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Abstract: The aim of this paper is to construct generating functions for new families of combinatorial
numbers and polynomials. By using these generating functions with their functional and differential
equations, we not only investigate properties of these new families, but also derive many new
identities, relations, derivative formulas, and combinatorial sums with the inclusion of binomials
coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials),
the Poisson-Charlier polynomials, combinatorial numbers and polynomials, the Bersntein basis
functions, and the probability distribution functions. Furthermore, by applying the p-adic integrals
and Riemann integral, we obtain some combinatorial sums including the binomial coefficients, falling
factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials
(i.e., exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second
kind). Finally, we give some remarks and observations on our results related to some probability
distributions such as the binomial distribution and the Poisson distribution.

Keywords: generating functions; functional equations; partial differential equations; special numbers
and polynomials; Bernoulli numbers; Euler numbers; Stirling numbers; Bell polynomials; Cauchy
numbers; Poisson-Charlier polynomials; Bernstein basis functions; Daehee numbers and polynomials;
combinatorial sums; binomial coefficients; p-adic integral; probability distribution

MSC: Primary 05A10; 05A15; 11B73; 11B68; 11B83; Secondary 05A19; 11B37; 11523; 26C05; 34A99;
35A99; 40C10

1. Introduction

In recent years, generating functions and their applications on functional equations and differential
equations has gained high attention in various areas. These techniques allow researchers to derive
various identities and combinatorial sums that yield important special numbers and polynomials.
In fact, the current trend is to combine the p-adic integrals with these techniques. In most of fields of
mathematics and physics, different applications of generating functions are used as an important tool.
For instance, a common research topic in quantum physics is to identify a generating function that
could be a solution to a differential equation.

The motivation of this paper is to outline the advantages of techniques associated with generating
functions. First, generating functions are presented for new families of combinatorial numbers and
polynomials. Second, we derive new identities, relations, and formulas including the Bersntein

Axioms 2019, 8, 112; d0i:10.3390/axioms8040112 1 www.mdpi.com/journal /axioms
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basis functions, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the
Poisson-Charlier polynomials, the Daehee numbers and polynomials, the probability distribution
functions, as well as combinatorial sums including the Bernoulli numbers, the Euler numbers, the
Cauchy numbers (or the Bernoulli numbers of the second kind), and combinatorial numbers.

With the followings, we briefly introduce the notations, definitions, relations, and formulas are
used throughout this paper:

As usual, let N, Z, Ny, Q, R, and C denote the set of natural numbers, set of integers, set
of nonnegative integers, set of rational numbers, set of real numbers, and set of complex numbers,
respectively. Let log z denote the principal branch of the multi-valued function log z with the imaginary
part Im(log z) constrained by the interval (—7t, 7r]. We also assume that:

o"{ 1, if n=0

0, if neN.
Moreover,
(z) _ Z(Z_l)...'(z—v+l) _ (z)|v (veN,zeC)
% v v
so that,
<g> =(z)p=1
(cf: [1-31)).

The Poisson—Charlier polynomials Cy, (x;a), which are members of the family of Sheffer-type
sequences, are defined as below:

B t X oS i
Bﬂbﬂﬂzet<;+g :Ejadn@;p )
n=0 :

where,

n ) x) .
e = S v (1) O @
=0 1)@
(cf. [16], (p. 120, [18]), [24]).
Let x € [0,1] and let n and k be nonnegative integers. The Bernstein basis functions, B} (x), are

defined by:

B! (x) = <Z>xk(l —0m 7k, (k=0,1,...,n) 3)
so that,
n\ n!
k) kl(n—k)!
and its generating function is given by:
k ,(1—x)t 00 n
xt)" e 3
Fatt k) = S = B @
! = !

where t € C (cf. [1,15,20,26]).
The Stirling numbers of the first kind, Sy (1, k), are defined by the following generating function:

(log (1 +1¢

k = n
B, (55 = (BUIDL - 3 5 g B (ke ) ©
° n=k °
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so that,
(1), = ¥ S1(n k) ©6)
k=0

(cf. [2-4,29,30]; see also the references cited therein).
The A-Stirling numbers of the second kind, S, (1, k; A), are defined with generating function given
below (cf. [21,30]):

et —1 v 00 n
Q = Z Sy (n,v;A) %, (v € Np). @)
n=0 :

Fs,(v;A) = o

Notice here that, when A = 1, this reduces to the Stirling numbers of the second kind, S»(n,v),
whose generating function is given below:

(e -1)° :

g4m0=47?—<:25ﬂmm%7 (0 € Ny), ®)

namely, Sa(n,v) = Sy (n,v;1) (cf. [2,5,21,30]).
The Bell polynomials (i.e., exponential polynomials), Bl,, (x), is defined by:

Bl, (x) = i Sy (n,v) x° )
v=1
so that the generating function for the Bell polynomials is given by:
t ad tﬂ
o (1) = el = 3 Bl () (10)

(of. [4,18]).
The numbers szk) (A) and the polynomials Y,Ek) (x; A) are defined by the following generating
functions, respectively:

Flokr) =2 o RN (11)
A+ 1) = n!’
and,
00 n
Flhakd)=F (kA 1+A0" = Y v (1) % (12)
n=0 :
where k € Ny and A is real or complex number (cf. [14]).
Substituting k = 1 into Equation (11), we have:
Ya(A) =Y (1)
(¢f. [23)).
Substituting k = 1 and A = —1 into Equation (11), we get the following well-known relation

between the numbers Y,,(A) and the Changhee numbers of the first kind, Chy:
Chy = (=1)" 1Y, (~1).

Thus we have,
_ (=1)"n! &
Ch, = 1l s kE:O S1(n, k)Eg (13)
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where the Changhee numbers of the first kind, Ch, are defined means of the following
generating function:

2 (o]
rvi= L (14)

(cf. [9], see also [7]).
The Daehee polynomials, D, (x), is defined by the following generating functions (cf. [8]):

log (1+1) (141" i t” (15)

FD (X,t) = :

which, for x = 0, corresponds the generating functions of the Daehee number, D,, = D,, (0), given by
the following explicit formula:
(=1)"n!
Dy =-—"——. 16
= (16)

The combinatorial numbers, y; (1,k; A), are defined by the following generating function:

tﬂ
n!

1. (A +1) = Y y1 (nk:A) (17)

Fyl (t k; )‘) k!

=
gM8

where k € Npand A € C (cf. [22]).
Use the preceding generating function for the combinatorial numbers, y; (1, k; A) to compute the
following explicit formula:

k
y1 (n,k;A) %;()A]] (18)

(cf. [22] (Theorem 1, Equation (9))).
Note that the following equality holds true:

ymkA) = = Do) (19)

k! am

t=0

(cf. 131] (p. 64).
When A = 1, if we multiply the numbers y; (1, k; A) by k!, then Equation (18) is reduced to the
following combinatorial numbers (cf. [6,19,22]):

Kk
sk,m = ()7
which satisfies the following differential equation:

B(kn) = ~— (¢! +1)° (20)

(cf. [6], (Equation (2), p. 2 [22])).
The combinatorial numbers B(#, k) have various kinds of combinatorial applications. For instance,
Ross [19] (pp. 18-20, Exercises 10-12) gave the following applications for solutions of exercises 10-12:
From a group of n people, suppose that we want to choose a committee of k, k < 7, one of whom
is to be designated as chairperson.
How many different selections are there in which the chairperson and the secretary are the same?
Ross [19] (p. 18, Exercise 12) gave the following answer: B(1,n) = n2"" 1.
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By using the preceding idea summarized above, the following combinatorial identities

are obtained:
" n
E (k) k = n2"1
k=0

é <Z>k2 =2"2n(n+1)

and,
n
Y <k>k3 2"312(n + 3)
k=0
(cf. (pp. 18-20, Exercises 10-12 [19]), [22,25]). Observe that these numbers are also arised from
Equation (20).

Next, we present the outline of the present paper: In Section 2, we construct generating functions
for new families of combinatorial numbers and polynomials. By using these generating functions,
we not only investigate properties of these new families, but also provide some new identities and
relations with the inclusion of the Bersntein basis functions, combinatorial numbers, and the Stirling
numbers. In Section 3, we obtain some derivative formulas and recurrence relations for these new
families of combinatorial numbers and polynomials by using differential equations that are a result of
these generating functions and their partial derivatives. In Section 4, by using functional equations
of the generating functions, we derive some formulas and combinatorial sums including binomials
coefficients, falling factorial, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials),
the Poisson—Charlier polynomials, combinatorial numbers and polynomials, and the Bersntein basis
functions. In Section 5, by applying the p-adic integrals and Riemann integral to some new formulas
derived by the authors of this paper, some combinatorial sums comprising the binomial coefficients,
falling factorial, the Bernoulli numbers, the Euler numbers, the Stirling numbers, the Bell polynomials
(i.e. exponential polynomials), and the Cauchy numbers (or the Bernoulli numbers of the second kind)
are presented. In Section 6, we give some remarks and observations on our results related to some
probability distributions such as the binomial distribution and the Poisson distribution. In Section 7,
we conclude our findings.

2. New Families of the Combinatorial Numbers and Polynomials

In this section, we define new families of the combinatorial numbers and polynomials by the
following generating functions, respectively:

0 n
G(tkA) =2 A1+ -1 = Yy oy L (1)
n=0
and,
00 tTl
G(tx,kA) =G (LkA) 1+A)" =Y Qu(xAk) o (22)
n=0 .
where k € N and A is a real or complex number.
Combining Equations (21) and (22), we get:
[e) 0 n
Z Ak ==Y Z ( )/\” Y ) (1), % (23)
n=0 ! n=0j=0 :

m

Comparing coefficient of ;

following theorem:

on both sides of the above equation, we arrive at the
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Theorem 1. "

Qu(xAk) =Y (’;) M*J’Y}*k) (A) (x),- (24)

j=0

By the binomial theorem, we have:

) n )
Y kg (k> A2 (A —1yf e,
n=0 n n=0 \1

Comparing the coefficient of #" on both sides of the above equation, we arrive at the
following theorem:

Theorem 2. Let k and n be nonnegative integers. Then:

(8 27 (A1) i n<k
¥ @) { 0 if n>k 5

By Equation (25), a few values of the numbers v o (A) are computed as follows:

YSPa) = 2k,
Yoy = 2*k<]l‘>A2(/\—1)"*1,

Y\Pny = 2*k2!<];>/\4()\—1)k’2,

Yoy = 2*;‘!(’;)2\27@—1)"*7 for j<k

YO0 = 2k,
0 for j>k

=
|
Ko
=
I

By Equations (24) and (25), we also compute a few values of the polynomials Q,, (x; A, k) as follows:
Q(xAk) = 27F(a-1),
Qi(xAk) = 27FA—1DfAx+27F A2 (A — 1),
Q (ALK = 27K —1)Fa%2 4 (—z*k (A —1)FAZ 4 27F+1j13 (4 — 1)"*1) x
27k (k—1) At (A —1)F L.

By Equation (3), we arrive at a computation formula, for the numbers Y£7k> (A), in terms of the
Bernstein basis functions by the following corollary:

Corollary 1. Let n and k be nonnegative integers and A € [0,1]. Then,

—k 1Yk ynpk .
Y}g—k)()\)_{ 2 knt ( 1)0 ATBE(A) l}f :>§II: 2
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Replacing 1 + At by el°8(1+4) leads Equation (21) to be:

) k
Z f" _ (—21) (7Aelog(1+)xt)+1)k_ @7

By combining Equation (17) with the above quation, we get:

"o (= ) k& (log (14 At)™

5 v H () 2 1 (m,k;—A) (28)
r;) " n! =0 m!
which follows from Equation (5) that:
) tn _ o0 n
2 Z Z Ay (m, k; —A) Sy (n,m) prp (29)

Therefore, by comparing coefficient of £ o " on both sides of the above equation, we arrive at the
following theorem:

Theorem 3.
(1) K &
= Y AMyy (m,k; —A) Sy (n,m). (30)

m=0

Combining Equations (25) with (30) yields the following corollary:

Corollary 2. . )
iyl (m, k; —A) Sy (n,m) = { % lf nsk (31)
m=0 0 if n>k.
If we also combine Equations (26) with (30), then we have the following result:
Corollary 3. Let n and k nonnegative integer with n < k. Then,
n t
Z (m,k;—A) Sy (n,m) = (=1)" — o Bk(M). (32)
On the other hand, since the following equality holds true (cf. [13]):
S2(n,k:A) = (=1)"y1 (n,k-A), (33)
Equation (31) leads the following corollary:
Corollary 4. .
isz(m,k;/\)sl(n,m){ P ifonsk (34)
m=0 0 if n>k

3. Derivative Formulas and Recurrence Relations Arising from Differential Equations of
Generating Functions

In this section, by using differential equations involving the generating functions G (t,k; A)
and G (t,x,k;A) and their partial derivatives with respect to the parameters t, A, and x, we
obtain some derivative formulas and recurrence relations for the numbers szfk) (A) and the
polynomials Qy (x; A, k).
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Differentiating both sides of Equation (21) with respect to A, we get the following partial
derivative equation:

{g(tm)}f (2At+1)g(t,k—1;A). (35)

Also, if we differentiate both sides of Equatlon (21) with respect to t, then we get the following
partial derivative equation:

e) kA?
By combining Equation (35) with the RHS of Equation (21), we obtain:

tVl

nl’ 37)

i S W= E (2o, )+ )

Comparing the coefficients of iT”' on both sides of the above equation, we arrive at the
following theorem:
Theorem 4. Let n € N. Then, we have:

%{Y},”‘) (M)} = ';(bmy( D (A) 4y Y (A)). (38)

By combining Equation (36) with the RHS of Equation (21), we get:

FRAT & (ki) oy H

Yutw o= rntt e (39)

which, by comparing the coefficients of an, on both sides of the above equation, yields the
following theorem:

Theorem 5. Let n € Ny. Then, we have:

—k) kA2

Y o) =S o, (40)

Differentiating both sides of Equation (22) with respect to A, we get the following partial
derivative equation:

%{g (t,x,k;A)} = ; QCAt+1)G (L x,k—1;A) +xtG (t,x — 1,k A). (41)
Furthermore, if we differentiate both sides of the Equation (22) with respect to ¢, then we also get

the following partial derivative equation:

o) kA2
g{g (t,x,k;\)} = TQ (t,x,k—=1LA)+xAG (L, x —1,kA). (42)

Additionally, when we differentiate both sides of Equation (22) with respect to x, we also get the
following partial derivative equation:

;—x{g(t,x,k;A)} =log (1+AH)G(t,x,kA). (43)
By combining Equation (41) with the RHS of Equation (22), we get:
K A y Ak r y Ak z
5 QAE+1) ) Qu(xA, —1)m+th£]Qn(x—1, k)
e

n=0

0
7{Qn (x )‘ k)}i -

\\[\18
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which yields:
00 tn

L 5i(0mr k) =

n=0

tVl
n!

N\?T‘

iZn/\inx)\k—l)+Qn(x)\k 1)) —
n=0

[es} t”
2 nQyu_1 ( 1;)\rk) t

n=0

Comparing the coefficients of ﬁTn, on both sides of the above equation, we arrive at the
following theorem:

Theorem 6. Let n € N. Then, we have:

%{Qn (A k) } =knAQu_1 (A, k—1) + an (A k—=1)+xnQuq1 (x —1L;Ak). (44)
By combining Equation (42) with the RHS of Equation (22), we get:
0 & kA2 & t > t
EWZOQV, (x; A, k) i Z Qu(xAk—1) ] +xA Z Qn (x—1;A,k) i

n=0 : n=0

which, by comparing the coefficients of & o1 on both sides of the above equation, yields the
following theorem:

Theorem 7. Let n € Ny. Then, we have:

2
Qi1 (A k) = %Qn (A k—1)+xAQu (x — 1A k). (45)

By combining Equation (43) with the RHS of Equation (22) and the Taylor series of the function
log (1 + At), we get:

= 0 " & n—1 )\ " &
Z*{Qn(x}/\rk)}*: Z( 1) ZQH XA, k)
— Jx n! —
n=0 n=1
Applying the Cauchy product rule to the above equation yields:

Z {Qn (X A, k — :fz (Z (])J]'/}‘il Qu— ](X,)\ k)) L'

n:O j=0

Comparing the coefficients of ¢ o1 on both sides of the above equation, we arrive at the
following theorem:

Theorem 8. Let n € N. Then, we have:

— j+1
2 {Qu (51,0 —n]z (") A Qe k. (46)

Remark 1. Substituting Equation (16) into Equation (46) yields the following formula including
Daehee numbers:

2 {Qu AR} 2( )AJHD Qu 1 (AK). @)
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By Equation (15), another form of the partial differential Equation (43) is given by:
%{Q (t,x,k;A)} = AtG (8, k; A) Fp (x, At). (48)

By combining Equation (48) with the RHS of the Equations (15) and (22), we get:
00 00 t}l
E {Qn (A k) —/\tEYn n ZA"Dn (x)ﬁ.

n:O " n=0

Applying the Cauchy product rule to the above equation yields:
tVl

2 ai (A k) = = At Z <,—§(;Aj (?)Yﬁjf) (A) D (x)> o

=0

Comparing the coefficients of iT”' on both sides of the above equation, we arrive at the
following theorem:

Theorem 9.

) =l n—1 (—k)
g{Qn(x;A,k)}:n]gA”l( j )Ynfj (A) Dj (x).

4. Some Identities and Relations Derived from Functional Equations of Generating Functions

In this section, by using functional equations of the aforementioned generating functions, we
derive some formulas and combinatorial sums including binomials coefficients, falling factorial,
the Stirling numbers, the Bell polynomials (i.e., exponential polynomials), the Poisson—Charlier
polynomials, combinatorial numbers and polynomials, and the Bersntein basis functions.

Now, we set the following functional equation:

1 1
Fpe (t,x;a) = F <t, x, k; E) F <t, —k; E) et (49)

Combining the above equation with the Equations (1), (11), and (12), we get:
1 Gitsa) ZY ( )n, L <a)"!n;o( L (50)

Applying the Cauchy product rule to the above equation yields:

Bewnf-E(Erco (0 () ()e o

Therefore, by comparing the coefficient of £ 1 on both sides of the above equation, we arrive at the
following theorem:

Theorem 10. L i (D . e
con-EE(OPE) e

Moreover, we also set the following functional equation:

_ 1\ k x
Fp(t, =x;k)Fyc (t,x;a) = %e’“ (2 + 1) .

10
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Combining the above equation with the Equations (1) and (4) yields:

t”oQ

® (—1)k(xt)k X (xt)" & [x) t

P

Applying the Cauchy product rule to the above equation yields:

oo n 1k k @ n-k s k=T (x). n
E<Z(:J<]> —x)C,— ](x “)) ;,(1]3,2<(”)k2< -k>()]>t
=0 \j=

, -
= = al n!

Therefore, by comparing the coefficient of £ 1 on both sides of the above equation, we arrive at the
following theorem:

Theorem 11.

n

(e o= CREE (T

Additionaly, we also have the following functional equation:

k x
();:') Fpe (—t,x;a) e = Fg(t, x;k) <7£ +1) .

Combining the above equation with Equations (1) and (4) yields:

k o o0 00 n o n
S e o= SR E 0 ()
: n=0 = *n=0

Applying the Cauchy product rule to the above equation yields:

0 n k n—k _ ) n ) n . x ,Bn_j X n
y <()k y (" ) k>xnﬂc], (x;a)) L' =Y [ (1) <”>M L'
n=0 j=o \ J =0 \j=o ] a n
Therefore, by comparing coefficient of £ n, , we arrive at the following theorem

Theorem 12.

(=" " (), 1)" k( g ( ) n— IC]- (x;a) = i(*l)j <n>(X)]B£](x) 59

By substituting ¢ — a (¢f — 1) into Equation (1), we also get the following functional equation

Fye (a(e' —=1),x;a) = €™ Fgyy (t, —a). (55)

By Equations (1) and (10), we thus get:

Z lZnCn x’ (E ;1) — Z xn t’: Z Bln (*ﬂ) "

. (56)
n=0 " n=0 n!

11
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Applying the Cauchy product rule to the above equation and combining Equation (8) with the
final equation yields:

Z Za"C,, x;a) Sy(m, n) Z (Z(}) "IBl; (— )) % (57)

m=0n=

Therefore, by comparing the coefficient of L, we arrive at the following theorem:

ﬂl"

Theorem 13.

Za”Cn x;a) Sy(m,n) = i <7>xm’jBl]-(fa). (58)

j=0

5. Some Identities and Relations Arising from the p-adic Integrals and Riemann Integral

In this section, by applying the p-adic integrals and Riemann integral to some of our results, we
derive some combinatorial sums including the binomial coefficients, falling factorial, the Bernoulli
numbers, the Euler numbers, the Stirling numbers, the Bell polynomials (i.e., exponential polynomials),
and the Cauchy numbers (or the Bernoulli numbers of the second kind).

Let Z, denote a set of p-adic integers. Let f (x) be a uniformly differentiable function on Zj,.
The Volkenborn integral (or p-adic bosonic integral) of the function f (x) is given by:

CF)du(x) = Jim Y f(x), (59)

Zy N—oo p =0

where,
1
p(x) = pa(x+ pNZp) = N
(cf. [17]; see also [11,12]).

It is known that the bosonic p-adic integral of the function f (x) = x" gives the Bernoulli numbers
as follows (cf. [11,17]):

B, = /x”dyl (x) (60)

Zyp

where B, denotes the Bernoulli numbers of the first kind defined by means of the following
generating function:

t e, ¢
1= ZOB”E’ (t < |27]) (61)
=

which arise in not only analytic number theory, but also other related areas (cf. [5-31]).
The fermionic p-adic integral of the function f (x) is given by (cf. [12]):

[f@ia = gm T 75 )

Zy

where p # 2 and,

(cf. [10,12]).

12
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The fermionic p-adic integral of the function f (x) = x" gives the Euler numbers as follows
(f. [11)):
E, = /x”dy_l (x), (63)
ZP
where E, denotes the Euler numbers of the first kind defined by means of the following
generating function:

er+1 =L By ,, (t < |]) (64)
(¢f. [5-30]).

It is known that the following p-adic bosonic and fermionic integral representations for the
Poisson—Charlier polynomials hold true (see [24] (Equations (33) and (35), pp. 944-945)):

ot =L (D e ©
and, .,
Z/cn (x;a) dp_y (x) = k;o (—1)" (’Z) & (66)

By applying the bosonic p-adic integral to Equation (58) and combining the final equation with
Equations (60) and (65), we arrive at the following theorem:

Theorem 14.

ks w (m)a*Sy(mm) I (m
£ § o s (m)e .

j=0

By applying the fermionic p-adic integral to Equation (58) and combining the final equation with
Equations (63) and (66), we also arrive at the following theorem:

Theorem 15.

m n a— kSZ(m,n) o/
N # -y (],)Em,jgzj (—a). (68)
n=0k=0 j=0

Moreover, by integrating Equation (58) with respect to x from 0 to 1, we have:

ﬁ u"Sz(m,n)/lCn (x;a)dx = i (T) Blj(fa)/lxm*jdx. (69)

n=0 0 j=0 0

On the other hand, by integrating Equation (2) with respect to x from 0 to 1, we also have:

./IC” (xia) :i )" ]<]>% /I(X),-dx, (70)
; =

By making use of the following definition of the well-known Cauchy numbers (or the Bernoulli
numbers of the second kind) b,, (0) (cf. [4]):

1
0) = / (x), dx, (71)
0
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Equation (70) yields:
1

/cn (x;0) dx = i}(—l)"’j (’;) b (). 72)
=

al
0

Combining the above equation with Equation (69), we arrive at the following theorem:

Theorem 16.

m n

Yy (= <]> @153 (m, )by (0) = 3 <T>nljl/_(7]_j)l 73)

n=0j=0 j=0
6. Applications in the Probability Distribution Function

In this section, we investigate some applications of the numbers Y,g7k> (A). Assume that0 < p <1
andn =0,1,2,...,k. We set the following discrete probability distribution:

(-2

(-K)
a0 (P) 74

fpikn) =
where p is a probability of success, k is number of trials, # is number of successes in k trials, and
n=0,1,2,...,k Therefore, f (p;k,n) is binomially distributed with parameters (k, p).

Properties of Discrete Probability Distribution f (p;k,n)

Here, we give some properties of discrete probability distribution f (p;k,n). We examine the
properties of the probability distribution f (p; k, n) with a random variable with parameters k, 1, and p
as follows:

Forallk, n, pwith0 <n <kand0< p <1,0< f(p;k,n) <1. Thatis f (p;k,n) >0

The probability distribution function f (p;k, ) satisfies that:

gk

f(p;kn) =1

n=0

Computing the distribution function f (p;k, n). Suppose that X is a binomial with parameters
(k, p). To computing its distribution function:

wherej =0,1,... .k
In order to compute its expected value and variance for random variable with parameters k and p:

k
E[X| =} n"f (pikn) (75)
n=0

Observe that the probability distribution function f (p;k,n) is a modification of the binomial
probability distribution function with parameters (k, p). Substituting v = 1 into Equation (75), E [X] =

kp. Substituting v = 2 into Equation (75), variance E [X?] — (E [X])? = kp (1—p).
If we take k — co, then the distribution f (p;k, 1) goes to the Poisson distribution. On the
other hand the Poisson-Charlier polynomials are orthogonal with respect to the Poisson distribution

(cf. [18,24]).

14
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7. Conclusions

Applications of generating functions are used in many areas, and we used them to study
new families of combinatorial numbers and polynomials. We then studied properties of these
new families, which yielded a handful of new identities and relations. Namely, these identities
were related to numerous special numbers, special polynomials, and special functions such as the
Bersntein basis functions, the Stirling numbers, the Bell polynomials (or exponential polynomials), the
Poisson-Charlier polynomials, and the probability distribution functions. Furthermore, we should
note that newly defined combinatorial numbers in this paper gave a different approach to the binomial
(or Newton) distribution and the Poisson distribution, as well as combinatorial sums including the
Bernoulli numbers, the Euler numbers, the Cauchy numbers (or the Bernoulli numbers of the second
kind), and combinatorial numbers. This is why the results of this paper have the potential to be used
in numerous areas such as mathematics, probability, physics, and in other associated areas.
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Abstract: The present paper is devoted to the spectral analysis of operators induced by fractional
differential equations and boundary conditions of Sturm-Liouville type. It should be noted that
these operators are non-self-adjoint. The spectral structure of such operators has been insufficiently
explored. In particular, a study of the completeness of systems of eigenfunctions and associated
functions has begun relatively recently. In this paper, the completeness of the system of eigenfunctions
and associated functions of one class of non-self-adjoint integral operators corresponding boundary
value problems for fractional differential equations is established. The proof is based on the
well-known Theorem of M.S. Livshits on the spectral decomposition of linear non-self-adjoint
operators, as well as on the sectoriality of the fractional differentiation operator. The results of
Dzhrbashian-Nersesian on the asymptotics of the zeros of the Mittag-Leffler function are used.

Keywords: Mittag-Leffler function; spectrum; eigenvalue; fractional derivative

1. Introduction

The present paper is devoted to the spectral analysis of operators induced by the fractional
differential equations and boundary conditions of Sturm-Liouville type. It should be noted that these
operators are non-self-adjoint. The spectral structure of such operators has been insufficiently explored.
In particular, a study of the completeness of systems of eigenfunctions and associated functions has
begun relatively recently. In this paper, the completeness of the system of eigenfunctions and associated
functions of one class of non-self-adjoint integral operators corresponding boundary value problems
for fractional differential equations is established. The proof is based on the well-known Theorem
of ML.S. Livshits on the spectral decomposition of linear non-self-adjoint operators, as well as on the
sectoriality of the fractional differentiation operator. The results of Dzhrbashian-Nersesian on the
asymptotics of the zeros of the Mittag-Leffler function are used.

2. Results

Reference [1] studied the operator in the space L»(0,1)

1 X 1
" 1
7Apu:/G(x,t)u(t)dt: 1 /(xft)%*lu(t)dtf/xrl(lft)%*lu(t)dt ,
J T~ |/ J
which was first considered in References [2,3], where 0 < p < 2 and
1.1 1.4 19
(I—1t)r J;p( _1—)(x—t)ﬂ 0<t<x<1
G(X,t) - 11 lfl
(1—=1t)r “xr
— ,0<x<t<1
L(p=1)
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is the Green function of the following problem S (with A = 0):
! /( 7y (s)ds + Au=0
T(n—p-1)dxt !

(mn—1<p ' <n n=][p 1 +1, where [p~!] is the integer part of p~1)
u(0) =0,u'(0) =0,--+,u"2(0) = 0,u(1) =0.

In particular, in this paper, we provide very important proof of the completeness of the system of
eigenfunctions and associated functions in L, (0, 1) of the operator A, for 1 < p < 2 based on fact that
the operator of fractional differentiation is sectorial and for 0 < p < 1 (this fact plays a main role in
solving boundary value problems for advection-diffusion equation of fractional order by the method
of separation of variables [4] since we can write out both the exact solution in the form of an infinite
series by eigenfunctions and the approximate solution replacing the infinite sums by sums of the first
n terms), a proof based on the well-known Livshits theorem [5] (researching of case for 1 < p < 2
published in this paper firstly):

Theorem 1 (Livshits). If K(x,y) (2 < x,y < b) - is a limited kernel and "real part” 1(K + K*) of it is
non-negative kernel, then the inequality is hold

i /ReK(t t)d

where Aj —is the characteristic numbers of kernel K. The system of main functions of the kernel K is complete in
domain of values of the integral operator Kf if and only if, when there is an equal sign in inequality above.

In his paper [6] M. M. Dzhrbashian wrote, that “the question about the completeness of the
systems of eigenfunctions of the operator A, or a finer question about whether these systems compose
abasis in L,(0,1), has a certain interest but its solving is apparently associated with significant analytic
difficulties”. The questions of the completeness of the systems of eigenfunctions and associated
functions for similar problems were studied by A. V. Agibalova in [7,8]. Undoubtedly, we shall note
the fundamental results of M. M. Malamud and L. L. Oridoroga [9-12] obtained in this direction.
In [13,14] (see also [2,15]), using the theorem of Matsaev and Palant, it was established that the system
of eigenfunctions of the operator A, is complete in L>(0,1). And this fact used by M. Ali, S. Aziz and
S.A. Malik in their paper [16].

As noted above, in this paper, a similar result was obtained using the well-known Livshchits
theorem [5]. The following proof of the completeness of the system of eigenfunctions is simpler than
the previously presented proofs, which makes the results of this paper very significant.

Next, we need one definition.

Definition 1. If a series of s-numbers [17] of the completely continuous operator is convergent, that is,

e
Y- sk(A) < oo then such operator called as trace-class operator.
=1

Lemma 1. Let 0 < p < 2, then the operator AP is trace-class and

T(ph)
r2p-1)’

Proof of Lemma 1. To find the trace spA, of the operator A, let’s rewrite A, as Ay = Aju — Agu where

sp(Ap) =

18



Axioms 2019, 8,117

Agit = r(plfl) O/(x — (),
1 1
19 11
A= o O/xo (1—#)0 u(t)at.

Clearly, for 0 < p < 2, the operators Ay and A are trace class. Hence
spAp = sp(A1 — Ag) = sp(A1) —sp(Ao).
Moreover, it is clear that sp(Ap) = 0. Thus
spAp = sp(Ar).
Since operator A; is one-dimensional, it is easy to find a trace. Consider the equation

A

4= F

f 1.1 1.9
/xP (1—t)e u(t)dt = 0
0

The Fredhold determinant
d(/\) = ‘1 — )\KH‘,

where

1
1 o1 i, T@-v)
K“_r(p—l)()/“ (-l = g v=2-p7")

From above follow that 2 )
—v
Sp(Al) = l—v(4 — 2]/)

which proves the Lemma 1.
|

Remark 1. Of course, for p > 1/2, nuclearity of the operator A, follows from well-known
Dzhrbaschian-Nersisian lemma ([18], p. 142).

n

Lemma 2 (Dzhrbaschian-Nersisian). 1. All zeros of functions Ep(z; ) = ¥ z

L TGnrm (where p >

10 # 1;Imp = 0) with largest absolute values, are prime.
2. The following asymptotic formulas are valid

xE = et% (amk)1/e (1 + o(%)) k= oo,

and the fact that the value A; is an eigenvalue of the operator Ay if and only if Ey(Aj; %) =0.
Now we give the main result of paper.

Theorem 2. The system of eigenfunctions and associated functions of the operator A,, where 0 < p < 1,
is complete in L(0,1).

19
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Proof of Theorem 2. We denote the kernel of A, as K(x,y). In [13] the authors have proved that this
kernel is non-negative by the following way: Let us rewrite A, as

1 ) xx_ - }
0/ u(t)dt /( £ Lu(t) dt | .

Apu
0

Clearly, for p < 1, the kernel of A, is non-negative.
By the same way, we may show that the kernel K*(x, y) for adjoint operator

Agu |:O/1 % )dx—j(t—x)ﬁl’lu(x)dx:|

is non-negative too. Thus % 7 (K4 K*) is non-negative. Let us show that the following expression holds

i /ReK(t t)d

If Aj = aj+if; is eigenvalue of the operator Ay, then complex conjugate X/- = aj—ifjis
eigenvalue of the operator A, too. Thus

= 1 = 1
spAp = ;X: ;Re =
j=1"" j=1 ]
So, taking to account lemma 1, we obtain that the system of eigenfunctions and associated
functions of the operator A, for 0 < p < 1, is complete in L,(0,1). [

Remark 2. For (% —1) > 0 the kernel of the operator A, is continuous. Therefore, as it was showed by
Lalesko [5], the Fredholm determinant of this kernel is whole function of zero kind. In this case [5],

that is, the equation

we can get by the obvious way.

Theorem 3. The system of eigenfunctions and associated functions of the operator A,, where 1 < p < 2,
is complete in L(0,1).

Proof of Theorem 3. For 1 < p < 2 the kernel of the operator A, is not fixed-sign, thus we cannot use
the Livshits theorem, used above. To prove the formulated theorem, let us consider the value of the
the form (A,u, %) [19]. Let us introduce the following designation

X

1
Agtt = / ()dt — /(xft)%*lu(t) dt| = o(x).
0

0

20
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So,
1
(Agu, ) = (v, DL/ ):/v(x)[D(l)ipv}dx*/ o(x) (DL o] dx+/ )[DY/Pvldx
0

where
P61 = i () | e

n = [a] + 1, [«] is the integer part of , called the operator of fractional differentiation in the
Sturm-Liouville sense of order . As was mentioned in Reference [19] (see also the references therein),

the study of forms
1

/ (x) DL/ o)dx

.E
was provided in the paper and there, in particular, were established the values of those forms lying in
|argA| < Z£. Clearly, for small values ¢, the operator A, is sectorial. Since the operator A, is sectorial
and a trace class operator, by Lidskii’s Theorem [20] the system of eigenfunctions and associated
functions of A, are complete in L,(0,1). [

Corollary 1. Since the operator A, does not generate any associated functions [21], we prove the completeness
of system

11 11
Xn(x) = xP Ep(AnxP;;))

in Ly(0,1) (but the system of these eigenfunctions, unfortunately, is not orthogonal, therefore, for solving inverse
problems, and in Reference [16] the corresponding biorthogonal system was used).

By the same method, we can provide spectral analysis of the operator

1 x
Al = (x—1)o u(h)dt,

considered in Reference [13] (and see the references therein).

Theorem 4. Let0 < p <2, & < :—, Then, the system of eigenfunctions and associated functions of the operator
-1
Af[,“ s complete in L(0,1).

Proof. We carry out the proof of Theorem 4 in the same way as the proof of Theorem 3. It can easily

-1
be shown that the kernel M(x, t) of the operator AEX s non-negative. Elementary calculations

show that the kernel M*(x, t) of the operator adjoint to the operator A,[]Ml’p]

Thus 1 (M + M*) will be non-negative too. The fact that

will be non-negative too.

o 1
ZRe(l) = /ReM(t,t)dt
= k]

[a=1p]

where y; are eigenvalues of the operator A, , shown in the same way as in Theorem 2. [J
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3. Conclusions

In the present paper, by way of the Livshits Theorem we provide proof of the completeness of

the eigenfunctions and associated functions of the operators, generated by the ordinary differential
expressions of the fractional order and boundary conditions of Sturm-Liouville type.
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Abstract: The fractional traveling wave solution of important Whitham-Broer-Kaup equations was
investigated by using the q-homotopy analysis transform method and natural decomposition method.
The Caputo definition of fractional derivatives is used to describe the fractional operator. The obtained
results, using the suggested methods are compared with each other as well as with the exact results
of the problems. The comparison shows the best agreement of solutions with each other and with
the exact solution as well. Moreover, the proposed methods are found to be accurate, effective, and
straightforward while dealing with the fractional-order system of partial differential equations and
therefore can be generalized to other fractional order complex problems from engineering and science.

Keywords: g-Homotopy analysis transform method; Natural decomposition method;
Whitham-Broer—Kaup equations; Caputo derivative

1. Introduction

The modern, broadly considered concept of fractional calculus was developed from a question
raised by L'Hospital to Gottfried Wilhelm Leibniz in 1695. L'Hospital insisted on knowing about the
outcome of the derivative of order « = 1, which laid down the foundation of a powerful fractional
calculus [1,2]. Since then, the new theory of fractional calculus has gained the full attention of
mathematicians, physicists, biologists, engineers, and economists in many areas of applied science.
In modern decades, researchers have recognized that fractional-order differential equations contributed,
in a natural way, to the study of different physical problems, such as diffusion processes, signal
processing, viscoelastic systems, control processing, fractional stochastic systems, biology and ecology,
quantum mechanics, wave theory, biophysics, and other research fields [3,4].

Partial differential equations (PDEs) involving non-linearities explain different phenomena
in applied sciences, technology, and engineering, ranging from gravity to mechanics. In general,
non-linear PDEs are important tools that can be used in various fields such as plasma physics,
mathematical biology, solid state physics, and fluid dynamics for modeling nonlinear dynamic
phenomena [5]. The majority of dynamic schemes can be denoted by an acceptable array of PDEs. It is
also well-appreciated that PDEs, such as Poincare and Calabi conjecture models, are utilized to solve
mathematical difficulties.

It has been found that the non-linear development of shallow water waves in the fluid dynamics is
described by utilizing the coupled scheme Whitham-Broer-Kaup equations (WBKEs) [6]. The coupled
scheme of the above equations was developed by Whitham, Broer, and Kaup [7-9]. The above equation
defines the propagation of shallow water waves with specific diffusion families.

Axioms 2019, 8, 125; d0i:10.3390/axioms8040125 25 www.mdpi.com/journal /axioms
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In the classical order, the major equations of the said phenomena are given as:

5 ou(e, i) | ou(e,y)  ov(a,n)
) _
Dy, ) + pla ) == == + =5 =2 + 8= = =0,
; av(a, 1) op(a, ) | Pulwn)  Pv(an)
) — =
Dyv(e, 1) + p(a,17) o +v(a,7n) o +p Y% Y% 0, 0<dé<1.

Here u(a, 1) and v(a,7) describe the straight velocity and height, which deviate from the
equilibrium situation of the fluid, respectively, and p and g are constants expressed in various
diffusion forces. Investigating solutions to such nonlinear PDEs over the last several decades it is an
important research area [10]. Several scientists have developed numerous mathematical techniques
to explore the approximate solutions to nonlinear PDEs. Aminikhah and Biazar [11] used the HPM
(homotopy perturbation method) to solve the coupled model of Brusselator and Burger equations.
Noor and Mohyud-Din [12] utilized HPM to examine the solutions of different classical orders of PDEs.
Ahmad et al. [5] studied a coupled scheme result of WBKEs by the Adomian decomposition method
(ADM). Whitham-Broer—Kaup equations are solved by other researchers using different analytical
and numerical methods, such as the hyperbolic function method [13], residual power series method
(RPSM) [14], Adomian decomposition method [15], reduced differential transformation method [16],
homotopy perturbation method [17,18], exp-function method [19], Lie Symmetry analysis [20,21],
G/ GZ-Expansion method [22], and homotopy analysis method [23]. Recently, Amjad et al. [10] used
the result of a standard order coupled of fractional-order Whitham-Broer—Kaup equation by the
Laplace decomposition method.

Singh et al. [24] suggested the q-HATM, which is a well-designed mixture of Laplace transform
and g-HAM. The future system monitors and manipulates the sequences result, which converges
quickly to the exact solutions for the problem. The strength of the proposed technique is its ability to
combine two powerful algorithms to solve both numerically and analytically linear and non-linear
fractional-order differential equations. A future procedure has several study properties that include
a non-local effect, straightforward result system, promising broad convergence area, and free of
any perturbation, discretization and assumption. It is worth disclosing that, using semi-analytical
techniques, the Laplace transform takes less C.P.U. time to determine the solutions of complex nonlinear
models and phenomena that occur in technology and science. The solution g-HATM includes two
auxiliary parameters / and 1, which aims to help us modify and control the solution’s convergence [25].
Recently, with the help of q-HATM, several researchers studied different phenomena in different
fields for example, Singh et al. studied to find the advection-dispersion equation solution [26] and
Srivastava et al. used an arbitrary order vibration equation model [27].

The natural decomposition method (NDM) is a mixture of the Adomian decomposition method
and the natural transform method (NTM). In 2014, S. Maitama and M. Rawashdeh first implemented
the NDM [28,29] to solve linear and non-linear ordinary differential equations (ODEs) and PDEs that
occur in several fields of science. A huge quantity of physical models have been studied using NDM,
such as the study of fractional order diffusion equations [30], fractional order delay PDEs [31] nonlinear
PDEs [32,33], the fractional uncertain flow of a system of polytropic gas [34], fractional-order physical
schemes [35], fractional wave and heat problems [36], and fractional telegraph equation [37].

In the current research article, two analytical methods, namely the natural decomposition
method and g-homotopy analysis transform method are used to solve the fractional-order
Whitham-Broer-Kaup equation. The solutions obtained by the proposed techniques are very simple
and straightforward. Moreover, the accuracy of the present methods is sufficient to obtain the analytical
solution of the targeted problems. The obtained solutions are compared and to found to be in a good
agreement with the exact solution for the problem. This article introduces an approximate analytical
solution of a multi dimensional, time fractional model of the Whitham-Broer-Kaup equation by
implementing NDM and q-HATM.
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2. Preliminaries Concepts
Definition 1. The Laplace transformation of a Caputo fractional derivative D°g (1) is described as:

m—1

£[D°g()] = "R Zs UDD(0T)] m—1<6<m

Definition 2. The natural transformation of the g(n) function is represented by N*[g(n)] for n € R and
identified by:

N*tig(n)] = R(s,u) = /j; e Tg(n)dn; s,u € (—o0,00),

where the natural transformation variables are s and u. If g(n7)Q(n) is described on the real positive axis, the
natural transformation is described as:

NT[g(m)Q(n)] = N*[g(n)] = R (s,u) = /Ooo e *g(n)dy; s,ue(0,00), and 5 €R

where Q(n) represents the function of Heaviside. Simply, for u = 1, the equation is reduced to the Laplace
transformation, and for s = 1, the equation is the Sumud transformation.

Theorem 1. Let R(s,u) be the natural transformation of the function (1), then the natural transform
Rs(s, u) of the Riemann—Liouville fractional derivative of g(n) is symbolized by D°g(17) and is presented as:

m—1

s e
;R(s,u) - Z F[D / g(’?)]qzor

j=0

N*[Dg(n)] = Rs(s,u) =

where ¢ is the order and m be any positive integer. Furthermore, m —1 < § < m.

Theorem 2. Let R(s,u) be the natural transformation of the g(11), then the natural transformation Rs(s, u)
of the Caputo fractional derivative of g(17) is symbolized by D°g(y) and is represented as:

k) m—1 SJ—(]'-H)

NYDg(n)] = Ri(s,u) = R (s,u) - [Dign))y-0 m—=1<5<m

j=0
Definition 3. The fractional derivative of ¢ € C™, in the Caputo sense is represented as:

9"g(1) _
Dig(n) =4 " b=meN,
m&f[)r/ P)" Ol (Pp)op, m—1<5<m, meN.

Definition 4. Function of Mittag—Leffler, E5(b) for 6 > 0 is defined as:

bnl

F5m+1) 6>0 beC,

Me

m=0
3. The Procedure of NDM

In this section, we describe the NDM solution scheme for fractional partial differential equations.

Dip(a,n) + Ra(u,v) + Ni(u,v) = Pia,n) =0,

1
D,‘;v(a,n)+R2(y,v)+M(H/V)7772(11,17) =0, 0<d6<1, @
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with the initial condition:
#(a,0) =gi(w), v(x,0)=ga(). 2

where is D,‘; = % the Caputo fractional derivative of order 6, R, Ry and N7, N, are linear and
non-linear functions or operators, respectively, and P, P, are source functions.
Applying the natural transform to Equation (1),

N [Dyp(a, )]+ N*[Ri(p,v) + Ni(p,v) = Prla, )] =0,

®)
N [Djue, )]+ N [Ra(p,v) + Na(n,v) = Pl )] = 0.
Using the differentiation property of natural transform, we get:
5mloklaky( ) ud n
N o] = 2 5 S T o Py )] - SN (R ) + N
k=0
uomléklak( ) @
N*v(a )] = 5 = =0+ 5 N*[Pz('x 1) **N+{Rz(% ) +Na(p,v)}H,
k=0
NDM describes the solution of infinite series y(a, 1) and v(a, 1),
plan) =Y, wulan), vian) =3 vulamn), 5)
m=0 m=0
Adomian polynomials of non-linear terms of A and N, are represented as:
M Z Am, Na( (wv Z B, (6)
m=0
All forms of non-linearity of the Adomian polynomials can be defined as:
1 a”’l 00 k [ee] k
Am:* ETvY ™ M Z/\Vkrz)\vk ’
m! | OA™ —~ —~
k=0 k=0 A=0 %)
Bu= | 2y (3 A, 3 AF
m =0 gam 2 k;) Vk/kgo Vg ,
= = A=0
Substituting Equations (13) and (14) into Equation (12) gives:
Amlbklaky(a ) )
Z Hm (2, 77)) Z = A, 0+ N*{Pl(a )} ——N+{7€1 Z Homs E vn)+ Y Aul
m=0 k=0 m=0 m=0 m=0
) Jmloklak( oo (8)
N+[E Vm(“rﬂ)] 9 2 ok ‘r] 0+ N+{P2(‘X 1 }7 *N+{R2 E Hm, 2 Vm) + E Bm}r
m=0 k=0 m=0 m=0 m=0
Applying the inverse natural transformation of Equation (16),
oo 6 m=1 5—k-1 ok 0 o
5 o) = V(25 S S N P )] N N*{Rl(zoﬂm, 5 o)+ B Au,
m= k=0 m: m= m= 9
0 _ ud m=l go—k-1 akv(a 77) N " =) ) ( )
Z vm(a, ) =N [57 Z ok [y= 07L N {Pala, )} - [ N {Ra( Z Hms Z V) + Z Bu}l,
m=0 k=0 m=0 m=0 m=0
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we define the following terms,

6 m—=1 (5 k-1 yk
palo) = N[5 0 S PR ()

67::2 6 k— 1ak (10)
i) = N-12 S Tl N,

pi(e, ) = —N— [ N {R1(po,vo) + Ao},
v, ) =—N" [ N+{R2(H0,V0)+50}]
the general for m > 1, is given by:
ol "
Vm+1(“/77) =—-N [*N {Rl(,urmvm) +Am}],
Verl(a/ ’7) =-N" [ N+{R2(Hmzvm) + Bm}]

4. Fundamental Idea of q-Homotopy Analysis Transform Method

To introduce the basic concept of the current method, we consider a fractional-order nonlinear
PDEs of the form:

Dypu(a, B,17) + Rp(e, B,1) + Nu(e, B,1) = f(, B,1), 1<5<n, (11)

where D} y(a B, 1) denote’s the Caputo’s fractional derivative R and N are linear and non-linear
functlons or operators. Using the differentiation property of the Laplace transform on Equation (12),
we get:

elju(a, 1)) — kz ok 1Lﬂ>|,7 o+ E[Ru(a B ) + Ny, )] = £lf(@ B)], (12)
=0

£[D2 (e, 1) = £[u(a, B, 7)] — 2 ok 1"’””‘,7’5 I p)y (13)
=0

On simplifying Equation (13), we have:

tutop = 5 BTGB Rt )+ Nt )~ F ) =0 19

We can describe the non-linear operator as:

I*¢(a, 1
N(p(a, B,7;9)] = £lp(a, B,7;9)] — Z Ok 1M\nzo+ SE[R(a, B,7;9)]

oy s

= (15)
1
+ SEINg(w, B730)] — £ b))
where g € [0, } and ¢(«, B, 17; ) is real function of &, B, 77, and g. The concept of a nonzero auxiliary
function of homotopy is the following;:

(1= nq)L[p(a, B,11;9) — po(e, ,11) = hqH(a, B, )N[p(, B,17,9)], (16)
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where £ a sign of the Laplace transformation, g € [0, %} (n > 1) is the embedding parameter, 71 # 0 is
an auxiliary parameter, H(«, B, 17) signifies a nonzero auxiliary function, ¢(«, B, 7;q) is an unidentified
function, and o (a, B, 77) is an initial guess of j(«, B, 7). The subsequent outcomes hold correspondingly
forg=0and g = %

90, 6,150) = pola B,1), 9w, .1 ) = (e B,1). 7)

Thus, by intensifying g from 0 to 1, the result ¢(x, 8,77;4) converge from jig(x, B,7) to the solution
(e, B,17). Expand the function q')(rx, B,1,q) in sequences form by using the Taylor theorem near to g,
where one can get:

o(e, B11;q) = polw, ) + Y p(ee, B,17)q"™, (18)
m=1

where,

ol B,17) = 1%#‘”\q:o 19)

On selecting the auxiliary linear operator, yo(«, B, 77) , n and 7, the series (19) converge at 4 = % and
then it produces one of the results for Equation (12):

p(a, B,1) = pole, B,17) + Zumaﬁﬂ() (20)

m=1

Now, differentiating the zero-th order distortion Equation (17) m-times with respect to g4 and then
dividing by m! and lastly taking g = 0, which provides:

Elpm(a, B,17) — Kinptm—1(e, B,17)] = mR (1), (1)

where,
tol = po(a, B,17) + pr (&, B, 1) eeeeees, i (&, B, 77). (22)

Using the inverse Laplace transformation on Equation (22), it produces:

pon (e, B,17) = Konptm 1 (2, ,77) + HE [Ron (1) (23)
where,
K m—1 L ak a,B, 1
Rt1) = £l (o)) — (1= Ny (T oo OBy L, p,))
k=0 U (24)
1
+ ;E[%(Vm—l + Hm—l},
And,
0,m<1
e = { = (25)
1,m>1
In Equation (25), H;; denotes a homotopy polynomial and is defined as:
1 0"¢p(a, B, 1;
Hy = po(a, B,1) = W |q=0 and ¢(a,B,17:9) = g0+ qP1 + P2 + e (26)
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By Equations (24) and (25), we have:

o B, ) = (ko + W) (0 B,1) — (1 Z sk 18”(“’5”)\n o+ Sl )] o

1,1
+hi 1[57£[R(f‘m—1+Hm—1H-

On solving Equation (28) form = 1,2,3,4, ...... with the help of uo(a, B,17) = u(x,y,0) and Equation (25),
we get the iterative terms of y,, («, B, 17). The g-homotopy analysis transform method series solution is
given by:

e

ule, B,1) =Y wm(a, B,n)- (28)

3
g

5. Numerical Examples

Example 1. Consider the coupled system of the fractional-order Whitham—Broer—Kaup equations with:

ou(e, )  oula,m)  ov(a,n)
5 P, 1 w1 n _
DU”(“'U)_FV(a/U) a“ + aa + alX 70/

5 v (e, 77) opla, ) | Pu(a,)  Pv(wn)
Dyyv(a, ) +ple, i) = == +v(a ) == == + 3= 3 92

0<6<1, —-1<y<1, -10<a<10,

(29)

=0,

with the initial condition:

(30)

(e, 0) = 1 — 8tanh(—2a),
v(w,0) = 16 — 16 tanh?(—2a).

Firstly , we will solve this scheme by using the NDM.

After the natural transformation of Equation (29), we get:

P pla, )\ _ op(a,n) | op(a,n)  ov(an)
N+{ an’ }—fN*'{y(a,r]) w1 a oa ]’

51/ n
N+{a a(,]J,}?)} :*N+ |:;4( .’]) ( 7]) +V(04/77)ay

(e, 17) +333V(’X/'7) _ *v(a,n)
on o’ o2 !
0 s0-1 oula, ou(w, ov(a,
SN ()}~ e, 0) = —N* [y(m) R

591 v(a «, a 2y (a
SN )~ vl 0) = N [ 2D oy ) PO Frle )]

The above algorithm is reduced to be simplified:

N (e} = & (00} — SN [y 2] ) )], o
3

u(5 31 2 43
Nt {v(a,n)} = %{V(«,O)} - S7N+ [H(a,ﬂ) (Bu,,?) +v(a,77)ayg:’7) +"a }a(:;"?) 0 g(aéﬂ)} ,

Applying inverse natural transformation, we get:

u(e,n) = p(,0) — N~ [ll [ (& ”)ay(vc /1) . (e, 1) N av(zx,q)H ’

dx Jn
av(a, 1) Pula, ) Pv(a,n)
o ’

(32)
op(a, 1)
B a3 a2

+3

o) = va,0) =N~ [N a2
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Assume that the unknown functions y(«, 17) and v(«, 17) infinite series solution is as follows:

plan) =Y pmla,n), and via,y) =}, vm(a,1)
m=0 m=0

Remember that ppte = Y 5o Am, Wa = Lo Bm and vy = Y 5o Cyy are the Adomian polynomials
and the nonlinear terms were characterized. Using such terms, Equation (32) can be rewritten in
the form:

Y (e ) = pla,0) ~ N~ [ﬁN* {i Ay S) avg’Z”)H,

m=0 —0
S _|u S Pula,n)  Pv(a,n)
mZ::O v (a,17) = v(,0) = {5 {Z B + mZ::O Cn+3—5 5 — 3 ,

Zymaiy 778tanh( ) — N~ { N*{E.Am MjLMH,

m=0 =0 o o

0 2.
Y vn(a, ) = 16 — 16 tanh?(—2a) — N { N* [Z B+ Z Cp 4321 ”(“2"7)H ,
m=0 m=0 m=0 on? o

(33)

According to Equation (7), all forms of non-linearity the Adomian polynomials can be defined as:

d d J v, o I

AOZHO%/ A= o a;:j + 8’:? BO:HOBT;’ By = po—, 9 Lt a;
_ auo I auo
C() =V)p=— a Cl = T +v th

Thus, we can easily obtain the recursive relationship by comparing two sides of Equation (33):

mola, ) = % —8tanh(—2a), wvp(a,y) =16 — 16 tanh*(—2a),

Form =0,

)

(e, 17) = —8sech?(— 2oc) = —32sech?(—2«) tanh(—2«) ( U

(5
Gy ) o1

Form =1,

,725
r(26+1)’
va(a,17) = —32sec h?(—2a) {40 sec h?(—2«) tanh(—2a) 4 96 tanh(—2a) — 2 tanh?(—24) — 32 tanh®(—2a)
20
i
2 s 1)

a(e, 17) = —16sech?(—2a) (4 sech?(—2x) — 8tanh?(—2a) + 3 tanh(72o¢))

— 25sech?(—

In the same procedure, the remaining i, and v, (m > 2) components of the NDM solution can be
obtained smoothly. We therefore determine the sequence of alternatives as:

pla, ) = ioﬂm(w,ﬁ) = po(a, B) + pr(e, B) + pa(a, B) + ps(a, B) +
V(@) = 3 vmlaB) = v0(a B) + vi(a, B) + vala, B) + va(a, ) +

3
<H3
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)

wla) = % —8tanh(—2a) — 8sech2(—za>ﬁ
- *(- 2(~20) — Stanh?(— o)
16 sec h?(—2u) (4sec h?(~2a) — $tanh? (—20) + 3tanh(~2x) ) AT
J
(o 7) = 16— 16 tankh? (~20) — 32 sec (~20) tanh(~20) 54

— 32sec h?(—2a) {40 sec h?(—2«) tanh(—2a) + 96 tanh(—2«) — 2 tanh?(—2a) — 32 tanh®(—2x)
20

_ 2(_ U .
25 sec h*( 20()}1’(2(54-1)

In Figures 1 and 2, the exact and natural decomposition method (NDM) solutions at an
integer-order & = 1 are represented for both y(«,7) and v(a, ) of Example 1. It is observed that
NDM solutions are in good contact with the exact solution of the problems. In Figures 3 and 4, various
fractional-order solutions of Example 1, at different fractional-orders, 6 = 1,0.8,0.6,0.4 and # =1
are plotted. It is investigated that for Example 1, the fractional-order solutions are convergent to an
integer-order solution for both p(a, 77) and v(a, 7).

Exact

110

Figure 1. Exact and NDM solution of j(«, 1) at 6 = 1.

Exact NDM

Figure 2. Exact and NDM solution of v(«a,7) at § = 1.
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2-{ Exact solution 2 =ik .
Approximate * ** B=
§ =030 ——
6 6| [P=060 coa
B=040 ¢ o=
4] 4
24 2
0] o
B By
—44 44
_6- _64

& T 7
10 -10 -5

16 16 -
Exact solution B=1 At
Approximate * &
14 1] B=030
B=0.60 soa
14 2] B=040 0 o0
10 104
EE 8
6 64
44 il
2 24
0+

Figure 4. Exact and NDM solution of v(a, 17) at different fractional order § = 1,0.8,0.6,0.4, and 7 = 1.

a

5.1. g-Homotopy Analysis Transform Method

The Example 1 approximate solution with the help of q-HATM.
After the Laplace transformation of Equation (29), we get:

Q1)) = § (0,00} = S o) PG F) O

(34)
_1 1 v(a, 1) (e, y) | 0°u(a,m)  0%v(a, 1)
£} = 00} = £ (o) g v, 25 4 s T ) S
By the help of Equation (34) we define the nonlinear operator as:
NY[g1(a,17;9), ¢a(a,1;9)]
agi(a,y) | @ aga (s,

= £ [, mi0) = 1 00,00} + 3 {in(a PG O0N) S0

(35)

N2[g (2, 17;0), 42, 7;9)]
3 2, (a,
:£[4&2(“’””)7%{@(%0)}%{5{ " 17)8472(&, ) + oola, n>a¢1(“ M) | 59 ¢5£§, 1) 9P '7)}]

a2

34



Axioms 2019, 8, 125

By applying proposed algorithm, the deformation equation of m-th order is given as:

£[,Vm(‘x/ 77) - Km]/lmfl (IX, 77)] = h%l,m [7m71/ 7m71]/

36
E[Vm(“r 77) — KinV—1 (06, 77)] = hmZ,m[?m—lr 7111—1]/ (56

R [ w1, V1] = £l (a, n)—(l—ﬂ) {——Stanh( o)}

m—1 .
Vm—lfj(“/ ’7) a}‘m 1(“ ’7) avm*l(“! ’7)
"{ Z Hi(e ) on o o 3

(37)
Ra, m[?m—lr V1] = £[vm—1 (e, ) — 7{167 16tanh2(72“)}

n-l avm 1 ;a L ! an—j—l(“'U) Pptma(a,) vy a(a,17)
5{ Lomln————+ Ly ou 3 mazx3 B maaz H:

j=0 j=0

By applying inverse Laplace transform on Equation (36), we get:

le( 77) 7Km]/‘m 1("‘ 7])+hL71%1 m[?m 1, 7m 1}

(38)
Vi (&,17) = Kinvy—1(a, )] +hL™ 1§R2m 7711 1/7m 1l

By the help of given initial condition, we have:

Ho(a, ) = % — 8tanh(—2u),
vo(ar, 7)) = 16 — 16 tanh?(—2a).

(39)

To find the value of i («, 77) and vy («, 77), set m = 1 in Equation (38), then we get:

pa(a, ) = Kuppo(a, ) + hE" 'Ry 1 [Ho, Vo,

40
1% (Dé,i’]) = Kll/()((x,?])] + h£71%2/1[70, 70] ( )

From Equation (37) for m = 1, we get:

Rua[#o, 7ol = £lpola )] — (1 — ) 112~ stanh(~20))

1 ouo(a, Ao (a, avo(a,
N 7£[{y0(lx,’7) Hoézx ,1) * Hoigzx 11) * Oéa ]7) H/

R [0, Vo] = £vo(a, )] — (1 - %)%{16 — 16 tanh?(—2a)}

1 o (a, dpio(a,
+ Sotl ol ) 200 4,y 2L

(41)

Puo(a,7) ol 1) N
o3 on? ’

Then by using Equations (25) and (41) in Equation (40), we get:

(@) = B[ {5~ Btanh(~20)} — (1 0) 1)~ 8tanh(~20)}

¥ Xel oo 20l Otln)  Suole, ’”}n

vi(e, ) = hifl[l{lé — 16 tanh?(—24)} — (1 - 7) {16 — 16 tanh?(—2a)}
al/0( 1)

(42)

+ £[{uo( 1) + v

( )ayoigzrﬂ) +3a Vgi‘;‘f 77) _ d Vgl(;f 77) }”,

p1(e,17) = —8hsech*(—2a) 1 vi(a,17) = —32hsec h*(—2a) tanh(— 204)

6
r(6+1) (Hl)
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Similarly from Equations (40) and (41) for m = 2, we have:

pala ) = mpa (o) + B2 Elpa o, n)]—<1—£)2{%—8tanh( 20} + Lelfpola,n 20T

mey P

vale ) = mon(a) + E™ llﬁ[m(t“?]*(l**) {16 — 16 tanh(~20)} + 5[ {pio, ) L0

IV o 49 o 21/
Boé()zm ) mgur'i) ) uo;lx/nug ;giar'?) vy

+vie,n a2

+ pa(a,17) +vo(e, 1y

In the case of simplified, the above calculation eliminates as described:

A 1612 2(_ 2(_
)1"((5—1—1) 16h* sec h”(—2u) (4 sec h” (—2n)

20

o (e, 1) = —8(n + h)hsec h?(—2u

_ 2(_ o))
8tanh”(—2a) + 3 tanh( 2a))r<25+1),

s
va (e, 17) = —32(n + h)h sec h?(—2a) tanh(—24) 1"(5174— 0 32h% sec W (—2a) {40 sec h?(—2a) tanh(—2a)

+ 96 tanh(—2a) — 2 tanh?(—2a) — 32 tanh®(—2a&) — 25 sechz(—Za)}ﬁ,

20

The rest of the iterative terms can be used in the same way. Formerly, the family of q-homotopy
analysis transform technique series result of Equation (29) is assumed by:

pla ) = polan) + 3 () (L),
e . (44)
v(wn) = vola, )+ Y e ()",

m=1

The exact solution of Equation (29) at 6 =1,

y(zx;y)*——Stanh{ (a—g)},

7 (45)
—16 — 2] _ 7
v(a,77) = 16 — 16 tanh { 2 (oc 2)} .

In Figure 5, the graph of exact and q-HATM solutions for j(«, ) of Example 1 are displayed. It is
observed that, the solutions of -HATM are in good agreement with the exact and NDM solutions.
Similarly Figure 6, express the exact and q-HATM solutions for v(a, 17). The plot representation also
confirmed the higher accuracy of the proposed method with the exact solution for v(a, 7). Furthermore,
the graphical representations of the solutions of the proposed method have reflected its applicability
and reliability. This provides the motivation to apply the current techniques for other fractional-order
partial differential equations.
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Figure 5. Exact and q-HATM solution of j(«,7) at 6 = 1.

¢ HATM

Figure 6. Exact and q-HATM solution of v(«, 17) at § = 1.

Example 2. Consider the coupled system of fractional-order Whitham—Broer—Kaup equations with:

ou(e,7)  10u(a,n)  ovia,n)
5 () | 1ou(a,y n _
Dy, ) + pla, ) == == + 5= == + === =0,

(e, 1) (e, n) _19%v(a,n) (46)
s _= =
Dyv(a ) + e ) = == +v(a ) == =" = 5=——=7= =0,
0<6<1, 0<ny<1, —100 <« <100,
with the initial condition:
#(a,0) = & — xcothlr(a + 0)], 7)
v(a,0) = —x2cosech®[x(a + 6)].

Firstly, we will solve this scheme by using the NDM.
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After the natural transformation of Equation (46), we get:

N+ {a‘szg(;;v)} __N* {H(a/q)au(m) L lopan) Mw)] ,

du 2 o Ju

P, (e, Su(en) 19w,
N {%} =-N* [M(w,ﬂ)% +v(,7) ?‘g’;ﬁ) - g(fzn)}'
571 X )
SN ()} = 5o, 0) = N [uta 240 J) vl

S N+ S w0) = —N av(a, ) o) 197w )
SN )} = S v(,0) = <N o) 25 v, ) ST

The above algorithm is reduced to the simplified form as:

1 ul ou(x, 10u(w, v («,
N o)} = (0o, 00) = SN o) 2 SO )

(48)
1 u’ ov(a, 1) ou(e,n)  10%v(a,n)
+ _ N _ 2
N (vl = § (vl 0)) = SN o) 2 v, 2 - SR
Applying the inverse natural transformation, we get:
10u(w, v (a,
) =, 0) = N [ BN+ [ty 20)  LopCe) o),
2 on on (49)

u VK 19 2V 19
) = v(a,0) - N [;N* [mwm® (aa"” +ola,p o) S]],

Assume that the unknown functions y(«, 17) and v(«, 17) infinite series solution is as follows:

agk

pla,n) = Zumw and v(a,n) =Y vm(a,n),

m=0

Remember that ppte = Y oo Am, Wa = Lo Bm and vy = Y 5o Cpy are the Adomian polynomials
and the nonlinear terms were characterized. Using such terms, Equation (49) can be rewritten in
the form:

[}

Z tm(a,17) = u(2,0) — N |: NT |:Z Am+;aﬂga 1) n al/(lx,ﬂ)]:| ,

m=0 Ju
10%v(a,
m; 7) = v(a,0) — N~ { N+L,ZOB'"+ZC"'2WH’
mZ::Oym(zx,iy) = ¢ —xcoth[x(a +0)] — [ _NT {Z A+ = ! aﬂga 2/l + av(;;ﬂ)” , .
r’govm(tx,r]) = —«2cosech?[i(a + )] — { Nt Z B + Z Cn — ;8 119;2 17)“ ,

According to Equation (7), all forms of non-linearity the Adomian polynomials can be defined as:

d %)

VOﬁf

81/0

9o o _
Ag = Mo AI*VO +]41 E By = Voaﬁ ‘H‘laﬁ

By =

g 2 ayl I

Cofvoa , = Vo tVig
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Thus, we can easily obtain the recursive relationship by comparing two sides of Equation (50):

o(e, ) = & —kcoth[k(a +0)], vola, ) = —r>cosech?[x(a + 0)],

Form =0,
2 2 7’
(e, n) = —&x*cosech [K(a+9)]m,
)
vi(a, 1) = —¢i*cosech®[ic(a + 0)] coth[(a + 0)] 1"(517+ o
Form =1,

26k (26 +1)5% (3 coth?([x(a + 8)] — 1))5%
(T(6+1))2T (36 +1) r(26+1) !

(e, 17) = Ex*cosech? [k (a + 0)] { -

1 Ercosech? (3 coth? ([i(a + 6)] — 1))
v (e, 1) = mpgkscosechz[x(a +0)]][ TG IGo+ 1)
2&xcosech?® coth®([ic(a + 0)])y>  2& coth(3cosech? ([x(a + )] — 1))y
T(6+1)I(36+1) - T(26+1) L

In the same procedure, the remaining i, and vy, (m > 2) components of the NDM solution can be
obtained smoothly. Thus, we determine the sequence of alternatives as:

[eS)

u(a,n) = Zoum(mﬁ) = po(e, B) + p1(a, B) + pa(e, B) + pz(a, B) + - -

Vo) = 3 e, ) = ol B) 4140 B) + 12l B) + 15(e )+

#(a,17) = & — xcoth[x(a + 0)] — ExPcosech? [k (a + 0)]’775

rG+1)
20k (20 +1)5%° (3 coth?([k(a 4 )] — 1))y%
+Exosealli(a +0) { T(6+1)T(35+1) r(26+1) }‘

via,n) = —2cosech? [k(a+6)] — Zx2cosech? [k(a + 6)] coth[x (a + 0)]”70

T(6+1)
Kcosech? (3 coth? [k (w — 3
+ 71_(51_‘_ 0 (2K cosech? i (a + 9)]][5 h (1,3(5 -:hl)(l["(éér-el))] D)
2¢xcosech? coth? ([k(a + 6)])7%  2& coth(3cosech® ([k(a + 6)] — 1))y
T(6+1)I(36+1) a [(20+1) J=

Figures 7 and 8 describe the graphical behavior of both the unknown variables p(«,7) and
v(a,17) of Example 2 at an integer-order § = 1 respectively. The procedures of NDM and q-HATM
are implemented to obtain the desire accuracy. The higher accuracy and rate of convergence are
achieved by the proposed techniques as shown in Figure 9. The plot analysis demonstrates the validity
and accuracy of the proposed techniques and considered to be the best techniques to solve other
fractional-order problems.
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Figure 7. Exact and NDM solution of ji(«,77) at 6 = 1.

Exacit NDM
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Figure 8. Exact and NDM solution of v(«,7) at § = 1.

Figure 9. Error plot of yi(a, 1) and v(a, 7).
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5.2. g-Homotopy Analysis Transform Method

The Example 1 approximate solution with the help of -HATM.
By taking the Laplace transformation of Equation (46), we get:

a1} = § (00} = S o) 215 SO0 SO

2
£l = 3 {v(0,0)) = 56 [ila, ) 9 o, ) STV,

Using Equation (51) we define the nonlinear operator as:
g Bq P

N (a,17:), 2,17 )]
=£ {4% (w70) — + (#1(2,0)} + 5 {%(w)a‘l’léz’”) LI L H ,

N?[¢1(a,7;9), d2(, 7;9)]
a1 (a,17) 1 (a, 1)

o2 (1)
dx +

—t[pata i) - § {000} + 5 {ortan) ol 280 1Tl

By applying the proposed algorithm, the deformation equation of m-th order is given as:
£[Hm(“/ 77) - Km,umfl (‘Xr ’7)] = héRl,m [7”171/ 7mfl]/
Elvm (e, 17) — KinVi—1(a,7)] = hRg [7111—1: 7111—1]/

§R1,m[7m71r 7mfl] = £[mel(“/ 7//) - (1 - %’l)%{é — KCOth[K(D( + 9)]}

1 m=l Om—1-j(@, 1) 10uy_1(a,17) = py_1(a,77)
+§{]§) Hj(a'ﬂ) o +§ Jo * Ju 3

Ron[H -1, V1] = E[vm—1(a,17) — %{—chosechz[x(a +0)]}

1 el avm—l—j(’xlq) ml a,uWI—]'—l(‘X/W) 1321/"171(0‘/’7)
+ST;{];) Vj(“/W)T"‘];) vj(a,n) o 3 92 3

By applying the inverse Laplace transform on Equation (53), we get:

]/lm(‘xz 77) = Km,um—l ((X, 77) + hLil%l,m[?;nflr 7;7171}/
Vin (2, 17) = Knpp—1(, )] + hL™ Ry [ a1, V -

By the help of the given initial condition, we have:

Ho(a,17) = & — x coth[k(a + 6)],
vo(a, 1) = —x>cosech®[ic(a + 0)].
To find the value of g («,77) and vp(a, 17), set m = 1 in Equation (38), then we get:

pi(a,1) = Kippo(e,17) + hE" R [Ho, Vo),
vi(a, 1) = Kyvo(a, )] +hE" o[ o, Vo),

41
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From Equation (54) for m = 1, we conclude:

Rua[Ro Vol = Lole )] — (1 )14 — xcothlx(a + 0)])

+%£[{y0(a,,7)aﬂ()§zﬂ7) +%8uo§z 17) 3Vo(a, )}]

(58)
Roa[Ro, Vol = £lvo(a, )] — (1~ 1) L {—eosech? [x(a +6)])

1 ovg(a, 77) 3}40(%’7) ~ 1w(w, 1)
+ £l mo(a, 1) == = Hvoa, ) == 5o V]

Then by using Equations (25) and (58) in Equation (57), we get

pa(a, ) = hﬁ*l[é{é — xcothfi(a+6)]} — (1 - *) {¢ — xcoth[x(x +6)]}

N %E[{yo(ﬂé,ﬂ)ayo('gz,v) + %a]‘»oigz"’]) i allogi 77) ], 59)
%) {—x2cosech®[x(a + 0)]}

vi(a,n) = he! [%{fxzcosechz[x(vc +0)}—(1-—

10%vg(a, 17)
w2 oaa I

+ %ﬁ[{ﬂo(“rﬂ)w + vo(a, ) 2Hole 1)

8 )
(e, ) = —&hx>cosech? [k (a + 9)]%, vi(a, ) = —hicosech? i (a + 0)] coth[x(a + 6) ] 7

r(+1)
Similarly from Equations (57) and (58) for m = 2, we have:
(e ) = g (@) 6 €l ()] — (1= ) g cothln(a +0)1) + (oo ) 21
+ (4177) aﬂoa(zr}” ;a]‘léz ’7) n 31/1(06, ”) }H

vt (o, 1) (60)
vala, 1) = nva(a, ) + hE £l (e, )] — (1**) {—wPeosecl?[i(a+ )]} + - 5[{;!0 ) 2

on
avp(a, ap (a,
+ pa(a, 1) VO;Z ") +vp(a, 1) m;z ") +vy(a

m—a”‘ﬁgz 7 1Pl 0y

In simplified, the above calculation eliminates as described:

po(a,7) = —&(n + h)hi*cosech? [k (& + 6)]1_(5’77_‘:_1)

+ Eh2k*cosech? (i (a + 0)] { 26T (20 4 L)y _@ coth([x(a + )] ~ 1))r* }

TG +1)rBs+1) r(20+1)

’

s
va(a, 1) = —&(n + h)hicosech® [ (a + 0)] coth[x(a + 0)] ﬁ
1 Excosech? (3 coth? ([x(a + 0)] — 1))5%
+ mhz[Zéxscosechz[K(tx+9)H[ TG IGEo+1)
27xcosech® coth?([ic(a + 0)])y*  2Z coth(3cosech? [k (a 4 0)] — 1))y
{6+ 1)T(30 + 1) - T26+1) I
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The rest of the iterative terms can be used in the same way. Formerly, the family of g-homotopy
analysis transform technique series result of Equation (46) is assumed by:

pla) = polan) + 3 () (o),
V(@) = w0l + 3 e ()"

m=1

The exact solution of Equation (46) at 6 = 1 and taking ¢ = 0.005, 0 = 10 and x = 0.1.

1) == ¢ — xcoth[k(x + 60 — &),

via,n) = —chosechZ[K(oc +0—¢an)l. (62)

The solutions («,7) and v(«,7) are also obtained by using g-HATM and found to be in good
agreement with the exact solution of problems. For better understanding the results for both the
variables y(a,77) and v(«, 1) of Example 2 are plotted in Figures 10 and 11 respectively where the
higher accuracy is observed.

¢ HATM

oate!
R
%

R

0000
R
L5
e

L XXX
25

:’ L

QIR

(HH)
et

100”1 1o 1
Figure 10. Exact and g-HATM solution of yi(a,7) atd = 1.

Exact ¢-HATM

oo 1 o 1

Figure 11. Exact and g-HATM solution of v(a, 1) at 6§ = 1.
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6. Conclusions

In this paper, we studied the factional view of Whitham-Broer-Kaup equations by using two
analytical powerful techniques. With the help of the Laplace and natural transformations, the procedure
strengthened and became easy for implementation. A very close contact of the obtained solutions
with the exact solution of the problem was observed. It was found that the rate of convergence of the
proposed methods was sufficient for solving fractional-order partial differential equations. Therefore,
the proposed techniques could be extended to solve other complicated fractional-order problems.

