS measurements, an AXIS Ultra DLD (Kratos, Shimadzu Corporation, Kyoto, Japan) was
used. An area of 300 μm × 700 μm was irradiated using a filament voltage of 12 kV, an emission current
of 10 mA and a pass energy of 20 eV. The obtained spectra were calibrated against the adventitious
carbon signal at 284.5 eV. For the XPS sputter depth profiling measurements a sputter crater diameter
of 1.1 mm, an emission current of 8 mA, and a filament voltage of 0.5 kV as well as a pass energy of
40 eV and a 110 μm aperture were applied. The fitting of the resulted spectra was performed with the
help of CasaXPS.

3. Results and Discussion

Nitrile-based electrolytes are known to deliver higher ionic conductivity values compared to the
state of the art organic carbonate-based counterparts (Figure 1) [55]. This solvent class is particularly
interesting when it comes to fast charging behavior of LIBs. Having in mind that BN is not stable
against metallic lithium or graphite, a SEI-forming co-solvent was added to the BN-based electrolyte.
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With this in line, 1M LiPF6 in BN:EC (1:1) as well as 1M LiPF6 in BN:FEC (1:1) electrolyte formulations
were compared with the 1M LiPF6 in EC:DMC (1:1) electrolyte, taken as reference.

Figure 1. Temperature dependent conductivity measurements of 1M LiPF6 in EC:DMC (1:1), 1M LiPF6

in BN:FEC (1:1) and 1M LiPF6 in BN:EC (1:1), in the temperature range from −40 to 60 ◦C.

When using EC as co-solvent, the BN-based electrolyte delivers higher conductivity values
compared to the 1M LiPF6 in EC:DMC (1:1) electrolyte (Figure 1). Especially at low temperature
(0 ◦C), the conductivity of the considered BN:EC-based electrolyte is at least 32% higher (7.69 mS/cm)
compared to the organic carbonate-based counterpart (5.83 mS/cm). Substitution of EC with FEC leads
to a decreased conductivity (from 11.80 mS/cm to 9.16 mS/cm) at 20 ◦C. In the temperature range of
20 ◦C to 60 ◦C, the conductivity of 1M LiPF6 in EC:DMC (1:1) is equal to the conductivity values of the
1M LiPF6 in BN:FEC (1:1) electrolyte. In contrast to the high conductivity of the BN:EC mixture, the
conductivity of the BN:FEC mixture was shown to be quite poor. The high conductivity of the BN:EC
mixture-based electrolytes makes them suitable for fast charging (>1C).

The conductivity values of the investigated electrolytes can be explained by means of relevant
physicochemical properties of the used solvents. The conductivity is related to the viscosity and to the
relative permittivity of the electrolyte formulation. The ion mobility is linked to the viscosity whereas
the salt dissociation capability is related to the relative permittivity. To obtain a high conductivity,
the viscosity of the electrolyte formulation should be low, and the relative permittivity must be high
enough to ensure a sufficient dissolution of the conducting salt.

To determine the oxidative stability of the BN-based electrolytes, compared to the reference
electrolyte, corresponding voltammograms were recorded using LMO as WE (Figure 2). A content of
50% of FEC was chosen to overcome the instability of nitriles towards metallic lithium and to ensure
the passivation of the metallic lithium [13,61]. Whereas with organic carbonate-based electrolyte Li
metal is stable, [62] with an EC content of only 50%, in the mixture the degradation of the electrolyte
could not be inhibited. Therefore, EC:BN mixtures could not be investigated in combination with
lithium metal. Nevertheless, this mixture should display the same oxidative stability (as confirmed by
later full cell experiments). With 1M LiPF6 in EC:DMC (1:1) as reference electrolyte, the maxima of the
de-insertion peaks of LMO are positioned at. 4.05 V vs. Li/Li+ and 4.16 V vs. Li/Li+ [63]. In this setup,
the reference electrolyte was found to be electrochemically stable up to 4.90 V vs. Li/Li+ [64].

Compared to the reference electrolyte, the voltammogram of the cell containing 1M LiPF6 in
BN:FEC (1:1) displays de-insertion peak maxima of LMO at 4.05 V vs. Li/Li+ and 4.19 V vs. Li/Li+.
This electrolyte formulation shows electrochemical stability up to 4.50 V vs. Li/Li+, which is much
higher compared to other literature known nitriles [65]. Furthermore, this result fits well with literature
showing known density functional theory (DFT) calculations [55]. This behavior makes the combination
of BN-based electrolytes with cathode materials, such as lithium nickel cobalt aluminum oxide (NCA)
and NMC possible.
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Figure 2. Linear sweep voltammograms of cells containing 1M LiPF6 in BN:FEC (1:1) and 1M LiPF6 in
EC:DMC (1:1) (wt.%), LMO as WE, and Li as CE and RE, at scan rate of 100 μV s−1 at room temperature.

Cyclic voltammetry measurements in T44 graphite/lithium cells containing 1M LiPF6 in various
BN:FEC solvent/co-solvent ratios were performed to determine the reductive stability of the considered
electrolyte formulations vs. the anode (Figure 3).

The decomposition of FEC starts at a potential of 1.60 V vs. Li/Li+, reaching the peak maximum
at a potential value of 1.50 V vs. Li/Li+ (Figure 3a–d). Due to the SEI formation in presence of FEC,
the decomposition of the 1M LiPF6 in BN:FEC (1:1) (Figure 3a), 1M LiPF6 in BN:FEC (6:4) (Figure 3b),
1M LiPF6 in BN:FEC (7:3) (Figure 3c), 1M LiPF6 in BN:FEC (8:2) (Figure 3d) electrolyte formulations
are inhibited, thus leading to the reversible intercalation and deintercalation of lithium ions into the
graphite host structure, as indicated by the presence of the corresponding peaks (starting at a potential
of 0.30 V vs. Li/Li+). Compared to the aforementioned electrolyte formulations, 1M LiPF6 in BN:FEC
(9:1) electrolyte (Figure 3e) is not able to form an effective SEI on graphite and results in a severe
decomposition. As a consequence, no intercalation/deintercalation steps take place. The amount of
FEC seems not to be enough to protect the BN against decomposition on both T44 graphite and lithium
electrode. Compared to FEC, the decomposition of in the 1M LiPF6 in EC:DMC (1:1) (Figure 3f) mixture
starts at 0.9 V vs. Li/Li+ and the peak maximum is reached at 0.80 V vs. Li/Li+.

To prove the fast charging ability of the NMC/graphite cells containing afore mentioned BN-based
electrolyte formulations, a C-rate evaluation up to 5C was performed, starting with five formation
cycles at 0.1C. After the formation, 10 cycles at 1.0C were conducted, followed by 95 charge/discharge
cycles with a C-rate of 5C. The obtained results are shown in Figure 4. As depicted in Figure 4a, the
NMC/graphite cell containing 1M LiPF6 in BN:EC (1:1) electrolyte, reaches a Coulombic efficiency of
87% in the first cycle (see Meister et al. for the meanings of efficiencies) [66]. The specific discharge
capacity amounts to 176 mAh/g with a C-rate of 0.1 C in the first five cycles, whereas in the consecutive
10 charge/discharge cycles, a specific discharge capacity of 153 mAh/g with a Coulombic efficiency
of 99% is achieved. After 15 cycles, the C-rate evaluation was started with a C-rate of 5C for each
charge and discharge step for the consecutive 95 charge/discharge cycles. The specific discharge
capacity displays a negligible fading and drops from 76 mAh/g in the 30th cycle to 68 mAh/g in
the 110th cycle. The Coulombic efficiency drop in the 6th and 16th cycle is related to the change
of the C-rate and observed in each chart in Figure 4. The cell containing 1M LiPF6 in BN:EC (7:3)
+ 1% FEC electrolyte formulation displays a first cycle Coulombic efficiency of 87%, as illustrated
in Figure 4b. The specific discharge capacity amounts to 177 mAh/g for each cycle with a C-rate of
0.1C. A specific discharge capacity of 155 mAh/g with a Coulombic efficiency of 99% is reached in the
following 10 charge/discharge cycles. In the C-rate evaluation, the specific discharge capacity shows
a notable fading and drops from 93 mAh/g in cycle 30 to 68 mAh/g in cycle 110. The cell chemistry
outlined in Figure 4c comprises of 1M LiPF6 in BN:EC (9:1) + 3% FEC electrolyte. The specific discharge
capacity amounts to 176 mAh/g in the first five cycles using a C-rate of 0.1C, whereas the first cycle

447



Energies 2019, 12, 2869

Coulombic efficiency amounts to 86%. Unlike other considered electrolyte formulations displayed in
Figure 4, 99% Coulombic efficiency is not reached in the second but in the third cycle. The specific
discharge capacity in the consecutive 10 charge/discharge cycles amounts to 155 mAh/g. During the
5C sequence, the capacity drops down to 105 mAh/g in the 30th cycle and decreases to 100 mAh/g in
the 110th cycle, without a substantial fading. The cell containing 1M LiPF6 in EC:DMC (1:1) electrolyte
formulation, (Figure 4d) displays a first Coulombic efficiency of 87%. The specific discharge capacity
amounts to 176 mAh/g for each cycle with a C-rate of 0.1 C. The following 10 charge/discharge cycles
display a specific discharge capacity of 155 mAh/g with a Coulombic efficiency of 99%. In the C-rate
evaluation the specific discharge capacity drops from 67 mAh/g in the 30th cycle to 64 mAh/g in the
110th cycle. A comparison between the 1M LiPF6 in BN:EC (9:1) + 3% FEC and the reference electrolyte
indicates a similar cycling performance at C-rates up to 1C and a superior higher performance of
BN-based electrolyte at 5C. During cycling at 5C, the specific discharge capacity is decreased by 5%
from 105 mAh/g to 100 mAh/g comparable to 4% with the reference electrolyte. In addition, the average
specific discharge capacity at 5C is ≈ 103 mAh/g compared to ≈ 66 mAh/g for the reference electrolyte.
The deviation amounts to 37 mAh/g (56%).

Figure 3. Cyclic voltammograms of T44 graphite/lithium cells containing 1M LiPF6 in (a) BN:FEC
(1:1), (b) BN:FEC (6:4), (c) BN:FEC (7:3), (d) BN:FEC (8:2), (e) BN:FEC (9:1) and (f) EC:DMC (1:1) as
electrolyte formulation, in the potential range between 0.02–2.00 V vs. Li/Li+, at scan rate of 20 μV s−1;
insert shows the magnification of the reductive decomposition peak of fluoroethylene carbonate (FEC)
at 1.5 V vs. Li/Li+.
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Figure 4. C-rate evaluation of the NMC/graphite cells containing (a) 1M LiPF6 in BN:EC (1:1), (b) 1M
LiPF6 in BN:EC (7:3) + 1% FEC, (c) 1M LiPF6 in BN:EC (9:1) + 3% FEC and (d) 1M LiPF6 in EC:DMC
(1:1) in the voltage range of 3.00–4.30 V.

The obtained results show, that NMC/graphite cells containing 1M LiPF6 in BN:EC (9:1) + 3%
FEC electrolyte display a remarkably stable cycling behavior at 5C. In addition, a C-rate evaluation,
in NMC/graphite cells, up to 20C was carried out. Figure 5 shows the C-rate evaluation of 1M LiPF6

in BN:EC (9:1) + 3% FEC compared to the reference organic carbonate-based 1M LiPF6 in EC:DMC
(1:1) electrolyte. Two types of C-rate evaluations were performed to determine whether the C-rate for
charge (Figure 5a,b) or the C-rate for discharge (Figure 5c,d) has a more pronounced impact on the
cycling stability of the NMC/graphite cells. In the first C-rate evaluation, the charge current is altered
from 0.1C to 20C, whereas the C-rate of the discharge step was kept constant. In the second C-rate
evaluation, the C-rate of the charge step remained constant while the C-rate of the discharge step was
changed. The C-rate evaluation started with five formation cycles at 0.1C followed by five cycles at 1C.

When comparing the overall performance of the considered NMC/graphite cells with 1M LiPF6 in
BN:EC (9:1) + 3% FEC and the 1M LiPF6 in EC:DMC (1:1) electrolytes, a better C-rate performance
is achieved for the BN-based electrolyte containing cells, as depicted in in Figure 5a. Especially at
a C-rate (charge step) of 5C and 10C, the specific discharge capacity is much higher for the BN-based
electrolyte containing cell. At low C-rates (charge step), the specific discharge capacities of both
electrolyte containing cells are quite similar. At 0.1C and 0.2C, the specific discharge capacity of the
BN-based electrolyte containing cell has a value of 174 mAh/g and 160 mAh/g, respectively. On the
other hand, the organic carbonate-based electrolyte containing cell delivers a specific discharge capacity
of 172 mAh/g at 0.1 C and 154 mAh/g at 0.2C, which is nearly similar to the cell containing 1M LiPF6

in BN:EC (9:1) + 3% FEC. At 5C and 10C, the better electrochemical performance of the BN-based
electrolyte containing cell becomes clear, as a discharge capacity of 125 mAh/g is reached, compared
to the 82 mAh/g for the organic carbonate-based counterpart. Even though the specific discharge
capacity of the BN-based cell is not constant at 10C, the specific discharge capacity value is 62 mAh/g,
is higher compared to the 21 mAh/g obtained in the cell with the organic carbonate-based electrolyte.
At a C-rate (charge step) of 20C, the BN-based electrolyte containing cell delivers a specific capacity
of 8 mAh/g. The decrease of C-rate to 1C results in a stable cycling performance for both considered
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cell chemistries. Nevertheless, the cell containing BN-based formulation has a slightly higher specific
discharge capacity. The corresponding Coulombic efficiency values are depicted in Figure 5b.

Figure 5. Cycling profiles and Coulombic efficiencies of the NMC/graphite cells containing 1M LiPF6

in BN:EC (9:1) + 3% FEC and 1M LiPF6 in EC:DMC (1:1) electrolyte formulations cycled in a voltage
range of 3.00–4.30 V using a C-rate procedure (a,b) the C-rate of the charge step is increasing while
the C-rate of discharge step stays constant at 1C and a C-rate procedure (c,d) where the C-rate of the
discharge step is increasing whereas the C-rate of the charge step stays constant at 1C.

For the C-rate (of the discharge step) performance, a similar behavior can be observed (Figure 5c).
At low C-rates (of the discharge step), the electrochemical performance of both cells is nearly similar,
whereas with increasing C-rate (discharge step), the cell with the BN-based electrolyte shows a much
better performance. At 5C, a specific discharge capacity of 135 mAh/g is achieved. Increasing the
discharge rate up to 10C, a value of 67 mAh/g is reached for the BN-based electrolyte containing
cell. On the other side, the specific discharge capacity is much lower (101 mAh/g and 29 mAh/g,
respectively) for the organic carbonate-based electrolyte containing cell. The decrease of the C-rate
(discharge step) to 1C, results in stable cycling performance for both cell chemistries. Nevertheless,
the cell containing BN-based electrolyte shows a higher specific discharge capacity (155 mAh/g vs.
144 mAh/g) at a C-rate (charge and discharge step) of one 1C after the 100th cycle. The corresponding
Coulombic efficiency values are depicted in Figure 5d.

For both C-rate (both the charge and the discharge step) evaluations, it was shown that the
cells containing a BN-based electrolyte outperform the organic carbonate-based counterpart. This
is especially observed, at 5C and 10C. Even at higher C-rates (15C and 20C), a cell containing 1M
LiPF6 in BN:EC (9:1) + 3% FEC electrolyte shows better electrochemical performance compared to
the reference organic carbonate-based electrolyte counterpart. The simultaneous charge/discharge
behavior of the considered BN-based cell and organic carbonate-based cell at different C-rates was
evaluated further. As depicted in Figure 6, a similar behavior in terms of specific discharge capacity can
be observed. An increase in the C-rate (of the charge and discharge step) results in higher difference
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between the specific discharge capacities of the cells containing BN-based electrolyte and the ones
with the organic carbonate-based electrolyte. The cell containing BN as solvent shows much better
cycling performance at higher C-rates (both charge and discharge), compared to the state-of-the-art
electrolyte containing counterpart. At 1C, a specific discharge capacity of 154 mAh/g and 150 mAh/g
for the cell containing organic carbonate-based electrolyte is achieved. By increasing the C-rate (both
the charge and the discharge step) to 2C, the specific discharge capacity reach values of 140 mAh/g and
129 mAh/g, respectively, whereas an increase in the C-rate (both the charge and the discharge step to
10C results in a specific capacity value of 42 mAh/g and 22 mAh/g, respectively. After increasing the
C-rate (both the charge and the discharge step) to 20C, the BN-based electrolyte containing cell reaches
a specific capacity of 9 mAh/g in contrast to 1 mAh/g for the state-of-the-art electrolyte containing
counterpart. After the C-rate (both the charge and the discharge step) is decreased to 1C again, both
electrolyte containing cells exhibit a stable cycling behavior (for both Coulombic efficiency as well as
specific discharge capacity). During cycling with a C-rate (both the charge and the discharge step)
of 1C, the cells deliver specific discharge capacity of 151 mAh/g in case of the BN-based electrolyte
and 148 mAh/g for the organic carbonate-based electrolyte. The corresponding Coulombic efficiency
values are depicted in Figure 6b. Table 1 summarizes the results obtained from graphs presented in
Figures 5 and 6 for the NMC/graphite cells cycled with 1M LiPF6 in BN:EC (9:1) + 3% FEC and 1M
LiPF6 in EC:DMC (1:1) electrolytes, respectively.

Figure 6. Cycling profiles (a) and Coulombic efficiencies (b) of NMC/graphite cells containing 1M
LiPF6 in BN:EC (9:1) + 3% FEC as well as 1M LiPF6 in EC:DMC (1:1), respectively as electrolyte, cycled
in the voltage range of 3.00–4.30 V.

Table 1. Summary of solvents used in this work. Physical properties are reported at 25 ◦C if not stated
otherwise [55].

Structure Compound Abbreviation η(cP) εr

Ethylene carbonate EC 1.9 a [13] 89.8 a [9]

 
Dimethyl carbonate DMC 0.59 [56] 3.12 [57]

Fluoroethylene carbonate FEC 4.1 [58] 107 [58]

 
Butyronitrile BN 0.553 [59] 20.7 [60]

a Viscosity (η) and relative permittivity (εr) values for EC are determined at 40 ◦C.
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As data listed in Table 2 show, the cells containing BN-based electrolytes deliver higher specific
capacity values at higher C-rate compared to their state-of-the-art electrolyte counterparts. The C-rate
(discharge step) evaluation setup leads to higher specific discharge capacities compared to the other
two C-rate evaluations. This might be explained on the basis of the intercalation and deintercalation
steps on graphite: the deintercalation process for graphite is always favored therefore, higher discharge
capacities can be reached for both electrolytes [57]. Based on the obtained results, the main use for the
BN-based electrolyte formulation would be in applications with high demands to power, fast charge
ability or even both.

Table 2. Selected specific discharge capacities for the cells cycled with the BN-based electrolyte (cell a)
and 1M LiPF6 in EC:DMC (1:1) (cell b), respectively.

C-Rate

C-Rate Performance
(Charge) Specific Capacity

(mAh/g)

C-Rate Performance
(Discharge) Specific Capacity

(mAh/g)

C-Rate Performance
(Charge/Discharge) Specific

Capacity (mAh/g)

Cell a Cell b Cell a Cell b Cell a Cell b

0.1C 176 172 177 174 175 177
1C 152 145 154 149 154 150
2C 144 133 148 139 140 129
5C 125 84 134 99 108 63
10C 62 23 68 31 42 22
20C 9 2 18 15 9 1

As BN:EC (9:1) + 3% FEC electrolyte containing cells show remarkable C-rate performance,
long-time cycling experiments were conducted to enable deeper characterization of the electrochemical
behavior of the considered cell chemistry. In Figure 7, two different long-term cycling measurements
(1000 charge/discharge cycles) were performed for the BN-based electrolyte containing NMC/graphite
cell as well as the state-of-the-art electrolyte containing counterpart.

The afore mentioned C-rate evaluation was performed without using a constant voltage (CV)
step after the charge step. A CV step is typically used to enhance the capacity of the graphite slightly,
making sure, that the graphite is fully lithiated [67].

The long-time cycling measurements depicted in Figure 7 show that, without CV step, the long
term cycling performance of the 1M LiPF6 in BN:EC (9:1) + 3% FEC containing cells (Figure 7c) is
comparable to the state of the art electrolyte based on 1M LiPF6 in EC:DMC (1:1) cell counterparts, as
depicted in Figure 7a. The 1st cycle Coulombic efficiency of the cell containing 1M LiPF6 in EC:DMC
(1:1) electrolyte (87%) matches the Coulombic efficiency resulting with the 1M LiPF6 in BN:EC (9:1) +
3% FEC electrolyte (87% Coulombic efficiency). Ninety-nine percent Coulombic efficiency is reached
in the second cycle for the state-of-the-art electrolyte as well as for the BN-based counterpart. From
this point onwards, the Coulombic efficiency values of both cells containing considered electrolytes are
nearly similar, amounting to ≈99% during the long-term cycling performance. In the initial cycles,
in which SEI formation takes place, a specific discharge capacity of 177 mAh/g is reached for the cell
containing BN-based electrolyte, whereas the one with the EC:DMC-based electrolyte shows a specific
discharge capacity of 173 mAh/g. After the initial cycles (five cycles with 0.1C), the cells were cycled
with 1C until the 1000th charge/discharge cycle. For both cell chemistries, a stable long-term cycling is
observed, with an absence of strong fading in capacity. In the 10th cycle, a specific discharge capacity
of 155 mAh/g is reached and decreases slightly to 129 mAh/g in the last (1000th) cycle, for the cell with
1M LiPF6 in BN:EC (9:1) + 3% FEC as electrolyte. For the cell containing 1M LiPF6 in EC:DMC (1:1) as
electrolyte, a specific discharge capacity of 145 mAh/g in the 10th cycle and 135 mAh/g in the 1000th
cycle is reached. Comparing the 10th cycle with the 1000th cycle, both electrolytes reach over 80% of the
initial capacity, meeting the automotive requirements (80% state of health after 1000 charge/discharge
cycles).
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Figure 7. Long-term cycling profiles of the NMC/T44graphite cells containing electrolyte formulations:
(a) 1M LiPF6 in EC:DMC (1:1) without cyclic voltammetry (CV) step (cell a), (b) 1M LiPF6 in EC:DMC
(1:1) including CV step (cell b), (c) 1M LiPF6 in BN:EC (9:1) + 3% FEC without CV step (cell c), (d) 1M
LiPF6 in BN:EC (9:1) + 3% FEC including CV step (cell d) in the voltage range of 3.00–4.30 V.