Author Contributions: conceptualization, R.S. and H.K.; methodology, R.S.; software, H.K.; validation, D.B., H.K.
and R.S.; formal analysis, R.S.; investigation, H.K.; resources, D.B.; data curation, R.S.; writing—original draft
preparation, R.S.; writing—review and editing, H.K.; visualization, D.B.; supervision, D.B.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley:
Hoboken, NJ, USA, 1993.

2. Rudolf, H. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.

3. Katugampola, U.N. A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6,
1-15.

4. Srivastava, H.M.; Baleanu, D.; Li, C. Preface: Recent Advances in Fractional Dynamics; AIP Publishing LLC:
College Park, MD, USA, 2016.

5. Ahmad, J.; Mushtaq, M.; Sajjad, N. Exact Solution of Whitham Broer-Kaup Shallow Water Wave Equations.
J. Sci. Arts 2015, 15, 5.

6.  Kupershmidt, B.A. Mathematics of dispersive water waves. Commun. Math. Phys. 1985, 99, 51-73. [CrossRef]
Whitham, G.B. Variational methods and applications to water waves. Proc. R. Soc. Lond. Ser. Math. Phys. Sci.
1967, 299, 6-25.

8. Broer, L.J.E. Approximate equations for long water waves. Appl. Sci. Res. 1975, 31, 377-395. [CrossRef]

9. Kaup, D.J. A higher-order water-wave equation and the method for solving it. Prog. Theor. Phys. 1975, 54,
396-408. [CrossRef]

10. Ali, A; Shah, K; Khan, R.A. Numerical treatment for traveling wave solutions of fractional
Whitham-Broer—Kaup equations. Alex. Eng. J. 2018, 57, 1991-1998. [CrossRef]

11. Biazar, J.; Aminikhah, H. Study of convergence of homotopy perturbation method for systems of partial
differential equations. Comput. Math. Appl. 2009, 58, 2221-2230. [CrossRef]

12.  Mohyud-Din, S.T.; Noor, M.A. Homotopy perturbation method for solving partial differential equations.
Z. Naturforschung 2009, 64, 157-170. [CrossRef]

13. Xie, F; Yan, Z.; Zhang, H. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow
water equations. Phys. Lett. A 2001, 285, 76-80. [CrossRef]

14. Wang, L.; Chen, X. Approximate analytical solutions of time fractional Whitham-Broer-Kaup equations by a
residual power series method. Entropy 2015, 17, 6519-6533. [CrossRef]

15. El-Sayed, S.M.; Kaya, D. Exact and numerical traveling wave solutions of Whitham-Broer—Kaup equations.
Appl. Math. Comput. 2005, 167, 1339-1349. [CrossRef]

16. Saha Ray, S. A novel method for travelling wave solutions of fractional Whitham-Broer-Kaup, fractional
modified Boussinesq and fractional approximate long wave equations in shallow water. Math. Methods
Appl. Sci. 2015, 38, 1352-1368. [CrossRef]

17.  Mohyud-Din, S.T.; Yildirim, A.; Demirli, G. Traveling wave solutions of Whitham-Broer-Kaup equations by
homotopy perturbation method. J. King Saud-Univ.-Sci. 2010, 22, 173-176. [CrossRef]

18. Kadem, A.; Baleanu, D. On Fractional Coupled Whitham—Broer-Kaup Equations; Publishing House of the
Romanian Academy: Wellington, New Zealand, 2011.

19. Igbal, M. A fractional Whitham-Broer-Kaup equation and its possible application to Tsunami prevention.
Therm. Sci. 2017, 21, 1847-1855.

44



Axioms 2019, 8, 125

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ghehsareh, H.R.; Majlesi, A.; Zaghian, A. Lie Symmetry analysis and Conservation Laws for time fractional
coupled Whitham-Broer-Kaup equations. UPB Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 153-168.
Zhang, Z.; Yong, X.; Chen, Y. Symmetry analysis for whitham-Broer-Kaup equations. ]. Nonlinear Math. Phys.
2008, 15, 383-397. [CrossRef]

Arshed, S.; Sadia, M. G’ /G2-Expansion method: New traveling wave solutions for some nonlinear fractional
partial differential equations. Opt. Quantum Electron. 2018, 50, 123. [CrossRef]

Rani, A.; Ul-Hassan, Q.M.; Ashraf, M.; Ayub, K.; Khan, M.Y. A novel technique for solving nonlinear WBK
equations of fractionl-order. J. Sci. Arts 2018, 18, 301-316.

Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time-and space-fractional coupled Burgers’ equations
via homotopy algorithm. Alex. Eng. J. 2016, 55, 1753-1763. [CrossRef]

Veeresha, P.; Prakasha, D.G. Solution for fractional Zakharov-Kuznetsov equations by using two reliable
techniques. Chin. J. Phys. 2019, 60, 313-330. [CrossRef]

Singh, J.; Secer, A.; Swroop, R.; Kumar, D. A reliable analytical approach for a fractional model of
advection-dispersion equation. Nonlinear Eng. 2019, 8, 107-116. [CrossRef]

Srivastava, H.M.; Kumar, D.; Singh, J. An efficient analytical technique for fractional model of vibration
equation. Appl. Math. Model. 2017, 45, 192-204. [CrossRef]

Rawashdeh, M.; Maitama, S. Finding exact solutions of nonlinear PDEs using the natural decomposition
method. Math. Methods Appl. Sci. 2017, 40, 223-236. [CrossRef]

Rawashdeh, M.S. The fractional natural decomposition method: Theories and applications. Math. Methods
Appl. Sci. 2017, 40, 2362-2376. [CrossRef]

Shah, R.; Khan, H.; Mustafa, S.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Diffusion
Equations by Natural Transform Decomposition Method. Entropy 2019, 21, 557. [CrossRef]

Shah, R.; Khan, H.; Kumam, P.; Arif, M.; Baleanu, D. Natural Transform Decomposition Method for Solving
Fractional-Order Partial Differential Equations with Proportional Delay. Mathematics 2019, 7, 532. [CrossRef]
Rawashdeh, M.S.; Maitama, S. Solving nonlinear ordinary differential equations using the NDM. J. Appl.
Anal. Comput. 2015, 5, 77-88.

Shah, R.; Khan, H.; Farooq, U.; Baleanu, D.; Kumam, P.; Arif, M. A New Analytical Technique to Solve
System of Fractional-Order Partial Differential Equations. IEEE Access 2019, 7, 150037-150050. [CrossRef]
Cherif, M.H.; Ziane, D.; Belghaba, K. Fractional natural decomposition method for solving fractional system
of nonlinear equations of unsteady flow of a polytropic gas. Nonlinear Stud. 2018, 25, 753-764.
Abdel-Rady, A.S.; Rida, S.Z.; Arafa, A.AM.; Abedl-Rahim, H.R. Natural transform for solving fractional
models. J. Appl. Math. Phys. 2015, 3, 1633. [CrossRef]

Khan, H.; Shah, R.; Kumam, P,; Arif, M. Analytical Solutions of Fractional-Order Heat and Wave Equations
by the Natural Transform Decomposition Method. Entropy 2019, 21, 597. [CrossRef]

Eltayeb, H.; Abdalla, Y.T.; Bachar, I.; Khabir, M.H. Fractional Telegraph Equation and Its Solution by Natural
Transform Decomposition Method. Symmetry 2019, 11, 334. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

45






@ axioms ﬁw\n\py

Atrticle
General Linear Recurrence Sequences and Their
Convolution Formulas

Paolo Emilio Ricci ! and Pierpaolo Natalini 2*

1 Gection of Mathematics, International Telematic University UniNettuno, Corso Vittorio Emanuele II, 39,

00186 Roma, Italy; paoloemilioricci@gmail.com
Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, Largo San Leonardo Murialdo, 1,
00146 Roma, Italy

*  Correspondence: natalini@mat.uniroma3.it

Received: 29 September 2019; Accepted: 15 November 2019; Published: 19 November 2019

Abstract: We extend a technique recently introduced by Chen Zhuoyu and Qi Lan in order to find

. . . 1 X
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The case of generating functions containing parameters, even in the numerator is considered.
Convolution formulas and general recurrence relations are derived. Many illustrative examples and
a straightforward extension to the case of matrix polynomials are shown.
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1. Introduction

Generating functions [1] constitute a bridge between continuous analysis and discrete
mathematics. Linear recurrence relations are satisfied by many special polynomials of classical
analysis. A wide scenario including special sequences of polynomials and numbers, combinatorial
analysis, and application of mathematics is related to the above mentioned topics.

It would be impossible to list in the Reference section all of even the most important articles
dedicated to these subjects. As a first example, we recall the Chebyshev polynomials of the first and
second kind, which are powerful tools used in both theoretical and applied mathematics. Their links
with the Lucas and Fibonacci polynomials have been studied and many properties have been derived.
Connections with Bernoulli polynomials have been highlighted in [2].

In particular, the important calculation of sums of several types of polynomials have been recently
studied (see e.g., [3-5] and the references therein). This kind of subject has attracted many scholars.
For example, W. Zhang [6] proved an identity involving Chebyshev polynomials and their derivatives.

Fibonacci and Lucas polynomias and their extensions have been studied for a long time,
in particular within the Fibonacci Association, which has contributed to the study of this and similar
subjects. As an applications of a results proved by Y. Zhang and Z. Chen [3], Y. Ma and W. Zhang [4]
obtained some identities involving Fibonacci numbers and Lucas numbers.

Convolution techniques are connected with combinatorial identities, and many results have been
obtained in this direction [2,7,8]. Convolution sums using second kind Chebyshev polynomials are
contained in [7].

Axioms 2019, 8, 132; d0i:10.3390/axioms8040132 47 www.mdpi.com/journal /axioms
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Recently, Taekyun Kim et al. [8] studied properties of Fibonacci numbers by introducing the so
called convolved Fibonacci numbers. By using the genereting function:

tﬂ

1 X o0
(1 —t—bt2> - n;,p”(x)ﬁ’

for x € Rand r € N, they proved the interesting relation
n n
pr(x) =} pe(r)pu—e(x = 1) =} puc(r)pe(x = 7).
=0 =0

Furthermore, they derived a link between p,, (x) and a particular combination of sums of Fibonacci
numbers, so that complex sums of Fibonacci numbers have been converted to the easier calculation
of pu(x).

In a recent article Chen Zhuoyu and Qi Lan [9] introduced convolution formulas for second order
linear recurrence sequences related to the generating function [1] of the type

1
T 14at+ b2’

f(t)

deriving coefficient expressions for the series expansion of the function f*(¢), (x € R). In this article,
motivated by this research, we continue the study of possible applications of the considered method,
by analyzing the general situation of a generating function of the type

1 X
1+a1t+a2t2+~--+a,tf> !

G(t,x) = (

and we deduce the recurrence relation for the generated polynomials.
Several illustrative examples are shown in Section 6. In the last section the results are extended,
in a straightforward way, to the case of matrix polynomials.

2. Generating Functions

We start from the generating function considered by Chen Zhuoyu and Qi Lan:

Gt x) = <1+at1+bt2>r - {(17M)1(17/3t) -

1
= exp {—xlog [(1—at)(1-pH)]},
with
a=—(a+p), b=ap ¥
o tk
Gt,x) = ) (v f) g5 =
P I ®3)

=exp{—xlog (1 —at)}-exp{—xlog (1 —pt)} = Ga(t,x) - Gg(t,x),
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where
o tk
Gu(t,x) = exp [—xlog (1 — at)] :I;)pk(x,oc)ﬁ, (4a)
e i’k
Gp(t,x) = exp [=xlog (1= pt)] = }_ qi(x, B) 5 - (4b)
k=0 .
Note that, by Equation (2) we could write, in equivalent form:
Se(xa, B) = gk(x;a,b),  pe(x,0) = pr(x,a),  qe(x, B) = qi(x,b), ®)
but, in what follows, we put for shortness:
se(xva, B) = gk(x),  pr(xva) =p(x),  gr(x, B) = gr(x) - ©6)

By Equations (3), (4a) and (4b) we find the convolution formula:

Zk: < )Pk n(x) gn(x). @)

3. Recurrence Relation

Note that
dG(t,x)  9Gg(t,x) aGp(t,x)
T T Gp(t,x) + Ga(t,x) - — =
®)
_ ax Bx _ a+2bt
_ (1 oot 7&) Gl x) = —x (71 +m+bt2> Gt x),
as can be derived directly from Equation (1).
Then we have
(1+at+bt2)acgi'x) = —xaG(t,x) —2bxtG(tx), ©)
K k+1 tk+2

t
28k+1 +’128k+1 e +b2gk+1 N

tk+1
fvagk —bex ng o

that is
o k 0 tk = tk
;ngrl I +ak;kgk(x)ﬁ+bZk(k—l)gk,l(x)ﬁ =

tk
,angk 2bx2kgk1 Sy

and therefore, we can conclude with the theorem:
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Theorem 1. The sequence {gx(x) }ren satisfies the linear recurrence relation
ge(x) +alx+k—1)gk_1(x) +b(k—1)(k+2x —2)gr_2(x) =0. (10)

3.1. Properties of the Basic Generating Function

We consider now a few properties of the basic generating functions G (t, x). According to the
definition (4a), the polynomials pi(x) are recognized as associated Sheffer polynomials [10] and
quasi-monomials, according to the Dattoli [11,12] definition.

3.1.1. Differential Equation

We have:
00 tk
Gu(t,x) = exp[—xH(t)] = kg%)pk(x,zx) K (1)
where
_ _ 1y — &
H() = —log(1-at),  H() =1, (12)
and its functional inverse is given by
H\(t) = 1 (1—e™) (13)
" ,

so that, recalling the results by Y. Ben Cheikh [13], we find the derivative and multiplication operators
of the quasi-monomials py(x), in the form:

51 D, ot (1 _ _ D:
P-;(l—e ) M= xH (H (Dx))—zxxe , (14)
and we can conclude that

Theorem 2. The polynomials py(x) satisfy the differential equation:

MP p,(x) = x (ePx = 1) pu(x) = npa(x), (15)
that is, Vn > 1:
x () U () = ) (16)
™m0 " " e

3.1.2. Differential Identity

Differentiating Equation (11) with respect to x, we find

) k
Waaltix) _ G (1, x)log(1 —at) = 3 phixa) & 17)
ox = k!
that is
oS , tk _ 1 ) tk
];pk(xr“) = los(l- M)k;)r?k(xfﬂ) P
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& & (at)k & & (at) > tk
IFACHOLARS pEGAED SPNEHI LA SRl (R P tery k,} :
k=1 = k=0 Tok=1 k=1 :
0 , fk 0 ktk 00 ktk 00 tk
Zpk(x,tx)ﬁ =Y (k—1)la T Y (k—1)ta T Zpk(x,a)ﬁ,
k=1 T k=l k=1 k=1 :
0 , t 0 ktk 2 tk
k;pk(x,zx)ﬁzkzzl(kfl)!zx E+k:21 —1)lak 72;7,( X, &
0 ktk ok —h tk
=Y (k—=1la EJrZZ(kfhfl)!tx pu(x,a) o,
k=1 ©k=1h=1 .

so that we can conclude with the theorem:

Theorem 3. The polynomials py(x) satisfy the differential identity:

pilx,a) = (k—1)tak + i(kfhfl)!(xk*h pn(x,a).
h=1

3.2. Extension by Convolution

We now consider the case of a generating function of the type:
Z pi(x;c
Z Sx(x;a,b)

1+ct *
G“"“):(m) qu“”’

A straightforward consequence is the convolution formula for the resulting polynomials:

k

nse) = 3 () seoata bt

h=0

so that the gj,(x; c; a, b) can be found recursively by solving the infinite system

qo(x;c;a,b) =1,
qr(x;c;a,b) = pr(x;a,b) 2 ( )gk n(x;a,b) qn(x;c;a,b).

Noting that po(x;a,b) = go(x;c;a,b) = 1, the very first polynomials are given by

qo(x;c;a,b) =1,
q1(x;¢;a,b) = p1(x;a,b) — g1(x;¢;a,b),
q2(x;¢c;a,b) = pa(x;a,b) —2g1(x;¢;a,b) pr(x;a,b) +2g%(x;c; a,b) — g(x;¢;a,b),
q3(x;c;a,b) = p3(x a,b) —3¢1(x;¢;a,b) pa(x;a,b) + 682(x;¢;a,b) p1(x;a,b)
— 6g1 (x;6a,b) + 691 (x;6;a,b) g2(x;¢;a,b) —3g2(x;¢;a,b) p1(x;a,b)
—g3(x;ca,D).

Further values can be obtained by using symbolic computation.

51
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4. The General Case

Note that the above results can be extended to the general case, considering the generating

function:
GUJ):<1+mt+n;+~~+mﬂ>x:{ﬂ—aﬁﬂl—éﬂ~'ﬂ—“@
=exp{—xlog[(1—at)(1—axt)--- (1 —art)]} = égk(x;vq,wz,- Sotr)
where
m=0=—(m+a+ - +a),

o
ag =0 = (=1)° Y aje,-c-aq,
J1rj2reees Js
.

ay = 0 = Q0 * ** &y,

are the elementary symmetric functions of the zeros.
Putting as before:

[ fk
Guy, (t,x) = exp [=xlog (1 —ant)] = ) pri(x,an) 7,
k=0 :

since
G(t,x) = Gay (£, %) - Gay(t,x) - - - Gy, (£, ),
we find the result:

Theorem 4. The sequence {gx(x) }xen satisfies the convolution formula:

k
gk(x) = (
kitko+--+ke=k
0<k;<k

where, according to our position,

k(X)) = gk(vag, a0, 00), Prig (%) = pro (o e1), oo, Prg (X)) = prg, (%, ar) -

5. The General Recurrence Relation

From Equation (17) we find:

JaG(t,x) e (m +2ant + -+ +ra !
of 14 art + a2 + - - + a,t”

) G(t,x),

dG(t, x)
ot

(14 art +axt> + -+ apt")
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ki ko, k) Pria (P2 () Pri ()

ik

- —x <u1 S 2axt 4 m,t’*l) G(tx),

H/

(23)

24

(25)

(26)

27)
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tk+1 00 tk+2 tk+r
ng+1 +111 28k+1 e +ﬂ2];]gk+1(x)7 +ota ng+1 s

tk+1 tk+7 1
= —mx ng —2ayx ng — e —rayx ng ,

that is

k
ngJrl +ﬂ12k8k +ﬂ22k =gk 1(x)

) i’k
+ ay Zk(kf 1) T (ki r+ 1)gk7r+1(x)ﬁ =
k=r .

tk
= —mx ng —2ax Zkgkl )klf

) tk
—rayx Y k(k—1)-- (k—r+2)gk_r+1(x)ﬁ.
k=0 :

Therefore, we can conclude that
Theorem 5. The sequence {g(x) }reN satisfies the linear recurrence relation

gk(x) +ar(x +k—1) g 1(x) +a2(k —1)(2x +k —2) g 2(x) +
(28)
+ar(k—1)(k—=2)---(k—r+1)(rx+k—r)gr—r(x) =0.
Extension to the General Case

We now generalize the convolution formula in Section 3.2, putting for shortness
[cli1 =c1,c0,.00 021, [a]r =ay,a2,... 4,

and considering the generating function:

T+ot+of+ o +o gt N\ & L
Thaital+al = L ol lerilal) g =

G(t,x) = (
Z pe(xldr) (29)
Y- gl fal,)

k=0
so that we find the convolution formula:
ko rk
pesleln) = 1 () sicn(oi o) (o e, 0)
h=0

and the gy (x; [c],—1; [a];) can be found recursively by solving the infinite system

qo(x; [c]y—1;[aly) =1,
k—1

(6ol = peCoslol) = () gicaColal) s el

h=0

€]
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6. Illustrative Examples—Second Order Recurrences

e  Gegenbauer polynomials [14], defined by
(1—2yt+ ) =y V)t
x=Aa=-2,b=1g(}\—-2y1) =k cMy).
e  Sinha polynomials [15], defined by
[1—2yt+ 2y -1V = 25

x=v,a=-2yb=(2y—1),gv;~2y,2y—1) = kIS (y).

e  Fibonacci polynomials [16], defined by

t 00

_ v _ k _ . .
- ];JFk(y)t , F.(1) = F,  (Fibonacci numbers).

We have:

t (o)

Toy—p tkg)gk(l' -y, - Zk Fi(y k' ,

so that

Y kgk-1(1; Zk Fe(y) 5 -

k=1

Since Fy(y) = 0, we find

1
B) = gy sl -1,
e  Lucas polynomials [16], defined by

2— yt ad k
Ty E I;)Lk(y)t ,  Li(1) =Ly (Lucas numbers).
We have:
2—yt & 2 k
T2 y, 5 =2 ng -1 G-y Y kg a(L-y, 1) 5= Y K L(y) 5
T-yt—f KoY e KA
Since Ly(y) = 0, we find

Lk(y):<%—ﬁ>gk 11—y, —1).
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Illustrative Examples—Higher Order Recurrences

e  Humbert polynomials [14], defined by
(1=3yt+£) = Y u(y) £,
k=1
x=Aa;=-3y,a0=0,0a3 =1, g(A;=3y,0,1) = k! uy(y).

e  First kind Chebyshev polynomials in several variables [17-20], defined by

r—(r—Dugt+ (r—2)upt2 + -+ (—1) w1 &

=Y Ti(uy,...uq) 5,
1—u1t+u2t2—~~~+(—1)’*1u,,1t'*1+(—1)rt’ k;() k(ll1 Uy l)

_1 -1t ~1
x=10=—"luy, ... cq =1 ,) Uy, @y ==y, ..., 81 = (=1)""tu,_q, 0, = (=1),

a1 [c)r1; [a)y) = LK Tie(un, .. 1pq).

e  Second kind Chebyshev polynomials in several variables [17-20], defined by

1 -y
T—ugt4upt? — o 4 (1) =1 (1)1t

Up(uy, ..., u_q) 5,

x=1a =-uy, ..., 401 = (-1)""Yu,_q, 0, = (-1)", g(1;[a]s) =k Ui (uy, ..., u_1).

e  Tribonacci polynomials [21], defined by

W = kgfk(y) £
We have:
1z—t23 =t i ge(L,—y%, —y,—1) L i ke (y) .
— Yyt —ytt —t = kb = k!
so that

co tk 0 tk
Y kgea(1,—y*, —y, 1) i Y KT(y) R
k=1 T k=0 :

Since 1y(y) = 0, we find
1 2
%) = Gy &1 (L =y —y — ).

7. Extension to Matrix Polynomials

Extensions to Matrix polynomials have become a fashionable subject recently (see e.g., [22] and
the references therein).
The above results can be easily extended to Matrix polynomials assuming, in Equations (1), (7),
(10), (17), (20), and (22), instead of x, a complex N x N matrix A, satisfying the condition:
A is stable, that is, denoting by o (A) the spectrum of A, this results in: VA € 0(A), RA > 0.
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Since all powers of a matrix A commute, even every matrix polynomial commute. More generally,
if o(A) C Q, where Q is an open set of the complex plane, for any holomorphic functions f and g,
this results in:

that is, the involved matrix functions commute.
Under these conditions, considering the generating function:

1 A
Gt 4) = (1 Tart+ a2+ +a,tf) B
. (32)
> t
= exp {—Alog [1 +at a4+ a,t’] } = k;)gk(A;ul,az, .. .,a,)H ,
recalling positions (18), and putting as before:
= tk
Guy, (t, A) = exp [~ Alog (1 — ayt)] = Y pri(A ap) 5, (h=12,...,1), (33)
k=0 :
we find the result:
Theorem 6. The sequence {gr(A) }xen satisfies the convolution formula:
k(A aq,00,. ., 00) =
k (34)
= o k) PUR (Aa)pa (A a) - pri (A o).
kgt k= N1 2R
0<ki<k
Furthermore, denoting by I the identity matrix, we can proclaim the theorem:
Theorem 7. The sequence {gx(A) := gx(A;a1,0a0,...,ar) bken satisfies the linear recurrence relation
8k(A) + a[A+ (k= 1)I] gx_1(A) +az(k = 1)[2A + (k = 2)I] gx2(A) + ...
(35)

+a(k=1)(k—2)--(k—r+1)[rA+ (k— )] ge_,(A) = 0.

8. Conclusions

Starting from the results by Chen Zhuoyu and Qi Lan [9], we have shown convolution formulas
and linear recurrence relations satisfied by a generating function containing several parameters.
This can be used for number sequences (assuming x = 1) or polynomial sequences, depending on
several parameters. Illustrative examples are shown both in case of second order or high order
recurrence relations.

An extension to the case of matrix polynomials is also included.
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1. Introduction

In 1823, Abel studied a physical problem regarding the relationship between kinetic and
potential energies for falling bodies and constructed the integral equation [1-4]

X

g(x) = / (x — )V2u()dt, ¢>0,
Jc

where ¢(x) is given and u(x) is unknown. Later on, he worked on a more general integral equation

given as
1

g(x) = m
which is called Abel’s integral equation of the first kind. Abel’s integral equation of the second kind is

X
/(xft)“*lu(t)dt, O0<a<l,a<x<hbh,
0

generally given as

u(x) — ﬁ ./ox(" — O ()t = g(x), &> 0 (1)

where A is a constant.

Abel’s integral equations are related to a wide range of physical problems, such as heat transfer [5],
nonlinear diffusion [6], the propagation of nonlinear waves [7], and applications in the theory of
neutron transport and traffic theory. There are many studies [8-14] on Abel’s integral equations,
including their variants and generalizations [15,16]. In 1930, Tamarkin investigated integrable solutions
of Abel’s integral equations under certain conditions by several integral operators [17]. Sumner [18]
studied Abel’s integral equations using the convolutional transform. Minerbo and Levy [19] found
a numerical solution of Abel’s integral equation by orthogonal polynomials. In 1985, Hatcher [20]
worked on a nonlinear Hilbert problem of power type, solved in closed form by representing a
sectionally holomorphic function by means of an integral with power kernel, and transformed the
problem to one of solving a generalized Abel’s integral equation. Using a modification of Mikusinski
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operational calculus, Gorenflo and Luchko [21] obtained an explicit solution of the generalized Abel’s
integral equation of the second kind, in terms of the Mittag—Leffler function of several variables.

m
=Y A1) (x) = g(x), & >0,m>1,pu>0,x>0

where A; is a constant fori = 1,2,--- ,m, and I* is the Riemann-Liouville fractional integral of order
i € RT with initial point zero [22],

1 X
IMu)(x) = —/ x — ) Lu(t)de.
() = s [ =0 u)
Lubich [10] constructed the numerical solution for the following Abel’s integral equation of the second
kind based on fractional powers of linear multistep methods

u(x) = g(x) + ﬁ /O “(x— )V f(t,u(t))dt on R

where x € [0, T] and & > 0. The case a = 1/2 is encountered in a variety of problems in physics and
chemistry [23]. Pskhu [24] considered the following generalized Abel’s integral equation with constant
coefficients ay fork =1,2,--- ,n

i: a I u(x) = g(x),
=

where a; > 0 and x € (0,4), and constructed an explicit solution based on the Wright function

¢, B;z) = 2: an+/3) a>-1pecC

and convolution. Li et al. [25-27] recently studied Abel’s integral Equation (1) for any arbitrary « € R
in the generalized sense based on fractional calculus of distributions, inverse convolutional operators
and Babenko’s approach [28]. They obtained several new and interesting results that cannot be realized
in the classical sense or by the Laplace transform. Many applied problems from physical science lead
to integral equations which can be converted to the form of Abel’s integral equations for analytic or
distributional solutions in the case where classical ones do not exist [15,27].

Letting a7 > ap > -+ > &, > 0and a > 0, we consider the generalized Abel’s integral equation
of the second kind with variable coefficients

n

Z x)u(x) = g(x), @)

where x € (0,a), a;(x) is Lebesgue integrable and bounded on (0,4) fori =1,2,--- ,n, g(x) is a given
function in L(0,4) and u(x) is the unknown function. Clearly, Equation (2) turns to be

u(x) —m"u(x) = g(x) ®)

if n = 1and a1(x) = a1 (constant). Equation (3) is the classical Abel’s integral equation of the second
kind, with the solution given by Hille and Tamarkin [29]

() = 500 +ar [ 1 By (x— 0,

where
Zﬂ

Eqp(z) = n;)r(m B v B>0
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is the Mittag—Leffler function.
Following a similar approach, we also establish a convergent and stable solution for the
generalized Abel’s integral equation on R" with variable coefficients

u(x) —ay () ax(x) 15 - an (x) I u(x) = g(x),

where x = (x1,X,- -+ ,X;) and I}! is the partial Riemann-Liouville fractional integral of order & € Rt
with respect to x, with initial point 0,

1 Xk -
(leu)(x) = m/o (=) u(xy, - Xk, b X1, e, X )dt

wherek =1,2,---,n
2. The Main Results

Theorem 1. Let x € (0,a), a;(x) be Lebesgue integrable and bounded on (0,a) for i = 1,2,---,n,
and g(x) be a given function in L(0,a). Then the generalized Abel’s integral equation of the second kind
with variable coefficients

u(x) = Y- a(0) P u(x) = g(x)

where g >y > -+ >y > 0.
Proof. Clearly,
n n
u(x) = ) ap(x)[Mu(x < ): l“k> x) =g(x)
k=1 k=1

which implies, by Babenko’s approach (treating the operator like a variable), that

u(x) nlg(x)=i<iak<x>w> 3(x)
— Y ag(x) 1% m=0 \k=1
k=1

i L <m1!,m2!7,n-!-- ,mn!> (a1 () 1) - (an () ") ™ g(x).

m=0my+my+--+my=m

Let || f|| be the usual norm of f € L(0,a), given by

1A= [ 1)l < .

Then, we have from [30]
(1981l = ||Pa; * gll < [|Da ]I 18]

where
xa,fl
Dy = .
7 T(w)
This implies that
< = s [ =
=T () Jo I(w;+1)
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Since a;(x) is bounded over (0, a), there exists M > 0 such that

sup |a;(x)] <M

xe(0,a)
foralli =1,2,---,n. Therefore,
had m!
< ¥ M ( )
mgo "11+m2+2+mn:m mal,mpl, -
[ | b e RN (D Sl W1
<

(o]

Y M y ( ! ) :
| | |

m=0 gy g =m N 123 s My

a"110¢1+“‘+mnﬂn

T(mag +1)---T(mua, +1) gl

Let
A = max{a,1}.

Then,
arrl]a]+~~+mnan S Am10¢1+---+mnﬂc,, S Amm

aswq > ap > - > iy > 0. On the other hand,

1 n—1
T(miay +1) - Ty +1) > T(myay +1) - - Tty +1) > (5) F(an% +1),

since there exists m; > m/n for some i by noting that my 4+ mp + --- +m, = m, and the factor
F(mjocn +1) > 1/2forj # i. Hence,

<
T(myay +1) - -T(mpa, +1) — I’(:xnﬂ +1)
n

and
M™Mn™ A _ > MnA”‘1 m
Jul < 2"t E iyl Uil E (MnAT)"
morlxnnJrl) m=0T +l)
= 2" V|g]l Ex/m, 1 (MRA™) < 00
by using

m!
< 1 o) 1) =n".
My +img ety =m N M2, e 1M

Furthermore, the solution

mni(i@mW)ﬂm

m=0 \k=1

is stable from the last inequality. This completes the proof of Theorem 1. [

3. Illustrative Examples

Let « and p be arbitrary real numbers. Then it follows from [31]

D, * ‘I’ﬁ = ¢‘D(+Ig.
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Example 1. Assume o > 0. Then Abel’s integral equation with a variable coefficient
u(x) — x*1*Pu(x) =x, x¢€(0,a)

has the following stable solution

- i oc+45)1"(21x+7)~~~1"(m/x+4.5+(m—1)2.5)(I) (x)
= 0{ T 7) o r((m — 1)06 145+ (I’VZ — 1)25) ma+4.5+(m—1)2.5

m:l
in L(0,a).
Indeed,
u(x) —x+2 (x> 123 x—x+2 (x*Py5)" * Py
m=1
Clearly,
, , X35 T(a+4.5)
« o _ —
XDy 5 5 Dy = 1Py 5 = T(5) T(25) Dyta5,
[(a+45) [(a+4.5) T(a+45) x2+6
& S\RT=EI) _ 2\ EY) P S i A S
(¥ ®25) ¥ —r ) Perts = TTam) X P = TG T(wt7)
_ T(a+45)T(2a+7)
T T@#5) T(a+7) *7
()" 5 Dy T(a+45)T(2a+7) - -T(ma+45+ (m—1)2.5)
25 2T T@5)T(a+7) - IT((m—1)a+45+ (m—1)25)
q>m1x+4.5+(mfl)2.5
where m > 1.

Example 2. Let a > 0. Then Abel’s integral equation
u(x) — xlo‘5u(x) - xo‘slu(x) =x05 xe¢ (0,a)

has the following stable solution

[e) m
u(x) =x 4+ Va Y Y CiBup®oi5m-1)(x)

m=1k=0

in L(0,a), where

—~

{ 1 ifk=0
Cr=< T@T((35)---T2+15(k-1)) .
1

T(150@) - T5+15(k=1) %=1
and
1 ifk=m,
Bix = { I(2+150)rQ2+15k+1))---T2+15(m—1)) L
T(1+150T(1+15(k+1))---T(1+15(m—1)) ifk <m.
Indeed,
u(r) = x 054 3 (xI%5 4 05 pym .05
m=1
705"'_\/7 i Z( ) xq)OS —k (x045q>1)k*q>0'5.
m=1k=0
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Clearly,
05 _ _ X r2)
(77 ®1) o @05 = xP1s = gy = 15 P
r'(2) r'2)
05 _ (.05 _ 0.5
(x (Dl) k (I>0_5 (x CD]) * F(l.5) @2 = 1_,(1.5 q)g,

(x%2 @1)* x o5 = 1‘(55)) (? 5)). — (5%5111?5(?]( - 1)))) Pos415c = CrPos+15k

where Cy is defined as above. Furthermore,

R (241, 5K) g
[(1+15k) T(1+15k) 2t15%
(2 +1.5k) [(2+15k
(x o5)? % Poss15k = m x Py5i15 = Fgl 1 5k; X Pyy5001)
_ T2+ 150T@+15(k +1)) o
(14 L5KI(1+15(k+1)) 2150+

i

(x®o5) * Pos54156 = XPy 15k =

r2+150)r2+15(k+1))---r(2+15(m-1)) )
I(1+156)r(1+15(k+1))---T'(1+15(m—1))
q)2+l,5(mfl) = Bm,kq)2+l,5(mfl)

(x Po5)" % Do sy 50 =

where By, . is defined above.

Remark 1. As far as we know, the solution for the generalized Abel’s integral equation with variable coefficients
over the interval (0, a) is obtained for the first time. However, this approach seems unworkable if the interval
is unbounded, as the Riemann—Liouville fractional integral operator is therefore unbounded. In the proof and
computations of the above examples, we should point out that the convolution operations are prior to functional
multiplications, according to our approach.

Assuming that w; > 0 foralli =1,2,---,n,and Q = (0,w;) x (0,wp) X -+ x (0, wy), we can
derive the following theorem by a similar procedure.

Theorem 2. Let o > 0 fork = 1,2,--- ,n and there is at least one a; > 0 for some 1 < i < n. Then the
generalized Abel’s integral equation of the second kind with variable coefficients on R" for a given function
g €LY

u(x) —ag (x) [ az(x) 152 - a (x) I u(x) = g(x)

has the following convergent and stable solution in L((Y)

= T @O ()L a () )" g(x), @

m=0

u(x)

where ay(x) is Lebesgue integrable and bounded on Q) fork =1,2,-- -, n.

Proof. Clearly,

u(x) —ag ()" ap () Iru(x) = (1—ag ()1 an(x)I5) u(x) = g(x),
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and
1
u(x) = 17111(36)1;‘1"“174(")13}1 8t
= io(ﬂl(x)l?laz(x)lgz"'ﬂn(x)lﬁ")mg(x)'

It remains to show that the above is convergent and stable in L(Q)). Let

W = (ul(x)1f1~~~ﬂn(x)lﬁ")m
= (@)L an()) - (@ (O an(x) ).

Since ay(x) is bounded on Q) for k = 1,2, - -, n, there exists M > 0 such that

sup |a;(x)| < M.
xeQ)

Let || f|| be the usual norm of f € L(Q)), given by
£ = 1l = [ 7Gx ) dndes - dxy < oo.
Then, it follows from [30] fork =1,2,--- ,n

15811 = ([P * 811 < ([P | I

where

Dp =

This implies for a; > 0 that

w—1
40 < N = [ G e,

T(a)
w;k < /\nfl w;{(k
— W W —K W _ Tk
1 k 11—~(ak+1) k+1 n > F(ak+l)
where
A = max{wy,wy, -+, wy} > 0.
In particular for aj = 0,
i8] < .
Therefore,
”W” < M Hl‘l"lmu ngan
< Mnm/\nzfn w?ﬂ" S wz”m
- T(eym+1) T(aym+1)
1 1
< MVH’")\FIZ*‘VIS‘VW’I . ,
- T(aym+1)  T(aym+1)
where

S = max{w]!,- -+, wi"}.
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Without loss of generality, we assume that a1 > 0. Then,

T(egm+1)---T(aym+1) >

2 i T(agm+1)

since
Magm+1) >1/2

fork = 2,--- ,n. This infers that

(MV!S")W[

T(agm+1) < fe

. -~ [o9)
(ol < A™="2" gl 32

m=0

by the Mittag—Leffler function. Furthermore, the solution

ngk

u(x) = Y (a1 az(x) B2 - an(x)5)" g (x)

m=0

is stable from the last inequality. This completes the proof of Theorem 2. [

In particular, let g(x) = ¢1(x1) - - - ¢n(xn) € L(Q). Then
u(x) = ar(x1) [ az(x2) [ -+ an (xn) I (x) = 1 (x1) - - pu(xn)

has the following convergent and stable solution

ngk

(‘Zl(xl)lfl)m Pr(x1) - - (an () If)"™ P (xn)

u(x) =

m=0

inL(Q).
4. Conclusions

We establish the convergent and stable solutions for the following generalized Abel’s integral
equations of the second kind with variable coefficients

u(x) — ki: ap(x)I%u(x) = g(x), x€(0,a) CR
=}
u(x) —ag(x) [ az(x) 152 ap (x) I§"u(x) = g(x), x€QCR"

in the spaces of Lebesgue integrable functions, and provide applicable examples based on convolutions
and gamma functions.
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1. Introduction

We denote by H the class of complex-valued harmonic functions in the unit disc U := {z : |z] < r}.
Then f € H if f = h + g, where h, g are functions analytic in U. Let #g be the class of function f € H
with the following normalization:

f(Z):Z‘Fiunzn"FiW (ze ) M
n=2 n=2

and let Sy, denote the class of functions f € H(, which are orientation preserving and univalent in U.
For functions f1, f, € H of the forms:

fk(z) = Z ak,nzn + Z bk,nzn (Z € U/ ke {1/2}) (2)
n=0 n=1
by f1 * fo we denote the Hadamard product or convolution of f and f,, defined by:
(A*f2) (z) =Y. a1papuz" + Y biubouz" (z€T).
n=0 n=1

We say that a function f : U — C is subordinate to a function F : U — C, and write f(z) < F(z)
(or simply f < F), if there exists a complex-valued function w which maps U into oneself with
w(0) = 0, such that f = F o w. In particular, if F is univalent in U, we have the following equivalence:

f(z) < F(z) <= [f(0) = F(0) and f(U) C F(U)].

In 1956 Sakaguchi [1] introduced the class S** of analytic univalent functions in U which are
starlike with respect to symmetrical points. An analytic function f is said to be starlike with respect to
symmetric points if:

!
re 7 (2)

W>O (ZGU). (3)
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If f € S** then the angular velocity of f(z) about the point f(—z) is positive as z traverses the circle
|z| = r in a positive direction.

Let A and B be two distinct complex parameters and let 0 < a < 1.In [2] (see also [3]) it is defined
the class Sj,(A, B) of Janowski harmonic starlike functions f € Sy such that:

Dyf(z) 1+ Az
f(2) 1+ Bz’

4

where,

Dyf (z) =zl (z) —z¢' (z) (z€T).
The classes S;(a) = Sj(2a —1,1) and S§,(a) = 85, (2a —1,1) are studied by Jahangiri [4]
(see also [5]). In particular, we obtain the classes S, := S5,(0) and S3, := S;(0) of functions
f € Sy which are convex in U (r) or starlike in U (r) , respectively, for any » € (0,1].
Motivated by Sakaguchi [1], we define the class S;;*(A, B) of functions f € g such that:

2Dy f (2) - 1+ Az
f) = f(=2) 1+Bz

In particular, the class SH*(a) := S;/(2¢ —1,1) was introduced by Ahuja and Jahangiri [6]
(see also [7,8]). The class HS{ (b, a) := Sy (2b(a — 1) 4-1,1) was investigated by Janteng and Halim [9].

In the present paper we obtain some analytic conditions for defined classes of functions.
Some results connected to subordination properties, coefficient estimates, integral representation,
and distortion theorems are also obtained. These results generalize the results obtained in [6,9]
(see also [7,8]).

®)

2. Analytic Criteria
Theorem 1. Let Tf (z) := f (z) — f (=z).If f € S}/ (A, B), then Tf € S;,(A, B).

Proof. Let f € S}/ (A,B) and H (z) := 1H4Z. Then:

1+Bz
2Dy f (2) .
F-f(e HE

and
2Dy (—f) () 2Dy f (—z)

f@-f(=2) f(-29)-f(2)

< H(—-z) <H(z).

Thus, we have:

2Dyf (2) oy 2D (=) )
Tre €HU) and TR EHU) (€ U).

Since H is the convex function in U, we have:

12Dyf(z) | 120w (=) (2) _ Du(TH ) ¢ ) (; ey,

2 Tfx) 2 Tf(z) Tf(2)
or equivalently:
Dy (Tf) (2) .
7w e
which implies that:

Tf e Sy(A,B).
i
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LetV C H,Up:= U\ {0} . Due to Ruscheweyh [10] we define the dual set of V by:

{feHO: /\(f*q)(z);éo (ZEU())}.

qey

Theorem 2. We have:
S (AB) = {ye: |5l =1},

where,

pe(x) : =228 ‘S)JZ?J_AS;* BE)z .

2+ (A+B)E—(B_A) &z
oz (1+z)(1-2)? (ze0).

Proof. Let f € Hg be of the form (1). Then f € S;/(A,B) if and only if it satisfies Equation (5)
or equivalently:

2Dy f (2) 4 1+ Ag

fZ)—f(=2) " 1+B¢

(zeUo, [¢]=1). @

Since,

DHh(Z):h(Z)*(lfz)Z’ 5 :h(z)*@

the above inequality yields:

(1+BE) Duf (z) — (1+ Ag) %

= (14 B&) Dyh(z) — (1+ A?) hz)—h(=2)

—{(1+B§)Dﬂg(z)+(1+AC)g(z)_2g(_Z)}
_ h(z)*<(1+35 1+A§ )

(1—2)2
— /(1+Bd)z (1+A§E
s (EEE 4 A0

= f@)xye(z) #0 (z€Up [g]=1).

Thus, f € S;/(A,B) if and only if f(z) * ¢z (z) # 0 forz € Uy, [§] = 1, ie, S (A B) =
{ge: |2l =1}". O

Theorem 3. If a function f € H of the form (1) satisfies the condition:

;(|"‘n||”n‘+|ﬁn”bn‘)SB—A/ 8

where —B < A < B < 1land
ay=n(1+B)—(1+A)(1—(-1)")/2, pp=n(1+B)+(1+A)(1—(-1)") /2, ©9)

then f € S5,(A, B).
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Proof. The result of Lewy [11] gives that the f is orientation preserving and locally univalent if:
W (@) > g @) zeu). (10)
By Equation (9) we have:
lan| /(B—A) >mn, |Bul /(B—A)>n (n=23,---). (11)

Therefore, by Equation (8) we obtain:

)

Z ‘(Zn ‘ + |bn > (12)

and

n=2

Ih/(Z)I—Ig’(Z)Izl—E |an| |2]" —Zn\bl\z >1—\Z\Z 1 |an] + 1 [bu)

[[bu]) =1—1|2z[ >0 (z€U).

Therefore, by Equation (10) the function f is locally univalent and sense-preserving in U. Moreover, if
21,2 € U, z1 # 2, then:

zi —zy llnl

n
<Y lal Tz <n (n=2,3,--).
=1

21— 22

Let f € H be a function of the form (1). Without loss of generality, we can assume that f is not an
identity function. Then there exist n € N, such that a, # 0 or b, # 0. Thus, by Equation (12) we get:

If (z1) = f(22)| 2 |1 (z1) = 1 (22)] = [g (z1) — & (22)]
|

zlfzszan -z

[ee]
> -2l = 3l 24— 1= 3 Il 2~
n=2 =
> z
= |z1 — 22| <1Zan 1 2| n|
n=2 z n=
[ee] (e
> |z1 — 2z <l Y nlan| - Zn|b,,|) > 0.

n=2 n=2

Z1 722

=)

This leads to the univalence of f, i.e., f € Sy. Therefore, f € S;/(A, B) if and only if there exists
a complex-valued function w, w(0) = 0, |w(z)| < 1 (z € U) such that:

2Dy f (z) 14 Aw(z
f(z)—f(-z) 1+ Bw(z

)) (z€ ),

r ivalently:
or equivalently 2Dy f (2) — (2) + f (2)
2BDyf (z) = A(f (z) = f(=2))

<1 (ze€U). (13)
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Thus for z € U\ {0} it suffices to show that:

‘D%f(Z) - W‘ - ‘BDHf(z) @ —f(=2)

Indeed, letting |z| =7 (0 < r < 1) we have:

‘Dyf(Z) - M‘ - ‘BDHf(z) 7A%

—|(B=A)z+ é (Bn — Al_(zi_l)n> ayz" +1g:2 (Bn—&-A#) b,z"
S§<n—ﬂ) |an\r”+§<n+#) |bu| " — (B—A)r
+n§:2 <Bn A (2 1)74) |an|r" +"§;2 <Bn+A%ﬁl)n> [bp| 1"

> r{i(“ﬂ |an| + |Bul |bn|)1’"71 - (B—A)} <0

Hence f € S5/(A,B). O

Motivated by Silverman [12] we denote by 7 the class of functions f € H of the form (1) such
thata, = —|au|, by = |bu| (n=2,3,---),1.e,

f=h+3g h —z72|an\z, (z) =Y |bu|Z" (z€U). (14)
n=2
Moreover, let us define:
S7(A,B):=TNS;/(AB), —-B<A<B<LL1.

Now, we show that the condition (8) is also the sufficient condition for a function f € 7 to be in the
class S7*(A, B).

Theorem 4. Let f € T be a function of the form (14). Then f € S3*(A, B) if and only if condition (8)
holds true.

Proof. In view of Theorem 3 we need only show that each function f € S7(A, B) satisfies the
coefficient inequality of Equation (8). If f € §5*(A, B), then it satisfies Equation (13) or equivalently:

A o [ G

= <1 (zel).
(BfA)zfrEz{(anAiwa\z”+<Bn+A Y Jba| 2}
Therefore, putting z = r (0 < r < 1) we obtain:
E {(n -~ 1—(2—1)"> |an] + (n+ 1—(2—1)n> |bn|r"71}
n=2 <1 (15)

(B-A)- T (B = A=G Y |+ (B + 4G oy 1}

n=2
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It is clear that the denominator of the left hand side cannot vanish for 7 € [0, 1) . Moreover, it is positive
for r = 0, and in consequence for r € (0,1) . Thus, by Equation (25) we have:

(a |an| + Bu [bu) " L <B—A (0<r<1). (16)
n=2
The sequence of partial sums {S, } associated with the series Y. (ay |a,| + Bn |bx|) is nondecreasing
n=2

sequence. Moreover, by Equation (16) it is bounded by B — A. Hence, the sequence {S,} is
convergent and

ng:z(“n |11n‘ +,Bn ‘bn‘) = nlgrc}oS" <B-A,
which yields the assertion (8). [

Example 1. For the function:

fz)=z— " — z" (zeU)
Lo L
we have,
> > B—A B-A |
Z:z(an‘an|+,5n|bn|):Z:2 on + o _(B*A)Z:lﬁ:BfA.
n=. n=. n=

Thus, f € S7 (A, B).

3. Topological Properties

Let us consider a metric on H in which a sequence {f,} in H converges to f if and only if it
converges to f uniformly on each compact subset of U. The metric induces the usual topology on .
It is easy to verify that the obtained topological space is complete. Let B be a subset of the space H.

We say that a function f € B is the extreme point of B if it cannot be presented as nontrivial convex
combination of two functions from B. We denote by EB the set of extreme points of 5.

We say that B is locally uniformly bounded if for each r, 0 < r < 1, there exists K = K(r) > 0
such that:

fEI<K (FeB [z <r).

We say that a set B is convex if it includes all of convex combinations of two functions from B.
Let coBB denote the closed convex hull of B i.e., the intersection of all closed convex subsets of H that
contain B.

Let B C H be a convex set and L be a real-valued functional on . We say that £ is convex
functional on B if:

Laf+(1-a)g)<al(f)+(1—-a)L(g) (f,geB 0<as<l).
By using the Krein-Milman theorem (see [13]) we get the following lemma.
Lemma 1. Let B be a non-empty compact set on the space H. Then EB is non-empty and cOEB = coB3.
Motivated by Hallenbeck and MacGregor ([14], p. 45) we can formulate the following lemma.

Lemma 2. Let B be a non-empty convex compact set on the space H and let L be a real-valued, convex, and
continuous functional on B. Then max {L(f) : f € B} = max{L(f): f € EB}.
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Proof. We observe that there exists max {L(f) : f € B} =: K, since J is the continuous functional
on the compact set B. Thus, the set H := {f € B : L (f) = K} is non-empty compact subset of 5 and,
by Lemma 1, we get that H has an extreme point fy. Let,

fo=afi+(1-a)f
where f1, f, € Band 0 < a < 1. Thus,
= L(fo) <al(fi) + (1 —a)L(f2) =aK+(1-a)K=K
and, in consequence, L(f1) = L(f2) = K, i.e., f1, f» € H. Since fj is an extreme point of H we get
f1 = f» = fo € EB. Thus, we obtain that there exists max {L(f) : f € EB} = K, and the proof is

complete. [

We observe that #H is a complete metric space. Therefore, by Montel’s theorem (see [15]) we get
the following lemma.

Lemma 3. A set B is compact on H if and only if B is locally uniformly bounded and closed on H.
Theorem 5. The class S3*(A, B) is compact and convex subset on H.

Proof. Let f; € S7 (A, B) be functions of the form:

=z—Y (Jagn|2" = |ben|2") (z€U, k=12,...) (17)
n=2

and let 0 < ¢ < 1. Since,

@)+ A -7fa(z)=2z- i{(vlﬂlm\ + (=) laza]) 2" = (7 [brnl + (1 =) [b24]) 2"},

and by Theorem 4 we have:
Y {an (v]avnl + (1 =) laza]) + B (7 [bral + (1 =) [b2a])}
n=2

*72{"‘n‘“1n|+ﬁn|bln|}+ (1—o Z{D‘H‘“Zn|+ﬁn|b2n‘}

n=2
SYB-A)+(1-7)(B-A)=B-A4,

the function ¢ = 7f; + (1 — 7)f2 belongs to the class S7(A,B). Hence, the class is convex.
Furthermore, for f € S7(A,B), |z| <r, 0 <r <1, we have:

i (|an| + |bn|) r" <r+z (an |an] + Bn |bn|) <r+(B—A). (18)

Thus, we conclude that the class S7*(A, B) is locally uniformly bounded. By Lemma 3, we only need
to show that it is closed, i.e., if fy € S7*(A,B) (k € N)and f; — f, then f € S7*(A, B). Let fy and f
are given by Equations (17) and (14), respectively. Using Theorem 4 we have:

Y (wn |awn| + B |bxn|) <B—A (kEN). (19)
2

n=
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Since fi — f, we conclude that |ay,| — |a,| and }bkn\ — |by| as k — oo (n € N). The sequence
of partial sums {S,} associated with the series E (& |an| + Bu |bu]) is nondecreasing sequence.
Moreover, by Equation (19) it is bounded by B — A Therefore, the sequence {5, } is convergent and

Z (an |an| + Br |bnl) :nhj{}osn <B-A.

This gives the condition (8), and, in consequence, f € S;‘—* (A, B), which completes the proof. [J
Theorem 6. We have:
EST (A, B)={hy: neN}yU{g,: ne€{2,3...}},

where,

—A
Bn

hi(z) =z, hy(z) =z — — Az", gn(z)=z+ B z" (20)
n

(n=23,.;zecl).

Proof. Let0 < a < 1land g, = afy + (1 —a) fo,where fi, f» € S (A, B) are given by Equation (17).
Thus, by Equation (8) we get |by,| = |byu| = (B— A) /By, and consequently a1, = ay, = 0
(ke{2,3...})and by = by = 0 (k€ {2,3...}\ {n}). Thus, g, = fi = fo, and, in consequence,
gn € ESi‘r* (A, B). In the same way, we prove that the functions &, of the form (20) are the extreme
points of the class S7*(A, B). Suppose that f € ES;*(A, B) and f is not of the form (20). Then there
exists k € {2,3,...} such that:

0<|ag] < (B—A)/ay or 0 < |bx| < (B—A)/Bn.
If0 < |ag| < (B—A) /ay and

|| ok 1

a:B_A’ gozl_u(f_ahk)’

thenweobtain0 < a <1, Iy, ¢ € S}*(A,B), hy # ¢, and
f=ah+(1—a)e.
Therefore, f ¢ ES7* (A, B). Similarly, if 0 < |by| < (B— A) /B, and

_ bl B _ 1
—ﬁ:‘l’(z)—m(f*“gk),

then we obtain 0 < a < 1, g, ¢ € S7 (A, B), gx # ¢ and
f=agi+(1-a)¢.
Thus we get f ¢ ES7*(A, B), which completes the proof of Theorem 6. [J

4. Applications

It is clear that if the class:
F={fueHH: neN}
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is locally uniformly bounded, then:

Cof{i'Ynfiﬂ i'Ynl/'YﬂZO(neN)}' 1)
n=1

n=1

Corollary 1.

S%*(A/B):{Z(’Ynhn"”fsngn : Z 'Yn+5n —1 01 =0,Y%,6,2>0 (I’IGN)} (22)

n=1 n=1

where hy,, g, are defined by Equation (20).

Proof. By Theorem 5 and Lemma 1 we have:

87 (A,B) = c0SF (A, B) = COEST (A, B).
Thus, by Theorem 6 and Equation (21) we have Equation (22). O

We observe, that the following real-valued functionals are convex and continuous on H:

L(f) = lanl, £(f) = lbal, L(f) = |f @), L(f) = [Duf ()] (feH),

and
27 1y
_ (2 io\|"
EUy—(mL/V(m)’dﬂ (feH, 0<r<1q>1).
0
Thus, by using Theorem 6 and Lemma 2 we obtain the following two corollaries.

Corollary 2. If f € S5 (A, B) is a function of the form (14), then:

B—A B—A
|an‘ < T/ |bn| <
n

(n=2,3,...), (23)

n

with wy, Bu defined by Equation (9). The result is sharp. The functions hy, gn of the form (20) are the
extremal functions.

Proof. Since For the extremal functions &, and g, we have |a,| = MA and |b,| = 5.1 Thus,
by Lemma 2 we have Equation (23). [
Example 2. In particular, since B= AH > B A the polynomial:

w (z) :2_22_3—714—&-123 (zel)

a3
does not belong to the class S5 (A, B).
Corollary 3. Let f € S7*(A,B), |z| = r < 1. Then,
B—A , B-A ,
_ 2T 2 < -
2+ HEI=rt rag @9

and B-A B-A

- —22<D <rd TR 2

r— e S IDuf(E) S+ o 3)
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The result is sharp. The function hy of the form (20) is the extremal function.

Proof. For the extremal functions /i, and g, of the form (20) we have:

B=A,_, B-A ,

< =
I (2)] < r+ ™ r+ 2(1+B)r (n=23...),
B—-A B—A
< T 42 =
lgn ()] < r+ 2 r _r+2(1+B)r (n=23..),
B—-A B—-A
> =2 Dt >y 2 =2
@l > 1Pt s - B (=23,
B*A B—-A
@ > =P o i (=23

Thus, by Lemma 2 we have Equation (24). Similarly, we prove Equation (25). [

Due to Littlewood [16] we consider the integral means inequalities for functions from the class
S (A, B).
Lemma 4. [16] Let f,g € A If f < g, then,

2

/‘f(relg) d9</‘gre a6 (0<r<1,9>0).
0

Lemmab5. Let0 <r <1, 9> 0. Then,

27

2

1 7 1

Z—/hn rel? Z—/hzre 0 (n=1,2--) (26)

0
and

1 27 27

o [ [gntre®)|"do < —/‘hz(rele "do (=23, 27)
0

where hy, and g, are defined by Equation (20).

Proof. Let h, and g, are defined by Equation (20) and let $,,(z) = z + %z” (n=2,3,---).Since
h”T(Z) =< hz< ) and 8( 2 4 §Z>, by Lemma 4 we have:

2r 27

0/ Iy (reie) ‘Wde 0/ ‘hz (reif?) ‘Wd(?,
[lso ()"0 = Zﬁgz () d0 < 07[1;12 ()",

2m
0

IN

which complete the proof. [

Corollary 4. If f € S7(A, B) then:

27 2
%/ ‘f(re"")\% < %/ ‘hz(rei9)\7d9
0 0
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and
1 27 ” 1 27 ”
7 i < = i0
S / |Dauf(re®)| "o < / |Dygha(re) [ e,
0 0
where 7y > 1,0 < r < 1and hy is the function defined by Equation (20).

Remark 1. Some new and also well-known results can be obtained by choosing the parameters A, B in the
defined classes of functions (see for example [6-9]). In particular, for A = 20 — 1, B = 1 we have results
obtained by Ahuja and Jahangiri [6] (see also [7,8]), for A = 2b(a — 1) 4+ 1, B = 1 we have results obtained by
Janteng and Halim [9].
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Abstract: The objective of our research was to study asymptotic properties of the class of higher
order differential equations with a p-Laplacian-like operator. Our results supplement and improve
some known results obtained in the literature. An illustrative example is provided.
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1. Introduction

In this work, we are concerned with oscillations of higher-order differential equations with a
p-Laplacian-like operator of the form

(f(t) (v ) \Hy‘"”) (t))l () |y (T (O)P Py (x(8) =0. M

We assume that p > 1 is a constant, r € C! ([tg,0),R), r(t) > 0, q,7 € C([ty,), R), q >
0, T(t) <t,lims 400 T (t) = o0 and the condition

n (tO) = o, (2)

where
ds

7 (t) == /t P71 (5)

By a solution of (1) we mean a function y € C""![T,, o), T, > ty, which has the property
r(t) ‘(y(”_m (t)) ‘p Zy(”‘l) () € C!Ty, 00), and satisfies (1) on [Ty, c0). We consider only those
solutions y of (1) which satisfy sup{|y (¢)| : t > T} > 0, for all T > T,. A solution of (1) is called
oscillatory if it has arbitrarily large number of zeros on [T, c0), and otherwise it is called to be
nonoscillatory; (1) is said to be oscillatory if all its solutions are oscillatory.

In recent decades, there has been a lot of research concerning the oscillation of solutions of various
classes of differential equations; see [1-24].

It is interesting to study Equation (1) since the p-Laplace differential equations have applications
in continuum mechanics [14,25]. In the following, we briefly review some important oscillation criteria
obtained for higher-order equations, which can be seen as a motivation for this paper.

Elabbasy et al. [26] proved that the equation

(Ol @) 0) +a0 ru o =o
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is oscillatory, under the conditions

/t p711 dt = oo;
o 7

additionally,

" 1 ((n=1))" " p(s)as) (P—1p(s) _
/eo (w €)= pd" ) (p—1)psm1yP L al/-D(s) 17”(5)> o

for some constant 2 € (0,1) and

-1

0 T(S)Pfl B
/fo kq (s) o ds = co.

Agarwal et al. [2] studied the oscillation of the higher-order nonlinear delay differential equation

a—1

[y oy o] ey e —o

where « is a positive real number. In [27], Zhang et al. studied the asymptotic properties of the
solutions of equation

[0 () ]+ @y =0 120

where « and B are ratios of odd positive integers, f < a and

/foo r % (s)ds < co. (©)]
0

In this work, by using the Riccati transformations, the integral averaging technique and
comparison principles, we establish a new oscillation criterion for a class of higher-order neutral
delay differential Equations (1). This theorem complements and improves results reported in [26]. An
illustrative example is provided.

In the sequel, all occurring functional inequalities are assumed to hold eventually; that is, they
are satisfied for all t large enough.

2. Main Results

In this section, we establish some oscillation criteria for Equation (1). For convenience, we denote
that Fy (t) := max {0, F (t)},

1/(p-1)

NI (@)p_l s do

_(n74)!,/t (O=n""1" r(0)

and

r(s)8(s) | (t,s)|
n—2 p—l'
sy

We begin with the following lemmas.

D(s) :==

Lemma 1 (Agarwal [11). Let y(t) € C™ [ty,00) be of constant sign and y™) (t) # 0 on [tg, o) which
satisfies y (t) y(™) (t) < 0. Then,
(1) There exists a ty > to such that the functions y@ (t), i = 1,2,...,m — 1 are of constant sign on [ty, o) ;
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(XX) There exists a number k € {1,3,5, ...,m — 1} when m is even, k € {0,2,4, ..., m — 1} when m is odd, such
that, for t > t1,
vty (1) >0,

foralli=0,1,.., kand ,
(1) y (5 yW (1) >0,

foralli=k+1,..,m.
Lemma 2 (Kiguradze [15]). If the function y satisfies yi) > 0 for all j = 0,1,....,m, and y"+1) < 0, then

’:i,,:y (t) - (":m_,ll)!y’ (t) >0.

Lemma 3 (Bazighifan [71). Let h € C™ ([tg, o), (0,0)) . Suppose that k™) (t) is of a fixed sign, on [to, o),
1) (£) not identically zero, and that there exists a ty > tg such that, for all t > t,,

R0 (1 r0 (1) < 0.
If we have tlimh (t) # 0, then there exists t) > to such that
—00

A

) 2 7=

pm=1 ‘h(mfl) (t)

7

forevery A € (0,1) and t > t,.

Lemma 4. Let n > 4 be even, and assume that y is an eventually positive solution of Equation (1). If (2) holds,
then there exists two possible cases for t > ty, where t; > tq is sufficiently large:

(€) ¥y (B >0y" () >0y (1) >0, y" () <0,
(C) y (1) >0, yUtD () < 0 for all odd integer
je{1,2,..,n=3%y"=D(5) >0, y (t) <o0.

Proof. Let y be an eventually positive solution of Equation (1). By virtue of (1), we get

(ro | @) e ) <o @

From ([11] Lemma 4), we have that y(”*n (t) > 0 eventually. Then, we can write (4) in the from

(r (t) (y("%) (t))’H), <0,

-1

which gives
p—2

PO 0) 0 -1 (@) Ty @ <o,

Thus, ¥ (t) < 0 eventually. Thus, by Lemma 1, we have two possible cases (C) and (Cy). This
completes the proof. [

Lemma 5. Let y be an eventually positive solution of Equation (1) and assume that Case (Cy) holds. If

p—1

(] (y ) )]

w () =6 (t) T ,
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where & € C! ([tg, ), (0,00)), then

AN e oY ey /-1
W0 < e o0 () - e 0. @

Proof. Let y be an eventually positive solution of Equation (1) and assume that Case (C;) holds.
From the definition of w, we see that w (t) > 0 for t > t;, and

oleeo)  foleol)

W' () < 8

R0 D)
NG AC10 (v )
yr ()
Using Lemma 3 withm =n—1, h(t) =y (t), we get
/ i n—2. (n—
y(t) = mt 2y (1), @)

for every constant # € (0,1). From (5) and (7), we obtain

(ol o))
0] 8)

’ (n—1) p-1
o' (t) < 5 (t) (f>|(yyp71((t;>)| + 6 (f)
—)utn=2 (8| (¥ V()
—5(b) (P(nlg)! I( - )l

P

By Lemma 2, we have

<
—
-
=
Vv
-

m=1 (9)
Combining (1) and (8), we get

W (t) < M)M 5 (1) WD)

¥l yroi() (10)
—np 2 10| (v )]
5 (b) <p(nzg)] l(y”(t) )

From (9) and (10), we obtain

i< B TN e
0= G -e0a0 (Ga?) - e v ). an
It follows from (11) that

TONT W)y =D
1090 (T=?) = 0= 0= e e 0.

This completes the proof. [
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Lemma 6. Let y be an eventually positive solution of Equation (1) and assume that Case (Cy) holds. If

e
where o € C! ([tg,0),(0,00)), then
OB <y )+ T () - 59 0. )

Proof. Lety be an eventually positive solution of Equation (1) and assume that Case (C;) holds. Using
Lemma 2, we obtain

y() >ty (t).

Thus we find that y/t is nonincreasing, and hence

T(t)

y(t(1) =y (b) (14)

Since y > 0, (1) becomes

(6 (= 0) ) +a 0w w0y =0

Integrating that equation from ¢ to co, we see that

lim (r(t) (y<"*1> (t))’”) —r(t) <y” D t +/ $)yP2(t(s)) = 0. (15)

t—o0

-1

Since the function r (y("1 : is positive |r>0and y(® 1) >0| and nonincreasin
Y p Y g

-1\’ -1
((r (y(”*l)y > < 0), there exists a t, > ty such that r <y(”*1)>p is bounded above for all

—1
t > ty,and so limy_eo (r () (y<”*1) (t))p > = ¢ > 0. Then, from (15), we obtain

() (s 0) "+ [Ta6) ) < —e <o

From (14), we obtain

0 (0 @)+ [Caeyer T <o

sP—
It follows from i’ (t) > 0 that
1/(p=1)

© p-1
—y D (1) 4+ W(Z,%?)(t) (/ q(s) <@> ds) =0.

Integrating the above inequality from ¢ to oo for a total of (1 — 3) times, we get

_ 1/(p—1)
o e [ Jea) (22) s
g o= () i

v (1) + y(t) <o0. (16)
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From the definition of i (t), we see that ¢ (t) > 0 for t > t;, and

Y By~ 1) a”

This completes the proof. []
Definition 1. Let
D={(ts)€R*:t>s>tg}and Dy = {(t,;s) ER?:t >5>ty}.
We say that a function H € C (D, R) belongs to the class R if
(i1) H(t,t) =0fort > ty,H (t,s) >0, (t,5) € Do.

(i2) H has a nonpositive continuous partial derivative 0H /s on Dy with respect to the second variable.

Theorem 1. Let n > 4 be even. Assume that there exist functions H,H, € R, §,A,0, A, €
C! ([tp, ), (0,00)) and h, h. € C (Do, R) such that

- H A =H0) A S 4109, s
and ; v
- (09 A9 = H (69 A () S (19, (19)
¥ o
timsup - [ {H 0)4©0606) () -pE|d=w @
for some constant p € (0,1) and
timsup s || (H (£,5) Av (5) 7 (5) B(s) — W) s = o, e1)

then every solution of (1) is oscillatory.

Proof. Let y be a nonoscillatory solution of Equation (1) on the interval [fy, c0). Without loss of
generality, we can assume that y is an eventually positive. By Lemma 4, there exist two possible cases
for t > t1, where t; > tg is sufficiently large.

Assume that (C;) holds. From Lemma 5, we get that (6) holds. Multiplying (6) by H (t,s) A (s)
and integrating the resulting inequality from #; to f, we have

t n—1 p—1
/ H(t,s)A(s)é(s)q(s)<Tsn755)) ds

ty
< f/ttH(t,s)A(S)a/ (s)ds + ttH(t,s)A(S) fs/((ss))w(s)ds
- t S s (p,l)ysn—Z w (7)5 s
/le(t' A 2 (0 r (o) T P (s)d
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Thus

t n—1 p—1
/t1 H(ts)A(s)5(s)q (s) <T5n755)> ds
<H(Lh)A(H)w(h) - /t (—% (H(t,s)A(s)) — H(t,s) A(s) ‘;’ (t))) w (s)ds

51

This implies

t n— -1
/t1 H(t,s)A(s)d(s)q(s) <Tsn1755)>p ds

<HER A @)+ [ Is)|w 646

Ml Als (p—1)pus"? WP (P (5 ds
J A6 e G

Using the inequality
pUVF P < (p—-1)VP, p>1,U>0andV >0,

with p=p/(p—1),

B B jish=2 (p=1)/p w (s)
u= <(p 1) H (t,5) A(s) (n,z)u) (6(s)r(s)MP
and
. — (p=1)/p
v= (=0 g ROVNEEIYE :
( p ) ((p*l)H(trs)A(s) (’fﬁ;)[)p 1
we get
B (p—1)ps"2 /(p-1)
|l (t,s)|w(s) —H(ts)A(s) (n—2)1 (6 (s)r(s))l/(p_ )wp ’

which with (23) gives

t n— p—1
/ (H(t,sM(s)é(s)q(s) (-2 D(s>>ds < H(h) Al ()

< H(bt) A(h)w ().
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Then

n—1 p—1
ﬁ /t: (H(t,S)A (5)6(s)q(s) <Tsn,§s)) - D(s)> ds

h n—1 p—1
<am@n)+ [TAE)8E)0) (Tsnf’» .

< o,

for some p € (0, 1), which contradicts (20).
Assume that Case (C) holds. From Lemma 6, we get that (13) holds. Multiplying (13) by
H. (t,s) A« (s), and integrating the resulting inequality from #; to f, we have

/tt H, (t,s) A« (s)o(s)B(s)ds < — ttH* (t,s) Ay (s) ' (s)ds+ rtH* (t,5) Ax (s) ‘;((SS))IP (s)ds
't Hy (t,5) As (9)
— . D) 1,(;2 (s)ds

Then

Hence we have

t 2
/ <H*<t,s>A*<s>a<s>B<s>W)ds < Ho (L) Al () ()
< Hi(tto) As (b) 9 (t).
This implies
2
o <H (05) 4. ()0 (9B (5) - Ze Gl ) ds

< A, (t1)¢(t1)+/ttA* ()0 (s) B (s) ds < oo

which contradicts (21). Therefore, every solution of (1) is oscillatory. [

In the next theorem, we establish new oscillation results for Equation (1) by using the comparison
technique with the first-order differential inequality:

Theorem 2. Let n > 2 be even and v’ (t) > 0. Assume that for some constant A € (0,1),
the differential equation

n-1 p-1
o 0+ 0 (H) p(x (1)) =0 @)

is oscillatory. Then every solution of (1) is oscillatory.
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Proof. Let (1) have a nonoscillatory solution y. Without loss of generality, we can assume that y (t) > 0
for t > t1, where t; > 1 is sufficiently large. Since 7 () > 0, we have

v (£) >0, y" D (t) > 0and y™ (1) < 0. (25)
From Lemma 3, we get

/\tnfl B B
O e M CEAR OF (26)
forevery A € (0,1). Thus, if we set

e =r [y V)" >0

then we see that ¢ is a positive solution of the inequality

-1 p—1
9 (t)+ - ({17(8)) <A(Z_1()f')) o (t(t) <0. 7)

From [22] (Theorem 1), we conclude that the corresponding Equation (24) also has a positive
solution, which is a contradiction.
Theorem 2 is proved. [

Corollary 1. Assume that (2) holds and let n > 2 be even. If

L q(s) e (VPR (n—1)H)r1
tlingolnf. 0 T(T ) <T (s)) ds > — (28)

then every solution of (1) is oscillatory.

Next, we give the following example to illustrate our main results.

Example 1. Consider the equation

9
y(4) (t) + %y (Et> =0,t>1, (29)

where y > 0is a constant. We note that n =4, r (t) =1, p =2, T(t) = 9t/10and q (t) = y/t*. If we set

H(t,s) = Ha (t,s) = (t—5)?, A(s) = Au(s) = 1,8(s) = 83,0 (s) = t, h(t,s) = (t—s) (5—3ts71)
and hy (t,s) = (t —s) (3 — ts~ 1) then we get

e 1
n(s)= /to A/(p-1) (S)ds =

and
- 1/(p-1)
o I () (B2) s
B(t) = ﬁ[ G el r((9)> d6
= 39/ (20t2).
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Hence conditions (20) and (21) become

n—1 p—1
limsupﬁ /f: (H (t,5) A(s)d(s)q(s) <Tsn7755)> -D (s)) ds

t—oc0
, 1 [U[7297, 4 7299 729y, s ) s .
=1 L ) el TV T2y S (54912572 301571 | d
lﬂr‘jjp(t_l)Z/l {1000 S T 1000° 500 2y<5+9 s - 30is7) | ds
— oo (if 1 > 500/81)

and

; 2
hmsup;/ (H (t,5) A, (s) o (s) B (s) — m> ds

t—eo Hi (t10) Jig

. 1 M3y, 1,3y, 3y, s -1, 2.2
=1 . > N P +
II;HS;IP(t—l)Z-/l {zots 20° 1Ot 4(9 630ts t°s ) ds

=co (ify>5/3).
Thus, by Theorem 1, every solution of Equation (29) is oscillatory if oy > 500/81.

3. Conclusions

In this work, we have discussed the oscillation of the higher-order differential equation
with a p-Laplacian-like operator and we proved that Equation (1) is oscillatory by using the
following methods:

1. The Riccati transformation technique.
2. Comparison principles.
3. The Integral averaging technique.

Additionally, in future work we could try to get some oscillation criteria of Equation (1) under the
condition ft? md t < c0. Thus, we would discuss the following two cases:
(€) y()>0,y" V(1) >0,y (<0,
(C) y() >0,y () >0, y" V() <o.
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Abstract: The known mathematical model of rumor spreading, which is described by a system of four
nonlinear differential equations and is very popular in research, is considered. It is supposed that the
considered model is influenced by stochastic perturbations that are of the type of white noise and are
proportional to the deviation of the system state from its equilibrium point. Sufficient conditions of
stability in probability for each from the five equilibria of the considered model are obtained by virtue
of the Routh-Hurwitz criterion and the method of linear matrix inequalities (LMlIs). The obtained
results are illustrated by numerical analysis of appropriate LMIs and numerical simulations of
solutions of the considered system of stochastic differential equations. The research method can
also be used in other applications for similar nonlinear models with the order of nonlinearity higher
than one.

Keywords: rumor spreading model; white noise; stochastic differential equations; asymptotic mean
square stability; stability in probability; linear matrix inequality

1. Introduction

There are two classes of mathematical models of the type of epidemics: medical epidemics
(see, for instance, the so-called SIR-epidemic model [1-3]) and different social epidemics (see, for
instance, the alcohol consumption model [4] or the model of obesity epidemic [5]). During the last two
decades, the rumor spreading model, that is an epidemic of the social type too, is extremely popular
in research (see, [6-29]). Following [26], we will consider the rumor spreading model (the so-called
[2SR-model) in the form

I(t) = p = MI(1)S1(t) — A2L()S2(t) — qI(t),
1(t) ( )S1(t) + aSy(t) — 0151(H)R(t) — q51(t),
Sa(t) = A21( )Sa(t) — aSa(t) — 5252 (H)R(¢) — qSa(t),
R(t) = &1S1(R(t) + 0252 (t)R(t) — qR(t),

)

where I(t), S1(t), S»(t), R(t) are respectively the density of ignorants, the low rate of active spreaders,
the high rate of active spreaders and stiflers at time ¢, p, g, «, J1, 62, A1, A are positive parameters.
Please note that the sense of the parameters p,q,«,d1,02,A1, A that are used in the rumor
spreading model (1) are described in [26]. We will consider the system (1) as a mathematical object
and show how stability of nonlinear mathematical models of the similar type can be investigated
under influence of stochastic perturbations. In particular, we will consider here the simple parameters
A; and ¢; unlike from [26], where these parameters are considered in the form of the product of two
parameters: A;k and 6k, i = 1,2. We will not suppose in the general case as it is made in [26] that p = ¢
and &, = dy. We will correct also some errors and inaccuracies which there are in [26]. For example,
in [26] it is supposed that A, > A; (p. 856) but in the numerical examples the following values are used:
A1 = 0.05and A, = 0.007 or A, = 0.003 (p. 862), all equilibria and stability conditions are obtained
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under the assumption é; = é, = 6 (p. 857) but in the numerical examples one can see J; = 0.007 and
0y = 0.59 (p. 862) or &, = 0.009 (p. 863) and so on.

The purpose of the proposed research is to calculate of equilibria of the system (1) and to obtain
stability conditions for each from these equilibria under assumption that the system is exposed to
stochastic perturbations. Sufficient conditions of stability in probability for each from the five equilibria
of the considered model are obtained by virtue of the Routh-Hurwitz criterion [30] and the method of
linear matrix inequalities (LMIs) [31,32]. The proposed research method can be used for a lot of other
similar nonlinear models in different applications.

2. Equilibria of the Model

Equilibria E = (I*, 57, 53, R*) of the model (1) are defined by the system of algebraic equations

(MS1+ 228 +9) [ =p,
((SlR —MI+ q)Sl = a8y,
((52R — )\21 +a+ q)SZ = O,
((5151 + 0,5y — q)R =0,

@

that follows from (1) by the condition that I(t), S1(t), S2(t), R(t) are constants.
Please note that the solution of the system (2) is not unique. Solving the system (2) gives the
following five equilibria E; = (If,S7;, S5, R}),i =0, ..., 4, where (see Appendix A.1)

Eo=(15,0,0,0, Ij = g;

Bi=(1s0.00, = si=0-L
* * * * 5 * * )\'

Ey =(I3,57,,0,R3), I = q(élpﬁ' Spp = 511/ Ry = q(;ﬁ - %;
E3 =(I3, 513, 53,0),

=t g _dphgletq) o (g2 =A) —ah)(pAz =g +4)).

Ay (A2 — A1) (a+q) Ag(A2 = M) (a +9q)

Ey =(I3, S1a, S0, RY), ®)

if (8 —01)(A2dy — A102) #0 then Sj, is a positive root of the quadratic equation

qu + pdy q(A2 + 62) _ ag(Ar + 62)

S%*Vlsl +1, =0, =

=

q(éz — 51) /\251 — )\152' (52 — 51)()\251 — /\152) !

Py
aq- (8 +A) :
_ if &p=6=06, Ar>Aq,
Sy = § 90— 1) (qa + po) 2 2o
ﬁ if )\2(51=/\1(52, 52>(51,
2 — 01
1 P Mlf —a—q q a+q
Shy==(qg—56Sy), =+t Ri="4_""1 g <1 > .
24 52(‘1 1514) 4 MSy + AaSh, + 4 4 5 1= 4 X

It is supposed that all nonzero elements of all equilibria are positive.
Putting N(t) = I(t) + S1(T) + S2(t) + R(t) and summing all equations of the system (1), we obtain

N(t) = p—qN(t), N(t) = <N(O) - g) et + Z, lim N(t) = ~. (4)

t—rc0

SRS

In accordance with (4) for all equilibria we have

N* = I} + S}, + S5+ R = s, i=0,.,4 5)
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3. Stochastic Perturbations, Centralization, and Linearization

Let us suppose that the system (1) is exposed to stochastic perturbations which are
directly proportional to the deviation of the system (1) state (I(f),S1(t),Sa2(t), R(t)) from the
equilibrium (I*, S}, S3,R*) and are of the type of white noise (zy(t), 1 (t), wo(t), w3(t)), where
(wo(t), wy (t), wo (), ws(t)) are mutually independent standard Wiener processes. Therefore, we obtain
the following system of the Ito stochastic differential equations [33]

I(t) = p— MI(t)S1(t) = AI(£)S2(t) — qI(t) + oo (I(t) — I*)abo(t),

1(f) M ()5 (£) +aSy(t) = 0151 (HR(E) = g51(8) + o1 (S1(8) = Sp)an (t), ©)
52(t) = Ml (1)S2(t) — aSz(t) — 2S2(H)R(t) — 9S2(t) + 02(S2(t) — S3)n(8),

R(t) = 0181 (1) R(t) + 0282 (t)R(t) — qR(¢) + o3(R(t) — R*)abs(#).

Please note that the equilibrium (I*, S}, S5, R*) of the deterministic system (1) is also a solution of the
system with stochastic perturbations (6).

Let (I*, S5, S5, R*) be one of the equilibria of the system (1). Putting in (6) I(t) = yo(t) + I*,
Si(t) = yi(t) + S5, S2(t) = yo(t) + S5, R(t) = y3(t) + R*, we obtain

Yo(t) = p = (yo(t) + ) [A(y1(8) + S7) + Ao (ya(t) + S3) + q] + coyo(t)wo(t),

1(t) = () + 5D A1 (yo(t) + 1) =1 (y3() + R*) —g] +a(a(H) + 53) + e (D (1),
v2(t) = (y2(t) + S3)[A2(yo(t) + I") — &2(y3(t) + R*) — a — g] + ooy (t)wa (),

y3(t) = (y3(t) + R)[G1(ya (8) + 1) + 02(y2(t) + S3) — 4] + oy3(£) s (1).

It is clear that stability of the zero solution of the system (7) is equivalent to stability of the equilibrium
(I*, 57,55, R¥) of the system (6).

Removing from the system (7) nonlinear terms and using the system for equilibria (2) we obtain
the linear part of the system (7)

Zo(t) = 7])([*) 1z ( ) — /\11*21(1’) — )\2[*220) +0’020(t)u')0(f),
z1(t) = MSizo(t) — (9 + 01 R* — A I*)zy (t) + azp(t) — 61S72z3(t) + o121 (H)ay (£), ®)
Zz(t) )\25220(1‘) (0&+q ApI* +(52R*)Zz(t) 7525523(15) +U’222(t)‘(/{'}2(t),
23(t) = 01R*z1(t) + 2R 2p(t) — (9 — 0157 — 6255)z5(t) + o323 (#)ws(t).
Let us present the system (8) in the matrix form
dz(t) = Az(t)dt + C(z(t))dw(t), 9)
where z(t) = (z(t)z(t), (0,50, @) = (wolt)wi(b),walt)ws(®)), C(E) =
diag(oozo(t), ..., 0323(t)),
—p(I*)~! A I* —ApI* 0
A= Alsi‘ —(q+51R*—/\11*) 13 —5157 (10)
)\253 0 *(N -+ q— /\21* + ézR*) 75255
0 51R* (52R* —(q — 515T — (stz)

Remark 1. The order of nonlinearity of the nonlinear system (7) is higher than one. For systems of such type
a sufficient condition for asymptotic mean square stability of the zero solution of its linear part (9) provides
stability in probability of the zero solution of the initial nonlinear system (7) [30]. Therefore, a sufficient condition
for asymptotic mean square stability of the zero solution of the linear Equation (9) provides stability in probability
of the equilibrium (I*, S7, S5, R*) of the initial system (6).

Following Remark 1, below we will have sufficient conditions for asymptotic mean square stability
of the zero solution of the linear Equation (9) for each from the equilibria (3).

95



Axioms 2020, 9, 24

4. Stability of the Equilibria

Consider some definitions and statements that will be used below [30].

Definition 1. The zero solution of the system (7) is called stable in probability if for any e; > 0 and e; > 0
there exists 6 > O such that the solution y(t) = (yo(t),y1(t), y2(t),y3(t))" of the system (7) satisfies the
condition P{sup,- [y(t)| > e1} < ez provided that P{|y(0)| < 6} = 1.

Definition 2. The zero solution of the system (9) is called:

- mean square stable if for each ¢ > 0 there exists a & > 0 such that E|z(t)|? < ¢, t > 0, provided that
Elz(0)? < &

- asymptotically mean square stable if it is mean square stable and the solution z(t) of Equation (9) satisfies
the condition lim;_. E|z(t)|?> = 0 provided that E|z(0)|? < co.

The generator L of the Ito stochastic differential Equation (9) is defined on the functions V (¢, z)
which have one continuous derivative with respect to t (V}), two continuous derivatives (VV and
V2V) with respect to z and has the form [30,33]

LV(t,z(t)) = Vi(t,z(t)) + VYV (¢, 2(t)) Az(t) + %Tr[C(z(t))VZV(t,z(t))C(z(t))}. (11)

Theorem 1. Let there exist a function V (t,z) with continuous derivatives Vi, V'V, V2V, positive constants
¢1, €2, ¢3, such that the following conditions hold:

EV(t,z(t)) > c1E|z(t)]?, EV(0,2z(0)) < c2E[z(0)|?, ELV(t,z(t)) < —c3E|z(t)|*
Then the zero solution of Equation (9) is asymptotically mean square stable.

Lemma 1. Let there exist a positive definite matrix P = ||p;;|| (i,j = 1,2,3,4) such that the matrix (10) with
the equilibrium (I*, ST, S5, R*) satisfies the linear matrix inequality (LMI)

PA+A'P+P, <0, P, = diag{p110%, ..., paac3}. (12)
Then the equilibrium (I*, ST, S5, R*) of the system (6) is stable in probability.
Proof. For the function V(t,z) = z'Pz from (11) and LMI (12) for some ¢ > 0 we have

LV(t,z(t)) =22'(t)PAz(t) + Tr[C(z(t)) PC(z(t))]
=2/ (t)(PA + A'P + P,)z(t) < —clz(t)|>.
From Theorem 1 it follows that the zero solution of Equation (9) is asymptotically mean square

stable. Via Remark 1 one can conclude that the equilibrium (I*, S, 53, R*) of the system (6) is stable in
probability. The proof is completed. [

Note to satisfy the LMI (12) the matrix A must be the Hurwitz matrix [30,31].

Definition 3. The trace of the k—th order of a n x n-matrix A = ||a;;|| is defined as follows:

ailil uilik
T = Y e, k=1,.n.

1<ip<.<ix<n
aikil aikik
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n
Here, in particular, Ty = Tr(A), Tp = det(A), T,_1 = Y Aj;, where Aj; is the algebraic complement of the
i=1

diagonal element aj; of the matrix A.

Lemma 2. [30,31] Let Ty, k = 1,2,3,4, be the trace of the k-th order of a 4 x 4-matrix A. The matrix A is the
Hurwitz matrix if and only if

T1<0, I, <T3<0, 0<T?Ty < (T\Th — T3)T5. (13)
A 3 x 3-matrix A is the Hurwitz matrix if and only if first two conditions (13) hold.

In general, the LMI (12) for each equilibrium (3) must be numerically investigated via MATLAB.
However, in some particular cases this process can be simplified and analytical conditions can be
obtained. Below it is shown in investigation of stability of the equilibria (3).

4.1. Stability of the Equilibrium Ey = (Z,O, 0,0)
Theorem 2. If

1 p 1 ( IX) p
R A § L N 14
M@ A q) ¢ 9
and
ot <2g, 012<2<q7)\1§>, U§<2<a+q72\2§>, 02 <2, (15)

then the equilibrium E is stable in probability.

Proof. For the equilibrium Ey = (Z,O, 0, O> the system (8) takes the form

20(t) = —qz0(t) — Mpq~'z1(t) — Aapg~'za(t) + cozo(t)wo(t),

21(t) = —(q — Apq")z1(t) + aza(t) + orz1 () (1), (16)
2(t) = —(a +q — Aapg~1)za(t) + oaza(t)ta (1),

z3(t) = —qz3(t) + o3z3(t)aws(t).

The conditions (14) provide negativity of the coefficients before z1 (t) and z;(t) in the second and the
third equations (16). It is known [30] that the last two inequalities (15) are the necessary and sufficient
conditions for asymptotic mean square stability of the zero solutions of the last two equations in (16)
which do not depend on zg(t) and z; () and can be considered separately. Since lim;_, Ez3(f) = 0
then the system of first two Equation (16) for z(t) and z; () can be considered without the process
Zz(t ) , ie. ,

Zo(t) = —qZQ(t) - )\1;)[]7121(1‘) + UQZo(t)wO(t),

21(t) = —(q9 = Apg )z () + orz1 (o (1).
Via Remark A2 (see Appendix A.2) the first two inequalities (15) are sufficient for asymptotic mean
square stability of the zero solution of the system (17). Therefore, the conditions (14), (15) provide
asymptotic mean square stability of the zero solution of the system (16) and via Remark 1 stability in
probability of the equilibrium Ej of the system (6). The proof is completed. [

17)

Remark 2. One can check that by the conditions (14) and (15) the matrix

-q  —Ahpgt —Aapg ! 0
0 —(g-Mpqgt) o 0

A= 18
0 0 —(a+q—Aapg™h) 0 (18)
0 0 0 —q
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of the system (16) satisfies the conditions (13).

Example 1. Put

x=04, A =05 A =07 6 =06=02 p=08 g=07

1
oo =118, =050, 0 =077, o3=1.18. (19

By these values of the parameters the conditions (14) and (15) hold:

1 _,.r_ 1 @y _ P
)Tl =2> q2 =1.63, PR <1+ q) =224 > 5 =1.63,
p

03 =13924 <29=14, ¢?=025<2 (q - /\17> =0.257,

03 =0.5929 < 2 (a +q— AZB) =06, 03=13924<27=14
q

Using MATLAB it was shown that by the values of the parameters (19) the matrix (18) satisfies the LMI (12).
The conditions (13) with

Ty =—18286<0, T,=11286>0, T3=—02640<0, Ty=0.0189 >0,
T3 — TiTy = 17997 > 0, (TyTy — T3)Ts — T2T, = 0.4119 > 0,

hold too. Therefore, the equilibrium Ey is stable in probability.

In Figure 1 one can see 30 trajectories of the system (6) solution for the equilibrium Eq with the initial
condition I(0) = 1.7, $1(0) = 0.9, S»(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), Sp(t)
(blue), R(t) (red) converge to the equilibrium Eq = (I*, S}, S5, R*) = (1.1429,0,0,0).

16 ig 20 2z t

Figure 1. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, $1(0) = 0.9,
55(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), Sy(t) (blue), R(t) (red) converge to
the equilibrium Ey = (I*, S}, 53, R*) = (1.1429,0,0,0).

4.2. Stability of the Equilibrium Ey = (5,2 — L,0,0)

Theorem 3. If
1 1 p 1 1< /x) 1
—t—>t>= —(14+2) >, 20
> % 7)) 20)
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and

2ph - 5 2ph

Ay p_q
G (o) dala () e
9+ [k (1))

then the equilibrium Ey is stable in probability.

Proof. For the equilibrium E; = <)\i’ s — )\i’ 0, 0) the system (8) takes the form
1 1

z0(t) = —pg~ T Azo(t) — qz1 (1) — quAflzz(t) + ooz (t)wo(t),

; _ P q P q .

a0 = (2= )z vz - (L= ) 20+ ano), o)
2(t) = — (a4 g — gAAT ) za(t) + o2z (H) 0o (1),

z3(t) = — <11 -3 (g - %)) z3(t) + o323 (t)ws(t).

The conditions (20) provide positivity of the nonzero component of the equilibrium E; and negativity
of the coefficients before z;(t) and z3(t) in the last two equations (22). The last two inequalities (21) are
the necessary and sufficient conditions for asymptotic mean square stability of the zero solutions of last
two equations in (22) [30] which do not depend on zy(t) and z; (t) and can be considered separately.
Since lim; o Ez3(t) = 0 and lim;_, Ez3(t) = 0 then the system of first two Equation (22) for zo(¢)
and z; (t) can be considered without the processes z»(t), z3(t), i.e.,

Zo(t) = —pq_l)L1ZO(t) — qu(t) + Uozo(l’)wo(l’),

zmo—m(gf )m@+mm@%0) @3)

49
M
Via Remark A2 (see Appendix A.2) first two inequalities (21) are sufficient for asymptotic mean
square stability of the zero solution of the system (23). Therefore, the conditions (20) and (21) provide

asymptotic mean square stability of the zero solution of the system (22) and via Remark 1 stability in
probability of the equilibrium E; of the system (6). The proof is completed. [

Remark 3. One can check that by the conditions (20) and (21) the matrix

qufl/h —q fq)\z/\fl 0

W) s e
A= 1 M 5 17 M (24)
0 0 —(a4q—qgrA]7)

0
g—s (P_ 1
o oo (ea(G)
of the system (22) satisfies the conditions (13).
Example 2. Put

x=04, Ay =065 A =075 & =06=02 p=09, g=07,

0o =101, o7 =041, 0, =076 o3=1.14. @)

9
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By these values of the parameters the conditions (20) and (21) hold:
1 1 p 1 1 ( /x) 1
— +—=6538 > 5 =1.837 > — = 1538, — 1+ —-) =2095 > — =1.538,
AMoh 7 M Az q M

2pA 2pA
02 = 1.0201 < pq L <1671, o2 =0.1681 < Ll = 02001,

g+ [ (-5

02 = 05776 < 2 (a g q%) = 05846, 02 =1299 < 2 (q — & (g - i)) = 1.3165.

Using MATLAB it was shown that by the values of the parameters (25) the matrix (24) satisfies the LMI (12),
the conditions (13) with

Ty =—17863 <0, T,=10818>0, T3=—-02511<0, Ty=0.0183>0,
T3 —TiT, = 1.6813 > 0, (TyTo — T3)Ts — T2T, = 0.3638 > 0,

hold too. Therefore, the equilibrium Ey is stable in probability.

In Figure 2 one can see 30 trajectories of the system (6) solution for the equilibrium Ey with the initial
condition 1(0) = 1.7, $1(0) = 0.9, S»(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), Sy(t)
(blue), R(t) (red) converge to the equilibrium E; = (I*, S5, S5, R*) = (1.0769,0.2088,0,0).

= ;1]
o o
e e

18 20 22 t

Figure 2. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, $1(0) = 0.9,
52(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), S1(t) (green), Sz(t) (blue), R(t) (red) converge to
the equilibrium E; = (I*, S, S5, R*) = (1.0769,0.2088,0,0).

4.3. Stability of the Equilibrium Ey = (I3, 57,,0,R3)

For the equilibrium E; the system (8) takes the form

20(t) = —q(1+ My zo(t) — MLz () — AaL3za(t) + oozo ()b (t),

21(t) = qAad; ' 20(t) — (9 + 61R3 — MI3)zi (1) + aza(t) — gz3(t) + rza (b (£), 26)
Zz(t) = *((X + q— )\215 +(52R;)Zz(t) + U'zZz(t)ZUz(t),

Zg(t) = (isézl(t) + 52R522(t) + 0’323(t)?,i)3(t),

where I} and R} are defined in (3).

100



Axioms 2020, 9, 24

Lemma 3. If
p 1 44 p()\zé] )\152) 52
> —+ = 1+—->—FF— ’ 27
q2 A (51 q q2 (51 -+ )\1) (51 @7)
then the matrix
—q(1+A07Y) M —Ao I3 0
q)\léfl 0 « —q
A= 28
0 0 —(x+qg—A05+6R3) 0 @8)
0 0 R; 0”R3 0

of the system (26) is the Hurwitz matrix.

Proof. The first and the second conditions (27) provide respectively a positivity of R; and a negativity
of the coefficient before z;(t) in the third equation of the system (26). Please note that the inequality

> p(A2dy —Aidy) &
0'2<217<1+6—W—E> (29)
is the necessary and sufficient condition for asymptotic mean square stability of the zero solution of
the equation for z(t) of the system (26). Therefore, by this condition lim; . Ez3(t) = 0t is enough to
show that the matrix
—q1+A07Y) ML 0
A= qAo7t 0 —q (30)
0 HR; 0

is the Hurwitz matrix. Really, for the matrix (30) we have
Ty =—q(1+M5") <0, Ty =qA36 ' I +q01R} >0, Ts=—¢q*0R}(1+A671) <0

and
TiTy = (=q(1+ A6y ) (gA36; I3 + go1RS)
< —POR3(1+ M) =T
Therefore, the matrix (30) is the Hurwitz matrix. Therefore the matrix (28) is the Hurwitz matrix too.
The proof is completed. [J

Corollary 1. If the conditions (27) and (29) hold then for small enough (75, (712, (732 the LMI (12) holds. It means
that the zero solution of the linear system (26) is asymptotically mean square stable and therefore (Remark 1) the
equilibrium Ej is stable in probability.

Example 3. Put

x=04, \y=1, Ay=13, 6,=05 & =07 p=09, =05,

31
0p =055 07=030, =072, 03=044 31

By these values of the parameters the conditions (27) and (29) hold:

p 1 1 14 P(/\2(51 )\152) 52
= =36>—+—=3, 1+4—-—=18> "—-—F——=~ = 1.28,
7 AMod * 6‘1 réa) 5‘72(51 + A1) o
pA201 102 2
02 =0.5184 < 2 1+7—7——>:0.52.
: q< q 7*(01 + A1) &

Using MATLAB it was shown that by the values of the parameters (31) the matrix (28) satisfies the LMI (12),
via Lemma 3 the conditions (13) hold too. Therefore, the equilibrium Ej is stable in probability.
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In Figure 3 one can see 30 trajectories of the system (6) solution for the equilibrium Ep with the initial
condition 1(0) = 1.7, $1(0) = 0.9, S»(0) = 0.7, R(0) = 0.5: all trajectories 1(t) (yellow), Sy (t) (green), Sy(t)
(blue), R(t) (red) converge to the equilibrium Ey = (I*, 57,55, R*) = (0.6,1,0,0.2). In accordance with (5)
IF+S;+S;+R =pg !t =18

;1]
o
el TR B

[
4]

e

18 20 22 t

Figure 3. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.7, $1(0) = 0.9,
55(0) = 0.7, R(0) = 0.5: all trajectories I(t) (yellow), Sy (t) (green), Sz(t) (blue), R(t) (red) converge to
the equilibrium E, = (I*, 51,55, R*) =(0.6,1,0,0.2).

4.4. Stability of the Equilibrium E3 = (I3, S}5,533,0)

For the equilibrium Ej the system (8) takes the form

zo(t) = —pAa(a+q)"'z0(t) — )\1/\_1(0‘+‘7)Zl(t) (a+ q)za(t) + 00z0(t)o (1),

21(t) = MiSj3zo(t) — (7 — MAy Ha+q))z1 (1) + aza(t) — 61ST3z3(t) + orze (Db (8), 32)
Zz(t) )L 2320(1’) — (5252323(f) + (7222( )‘(Uz(i’),

Zg(t) (q 51513 525;3)23(1‘) + 0'3Z3(t)%(]3(t),

where S5, 535 are defined in (3).

Lemma 4. If
p 1 ( oc) 1 1 ( IX) . .
S>—(1+-], — > —(1+-), > 01575 + 02555, 33
27 A q N q q 1913 T 92923 (33)
then the matrix
—pha(e+q) —MA M at+q) —(atq) 0
A S: —(g—MA; Y +q)) ® —6,5%
A= 13 2 13 34
A2S3, 0 0 —0255, 34)
0 0 0 —(q = 01573 — 62533)

of the system (26) is the Hurwitz matrix.
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Proof. The conditions (33) provide a positivity of Sj; and S;; and a negativity of the diagonal elements
of the matrix (34). Please note that the inequality

02 < 2(q— 5,5, — 5,53) (35)

is the necessary and sufficient condition for asymptotic mean square stability of the zero solution of the
equation for z3(t) of the system (32). Therefore, by this condition lim;_.. Ez3(#) = 0 and it is enough
to show that the matrix

—phala+q9)7t —MA N a+g)  —(a+9q)
A= MSh —(g =M (a+9)) w (36)
A2S35 0 0

with
Ty = —pha(a+q)~ = (9= MAy (w+7q)) <0,
Tp = pla+q) 71 (A2g — M+ ) + (a+9)[A3A;'Sf3 + A2S55] > 0,
T3 = —q(a =+ q)()\z — Al)S% <0,

is the Hurwitz matrix, i.e., T;To < T3. The proof is completed. O

Corollary 2. If the conditions (33) and (35) hold then for small enough Ug, 1712, (722 the LMI (12) holds. It means
that the zero solution of the linear system (32) is asymptotically mean square stable and therefore (Remark 1) the
equilibrium Ej is stable in probability.

Example 4. Put

x=08 A =03 A;=09, 6 =08 0&6=07 p=12 ¢=06

37
00=091, oy =050, 0, =040, o3 =0.70. 37)

By these values of the parameters the conditions (33) and (35) hold:

P 1 ( O‘), 1 1 < "‘>,
—~=333>—(14+—-) =259, —=333>—(1+—-) =259,
2 A2 q M A2 q

q
§=06> 8,5}y + 6253 = 0.1715, 02 = 049 < 2(q — 6,S}5 — 6253;) = 0.5015.

Using MATLAB it was shown that by the values of the parameters (37) the matrix (34) satisfies the LMI (12),
for the matrix (36) Ty = —0.9048 < 0, T, = 0.2362 > 0, T3 = —0.0320 < 0, T3 — T1 T, = 0.1817 > 0,
the conditions (13) hold too. Therefore, the equilibrium Ej is stable in probability.

In Figure 4 one can see 30 trajectories of the system (6) solution for the equilibrium Ez with the initial
condition 1(0) = 1.9, 51(0) = 0.8, S5(0) = 0.4, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green),
Sy(t) (blue), R(t) (red) converge to the equilibrium E3 = (I*,S},S5,R*) = (1.5556,0.3810,0.0634,0).
In accordance with (5) I* + S§ + S5 + R* = pg~! = 2.
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16 18 20 22 t

Figure 4. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.9, $1(0) = 0.8,
52(0) = 0.4, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green), Sy(t) (blue), R(t) (red) converge to
the equilibrium Ez = (I*, S}, S5, R*) = (1.5556,0.3810,0.0634, 0).

4.5. Stability of the Equilibrium Ey = (I, S7,, 534, R})

For the equilibrium E,4 the system (8) by virtue of (2) takes the form

Z"o(’—‘) = —p(I}) " z0(t) — MIjz1(t) — Aalza(t) + 0020 (t)ao (1),
21() = MSjyzo(t) — aS3,(S3,) 21 (t) + aza(t) — 6153,23(t) + ouzi () (1),

(1) — &Sy . (39)
2(t) = A283,z0(t) — 0255,z3(t) + o2z (H) o (F),
z3(t) = 01R}z1(t) + 2R} z2(t) + o323 (t) 3 (t),
where I, 57,, S54, R} are defined in (3).
Let us show that the matrix
—p(IZ)_l —Allz _AZII 0
A SE —aS%,(S5,) ! « —0,8%
A= 14 24914 14 39
A2S3, 0 0 —0253, 39)
0 01R} 2R} 0

of the system (38) is the Hurwitz matrix. Really, the conditions (13) for the matrix (39) hold with

Ty = —p(I;) ™! —aS3,(S7,) ! <0,

To = apS3,(I§S1,) ™" + [{(A1ST, + A3S5,) + R (6757, + 63S54) > O,

T3 = —aS34(MA2l} +0102R}) — p(I5) 'R (67S7, + 8585,) — a(S5,)* (1) M (M1} + 83R}) <0,
Ty = apRy(L;S7,) 71 (67(S10)> +03(S34)%) + (A261 — A162)°1557,554R] > 0.

Example 5. Put

«=04, A =03 A=09 6 =6=08 p=12 4=06,

40
0p =051, o3 =051, 0, =055 o03=0234 (40)

Using MATLAB it was shown that by the values of the parameters (40) the matrix (39) satisfies the LMI (12),
the conditions (13) hold too: Ty = —1.3259 < 0, T, = 0.7020 > 0, T3 = —0.1828 < 0, T, = 0.0187 > 0O,
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T; — TiTr = 0.7479 > 0, (1T, — T3)Ts — T?Ty = 0.1039 > 0. Therefore, the equilibrium Ey is stable
in probability.

In Figure 5 one can see 30 trajectories of the system (6) solution for the equilibrium Ey with the initial
condition I(0) = 1.9, $1(0) = 0.8, S5(0) = 0.7, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green),
Sy (t) (blue), R(t) (red) converge to the equilibrium E4 = (I*, S5, S5, R*) = (1.1765,0.4250, 0.3250, 0.0735).
In accordance with (5) I* + S§ + S5 + R* = pg~! = 2.

Please note that decreasing 6, from 5, = 0.8 to 6, = 0.7, we obtain that S} unlike from the previous case is
calculated via quadratic equation (see (3)). By that with the same values of all other parameters the equilibrium
Ey a bit changed Ey = (I*, 57,55, R*) = (1.1534,0.4543,0.3379,0.0544), I* 4+ S; + S5 + R* = pg~1 =2,
but remains stable in probability and the conditions (13) hold with Ty = —1.3379 < 0, T, = 0.6971 > 0,
T3 = —0.1686 < 0, Ty = 0.0143 > 0, T3 — Ty T = 0.7641 > 0, (Ty T» — T3)T5 — T2Ty = 0.1033 > 0.

3]
Q

™
4]

"
o
oy S S N

Figure 5. 30 trajectories of the system (6) solution with the initial condition I(0) = 1.9, $1(0) = 0.8,
55(0) = 0.7, R(0) = 0.4: all trajectories I(t) (yellow), S1(t) (green), Sy(t) (blue), R(t) (red) converge to
the equilibrium E = (I*, S}, S5, R*) = (1.1765,0.4250,0.3250,0.0735).

5. Conclusions

In this paper, it is shown how the dynamics of the very popular I25R rumor spreading model can
be investigated under stochastic perturbations. It is shown that for some equilibria of the considered
model it is possible to get conditions for stability in probability in an analytical form, for other
equilibria stability condition can be obtained numerically by an appropriate linear matrix inequality
via MATLAB.

The proposed way of research can be used for more detail investigation both the considered I2SR
rumor spreading model and also all other known type of rumor spreading models [6-29].

Besides, this research method can be used for a detailed investigation of many other nonlinear
mathematical models (with the order of nonlinearity higher than one) in different other applications.
In particular, the proposed method can be used for systems with exponential nonlinearity [34,35],
together with stochastic perturbations of the type of white noise other types of perturbations can be
used, for instance, perturbations of the type of Poisson’s jumps [35], the method does not depend on
the dimension of the considered system and can be used for systems of more than four equations.
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Appendix A

Appendix A.1. Equilibria of the System (1)

The equilibria Ey, ..., E3 of the system (1) are obtained from the system (2) quite simply (see (3)).
To get the equilibrium E4 note that from the second and the third equations of the system (2) we obtain

1 1
R= ‘5*(”‘525171 —q+MI)= 5*()\21 — (e +q)).
1 2

From this and the first equation of the system (2) we have

~ (a+q)or + (aSZSfl —q)02 _ P
Apd1 — Ado A1S1 4+ A8 + q'
and therefore
(2 + )01 + (2S287 — 9)82) (M1S1 + A2S2 + ) = p(A2dy — A162). (A1)

From the last equation of the system (2) and R* # 0 it follows that

L1
871 = 5 (sil . 51> . (A2)

Substituting (A2) into (A1) we obtain the equation for S;

A
<(Dt + !1)151 +u (Sil — (51> — Q(Sz) ()\151 + ?22 (l] — (5151) + t]) = p(/\251 — /\1(52),
g(a — (02 — 61)51) (q(A2 + 62) — (A2d1 — A102)S1) = pda(Aadt — A102) Sy,
q(02 — 61) (A2b1 — A182)S2 — [(qa + p62) (A21 — A162) + q%(62 — 61) (A2 + 02)]S1 + ag? (A2 + 82) = 0.

If (&, — 61)(A261 — A182) # 0 then Sy is a positive root of the quadratic equation S — 1151 + v, = 0,

where
_qa+pdy q(Az + 62) aq(Ay +62)

v = , V)= .
17302 =01) " Aabi—Mida’ 2 (52— 01)(A2d1 — Mda)

Remark A1l. Please note that a positive root of the quadratic equation S* — 1Sy + v, = 0 may not exist, for
instance, if v < 0 and v, > 0. In this case a positive equilibrium E4 does not exist too. On the other hand
for some values of the parameters the quadratic equation S* — 11 Sy + v, = 0 may have two positive roots, for
instance, if vy > 0and 0 < 4vy < v3: Sf = %(vl + \/v? — 4vy). In this case there are two equilibria of the
type of Es.

ag? (0 + Ag) o

If 61 = 6y = 5, Ap > Ag then 5] = 50— A (a1 70)" If Apdy = A1, & > 07 then S§ = P

If ST is defined then via (2)

1 p Ml —a—g
St =—(q—0957), = —+"r— Rt ="—7=>— %,
2= 5, (1= a51) MSE+ 2S5 +4q 5
PRI e . * q * “+q
For positivity of the equilibrium E4 must be S} < 5 and I* > SR
1 2
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Appendix A.2. Stability of the System of Two Stochastic Differential Equations

Consider the system of two stochastic differential equations

X1 (t) = apxq(t) + appxa(t) 4+ oyxy (H)w (t),

$2(8) = a1 (t) + anxa(t) + oz (Hwa(t), (A3)

where a;;, 07, i,j = 1,2, are constants, w (t) and w;(t) are mutually independent standard Wiener
processes [30,33].

Lemma AL [30] Put A = |la;||, i,j = 1,2, A; = det(A) + a2, p; = 307, i = 1,2, and suppose that the
following conditions hold

Tr(A) =an +axn <0,  det(A) = ajaxn — appan >0,
|Tr(A)| det(A) |Tr(A)| det(A) — Aap (Ad)
1< , M2 < .
Az A1 —|Tr(A)

Then the zero solution of the system (A3) is asymptotically mean square stable.

Remark A2. Please note that if ajpa,1 = 0 then the last two conditions in (A4) take the form p; < —ay,
Uz < —dap.
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Abstract: According to World Health Organization (WHO), the population suffering from human
immunodeficiency virus (HIV) infection over a period of time may suffer from TB infection which
increases the death rate. There is no cure for acquired immunodeficiency syndrome (AIDS) to date
but antiretrovirals (ARVs) can slow down the progression of disease as well as prevent secondary
infections or complications. This is considered as a medication in this paper. This scenario of HIV-TB
co-infection is modeled using a system of non-linear differential equations. This model considers
HIV-infected individual as the initial stage. Four equilibrium points are found. Reproduction number
Ry is calculated. If Ry >1 disease persists uniformly, with reference to the reproduction number,
backward bifurcation is computed for pre-AIDS (latent) stage. Global stability is established for
the equilibrium points where there is no Pre-AIDS TB class, point without co-infection and for the
endemic point. Numerical simulation is carried out to validate the data. Sensitivity analysis is carried
out to determine the importance of model parameters in the disease dynamics.

Keywords: Co-infection of HIV-TB; equilibrium point; reproduction number; stability analysis;
backward bifurcation

1. Introduction

In the public health sector, human immunodeficiency virus (HIV) continues to be the major health
threat globally, having claimed more than 32 million lives to date [1]. There were approximately
37.9 million people living with HIV at the end of 2018 [1]. The human immunodeficiency virus (HIV)
is a virus that spread through certain body fluids, attacking the body’s immune system, specifically
the CD4 cells. The immune function is typically measured by CD4 cell count. Over time, HIV can
destroy so many of these cells that the body can’t fight against infections and diseases, which paves the
way for many opportunistic diseases. One such disease is tuberculosis (TB). It is a contagious disease
caused by bacteria called Mycobacterium tuberculosis. The bacteria mostly attack the lungs, but can
also damage other parts of the body. The population living with HIV are 15-22 times more likely to
develop TB [2]. It is the most commonly occurring illness among HIV-infected individuals, including
among those taking antiretroviral treatment (ART). This interaction explains the fact that HIV and TB
co-infection is a deadly human syndemic, where syndemic refers to the convergence of two or more
diseases that exacerbate the burden of the disease [3]. For the treatment of HIV, HIV drugs called
antiretrovirals (ARVs) are advised. ART reduces the risk of TB infection in people living with HIV by
65% [4]. It plays a significant role in preventing TB.

Mathematical modelling has enhanced understanding of disease dynamics. The first compartmental
model was given by Kermack and McKendrick [5]. Some basic papers like [6,7] have constructed
mathematical models by formulating non-linear differential equation for their respective models and have
worked out the critical point/equilibrium points of the respective system and various related properties.
In some the related research, many authors have worked out various types of HIV-TB co-infection
model. Kirschner et al. [8] developed a model for HIV-1 and TB coinfection inside a host. This was the
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first attempt to understand how TB affects the dynamics of HIV-infected individuals. TB is known to
be the common serious opportunistic infection occurring in HIV individuals and it occurs in more than
50% of the acquired immunodeficiency syndrome (AIDS) cases in developing countries. Naresh et al. [9]
developed a simple nonlinear mathematical model dividing the population into four sub-classes,
namely the susceptible, TB-infective, HIV-infective and AIDS patients. The treatment class in the
HIV-AIDS co-infection model was first introduced by Huo et al. [10], however, Bhunu et al. [11] in his
co-infection model considered all aspects of TB and HIV transmission dynamics with both HIV and TB
treatment. This paper incorporated ARTs for AIDS cases and studied its implication on TB. However,
the author did not consider the case where individual co-infected with HIV-TB can effectively recover
from TB infection. Another HIV-TB co-infection model was formulated by Roeger et al. [12], assuming
TB-infected individuals in the active stage of disease to be sexually inactive. Singh et al. [13] studied
the transmission dynamics of the HIV/AIDS epidemic model considering three different latent stages
based on treatment. Torres et al. [14], in his model, incorporates both TB and AIDS treatment for
individuals suffering with either or both disease.

The model formulated in this paper considers the susceptible class to be HIV-infected. The paper
is organized as follows. The model is formulated and its description is given in Section 2. Calculation
of reproduction number and uniform persistence of the disease is shown in Section 2.3. In Section 2.4,
global stability for all the equilibrium points is done. In Section 3, backward bifurcation is established.
The sensitivity of reproduction number is done in Section 3.1. Section 3.2 presents a numerical
simulation. The paper concludes in Section 4.

2. Mathematical Model

We begin with seven mutually exclusive compartmental models showing HIV-TB co-infection.
In this model, the human population is divided into sub-populations as follows: acute HIV-infected
individuals (H), co-infected with HIV-TB (Hrg), Pre-AIDS stage(P,), infected individuals undergoing
any type of treatment say ARV’s and any TB treatment (M), Pre-AIDS stage with TB disease (Parg),
HIV-infected individuals showing clinical AIDS symptoms (A), HIV-infected individuals with AIDS
symptoms coinfected with TB disease (Ag).

The notations and parametric values assumed in the paper for the study of dynamical system of
HIV-TB co-infection model is tabulated in Table 1.

Table 1. Parametric definitions and its values.

Notations Description Parametric Values
N(t) Number of individuals at any instant of time 100
B Birth rate 0.2
B1 Rate at which co-infection occurs 0.45
B2 Rate at which HIV-infected individuals reaches pre-AIDS stage 0.48
B3 Rate at which HIV-infected individualsopt for medication 0.31
Ba Rate at which co-infected individual goes for medication 0.1
Bs Rate at which co-infection (HIV-TB) individual joins pre-AIDS TB stage 0.037
Be Rate at which pre-AIDS infectives opt for medication 0.25
B7 Rate at which pre-AIDS TB infectives undergo medication 0.15
Bs Rate at which pre-AIDS infected individuals join pre-AIDS TB class 0.8
Bo Rate at which pre-AIDS suffer from full-blown AIDS 0.3
B1o Rate at which Pre-AIDS TB infectives joins full-blown AIDS TB class 0.001
P11 Rate at which treated infectives move to AIDS class 0.78
P12 Rate at which individuals with full-blown AIDS suffer from TB 0.35
u Natural death rate 0.002
Up Death rate due to AIDS 0.6
UDTB Death rate due to co-infection 0.52

In this paper, the susceptible class is considered to be HIV-infected (acute HIV infection). This class
is increased by recruitments of newly HIV-infected individuals at the rate B. All the individuals in
their respective compartments suffer from natural death at the constant rate p. Individuals undergoing
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medication (treatment) through ARTs lower the rate of progression from HIV disease to AIDS, as HIV
can never be cured.

Here, the individuals infected with HIV develop a very weak immune system, which means
they are likely to get infected by many opportunistic diseases. As TB is considered to be one of the
most commonly occurring disease among HIV patients [15], the individual infected with HIV gets TB
disease moving towards Hrp by rate f1. The HIV-infected individuals are also assumed to progress
to the asymptotic pre-AIDS class (P,) at the rate . The HIV-infected and co-infected individuals
undergoing treatment move to class M with the rates 53 and f4, respectively. Similarly, individuals
with a co-infection of HIV-TB move towards P4rp with the rate 5. Individuals showing symptoms of
AIDS (P,) suffer from full-blown AIDS, joining A, at the rate 9, and they are more likely to develop
TB, progressing to class Psrp with the rate fg. P4 class individuals undergoing ARTs treatment
(anti-retroviral therapy) join M at the rate fis. Individuals in P47p are treated for TB at the constant
rate f7, joining M, and some of them can also develop full-blown AIDS, moving to Arp class with the
constant rate f19. Treated individuals, recovered from TB but still with HIV infection (as it cannot be
cured) move to full-blown AIDS (A) with the constant rate ;7. Individuals suffering with AIDS have
such a badly damaged immune system that they get an increasing number of severe illnesses (here, TB)
and hence move towards full-blown AIDS-TB class with the constant rate 1. The death rates up and
uprp are considered as deaths due to individuals infected with AIDS and AIDS-TB, respectively.

2.1. HIV-TB Co-infection Model

Considering the aforementioned assumptions and Figure 1 gives rise to the following set of
non-linear differential equations for the HIV-TB co-infection model:

4 — B—pHHrp — (B2 + f3 + t)H

dfdl% = p1HHtp — BsHrParp — (1 + fa)Hrp

dde = PoH — BsPaParp — (1t + P6 + Po)Pa

Zd—AtA = B3H + PaHrp + BePa + B7Pars — (1 + p11)M 1
Parp

=AI8 — BsHrpParp + PsPaPars — (i1 + 7 + P1o)Pars
@ = BoPa+ p1iM — (4 + pp + P12)A
=2 = BroPars + p12A — (u + uprs) AT

where N(t) = H(t) + Hrp(t) + Pa(t) + M(t) + Parg(t) + A(t) + Arp(t).
The system satisfies the conditions:

H(i’) > O,HTB(t) > O,PA(i) > O,M(t) > O,PATB(f) > O,A(t) > O,ATB(i’) >0

Adding the above set of differential equations, we get,
dN
% = B—u(H+Hrp+ Pa+ M+ Parp + A+ Arp) — upA — uprAts
< B—‘U,(H+HTB +Pa+ M+ Pyrp +A+ATB)
Hence, % < B—uN, so that tlim supN < E

The feasible region for the system is defined as

B
A= {(H,HTB,PA,M,PATB,A,ATB) :0<HA+Hp+Ps+M+Pprp+A+Arp < p}

111



Axioms 2020, 9, 29

We assume Ly = f + f3, Lo = B + P9, L3 = p7 + p1o- The modified system is

= B-p1HHrp — (L1 + u)H
dHTB = p1HHTB ~ BsHrpPaTp — (1t + f4)Hrp
dPA = PoH —BsPaParp — (L2 + )P
@M = B3H + 4Hrp + BePa + B7Pats — (1 + p11)M )
dPATB = BsHrpPatp + BsPaPars — (L3 + 1) Pars
BoPa + p11M— (4 + pp + p12)A
= BroPars + p12A — (4 + pprs) AT

W =
dATB
System (1) and (2) are equivalent, hence A is also the feasible region for system (2).
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Figure 1. Transmission of individuals in different compartments.

2.2. Equilibrium Solutions
Equating & = 'H;% = dstA = - dpjt” =4 = dﬁ% = 0 and solving for the compartments

following are the equilibria:

1. E1(Hy,0,Pa,,M1,0,Aq, Arp,)

Hy =

Bpa __B(Laps+PaPetPatt)
= Gt Hren = 0Py = ment ML= T op) G
p — 0, Ay — BBullopsthobetpar)+habo(fritu))
ATBy = %= T ) (L) (B +4) (i +Bra) /
A — BB12(Bun(Laps+Baps-+Pa) +papo(Priti))
TBy = y+p) (Lo+) (i +12) (u+pp+Br2) (Hiep)

2. Ex(H,0,Pa,, My, Parp,, A2, Atp,)

L3+ BBaBs—(Ly+u) (Lo+u) (La+u)
Hy = i, Hrp, = 0,Pa, = <35, Parg, = ﬁZﬁBﬁS(ilfH)(afH) =,
M Bps(Laps+Papr+Pap) +(La+p) (La+4) (Bo(La+p) =B7(La+n))
2= Bs(L1+p) (La+p) (Br1+11) ) !
{BBsB11 (Laps + o7 + o) + (Ls + ) (L1 + 1)

(Bo(B11 + ) + Pop11) — (L1 + p) (Lo + p) (L3 + p)B7pu1}

A2 = B i o+ i) (D +Pra) s
BBspr1p12(B2P7 + Laps + ufs) + (P11 + 1) nBpapspio — (L1 + 1) (L2 + p)
(Ls + @) (B7P11f12 + (B11 + ) pipPro) + (B2 + 1) (11 + p)BPaPspio + (L1 + p)
A — (L3 + 1) (BsP11 + (B11 + p)BoP12) — (L1 + ) (Lo + p) (Ls + ) (B11 + ) (P12 + 1)
TB, = Bs (L1-+u)(La+p) (Br1+p) (u+pprs) (H+pp+P12)
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3. E3(Hs,Hrp,, Pay, M3,0,As, Ars,)

_ Patu _ Bpi—(Ly+p)(Batp) _ BaBatp)
Hs =g His = g gs— Pa = pitor
Ma — Lt t)(BB1fa—(Bat1t) (L1Bs—PsPs—Pau—part)) +B2bo(Pati)

3 Br(Loti) Bat1) (Briey) ’

{Bap11(Bp1 — L1(Ba + 1)) (L2 + ) + (Ba + 1) (L2p11 (BaPa + Bapt — Papt)
—Baprip?) + (Ba+ 1) (BaPo (Brr + 1) + Pafefur + Papui))
B1(La+p) (Ba+u) (B11+u) (utup+p12)

{B12(Bapr1(Bp1 — L1 (Ba + H))(sz + ) + (Ba + ) (Lo2f11 (BaPa + B3t — Papt)
~Bapr1i?)) + (Ba + 1) (BPo (P11 + 1) + BoPPur + PaPrris))

Br(La+p) (Batu) (Buri+u) (p+pp+p12) (utupre)

Parp, = 0,A3 =

ATB3 =

4. Endemic Equilibrium point E*(H*, H, Py, M, P, A*,A*TB)

TB’ 7L ATB
o T(Bs(Batp)—Ps(Lotp))+BB5 rpe  _ —Psrtlatit e
H = B5(L1+u)+p1(La+p)—p2ps Hip = Bs Py =,

B1(Bs(Ba + 1) = B5(L2 + ) + B5(Bp1

p . —Lat ) Bat ) +Pa(Bat ) —Prlls+p)(Bs + 1)
ATB PB5(L1ps+Lapr+P1u—PaPs+Pst) ’

r[(BsBo — Paps) 1B5 (L1 + p) + B1(Ls + ) — Baps] + (BapPs + B7h11) (Bs (Ba + 1)
—Bs(La + 1)) + Bsp7[(BB1 — (L1 + 1) (Ba + ) + B2 (Ba + )] + Bas(Ly + 1)
(Ls + ) + (Ls + u)B1 (Ba(La + ) = B7(Ba + ) = BoPaPs(La + 1) + Bpap3
Bs(Br1+1) (Bs (L1+p)+p1(La+4)—Paps) ’
r(B11(B1B7 + Paps) (Bs(Ba + 1) — Bs(La + 1)) + (B1(Ls + p) + B (L1 + 1) — Popfs)
((B11 + p)BsBo + (BsPes — PaPs)B11)) + P11 (BsP7(BP1 — (L1 + w)(Ba + 1)) + Ba(fa + 1))
+BaBs (L1 + 1) (La + 1) + p1(Ls + 1) (Ba(Ls + ) — B7(Bs + 1)) — BaPaps(Ls + ) + BP3p2
B5(u+p11) (u+up+p12) (Bs (L1 +41) +B1 (La+1)—B2Ps) ’
r[(Bs(Ba + 1) = Bs (Lo + 1)) ((B11 + p)B1Bro(p + pp + Pr2) + P11P12(B3Ps + P1B7))
+(B5(L1 + ) + B1(Ls + ) = B2B5)B12((Ba + 11)BsPo + (BsPs — BaPs)B11)] + pipPio
(B11 + u) (Ba + 1) (B2Bs — B1(Ls + ) — B5(L1 + 1)) + upBp1BsPro(B11 + 1) + Brp11frz
(Ba + 1) (B2Bs5 — Psit — Lap1) — Bro(Brz + 1) (11 + 1)*(Bs(La + 1) + Pr(Ls + 1)) + Ps
P11fr2(Ls + ) (Bs (L1 + p) + P1(Ls + 1) = Pofs) + Bspro(B11 + 1) (P12 + 1) (B2(Ba + 1)
+Bp1) — P1B7P11P12(Bs + 1) (Ba + 1) + BBspr1fr2(B1B7 + B3Ps)
Bs (u+B11) (u+upts) (u+up+B12) (Bs (L1 +4) +B1 (La+1t) —B2ps)
r = rootof ((B1Ps(Bs(La + 1) — s (Ba + 1)) Z* + (=BsPs(BP1 — (L1 + 1) (Bs + 1))
—B3(La + p) (Lo + ) + B1(Ls + ) (Bs(Ba + 1) = Bs(La + ) Z + Bpaps

M=

A =

*
Apg =
where,

2.3. Reproduction Number

The reproduction number measures the expected number of secondary infected individuals
produced due to an infected individual during the entire death period in an uninfected population.

In this paper, reproduction number Ry is defined as the number of infected individuals due to an
AIDS- or TB-infected individual in the HIV infected-population. It is calculated using next-generation
matrix method [16] and is defined as the spectral radius of F V1atE;.

p1H 0 0 0 0 0 BiHrsp |
0 0 0 0 0 0 0
0 0 0 0 00 0
where, F= ,BSPATB ﬁSPATB 0 ﬁSHTB + ﬁgPA 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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Ba+ PsPars + 1 0 0 BsHrp 0 0 0
0 BsPare + Lo+ 0 PsPa 0 0 —B2
—Pa —Ps Putup  —p7 0 0 —B3
V= 0 0 0 Ly +u 0 0 0
0 —B9 A1 0 Pro+up+pu 0 0
0 0 0 —P1o —B12 U+ Uuprs 0
p1H 0 0 0 0 0 B1Hrp + L1+
; ; -1 ; _ BpaBs BB
The dominant eigenvalue of FV ™" at E; is Ry = (FE + eI
2.4. Persistence of Disease
Now, uniform persistence for the system (1) is constructed. The model system

(1) is said to be uniformly persistent if there is a constant f, such that any solution
(H(t), Hrp(t), Pa(t), M(t), Parp(t), A(t), A7p (t)) satisfies [17,18].

1‘lim inf H(t) > f, tlim inf Hrg(t) > f, tlim inf Pa(t) > f, tlim inf M(t) > f,
tlim inf Pagg(t) > f, tlim inf A(t) > f, tlim inf Arg(t) > f.
Provided that (H(O),HTB(O),PA (0),M(0),PATB(O),A(O),ATB(O)) eAN
Theorem 1. The model (1) is uniformly persistent in A only if Rg > 1.

2.5. Stability Analysis

In this section, global stability is studied for all the equilibrium points obtained.
Theorem 2. Global Stability Of E1 (Hl, 0, PAlerr O,Al,ATgl )

The system (2) of the model can be written as

ax;

-~ hXuZy) ®)
az
= = G1(X1,21),G1(X1,0) = 0 @

where X7 = (H,Pa, M, A, Arg) and Z; = (Hrp, Parp). According to this notation, equilibrium point is
denoted by E; = (Xi,O),where Xi = (H1,0,Pa,,My,0,Aq, ATp, ).

By the Castillo Chavez method, the following two condition ensure the global stability of the
given equilibrium point:

P.1 For % = F1(X4,0), E; is globally asymptotically stable.
P2 Gi(Xy1,7Z1) = AZy - G1(X1,Z1), where G (X1, Z;) = 0 for (X1,7;) € A.

where A = Dz, G1(X3,0) is a M-matrix (matrix with non-negative off diagonal elements) and A is the
region defined above. We have,

B— (B2 +ps+wH
B2H = (1 + B6 + Po)Pa
Fl(X1,0) = ﬁ3H+ﬁ6PA— (y+‘3]1)M
BoPa + p11M — (u + pup + p12)A
B12A = (u+ upre)ATB
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Gi(Xy,Z1) = [ p1HHTp — BsHrpParp — (1 + fa)HrB
' BsHrBPaTE + BsPaPars — (1 + 7 + B10) PaTs

B oo [ BH=(u+Ba) 0
A = Dgz,G1(X7,0) *[ 0 BsPa— (u+ B7+ B1o) ]

] and G1(X1,0) = 0, thus

®)

G(X1,Z1) = BsHrpPars
et —BsHrPars

From Equation (5), the condition P.2 is not satisfied, since e (X1,Z1) = 0 is not true. Therefore,
the equilibrium point E; may not be globally stable. Here, since disease (HIV-AIDS) persists at this
point, it will not be globally stable. Following [19], the backward bifurcation occurs at Ry = 1.

Theorem 3. Global Stability of Ey(H»,0,Pa,, M, Patp,, A2, ATs,)

The system (2) of the model can be written as

axXs

o F2(X2,75) (6)
dz.
d_tz = Gz(Xz,Zz), Gz(Xz,O) =0 7)

where Xp = (H,Pa, M, Parp, A, Arp) and Z, = (Hrp). According to this notation, the equilibrium
point is denoted by Ez = (X}, 0), where X!, = (Hz,0, Pa,, M2, Patp,, A2, Atg,).

Using the Castillo Chavez method [20], the following two condition ensure the global stability of
the given equilibrium point:

P.3 For d{% = F»(X2,0), E; is globally asymptotically stable.
P4 Gy (X2, Z2) = BZs — Go(Xa, Zy), where G(Xa,Z5) = 0 for (Xa,Z;) € A.

where B = D7,G>(X»,0) is an M-matrix (matrix with non-negative off diagonal elements) and A is the
region defined above.
The equilibrium point E;(Ha, 0, Pa,, M2, PatB,, A2, AtB,) is the globally asymptotically stable
equilibrium of the system (P.3)-(P.4)
B-(f2+ps+wH

BaH = BsPaPatp — (1 + 6 + Po) Pa
BsH + BsPa + PrParp — (¢t + p11)M

BsPaPars — (i + B7 + B10)Pars

PoPa + B1iM — (i + pp + pr12)A

BroPars + pr2A — (4 + pprs)Ats
The eigenvalues of the characteristic polynomial of its Jacobian matrix are given as

we have F(X3,0) =

M =—(p+p2+ps3),Aa=—(p+p11),As = —(u+ pprB), As = —(p + pip + P12),
As = —3((BsPars + Be + B7 + Po + P10 + 21 — BsPa)
- \/ﬁé(PA ~Parp)* + (Bs — B7 + o — B10)* + 2Bs(Pa + Pars) (Bs — B7 + fo — P10)),
Ag = =5 ((BsPars + o + B7 + Po + P10 + 24 = BsPa)
4+ \JB(Pa—Pars)? + (Bs — 7+ Bo— p10)* + 2Bs(Pa + Pars) (Bs — Bz + o — Bro)
Here, A5, A have a negative real partif (8¢ + fo + 1)BsPa < (B7 + P10 + 1) (Be + Po + tt + BsPaTs)-

Hence, by Routh-Hurwitz criterion, the system is globally asymptotically stable.
Next,
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Ga(Xa,Z3) = (B1Ha + psPars, — (4 + Ba))Hrs — (B1(Hz — H)Hrp + Bs(Pars, — Pars)Hrs)
= BHrp — G2(X2,Z2)

Here, Gz(Xz, Z3) > 0, hence the conditions of P.3 and P4 are satisfied. Hence, by Castillo Chavez the
system is globally stable.

Theorem 4. Global stability of E3(Hs, Hrp,, Pa,, M3,0, A3, ATs,)

The system (1) of the model can be written as

dx

d_ts = F3(X3,23) ®)
az
d—f = G3(X3,Z3), G3(X3,0) =0 )

where X3 = (H,Hrp,Pa, M, A, Arp) and Z3 = (Patg). According to this notation, the equilibrium
point is denoted by E3 = (X}, 0), where X} = (Hz, Hrp,, Pas, M3,0, A3, Arp,).
The following two conditions ensure the global stability of this equilibrium point

P.5 For % = F3(X3,0), E3 is globally asymptotically stable.
P6 G3(X3,23) = CZ3 — G3(X3,Z3), where G3(X3,7Z3) = 0 for (X3,Z3) € A

where C = D7,G3(X3,0) is an M-matrix (matrix with non-negative off diagonal elements) and A is the
region defined above.
The equilibrium point E3(Hs, Hrg,, Pa,,M3,0, A3, Arp,) is the globally asymptotically stable
equilibrium of the system (P.5)-(P.6)
B-p1HHrp — (f2 + f3 + 1)H

p1HHTp — (1t + Ba)Hrp

B2H = (1 + Bo + Po) Pa
B3H + BaHrp + fePa — (1 + p11)M

BoPa + p1iM — (4 + pp + P12)A

Br12A — (4 + uprB)ATB
The eigenvalues of the characteristic polynomial of its Jacobian matrix are given as

we have F53(X3,0) =

M = —=(p+B6+Po), A2 = —(u+ pu), A3 = —(u + pprs),

Ay = —(u+up +p12),

As = =3 ((B1Hrp + B2 + B3 + P4+ 21— p1H)

— B (H — Hrg)® + (B2 + s — a)? + 261 (H + Hrs) (B + s — i)
A6 = =3 ((B1Hrp + B2 + B3 + Ba+ 21— p1H)

+ \/ﬂf(H —Hrp)? + (B2 + B3 — a)” + 281 (H + Hr) (B2 + B3 — Ba))

here, A5, Ag have negative real part if (B2 + 3 + u)p1H < (Bs + 1) (B2 + B3 + p + Hrpp1). Hence, by
Routh-Hurwitz criterion, the system is globally stable.
Next,

G3(X3,Z3) = (BsHrp + BsPa = ( + B7 + B10)) Pars = (Bs(Hray — Hre)Pars + Bs(Pas — Pa)Pars)
= CParp — G3(X3,Z3)

Here, G3(X3, Z3) = 0, hence the conditions P.5 and P.6 are satisfied. Therefore, by Castillo Chavez the
system is globally stable.
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Theorem 5. The endemic equilibrium point E*(H*, Hip, Py, MY, PZTB,A*,ATFB) is globally asymptotically stable.

Proof. Let us assume Lyapunov function
L*(t) = 3[(H-H*) + (Hrg — Hyg) + (Pa = P',) + (M= M) + (Pagp — Plypp) + (A= A*) + (Arp - A}B)]Z

4 = [(H~H) 4 (Hrp ~ Hyp) + (Pa = P}) &+ (M= M) + (Pars = Prp) + (A= A4°) + (A1 ~ A7)
[H' + Hjpy + Py + M + Py + A + A as]
= [(H-H") + (Hrp —Hyg) + (Pa = Py)) + (M= M) + (Parp — Py pp) + (A= A") + (Arp — A7p)]
(B— u(H + Hrg + Pa + M+ Parp + A+ Arp) — ipA — upr5Ats]
= —[(H-H")+ (Hrp — Hyy) + (Pa—Py) + (M =M") + (Parg — Py 1) + (A= A") + (A1 — Alp)]
[1((H = H*) + (Hrs = Hi) + (P4 = P)) + (M= M") + (Parp = Pypg) + (A= A°) + (Arp = Ap))]
—u[(H=H") + (Hrg - Hyp) + (Pa = Piy) + (M= M) + (Parp — Piypp) + (A =A%) + (Arp — A7)
0

IA |

where B = u(H" + Hyp + Py + M + Py pp + A"+ Alp) + upA + uprgArp O
Here, % < 0. Hence, by LaSalle Invariance principle [21] the endemic equilibrium point is
globally asymptotically stable.

3. Backward Bifurcation
If the reproduction number Ry > 1, then P4 > 0, the system (1) exhibits a unique positive solution
E*. Now, on solving system (2), we have
F(P;) = P + b1 Py +bo (10)

where,

by = B1Bs(Bs(La + 1) — Bs(Ba + 1))
by = ﬁs(#; Ba)[Br(L1 4 ) + Ps(Ls + )] — P15 (L2 + u) (L3 + 1) + BBs] — B2 (L1 + p) (Lo + 1)
bo = Bp1 2

Here, the coefficient b, < 0, and by depends on the value of Ry. If Ry < 1, then by is positive and if
Ro > 1, then by is negative. For Ry > 1, Equation (10) has two roots, positive and negative.

For by > 0, the system has endemic equilibria continuously depending on Ry; this shows that
there exists an interval for Ry, which has two positive equilibria as follows:

o —by — \/blz —4bybg I — -b + \/blz —4byby

I
! 20, 2 2b,

For Backward Bifurcation, setting b2 — 4byby = 0 and solving for critical points of Ry gives
(Bs (1t + Ba) [B1 (L + p) + B5(Ls + p)] = pafs[(La + w) (Ls + p)

+BBs] = B2(L1 + ) (L + w)]2((Ly + p) (L2 + ) (Ls + ) — BB s)

4(B1Ps(Bs(La + ) = Bs(Ba + 1)) Bp2p3 (L1 + p) (Lo + p) (Ls + )

c=1-

If Rc < Ry, then, equivalently, b2 — 4byby > 0 and backward bifurcation occur for the points of Rg,
such that Rc < Ry < 1 [22], as shown in the above Figure 2. Here, Rc= 0.95 is the critical value after
which co-infection attains stability.

117



Axioms 2020, 9, 29

Backward bifurcation

012F a L\
o L
0t
noak
b3
 oos &
&
&
&
0o4f &
[}
e}
00z T 1
¥: 002251 O
: . )
0 05 i 5
RO

Figure 2. Pre-AIDS class at equilibria versus Rp.

3.1. Sensitivity Analysis of Ry
In this section, sensitivity indices of Ry with respect to different parameters are calculated as
shown in Table 2, using the formula y§° = %,%, where a is the model parameter. These indices show

how crucial each parameter is to disease transmission.

Table 2. Effect of Parameters on Sensitivity.

Parameter Value Observation
B 1 The transmission rate of HIV is directly proportional to birth rate.
1 . e transmission rate of co-infection occurs at 49%.
0.4925 The issi f co-infecti 49%
B2 0.9013 Among HIV infectives, around 90% of them join the pre-AIDS stage.
B3 0.6084 Individuals moving toward medication can be increased further by creating awareness programs.
Ba 0.5172
Be 0.77 77% of individuals in pre-AIDS class opt for medication.
7 . rom the pre- , class 50% of individuals undergo medication for isease.
0.5022 F he pre-AIDS, class 50% of individuals underg dication for TB di
3 . ransmission occurs at the rate o o from the pre- class to pre- .
0.5075 T issi h f 50% fi he pre-AIDS cl pre-AIDS TB.
0724 The number of individuals in pre-AIDS class suffering from AIDS can be reduced if they take
Bo : treatment while in pre-AIDS class.
0.9967 The transmission rate of individuals from pre-AIDS TB stage to AIDS TB stage highly effects the
Bro : sensitivity of Rp.
u 0.9793 Natural death rate cannot be removed completely even if the treatment is opted for in initial stage.

The other parameters fs, 11,12, Up, ipre do not have any impact on the sensitivity of
reproduction number.

3.2. Numerical Simulation
From Figure 3 it can be observed that about 34% of the total HIV-infected population gets TB
infection within 15 months. Approximately 30% of individuals infected with HIV go for treatment
in 27 months. Co-infected individuals undergo treatment for TB in 11 months. Within 26 months,
approximately 31% of HIV-infectives proceed to next stage, i.e., AIDS. About 22% of pre-AIDS infectives
get TB infection and join pre-AIDS TB in 20 months. Individuals in the pre-AIDS class initially undergo
medication then, due to ignorance or any other social reason, individuals leave the compartment and,
after some time, joins the medication class again. Between approximately 1.7 and 4 months, individuals
in the pre-AIDS class (not taking any kind of medication) suffer from AIDS, whereas those undergoing
treatment get infected by AIDS within 28 months. This shows that medication is helpful. Even though
it does not help the complete elimination of disease, the rate of disease spread can be controlled.
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Figure 3. Transmission of HIV-TB co-infection.

From Figure 4, we can conclude that individuals in Pre-AIDS class for a longer duration get AIDS
at faster rate than the individuals who have just joined the pre-AIDS class.
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Figure 4. Intensity of pre-AIDS class versus AIDS class.

Figure 5 indicates that individuals suffering from HIV suffer from TB also, and both the
compartments stabilize after some time. Figure 6 shows that individuals in the pre-AIDS class

also suffer from TB. The trajectory is stable.

Figure 5. Behavior of H v/s Htp.
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PA

Figure 6. Trajectory of Po7g and P4.

Figure 7 shows the stability of the respective compartments.
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Figure 7. Phase transition plot of M with Hrg and P47p.

Figure 8 shows that the newly HIV-TB infected individuals and individuals in Pre-AIDS TB
class will oscillate cyclically. Here, neither compartment will die out completely nor they will
grow indefinitely.

1 i | O N S S W=

026 o f

(1111 S - e E = o

i
1) 005 o1 018 a2 025 03
PATB

Figure 8. Phase transition of co-infection and pre-stage of co-infection.
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From Figure 9, it can be observed that, of the total population, 21% are HIV infected and 13% are
HIV-TB infected, whereas the percentage of individuals in pre-AIDS and pre-AIDS TB stage is 16%
and 6%, respectively. A total of 15% of the population undergoes treatment for both diseases. Since
HIV-AIDS is not curable, even after taking treatment, 17% of cases lead to AIDS infections and 12% are
infected by TB, moving towards the AIDS TB class.

Figure 9. Percentage wise distribution of different compartments.
4. Conclusions

In this paper, a mathematical model of HIV-TB considering the HIV-infected population is studied.
Using data tabulated in Table 1, we have Ry = 2.262 > 1, which shows the persistence of the disease in
the society. HIV-AIDS cannot be eradicated completely from the infected population. Next, global
stability is shown for the equilibrium points where there is no co-infection, and instances when there is
no individual in the pre-AIDS TB class are shown using Castillo Chavez method. The equilibrium
points where there is no co-infection and no individual in the pre-AIDS TB class proved to be globally
unstable and is said to exhibit bifurcation. The endemic point is proven to be globally stable using
Lyapunov function. Backward bifurcation analysis is studied, which indicates that a minimum of 95%
of individuals join the pre-AIDS class. Numerical simulation is done to validate the model, which
concludes that the medication plays a vital role in controlling disease spread. Here, we can observe
that if treatment is provided at the initial stage of disease, its further progression can be prevented,
and survival of individuals can be extended. The value of the reproduction number is highly affected
by the rate at which individuals join the AIDS TB class. The pie-chart exhibits the distribution of the
population in various compartments in the model.
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1. Introduction

Let H represent the continuous harmonic functions which are harmonic in the open unit disk
U = {z:z€C,z| <1} and let A be a subclass of H which represents the functions which are analytic in
U. A harmonic function in U could be expressed as f = h + g, where /1 and g are in A, 1 is the analytic
part of f, g is the co-analytic part of f and |h’(z)| > | I (Z)| is a necessary and sufficient condition for f
to be locally univalent and sense-preserving in U (see Clunie and Sheil-Small [1]). Now we write,

h(z) =z+ i a,2", g(z Z buz". )
n=2

Let SH represents the functions of the form f = h + g which are harmonic and univalent in
U, which normalized by the condition f(0) = f2(0) =1 = 0. The subclass SH? of SH consists of all
functions in SH which have the additional property fz(0) = 0. The class SH was investigated by Clunie
and Sheil-Smallas [1]. Since then, many researchers have studied the class SH and even investigated
some subclasses of it. Also, we observe that the class SH reduces to the class S of normalized analytic
univalent functions in U, if the co-analytic part of f is equal to zero. For f € S, the Salagean differential
operator D"(n € Ng = NU{0}) was defined by Salagean [2]. For f = h + g given by (1), Jahangiri et
al. [3] defined the modified Salagean operator of f as

D" f(z) = D"h(z) + (-1)"D"g(2),

where

=)

D"h(z) =z + Z n"a,z", D"g(z) = Z n"buz".

n=2
Next, for functions f € A, For n € Ny, >y > 0, Yalgin and Altinkaya [4] defined the differential
operator of I;’ﬁ f: SH® — SH®. Now we define our differential operator:

Axioms 2020, 9, 32; doi:10.3390/axioms9010032 123 www.mdpi.com/journal/axioms
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Ig,,u,)\,n,g,rf(z) = h(Z) + g(Z)

- —(0— —7)D°f(z)+(6—¢)(A-1)D' f(z
:z+n§2(“+/‘ (- ) (o0 )Df<))

I;,y,/\,g,ff(z) (2)

A= (=) (A=) (1(2)+3())+ (6-0) (1-1)(h()+25 )
- utA

1 -1
Ig;t,A,g,Tf(z) = Ié,y,/\,g,“[(Ig,ly,/\,g,rf(z) ) (3)

If f is given by (1), then from (2) and (3), we get (see [5])

m 0 m
i _ u+/\+<6—;>u—7><n—1>) ,
6,,u,/\,g,1f(z) S néz( ptA nZ

*)

oS} m
+(_1)m ngz( yMHé_ﬁ(Q_T) (n-1) ) b,

The operator I’b”'#' redf (z) generalizes the following differential operators:

If f € A then whenwe take p =1, A =0, 6 =0, t = 1, ¢ = 1 we obtain Ig’lT' é,;f(z) was
introduced and studied by Ramadan and Darus [6]. By taking different choices of u, A, 0, Tand ¢ we
getli' ) oo (z) was introduced and studied by Darus and Ibrahim [7], Izl a0 10f (z) was introduced
and studied by Swamy [8], I, 10,10 (z) was introduced and studied by Al-Oboudi [9] and Igf 0, 1,0 f(z)
was introduced and studied by Salagean [2].

If f € H, then IIK 10,10 f(z) becomes the modified Salagean operator introduced by Yasar and
Yalgin [10].

A function f: U — C is subordinate to the function g: U — C denoted by f(z) < g(z), if there

exists an analytic function w : U — U with w(0) = 0 such that
f(z) = g(w(2)), (z € U).

Moreover, if the function g is univalent in U, then we have (see [11,12]):

f(z) < g(z) if and only if f(0) = g(0), f(U) c g(U).

Denote by SHO((S, WA, ¢, t,m, A, B) the subclass of SHO consisting of functions of the form (1) that
satisfy the condition

+1
gf,u,)\,g,rf(z) 1+ Az

< ,~1<A<B<1 ®)
Ig't#,)\/glrf(z) 1+Bz
where [ f(z) is defined by (4). For relevant and recent references related to this work, we refer

o,u,Am,c,T
the reader to [13-20].

In this paper we use the same techniques that have been used earlier by Dziok [21] and Dziok et
al. [22], to investigate coefficient bound, distortion bounds, and some other properties for the class
SHO((S, w,A, ¢, t,mA,B).

2. Coefficient Bounds

In this section we find the coefficient bound for the class SHO((S, wA, ¢ t,mA,B).

Theorem 1. Let the function f(z) = h + g be defined by (1). Then f € SHO(s, w,A,c,t,mA,B) if

=)

Z(Cn|ﬂn| + Dn|bn|) <B-A (6)
n=2
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where

C(u+ A+ (0-0)A-0)(n-1)\"[(6-c)(A-T)(n=1)[B+1] - (u+A)(B-A)
C"_( p+A ) { p+A } 7

and

_ (y+A+ (6—g)(A—T)(n—1))’”{[A+B(2+ (6—@)(/\—1)(n—1))](y+/\)}. ®)

" p+A p+A
Proof. Leta, # 0 or b, # 0 for n > 2. Since C,, D,, > n(B — A) by (6), we obtain
I(2)] -8’ ()| 2 1= ¥ nlaaliz"™ = ¥ nlbyllz/"™*
n=2 n=2

>21-[7 Zz(nlanl + nlb,|)

3

>1- g2 zz(cn|an| + Dyulbal)
=
>1-—|z|>0.

Therefore, f is univalent in U. To ensure the univalence condition, consider z;,z, € U so that

z1 # zp. Then
n
— m=1 _ _n-m
= Z TR
m=1

n
<Y s <n n 2

n_ n

375

Z1—Z
1 2 m=1

So, we have
Lo b (271' -z )
21-22+ Y On (zg‘ -z )

fz1)—f(z2)
h(z1)=h(z2)

8(z1)-8(22)

21 -5

D,
>1— Z:ozz nlby| _ Z;OZZ r!jﬂhn‘
N = C =Y,
1= milan] Z:o:z ﬁk’rﬂ

which proves univalences.
On the other hand, f € SH0(6, WA, c,t,mA,B) if and only if there exists a function w;
with w(0) = 0, and |w(z)| < 1(z € U) such that

+1
g,'y,)\,g,rf(z) 1+ Az
Ing,A/g,Tf(z) 1+ Bz

or
m+1
Ié,u,/\,é,ff (2) - Igfp,/\,mf (2)

1
Blgj; hex flz) - Algfyl Lex f(z)

<1, (zel). ©)
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The above inequality (9) holds, since for |z| = 7 (0 < 7 < 1) we obtain

+1 +1
Igu/A,C,Tf(Z) - Ig,l[,t,/\,c,ff(z)' ‘Blgl,u Ac, Tf( ) Algly Ac, Tf(z)‘

S (A +E-0)A-1)(n=1) \" (5-0) (A-1) (n-1)
- n§2(’“ TTa ) : et "

O [ u+A+(6-0) (A=1) (n=1) " 2(u+A) +(6-c) (A=1) (n=1) T
+(_1)mn§2(;+ +( “)+(A )( )) <H)+(yi)A( )( )bnz”

—‘(B—A Z+ Z ([.l+/\+ (& ;_)F(}/\t 7)(n— 1)) (Bp+?\+(bfﬁ_)'—(;l\f"[)(nfl) —A)anz”

— (=" E(u+/\+(6—g>(A—r)<n—1))"’(B 2(u+A)+6(=¢) (A=7) (1-n) +A)b,,7

n=2 A oA
< ’1%:‘2(H+/\+(6—ﬂr(;—7)(n—1))m (5= )(:J o+
Ez(wﬂ(éfﬁ_”("_” )"12(H+A)+(6l:i)}\ (A0 o (5~ Ay
+§2(W+ (-0(-r) -1 ) (Bp+/\+(5 SR A)lanw
I gZ(HM IJ_){_(}/\\*T)(W*U)m(B2(#+/\)+((‘7[~lfi)}\(2\7”[)(n71) +A)|bn|r”

< 7’{ E (Culanl + Dn|b11|)7'n_1 - (B —A)} <0.

n=

Therefore, f € SHO (6,1, A, ¢, t,m,A,B), and so the proof is completed.

Next we show that the condition (6) is also necessary for the functions f € H to be in the
class SH(%(ES, wAct,mAB) = T"N SHO((S, w,A,¢,t,m,A,B) where T™ is the class of functions
f=h+3 e SHO so that

f=h+3=z i anz" + ( Zw Zi(z € U). (10)
O

Theorem 2. Let f = h + g be defined by (10). Then f € SHOT((S, w A, ¢, t,m,A,B) if and only if the condition
(6) holds.