For the long-term evaluations comprising a current-limited constant voltage step the results are
different. The long-term cycling performance of the 1M LiPF6 in BN:EC (9:1) + 3% FEC (Figure 7d) is
decreased compared to the state-of-the-art electrolyte-based cell depicted in Figure 7b. The 1st cycle
Coulombic efficiency of the 1M LiPF6 in EC:DMC (1:1) electrolyte (87%) containing cell is similar
to the Coulombic efficiency obtained for the 1M LiPF6 in BN:EC (9:1) + 3% FEC electrolyte (86%
Coulombic efficiency) based counterpart. The Coulombic efficiency of 99% for the state-of-the-art
electrolyte containing cell is reached in the second cycle. For the BN-based electrolyte containing
cell, a Coulombic efficiency amounts to o 99% only in the 4th cycle. From this point onwards, the
Coulombic efficiency values of both electrolyte containing cells are nearly similar, >99% prolong the
long-term cycling. During the initial cycles, a specific discharge capacity of 174 mAh/g is reached
for the BN-based electrolyte containing cell, whereas the one with the EC:DMC-based electrolytes
displays a specific discharge capacity of 175 mAh/g. After the initial cycles (five charge/discharge
cycles with 0.1C), the cells were cycled at 1C until the 1000th cycle. Both cells passed the long-term
cycling procedure, thus indicating a good cycling performance. However, a slight fading of the cell
with the BN-based electrolyte (Figure 7d) is noticeable. In the 10th cycle, a specific discharge capacity
of 161 mAh/g is reached and decreases to 100 mAh/g in the 1000th cycle, for the cell with 1M LiPF6 in
BN:EC (9:1) + 3% FEC as electrolyte. For the cell containing 1M LiPF6 in EC:DMC (1:1) as electrolyte,
a specific discharge capacity of 159 mAh/g in the 10th cycle and 139 mAh/g in the 1000th cycle is
reached. Comparing the 10th cycle with the 1000th cycle only the state of the art electrolyte has reached
over 80% of the initial capacity, meeting the automotive requirements [68]. Table 3 summarizes afore
mentioned cycling performance and comperes both cycling procedures (with and without CV step).

The capacity retention values show, that a CV step deteriorates the electrochemical performance
of the NMC/graphite cells. The same effect is observed with the reference electrolyte containing cell
however, the effect is less pronounced. This outcome is explained by the time at which the cells
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remain at the cut-off voltage. For the cells cycled with a CV step, this duration is much larger and
is leading to a pronounced degradation (shorter lifespan) of these cells. To correlate the obtained
results with the surface chemistry of electrodes containing BN-based electrolyte, XPS sputter depth
profiling of graphite electrodes was performed, to prove the stability of the electrolyte towards graphite.
The electrochemical decomposition of considered BN-based electrolyte formulations on the graphite
surface was analyzed by means of XPS (see Figure 8).

Table 3. 1st Coulombic efficiency, discharge capacity as well as capacity retention between the 10th and
1000th cycle for the reference electrolyte (cells a/b) and the nitrile-based electrolyte formulation (cells
c/d) containing cells.

Selected Parameters

Cell a Cell b (CV) Cell c Cell d (CV)

(Reference
Electrolyte)

(Reference
Electrolyte)

(BN-Based
Electrolyte)

(BN-Based
Electrolyte)

1st Coulombic efficiency (%) 87 87 87 86
Discharge capacity in
the10th cycle (mAh/g) 145 159 155 161

Discharge capacity in the
1000th cycle (mAh/g) 135 139 129 100

Capacity retention (%) 93 87 83 62

Figure 8. F 1s and N 1s core spectra of graphite electrodes, after five charge/discharge cycles at 0.1C in
a NMC/graphite cells with different amounts of FEC in the electrolyte: (a,b) 1M LiPF6 in BN, (c,d) 1M
LiPF6 in BN + 5% FEC, (e,f) 1M LiPF6 in BN:EC (9:1) + 2% FEC, (g,h), 1M LiPF6 in BN:EC (9:1) + 3%
FEC and (i,j) pristine electrode.

Figure 8 depicts the XPS F 1s and N 1s core spectra of graphite electrode-based cells cycled in
presence of a,b) 1M LiPF6 in BN; c,d) 1M LiPF6 in BN with 5% FEC; e,f) 1M LiPF6 in BN:EC (9:1) + 2%
FEC; as well as g,h) 1M LiPF6 in BN:EC (9:1) + 3% FEC as electrolyte. As reference spectra, the XPS F
1s and N 1s core spectra of a pristine graphite electrode (Figure 8i,j) are shown. In the F 1s spectra
(Figure 8i), a signal located at 687 eV is observable, which can be attributed to the polyvinylidene
difluoride (PVdF) binder [69]. The decrease of the peak intensity during sputtering is related to
the decomposition of the binder during XPS measurement [70]. On the other hand, no nitrogen
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signal was observed on the pristine electrode surface (Figure 8j). In the F 1s spectra of the cycled
electrodes (Figure 8a,c,e,g), an additional signal attributed to lithium fluoride (LiF), formed due to the
decomposition of the conducting salt LiPF6, occurs at 685 eV. As depicted in Figure 8a,c the amount
of LiF remains unaffected relatively to the intensity of the PVdF peak with increasing the sputter
time. This could be explained by a limited degradation of LiPF6 in the BN-based electrolytes without
EC. Due to the severe decomposition of BN, the corresponding peaks overlap the peaks assigned to
the decomposition of LiPF6. In addition, in the N1s core spectra of the electrodes containing pure
BN-based electrolyte (Figure 8b,d) a signal at 399 eV is observed, attributed to the decomposition of the
nitrile during cycling. In the absence of BN decomposition, the peak of LiF increases relatively to the
PVdF peak with increasing the sputter time (Figure 8e,g), as LiF is the main component of the inorganic
part of the SEI [70]. The increase of the LiF peak indicates absence of decomposition, meaning that
a SEI was formed on graphite surface. Nevertheless, the N 1s core spectra of the graphite electrode
cycled with 1M LiPF6 in BN:EC (9:1) + 2% FEC, exhibit a peak 399 eV related to BN decomposition,
thus indicating that the formed SEI does not fully prevent the decomposition of the nitrile. By adding
3% FEC to the BN:EC (9:1) electrolyte formulation, the peak in the corresponding N1s core spectrum at
399 eV disappears (Figure 8h), thus indicating an effective SEI formation, which prevents BN against
decomposition. Table 4 lists the corresponding surface concentration given in arbitrary units (a.u.).

Table 4. Surface concentration on graphite in arbitrary unit (a.u.) of the performed XPS measurements
using different BN-based electrolytes.

Pure BN-Based Electrolyte: Surface Concentration (a.u.)

Sputter time 0 s 60 s 120 s 600 s

LIF 2.13 (0.25) 0.99 (0.71) 1.28 (0.05) 1.84 (0.66)
N 1 s 10.74 (0.98) 10.06 (1.24) 8.69 (2.07) 9.14 (0.38)

BN + 5%FEC based electrolyte: surface concentration (a.u.)

Sputter time 0 s 60 s 120 s 600 s

LIF 3.80 (1.02) 2.14 (2.43) 1.26 (0.45) 4.00 (0.53)
N 1 s 11.83 (0.58) 12.26 (0.99) 9.37 (0.32) 9.78 (0.73)

BN:EC (9:1) + 2%FEC based electrolyte: surface concentration (a.u.)

Sputter time 0 s 60 s 120 s 600 s

LIF 4.37 (0.79) 7.88 (0.22) 8.79 (0.28) 9.90 (0.16)
N 1 s 3.53 (0.35) 3.71 (0.28) 3.22 (0.11) 3.28 (0.21)

BN:EC (9:1) + 3%FEC based electrolyte: surface concentration (a.u.)

Sputter time 0 s 60 s 120 s 600 s

LIF 12.15 (0.47) 16.49 (1.03) 18.40 (1.16) 20.61 (0.52)
N 1 s 0.44 (0.11) 0.38 (0.11) 0.27 (0.30) 0.25 (0.25)

Reference electrode (pristine): surface concentration (a.u.)

Sputter time 0 s 60 s 120 s 600 s

LIF 0.86 (0.84) 2.33 (0.73) 1.52 (1.47) 1.32 (0.93)
N 1 s 0 (0) 0 (1.12) 0 (0) 0 (0)

For the electrodes with pure BN-based electrolyte, as well as for the electrolyte formulation
containing 5% FEC, only small amounts of LiF were detected. The origin of the spectra can be dedicated
to the decomposition of small amounts of the conducting salt LiPF6. The N 1s surface concentration
for both electrolytes indicates a severe decomposition of BN. Without formation of an effective SEI,
an ongoing decomposition of the solvent (BN) takes place. For the electrolyte formulations BN:EC (9:1)
with addition of 2% and 3% FEC respectively, the amount of LiF increases during sputtering [70,71].
The intensity of the N 1s signal decreases for both electrolytes corresponding to a less pronounced
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decomposition of the BN-solvent. However, regarding the N 1s surface concentration, the addition of
2% FEC is not enough for the formation of an effective SEI on graphite. The N 1s surface concentration
of the formulation containing 3% FEC is comparable to the N 1s surface concentration of the reference
electrode, however, both do not show a significant signal.

4. Conclusions

With two successfully tuned BN-based electrolyte formulations (one used in half-cell and the
other in full-cell configuration), the decomposition on both lithium metal and graphite, could be
prevented. Both electrolytes were comparable or even better compared to the state-of-the-art organic
carbonate-based electrolyte. In half cell experiments, 1M LiPF6 in BN:FEC (1:1) containing cell showed
the most promising results. EC was compared to FEC, due to its lower passivation capability towards
metallic lithium, not suitable to protect BN against decomposition. Nevertheless, 1M LiPF6 in BN:FEC
formulation showed lower ion conductivity values compared to BN:EC counterparts. Especially at
low temperatures around 0 ◦C, the conductivity of the BN:EC-based electrolytes was at least 32%
higher (7.69 mS/cm) compared to the BN:FEC-based and the organic carbonate-based electrolyte
(5.83 mS/cm). Since the main focus of this paper is related to the possible the automotive applicability
of BN, investigations in NMC/graphite cells containing BN:EC-based electrolytes were studied in detail.
In each investigation, the cell containing 1M LiPF6 in BN:EC (9:1) + 3% FEC showed a superior high
performance compared to the organic-carbonate-based counterpart. To match automotive requirements,
a C-rate evaluation of 5C was performed. It was shown, that the average specific discharge capacity at
5C amounted to≈103 mAh/g for the investigated BN-based electrolyte containing cell, which was nearly
twice the capacity of the cell with the reference electrolyte (≈66 mAh/g). Further, a C-rate evaluation
up to 20C was performed. The cells containing investigated BN-based electrolyte formulation showed
a superior C-rate performance compared to the organic state of the art counterpart. In addition, the
CV step in the CCCV measurements, typically used in case of organic carbonate-based electrolyte
containing cells, was investigated. It was found out, that a CV step increases the charge/discharge
capacity at the beginning of the cycling procedure so that more lithium ions can be intercalated
into graphite. Nevertheless, the CV step reduces the overall cycle-life of the cell as well, due to the
pronounced electrolyte degradation. In the long-term cycling experiment (Figure 7c,d) the advantage
of the CV step is lost after the 150th cycle. From the 150th cycle onwards the capacity of the cell cycled
without CV step is higher compared to the cell cycled with CV step.

XPS analysis of the NMC electrodes complements well to the electrochemical characterization
of the BN-based electrolytes, showing that a minimum amount of 3% FEC is needed to prevent the
BN-based electrolyte formulation of 1M LiPF6 in BN:EC (9:1) from decomposition on graphite in
NMC/graphite cell setup.
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Abstract: The acquisition of inductive power transfer (IPT) technology in commercial electric vehicles
(EVs) alleviates the inherent burdens of high cost, limited driving range, and long charging time.
In EV wireless charging systems using IPT, power electronic converters play a vital role to reduce
the size and cost, as well as to maximize the efficiency of the overall system. Over the past years,
significant research studies have been conducted by researchers to improve the performance of
power conversion systems including the power converter topologies and control schemes. This paper
aims to provide an overview of the existing state-of-the-art of power converter topologies for IPT
systems in EV charging applications. In this paper, the widely adopted power conversion topologies
for IPT systems are selected and their performance is compared in terms of input power factor,
input current distortion, current stress, voltage stress, power losses on the converter, and cost. The
single-stage matrix converter based IPT systems advantageously adopt the sinusoidal ripple current
(SRC) charging technique to remove the intermediate DC-link capacitors, which improves system
efficiency, power density and reduces cost. Finally, technical considerations and future opportunities
of power converters in EV wireless charging applications are discussed.

Keywords: AC–AC converters; battery chargers; electric vehicles; power conversion harmonics;
wireless power transmission

1. Introduction

The electrification of transportation has been considered as a promising solution to tackle
greenhouse gas emissions and fossil fuel depletion. To boost the market share of electric vehicles
(EVs), their inherent issues such as limited driving range, long charging time, and costly and
cumbersome energy storage systems should be resolved. Wireless charging technology can mitigate
the aforementioned issues [1–10]. Wireless power transfer (WPT) enabling transferring energy from a
source to a load without electrical contact has been extensively studied and successfully demonstrated
using various techniques, namely, acoustic power transfer (APT) [11,12], radio frequency power
transfer (RFPT) [13,14], optical power transfer (OPT) [15,16], capacitive power transfer (CPT) [17], and
inductive power transfer (IPT) [18]. However, it is well demonstrated from the literature that the IPT
technology is the most suitable for EV charging applications where the power requirement is form
few to several kW, and the air gap varies from a few centimeters to a few meters [5]. Particularly,
researchers and engineers have fitted the outcomes of the IPT to EV battery charging applications with
various commercial products and standards [19]. The IPT chargers offer with several benefits such as
safety, convenience, flexibility, weather immunity, and the possibility of range extension and battery

Energies 2020, 13, 2150; doi:10.3390/en13092150 www.mdpi.com/journal/energies461
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volume reduction [1,8,10,20,21]. The wireless chargers can be deployed in residential garages, and
office/service/shopping center parking lots for static wireless charging [22], or they can be placed at
bus stops, taxi ranks, and traffic lights to implement quasi-dynamic wireless charging [23]. Moreover,
dynamic wireless charging systems can be installed on the roads to constantly charge the EVs, in turn,
to extend the driving range and reduce the battery volume of the vehicles [24–26].

Essentially, an IPT charging system comprises an inductive coupling coil pair, compensation
networks, primary converters to generate high-frequency inputs, and a secondary rectifier to convert
AC to DC current to charge the battery. In the IPT charging systems, power electronic converters make
a significant contribution to the size and cost, and efficiency of the overall system. Typically, dual-stage
conversion (AC–DC–AC) systems have been employed to excite the IPT systems, as shown in Figure 1a.
The dual-stage converter topologies are intensively studied and widely used in industry [27–29]. The
main advantage of these topologies is that each conversion stage can be separately designed and
controlled to optimize specific performance indices. However, the presence of multiple conversion
stages and a bulk DC-link capacitor increases the cost, size, and weight of the system. In recent years,
the use of matrix converters (MCs) for feeding the IPT systems has drawn increasing attention [30–38].
MCs enable direct conversion of low-frequency AC inputs (50–60 Hz) to high-frequency outputs (up to
85 kHz) without any intermediate conversion stage; therefore, they enhance the system performance
in terms of power density, reliability, and cost [32,39]. The single-phase matrix converter-based
IPT systems remove the DC-link energy storage elements in the primary side to absorb double line
frequency ripple, thus it appears on the battery side. Sinusoidal ripple current (SRC) charging technique
reported in [40–45] allows batteries to be charged by double line frequency (100 or 120 Hz) current
with minor side effects on their performance. Therefore, matrix converter-based IPT systems can use
the sinusoidal charging technique advantageously and remove the intermediate DC-link capacitor.
The single-stage EV IPT charging system using MCs is illustrated in Figure 1b.

Figure 1. Configuration of electric vehicle (EV) inductive power transfer (IPT) systems with (a)
dual-stage power conversion and (b) single-stage power conversion. PFC, power factor correction;
EMI, electromagnetic interference.

This paper aims to provide an extensive overview of single-phase power conversion topologies
employed in static wireless charging. Then, a comprehensive performance comparison between the
conventional dual-stage (power factor correction (PFC) and full-bridge voltage source inverter (VSI))
and single-stage topologies including the buck-derived full-bridge (FB)MC and boost-derived FBMC
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in the IPT EV charging application is presented. The comparison involves the input power factor,
input current distortion, power losses, switching stress, and normalized cost, while taking into account
the requirements of Standard J2954 [19] established by the Society of Automotive Engineers (SAE).
The Standard SAE J2954 defines acceptable criteria for interoperability, electromagnetic compatibility,
electromagnetic field (EMF), minimum performance, safety, and testing for wireless charging of
light-duty electric vehicles. Table 1 shows the power classes, operating frequency, and efficiency
performance targets of the WPT systems defined in the SAE J2954. As can been seen, four wireless
power transfer (WPT) classes are defined based on the maximum input volt-amp (VA) drawn from the
grid by the primary side or ground assembly (GA) electronics. The input real power depends on the
input power factor, while the output power depends on the efficiency of the system. The SAE J2954
specifies that WPT systems should be operated at a single nominal frequency of 85 kHz. However, for
WPT systems using frequency control to compensate operating variations, their operating frequency
must be tuned in the band of 81.38 to 90.00 kHz. Finally, the improvement opportunities for each of
the IPT charging topologies are discussed in this paper.

Table 1. Wireless power transfer (WPT) power classification for light-duty electric vehicles—SAE J2954.

WPT Levels 1 2 3 4

Maximum AC input power (kVA) 3.7 7.7 11 22
Minimum target efficiency at nominal alignment (%) >85 >85 >85 To be defined (TBD)

Minimum target efficiency at offset position (%) >80 >80 >80 TBD
Operating frequency (kHz) 81.38–90 (typical 85)

2. Power Converter Topologies for Inductive Wireless Charging

In this section, an overview of front-end converter topologies for WPT applications is provided.
They can be classified into two groups, namely dual-stage and single-stage based on the power
conversion stages. The classification of single-phase converter topologies for IPT systems is shown in
Figure 2.

Figure 2. Classification of front-end converter topologies for IPT applications. FB, full-bridge; WPT,
wireless power transfer.

2.1. Dual-Stage Power Conversion

A front-end AC–DC converter is used to convert the supply AC voltage to an intermediate DC-link
voltage and to shape the input current for both PFC and harmonic reduction. A comprehensive review
for the PFC rectifiers is presented in [46,47]. For the inversion stage, a current-source inverter (CSI) or
a VSI can be employed.
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Two CSI topologies commonly used in IPT systems are push-pull, half-bridge [48–53], and
full-bridge [54,55]. Figure 3a–c shows the configuration of CSIs. The requirement of blocking
diodes and bulky inductors that increases the size and cost of the whole IPT system is one of the
major drawbacks of the CSIs. A single parallel compensating capacitor in the primary circuit is
normally used with CSIs; however, the inverter switches suffer high voltage stress in high-power
applications [48,50,52,54]. In order to overcome this drawback, a parallel-series CC compensation
circuit is introduced in [53,55]. The CSIs combined with the parallel-series CC compensation circuit
mitigates current and voltage stress on inverter switches and harmonic contents in primary coil current.

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 3. Inverter topologies: (a) push-pull, (b) half-bridge CSI, (c) full-bridge CSI, (d) buck, (e)
half-bridge VSI, and (f) full-bridge VSI.

For VSI topologies, buck, half-bridge, and full-bridge topologies shown in Figure 3d–f can be used
in the IPT systems, and they are compatible with single capacitor series, LCL, and LCCL compensation
networks [1,21,56–66]. The series compensation is simple and cost-effective. However, under light
load conditions or in the absence of the receiver, the system experiences severe instability [67,68]. LCL
or LCCL tanks overcome these issues and have a high tolerance to coil misalignments [68]. However, a
significant amount of lower-order harmonics in the output current of the VSIs connected with LCL
and LCCL compensation circuits deviates zero-phase-angle operation of the inverters, increasing
their switching losses [69]. Moreover, the inductors in LCL and LCCL compensation circuits must
be designed precisely as the effective power transfer capability is highly sensitive to the inductance
value [57,61]. Figure 4 shows the compatibility of the inverter types and primary compensation circuits
of the IPT systems. Table 2 shows the comparison of the inverter topologies regarding the component
requirement. It can be seen that the CSIs require more components than the VSIs.
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(a) (b) (c) 

  
(d) (e) 

Figure 4. Compatibility between inverter types and primary compensation circuits in IPT systems. (a)
Series C, (b) LCL, (c) LCCL, (d) parallel C, and (e) parallel-series CC.