Proof. For this proof, we let the fractions (6_;)(;\% =Land 2 'MH((SJ?A(A_T)("_D = K. The first

part “if statement” follows from Theorem 1. Conversely, we suppose that f € SHg((S, WA t,mA,B),
then by (9) we have

ZZ[(L)'"%I%IZ" (K)m2(1.1+A)+(6’;i)]‘()x—1)(n—1)—lbnlzn]
ne

<1

(B-A)z- ¥, [(L)"(BL = A)lanlz" + (K)" (BK + A)lbylz"]

n=2
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For |z| = r < 1, we obtain

Y [(LY"W%M " (K)m2<f:+A>+<a;+;>A(A—T><n—1>m]rn_l

<1

(B=A) = X [(1)"(BL= Alasl + (K)" (BK+ A1

Thus, for C;; and D, as defined by (7) and (8), we have

[es)

Y [Culal + Dulbull"™ < B- A0 <7 < 1).(11) 1)
n=2

Let {pn} be the sequence of partial sums of the series

n

Z[Cklakl + Dyelbyl]-
k=2

Then {p,} is a non-decreasing sequence and by (11) it is bounded above by B — A. Thus, it is
convergent and

Y [Culaul + Dalbl] = lim py < B~ A.
n=2

This gives us the condition (6). O

3. Compactness and Convex

In this section we obtain the compactness and the convex relation for the class
SHO(é,y,/\,g,T,m,A,B).

Theorem 3. The class SHOT((S, w, A, c,t,m,A,B) is convex and compact subset of SH.

Proof. Let f; € SH%((S, WA, ¢ t,m A, B), where
fie) =2=) |aalz" + (-1)" Y |z e U, teN). (12)
n=2 n=2

Thenfor0<y <1,letfi, » € SH%((S, WA, ¢, t,m A, B) be defined by (12). Then

@) =ph) +1-¢)f()
=== EVlonal + (=) ()" E (vl + (1=l

=2

and

5 {Ca(farn] + (1 = 9)aza]) + Da(@lors] + (1= )],

n=2

= L [Colava| + Dafbral) + (1= ) I [Coleza| + Difeza)

<y(B-A)+(1-¢)(B-A) =B-A.

Thus, the function & = ¢ f1(z) + (1 =) f2(z) is in the class SHOT((S, w,A,¢,t,m,A,B). This implies
that SHOT(é, WA, ¢ t,mA, B) is convex.
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For f; € SH%((S, tA,c,7,m A, B),t € Nand |z| < r (0 < r < 1), then we have
@) =+ T flea] + o]
o

<r+ %042{Cn|ut/11| + Dn|bt,n|}rn
n=
<r+ (B-A)?

Therefore, SHSJ.((S, WA, ¢, t,m,A,B) is uniformly bounded. Let

[eS)

fi(z) =z— Z|at,n|z" +(-1)" i|bm|z_”(z el, teN).

n=2 n=2
also, let f = h + g where h and g are given by (1). Then by Theorem 2 we get

[=S)

" {Calaul + Dufb ]} < B-A. (13)

n=2

If we assume f; — f, then we get that |atn| — |a,| and |bt,,| — |by| as n — +oo (t € N). Let {p,}
be the sequence of partial sums of the series Z {Cnlami + Dnlb,n“ Then {p,} is a non-decreasing
n=
sequence and by (13) it is bounded above by B — A Thus, it is convergent and

=S}

Z{Cnlami + Dulbtl} = lim py < B-A.

n=2

Therefore, f € SH?.((S, U, A, ¢,7,m,A,B) and therefore the class SH%((S, WA, ¢, t,m,A, B)is closed.
As a result, the class is closed, and the class SH%(&S, A ¢ T,mA, B) is also compact subset of SH,
which completes the proof. O

Lemma 1 [23]. Let f = h + g be so that h and g are given by (1). Furthermore, let

Z{’; “|an| ”+“|b |}<1(zeu)

where 0 < o < 1. Then f is harmonic, orientation preserving, univalent in U and f is starlike of order a.

Theorem 4. Let 0 < a < 1,C;, and Dy, be defined by (7) and (8). Then

Co_ D }]% (14)

(SH (0 41,2, g,TnAB n>2[B A ln{n+a'n+a

where 17, is the radius of starlikeness of order a.
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Proof. Let f € SH%((S, w,A, ¢, t,m,A,B) be of the form (10). Then, for |z] = r < 1, we get

2
(2-a)z- L (n-1-claz~(-1)" £ (n-1-+0) "

n=

a— E {(n—l—a)lu,,\—(—l)'" E (n+1+a)|b,,|}r”‘]
n=2

n=2

IA

20- ¥ {(n—l—a>|an|—<—1>’" >°:°2<n—1+a>|hn|} '

n=2 n=

By using Lemma 1, we observe that f is starlike of order a in U, if and only if

lonf(z) - (1+a)f@)|
Ingf(2) + (1 +a)f(z) ’ p
or N
n-—a n+a .
;{m"‘"' + mw}r T, )

Furthermore, by using Theorem 2, we get

[ C D
Y {2l + bl < 1,
1 -a 1-a

Condition (15) is true if

This proves
n+a , 4 D,
- <
1-a  “B-4

So, the function f is starlike of order « in the disk Uy where

* . [1—11 . { Cy Dy }]”]Tl
¥y, = inf min , ,
B n+a n+a

"l =12,3...).

and the function

So, the radius 7, cannot be larger. Then we get (14). O
4. Extreme Points
In this section we find the extreme points for the class SHO((S, wA,c,t,mA,B).

Theorem 5. The extreme points of SHOT((S, U, A, ¢,T,m,A,B) are the functions f of the form (1) where h = hy

and g = gy are of the form
h(z) =z,

hn(z) = z— B=Az1, (16)

au(z) = (—1)"1%2_", (zel, n>2).
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Proof. Suppose that g, = ¥fi + (1 -¢)f, where0 < <land fi, f» € SHOT((S, w,A,c,t,mA, B) are
written in the form

fz—Z|am|z”+ Z|bm|z" (zeU, te{1,2}).

n=2

Then, by (16), we get
B-A
[61,4] = |b2,0] = D,
and a1y = apy = O fort € {2,3...} and by = byy = 0 for t € {2,3...} \ {n}. It follows that
gn(z) = fi(z) = f2(z) and g, are in the class of extreme points of the class SH?.((S, wA, ¢ t,mA,B).
We also can ensure that the functions /1, (z) are the extreme points of the class SHOT(é, w,A,c,t,mA,B).
Now, assume that a function f of the form (1) is in the class of the extreme points of the class
SH(%((S, u,A,¢,T,m,A,B) and f is not of the form (16). Then there exists k € {2,3...} such that

0 < |agl < B-A
g (H+/\+(f5—€)(/\—T)(k—1))m{(5 ) (A=) [(k=1) (B+1)]+(p+A) (B— A)}
u+A utA
or B_A
0 < |by] < — .
1 (HM—(é—s)(A—r)(nH))m{[A+B<2+(r5—¢)(/\—r)(n—1))](pM)}
u+A ut+A
If B_A
0 -
<l < (,u+)l+(é—g)(/\—7)(n—1))m{(é—g)(/\ 7) (n=1)[B+1]—(u+7) (B A)}
putA u+A
then putting
o, |[(w+< A=) (n=1) )'” { (6=9)(A=1) (1=1) [B+1]=(u+A) (B-A) }]
= A [
N B-A
and
_ Sy
1-¢ 7

we have 0 < ¢ < 1, Iy # x. Therefore, f is not in the class of the extreme points of the class
5H3(6, W, A,n,6,t,m,A,B). Similarly, if

0 < bl < — B-A
(H+/\+(5—;)(A—T)(fl—1) ) { [A+B(2+(9=¢) (A=7) (n=1))] (u+1) }
utA utA
then putting
b, |(#+A+( (A= 7)("—1))"1{[A+B(2+(5—€)(/\—T)(n—1))](H+/\)}
- putA putA
v= B-A
and fou
_ STV
s

we have 0 < ¢ < 1, g # x. It follows that f is not in the family of extreme points of the class
SH(%((S, U, A, ¢,t,m,A,B) and so the proof is completed. O
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1. Introduction

To motivate this study first fix a map @ (an important case is when @ is the identity).
Many coincidence problems between a map F and ® (i.e., finding a (coincidence) point x with
F(x) N®(x) # @) arise naturally in applications. For a complicated map F the idea here is to try to
relate it to a simpler and solvable coincidence problem between a map G and ® (i.e., we assume we
have a (coincidence) point y with G(y) N ®(y) # @) where the map G is homotopic (in an appropriate
way) to F and from this we hope to deduce that there is a coincidence point between F and @ (i.e.,
we hope to deduce that there is a (coincidence) point x with F(x) N ®(x) # @). To achieve this we
consider general (instead of specific) classes of maps and we present the notion of homotopy for this
class of maps which are coincidence free on the boundary of the set considered. In particular, in this
paper, we look at multivalued maps F and G with selections in a given class of maps and with F = G
in this setting. The topological transversality theorem in this setting will state that F is ®—essential if
and only if G is ®—essential (essential maps were introduced in [1] and extended by many authors
in [2-5]). In this paper we discuss the topological transversality theorem in a very general setting
using a simple and effective approach. In this paper, we consider a generalization of ®-essential maps,
namely the d-®-essential maps.

2. Topological Transversality Theorems

A multivalued map G from a space X to a space Y is a correspondence which associates to every
x € X asubset G(x) C Y. In this paper let E be a completely regular topological space and U an open
subset of E.

We will consider classes A, B and D of maps.

Definition 1. Wesay F € D(U, E) (respectively F € B(U, E))if F : U — 2F and F € D(U, E) (respectively
F € B(U, E)); here 2F denotes the family of nonempty subsets of E and U denotes the closure of U in E.

In this paper we use bold face only to indicate the properties of our maps and usually D = D
etc. Examples of F € D(U, E) might be that F : U — K(E) is an upper semicontinuous compact map
and F has convex values or F : U — K(E) is an upper semicontinuous compact map and F has acyclic
values; here K(E) denotes the family of nonempty compact subsets of E.

Definition 2. We say F € A(U,E) if F : U — 2F and F € A(U,E) and there exists a selection ¥ €
D(U,E) of .
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Remark 1. Let Z and W be subsets of Hausdorff topological vector spaces Y1 and Y, and F a multifunction.
We say F € PK(Z, W) if W is convex and there exists amap S : Z — W with Z = U {int S~} (w) : w € W},
co(S(x)) C F(x) for x € Z and S(x) # @ for each x € Z; here S~V (w) = {z : w € S(z)}, int denotes the
interior and co denotes the convex hull. Let E be a Hausdorff topological vector space (note topological vector
spaces are completely regular), U an open subset of E and U paracompact. In this case we say F € A(U, E) if
F € PK(U, E) is a compact map, and we say ¥ € D(U, E) if ¥ is a single valued, continuous, compact map.
Now [6] guarantees that there exists a continuous, compact selection f : U — E of F.

In this section we fix a ® € B(U, E) and now we present the notion of coincidence free on the
boundary, ®-essentiality and homotopy.

Definition 3. We say F € Ay (U, E) (respectively F € Dy (U,E)) if F € A(U,E) (respectively F €
D(U, E)) with F(x) N®(x) = @ for x € dU; here dU denotes the boundary of U in E.

Definition 4. We say F € Ay (U, E) is ®-essential in Ay (U, E) if for any selection ¥ € D(U,E) of F
and any map | € Dy (U, E) with J|yy = Y|y there existsa x € U with | (x) N® (x) # @.

Remark 2. If F € Ay, (U, E) is ®—essential in Ay (U, E) and if ¥ € D(U, E) is any selection of F then
there exists an x € U with ¥ (x) N ® (x) # @ (take ] = ¥ in Definition 4), and @ # ¥ (x) NP (x) C
F(x)N® (x).

Definition 5. Let E be a completely reqular (respectively, normal) topological space and let ¥, A € Dy (U, E).
We say ¥ is homotopic to A in the class Dyy (U, E) and we write' ¥ = A in Dy (U, E) if there exists a map
H:Ux[0,1] — 2Fwith H(.,5(.)) € D(U, E) for any continuous function ny : U — [0,1] with n(dU) = 0,
D(x) NHy(x) =@ forany x € dU and t € (0,1), {x € U: @(x) NH(x,t) # D forsome t € [0,1]} is
compact (respectively, closed), Hy = ¥ and Hy = A (here Hy(x) = H(x, t)).

Remark 3. It is of interest to note that in our results below alternatively we could use the following
definition for = in Dy (U, E): ¥ = A in Dyy(U,E) if there exists a map H : U x [0,1] — 2F with
H € D(Ux [0,1],E), ®(x) NH(x) = @ forany x € dU and t € (0,1) (here Hy(x) = H(x,t)),
{xeU: ®(x)NH(x,t) # O forsome t € [0,1]} is compact (respectively, closed), Hy =¥ and Hy = A.
Note here if we use this definition then we will also assume for any map @ € D(U x [0,1], E) and any map
feC(UUx [0,1]) then @ o f € D(U, E); here C denotes the class of single valued continuous functions.

Now we are in a position to define homotopy (=) in our class Ay (U, E).
Definition 6. Let F, G € Ayy(U,E). We say F is homotopic to G in the class Ay;(U, E) and we write
F = Gin Ayy(U,E) if for any selection ¥ € Dy(U, E) (respectively, A € Dy (U, E)) of F (respectively,
of G) we have ¥ = A in Dy (U, E).

Next, we present a simple and crucial result that will immediately yield the topological
transversality theorem in this setting.

Theorem 1. Let E be a completely regular (respectively, normal) topological space, U an open subset of E,
F e Ayy(U,E) and G € Ayy(U,E) is D-essential in Ayy (U, E). Suppose also

for any selection Y € Dy (U, E) (respectively, A € Dy (U, E))
of F (respectively, of G)and anymap ] € Dy (U, E) (1)
with J|ou = ¥lauy wehave A =] in Dyy(U,E).

Then F is ®—essential in Ay (U, E).
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Proof. Let ¥ € Dy (U, E) be any selection of F and consider any map | € Dy (U, E) with J|jy =
¥|yy- It remains to show that there exists an x € U with ] (x) N ® (x) # @. Let A € Dy (U, E) be
any selection of G. Now (1) guarantees that there exists a map H : U x [0,1] — 2F with H(.,5(.)) €
D(U, E) for any continuous function 7 : U — [0, 1] with (9U) = 0, ®(x) N H(x) = @ for any x € oU
andt € (0,1), {xeU: ®(x)NH(x,t) # @ forsome t € [0,1]} is compact (respectively, closed),
Hy = A, and H; = ] (here Hy(x) = H(x,t)). Let

Q={xel: ®(x)NH(x,t) # @ forsome t € [0,1]}.

Now since G is ®-essential in Ay (U, E) then Remark 2 (note Hy = A) guarantees that Q # @.
) is compact (respectively, closed) if E is a completely regular (respectively, normal) topological space.
Next note )N oU = @ and now we can deduce that there exists a continuous map (called a Urysohn
map) y: U — [0,1] with #(oU) =0 and u(Q) = 1. Define a map R by R(x) = H(x, u(x)) for x € U.
Note R € Dy (U, E) with R|yy = Hylay = Alsy- Now since G is ®—essential in Ay (U, E) then there
exists x € U with R(x) N®(x) # @ (e, Hy(x)(x) N ®(x) # @) and so x € Q. Asaresult p(x) = 1s0
@ # Hy(x) N®(x) = J(x) N®(x), and we are finished. [

Now assume
=~ in D,y (U, E) is an equivalence relation (2)
and B -
if Fe Ayy(U,E) andif ¥ € Dyy(U,E) isany
selection of F and | € Dy (U, E) is any map (3)
with Y|y = Jloy then ¥ 2] in Dy (U, E).

Theorem 2. Let E be a completely regular (respectively, normal) topological space, U an open subset of E,
and assume (2) and (3) hold. Suppose F and G are two maps in Ay (U, E) with F = G in Ay (U, E). Now
F is ®-essential in Ayy (U, E) if and only if G is ®-essential in Agy (U, E).

Proof. Assume G is ®-essential in Ay (U, E). We use Theorem 1 to show F is ®-essential in
Ayu(U,E). Let ¥ € Dyy(U,E) be any selection of F, A € Dy;(U, E) be any selection of G and
consider any map | € Dy (U, E) with J|yy = ¥|oy. Now (3) guarantees that ¥ = J in Dy (U, E)
and this together with F 2 G in Ay (U, E) (so ¥ = A in Dy (U, E)) and (2) guarantees that A 2 |
in Dy (U, E). Thus (1) holds so Theorem 1 guarantees that F is ®—essential in Ayy (U, E). A similar
argument shows if F is ®-essential in Ay (U, E) then G is ®-essential in Ay (U, E). O

Now we consider a generalization of ®—essential maps, namely the d—®—essential maps (these
maps were motivated from the notion of the degree of a map). Let E be a completely regular
topological space and U an open subset of E. Forany map ¥ € D(U,E) let ¥* = I x ¥ : U — 2U*E,
with I:U — U givenby I(x) = x, and let

d: {(‘I’*)’l (B)} U{@} = K (4)

be any map with values in the nonempty set K; here B = {(x, ®(x)) : x € U}.
Next we present the notions of d-®-essentiality and homotopy.

Definition 7. Let F € Ayy(U,E) and write F* = I x F. Wesay F* : U — 2UXE js d—d—essential
if for any selection ¥ € D(U,E) of F and any map ] € Dyy(U,E) with J|yy = ¥|yy we have that
d ((IY*)*1 (B)) =d ((1*)*1 (B)) £ d(Q); here ¥* = [ x Yand J* = x .

Remark 4. If F* is d—®P-essential then for any selection ¥ € D(U, E) of F (with ¥* = I x ¥) we have

Q£ M) (B)={xelU: (x,¥(x)N(x,®(x)) # D},
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so there exists a x € U with (x,'¥(x)) N (x, ®(x)) # D (ie., P(x) N¥(x) # D so in particular $(x) N
F(x) # Q).

Now we define homotopy in this setting for our class Dy (U, E).

Definition 8. Let E be a completely regular (respectively, normal) topological space and let ¥, A €
Dyy(U,E). We say ¥ is homotopic to A in the class Dy (U, E) and we write ¥ = A in Dyy (U, E)
if there exists a map H : U x [0,1] — 2F with H(.,5(.)) € D(U,E) for any continuous function
7 U = [0,1] with n(@U) = 0, ®(x) N Hi(x) = @ for any x € oU and t € (0,1),
{xel: (x,®(x))N(x,H(x,t)) # D forsome t € [0,1]} is compact (respectively, closed), Hy = ¥ and
Hy = A (here Hy(x) = H(x, t)).

Remark 5. There is an analogue Remark 3 in this situation.

Definition 9. Let F, G € Ayy(U,E). Wesay F = G in Ayy (U, E) if for any selection ¥ € Dy (U, E)
(respectively, A € Dy (U, E)) of F (respectively, of G) we have ¥ = A in Dy (U, E) (Definition 8).

Theorem 3. Let E be a completely regular (respectively, normal) topological space, U an open subset of E,
B = {(x,®(x)): x € U}, d is defined in (4), F € Apu(U,E), G € Ay(U,E) with F* = I x F and
G* = I x G. Suppose G* is d—D—essential and

for any selection ¥ € Dy (U, E) (respectively, A € Dy (U, E))

of F (respectively, of G)and anymap ] € Dy (U, E) with

Jlou = ¥lou wehave A =] in Dyy(U,E) (Definition 8) and ()
d ((‘F*)*1 (B)) =d ((A*)*1 (B)),- here ¥* = x ¥ and A* = x A.

Then F* is d—®d—essential.

Proof. Let ¥ € Dyy(U, E) be any selection of F and consider any map | € Dyy(U,E) with
Jlou = ¥loy- It remains to show d ((‘I’*)71 (B)> =d ((]*)71 (B)) # d(D); here ¥* = I x ¥ and
J* = Ix]. Let A € Dyy(U,E) be any selection of G and let A* = I x A. Now (5) guarantees
that there exists a map H : U x [0,1] — 2F with H(.,5(.)) € D(U,E) for any continuous
function y : U — [0,1] with (dU) = 0, ®(x) N Hi(x) = @ for any x € 9U and t € (0,1),
{xelU: (x,®(x))N(x,H(x,t)) # O forsome t € [0,1]} is compact (respectively, closed), Hy = A
and H; = J (here H;(x) = H(x,t)) and d ((T*)*l (B)) =d ((A*)*1 (B)). Let

Q={xel: (x,®(x))N(x,H(x,t)) # @ forsome t € [0,1]}.

Now Q # @ since G* is d-P-essential (and Hy = A). Q is compact (respectively, closed) if
E is a completely regular (respectively, normal) topological space. Next note Q) NoU = @ and so
there exists a Urysohn map u : U — [0,1] with u(dU) = 0 and u(Q)) = 1. Define a map R by
R(x) = H(x,pu(x)) for x € U and write R* = I x R. Note R € Dy;(U, E) with R|yy = Holyy = Alau-
Since G* is d-P—essential then

a7 (B) =d ((R) " (B) #d(@). (6)
Now since (Q)) = 1 we have

(R~ (B)

{xelU: (x,@(x)N(x Hx p(x)) # 0}
= {xelU: (x,®(x)N(xH(x1)£0}=(0")" (B),
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so from (6) we have d ((A*f1 (B)) =d ((]*)7l (B)) # d(®). Now combine with the above and we
have d ((qf*)*l (B)) =d ((]*)*1 (B)) £d(@). O

Now assume
=~ in D,y (U, E) (Definition 8) is an equivalence relation (7)

and
if Fe Ayy(U,E) andif ¥ € Dyy (U, E) is any selection
of Fand | € Dyy(U,E) is any map with ¥y = J|oy (8)
then Y = ] in Dy (U, E) (Definition 8).

Now we establish the topological transversality theorem in this setting.

Theorem 4. Let E be a completely regular (respectively, normal) topological space, U an open subset of E,
B={(x,®(x)): x € U},dis defined in (4), and assume (7) and (8) hold. Suppose F and G are two maps in
Ayu(U,E) with F* = I x F,G* =1 x Gand F = G in Ay (U, E) (Definition 9). Then F* is d—®—essential
if and only if G* is d—P—-essential.

Proof. Assume G* is d—P-essential. Let ¥ € Dy;(U,E) be any selection of F, A € Dy (U, E)
be any selection of G and consider any map | € Dyy(U,E) with Jljy = Y|oy. If we show
(5) then F* is d-®-essential from Theorem 3. Now (8) guarantees that ¥ = | in Dy (U, E)
(Definition 8) and this together with F = G in Ay (U, E) (Definition 9) (so ¥ = A in D,y (U, E)
(Definition 8) ) guarantees that A = ] in Dy (U, E) (Definition 8). To complete (5) it remains
to show d ((¥*)™" (B)) = d((A")™" (B)); here ¥* = I x ¥ and A* = [ x A. Note G = F in
Ayu (U, E) (Definition 9) so let H : U x [0,1] — 2F with H(.,7(.)) € D(U, E) for any continuous
function 7 : U — [0,1] with n(@U) = 0, ®(x) N Hi(x) = @ for any x € 9U and t € (0,1),
{xel: (x,@(x))N(x, H(x,t)) # D forsome t € [0,1]} is compact (respectively, closed), Hy = A
and Hy = ¥ (here H;(x) = H(x,t)). Let

QO={xel: (x,P(x))N(x,H(x,t)) # @ forsome t € [0,1]}.

Now Q # @ and there exists a Urysohn map u : U — [0,1] with u(dU) = 0 and u(Q) =
1. Define the map R by R(x) = H(x,u(x)) and write R* = [ x R. Now R € Dy (U, E) with
Rlau = Alpy so since G* is d-P-essential then d ((A*)7l (B)) =d ((R*)*1 (B)) # d(@). Now since
1#(Q) = 1 we have (see the argument in Theorem 3) (R*) ' (B) = (¥*) ! (B) and as a result we have

d((e)7 B) =d (a7 (B). O

Remark 6. It is also easy to extend the above ideas to other natural situations [3,4]. Let E be a (Hausdorff)
topological vector space (so automatically completely reqular), Y a topological vector space, and U an open
subset of E. Let L :domL C E — Y be a linear (not necessarily continuous) single valued map; here dom L
is a vector subspace of E. Finally T : E — Y will be a linear, continuous single valued map with L+ T :
dom L — Y an isomorphism (i.e., a linear homeomorphism); for convenience we say T € Hy(E,Y). We say
Fe A(U,Y;L,T) if (L+T) ' (F+T) € A(U, E) and we could discuss ®—essential and d-D-essential in
this situation.

Finally, we consider the above in the weak topology situation. Let X be a Hausdorff locally

convex topological vector space and U a weakly open subset of C where C is a closed convex subset
of X. We will consider classes A, B and D of maps.
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Definition 10. We say F € WD (U%, C) (respectively F € WB(U®,C)) if F : U% — 2€ and F € D(U?,C)
(respectively F € B(UW, C)); here U denotes the weak boundary of U in C.

Definition 11. We say F € WA(U®,C) if F : UY — 2€ and F € A(U®,C) and there exists a selection
¥ € WD(U®, C) of F.

Now we fixa ® € WB(W, C) and present the notion of coincidence free on the boundary,
P-essentiality and homotopy in this setting.

Definition 12. We say F € WA,y (U%,C) (respectively F € WDy (U%,C)) if F € WA(U®,C)
(respectively F € WD(UW, C)) with F(x) N®(x) = @ for x € 9U, here 0U denotes the weak boundary of
UinC.

Definition 13. We say F € WAy, (U%,C) is ®-essential in WAy (U, C) if for any selection ¥ €
WD(U®,C) of F and any map ] € WDy (U®,C) with [y = ¥|yy there exists a x € U with ] (x) N
P (x) £ .

Definition 14. Let ¥, A € WD, (U%,C). Wesay ¥ = A in WDy (U%, C) if there exists a map H : U% x
[0,1] — 2C with H(.,7n(.)) € D(U®,C) for any weakly continuous function i : U® — [0,1] with n(dU) =
0, P(x) N Hy(x) =@ forany x € dU and t € (0,1), {x € U¥ : ®(x) NH(x,t) # D forsome t € [0,1]}
is weakly compact, Hy =¥ and H; = A (here H(x) = H(x,t)).

Definition 15. Let F, G € WAy (U®,C). We say F = G in WAy (U®,C) if for any selection ¥ €
WDy (U®,C) (respectively, A € WDy (U, C)) of F (respectively, of G) we have ¥ = A in WD,y (U, C).

Theorem 5. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of C
where C is a closed convex subset of X. Suppose F € WAy (U%,C) and G € WAy (UY, C) is d-essential
in WA (U%,C) and

for any selection ¥ € WDy (U¥,C) (respectively, A € WDy (U®,C))
of F (respectively, of G)and any map ] € WDy, (U®,C) 9)
with J)oy = ¥lau wehave A =] in WDy, (U%,C).

Then F is ®—essential in WAz (U®,C).

Proof. A slight modification of the argument in Theorem 1 guarantees the result; we just need to note
that X = (X, w), the space X endowed with the weak topology, is completely regular. [

Assume
=~ in WDy, (U%,C) isan equivalence relation (10)

and
if Fe WAy (U%,C) andif ¥ € WDy (U?,C) is any
selection of F and | € WDy (U%,C) isany map (11)
with Y|y = Jlsy then ¥ =] in WDy (U%,C).

A slight modification of the proof of Theorem 2 guarantees the topological transversality theorem
in this setting.

Theorem 6. Let X be a Hausdorff locally convex topological vector space and U a weakly open subset of C
where C is a closed convex subset of X and assume (10) and (11) hold. Suppose F and G are two maps in
WAy, (U™, C) with F = G in WAy (U%,C). Now F is ®—essential in WAy (UY,C) if and only if G is
D-essential in WAy, (UP,C).
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Abstract: A class of Briot-Bouquet differential equations is a magnificent part of investigating the
geometric behaviors of analytic functions, using the subordination and superordination concepts.
In this work, we aim to formulate a new differential operator with complex connections (coefficients)
in the open unit disk and generalize a class of Briot-Bouquet differential equations (BBDEs). We study
and generalize new classes of analytic functions based on the new differential operator. Consequently,
we define a linear operator with applications.
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1. Introduction

Inequalities in a complex domain play a massive role in function theory. They have been employed
to introduce the geometric interpolation of analytic functions in the open unit disk. Moreover, they
have been utilized to formulate generalized classes of analytic functions. Recently, Lupas [1] suggested
a combination of two famous differential operators given by Ruscheweyh [2] and Salagean [3] to
present a set of inequalities and inclusions by using the concept of subordination.

In this study, we shall define a new differential operator of complex coefficients and study its
behaviors based on the properties of the theory of geometric functions. The new operator will be
formulated in generalized sub-classes of starlike functions. Subordination inequalities include the
generalized operator, and some well-known functions are discussed. Sharp results are indicated in
the sequel. As an application, we introduce a generalization of a class of Briot-Bouquet differential
equations (BBDEs) in the complex domain. Consequently, examples are illustrated utilizing the
time-space BBDEs. A comparison with recent works is shown in the sequel.

2. Differential Operators

The theory of special functions in one variable has a long and ironic past; the rising importance
in special functions of several variables is moderately contemporary. Currently, there has been quick
progress specifically in the area of special functions with the consideration of symmetries and harmonic
analysis connected with root systems. The drive for this work comes from some generalizations of the
theory of symmetric spaces, whose functions can be written as special functions depending on definite
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sets of parameters. A key implementation in the study of special functions with reflection symmetries
is Dunkl operators, which are known as a class of differential-difference operators. In this effort,
we present a Dunkl differential-difference operator of the first type in a complex domain, under a
special class of analytic functions, called a class of normalized analytic functions. This class plays an
important role in the field of geometric function theory. Based on this connection between the Dunkl
operator and geometric function theory, we impose a major class of geometric presentations called the
starlike class of analytic functions. A significant motivation to study Dunkl operators is created by their
application in the analysis of quantum many-body systems of a special type. These operators describe
integrated systems in one dimension and have seen considerable increased attention in mathematical
physics, especially in conformal field theory (see [4,5] for recent works).
Let A be the class of the analytic functions taking the expansion:

Y@ =c+ izné‘”, feu={¢: [z <1} M

For a function Y € A, the Ruscheweyh formulation of the derivative is given by the following
expansion formula:

R™ ¥ (g) =G+ 2 C:::Jrnfl Y C",
n=2

where the term C"

mi4n_1 is the combination of coefficients. Moreover, the Salagean derivation expansion
is defined by:

S"Y (@) =&+ Y n" vl
n=2

Consequently, Lupas combined the above operators to get a linear operator as follows [1]:

e

LY () =¢+ [an™ + (1 —a)Cp 1] Yul", €U acl0l]

n=2

Here, we introduce a differential operator taking the following expansion:

D} Y () =Y (&)

DIY (@) =2Y @ +A((Y@) -8~ (r(-0)+8)), A€C
: 2
D ¥ (§) = DA(DY 1 Y (£))

S o Yol A~
n=2

For A = 0, the operator reduces to the Salagean differential operator. Moreover, the operator DY’
imposes a modification of the Dunkl operator of the first type [6,7], where A is the Dunkl parameter,
which indicates the balance between the differential and difference part in Equation (2). One of its
applications is recognizing the harmonic and oscillation behaviors of the solution, and Y (—¢) is the
reflection of the function Y (&), which plays a significant role in the symmetry problem. Moreover,
when m = 2, the operator reduces to the generalized Dunkl-Coulomb operator [8].

Remark 1. We note that the original Dunkl operator admits the formula (see [9]):

DY (&) = Y'(@) + 5 (7(&) = ¥(~8),
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which implies that DY (&) & A . Therefore, (2) is a modification that gives D Y (&) € A (the class of normalized
functions in the geometric function theory).

We proceed with discussing the behavior of the term A(1 + (—1)"*1). Obviously, when:

P 1 i 1
= Toaw = ey
we get the shifted Salagean differential operator:

D"y (&) = &+ i[nﬂ]m Yl

(3)
Furthermore, we have:

: _qynly 2in
nlgrc}o(l + (=) =147,
which implies that for A := T

— = we get (3). The term (1 + (—1)"*1) plays an important role in the
oscillation problem, which was discussed in [8] (see Figure 1):

(n from =13 to 11)

— 1eal part
— imaginary part

I
=
i

| (n from -21to 19)

— 1eal part
— Imaginary part

Figure 1. The first graph is (1 4 (—1)"*1), and the second is 1/ (1 + (—1)"*1).

For functions Y and A in A, we say that Y is subordinated to A, denoted by Y < A, if there occurs

a Schwarz function T € Uwith T(0) =0and |T({)| <1, { € Usothat Y(&) = A(T(¢)) forall & € U
(see [10]). Basically, Y (&) < A({) is equivalent to Y (0) = A(0) and Y (U) C A(U).
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3. Briot-Bouquet Differential Equation

The investigation of the complex Briot-Bouquet differential equations (BBDEs) is the study of a
special class of differential equations whose consequences are designed in a complex domain (such as
the open unit disk). The chief formula of BBDE is:

2o =A@, Ye N Eeu.

One can find different applications of these equations in dynamic and control systems (see [11-13]).
The operator (2) can be used to generalize BBDE as follows:

gy Y (@)

DY (@) =A@), teuvel “

where A({) is univalent convex in U. Our aim is to study the upper outcome of (4) by using
subordination inequalities.

Theorem 1. Let Y € A and A(&) be univalent convex in U fulfilling the subordination formula:

gy Y ()
DY Y (©)

Then, the upper bound of the solution of (5) is:

Dy (@) < gep [ ALy,

where ¥ () is analytic in U, with ¥(0) = 0 and [¥(&)| < 1. In addition, for |&| = 1, D} Y (&) achieves
the inequality:

< A(©). ©)

exp ([} AN < [PEED <o ([T AN,

! 0 !

Proof. By the definition of the subordination, Inequality (5) satisfies that there exists a Schwarz
function with ¥(0) = 0 and [¥({)| < 1 such that:

gDy ¥ ()

iy =AY, feu

This leads to the equation:

(DFY (@) 1 _ A(¥(E) -1
DIY (@) ¢ :

By integrating both sides, we obtain:
¢ —
log DY v (&) —log ¢ = / 7[\(?([[)) 1d1.
0

A computation yields:

log <DK’ g (C)) _ /0é A(‘Y(ll)) —14, ©)
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which is equivalent to the fact:

DY Y () <§exp('/og Mm).

2

Further, the function A designs the disk 0 < |¢| < ¢ < 1 on a territory, which is symmetric convex,
agreeing with the real axis, that is:

A(=ifg]) < R(A(Y () < A(S]), 1€ (0,1);

thus, we attain the following inequalities:

A(=0) S A(=efg), ACE]) < A

By employing the above inequalities, we obtain the integral inequalities:

[ A =1 g PACOIZ1y AR 1,

L L L

which leads to the next inequalities:

/(: Mdl<log‘7‘ 7/]wd1,

2 L

exp (/01 A(‘Y(—tllél))—ldl> 7‘D'" ‘< o </01 wm)'

We conclude that:

exp </01 A(¥ (1) 71111) < ‘D’" ‘ < exp </l %m)

L L

and:

|

Theorem 2. Suppose that Y € A with non-negative connections. If R(A) > 0 and A, in Equation (4), is
univalent convex in U, then there occurs a solution fulfilling upper bound inequality:

g _
D (§) < cew ([ %dl), @)
where ¥ (¢) is analytic in U, with ¥(0) = 0 and |¥(¢)| < 1.

Proof. In view of the assumptions, we attain:

Dy ()
%< DY Y () ) =0
C+Emonn+ A1+ (=)™ v, 8"
M(wzﬂ[nwm D]y, & ) =0
1+ yponn+ A1+ (=)™ v, ¢!

%( 1+Z’122[H+)\(1+ n+1)]m yngnfl ) >0
(1+Zn:2n[n+)\(1+(—1)”“)}m e
T4+ + A+ (=1 Hh)]m Y,

>>O, =1t

n=2

& (1 + i nln 4+ A1 4 (=1)"+h)™ Yn) > 0.
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In addition, we confirm that (D}'Y)(0) = 0, which implies that:
Dm Y /!
S(OLY Q)
v Y (©)
|

Hence, according to Theorem 1, we arrive at (7).

Numerical Examples
We deal with the following examples.
®)

Example 1. Suppose the parametric BB-control system (time-space equation):
¢y Y<(§) _1+¢

Dive(§) 1-¢
where 0 < T < 1,|¢| < 1and:
_ ¢
=Gy

= +218 + 3778 + 4770 + 578 + 6T°6° + 0(&7).
Our aim is to apply Theorem 2. By operating the formula of (2) for different values of A > 0, we have:

= F 418 4 9.6T28 + 16138 + 2674 + O(2°),

g
o (=)
pl(—C )= &+ 478 412778 + 1678 + 307425 4+ 0(2%)

P\ (1 -2 ’

D} (7(1 i C)2> =+ 4782 + 15728 +16T°¢* 4 357 4+ O(2°)
D} <ﬁ> = &+ 478 4+ 21728 + 16738 + 457485 4+ 0(29).

Now, a computation implies that:
EAMY()) -1,y gl

dexp (/0 %dl) = gexp (/0 %dl) .

~ Gexp(~2log(¢ ~ 1)), R(E) <1 )

= 4282438 + 424 4+ 585+ 0(2°).

) and (9), we conclude that T € [0.5,1) implies that:

Comparing the connection values of D} (ﬁ
&L
1 g I
Dy <7(1_Tg)2><§exp</0 ; dz).

Therefore, D} (ﬁ) is a solution of Equation (8).
Example 2. In this example, we consider a wave equation taking the formula:
Dl’ll Y !
¢O¥ Y= (@) _ +sin(¢),

DY Yz (¢)

¢
-5

where 0 < T < 1,|¢| < land Y(&) =
146

(10)
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It is clear that: c
/O (sin(1)/1)de = Si(&) = & — &3/18 + /600 + O(&°),

where Si is the sin integral function. Consequently, we have:

fexp (/O5 md!) =¢—3/18+ /600 + O(&°).

L

By compering the connection values, we indicate that T € [0,14.7], and Equation (10) has an upper
univalent solution for all A satisfying:

D! <ﬁ> < Eexp (Si(g)).

Remark 2. Theorem 2 admits the following facts:

e The nonlinear model that we studied has no computational complexity cost. It is, fairly enough, not high
speed because we have one variable and one parameter.

e [t focuses on a starlike formula, which corresponds to the diffusion of the natural system of differential
equations. Therefore, we reformulated the Dunkl operator to be suitable for this study.

®  Theorem 2 gives the upper analytic solution in the open unit disk. Moreover, the upper bound solution is
convex univalent; thus, all the trajectories approximate slightly the solution of Equation (7).

4. Linear Combination Operator

This work deals with a new operator combining R and D7’ as follows:

Jaa Y (&) = (1= a)R™ ¥ (§) +aDy' Y (&)

=7+ i (1—a)Cr,, y +a(n+ AL+ (=1)" )" v, e (1)

Remark 3.

o m=0=7]0,v (&) =Y();

o A=0= ] Y (&)=LIY(2);
o a=0=J" Y () =R"Y(Z);
o w=1=J v (&) =Dy (&);

A=0,a=1= ] Y () =S"Y(Z).
Definition 1. Let & > 0,A € C,and m € N. A function Y € A belongs to &}, («, A, o) if and only if:

S0 Y (&)

— e = 0(G), ey,
Y @) @, ¢

where o is a univalent function with a positive real part in U satisfying o(0) = 1, R(c”'(Z)) > 0.

Note that the class G;,(«, A, o) is a generalization of some classes of analytic functions. Moreover,
this class is a specialist of the Ma and Minda class [14] given as follows (&*(¢)):

Moreover, when o(&) = 1+ sin(&) and m = 0, the class:

gY' (&)
Y(¢)

< 1+ sin(¢)
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was studied by Cho et al. [15]. Our class is a generalization of two classes given by Khatter et al. [16]

as follows: ey (@)
T <B+-pVITE

S <pra-pe

and

where § = 0 introduces the class [17]:
)
Y(¢)

Kumar et al. [18] defined the class by using Bell numbers as follows:

CY/ (C) ) eegfl‘

oy

Y(¢)
Theorem 3. If B € [0,1],§ € U, then each function of the form:
0@ = ﬁ+(1*5) 1+¢
0@ =pt P,
(8= /3+(1—ﬁ)(1+sin(§)),
o o@=p+A-pp,

has the upper and lower bound for all v € (0,1),0 € [0,27) as follows:

‘rg‘lizl}%(ﬂ(i)) o(=r) = E‘HI}\U( ol

and
%1“38%(0(6)) =o(r)= I‘?‘a)ﬂﬂ( ol

Proof. The first and second type can be located in [16]. We only need to prove the third type. For p = 0,
we have the function ¢ (&) = 1 + sin(&) (see [15]). It is clear that:

sin(&) = sin(re’”) = sin(r cos()) cosh(r sin(8)) + i cos(r cos(8)) sinh(rsin(6))

therefore, we have
R(o(¢)) =1+ sin(rcos(h)) cosh(rsin(6)).

Consequently, by taking » — 0, we obtain:

E}i:r;%(ﬂ(é))=1fsin(f) ‘H‘H_I;IU( ) =1

Moreover, we have:
| sin(re’®)|? = cos?(r cos 8) sinh 2(r sin 8) + sin? 2(r cos 8) cosh 2(rsin ) < sinh?(r);
thus, this yields:

I"Ellix R( (&) =1+sin(r) = I\?Iix |o(&)] < 1+ sinh?(r).

Extending the above result, for § > 0, we have:

min R(0(¢)) = B+ (1~ B)(1—sin(r)) = min o(2)| =1,
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and

e R(e(Z)) =B+ (1 - p)(1+sin(r)) = e |7(&)] < B+ (1~ B)(1 +sinh*(r)).

This is similar for the last assertion. [

The next result can be found in [10].

Lemma 1. If T > 0and o € H[1,n|, then there are constants o > 0 and v > 0 withv = v(gp, T, n), so that:

o)+ eer (@) <[5 o < [[2E]

Lemma 2. Let ¢(¢) be a convex function in U, h(§) = ¢(&) + nv(E¢'(¢)) for v > 0, and n be a positive
integer. If 0 € $H[¢(0), n], and:
0(§) +vEd'(§) < h(@), ¢eu,

then
0(¢) < 9(S),

and this result is sharp.

5. Subordination Inequalities

Here, we are concerned with the class &;,(a, A, 0) for special types of ¢(¢) that are given in
Theorem 3.

Theorem 4. The class S}, («, A, o) achieves the following inclusion:
G(a, A o) C S, Ay) C Sy, A),
where ¢ is one of the types in Theorem 3 and:

o Y ()

Gpa, A, y) = {¥ € /\m(%) > 7%
&, M) = {¥ € /\&e(%) > 0}.

Proof. Let Y € &;,(x,A,0), and let 0(&) = B+ (1 — B)/1+ ¢, then we have the inequality:

W @ o0 pyiTE ceu

Y (9)
In view of Theorem 3, we obtain:
. Uy Y (@)
P RB+(1-p)v1+E) < %<W) < . (B+(1-B)V1I+0),
which yields:
£ Y (©)) )
p< %(W) <p+(1-p)V2

Hence, we have:
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and consequently, we get the requested result. Consider (&) = 8+ (1 — B)e%; we have:

&g v (@)

n %(ﬁ + (1 - /3)65) < %( ]mA Y (g)

~ _ Bk
min ) < ‘rgg%(/% (1—p)e),

which implies:
ra-ph <r(CEIE) <6 a-pe

that is:

(U @ Leyso

%W>>(ﬁ+(1—ﬁ)e

a)\
Similarly, by letting o(¢) = B+ (1 — B)(1 + sin()), then we have:

(C( Y (@)

min R(B + (1 - B)(1 +sin(g))) < R 26

min ) <Eiﬁﬁ(ﬁ+(1*5)(1+5m(€)))/

which leads to:

EUan Y (@)
<7

(B+0.158(1— B)) < R 6

) < (B+1841(1-p)),

and this brings the inequality:

U Y () _
%(W) > (B+0.158(1 — B)) := 7 > 0.
O

Remark 4. In Theorem 4,

m=0,=0,0(¢) =1+sin& = [15];
m=0=[16];

m=0,8=0,0(f) =e = [19];
m=0,=0,0() =v1+¢=[19].

Theorem 5. The class S}, («, A, o) achieves the following inclusion:

&5 A, 0) C My, A, y) i={Y € /\R(%) < v>1}

where o is given in Theorem 3.

The set My, (a, A, 7) is a generalization of the set:

M(y) = {¥ € A%(g(Y(§;)><y,v>1}

given by Uralegaddi et al. [20].

Proof. Let Y € &;,(«, A, o), where ¢ is given in Theorem 3. By the proof of Theorem 4, we have:

§R(C(Ll'f,\Y(éf))’

]mAy((;:) )<.B+(17.B)\ﬁ::7r
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U Y @) B
m(W) <B+(1-Plei=1q

and:

&0 Y (©)) -
%(W) < (B+1841(1—B)) =1,

Hence, Y € My, (a, Y(E), v), where the value of +y is based on the function ¢, which completes
the proof. [

Remark 5. In Theorem 5,

o m=08=0,0(¢) =1+siné = [15];

e m=0,0(F) =B+ (1—B)et = [16], Theorem 2.5;

e m=0,0) =B+ (1—-pB)(vI1+¢&) = [16], Theorem 2.6;
e m=0,=0,0() = (vV1+¢) = [16], Corollary 2.7.

Theorem 6. If Y € A satisfies the subordination:

U T @)y SUBY @) S Y @)\ [+e]”
( FY @ ) T @7 _I;'fy(zrﬂ(é‘)><{1*é‘}

1+¢

then Y € &5, (a, A, o), where ¢(&) = L

©
} for o >0,T>0.

Proof. To employ Lemma 1, a calculation implies that:

EI Y @)UY @)\
( Jgf,fwr(é) )+¢( ;ZTAAY(@ )
E Y @) . EUT Y @) U Y (@)
= N0 )2+ Ty B ® )
1+371°
<[]

Thus, in view of Lemma 1, we have:

(C( ZfAY(g))/> ~ {1+§r =0(f),

Y @) 1-¢
which implies that ¥ € &}, (¢, A, 0). O

Theorem 7. Let ¢ be a convex function such that ¢(0) = 0, and let h be the function:

g

@) = 9(0) +759'(€), Ceule(0)

If for a function, Y € A satisfies the subordination:

& ImY @ Uty @) m oy @)
(]m+1 (g)) 2 < ]:;H -/ m)\ ) =< ﬁ(g)

1-¢ Y (¢) o Y ()
then: s . @
mt1 e ,
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The outcome is sharp.
Proof. We aim to apply Lemma 2. Let:

m+1
o0 = (4O ey

A differentiation implies that:

Y Z'fAY(C)<(IZA“Y(§))/_K(IZA)Y(C)))7 1
O e ) LY e

(

Thus, by the assumption, we have:

00 + ()5 (©) < e = 9(O) + 15,9/ (@), Teu.
Employing Lemma 2 yields o(¢) < /(¢), which means:

(1;37;1 Y (%)
g

4 ¢
)(]Z?)_\HY(C)) = (P(g)r §EU.

This result is sharp. 0O

Remark 6. In Theorem 6, A = 0 = [21] Theorem 2.14.

6. Conclusions

This study was concerned with a class of Briot-Bouquet differential equations utilizing a new
differential operator of complex connections. Some inequalities involving the subordination concept
were investigated. For future work, the idea of [22] will be used to present a harmonic class of
Briot-Bouquet differential equations.
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Abstract: The questions of solvability of a nonlocal inverse boundary value problem for a mixed
pseudohyperbolic-pseudoelliptic integro-differential equation with spectral parameters are considered.
Using the method of the Fourier series, a system of countable systems of ordinary integro-differential
equations is obtained. To determine arbitrary integration constants, a system of algebraic equations is
obtained. From this system regular and irregular values of the spectral parameters were calculated.
The unique solvability of the inverse boundary value problem for regular values of spectral
parameters is proved. For irregular values of spectral parameters is established a criterion of existence
of an infinite set of solutions of the inverse boundary value problem. The results are formulated as
a theorem.

Keywords: integro-differential equation; mixed type equation; spectral parameters; integral conditions;
solvability

1. Statement of the Inverse Problem

From the point of applications, partial differential and integro-differential equations are of great
interest [1,2]. The presence of the integral term in the differential equation plays an important role [3,4].
Also important to study the spectral questions of solvability of the differential and integro-differential
equations [5-10]. In References [11-13], using the results of the theory of complete generalized Jordan
sets it is considered the reduction of the partial differential equations with irreversible linear operator
of finite index in the main differential expression to the regular problems.

Direct and inverse boundary value problems, where the type of differential equation in the
domain under consideration changes, have important applications. Direct boundary value problems
for differential and integro-differential equations of mixed type were studied in the works of many
authors, in particular, in References [14-24]. In References [25,26] the inverse problems for second
order mixed type differential equations were considered in rectangular domain. In this paper,
we study the unique classical solvability of a nonlocal inverse boundary value problem of mixed
pseudohyperbolic-pseudoelliptic integro-differential equation for regular values of spectral parameters.
We also study the solvability conditions of the inverse boundary value problem for irregular values of
spectral parameters.

In multidimensional domain QO = {-T < t < T,0 < x1,Xp,..xm < I} a mixed
integro-differential equation of the following form is considered

m T
LI” — Z [Uttx,-xl — lelxi} = I/f Kl(t,s) u (S, x) ds -‘rfl(t) 81 (x), t> 0,
i= 0
@
m 0
U — ):1 [uttx,'xi + wzllx,. X;} =v f Ky(t,s) U (s, x)ds+ fa(t) g2(x), t <O,
i= _T
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where T and [ are given positive real numbers, w is positive spectral parameter, x € R", v is real
non-zero spectral parameter, 0 # K;(t,s) = a;(t) bj(s), aj, bj € C[=T;T],0# f1 € C[0;T],0 # fo €
C[-T;0], g €ecC (€)f") are redefinition functions, Q= ;1™ j=1,2.

Problem 1. Find in the domain ) a triple of unknown functions
U(t,x) € C(Q)NC' (Q') NC**(Q) NCiH(Q)n
MO oe i ()N CE S i () N NG R (@),
gilx)eC(QM),i=12,

satisfying the mixed integro-differential Equation (1) and the following nonlocal boundary conditions

T

/U(t,x)dt:q)l(x), xeqn 2)
0

0

/U(t,x)dt:(pZ(x), xeqn 3)
°r

U (t,0,x2, x3, .., xm)=U(t 1, x2,x3, ..., Xpm) =
=U(t,x1,0,x3, ..., xm)=U(t, x1,1,x3, ..., Xp)= ... =
=U(t, x1, ..., X1, 0) =U(t, x1, ..., Xy, 1) =
=Uy (50, X0, x3, ..., %) = Uy, (K1, X2, X3,..., Xp) =
=Uyx,(x1,0,x3, ..., xm) =Uxx (KX, L X3, .00, xp) = ... =
=Uxx (b x1, o, X1, 0) = Ungny (X1, oo, Xy, )= o0 =
=Ux,xn(t,0,x0, X3, ..., Xp) = Ux,x, (8, 1, X2, X3, ..., X)) =
=Uxpxn(t, x1,0,x3, .., X)) = Uxpx,, (X1, 1, X3, .0, Xm)
=Uxpun(t, X1, oo, Xm-1,0) =Uxpun(t, x1, .., X1, 1) =0, 0<t<T, 4)

and additional conditions

U(t, x)=19(x), i=1,2 xeQf, (5)
where ¢(x), Pi(x) are given smooth functions, ¢;(0) = ¢;(I) = 0, ¥;(0) = ¢p;(I) =0,i = 1,2,
11 € (0; T), tr € (—T; 0), O = QU{X],Xz,...,Xm = 0} U {xl,xz,..,,xm = l}, O O_uUQy,

Q- ={-T<t<0,0<x1,x,.,%m <1}, 0y ={0<t<T,0<x1,%,., X <1}, Q={-T<
t<T, 0 < xy,%0,.00m < 1}

2. Expansion of the Solution of the Direct Problem (1)—(4) into Fourier Series. Regular Case

The solution of the integro-differential Equation (1) in domain Q) is sought in the form of a
Fourier series

Ut x)= Y g () 8y, (%), (6)
N1, ny=1
where
Uny,. () = Ut x)Ony,... 0, (x)dx, 7)
Qm
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I

/U(t, X) By (X)dx = /.../U(t, ) Oy (X d X1 d
ay 00

m
2
Oy (X) = <\/7> sin %xl... sin yxm,

Qr=1"ny, ..., ny=12,...

Also suppose that

[eS)

gi(x) = 2 ginl,,..,n,,,ﬂnl,.u,n,,,(x)/ 8)

ny, ..., ny=1
where

Sing,...,ny = /gi(x)ﬂnl,m,nm(x)dx/ i=1,2
ap

Substituting series (6) and (8) into Equation (1), we obtain a countable system of integro-
differential equations

T
= v [ a1(0) 1)ty () A5+ F1(O) G101, £, ©)
0

0
= v [ 02(0)b2(8) sy (5) A5+ Fo(0) 201 s £ <0, (10)
-T

T
Ky, :/bl(s)”nl,-u,nm(s)dsf (11
0
0
Bur,.o.nm = /bz(s)unl,wnm(s)ds, (12)
T

we rewrite the countable systems of Equations (9) and (10) as follows
ulll11,.4.,nm (t) - A%‘l,...,nn‘unll“'/r’ﬂl(t) = 'l/[ll(t) anl/uwnm +f1(t)gln1,..,,nm/ t> O’ (13)

u/til,“.,nm(t)+A%!1,4.4,nmw2unlr~-rnm(t):Vaz(t)ﬁnlr-ur”m+f2(t)g2711 ----- Nm s £ <0. (14)

Countable systems of differential Equations (13) and (14) are solved by the method of variation of
arbitrary constants:

un1,m,nm(t) = Alnl,m,nm exp {/\n],.“,nmt}+A2n1,,4.,nm eXp{*Anl,“.,n,,,t}Jr

+771n1,4..,nm(t)r t>0, (15)
“nl,u.,nm(t) = Blnl,m,nm cos )\n1,..4,n,,,‘4-’t+B2;11,.,4,nm sin /\711,.4.,n",Wt+

+772n1,“.,n,,,(t)/ t<01 (16)
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where Ay, nns Bing,...n, (i =1,2)are unknown constants to be uniquely determined,

7]1711 ,,,,, n,,,(t) - V’an ,,,,, Nm h1n1 ,,,,, n,,,(t) +g1n1 ,,,,, nthnl ..... nm(t)/
Nang,..., nm(t) = V,Bnl ,,,,, nn,(slnl ,,,,, nm(t) +82;11 ,,,,, n,,,52n] ,,,,, n,,,(t)/
t.
hlnl ,,,,, nm(t) 1 /Sinh /\nl ,,,,, nm(t_s)al(s)dsr
ni,..., fm
0
1 t
Basen() = 5 [ sinh Ay, (t =) f1(5)ds,
..., i
0
1 t
Stmy,com () = 5 /sm/\n1 ,,,,, @ (t—s)ax(s)ds,
ny,..., i
1 ;
Oy, nm(t)*)\ /sin/\n1 ,,,,, nw (£—3) fa(s)ds.
ni, ..., )

From the statement of the problem it follows that the continuous conjugation conditions
are fulfilled: U (0+0, x) =U (0—0, x) and U’ (040, x) = U’ (0 — 0, x). So, taking the Formula (7)
into account, we have

Unpy,..., n,,,(0+0): /U(OJFO; x)ﬂnl ,,,,, n,,,(x)dx:
Q}”

=/u(ow,;«)0n1 ,,,,, i () dx = 10y, (0 0). (17)
anr

Differentiating functions (7) once with respect to f, similarly to (17) we obtain

Wiy ©F0) = [ Ur (040, 2) 80y, (1) dx =
Q;”
:/Ut(O—O, X)) dx =1y (0 0). (18)
o

i sinh At + Mny,..., i (t), t>0, (19)

,,,,,,,,,,

,,,,,,,,,,,,,,, (1), £ <0, (20)

Taking formula (7) into account we will rewrite conditions (2) and (3) in the following forms

T

T
/u,z] ,,,,, nm(t)dt://U(t,x)dtl?nl,m,nm(x)dx:
0 ar o
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= [ 0100 001 (D)5 = Py s 1)
an
0 0
/unl,m,nm(t)dtz / /U(t,x)dtﬂnl,m,nm (x)dx = (22)
r d;vx_'T

The coefficients By,,,,. ..,
the conditions (21) and (22):

sy @nd Bay, g, in (19) and (20) are unknown. To find them we use
T
/“n],u.,n,,,(t) dt =
0

T
:/[Bln],“.,n,,,COSh An1,<.,,nmt+WB2n1,4..,nmSj-nh Anl,m,nmt+771n1,m,nm(t)] dt =
0

1 .
 P— [Blnl/...,n,,, sinhAy,, o, T+wBou,, uy (cosh)\,,l,m,anfl)} +
N1, .o M
+§ln1,.“,nm :(Plnl,m,nm/ (23)
0
[ty (Bt =
T
0
:/ [Blnl,m,nm cos /\n],..,,nn,Wt"FBan,H.,nm sin )\n1,m,ant+772n1,..4,n,,,(t)] at=
—-T
1 .
S P — [Bing,...onn SN Ay ny@T 4 Boyy g (cos Ay nyw T—1)] 4
ny,...,Mm

+€2n1,“.,nm =@P2nq,...,nps (24)

T 0
Whereélnl,.../nm = fﬂlnl,...,nm(t)dtr §2n1,“.,nm = f 772n],.“,n,,,(t)dt~
0 -T

Relations (23) and (24) are considered as a system of algebraic equations (SAE) with respect to
unknown coefficients By, ..., and B2y, .. n,

Blﬂl/...,n,,, sinh )\nl,m,an*F‘UBan. (COSh Anl,“.,an* l) =

:Anl,.u,nm §01n1,u.,nm_/\711 ..... nm§1n1,4.4,nmr
Blnl,.,./nm sin Anl/uunmwTJranlw (COS A"l:u-/”mwTi 1) =

<o Mm

ce lm
:)\nl,.u,n,,,(Pan ..... nmw_/\nl,m,nmw §2n1 ,,,,, M
If we assume that
Ty, iy =

=sinh Ay, o0, T (cOS Ay, nwT —1) —wsin Ay, n,wT (cosh Ay, 0, T—1) #0, (25)

then SAE with respect to By1y,,,..., 1, and Bay,,... n, is uniquely solvable. Solving this system from
(19) and (20) we arrive at the following representations

A
”n],.“,nm(t/ w) = q’lnl,m,anlnlw“,nm(tr w) + ¢2n1,.4.,an2;11,..4,n",(t/ w)+
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+glnl,..,,11,,,]\/13111,“.,nm(tr (U) +§2n1,A.4,an4n1/,..,nm(t1 w)} +771n1,...,nm(t)/ t>0, (26)

)\}11,.,.,}1",

[(Plnl,.4.,n,,,N1n1,..4,nm (t/ w) +(P2n1/...,n,,,N2n1,...,nm (tr w)""

+§1n1,4.4,nmN3n1,4..,nm(tr w) +62711,..4,n,,,N4n1,4..,nm(t/ w)} + 772n1,...,11n,(t)/ t<0, (27)

Min, oyt w) =(cos Ay, n,wT —1) cosh Ay, u,t—sin Ay, p,@ T sinh Ay, t,

co M

Moy, (t W) = w2(1 —cosh Ay, T)cosh Ay, nyt+wsinh Ay, p, Tsinh Ay ut,

s My

M3n1,m,nm(t1 w) = (1 — COos )\nl,m,nmw T) cosh /\nl,.“,nmt + sin )\111,“.,11,,,

wT sinh Ay, on,t,

Many,... o0, (t w) = w?(cosh Ay

Nlnl,.“,nm(t/ w) =(cos Apy,.. T —1) cOS Ay, ppwt—sin Ay, g, T sin Ay, ,wt,

Nouy,.n (b w) =w (1 —cosh Ay, n,T) €08 Ay, npwt+wsinh Ay, Tsin Ay, p,wt,

Nauy, (b w) =(1—cos Ay, nu@T) cos Ay, ppwt+sin Ay, 0T sin Ay, p,wt,

Nyn,,.. (t, w) = wZ(cosh AugyongT —1) cos Ay p,wt—wsinh Ay, oy, Tsin Ay, g, wt.

<M

Taking the following presentations
7]1n1,.4.,nm(t) =V&ny,. g Mng,... (t) +81ny, i 2n0,. . 1 (1),

Noang,...,n, (t) = Vﬁnl,m,nm 51n1/...,nm (t) +82n1,.“,n”, 52n1,4A.,nm (t)

into account representations (26) and (27) are written in the following forms
un]ru-/nm(tl w) =

= Plnl,”.,nm (tr w) +V‘xnl,...,nmPan,...,nm(tr w) +Vﬁnl,...,nmPSnl,“.,nm (tr (47)+
+gln],.“,n,,,P4n1,“.,nm(tr w) + anl,H.,nmPSnl,.“,nm (tr w)/ t>0, (28)
unl/»-wnm(t/ (U) =

=Qunyoymn (@) Fvany, oy Qong,on (b @) VB, 0w Q3ny, . (b @)+

+gln1,.“,n,,,Q4n1,...,n,,,(tr w)+g2n1 ,,,,, anSrtl ,,,,, nm(tr w)/ t <0, (29)
where
Plnl,”.,nm(tr w): 0"1/ e [‘Plnl,..4,n,7,M1n1,4..,nm(tr w)+(P2n1/,..,n,,lM2n1,...,nm(tr w)]/
M1,eee
Aui,.n

T
T M3n1,4.4,nm(t/ W) /hlnl,.“,n,,,(t)dt‘i’hlnl,m,nm(t)r
" 0

Tny,...n
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0
Any,...,
Pan,“.,nm(tr (U): MMALTII,...,?’Im(tr “J) /52n1,4..,nm(t)dt/
-T

Tny, oo np

Au, i
e sPm [¢1n1,4..,nmN1n1,.4.,n",(t/ w)+902n1,4..,nmN2n1,.4.,nm(tr w)]/

T
Any,
Qan,.“,nm(t/ (/J) = MNSnl,“.,nm(tr (,0) /hlnl,m,nm(t)dt/
0

Tnq,.e, iy

0
Ang, i i
Q3n1,...,nm(tr W)ZMN4n1,4.4,nm(t/ (U) /51n1,4..,nm(t)dt+‘51;11,.4.,nm(t)/
-T

T
A e ttm '

Qb @) = NG (@) [ 2y, (D,
0

Tny, i iy
0
_ /\nl ,,,,, i
Q5n1,..4,nm(t/ a]) - 7N4n1,..A,nm(t/ w) 52n1,“.,nm(t)dt+52n1,m,nm(t)4
Tny, oo iy r

We substitute (28) and (29) into (11) and (12), respectively. Then we obtain a countable system of
two algebraic equations (CSTAE)

“nl,”.,nm(l_VEnl ..... nm)_ﬁn1,4..,anFn1,4..,nm(w):q>n1,4..,nm(w)r (30)
—Xnqg,. o,V Hnl,.“,n,,,(w) +,Bnl,“.,nm (1 *VGnl,“.,nm) = ‘Ynl,“.,nm(w)/

where

0 0
Hnl,.u,n,,,(w) = /bz(t) Qan,..,,nm(t/ W)dt, G;11,..4,nm = / bz(t)anl,.”,nm (t)dt,
-T -T

q)ﬂllu-,ﬂm(w) = qplnl,...,n,,,POlnl,...,nmJF

+ (Pan,“.,nmPOan,A.A,nm +glnl,u.,nmPOZ‘}nl,A.A,nm +g2n1,”A,nmPO4n1,.4.,nmr (31)
Y"lw-»,nm(w) = (P1n1,..4,an01n],.“,n,,,+
+¢2n1,..4,an02n],.4A,nm +g]111/...,74,,,Q03n1,4..,nm +82n1,...,n,,,QO4n1,...,nmr (32)
A 0
ny,...n .
Poiny,...ony = " [ b2(t) Min,,... o, (L, w)dt, i=1,2,
Ony,es i
A 0
_ Mng,n ) .
Pojny,...onm = ﬁ / bao(t) Prijny, ...y (B, w)dt, j=3,4,
1reees M
0
)\nl,m,nm .
QOinl, D bZ(t) Ninl,m,nm(tr w)dt/ i=1,2,
Ony,o iy
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Tny,...n

0
QOjnl,.H,nm = M/b2(t)Q1+]',n1,.4.,nm(t/ w)dt/ j:3/ 4.
m T

For the unique solvability of CSTAE (30) the following condition is required

A (1/) _ 1 *VEm,“.,nm *VFnb“. _
et —VHuy, (@) 1=vGay,my

= (En1,4..,an711,..4,nm _Hnl,...,nm(w) Fnl,.u,n,,,(w)) vie
- (En],.“,nm +Gn1,m,nm) v+1 7é 0.

(33)

A quadratic equation has no real roots, if its discriminant is negative. Therefore, from

condition (33) we arrive at the following condition
(Enl,...,nm - Gnl,...,nm)z +4Hnl,...,nm(w)Fnl,.../nm(w) <0.

Let condition (34) be fulfilled. Then we solve the CSTAE (30):

_ (1)711,.4.,nm(w) +v (‘Ynl,.,./nm(w) F111,..4,n,,,(w) *‘bnl,...,nm(w) Gnl,...,nm)

an],.“,nm Am,“.,nm(v)
B — P, ooy (@) +V (Py, ooy (W) Hry, oy (@) = Wy, (@) By, )
Ny, ee iy Anl,“.,ﬂm(v) .

Substituting these solutions into (28) and (29), we obtain

Uny,..., n(tw,v) = P1n1/~~rnm(t’w)+
v
+ [@ry,co (@) A=V Guy,oong) + v ¥y, (@) Fa, iy, (@0)] Pag, oy, (B )+
B,y (V)
v
t 73 [Vq)nl ----- M (w) Hnlr---rnm (w) +1P"1 ----- M (w) (1 _VE"1 ----- ”m)] P3n1 ,,,,, My (t/w)"‘
Ay, (V)
+81nl/...,nmPMl,-..,nm(t/w) + 82ny, o Pony, (t,w), t>0,
unl/»-«/”m(t'wfv) = anl ,,,,, n,,,(t/w)+
v
+ (@, (@) (L= Gy, my) +V ¥y, (@) By, (@)] Qo () +
Ay, (V)
v
3 ) v @y, 0 (W) Hny, o (@) + Einy, o (@) (L= Epy, o, )] Qo (B )+
Ny, oo My

+ glnl,.”,anAlnl ,,,,, i (t,w) + g2n1,A“,11,,,Q5n1,m,nm (tr (U)/ t <0,
Taking (31), (32) and the following relations

Any,..,
Plnl,A.A,nm (tlw) = (77”1: i [(Pl111,“‘,an1nl,m,nm(trw) + (Pan,.4.,an2n1,4..,nm(t/w)} ’
M, ...,y
Any,..,
anl,.,./nm(t/w) = % [471711,.,./1,,,1\]1nl,..,,nm(t/w) +¢2n1,..4,nmN2n],.“,n,,,(t/w)}
Ny, e Mm

into account the representations (35) and (36) we rewrite in the following views

+g]nl,“.,nmvl”m,.‘.,nm(t/ w, V) +82n1,.4.,nm V4n1,,”,nm(t1 w, V)/ t>0,
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”nl,m,nm(tf w, V) = (Plnl,...,nmwlnl,,..,nm(t/ w, V) + (PZn],..A,n,,,WZn],.A.,n,,,(t/ w, V)+

&1y Wang, o (b @, V) + 8200, g Wang, . u (b w0, v), <0, (38)
where
Vim0, v) = S (4 )4
Ony,...,ny
FP0ina, ey VOLnn, e (B @, V) + Qoiny, o nn Vo2uy, .. n (B w0, v), i=1,2,
Ving, ..t @, V) = Pligayn,, o (B @)+
FPojny, ..o Vorny, .o (B @0, V) + Qojny, .oy Voruy,.. g (B @, v), j=3, 4,
Wing, oot @, v) = LNinl,.“,nm(tf w)+
Oy, ny
FPoinyg, . i Worny,...,nm (b @, V) + Qoing, .. nyWozny, ..., n (b @, v), i=1,2,
Wing, oo (b @, V) = Qisayny, .. ony (b @)+
TPy, Wotny,. (b @, V) + Qojny, i Wony, .. n (b @, v), j=3, 4,
Votny, ..., (b @, V)+
= ﬁ (1= Gurym) Panyoosym (b @)+ v Hory o (@)Psny o, (1 @)],
Voouy,..., it @, V) =vPoy o (t, @)+ (1 =VEyn, . ny) Pany,... 5wt @),
Wotny, ..., n,(t w, v) =
= ﬁ (1= Gorpyooom) Q2 (b @) 4V Hog oy (@) Qoo (1 )],
Wozny,...,n(t, 0, V) =
= ﬁ [V Pty (0) Qoo (b @)+ (U= VE ) Qi (8 )]

Now we substitute representations (37) and (38) into the Fourier series (6) and obtain the following
formal solution of the direct problem (1)-(4)

Ut x, w,v) =

[ee]
Z 19n1,.4.,nm(x) [(Plnl,“.,nmvlnl,m,nm(t/ w, V) + (Pan,..4,an2n1,.4.,nm(tz w, V)+

ny,..., A=
+g1nl,u.,an3111,...,nm(tr w, V) +g2n1,...,11,,,V4n1,.4.,n,,,(tr w, V)] , t>0, (39)
Uuft,x,w,v)=
[ee]
= Z 19rtl,.--,ﬂm(x) [(Plnl,.”,nmwlnl,.‘.,nm(tr w, V)+¢2n1,“”nmw2n1,“”nm(tr w, v)+
ny,..., np=1
+g1111pA.,11,,,W3n1,4..,nm(tr w, V) +g2n1,..4,nmw4n1,m,n,,,(t/ w, V)} 7 t<O0. (40)

3. Inverse Problem (1)—(5). The Regular Case of the Spectral Parameter w
We use the additional conditions (5) and from the Fourier series (39) and (40) we obtain that

l/’l(x) :U(tll X, W, V): Z 19”1/-~r”nx(x)><

ny, ..., ny=1
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X [471111/...,n,,lvln1,...,nm(tll w, V) + (PZn],HA,n,,,Van,“.,n,,,(tl/ w, V)+

+g1n1,4..,nmv3n1,...,nm(tlr w, V) +g2n1,...,an4n1,4.4,nm(t1r w, V)] , 0<t1 <T,

Pa(x) =U(ty,x, w,v) = i

ny,...,np=1

l9"1/‘~/”m(x)><

X [P1ny,ccmaWing,o.omn (F2 @, V) 4+ @200, ng Wany, . ny (F2, @, )+
+glnlpu,nmv3n1,..4,n,,,(t2/ w, V) +anl,H.,nmv4n1,“.,11m(t2/ w, V)] ’ -T< tr < 0.
Assume that the functions ¢;(x) are expanded in Fourier series

0

2 l/]inl,..,,n,,lﬂnl,.“,n,,,(x),

ny, ... ny=1

Pi(x)

where iy, pn = $i(X) Oy, ny(X)dx, i=1,2, ny,..,nm=1,2, ...
an

Then, taking into account (43), from (41) and (42) we obtain

471111,“.,11,,, = (Plnl,uA,nmvlnlpu,nm(tll w, V) + q72n1,4.4,an2nl,.u,nm(tlx w, V)+

+g1n1,.4.,n,,,V3n1/...,n,,,(tlr w, V) +82n1,..A,an4n1,.4.,nm(tlr w, V)r 0<t1 <T,
Yoy, mm = Ping,..ommWing,..omm(E2, @, V) + @200, 0 Wong, o on (F2, @, V) +

+glnl,.../nmV3nl,“.,n,,,(t2/ w, V) +32n1,...,n,,,V4n1,...,nm (tZr w, V)/ —T <ty <0.

(41)

(42)

(43)

Hence we find a system of two algebraic equations for finding the coefficients of the redefinition

functions Slny,...,nm and €21, ny,

gln1,“.,nmv3n1,“.,nm(tlr w, V) +g2n1,..4,n,,,V4n1,m,n,,,(tlr w, V) =

= ¢1n1,4..,nm - ‘Pln1,4..,an1n1,..4,n,,,(tlf w, V) - (Pan,“A/n,,,Van,m,nm(tlr w, V)/
glnl,m,nmw?ml,.u,nm(t2/ w, V) +anlp..,n,,,W4n1,m,n,,,(t2/ w, V) =

=Vony,.. 0y — G”lnl,m,nmwlnl,»-»,nm(t2r w, V) — P20y, Wang, .y (t2, @, V).

Solving this system of algebraic equations, we obtain

gl”l,.--,ﬂm(wr V) =
1
= [1/71nl,...,n,,,W4n1,.4.,nm(t2r w, V) - l/Jan/A“,n,,,V4n1,..4,nm(t1r w, V)+
Tolny,...,ny
+(P1n1,A..,nmrllnhm,nm + P2nq,...,ny120,.. ,nm] ’

an],H.,n,,,(w/ V) =
1

1,017 [_lpl;11,.4.,nmw3n1,.4.,nm(tZr w, V) +1l72n1,...,nm VSnl,...,nm(tlr w, V)""
N1, My

+(Plnl,m,nmr21n1,m,nm + (P2n1,..4,n,,,r22n1,..4,nm] ’
where rg; ey ity —

= V3n1,.4.,nm(t1/w/ V) W4n1,m,nm(t2/w/ V) - V4n1,m,nm(t1/ w/V) W3n1, 4,n",(t2/ w, V) #0,

o (1, W0, V) Wy (B2, 0,0) + Vi
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(44)

(45)

..,nm(tl/ er) W4n1,4..,n,,1(t2/ er) + V4n1,.4.,nm (tl,w, V) Wlnl,.”,nm (tZr er)r

o (B0, V) Wog o (B, w0, 1),
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20 ny,... 0 = *V3n1,m,nm(tlr W/V) Wi nl,...,nm(t2r W/V) +W nl,...,n,,,(tlzw, V) W3n],.“,n,,,(t2/w, V),

"2nq,... mm = _V3n1,...,nm(t1r w, V) Wan,...,nm(tZ/ WIV) + V2n1,...,n,,,(t1rwr V) W3n1,.../rtm(t2/wr V)~

Substituting representations (44) and (45) into the Fourier series (8), we obtain

)

1
il wv)=———— Y Bup () [P1ng, Wy, (2, @, )=

701”1 ,,,,, Mmooy, =1

—V2uy,.. 0 V4741/-..,74m(tl/ w, V) + @1nq,. 010y, oy T 472711,4.4,nm712n1/...,nm} ’ (46)

1 (o]
QM wv)=———— Y Oupm () [P1ny, o Wang,m (P2, @, V) +

Tolny,... 1y 0. =1

+l/r'2n1,.“,n,,,v3n1,“.,nm(tlz w, V) + @P1nq,. . oun 200y, T (Pan,m,neran,m,nm} . 47)

Now we substitute representations (44) and (45) into the main series (39) and (40):

Ut x, w,v)=
= Z 19n1,4.4,n,,,(x) [(Plnl,uA,anllnl,.“,nm(trwlv)+(P2n1,4.4,n,,,Dlznl,AA.,nm(trwlv)"r

+i1 nl,u.,an13n1,4..,n,,,(tr w, V) + 1/72741,...,an14n1,.4.,nm(tr wrv)} , t>0, (48)

U(tx,w,v) =
= Y Ouma(® [Pay o, Doty (B0, V) + @20y, D22y, (B, V) +

+1 nl,.AA,anZ?;m,‘..,nm(tr (4],1/) + 4’2711,.4.,an24n1,m,n,,,(tr w, V)} , <0, (49)

where
D1i711,..4,7”m(t/ w, V) = Vinl,...,nm(t/ w, V)+

rlin1,4..,n rZinl,“.,n .
+7mv3n1,,“,nm(t1 w, V) + 7mv4n1,.4.,nn,(t/ w, V)r 1= 1/ 2/
Tolny,...,ny Tolny,..., ny

1
D13n1,4..,nm(tr w, V) =—NX
T0lnq,..., 0y

X Vany,eoomn (b @, V) Wany, (2, @0, V) = Vi (b @, V) Way o (f2, @, )],
1

D14n1,“.,nm(t/ w, V) = X
rOlnl,“.,nm

X [=Vauy, . um(t @, V) Vayy o (B, @, V) + Vi, (b @, v) Vg, (B, w, V)],

DZinl,“A,nm(tr w, V) = Winl,“.,nm(tr w, V)+

"ing,...,n 2inyg,...,n .
W (w0, v) W (B w, ), i =1,2,
T01nq,..., 0, T01nq,...,n,

1
Dozny,.ooony(t, w, V) = —————X
To1nq,...,0nm

X (Wang, o (b @, V) Wy o (t2, @0, V) = Wap, o (b @, v) Way, o (b2, w, V)],
1

D24n1,4..,nm(tr w V)= ——x
Tolnq,..., 0y

X [_W3n1,4..,n,,,(tr w, V) V4n1,m,nm(t1/ w, V) + W4n1,.“,n,,,(tr w, V) V3nl,..4,nm(t1/ w, V)} .
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4. Convergence of Series (46)—(49)

We show that under certain conditions with respect to the functions ¢;(x) and ;(x) (i =1, 2)
the series (46)—(49) converge absolutely and uniformly in the domain Q. Indeed, according to the
statement of the problem the functions D j; ..., n, (t, w, v) (i =1, 2; j =1, 4) uniformly bounded on
the segment [—T; T]. S0 | Dijn,,...,n, (t @, v) | < ooforalli=1,2, j=1,4. Since0 < Ay, n, <1,
then for any positive integers n1, ..., ny, there exist finite constant numbers Cy; (i = 1, 2), that there
take place the following estimates

max {max |D]jn1,.4.,nm(tl w, V)

. D, t <C
ny, 3X o Ll ; ma);( ‘ 2]n1,4..,nm(rwlv)‘}_ 01,

te[—T;0] (50)

t, w, v)

; max

max max ‘
te[-T;0]

DY, t,w, v ‘ < Cp
ny,...,nue€N (te[0;T 2jny,... nm(' , V) = ’

] ‘ D,lljnl,m,nm(
=14
Condition A. We suppose that the functions ¢;, ¢; € CZ[O; 1™, i =1, 2 on the domain [0; /]"

have piecewise continuous third order derivatives. Then by integrating in parts the following integrals
three times with respect to the variable x;

Ping,...,ny = /(Pi(x)lgnb.u,nm(x)dx/ lpinl,...,nm: /¢i(x)l9n1,.4.,;1m(x)dx/ i=1,2
Om m

we derive that

I 34)/// / I 3 ! o
(Pinq,“.,nmzf(;> ”“1’171 ¢1n1,m,nm:7<;) %/ (51)
where
939;(x) 93
. */ P00 a0y = [T x5
Qm

By integrating in parts the integrals (52) three times with respect to the variable x, we obtain that

6 6
" _ ! 3(’)1(")1/--.,74”1 " _ ! 31/]1(")1,.--,717;1 53
Ping,..., i ; T/ lpinl ..... M ; T’ (53)
where
®) _ [ 9%i(x) ©) _ [ 9%i(x)
(Pim,.“,nm - s ax%axgl{)”h“w”m(x)dx’ wim,.“,nm - s ax%axgﬁnl'“"”’”(x)dx'

Continuing this process, by induction we obtain

(3m) (3m)

(Bm=3) (Pznl Mmoo (3m=3) lpml
q)im,“.,nm - <7'L'> n%l ’ lpinl,””nm - <7T> n;.;n ’ (54)
where
aSm 3 33’"1/}
qunl, oM / 3x33x axm ﬁ"lv--/"m( x)dx, ¢zn1 " S / 8x38x2 il 19"1, o (X)d x.
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Here the Bessel inequalities are true

2
o (3m) 2<(%>m/ _ 0%gi(x) d 55
nl,..gn,: [qpml """ n’”} — A\ i axfaxg...ax% * (55)
1
ii H“3m) ]2< <g>nl/m M) de (56)
o e o 9x39x3...0x}, '

From (51), (53) and (54) implies that
(3m) 3 (3m)
LN Qing,e I Yingenn
P = (5) G = (1) =12 @)
i T

""" 7T ny. .. ny...ny

Taking formulas (50), (55)—(57) into account and applying the Cauchy-Schwarz inequality and
Bessel inequality, for series (48) and (49) we obtain

ny,..., =
> 1 > 1
(3m) (3m)
<’71{ Z 3 n3‘ Tgyeesyim | T 03 3 | Pany +
N1, ny=1"1 m ni,..., np=1"1 .
> 1 > 1
(3m) (3m)
+ Z n3 n3 ‘lplnl ,,,,, i + Z n3 3 ¢2n1 ,,,,, iy -
ny,..., ny=1"1 ny,..., ny=1"1

.....

m 2
2 & 1 93y (x)
<(v/5] v —_ / et | dx+
( l) I\J"I an:l”?“'"% JQ'"’ L)x%&x%...ax;’”
1

2
83"1([)2(36)
_ 9\ |
* /{axﬁaxg...ax% r

m
Q;

2
a3mlp2(x)
+ / ———a | dx| <oo, 58
o {ax%ax%...axﬁ, * = (58)

1

m

3m
where 71 = (ﬂ) Cor (%) .
It follows from estimate (58) that the series (48) and (49) converge absolutely and uniformly in

the domain Q) under conditions (25) and (33).
From the convergence of series (48) and (49), in particular, it follows that the series (46) and (47)

converge absolutely and uniformly in the domain Q.

5. Possibility of Term Differentiation of the Series (48) and (49)

Functions (48) and (49) formally differentiate the required number of times

U (t, x, w, v) =
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=)

= Z Oy, (X) [(Plnl,”.,anlﬁ n n,,,(t/ W, V) + P2ny, 121,

ny, ..., np=1

N (t’ w, 1/)+

+4]1ﬂ1,m/YlmD/l/3n1,“.,11m(t/ w, V) +4’2n1,<-»,nm D/l/4n1,“.,71,,,(tf w, V)} ’ t> 0/ (59)

U (t, x, w, v) =

(o]
= Z 19"1,4-»,nm(x) [(Plnl,m,an,Z,lnl,.“,n,,, (t, w, V)+(P2”1,m,nm /2/2n1,4..,nm(tf w, V)+
n

My, ..., My=
+¢1”1,~-,nm ,2,3n1,.../nn,(tr w, V) + lpzm,---,ﬂm l2l4n1,u.,n,,, (tr w, V)] ’ < Or (60)
d Ty 2
le Xl(tr X, W, V) = - Z (%) 19n1,4“,n,,,(x)><

ny, ..., ny=1

X [(Pln],.“,anllm,m,nm(t/ w, V) + P2ny,.. 0 D12n],.4.,n,,,(t/ w, V)+

‘H,Ulnl,..A,n,,lDl?)nl,.../nm(t/ w, V) + lp2n1,..4,nmD14n1/...,nm(t, w, V)} , t>0, (61)
> iy 2
uxl xl(t/ X, W, V) = — Z (Tl> 19;11,.4.,71”, (X)X
ny,..., np=1
X [4’1n1 ..... an21n1,...,nm(t/ w, V) + (PZrll,.“,n,,x D22n1,.“,n,,,(t/ w, V)+
T 10, D230, i (b @, V) + Y20,y Doany, oy (B w0, V)], £ <0, (62)
d Tngy 2
Ugyio(t, x, w,v) == ) (Tz) By, (X)X
ny, ..., ny=1
X [(Pln],“.,anlln],.“,nm(tr w, V) + P2ny,..., an12n],.“,n”,(t/ w, V)+
+lplnl,...,an13n1,.../nm(t/ w, V) + lp2n1,..4,an14n1,.../nm(t/ w, V)] , t>0, (63)
> Tny 2
UXZ.‘(z(tl X, w, V):_ Z ( 1 ) 19nlr»ur”m(x)><

... =1
X [‘Plnl,...,anﬂnl ..... nm(t/ w, V) + @20y, om0 D22n1,“.,nm(t, w, V)+
FP1m, . mm D230y, (b @, V) + W20y, Doany, o (8w, V)], £ <0 (64)
The expansions of the following functions into Fourier series are defined in the domain Q}" in a
similar way

Uy (8 %, w0, v), oo, Usprn (B X, @, V), Uy 2 (8 X, @, V), Upxox, (8%, @, v), oo Uppxpx, (B X, @, V).

The convergence of series (59) and (60) is proved similarly to the proof of the convergence
of series (48) and (49). Let us show the convergence of series (61)—(64). Taking into account
Formulas (50), (55)-(57) and applying the Cauchy-Schwarz inequality and Bessel inequality, we obtain

ad Ty 2
[Usi (b x @) [ < 8 (F7) Tt (b @, 0) [ By ()| <
ny, ..., ny=1

m

2 T\ 2 >
s( l) (F)can X ndll@ummn |+ @2 [+ [Py |+ [ $201,m ] <
ny,...,ip=1
3 1 (3m) S 1 (3m)
<72 P N 4 + 7% +
|:n1,..§!m—1 ”1”’;' . n?ﬂ Iny,....ny n],..;z,,,:l nlng. . 1’1?,1 211, Ny
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o 1 (3m)
+ Z 3.“'1;,”‘1/}2711 ,,,,, n,”‘ S

ni,..., =1 1115 - My ni,..., =1 1112
m 2
2 & 1 93M gy (x)
< = —_ ——— | dx+
(\[) Wz\j Zm (8., JQ/ {axfaxg...ax;’;,
1

N / |: aqu)z(x) :| 2 dx+ |: 33"’ll)1(x) :| ? dxt

9x39x3...0x}

9x39x3...0x}

2
+ / {83”’1,[72(3():| dx < 00,

35,3 3
s dx70x5...0xy,
1

where 7, = <\/?> mC(n (%)3’”72;

> Tny 2
[Uspabx @) [ < 8 (F72) Tty (b @, 0) | [ By ()| <
ni,..., =
m
2 7Ty 2 = 5
<<\ﬂ> (F)cn X m3 Ut |+ 0200 |+ 1Bt |+ [ 9201, [] <
ny,ee, nm=1
ad 1 (3m) o (3m)
=72 D 3, 3 3‘ 1 + L 3 ‘ p +
Ll ,,,,, =1 1113 .. 1 et ny,.. =1 111213 o et
(o] (o)
(3m) } ’ (3m)
+ ( <
ny,.en, n 71”%”271% s l/]lm AAAAA o ny,eee, n 71”1”2”% i lPan """ " B

" 2
2 ad 1 - a3m¢1(x)
)l E e | [ o
< l) Jm 21:1”?”%”2"-”% s ox$ox3...0x}
1

2
93M @y (x) 93myy (x)
_ 9 e) |y / _ 9Ty
+ 4{ax§’ax3...ax§n o P CESEES SR
01 QI

dx+

93m ll’Z( X) 2
+ 04 [axgaxg... x5, } dx| <eo

The convergence of Fourier series for functions Uy,y,(t, X, w, v), ..., Ux,x,(t, x, w, v),
Uttxyx, (b %, w,v), Uttxyx, (b %, w, V), .., Utz e, (L X, w, v) is proved in a similar way in the
domain Q.

Therefore, the functions U (¢, x, w, v), §1 (¥, w, v) and g2(x, w, v) defined by series (46)—(49)
satisfy the conditions of the given problem.

To establish the uniqueness of the function U (¢, x, w, v) we show that, under the zero integral

T 0
conditions f Ut x,w,v)dt =0, f U(t, x,w,v)dt =0, 0 <x <[ the inverse boundary value
0 -T

problem (1)-(5) has only a trivial solution. We suppose that ¢;(x) = 0, ¢;(x) = 0. Then ¢;,,,. . n,, =0,
Piny,...,n, = 0and from formulas (48) and (49) in the domain Q] implies that
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/ Ut x, w, v) %, . n,(x)dx =0.

m
Q;

Hence, by virtue of completeness of systems of the eigenfunctions { %sin %xl},

{ %sin T2xy 0, .. { %sin %xm} in the space L; (") we deduce that U (¢, x, w, v) =0

forallx € Q" and t € [-T; T].
Therefore, under conditions (25) and (33), the inverse problem has a unique pair of solutions in
the domain Q}".

6. Calculation of Values of Spectral Parameters

Let condition (25) be violated, that is, we suppose that

Tnq, oy = sinh /\nl,u.,nm T (COS )\nl,.u nm(‘JT_l) -

’

—wsin Ay, wT (cosh Ay, . n, T—1)=0 (65)

<o M

2
2 _ Faug, nm o 2 2
for some values of w, where Ay, = Wfﬂnum,nm =T \/ni+ ... +ng.
m

From equality (65) with respect to the spectral parameter w we arrive at the quadratic
trigonometric equation

(anl,m,n,,, +l) tan2 % +2bn1,m,nmw tan W + (anl,.“,n,,l - 1) =0,

where

Yny,..., i :/\nl ,,,,, nmCUTr Anq, ... ny = sinh )\nl,u T,

< Mm

bn1,.“,nm = coth /\m,‘..,an_Sinhil Am,“ T.

< Mm

The set of positive solutions of this equation with respect to the spectral parameter w for some
k1, ..., ky is denoted by 1. We call the numbers w € 1 as irregular, since because the condition (25)
is violated for them. The set A1 = (0; c0) \ I is called the set of regular values of the spectral
parameter w, for which condition (25) is fulfilled. If condition (34) is violated, then the kernels of
the mixed integro-differential Equation (1) have at most two values of v and v,. We call these real
nonzero numbers as an irregular kernel numbers of the mixed integro-differential Equation (1) and
denote their set {11, 11} by I'». We take away the values v1 and v, of the spectral parameter v from
the set of nonzero real numbers (—oo; 0) U (0; c0). The resulting set Az = (—c0; 0) U (0; o) \ {vy, 12}
is called the set of regular values of the parameter v. For all values of v € A, condition (33) is satisfied.

We use the following notations for sets

Ny ={(w,v) |lweAveAs}; Ry={(w, V) |weEF1;veE(—00;0)U (0; 0) },

Ny ={(w,v) [weA;veI}.

For (w, v) € N formulas (46)—(49) hold. This is the case when all values of the spectral parameters
w and v are regular. Therefore, in this case, the unique solution of the inverse boundary value
problem (1)—(5) in the domain ()} is represented in the form of series (46)—(49).
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7. Expansion of the Solution of the Direct Problem (1)—(4) in a Fourier Series. Irregular Case of
a Spectral Parameter w

Forsomeky, ..., ky and (v, w) € Ry, where Ry = {(w,v) |w € ;v € (—o0; 0) U (0; o0) } we
first find a formal solution of the direct problem (1)—(4). In this case, instead of (28) and (29), we have
the representations

Uky, ook (b @) = Cry o kpcosh A b4 w Cogy o gy SIND A g B
Fvag, ke, k() T &1k, kP 2k, ke (B), £ >0, (66)
Uiy, k(B @) = Clpy, ok €08 Ay k@ E+ Coky, ok SIN Ak, @ E

FV Bkt kO 1k ki () F 82k, kO 2k, ke (B), £ <0, (67)

where Cj,, .k, (i =1, 2) are arbitrary constants.
Substituting (66) into (11) and (67) into (12), we obtain

Tiky, .o O,k = Clky, ook Xilky, ok T Coky, ook Xi2ke, oo o T Siky, oo kmXidky, o ks (68)

where
Tiky, ook = L= VX3ky,.. ki 70, 1=1,2, (69)

T
X1iky, ... ko = b1(s) cosh Ak ook SAS, X12ky, ..k = @ /bl(s) sinh Ay, g, sds,

S

0
T T

X13ky, ...k = /bl(s)hlkh.”,k”, (8)ds, X1aky,... kn = /bl(s)h2k1,m,k,,,(5)dsl
0 0

0 0
X21ky, .k = /bz(s) Cos Aiy, . kn@SAS, X22ky,. ke = /bz(s) sin Ay, . k,wsds,
- o7

0
X23ky,... k= /b2(5)51k1,.“,k,,, (s)ds, Xoaky,... km = /b2(5)52k1,“.,km (s)ds.
°r

T
We show that condition (69) is always fulfilled, that is,
1—vXi3ky,.. o 70 L=V X3k, .. ki 7 O
First, we suppose that simultaneously take place

1=vXB3ky,.. by =0 1=V X23k,... kpy = O (70)

Then we come to the conclusion that x13x,,... K, =V -1, X23ky, .k =V —1 that s, X13ky, ...k =
X23k,,...,ky- It cannot be, since because x13k,,..., k,, and X13k,,...,k, are different quantities. Therefore,
(70) does not hold.

Now suppose that

1=v X3k, ko =0, 1=V X230k, .k 7 O (71)

Then we have consider the quadratic equation
(I =vX13ky,o k) L=V X2, k) =

_.2 _
= VX13ky, ... kK23 ke, o b =V (X13K1,o o ke T X238k, o) 1= 0.
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Solving this equation we derive the roots: v; = L v, = .
X13ky,....km X23kq,....km
1—=vX3k,,... ky 7 0. We came to a contradiction. Therefore, (71) does not hold. Similarly, it can be shown
that there is no
1=vXky,.. kw 70, 1=V X23ky,... kn = 0

Therefore, the condition (69) is always fulfilled. Then from (68) we find that

kb = Clky kX1 1kn ok T Coky, ook K12k, ook T 81k ki X131, o ke (72)
Bri,ookm = Ciky, oo kmX21ky, okt C2kyy ok X22k0, ok T 82k, .k K23k, ks (73)
where ik . N
- _ Aijky,..., = ~ Xidky,... K . .
Xijkiyoohy = 0 Ridky, kg = o, i=1,2, j=1, 2.
Tik],“‘,km Tl‘k],.u,km

Substitution of values (72) into (66) and (73) into (67) gives us the following representations
Uk (@0, V) = Criy, ok Yk, ek (B @0 V) + Coky ok Y12k, K (B0, V) +

+ &1kn, ek (W V) V13K, ko (B 0, V), £ >0, (74)
Uiy (b @0, V) = Crig, Y21k, ok (@0, V) Coky ok Y22k, e (£ @0, V)
+ 82kt ki (W V) Y23k, k(B @, V), £ <0, (75)

where
Yiky,..o k(@ v) =cosh A g b+ vhig, ke (B) Rk, . ks

Yi2ky, .. b (b W, V) =@ sinh Ag e b4 Vg (E) K12k, ke

Y13k, k(b @, V) = hogy, k() F VR, (B) X3y,
V21ky,... k(£ @, V) = cos )‘kl,“.,km‘Ut+V(51k1,m,k,,,(t)7(21k1, Lk
Vorky, .o b (b W, V) =sin A WtV Ik Lk (E) R22ky, . ks

Y23k, ook (b @, V) = 02k ok () FV 01k, ko (B) K23k, o

Then from (74) and (75) yields that the solution of the direct problem (1)—(4) in the domain Q}"
for (v, w) € X, can be represented as the following Fourier series

)

U, x,w,v)= Y Ok, k@) [Creg, ok M1k, ok (B @, V) +
Py -
+Coky,o kon 12Ky, oo ks (B @, V) + 815,k (W, V) V13ky, ok (B 0, V)], £>0, (76)
o0
U, x,w,v)= Y B (%) [Ciky,knT21k,. ok (B @, V) +
[ -
+ Coky, ook Y22k o (B @, V) 4 82k, ke (W, V) Y230y, ke (B w0, V)], £ <0, (77)

where Cj, .k, (i =1, 2) are arbitrary constants.

8. Inverse Problem (1)-(5). Irregular Case of a Spectral Parameter w

We apply the additional conditions (5) and from the Fourier series (76) and (77) we obtain that

pi(x,wv)=Ult,x,wv)= Y O k) [Cik, ok Yilk,. ..k (Fir @, V)+
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+ Cokyy ook Yizky, ook (Fir @, V) + Siky, -k (0, V) Yizky, ok (Fir 0, V)], i =1, 2. (78)

Taking the expansions (43) and 7i3,,.. k,(f, w,v) # 0,i = 1,2 into account from the
relations (78) we derive

ki, o (W0 V) = 1k, ko (W, V) Viky, Lk (Hiy w0, V)=

= Cikyyoo o Vitky, ook (Fir @, V) = Coky - Vinky, .k (B @, v), =1, 2, (79)
where

-1

Visky, ..k (tir @, V) = (Yisky,.. ke (tir 0, ), i=1,2,

Yijky,... ko (Fis W, V)
Yidky, ...,k (tis @0, V)

Substituting representations (79) into the Fourier series (8), we obtain

Vijk, ... ke (tiy @, V) = i =12

(e}
gilx, w,v)= Y Ok ke () W1k k(W V) Fizky, ok (B w0, V)=
P -
—Cikyy oo Vitky, ook (Fir @, V) = Cagey = Vinky, ook (P @0, V)], P =1, 2. (80)

Substitution of the representations (79) into the series (76) and (77) gives

)

U, x,v)= Y Ok (X) W1k, ke Z11ky,. . ke (b @, V) +
P -
+Ckyy b Z12k1, i (B @, V) + Coty, iy Z13k e (B @, V)] >0, (81)
[}
U, x, vy= Y O () [Waky,. ok Zo1ky, .k (B @, V)
ki =1
+Ciky,. o om Z22ky, oo (b @, V) + Copey ko Zosky, ke (£ @, V)], £ <0, (82)

where
Zitks, ok (0, V) = Yizky, k(b @, V) Y3k, ki (i 0, V),

Zinky, k(b @0, V) = Yitky, oo (B @0, V) = Yizky, ok (b 0, V) - Titky, ok (i @0, V),
Z 3k W, V) = Yk, ok (B @0, V) = Yizky, ok (B @, V) Vinky, ok (B w0, v), i=1, 2.

By virtue of the fact that Z; 4, ., (t, w,v) (i = 1,2; j = 1,2,3) are uniformly bounded
functions and the conditions A are satisfied for the functions ¢;(x), the arbitrary constants C; Kook
can be chosen such that the series (80)—(82) converge absolutely and uniformly. The proof of this
statement is carried out in exactly the same way as in the case of regular values of spectral parameters.

9. Statement of the Theorem. Conclusions

The questions of solvability of a nonlocal inverse boundary value problem for a mixed
pseudohyperbolic-pseudoelliptic integro-differential Equation (1) with spectral parameters w and v
are considered. Using the method of the Fourier series in the form (6), a system of countable systems
of ordinary integro-differential Equations (9) and (10) is obtained. To determine arbitrary integration
constants, a system of algebraic equations is obtained. From this system, regular and irregular values
of the spectral parameter w were calculated (condition (25)). From the condition (34) we calculate
regular and irregular values of the spectral parameter v. The following theorem is proved.
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Theorem 1. Let conditions A be fulfilled. Then for values (v, w) € Ny the inverse problem (1)-(5) is uniquely
solvable in the domain Q' and this solution is represented in the form of series (46)—~(49). And for values
(v, w) € Ny the inverse problem (1)—~(5) in the domain QO has an infinite number of solutions. These solution
is represented in the form of series (80)—(82). Moreover, a necessary conditions for the existence of solutions of
the problem are: ¢1(x) =0, ¢2(x) = 0.

In the case of all possible values (v, w) € i3, where X3 = {(w,v) [weEA;;vE I},
the questions of solvability of the inverse problem (1)—(5) are studied in a similar way.
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Abstract: For linear skew-product three-parameter semiflows with discrete time acting on an arbitrary
Hilbert space, we obtain a complete characterization of exponential stability in terms of the existence
of appropriate Lyapunov functions. As a nontrivial application of our work, we prove that the notion
of an exponential stability persists under sufficiently small linear perturbations.
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1. Introduction

The main objective of this paper is to obtain a complete characterization of exponential stability
for linear skew-product semiflows with discrete time acting on an arbitrary Hilbert space in terms of
the existence of appropriate Lyapunov functions. We then use this characterization to prove that the
notion of an exponential stability persists under sufficiently small linear perturbations.

We stress that the use of Lyapunov functions in the study of the stability of trajectories in the
theories of differential equations and dynamical systems has a long history that goes back to the
landmark work of Lyapunov [1]. For some early contributions to the theory, we refer to books by
LaSalle and Lefschetz [2], Hahn [3] and Bhatia and Szego [4]. For the first contributions dealing with
infinite-dimensional dynamics, we refer to the work of Daleckij and Krein [5].

In the context of nonautonomous dynamics, the relationship between exponential dichotomies and
the existence of appropriate Lyapunov functions was first considered by Maizel [6]. His results were
further developed by Coppel [7,8] as well as Muldowney [9]. We note that these results considered only
the case of continuous time. To the best of our knowledge, the first contributions in the case of discrete
time are due to Papaschinopoulos [10]. In the recent years, there has been a renewed interest in this topic.
More precisely, various characterizations of nonuniform exponential behaviour in terms of Lyapunov
functions were obtained (see [11-13]). In addition, the authors have obtained first results in the context
of infinite-dimensional dynamics [14] (see also [15]) which lead to further developments [16-18]. Finally,
for some related results in the context of ergodic theory, we refer to [19] and references therein.

The purpose of this paper is to show that techniques we developed in our previous work [14]
can be used to obtain Lyapunov-type characterization of exponential stability for a very general
type of nonautonomous dynamics. More precisely, we consider the so-called linear skew-product
three-parameter semiflows. This notion was introduced by Megan and Stoica [20] and includes various
previously studied notions as a particular case (see Examples 1 and 2).

Finally, we would like to mention that Lyapunov type characterizations of exponential stability are
certainly not the only tool used to study stability of nonautonomous dynamics. Indeed, there is a vast
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literature devoted to the so-called Perron type characterizations of exponential stability (see [21-26]
and references therein) as well as to Datko-Pazy-Rolewicz techniques (see [27-33]). For some other
approaches to the study of exponential stability for nonautonomous systems, we refer to [34,35].

The paper is organized as follows. In Section 2 we introduce all relevant notions and recall
auxiliarly results which will be used in the paper. In Section 3 we state and prove the main results of
our paper. Finally, in Section 4 we apply the main result to the study of the robustness property of
exponential stability for linear skew-product three-parameter semiflows.

2. Preliminaries

Let (©,d) be a metric space and let X be a Hilbert space over C. By B(X) we will denote the space
of all bounded operators on X.
Definition 1. A map 0: © X Z x Z — © is said to be a continuous three-parameter flow (with discrete
time) if:

1. o(6,n,n)=0foreach® € ©®andn € Z;
2. o(c(6,mn),km)=0c(6,kn)forevery 8 € ® and n,m, k € Z;
3. o(-,m,n) is a continuous map for each (m,n) € Z x Z.

SetA={(mn) € ZxZ:m>n}.

Definition 2. Let o be a continuous three-parameter flow. A map ®: © x A — B(X) is said to be a linear
skew-product three-parameter semiflow (with discrete time) over o if:

1. ®(6,nn)=Idfor0 € @andn € Z;
2. ®(c(0,m,n),km)®O,mn)=>0,kn)foroec®and (m,n), (k,m)eA;
3. 0+ (0, m,n)xis continuous for each x € X and (m,n) € A.

Let us give some examples.

Example 1. Assume that © is a singleton, i.e., that @ = {p} and let o(p,m,n) = p for m,n € Z.
Furthermore, let (Ay) ez be a sequence in B(X). For (m,n) € A, set

Ap_1--- Ay form>n;

d(p,m,n) =
v ) {Id form = n.

Then, one can easily verify that ® is a linear skew-product three-parameter semiflow over .

Example 2. Let © be an arbitrary Banach space and p: © — © a homeomorphism. We definec: ® X Z x 7 —
O by
o(0,m,n) =p"""(0), for6e®andm,n € Z.

One can easily verify that o is a continuous three-parameter flow. Let A: ®@ x Ny — B(X) be a linear
cocycle over p, i.e., A satisfies the following conditions:

e A(0,0)=Idforf € ©;
o A0, m+n)=A(p"(0),n)A0,m)for0 € ® and n,m € Ny,
o 0+ A(60,1)x is continuous for each x € X.

For6 € @ and (m,n) € A, set
(0, m,n) = A6, m—n).

Then, it is easy to show that ® is a linear skew-product three-parameter semiflow over o.
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Example 3. Let o be a continuous three-parameter flow on a metric space ©. Furthermore, take a map
A: ©® — B(X) such that 0 — A(0)x is continuous for each x € X. For (6,n) € ® x Zand x € X, let us
consider a Cauchy problem

Ymi1 = A(c(0,m,n))y, m>n, y,=x

Let ®(6, m, n)x denote the value of the solution of this problem at time m. Then, ® is a linear skew-product
three-parameter semiflow over o. We observe that

O(0,m,n)=A(c(0,m—1,n))---A(c(6,n+1,n))A(0),
for@ € ®and (m,n) € A.
We now introduce the notion of exponential stability.

Definition 3. For a linear skew-product three-parameter semiflow ® we say that it is exponentially stable if
there exist D, A > 0 such that

(6, m, 1) < De= "=, for§ € ® and (m,n) € A. (1)

We also introduce some additional notation that will be used throughout this paper. More
precisely, for a linear skew-product three-parameter semiflow ® over ¢, we introduce a map ®: © x
Z — B(X) by

d(0,n) =P(0,n+1,n), for(,n)cOxLZL.

Furthermore, we define 7: © X Z — © x Z by
7(0,n)=(c(6,n+1,n),n+1) for(6,n)c O xZ.
Clearly, 7 is invertible and in fact,
"(0,n) = (c(6,n+m,n),n+m), for(6,n)c®xZandm e Z.

Some Auxiliary Results

We also recall some useful results established by Daleckij and Krein [5].

Lemma 1. Assume that H is a Hilbert space and that T is a bounded operator on H. Furthermore, suppose
that the spectrum of T does not cover the whole unit circle S'. Then every self-adjoint operator bounded operator
W on H with the property that there exists 6 > 0 such that

T*WT — W < —4Id (2)
is invertible.
We will also use the following result (also taken from [5]).

Lemma 2. Assume that H is a Hilbert space and that T is a bounded operator on H. Furthermore, assume that
there exists an invertible, self-adjoint and bounded linear operator W on H such that (2) holds for some § > 0.
Then, the spectrum of T does not intersect S and there exist &' > 0 satisfying

TWIT* — W=t < —¢1d.

Moreover, if W > 0 (that is, (Wx, x) > 0 for x € H) then the spectrum of T is contained in {z € C :
|z] <1}
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3. Main Results
The following is our first main result.
Theorem 1. Assume that ®: © x A — B(X) is an exponentially stable linear skew-product three-parameter

semiflow over a continuous three-parameter flow o. Then, there exists a family S ), (0,n) € © x Z of
bounded, self-adjoint and invertible operators on X and K, > 0 such that for (6,n) € © x Z:

1. S(G,n) Z 0,'
2.
IS@mll <K and Sl I <K 3)
3.
é(G,n)*S,—T(Qm)&)(G,n) - S(an) < —d1d; (4)
4.
®(8,1)S L, B(6,1)" =S4 ) < —0ld; ®)

Proof. For (6,1n) € © X Z, set

+00
S(G,H) = kg <I>(6, k,n)*CI>(9,k,n)‘

It follows from (1) that

+00
<S(9,n)xr x) = E ”(D(G/ kf”)tz
k=n

+00
< Z D2672/\(k7n)||x”2
k=n

= K||x|?,

where K = % > 0. Obviously, 59 ) is self-adjoint, S(g ;) > 0 and therefore

1Sl = H51“11;1 (Somx,x) <K, for(6,n) € ®xZ.
x||=1

Hence, the first inequality (3) holds. Furthermore, we have that
D(0,1)" Sy, P(6,1) = S(g,n)

“+00
=®(0,n)" Y ®(c(0,n+1n)kn+1)*D(c(6,n+1,n)kn+1)D(6,n)
k=n+1

“+o00
— Z D(0,k,n) D0,k n)
k=n

—+oo —+oo
= Y ®6,kn)®0,kn)— Y P6,kn) dO,kn)
k=n+1 k=n
=—P(6,n,n)
= —1Id,

which implies that (4) holds with 6 = 1.
Set now

+00
e {x = ez © X3 B [l < o).

n=-—o00
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Clearly, 12 is a Hilbert space with respect to the scalar product
+00
<X/Y> = Z <xn/yn>,
n=—oo

for x = (¥n)nez and y = (yu)nez in 2. For (8,n) € ® x Z, we define Agg: 2 — 2 by

@1 (6,1))xm-1
S(r(0,n+m—1,n),n+m—1)x,_1
=®(c(0,n+m—1n),n+mn+m-—1)x,_1,

(A(G,n) )

for m € Z and x = (x,) ez, € 1. It follows from (1) that

+00
Yo (A Yml? = Z |D(c(8,1n+m—1,1),1n+m—1)x, 1]

m=—oo m=—00

—+00
<D* Y law-al?,

m=—oo

for every x = (xy),cz € 1. Hence, A(g ) is well-defined and bounded linear operator for each
(6,n) € © x Z.
We need the following auxiliary results.

Lemma 3. We have that

(AfgmyX¥)m = @(0"(0,n)) xpt1, for (,n) € O X Zand m € Z.

Proof of the Lemma. Take (6,1) € © x Z, we define By ;) > = by

Bo,mx)m = ®("(0,1))* 41, for (0,n) €O x Zandm € Z.

Obviously, B(g ) is a well-defined and bounded linear operator. For x = (xy),cz and y = (yu)nez
in 12, we have that

—+o00

Bomxy) = Y, ((AgumX)m ym)

m=—co
“+00

Z <(i>( " 1(9 n))xm 1:]/m>

m=—co
“+00

= Z (xm-1, D" 1(6,1)) ym)

m=—co
—+00

= Z (xm-1, (B(O,n)}’)mfﬁ

m=—oo

xBg,my),

which readily implies the desired conclusion. [

Lemma 4. There exists t € (0,1) such that spectrum of A ) is contained in {z € C : |z| < t}, for each
(6,n) €© x Z.

Proof of the Lemma. Fix (6,1) € © x Z. Then, for each k € Nand x = (xy) ez € 1> we have that
(Al(‘eln)x)m =P(c(0,n+m—k,n),n+mmn+m—Kk)x,
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and consequently (1) implies that
H(Al({g,n)x)mH < Dei)‘k“xm—kﬂr

for each m € Z. This readily yields that || (A’(‘g ) || < De=**. Since k € N was arbitrary we conclude
that the statement of the lemma holds with t =e™* < 1. [

For (6,n) € © x Z we define W, ,,: 2 — I by
(W (g.mX)m = Sgm(gnyXm, for (6,n) € ® x Zandm € Z.

It follows easily from the already proved first inequality in (3) that W g ) is a well-defined and
bounded linear operator on I2. Moreover, it is easy to show that W g, is self-adjoint.
On the other hand, observe that for (§,7) € @ x Z and x = (x,),cz € /2, we have that

(A?e,n)w(e,n)A(s,n)x)m =®(0"(0,1))" Sgmer (e,n)q)(ﬁm (8,1))xm,
for each m € Z. Hence, the already proved inequality (4) (we recall that it holds with 6 = 1) implies that
Az9,n)w(9177)A<9/") - W(Q,n} S —Id on 12, (6)
for each (0,1) € ® x Z. Hence, Lemmas 1 and 4 imply that W g ) is invertible for every (6,1) € ® x Z.

Lemma 5. We have that
sup [|W ! II < +oo.
(6,n)€cOXZ

Proof of the Lemma. For (6,1n) € ® x Z, set
Hig,n) := —Alg ) WiomAen) +Wen-
Then, Hg ) = Id. It is easy to verify that
(Al ) = 1YW (g0 (A g +1d) + (Afp ) +1d)W g ) (A g,y —1d) = —2H g )

By multiplying this identity on the right by (A, — Id) ~1 and on the left by (A’(‘g . Id)~1, we
obtain that
W (o) (A g,y +1d) (A g,y —1d) ™+ (Al ) —1d) T (Ay ) +1d) W)
= —2(Afy ) —1d) T Hg ) (A gy —1d) "

Therefore,

((Afg) —1d) " Hgn) (Agmy —1d) " 'x,x)

1 _
< SIWig x|l 1A +1dI] - [|(Agn —1d) I [l
for every x € 12. On the other hand,

2((Afg) = 1) Hg,u) (Ag,n) —Id) 'x,x)
= 2(H (g (A(g,m) —1d) ', (A(g,p) —1d) 'x)
> 2|[(A gy —1d) " 'x|?
lIx]1
>2 .
T — A2
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Combining the last two estimates, we obtain that

2
X —
2 < W<l W 161 o)~ I

and thus 1
Xl < S IW g mx[l - 1A om) +1a] - [[(Aggm) — Id) ™| - [[1d — Ag I

for x € 2. It follows from Lemma 4 that

sup [ (A —1d) | < +eo.
(0,n)cOXZ

Hence, there exist R > 0 such that
[Ix]| < R[[W x|l forx € I2and (6,n) € © € Z.

Hence,
sup HW(_gl,,)H <R < +oo,
(0,n)€cOXZ

and the proof of the lemma is completed. [
Lemma 6. For each (0,1n) € © X Z, Sy ) is invertible. Furthermore, the second inequality in (3) holds.

Proof of the Lemma. Observe that S(g,,) > Id and thus Sy ) is injective. Take v € X and consider
y = (Ym)mez € 1% given by yo = v and y,; = 0 for m # 0. Since W g,n) is invertible, there exists
x = (Xm)mez € I? such that W g,n)x =y. Hence,

v =yo = (Wgn)X)o = S(g,1)X0-

Hence, S(g ) is also surjective and thus it is invertible. Moreover,
1Satnyoll = llxall < lIxll = WGk ¥ll < IWehy - iyl = W5k, I 1ol

Therefore, HS(;H) | < ||W<791n) || for all (6,n) € ® x Z. Now the second inequality in (3) follows
directly from the previous lemma. [

It remains to establish (5). Using the same notation as in the proof of Lemma 5 we have

-1 * -1 —1yy—1
- ZW(O,H) (A(e,n) —1d) H(9/ﬂ) (A(orn) —1d) W(G,n)
= (A +1d) (A, —1d) W1

o,
+ W&;n) (Afg ) — Id)*l(A;fM +1d).

Moreover, multiplying this equality on the left by A, —Id and on the right by Azfe n Id
yields that
—2(Aggn — Id)W(’e}n) (Mg — 1d) ' Hg ) (A (g) — Id)*lw(*efn) (Afy,) —1d)
= (A@n + Id)W@}n)(A;“M) —1d) + (A (g — )W ! (Afp,) +1d)
=280y W

(CED]
* -1
oo = 2W g
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Hence,

~ (A — 1YWl (Al ) —1d) g (A —1d) "Wl (A, —1d)

_ -1 -1
- A(G/")W(é},n) ?e,n) - W(G,n)'
Observe that for each x € 12, we have that

(A — )W (Afg ) — 1d) " "Hg) (A gy —Id) "W L (Afg — 1d)x,x)

(0,n) (6,n)
> || (A — 18) TG, (A7, — T2
§ Il |
T A 1] - (Wl - [[(Af ) —1d) 1

Since there exists L > 0 such that

1A —1d]| - [Wigull - |(Afy,y —1d) M < L,

for (6,n) € ® x Z, we conclude that

(A(Q,H)Wfln A?9,11)X'X> - (W(;n)x, x) < ——(x,x), (7)

(0,1)

==

for every x € 2. By applying (7) for x = (xp)uecz € 1> givenby x,, = Oform # land x; = v,
where v € X is arbitrary, we conclude that (5) holds with 6 = % >0. O

We now establish the converse of Theorem 1.

Theorem 2. Assume that ®: ©® x A — B(X) is an linear skew-product three-parameter semiflow over a
continuous three-parameter flow o such that

sup [|@(0,n+1,n)| < Hoo. (8)
(0,n)cOXZ

Furthermore, suppose that there exists a family S(g .y, (6,1) € © X Z of bounded, self-adjoint and
invertible operators on X and K, 6 > 0 such that Sy ,,y > 0 and that (3)~(5) hold for each (6,n) € © x Z.
Then, @ is exponentially stable.

Proof. For (6,n) € ® x Z, let A,y and Wy, are as in the proof of Theorem 1. Please note that (8)
implies that A (g, is a well-defined and bounded linear operator. Furthermore, observe that (4) and (5)
imply that

A?G,n)W(G,H)A(g,n) — W(G,n) < —4Ild on 12,

and

AW g Algy — Wiy < —6ld on 2

(6,m) (6:n)

Since S(g,,) > 0 on X for (6,n) € © x Z, we have that W, ,y > 0and 12 for each (8,n) € © x Z.
Consequently, Lemma 2 implies that the spectrum of A g ,,y is contained in {z € C : |z| < 1}, for every
(6,n) €O x Z.

Lemma 7. We have that

sup  [|(Id — A ) || < +oo.
(6,1)cOXZ
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Proof of the Lemma. By repeating the arguments in the first part of the proof of Lemma 5 that
311 (Ag,ny —1d) "X < [[Wigu | - A g,y +1All [ (Ad = Agg ) ~'xI| - [x],
for (,n) € ® x Z and x € I2. On the other hand, (3) and (8) imply that

sup  ([|Wgumll - [[Aggn) +1d]]) < +oo.
(6,n)€cOXZ

The conclusion of the lemma now readily follows. [

Take now (6,1) € © x Z, v € X and consider a sequence y = (Y )mez by

o ifm=0,
N0 ifm £0.

Setx = (Id — Ay ,)) "'y € 2 Itis easy to verify that

0 ifm <0,
Xy =
P0,n+m,n)v ifm>0.

Then, Lemma 7 implies that there exist C > 0 such that

1/2
( Yy ||q>(9,k,n)z;\|2> < Cllv||, for(f,n) €@ xZandv € X. )

k>n

In particular, (9) implies that
|P(6,k,n)o|| < Cllv||, for(6,n) e ®xZ, k>nandve X. (10)
Take now 0 € ©, v € X and m > n. Then, for each n < k < m we have that
@6, m,1n)0||> = | D(c(6,k, 1), m, k)P0, k,n)v||> < C||D(6,k, n)o|
Summing over k and using (9), we obtain that

(m —n+1)|| (6, m,n)o|* < C* Y7 |6,k n)o|* < C¥o].

k>n
Thus,
CZ
PO, m,n)|| < —m—.
@ mml < s
Consequently, there exist Ny € N such that
|®(6,m,n)| <e™!, for € ®andm,n e Zsuch that m —n > Np. (11)

Now, (10) and (11) easily imply that @ is exponentially stable. [

4. Applications

In this section, we use Theorems 1 and 2 to prove that the notion of exponential stability persists
under sufficiently small linear perturbations.

Theorem 3. Assume that ®,'¥: ©@ x A — B(X) are two linear skew-product three-parameter semiflows over
a continuous three-parameter flow o. Furthermore, suppose that:
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1. D is exponentially stable;
2. there exists ¢ > 0 such that

sup |®O,n+1,n)—¥0,n+1,n)| <c. (12)
(6,n)cOXZ

Then, if ¢ is sufficiently small, ¥ is also exponentially stable.
Proof. We first observe that since ® is exponentially stable, (12) implies that

sup ||¥(8,n+1,n)| < Hco.
(6,n)cOXZ

Let Sig ), (6,n) € © x Z, K, 6 > 0 be given by Theorem 1. For each (§,1) € ©® x Zand v € X, (4)
implies that

It follows from (1), (3), (4) and (12) that

(¥(0,1)"S5(0,0)¥(6,n)0,0) — (S(g,0y0,0)
< —6(0,v) + 2K (v,0) + 2DcK (v, v)
= —(6 — *K — 2DcK) (v, ),

for v € X. We conclude that

‘?(9, n)*S(-,(eln)‘T’(G, Tl) - S(an) < —5Id,
where § = 6 — ¢2K — 2DcK. Observe that § > 0 if ¢ is sufficiently small. Similarly, one can prove that
there exists &' > 0 such that

J -1 * -1 5

‘F(B,n)S(ern)‘I’(B,n) — SFT(G,n) < —¥§'14d,
for every (6,n) € © x Z. Putting all this together, Theorem 2 implies that ¥ is exponentially stable
and the proof of the theorem is completed. [

5. Conclusions

In this paper, we obtained a complete Lyapunov-type characterization of exponential stability for
linear skew-product three-parameter semiflows with discrete time. More precisely, we proved that
exponential stability can be described in terms of the existence of appropriate quadratic Lyapunov
functions. We then applied these results and prove that the notion of exponential stability persists
under sulfficiently small linear perturbations.
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Abstract: In this paper, we study the existence of solutions for nonlocal single and multi-valued
boundary value problems involving right-Caputo and left-Riemann-Liouville fractional derivatives
of different orders and right-left Riemann-Liouville fractional integrals. The existence of solutions
for the single-valued case relies on Sadovskii’s fixed point theorem. The first existence results for
the multi-valued case are proved by applying Bohnenblust-Karlin’s fixed point theorem, while the
second one is based on Martelli’s fixed point theorem. We also demonstrate the applications of the
obtained results.

Keywords: fractional differential equations; fractional differential inclusions; existence; fixed point
theorems

1. Introduction

Fractional calculus has emerged as an interesting and fruitful subject in view of wide applications
of its tools in modeling complex dynamical systems. Mathematical models based on fractional-order
operators provide insight into the past history of the underlying phenomena. Examples include
constitutive equations (fractional law) in the viscoelastic materials [1], Caputo power law in transport
processes [2], dynamic memory describing the economic processes, see [3,4].

Widespread applications of fractional differential equations motivated many researchers to
develop the theoretical aspects of the topic. During the last few decades, one can witness the remarkable
development on initial and boundary value problems of fractional differential equations and inclusions.
Much of the literature on such problems include Caputo, Riemann-Liouville, Hadamard type fractional
derivatives, and different kinds of classical and non-classical boundary conditions. For some recent
works on fractional order boundary value problems, for example, see the articles [5-12] and the
references cited therein. Fractional differential equations involving left and right fractional derivatives
also received considerable attention, for instance, see [13-16]. These derivatives appear in the study
of Euler-Lagrange equations [17], steady heat-transfer in fractal media [18], electromagnetic waves
phenomena in a variety of dielectric media with susceptibility [19], etc.

Multivalued (inclusions) problems are found to be of great utility in studying dynamical systems
and stochastic processes, for example, see [20,21]. In the text [22], one can find the details on stochastic
processes, queueing networks, optimization and their application in finance, control, climate control,
etc. Monotone differential inclusions were applied to study the nonlinear dynamics of wheeled
vehicles in [23]. In [24], a fractional differential inclusion with oscillatory potential was studied. In [25],
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the authors investigated the mild solutions to the time fractional Navier-Stokes delay differential
inclusions. Other applications include polynomial control systems [20], synchronization of piecewise
continuous systems of fractional order [21], oscillation and nonoscillation of impulsive fractional
differential inclusions [26], etc. For some recent existence and controllability results on fractional
differential inclusions, we refer the reader to articles [27-33] and the references cited therein.

Recently, in [34], the authors studied existence and uniqueness of solutions for a new kind of
boundary value problem involving right-Caputo and left-Riemann-Liouville fractional derivatives of
different orders and right-left Riemann-Liouville fractional integrals, subject to nonlocal boundary
conditions of the form

{CD?“D&ﬂﬂ+MfﬂJWﬂUD=f@ﬂHLf€k=WJL

y(0) =y() =0, y(1)=dy(u), 0<g<u<l,

)

where CDiL and R Dg , denote the right Caputo fractional derivative of order & € (1,2] and the left
Riemann-Liouville fractional derivative of order g € (0,1], I{l and Ig . denote the right and left
Riemann-Liouville fractional integrals of orders p,q > 0 respectively, f,h : [0,1] x R — R are given
continuous functions and §,A € R.

Here we emphasize that the importance of nonlocal conditions can be understood in the sense
that such conditions are used to model the peculiarities occurring inside the domain of physical
and chemical processes as the classical initial and boundary conditions fail to cater this situation.
The present problem is motivated by useful applications of nonlocal boundary data in petroleum
exploitation, thermodynamics, elasticity, and wave propagation, etc., for instance, see [35,36] and the
details therein.

The existence results for the problem (1) were derived by applying a fixed point theorem due to
Krasnoselski and Leray-Schauder nonlinear alternative, while the uniqueness result was established
via Banach contraction mapping principle.

The objective of the present work is to enrich the results on this new class of problems. We firstly
prove another existence result for the problem (1) with the aid of Sadovskii’s fixed point theorem.
Afterwards, we initiate the study of the multi-valued analogue of the problem (1) by considering the
following inclusions problem:

@

{ €Dy REDP y(t) € E(t,y(t)) — AI'_ 1, H(t,y(1), t€[0,1],
y(0) =y() =0, y(1)=dy(n), 0<g<u<l,

where F,H : [0,1] x R — P(R) are compact multivalued maps, P(R) is the family of all nonempty
subsets of R, and the other quantities are the same as defined in problem (1). Existence results for the
problem (2) are established via fixed point theorems due to Bohnenblust-Karlin [37] and Martelli [38].

The rest of the paper is arranged as follows. In Section 2 we recall some preliminary concepts and
a known lemma [34]. In Section 3 we prove an existence result for the problem (1) by applying
Sadovskii’s fixed point theorem. Section 4 presents the existence results for the problem (2).
Applications and examples are discussed in Section 5.

2. Preliminaries

Let us collect some important definitions on fractional calculus.

Definition 1. [39] The left and right Riemann—Liouville fractional integrals of order 5 > 0 for ¢ € Ly[a, b],
existing almost everywhere on [a, b], are respectively defined by

t _ )01 _ 1\o-1
Bt = [ s and gt = [T Lo
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In addition, according to the classical theorem of Vallee-Poussin and the Young convolution theorem,
2,810 g€ Li[a,b],6>0.

Definition 2. [39] For g € AC"[a, b], the left Riemann—Liouville and the right Caputo fractional derivatives
of order 6 € (n —1,n|,n € N, existing almost everywhere on [a, b], are respectively defined by

n _s n—o6—1 b s — n—o6—1
S0 = g [ e sds and €04 go) = (-1 [ C g o

The following known lemma [34] plays a key role in proving the main results.
Lemmal. Let H,F € C[0,1] N L(0,1) and y € C([0,1],R). Then the linear problem

3)
y(0) =y(&) =0, y(1)=23dy(n),

is equivalent to the fractional integral equation:

{ cpt MDE y(t) + A1 H(t) = F(t), te]:=[01]

_5)B-1 .
y(t) = /Ot % [I{",F(s) - Mlj”lgﬁ(s)}ds

. _g)B-1 .
+a1(t){5/0”%{1fj(s) —/\IlprngH(s)]ds )

~ /01 % (15 F(s) - Mi‘f’”I&H(S)]dS}

_ g1
+ap(t) /j % [Ii‘j(s) - Mi‘f"’I&H(s)} ds,

where

1 1
= — |gPt1h _ zBpptl = —|tB(1 = ouPtYy — B (1 — 5P 5
m(t) = < [P =P, ap(t) = L[#P(1—opPth) — BT (1 — P, 5)
and it is assumed that
A= - opP) =P (1 — o) # 0. (6)
3. Existence Result for the Single-Valued Problem (1) via Sadovskii’s Fixed Point Theorem

Our existence result for the problem (1) is based on Sadovskii’s fixed point theorem. Before
proceeding further, let us recall some related auxiliary material. In the sequel, we use the norm

Il = SUP¢eo,1] -l

Definition 3. Let M be a bounded set in metric space (X, d). The Kuratowski measure of noncompactness,
a(M), is defined as
inf{e : M covered by a finitely many sets such that the diameter of each set < €}.

Definition 4. [40] Let ® : D(®P) C X — X be a bounded and continuous operator on Banach space X.
Then @ is called a condensing map if x(®(B)) < «(B) for all bounded sets B C D(®P), where « denotes the
Kuratowski measure of noncompactness.

Lemma 2. [41, Example 11.7] The map K +- C is a k-set contraction with 0 < k < 1, and thus also condensing, if

(i) K,C:D C X — X are operators on the Banach space X;
(ii) K is k-contractive, that is, for all x,y € D and a fixed k € [0,1),

[Kx — Kyl < k[lx —yl;
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(iii) C is compact.

Lemma 3. [42] Let B be a convex, bounded and closed subset of a Banach space X and ® : B — B be
a condensing map. Then ® has a fixed point.

In the sequel, we set

A [A]|Aq Ay [A|Ay
A = , Ny = SNy = — Ay = —— =, 7
LS T M T Tarp e i) T T M T Ta+ ) @
where
1 _ _ 1 _ _
Al = W[l“ral“&l}lﬁ‘f’l) “l’ﬂzg’g}, A2 = m [1 +ﬂ](|(s‘ +1) +ﬂ2:|,
a1 = max |ay(t)|, a, = max |ay(t)].

te(0,1] te[0,1]
Theorem 1. Assume that:

(B1) There exist L > 0 such that |f(t,x) — f(t,y)| < L|lx —y|, Vt € [0,1], x,y € R;
(B2) |f(t,y)| <o(t) and |h(t,y)| < p(t), where o, p € C([0,1],RT).

Then the problem (1) has at least one solution on [0,1] if
Q:=LA; < 1.
where Ay is given by (7).

Proof. Let B, = {x € C([0,1],R) : ||x|| < r} be a closed bounded and convex subset of C([0,1],R),
where r is a fixed constant. In view of Lemma 1, we introduce an operator G : C([0,1],R) — C([0,1],R)
associated with the problem (1) as follows:

t(t_ o\B—1
o) = [ o [ ) - AL o) s

_ o)1
sm(t) {«s U [ )~ AR o)

Fp)
_ Bl
san) [T ELI i flovle) — AR G (o).

Let us split the operator G : C([0,1],R) — C([0,1],R) on B, as G = G; + Ga, where

_ /O'] (1—s)Pt (15 fGsys)) AIf”I&h(s,y(s))]ds}

_o\B-1 n _\B-1
Gu(t) = [ L Sy a0 [TV p(s (e

T(B) CT(p)
_g)B-1 p-1
,/0 (a (S)) o f(s,y(s))ds}Jrllz(t)/oé (Cr(;)) I f(s,y(s))ds,
p-1 A1
Gay(t) =~ [ Lo i s yisas = am(o)[s [ VLS R s (o)
1

—S p-1 zx p- o
7/0 ( (5)) +pI&_h(s,y(s))ds} f)uzz(t)/o 4 (;)) I+plg+h(s,y(s))ds
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We shall show that the operators G; and G, satisfy all the conditions of Lemma 3. The proof will be
given in several steps.

Step 1. GB; C B,.

Let us select r > ||o|| Ay + ||p]| A2, where A1, A; are given by (7). For any y € B,, we have

Iyl
t(t_s)/57] o o
< s { b [Il,v(s,y(sm + P (s, y(s)] | ds
+|a1<t>»{|s| [ (" 1760+ ALV s, () ]
! (1 75)'6 o« o
+ W[Il_v(s,y(s))\ + I “’Iums,y(s))\]ds}
_ )81
Haatt)] [T LT 1 Iftsvion] + |A|I“*"ﬂ+|h(s,y<s>>}ds}

IN

su t(tfs)ﬁil ® s a # (st)ﬁil ® S
”"”temﬁ]{ [t s o 1o [ S

1 _o\p-1 & _o\B-1
O ] o] [T EE D )

(=91, (u—s)P
ol sup;]{ [t s+ |a1<t>»[\5| [ s
(17 )’B 1 o+ i
+ o W qu dS:| +|112 t)‘/ I +PIL1 ( )ds}

- { el llelllAl }Al
- Fa+1) T(a+p+1I(g+1)
= lellar+llellAz <7,

which implies that GB, C B,.
Step 2. G is compact.

Observe that the operator G, is uniformly bounded in view of Step 1. Let t1,f, € J with t; < tp
and y € B,. Then we have

Bo(hy — )Pl _ (4 — g)B—1
/0 S r(ﬁ)(tl B hGs,y(6))lds

2 (t, —s)B—1
Iy 021"(7;))1a+p10+|h(s’ (s))1ds

. _ Bl
HAar(r2) = an(en)] o] [ VI s y(s) s

|G2y(t2) — Gay(t)| < A

1 (1—s)P1 I
R e NSO

—spl
HAllaat) —ﬂz(f1)|{/5% ST (s, y(s )>|ds}

[Alllell
T(B+ 1) (a+p+1)(g+1) {z(tz B

IN

t)P + P — 1P
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S|uP +1 1 1
o ol +1) ‘TA‘ L1165 - 8+ pp ™t - )

p 1 1
g (1= 0410 = 1 = P = )

which tends to zero independent of i as f, — t;. This shows that G, is equicontinuous. It is clear from
the foregoing arguments that the operator G is relatively compact on B,. Hence, by the Arzela-Ascoli
theorem, G, is compact on B;.

Step 3. G; is Q-contractive.

Using (B1) and (By), it is easy to show that

- oup { [ =9 _
I =uxl < sup { [ G Ao ~ fls oD

_g)p-1
o010 [ VLA 1 176 y(6) — £ (s s

_s)p1
+ /01 %I{‘f\f(s,y(s)) 7f(s,x(s))\ds}

b
Haa(0)] [ E LA 115 60) = fls (sl
L

- a B 7, &P _
NCESNYCESY [1+ a1 (o1 +1) + a28Plly — |
= Ly —x|,

IN

which is Q-contractive, since Q := LA} < 1.

Step 4. G is condensing. Since G; is continuous, Q-contraction and G, is compact, therefore, by
Lemma 2, G : B, — B, with G = G; + G is a condensing map on B,.

From the above four steps, we conclude by Lemma 3 that the map G has a fixed point which,
in turn, implies that the problem (1) has a solution on [0,1]. O

4. Existence Results for the Multi-Vaued Problem (2)

For a normed space (X, || - ||), we have P (X) = {Y € P(X) : Yisclosed}, Pp(X) = {Y €
P(X) : Yisbounded}, Pep(X) = {Y € P(X) : Yis compact}, Pepe(X) = {Y € P(X) : Y is compact
and convex}, Py (R) = {Y € P(X) : Y is bounded, closed and convex}. We also define the sets of
selections of the multi-valued maps F and H as

Sry = {f € LN(01LR) : £(1) € F(t,y)),

Sty = {h € L'([0,1],R) : h(t) € H(t,y)}.
By Lemma 1, we define a solution of the boundary value problem (2) as follows (see also [43,44]).

Definition 5. A function y € C([0,1],R) is a solution of the boundary value problem (2) if y(0) = y(¢) =
0,y(1) = 0y (u), and there exist functions f € S, h € Sy, a.e. on [0,1] and

_g)p1 .
y(t) = /Ot % [lf,f(s) - uljng+h(s)]ds

. _ )1 .
wan(0){o [ VS [ 6 AL ) s
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_/0 1‘5/3 1[1 _f(s) = AL k(s )]ds}

-1
raalt) [FEL I 1) — A1) .

Now we provide the lemmas which will be used in the main existence results in this section.

Lemma 4. (Bohnenblust-Karlin) ([37]) Let D be a nonempty, bounded, closed, and convex subset of X.
Let @ : D — P(R) be upper semi-continuous with closed, convex values such that ®(D) C D and ®(D) is
compact. Then ® has a fixed point.

Lemma 5. ([45]) Let X be a separable Banach space. Let F : [ X X — Pepc(X) be measurable with respect
to t for each y € X and upper semi-continuous with respect to y for almost all t € | and Sg,, # @, for any
y € C(J,X), and let © be a linear continuous mapping from L'(J, X) to C(J, X). Then the operator

©08p: C(J,X) = Pepe(C(], X)), y = (©0Sp)(y) = O(Sgy)
is a closed graph operator in C(J, X) x C(J, X).

In the first result, we study the existence of the solution for the multi-valued problem (2) by
applying Bohnenblust-Karlin fixed point theorem.

Theorem 2. Suppose that:

(M1) F,H:[0,1] x R = Py p(R); (t,y) — f(t,y) and (t,y) — h(t,y) be measurable with respect to t for
each y € R, upper semi-continuous with respect to y for almost everywhere t € [0,1], and for each fixed
y € R, the sets S, and Su, .y are nonempty for almost everywhere t € [0,1].

(M) For each p > 0, there exist functions ¢, , € L1([0,1], R.) such that

[F(t, )]l = supf|f] : f(t) € F(t,y)} < gp(t),
IH(t,y)|l = sup{|h] : h(£) € H(t,y)} < 9y(t),

foreach (t,y) € [0,1] x Rwith ||y|| < p, and

liminf / GplB)t =0 < eo, liminf - /% Bt = {5 < oo, ®)

Then the boundary value problem (2) has at least one solution on [0,1] provided that
Qi3+ 0Ay <1, ©)
where (1, Cp are defined by (8), and A3, A4 are given by (7).

Proof. To transform the problem (2) into a fixed point problem, we define a multi-valued map
U:C([0,1,R) — P(C([0,1],R)) as

)1 .
uty) = {seconm: s = [T 170 - AR ) as

. )b .
() {5 I % (1 £(5) ~ AL 1] (s)) s

7/ 1*S)ﬁ ' (15 £(5) = AL I s )}ds}
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for f € S, h € Sp .

Now we prove that the operator I/ satisfies the hypothesis of Lemma 4 and thus it will have
a fixed point which corresponds to a solution of problem (2). Here we show that I{ is a compact
and upper semi-continuous multi-valued map with convex closed values. This will be established in
a sequence of steps.

Step 1: U(y) is convex for each y € C([0,1],R). For that, let g1,¢2 € U(y). Then there exist f1, fo €
Sky, M, 2 € Sy such that, for each t € [0,1], we get

ot (p—g)B-1 .
gi(t) = /Ot % [I{‘,f,‘(s) - /\Ilfpl&hi(s)]ds

. _ )1 .
w0 {0 [ S [ A0~ AR o) s

- /01 % [ fi(s) = AP )] dS}

i; — S 1571 o .
+a2(t)/0 % [I;",f,-(s) - Alljplg+h,-(s)]ds, i=1,2.

Foreacht € [0,1] and 0 < v < 1, we can find that
[ve1 + (1= v)g2] (1)
t _o\B-1
= /0 % [ [vA(s) + A =0)fals)] = ALV, [l (s) + (1= v)ha(s)] | s

+a1(t){5/0" (p—s)Pt [1;3 [Vfi(s) + (1= v)fa(s)] = ALy PIT, [uha(s) + (1 — v)hz(s)]]ds

T(B)
Y '
— /01 % [I{L [VA(s)+ (1 —v)fals)] — Ali‘jpl& [vhi(s) + (1 — v)hz(s)]}ds}
& (F_g)p1 .
+ay(t) /Oé % {I{L [VA(s)+ (1 =v)fa(s)] — /\I:”Ig+ [vhi(s) + (1— v)hz(s)}]ds.

Since Sk, S H,y are convex valued (F, H have convex values), it follows that vg; 4 (1 —v)g2 € U(y).
Step 2: U(y) maps bounded sets (balls) into bounded sets in C([0,1],R). Let us define B, = {y €
C([0,1],R) : |ly|l < p} as a bounded closed convex set in C([0,1],R) for each positive constant p.
We shall prove that there exists a positive number g such that U (B;) C Bp. If it is not true, then we can
find a function y, € By, & € U(yp) with [|U(y,)|| > p, such that

t i o1
s) = [ o 156 A ()]s

+ay (t) {5 /Oy % (1 fos) = ALV I g s) s
_ /0 ' % (B fo(s) = AL T )] als}

¢ (& —s)P1
wan) [T LI (0 - M),

for some f, € Spy,, hp € §H,yp.
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According to condition (M3 ), we obtain

P

IN

<

<

24|
[ [t >+|Au“+”ﬂ+¢p<s)]ds

Flaa(01] 6] [ I [ gute) + I gt
+./O % I gp(s) + |Au“+"ﬂ+¢p(s)]ds}

©|F— s|p1 .
laa(0] [ E T [ 000 + A1 o) s

1+a1(\5|+1 +u2 IA[(1+a1(]6] +1) +u2
T(B+1)T /"’P dt + T(B+ 1) (a+p)T /‘P"
A3/O ¢p(t)dt+A4/0 P, (B)dt, (10)

where Az, A4 are given by (7). In (10), we have used the following estimates (x € (1,2], g € (0,1], p >

0, g >

J

1):

/O (t—

t(t— s)ﬁ’1

r(p)

r

(B

—s5)f1 it (F— )BT (1 (y — )1
)) I _¢p(s)ds = /Or (t F(,B)) /51( F(zx)) $p(u)du ds

b (t—s)P1 (1 - s)""l 1
< /0 () ds/ Pp(u)du

(t—s)f1 1 1
</ ORI / o ()du

1
I b

o [ B L e
LA i g o
< /o r(s/s);3 1/slrpurp / $e(r)
S/o(r(sﬁ)flralﬂo /¢P

1
S T+ DT+ p)T(g /‘P*’

Dividing both sides of (10) by p and then taking the lower limit as p — oo, we find by (8) that
{13 + {oAy > 1, which is a contradiction to the assumption (9). Hence there exists a positive number
p such that U (B;) C Bp.

Step 3: U(y) maps bounded sets into equicontinuous sets of C([0,1],R). For that, let 0 < t; < t;, <1,
y € By, and g € U(y). Then there exist f € Sp,, h € S H,y such that, for each t € [0,1], we find that

_g)B-1 .
g(t) = /(: % {I%J(s) - /\Ilfpl&h(s)]ds

+a1(t){5/0” (k=57 (1) = AP I (o) | ds
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—/O % (1 f6s) —/\I;"f”l&h(s)]ds}
+ay(t) /OCM[I%—J((S) —/\Iﬁ”l&h(s)]ds,

and that

lg(t2) = g(t1)]
= -/Oh |(ty —s)P~1 — (1 — )P {If_|f( )+ |)\|I'x+p1q+|h(s)|]ds

2 _ ¢|B-1
+/¢: %[Hﬁ If(s)] + |A\I“*”Imh(s)\]d5
ol () {w'/y = ;3') [HAF@)]+ AL 1], 1) s
/ [1—s[P ! sI - [11 If(s )\+|M[lx+pﬂ+|h(s)|]ds}

oot —aaten)] S [ 1560+ I s s
6 +1
< [\tzftflﬁ(tzftl) +%(Cﬁ“\t§ftf\+¢’3\t§‘“7t§“|)
1 1 1
+W(|l—fsyﬁ“ut§—tf|+\1—Mutf* -]

X{ (ﬁ+1 /(pp )ds + r(g+1)r |Aut|+p /% ds}

Clearly, the right-hand side of the above inequality tends to zero as t; — t; independently of y € ;.
Hence U is equi-continuous. As U satisfies the above three steps, it follows by the Ascoli-Arzeld
theorem that ¢/ is a compact multi-valued map.

Step 4: U has a closed graph. Let y, — yx, gn € U(yn) and ¢» — g+. Then we need to show that
g« € U(y+). Associated with g, € U(y,), we can find f, € SFyuhn € S, H,y, such that, for each
t € [0,1], we have

_g)p-1 .
gn(t) = /0 (¢ F(ﬁ)) [11 fuls) = )\Ilij&hn(s)]ds

_g)B-1
a0 {0 [ S £(6) = AR ()] s

1 (1 _S)ﬁ_l o L
_/O Tﬁ)[llffn(s)—)\IleI&hn(s)]ds}
6 — S .671 o
Faa(t) /05 % [ fus) = ALV I (5) ] ds.

Thus it suffices to show that there exist f. € Sgy,, I« € S H,y. such that for each t € [0,1],

—g)p1
) = [ 150 - AL )]s

()
-1
+a1(t){5/0“ % [I{‘,f*(s) —/\If’”l&h*(s)]ds
- /01 % (1 fuls) - /\Ifpr&h*(s)}ds}
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ff- — S /571 «
+ay(t) /0 %[m f*(s)—AIlprngh*(s)]ds.

Let us consider the continuous linear operator © : L'([0,1], R) — C([0,1]) so that
©F®© = [ CEIT 1 fo) ALY hs) s
’ Jo Ty LA

_ Bl
oy (t){a [ [ AL e s

7/ ;) 1[11 £(s) M{‘jplg+h(s)]ds}

-1
+ay(t) /f € (2) [11 f(s) — Mi‘f”lg+h(s)]ds,

Observe that

lgn(t) =g
- ’ :

AV .
g [ ) = £60) = AT PR, () — ()]s

r(p
) "
+ﬂ1(f){5/oy % [I{L (fuls) = fu(s)) = AL PG, (ha(s) — h*(s))]ds
1(1- s)ﬁfl N o
- W [11,<fn(s> — fo(8)) = AL I (u(s) - ’1*“))}‘“}

— 0asn — oo.

saa(t) [T EL I 1 Gn(0) — 00 = A ) — o) s

Thus, it follows by Lemma 5 that © o S is a closed graph operator where Sp = Sp U 5. Moreover,
we have g, (t) € ©(Spy,)- Since yn — Ys, &1 — g+, therefore, Lemma 5 yields

— )1
I e LA R g NE)

_ )1
+ay(t) {5 . /0 ! % [1{1 fuls) — Al'l"fpl&h*(s)] ds

O o - )]s

&9 — 8 ﬁ_l «
+ay(t) /0 % [I{Lf*(s) - Allprngh*(s)]ds,

for some f, € Sp,,, hi € SAH,%.

Hence, we conclude that I/ is a compact and upper semi-continuous multi-valued map with
convex closed values. Thus, the hypothesis of Lemma 4 holds true, and therefore its conclusion implies
that the operator ¢/ has a fixed point y, which corresponds to a solution of problem (2). This completes
the proof. [

Next, we give an existence result based upon the following form of fixed point theorem due to
Martelli [38], which is applicable to completely continuous operators.

Lemma 6. Let X a Banach space, and T : X — Py (X)) be a completely continuous multi-valued map. If the
set E={x € X:xx € T(x), k > 1} is bounded, then T has a fixed point.
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Theorem 3. Assume that the following hypotheses hold:

(M3) F,H:[0,1] x R — Py, (R) are L'-Carathéodory multi-valued maps; that is, (i) t — F(t,y),t —
H(t,y), are measurable for each y € R; (ii) y — F(t,y),y — H(t,y) are upper semicontinuous
for almost all t € [0,1]; (iii) for each v > 0, there exist ¢,, p, € L1([0,1],R") such that ||F(t,y)| =

sup{lo] 5 0 € F(t,y)} < 9u(t), [H(,w)| = sup{[o] : 0 € F(t,y)} < ¢,(t), forall y € R with
lyll < rand for almost every t € [0,1].
(M4) There exist functions z,u € L'(]0,1], R*) such that

E(E )l < z(t), |H(ty)|l <u(t), forae t € [0,1] and eachy € R.
Then the problem (2) has at least one solution on [0,1].

Proof. Consider U defined in the proof of Theorem 2. As in Theorem 2, we can show that I/ is convex
and completely continuous. It remains to show that the set

E={yeC([0,1],R):xy € U(y), x > 1}

is bounded. Let y € &, then xy € U(y) for some k > 1 and there exist functions f € Sp/y,h S SAH,y
such that

_s)p-1
wt) = [ LI ) A ) s

T'(p)
Ll Bl
s s [ I i s -8 s s
g1 .
- /0] % (1 f(s) - Mlj”13+h(s)]ds}

. _g)B-1 .
+ay(t) /Ocj % [I{Lf(s) - )\Ilijng(s)} ds.

For each t € [0,1], we have

/ ‘t_s| ()+\A|1‘””1‘7 u(s)]ds
+lay(t) {lé\/y [ _z2(s) + ML I u(s )]ds
+/01%[1;‘; (s )+\Au"‘+f’ﬂ ()]ds}

_ Bt
Has(0)] [ LS i 29+ W)

o Lem(el+1) +a MO+ @l +1) L 8),
= T(B+1)I(a) LB+ 1T (a+p)T(q) t
As|lzll g+ Aallull g,

llzllr +

A

Taking the supremum over t € |, we get
[yl < Asllzllp + Mgl < co.

Hence the set £ is bounded. As a consequence of Lemma 6 we deduce that I/ has at least one fixed
point which implies that the problem (2) has a solution on [0,1]. [
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5. Applications

We consider four different cases for F(t,y) and H(t,y) (in (2)) to demonstrate applications of
theorem (2): (a) F and H have sub-linear growth in their second variable. (b) F and H have linear
growth in their second variable. (¢) F has sub-linear growth in its second variable and H has linear
growth. (d) F has linear growth in its second variable and H has sub-linear growth.

Case (a). For each (t,y) € [0,1] x R, there exist functions o;(t), 9;(t) € L'([0,1], R*),i =1,2,7 € [0,1)
such that [|F(t,y)|| < o1(t)|y|" + 1 (t) and |H(t,y)|| < 02(t)|y|” + 92(t) which correspond in this
case to ¢, (t) = o1 (£)p” + 01 (t) and ,(t) = 02(t)p” + 02(t) and the condition (9) will take the form
0-A3+0-Ayq <1,thatis, {1 =, =0.

Case (b). F and H will satisfy the assumptions ||F(t,y)|| < o1(f)|y| + %1 (t) and ||H(t,y)|| < o2 () |y| +
02(t), which, in view of (M), implies that ¢, (t) = o1 (t)p + 01(t) and ¢, (t) = 02(t)p + 02(t), and the
condition (9) becomes ||cy || ;1 - Az + 021 - Ag < 1.

Similarly, one can verify the cases (c¢) and (d). Thus, the boundary value problem (2) has at least one
solution on [0, 1] for all the cases (a)—(d).

Let us consider the following inclusions problem:

{ CDYAREDY y(t) € F(ty(t) — 22132 H(ty(1), t e [0,1], -

y(0) =y(1/3) =0, y(1) = {y(2/3),
wherea =5/4, B=3/4, A =2, p=3/2,9q=5/2,§=1/3, u=2/3, 6 = 1/4. Itis easy to find that
a1 = max |a(t)] = |a1(#)];—1 ~ 1.101592729739686,

te[0,1]
@, = max |ap(t)| = |az(t) =, =~ 1.055901462873258,
te[0,1] 2

where

B(1—suft)
(1—opP)(B+1)

Using the above given data, we find that Az ~ 4.120918689155884, Ay =~ 3.494023466997676,
where Az, A4 are given by (7).
(a). We consider ||F(t,y)| < o1 (£)|y|Y/3 4 01(t) and ||H(t,y)|| < oa2(£)|y|'/3 + 02(t) with o;(t), 0;(t) €
L1 ([0,1],R"),i =1,2, € [0,1). In this case, F and H in (11) satisfy all the assumptions of Theorem 2
with 0- Az +0- A4 < 1, which implies that the boundary value problem (11) has at least one solution
on [0,1].
(b) As a second example, let F and H be such that |[F(t,y)|| < 1+t 5|yl + 26" and [|H(t,y)| <
@i + 0 5|y| +e~*. In this case, the condition (9) will take the form A3 + 0 - A\ ~ 0.864517182844253 <
1. Thus, by the conclusion of Theorem 2, there exists at least one solutlon for the problem (11) on [0, 1].
In a similar manner, one can verify that the problem (2) has at least one solution on [0,1] when we
choose the cases: () [F(h )l < a(0y">-+ 630) 1)1 < 2]+ and (@) JE () <

sz vl +2¢ [H(E )| < a8y + 02(1).