 
(a) (b) (c) 

 
(d) (e) 

Figure 5. Single-stage conversion topologies: (a) buck matrix converter, (b) half-bridge matrix converter,
(c) full-bridge matrix converter, (d) boost-derived matrix converter, and (e) bridgeless boost converter.
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2.2. Single-Stage AC–AC Conversion

Matrix converters (MCs) are considered as a prominent candidate for powering the WPT systems
with only single-stage power conversion. Several MCs including buck [36,37], half-bridge [30,31],
and full-bridge [35] have been introduced to IPT applications in the literature. All MCs reported
in [30,31,35–37] have a buck-derived configuration, as shown in Figure 5a–c, thus line-current regulation
is compromised. In EV charging application, if a highly nonlinear diode-bridge rectifier is used at the
battery side, there will be severe line current distortion and power factor deterioration, as explained
in [70]. In [35], a secondary active full-bridge rectifier whose phase shift angle follows the line-voltage
waveform is used to shape the line current. In this topology, the primary and secondary converters must
be controlled synchronously in every switching cycle, which increases the implementation complexity.

In order to overcome the above issue, a boost-derived full-bridge MC (FBMC) compatible with
a primary parallel-series CC compensation network is proposed in [38]. The proposed converter
topology is able to shape the line current and regulate power flow through two control loops, which
are similar to those of a conventional boost converter. In [39], a single-stage topology integrating
bridgeless boost PFC converter and full-bridge VSI is proposed for IPT applications. The converter
is operated in discontinuous conduction mode, thereby, the line current control loop is eliminated.
However, in discontinuous conduction mode (DCM), the converter incurs more current stress, losses,
and electromagnetic interference (EMI) problems, which is not suitable for high-power applications.
Figure 5d and e show the configuration of boost-derived FBMC and bridgeless boost PFC converter in
IPT systems.

3. Power Control Schemes

Figure 6 shows the classification of power control schemes for IPT systems. Power control in
IPT systems can be implemented on the primary side, secondary side, or both sides. The secondary
side control is suitable for the IPT applications where multiple secondary coils are coupled to a single
primary coil. In these applications, the frequency and the magnitude of primary current are fixed,
and the power flow is controlled on the secondary side by an active rectifier or a back-end DC–DC
converter illustrated in Figure 6 for each secondary coil [30,58,59,71–74]. These topologies are normally
employed in long-power track systems where a constant track current is required to power independent
secondary coils.

Figure 6. Classification of power control schemes for IPT applications.

However, in charging applications where only one a secondary coil is coupled to a primary coil
and keeping the secondary-side configuration as simple as possible is a priority, the primary side
control is selected. The primary side control can be divided into three groups: fixed frequency, variable
frequency, and discrete energy injection. In fixed frequency control, the switching frequency of the
inverter is kept at a constant value, which is slightly different from the primary resonant frequency to
offer soft-switching operation. In order to control the power flow, the phase (phase shift control) or

467



Energies 2020, 13, 2150

the duty cycle of the inverter switches is varied [75,76]. This allows the inverters to produce output
voltage/current with variable pulse width. The other way to regulate the power flow with the fixed
switching frequency is controlling the input DC voltage of the inverter using a front-end DC–DC
converter [48]. For the variable switching frequency control scheme, the duty cycle of the gating signals
is maintained constant at 50% and the switching frequency is varied to regulate the output power [49].
However, if the operating frequency is largely different from the resonant frequency, the resonant
tank will incur a large circulating current, causing an efficiency drop in the overall system owing
to large losses in switches and the coils. Moreover, the bifurcation phenomenon must be carefully
considered in this control technique [77]. In [36], a discrete energy injection control is used for the
matrix buck converter in order to control the magnitude of the primary current. The control technique
reduces the switching frequency and enables soft switching. However, the zero-crossing detection of
primary high-frequency current that is required to ensure the converter to be operated in zero current
switching (ZCS) conditions is an implementation challenge. Moreover, current sag occurs during the
zero-crossing of its single-phase input voltage, which degrades the average power transferred. The
dual-side control is suitable for bidirectional IPT systems where power flow can be regulated in both
directions by controlling the duty cycle of the primary and secondary converters and the phase-shift
between them [56,57,78]. Table 2 shows the compatibility of power conversion topologies and control
schemes of the IPT applications.

4. Performance Comparison and Discussion

In this section, the performance of a conventional dual-stage topology and two potential
single-stage topologies including buck- and boost-derived FBMCs are compared regarding input
power quality, current stress, voltage stress, power losses, and cost.

4.1. Design Considerations

The conventional dual-stage IPT charging system is illustrated in Figure 7a. At the front end, a
conventional boost rectifier is used to shape the grid current and maintain a constant DC voltage Vdc
across DC-link capacitor Ci. As a bulky and costly inductor is required for the CSIs, an FBVSI is the
most common choice at the primary side to generate a high-frequency voltage (vp) feeding the primary
coil. A series-series (SS) compensation topology is used because it is simple and cost-effective, and its
primary compensation is independent of the coupling coefficient and load. Moreover, the efficiency of
SS compensation is high even at a low coupling coefficient [68,79]. In order to maximize the power
transfer capabilities and minimize the VA rating of the primary inverter, the resonant circuits at both
sides of the coupling are usually tuned to the same resonant frequency (ω0) equal to the switching
frequency of the inverter.

ω0 =
1√

LpCp
=

1√
LsCs

(1)

where Lp and Ls are primary and secondary coil self-inductances, respectively, and Cp and Cs are
primary and secondary tuning capacitors, respectively.

Power regulation is conducted using the phase-shift control at the primary inverter side.
Considering an ideal IPT system operating at the resonance frequency (ω0), power transferred
from the primary to the secondary side can be given by

Po =
8VdcVb

π2ω0M
sinπDp (2)

where Dp is the duty cycle of the primary voltage (vp) and M is the mutual inductance and can be
calculated as

M = k
√

LpLs (3)
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(a) 

 
(b) 

 
(c) 

Figure 7. IPT charging system fed by (a) dual-stage power converter (PFC and full-bridge VSI), (b)
buck-derived FBMC, and (c) boost-derived FBMC.

In EV wireless charging applications, the coupling coefficient k may be in the range of 0.1–0.3.
In a dual-stage topology, the major drawback is low power density owing to multiple conversion
stages and a bulky DC-link capacitor. The reduction of the number of power conversion stages can be
obtained using MCs. Figure 7b shows the IPT charging system using a buck-derived FBMC. The FBMC
constituted by four bidirectional switches can directly convert low frequency (50–60 Hz) grid voltage
to resonant frequency (85 kHz) voltage feeding the inductive coil. During the positive half cycle of
the grid voltage vg, switches Spnb (n = 1, 2, 3, 4) are turned on and switches Spna are the phase-shift
pulse-width modulation (PWM) strategy. Otherwise, during the negative half-cycle, the switches Spna

are kept on and switches Spnb are controlled by the phase-shift PWM strategy.
An active rectifier is employed in the battery side for shaping the input current. The primary

and secondary converters are synchronized in every switching cycle so that primary voltage vp is 90◦
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lagging with secondary voltage vs, and the duty cycle of the secondary voltage is controlled following
grid voltage waveform to correct input current, as shown in Figure 7b. The power transferred is
controlled by adjusting the duty cycle of the primary voltage.

Po =
4
√

2VgVb

π2ω0M
sinπDp (4)

where Vg is the root mean square (RMS) value of the grid voltage.
Although the buck-derived FBMC-based IPT charging system removes the intermediate conversion

stage, high-frequency communication is required to synchronize the PWM patterns of the primary
and secondary converters in every switching cycle, which increases the control complexity. The
boost-derived MC can solve the above issue. It is capable of correcting the grid current and regulating
power flow through two control loops, which are similar to those of a conventional boost converter.
Figure 7c shows an IPT topology fed by a boost-derived FBMC [38]. On the primary side, parallel-series
CC compensation is used to reduce voltage stress on the MC switches. The tuning capacitor Cps is
selected so as to limit the maximum peak of vp across the converter switches. It is desirable to restrict
vp to 0.5~0.7 of the rating voltage of the switches [48]. The switching scheme and controller design for
the boost-derived full-bridge matrix converter are described in [38]. Tables 3 and 4 show the passive
component design and the switching stresses of the converter components.

Table 3. Passive component design. FB, full-bridge.

Topologies Components Parameters

Dual-stage [80]

Boost inductor Li

Inductance Peak current

Li =
1

%ΔIi

V2
g

Po(max) fs

(
1−

√
2Vg

Vdc

)
ÎLi =

√
2 Po

Vg
+ ΔIi

2

Boost capacitor Ci

Capacitance Peak voltage
Ci =

1
%ΔVdc

Po
ωgV2

dc
V̂Ci = Vdc +

ΔVdc
2

Compensation capacitors Cp
and Cs

Capacitance Peak voltage
Cp = 1

ω2
0Lp

Cs =
1
ω2

0Ls

V̂Cp = 4Vb
πω2

0CpM

V̂Cs =
4Vdc
πω2

0CsM

Buck-derived
FB MC [81,82]

Compensation capacitors Cp
and Cs

Capacitance Peak voltage

Cp = 1
ω2

0Lp

Cs =
1
ω2

0Ls

V̂Cp = 4Vb
πω2

0CpM

V̂Cs =
4
√

2Vg

πω2
0CsM

Boost-derived
FB MC [38]

Boost inductor Li

Inductance Peak current

Li =

√
2Vg

2ΔIi fs
ÎLi =

√
2Po

Vg
+ ΔIi

2

Compensation capacitors
Cpp, Cps, and Cs
Note: Cps is designed to
limit the peak of primary
voltage vp, which is the
voltage stress on MC
switches.

Capacitance Peak voltage

Cs =
1
ω2

0Ls

Cpp =
Lp− 1

ω2
0Cps

ω4
0M4

R2
oeq

+ω2
0

(
Lp− 1

ω2
0Cps

)2

V̂Cs =
πPo
ω0CsVb

V̂Cpp = V̂p =

√√√√√√ (
4Vb
πM

)2
(
Lp − 1

ω2
0Cps

)2

+
(
πω0MPo

Vb

)2

V̂Cps =
4Vb

πω2
0CpsM
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Table 4. Stress on switching devices.

Topologies Components Current Stress Voltage Stress

Dual-stage

Boost switch Sb and diode Db
Peak current Break down voltage

ÎSb = ÎDb =
√

2Po
Vg

+ ΔIi
2 V̂Sb = V̂Db > Vdc +

ΔVdc
2

Primary inverter switches Spn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎSpn = 4Vb

πω0M V̂Spn > Vdc +
ΔVdc

2

Secondary rectifier diodes Dsn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎDsn = 4Vdc

πω0M V̂Dsn > Vb

Buck-derived FB MC

Primary inverter switches Spnx
(n = 1, 2, 3, 4 and x = a, b)

Peak current Break down voltage
ÎSpnx = 4Vb

πω0M V̂Spnx >
√

2Vg

Secondary rectifier switches
Ssn (n = 1, 2, 3, 4)

Peak current Break down voltage

ÎSsn =
4
√

2Vg
πω0M

V̂Ssn > Vb

Boost-derived FB MC

Primary inverter switches Spnx
(n = 1, 2, 3, 4 and x = a, b)

Peak current Break down voltage

ÎSpnx >
√

2Po
Vg

+ ΔIi
2 V̂Spnx > V̂p

Secondary rectifier diodes Dsn
(n = 1, 2, 3, 4)

Peak current Break down voltage
ÎDsn >

πPo
Vb

V̂Dsn > Vb

4.2. Performance Comparison

In this section, the performance of IPT configurations is compared in terms of input power factor,
input current distortion, current stress, voltage stress, power losses on converters, and normalized
cost. The IPT charging systems are designed in compliance with the level 1 (WPT1) of static wireless
charging standard for light-duty vehicles provided in SAE J2954 technical information report [19]
with power rating Po = 3.3 kW, operating frequency fs = 85 kHz, grid voltage Vg = 208 V, and battery
voltage Vb = 300–400 V. The parameters of the charging system with each type of power conversion
configuration are shown in Table 5. All the components are designed based on Tables 3 and 4. The
selection of components is based on their maximum current and voltage stresses. Note that available
discrete Rohm SiC MOSFETs and Schottky diodes are considered for all power conversion topologies.
Moreover, LC filters are used as interfaces between the grid and the charging systems to limit current
harmonic injection owing to the switching power converters. The LC filters are designed based on
the spectrum analysis of the input current waveforms (ii). The details of the selected components for
different power conversion stages are listed in Table 6.

Figure 8 shows the typical waveforms of IPT charging systems with different power supply
topologies. It can be seen that the absence of DC-link energy storage in MC-based topologies causes a
double line frequency fluctuation in transferred power. This results in a fluctuating charging current
as shown in Figure 8b and c. As reported in [40–44,83,84], batteries can be charged by double line
frequency (100 or 120 Hz) current with negligible side effects on their performance.
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Table 5. Specifications of IPT charging systems.

Topologies Parameter Symbol Value Unit

Dual-stage

Primary, secondary, mutual
inductance Lp, Ls, M 356, 328, 65 μH

Compensation capacitors Cp, Cs 10, 11 nF
Boost inductor Li 0.215 mH
DC-bus capacitor Ci 1540 μF
DC-bus voltage Vdc 400 V
Grid inductor Lg 0.215 mH
Grid capacitor Cg 0.78 μF
Output capacitor Co 500 μF

Buck-derived
FBMC

Primary, secondary, mutual
inductance Lp, Ls, M 111, 111, 24 μH

Compensation capacitors Cp, Cs 32, 32 nF
Grid inductor Lg 0.215 mH
Grid capacitor Cg 0.78 μF
Output capacitor Co 500 μF

Boost-derived
FBMC

Primary, secondary, mutual
inductance Lp, Ls, M 111, 111, 24 μH

Compensation capacitors Cps, Cpp, Cs 43, 115, 32 nF
Boost inductor Li 0.215 mH
Grid inductor Lg 0.036 mH
Grid capacitor Cg 0.136 μF
Output capacitor Co 500 μF

Table 6. Main components of power conversion stages.

Topologies Components Symbol Part Number Quantity

Dual-stage

Front-end rectifier diodes Dgn
* SCS240AE2C-ND 4

Boost diode Db SCS240AE2C-ND 1
Boost switch Sb SCT3060ALGC11-ND 1
Primary inverter switches Spn

* SCT3120ALHRC11-ND 4
Secondary rectifier diodes Dsn

* SCS230AE2HRC-ND 4
Boost inductor Li HF5712-561M-25AH 2 parallel
DC-bus capacitor Ci LGN2X221MELC50 7 parallel
Grid inductor Lg HF5712-561M-25AH 2 parallel
Grid capacitor Cg B32656T7394K000 2 parallel

Buck-derived
FBMC

Primary MC switches Spna, Spnb
* SCT3030ALGC11-ND 8

Secondary rectifier diodes Ssn
* SCT3060ALGC11-ND 4

Grid inductor Lg HF5712-561M-25AH 2 parallel
Grid capacitor Cg B32656T7394K000 2 parallel

Boost-derived
FBMC

Primary MC switches Spna, Spnb
* SCT2080KEC-ND 8

Secondary rectifier diodes Dsn
* SCS240AE2C-ND 4

Boost inductor Li HF5712-561M-25AH 2 parallel
Grid inductor Lg HF467-980M-25AV 2 parallel
Grid capacitor Cg B32654A1683K000 2 parallel

*n = 1, 2, 3, 4.
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(a) (b) 

 
(c) 

Figure 8. Simulation waveforms of IPT charging systems fed by (a) dual-stage power converter (PFC
and full-bridge VSI), (b) buck-derived FBMC, and (c) boost-derived FBMC.

4.2.1. Input Power Factor and Input Current Distortion

An EV charger must ensure a good grid power quality with a high power factor and low current
distortion. All three topologies provide sinusoidal grid currents with the power factor of 0.99. Figure 9a
shows total harmonic distortion (THD) of the grid current under different load conditions (20%, 50%,
and 100% of load). It can be seen that the three topologies can be preferred in order of boost-derived
FBMC, dual-stage converter, and buck-derived FBMC, regarding grid current distortion. Despite
having the identical input LC filter, the buck-derived FBMC injects higher current harmonics to the
grid than dual-stage topology, because its input current is discontinuous. The boost-derived FBMC has
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the continuous input current with ripple frequency at a twofold switching frequency, thereby gaining
the significant harmonic reduction of grid current with a smaller input filter.

 
(a) (b) 

 
(c) (d) 

Figure 9. Performance comparison of three IPT charging systems: (a) grid current total
harmonic distortion (THD), (b) switch current stress, (c) switch voltage stress, and (d)
power-conversion-stage efficiency.

4.2.2. Switching Stress

Figure 9b and c show the maximum current and voltage stress on the converter switches. Although
the parallel-series CC compensation is used, the switches of boost-derived FBMC still suffer from high
voltage stress. The buck-derived FBMC is characterized by low switch voltage stress (grid voltage
peak) and high switch current stress. The dual-stage topology exhibits the lowest switch current stress
in the primary inverter and secondary rectifier.

4.2.3. Efficiency and Loss Distribution

The losses on the conversion stages of each system are simulated and analyzed using the thermal
modules in PSIM simulation. The efficiency of the power conversion stages of each system versus
various output power is illustrated in Figure 9d. It is clear that the efficiency of the buck-derived FBMC
system is the highest (almost 98%) at full load conditions, but it decreases gradually to 93% at the light
load conditions. In contrast, the efficiency of the boost-derived FBMC system steadily increases from
92.5% to 96% when the load decreases from 100% to 20%. The dual-stage system maintains fairly high
efficiency (94~96.5%) in a wide load range.

The detailed loss distribution of the three systems is shown in Figure 10. It can be observed that
the conduction losses of primary converters dominate the total losses of power conversion stages. In
the dual-stage system, the conduction losses of the front-end rectifier and the primary inverter are the
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two major parts. For the single-stage systems, the conduction losses of matrix converters contribute to
the largest proportions (>60%).

20% of load 100% of load 
(a) 

20% of load 100% of load 
(b) 

20% of load 100% of load 
(c) 

Figure 10. Loss distribution: (a) dual-stage topology, (b) buck-derived FBMC, and (c)
boost-derived FBMC.

4.2.4. Cost

Cost is also an important quantity to evaluate the performance of a power converter. The cost
structure of each charging system excluding inductive coupling coils and compensation networks
is illustrated in Figure 11. The costs of the power conversion stages are calculated based on the
component cost provided in Table 7. In order to simplify the cost analysis, the auxiliary cost including
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printed circuit board (PCB) cost, cooling system cost, and housing cost is assumed to be 10% of the
power converter cost. Note that MOSFETs are driven by isolated gate drivers, and MOSFETs having
common-source connection utilize a common gate driver power supply to reduce the system cost.
This shows that the cost of single-stage systems is lower than that of the dual-stage counterpart. The
buck-derived FBMC system is the most cost-effective solution, as it presents 8.4% less cost than the
dual-stage system. It is found that the costs of the passive components dominate in the dual-stage
system, whereas the semiconductor devices of matrix converters occupy the largest portions in the
total cost of the single-stage systems.

 

Figure 11. Component cost structure of the charging system excluding inductive coupling coils and
compensation networks.

Table 7. Cost of components.

Components Manufacturer Part Number Rating Unit Cost ($)

Diode
SCS230AE2HRC-ND 650 V/30 A 8.97
SCS240AE2C-ND 650 V/40 A 12.75

MOSFET

SCT3120ALHRC11-ND 650 V/21 A 9.27
SCT3060ALGC11-ND 650 V/39 A 8.74
SCT3030ALGC11-ND 650 V/70 A 19.46
SCT2080KEC-ND 1200 V/40 A 17.77

Gate driver IC UCC5390SCD N/A 2.16

Gate driver supply R12P21503D +15 V/−3 V/2 W 7.11

Inductor
HF467-980M-25AV 25 A/72 μH 21.15
HF5712-561M-25AH 25 A/430 μH 29.25

Capacitor
LGN2X221MELC50 (Electrolytic) 600 V/220 μF 7.78
B32656T7394K000 (Film) 500 V/0.39 μF 4.23
B32654A1683K000 500 V/0.068 μF 1.01

4.3. Discussions

From the above analysis, it can be observed that the three IPT charging systems have their own
advantages and disadvantages. A comparison summary of the three IPT charging systems is shown
in Figure 12, where performance indices are presented in a scale range from 1 (worst) to 3 (best). In
order to evaluate the efficiencies of the three systems, their average values under all load conditions
are considered. The switching stresses are assessed based on the product of the maximum current
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and voltage stresses. Figure 12 shows that the buck-derived FBMC surpasses the other counterparts
with the advantages of high efficiency, cost reduction and possible power density improvement due to
less component count, while the boost-derived FBMC has the greatest input current quality due to
the feature of the continuous input current with ripple frequency at a twice switching frequency. The
conventional dual-stage topology has the lowest stress on switching devices, and its efficiency maintains
a comparable high level over wide load range. Moreover, the dual-stage converter topology is highly
matured in terms of manufacturability and control as it has been developed by many manufacturers
and widely used in the industry. Also, this topology allows each converter stage to be separately
designed and optimized.

Figure 12. Comparison summary of the dual-stage and single-stage IPT charging systems.

5. Future Trends and Opportunities

Over the past decade, there have been significant developments in power converter topologies and
control schemes for EV IPT charging. One of the important challenges is the design of high-frequency
power converters for IPT to meet future requirements. Still, there is a lot of scope for further
improvements to enhance the performance in terms of efficiency, power density, scalability, and
reliability to promote the IPT-based systems for EV charging. Reducing power losses in power
conversion from the source to the input of the coil is a vital factor in improving efficiency. One of such
initiatives is to develop advanced soft-switching modulation techniques for the existing converter
topologies and new reduced-switch-count converter topologies to reduce switching losses. This is
expected to improve the thermal design and power density of the overall system. Several soft-switching
control schemes have been reported in the literature. Generally, they can be divided into three groups:
with auxiliary DC-DC converters [85–87], with variable resonant networks [88,89], and with active
inverter/rectifier control [59,90–92]. However, the proposed control schemes require extra DC-DC
converters or resonant components, or have an operation range limitation and high control complexity.

Direct power conversion topologies such as matrix converters can be one of the possible candidates
with the elimination of life-limited bulky DC capacitors employing enhanced charging techniques like
SRC charging. Another important performance enhancement is employing wide bandgap devices
in the existing converter topologies or development of advanced topologies, which can operate at
higher switching frequencies with low switching losses [93]. This can boost the performance of power
converters in the wireless charging applications [94]. The application of gallium nitride (GaN) in IPT
systems has opened up a new scope in improvement in power transfer and power density. These
devices have a low voltage drop, ability to operate at the higher switching frequency, and comparatively
lower thermal generation during operation, which allows for passive cooling to increase the converter
power density and cost-effectiveness [95]. However, some challenges regarding the manufacturing
process, packaging with higher current ratings, the gate driver design, device characterization, busbar
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layout, thermal management, and reliability need to be addressed. Therefore, much more research
initiatives in the aforementioned issues could decide the power density of the converter. In addition,
employing the GaN devices allows an increase in switching frequencies even at higher current standards,
which improves the performance of WPT, such as transfer distance extension, higher tolerance to coil
misalignment, and passive component size reduction. Furthermore, the magnetic integration can be
used to integrate magnetic components of power converters, compensation networks, and coupling
coils, in turn, to enhance using higher flux density material to reduce the system size and losses. One
of the possible ways is the utilization of advanced materials and nanotechnology to reduce the size
and weight of passive components.

In the recent days, modular power converters with fault-tolerance are demanded due to industrial
requirements such as flexibility in assembly, manufacturing process, scalability and reduced mean
time to failure (MTTF). Some of the possible potential candidates are multiphase parallel inverter [96],
modular multilevel converter [97], parallel IPT power supply topologies [98] and extreme fast charging
architectures [99] to improve the output power capability and fault tolerance for WPT systems, which
can open up more research in developing advanced power topologies and fault-tolerant control schemes.
Other stimulating research areas for developing technology are bidirectional power flow, integration
with hybrid energy storage systems and multiple energy sources [100]. However, these areas are still
under research that further attention and investigation for developing advanced multi-port converter
topologies and newly advanced control schemes must comply with future charging standards to
promote IPT systems for EV charging applications.

6. Conclusions

This paper presents an extensive overview of power conversion topologies and control schemes
for IPT-based EV charging applications. The design considerations and performance evaluation of
the conventional dual-stage topology and two potential single-stage topologies including buck- and
boost-derived FBMCs were discussed. It is concluded that the conventional dual-stage topology has
the lowest stress on switching devices, and the boost-derived FBMC provides the greatest input current
quality. On the other hand, the superiorities of the buck-derived FBMC over the other topologies
are high efficiency, low component count and cost. However, further investigation on IPT-based
charging systems is needed including scalability to higher power levels, adoption of soft-switching
technology, fault-tolerability technology, active power decoupling methods, magnetic integration,
green energy based-IPT systems, multi-mode operation systems, wide bandgap device technology,
high-performance advanced and non-invasive control schemes. With the continual improvements and
the aforementioned advancements, IPT-based systems will definitively increase the availability and
economic viability of the EVs in the near future.
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Abstract: With the rapid development of new energy vehicles (NEVs) industry in China, the reusing
of retired power batteries is becoming increasingly urgent. In this paper, the critical issues for power
batteries reusing in China are systematically studied. First, the strategic value of power batteries
reusing, and the main modes of battery reusing are analyzed. Second, the economic benefit models of
power batteries echelon utilization and recycling are constructed. Finally, the economic benefits of
lithium iron phosphate (LIP) battery and ternary lithium (TL) battery under different reusing modes
are analyzed based on the economic benefit models. The results show that when the industrial chain is
fully coordinated, LIP battery echelon utilization is profitable based on a reasonable scenario scheme.
However, the multi-level echelon utilization is only practical under an ideal scenario, and more
attention should be paid to the first level echelon utilization. Besides, the performance matching of
different types of batteries has a great impact on the echelon utilization income. Thus, considering
the huge potentials of China’s energy storage market, the design of automobile power batteries in the
future should give due consideration to the performance requirements of energy storage batteries.
Moreover, the TL battery could only be recycled directly, while the LIP has the feasibility of echelon
utilization at present. At the same time, it will strengthen the cost advantage of the LIP battery,
which deserves special attention.

Keywords: new energy vehicle; power battery; battery reusing; echelon utilization; battery recycling

1. Introduction

With the continuous support of the government, the number of NEVs (new energy vehicles)
has been increasing rapidly in China, which has led to the rapid development of the power battery
industry [1–3]. As shown in Figure 1, the installed capacity of China’s traction battery is already very
large. There was an increase of more than 60 GWh in 2019 and an accumulated installed capacity of
more than 205 GWh, which is still growing rapidly [4,5]. At the same time, more and more power
batteries are approaching the state of retirement with the passage of time. There are two reasons that
the scale of batteries to be retired is further increased. First, the service life of power batteries is usually
lower than that of the vehicles resulting that a large number of retired batteries will appear before the
vehicles are scrapped. Second, the technical level of early NEV products is relatively low; the service
life of many power batteries is far shorter than the newly developed batteries. Therefore, it can be
expected that China will soon usher in the peak period of the retirement of NEV power batteries [6].
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Obviously, it will bring serious environmental and security risks if these retired batteries cannot be
effectively recycled and managed [7].

Figure 1. Production of new NEVs (new energy vehicles) and installed capacity of power batteries in
China (2013–2019).

For this reason, the Chinese government is stepping up the development of relevant policies on the
reusing of power batteries. As shown in Figure 2, the frequency and content of recent relevant policies
are getting higher and higher [8,9]. All kinds of signs indicate that China will issue regulations and
policies on the mandatory recycling of retired power batteries soon. Thus, it would require enterprises
to solve the problem of retired power batteries in the form of laws so as to ensure the sustainable
development of the new energy automobile industry. According to the principle of the "Extended
Producer Responsibility System", power battery reusing will become the responsibility of vehicle
enterprises. The vehicle enterprises will definitely decompose the responsibility along the supply
chain, so the whole power battery industry will be affected [10]. Therefore, relevant enterprises need to
think ahead, lay out, and prepare in advance to meet the requirements of national laws and regulations.

In fact, the power battery of NEVs contains a large number of metal materials, such as lithium,
cobalt, nickel, etc. Its reusing is not only a matter of legal responsibility but also affects the supply status
of these metals directly [11,12]. So, it may change the trend of the price of power battery, and then
affect the development trend of the industry and the income of enterprises significantly.

For this reason, this paper systematically studies the key issues for NEV power battery reusing in
China, including the strategic value, main reusing modes, echelon utilization value, recycling value,
and overall value analysis of power battery reusing.
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Figure 2. List of relevant policies for power battery reusing in China.

2. Strategic Value of Power Battery Reusing

As mentioned above, the retired volume of power batteries for NEVs will be huge and grow
rapidly in China. Reusing these batteries has three important strategic values [13].

First, it could solve the environmental pollution and potential safety problems caused by retired
power batteries [14]. Based on the historical data of China’s NEVs and their power batteries,
this paper makes a quantitative estimation of the scale of retired power batteries in the next six years.
The evaluation method is shown in Equation (1):

RM =
M−B∑
M−A

Rk
A− B + 1

· Ik (1)

where the k is the year; RM indicates the retirement volume in year M; A/B indicates the up/down year
of retired power battery life; Ik represents the conversion coefficient of influencing factors in the year k,
which is related to market size, battery type, battery life and installed capacity of batteries [15].

The results of this estimation are shown in Figure 3. It is estimated that the retired volume of
power batteries in China will reach about 27 GWh in 2020 and 146 GWh in 2025. It will become a
serious threat to the ecological environment. To be specific, it will result in water, soil, and air pollution,
as well as public security risks such as short-circuit combustion if the retired power battery with such a
huge scale cannot be reused and recycled effectively [16].

Second, it could realize the recycle and reuse of metal resources and reduce the supply risk of
power battery raw materials [17]. On the one hand, the demand for lithium, cobalt, nickel, etc. for NEV
power batteries is growing. For example, China’s power battery industry consumed about 11,000 tons
of lithium, 41,000 tons of nickel, and 17,000 tons of cobalt in 2018 [15]. At the same time, China’s
external dependence on these three metal materials is more than 80%, especially for cobalt, with the
overseas import volume as high as 97% [15]. In this case, the recycling of these metal materials must be
realized through the reusing of retired power batteries so as to avoid resource bottlenecks and ensure
the safety and control of the industry [18].
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Figure 3. The total retired volume of the new energy vehicle power battery in China.

On the other hand, the current price of power battery is still relatively expensive, which is
the fundamental reason why NEVs are at a price disadvantage compared with traditional internal
combustion engine vehicles (ICEVs) [19]. As China’s subsidy policy for NEVs will be completely phased
out after 2020, the NEVs will be mostly market-driven. Therefore, to improve the competitiveness of the
NEVs, their cost-performance needs to approach the level of ICEVs without subsidies. The expectation
of this industry is that the scale effect will make the price of power battery drop rapidly with the
increase of NEVs. However, if a large number of retired power batteries cannot be reused, it is likely
that the supply of metal materials would be a bottleneck. It will lead to the price of power batteries
rising instead of falling, resulting in a higher cost of the NEVs [14]. In this regard, the reusing of power
battery is one of the important factors affecting the sustainable development of China’s NEVs industry
in the future.

Third, it has the potential to reduce the cost of power battery in automobile enterprises and
generate additional social value [16]. The retired power battery should not only simply be dismantled
and recycled and the reusing for raw materials. If its potential value can be fully exploited before
dismantling and recycling, the retired power battery can be utilized to the maximum extent. Thus,
the use cost of the power battery will be effectively shared at different utilization stages [20]. In this
case, the recovery and utilization of power battery may not be a burden for the automotive enterprise,
and may even bring some profits to the enterprise instead. As a result, it would promote the cost
reduction of new NEV products further, and thus constitute a competitive advantage for the enterprise.
At the same time, the field of application of retired power batteries is also expected to benefit from
waste utilization [21,22]. For the whole society, this means the upgrading of the efficiency of social
resources utilization. Therefore, it would also produce certain social values.

It can be seen that China’s subsidies for NEVs are about to be phased out entirely. Hence,
the industry must attach great importance and study how to maximize the benefits of the reusing of
retired power batteries seriously under the situation. This strategically important for the sustainable
development of China’s NEV industry as well as the construction and improvement of a green
energy-saving society in the future.

3. Main Modes of Power Battery Reusing

Firstly, the concept of power battery reusing is defined, as shown in Figure 4.
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Figure 4. Main ways of power battery reusing of NEVs.

Retired battery: when the performance of the power battery has declined to a certain extent,
it needs to be retired from use and then enter the reusing process. For NEVs, the indicator is that the
battery capacity retention rate decays below 80% [23].

Echelon utilization: the batteries retired from the original products can be used in other applications
with relatively low requirements on battery performance [24–27]. Theoretically, this kind of secondary
utilization can be performed many times, which is the so-called multi-level echelon utilization.
NEVs have high requirements for batteries, but the power batteries could be used in micro electric
vehicles, communication base stations, energy storage [28], and other fields until the battery capacity
retention rate is reduced to 30% [28].

Recycling: the power battery is dismantled and recycled, which is the last link of reusing [29].
From the legal point of view, it will meet the requirements if the retired battery is recycled. However,
the retired battery cannot achieve the maximum benefit when dismantled and recycled directly from
the perspective of enterprise management.

Reusing: This is actually a big concept, including two aspects of echelon utilization and recycling.
It covers the whole process of processing and processing retired batteries with the basic goal of
environmental protection and resource reuse [13,30].

According to the above definition, the reusing of retired power batteries of NEVs could be divided
into two main modes, as shown in Figure 5. The first mode is to recycle retired batteries directly,
that is, to realize resource recovery and meet regulatory requirements [7]. Mode II is to select a suitable
scenario for the echelon utilization of retired batteries to give full play to the residual capacity and then
implement the recycling [23]. Obviously, Mode II can obtain greater returns than Mode I in theory,
but the actual situation is far more complex than the theory [31]. There are many factors influencing the
benefit of echelon utilization, including appropriate echelon utilization scenarios; therefore, there are
key technologies, and costs of detecting battery residual energy and regrouping, cooperation modes of
all parties involved in echelon utilization, etc. Thus, the specific value of echelon utilization needs to
be systematically evaluated to obtain a greater return from the reusing of retired power batteries.
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Figure 5. Main reusing modes and the echelon utilization process of retired power battery.

4. Research on the Key Issues of Power Battery Echelon Utilization

At present, the mainstream power batteries are TL batteries and LIP batteries. The mass-energy
density of the TL battery is higher, which plays a leading role in passenger cars, but its cost is higher
than that of the LIP battery [32]. However, the LIP battery exhibits better thermal stability, lower cost,
and lower volume energy density. It is more widely used in commercial vehicles [33]. Overall, they
have their own advantages and disadvantages and are widely used in NEVs. By the end of 2018,
LIP battery accounted for 54%, and TL battery accounted for 42% of the total installed of NEV power
batteries in China [34].

However, there are technical bottlenecks in TL battery when facing echelon utilization. On the
one hand, the safety of the TL battery is poor due to the low thermal runaway temperature (180 ◦C),
meaning it is more prone to cause fire and explosion. On the other hand, more nickel is used in the
cathode material of the TL battery in order to pursue higher energy density, which results in shorter
cycle life of TL batteries [35]. The solution to these problems needs a corresponding technological
breakthrough and high costs. So, it is difficult to implement the TL battery echelon utilization at the
current technical level. Instead, direct recycling for TL battery is a more reasonable choice. Therefore,
this paper only studies the echelon utilization of LIP battery [36].

4.1. Scenario Selection of Power Battery Echelon Utilization

There are three important factors to consider when selecting echelon utilization scenarios, including
demand matching, utilization cost, and scale capacity. First of all, the performance of retired power
batteries must meet the basic needs of echelon utilization scenarios. It includes service life, charging
and discharging speed, internal resistance, and working voltage, etc. Secondly, the retired power
battery can be used for echelon utilization only after being tested and regrouped. The cost must be low
enough to ensure the economy of echelon utilization. Therefore, the technical requirements for batteries
in relevant scenarios could not be too high. Finally, the ideal echelon utilization scenario should have a
large and stable battery demand due to the number of retired power batteries increasing year by year.
Otherwise, it cannot play a great role even if the demand matches, and the cost is controllable.

Based on the above three factors, this study conducts a comprehensive analysis of various
possible echelon utilization scenarios, and finally extracts the six most likely scenarios [23,25,37].
They are divided into two categories: power battery and energy storage battery. The former includes a
microelectric vehicle (MEV), electric special vehicle (ESV) (such as sightseeing vehicle, ferry car, etc.),
and electric bike (E-Bike). While the latter includes communication base station (CBS), renewable
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energy power station (REPS), and parallel micro-grid (PMG). Each of these scenarios has different
battery use characteristics, presented in detail in Table 1.

Table 1. The most likely echelon utilization scenarios and their battery use characteristics.

Echelon Utilization Scenarios
Power Battery Energy Storage Battery

MEV ESV E-Bike CBS REPS PMS

Depth of discharge 80% 80% 100% 80% 80% 80%
Cycle 450 450 180 600 800 650

Capacity (kWh) 13.5 13.5 1 - - -
Current price (€/kWh) 65 65 90 31 58 39

China’s low-speed road vehicles, including MEV, ESV, and E-Bike, etc. listed in Table 1, mostly
use lead-acid (LA) batteries nowadays. LA batteries have serious environmental pollution problems.
At the same time, the energy density, cycle life, and other main indicators are far lower than LIP
batteries, as shown in Table 2. But its main advantage is the low cost [38]. With the continuous growth
of the power battery scale of NEVs, the retired LIP batteries can be completely used to replace the
LA battery. The retired LIP batteries are not only with better performance and lower cost, but also
meet the performance requirement is due to the similar power battery application scenario. Therefore,
the replacement of LA batteries in low-speed road vehicles should be one of the best scenarios for the
echelon utilization of retired power batteries.

Table 2. Performance comparison for different batteries.

Performance LA LIP TL

Specific energy (mAh/g) 40–70 130–165 150–210
Cycle life (cycle) 400–800 2000–6000 800–2000

In addition, China currently has a wide range of demand for energy storage batteries. For example,
the renewable energy power stations (photovoltaic power generation, wind power generation, etc.) in
Table 1, the microgrid of the distributed independent power sources and communication base stations
all have considerable demand for energy storage batteries. With the optimization of China’s energy
structure and the upgrading of information infrastructure, the demand scale of energy storage batteries
will continue to expand. The new production of the energy storage battery to meet the demand will
inevitably consume a lot of resources and bear high costs. Therefore, if the retired power battery of
NEVs can be used for energy storage, it can not only fully accommodate the increasing number of
retired power batteries, but also meet the growing demand for energy storage batteries. This will
produce huge social benefits [39]. In fact, the electric vehicle itself is also regarded as a movable energy
storage device. The power batteries have already been and will play the role of energy storage to a
certain extent before retired.

As mentioned above, the retired battery can be used in a multi-level echelon in theory. That is to
say, until the last remaining energy is exhausted, it can be repurposed from one echelon utilization
scenario to the next echelon utilization scenario and so on. However, the switching of each echelon
utilization scenario will produce certain costs, including battery purchase, detection, regrouping,
and transportation, etc. Especially at present, echelon utilization technology is still in development,
leading to the high cost of battery detection and regrouping. Thus, too many levels of echelon
utilization will lead to high costs and reduce expected profits. So, the multi-level echelon utilization
has no realistic possibility under the existing technology level.

For this reason, this paper only studies the echelon utilization scheme of one or two levels. In
the two-level echelon utilization scheme, the power battery with a higher matching degree of battery
demand is taken as the first level, and the energy storage battery is taken as the second level. Note that
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the use of E-Bike as the first link is not considered because it is relatively scattered, and the single-car
battery load is small. Therefore, six primary application schemes and six two-level application schemes
are determined as the research objects, as shown in Table 3.

Table 3. Echelon utilization schemes of retired power battery.

Echelon Utilization Schemes
Primary Echelon Utilization Scheme Two-level Echelon Utilization Scheme

F-1 F-2 F-3 F-4 F-5 F-6 S-1 S-2 S-3 S-4 S-5 S-6

MEV X X X X

ESV X X X X

E-Bike X

CBS X XX XX

REPS X XX XX

PMG X XX XX

Note: “X” represents the first-level echelon utilization; “XX” represents the second-level echelon utilization.

4.2. Economic Benefit Analysis of Power Battery Echelon Utilization

4.2.1. Economic Benefit Evaluation Model of Echelon Utilization

In order to evaluate the economic benefits and influencing factors of different echelon utilization
schemes, this paper constructs an evaluation model of echelon utilization economic benefits, as shown
in Figure 6. There are two key assumptions in this model. First, this study assumes that there are
enterprises with enough technology and capital to complete the corresponding work in each link of
echelon utilization. This paper only studies the overall cost and benefit of the whole process from the
perspective of the industrial chain. However, as for which specific enterprises complete which link of
work, and the benefit distribution of enterprises with different roles is not in the scope of this study.
Second, in order to simplify the calculation, the battery capacity retention rate is used to measure the
overall performance of the battery and the only judgment condition of battery state of health, service
life, and whether it should be transferred to the next link [40,41].

Figure 6. Block diagram of economic benefit evaluation model for the echelon utilization of retired
power battery.

The time point of decommissioning of the battery from the whole vehicle and the judgment
condition of the ultimate scrapping are all expressed by battery performance; therefore, all expressions
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related to the battery service life are also unified to the form of capacity retention rate in the process of
model calculation. The specific definition of the capacity retention rate is shown in Equation (2).

Battery capacity retention rate =
Cl

Cnew
(2)

where the Cl represents the battery capacity after l cycles, and Cnew indicates the nominal capacity of
the new power battery.

With the use of the battery, the capacity retention rate will continue to decline. The capacity
decay rate (η) of each cycle is defined as the impact of the new charge-discharge cycle on the battery
performance. The specific calculation is as follows:

η =
Cl+1

Cl
(3)

where Cl+1 indicates the battery capacity after l + 1 cycle.
According to the study conducted by Schuster, the battery capacity retention rate can be

approximately considered constant before the battery performance drop to the capacity diving
point [41]. The capacity retention rate can be calculated using the capacity decay rate (η) and cycles
as follows:

Battery capacity retention rate = ηl (4)

And the battery capacity retention rate would be different due to the depth of discharge (DOD)
under the use condition. According to the three DOD corresponding to the six application scenarios
as abovementioned, different η values are used to calculate the life of the echelon utilization battery,
as shown in Table 4.

Table 4. Capacity decay rates under different depth of discharge (DOD).

DOD Capacity Decay Rate η

60% 99.98%
80% 99.97%

100% 99.96%

As shown in Figure 6, the costs incurred in the process of echelon utilization mainly include the
purchase and transportation costs of retired batteries as well, as the costs of echelon utilization battery
detection and regrouping. The revenue comes from battery sales revenue [42]. It should be noted that
the cost of each link is different due to the difference in battery performance in primary and secondary
echelon utilization. As abovementioned, the echelon utilization profit can be calculated by the total
revenue and expenditure, as shown in Equation (5). In order to make the results as broadly applicable
as possible, the cost, revenue, and profit are all in term of €/kWh in this study. Note that the study
converts RMB to Euro at the 2019 exchange rate.

Pc =
N∑

i=1

(
SRe −Cp1 −Ctr −Cr

)
(5)

where the Pc is the profit of echelon utilization; SRe represents the sales revenue of echelon utilization
batteries; Cp1 indicates the purchase cost of retired batteries; Ctr is the batteries transportation cost;
Cr indicates the cost of battery detection and regrouping.