~ 0.460880265746053 < 1.

ay =

6. Conclusions

In this paper, we have discussed the existence of solutions for a new class of boundary value
problems involving right-Caputo and left-Riemann-Liouville fractional derivatives of different orders
and right-left Riemann-Liouville fractional integrals with nonlocal boundary conditions. The existence
result for the single-valued case of the given problem is proven via Sadovski’s fixed point theorem,
while the existence results for the multi-valued case of the problem at hand are derived by means of
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Bohnenblust-Karlin and Martelli fixed point theorems. Applications for the obtained results are also
presented. By taking § = 0 in the results of this paper, we obtain the ones for a problem associated with
three-point nonlocal boundary conditions: y(0) = 0,y(¢) = 0,y(1) =0 (0 < ¢ < 1) as a special case.
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Abstract: This paper mainly deals with introducing and studying the properties of generalized nabla
differentiability for fuzzy functions on time scales via Hukuhara difference. Further, we obtain
embedding results on [E,, for generalized nabla differentiable fuzzy functions. Finally, we prove a
fundamental theorem of a nabla integral calculus for fuzzy functions on time scales under generalized
nabla differentiability. The obtained results are illustrated with suitable examples.
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1. Introduction

The theory of dynamic equations on time scales is a genuinely new subject and the research
related to this area is developing rapidly. Time scale theory has been developed to unify continuous
and discrete structures, and it allows solutions for both differential and difference equations at a time
and extends those results to dynamic equations. Basic results in time scales and dynamic equations on
time scales are found in [1-6]. In [7], the author illustrated an example where delta derivative needs
more assumptions than nabla derivative. Some recent studies in economics [8], production, inventory
models [9], adaptive control [10], neural networks [11], and neural cellular networks [12] suggest nabla
derivative is also preferable and it has fewer restrictions than delta derivative on time scales.

On the other hand, when we expect to investigate a real world phenomenon absolutely,
it is important to think about a number of unsure factors too. To specify these vague or imprecise
notions, Zadeh [13] established fuzzy set theory. The theory of fuzzy differential equations (FDEs)
and its applications was developed and studied by Kaleva [14], Lakshmikantham and Mohapatra [15].
The concept based on Hukuhara differentiability has a shortcoming that the solution to a FDEs exists
only for increasing length of support. To overcome this shortcoming, Bede and Gal [16] studied
generalized Hukuhara differentiability for fuzzy functions. In light of this preferred advantage, many
authors [17-19] tend their enthusiasm to the generalized Hukuhara differentiability for fuzzy set
valued functions.

The calculus of fuzzy functions on time scales was studied by Fard and Bidgoli [20].
Vasavi et al. [21-24] introduced Hukuhara delta derivative, second-type Hukuhara delta derivative,
and generalized Hukuhara delta derivatives by using Hukuhara difference, and they studied
fuzzy dynamic equations on time scales. Wang et al. [25] introduced and studied almost periodic
fuzzy vector-valued functions on time scales. Deng et al. [26] studied fractional nabla-Hukuhara
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derivative on time scales. Recently, Leelavathi et al. [27] introduced and studied properties of
nabla Hukuhara derivative for fuzzy functions on time scales. However, this derivative has the
disadvantage that it exists only for the fuzzy functions on time scales which have a diameter with
an increasing length. For the fuzzy functions with decreasing length of diameter on time scales,
Leelavathi et al. [28] introduced the second-type nabla Hukuhara derivative and studied its properties.
Later, they continued to study fuzzy nabla dynamic equations under the first and second-type nabla
Hukuhara derivatives in [29] under generalized differentiability by using generalized Hukuhara
difference in [30]. Consider a simple fuzzy function F(s) =s ®¢,s € TN [-2,2], wherec = (1,2,3) isa
triangular fuzzy number. Clearly, F(s) has decreasing length of diameter in T N [—2, 0] and increasing
length of diameter in T N [0,2]. Therefore, the fuzzy function F(s) is neither a nabla Hukuhara
differentiable (as defined in [27]) nor a second-type nabla Hukuhara differentiable (as defined in [28])
on T N [—2,2]. In this context, it is required to define a nabla Hukuhara derivative for a fuzzy function
which may have both increasing and decreasing length of diameter on a time scale. To address this
issue, in the present work, we define a new derivative called generalized nabla derivative for fuzzy
functions on time scales via Hukuhara difference and study their properties. In [31], the authors
introduced a nabla integral for fuzzy functions on time scales and obtained fundamental properties.
In the present work, we continue to study nabla integral for fuzzy functions on time scales and prove a
fundamental theorem of nabla integral calculus for generalized nabla differentiable functions.

The rest of this paper is arranged as follows. In Section 2, we present some basic definitions,
properties, and results relating to the calculus of fuzzy functions on time scales. In Section 3,
we establish the nabla Hukuhara generalized derivative for fuzzy functions on time scales and obtain
its fundamental properties. The results are highlighted with suitable examples. In Section 4, we prove
an embedding theorem on [E, and obtain the results connecting to generalized nabla differentiability
on time scales. Using these results, we finally prove the fundamental theorem of nabla integral calculus
for fuzzy functions on time scales under generalized nabla differentiability and a numerical example is
provided to verify the validity of the theorem.

2. Preliminaries

Let R, (R") be the family of all nonempty convex compact subsets of R". Define the set addition
and scalar multiplication in R (") as usual. Then, by [14], R (R") is a commutative semi-group
under addition with cancellation laws. Further, if B,y € R and U, V € R (R"), then

poUaV)=BoU)a(poV), ByolU)=Py)oU 160U=U, andif

B,y >0then(peU=poUdyoU.

Let P and Q be two bounded nonempty subsets of R". By using the Pampeiu—Hausdorff metric,
we define the distance between P and Q as follows:

dp(P,Q) = max{sup inf ||p — ql|,sup inf |[p —q||},
peP 4€Q qeQ PP

where ||.|| is the Euclidean norm in R". Then, (R, (R"), dy) becomes a separable and complete metric
space [14].
Define:
E, = {u:R" — [0,1]|u satisfies(a)~(d) below}, where

(@)  If there exists a t € R" such that u(t) = 1, then u is said to be normal.
(b)  uisfuzzy convex.

(c)  uisupper semi-continuous.

(d)  The closure of {t € ®"/u(t) > 0} = [u]® is compact.
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For 0 < A <1, denote [u]" = {t € R" : u(t) > A}; then, from the above conditions, we have that
the A-level set [u]! € R (R"). By Zadeh's extension principle, a mapping h : R" x R" — R" can br
extended to g : E" x E" — E" by

8(s,t)(z) = sup min{s(x),t(y)}.
z=g(xy)

We have [h(p,7)]* = h([p]*, [g]*), for all p,q € E, and & is continuous. The scalar multiplication
® and addition @ of p,q € E, is defined as [p @ q]* = [p]* + [g]*, [c ® p]* = ¢[p]", where p,q €
E;, ceR 0<A<1.

Define Dy : E, x E,, — [0, c0) by the equation

Di(s,t) = sup dy([s]",[1"),
0<A<1
where dp; is the Pampeiu-Hausdorff metric defined in #(R"). Then, (E,, D) is a complete metric
space [14]. The following theorem extends the properties of addition and scalar multiplication of fuzzy
number valued functions (Rr = Eq) to E,, [14].
The properties of addition and scalar multiplication of fuzzy number valued functions (Rr = ;)
are easily extended to |E;;.

Theorem 1 ([32]).

(a)  Ifwe denote 0 = X0} then O € E,, is the zero element with respect to @, i.e., p a20=0o p=p Vsek,.
(b)  Forany p € E, has no inverse with respect to '®'.

(c)  Foranyy,B € Rwithy,>00rv,B<0andp €E,, (y+B)Op=(y0p)d(BOPp).

(d)  Foranyy € Rand p,q € E,, wehave y© (p D q) = (y© p) @ (y©9).

(e)  Foranyy,B € Rand p € E,, we have y © (B © p) = (vB) © p.

Definition 1 ([14]). Let K, L € E,,. If there exists M € E,, such that K = L & M, then we say that M is the
Hukuhara difference of K and L and is denoted by K ©, L.

Forany K,L,M,N € E;, and B € R, the following hold:

@ Du(KL)=0sK=1L;
®)  Du(pOK pOL)=|pIDu(K L);

©) H(K@M L® M) = Dy(K, L);

(d Dy(KeyM,LoyM)=Dgy(K,L);

() Dy(KeL, M®N) < Dy(K,M)+ Dy(L,N);and
() Du(KeyL Mo, N) < Dy(K,M)+ Dy(L,N).
provided the Hukuhara differences exists.

A triangular fuzzy number is denoted by three points as t = (t1, f, t3). This representation is
denoted as membership function

0, x <t
x—t
T h<xsh
mixn =42l
, bh<x<t3
t3 — 1y
0, x> 13

In addition, A-level sets of triangular fuzzy number  is an interval defined by A-cut operation,
ty = [(ta —t)A+ 11,3 — (t3 — t2)A], for all A € [0,1]. Clearly, the triangular fuzzy number is in E;.
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Let T = (t1,t2,t3), S = (51,52, 33) be two triangular fuzzy numbers in E;. The addition and scalar
multiplication are defined as:
SeT= (tl + 51,12 +Sz,t3+53),

(ktl,ktz, kt3) lf k>0,
kO T = < (kts, kto, kt1) if k<O,
0 if k=0
Remark 1. From Theorem 1(c), we can deduce that, for any B,y € Rand s € E,.

(@) IfB>v>0then (BOs)O,(y©s)existsand (BOs) S (y©s) = (B—7) Os.
() IB<y<O0then(BOs)o,(y©s)existsand (BOs) S (y©Os) = (B—7) Os.

Proof.

(@) Since B— > 0and y > 0, from Theorem 1(c), we get (B —7) ©s By Os= (B—7+7) Os =
B © s. Therefore, (B —y) ©s@y©®s =B Os. Hence, (BOs) S, (Y©s)=(B—17) ©s.
(b) Since p— < 0and v < 0, from Theorem 1(c), it is easily proven that (B ®s) & (y ©®s) =

(B—7) @s.
O

Now, we discuss the differentiability and integrability of fuzzy functions on I = [a,b] C R (where
I'is a compact interval).

Definition 2 ([14]). A mapping @ : I — E,, is said to be strongly measurable if, for each A € [0,1], the fuzzy
function @ : T — Ri(R") defined by O (s) = [D(s)]* is measurable.

Remark 2 ([14]). A mapping & : I — E,, is said to be integrably bounded if there exists an integrable function
h such that ||x|| < h(s), for all x € Py(s).

Definition 3 ([14]). Let ® : I — E,.. The integral of ® over I is denoted by [, ®(s)ds or [ ®(s)ds,

A .
{/Cb(s)ds} :/CD,\(s)ds
I I
= {/g(s)ds /P 1 — §R”},
I
where g is a level wise selection of measurable functions of @, for0 < A < 1.

A mapping @ : I — [E, is said to be integrable over I if ® is integrably bounded and strongly
measurable function and also [; ®(s)ds € E,.

Theorem 2 ([14]). Let ®,Y : I — E, be integrable. Then,

(@) [PoY=[da[Y;

b [aoDd=a0 [P whrea e R;
(c) f;f@:ff@@fzy@, where z € N;
(d) Dy (®,Y) is integrable; and

(€  Dy(f®,[Y¥)< [Du(®Y)

Definition 4 ([18]). A fuzzy function ® : I — I, is said to be differentiable from left at sy if for 6 > 0, there
exists P € Ey,, such that the following holds:
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(a)  for0 <h <6, ®(sp) © P(so — h) exist and limy,_,q+ % © (P(sg) 0, P(sg—h)) =P;

or

_71 © (D(s — 1)) & D(s9) = P.

Here, P is the derivative of ® from left at sy and is denoted as @' (s9).

(b)  for0<h <8 P(sop—h)) Sy P(so) exist and limy,_, o+

Definition 5 ([18]). A fuzzy function ® : I — E,, is said to be differentiable from right at s if, for 6 > 0, there
exists P € Ey, such that the following holds:

1
(a)  for0 <h <3 P(sp+h) S, D(so) exist and limy, o+ 7@ (P(so+h)epP(so)) = P;

or

(b)  for0 < h <6, P(so) ©p P(so + h) exist and limy,_,+ %1 © (P(so) ©, D(so+ 1)) =P.

Here, P is the derivative of ® from right at sy and is denoted as d>/+ (so). The limits are taken over
(]Enr DH)

Definition 6 ([18]). If @ is both left-differentiable and right-differentiable at s, then ® is said to be differentiable
atsoand & (sp) = <I>I+ (so) = P. Here, P is called the derivative of ® at sy and we consider one-sided derivative
at the end points of 1.

Remark 3 ([18]). If @ is differentiable at s, then there exists a 6 > 0, such that:

(a)  For0<h <6, ®(sop—h)o,P(so) or D(so) ©p D(sg — ) exists.
(b)  For0<h <4, ®(so+h)o,P(so) or D(so) ©p D(so + ) exists.

3. Generalized Nabla Hukuhara Differentiability on Time Scales

This section is concerned with defining and studying the properties of V3§ derivative for fuzzy
functions on time scales. In addition, we illustrate the results with suitable examples.

Definition 7 ([21]). For any given € > 0, there exists a & > 0, such that the fuzzy function ® : Tl 5 R,

has a unique T-limit P € E, at s € T if Dy (®(s) 0, P,0) < e, forall s € N (s, 0) and it is denoted
by T — li_)m D(s).
580

Here, T-limit denotes the limit on time scale in the metric space (E,, Dy).

Remark 4. From the above definition, we have

T — lim ®(s) = P € E, <= T — lim (®(s) ©, P) =0,

5—s0 550

where the zero element in B, is given by 0.

Definition 8. A fuzzy mapping ® : Tl — B, is continuous at so € T, if T — SILT D(s) € E,, exists and
0
T-— Shﬁn;0 D(s) = D(sp), ie.,
T — lim (&(s) Sy $(s0)) = 0.

Remark 5. If P : Tt — K, is continuous at Sg € T8 then, for every € > 0, there exists a § > 0, such that

Dy (®(s) ©, @(s0),0) <, forall s € N -

209



Axioms 2020, 9, 65

Remark 6. Let @ : TI*¥ — |, and sy € T,

(a) IfT— lim+ D(s) = D(sp), then P is said to be right continuous at sg.

S*)SO

(b)  IfT — lim ®(s) = P(sg), then @ is said to be left continuous at s.

58y
() IfT— lim ®(s) = P(sp) =T — lim P(s), then P is continuous at so.
s—rsg 535

Definition 9. A fuzzy function ® : T — &, is said to be V¢ left-differentiable at s € ']I‘][f’b], if there exists
an element ®V* (s) € K, with the property that, for any given € > 0, there exists a Nipjap) 0f s for some & > 0
and 0 < h <6,

Dy [®(0(s)) &1 B(s — 1), (= v(s)) © @V (s)] < el —v(s)] M

or
Du[@(s — 1) 0, D(g(s)), — (1 — v(s)) © @Y (s)] < €| = (= v(s))], @

forall's — 1 € Nyjop, where v(s) = s — o(s), ®V¥(s) is the generalized nabla left-derivative of ® at s.
Definition 10. A fuzzy function ® : T — K, is said to be V8 right-differentiable at s € ']I‘,[f’b], if there

exists an element ®Y° (s) € E, with the property that, for every given € > 0, there exists a neighborhood Nijan)
of s for some § > 0and 0 < i <6,

Dy[®(s +h) &, @(0(s)), (1 +v(s)) @ @Y (5)] < elfi+v(s)| €)

or
Du[@(g(s)) O3 D(s + 1), —(h+v(s)) © DY (s)] < €| = (h+v(s))], @)

foralls+h € ij[lfl’b], where v(s) = s — o(s), ®Y*(s) is the generalized nabla right-derivative of ® at s.

Definition 11. A fuzzy function ® : TIY — B, is said to be V8 differentiable at s € T][(”’b], if @ is both right-

and left-differentiable at s € T,[f’b] and

g g 3
o(s) = 0% (5) = ¥ s).
Here, ®Y* (s) or ®Y*(s) is called V&-derivative of ® at s € ']I‘,[(a’b] and it is denoted by ®V* (s). Moreover,
if V8 derivative exists at each s € T,[f’b], then ® is V¢ differentiable on T,[f’b].

Theorem 3. Let ® : T — K, be a fuzzy function and s € T,[{”’b], then:

(@) If®: T 5 B, is V8 differentiable at s, then ® is continuous at s € T,Ea’b].
(b)  Ifsis left dense and @ : TV — &, is V8 differentiable at s iff the limits

lim L © (®(s) S B(s — 1))or lim %1 © (D(s — ) &5 D(s))

h—0+ 1 h—0t
and
1 -1
lim — © (®(s+ 1), D(s))or im — © (P(s) ©, P(s+ 1))
h—0t T h—ot T

exist as a finite number and holds any one of the following:

(i) Jim, & (@) 9, 05 — 1)) = @V (s) = lim £ (®(s +1) &, ()
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(i) hIL%L % O (P(s) 0 P(s — 1)) = DV (s) = hli%L %1 O(D(s) 0 (s +1));

(i) lim L0 (@(s 1) £, @(5)) = 9% (s) = lim 1 (@(s + 1) 5 0(5));

h—0t

(i0) Jim =1 © (@(s =) £, 9(5)) = 87(5) = lim —L © (@(s) 2 B(s + 1))

Proof. (a) Suppose that @ is V¢ differentiable at s. Let € € (0,1). Choose €! = e[l + K + 2v(s)] 1,
where K = Dy[®Y*(s),0]. Clearly, €' € (0,1). Since @ is V¢ left-differentiable, there exists Nepjap @
neighborhood of s such that, for all 1 > 0 with s — 7t € Nijaz),

D[@(q(s)) &3 D(s — 1), (7 = v(s)) © DY (s)] < elfi —v(s)],
or
Du[@(s — 1) £, D(g(s)), —(h —v(s)) © @Y (s)] < €| — (7 = v(s))]-

For0<h < elandforallti >0, toeachs —h € Ny N (s — 1,5 4 1), we have,

Dy[®(s), ®(s — )] = Dy[®(s) ©, @(s — 1), 0]
= Du[®(s) O P(e(s)) ® P(a(s)) On P(s — 1),
(h—=v(s)) 0DV (s) B (s) ® DY (s)
@ (—1) © @Y (s)]

< Du[@(a(s)) O (s — 1), (7 — v(s)) © DY (s)]
+ Digl@(s) 0 B(o(s)), v(s) © DY (s)]
+ hDy[®Y* (s),0]

<eln—v(s)| +elv(s) +hK

= el + hK 4 2¢elv(s)

<el(1+K+2v(s) =e.

Similarly, we can prove @ is continuous at s, if V8 is right-differentiable at s.

(b) Suppose that ® is V¢ differentiable at s and s is left dense. To each € > 0, there exists a
neighborhood Ny, of s such that

Dyt [@(0(s)) &1 @(s 1), (7 = v(s)) © ¥ (5)] < el —v(s)|

or
Dt [@(s — 1) 5 @(0(s)), (v(s) ~ 1) © @Y (5)] < e — (—v(s))],
and
Dyt [@(s + 1) £, (o(s)), (1 + v(5)) © @ (5)] < el +v(s)|

Dy [@(0(s)) 04 (s + 1), — (14 v(s)) © @Y (5)] < €| = (h+v(s))],
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forall s —,5+h € Ny, 0 < h < 4. Since s is left dense, ¢(s) = s,v(s) = 0, we have

Di |05 53 (s =], 7' (5)| <
or
D | 3 [0l =) 2, 0(s)} 07 (5)| <
and
Dir [ 1100+ 1) 0, 2] 97 (5)| <
: Du | FH12) 2 0+, 0T 6| <

fors —fi,s + 1 € Ny, 0 < i < 4. Since € is arbitrary, we get any one of (i)—(iv). [

The converse proposition of Theorem 3(a) may not be true. That is a fuzzy function which is
continuous may not be differentiable.

Example 1. Let @ : T4 — By be a fuzzy function defined as follows:

8 sin(s) © ¢, if mn§s§(4m+1)%
D(s) =
cos(s) @c,if (4m+1)g <s < (4m+1)§,

wherem =0,1,2,3, T = Pg% =U [kﬂ,k?‘( + g] and ¢ = (2,4, 6) is a triangular fuzzy number. Since
k=0

T 1
T— lim ®(s) =sin(—) ©Oc=—=0c¢
Jim @(s) = sin(f) ©c=
and
T — lim ®(s) cos(E)GC*LQC
s— 4 4 \/E
. . 1 ) )
In addition, T — lim ®(s)) = ®(F) = —= @ c. Then, from Remark 6(c), ® is continuous at s =
s 4 2 4

(See Figure 1). Since s = J is dense, sin § > sin(§ — h) > 0, for h sufficiently small, and, from Remark 1(a),
we have

:hm1®

¥ (s) = lim + © () onel} —m)
-0 h (

h—0 h
(sin g ® c> On (sin(g —nh) e c))
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In a similarly way,

1 T 7T
Ve _ L 7t s
oY (s)f%lir(l)_h®<cl>(4®c)@h(b(4+Fl)@c))
T T
Ty cos(Z 4+
. cos(§) —cos(§ + ))Qc
h—0 —h
- loe
N/

-— &4(s)
. — &)
)

(@,(5). D, (). D ()

T
S
5
=7
ol
=
N
N

o)
T
e

Figure 1. Graphical Representation of ®(s) in Example 1.

Definition 11 can equivalently be written as follows:

Remark 7. If @ : TI*Y — E, is V8 differentiable at s € T][f’b] if and only if there exists an element
®V¥(s) € By, such that any one of the following holds:

(GH1) for 0 < h < 6, provided the Hukuhara difference ®(0(s)) &, ®(s — h), @(s + ) &, P(o(s)) and the
limits exist

T fim s © (@((s)) €, 95— 1)

T Jim %V(S) © (®(s + 1) &5, @(0(s)))
=oV(s)

or

(GH2) for 0 < h < §, provided the Hukuhara difference ®(s — ) ©, ®(0(s), ®(o(s) ©, (s + 1) and the
limits exist

T - lim h%vl(s) © (®(s —h) &, P(o(s)))
=T-lme s

=oV(s)

© (P(e(s) & P(s + 1))
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or
(GH3) for 0 < I < 6, provided the Hukuhara difference ®(0(s)) &, ®(s — 1), @(o(s)) &, ©(s + 1) and the
limits exist

T~ lim s © ((a() €, 0(s — 1)

=T—lim———
hlg(ljh—i-v(s)

= 0¥ ()

© (P(o(s)) 0 P(s + 1))

or

(GH4) for 0 < h < 6, provided the Hukuhara difference ®(s — i) ©;, ®(0(s)), ®(s + ) &, ®(o(s)) and the
limits exist

T—lm-——L & (®(s — 1) o P(o(s)))

h—0 1 — v(s)

_ m%ﬁ © (®(s + 1) 05, D(a(s)))

=oV¥(s).
Thus, ®V* : Tl[f’b] — E,; is called the V38 derivative of ® on ’]I‘][c”’b].

Remark 8. Let @ : T — [, be V8 differentiable.

(a)  If ® is (GH1)-nabla differentiable at s € ']I‘,[f’b], then there exists a & > 0, such that, for 0 < A <1,
we have
diam[®(s — h)]* < diam[®(o(s))]*
< diam[®(s + 1))}, for 0 <h <.

Thus, if ® is (GH1)-nabla differentiable on TI%Y, then diam|®(s)]" is non-decreasing on TI@2],
(b)  If ® is (GH2)-nabla differentiable at s € T][(”’b], then there exists a & > 0, such that, for 0 < A <1,

we have
diam[®(s — 1)) > diam[®(o(s))]*
> diam[®(s + 1)), for 0<h <.

Thus, if ® is (GH2)-nabla differentiable on T, then diam[®(s)]* is non-increasing on TP,

(c) If ®is (GH3)-nabla differentiable at s € ’]I‘][f’b], then there exists a § > 0, such that, for 0 < A <1,
we have

diam[®(s — h)]* < diam[®(o(s))] and
diam[®(s + h)]* < diam[®(o(s))]*, for 0<h<é.

Therefore, diam[®(s)|* is non-decreasing in the left neighborhood and non-increasing in the right
neighborhood of s. Thus, monotonicity of diam[®(s)]" fails at s.

(d)  If ®is (GH4)-nabla differentiable at s € T,[(a’b], then there exists a 6 > 0 such that, for0 < A <1,

diam[®(o(s))]* < diam[®D(s — 1) and
diam[®(o(s))]* < diam[®(s + 1))}, for 0<h<é.
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Therefore, diam[®(s)]" is non-increasing in the left neighborhood and non-decreasing in the right
neighborhood of s. Thus, monotonicity of diam|[®(s)]" fails at s.

Example 2. Let @ : T3 — B be a fuzzy function defined as d(s) = sin(s) © ¢, where ¢ = (2,4,6) is a
triangular fuzzy number. Let T = Py = U [2k7, (2k + 1) 7).
k=0

In Figure 2, it is easily seen that ®(s) is (GH1)-nabla differentiable on Tl F)V(m ), D(s) is
(GH2)-nabla differentiable on T(5719(5 37 Now, we check the V8 differentiability at s = F. Since
s = % is dense, v(s) = 0. In addition, sin(5) > sin(5 +h) > 0, and, from Remark 1(a), we have
(sin(%) ©c) Oy (sin(5 +h) ©c) = (sin(7) —sin(5 + 1)) © c. Consider

Vet _ g L T T
oY (3) = lim 2o (@(7) 0y @(G +1)))
-1
:%%7@((sing®c) on <sin(§+h)®c)>
in(Z) — gin( X
— tim (sin(%) s1n(2+h))®c
h—0 —h
=00c=0.

In a similar way, we get ®V*(3) = 0. Hence, ® is (GH3)-nabla differentiable at s = %. Similarly,
we can show that ® is also (GH3)-nabla differentiable at s = 2.

I
&)
&fs) ||

—— &4(s)

(@50, 9. 256

@)
)
J
\\
/ /]

Figure 2. Graphical Representation of ®(s) in Example 2.
Theorem 4. If & : T\ — &, is continuous at s and s is left scattered, then:

(a) D@ is V8 differentiable at s as in (GH1) or (GH2) with

OV (s) = % © (®(s) 2, D(g(s)))

-1

= o (®(0(s)) &, D(s))

and ®Vi(s) =0 (o) DVE(s) e R,
or
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(b) @ is V8 differentiable at s as in (GH3) with ®V* (s) = 1 © (P(o(s)) O D(s));

v(s)

or

(c) @ is V8 differentiable at s as in (GH4) with ®V*(s) = % O (P(s) o, P(o(s))) -

Proof. (a) Supposes € T][f’b] and @ is continuous at left scattered point s. Then, from (GH1) or (GH2),
we have

T~ lim 2o © (@(e(9) £, 05 =) = 75 © (@(e(s) S B(3),

T~ fim s © (B 1) £, 8(e(5)) = 555 © (9(6) 4 P(e(s))-

Since the Hukuhara differences (®(0(s)) ©;, ®(s)), (P(s) © P(o(s))) exists, then
P(0(s)) = P(s) Du(s) and P(s) = P(e(s)) G o(s),

where u(s),v(s) are in E,. By adding the above equations, we get u(s) © v(s) = 0. Then, u(s) = 0 =

v(s) or u(s),v(s) are in R" and hence the result is obvious.
(b) Suppose s € ']I‘,E"’h] and @ is continuous at left scattered point s. Then, from (GH3), we have

T~ fim s © (0(0(5)) €4, 9 = 1) = 5@ (B(e(s)) £, 9(6))

1

T- © (®(e(s)) ©n P(s +1)) 6 © (@(e(s)) & (s))

N ()

Hence, &% (s) = ’(—1) o (@(g(s)) & D(s))-

(c) Suppose s € ']I‘,[f’b] and ® is continuous at left scattered point s. Then, from (GH4), we have
. -1 1
T - rlllg(l) e O(P(s —T) ©,P(e(s))) = v6) O (@(s) ©5 P(0(s))),
. 1 1
T‘%ﬂ%m@(q)(s*‘h)@h (e(s))) @@(‘D(S) Sn P(e(s)))-

Hence, @7 (s) — %s) © (0(s) & D(0(s))). O
Remark 9. A fuzzy function ® : TV — Ky is defined as ©(s) = (¢1(s), pa(s), p3(s)), where ¢y : Tl —
R, k = 1,2,3 are nabla differentiable such that ¢y (s) < ¢o(s) < ¢3(s), for all s € TV,

(a)  If @ is V8 differentiable as in (GH1) at ld-point s or V8 differentiable as (GH4) at left scattered point s,
then @V (s) = (¢ ,9Y, ¢y, for s € T,
(b)  If D is V8 differentiable as (GH2) at ld-point s or V8 differentiable as (GH3) at left scattered point s,

then @Y% () = (7, ¢Y, oY), for s € T
Theorem 5. Let O, ¥ : Tleb] E;, be V8 differentiable at s € T,[(”’b].
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(1)  If ®and Y are both V8 differentiable of same kind, then:
(@) (PaY): T,[f’b] — K, is also V8 differentiable of same kind at s with
(@@F)V (s) =V (s) & ¥V (s).
b (PopY): T,[(a/b] — B, also V8 differentiable of same kind at s, provided (® &, 'Y) exists and
(@)Y (s) = @V (s) £ ¥V (s)-
(2)  IfDand ¥ are different kinds of V8 differentiable at s, and (® ©), '¥) exists for s € T][f’b], then (® ©,, ¥)
is V8 differentiable at s with (® S, ¥)V¥ (s) = @V (s) @ (=1) © ¥V* (s).

Proof. If s is 1d-point, then ¢(s) = s,v(s) = 0. The proof of this theorem is similar to the proof of

Lemma 4 and Theorem 4 in [17].
1(a). Suppose that ® and ¥ are both (GH3)-nabla differentiable at left scattered point s € ’]I‘,[(a’b].

Then, ®(o(s)) &5 P(s) exists with ®(o(s)) = D(s) D u(s) and ¥(o(s)) & ¥ (s) exists with ¥(o(s)) =

¥ (s) ®ov(s). Now,
(@(e(s)) on P(s)) @ (¥(a(s)) On ¥ (s)) = uls) ®v(s)-

Multiplying the above equation with _(—Sl), we get

v
% O ((@(a(s)) @ ¥(a(s))) O (P(s) @ ¥(s)))
— e e @),

and it follows that
(@O¥)(e(s) O (PDF)(s) _ uls)  2(s)

—v(s) —v(s) = —v(s)’
Hence, (® @ ¥) is V8 differentiable as in (GH3) with

(@aF)V(s) =DV (s) YV (s).

The case when ® and ¥ are V¢ differentiable as in (GH4) is similar to the previous one.
1(b). Suppose ® and ¥ are both (GH3)-nabla differentiable at left scattered points s € '[[‘,[(a’b],
similar to 1(a), we have ®(0o(s)) = ®(s) @ u(s) and ¥(o(s)) = ¥(s) ® v(s). Consider

(@, ¥)(a(s) = P(a(s)) &1 ¥(ols))
= (@(s) Du(s)) &n (¥(s) B o(s))
= (@(s) £, ¥(s)) & (u(s) &5 v(s)).
It implies that
(@ onY)(e(s) On (P oy ¥)(s) = u(s) 0 v(s)-
Multiplying the above equation with —l, we get the desired result. In a similar way, we can

v(s)
easily prove the other case.
(2). Suppose that ® is V¢ differentiable as in (GH3) and ¥ is V8 differentiable as in (GH4) at

left scattered points s € ']I‘,[f’b], then the Hukuhara difference ®(o(s)) ©j, P(s) exists with ®(o(s)) =
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D(s) D u(s) and ¥(s) &, ¥(o(s)) exists with ¥(s) = ¥(o(s)) ® v(s). Now, by adding these equations,
we get
P(o(s)) @ ¥(s) = (s) B u(s) & ¥(e(s)) & v(s)-

Since the Hukuhara difference of ®(0(s)) &, ¥(0(s)) and ®(s) &), ¥ (s) exist, we have
(®(e(s)) on ¥ (a(s)) on (P(s) 4 ¥ (s)) = u(s) @ o(s). ®)

Now, by multiplying (5) with =0
In a similar way, if @ is V¢ differentiable as in (GH4) and ¥ is V¢ differentiable as in (GH3) at

left scattered points s € ’]I‘,[f’b], then we can easily prove that

! Y we get @ © ¥ is (GH3)-nabla differentiable.

(®(s) on ¥ (s)) ©n (Pla(s)) ©n ¥ (e(s))) = a(s) +9(s). (6)

Now, by multiplying (6) with %, we get ® © ¥ is (GH4)-nabla differentiable. Therefore,

(@0, V)V (s) =@V (s) @ (1) 0¥V ().
O

The following example illustrates the feasibility of Theorem 5.

Example 3. Let Q, ¥ : T3 — By be fuzzy functions defined as follows:

als) = (7 —=5)0c, 0<s<
(5—57”)®c, 2m <s

IN S

3

¥(s) = cos(s) ¢, 0<s<m
—cos(s) ®¢, 2m<s<3m

where T = Pr z, ¢ = (2,4,6) is a triangular fuzzy number.

IN Figures 3 and 4, it is easily seen that Q) and ¥ are (GH2)-nabla differentiable on TV F),
(GH1)-nabla differentiable on T(ZAVCE 3] g (GH4)-nabla differentiable at s = %, 5%, Thus, Q& ¥,
Q o, Y are V8 differentiable at left scattered point s = 271. Now, from Remark 1, we have

(5 —s+cos(s) ©c, se[0,m]
(s — 2 —cos(s)) @c, s€ [2m,3m].

(QaY)(s) = {
and

(2 —s—cos(s)) @¢, €[0,n]
(QoY)(s) = {(S — 5 4 cos(s)) @¢, € [27,37].
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ls)
0yfs) 4
0fs)

@, ()., (). Q5N

[e10)

Figure 3. Graphical Representation of Q)(s) in Example 3.

— s
yle)
wils)

(% (5). W, (). F5(s))

Wis) =

Figure 4. Graphical Representation of ¥ (s) in Example 3.

In Figure 5, (Q & Y) is (GH2)-nabla differentiable on T3Vl F), (GH1)-nabla differentiable on
T(FAUCES7] Aps = 2, Qoand ¥ are (GHA)-nabla differentiable with QV* (5) = (—1) @ ¢, and ¥V*(F) =

(—=1) ®c. Now,
VY lim L (F (T T T
Qe¥)7(5) =lim = (5~ (5 +0) +eos(F +1)) 0eon (5 - (F)+
_ n
=(lim h+cos(2+h)>®c
7—0 h

. sinh _

_(—1+(71)%1% 3 )@c- 200¢.

)) o

cos(

NN

Similarly, we can show that (Q & ‘I’)V(S (3) =—20Gc Thus, (Q®Y) is (GH4)-nabla differentiable at

% and Theorem 5 1(a) is verified.
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In Figure 6, it is easily seen that (Q) &, ¥) is (GH2)-nabla differentiable on TIO.HV2E) gnd
(GH1)-nabla differentiable on T(FUCF 37, Again, from Remark 1, we have

(Q @h‘P)Vi(g) = lim1 (g - (E +1) —cos(g +h)) oy (g -z —cos(E)> Oc

=0 h 2 2 2
—h —cos(5 + 1)
= (lim ———2 7/
(== ) o
:(—1+1imy)®c=0®c=().
n—0 h

Similarly, we can show that (Q & ¥)ve (%) = 0. Thus, (Q&'Y) is (GH4)-nabla differentiable at T and
Theorem 5 1(b) is verified.

(% +F)). (@) +Fa)(6). (s +¥5))

AR —¥)(). (O =T, (Q, —'F: X))

(QS¥)s)

(Q —, ¥}

— @)

* 0+ /

%+
5 k. %
\
\

g 2 2 2r 75712

Figure 5. Graphical Representation of () & ¥)(s) in Example 3.

4 T T T
(@-¥)s)

— @9
—— (03-¥3)s)

2r — 7] o

Figure 6. Graphical Representation of () ©;, ¥)(s) in Example 3.
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Consider ®(s) as in Example 2, ® is (GH3)-nabla differentiability at s = 5 and ¥ is (GH4)-nabla
differentiability at s = Z. Hence, ® and ¥ are different kinds of V8 differentiable at s = 7%, and (® ©), '¥)
exists at s = % Now, from Theorem 5(2), we have

(Pey, Y)Vﬁ(g) = lim 1 ® (sin(z) - cos(z) ®c) oy ((sin(g —h)— cos(g —h)®c)

7—0 h 2 2
. 1—cosh . sinh
= im ——— + lim Oc=c.
h—0 h 0 h

Similarly, we can show that (® &y, ‘I’)Vi (3) = c. Hence, Theorem 5(2) is verified.
Now, we check the V3-differentiable at s = 27t. It is left scattered and o(271) = 71, v(27) = 7. Clearly,

Q, @, and ¥ are (GH3)- and (GH4)-nabla differentiable at s = 27t. We get QV¥ (2r) = 0, @V (271) = 0
and V¥ (27t) = 0. In addition, the results of Theorem 5 hold at left scattered point s = 27r.

4. Integration of Fuzzy Functions on Time Scales

In this section, we prove fundamental theorem of nabla integral calculus for fuzzy functions on
time scales under generalized fuzzy nabla differentiable functions on time scales.

First, we prove an embedding theorem on [E,, and obtain some results which are useful to prove
the main theorem. To prove the these results, we make use of Definitions 1-3 and Theorem 4 in [31].

Let C[0,1] be the set of all functions F : [0,1] — R", F is bounded on [0, 1], left-continuous for
each x € (0, 1], right-continuous on 0, and F has right limit for each x € [0,1). Endowed with the
norm || F||¢ = sup {|F(A)|ps;x € [0,1]}, C[0,1] is a Banach space. It is known that the following
result which embeds E,, into X = C[0,1] x C[0, 1] isometrically and isomorphically.

Theorem 6. If we define i : By, — X by i(u) = (u_,uy), where u_,uy : [0,1] — R",u_(A) = u?,
uy (A) = u?, then i(E,) is a closed convex cone with vertex 0 in X (here X is a Banach space with the norm

(£, ) = max([[flle, [Iglle))-

Proof. First, we show that X = C[0,1] x C[0,1] is a Banach space. Consider a cauchy sequence I,;, =
(fnyr &ny) and for €* > 0, there exists N > 0, np > N such that ng, my > N implies ||l, — In, || < €*,
that is

Hlmo - lVlo” = ”(fmo'gmo) - (fHOfgﬂo)H
= [1(fmg = frgr &mo — &no) |
= max([|flle, [Iglle)-

which yields the result that f,,(A) — f and g, (A) — g as ng — oo where || F||¢ = sup{|F(x)[;x €
[0,1]}, C[0,1] is a Banach space. Hence, X = C|0, 1] x C[0, 1] is a Banach space. To obtain i embeds E,,
into X = C[0,1] x C[0,1] isometrically and isomorphically, we need to prove the following:

(@ i(pou®qov)=pi(u)+qi(v), forany u,v € E, and p,q > 0; and
(b)  Dr(u,0) = [li(u) —i(v)]|.

Leti(u) = (u—,us). The A-level set of u € E,, can be written as

[ = pur + (1 B)ut forall 0<B<1.
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Now,
pPousqoo) = pu* +q*
= plput + (1 - B)ut]
+q[pot + (1- p)oi]
=p (u),‘ +vﬁ> +(1-p) <ui+vi) .
Therefore,
i(poudgov) = (puﬁ + g0, put + qvi)
= p(ut, ut) + 9, %)
= pi(u) + qi(0).
Thus, (a) is proved.
Now, consider
i) —i(o)|| = l(u—uy) = (0, 04)||

= [1(u- —o-), (uy =)l
max{[[u— —o-|lc, [[u+ — v+ [lc}

= maX{SIip lu — o HRWSliP e} = o} I,

Slip{max{\\uf — o} g, ud — o IR, 3}

= Sl;PdH([u]A/ [o]*)
= Dy (u,v).
O

We make use the Proposition 3.1 and Remark 3.4 in [18] to prove the following results.

Theorem 7. Suppose & : TV — |, is
V8 left-differentiable at so; then, (i o ®)(s) = i(D(s)) is nabla-differentiable at sy € T, Moreover,

(a) Ifthereexistsad > 0 > (P(sg—h) oy, P(o(so))) exists for 0 < h < &, then (io @)V (sp) =
—i*(®Y¥(s0)).

(b)  Ifthere existsa d > 0 > (P(a(so) S D(s0 — 1)) exists for 0 < h < &, then (io ®)V(sp) =
i*(@Y"(s0)).

Proof. Let ® be V¢ left-differentiable at sy € T[],
(a) If there exists a & > 0 such that ®(sp — 1) ©;, P(0(sg)) exists for 0 < i < J, then
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|ty 12 @150 =) = @) )]~ [0 )|

| e o @0 =) — (o @)eteu] + (@ o))

1 .
= Hm [i(®(0(s0)) — D(so —1))]
o {@fw © [@(a(s0)) ©n P(so — h)]} H

+

it [ Gy @ [@(elo)) &1 @l =] (@ (o))

From Remark 3.4.1 in [18], we have

[ty @ (@leten) & 0t — )| (@ o)

—v(so

= i [ty © (lats0) S (50~ 1), 0% s0)] = 0,05 50
Consider
. 1 ey 1
i [m © (®(e(s0)) on P(s0 — h))} = —i [m ® (®(0(s0)) & D(so — h))]

71 )
B m [Z(Q(Q(SO)) - (I)(so _ h))] ,

we have

(io®)(so — 1) — (io®)(a(s0))
— (i —v(s0))

Thus, (io @)V (sp) = —i*(®V¥(s9)).
Similarly, we can prove (b). [

—[-i*(@Y* (so))]H —0,ash — 0.

Theorem 8. Suppose ® : T — E, is V8 right-differentiable sy; then, (i o ®)(s) = i(P(s)) is
nabla-differentiable at sy € T,[f’b]. Moreover,

(a)  Ifthereexistsad >0 3 (P(so+h) S, Po(so))) exists for 0 < h < J, then
(io®)Y (so) = i(@Y" (s0))-
(b)  Ifthereexistsad >0 > (P(o(so) ©y P((so + 1)) exists for 0 < h < J, then
(io®)V(s0) = —i*(®Y" (s0))-
Proof. The proof of this theorem is similar to that of Theorem 7. [

Theorem 9. If & : T — E, is V8 differentiable at s, then i o ®(s) is nabla-differentiable and
(io®)V(s) € i(E,). In this case, either (i o ®)V (s) = i(®V*(s)) or (io ®)V(s) = —i* (PV*(s)),s € ’]I‘][(a’b],
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Proof. Let ® : T[*Y] 5 E, be V¢ differentiable at s € T}[f’b] and s is left dense; then, the proof is similar
to the proof of Theorem 8 [16]. Now, for s being left scattered, we have

1
L [io®(s) —io®(o(s))] or
15 () — @(e(s))] = {V_(Sf ‘ ‘
T e®(e) —io@().

Consider

H% [0 ®)(s) — (o ®)(g(s))] — i(@7" (5))

-1 ' e
H @ (e = (io®@)(s)] —i(@V(s))
= ((1> © [@(s) ©n D(o(s >>1) CO) j

Dy [% o [@(s) &1 D(a(s)], @7 (5) |

Then, (i o ®)V(s) = i(®V*(s)).
Again, in the same way,

%S) [(fo@)(s) — (io®)(e(s)] = [~i*(@V*(s))

% [(io®)(0(s)) — (io®@)(s)] + [i*(@V¥(s))

71 . .
< ‘ w [(io®@)(0(s)) — (io®)(s)]
+i* {% © [@(s) Oy ‘P(Q(s))]] H

+

: L(ls) ©[2() ewb(e(s))]} — (@Y (s))]) .

_ Dy (% o (©(5) & D(a(s))) @Vg(s)) 0,

Since i((—1) ® i1) = i*(ii), we have

However,

(1 @ 126 1 2)]) - (@7 (5)

m[(io<1>)(e(5))—(io<1>)(5)]—i*{ @hq) }H

= o7 [Eo®)el) ~ (o @))] — [-i(@™ )] | = 0.
B |

(io®)(s) ;((:)O ®)(e(s)) _ [ (@¥(s))] H — 0. Therefore, (10 @)V (s) = —i*(®Y*(s)).

Finally, (i o ®)V(s) = i(®V*(s)) = —i*(®V¥(s)). O

Thus,

From Remark 8, it is clear that, the fuzzy function ®(s) is (GH3)- or (GH4)-nabla differentiable
at discrete points. For example, if ®(s) is VS-differentiable on T[“’b], a < ¢ < d < band
@ is only (GH3)-nabla differentiable at s = ¢, (GH4)-nabla differentiable at s = d, then ® is
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(GH1)-nabla differentiable on T%9)Y(@4] and (GH2)-nabla differentiable on T, Therefore, if ®(s) is
V8-differentiable on TI*?], then it is possible to partition the TI*] into sub-intervals such that in each
sub-interval ®(s) is either (GH1)- or (GH2)-nabla differentiable.

Now, we prove the main theorem of this section fundamental theorem of nabla integral calculus
of fuzzy functions on time scales.

Theorem 10. Let & : T — K, and a = ag < ay < ap < ... < ag = b be a division of the interval [a, b]
such that ® is (GH1) or (GH2)-nabla differentiable on each of the interval Tlm—1n] i = 1,2, ...,k with
same kind of differentiability on each sub-interval. Then,

/h@Vg(T)VT: Y (@(an 04 P(am-1)) & (1) @ Y (D(a,-1) ©1, D(an)),
a meM neN

where M = {m € {1,2,...,k} such that ® is (GH1)-nabla differentiable on T(n-1) } gnd N = {n €
{1,2,...,k} such that ® is (GH2)-nabla differentiable on T(@n-1) }

Proof. Let ® : TI"Y — E, is VS differentiable on T\""). Suppose ® is (GH1)-nabla differentiable on
(a;_1,a;). Then, for m € M, we have

am ¢
/ OV (T) VT = D(a) O D(ay1) forall m € M. %
-1

Let n € N; using Cauchy formula for functions with values in Banach space, we have

an

(i0®)(an) = (i0®)(ay1) + [ (i0®) " (1)Vr.

Ap—1
- By Thevoqzrem 9, there exists (i o ®)V(s) and we get (io ®)(a,) = (io ®)(ay 1) +
(=i (@V)(T)VT.

Ap—1
Since the embedding i commutes with the integral, we obtain

(i0®)(an) = (io®)(an_1) —i* (/ @VS(T)VT> .
Then, it follows that
([ @V OTs) + o @) = (10 @)an).

By the definition of i*, we obtain

i ((71) ® /1 q)vS(T)VT> +i(®(ay)) = i(P)(a,_1).

By the additive property of the embedding i, we have
an
(1o [" O ()Y = Bla, 1) Sy Ban).
Ap—1

Finally,
an
/a OV (1) VT = (-1) © @ (1) &5 Plan), ®)
Jln—1
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for all n € N. Adding Equations (7) and (8), we get the desired result
b
[ oV V= T (@@ o) @an-1) & (-1)© ¥ (®(an-1) 05 ®ar)).
a meM neN
O
Example 4. Consider ®(s) as in Example 2. We partition [0,37] asag =0 <a; =5 <ay = < a3z =

27 < ay = °F < a5 = 37 such that ®(s) is (GH1)-nabla differentiable on Tlom-vanl 1y € M = {1,3} and
(GH?2)-nabla differentiable on Tl-1], n € N = {2,5}. Thus, from Theorem 10, we have

[[ 0% (@91 = T (@(an 01 ®lay1) & (1) L (@la,1) 4 Plar))
Ja meM neN

= @) on@0) o (@) oy @(27))
& (-1) 0 (@(3) 0y ®(1) & (-1)(@() &, ®(37))

=20cp(-2)G¢
= (4,8,12) ® (~12,—8,—4) = (—8,0,8).

5. Conclusions

This paper is concerned with investigating a new derivative called generalized nabla derivative
for fuzzy functions on time scales and studies some basic properties of V3§ derivative. In addition,
we prove a fundamental theorem of nabla integral calculus for fuzzy functions on time scales under
generalized differentiability on time scales. The advantage of V¢ derivative is that it is exists even
for a fuzzy function having increasing and decreasing length of diameter on a time scale. The results
obtained in this paper include results of Leelavathi et al. [27], when the function having only increasing
length of diameter, and the results of Leelavathi et al. [28], when the function having only decreasing
length of diameter. The obtained results are illustrated with numerical examples. In the future, we
propose to study fuzzy nabla dynamic equations on time scales under generalized nabla derivative
and their applications.
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Abstract: In this paper, we discuss the existence and uniqueness of solutions for a new class of
multi-point and integral boundary value problems of multi-term fractional differential equations by
using standard fixed point theorems. We also demonstrate the application of the obtained results
with the aid of examples.
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1. Introduction

Fractional differential equations are found to be of great utility in improving the mathematical
modeling of many engineering and scientific disciplines such as physics [1] bioengineering [2],
viscoelasticy [3], ecology [4], disease models [5-7], etc. For applications of differential equations
containing more than one fractional order differential operators, we refer the reader to Bagley-Torvik [8],
Basset equation [9] to name a few.

Fractional order boundary value problems equipped with a variety of classical and non-classical
(nonlocal) boundary conditions have recently been investigated by many researchers and the literature
on the topic is now much enriched, for instance, see [10-21] and the references cited therein.
There has been a special focus on boundary value problems involving multi-term fractional differential
equations [22-24].

The objective of the present work is to develop the existence theory for multi-term fractional
differential equations equipped with nonlocal multi-point boundary conditions. Precisely, we investigate
the following boundary value problem:

(g2 °D*2 4 g1 °D"* 4 g D) x(t) = f(Hx(t)), 0 <o <1, 0<t <1, 1)
n 0
x(0) = h(x), x(@) = Y jix(n), x(1)=A [ x(s)ds, @
i=1
where DY denote the Caputo fractional derivative of order 0, 0 < ¢ < 1, f : [0,1] xR — R,
h: C([0,1],R) — R are given continuous functions, 0 < d < { <y <12 < ... <y, <1, A € R,

qo,q1,and q; are real constants with g, # 0. One can characterize the first and second conditions
in (2) as initial-nonlocal and nonlocl multi-point ones, while the last condition in (2) can be understood
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in the sense that the value of the unknown function x at the right-end point of the domain (x(1)) is
proportional to the average value of x on the sub-domain (0, J). Existence and uniqueness results are
established by using the classical Banach and Krasnoselskii fixed point theorems and Leray-Schauder
nonlinear alternative. Here, we emphasize that the results presented in this paper rely on the
standard tools of the fixed point theory. However, their exposition to the given nonlocal problem for a
multi-term (sequential) fractional differential equation produces new results which contributes to the
related literature.

The rest of the paper is organized as follows: In Section 2 we recall some preliminary concepts of
fractional calculus and prove a basic lemma, helping us to transform the boundary value problem (1)
and (2) into a fixed point problem. The main existence and uniqueness results for the case 42 — 4qoq2 >
0 are presented in details in Section 3. In Sections 4 and 5 we indicate the results for the cases
7% — 49092 = 0 and ¢3 — 49092 < O respectively. Examples illustrating the obtained results are
also included.

2. Basic Results

Before presenting some auxiliary results, let us recall some preliminary concepts of fractional
calculus [25,26].

Definition 1. Let y,y"™) & Ly[a,b]. Then the Riemann—Liouville fractional derivative D%y of order & €
(m —1,m],m € N, existing almost everywhere on [a, b], is defined as

- d" m—a 1 dam / m—1—a
Day (t) = g e y(t) = F(T—W)W/(t —s) y (s)ds.
a

The Caputo fractional derivative D5y of order « € (m — 1,m],m € N is defined as

—a —a m—1
“Diy ()= D& [y ()~ (o)~ () L5 oy ) ().

Remark 1. Ify € AC™|a,b], then the Caputo fractional derivative “Djy of order & € (m —1,m|,m € N,
existing almost everywhere on [a, b], is defined as

t
m— m 1 m—1l—u« m
Dy (t) = i~y (0 = gy [ (=" )

a

In the sequel, the Riemann-Liouville fractional integral I and the Caputo fractional derivative
¢Dj with a = 0 are respectively denoted by I* and “D*.

Lemma 1. [25] With the given notations, the following equality holds:
(‘D) =y(t) —co—cit — .. —cp gt L, 1 >0, n—1<a<n, (3)
where c; (i =1,...,n — 1) are arbitrary constants.

The following lemmas associated with the linear variant of problem (1) and (2) plays an important
role in the sequel.

Lemma 2. For any ¢ € C([0,1],R) and g2 — 4q0q2 > O, the solution of linear multi-term fractional
differential equation

(42D 2 491 D7 4 g0 D7)x(t) = @(t), 0 <o <1, 0<t <1, 4)
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supplemented with the boundary conditions (2) is given by

W) = s {// s;(‘:f); ' p(u)du ds
s [ [ A0 T ptwanas
3 A E e et

+o2(t / / : ;(L:r))g 1(P(u)du * ;
_/\/ / mz (6-s) _ 1) - (eml(ﬁn—:l) - 1)) (s ;(1,:3)!7—1 o(u)du ds} }

e+t ( s $ i B

mpe™ — \e™d — )
+p02(t) (m—2>]'
where
A@x) = K= _em=s) e —t 1,7 and 7,
" —q1— \/ q1 - 4qu2 _Tnty a5 — 44092
1 = B T
wy01(t ) wsgz( ) w102(t) — wr01(t)
p = Hfnwee) “1e2ll) ~ @2@th)
p1(t) n p2(t) = i
o omp(1— ™) —mp(1 — e™f)
o) = iy ,
0(t) = qmy—mp)(e™ —e™t),
B = wiwy—wrws # 0, (6)
wp = ! [m2<1—i]"—emﬁ-&-i]"em”ﬁ)
iy iia 5" 5"

—m (1 — éjl — oMb g]‘iemz'ﬂ)],

n n
wr = g (mz —my) (€M — ™ — Y e 4 Zjiemzm),
i-1

i=1

_ 1 _ e _ mié _
w3 = o [m2<l e AS+ A/my(e 1))

—m (1 — ™ NG+ A /(e — 1))},
wy = qz(Tlefml)((Eml +)\/m1(1fem1‘s))

("2 + A /mp(1 = ")) ).
Proof. Applying the operator I? on (4) and using (3), we get

S o—1
(g2D% + 1D + qo)x(t) = /Ot %@(s)d5+c1, %)
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where ¢y is an arbitrary constant. By the method of variation of parameters, the solution of (7) can be
written as

my (1 —e™t) —my(1 — e™2t)
qamymy (ma —my)

1 ! my(t—s s (S—u)afl
7m,/0 emt )</0 F(U)@(u)du>ds

1 t o (t—s) S (S _ u)vfl
*m/o - </o r(a)“”(”)d“> o ®)

where 1 and m; are given by (6). Using x(0) = h(x) in (8), we get

myt nipt

+ cpe™ + c3e

+ e (e"’lt - e"'zt) + h(x)em!

x(t) = ¢ {mz(l — oMty — iy (1 — eMat)

qamyma(my — my)

t s (g — )01
sl Ay o

which together with the conditions x(&) = Y ; jix(#;) and x(1) = A ]0 s)ds yields the following
system of equations in the unknown constants ¢; and ¢;:

Clw1 + cwy = V], (10)
w3 +cws = V. 11

where

o—1

+i]l/ / (m:) 1—(1;) o(u)du ds + h(x (Z]emzm,emzé)’

A —
(Ae’"z 22 mzem2>

% / / (s=w™ @(u)du ds
)

v, = —//A(l)%fﬂ@@dﬁh(@
+/\// Gl s)*1)f(emzwfs)*l)](S71‘)1771<t)(u)dwzs.

my F(U')

Solving the system (10)-(11) together with the notations (6), we find that

Viwg — Vawy Vowy — Viws
1= , €= .
H1 m

Substituting the value of ¢; and ¢; in (9), we obtain the solution (5). The converse of the lemma follows
by direct computation. This completes the proof. [

We do not provide the proofs of the following lemmas, as they are similar to that of Lemma 2.

Lemma 3. For any ¢ € C([0,1],R) and g3 — 4q0q2 = O, the solution of linear multi-term fractional
differential equation

(g2 °D7*2 4 g1 €D 4 qo D) (t) = (1), 0< o<1, 0<t <1, (12)
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supplemented with the boundary conditions (2) is given by

x(t) = qz{// s;(L:T))U 1(p(u)duals
+xa(t // (s}(ug) ltp(u)duds
f):jf 1" [ B(Wz‘)lq)(u)duds]

+xa(t / / (s—u)? gp(u)du ds (13)

_/\/(; /o (m e _;:2_6”1(5_5)4_1)(5 }(?)”‘1(,)(“)51”{14}

me™ — \e™o 4 /\)]

#0900 (¢7 = )+ a0

m
where
B(x) = (K*S)em(Kfs), k=t1,¢ and w;,
m = ﬂqu
() = W XZ(t):W'
o) = % o (t) = gate™,
w ML Byl e L) (19

@ = ({:emé‘ - iji’?ie"mi>r
=1

2

_ omre™ —me™ +m — mASe™ 4 21e™0 — 2\ — mAS
w3 = - ,
or — (m 2eM — Ame™ 4 Ae™ — A)
4 = 12 2 ,
2 = @104 — @203 # 0.

Lemma 4. For any ¢ € C([0,1],R) and g3 — 4q0q2 < O, the solution of linear multi-term fractional
differential equation

(q2°D 2 4 g1 DT 4 go D)x(t) = 9(t), 0 <o <1, 0<t<1, (15)

supplemented with the boundary conditions (2) is given by

x(t) = qu{// (s—u) l(p(u)duds
o [ [ Fe 5;(1,))“¢<u>duds
v o () ]
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o1
+o(t / / (s—w)? o (u)du ds (16)

_m./o /0 b - be*”("*s) cosb(d —s)

u)a—l

—ae~ ") sinb(5 — s)) (S}Tq)(u)du ds] }
n
+h(x) [e*”t cos bt + 71 (t) (e*“‘: cosbg — Y jie™ cos br],v>
i=1

_ A —as —ad -
—H’z(t)(e ”cosb—m(a—ae % cos bé + be™* smbé))],
where

F(k) = g~ a(x=s) sinb(x —s), xk=11,¢ and 1,

n, V4092 — 412

m = —axtbi a=-",

" 2?2 2(/]2

vy (t) — v (t v1(t) — prvs(t
a) = PeO-pn® o pnl) - pwlt)
M3 s
b — be~% cos bt — ae~ sin bt
vi(t) = 22 , 1(t) = qobe™" tsin bt
= 1 _ 1,0 o —al o
v = a2y, [b be™ cos b§ — ae™ " sinb¢

n
=Y ji(b — be i cos byy; — ae~ i sin hm)] ,
i=1

n
p2 = 42b (67“5 sinbg — ) jie =" Sinb’?i)/ 17)
i=1
o= Jlr = [b be " cosb —ae *sinb — bAS
+azb+7)\b2(a — ae~" cos bd + be~" sin b)
_ aszz (b — be™™ cos bé — ae~ sin bé)] ,

ps = qab {e’“ sinb — ﬁ(b — be™® cos bd — ae™" sin bd)} ,
Hs = pips—p2ps #0.
3. Existence and Uniqueness Results

Denote by C = C([0,1],R) the Banach space of all continuous functions from [0, 1] to R endowed
with the norm defined by ||x|| = sup {|x(¢)| : t € [0,1]}. In relation to the problem (1) and (2) with
g% — 4g092 > 0, we define an operator J : C — C by Lemma 2 as

—1

(T = s { a0 S ) s
+ou(t / / A(®) S_r(”;); L (u, x(0) ) ds
3 A S ]
s [ [ AT 1f(u»c(u))duds 18)
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/ / mz (6-s) _ 1) B (eml(ﬁn—:l) — 1)) (s ;(L:T))V_lf(u,x(”))du dS] }

+I’l( )[ n12t+pl ( g Z]l+2]em2’7x)

bpa (MRS

3

where A(-), p1(t) and pa(¢) are defined by (6).
Observe that the problem (1) and (2) is equivalent to the operator equation

x=Jx, (19)

In the sequel, for the sake of computational convenience, we set

0 = ’ 02 = t ’
p1 max loa(t)l, P2 max lo2()]
e = max‘mz (1—e™b) — ml(l—emzt)‘,
te[0,1]
o = ! {451 [Ema(1 — &9) — (1 — %)
|q2myma (my —my)|T (0 +1)
n
+ 3 L Ima (1 = €17 — iy (1 — e (20)
i=1
+0 [[ma (1= ) = my (1 — ™))
‘SU‘M 2 1y 2 1m0
|m1m2‘|m2(m1<5 €M%+ 1) —mi(myd — e +1)|]},
™) 4 Al + 1)
A _ mot myl n mali ] |m2€
o= man ey ([ Zwe )+ 02 ] )-

Now the platform is set to present our main results. In the first result, we use Krasnoselskii’s
fixed point theorem to prove the existence of solutions for the problem (1) and (2).

Theorem 1. (Krasnoselskii’s fixed point theorem [27]). Let Y be a bounded, closed, convex, and nonempty
subset of a Banach space X. Let Fy and F, be the operators satisfying the conditions: (i) Fiy; + By, € Y
whenever y1,y» € Y; (ii) Fy is compact and continuous; (iii) F, is a contraction mapping. Then there exists
y € Y such that y = Fiy + Fy.

In the forthcoming analysis, we need the following assumptions:
(G1) [f(t,x) = f(t,y)| < {l|x—y| forallt € [0,1], x,y € R, £ > 0.

(Gz) |h(x) —h(y)| <L||x—y], forallt € [0,1], x,y € C, L > 0.
(Gs) |f(t,x)| <O(t), forallt € [0,1],x € Rand 8 € C([0,1],RT).

Theorem 2. Let f : [0,1] x R — R be a continuous function satisfying the conditions (G1) and (Gs),
I C([0,1],R) — R be continuous function satisfying the conditions (G ). Then the problem (1) and (2) with
3% — 4q092 > 0, has at least one solution on [0,1] if

LA <1, (1)

where Ay is given by (20).
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Proof. Setting sup, (o1 [8(t)| = [|9]|, we can fix
81l S
T2 T (£ P[4 a1 — ) —ma(1 el
0 a1 = ) — g (1= e[| + 55 [ o (1 — ™) =y (1= ™) (22)
87|A
DL | (18 — €10 1) — i (a8 — €20 4-1) ] } + Ml

and consider B, = {x € C : ||x|| < r}. Introduce the operators [J; and J, on B; as follows:

sfu)” 1

(GO0 = s / ) AW () ds
+q2(m2—m1 { /(f/o A s}(”[r); "l x())du ds
-y A S ]
Foalt // S}(”Q; 1f(u,x(u))duds

_/\/ / mz (6—s) _ 1) B (eml(gfs) — 1)) (S - M)ffflf(u,x(u))du dS] }/

mq F(a)

and
(Fx)(t) = h(x)[em +pa (1) (7 — Ty ji+ Ty jie™ ) r
o) (1A

Observe that J = J; + J». For x,y € B;, we have

(23)

| 71x + Jayl
= sup [(J1x)(t) + (F2y) ()]
te(0,1]
sfu)” 1
S Tl {/ | A e w0 ldu s
o—1
Hoa(t) / / ) )
o—1
SRl [ Al Sy
u)o-1
+loa(t) / / 1"((7)) [f(u,x(u))|du ds
mz§ s) 71) (6"11(5*5)71) (Siu)vfl
+|A|/ / ) ey x(w) ds]}
n e 1y
+|h<y>|[|emzf|+pl<t>(|e'"2¢|+;|f,~\|emm+u) 4t (112 I
||19H u I temz(tfs)_em](tfs) 5
< lg2(my —my)|T(c +1) tZ[opu{t /0 d

eM2(ni=s) _ pmi(ni—s)

+lo1(t) C”/ ‘ ma(ls) — om

Im/i

]
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+o2(1)] [/01 ‘ ma(1=s) _ gmi(1=s)

A1 ||

mzo s) _ ny(0—s) _
ds + |A|(5"/ ‘ D_ (e b ‘ds}}
my mq
191l
|gamymy (my — my)|T(o +1)
n
+ 2 il [ma (1 — ™) —my (1 — e"21)[] 4 pa[[ma (1 — €"™) — my (1 — ")
i=1
97| Al
1121115

IN

(&4 Bilema(1 — emE) -y (1 - &)

(16 — ™0 4 1) — i (a8 — "+ D[]} + A1) <,

where we used (22). Thus Jix + Jy € B,. Using the assumptions (G1) — (G3) together with (21),
we show that 7, is a contraction as follows:

| 72x = Tay||
= sup [(Fax)(1) — (Fa)(0)
te[0,1]
111 111 o H 111 2 J’» A m25+1
< InCe) = B ]+ 0) (] + 3 e+ 1) oty (P2 AT
i=1
< LA|[x —yll.

Note that continuity of f implies that the operator [ is continuous. Also, J is uniformly bounded
on B, as

[7x]l = sup [(J1x)(H)]

te[0,1]
19

|gamymy(my — mq)|T (0 + 1
n

+ Y il [ma (1 = ™) —my (1= ™) || + Ba[|ma(1 — ™) — my (1 — ™)
i=1
o7[A
[m1m |

IN

e P Ima - o) (1 - )

[m3 (16 — ™ 4 1) — m3 (mpd — €20 + 1)”}

Now we prove the compactness of operator J;. We define sup(, . c(o1x3, |/ (£ )| = f. Thus,
for 0 < t; < tp < 1, we have

I(JX)(f )= (Tx) ()]

/tl/ )]%f(u,x(u))du ds

IN

lg2(my —m1)] {
+/t2/ (s —u) 1j‘(u,x(u))du ds

s_u)lf 1

+loa(t2) — pa (1) / / AG) oy e ) e ds

. i _u)
+i:21|m/0 /0 A(ﬂi)w\f(u,x(u))\duds]

s s—u)1
Hea(ez) = o201 [ [ [ A0 S x () as

+M|/ / em(0=9) — 1) (em(0=s) 71)> (s }(1:7);71 () ds]}

my
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e Ty L 15 1 et — g (1 emta)
+t‘17‘m1 (gmztz _ emztl) _ mz(emltz o gmlfl)
+or(t2) = pr(F)[67 Ima(1 — €1E) — iy (1 — 72|

+ Y Liln [ma (1 — ™) — my (1 — ™2 )]
i=1

+|/32(t2) Pz(h)\[\mz(l—eml) 7-,,11(1767112)'
4 YIA
|m1m |

3 (38 — €20 1) — B (my8 — P +1)[]} =0, as b > by,

independent of x. Thus, 7 is relatively compact on B,. Hence, by the Arzeld-Ascoli Theorem, 7 is
compact on B,. Thus all the assumption of Theorem 1 are satisfied. So, by the conclusion of Theorem 1,
the problem (1) and (2) has at least one solution on [0, 1]. The proof is completed. [

Remark 2. In the above theorem we can interchange the roles of the operators Jy and J, to obtain a second
result by replacing (21) by the following condition:

lo < 1.

Now we apply Banach’s contraction mapping principle to prove existence and uniqueness of
solutions for the problem (1) and (2).

Theorem 3. Assume that f : [0,1] x R — R is a continuous function such that (Gy) and (Gy) are satisfied.
Then there exists a unique solution for the problem (1) and (2) on [0,1] if fa 4+ LAy < 1, where « and Ay are
given by (20).

aM + LA
1-— (élX + LA])
show that JBr C By, where B; = {x € C : ||x|| < 7} and J is defined by (18). Using the condition
(G1) and (Gy), we have

Proof. Let us define sup;c (o5 [f(t,0)] =M, SUPyc(o] |[h(0)| = Ly and select 7 > to

If(Ex)] = [f(tx) = f(£,0) + f(£,0)| < |f(t,x) — f(£,0)[ + |f(x,0)] (24)
< Ax)|+M < F+ M,
[h(x)] = h(x) = 1(0) + h(0)] < [h(x) = 1(0)[ + [1(0)] < L||x|[ + Lo < LF + Lo. (25

Then, for x € B7, we obtain

[T = sup |T(x)(#)]

te[0,1]

1 t (s — u)" 1
[a20m2 = m)[ oy { 0 /o Al =gy 1w x(w))ldu ds
— o—1
+o1(t)] / / (s r(l;)) |f (1, x(u))|du ds
u)a 1

+ _2|]‘,-|./ A A(m)s}T|f<u,x(u)>|duds]
S — M -1
+pa(t) / / ST e, x(u))|du ds

IN
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my

+|)\|/ / mz (6—s) _ 1) _ (eml(é—s) — 1)) (s ;(1,:3)!7—1 a0 i ds] }

n
+[h(x)] [|3m2t\ + p1(£) (e8| + Y Lille™ + 1)

i=1
mae™| + |A|[e"™ +1
+p2(t)< |m2| )}
(fr—i— M) / (- ] s
< my(t—s) _ ml s d
= ga(my —ma)| ‘ To+1)"
+|P1 / ’ ma (& "11 —s) Lds
(c+1)
[T i) _ gmns)| ST
+£|]l|/0 e e (a+1)d5]
! 1y (1—s) iy (1—s) s7
201 — =) _ -
+  p2(t)] / ‘e e F(a+1)d5
emz o 1 (eml(éfs) _ 1) ST ~
+|A|/ \ m1 ‘r(0+1)d5] + (L7 + Lo)Ay

(12?+M)
|gamymy(my — mq)|T (0 +1

IN

e Pl ma(—emE) —my (1 —em)

n
+ Y Lilnf lma (1 — ™) — my (1 — ™2 |] + B [Jma (1 — ™) — my (1 — "))
i=1

37|Al
[myma|
= (6r+ M)a+ (L7 + Lo)A; < 7,

[m3 (18 — "™ + 1) — m3 (mp6 — "2 4 1)|]} + (L7 + L)

which clearly shows that Jx € By for any x € B;. Thus JBr C B;. Now, for x,y € C and for each
t € [0,1], we have

7o) =79
_ o1
st tm{ I A0 S xw) = ) s

o —1
ol [ [ Sr(“) £ 2(u)) = £, () |du dis

e 3l )" A S o 00) = ) ]

IN

AL
Heal[ [ [ a0 Sr( [ x(0)) = f () I s

mz (0—s) _ e (6—s) _ s — )1
o [ (- ) e f(u,x<u>>—f(u,y(umduds]}

my

n
+[h(x) = h(y)| [Iemzt\ +ou(D) ("] + X Ljille™ + 1])
i=1

™|+ Al + 1

b /t
lq2(my — my)] te[0] 0

emz(ffs) _ em1(t75) s7
T(e+1)

ds
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+\Pl(t)|[/§ ‘6’"2(5’5) _em(@)| g
0 F(a+ 1)
i ma(ni—s) _ pmi(ngi—s)| _ >
+i;\j,|/0 e e™ F(a+1)ds}
-1 log
my(1—s) _ pm(1=s)|__ 5
Hoa I e ¢ NSV

5 (emz(éfs)il) (37"1(5*5)71) s7
L e ] eyl Loyl

V4
lgamymy(my —my)|T (0 +1)

IN

{e+ Pl Ima(1 — ™€) —my (1 - e2F)|

n
1 Ljilng Ima (1= &™) — my (1= ") || 4 paflma(1 — ™) —my (1= ")
i=1
67|A|
\m1m2|
= (la+LA)|x—yl,

|3 (16 — ™ + 1) —mi(my6 — " + 1)|]}I|X =yl + Ldlx -yl

« and A; are given by (20) and depend only on the parameters involved in the problem. In view of the
condition fa + LA; < 1, it follows that J is a contraction. Thus, by the contraction mapping principle
(Banach fixed point theorem), the problem (1) and (2) has a unique solution on [0, 1]. This completes
the proof. [

The next existence result is based on Leray-Schauder nonlinear alternative.

Theorem 4. (Nonlinear alternative for single valued maps [28]). Let E be a Banach space, C a closed, convex
subset of E, U an open subset of C and 0 € U. Suppose that F : U — C is a continuous, compact (that is, F(U)
is a relatively compact subset of C) map. Then either

(i) T has a fixed point in U, or
(ii)  thereis au € oU (the boundary of U in C) and € € (0,1) with u = €F(u).

We need the following assumptions:

H; There exist a function ¢ € C([0,1],R), and a nondecreasing function ¢ : R* — R™ such that
( g 8 P

IfE )l <g®wlylD, V(ty) € [0,1] xR.
(Hz)  h:C([0,1],R) — R, is continuous function with /1(0) = 0 and there exist constant L1 > 0 with
L < Al’l, such that
()| < Lillxl] ¥ xec.

(H3)  There exists a constant K > 0 such that
(1-LiA)K
e > 1
I8l (K)a

Theorem 5. Let f : [0,1] x R — R be a continuous function. Then the problem (1) and (2) has at least one
solution on [0, 1], if (Hy)—(Hz) are satisfied.

Proof. Consider the operator J : C — C defined by (18). We show that 7 maps bounded sets into
bounded sets in C. For a positive number 7, let & = {x € C : |x|| < {} be a bounded set in C.
Then we have

[T = sup |T(x)(#)]

te[0,1]
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-1

qu(mz—ml o] {/or/o Al s}(?) |f (u, x(u))|du ds
oI [ [ At s}(?)v | (u)) I s
+[X;|ji|/ / A(ni)%;l|f(u,x(u))|duds]
+loa(t) // r(’fr); G o () |du ds
|A|/ / (e —1) ~ (em1<o>s>_1))(s—r(?)m i ds]}

IN

my
n
G [le™] + pa (£) le™ | + 1 [jille™ +1])
i=1

|mae™| + A" +1]
+a(t >( = )}

el / 5 md
+Z|]z|/
Hoa01] [ e

5 (emz(é—s) 71) (ml(é s) 71
+|)\|./O ‘ o o ‘r(g+1)ds] +L1AL

Sl7

F(U+1)d

IN

emz(é‘*s) — pMi(§—s)

2 (1i=s) _ g (i—s)

(a+1)d]

o

my(1—s) my (1—s)

—e

e

|q2m1m2(11“1§||—lp7(71€;))|r(0+ 1) {8 +01[&7 |ma(1 — ermé) —my(1— em2€)|

IN

+2|Jz|77 ma (1 — &™) —my (1= e™M)[] + pa[[ma (1 — ™) —my (1 — ™)

5”W

o] [m3(m16 — e™° +1) — mf (mpd — ™ +1)[]} + L1,

which yields

17 ]l

IN

\qzmlmz(iif“ipr(ii)) T +1) {s + 0187 ma (1 — e™E) — my (1 — e™28)]

+Z\]z|f7 ma (1 — ™) —my (1= ™) || + p2[[ma (1 — ™) —my (1 — ™)

5 AL (15 - 19 1) — md (a6 — € 1) ]} + Lig.

Next we show that 7 maps bounded sets into equicontniuous sets of C. Let t1, f, € [0,1] with
t1 < trand y € &, where & is a bounded set of C. Then we obtain

I(JX)(i )= (Tx) ()]

/tl/ )]%f(l{,x(u))du ds

|gq2(mp — my)| {
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s s— )1
+/t: J A(tﬂ%f(u,x(u))du s

(s—u)t 1

+lo1(t2) — p1(t1)] //0“4@ F(U) |f(u, x(u))|du ds
. i 7u)
+i:21|]i\/0 /0 A(Ui)w\f(u,x(u))\du ds]

s _ )01
Hoalta) — ool [ A0 E L G x(w) s

s/ (eMm2(d—s) _ my(6—s) _ No—1
+|?\|/05/0 ((e 0m2 1) (e 1))(5 r(lfy)) |f (1, x(u))|du ds]}

my

n
+|h(x)] |:|gmzt2 — ™| 4 (py (k) — pr(h))(Je™F| + 2 il + 1)

i=1
|mae™2| + [A]|e™ +1]
+(P2(tz)—Pz(fl))( | )]
? g I _ ma(ta—ty)y _ _ mi(ta—ty)
s |qzm1m2(m2—m1)|l"(0+1){<t1 _t2>‘m1(1 e 1) mz(l e 1)

iy e
+lo1(t2) — p1 (1) [[E7ma(1 — ™€) — my (1 — e™25)]
3 a1 =) — 1 )|

+|f:2( ty) — p2(t1)|[|m2(1 —€™) —my (1 —e™)|

UL It 4 1) = mdomd = e+ D)} ) e - emt

n
+(p1(t2) — p1(t1)) (\e’"25| + Y Jjillema + 1|>
=1

‘mzemz‘ + MHemzé +1|>]
[ma] ’

+(p2(t2) —Pz(t1))(

which tends to zero independently of x € & as to —t; — 0. As J satisfies the above assumptions,
therefore it follows by the Arzeld-Ascoli theorem that J : C — C is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once it is shown that there
exists U C Cwithx # 0Fx for 6 € (0,1) and x € 9U.