For the sales revenue of the echelon utilization battery: there are two calculation methods. The first
method is based on the residual capacity of the retired LIP battery. It calculates profits according to the
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discount coefficient on the basis of the new battery price [37]. The specific calculation is Equation (6)
as follows:

SRe =
Pnew · TOretired

TOnew ·DR
(6)

where the Pnew is the price of new LIP battery; TOnew represents a nominal capacity of the LIP battery;
TOretired indicates the capacity of LIP battery after decommissioning; DR is the discount coefficient [37].

The second method is based on the price of the new LA battery and the different cycle life of the
two batteries. The specific calculation is Equation (7) as follows:

SRe =
Pqs · Lqs

LLi
(7)

where the Pqs is the price of the replaced LA battery in the echelon utilization scenario; Lqs represents
LA battery cycle life; LLi indicates the cycle life of retired LIP power battery.

Finally, the lower one in the calculation results of Equations (6) and (7) is taken as the battery
sales price, which is more likely to be accepted by the demander of the echelon utilization scenario,
as shown in Equation (8):

SRb = min
{

Pnew · TOretired
TOnew ·DR

,
Pqs · Lqs

LLi

}
(8)

Purchase cost of retired battery: when the LIP battery is retired from the vehicle, the capacity
retention rate is 80%. Its value is taken from the industry average data, about 13.4 €/kWh [10].

Battery transportation cost: in this study, only the use cost of freight cars is included, and the
cost of vehicle purchase and depreciation is not considered. In order to minimize the cost, trucks with
different carrying capacity will be selected according to different transportation needs. In addition,
the transportation process is divided into two types according to the distance, including intercity
transportation and trans provincial transportation. In this study, the average distances of the two
types of transportation are 50 km and 500 km, respectively. Most of the echelon utilization scenarios
are short-distance intercity transportation. Only when retired batteries are applied to renewable
energy power stations and large-scale communication base stations, can long-distance trans provincial
transportation be considered [43]. According to the current use of freight in China, the cost of intercity
transportation and trans provincial transportation can be calculated, as shown in Equation (9):⎧⎪⎪⎨⎪⎪⎩ Cintercity

t = 0.00052 ·D
Ctrans provincial

t = 0.000077 ·D (9)

where the Cintercity
t is the intercity transportation cost; Ctrans provincial

t represents trans provincial
transportation cost; D indicates the transportation distance.

Detection and regrouping cost: as echelon utilization is still in the exploration and preliminary
stage, there is no open direct cost data available. Based on the operation cost of the existing battery
treatment plant, this study estimates the detection and regrouping cost of the battery through cost
apportionment methods. Considering the different technical difficulties of the different echelon
utilization scenarios, the scenario correction coefficient is added to modify the echelon utilization
calculation model developed by the National Renewable Energy Laboratory (NREL) [43], as shown
in Equation (10):

Cr = C f actory ·CF/Q (10)

where the C f actory is the enterprise detection and regrouping cost of echelon utilization, including fixed
asset cost and labor cost; CF represents the correction coefficient of battery detection and group cost
in different echelon utilization scenarios which is related to the processing difficulty and time [37];
Q indicates the annual production of echelon battery.
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4.2.2. Economic Benefit Analysis of Echelon Utilization

Based on the evaluation model, the benefits of the echelon utilization of various schemes are
calculated, and the results are shown in Figure 7. Firstly, it can be seen that most of the schemes of
primary and secondary echelon utilization can achieve positive benefits. It shows that if the relevant
industrial chain is coordinated, the echelon utilization of retired power battery is profitable. Then the
cost of using power battery for BEVs is leveraged by echelon utilization [20]. With the development of
battery detecting and regrouping technology, the benefits of echelon utilization are expected to expand
in the future further. In addition, only LIP battery has the technical feasibility of echelon utilization,
which also means that echelon utilization is expected to further increase the cost advantage of LIP
battery comparing to TL battery.

Figure 7. Comparison of economic benefits of the different echelon utilization schemes.

Second, compared with the three scenarios of power battery replacement in the primary scheme,
the profits of all the secondary schemes are lower. It can be explained that the increase in echelon
utilization levels will lead to the decrease of echelon utilization income. Meanwhile, this shows that it
is reasonable to study only the primary and secondary schemes in this paper. In a word, multi-level
echelon utilization is only a theoretical concept at present. Hence, more attention should be paid to the
development of the first level echelon utilization scheme in industrial practice in the future. Moreover,
the two-level scheme should be properly considered according to the urgency of the scene demand.

Third, the performance matching of different batteries has a significant impact on the benefits of
echelon utilization. From the analysis of the primary echelon utilization scheme, it can be seen that
the echelon utilization scenario based on the power battery for transportation purposes can achieve
greater benefits, with the maximum profit of 30.21 €/kWh. While there are echelon utilization scenarios
for energy storage, only the renewable energy power station can achieve positive benefits. Its profit
level is far lower than the power battery scheme. This is mainly due to the difference in performance
requirements between the power battery and the energy storage battery. That is to say that the retired
batteries of NEVs that were originally used as power batteries are more suitable to continue to be used
as low-performance power batteries. If it is to be used as the energy storage battery, the processing cost
of the battery will be much higher, making it difficult to make profits. Of course, the battery design
of NEVs is only based on the requirement of the power system itself at present without considering
the potential echelon utilization in the future, especially for energy storage scenarios [44–46]. Thus,
if the performance requirements of the energy storage battery are properly considered at the beginning
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of the battery design, the evaluation results may be significantly different. This is also an important
decision-making factor for relevant enterprises to consider seriously.

Generally speaking, E-Bike is the application scenario with the highest profit from echelon
utilization at present. However, the demand for retired batteries of E-Bike is limited, and urban
regulatory policies are being tightened continuously. It is expected that the follow-up market scale will
not be able to grow significantly and cannot accommodate the increasing number of retired power
batteries of NEVs. At the same time, microelectric vehicles, commonly known as low-speed electric
vehicles, have not been officially recognized by the Chinese government. Therefore, the electric-special
vehicle may be the most feasible entry point for automobile enterprises to try to use battery echelons in
the near future. In the long run, although the benefits of energy storage scenarios such as renewable
energy power stations are relatively low, there is a very broad further market. Especially, China has
made the strategic goal of building a low-carbon society and low-carbon industry. China needs a large
number of energy storage batteries, which will play an important role in reducing clean power waste
and optimizing the balance of power grid urgently. In this sense, the echelon utilization of energy
storage scenarios may have more market potential in the future. [37].

5. Research on the Recycling Value of Power Battery

The recycling of power battery mainly includes the process of dismantling, crushing, repairing,
and smelting. Its purpose is to realize the recycling of resources on the basis of eliminating
environmental pollution and potential safety hazards [47]. The recovery and utilization of battery
materials, especially metals such as lithium, nickel, and cobalt, could also generate certain economic
benefits [48]. Considering that Ni0.5Co0.2Mn0.3 (NCM523) lithium battery is the most recently retired
TL battery, this paper analyzes the recycling value of LIP power battery and TL battery NCM523.

In this paper, the economic benefit evaluation model of power battery recycling is built. It can be
seen in Figure 8 for details.

Figure 8. Block diagram of the economic benefit evaluation model for battery recycling.

As shown in Figure 8, the cost of the recycling process mainly includes purchase, transportation,
and dismantling cost of the retired batteries (including the two situations of direct retirement from
the NEVs or retirement after echelon utilization), and the revenue mainly comes from the sale of
the recovered materials [42]. Therefore, the economic benefits of recycling can be calculated by
Equation (11):

Pr = SRr −Cp2 −Cdr −Ctr (11)

where the Pr is the profit of recycling; SRr represents the sales revenue of battery recycling resources; Cp2

indicates the battery purchase cost; Cdr represents battery dismantling and recovery cost; Ctr indicates
battery transportation cost.
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The sales revenue of battery recycling resources is mainly from the sales of lithium, cobalt,
nickel, and other metal materials. It is assumed that all recovered metal materials can be fully reused.
The calculation equation is as follows:

Cp2 =
∑

j

(
Pj ·Qj ·RRj

)
(12)

where the Pj is the price of the metal j, note that the price of various metals in 2018 is taken in this
paper, as shown in Table 5 [10]; Q j represents the recyclable amount of the metal j in retired batteries
per kWh; RRj represents the recovery rate of the metal j, which is determined by the current recovery
technology, as shown in Table 5 [10].

Table 5. Average market price and recovery rate of raw metal materials for power battery (2018).

Element Type Lithium Cobalt Nickel Manganese Aluminum

Average price (€/t) 117,828 77l,769 3600 1858 1845
Recovery rate 85% 98% 98% 98% 90%

Retired battery purchase cost: the initial purchase cost of the retired LIP battery is the same as
that of the echelon utilization analysis, referring to the average industry price. As for the battery after
echelon utilization (LIP battery), this paper assumes that the repurchase cost will be greatly reduced
when recycling due to the large performance degradation. This paper takes the average price of the
industry, about 3.87 €/kWh [10]. However, for the TL battery with high energy density and metal
resources, this paper assumes that the purchase cost of TL battery to LIP battery is proportional to the
price ratio of the new batteries.

Cost of battery dismantling and recycling: the wet recovery method is widely used in the industry
at present. This method extracts the required metal materials after soaking the cathode materials with
chemical reagents. According to the current technical level, the cost of dismantling and recovering
the LIP battery is about 7.55 €/kWh, and the cost of recovery of the TL battery (NCM523) is about
12.58 €/kWh [15].

Battery transportation cost: only intercity transportation is considered because dismantling and
recycling enterprises would be near the power battery recovery areas generally. At the same time,
its calculation method is the same as that in the echelon utilization model.

Based on the above model, the TL (NCM523) battery and the LIP battery are calculated.
Among them, the TL (NCM523) battery is analyzed in terms of the abovementioned mode I (recycling
directly after retirement), while the LIP battery is analyzed in terms of mode I and mode II (recycling
after echelon utilization). The evaluation results of battery recycling are shown in Figure 9.

Figure 9. Analysis of the economic benefits of recycling of the retired power battery.
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It can be seen from the figure that the TL battery (NCM523) has a high recycling income with a
profit of about 11.41 €/kWh, which is mainly due to the large number of metal materials contained
in the TL (NCM523) battery. However, due to the low value of reusable materials, if the LIP battery
is recycled directly, it will cause a loss of 8.77 €/kWh. If the government begins to implement the
mandatory recycling of retired power batteries, the loss will become an additional cost for enterprises.
However, if the LIP battery is first used in echelon utilization and then disassembled for recycling,
the profit of 0.79 €/kWh from battery recycling can be realized. It is equivalent to reduce the use cost of
LIP battery when recycling after echelon utilization.

6. Overall Analysis of Retired Power Battery Reusing

The following is an analysis of the overall economic benefits of the power battery reusing of NEVs.
Meanwhile, a comparative analysis of the use economy of TL (NCM523) battery and LIP battery from
the perspective of industrial concerns is conducted.

According to the industry average data, the selling prices of TL battery (NCM523) and LIP battery
are 155 €/kWh and 129 €/kWh at present, respectively [34]. Combined with the above economic benefit
evaluation results of echelon utilization and recycling, the use costs of two power batteries in NEVs
can be calculated. Note that the use cost represents that enterprises need to pay for the use of the
power battery. The specific calculation equation is as follows:

Pu = Pp − Pc − Pr (13)

where the Pu indicates the cost of using the battery; Pp represents the original battery price; Pc indicates
the profit of the echelon utilization of retired power battery. Note that the profit is zero if echelon
utilization is not carried out; Pr represents the profit of recycling of retired power batteries.

The specific calculation results are shown in Figure 10. For the LIP battery, if it is recycled directly,
its cost will increase. However, if the echelon utilization with the appropriate scenario is implemented
(Figure 10 shows the minimum benefit in the low-performance power battery scenario, which is
the electric special vehicle scenario), the use cost of the LIP battery will be significantly reduced to
105.3 €/kWh. Thus, the best reusing mode is to carry out primary echelon utilization and then recycle
for the LIP power battery.

The list in Figure 10 shows the change of the use cost of the TL (NCM523) battery and the LIP
battery in different reusing modes relative to the original price of the TL (NCM523) battery. It can be
found that the use cost of the LIP battery recycling directly is 5.5 €/kWh, or 3.9% lower than that of the
TL (NCM523) battery. Nevertheless, it weakens the cost advantage of the original LIP battery compared
with the TL (NCM523) battery. Instead, the use cost of the LIP battery after echelon utilization and
recycling could be 38.2 €/kWh lower than the TL (NCM523) battery, or about 27%. There is a 23.1% cost
reduction potential for the echelon utilization of the LIP battery if regulations mandate battery recycling.
This will improve the cost competitiveness of the LIP battery further. However, there is no feasible
technical scheme for the echelon utilization of the TL battery at present. If we can make a breakthrough
in this aspect in the future, it may improve the cost-effectiveness of the TL battery significantly.

According to the technological roadmap for energy-saving and new energy vehicles in China,
the industry-wide unit cost of a battery pack will be reduced to 104 €/kWh in 2025 and 73 €/kWh in
2030 [9]. In this paper, we assume that the price of the LIP battery is the same as the technological
roadmap. The price of the TL battery is assumed that the degree of reduction is the same as that of LIP
battery, as the technological roadmap suggested. Moreover, there is no available cost data for the battery
reusing technological progress. The dismantling and recycling techniques for recycling and detection
and regrouping techniques for echelon utilization are assumed to keep constant. The transportation
cost in reusing is assumed to be constant. The other costs are assumed to be proportional to the
battery prices.
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Figure 10. Comparison of use costs of NCM523 battery and LIP battery.

Therefore, according to the abovementioned assumptions, the use costs of the TL and LIP batteries
could be predicted, as shown in Figure 11. It could be seen that the use costs of power batteries are
decreased with the battery prices decreased regardless of the varieties of batteries. The TL battery
could reduce to 89.1 €/kWh in 2030 by recycling directly. The LIP battery could reduce to 72.5 €/kWh in
2030 by recycling after echelon utilization. It should be noted that the extent of reduction of the use
cost of TL batteries is more than that of the LIP battery due to the assumption that the reusing technical
progress cost is constant. In fact, the cost of recycling technology reduces with the development of
technology gradually, so the use cost of the LIP battery will be relatively lower than the TL battery.

Figure 11. The use costs of different power batteries with the battery prices decreased.

7. Policy Suggestion

Based on the research and evaluation of the critical issues in the reusing of retired power batteries,
this paper proposes some policy suggestions for the government and enterprises. First, China is about
to usher in the peak period of retired power batteries, and mandatory recycling is imminent by the
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government. The relevant enterprises should make arrangements and preparations in advance so as
to meet the regulations. Second, while multi-level echelon utilization is practical in theory, it is not
economically feasible at present. In the industrial practice, more attention should be paid to the first
level of echelon utilization in the future. At the same time, the two-level echelon utilization scheme
should be considered properly according to the urgency of the scene demand. Third, the feasibility and
profit of the echelon utilization are highly dependent on the requirements of battery performance at
each utilization stage, implying the importance of performance matching. Thus, special consideration
should be given to the huge market potential of energy storage in China. Besides, the future design
of NEV power batteries may need to give due consideration to the performance requirements of the
energy storage battery. Finally, the TL battery can only be recycled directly, while the LIP battery is
suitable for echelon utilization and recycling at present. This would further improve the cost advantage
of the lithium iron phosphate battery. Therefore, automotive enterprises should manage the power
battery from the perspective of the whole life cycle to achieve the lowest use cost.

Looking forward to the future, it is imperative to reuse the retired power battery of NEVs. With the
decrease of the battery price and the maturity of the reusing technology, the revenue from the reuse
of retired power battery will be further improved. The government and related enterprises should
increase the research of battery materials and recycling technology so as to reduce the price of batteries
and the cost of recycling. Besides, the use cost of the LIP after reusing is lower than TL batteries;
the enterprise should make it a key factor in determining the power battery technology route in
the future.

8. Conclusions and Limitation

This paper aims to reveal the critical issues for power battery reusing of NEVs in China by the
strategic value analysis and building the economic benefit model. Based on the results and discussion,
some conclusions could be drawn:

1. Power battery reusing has three aspects strategic values such as protecting the environment and
eliminating potential safety problems of retired power batteries, realizing resource recovery and
reducing the risk of battery material supply and reducing the use cost of power battery and then
improving the competitiveness of NEVs.

2. The echelon utilization of retired LIP batteries would be profitable if the relevant industry chain
could be coordinated. The primary echelon utilization of retired LIP could obtain the maximum
profit in the E-Bike application scenario of 30.21 €/kWh. While the profits of two-level echelon
utilization are relatively lower. Thus, more attention should be paid to the first level echelon
utilization in the future.

3. The TL battery (NCM523) has a high recycling income with a profit of about 11.41 €/kWh, while
the LIP battery is recycled directly, causing a loss of 8.77 €/kWh for LIP recycling directly. Instead,
if the LIP battery is first used in echelon utilization and then disassembled for recycling, the profit
of 0.79 €/kWh from battery recycling can be realized.

4. The use cost of the LIP battery after echelon utilization and recycling could be 38.2 €/kWh lower
than the TL (NCM523) battery recycling directly. This would further improve the cost advantage
of the lithium iron phosphate battery. Hence, the best reusing mode for the TL battery is recycling
directly, while the LIP battery is suitable for echelon utilization and recycling at present.

5. The use costs of power batteries are decreased, with the battery prices decreased regardless of the
varieties of batteries. The TL battery could reduce to 89.1 €/kWh in 2030 by recycling directly.
The LIP battery could reduce to 72.5 €/kWh in 2030 by recycling after echelon utilization.

However, it should be noted that this study is based on the ideal assumption that every link
of recycling has been fully coordinated. Meanwhile, the model assumes the cost of dismantling
and regrouping at the first-level and second-level echelon utilization is the same, while the cost of
dismantling and regrouping at the second-level echelon utilization is higher. Therefore, we will refine
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the model by taking these limitations into consideration and improve the accuracy of the model in
future work.
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NEV New Energy Vehicle
ICEV Internal Combustion Engine Vehicles
MEV Micro Electric Vehicle
ESV Electric Special Vehicle
E-Bike Electric Bike
CBS Communication Base Station
REPS Renewable Energy Power Station
PMG Parallel Micro-grid
LIP Lithium Iron Phosphate batteries
TL Ternary Lithium battery
LA Lead-acid battery
DOD Depth of Discharge
NCM523 Ni0.5Co0.2Mn0.3 ternary lithium battery
NREL National Renewable Energy Laboratory
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Abstract: The power from lithium-ion batteries can be retired from electric vehicles (EVs) and can be
used for energy storage applications when the residual capacity is up to 70% of their initial capacity.
The retired batteries have characteristics of serious inconsistency. In order to solve this problem, a
layered bidirectional active equalization topology is proposed in this paper. Specifically, a bridge-type
equalization topology based on an inductor is adopted in the bottom layer, and the distributed
equalization topological structure based on the bidirectional BUCK-BOOST circuit is adopted in the
top layer. State of charge (SOC) is used as the equalization target variable, and the bottom layer
equalization algorithm based on a “partition” idea and route optimization is proposed. The static
equalization experiments and charge equalization experiments are performed by the 12 retired
batteries selected from an electric sanitation vehicle. The results show that the proposed equalization
method can reduce the SOC difference between retired batteries and can effectively improve the
inconsistency of the retired battery pack with a faster equalization speed.

Keywords: retired batteries; energy storage applications; layered bidirectional equalization;
equalization algorithm

1. Introduction

The number of electric vehicles (EVs) has grown rapidly due to increasing anxieties of environment
deterioration and shortages of fossil fuels in recent years. Lithium-ion (Li-ion) power batteries are
the main types of power batteries used in EVs because they offer a low self-discharge rate, high
energy density, long cycle life, reasonable usage cost, and non-pollution [1–4]. Nowadays, battery
manufacturers and governments are facing great pressure to recycle and dispose of batteries, because a
large number of lithium-ion batteries are retired from EVs for safe operation and longer driving range
after being employed in EVs for a few years [5]. However, the retired lithium-ion batteries’ capacity is
70% to 80% of their initial capacity, and the certain residual capacity can be used for energy storage
in an electricity grid after they are tested, selected, and classified [6,7]. The accumulatively installed
capacity of electrochemical energy storage projects reached 1072.7 MW in China by the end of 2018,
and out of all electrochemical energy storage projects in China, the quotient of lithium-ion batteries
was maximal and achieved 70.7% [8]. However, of all the global energy storage projects, the quotient
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of electrochemical energy storage projects is very small. One of the key factors is exceptionally costly.
Low-cost retired batteries bring opportunities and the potential for energy storage. Retired batteries,
after being classified and regrouped, have no sharp capacity attenuation and still have good discharge
ability. They can be employed for energy storage systems, which could help to reduce the initial cost
of EVs’ owners, reduce the cost of an energy storage system, and avoid energy waste and secondary
pollution to the environment [9]. Several studies have shown, by establishing reasonable retired battery
cycle life models, by using cost models, as well as by estimating retired battery cycle life accurately and
controlling the depth of discharge, that the cycle life of second-use retired batteries can be prolonged,
and the economic benefits of retired batteries used for energy storage are considerable [10–13]. Due
to the limited voltage and capacity of a single battery cell, retired Li-ion power batteries need to be
connected in series or in parallel to be used for an energy storage system [14]. However, because
of the factory differences of batteries, environmental factors, and long-term use, the inconsistency
between the retired batteries is more serious than that of the new batteries, which is the bottleneck of
second-use retired batteries, and may result in low available capacity of a battery pack, a short cycle life,
and security risks caused by over-charge and over-discharge [15,16]. Therefore, executing equalization
is necessary before a second-use of retired batteries, and appropriate and better equalizers are critical.

Battery equalization is generally classified into two categories, passive equalization and active
equalization. Passive equalization is an energy dissipative equalization method, which is achieved by
using the resistors added at both ends of the battery to consume the excessive energy of the battery [17].
This is a simple and low-cost method, but it has some disadvantages, such as energy waste, serious
resistance temperature rise, and slow equalization speed [18].

Active equalization transfers energy between batteries, and has advantages with high energy
transfer efficiency and a shorter equalization time in comparison to passive equalization [19]. The studies
focus on equalization topologies and equalization algorithms. Equalization topologies mainly include
switched capacitor type, inductor type, and transformer type. The topology using a capacitor to transfer
energy from a higher voltage battery to a lower voltage battery has the advantage of higher equalization
efficiency, but the equalization time is long and the cost is high [20]. A bidirectional cell-to-cell active
equalization method using a multiwinding transformer is proposed in [21]. It gives a short balancing
path and guarantees a fast equalization speed. Improved transformer type topologies have a fast
equalization speed and high equalization efficiency, such as a bidirectional transformer topology based
on a DC/DC converter, which is proposed for active equalization in [22], and a bidirectional flyback
DC/DC converter, which is introduced for charge equalization in [23]. However, they suffer from
magnetic saturation, complicated switch sequence control, and high-voltage stress of rectifier diodes.
Many equalizers based on an inductor are designed in the literature. Dual-inductor based charge
equalizer energy is proposed for transfer energy from high-voltage cells to the battery module directly
in [24]. The advantages are that it is easy to implement, has a simple structure, and a simple control,
but it is not suitable when the batteries that need to be balanced are numerous. A multi-switched
inductor equalization circuit is designed in [25], and an inductor based equalization circuit is proposed
in [26] for constant-voltage/current charging and discharging, their topologies are simple and easy
to control, but could only transfer energy between adjacent batteries. An interleaved equalization
architecture based on a resonant LC converter and buck converter is proposed in [15], which can
exchange energy from a battery module to the next adjacent battery module and from a battery module
to a cell, and achieve high equalization efficiency and a large equalization current. However, when
the consistency of the batteries in the same module is poor, a more effective equalizer is needed.
Energy-bus battery equalization topology based on the Cuk circuit is proposed in [27], which allows
the cell-pack equalization. Numerous equalization algorithms have been researched, which mainly
include strategy based on open-circuit voltage (OCV) [24], a method based on voltage difference [16],
a method based on the state of charge (SOC) [23,26,28–30], and a method based on residual available
energy [31].
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Due to the large number and serious inconsistency of retired batteries, in this paper, a novel
layered bidirectional active equalization topology based on inductor for retired batteries for energy
storage is proposed. SOC is used as the equalization target variable. A bottom layer equalization
algorithm based on the “partition” idea and route optimization is employed. This paper is organized
as follows: In Section 2, the detailed retired battery sorting process is introduced and a retired
battery pack connected with 12 retired batteries in series is selected. In Section 3, a layered
bidirectional equalization topology based on an inductor is first introduced. We subsequently
propose a SOC-based bottom layer equalization algorithm based on the “partition” idea and route
optimization. In Section 4, static equalization and charge equalization experiments with 12 selected
retired batteries are implemented in order to verify the proposed equalization method and show the
equalization performance. The numerical results have shown that the proposed method is suitable for
the equalization of retired lithium-ion batteries for energy storage applications.

2. Selection of Retired Battery Pack for Equalization

2.1. Retiring Standards for Lithium-Ion Batteries

In practical applications, there are several situations in which electric vehicle power batteries
are retired: (1) the residual capacity of the power battery is reduced to less than 80% of the rated
value, and the running mileage is reduced seriously; (2) the power battery has been used for more
than five years, the performance of the battery has fallen seriously, especially in safety performance;
(3) the driving mileage of the EV is over 80 thousand kilometers; (4) the performance degradation of
one or a few cells in a battery pack, the difference with other batteries in the battery pack is obvious,
result in serious inconsistency of the battery pack, and the capacity of the battery pack declines rapidly
during use. In most cases, an individual battery cannot be replaced in the electric vehicle power battery
pack, so the whole battery pack must be retired.

2.2. Selecting Process of the Retired Battery Pack

After the power from lithium-ion battery packs is retired from EVs, the dump energies can be
used for the energy storage field. The retired battery pack studied in this paper retired from an electric
sanitation vehicle made by Dongfeng Automobile Co., Ltd in Wuhan, China. The factory parameters
of the power from lithium-ion battery are as follows: the rated capacity is 40 Ah, the nominal voltage
is 3.2 V, the internal resistance is 1 mΩ, the charging cut-off voltage is 3.6 V, the discharging cut-off
voltage is 2.5 V, and the standard charge and discharge current is 0.3 C. The whole retired battery pack
has 106 battery cells and consists of two layers. The echelon use of retired batteries for the energy
storage system is considered in this paper. Safety testing and consistency sorting are required before
the retired batteries are balanced. Firstly, through appearance screening, short circuit test, acupuncture
test, high-temperature test, and over-charge and over-discharge test, a total of 50 retired batteries with
good appearance and safety were selected. Secondly, OCV of 50 retired batteries was measured and
the voltage distribution of 50 retired batteries is shown in Figure 1. After removing 14 retired batteries
with a voltage less than 2.4 V, a total of 36 retired batteries with a voltage of between 2.4 V and 3.2 V
were obtained. Then, in order to prevent over-charge, the 36 retired batteries were charged with 10
A constant current for 2 h, and then we measured the voltage of each battery. As shown in Figure 2,
there were 30 retired batteries with a voltage greater than 3 V after charging, which has an echelon
use value. Thirdly, we determined the capacity sorting for the remaining 30 retired batteries. Because
the capacity of the retired battery is much lower than that of the factory battery, it was necessary to
recalibrate the rated capacity of retired batteries before balancing them. The capacity test was based on
national standards GB/T 34015-2017 “Recycling of traction battery used in electric vehicle—Test of
residual capacity“, and the capacity test steps of the retired battery are as follows: (1) under normal
temperature, discharge the residual energy of the retired batteries and let it stand for 15 min. (2) Charge
the retired batteries at a constant current of 1 C to the cut-off voltage of 3.6 V, and then switch to
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constant-voltage charging until the current drops to 0.05 C. (3) Let them stand for 0.5 h. (4) Discharge
the battery at a constant current of 1 C to the discharge cut-off voltage of 2.5 V, record the discharge
capacity. (5) Repeat Steps (1) to (4) five times in total, use the average value of the discharge capacity
of five times as the new rated capacities of the retired batteries. When the range of three continuous
test results is less than 3% of the factory rated capacity, the test can be terminated in advance, and the
average value of the last three test results is used as the new rated capacities of the retired batteries.
The new rated capacity distribution of 30 retired batteries is shown in Figure 3. It can be seen from
Figure 3 that the capacities of most retired batteries are between 24 Ah and 32 Ah. As shown in Table 1,
a total of 12 retired batteries with a larger rated capacity were selected from 30 retired batteries and
were connected in series, numbered as B1, B2, . . . , B12, as the object of simulation and experiment in
this paper.

 
Figure 1. Voltage distribution of 50 retired batteries.

 
Figure 2. Post-charge voltage of 36 retired batteries.
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Figure 3. New rated capacity distribution of 30 retired batteries.

Table 1. New rated capacities of the selected 12 retired cells.

Number 16 9 30 19 17 29 4 22 20 25 18 3

Cell B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Capacity (Ah) 33.4 32.4 32.3 31.6 31.2 31.1 30.9 30.7 30.7 30.6 30.5 29.8

3. Proposed Active Equalization Strategy

3.1. Equalization Topology

3.1.1. Proposed Equalization Topology

In order to improve the equalization efficiency, simplify the structure of the equalization system,
and improve the expansibility of the equalization structure, as shown in Figure 4a, a novel layered
bidirectional active equalization topology is proposed. n retired battery cells are grouped into m
groups with p cells in each group. In this paper, 12 retired battery cells are grouped into three groups
with four cells in each group. The three groups are denoted P1, P2, and P3.

As shown in Figure 4b, a bridge-type equalization topology based on an inductor is adopted
in the bottom layer. Each battery group is equipped with a bottom circuit m, consisting of p retired
battery cells, 2(p + 1) MOSFET switch tubes, 2 p diodes, and inductor L, can implement energy transfer
between any single cell in the battery group and has the advantages of high energy transmission
efficiency, a simple circuit structure, and is easy to control.

As shown in Figure 4c, the distributed equalization topological structure based on the bidirectional
BUCK-BOOST circuit is adopted in the top layer. Each two adjacent battery groups equipped with one
distributed bidirectional balancing circuit, battery group m-1 and battery group m, are equipped with
a top circuit named top circuit m − 1. They can implement an energy flow between adjacent battery
groups, which makes the equalization system have strong expansibility features and makes them easy
to modularize.

The balancing master controller collects retired battery data in real-time and executes the
corresponding equalization algorithm, decides in turn whether bottom layer equalization or top layer
equalization is needed, and opens or closes the corresponding switches to realize the equalization
control of the entire retired battery pack.
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m

m-

 

(a) 

 

(b)                                  (c) 

Figure 4. (a) Structure of the proposed bidirectional equalizer, (b) structure of bottom layer balancing
circuit, (c) structure of top layer balancing circuit.

3.1.2. Equalization Principle of the Bottom Layer Circuits

Four retired battery cells connected in series were taken as an example to elaborate the equalization
principle. It consisted of 4 retired battery cells, 10 MOSFET switch tubes, 8 diodes, and inductor L,
and was able to implement energy transfer between any single cell in the group. Inductor L was used
as an energy transmission medium between retired batteries in the group. The intragroup energy
transfer process can be divided into two stages. Suppose that cell B2 has the highest SOC value and
cell B4 has the lowest SOC value, the equalization process with two stages is shown in Figure 5.

Stage 1: charge L. As shown in Figure 5a, the switches S4 and S5 are turned ON, other switches
are turned off. Cell B2 charges the inductor L. The inductor L stores energy with the current iL.

Stage 2: discharge L. As shown in Figure 5b, the switches S7 and S10 are turned ON, other switches
are turned off. The inductor L charges cell B4, the energy transmission is from inductor L to cell B4.
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iL iL

(a)                            (b) 

Figure 5. The equalization process of a bottom layer equalization circuit. (a) Charge L, (b) discharge L.

3.1.3. Equalization Principle of the Top Layer Circuits

Figure 6 shows the equalization process of the top layer circuits, P1, P2, and P3, represent three
battery groups. L1 and L2 are energy storage inductors, which can achieve bidirectional energy flow
between adjacent retired battery groups. Suppose that the SOC mean value of battery group P1 is
higher than battery group P2, the equalization process with two stages is shown in Figure 6.

i

i

Figure 6. The equalization process of top layer equalization circuit.

Stage 1: The switch Sa1 is turned ON, the battery group P1 charges the inductor L1, the energy is
stored in inductor L1, the inductor current iL1 is gradually increased from 0 to the maximum.

Stage 2: The switch Sa1 is turned OFF and Sb1 is turned ON, the inductor L1 charges the battery
group P2, the energy transmission is from inductor L1 to battery group P2, the inductor current iL1 is
gradually reduced from maximum to 0.

3.2. Equalization Algorithm

The performances of the retired batteries have degraded. In order to make a reasonable equalization
control strategy, first of all, selecting a parameter that can accurately characterize the charged and
discharged conditions of the cells and determine the consistency of the battery pack is needed. In this
paper, the SOC is used as the equalization target variable, the battery pack consistency can be judged
well, and the differences of the rated capacities of the battery cells are not needed to be considered.
The capacity of the battery pack can be fully utilized. A fuzzy unscented Kalman filtering algorithm
proposed by our research group was used to estimate the SOCs of retired batteries [32].

Assume that p denotes the battery number of the mth retired battery group, SOCi is the SOC of
the ith retired battery, SOCm is the average SOC of the mth retired battery group, rm is the maximum
deviation from the average of the mth retired battery group, SOCavg is the average SOC of the whole
retired battery pack, and r denotes the maximum difference between SOCavg and SOCm:

rm = max(SOCi − SOCm), i = 1, 2, . . . , p (1)
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r = max(SOCm − SOCavg) (2)

Because the consistency between the battery cells in the retired battery pack is poor, if the top layer
equalization is carried out firstly, the degree of inconsistency between batteries will be aggravated,
and the switching loss during the equalization process will be increased. Therefore, in order to reduce
the difficulty of battery equalization and improve the energy utilization efficiency, the strategy of
carrying out bottom layer equalization first and top layer equalization second is adopted, which can
first ensure the retired batteries in a group are consistent. Figure 7 shows the flowchart of the proposed
equalization algorithm. The following steps are used for the proposed equalization algorithm.

r
SOC r

rm

r

Figure 7. Flowchart of the proposed equalization algorithm.

(1) Estimate the SOC of each single retired battery;

(2) Calculate the SOCm, rm, SOCavg and r;
(3) Assume that the set bottom layer equalization threshold value Δm is 0.5%, check the rm, if rm > Δm,

go to Step 4, and execute bottom layer equalization algorithm. If rm ≤ Δm, then go to Step 6;
(4) Carry out bottom layer equalization algorithm. In order to improve the equalization efficiency,

the “partition” idea is introduced and equalization paths are optimized. As shown in Figure 8a,
according to SOC from low to high, batteries in the same retired battery group are sorted. The SOC
values of retired batteries in area a are lower and need to be charged. Area b is divided into
area b1 and area b2, the difference between the SOC values of batteries in area b and SOCm is
within the threshold range. The SOC values of retired batteries in area c are higher and need to
be discharged.
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(a)                               (b) 

 

(c)                               (d) 

 

(e)                                (f) 

Figure 8. Partition and equalization path sketch maps. (a) Batteries partition sketch map, (b)
equalization path of Case 1, (c) equalization path of Case 2, (d) equalization path of Case 3, (e)
equalization path of Case 4, (f) equalization path of Case 5.

Which areas the batteries in the mth retired battery group belong to can be expressed by a
piecewise function, where i represents the ith retired battery in the mth retired battery group.

i ∈

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a, SOCi < SOCm − Δm

b1, SOCm ≥ SOCi ≥ SOCm − Δm

b2, SOCm < SOCi ≤ SOCm + Δm

c, SOCi > SOCm + Δm

, i = 1, 2, . . . , p (3)

The numbers of retired batteries in areas a, b, and c are denoted Na, Nb, and Nc, respectively,
because there are four retired batteries in one battery group. Therefore, according to the different Na,
Nb, and Nc, there are the following five cases:

1� Case 1: Na = Nc, and Na � 0, Nc � 0. Energy complementary pairs are formed by the
retired batteries in area a and area c, batteries in area c discharged, and batteries in area a charged.
For example, as shown in Figure 8b, battery B4 and battery B1 exchange energy, battery B3 and battery
B2 exchange energy;

2� Case 2: Na >Nc, and Na � 0, Nc � 0. Energy complementary pairs are formed by the retired
batteries in area a and area c, batteries in area c discharged, and batteries in area a charged. For example,
as shown in Figure 8c, the battery with the highest SOC is complementary to two or more than two
batteries with lower SOC. The SOC of B4 is highest, B4 transfers energy to B1 and B2;

3� Case 3: Na <Nc, and Na � 0, Nc � 0. Energy complementary pairs are formed by the retired
batteries in area a and area c, batteries in area c discharged, and batteries in area a charged. For example,
as shown in Figure 8d, the SOC of B1 is lowest, B4, B3, and B2 transfer energy to B1;
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4� Case 4: Na = 0, Nc > 0. Energy complementary pairs are formed by the retired batteries in area
b1 and area c, batteries in area c discharged, and batteries in area b1 charged. For example, as shown in
Figure 8e, retired battery B4 in area c is discharged, retired batteries B1 and B2 in area b1 are charged;

5� Case 5: Na > 0, Nc = 0. Energy complementary pairs are formed by the retired batteries in area
a and area b2, batteries in area b2 discharged, and batteries in area a charged. For example, as shown
in Figure 8f, retired battery B1 in area a is charged, retired batteries B3 and B4 in area b2 are discharged.

(5) According to the energy complementary pairs established in Step 4, set switching frequency and
duty cycle, control the switching of the corresponding MOSFET switch tubes. If rm ≤ Δm, bottom
layer equalization has completed and go to Step 6; if rm > Δm, go to Step 4 to continue the bottom
layer equalization;

(6) Assume that the set top layer equalization threshold value Δ is 0.5%, check the r, if r > Δ, go to
Step 7 and execute the top layer equalization algorithm; if r ≤ Δ, then go to Step 9;

(7) Carry out top layer equalization algorithm. The three retired battery groups are sorted according
to SOCm (m = 1, 2, 3) from low to high, and then top layer equalization paths are determined.
There are the following six sorting cases: 1� SOC1 > SOC2 > SOC3, 2� SOC1 > SOC3 > SOC2,
3� SOC2 > SOC1 > SOC3, 4� SOC2 > SOC3 > SOC1, 5� SOC3 > SOC1 > SOC2, 6� SOC3 > SOC2 >

SOC1. It can be divided into two categories: (1) cases 2�, 3�, 4�, and 5� belong to direct equalization
and transfer energy between adjacent battery groups; case 1� and case 6� belong to indirect
equalization, the battery group P1 and the battery group P3 are not adjacent, the battery group P2

is taken as the energy transmission medium to achieve the equalization between them;
(8) Check the r. If r > Δ, the retired battery pack is unbalanced, go to Step 7 to continue top layer

equalization; if r ≤ Δ, then go to Step 9;
(9) End of the whole retired battery pack equalization.

4. Simulation and Experimental Verification

In order to verify the proposed equalization method and show the equalization performance,
an equalization experiment with selected 12 retired batteries was implemented. The balancing
experiment test bench and battery test system are illustrated in Figure 9a,b, respectively. The balancing
experiment test bench included battery management system (BMS), master control board, voltage and
current detection board, MOSFET switch array, bidirectional BUCK-BOOST circuit, voltage inspection
board, retired battery pack, and power. The ITS5300 battery charge and discharge test system was
used for battery performance testing. The inductors worked in discontinuous current mode (DCM).

4.1. Static Equalization Experiment

In order to verify the effectiveness of the bottom layer equalization algorithm based on the idea of
“partitioning” and the optimization of equalization path, the selected initial states of charge (SOCs) are
needed to involve different cases of the bottom layer partitioning equalization algorithm. Table 2 shows
the initial SOCs of 12 retired cells for static equalization, three retired battery groups belonging to three
different cases of bottom equalization algorithm, and SOC1 > SOC2 > SOC3. At the beginning of the
equalization, the initial SOC range of 12 retired cells was 10.6%, the average of SOCs was 75.458%,
r1 was 1.225%, r2 was 2%, r3 was 2.1%, r was 4.058%, maximum deviation from average was 5.442%,
and standard deviation was 3.596%. Bottom layer equalization threshold value Δm and top layer
equalization threshold value Δ both were set to 0.5%.

The static equalization process lasted for two hours. Figure 10a illustrates the SOC response.
It was observed that the differences between the retired cells’ SOCs gradually converged, bottom
layer equalization time was about 1100 s, equalization times of battery group P1, battery group P2

and battery group P3 were 960 s, 1080 s, and 1100 s, respectively, top layer equalization phase was
1100 s–6060 s, equalization time of the whole retired battery pack was about 6060 s; as shown in Table 4,
at the end of the equalization, the SOC range was decreased to 1.6%, the average of SOCs was 74.841%,
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maximum deviation from average was decreased to 0.92%, and standard deviation was decreased to
0.531%, r was decreased to 0.464%. The charge transfer efficiency of static equalization was 63.83%.
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Figure 9. (a) Balancing experiment test bench, (b) battery test system.
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Table 2. The initial SOCs of 12 retired cells for static equalization.

Groups P1 P2 P3

Cells B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

SOC (%) 80.9 80.6 78.5 78.7 77.3 74.9 73.6 75.4 73.5 71.2 70.3 70.6

 

(a)                                  (b) 

Figure 10. (a) SOC response with 12 retired cells of static equalization, (b) SOC response with 12 retired
cells of charging equalization.

4.2. Charging Equalization Experiment

Table 3 shows the initial SOCs of 12 retired cells for charging equalization, three retired battery
groups belonging to three different cases of bottom equalization algorithm, and SOC1 > SOC2 > SOC3.
At the beginning of equalization, the initial SOC range of 12 retired cells was 13.9%, the average of
SOCs was 43.77%, r1 was 0.775%, r2 was 3.6%, r3 was 2.125%, r was 5.345%, maximum deviation from
average was 7.47%, and standard deviation was 4.6%. Bottom layer equalization threshold value Δm

and top layer equalization threshold value Δ both were set to 0.5%.

Table 3. The initial SOCs of 12 retired cells for charging equalization.

Groups P1 P2 P3

Cells B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

SOC (%) 50.2 48.1 48.3 48.8 47.6 42.5 44.9 41 40.2 38.7 36.3 38.5

The charging equalization process lasted for 1.5 h. Figure 10b illustrates the SOC response. It was
observed that the differences between the retired cells’ SOCs gradually converged during the charging
process. Bottom layer equalization time was about 2625 s, equalization time of the whole retired
battery pack was about 4925 s; as shown in Table 4, at the end of the equalization, the SOC range was
decreased to 1.41%, the average of SOCs was 86.91%, maximum deviation from average was decreased
to 0.87%, and standard deviation was decreased to 0.42%, r was decreased to 0.467%. The charge
transfer efficiency of charging equalization was 63.18%.
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Table 4. Consistency comparison of retired battery pack before and after equalization.