Let x € C be such that x = 0 7x for 6 € [0,1]. Then, for t € [0, 1], we have

lx(t)] = \ejx(t)|
sfu)” 1
S ‘qz( ml fG[O 1] { / / F(O’) \f(u,x(u))\du ds

-1

+loa () // G x(u))|du ds
+ZU1‘|/ /A(’Yi);iv(u,x(u)ﬂduds]
—1

+Hoa () // =W b, x(u)) du ds
- _1)‘(eml(é_S)_l))(s}(Lf,))Hf(u,x<u))duds}}

my
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n
RGN 1] + o (1) (2] + 1 il + 1))
i=1

mae™] + [A]e"2 + 1
+p2(t)( ‘mz‘ )]
B N I I
‘qZ(mZ ml)‘ tG[Ol] (U'+1)
¢ my(5—s) _ o (5—s) 7
'le(t)'[/o e —e€ (0_+1)ds
n i 57
i ma(ni=s) _ pmi(ni—s)| _ >
+i;\]1|/0 e e (0+1)ds}
! iy (1—s) my(1—s) s7 d
Hoa I [ o079 — om0 | P sds
mz5 5)71 em]ésil
[ N e
||ng/J(||X||) ~ [0 my& myé
< _ MGy _ _ oM
B \‘izmlmz(mz—"11)\1"(‘7‘*'1){H_pl[‘5 a1 =€™%) = ma (1 =€™2)]
n
+ ) liilnf Ima(1 = ™) — my (1= ") [] + 5| mp (1 — ™) — my (1 = €"2)]
évl)“ 2 Mo 2 my o
o 120 = €27 1) — (6 — "0 1)+ Ly ]
= ligllpCllx(l)a + LA x[l,
which implies that
(1= LyAy)||x]]
lglgdllx(ha —

In view of (Hj3), there is no solution x such that ||x|| # K. Let us set
U={xeC:|x|| <K}

The operator J : U — C is continuous and completely continuous. From the choice of U, there is
no u € oU such that u = 6.7 (u) for some 6 € (0,1). Consequently, by the nonlinear alternative
of Leray-Schauder type [28], we deduce that J has a fixed point # € U which is a solution of the
problem (1) and (2). O

Example 1. Let us consider the following boundary value problem

—t
(2¢D'%/5 4+ 3°D7/5 + eD2/5)x(t) = eitanflxﬂost, 0<t<l, (26)

4V4+ 12

subject the boundary condition
x(0) = %smx(t) x(1/5) = x(1/4) + 2x(1/3) + x(1/2), x(1) = 2/ s. 27)

Here, g2 =2,91=3,q0=1,0=2/5=1/5m=1/4,m =1/3,13=1/2,6=1/6,j1 =1,
2=2,j3=1,A =2, tisa fixed value in [0,1] and
et
f(t,x) = ———tan"! x + cos .

44+ 2
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Clearly 42 — 440q2 = 1 > 0, and
1
[t x) = f(ty)l < glx—yl,

1
Ih(x) = h(y)| < gllx =yl
where ¢ = 1/8, L = 1/9. Using the given Values, we found a ~ 0.095961, A; ~ 6.9171.

It is easy to check that |f(t,x)| < —— = T cost = 9(t) and LA < 1. As all the condition

8v4

of Theorem 2 are satisfied the problem (26) and (27) has at least one solution on [0, 1]. On the other
hand, fa + LA; < 1 and thus there exists a unique solution for the problem (26) and (27) on [0, 1] by
Theorem 3.

Example 2. Consider the following fractional differential equation

(2°D'2/5 4 3°D7/5 4 eD2/5)x(t) = (xtan—1 X+ 7r/2>, 0<t<1, (28)

1
V9 - 12
subject the boundary conditions (27).

Here

flt,x) = (xtan' x 4 71/2).

1
9 4 12
Clearly

1
F60) < 5o (Il 1),

with g(t) = 5=, (l|x])) = [l +1.
Then by using the condition (Hsz), we find that K > 0.241877 (we have used « = 0.27045). Thus,
the conclusion of Theorem 5 applies to problem (28) and (27).

4. Existence Results for Problem (1) and (2) with q% —4q0q2 =0

In view of Lemma 3, we can transform problem (1) and (2) into equivalent fixed point problem

as follows:
x = Hx, (29)

where the operator H : C — C is defined by

. —1
(Hx)() = qz{// =T o v(u))du ds

+xa(t UO fo B U f(u,x(u))du ds
Yl fo’fo i) %f(u,x(u))du ds}
+x2(t) {fol fos B(l) (S_r“qu(u,x(u))du ds

5)em(6-) _gni(s-s s_)e-1
—Afo IS ( m(o=s)e mz — +1)( rl((l) fu,x(u))du ds}

() [ 4 (1) (€7 = Ty fie™ ) + o) (20 ],

(30)

where B(-), x1(t) and x»(t) are defined by (14). We set

X1 = max|[xi(t), Xz2= max |[x2(t)],
te[0,1] te(0,1]
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1 ~ -~
B = W{(l + X2)[me™ — " + 1] + X1 [gg\mgemé — " 41

S o mn; mn; ‘/\MUX\Z mé mé
3 i e — e+ 1] 4+ S EAR ma(en 1) 20 =)}, @D
i=1
R L ) R 1 +|M|errz(5+1|
A, = max |e™|+ ") + i[|e™i|) + [me] + [Mle™ +1] .
2 = e+ R+ i) + R i )

Now we present our main results for problem (1) and (2) with 43 — 4goq2 = 0. Since the methods
for proof of these results are similar to the ones obtained in Section 3, so we omit the proofs.

Theorem 6. Let f : [0,1] x R — R be a continuous function satisfying the conditions (G1)-(Gs). Then the
problem (1) and (2) with g3 — 4qoqo = 0, has at least one solution on [0, 1] if

LAy <1, (32)
where A, is given by (31).

Theorem 7. Assume that f : [0,1] x R — R is a continuous function such that (Gy) is satisfied. Then there
exists a unique solution for problem (1) and (2) with g2 — 4qoq2 = 0, on [0,1] if ¢B + LA, < 1, where p and
A, are given by (31).

Theorem 8. Let f : [0,1] x R — R be a continuous function. Then the problem (1) and (2) with g% — 4qoq, =
0, has at least one solution on [0,1], if (Hy), (Hp) and the following condition hold:
(HL)  There exists a constant Ky > 0 such that
(1-LiA)Ky
o > L
gllw(K)p
where B is defined by (31).

Example 3. Consider the sequential fractional differential equation

2eD1/5 4D/ Lo ep ety = B g oo, 33

subject the boundary conditions (27).

Here

_ |x] -
f(t,x) = W+E t.

Clearly g2 — 4goq2 = 0, and
1
f(tx) = f(ty)] < glx—yl,

Ih(x) ~ (y)] < gllx .
where ¢ = 1/6, L = 1/9. Using the given values, we find that 8 ~ 0.29913, ; ~ 0.15022 and
Ay =~ 5.135.
It is easy to check that [f(t,x)| < H—i6 +e7t = 9(t) and LA, < 1. As all the conditions of
Theorem 6 are satisfied, the problem (27)-(33) has at least one solution on [0, 1]. On the other hand,
{B+ LA; < 1 and thus there exists a unique solution for the problem (27)—(33) on [0, 1] by Theorem 7.
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5. Existence Results for Problem (1) and (2) with q% — 44092 < 0

In view of Lemma 4, we can transform problem (1) and (2) into equivalent fixed point problem

as follows:
x = Kx, (34)

where the operator K : C — C is defined by

(Kx)(t) = qzb{// (s—u) lf(u,x(u))duds
+7i(t // (w7 (u)duds

- Z}z /’71 / f(ﬂi)%f(u,x(u))du ds]

-1

+1o(t / / (s—u) 5 f(u,x(u))du ds

fm /0 /0 b - he’”(‘s’s> cosb(6—s)
(s —u)1

—ae="=%) sinb(5 — S)) Wf(”rx(u))d” ds] }

n
+h(x) [e*“t cosbt + 11 () (e~ cos bE — Y jie i cos by;)
i=1

+1(t)(e” " cosb — a — ae” cos bd + be™" sin b&))] ,

A
a2+b2(

where F(-), 7 (t) and 1,(t) are defined by (17). We set

o= tgl[oaﬁln()\ 2:m[0a>1<]|1’2()\
T = ! {(1+?2)[\b7be’”cosbfue’“sinbﬂ
lg2b(a? + b2)|T (0 +-1)

n
# {gﬂb — be ™ cos b¢ — ae~C sinbg| + Y [jily? |b — be~ % cos byy;
i=1

—ae~ i sinby;| | +|A|67% | |bS — e~ sinbé| | }, (35)
n
n
Ay = m[ax le= cos bt| + 71 (e " cos b&| + Y_ |ji|le " cos bry;])
tefo1 =

+7 <|e’“ cosb| + az‘—/o\—‘bz (|a — ae= cos bé + be™ sin b(5|)).

Here are the existence and uniqueness results for problem (1) and (2) with g3 — 4qg> < 0. As argued
in the last section, we do not provide the proofs for these results.

Theorem 9. Let f : [0,1] x R — R be a continuous function satisfying the conditions (Gy)—(Gs). Then the
problem (1) and (2) with p% —4pop2 < 0, has at least one solution on [0,1] if

LA; <1, (36)

where 7y, and Az are given by (35).
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Theorem 10. Assume that f : [0,1] x R — R is a continuous function such that (Gy) and (G, ) are satisfied.
Then there exists a unique solution for the problem (1) and (2) with 2 — 4goq2 < 0, 0n [0,1] if ¢y + LA; < 1,
where 7y and Az are given by (35).

Theorem 11. Let f : [0,1] x R — R bea continuous function. Then the problem (1) and (2) with q% —4q0q2 <
0, has at least one solution on [0,1], if (Hy), (Hy) and the following condition are satisfied:

(HY)  There exists a constant Ko > 0 such that

(1—-LiA3)K;

A i S B
o)y

where 7y and Az are defined by (35).

Example 4. Consider the following boundary value problem

1 872[
2 ep12/5 | 3ep7/5 4 9 pD2/5)y(t) = ¢ <1 7
( +3 + )x(t) (t+4)2cosx+ 3 0<t<l (37)
subject the boundary condition
1 . 1/6
x(0) = gx(t), x(1/5) = x(1/4) +2x(1/3) +x(1/2), x(1) = 2/ x(s)ds. (38)
Jo

Here,0 =2/5=1/5,1m1 =1/4,1=1/3,13=1/2,0=1/6,1 =1, =2,j3=1,A = 2, fis

a fixed value in [0, 1] and
1 672,
f(t,x) = mCOSx+ ?

Clearly 2 — 4goq2 = —7 < 0, and
1
[f(t,x) = f(ty)l < gl —yl,

h(x) ~ k()| < gllx—yl,

where ¢ = 1/16, L = 1/8. Using the given values, it is found that ¢ ~ 0.34744, 7 ~ 0.17937 and
A ~ 1.8499.

Obviously |f(t,x)

1 e 2t
< - 4+ -
s (t+4)? HEE
true, the problem (37) and (38) has at least one solution on [0, 1]. Furthermore, we have ¢y + LA3 < 1,
which implies that there exists a unique solution for the problem (37) and (38) on [0, 1] by Theorem 10.

= 9(t) and LAz < 1. As the hypothesis of Theorem 9 holds

6. Conclusions

We have presented a detailed analysis for a multi-term fractional differential equation
supplemented with nonlocal multi-point integral boundary conditions. The existence and uniqueness
results are given for all three cases depending on the coefficients of the multi-term fractional differential
equation: (i) g3 —4qoq2 > 0, (i) 43 — 490q2 = 0 and (iii) 4> — 4g0q2 < 0. Existence results are
proved by means of Krasnoselskii fixed point theorem and Leray—Schauder nonlinear alternative,
while Banach contraction mapping principle is applied to establish the uniqueness of solutions for
the given problem. The obtained results are well-illustrated with examples. Our results are new and
enrich the literature on nonlocal integro-multipoint boundary problems for multi-term Caputo type
fractional differential equations.
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Abstract: We propose an iterative projection method for solving linear and nonlinear hypersingular
integral equations with non-Riemann integrable functions on the right-hand sides. We investigate
hypersingular integral equations with second order singularities. Todayhypersingular integral
equations of this type are widely used in physics and technology. The convergence of the proposed
method is based on the Lyapunov stability theory of solutions of ordinary differential equation
systems. The advantage of the method for linear equations is in simplicity of unique solvability
verification for the approximate equations system in terms of the operator logarithmic norm.
This makes it possible to estimate the norm of the inverse matrix for an approximating system.
The advantage of the method for nonlinear equations is that neither the existence or reversibility of
the nonlinear operator derivative is required. Examples are given illustrating the effectiveness of the
proposed method.

Keywords: hypersingular integral equations; iterative projection method; Lyapunov stability theory

1. Introduction

The importance of developing analytical and numerical methods for solving hypersingular
integral equations is determined by a variety of fields of mathematics and by applications that use
hypersingular integral equations.

Hadamard introduced the concept of a finite part of an integral, or the hypersingular integral in
modern terminology, when studying hyperbolic equations. The Riemann boundary problem leads
to hypersingular integral equations in exceptional cases. The boundary integral equations method
reduces the dimensions of partial differential equations; that leads to hypersingular integral equations.

Hypersingular integral equations, singular integral equations and Riemann boundary problem
are widely used in aerodynamics, electrodynamics, quantum physics, antennae theory and many other
fields of physics and engineering [1-5].

Analytical methods for solving singular and hypersingular integral equations are known only for
certain particular types of equations [6-8]. Thus, the importance of constructing numerical solutions
is clear.

Developing numerical methods for solving singular integral equations began in the middle of the
last century. By now, exhaustive results have been obtained for many types of equations. A detailed
account of numerical methods for solving singular integral equations as well as numerous bibliography
references can be found in [9-14].

Numerical methods for solving hypersingular integral equations have been developed to a
much lesser extent. Mostly numerical methods to solve hypersingular integral equations of the first
kind have been developed. Numerical methods for solving hypersingular integral equations of the

Axioms 2020, 9, 74; d0i:10.3390/ axioms9030074 251 www.mdpi.com/journal /axioms
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second kind have been much less developed. Apparently, hypersingular integral equations of the first
kind are more common. Naturally, the equations of the first kind are widely used in aerodynamics
(one-dimensional [15] and multi-dimensional [5,16] Prandtl equation), electrodynamics, antennae
theory, etc.

The following methods are used in solving hypersingular integral equations of the first kind.

Collocations, mechanical quadratures and Galerkin methods were employed to solve equations
with p = 2 singularity [6,17-19].

Approximate methods for solving hypersingular integral equations having singularities of order
p =2,3,..., and defined on closed smooth integration contours are constructed in [20].

In [21,22] spline-collocation methods for solving hypersingular and polyhypersingular integral
equations of the second kind with odd and even singularities have been developed and justified.
The spline-collocation methods for solving nonlinear hypersingular and polyhypersingular integral
equations have been developed and justified in [23].

An iterative projection method for solving linear and nonlinear hypersingular integral equations,
and polyhyperpersingular and multidimensional hypersingular equations, was proposed in [24].

In [22] the unique solvability of hypersingular integral equations with even singularities
(p=2,4,...) was proven. Meanwhile the convergence of approximate solution to the exact one
was not justified. In [24] a unique solvability of the spline-collocation method was proven. In addition,
for hypersingular integral equations with bounded right-hand sides the convergence of an approximate
solution sequence to the exact solution was proven under certain additional conditions.

The iterative projection method proposed here overcomes these limitations. It was shown that if
the exact equation has a solution for large enough N, where N is the dimension of an approximate
system of equations, an approximate solution converges to the exact one.

Hypersingular integral equations with bounded right-hand sides are a small subset of the
hypersingular integral equations family. Therefore, the problem arises of constructing and justifying
approximate methods for solutions for hypersingular integral equations with non-Riemann integrable
functions on the right-hand sides. This paper is devoted to those issues.

A large number of works are devoted to approximate methods for solving hypersingular integral
equations of the first kind

(t—1

To solve the Equation (1), collocation and mechanical quadrature methods [17,18], the method of
orthogonal polynomials [25], the method of discrete vortices [19], the method of homotopy [26] and
others are used.

In the works [27-29] computational schemes for the approximate solution of the Equation (1) are
constructed and their justification is carried out under the assumption that the solution has the forms
x(H) = (1= £2)*120(t) or x(t) = ((1 — #)/(1 + 1))*/2w(t), where w(t) is a smooth function.

The hypersingular integral equations

1 J 1
[ E0 + [ e = 500, v
-1

/ x(T)dT =f), —-1<t<1, )

are widely used in aerodinamical problems and in the theory of antennae [30,31]. In the works [30,31]
the Equation (2) is investigated under the assumption that the right-hand side has the form
f(t) =1/(t—c)or f(t) = 6(t — ¢), where 6(t) is the delta-function. An analytical solution of the
Equation (2) with the indicated right-hand sides is obtained under the assumption that it has the form
x(t) = V1 —2g(t).

A fairly detailed review of analytical and numerical methods for solving hypersingular integral
equations is given in [32].

252



Axioms 2020, 9, 74

In this paper, we propose an approach to solving linear and nonlinear hypersingular integral
equations, the right parts of which contain functions with power features.
In particular, the right-hand sides of the form

1 1 1
t—c1t—ocp t*C[,

f(t) =g(t) 1=12..., -1<¢g<---<¢<l1, (3)
are considered. Here g(t) is a smooth function.
Below, for simplicity of notation, we put ! = 11in (3).

Remark 1. It can be shown that if in the hypersingular integral Equation (1) of the first kind the right side
f(t) € H, H is a Holder class, then the solution to this equation has the form x(t) = (1 — £2)*1/2 or
x(t) = ((14t) /(1 — t))*1V/2. For singular right-hand sides, the classes of solutions of (1) are unknown.

Below, when constructing and justifying the computational method, we assume that the Equation (1) with
a given right-hand side has a unique solution.

The proposed method has the following advantages:

(1) Itallows us to extend collocations and mechanical quadratures methods to hypersingular integral
equations with non-Riemann integrable right sides;

(2) For linear hypersingular integral equations, it allows one to verify the inverse operator existence
and estimate its norm quite easily;

(38) The method is stable with respect to the operator and right hand side perturbations;

(4) The method does not require the existence and reversibility of the nonlinear operator derivative.

The paper is organized as follows. The continuous method for linear and nonlinear operator
equations is explained in Section 2. The numerical method for solving hypersingular integral equations
is presented in Section 2.

2. Continuous Method and Its Convergence Properties

The method we employ in the next section for solving hypersingular integral equations is based
on the continuous method introduced in [33].

Continuous Method for Solving Operator Equations

The continuous method for solving operator equations is based on the Lyapunov theory
of stability.
Let x(t) be a solution of the differential equation in a Banach space B

o~ E(tv) @
which is defined for all t > ty. The solution x(t) is said to be stable if (i) for each ¢ > 0 there
is a corresponding & = J(e) > 0 such that any solution %(t) of (4) which satisfies the inequality
|%(tg) — x(to)| < J exists and satisfies the inequality |%(t) — x(t)| < ¢ for all £ > #.

It is said to be asymptotically stable if in addition (ii) |%(t) — x(¢)] — 0 if + — oo whenever
|%(tg) — x(to)] is sufficiently small.

We will use the following notation:

B(a,r) ={z € B: |z—a| <r}, S(ar) ={z € B: |z—a|] =r}, Re(K) = R(K) = (K+ K*)/2,
A(K) = 1}3101(\\I+h1<|\ —1)h L

Here B is a Banach space, a € B, K is a linear operator on B, A(K) is the logarithmic norm [34] of
the operator K, K* is the conjugate operator to K and I is the identity operator.
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The analytical expressions for logarithmic norms are known for operators in many spaces.
We restrict ourselves to a description of the three norms.

Let A = {a;;},i,j=1,2,...,1n,be a matrix.

In the n-dimensional space R, of vectors x = (x1, ..., x,) the following norms are often used:

n
octahedral- ||x||; = ¥ |x;|; cubic- ||x||, = max |x;|;
i—=1 1<i<n

B n
spherical (Euclidean)- ||x||3 = (_Zl xiz)l/ 2,
=

Here are analytical expressions of the logarithmic norm of n x n matrix A = ('lij)/ due to the
above norms of the vectors:

octahedral logarithmic norm Ay
A(A) = 1?]%1 <a]'j + ; |ﬂij|> ;
cubic logarithmic norm Ay

Az(A) = max <ﬂz‘i +) |ﬂz‘j> ;

<i< Y]
1<i<n i#i

spherical (Euclidean) logarithmic norm Az

A+ A*
AS(A) = Amax ( > ’

2

where A* is the conjugate matrix for A.

Note that the logarithmic norm of the same matrix can be positive in one space and negative
in another.

The logarithmic norm has the some properties which are very useful for numerical mathematics.

Let A, B be n x n matrices with complex elements; and x = (x1,...,x4), ¥ = (Y1,.--,Yn),
¢=1(&1,...,8n) and 7 = (41,...,1n) are n-dimensional vectors with complex components. Let the
systems of algebraic equations Ax = ¢ and By = 7 be given. The norm of a vector and its
subordinate operator norm of the matrix are agreed upon; the logarithmic norm A(A) corresponds to
the operator norm.

Theorem 1 ([35]). If A(A) < 0, the matrix A is non-singular and || A7 < 1/|A(A)].
Theorem 2 ([35]). Let Ax = &, By = iy and A(A) <0, A(B) < 0. Then

I —nll . _1lA=BI
IA(B)]  |A(A)A(B)

l[x—yll <

Some properties of the logarithmic norm in a Banach space, which are useful in numerical
mathematics, are given in [34].
Let us consider in a Banach space B, the Cauchy problem

dx(t)
dt

= A(x()), ®)

x(0) = xo. (6)

Let us assume that the nonlinear operator A has a Frechet derivative and A(0) = 0.
The sufficiently satisfying conditions of asymptotically stability for the solution of the Cauchy
problem (5), (6) were obtained in [36,37].
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t
Theorem 3. Let the integral [ A(A'(¢(t)))dT be non-positive (respectively, be negative and satisfy
0

tEToo 1 J’A(A’(q)(r)))d'r < —wg, a0y > 0) for any differentiable curve ¢(t) lying in a ball B(0,r) of some
radius r. Then the trivial solution of Equation (5) is stable (respectively, asymptotically stable).
Remark 2. Additionally, the Theorem is valid under r = co.
Let us consider in a Banach space B a nonlinear operator equation
Ax) ~ f =0, %

where operator A acts from B into B.
We associate Equation (7) with the Cauchy problem

= A(x(t) — f, ®)

x(0) = xo. )
Let x* be a the solution of Equation (7). Let us make the change of variable x = x* + v in
Equation (8). This change reduces the Cauchy problem (8), (9) to the form

do(t)
dt

= A" +o(t)) — ARY), (10)

v(0) = xp — x*. 11

It is easy to see that if the trivial solution of Equation (10) is globally asymptotically stable,
then lim;—; o0 ||0(t)|| — 0. So, for any initial value the solution of the Cauchy problem (8), (9) tends to
x*. It follows from the next assertions which were proven in [33].

Theorem 4. Let Equation(7) have a solution x*, and let inequality

t

. 1 /

tginoo? /A(A (g(1)))dt < —ag, ag >0, (12)
0

be true on each differentiable curve g(t) lying in the Banach space B. Then the solution of the Cauchy
problem (8), (9) converges to the solution x* of Equation(7) for any initial value.

Theorem 5. Let Equation (7) have a solution x*, and let the following conditions be satisfied on any differentiable
curve g(t) lying in the ball B(x*,r).

1. The inequality

[ A @i <o
0

holds for all t(t > 0).
2. Inequality (12) is satisfied.

Then the solution of the Cauchy problem (8), (9) converges to the solution x* of Equation (7).
Remark 3. The sufficient condition for convergence of the Cauchy problem (8), (9) solution to the solution of

the operator Equation (7) is given above. It was obtained by analysing Lyapunov stability. One of the first basic

255



Axioms 2020, 9, 74

results in accretive operator theory was a relation between the solution of operator equation Au = 0, where A is
a locally Lipschitzian and accretive operator, and the differential equation %’; = Au was obtained in [38].

Later, accretive operator theory and its applications for finding fixed points and constructing iterative
procedures were studied by many authors. Basic results and a detailed bibliography devoted to the subject may be
found in [39—42].

3. An Solution of Hypersingular Integral Equations with the Continuous Method

Let us consider the method of mechanical quadrature for solving hypersingular integral equation
of the types

ity + [ % = (0 13
and 1 on(t, T, x(
ORI ) (149

It is assumed that in the Equations (13) and (14) the right-hand sides have features of the
following types

50 = £ g0k, £ =0T 7,

where -1 <¢; <1,i=1,2,...,1,1=1,2,...;¢(t),gi(t),i = 1,2, - - ,],—are continuous functions.
In what follows, without loss of generality, we set [ = 1.
Let us recall the Hadamard definition of hypersingular integrals [43].

Definition 1 ([43]). The integral of the type

for an integer p and 0 < « < 1, is defined as

. X A(t)dt B(x)
lim U b T p—x)pra

if A(x) has p derivatives in the neighborhood of the point b. Here B(x) is any function that satisfies the following
two conditions:

(i)  The above limit exists;
(i)  B(x) has at least p derivatives in the neighborhood of the point x = b.

It is easy to see [43], that the conditions (i) and (ii) are sufficient for the existence of the limit.
Chikin in [44] introduced the following definition.

Definition 2 ([44]). The Cauchy—Hadamard principal value of the integral

/b (";(i):l;, a<c<b, (15)

is defined as

’

T im {/“v o(7)dt N /b p(r)dt  &(v)

(t—of v=0lJa (t—c)? Jeyo (T—0)F o

where ¢(v) is a function constructed so that the limit exists.
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3.1. An Approximate Solution of Linear Hypersingular Integral Equations with Second Order Singularity

Consider a one-dimensional hypersingular integral equation of the type

U h(t, T)x(T)dT _

Kx = a(t)x(t) +/ t—n? (1), (16)

-1
where f(t) = g(t)/(t—c)or f(t) = g(t)/((1 =) (t —¢)), =1 < c < 1,4(t) € C[-1,1].

Divide the interval [—1,1] into two subintervals [—1,¢], [c, 1].

Let us fix a positive integer Np. Puth =2/Ny, Ny = [(1+¢)/h]|,N; = [(1 —¢)/h],N = N1 + N>.

Divide the interval [—1,c] into Nj subintervals at the points t, = —1+ (¢ + 1)k/Ny, k =
0,1,...,Np.

Divide the interval [c, 1] into N; subintervals at the points 7 = ¢ + (1 — ¢)k/Ny, k =0,1,...,N,.

Let us introduce the nodes fy = to + 1/2(N)%E = t,k = 1,2,..., Ny — 1Ly, = tn —
1/2(N1)2; T =T+ 1/2(N2)2, T =T1,k=1,2,...,Np — 1,’1_']\]2 =1- 1/2(N2)2.

As an approximate solution of (16), we shall seek in the form of a continuous function

N N,
an(t) = Y axe(t) + Y Bre(t), (17)
§=0 =0

where @i (t),k =0,1,..., Ny, ¢ (t),k =0,1,..., N, is a family of basis functions.
Fornodes t, k =1,...,Nj — 1, the corresponding basis elements are determined by

0 o1 <t<t_1+ N%Z’
N2 1 | )
mrok 2t~ ) ~mgny kit SES
L h— & <t<th+ L,
eu(t) = N2 M N (18)
1 1 1
~monm o a) HL ket St g
0 tep1 — az << b,
1
0 te =11\ [t iga)-
For boundary nodes t, k = 0 and k = Nj the corresponding basis elements are defined as
1
L 1SS 1ty
le 1 1 1
“AFoN 2 - 14+l <i<py— L
po(ty={ “mem I FL S g S sho gy (19)
o h—L<t<nh,
1 le 1
0 -1, 1\ [fo, t2];
and 1
0 71§t§tN1—]+Nflz/
(t) = N? (t—t . + L <t<e—1 (20)
o) =9 Ton= M-1) T mamr et SES e
1, c— N%z <t<e
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For nodes 7, k = 0,1,...,N,, the corresponding basis elements ¢,k = 0,1,...,No,
are determined in a the similar way: For nodes 7, k = 1,..., N, — 1, the corresponding basis elements
are determined by

0, 1SS T+ N%z,
N g ) L <t<h—
A—oN;,—2 k1) 7 G=Ny—2r 1Tz =P = T g
1, T qp SES Tt
Pe(t) = NZ KN TN @1)
—W(t—'fk—ﬁzz)-‘rl, Tk+N%z§tSTk+1—N%z,
0, Tht1 — I\}Zz <t< Th4-1/
0, t€ [=1L1I\[Te-1, Ths1]-
For boundary nodes 1, k = 0 and k = N} the corresponding basis elements are defined as
1, c<t<c+L,
N3 L M
— 2 —c— L 1 1
Yolt) = Tt —¢ NZZ) +1, ot N3 stsm NZ’ 22)
0, - <t<m,
2
0, (—1,1\[c, m];
and )
0, “1<t<tva+ N
£ = N: 1 L<t<1-1 23
() = otz (™) — o N1t ST (23)
1, 1--L <<
NZ

To simplify the description of computational scheme, we introduce the following notation:

(1) Unite the nodes t,k = 0,1,...,N; and 7,/ = 0,1,...,Np, denoting them by v;,i =
0,1,...,N*, N* = Ny + Np;

(2) Unite the nodes fy,k = 0,1,...,N; and 7,/ = 0,1,..., Ny, denoting them by 7;,i =0,1,..., N* +1;

(3) Denote the family of basis functions {¢:},k = 0,1,..., N1, {¢y},] =0,1,...,Na by {{j},j =
0,1,...,N*+1;

(4) Denoteby {7}, k=0,1,...,N* +1, unknowns {«;},i =0,1,..., Ny, {5]},] =0,1,...,N,.

Herevi :ti,iIO,l,...,Nl,UN1+,‘:TZ',Z':1,2,...,N2,

Yi=wa;,i=01,..., N1, yN+14i = Bi,i=0,1,...,Np,
gi :q)i,izo,l,“.,Nl,gNl+1+i :¢i1i20/1/'~‘!N2'

Let us recall that the points ¢y, and 1y coincide.

Applying the collocation method on the knots 7,k = 0,1,...,N* + 1 to the Equation (16),
we obtain the following system of algebraic equations for finding unknown coefficients {7} of the
polygon (17)

N*+1 1 z (T)
a(@)vc+ Y, h(Env)m (L—_zdr = f (%), (24)
=0 EA 0k)
k=0,1,...,N*+1.
Using the definition of hypersingular integrals, we receive:

Uk+1

NZ
/ (%ETZ)TZ = —2(1“)11\[1 —n((l+e)N=1)k=12.... N~ (25)

Uk-1
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Uk+1
! NZ
Gen(mdt __, 2 In((1-c)N;—1),k=N;+2,...,N —1;

ol (-2 “(1-oN,-2
%
/L o 2N -3)
(T+17W)2 ! (c+1)Ny—2 7
N
[ g )
1T 11— —
o (r—vNﬁm)z (c+1)N; -2
UNp+1
/ _onn(@dT g -0Ny =3)
T2 — —
oN, (T_le_m)z (1-c)N2 -2
1
/ _enea(T)dT = —2N} - NZZM
UN*_1 ( _1—"_2N2)2 (1_C)N2_2
1 N1 N2
/{ 00| s = g+ MEEEE AN Y
R = (T+1-5v) 4Ny -1 (1+c)Ny
1 N* ) B
/ {ZCZ(T)} - +N21“(1( 131N2 23),
7 Li=o (T=1+5n9) 4Ny -1 (I—c)N2 —
1y
/ |:N +1,€Z(T)] dt 2N IR0+ N —3)
Sy Li=o (T*(szlwlz))z ANT -1 (I+c)Ny -2
1 *
/ |:N +1 “gl(r)] dt ___2N3 szln(z(l + )N, — 3)
= (t—(c+ 2N2))2 4NZ -1 (1+c)N, -2
1 TN*41 N
: d _ N N; 2N: .
_fl { EO "/(PI(T)} Too? = ek~ N ek a2 (e + 1Ny = 1);
1 IN*+1
N N; ZN
_fl {I:O 11 (r)] oo = " oF ~ (or T amome—a n((1—e)Na = 1).

(26)

27)

(28)

(29)

(30)

C)

(32)

(33)

(34)

(35)

(36)

Here Y}, Y1, £/, £/" indicates a summation over I # Ny, I # N1+ 1,1 #k(1 <k < N; —1),

I # k(N7 +2 < k < N* — 1), respectively. Detailed calculations are given in [23].
We can rewrite the system (24) as

+1 1
a(0x) vk — h(Tx, 0)2N7 uﬁ\;il,\,ll)ﬂkﬁ- Z "nh(or0r) [ G() 5
-1

(T—5¢)2
:f(ﬁk), k—l,...,Nl -1

N* 11
a(ﬁk)’Yk—h(ﬁkka)2N2(1n<i\>]2;\;21)2“rk+ 120 "vih (T, T7) f a(r 71)2

_f(vk)r k_N1+2,.-.,N;

a(9)vo — h(vo, 270)(2N2 + NZ%)%
N*+1

+ Z ¥ih(x, ) f@l 0)2 = f(%0);
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1; —
(UN1)7N1 - h(le,le)(ZNz + NZ%)’YM

+ Z "71h(UN1,Uz sz TT‘LI'\I) f(on);

_ B} _ 1
(0N, +1) YNy 11 — (N 11,08, 41) (N3 + Nz%)“m]ﬂ
N*+1 1
+ Eo ,,,71h(5N]+1/171)7f1 g,(r)#imz = f(on,);

_ _ _ In(2(1-c)N, 3
(0N« 1) YN+1 — h(ON+ 11, 0N 1) (NG + NZWWN*H

N* 1
+ ¥ h(One41,91) [ §I(T)<T_ﬁdiz)z = f(ON++1)-
1=0 el N*—1

Here Y/, Y.", Y.""" indicates a summation over | # k, | # Ny, 1 # Nj + 1, respectively.
The system (37)—(42) is equivalent to the system

(g how ) ( (T v — (B, 05 2N7 (R

*

N +l
+ EO Y1 (3, 7y) f@z = >—(Sg"h(fkrik))f(vk)rk—1,---1N1—1;

(sgn h(vg, vg)) (ﬂ(ﬁk)“rk — h(Dy, 0)2N? (lln(gzNzl)ﬂ

+
+ ; h(ox, 07) fé', > = (sgn h(t, tx))f(0r), k=Ny1+2,...,N%
(sgn h(vo,v9)) (ﬂ(f’o)"m — h(To, 39)(2NF + NP AL 31y
N*+1

+ E Y1h(x, 01) fCl 72,0)2> = (sgn h(vo,v0))f(%0);

(sgn h(le,le)) (a (m)m — h(ony, Ony ) (2NF + NP REEQR3) )

+ Z N'Ylh(lervl f@z

(t— UNl)

dr 2) = (Sgl’l h(vNyle))f(ﬁNl);

(sgn h(vny+1,0n,41)) (a (17N1+1)’YN1+1 — h(Ony 51,08y 1) (2N
1
In(2(1—c)N o
NFERQNe D)+ T oy, 1) J amﬁw)
= (Sgn h(UN1'vN1))f(5N1);
(sgn h(oN+ 11,08+ 41)) (ﬂ(ﬁN*H)“YN*H h(ﬁN*H,ﬁNwl)

(23 + NP9 )y + Z 1h(oN1,7) f a0

ON; (=N 11)?
= (sgn h(vN*+1/vN*+1))f(vN*+1)~
Here Y/, Y.", Y. indicates a summation over | # k, | # Ny, 1 # Nj + 1, respectively.

Let us write the system (43)—(48) in a matrix form

DX =F,

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

where D = {dkl}/ k1=0,1,...,N"+1, X = (xo,xl,...,xN*H),F = (fO/fl/--~/fN*+1)~ The values

{dy}, {x¢}, and {f;} are obvious.
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The diagonal elements in the left-hand side of the system of Equations (43)-(48) have the
following forms

i = (s (30 (a(e0) — hier, 02N )

k=1,2,...,N;—1,
o _ o In(N; — 1
die = (sgn h(, ) (“(Uk) - h(kavk)Zle(lJr(C)liNl_)J ’
k=N;+2,...,N%

o = (sgn (o0, 20) (a(en) — h(on, o0) (2nF + NPREELGN =30

dn = (g h(on,, o) (a(on) = h(on,, on ) (2N

In(2(1 4 ¢)Ny — 3)
N )

ANy N+ = (587 (on 41,08, 1)) (a(FN, 1) — B(ON, 41, Oy 1)

(2NZ + N2 —ln((zl(:)?]f:a) )) ,

AN+ 1N 11 = (881 h(une 41, 0N+ 1)) (a(ON+ 1) — h(ON+ 11, TN+ 4 1)

((2N3 + N3 —ln((zl(:flz]fi; 3) ))) .

The cubic logarithmic norm of the matrix D is equal to

Ay(D) =max| max (d +N*§1’\h(z7 ;)| fl G (0)dr
2 - 1<K<Nj 1 kk far} ks Y1 4 (t—o0)2 | 7
N*41 1
d (o, op)] [ L)
Ny 2 | it Eo |1 (O vl)|!1 =AY

N* 41
doo + l; [h(a0, )] [ 2= B

-1

,_.
TE
ol
SIS
_
\_/
N

N*+1 1
<dN1N1 + IZO //‘h(ﬁleﬁl)l ] gl(T)de) ’

T—0N; +1)

N*41 1 J
(dN1+l,N1+1 + 120 "h(ony 1,00 [ (Q(T)Tz> ,
= 1

N* 1
_ _ g(t)dt
(dN*+1,N*+1 + EO Vl(UI\I*+1,vz)|7fl (T—[vN+1>2> :
From (25)-(36) it follows that for sufficiently large N Ap(D) < 0 occurs. By Theorem 2 it is clear
that the system (43)~(48) (and (37)-(42)) has a unique solution x};(t) and ||D~!|| < 1/|Ay(D)|.
Let x*(t) and x}; be solutions of (16 ) and (37)—(42), respectivety.
We recall the following definitions.

Definition 3. The class W' (M, [a,b]), r = 1,2,..., consists of all functions f € C([a,b]), which have an
absolutely continuous derivative f"—1)(x) and piecewise derivative f)(x) with | f) (x)| < M.
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Definition 4. Denote by W'(f : fi,f; M,c),r = 1,2,..., a set of functions f(x),x € |[a,b],
such that f(x) = fi(x),x € [a,¢),f(x) = fa(x),x € (c,b], where f1(x) € W'(M,|a,c]), fa(x) €
WM, [¢,b]), fi(c) # fa(c),c € (a,b).

Repeating the proof presented in [24] we see that the approximation of f(t) € W((f : f1, fa; M, c))
by piecewise linear functions constructed on the basis {;(t), k = 0,1,...,N* + 1, has the error
Smax(w(AY, 1), w(fV, 1)) for f(t) € WY((f : fi, fM,c)), and sz for f(t) € W2((f :
f1, f2; M, c)).

In this paper, we denote the constants that do not depend on N by C.

Let x*(£) € W2((x* : x},x3; M,c)), and [|[x; V() [lc < Myt € [a,¢], [ (B)]lc < Mot € [c,b],
M = max(My, M3),0 < M < oo, where M is a bounded constant.

Repeating the arguments given in [24], we arrive at the following statement.

Theorem 6. Let the following conditions be fulfilled:

(1)  Equation (16) has the unique solution x*(t) € Wz(xf,xﬁ;M,c), —1<c<1,M = const.
(2)  Forallt € [—1,1] the function h(t,t) # 0.
(3) Ay(D) <.

Then the system of Equations (37)—(42) has a unique solution x};(t) and the following estimate holds:
[lx* — x|t <CN"1InN.

3.2. Nonlinear Hypersingular Integral Equations

Consider the nonlinear hypersingular integral equation:

1
a(t)x(t) + / BCE f(t). (49)

The approximate solution of the Equation (49) we shall seek as a continuous function (17)
with the coefficients 7. The coefficients 7, are determined by the following system of nonlinear
algebraic equations

N*+1 L
_ _ gl(T) _ *
h 2 dTt = k=0,1,...,N 1. 50
() vk + 1;:) (Uk,vl,%),/l T—520" f(@), L1, N*+ (50)

Remark 4. Note that the set v,k = 0,1,...,N* +1, is union of sets a,k = 0,1,...,Ny, and By, k =
0,1,...,Ny.

By computing the hypersingular integrals in (50), we can rewrite the system of Equation (50) as

n N*41 1
(007 = h(ok, 90 02N T B+ T @0 ) [ 40 -

:f(ﬁk), k=1,...,N—1;

) o nN,_1) | Nt
a(8k) vk — h(Be, B, 16)2N3 (1 gy T ]ZO "yih(0k, 01, 11) f€1 = = (52)

= f(), k—N1 +2,...,N%

#(20)70 (20,0 70) (2N? + NZ%%)

1 53
+ E h(Uk/vl/'Yl ]@1 = )z—f(ﬁo); &%)
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(vaNl (o, 1) (2N NNy

+ Z "h(ﬁNlrﬁl)féz(T)( It = f(on,);
1=0 -1

T*UNI)

54

In2(1-)Ny—3
(0N +1) TNy 41 — h(vN]+1/UN1+lr'YN1+1)(2N2 + Nz%)

N*
+ Z)ZO (0N +1,01,71) f 00 oy = f(ON 1)
= 1

T UN1+1)2

(55)

a(On++1) YN +1 — B(ON+ 11, 0N 11, TN+ 11) (N3 + Nz%)
N 1 (56)
+120 "h(oN11,0,m) [ §(T) = = f(On-11)-
= S

(T—0N+11)?

Here Y/, Y.", ¥.""" indicate summations over | # k, | # Ny, | # Ny + 1, respectively.
The Frechet derivative on a vector (%o, &1, - - - ,&N++1) in the space Ry« is equal to

) o In(N;—1
(u(vkm — W (B, B W) 2N o
N
+ l):O h3(vkrvll7l)')/l f g,(T) k= 1,'”,N1 _1;
= 21

dt
(T—5,)2”
_ o 1
a () vk — 3 (0, T, Vk)ZNZ%W

i 1
+ X hé(ﬁk/51/'7l)7lf€l(7)( - o k=Ni+2,..,N%

1=0 %

“(UO)”YO_h (UO/UO/'YO)’Y (2N2+N2W)

+ Z h 3(B0, 31, 71) M1 f a(r

W
_ 1 (67)
a(on, )TNy — ha(Uleler’YNl)WNl(ZNZ NZW)
+ z " 4 (BN, 01, 71) ”nfé'z m'
) 1
a(ON,+1) TNy 41 — ha(vMﬂ,vN1+1,7N]+1)7N1+1(2N22 + NZW)
N1 f
+ Z "W (ONy 1, 01 1) Y1 ng(T)#TﬁJ)z;

) —h ) N2 4 N2 -3)

a(ON++1) YN +1 3(UN*+lrUN*+1r7N +1)7N*+1( y+ a2 )

+ Eo h3(ON++1, 01, “?z)%}l éz(T)(T_Z-,dNﬁ
Here Y/, Y." ¥."" indicate summations over | # k, [ # Ny, [ # Nj + 1, respectively.
The notation h'3(t, T,u) = W is used here.
Let the Equation (49) has the unique solution x* (¢) inside the ball B(x*, §). We shall assume that the
Frechet derivative (57) in the ball Ry« 1 (x*,§) satisfies the conditions of Theorem 5. Thus, according to
statements of the Theorem 5, the solution of the system of differential equations

i _ N4l
W= ()~ T )N (e - ke

—f(),1 = 0,1,---,N*+1,

(58)

converges to the solution of the Equation (49).
Thus, we have proven the following statement.
Theorem 7. Let the following conditions hold:

(1) Equation (49) has a unique solution x*(t) inside some ball B(x*,8),x* € W*(x* : x},x3; M, ¢);
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(2)  The Frechet derivative (57) in the ball Ry+.1(x*, 8) satisfies the conditions of Theorem 5.

Then the system of Equations (51)—(56) has a unique solution inside the ball B(x*,8), and the solution of
Equation (58) converges to this solution.

The effectiveness of the presented algorithms is illustrated by solving two hypersingular integral
equations modeling aerodynamics problems.

Example 1. Let us illustrate the effectiveness of continuous method by solving the following linear
hypersingular equation

[1 %d”[ = f(’)/lr Y2, t)r (59)

where f(7y1,72,t) is the given right-hand side of the equation:

frurst) = m—m+ (@ —a)i— (a1 +nt)
—(a2+72t) 5 + 11 In |t | + 12 In | 1.

The exact solution of the equation is x(t) = (x1(t), x2(t)); x;(t) = a; + v;t,i = 1,2.

To solve the Equation (59) numerically we use the continuous method for solving operator
equations and arrive to the following evolution equation

dag(o) NS 1 1
o~ o NG

)*f(’h,’)/z;ﬁk),k =0,1,..., N+ 1.

Nodes vy, 0, k =0,1,...,N* + 1, have been entered above.
In Figure 1 we show the trajectories of the exact solution of the Equation (59); its approximate
solution, received with continuous method; and values of error.

2_.........|.........|.........|........._

L = = Exact solution .

- e N=20 ",,oé_

r A N=30 g A" N

L * N=10 A4 ]

C o & ]

L ' Xn 4
15F 58" ]
-k . ]
el - . b
= L . 4
U ‘g.“' ]
C X 2 ]

C W08 ]

- A“ -
et ]
A% 4
0,5’?........I.........I.........I.........
-1 -0,5 0 0,5 1

t

Figure 1. Numerical solutions for the linear hypersingular equation with a discontinuous right-hand
side example.

Hereay =1,ap, =15, =0.5,7, = 0.3.
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Example 2. Let us illustrate the effectiveness of the continuous method for the solutions of nonlinear
hypersingular equations

x2(t
/—11 r(t))ZdT = f(r,72,t) ©0)

where f(y1, 72, t) is the given right-hand side of the equation:

2
fonmit) = 2d+2mm+0it+3 +Cnm +20i) ||
—(@+ 2t + PR) g + 13 — 20072 — 13t — 2 — (a3 + 20yt
+132) 1 + (20272 + 2931 In | 1.

The exact solution of the equation is x(t) = (xq(¢), x2(t)); x;(t) = a; + y;t,i = 1,2.

It easy to see that, if x(t) is a solution of the Equation (60), then functions —x(t), [x(¢)| and —|x(t)
are solutions of this equation too.

To solve the Equation (60) numerically we use the continuous method and receive the following
evolution equation

dag(o)  NE' 5 1 1 )
do - [g{:} Nal(g)(2k+2l—l _2k+21+1)_f(rylr’)/2!vl)r

k=01,... N*+1

At first, we take a;(0) = 0.0 as an initial condition in order to demonstrate applicability of our
method in cases of the Newton-Kantorovich method, the minimal residual method and other numerical
methods; using in their construction the derivative of nonlinear operator is not applicable. Indeed, in
this case the Frechet derivative (57) is not only degenerate—and, therefore, not invertable—but is an
identical zero.

In Figure2we puta; =1,ap = 14,91 = 05,72 = —04.

BN B e e e e B L s e
1,5 -
[ s ]
5 - - -
[ = = Exact solution -t ]
L ® N=30 . ‘. .
N . . .
R ) M 4
L ... T 4

[} -
L . ... -
1+ . ®q. —
L » .. -
= L o, X J —
= B L .... i
B .’0 LN o
B P oL T
B o - R
- o . T
B o ,° -
B o .° i
0,5_— ° .* ]
L .“‘ 4
L .0 4
L‘ -
Y -
-0,5 0 0,5 1

t

Figure 2. Numerical solution for the nonlinear hypersingular equation with a discontinuous right-hand
side example.

In Figure 2 we show the trajectories of the exact solution of the Equation (60), its approximate
solution, received with continuous method and values of error.
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The exact solution at ¢ = 0 has a jump discontinuity of & = 0.4. The slopes of the exact solution
also change at t = 0. In Figure 2 we demonstrate that the numerical solution approximates the exact
one at [—1,0) well. At t = 0 the approximate solution has a jump /1 = 0.15.

4. Summary and Discussion

An iterative projection method for solving linear and nonlinear hypersingular integral equations
has been proposed. The method is based on the use of sufficient conditions for asymptotic stability of
ODE systems. Stability conditions are expressed in terms of the logarithmic norms of the corresponding
matrices. In a number of spaces often used in computational mathematics, the calculation of logarithmic
norms does not cause difficulties, even for large-dimensional matrices.

What are the advantages of the presented method?

(1) The method is applicable for solving linear and nonlinear hypersingular integral equations,
whose right-hand sides contain non-Riemann integrable functions.

(2) InSection 3.1 the continuous method is applied to linear hypersingular integral equations with
the singularities of the second order. The conditions for the unique solvability of the constructed
computing scheme are obtained and the convergence of the sequence of approximate solutions to
the exact one is proven. It is shown that for linear hypersingular integral equations, the method
converges for sufficiently large N and for b(t) # 0,t € [—1,1].

(3) InSection 3.2 the continuous method is applied to nonlinear hypersingular integral equations
with the singularities of the second order. Conditions are given for the convergence of the
constructed iterative spline-collocation method to the solution of a nonlinear hypersingular
integral equation. It should be noted that the method is applicable to hypersingular integral
equations of the first and second kinds.

The detailed bibliography of approximation methods of hypersingular integral equations of
the first and the second kinds is given in [32]. The bibliography on solving hypersingular integral
equations of the first kind is presented in [45].

Mostly, papers devoted to hypersingular integral equations of the first kind focused to seek
solutions in the class of functions v'1 — £2¢(t), where ¢(#) is a smooth function. The presented method
provides solutions in a general form.

The theoretical justification of the method is based on Lyapunov stability theory. It connects
convergence of the method to the sign of the approximate system matrix logarithmic norm.

Said justification has advantages that allow us

—_

To obtain a set of convergence conditions owing to logarithmic norm values in various spaces;
To determine the norm of the inverse matrix of an approximate system;

3. To determine stability boundaries for solutions with respect to variations of kernels and
right-hand sides of the equations.

N

The major advantage of the method for nonlinear equations is as follows.

The Newton-Kantorovich method requires the Frechet derivative reversibility at each iteration
step. Similar conditions are required when using other iteration methods. Our method lacks such a
deficiency. It does not put any restrictions on the Frechet derivative of the nonlinear operator.
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1. Introduction

Difference equations are recognized as descriptions of the observed evolution of a phenomenon,
where the majority of measurements of a time-evolving variable are discrete. Many mathematicians
are interested of studying the qualitative behavior of difference equations motivating and fruitful as
it underpins the analysis and modeling of different daily life phenomena, for example in economics,
queuing theory, statistical problems, stochastic time series, probability theory, psychology, quanta in
radiation, combinatorial analysis, genetics in biology, economics, electrical network, etc. Examples of
difference equations that have gotten the attention of researchers see [1-40].

Grove and Ladas [9] studied the periodic character of solutions of many difference equations of
higher order. Their book presented their findings along with some thought-provoking questions and
many open problems and conjectures worthy of investigation. Agarwal and Elsayed [3] studied the
periodicity and stability of solutions of higher order rational equation

dwn—lwn—k

w =a+
n+1 b— CWy—_s

where a, b, ¢ and d are positive real numbers. Taskara et al. [38] presented a solution and periodicity

of the equation
PnWn—k + Wy (k+1)
Wy = ————————,
Gn + Wy (k41)
where p;, and g, are periodic sequences with (k + 1) —period and p, is not equal to g,. Stevic [29]
studied the periodic character of equation

Wy—(25-1)
Wp1 =p+ ———,
Wy —(2141)s+1
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where p > 11is a real number. By a new method, Elsayed [12] and Moaaz [24] studied the existence of
the solution of prime period two of equation

Wy, Wy_1
+r—

Wyt 1 :a+ﬁw ; -
n— n

where «, B and v are real numbers. Recently, Abdelrahman et al. [1] and Moaaz [25] studied the
asymptotic behavior of the solutions of general equation

Wy 1 = AWy, + bw, g+ f (W, W, 1),

where a and b are nonnegative real number.

This paper aims to shed light on the study of the existence or nonexistence of periodic solutions
for difference equations. We describe and modify the new method in Elsayed [12]. Moreover, we use
this new method to study the existence of periodic solutions of the general class of difference equation.
Furthermore, we discuss some of the nonexistence cases of periodic solutions. Finally, through
examples, we compare the results of this method with the usual method.

2. Existence and Nonexistence of a Periodic Solutions

2.1. Existence of Periodic Solutions of Period Two

Elsayed in [12] and Moaaz in [24] are established a new technique to study the existence of
periodic solutions of some rational difference equation. In the following, we describe and modify
this method:

Consider the difference equation

Wpt1 = F (w”l Wy —17 s wﬂfk)/ (1)
where k is positive integer. Now, we assume that Equation (1) has periodic solutions of period two
s 0,0,0,0,...,

with w,,_(511) = p and wy,_»; = 0. Hence, we get that

@

{ p=F(o,p,..);
c=F(p,0,..).

Next, we let T = p/0, and substitute into (2). Then, we get that

{p—am;
c=F(T1).

By using the fact p — 7o = 0, we obtain
Fi (1) —tF (1) =0. (3)

Finally, by using the relation (3), we can obtain—in most cases—the necessary and sufficient
conditions that Equation (1) has periodic solutions of the prime period two.

The effectiveness of this method appears in a study the existence of periodic solutions of some
difference equations with real coefficients and initial conditions (not positive only). Besides, we can
study the existence of periodic solutions of some difference equations, which have never been done
before due to failure while applying the usual method.
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Next, we apply the new method to study the existence of periodic solutions of general equations
Wp4+1 = awnfl(b (wn/ wn—]) ’ (4)

where a is positive real number, w_1, wy are positive real numbers and ® (u, v) is a homothetic function,
that is there exist a strictly increasing function G : R — R and a homogenous function H : R? — R

with degree B, such that ® = G (H).

Remark 1. In the following proofs, we use induction to prove the relationships. We'll only take care of the basic
step of induction and the rest of the steps directly, so it was ignored.

Theorem 1. Assume that f is a ratios of odd positive integers and G=' (1/a) exists. Equation (4) has a prime
period two solution ...,p,0,p,0, ... if and only if

A
H (Trl) =H (1/ T) = ﬁr (5)
where T = p/oand A = G~ (1/a).
Proof. We suppose that Equation (4) has a prime period two solution

s 0,0,0,0, ...

It follows from (4) that

p = ap®(o,p);

= ar®(p,0).
Hence, 1
®(0,0) =G (oPH(L,T)) = - ©
and so,
N
T HO %
B _ AP
T HEa) ®)

By dividing (8) by (7), we have that (5) holds.
On the other hand, let (5) holds. If we choose

Al//ST Al/,B
and wy

1T B (1,1) T HUB(1,0)

for T € RT, then we get

aw_1P (wo, w_1)

- Al/ﬂr AV/P AVPr
= "HUB (1) HYE (1,7)" HYF (1,1)

w1

Al/ﬁr

(e <H<1,T>H“ 9)
APt

HB(r,1) "
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Similarly, we have that w, = wy. Hence, it is followed by the induction that

1/p 1/p
Woy_1 = L and wy, = Ai foralln > 0.
HYF (1,1) HYE(1,7)

Therefore, Equation (4) has a prime period two solution, and the proof is complete. [J
Consider the recursive sequence
Wyy1 = f (Wy—1, Wy k), )

where the function f (1,0) : (0,00)> — (0,c0) is continuous real function and homogenous with
degree zero.

Theorem 2. Assume that | odd, k even. Equation (9) has a prime period two solution ...,p,0,p,0, ... if and
only if
fle)=1f(L7), (10)

where T = p/0.

Proof. Assume that! > k. Since [ odd and k even, we have w,,_; = p and w,,_y = o. From Equation (9),
we get

Since T = p/0, we obtain
O=p—t0=f(r,1)—1f(1,71).
On the other hand, let (10) holds. Now, we choose
Wy = f (T, 1) andw_poy41 = f(L7), p=0,1,..,(1-1) /2

where T € RT. Hence, we see that

Similarly, we can proof that w, = f (1, 7). Hence, it is followed by the induction that
wyy—1 = f(7,1) and wy, = f(1,7) foralln > 0.
Therefore, Equation (9) has a prime period two solution, and the proof is complete. [J

Theorem 3. Assume that | even, k odd. Equation (9) has a prime period two solution ...,p,0,p,0, ... if and
only if
fLo)=1f(v1), 1)

where T = p/ 0.
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Proof. The proof is similar to that of proof of Theorem 2 and hence is omitted. [
Consider the difference equation
wﬁ—l
R e (12)

g (wn, wy_1)’

where $ is a positive real number, 7, J, w_1 and wy are arbitrary real numbers and the function g (u,v)
is continuous real function and homogenous with degree

Theorem 4. Equation (12) has a prime period two solution ...,p,0,p,0, ... if and only if

_ ;. Pe(nl) —1g(1,7)

T g () 8 (n, 1) a3

where T = p/0.

Proof. Assume that there exists a prime period two solution of Equation (12) ...,,p,c,p, 0, ... Thus,
from (12), we find Wy (2r41) = P and w,,_,, = o forr=0,1,2,...,and so

p= 7+5i
g(o,p)

and o8
o= 7+57g(p,(7)'

Since g (1, v) be homogenous of degree B, we get g (1,v) = vPg (£,1) = uPg (1,2) and hence,

pﬁ
ofg (L 5)

B

(o4
——.
T oBg (B1)

0o = Y+

Now, let p = t0. Then, we get

B

g(LT)
1

g(t,1)’

p = r+o (14)

Y+o (15)

By using the fact p — 7o = 0, we obtain

eg 1
poTr = ””g(lm)”(””g(r,l))
g (r,1) 18 (L,7)
=D e g ()

o
I

and so

 Pg(n1) —tg(1,7)
T g (e g (L)
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Next, from (14) and (15), we see that

T T,

(1) —g(L1)
= 16
S G VR R FTOE) 1o
1 tfg(r,1)-g(L7)
. 17)
(=1 g(r1g(L1)

On the other hand, suppose that (13) holds. Let w_; = p and wy = ¢ where p, o defined as (11)

and (17), respectively. Then, from (12) and (13), we find

T,

T,

+4 ot
w =
T T s wowy)
p
P
= 946
T w0
g (t,1) —1g(1,7) T
= +6 =p.
t-Dg@hgn ‘g °

Similarly, we can proof that w, = ¢. Hence, it is followed by the induction that
wWyy41 = p and wy, =0 foralln > —1.
Therefore, Equation (12) has a prime period two, and the proof is complete. [

2.2. Nonexistence of Periodic Solutions of Period Two

In the following theorems, we study some general cases which there are no periodic solutions
with period two of the equations

Wpt1 = f(wnr wn—l) (18)

and
Wpi1 = f(wn/ wn72)/ (19)

where f € C <(O, ®)?, (0, oo)> and w_1, wy are positive real numbers.
Theorem 5. Assume that f,, > 0 and f, < 0. Then Equation (18) does not have positive period two solutions.
Proof. On the contrary, we assume that Equation (18) has a period two distinct solution
s 1,8,1,5, ...,
where r # s. It follows from (18) that

r=f(sr);
s=fns). @0

Thus, we get
rf(r,s) —sf(s,r) =0.
Now, we define the function
Gy (1) = uf (u,v9) —vof (vo,u), u>0,
for vy € (0,00). Since f >0, f, > 0and f, < 0, we obtain

d

ano (u) = f (u,v0) + ufu (u,v0) — vofo (vo,u) > 0.
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Thus, Gy, is an increasing and hence G has at most one root for u € (0,00). But, G (v9) = 0,
then he only root of Gy, (w) is u = vp. Thus, only solution of (20) is s = r, which is a contradiction.
This completes the proof. [

Theorem 6. Assume that f, > 0and f, > 0. Then Equation (19) does not have positive period two solutions.

Proof. The proof is similar to the proof of Theorem 5 and hence is omitted. [J

Now, assume that f, < 0 and f, > 0. In view of [21] (Theorem 1.4.6), if Equation (18) has
no solutions of prime period two, then every solution of Equation (18) converges to w*. Therefore,
we conclude the following:

Corollary 1. Assume that f, < 0and f, > 0. Then Equation (18) either every its solutions converges to w*
or has a prime period two solution.

Corollary 2. Assume that | and k are nonnegative integers and w_ a1k}, W— max{1,k} 1/ -~ Wo are positive
real numbers. The difference equation

Wp+1 = f(wnfl/wn—k) (21)

does not have positive period two solutions, in the following cases:

(a) liseven, kisodd, f, > 0and f, <0;
(b) land k are even, f,, > 0and f, > 0.

3. Application and Discussion

Next, we - by using Theorem 1—study the periodic character of the positive solutions of equation

— Wy W,
Wy = AW,_1exp (W) , (22)
n n—
where a,b, ¢ € (0,00). Let
—uv
H(u,0) = ——,
(,2) bu+ cv

G(y) = ¢ and ® (wy, wy—1) = G(H (1,v)). From (5), if b = ¢, then (22) has a prime period
two solution.
Moreover, by using Theorem 1, the discrete model with two age classes

Wyi1 = Wy—1exp (r — Awy —wy_1), (23)

has a prime period two solution if A = 1.
In [10], El-Dessoky studied the periodic character of the positive solutions of equation

CWn—s

Wyy1 = AWy, + bwn_k + m,
n—s

24

where a,b,¢,d,6, w_;, W_r11,...,wp are positive real numbers, r = max {k,,s}, I,k odd and s even.
He is proved that the Equation (24) has no prime period two solutionif c + ¢ (a + b — 1) # 0. In the
following, by the present method, we will find the necessary and sufficient conditions that this equation
has periodic solutions of prime period two.

Corollary 3. Equation (24) has prime period two solution if and only ifc+ 6 (a +b —1) = 0.
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Proof. Assume that there exists a prime period two solution of Equation (24) ...,,p,0,p,0,... Thus,
from (24), we find

co
(1—a=b)p= do—¢
and ¢
(1-a—-b)oc= dp—3
Now, let p = 70 where T ¢ {0,1}. Then, we get
c
do = 7(17’17}])1}“5
and o
p=Fq—a—p "%

Then, we have

d(p—TU)z(T—l)(ﬁ—&).

Since T # 1, we have
c

(1—a—b) =0

and hence ¢ +J (a4 b — 1) = 0. On the other hand, in view of [10] (Theorem 5),if c 4+ (a +b—1) # 0,
then (24) has no solutions of prime period two. This completes the proof. [

Example 1. By Theorem 2, the difference equation

AWnWy—1

Wpp1 = o (25)
bw? + cw?_,
has periodic solutions of prime period two if and only if
ar ot
b+ct2  br24c
and so,
(t—1) (c+cr+crz—br) =0
Since p # q, we have T # 1, and hence
2
b _ltT+4T 26)
c T

Now, we have T > 0, then the function y (t) = (1 + 7+ 1'2) /T attends its minimum value on Rt at
T = land min g+ y =y (19) = 3, and so

141412
———— >miny=3 for t>0,1T#1
pe min y f #

which with (26) gives b > 3c. For example,a = 3,b = 4,c =1, w_q = 0.2764 and wy = 0.7236.
Example 2. Consider the difference equation

2
bw;,_4

Wyl =a+ (27)

aw? + fwpw,_1 + w2,
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where «, B and -y are real numbers. We note that B = 2 and f (u,v) = au® + Buv + yv? homogenous of
degree 2. Then, Equation (27) has a prime period two solution if
a+Ta+Th—TY+ T

a=br (at? + BT+ 7) (0 + pT 4+ y72) (28)

Exampleb =2, 0 =05, =15, =0.5.
Note that, (28) implies that

a(a72+[37+'y) (a—i—/%r—i—*yrz) —br(:x-l—nx—i-rﬁ—r'y—f—rztx) =0

and so,

_ ba —aap —apy

™+1 +zwcz—boz—i-aﬁz—bﬁ—i—a'yz—l-by T
B any

orT any 241

P T+1
By using the facts = > 1and

o < 3 forT € R\ {1}, the condition (28) implies that

_T
241

2 (ba — aap — aPy) — (aa® 4 2aay — ba + ap? — bp + ay® + by) > 0
and  bB+ba —aa® —ap? —ay® — by > 0.

Example 3. Consider the difference equation

«
—_ Wn
Wy =a+ (wn71> ’ (29)

where a, € (0,00). Now, if we define the function f : (0,00)* — (0,00) and

f(uv)=a+ (E)a,

v
then
] utt
gf(u,v) = an—g >0;
] u®
%f (u,0) = -y < 0.

Thus, from Theorem 5, Equation (29) does not have positive period two solutions (Theorem 4.1 in [36]).

Example 4. Consider the May’s Host Parasitoid Model
2

cw:
Wpt1 = ( S

_ 30
14+ wy) wy—1 (30)

where ¢ € (0,00). Now, if we define the function f : (0,00)* = (0,0) and

2

cu
S0 = e
then
d u c
—f(u,v) = ——((u+2)>0;
i 00 = Lot
] u? ¢
af(u,v) T Ru+1 <0
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Thus, from Theorem 5, Equation (30) does not have positive period two solutions.
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Abstract: A family of Schwartz functions W(t) are interpreted as eigensolutions of MADEs in
the sense that W) (t) = EW(q7t) where the eigenvalue E € R is independent of the advancing
parameter g > 1. The parameters J, v € N are characteristics of the MADE. Some issues, which are
related to corresponding g-advanced PDEs, are also explored. In the limit that ¢ — 1" we show
convergence of MADE eigenfunctions to solutions of ODEs, which involve only simple exponentials
and trigonometric functions. The limit eigenfunctions (g = 11) are not Schwartz, thus convergence
is only uniform in t € R on compact sets. An asymptotic analysis is provided for MADEs which
indicates how to extend solutions in a neighborhood of the origin t = 0. Finally, an expanded table of
Fourier transforms is provided that includes Schwartz solutions to MADEs.

Keywords: MADE; eigenfunction; convergence; Fourier transform

PACS: 34K06; 34A12; 42C40; 42A38; 33E99

1. Introduction

The introduction of a relaxing parameter g > 1 in differential equations was found to provide
stability properties for their corresponding solutions. This is a phenomenon well-known in numerical
analysis where if the Ordinary Differential Equation (ODE)

y'(t) = f(ty®) ., ylto) =vo

is stiff then one can try to use the backward Euler method to obtain the sequence {(t, yu)} 5, by first
considering the algebraic equations

tir =t + D, Y1 = Yn + f(tur1, Ynra) - OF,

for small time-steps At > 0. If one can obtain v, explicitly in terms of y,, then the iteration scheme
often converges much faster, and for longer time intervals, than that provided by the forward Euler
method [1], p. 349. That such a principle holds for ODEs as At — 0T was established through the
study of Multiplicatively Advanced Differential Equations (MADESs) as g — 17, and will be discussed
further in this article. Part of our analysis of stability will require obtaining uniform apriori bounds.
This will be achieved in a somewhat general setting, and the consequences will be presented in the
form of examples of advanced differential equations.

Axioms 2020, 9, 83; d0i:10.3390/axioms9030083 281 www.mdpi.com/journal /axioms
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1.1. Solutions of MADEs as Eigenfunctions

In [2] solutions to equations of the form

y'(t) = ay(qt) + by(t), y(0) = Lor 0 (wlog), 1)

were studied forg > 1,a € C,b € Rand t > 0. In the case that b = 0, with y(0) = 0, solutions
y(t) are referred to as eigenfunctions since y(t) — 0 as t — oo. Specific asymptotic properties of
solutions were obtained in Theorem 10 of [3]. Here we only consider the case thatb = 0and a € R,
however the derivatives may be of higher (integer) order than in Equation (1). In addition, we extend
solutions of these equations to all t € R so that the eigen equation, referred to as an eigen-MADE, has
a solution y(t) € S(R) the Schwartz space of infinitely differentiable functions, with derivatives that
decay faster than reciprocal polynomials (as defined in [4] section V.3). An asymptotic theory near
t = 0 can be developed indicating that an extension to t < 0 is quite natural. In this way the special
functions that we study are eigenfunctions in £2(R), although not in the traditional, local (g = 1) sense.
The significance of these functions will be demonstrated by examples, and convergence to familiar
functions is obtained on compact subsets of R, as g — 1%.

1.2. Brief Overview

The study of multiply advanced differential equations falls within the area of functional
differential equations, as is studied for instance in Fox, et al. [2], Kato, et al. [3] and Dung [5]. There is
also significant overlap with the area of g-difference differential equations, where the multiplicative
advancement y(t) — y(qt) is referred to as a dilation and is denoted oy (y(t)) = y(qt). There is a
rich and active study within the area of g-difference differential equations with dilations involving
q > 1. These are highlighted by works of: L. Di Vizio [6-8]; C. Hardouin [7]; T. Dreyfus [9,10];
A. Lastra [10-19]; S. Malek [10-22]; J. Sanz [17-19]; H. Tahara [23]; and C. Zhang [8,24]; along with
further references by these researchers and others. Often these studies in g-difference differential
equations overlap with the area of Gevrey asymptotics.

In the current work we continue by focusing on global solutions of a MADE on R. In particular,
we discuss several techniques for starting with a given global solution to an original MADE and then
generating solutions of new related MADEs. This theme will be developed as follows: In Section 2,
a known MADE solution first introduced in [25], namely ;Cos(t), is used to produce a simple related
solution Cy(t) = 4Cos(t/ /) which is an eigensolution of a MADE in the sense of the Abstract. In turn,
C, () is then used to obtain a new g-advanced Airy function Aig(t) satisfying a MADE analogue of
the Airy differential equation. Then Aiq(t) itself is used along with convolution to generate families of
functions ¢;(x, t) solving a g-advanced PDE.

In Section 3, a family of MADE solutions, under convolution and auto-correlation, are seen
to produce related solutions of new MADEs. Furthermore, the least-element method in Poincare
asymptotics is deployed to find natural extensions to related MADE solutions on the negative real
line. A theory of asymptotic extensions to t < 0 is developed to clarify the notion that solutions
to MADESs behave smoothly in a neigborhood of the origin. We also give conditions that ensures a
natural extension to all of IR, as is needed to even consider a Fourier transform. An investigation of the
inhomogeneous MADE:s that these solve is begun.

In Section 4 we focus on considering solutions of MADEs as perturbations of classical solutions,
and, mirroring a more direct convergence proof in Section 2, we exhibit MADE solutions which
converge to a classical solution of a damped-oscillation equation—the convergence being uniform on
compact subsets of [0, o).

In Section 5, we return to the topics of convolution and auto-correlation to observe their impact
when applied to MADE solutions. In this paper, we will discuss convolutions, correlations, and Fourier
transforms for MADEs.
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A table of Fourier transforms of global MADE solutions under study here is provided in Section 6.
These will be solutions of new MADESs, for which we obtain new elements in a table of Fourier
transforms. This new table mimics what is often done for Laplace transforms, in the study of linear
constant coefficient ODEs.

In various theories of differential equations, convolutions provide a useful tool since general
solutions can be determined from fundamental solutions, as demonstrated here in Equation (33).
This is one motivation for obtaining solutions to homogenous equations, as appears in Proposition 2.

2. A Normalized Cosine Example and Extensions

From [25], consider the following Schwartz functions, for g > 1and all t € R,

00 1)k
iCost) = Ny T 5 () ®
k=—c0
‘ . = (—1)k
Sin(t) = sign(t)Ny Z ;(T)Uexp(qu\t|) , 3)
k=—o0
where ( )k
1 > (=1
ﬁq - k:z—oo qkz (4)
Next define
~ t ® (1) —qg"|t
Cy(t) = 4Cos <%> = quzz_:m (qkz) ~exp< \q/ﬁ| > . 5)

There are several properties that we note. In particular, the function Cy(t) is normalized, in that
the uniform bound [|Cy||e = 1 holds, after some delicate work performed in [25], for each g > 1. It also
solves the following eigen-MADE for all t € R and each g > 1,

d>Cy(t)
dr

= —Cylqt), Gy(0) =1, C/(0)=0. 6)

From (6) we see that Cq(t) satisfies an eigen-MADE in the sense of the Abstract, with E = —1
independently of the advancing parameter g > 1. Note that ;Cos” (t) = —q 4Cos(gt) (as recorded
in (10) below) does not have an eigenvalue (—4) independent of g, thus we rely on C4(t) as the
appropriate eigen-MADE solution.

Since Cq(t) is not only C* and bounded, but in fact Schwartz, we can obtain its Fourier transform,
an operation defined for any f € £L!(R), as

flw) = FEOIw) = —— [ et fo) .

2l
B

In [25] it was found that

~ 2(p Z)SNq 1
FIG(H))(w) = —1 : , 7
&) = = =" G e @
where N; was defined in Equation (4) above, and the other normalizing constant is

Hq = ﬁ<1*l> :

n
n=1 q
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To express the Fourier transform of linear, homogeneous MADEs, we found multiple uses of the
Jacobi theta function

) n o 1
0(gu) = Y. ﬁzﬂq'(l+“)'n(l+lﬂ)<l+fqn>’ ®

n=—oo q n=1 q

which allows the association that N; = 6(q%; —1/q), and which ensures that N; # 0 forall g > 1,
due to the product formula. It will be of significance to note that the reciprocal 1/6(g;u), for u > 0,
is Schwartz when extended to be identically 0 for # < 0. Critical algebraic properties that we use are

0(q;qPu) = qPWH2uP . 0(q;u), VpeZ, ueC*, and v-0(q1/0) = 6(g;0), YoeC*. (9)
A consequence is that the only zeros of 8(g; u) are for u = —gP for all p € Z. This is obvious from
the product definition of 8(g; u) in Equation (8).

2.1. Uniform Convergence

Using Taylor series methods as an approach paralleling that in [25] we show:
Proposition 1. On any compact subset of R, Cy(t) approaches cos(t) uniformly as g — 1+.