SOC Range
(%)

SOCavg (%)
Maximum

Deviation from
Average (%)

Standard
Deviation

(%)

Equalization
Time (s)

Charge Transfer
Efficiency (%)

Static equalization 6060 63.83
Before equalization 10.6 75.458 5.442 3.596
After equalization 1.6 74.841 0.92 0.531

Charging equalization 4925 63.18
Before equalization 13.9 43.77 7.47 4.6
After equalization 1.41 86.91 0.87 0.42

5. Conclusions

This paper proposes a layered bidirectional active equalization method based on the SOC of
batteries. The main concluding remarks can be made below:

(1) Power lithium-ion batteries retired from EVs can be used for energy storage applications.
Moreover, a layered bidirectional active equalization topology is introduced for retired battery
equalization, which can be used for the equalization of a large number of retired batteries. Equalization
is based on the SOC of cells, and a bottom layer equalization algorithm based on the “partition” idea
and route optimization is proposed;

(2) The balancing experiment test bench is developed and an ITS5300 battery test system is used
for static equalization of 12 retired batteries and a charge equalization experiment. The experiment
results have verified the proposed equalization method is effective, although the selected initial SOCs
for static and charge equalization have a large range and involve different cases of the bottom layer
partitioning equalization algorithm. The equalization time is short and the consistency of the retired
battery pack is greatly improved. The SOC range of 12 retired cells is decreased from 10.6% to 1.6%
and from 13.9% to 1.41% after static equalization and charge equalization, respectively;

(3) Although the equalization charge transfer efficiency is moderate, improved consistency is much
more important for retired batteries, and the retired battery pack has a much larger available capacity
after equalization, which is more critical for a second-use retired battery pack for energy storage.

Author Contributions: Conceptualization, Y.S. and W.L.; data curation, Y.Y.; formal analysis, Y.Y.; funding
acquisition, C.X. and Z.T.; investigation, W.Z.; methodology, W.Z.; project administration, F.L.; software, Y.Y.;
supervision, C.X.; validation, Y.S. and W.L.; writing—original draft preparation, Y.Y.; writing—review and editing,
C.X. and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 51977164;
the Hubei Science Fund for Distinguished Young Scholars, grant number 2017CFA049; and the Hubei province
technological innovation major project, grant number 2018AAA059.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Xie, C.; Xu, X.; Bujlo, P.; Shen, D.; Zhao, H.; Quan, S. Fuel cell and lithium iron phosphate battery hybrid
powertrain with an ultracapacitor bank using direct parallel structure. J. Power Sources 2015, 279, 487–494.
[CrossRef]

2. Farmann, A.; Sauer, D.U. A comprehensive review of on-board State-of-Available-Power prediction techniques
for lithium-ion batteries in electric vehicles. J. Power Sources 2016, 329, 123–137. [CrossRef]

3. Li, X.; Xie, C.; Quan, S.; Huang, L.; Fang, W. Energy management strategy of thermoelectric generation for
localized air conditioners in commercial vehicles based on 48 V electrical system. Appl. Energy 2018, 231,
887–900. [CrossRef]

4. Wang, Y.; Zhang, C.; Chen, Z. An adaptive remaining energy prediction approach for lithium-ion batteries in
electric vehicles. J. Power Sources 2016, 305, 80–88. [CrossRef]

5. Jiang, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Gao, Y.; Guo, Q. Recognition of battery aging variations for
LiFePO4 batteries in 2nd use applications combining incremental capacity analysis and statistical approaches.
J. Power Sources 2017, 360, 180–188. [CrossRef]

517



Energies 2020, 13, 832

6. Liao, Q.; Mu, M.; Zhao, S.; Zhang, L.; Jiang, T.; Ye, J.; Shen, X.; Zhou, G. Performance assessment and
classification of retired lithium ion battery from electric vehicles for energy storage. Int. J. Hydrog. Energy
2017, 42, 18817–18823. [CrossRef]

7. Lai, X.; Qiao, D.; Zheng, Y.; Ouyang, M.; Han, X.; Zhou, L. A rapid screening and regrouping approach
based on neural networks for large-scale retired lithium-ion cells in second-use applications. J. Clean Prod.
2019, 213, 776–791. [CrossRef]

8. China Energy Storage Alliance. Energy Storage Industry Research White Paper 2019. Available online:
http://www.cnesa.org/index/inform_detail?cid=5cf0ef98b1fd3772048b4567 (accessed on 18 May 2019).

9. Zhang, Y.; Li, Y.; Tao, Y.; Ye, J.; Pan, A.; Li, X.; Liao, Q.; Wang, Z. Performance assessment of retired EV battery
modules for echelon use. Energy 2020, 193, 116555. [CrossRef]

10. Debnath, U.K.; Ahmad, I.; Habibi, D. Quantifying economic benefits of second life batteries of gridable
vehicles in the smart grid. Int. J. Electr. Power Energy Syst. 2014, 63, 577–587. [CrossRef]

11. Neubauer, J.; Pesaran, A. The ability of battery second use strategies to impact plug-in electric vehicle prices
and serve utility energy storage applications. J. Power Sourcesces 2011, 196, 10351–10358. [CrossRef]

12. Debnath, U.K.; Ahmad, I.; Habibi, D. Gridable vehicles and second life batteries for generation side asset
management in the Smart Grid. Int. J. Electr. Power Energy Syst. 2016, 82, 114–123. [CrossRef]

13. Madlener, R.; Kirmas, A. Economic Viability of Second Use Electric Vehicle Batteries for Energy Storage in
Residential Applications. Energy Procedia 2017, 105, 3806–3815. [CrossRef]

14. Huang, W.; Abu Qahouq, J.A. Energy Sharing Control Scheme for State-of-Charge Balancing of Distributed
Battery Energy Storage System. IEEE Trans. Ind. Electron. 2015, 62, 2764–2776. [CrossRef]

15. Zhang, C.; Shang, Y.; Li, Z.; Cui, N. An Interleaved Equalization Architecture with Self-Learning Fuzzy Logic
Control for Series-Connected Battery Strings. IEEE Trans. Veh. Technol. 2017, 66, 10923–10934. [CrossRef]

16. Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. A novel active
battery equalization control with on-line unhealthy cell detection and cell change decision. J. Power Sourcesces
2015, 299, 356–370. [CrossRef]

17. Liu, X.; Wan, Z.; He, Y.; Zheng, X.; Zeng, G.; Zhang, J. A Unified Control Strategy for Inductor-Based Active
Battery Equalisation Schemes. Energies 2018, 11, 405. [CrossRef]

18. Gallardo-Lozano, J.; Romero-Cadaval, E.; Milanes-Montero, M.I.; Guerrero-Martinez, M.A. Battery
equalization active methods. J. Power Sourcesces 2014, 246, 934–949. [CrossRef]

19. Bouchhima, N.; Schnierle, M.; Schulte, S.; Birke, K.P. Active model-based balancing strategy for
self-reconfigurable batteries. J. Power Sourcesces 2016, 322, 129–137. [CrossRef]

20. Daowd, M.; Antoine, M.; Omar, N.; van den Bossche, P.; van Mierlo, J. Single Switched Capacitor Battery
Balancing System Enhancements. Energies 2013, 6, 2149–2174. [CrossRef]

21. Chen, Y.; Liu, X.; Cui, Y.; Zou, J.; Yang, S. A Multi-Winding Transformer Cell-to-Cell Active Equalization
Method for Lithium-Ion Batteries with Reduced Number of Driving Circuits. IEEE Trans. Power Electron.
2016, 31, 4916–4929. [CrossRef]

22. Wang, Y.; Zhang, C.; Chen, Z.; Xie, J.; Zhang, X. A novel active equalization method for lithium-ion batteries
in electric vehicles. Appl. Energy 2015, 145, 36–42. [CrossRef]

23. Hannan, M.A.; Hoque, M.M.; Peng, S.E.; Uddin, M.N. Lithium-Ion Battery Charge Equalization Algorithm
for Electric Vehicle Applications. IEEE Trans. Ind. Appl. 2017, 53, 2541–2549. [CrossRef]

24. Dai, H.; Wei, X.; Sun, Z.; Wang, D. A novel dual-inductor based charge equalizer for traction battery cells of
electric vehicles. Int. J. Electr. Power Energy Syst. 2015, 67, 627–638. [CrossRef]

25. Cui, X.; Shen, W.; Zhang, Y.; Hu, C. A Fast Multi-Switched Inductor Balancing System Based on a Fuzzy
Logic Controller for Lithium-Ion Battery Packs in Electric Vehicles. Energies 2017, 10, 1034. [CrossRef]

26. Zheng, X.; Liu, X.; Yao, H.; Zeng, G. Active vehicle battery balancing scheme in the condition of
constant-voltage/current charging and discharging. IEEE Trans. Veh. Technol. 2017, 66, 3714–3723.
[CrossRef]

27. Wu, Z.; Ling, R.; Tang, R. Dynamic battery equalization with energy and time efficiency for electric vehicles.
Energy 2017, 141, 937–948. [CrossRef]

28. Zhang, Z.; Gui, H.; Gu, D.; Yang, Y.; Ren, X. A Hierarchical Active Balancing Architecture for Lithium-Ion
Batteries. IEEE Trans. Power Electron. 2017, 32, 2757–2768. [CrossRef]

29. Ouyang, Q.; Chen, J.; Zheng, J.; Hong, Y. SOC Estimation-Based Quasi-Sliding Mode Control for Cell
Balancing in Lithium-Ion Battery Packs. IEEE Trans. Ind. Electron. 2018, 65, 3427–3436. [CrossRef]

518



Energies 2020, 13, 832

30. Ma, Y.; Duan, P.; Sun, Y.; Chen, H. Equalization of Lithium-Ion Battery Pack Based on Fuzzy Logic Control in
Electric Vehicle. IEEE Trans. Ind. Electron. 2018, 65, 6762–6771. [CrossRef]

31. Diao, W.; Xue, N.; Bhattacharjee, V.; Jiang, J.; Karabasoglu, O.; Pecht, M. Active battery cell equalization
based on residual available energy maximization. Appl. Energy 2018, 210, 690–698. [CrossRef]

32. Zeng, M.; Zhang, P.; Yang, Y.; Xie, C.; Shi, Y. SOC and SOH Joint Estimation of the Power Batteries Based on
Fuzzy Unscented Kalman Filtering Algorithm. Energies 2019, 12, 3122. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

519





energies

Article

An Optimal Fast-Charging Strategy for Lithium-Ion
Batteries via an Electrochemical–Thermal Model with
Intercalation-Induced Stresses and Film Growth

Guangwei Chen, Zhitao Liu * and Hongye Su

State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control,
Zhejiang University, Hangzhou 310027, China; gwchen@zju.edu.cn (G.C.); hysu@iipc.zju.edu.cn (H.S.)
* Correspondence: ztliu@zju.edu.cn; Tel.: +86-0571-87952233 (ext. 8239)

Received: 15 March 2020; Accepted: 7 May 2020; Published: 11 May 2020

Abstract: Optimal fast charging is an important factor in battery management systems (BMS).
Traditional charging strategies for lithium-ion batteries, such as the constant current–constant
voltage (CC–CV) pattern, do not take capacity aging mechanisms into account, which are not only
disadvantageous in the life-time usage of the batteries, but also unsafe. In this paper, we employ the
dynamic optimization (DP) method to achieve the optimal charging current curve for a lithium-ion
battery by introducing limits on the intercalation-induced stresses and the solid–liquid interface film
growth based on an electrochemical–thermal model. Furthermore, the backstepping technique is
utilized to control the temperature to avoid overheating. This paper concentrates on solving the issue
of minimizing charging time in a given target State of Charge (SoC), while limiting the capacity loss
caused by intercalation-induced stresses and film formation. The results indicate that the proposed
optimal charging method in this paper offers a good compromise between the charging time and
battery aging.

Keywords: electrochemical–thermal model; lithium-ion battery; fast charging

1. Introduction

Lithium-ion batteries have been used in many electronic products due to their high cell voltage,
high energy density, high power density, convenient operating temperature range, lack of memory
property, and high cycle life [1]. When operating a lithium-ion battery efficiently and safely during
charging, long charging time, capacity degradation, capacity wastage, and overheating are the main
difficulties that need to be overcome.

In recent years, many researchers have made efforts to optimize lithium battery charging.
Many results are based on traditional charging patterns, such as the constant-current (CC) pattern
and the constant current–constant voltage (CC–CV) pattern, without considering the aging process.
For example, Liu and Luo [2] proposed a Taguchi-based algorithm and adopted orthogonal arrays to
obtain the optimal rapid-charging strategy for a piecewise CC charging approach, which can charge a
battery cell from 0% to 75% within 40 min and increase the cycle life by more than 60%. On the basis of
the open circuit voltage (OCV)-resistance equivalent circuit model, Abdollahi et al. [3] presented a
closed-form solution for optimally charging a lithium-ion battery; the target function is established
through a combination of two consumption functions: time-to-charge (TTC) and energy losses (EL).
Here, the CC–CV pattern is selected as the optimal charging scheme, where the current in the CC
stage is a function of the ratio of weighting on TTC and EL. Then, Abdollahi et al. [4] proposed the
objective function consisting of TTC, EL, and a temperature rise index (TRI). Then, the value of the
current in the CC stage is also considered as a function of the ratio of weighting on TTC and EL,
and finally the analytical solution for the optimal problem is derived. Monem et al. [5] studied the
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influence of three charging strategies including CC, CC–CV, and constant current–constant voltage
with negative pulse (CC–CVNP) on the battery’s cycle life. The results show that the CC–CVNP
pattern with low amplitude and less negative pulses is more efficient than the CC and CC–CV patterns.
Liu et al. [6] firstly put forward a triple-objective function for optimal battery charging on the basis of
a coupled thermoelectric model. Then, the CC–CV charge strategy is optimized, which offers the best
compromise among three significant performance indexes consisting of charging time, energy loss, and
temperature rise. Fang et al. [7] permit users to specify charging objectives and reach them by dynamic
optimal control for the first time and proposed two charging methods based on the linear quadratic
control theory without real-time constrained optimization computation. Compared to the conventional
open-loop regulation of fast charging, the close-loop optimal method can be used to accurately control
the specific parameters, such as temperature, current, and voltage. Patnaik et al. [8] came up with a
constant temperature–constant voltage (CT-CV) charging algorithm that considers battery temperature
as a key feedback variable. Then, a simple and easy-to-realize proportional-integral-derivative (PID)
controller is employed to implement this close-loop method and the results indicate that the proposed
approach achieved a 20% faster charging rate with an identical total temperature increase as compared
to the constant current–constant voltage (CC–CV) technique. Klein et al. [9] paid attention to minimum
charging time and proposed a simple one-step predictive control algorithm that is capable of solving
the time-optimal solution and satisfying the real-time requirement. On the basis of the electrochemical
battery model, Pramanik et al. [10] introduced a novel method for optimally charging the lithium-ion
battery cell, which establishes the objective function aiming to minimize the charging cost. The result
indicates that the optimal charging method presented in the paper [10] can decrease the charging
time of a lithium-ion cell, meanwhile guaranteeing the temperature limit when compared with the
traditional constant current charging. Considering the electrolyte and thermal dynamics based on a
single particle model, the Legendre–Gauss–Radau (LGR) pseudo-spectral approach is used to solve the
problem of nonlinear multistate optimal control, and the minimum time charge strategies are analyzed
minutely while taking the solid and electrolyte phase concentration limits and temperature constraint
into account [11].

Generally speaking, fast charging can accelerate the battery aging processes. For reducing the
aging rate, some researchers consider the aging process when optimizing the fast-charging strategy
and some good results have been obtained. For example, through coupling incremental capacity (IC)
and IC peak area analysis with the mechanistic model, Ansean et al. [12] quantified the mechanism of
degradation that leads to the aging of the battery cell. In addition, the results show that aging is caused
by a loss of lithium ions and a lower level of loss of active material on the negative electrode. On the
basis of cycle-life testing (up to 4500 cycles), Ansean et al. [13] proposed a multistage fast-charging
algorithm which allows a full recharging of the cell (0% to 100% SoC) within 20 min (indeed after
4500 cycles are reached) and does not cause any remarkable degradation to the battery cell. Considering
the influence of intercalation-induced stress on aging, Suthar et al. [14] used dynamic optimization to
achieve the optimal current profile to fast charge a lithium-ion battery through a single-particle model
while coupling this with the intercalation-induced stress generation model. In addition, this was the
first time protocols for optimally charging batteries while ensuring a minimal mechanical cost to the
electrode particles during intercalation were demonstrated. Torchio et al. [15] used the first-principles
pseudo-two-dimensional (P2D) model together with the capacity fade mechanisms that work when
the battery is operating. Then, the model predictive control (MPC) method based on a linearized
model of the P2D model was proposed to approach a target value of the state of charge (SoC) while
considering the degradation process of the system as well as the thermal and voltage limits. To analyze
the effect of static and dynamic fast-charging current strategies on the degradation properties of
lithium-ion batteries, Monem et al. [16] applied both the static and dynamic fast-charging current
profiles to a lithium-ion battery cell. After 1700 cycles, the result shows that the dynamic fast-charging
current profile had a more outstanding role in reducing the aging rate and the charging time of
cells than the static fast-charging profile. To reduce the influence of fast charging on battery aging,
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Ali et al. [17] proposed a temperature control method based on fuzzy logic that protects the batteries
from overvoltage and overheating. The result illustrates that the proposed fast-charging pattern
spends 9.76% less time during full battery recharging than the conventional CC–CV method, and the
approach does not bring significant degradation. As a compromise between the three objectives of
high safety, longer lifetime, and a lower charging time, Zou et al. [18] proposed a fast-charging method
on the basis of the electrochemical model and MPC theory. Here, the battery optimal charging issue
is described in a linear time-varying model for the implementation of the MPC algorithm. Similarly,
Lina et al. [19] presented an electrolyte enhanced single particle model with aging mechanisms which
considers the effect of electrolyte dynamics, then the dynamic programming DP approach is adopted
to obtain the optimal charging profiles to reduce the charge time and battery aging. On the basis of
the electrochemical–thermal capacity fade model, Xu et al. [20] used the DP optimization algorithm
to minimize capacity fade, temperature rise, and charging time. Although there are many papers
considering the aging process in terms of optimizing the fast charge curve, the aging models used in
the above-mentioned papers seldom involve intrinsic aging mechanisms and never consider the effects
of intercalation-induced stress and film growth together on the aging process.

In this paper, the electrochemical–thermal model is employed to obtain the optimal charging
profile and control the temperature of cell. Controlling the temperature of the hottest point inside
the cell based on the backstepping method can help avoid overheating. During fast charging,
intercalation-induced stress will cause particle fracture which can accelerate the aging process. Hence,
restricting intercalation-induced stress to a given range is significant to reduce the degradation of cells
when seeking the optimal fast-charging profile. Furthermore, the main aging cause is the growth of
film on the surface of particles, and this film is a compound containing lithium which cannot be reused.
Therefore, confining the growth rate of surficial film to a proper range can maximize the available
lithium, which is another contribution of this paper. To sum up, on the basis of maintaining a constant
temperature using the backstepping control method and minimizing the charging time while limiting
intercalation-induced stress and the film growth to an appropriate range are the main contributions of
this paper.

2. Electrochemical–Thermal Model with Intercalation-Induced Stress and Film Growth

2.1. SPM-Electrolyte-T Model

The SPM-Electrolyte-T Model is a simplified version of the first principle electrochemical model of
batteries composed of a single particle model, electrolyte dynamics, and thermal dynamics. Considering
the effects of electrolyte and thermal dynamics can help us investigate the fast-charging scheme to
reduce battery aging to prolong the lifetime of lithium-ion batteries. The single particle model can be
described by the following partial differential equation [21]:

∂c±s
∂t

= D±s (Tavg) ×
(
∂2c±s
∂r2 +

2
r
∂c±s
∂r

)
(1)

with the following conditions:

∂c±s
∂r

(0, t) = 0,
∂c±s
∂r

(R±s , t) =
±I(t)

Fa±AL± (2)

The definitions of the relevant electrochemical parameters are listed in the attached table.
Most studies relevant to the electrochemical model of lithium-ion batteries ignore the influence

of electrolyte dynamics for inexpensive computation. However, when the charging or discharging
current is high, there would be a remarkable electrolyte concentration potential between the cathode
and the anode, which has a significant impact on the prediction of the terminal voltage. Specifically,
the process of fast charging requires more than a 2 C current, which has enough power to produce an
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obvious concentration potential. Hence, during the operation of fast charging, it is wise to consider
electrolyte dynamics.

The electrolyte dynamics are governed by

ε±e
∂c±e
∂t

(x, t) =
∂
∂x

[
De f f

e

(
c±e , Tavg

)∂c±e
∂x

(x, t)
]
∓

(
1− t0

c

)
I(t)

FAL± (3)

ε
sep
e
∂csep

e
∂t

(x, t) =
∂
∂x

[
De f f

e

(
csep

e , Tavg
)∂csep

e
∂x

(x, t)
]

(4)

with the boundary conditions
∂c−e
∂x

(0−, t) =
∂c+e
∂x

(
0+, t

)
= 0 (5)

De f f
e

(
L−, Tavg

)∂c−e
∂x

(L−, t) = De f f
e

(
0sep, Tavg

)
× ∂c

sep
e
∂x

(0sep, t) (6)

De f f
e

(
Lsep, Tavg

)∂csep
e
∂x

(Lsep, t) = De f f
e

(
L+, Tavg

)
× ∂c

+
e
∂x

(
L+, t

)
(7)

ce(L−, t) = ce(0sep, t), ce(Lsep, t) = ce
(
L+, t

)
(8)

where De f f
e (ce, Tavg) = De(ce, Tavg)(ce) · (εe)

brug is the effective electrolyte diffusivity, which means that
the diffusion rate of lithium ions is related to its concentration and temperature; t0

c is the transference
number, which is deemed to be constant; ε+e , ε−e , εsep

e are the volume fractions of the electrolyte in the
cathode, anode, and separator, respectively, and L+, L−, Lsep are the lengths of the cathode, anode,
and separator. The effects of electrolyte dynamics on the terminal voltage equation is presented as
follows, considering:

V(t) =
RTavg(t)
αF sinh−1

(
I(t)

2a+AL+i
+
0 (t)

)
− RTavg(t)

αF sinh−1
(

−I(t)

2a−AL−i
−
0 (t)

)
+U+

(
c+ss(t)

)
−U−(c−ss(t)) +

(
R+

f
a+AL+ +

R−f
a−AL− +

Rce(Tavg(t))
A

)
I(t)

+

(
L++2Lsep+L−
2Aκe f f (Tavg)

)
I(t) + kconc (t)[ln ce(0+, t) − ln ce(0−, t)]

(9)

where
i±0 (t) = k±

(
Tavg

)
[c±ss(t)]

αc
[
c±e (x, t)

(
c±s,max − c±ss(t)

)]αa
(10)

Most model parameters of battery cells are relative to the temperature and are expressed by the
following equation:

P
(
Tavg

)
= P0 exp

(
EaP

R

(
1

T0
− 1

Tavg

))
(11)

where P0 is the parameter when the temperature is equal to T0; and EaP is the activation energy of
parameter P. The average temperature Tavg can be obtained by the following equations:

∂T(r1, t)
∂t

1
α
=
∂T2(r1, t)
∂r2

1

+
1
r1

∂T(r1, t)
∂r1

+

.
q
k

(12)

Tavg(t) =
1
r1

∫ r1

0
T(s, t)ds (13)

with the boundary conditions

∂T(0, t)
∂r1

= 0,
∂T(Rb, t)
∂r1

= U =
h
k
(Ta − T(Rb, t)) (14)
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where r ∈ [0, Rb] is the radial coordinate of a cylindrical battery; α = k/(ρCp) is proportional to the
average thermal conductivity k; ρ is the average mass density and Cp is the average specific thermal
capacity;

.
q is the volumetric heat generated rate; and Ta is the ambient temperature.

.
q can be computed

by the following equation:
.
q = I(t) × (Uo(t) −Uter − T(t)

∂Uo(t)

∂T(t)
) (15)

where Uo(t) is the open circuit voltage, which is a function of the boundary concentration; Uter = V(t)
is the terminal voltage; and ∂Uo(t)/∂T(t) is the entropic heat generation which is too small to neglect.
The open circuit voltage Uo(t) can be given by the following equation:

Uo(t) = U+(c+ss(t)) −U−(c−ss(t)) (16)

Then, the volumetric heat generated rate
.
q can be rewritten as follows:

.
q = I(t) × (Uo(t) −V(t)) = I(t) ×

{
RTavg(t)
αF sinh−1

(
I(t)

2a+AL+i
+
0 (t)

)
−RTavg(t)

αF sinh−1
(

−I(t)

2a−AL−i
−
0 (t)

)
+

(
R+

f
a+AL+ +

R−f
a−AL− +

Rce(Tavg(t))
A

)
I(t)

+

(
L++2Lsep+L−
2Aκe f f (Tavg)

)
I(t) + kconc (t)[ln ce(0+, t) − ln ce(0−, t)]

} (17)

2.2. Intercalation-Induced Stress

The intercalation-induced stress generated by lithium-ion intercalation and deintercalation
influences the diffusion of lithium and even causes electrode particle fracture. This electrode particle
fracture will accelerate aging. Considering the effects of intercalation-induced stress helps us to
investigate the fast-charging scheme to reduce the electrode particle fracture and thus prolong the
lifetime of the lithium-ion battery. The intercalation-induced stresses are composed of radial stress σr

and tangential stress σt, which are dependent of the lithium concentration [22]:

σ±r (r, t) = 2β±
⎡⎢⎢⎢⎢⎢⎢⎣ 1(

Rj
s

)3

∫ R±s
0 c̃±s r2dr− 1

r3

∫ r
0 c̃±s ρ2dρ

⎤⎥⎥⎥⎥⎥⎥⎦
σ±t (r, t) = β±

⎡⎢⎢⎢⎢⎢⎢⎣ 2(
Rj

s

)3

∫ R±s
0 c̃±s r2dr + 1

r3

∫ r
0 c̃±s ρ2dρ− c̃±s

⎤⎥⎥⎥⎥⎥⎥⎦
(18)

where, β± = Ω±E±/3(1− ν±). Ω±, E±, and ν± are the partial molar volume, Young’s Modulus,
and Poisson’s ratio of the electrode material in the cathode and anode, respectively, which have
different sensitivities to temperature. c̃± is the concentration change from the stress-free value.
The resultant stress is a weighted sum of σr and σt:

σ±res =
σ±r + 2σ±t

3
=

2
3
β±

⎡⎢⎢⎢⎢⎣ 3

(R±s )
3

∫ R±s

0
c̃±s r2dr− c̃±s

⎤⎥⎥⎥⎥⎦ (19)

From [23], we know that the maximum absolute values of radial and tangential stress are located
at the center and the surface of the particle, respectively. Taking the anode as an example, we have

σ−r,max(t) = 2β−
[

1
(R−s )3

∫ R−s
0 c̃−s r2dr− 1

3 c̃−s (0, t)
]

σ−t,max(t) = β
−
[

3
(R−s )3

∫ R−s
0 c̃−s r2dr− c̃−s (R−s , t)

] (20)
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According to Equation (19), we find that the maximum value of the resultant stress is located at
the point where the lithium concentration is the minimum value of the electrode particle. That is

σ−res,max =
2
3
β−

⎡⎢⎢⎢⎢⎣ 3

(R−s )
3

∫ R−s

0
c̃−s r2dr− c̃−s,min

⎤⎥⎥⎥⎥⎦ (21)

Figure 1 shows the input current under Urban Dynamometer Driving Schedule (UDDS), which is
applied to a battery cell. Then, the maximum absolute values of radial stress, tangential stress, and the
resultant stresses are investigated. According to Equation (21), the intercalation-induced stresses are
caused by the lithium-ion concentration nonuniformity in space, which is related to the values of the
charging and discharging current. When the current is positive, the lithium-ion concentration in the
surface of the particle is smaller than in the center of the particle, that is, the maximum radical stress is
positive and the maximum tangential stress is negative, and vice versa. From the input current under
UDDS, we know that the current is rapidly changing, which can cause the oscillation of lithium-ion
concentration and enlarge the imbalance of lithium-ion concentration in space. Hence, the maximum
absolute values of radial stress, tangential stress, and the resultant stresses change rapidly over time,
as shown in Figures 2–4. From the three figures, we can see that when the input current is negative,
the absolute values of the three stresses will increase gradually, and vice versa. This is because the
negative current increases the lithium-ion concentration nonuniformity in space and the positive
current decreases this nonuniformity. Besides that, we can find that the absolute values of the three
stresses have the same changing curve, which agrees with Equations (20) and (21). Another finding is
that the value of the maximum tangential stress is larger than the maximum resultant stress, and the
maximum resultant stress is always larger than the maximum radial stress. Hence, by adjusting the
input current, the radial stress, tangential stress, and the resultant stress can be controlled to decrease
the aging of a battery cell.

 

Figure 1. Input current under UDDS.

Figure 2. Maximum radial stress.
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Figure 3. Maximum tangential stress.

 

Figure 4. Maximum resultant stress.

2.3. Film Growth Model

Ramadass et al. [24] studied a resistive film formed on the anode electrode/electrolyte interphase,
which is the main cause of capacity loss. The veracious chemical side reaction generating the resistive
film lies on the chemical component of the anode electrode and electrolyte. Furthermore, a simplified
and universal model for capacity reduction based on film growth originated from a single particle
model is presented here:

S + Li+ + e− → P (22)

where S is the type of solvent, and P is the reaction product.
On account of this nonreversible side reaction, the reaction product builds up a film at the

interface of electrode/electrolyte with a thickness varying over time δ f ilm(t). The irreversibly formed
membrane together with the initial solid interphase resistance RSEI forms the total resistance of the
electrode/electrolyte interface as follows:

R f ilm(t) = RSEI +
δ f ilm(t)

κP
(23)

where κp is the conductivity of the formed film.
The key state related to the increasing rate of interface film thickness, because of the unwanted

lithium loss, is described by
∂δ f ilm(t)

∂t
= − MP

anρPF
Js(t) (24)

where, an, Mp, ρp, and F are the formed film’s specific surface area, molecular weight, mass density,
and Faraday’s constant, respectively. The variable Js(t) is the local volume current density used for the
side reaction and described by Butler–Volmer kinetics. Assuming that the lithium reduction reaction
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is nonreversible and the concentration of lithium ions in the solution changes little, it is possible to
approximate Js(t) through the following equation:

Js(t) = −i0,sane
( −0.5F

RTavg ηs(t)) (25)

where i0,s is current density occupied by the lithium-loss side reaction; R is the universal gas constant;
and Tavg is the average temperature of the battery cell. The component ηs(t) denotes the overpotential
generated by the side reaction, which is expressed by the following equation:

ηs(t) = Δφ(t) −Us,re f − Jtot(t)
an

R f ilm(t) (26)

Jtot = J1 + Js (27)

where Δφ(t) denotes the difference between the solid phase potential and electrolyte potential.
The variable Us,re f is the reference equilibrium potential, which is considered as a constant value.
The total intercalation current Jtot is used for the anode-side solution, which is presented by the sum of
the current between the solid and solution J1, and the solution decreasing reaction and solution Js.

Under three different charging currents (1 C, 2 C, and 3 C), the resistance film growth rates are
computed according to Equations (23)–(27) and are presented in Figure 5. From this figure, we see that
the film growth rate increases as the charging current or the time increases, owing to the augmentation
of the reduction reaction rate and the rise in Δφ(t) according to Equation (6). This means that a
continuous high current and a high SoC is detrimental to reducing the lithium loss.

 
Figure 5. Film growth under three charging current.

3. Temperature Control Based on the Backstepping Technique

The core temperature of a battery cell is higher than its surface temperature, hence, the control
of the core temperature being more significant. Confining the maximum temperature of the battery
to a certain value can guarantee both the safe operation and efficient charging. However, the core
temperature of the battery is not accessible and cannot be measured by sensor directly. Therefore,
we have to estimate the core temperature of a battery cell to make sure that the control goal is achieved.
H. E. Perez et al. utilized the thermal model based on the equivalent circuit model to obtain the core
temperature of a battery cell, which consists of the heat conduction resistance Rc, convection resistance
Ru, core heat capacity Cc, and surface heat capacity Cs [25]. The thermal model used in this paper is
described by the partial differential equation, which can accurately present the evolution of spatial
temperature and is more accurate than the model employed by H. E. Perez et al.
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To maintain the temperature of the battery cell where we want it to be, we can adjust the
temperature or flow velocity of the cooling fluid. Herein, a backstepping method is utilized to design
the control law for a prespecified time-invariant reference temperature Tre f (r1).

The following error system is thus introduced:

Te(r1, t) = T(r1, t) − Tre f (r1), Tre f (r1) =
Tsre f − Tcre f

R2
b

r2
1 + Tcre f (28)

where the expected temperature distribution Tre f (r1) is a quadratic parabola, which is in accordance with
the true case; Tsre f and Tcre f are the reference surface temperature and core temperature, respectively.

The time derivative of Te(r1, t) can be obtained according to Equations (12) and (28).

∂Te(r1,t)
∂t =

∂T(r1,t)
∂t − ∂Tre f (r1)

∂t =
∂T2(r1,t)
∂r2

1
+ 1

r1

∂T(r1,t)
∂r1

+
.
q
k

=
∂T2

e (r1,t)
∂r2

1
+ 1

r1

∂Te(r1,t)
∂r1

+ 2
Tsre f−Tcre f

R2
b

+
.
q
k

(29)

with the conditions
∂Te(0, t)
∂r1

= 0,
∂Te(Rb, t)
∂r1

= U − 2
Tsre f − Tcre f

Rb

where U is the boundary control law, which is applied to the boundary condition of Equation (12) for
restricting T(r1, t) to around Tre f (r1).

Here, the following invertible backstepping transformation is adopted:

w(r1, t) = Te(r1, t) −
∫ r1

0
K(r1,ρ)Te(ρ, t)dρ (30)

which maps (29) into the stable system:

wt = wr1r1 +
wr1

r1
− cw

r2
1

(31)

with boundary conditions
wr1(0, t) = 0, wr1(Rb, t) = 0 (32)

where c > 0.5. K(r1,ρ) can be solved easily by the following kernel function:

Kr1r1 +
Kr1

r1
−Kρρ +

Kρ
ρ
− K
ρ2 =

c
r1

2 K (33)

with the following conditions:

K(r1, 0) = 0, Kρ(r1, 0) = 0, K(r1, r1) = −
∫ r

0

c/r1
2

2
dρ (34)

The detailed solution process can be seen in [26].
According to the boundary condition wr1(Rb, t) = 0 and Equation (29), we have

∂Te(Rb, t)
∂r1

= K(Rb, Rb)Te(Rb, t) +
∫ Rb

0
Kr1(Rb,ρ)Te(ρ, t)dρ (35)

Then, the control law is obtained:

U = K(Rb, Rb)Te(Rb, t) +
∫ Rb

0
Kr1(Rb,ρ)

[
T(ρ, t) − Tre f (ρ)

]
dρ+ 2

Tsre f − Tcre f

Rb
(36)
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The control law requires access to the full states T(ρ, t). However, the core temperature cannot be
measured by sensor directly. For that, the following boundary temperature observer is proposed:

∂T̂(r1, t)
∂t

1
α
=
∂T̂2(r1, t)
∂r2

1

+
1
r1

∂T̂(r1, t)
∂r1

+

.
q
k
+ P(r1)(T(Rb, t) − T̂(Rb, t)) (37)

with boundary conditions

∂T̂(0, t)
∂r1

= 0,
∂T̂(Rb, t)
∂r1

= U =
h
k
(Ta − T(Rb, t))

The estimation error T̃(r1, t) = T(r1, t) − T̂(r1, t) is introduced, then substituting Equation (37) for
Equation (12), one has

∂T̃(r1, t)
∂t

1
α
=
∂T̃2(r1, t)
∂r2

1

+
1
r1

∂T̃(r1, t)
∂r1

− P(r1)(T̃(Rb, t)) (38)

with boundary conditions
∂T̃(0, t)
∂r1

= 0,
∂T̃(Rb, t)
∂r1

= 0

Using the following backstepping transform, which is similar with (30), we have

w(r1, t) = T̃(r1, t) −
∫ r1

0
M(r1,ρ)T̃(ρ, t)dρ (39)

where w(r1, t) satisfies the following stable system:

wt = wr1r1 +
wr1

r1
− dw

r2
1

(40)

with boundary conditions
wr1(0, t) = 0, wr1(Rb, t) = 0

where d > 0.5 as well. M(r1,ρ) satisfies the following kernel function:

Mr1r1 +
Mr1

r1
−Mρρ +

Mρ
ρ
− M
ρ2 = − c

r1
2 M (41)

with the boundary conditions:

Mρ(0,ρ) = 0, M(r1, r1) = −
∫ r1

0

c/r1
2

2
dρ

The solution procedure of M(r1,ρ) is similar to K(r1,ρ).
To verify the performance of the backstepping-based observer and controller, a constant current

of 2 C is applied to a battery cell; the curve of the temperature rising is presented in Figure 6. r = 0 and
r = 1 represent the center and the surface of a battery cell, respectively. The two horizontal lines are
the target temperature of the surface and the center of a battery cell. From Figure 6, we can see that the
temperature estimation of both the surface and the center is capable of tracking the true temperature
and approaching the target temperature gradually. That is to say that we can control the temperature
to a safe range using the proposed temperature controller.
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Figure 6. Estimation and control of temperature.

4. Problem Formulation

This paper concentrates on the minimization of the charging time in a given target SoC with
limits involving current, voltage, intercalation-induced stress, and film formation. The simultaneous
nonlinear programming approach is used in this paper. Considering the optimal charging profile with
predetermined final SoC under the objective of minimization of charging time, the objective function J
is given by

J = min
I(t),s(t),t f

∫ t f

t0

1 · dt (42)

with bounds
Imin ≤ I(t) ≤ Imax (43)

t0 ≤ t f ≤ tmax (44)

Vmin(t) ≤ V(t) ≤ Vmax(t) (45)

σ−r,max(t) ≤ σ−r,upper (46)

− σ−t,max(t) ≤ σ−t,upper (47)

∂
.
δ f ilm(t) ≤ ∂

.
δ f ilm_max(t) (48)

where I(t) is the input current (A); t f is the final time (s); V(t) is the terminal voltage (V); σ−r,upper(t)

and σ−t,upper are the radial and tangential stress upper bounds, respectively; and ∂
.
δ f ilm_max(t) is the

upper bound of the film growth rate.

5. Simulation and Results

In order to verify the performance of the proposed optimal fast-charging method, CC–CV,
the most common pattern of fast charging, was used for the comparative study, including four aspects:
charging time, maximum tangential stress, maximum radial stress, and film growth rate.

In the process of fast charging a lithium battery, the temperature of the battery cell grows quickly
and the aging rate increases. To avoid overheating, the backstepping method is used to keep the battery
cell at a constant temperature, as shown in Figure 7. A constant temperature in the battery cell not
only helps avoid overheating, but also helps compare the performance of the proposed fast-charging
method with the CC–CV method. In order to find a compromise between the charging time and
battery aging, the proposed optimal fast-charging method in this paper considers two aging factors:
intercalation-induced stress and film growth. In the comparative study, the CC–CV pattern adopts
three kinds of maximum charging current: 1 C, 2 C, and 3 C. This means that the effect of the choice of
the maximum charging current on the comparative results is avoided.
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In this paper, the upper limits of the radial and tangential stress are predetermined and optimal
charging curves were obtained using the dynamic optimization approach. As we know, when charging
occurs, the maximum tangential stress is located at the surface of the particle, and the maximum radial
stress is located at the center of the particle. For an anode made of graphite, neither the maximum
tangential stress nor the maximum radial stress is not allowed to exceed the yielding stress for any
length of time to reduce the risk of anode fracture. The following case is discussed: charging a battery
from 0% SoC to 100% SoC.

Figure 7. The balance temperature distribution.

Figure 7 presents the balance of temperature distribution. If this balance is broken, the temperature
controller would work to drag the temperature to the target position using various methods, such as
changing the fluid temperature and adjusting the fluid flow velocity. Thus, a stable cell temperature
can be achieved for safe operation. Figures 8 and 9 show the current and voltage curves of charging a
battery from 0% SoC to 100% SoC by utilizing the CC–CV pattern under three maximum charging
currents. At the initial charging stage, the input current maintains at the maximum and the terminal
voltage climbs fast. When the output voltage reaches the upper value, this voltage is held until the
battery cell is charged fully. With the increase in the maximum charging current, the time cost for
full charging becomes less and less. Figure 10 indicates the optimal charging current obtained by
the dynamic optimization method. The upper value and lower values of the constraints are listed in
Table 1.

 

Figure 8. Three Current profiles under CC–CV.
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Figure 9. Corresponding voltages under CC–CV.

Figure 10. Optimal charging profile.

Table 1. The upper value or lower values of the constraints.

Range I(t) (C) tf (min) V(t) (V) σ−r,max(t) (MPa) −σ−t,max(t) (MPa) ∂
.
δfilm(t) (μΩ/m2/s)

Upper 3 80 4.3 160 220 0.5
Lower 0 15 2 0 0 0

From Figure 11, we see that the area under the film growth curve is smaller than those of the other
three curves, which means the least lithium loss during full charging. At the same time, the charging
time of the optimal charging profile just takes 200 s more than the time cost under CC–CV with a 3 C
current, which is fast enough and acceptable.

 
Figure 11. Film growth rate under four profiles.
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The yielding stress of the radial stress and tangential stress in a graphite-based anode are both
around 30 MPa. If the radial stress or tangential stress is more than 30 Mpa for a long time, it is
possible to cause fatigue failure and accelerate the aging process. From Figure 12, the tangential stress
generated by optimal charging profile becomes greater than its yielding stress within 1400 s, while the
tangential stress under CC–CV with 1 C, 2 C, and 3 C is larger than 30 MPa for more than 1700 s, 2200 s,
and 3700 s, respectively. From the maximum values of radial stress as shown in Figure 13, we can see
that the optimal charging profile causes a shorter period of overstress, which represents less electrode
fatigue damage. Hence, the result shows that the optimal charging profile obtained by the dynamic
optimization method has less probability of causing stress than the CC–CV profiles and so can slow
the aging process and extend the battery life.

 

Figure 12. Maximum value of tangential stress.

 

Figure 13. Maximum value of radial stress.

Therefore, while optimizing the charging speed, the proposed optimal charging method offers a
good compromise between charging time and battery aging.

6. Conclusions

In this paper, the electrochemical–thermal model was employed to obtain the optimal charging
profile and control the temperature of the cell. A temperature controller-based backstepping method
was proposed to keep a relatively constant cell temperature to avoid overheating. Then, the effects of
intercalation-induced stress were considered, because these cause particle fracture, which can accelerate
the aging process. Furthermore, the growth of film on the surface of particles was also taken into
account due to its ability to reduce the reused lithium ions. After that, the optimization objective was
established, which minimizes the time cost during charging, while confining intercalation-induced
stress and the growth rate of surficial film to a given range. Finally, the simulation was implemented
and the results show that the film growth of the optimal charging curve is smaller than that of the other
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three charging curves, thus demonstrating the least lithium loss during full charging. Besides that,
the tangential stress and the radial stress generated by the optimal charging profile were both greater
than their yielding stresses for less time during charging as compared with the CC–CV pattern,
which means there is less risk of electrode fatigue fracture. Furthermore, the charging time of the
optimal charging profile just takes 200 s more than the time cost under CC–CV with a 3 C current,
which is fast enough and acceptable. Hence, the proposed optimal charging method offers a good
compromise between charging time and battery aging.
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Abbreviations

The following abbreviations are used in this manuscript:

BMS Batteries management system
DP Dynamic optimization
SoC State of Charge
CC-CV Constant current-constant voltage
CC Constant current
IC Incremental capacity
OCV Open circuit voltage
TTC Time-to-charge
EL Energy losses
TRI Temperature rise index
P2D Pseudo-two dimensional
MPC Model predictive control
CT-CV Constant temperature-constant voltage
LGR Legendre-Gauss-Radau
PID Proportional-integral-derivative
SPM Single particle model
PDE Partial differential equation
ODE Ordinary differential equation
UDDS Urban Dynamometer Driving Schedule
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