Proof. A given compact set is contained in an interval [—p, p] for p sufficiently large, so it suffices to
prove the theorem on [—p, p].
First, recall the following results shown in [25]

7Cos(0) =1 4Sin(0) =0
gCos'(t) = —4Sin(t)  4Sin’(t) = q 4Cos(qt)
4Cos" (t) = —q 4Cos(qt) Sin" (t) = —? 7Sin(qt) . (10)
From these, by induction on the even order derivatives of ;Cos(t), we obtain the higher

order derivatives
2
4CosPH (1) = (=1)'q" ;Cos(q"t), (11)

and
4CosPH (1) = [(=1)1q" (Cos(q"t)])' = (~1)1+1gH L Sin(gt) . (12)

We infer all derivatives of C,(t) via

COM() = [4Cos(t/ D)@Y = (=1)1q"" ,Cos(q"t/\/7)(1/ /7)) 13)
= (~1)4F Tt Cos(ght/ a) = (~1)HgPLC, (g ) (14)

and
CPHI(1) = (1)t yCos(ght/ )] = (~1)1+1F 712 (Sin(ght/ 7) - (15)

Evaluating the derivatives of C;(t) at t = 0 yields
¢P(0) = (14"t and PV (0) =0 (16)

forall L > 0.
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Next computing Pon1[C](t), the 2N + 1 degree Taylor polynomial for C,(t) expanded about
t =0, gives

2aN11 ¢ () N (_1)Lgl?-L
P Gl = q L = (17)
walGall) = 3 = L ooy
with remainder term
~(2N+2) (2 2N 42 1 \NH15(N+1)2=(N+1) & (,N+17) 2N+2
3 ¢ o)t 1 ¢ t
Ron 1[Gyl () = = ) | ol070) , (18)

(2N +2)! (2N +2)!

for appropriate ¢ between 0 and t. Using the sup norm ||Cy[|co = || 4C05]|ec = 4Cos(0) = 1, along with
the fact that || < p, to bound from above, we obtain
N24+N ,2N+2
<1 [
(2N +2)! = (2N +2)!

qz\12+N‘a7 (qN+1§) | ‘t|2N+2

[Ran1[Cql(1)| =

Let Pyn1[cos](t) and Rpn41[cos](t) denote the 2N + 1 degree Taylor polynomial and remainder
terms for cos(t) respectively. Then, for each N > 1 and each t with |t| < p, one has

|Cq(t) — cos(t)] (19)
< |Cy(1) = Pana[Col ()] + [ Pan1[Cq) (#) — Panvya[cos] ()| + |Pan 11 [cos] () — cos ()]
< |Rana[Gol(0)] + % (’1)L‘7L27Lt2t % (1" o1 + |Ron41[cos] (1)
B [ S ] £ L) S
qN2+Np2N+2 NN N sz p2N+2
< Tawegr * 1) L Gt ave
qN2+Np2N+2 NN p2N+2
< Tawrar ) oy @

Now, given any € > 0 choose Ny > 1 such that p?M0+2/(2Ny +2)! < €/3. Then one has
2
1 < €(2Ny +2)!/[30*M+2]. Next choose g9 > 1 with 1 < qé\]" o o €(2Np + 2)!/[3p?No*2]. Then for

all1 < g < go one has

2
N2+Nj p2No+2 Ng+No 2Ny+2 2Np+2

9o P

- p
(2No +2)! (2No +2)!

q
0< 2Np +2)!

€ €
< 3 and 0< < 3 (21)

2_
Next choose g1 > 1 such that qi\lo Mg« €/[3ef]. Then forall 1 < g < g7 one has
2_
0 < (qNg’NO - l) ef < (qi\]‘) No_ 1> ef < g . (22)

For the given €, set N = Ny in (19) and (20). Then for |t| < pand all 1 < g < min{qo,q1},
applying the bounds (21) and (22) to (20) gives

Cat) —cos(t)| < s+5+5=¢ (23)

verifying uniform convergence of C,(t) to cos(t) on [—p,p] asg — 1. O
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Remark 1. Note that, alternatively, one can express Proposition 1 as

(VZ cC R compact ) = linln+ sup{|Cy(t) —cos(t)| : t€I} =0 (24)
q—

A similar convergence proof is given in Section 4, with details related to the novelty of the result.

2.2. Application to PDE Example

We are now in a position to obtain g-versions of various equations using C,(t) as a building block
for relaxing equations. For example, define the Airy function (see page 570 in [26])

. 1 [ u?
Az(t)E;/ cos<?+u~t) du, teR.
0

Some properties of this C*°(R) function are that Ai(t) — 0 as |t| — oo, and Ai(0) > 0.
We now show:

Proposition 2. The q-advanced Airy function is defined here to be

. R R ATS
Azq(t):;/o Cq<§+u~t> du, teR, (25)
for q > 1. The functions Ai(t) and Aiq(t) satisfy the homogeneous ODE and MADE
Ai"(t) — t-Ai(t) = 0, Aig"(t) — 7Y% Aig (q2/3t> =0, (26)

respectively, for t > 0. Basic properties of Aiq(t) for q > 1, are that Aiq(t) is Schwartz with Aig(0) > 0.
Furthermore, for each T > 0, € > 0, and R > T sufficiently large, 3 q(e, T, R) > 1 so that

sup { |Ai(t) — Aig(t)] : [{{<T, 1<q<q(e, T,R)} < e. 27)
In other words, Aig(t) — Ai(t) uniformly for t in compact subsets of R, as ¢ — 1.

Remark 2. Verifying convergence in Equation (27) may seem rather straight forward, due to the uniform
convergence of Cy(t) to cos(t) on compact sets. However, we need to use a careful €/3 argument, as
demonstrated here.

Proof. That Aig(t) is Schwartz follows from the same for C;(t), whereas the property Aig(0) > 0
requires a manipulation of theta functions, and is shown in Appendix A. We start with the second
equation in (26) since the first equation is known to hold [26]. First define the function

ot
(1) = /0 C,(s)ds, sothat §,(0) =0, §y(<c0) =0.

Now compute, using v = q(u%/3 + ut), and w = q'/3u, for t > 0,

~00 3
Aig'(t) = %/0 —u? G, (q~ <%+u-t>> du (28)
I e ~ u? tore u’
= b q(u +t)-Cq<q-(?+u-t)> du+;'/0 Cq<q-(?+u-t)> du

- -1 [ dgq (U) t oo L 103 2/3 1/3
= h dv + E/o Cq<?+w~q t) (dw/q'"?)

= (=§4(e0) + 5(0)/(q7) + g7/t Aiq (%) .
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Next, to show convergence, consider any € > 0 and, without loss of generality, fix T > 1. Let t be
in the interval |f| < T. Then, for any R > T, using integration by parts and boundedness of the sine
function, we can write

) 1 (R 3 1/ 1 4 3
Az(t)fg/o cos<%+u-t> du = 7 ) T_H-Esin<%+u-t> du (29)

*Sll’l(%%*FRt) 1 o0 —2u u3
- . sin (L vuot)d
T(RZ+ 1) n/R W1 02 sm(s” ) .

Thus, for all |t| < T we can easily find R > T sufficiently large so that
1 (R 3
‘Ai(t) - /0 cos (% +u- t> du

The bound in Equation (30) also holds if Ai(t) is replaced with Aig(t) since |Cy(t)| < 1 and
|S4(t)| < 1forallg > 1. Now, fix R > 0 sufficiently large so that the bounds in (30), and also (30) with
cos replaced by Cy, are less than €/3. It is essential to note that this value of R is independent of g > 1.

Finally, for each f € R, define the function

2

SwmeT

(30)

Vi(u) LA that V; ([0, R]) [0, R%/3+ Ri] £20
u) = —+ut, sotha , =
! 3 ! [72\t|3/2/3,max{O,R3/3+Rt}] <0

The union of these V;([0, R]) over t € [0, R], is the interval I = [-2T%/2/3, R®/3 + R T]. From
the uniform convergence in Equation (24) we can choose q(¢, T, R) > 1 so that
e

cos (Vi (u)) — Cq(Vt(u))’ < 3R @1

for [t{f < T, |u] < R, and1 < q < g(e, T, R). This is now sufficient to verify the expression in
Equation (27). O

2.3. A g-Advanced PDE Example

The argument in the proof of Proposition 2 shows that knowledge of one MADE can help to
generate and study other MADEs. In fact, this extends to Partial Differential Equations (PDEs).
For example, consider the linear constant-coefficient Airy PDE [27]

dP(x,t) = adip(x,t), ¢p(x,0) = f(x), (32)

forx € R, t € Rf, and constant 2 > 0. To obtain an advanced-type equation, consider the kernel
function, defined for each t > 0,

1 . X
m Aig <%> , for x e R, (33)

for appropriate Ag(q) # 0, to be determined. For any integrable f(x) and any a # 0, define,

Agep(x) =

) = [AdCancf] (6) = [FrAaca] @) = [ f0)- Aqay(x—p)dy, 34
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(compare with Equation (2.2) of [27]). Recall that the functional operation of convolution for integrable
functions g, h € £(R) gives a new function g i € L1 (R) defined by

gehx) = [ o) hr—y)dy = VERF | Flg] Fhl| (), )

where the last equality in Equation (35) is the Convolution Theorem (see [28] Theorem IX.4). To discover
the PDE that ¢, solves, first compute the t-partial derivative of Equation (34), to obtain

o 1 ) (XY
at‘Pq(xlt) = 3t / f 2/3 Ao(q) 'Alq ((—ﬂt)1/3> dy (36)

Now, taking three derivatives of Equation (34) with respect to x, gives

9 e ~1/3 (4 _ (23 (x—
Repglxt) = Jwa/_ f(y)'W'AI'J(W) dy (37)

= . ) . xX—y
o %( ) ”f‘i/ 1y at/q )2/3 Ao(q) Al <(*at/q2)1/3> dy . (38)

By replacing t — g%t in Equation (38), one can verify that the g-advanced PDE, for g > 1 and
2
q->1,

3
duy(x,t) = T3, (xat) , (39)

holds. To obtain consistency with the initial data f(x), first define the constant, for g > 1,

Ao(q) = /joAiq(t)dt, (40)

which is finite since Aiq(t) is Schwartz (thus integrable) for g > 1. Then we require,
The g-Airy Hypothesis: Given g > 1, the expression in Equation (40) does not vanish, ie. Ag(q) # 0.
In Appendix B we show that the g-Airy Hypothesis holds for all § > 1. Then

f(x) is continuous, integrable, and bounded
and = (VxeR) (tlir(l)n+ Pg(x,t) = f(x) > , (41)
—
the g-Airy Hypothesis holds

where convergence in Equation (41) is pointwise, and is shown in Appendix C using a mollifier-type
argument. If, in addition, we have f € C!' N L! and f’ € L£*, then convergence in Equation (41)
becomes uniform.

3. Solutions of MADEs and Natural Extensions
Define the family of Dirichlet-type functions for t € R, and q > 1, as introduced in [29],
00 eiqmt
fur®) = Y, (=1)" P (42)

m=—0o0

For each 1 € Q and A € Q7 the corresponding function solves the eigen-MADE

3 fun(t) = (=)7L (g7t 43)
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Here A/2 = v/6 € Q" is in reduced form with v, § € N. The function f, 1 (t) has eigenvalue
E = (=1)7H g7(rt#)/A and can be normalized so that the function Sur(t) = fun (t/qV(”f‘H‘)/(‘”‘))
solves the g-advanced eigen equation

at{sgy//\(t) = (_1)W+5 Su) (q"t) . (44)

for t > 0. In this manner the g-dependence of the eigenvalue can be removed. Note that the sign of the
eigenvalue (—1)7%9 can dramatically affect the behavior of the solution.

3.1. Flat Solutions of MADEs

In [29] we found special conditions under which f,, 1 (¢) extends to all t € R, so that
fua(t) , £20
F, .\ (t) = , (45)
uA () { 0 <0

gives a Schwartz solution to an associated MADE to all f € R . The essential condition is that
f lin)\) (0%) = 0forall n € Ny, which is a property called flatness, at t = 0. It was shown in [29] that

fua(t) isflatatt =0 <= pisanodd integer and A is an even integer .
This condition for flatness can be expressed as
u=2M+1(odd), MeZ and A = 2N (even), Ne N. (46)
Then, for (y, A) as in Equation (46), F,, 1 (t) all solve first-order MADEs:
BN F]l,/\ (t) _ (71)N+1 q(N+2M+1)/2 F%/\ (th) ,

for t € Rand g > 1. See examples in Figure 1. Furthermore, the Fourier transform has a special form:

Flomal (@) = L Fa gnesn/ey
2M+1,2N] (W = :
7 \/E

~ X
1w
1 Nf 1
N = 0(g"/N, zj(w) /g MHD/N) |7

0
where for each j € {0,1,2,...,N — 1}, the points of valuation of the theta function require,

Zj((d) _ 7|OJ‘1/N . eSm’/(ZN) i ei[arg(w)]/l\] 'Pj ,

for p = ¢?™/N, and {z;} are the N distinct solutions of (—z]-)N =—iw.
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~0.5

Figure 1. Three Flat Functions: Normalized plots of first-order MADE solutions that are flatat t = 0,
(1) f1,2(t) (dashed red), (2) f1,4(t) (solid blue), (3) f1,6(t) (dotted black line) all for g = 1.3.

3.2. A Non-Trivial Extension of a MADE Solution

Now consider the situation where 31, € Ny where f;";) (0F) # 0. Then an extension of f}, ()
to the region t < 0 is not so clear. However, by truncating the series in Equation (42) an asymptotic
exponential-series is obtainable that provides, what appears to be, a smooth extension to the t < 0
region. However, extending in this manner does not lead to a homogeneous, eigen-MADE in the
region t < 0. This is demonstrated with a specific example.

We begin by recalling the Airy equation as given in Proposition 2

y'(t) — ty(t) = 0. (47)

However, taking the derivative of this equation gives a generalization

y'(t) —y(t) = ty'(t), (48)

where the right hand side is expected to be small for t ~ 0. Hence a solution to the constant
coefficient equation

y'(t) —yt) =0, (49)

see Section 4, may be considered to be an approximate solution to the Airy equation near the origin.
For example, the function

y(t) = (2/V3)e %sin(V3t/2), (50)
solves (49) with initial conditions
y(0) =0, ¥'(0) =1, y'(0) = -1. (51)

Now we consider a g-relaxed version of (50) in the form of a solution to the MADE

7"(t) — ¢n(gt) =0, (52)

with parameter g > 1. Note that (52) is a multiplicatively advanced relaxed version of the approximate
Airy ODE (49) for ¢ ~ 1. From Equations (42) and (43), a particular solution of Equation (52) is
17(t) = f1/3(t) for t > 0. To extend (t) to all of t € R in a C* fashion, we find that

fr2/3() , fort>0

(=D fi2/3 (Ezm/sf) + (=1 f12/3 <€4"i/3t> , fort <0 &%)

Wipys(t) = {
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is a Schwartz function, where f; 5 /3(z) is analytic for ®(z) > 0 and bounded for (z) = 0. Although
there is no unique solution to MADEs in general, the function W, 5,5(t) constructed in Equation (53)
will be called canonical, and it solves the MADE in Equation (52) for all t € R.

3.3. Asymptotic Analysis of an Extension
There is an alternate continuous way to extend 7(t) to the region t, < t < 0, for t, < 0 defined

below, in terms of g > 1. Define the constant C;’ so that

1 _ S (—1)kg* 3.

where the last equality follows from (8). Note that 6(4°; —¢) is non-zero for real g > 1 by (9), whence
C;r is well-defined and finite. For t > 0 the function #(t) is defined as

> (—1)ked't (t) fi2/3(t)
_ o (=D 7" _ _fes = Ju2slt) 55
7(0) T kD2 —0(g%—9)  fi,/3(0) 9

Now, for t > 0, 7(t) solves (52) with initial conditions

7(0) =0, 7'(0) =1, 4"(0) = —q. (56)

However, for each t < 0 the function #/(t) diverges, due to the rapid growth of et = eIt in
k, as compared to that of g3(k=1)/2 in the summands of (55), as k approaches infinity. Thus, for each
t < 0 the function #(t) is not defined.

To remedy this, while keeping the same summands as in (55), we truncate the upper limit of
summation in (55). Thus, for all t € R we define the asymptotic extension 7(t) of 1 (t) by

N(g;t) 1)kt
() = eqt) ), (qggw)(ﬁ/ (57)

where the integer upper limit of the sum, and the normalizing coefficient, are defined to be

NG {oo >0 @ (& , >0 8)
q/t = - , € q;t = ) Cavkak 1 . 58
N r<o i = (o ey o

Since it will follow from the definition below that N, (g, ) — o0 as t — 07, continuity for 7(t) is
achieved at t = 0. However, as a solution to a MADE, we have that 7j(t) € D’, where D’ is the space of
distributions, dual to D = C§°(R), the set of compactly supported, infinitely differentiable functions.
In fact, since

") — i) = f(t), (59)

where f € D', with supp(f) C (—o9,0], we have that () is a weak solution (as defined in [4] p. 149)
to the inhomogeneous extension of (52).
For t < 0, a best choice for N, (g, t) is chosen to be the k value at which a local minimum for

the function
k
et

= _ ¢ _ hlk]t)
T(kr |t|) - q3k(k71)/2 =e s (60)
exists, where the exponent function is defined to be

hk, |t)) = q*|t| — In(q)(3k(k—1)/2) . (61)
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The choice of truncation N, (q) presented here is made based on the least-term approximation from
Poincaré asymptotics, as presented on p. 94 of Bender and Osrzag [26]:

“We look over the individual terms in the asymptotic series; ...For every given value of ...[t]...
we locate the smallest term. We then add all the preceding terms in the asymptotic series up
to but not including the smallest term.”

Traditionally this rule gives a good estimate of the actual function, which is often the solution of a
differential equation. In our case the rule above can only be applied for t < 0 sufficiently close to the
origin, which for this function turns out to be

|t < 3/(ey/qIn(q)) -

This is a consequence of the following more general result.
Proposition 3. For y, A € R with A > 0, define the following function on t € R

_ N(gt) a equt 00 £>0
t) = i S , where: N(g,t) = ! - , 62
S0 k:;w grt=m /A (@1) {N*(q,t), te<t<O0 (62)

for any bounded sequence {ay} € £*°. Define the exponential growth portion of the summands as

k
ed It k(k —
7qk(kw)/}\ = emaklt) - onere: hya(k Jt]) = q*lt] — In(q) - M (63)

7;1,/\(k/|t‘) = A

Then, define two constants, for fixed q > 1,

te = _72 <0 and Ni(g,ts) = L

Aegh/2 In(q) In(q) ta 64)

N =

For t € (s, 0), the function N.(q,t) exists uniquely as the local minimum of T, 1 (k, |t]).

Remark 3. The coefficients ay in Equation (62) play no part in the following analysis. However, if they decay
as |k| — oo, or if they change sign, then the asymptotic behavior may be different than what is derived here.

Proof. Differentiating the exponent /1y, (k, |t|) = In [T, A (k, |t[)] in (63) with respect to k gives the
critical point condition
In(q) ¢t — In(q) 2k—p)/A =0 = [tg" — 2k—p)/A =0
= = (2k—p)/ (). (65)

Taking a second derivative of /1, (k, |t|) with respect to k gives the inflection point condition
n?(q) 4"t = In(q) (2/A) = 0 <= In(q)q"t| = (2/A) =0

In 2/ (At In(q))]
In(q) '

Interpreting the middle critical point condition in (65) as the intersection of the concave up function
|t]4* with the fixed line (2k — p1) /A reveals three possibilities:

— k= (66)

Case 1: There are two critical points k; < k, with an intervening inflection point k3 € (ky, ky) for |¢|
and g sufficiently small. By the first derivative test, a local maximum occurs at k; while the
desired local minimum then occurs at k.
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Case 2: An edge case occurs, in which the two critical points coalesced to one point equaling the
inflection point, k; = ky = k3. There is no local minimum for /,, 1 (k, [t|) in this setting.

Case 3: There are no critical points when either |¢| or g is too large, resulting in no local minimum for
By (K, [t]) in this setting.

Thus, the edge case, Case 2, marks the transition at which a local minimum of the summand
T (K, [t]) occurs, and hence Case 2 marks the transition at which an asymptotic phenomena for the
index k occurs. To quantify this point of transition, we note that the edge case, Case 2, where the
inflection point equals the critical point, implies that the solution of (65) also simultaneously solves (66)
in this setting. Substituting the expression for g* in (65) into (66) gives

2 1
Then substituting the value of k = 1/1In(g) + j¢/2 as obtained in (67) into the value of k in
Equation (65) gives the value of || = |t,| that corresponds to this transition as

N=

. (67)

| = m (69)
Thus, we saw that Case 2 holding implies that
t{=2/(Aeq"?In(q)) =|t.| and k3 =ky=ks = (u/2)+ (1/In(q)).
Conversely, if |t| = 2/(Aeq!/? In(q)) = |t.|, then (66) holds if and only if
In(g)4*-2/(Aeq"? In(q) — (2/A) =0 = g =eq'? =g/ "Wg12
= k= (u/2)+(1/In(q)) . (69)

Furthermore, observe that since y = exp(x — 1) is concave up with tangentliney = xatx =1
then the inequality exp(x — 1) > x holds for all x and equality holds if and only if x = 1. Replacing x
by (k — 1/2)In(g) in our inequality gives

k—u/2
g

_E i i ing i _E -
. > (k 2) In(g) with equality holding iff <k 2) In(gq) =1. (70)

Multiplying the inequality on the left through by 2/(A1n(q)) gives

qu
Aegt/21n(q)

2k — 1
T e ity holding | e, 1
g lte] > 3 with equality holding iff k R @ (71)
whence (65) also holds at the same value of k = y/2+ 1/1n(g). Thus, the critical points and the
inflection point coalesced to the common value k = ;1/2+ 1/ In(g) and Case 2 holds. We see that
Case 2 holding is equivalent to —t = t. = 2/(Aeq"/? In(q)) holding. Furthermore, one sees that
Case 1 holds when || < |t.], and a local minimum is obtained. Thus, the asymptotic phenomena
occurs for [t| < |t.| where for the upper index limit N, (g, t) we take the larger of the two solutions to
the transendental equation for k in Equation (65):
2k, —
ke _ M
= A (72)
Then, for |t| < |t.| = 2/(Aeq*/?In(q)) sufficiently small, Ty (K, [t]) has a local minimum
at N.(q,t) = kx, which can be found by taking a seed point greater than the value
In (2/(|t|AIn(q))) / In(q) of the inflection point and utilizing Newton’s method. [
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3.4. Special Case of the Derivative of an Airy Approxiamtion

We return to considering the special case that # = 1, A = 2/3 and a; = (—1)¥. However, rather
than illustrating a graph of the above phenomena for f1,/3(t)/ f{ ,/3(0), we instead illustrate the
behavior for its derivative

P(t) = flfz/s(t)/fﬂz/s(o) = f1,5/3(t)/f1,5/3(0)r

in Figure 2 below. In this setting, 4 = 5/3, A = 2/3, and the asymptotic extension of ¢(t) is

N(g.t) (_1)kefq"t 0 £>0
p(t) = C ! -2 where: N(q,t) = ! - , (73)
=G kgmqak(k_5/3)/2 @") {N*(q,t), to<t<0
where for t < 0, we compute, using g = 1.2,y =1,and A = 2/3,
= 2 L 5081 and Ni(gh) = —+" ~ 598 (74)
Y7 deg?In(g) b T In(g) 2~ T
159
104
X
5
-2 -1 0 i

Figure 2. (Left) Asymptotic extension ¢(t) from Equation (73) for ¢(t) (solid red) together with a
similarly constructed asymptotic extension for —x_,0] (£)W1,5/3(t)/ f]’2 /3(0) (dashed blue) both for
g = 1.2. (Right) Plots of ¢'K(t) where the functions K(t) are defined in Equation (76) for ¢ = 1.2.
Failure of the asymptotic extension is found to be around ¢ = —1, as compared to the computed value
of t, = —1.8. The upper-sum limits, from left to right, are N, = 6,10(dotted), 20, 30.

For t € (—t4, 0) the function N,(g,t) = N.(1.2, t) is the k value giving the larger of the two
solutions to the transendental equation:

q" = 3(2k—5/3)/(2t)), 7o)

which is the analogue of (65) and (72). The asymptotic extension ¢(t) is given by the solid red graph in
Figure 2 (Left). Defining the function

Wio3(t) = Wisss(t),

the dotted blue graph in Figure 2 (Left) is the asymptotic extension of —x(_,g(f)W15/3(t) to R.
The asymptotic extension of the derivative fi, 5(t)/f],,3(0) (rather than the original function
fi2/3(t)/ f1 5/3(0)) is used due to non-vanishing at t = 0 as well as due to its comparatively
flatter derivative.
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From Figure 2 the asymptotic expansion is valid to around t ~ —2, using N, ~ 10, rather than
t ~ —5, using N, ~ 6, contrary to what was expected from Equation (74). This is due to the alternation
ap = (—1) since cancelations require a more careful analysis. This is not done here, but the next
example considers a comparatively simple case, which gives a better comparison.

3.5. An even Simpler Example of MADE Asymptotics

In this section, we motivate a simpler type of asymptotic extension, distinct from Section 3.4,
using two examples.
To begin, we recall a MADE that was studied in [30], forg > 1and t > 0,

N@git)  —qit

aK(t) = —qK(gt), K(t) = (76)

. i(j—-1)/2 7
g/

where for t > 0 set N(g;t) = co. Here we consider the extension to negative values of the parameter.
Then, for t, < t < 0, we will choose the constant N(g; t) = N, (g, t.). To use the asymptotic analysis,
note that gy = 1, y = 1 and A = 2. Thus, we obtain an approximate MADE solution extension to the
region t < 0. Start by defining

@qj"l . . .
TEW = ¢", where: h=g/|t|—In(q)(j(j—1)/2).

Differentiating & with respect to j gives the critical condition
n(@)qlt| - In(@)@2j-1/2=0 = ¢ =2-1D/Q).
The second derivative gives the inflection condition
() lt] = In(q) =0 <= j = —Inlt[ In(9)}/(In(g)) .
Combining these expressions to eliminate g/|¢| gives

In(g) (In()(2j —1)/2) — In(g) = 0 <  j, = IL n

g T2 = N

N[ =

from Equation (67) which then results in
o= —(2—1)/(24"),

from Equation (68). For t, < t < 0, we have N(q,t) > N(q,t«) = j.. By inspection, Figure 2
(Right) indicates that we maintain a good asymptotic expansion by letting all N(g,t) = N(g, t+) = jx.
In particular, for § = 1.2 our rule suggests j < |j«| = N, ~ 6, which is expected to be valid for
t € (—1.8,0). The Right of Figure 2 indicates a good match for ¢ € (—1,0), using N, ~ 10.
Finally, we return to Equation (57), and consider the slightly different series, for all ¢ > f, (where
te < 0)
[N(g:t)] kp—qkt [N: (gt k
1 =aen L OSat vaen L Saha teo®. 09

where now the integer upper-sum limit, and the normalizing coefficient, are defined to be, respectively

NG {oo >0 @ (& ,E>0 s
q,i’ = - ,Eq,t = kb 1 78
Ni(g,t) , b <t<0 ¢ = (— Z,g*_(gj” qgk%l?/z) St <t<0
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The function 7(t) is differentiable for ¢ € (t,,0), and solves an inhomogeneous MADE

') — @ i.(qt) = fu(t), (79)

where f. € D' is derived in Appendix D. Note that f.(¢) is distinct from f(t) for t > t, in Equation (59),
and the corresponding weak solution 7 () is much easier to compute than 7j(t), with little consequence
to the asymptotics.

4. Convergence of MADE:s to Classical Solutions

In this section, we present another example where we can study convergence of a MADE solution
to its classical analogue. This requires an apriori uniform bound in a fixed neighborhood of t = 0 for
all g > 1 sufficiently small. Obtaining a uniform-in-q bound for general f, 1 (t) is rather deep, and
complicated by the presence of the alternation (—1)" in Equation (42). Here we study a series without
this alternating factor, which defines a function that behaves like a damped oscillation. The details are
more challenging than what appears in the proof of Proposition 1, so a full analysis is provided.

Consider the following linear third-order MADE

O = Pf(qt) (80)

for g > 1, on the interval t € [0, c0), satisfying the initial conditions

f(0) =0, f(0) =1, f'(0) = —9. (81)

For small ¢ > 1, as g — 17, Equations (80) and (81) can be considered to be a perturbation of the
classical analogue, which is the ODE

g?(t) =s(t) (82)

with initial conditions
8(0)=0, §'(0)=1 g"(0)=-1 (83)
obtained by setting 4 = 11in (80) and (81). One can check directly that (82) and (83) is solved uniquely by

g(t) =2-exp(—t/2) -sin(v/3t/2) /V3. (84)
Now, using techniques mirroring those of Theorem 3.2 of [29], a particular solution to (80) is

_ ®  o=q't/2 sin(v/34%t/2)

f(t) = - ,
T D)

(85)

for t > 0. Note that the expression in Equation (85) does not have the alternation (—1)", unlike the
expression in Equation (55) for 7(t), and this will allow a sharp bound on f(t) for all t > 0, independent
of g > 1.

The first derivative of f(t) is seen to be

7 (1) 5 de M 1/2)sin(Vag'/2) + (V3/2) cos(V3q'1/2)
f e 17 (273)
® o=qt/2 sin(v/3qkt/2 +27/3)
- ;oo 1273/ C73) (86)
where the fact that:

— sin(x) + /3 cos(x)
2

= cos(27/3) sin(x) + sin(277/3) cos(x) = sin(x +27/3),

296



Axioms 2020, 9, 83

was used explicitly to obtain the last equality in (86). Using this identity implicitly, we obtain:

) ®  gka=0"/2gin(\/3aFt/2 + 47/3
@ B g<e sin(v/3¢ +47/3)
A =) 1273/ 2/3)

(87)

k=—c0
® e =1t/2sin(\/3q" /2 + 47 /3)

gFk—1-4/3)/(2/3)

k=—c0

and finally we verify:

(o e T2sin(v3gkt/2+ 671/3)
o) = R F—1-6/3)/(2/3)

) e,qk—l(qt)/z Sin(\/quflqt/z)
L D)1 -1/@/3)

o0 e,qm(qf)/z sin(\@q’” (qt) /2)
q[m+l][{m—l}—l]/(2/3)

(88)

m=—o0

© o= 1"@)/2sin(\/3g™ (gt) /2 .
= qS Z qm(mfs)/(213)(q ) ) = q3f(qt) . (89)

m=—0o0

A re-indexing m = k — 1 was used to move from (88) to (89). Note that (89) gives that (80) holds.
From (85)—(87), one sees that

z t sin(0)
f(O) = kgoo m =0, (90)
4 = sin(271/3) V3 & 7 V3 )
fl) = k; FESACR T 2 ; (P2 = 79@3/?) on
= . sin(47/3) -3 & (%) V3, 5
190 = ¥ mmmm = 2 L pe AT 2 ). 6
where the last equalities of (91) and (92) are obtained from (8).
Normalizing f(t) by f'(0) = (v/3/2)8(¢% q) to obtain
fy=F1/f ), 93)

one sees that f(t) now satisfies the MADE (80) along with the initial conditions (81). The last initial
condition follows from the fact that

@) = L2 _ —(v3/2)6(a%4%) _ —0(%4°) _
IO =500 = Vamewsa g ©4)

where the last equality in (94) follows from the next lemma.

Lemma 1. For q > 1 the Jacobi theta function (8) satisfies

0(q%q°) 0(q° —4%)
g . 95
0(c%q) 1 8% —q) ©9

Proof. For the first equality in (95) one can write

0(¢%4%) = 0(a%°(1/q) = P (1/9)0(a%1/q) = q[a0(%1/9)] = q[0@%0)] . ©6)
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where the second equality is obtained from Equation (9) with u = (1/4), and the last equality is the
reciprocal identity in Equation (9) with v = g. Dividing (96) by 8(4%;q) gives (95). For the second
equality in (95), let u = (—1/4) and v = —q in Equation (9). Then as above 0(¢°; —¢%) = q6(4% —q).
The lemma is shown. [

In addition to the last equality of (94) being proven by the first equality in (95) in Lemma 1,
the second equality of (95) proves that the second derivative of Wy 5/3(t) /Wy, 5(0) att = 0 equals —g.

The following theta function bound will also be helpful.
Lemma 2. For q > 1 the Jacobi theta function (8) satisfies

0(q°1)

1
<1+
0(4%9)

7

<2. 97)

Proof. Observe that
0(g%1) = T+ L) (141
(@51 = wupl] + +q3(n+1)
1 i 1
<1+?) H<1+ 6+3n> ’ 98)
q =0 q

= vl ) )]
e {ﬁ (quﬂ Lﬁo <1+q413nﬂ : (99)

Comparing each factor in the square brackets in (98) with the corresponding factor in the square
brackets of (99) one sees that for all n > 0

1 q 1 1
<1+qﬁ> < <1+W> and <1+—q6+3n> < <1+—q4+3n> , (100)

from which one concludes that

while

0(¢°1) 3,
T+1/g =000 (101)

giving the left inequality in (97). The right inequality in (97) holds via the assumption that g > 1. [

Next we compute all derivatives of g(t) = 2exp(—t/2)sin(v/3t/2) /v/3 att = 0 and of f(t) =
f (t)/ f ’(0) at t = 0, in preparation for the computation of the Taylor series expansion at t = 0 for both
¢(t) and f(t). From (82) we immediately have that fork > 0and j =0, 1,2

g% () =g"(t) . (102)
From (102) and (83) one concludes that for k > 0
g(0) = g(0) =0, g™V (0) =g'(0) =1, g®*(0) =¢"(0) = —1. (103)

The analogous results for f(t) = f(t)/f'(0) are obtained in the following lemma.
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Lemma3. Fort > 0and q > 1,let f(t) = f(t)/f'(0) with f(t) given by (85). Then fork > Oand j = 0,1,2
one has

) k(k+1)/2 ., .
£ ) = () g0 gt (104)
Furthermore, at t = 0 one has

k(k+1)/2 k(k+1)/2
F ) =0, () = () g, pe) = - () g aos

Proof. We first establish (104) for the case that j = 0 by induction on k. So for j = 0 note that (104)

holds as a tautology for k = 0, and for k = 1 it holds by (89). Assume that £ (¢) = (q3)k(k+1>/2f(qkt)
for fixed k. Then

pe = s = [0 = (@) sin)] (106)

k(k+1)/2 (k+1) (k+2) /2
(7)) ©fag g™ = (1) f@d' (107)

where: the inductive hypothesis gives the rightmost equality in (106), and that (89) along with the
chain rule gives the first equality in (107). Thus, the j = 0 case holds for all k. Now differentiate the

expression ) (1) = (qS)k(kH)/zf(qkt) either j = 1 or j = 2 times to obtain (104) in all remaining
cases. Evaluating (104) at t = 0 and relying on (90)—(94) gives (105). [

Next, the 3N + 2-degree Taylor polynomials Psn[g](£), Pan[f](t) of g and £, respectively, expanded
about t = 0 are given by

3NT2 o(n) (o N N (3kt1)
8 ( Py 8 (0) 3k41
P. t) = s \Y)
sN-+2(8](t) P Z Bk +1)!
n i g(3k+2)(0) 3k+2
LGk
_ % 1 PR % -1 a2 (108)
& Bt 1)! & (Bk+2)!
N2 F(0 ) al N, fGHD (0 ) 3k+1
PivofI(t) = n;) Py Z Z Bk 1)
N £(3k+2)
f )(0) 3142
* Z 3k +2)!
N 3k(k+1)/2,k 3k(k+1)/2 2k
_ q 9" 3k+1 -1 979 3k+2
B EO (Bk+1)! e +Z (3k +2)! ' (109)

where (108) follows from (103), and (109) follows from (105). For t > 0, these have respective
remainder terms

BN (g) PN+3 _ 8() (3N+3

R3N+2[g](t) = (3N+3)! - (3N+3)! 7 (110)
(3N+3) B(N+1)(N+2)/2 £( ,N+1
Ronialf](H) = jE3N - 3())@3 3N+3 _ 1 o +3f)§‘1 ¢) pn+s (111)

for some ¢ € [0,t] and ¢ € [0, t]. The goal of uniform convergence on compact subsets is now obtained
in the following proposition.
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Proposition 4. Let S be any compact set contained in [0,00). Then f(t) converges uniformly to g(t) on S as
q — 1, where f(t) is given by both (93) and (85), while g(t) is given by (84).

Proof. Without loss of generality, there is a p > 0 such that S C [0, p], and it is sufficient to prove
uniform convergence on [0, p]. For t € [0, p], from the triangle inequality one has

If() =g < [f(t) = Panr2fI(O)] + [Pans2[f](t) — Pan2[g](1)]
+ [ Psn2[g](t) — 8(1)] (112)
= |[Rsn2[f]()| + [Pan42[f](F) — Pan2[g](F)]
+ | Ran+2[8](1)] (113)

Now for 0 < t < p and relying on (111), one starts with (114) to see

PNFD(N+2)/2 £ (gN+17)
(3N +3)!
3(N+1)(N+2)/2 3N+3

(BN + 3)!p ‘f(qNHQ‘

3(N+1)(N+2)/2P3N+3 2 N4l
e TG (115)
_ PNFD(N+2)/23N+3 y (116)
(BN +3)!
1 © o048 2 5in(v/3gkgN 1 /2)
(V3/2)6(4%9) gtk=1)/@/3)

q3(N+1)(N+2)/2p3N+3 2 ) 1

GBN+3)  30(5%9q) L (¢7)F D70

k=—c0

[Ran2[f1(H)] = (N3

(114)

q

IN

q 1

IN

(117)

q3(N+1)(N+2)/2p3N+3 2 5
- 0(4%1 118
BN V) (7%1) (118)

3(N+1)(N+2)/2P3N+3 4
(3N +3)! N
where: moving to (115) is obtained via (93); (116) follows from (85) and (91); the equality in (118) is

obtained by (8); and the inequality in (119) is given by (97) in Lemma 2. Similarly, from (110) and (84),
one has

< 1

(119)

Ravaalsl(t)] = |55 E s (120)
p3N+3 . 2p3N+3
S BNia) ’2exp(—§/2) sm(\@é/Z)/\/g‘ < m .
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Also, from (108) and (109) if we let: AP[f, g](t) = Psn+2[f](t) — Pan42(g](t), then

N 3k(k+1)/2k _q N k(k+1)/2,2k 5 4 1
q q 3k+1 — L R

AP[f, g](t . t
I8PIESO1 = L gy L @

< 3 PR Zq KD 1 i

= & Gkt (3k +2)!

N 3k+1 N 3k+2

< 3N(N+1)/2,2N P P

< [a 7Ng-1] {; BT DL L Gk )

< {qSN(NJrl)/ZqZNq }

Applying (118), (121), and (120) to (113) one has that for N > 0

BN+1)(N+2)/2,3N+3 4

q

9,3N+3
+ [q3N(N+1)/2 2Nq }ep + P

1 V3(BN+3)!

Now, given € > 0, choose N sufficiently large such that one has
403No+3 / {ﬁ(sNO + 3)!} < /3. Then

< (e/3) [\@(31\10 +3)!] / [4p3N0+3] and 1<1+e/[3e" .
Pick go > 1 so that
qg(N0+1)(N0+2)/2 < (e/3) {\/5(3N0+3)!} / [4p3N0+3]

and
quO(NDH)/ZqZNOqO <1+e/[3e] .

Then for 1 < g < qp one has
PNo+)(No+2)/2 < (e /3) {\@(BN0+3)!} / [4p3N0+3]

and
qSNO(N0+1)/2q2NOq <1+e/[3e"] ,

whence for 1 < g < qo

3Np+3 3Np+3

2p

3(No+1)(No+2)/2__ 4P
V3(3Np + 3)!

V3(3Ny +3)! <(e/3)

<q

and
{q3N0(N0+1)/2q2N0q o 1] e <e/3 .

Applying (125) to (122) with N taken to be Ny one has that for 1 < g < gg

lf(t) —g(t)| <e/3+e/3+e/3=¢.

So f(t) approaches g(t) uniformly on [0, p] as g — 17, and the proposition is proven.
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5. Convolutions, Correlations and Bounds

Here we briefly demonstrate that solutions of MADEs beget new solutions of different MADEs.

5.1. Distinction between Convolutions and Correlations

Let f, ¢ € £'(R) and recall the standard definitions:

Convolution between fand g = [f*g] (¢ / f(s)-g(t—s)ds (127)

Correlationbetween fand g = [fxg] (¢ / f(s)-g(t+s)ds (128)

Proposition 5. Consider f, g € S(R), which solve the following MADEs

FO = cpflat), 8 = cg-slat), (129)

respectively, for g >1,a, b € N, and cg # 0, cg # 0. Then the correlation and convolution solve the following
higher-order MADEs

[f+8]0 (1) = % [Fegl(@t), [Fxg)? () = H)“% [F+g] (at),

and [f + 8], [f*g] € S(R).

Proof. The fact that convolution and correlation preserve the Schwartz property follows from
Theorem 3.3 of [31]. The MADE equations easily follow from repeated applications of integration by
parts, use of Equation (129), and a change of variables. [

5.2. Auto-Correlation

It was shown in Theorem 7 of [25] that the auto-correlation of W_1,(t) = F_1,(t), as defined
in (45) for p = —1and A = 2, gives Wy 1(t) = fo,1(]t]), as defined in (42) for 4 = 0 and A = 1, in the
sense that

W_12%x W_q0](t)

/ W_12(u) - W_1p(u+t) du

4 4
_.uq +.uq t
= Woaa(—t) = W) = 5= Woa | - ),
2]1 2,1 2]1;2 2,1 2]1;2 0,1 q

where W_,1(t) = f_1(|t|), as defined in (42) for 4 = —2 and A = 1. Using this result, along with the
Cauchy-Schwartz inequality it was shown in Proposition 4 of [25] that

0 < [Worlle = Wo1(0) = 6(¢%~1/9) <1, ¥g>1.

This important bound allows one to obtain uniform convergence of the normalized function
Wo(t)/Wo1(0) — cos(t),asgq — 1.
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5.3. Cross-Correlation

Let us consider an example that involves different MADE solutions, to obtain a new MADE.
Knowing the Fourier transform of these functions allows us to easily derive properties of the resulting
function. Compute, using Plancherel’s Lemma,

[W,l,z * WO,]] (t) = j:o W,l/z(u) . WO,l (M + t) du
= [T W @) Foal () de (130)

Now, to simplify the integrand in (130), we use the Fourier transforms from [25,32] respectively,
to write:

i3 5 2(pg)?
V2mw (g iw) V21 0(g2 w?)
i(ﬂq : Vq2)3 » 1
7T w0(q;iw) 0(g% w?)
(Hg - up)? 1

- T * (—iw) 0(g; —iw) 62(g; iw) (131)

FIW_1)(w) - FWo1l(w)

The equality in (131) follows from the fact that 8(q% w?) = 6(g;iw)6(q; —iw) and uses the
definition of the Jacobi theta function in Equation (8). The consequence is that there are simple poles
when w = —ig" for k € Z, but double poles at w = igk. Computing the integral in (130) using residue
theory, requires a careful consideration of the position of these poles off the real axis.

For t > 0 the contour for w must traverse the lower-half plane, encompassing the simple poles

w = —ig*. Consequently, residue theory and Equation (9) gives
o0 r equt
W_12xWoal(t) = G k; (1) PR = Cq- fo12/3()

which solves the eigen-MADE
3
fOlass®) = faasat).

6. Expanded Table of Fourier Transforms

In this final section we establish a short table of Fourier transforms for solutions of MADEs and
their relations to Jacobi theta functions. Included are well-established results, along with new functions.
The positive constants K; and K; are generic, but estimates are not presented here.

The introduction of new functions are as follows: For K(t) see [32] for decay constants K; and
K; in Table 1; The functions ;Cos(t) and 4Sin(t) are closely related to C,(t) and S(t), respectively,
introducted in [25], where constants K3 and K4 are obtained; The g-Bessel functions, related to 7 (f),
were introduced in [33], along with decay constants K5 and Ks; Flat wavelets F(t) have Fourier
transforms that are averages of theta functions, first derived in [29], along with constants K7 and K.
The functions K x Cq (t) and Wi (), have Fourier transforms that involve theta functions, which can
be used to obtain decay parameters Kg and Kjj.

Note that similar tables for Laplace transforms are quite extensive, since applications only require
control of function growth on R*. Here we are concerned with globally defined functions on R for
which a Fourier transform can be defined.
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Table 1. Table of Fourier transforms with solutions of ODEs and MADEs.

Global f(Fo0) Fourier Transf.
Function Property Differential Equation f(0) decay Rate (Modulo Coef.)
Enti
f(t) =et/2 Schwartz — () + 2 f(t) = f(1) 1 Gaussian e /2
cO'ncr
f(t) = eIt 1<p<oco FI(E) + f(t) = —25(t) 1 exponential (142?71
pilx—x0)t _ drexpli(x —xp)t] =
expli(x — xo) t] cOnce i(x —xp) expli(x — x0) t] 1 undefined So(x — x0) = 6y (x)
. sin(t) cengr A1 2.1 :
Jo(t) = == T<p<oo  jg(t)+5jg(t) = —jo(t) 1 /14 X-1 (%)
Ai(t) = cencr Ai(0) L
Joocos( +ut)du  4<p<oo Ai'(t) = t- Ai(t) smooth 1/|¢1/4 etke’/3
cos(t) cos”(t) + cos(t) =0
sin(t) cO'nce sin (t) + sin(t) = 0 1 undefined S1(x) £6_1(x)
Schwart 0 1
K() = F_15(t)  wavelet” K'(t) = K(gt) flat |t Knlik 20(q; %)
G (t) = 1
Schwart - - 1 —
fgl( )/fgl(O) v&a\yg ertZ C,;’(f) + Cy(qt) = 0 smooth |t\‘K31“W+K4 0(¢% qx%)
g e Schwartz 0 Lf}x
Sq(t) = Jo Co(w)du  Svefee S/t + q7'S(qt) = 0 smooth [t~ Kalnlil+Ks 0(q% 3°x%)

3
cis ( ) = Seheart 1 1 Px
Cylt) +iS ( Wavelet 07CiSy(t) = — CiSy(qt) smooth  [¢|~KsInlt/+Ks 0(q%9x%) + 6(g%q°x?)

gt =2 Schwartz  J"(H)+3T'() =T (qt)  1/q  [f Rl Fw st

(1) b= N am 1) (2t =—ix

E(t) = Schwartz = (N+2M+ 0 LM
Fami12n(t) wavelet F'(t) = (=1)%g F(qNt) flat [f| =Ko In ks Epm Gz
My(t) = Schwart 0 —Ll
[K = Cyl(t) wavelet M{"(t) = —q '"My(qt)  smooth [t|KoInlf+Kn ix 0(q;ix) 0(q% qx?)

2

Mo(t) = Schwart 0 —r

Wia/3(t) wavelet M)'(t) = ¢°Ma(qt) smooth  |t| =Ko Inltl+Kio 0(q%; —ix3)

Aiq(t) = Aig"(t) = Aig(0) ¥/ (R)
JXCy(% +ut)du  Schwartz g 13- Aig(q¥/3t) smooth  [t|~Kelnlt+Ks Jo° 0(q%qk?) dk
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Appendix A. Normalization in Terms of Theta Functions

The normalization for C~,,(t) in Equation (4) involves a theta function, so that

1 _ & (W & (=1/9)* .1
ﬁq = Z 2 Zoo (g2)kk=1)/2 - 9<v]2, 7) . (A1)

k=—c 4 k=— q

The last expression in Equation (A1) does not vanish for ¢ > 1 due to the product formula in
Equation (8). Similarly, we can show that Aig(0) # 0. Indeed, from the definition, note that using the
change of variables w = q(k’l/z)”u,

aig) = [T ¢
k
- Y E L? e
7T Jo k=—c0 qk

N, o _1\k41/6 oo -
_ q ( 12) q / efwg dw
qk qk/S 0

_ q1/6N‘1 . /oo —wd i 1/q1/3)
JO

k2/2
1/6 o . 4/3

R e N T M

= — _/0 e dw { 0% —1/q) |’

and the final expression clearly does not vanish for any g > 1.

Appendix B. Establishing the g-Airy Hypothesis for g > 1

To compute Ay(q) explicitly, we will find the Fourier transform of Aig(t) and then find its value
at the origin. This requires a careful change of variables. To begin, we combine definition Equation (25)
and the inverse Fourier transform of formula in Equation (7) giving

. 2)°Ny  exp ( zk t3/3+xt))
Aig(x) = 27r7r / / BT dkdt .

To handle the double integral note that the odd power of both the k and the t variables allows the
following rearrangement

o reoexp (ik(t3/3+xt)) + exp (i(—k) (/3 + xt)) exp (ik(/3+ xt))
[ ) ) dkat — / / Sy ke
We can now obtain the Fourier transform
2up)’Ng oo oo peo exp (ik(t3/3))
P AL AR —ix(w—kt) SR \TAE 7Y))
FlAig(x))(w) ) n /700/ /7 e gk
_ 2(pg2)° N ‘/°° exp (iw3/(3k2)) "
2r 0 0(q% qk?) .

Finally, computing at w = 0 gives the final result

o0 2(u,2)°N, 00
ole) = FLAROIO) = [ aigyar = ZRET " s,

which is clearly a finite, positive, non-zero quantity, for each g > 1.
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Appendix C. Mollifier Argument for Airy PDE Initial Profile

Let us first make clear the importance of normalization. Indeed, observe that if Ag(q) # 0, then
the change of variables u = y//t for t > 0, gives

t—>o< \‘on / Azq< )dy = t—>o< Ao Zo(d) / ) du = QEEZ; = 1.

Thus, explicitly, for each fixed g > 1 and x € R, and ¢ (x, t) as in Equation (34)

|$q(x,0) — f(x)]

i s [ i () (9 -5
tl_i)réhm/_0:0|Az'q(u)\-‘f(x7u\%)ff(x)‘du. (A2)

At this point we use the Schwartz property of Aig(u), along with the integrability and continuity
of f(x), to argue that the expression above is arbitrarily close to 0. This will be done in two parts.
Given € > 0, choose Re > 0 so that

o )]
Jor 1A ) < il

Note that this estimate is independent of f > 0, so with 4 > 1 and x € R fixed, the choice of R,
will determine a bound that is needed on ¢, near 0.

Now, consider the region |u| < Re. Since f € C}(R), f(x) is continuous, so given € > 0 and
x € R, 3d¢x > 0so that

A
oyl < = U0 -fo) < 5 ()
Thus, we require |uv/t| < Rev/t < e x so that
€(0,(0ex/Re)’) = |y(x,0) — f(x)| <€, (A3)

which establishes pointwise convergence. However, if f € C!' N L! and f' € L%, returning to
Equation (A2) for t > 0, we obtain uniform convergence as follows:

Re ‘f(xfu%)ff(x)‘ Re IF R
\Ao(q)\./_ |Ai ' ] |u/t| du | o] N Moo - /_R€|Alq(u)\du

Now, clearly, the condition in Equation (A3) can be achieved.

Thus, we verified that the solution to the g-advanced PDE in Equation (34) has the property
that a continuous, bounded and integrable initial profile f(x) is recovered at t = 0, as indicated in
Equation (41).

Appendix D. Derivation of Inhomogeneous MADE

Using the characteristic function xs(#), and delta function centered at the origin éy(t), express the
function in Equation (57) as

[N:] —qft _ 1 oo (_1\k,—qkt
N ce (—=1)%e
i) =¢C; - <k): (-1 W) Kk, 0)(t) + Cf - ( Y W) “X[0,00) (1) /
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for Ny = N.(q,t.) fixed. Note that C; is defined in Equation (54), and C, is defined in Equation (78),
so that 7(07) =7(07) = 0,and 7#/(0") = #/(0~) = 1. Thus, the first derivative is continuous, and the
second derivative is bounded. However, the third derivative results in the appearance of a distribution,

[N:] 2k
KON q3ﬁ(qt)+[ﬂ3cq-<2(1)k-{13,€5’€1)/2>-x<t*,o)(t)
k=—00

B [Ny (71)kq2k 00 (71)kq2k
G .<k—Z:oo g3k(k=1)/2 () + G- kz gPkk=1)/2 '50(”}

7 ilgt) + [f(1)]

which is an inhomogeneous MADE for all t > t,, and which defines f,(t), by inspection of the quantity
in the square brackets. The last three terms on the right hand side vanish as ¢ — 1", where N, — oo in
a manner described after the proof of Proposition 3.
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Abstract: An asymptotic solution of the linear Cauchy problem in the presence of a “weak” turning
point for the limit operator is constructed by the method of S. A. Lomov regularization. The main
singularities of this problem are written out explicitly. Estimates are given for ¢ that characterize the
behavior of singularities for e — 0. The asymptotic convergence of a regularized series is proven.
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1. Introduction

In this paper, the regularization method of S. A. Lomov [1] is used to construct a regularized
asymptotic solution of a singularly-perturbed inhomogeneous Cauchy problem on the entire interval
[0, T] in the presence of a spectral singularity in the form of a “weak” turning point for the
limit operator.

We note the paper [2] devoted to the construction of the asymptotic behavior of the solution of
singularly-perturbed Cauchy problems for integro-differential equations in the presence of spectral
features of the limit operator. The point ¢ = 0 for a singularly-perturbed Cauchy problem is singular
in the sense that in the classical theorems, the existence of a solution to the Cauchy problem does
not take place at this point. Therefore, in the solution of singularly-perturbed problems, essentially,
singularities arise that describe the irregular dependence of the solution on ¢. The description of these
singularities is the main problem of the regularization method. Under the conditions of spectrum
stability, essentially, singularities are described using exponentials of the form er?(t), where o(t),
is smooth, in the general case, complex function of a real variable ¢. For solutions of linear homogeneous
equations, such singularities were singled out by Liouville [3].

If the stability conditions are violated—for example, if the points of the spectrum intersect at one
or more points t—the description is more complicated. In [4], singularities are presented in the case of
a simple turning point, when the only eigenvalue of the operator A(t) has the form

M) = Fo(t— ) (t—t)ma(t),a (£) # 0, ko + k1 4 ...+ k= n.

Moreover, it is assumed that the operator A(t) has a diagonal form for any ¢t € [0, T]. Additionally,
in [5], a rational simple turning point was considered, an irrational simple turning point was considered
in [6]. Significantly special singularities from a mathematical point of view are special functions that
describe the irregular dependence of the solution on ¢ for ¢ — 0, and from the point of view of the
hydrodynamics of the boundary layer function generated by the spectral singularity of the point A(t).
The question of essentially special singularities is related to how the solution of a singularly-perturbed
Cauchy problem inherits the smoothness properties of the coefficients of the equation. In particular,
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the coefficients of the equation depend analytically on the parameter ¢. In the presence of a singular
point ¢ = 0, analyticity at this point is inherited by solving the problem of a singularly-perturbed
Cauchy problem not as is known from classical existence theorems: a singular point and a certain
character of the spectrum of the operator A(t) generate significantly in the solution singularities,
highlighting that we have the right to calculate that the rest of the solution will already be analytic
in some neighborhood of the value ¢ = 0 if on h(t) and A(t) to impose certain restrictions (infinite
differentiability with respect to t is not enough!). Let us explain the words “the rest of the solution”
with the simplest example of a scalar problem

eti(t,e) = a(Bu(t,e) + h(t),u(0,e) = ul. 1)

If a(t) < 0, then the solution to this problem has the following structure provided a(t) =
tk(t), k(t) < 0

o=
Ot—
2
o
2
5
o

(s)d: 7%5 s1)ds
u(te) = f(te)e ! /e Ofﬂ g 1tJlery(zf,s)

0
where the functions f(t,€), g(t,€),y(t, €) are analytic in ¢, if on k(t), h(t) problems (1) impose certain
requirements. This paper continues the study of the turning points [3,4], namely, “weak”, the turning
point of the regularization method.

The simplest case of a weak turning point is the point of the first order,
ie., Ay(t) — Aq(t) = ta(t),a(t) #0. The solution to a singularly-perturbed Cauchy problem in
this case is described in [7]. It is assumed that the eigenspaces corresponding to the eigenvalues
A1(t), A2(t) are one-dimensional. In this paper, we consider the general case of a weak turning
point. The definition of a "weak" point for the limit operator will be given below in the statement of
the problem.

2. Statement of the Problem, Description of the Main Singularities of the Problem

10. Statement of the problem. Let a singularly-perturbed Cauchy problem be given

eii(t,e) = A(D)u(t ) + h(t), u(t, ) = uC. )

and conditions are met
(1) h(t) € C=([0, T],R"));
(2  A(t) € C*([0,T], £(R",R")) having a smooth spectrum
Ai(t) € C°°([O 7)), i=1,2;
@) A() = M(BPi(E) + A2 () Po(t), Po(t) + Po(t) = I,

(4)  The condition of a weak point
Ap(8) = Aq(8) = tRo(t — 1)k (t = ty)oma(t),a (£) #0,ko+ ki + ... +ky =1,
Aa(t) # A(t) Yt € (0,t1) U (t1,t2) U e U (b1, t) U (tm, T1;
moreover, the geometric multiplicity of the eigenvalues is equal to the algebraic

forany t € [0, T};
G)  Ai(t) £0, ReAi(t) <0, Vte[0,T).

20, Description of the space without resonant solutions. The formalism of the regularization
method. In presenting the regularization method for solving problem (2), we will use the
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Lagrange-Sylvester interpolation polynomials, which describe differentiable functions f (t) defined at
the point fg, t1, ..., £, together with their derivatives. They have the form:

! .
Kf() =Y Y- Kt f ) ®)
where K;;(t) are polynomials with the property %Kﬁ( =ty = ] &, j,k=0,m, i,s =0,kj— 1. The
singularities J1 (¢, €), J2(t,€) of this problem (2) are found from the solution of the Cauchy problem.

.€) +eK(t)Ja(t )
c&) +eK(B)i(t ) “)

Here K(t) = Z Z K;;(t). Proof of the existence of a solution to the system (4) and decision
j=0 i=0
evaluations are made in the annex. The solutions of system (4) generate a series of functions that

describe the singularities of problem (2).

t
=11 Ni(s)ds, gip(te) =e?t), i=12
0

h i) (t,e) = eA‘f’(sl)Kjl,,-1 (s1)ds1,

Uz({;'il)(t, £) = e92(t) E*A‘P(sl)Khlil(sﬂdS],

o"\wo%_ﬁ

(1 itpriy) ! S
(71; velrt) () = — enlt ({emp ]p iy sl)ge A“’<52)ij,1,z'p,1 (s2)-.. (5)
SP 1
[ el els K Kj, iy (sp)dsp...ds1,
0
(it omfipsiy) L 51
0y () = e?2(t) {6 A9GUK;  (s1) {€A¢(52)ij71,ip71(52)~-~

Sp-1
Ofe(_l)pA"’(SP)Kh,il(sp)dsp,..dsl
t
where p is the number of integrals, js = 0,m,is = 0,ks — 1, Ap(t) = [()2 Aq1(s))ds.

Note that U;(] Litdpip) (t,€) satisfy the system.

sé_(j;,il/““]'p,ip) (t, E)
(11 mfpidp) (it efp-1=Lip-1-1)
M(t)o, ,1;1 P, 8)+8K]p1p0'2;11 e (t,e),

e()’z(]; e lp)(t,g)

11 e fiprip =1y -1
MalBogy ™ () Koy T ),

(6)

Instead of the desired solution u(t, €) of problem (2), we study the vector function z(t, 7, €) such
that its restriction coincides with the desired solution.

z(t, U,S)‘V:U;(/;,il,....]p,ip)(tE) =u(te), s=1,2, p=000 @)
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In view of (2), (5), (6), we can write the problem for z(t, o, €). Using the complex differentiation formula

2 m k=1, kp—1 - Lo
. As (i1 senefipiip)
=z+y Y ¥ oy (Bahhy
s=1p=0j1,.jp=0 i1,..ip=0 (8)

</1,[1 Jp-1/p-1) 9z
K iy 035 p—1 )a T Toip)’
Ts,p

we get task for the extended function z(t, 7, €).

2 © m ki—1l.kp—1 S
A(t)Z— Y Y Y ()\5(75(’];,11"“']”'1’7)_

S=1p=0 1, jp=0 i1, ip=0

(1t efp-1/p-1) 9z . )
—Kjp 03— s,p—1 )a Guiipip) ez — h(t),
osp

2(0,0,¢) = u”.

By convention, we assume that if the term containing p — 1 < 0 in the index, then this term is
equal to zero. To solve this problem, we introduce the space of non-resonant solutions E.

2 o =1, kp—1 S
DO B B Ul @
s=1p=0j,. /]p*o i1,.. ,lp—O

The element 2 € E has the form

k=1, dp—1

i E ]lrllr ]prlp ®{ S]lrllr ]p,lp }+w

0y, ,]pfo il,u.,ip:O

l‘\‘b
NS
?[\18

s=1

where z(];,’”’ i) e B
Here @ is the symbol of the direct sum of linear spaces; & is the symbol of the tensor product.

We introduce the operators generated by problem (9).

k=1, kp—1

LR (it i)
=9 69 €B @ (A() = As(t) ®fosp
§=1P=0 j1,0jp=0  i1,..ip=0
(/1 ‘1 -jp.ip) } ( )
m o ki=l.kp=1 o kppa—1
68 & @ & @ K.,.0 (10)
$=1p=0j1,mjp=0 i1,ip=0 jpr1=0ip11=0
(i1, ]prlp) Pl
{03 s,p a[fs(/;;,zl,.m;pﬂ,ipﬂ)}

Gz =2(0,0,¢).
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Operator actions are recorded as

N 2 o m k171,.4.,kp—1 (jl/l‘ll""jp/l‘p)
=L ¥ L L (A(t) _/\s(t))zs,p (t)
o= 1p 0 j1gfip=0  i1,sip=0
®op™ "} + Aty
2 e om kimleb—1 o k-l
Z:=L L L ¥ (LT Kya® (a1

S=1P=0 j1,fp=0  i1,0ip=0  jpp1=0 ips1=0

(L fip s 1ips1) (11 eeefpiip)
2T ) @fesy My

Gz =1z2(0,0,¢).

In addition, we introduce spectral projectors

B (1) = Bi(t) @{oty I

(j1i1ipsip)
875,11) 1-Jprtp

R (1) — (~1)OR(t) < 60 (¢~ ), Belt): >) @

ks,p
(fl/il/----fp/ip) d
Ts,p ST Ipip) }
s,p
2 m k=1, kp—1 (it
5 5L fpiip)
h=L Y ¥ o x PR (12)
S=1 =0 j1 e fy=0 i1 ,ip=0
kernel projection operator.%
. 2 m k=1 k=1
~ (joi (00,7111 -p/ip)
IO v VD S S L O

S=1 p=0ji,jy=0  if,rip=0
Jo=0,m, ig=0,kj, —

The action of projectors on the element £ € E is written as

@ B (020 = () = A PO (1) @ty
® B (1208 = Bt (VOB (1) ity @)

Using the operators (10), problem (9) can be rewritten in the space £ as follows:

{ Lot =e Az +et—h(t), -

Gz =ub.

Problem (13) is regular with respect to e. Therefore, the solution (13) will be defined as a regular
series in powers of ¢, i.e.,
=Yz (14)
k=0
Substituting series (14) into problem (13), we obtain the following series of iterative problems:
.%Zb = —h(t), GZAO = MO.

Lody = Ak1+ 2k-1, k=T1,00 (15)
GZ = 0.

3. Solvability of Iterative Problems

In order to solve the iterative problems (15) we formulate solvability theorem for equations of the
form .%y(t)2 = h(t)in the space E. The following normal solvability theorem holds.
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Theorem 1. Let E contain the equation
Lot = h(t).
and conditions (1)—(5) of problem (2) are satisfied.
Then Equation (16) is solvable in E if and only if

(1) Py(A(t) =0,Yt € [0,T);
@ AW (k) =0, jo=0,m, ig =0k, —1.

Proof. Let the equation be solvable. We approach the equation by the operator Py(t).
Since Py(t).%(t) = 0, so Py(t)hi(t) = 0. It follows that

2 m k1—=1,...kp—1

=r ¥ % % hopli g

s=1p=0j1p=0 itip=0
(o) + o).

We act with the operator 7zy. Then as

ﬁéforfo)(t)%ﬁ _
2 o0 m k]*l,“.,k’,fl .
Y'Y X T Pao(t) () 0((As—s(t) — As(t)

S=1 p=0j1e)fpy=0 i1,iip=0
11,01 eeefipsi 11,01 et
Py o (2050 (1)1, @1y )y = 0,

then
m k=l k=1

iodo) (\Frp) 4 yip
7y ()h(t) r X Y Ps(H)(g)0 (Pss(t)

S=1 p=0 ji e fy=0  i1,/ip=0
(1t efpiip) (11w fiprip)
hS,;la 1rfprdp (t))l::t,-o ®{¢75,,§ vty
Sufficiency is obvious. [0

As a result, we get a solution

0= R(DED+ Y ¥ b
~lp

S=1p=0 1, jp=0 i1, ip=0

(A() = As(0) Py (OB () @y ™} + A1 (o ).
Here Py(t)2(t) is an arbitrary vector from the kernel of the operator .Z(t).

Theorem 2. Let the task be given in £
22=0,G2=0.

and the conditions of Theorem 1. are satisfied. Then, when

the solution of problem (20) is unique and identically equal to zero.

Proof. The solution of the equation from system (20) can be written as

P, (t)zg;],q,mjp,i,,) ) ®{Us(l];,i],4...jp,ip)}

M=

2 o
=Y ¥

S=1p=0iy,.ip=0 i1,.ip=0

(=}

314
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(18)

19)
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@n
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We calculate

) m ko—1,...kp—1 o
La+Hh=L L L L [EEm )+
5s=1p=0j1,...;p=0 iy,..0ip=0 (23)
k . .
m kpr1—l1 . b (i eeip+1ip41) (1t enefipiip)
+ X x Jpr1s tﬁl(t) 375(’5)23_5,,;4.1 (1))] & o5 .

Jp+1=0ip+1=0

where Ps(t)z U P ey (t) is an arbitrary eigenvector of the operator A(t).

We submit (22) to the initial condition. Moreover, we take into account that
g§,’;”““']”””)(o,e) =0, p>1. Thenwehave Ps(0)z;0(0) =0, s=1,2.

As Po(t)(L2(t) +4(t)) = 0, from here we get a series of Cauchy problems

=0

(Ps(t)zs0(t)) = Ps(t) (Ps(t)zs0(t))

(0)z50(0) = 0,5 = 1,2

mH > (24)
SRz (1) = BBz (1)

Ps(tj,)z 5(;],1, e e l”)(tjp) =?not defined at the moment

J,TJ &\&"3

To solve the arising Cauchy problems, we introduce resolving operators

arUs(t,7) = Po(D)Us(8,7)
{ ﬁs(t, t)=1Is=1,2 (25)

The solution for p = 0 will be Ps(t)zs0(t) = Us(t,0)Ps(0)z50(0) = 0. To determine the initial
conditions for Cauchy problems (24) p > 1, we calculate

A (1) ( Az +2) =0, jo=0,m, ig =0k, — 1

m o Kpa-1

' (it erfpst )
LT P (0K, iy (P2 1)y

Jp+1=0ip11=0

= Pulti) ()0 (Bu(t) Pa_s ()20 (£) |1y p 2 0
j():O,m, io :O,ko—l

(26)

From system (26) we obtain the initial conditions for the remaining Cauchy problems. To do this,
sequentially sorting i, we obtain

p=0
jo=0,m,ipg=0,s=1,2
j0,0 (27)
Pu(tjo)z0y” (8) =
Ps(tjo)P3—S(tjo)ZS—sO(tjo)) =0
From here when
p=1j1=0m,i;=0,5s=1,2, .
P(t)20 (1) = Ut ) Po(t )20 (1) = 0
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p=0

jo=0m,ig=15s=1,2

Ps“m)li{i””(%) = 28)
_Ps(tjo)%(PS(t)zso(t))‘tft/O-F

+Ps(t) (P (E)Ps—(£)23-50(1)) |11, =0

p=1j=0,m i;=15=1,2,

1,1 1 _
(D)2 () = Us(t, ) Pulty, )20 (1) = 0.
p=0
j0:0,m, iv=n,n=0ky —1,s=1,2
Ps(tjo)zs](l)’n)(tjo) = (29)
m n—1 .
- ):0 ):O CiPs(tjy) ()" (P(t)zs.0(8) 1=1;, +
J1=0 1=

+Ps (o) ()" (Ps(#) Ps—s(£)z3-5,0())|e=t), =0

From here when

1 'y
;”)<t>:u< b )Ps< D2 () =

Having considered the case p = 1 (recall that p = 1 means the order of multiple singular
integrals), we pass to the case p = 2. Since the initial conditions for p are expressed in terms of the
initial conditions for p — 1, by induction we prove that the initial conditions are equal to zero for any p.
From there,

P02 (1)) = U (1,5, Balty, )2 (1) = 0.
Therefore, the solution of problem (20) is identically equal to zero. [

4. Construction of a Formal Asymptotic Solution

We apply Theorems I and 1II to solve iterative problems (15). We write the problem at the
iterative step
€0
ZoZo = —h(t), Gz = . (30)

Or component-wise

(A() = As(D)205 ) (1) = o,
A(Hwo(t) = —h(t),
21,0,0(0) + 22,00(0) + wp(0) = u°

(f1i1--fprdp)
0 ),

iterative tasks)

p > 1,5 = 1,2 (determined in the decision process

Solution (30) can be written as

i of: %1: kl_lrikp_l P, (t) 5]161 wipsip) ( ) ®{ 1 i1, ]P'ip)(t, 8)}
S=1p=0j1,mjp=0 i1, ip=0 P (31)
“H(BOh(H).

where Ps(t)z G ;101 rdp) (t) is an arbitrary eigenvector of the operator A(t).
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We obey (31) the initial condition. Moreover, we take into account that
U—S(,];/I],““]p/lp)(()/g) =0, p> 1. Then we have P;(0)z1,0,0(0) + P2(0)z20,0(0) — A~1(0)h(0) = u°.
From here Py(0)z,00(0) = Ps(0)u® + 2050, s =1,2.

Initial conditions for Ps(t;, )zij ;:IO] e vdp) (t;,) are determined from the solvability conditions of the

iterative system at the first iterative step. Thus, at the zero iteration step, we obtained

2 m k1 —=1,...kp—1 1,31 eedinedn)
S o D SEI S X O Ll ()
]

S=1p=01,efyy=0 i1,uip=0

ity 32
R} — A (t)h(r). o
Ps(0)2500(0) = Pe(0)u + 200, 5 = 1,2
The task in the first iterative step ¢ has the form
LoZo =2+ L%,
33
{ GZAl =0. ( )
solvable in E if the right-hand side satisfies the conditions of Theorem I. First, we calculate
. 2 m kofl/m,kpfl N,
Lh+h=L L L L [EE@E )+
$=1p=0j1,.0)jp=0 i1,.iip=0 "
m o kpri-1 (j i 34
+ Z Z K]p+1 1p+1 (t)23]1 sllp+11parl lp+l (t)] ]1 i, ]P/lp) (t, 8) ( )
Jp+1=0ipi1=
— g AT (BR(D).

By writing (33) at the first iteration step by components and taking into account (34), we obtain a
series of problems:

(A(E) = A (D)2 (1) = & (P (1) 07 (1)) +
m ka -1

+ LT Ky (0P o),
]p+1 01p+1* (35)
2101(0) +2201(0) = ((A71(8) )2 Jo In(s)ds) (0)
Zsp1 (tjp), p > 1,5 = 1,2 (determined in the decision process
iterative tasks).

From the solvability conditions (35) and taking into account (32), we obtain a series of
Cauchy problems

Pzan(t) = BO(PAzegol0)
)2500(0) = Py(0)u + B0 s — 1,2

ipu p > 1
SO0 0) = PR )

(it
PS( ]p) s,p,0

p:
£
P,(0

(36)

pir) (tj,) =?not defined at the moment
To determine the initial conditions for the Cauchy problems (36) p > 1, we calculate

ﬁéjo'io)(f)(flfo +£0) =0, jo= 0,m, ip =0, k/O —1.
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Then we get
B B (£)0(K iy (PO o)
Jpr1=0 ip11=0 S\"jo/\dt Jp+1ip+1 s s,p+1,0 t=tjy 37)

= Pu(to) (§)0(Po(D)Ps_o () (1) oy

Going over iy sequentially for a fixed p, we get

(J141 --psip.jo,0)
ps(t/o)zs,;ﬂrllo r (tlo) =

: (it reefiprdp)
PS(th)P?’*S( ]0)231s]p0 " (tjo))

S
Il
[

~
%)
I
=
N

jO:O,m

1 fpidp ol
Pty () =
~Pu(tj) (P ()2 (1), it

(j1/i1ewefipsip) (38)
+Ps(t]-o)m(P5(t)P3,s( )23 s p0 ()=t

]O—Om,zo—n,n—Oko 1,s=1,2

(181w poipsjostt)
Po(tjy)zgy 10" " (k) =

/P+10
m . (J1/41-pip o)
— B Y G ()R ) ()
Jp+1=0i=0

TR () ()7 (Ba(0) Py (D2 (1)) o,

Since the initial conditions for p + 1 are expressed in terms of the initial conditions for p, we
thereby prove by induction that the initial conditions are defined for any p.
After determining the initial conditions from system (38), we obtain solutions to system (36).

Pe(t)zsoo(t) = Us(t,0) (R () + PG,
By (1)2 f;’,”’ T e) = U, P20 () 9
s=1,2,p=0,0,j, =0, ,zpfok]p 1

Custom vectors Ps(t)z
step. By this scheme, all terms of the solution to problem (30) are found.

y ;’ll’ “Jip) (t) and the remaining initial conditions are on the second iteration

5. Evaluation of the Remainder Term

Let the terms of the double series (14) as a result of solving iterative problems be defined for
0<g<n0<p<r, 30 g—iterative step in ¢, a p—orders of singular integrals. We write the
relation for the remainder Ry, (¢, €):

We rewrite the series (14) in the form

n 2 m k1 —1,..., k .. ..
s = et £ F T e ol i) )
g=0 s=1 p:Ojl,.“,j,,:O i1, ip=0 (40)
n
+ 3 lwg(t) + "1 Ry (t€)

q=0
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Substituting (40) into (2) and taking into account the iterative problems, we obtain the problem
for the remainder term R, ,(t, €),

(41)

eRy,(t,€) — A(t)Ry,(t,€) = —H(t, ),
Ry (0,€) =0,

where
2 rclom kel G
Hi=3Y[r ¥ e+
s=1 p=0ji,0 jy=0 i1, ip=0
m o Kpp—1 L
(1At eedp1/ps1) (j1i1smeejpirip)
X KBz 00, () (te)+ (42)
Jp+1=01p11=0
m k=1, k=1 . . A Lo ..
O COIRE )
Jlerfr=0 i1ueir=0
As follows from conditions (5) on the spectrum in problem (2) and estimates of the integrals

Ug,l,’il’""j pip) (t,¢€) in the lemma 1, the right-hand side of (41) has the estimate
HH(t,s)Hc[Oﬂ <C, V(t,e) € [0,T] x (0,¢0].

We write the solution (41) in the form:

t
Rk,m = % / us(t, S)H(S, E) ds,
0
where U (t, s) is the resolving operator, which is a solution to the Cauchy problem:

ell.(t,s) = A(H)Ue(t,s),  Ue(t,s) = L.

It follows from the conditions 5) on the spectrum in problem (2) that U, (¢, s) limited to [0, T] x [0, ], ¢ €
(0, 80} N
[Ue(t,5) HC[O,T] <C

Therefore, from the relation

t
R = fus(t,s)Afl(s)H(s,s)]; + /ue(t,s)%Afl(s)H(s,s) ds —
0
= —A Y1) H(t,€) + U(t,0)A~1(0)H(0, ¢) +/u€(t,s)%A*1(s)H(s,g) ds,
0
we get:

< C.

1Rnrllcpo.zy <

From these estimates, we move on to the following.

Theorem 3. On estimating the remainder (asymptotic convergence).
Let Cauchy problem (2) be given and conditions (1) < (5) be satisfied. Then the estimate is correct

n 2 r m k1—1,... ( wfipiip)
o~ £ g £ E TR e

q=0 s= 1P 0J1merfp=0 " i1yip=0 (43)
Ug{;’ll'm]p’lp)( Z eqwq(t H < C-entl,
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where C > 0 is a constant independent of ¢, a zgj;,;l]” ) (t), wy(t) obtained from solving iterative problems

for0<g<n0<p<r.

Theorem 4. About the passage to the limit.
Let problem (2) be given and the conditions (1) <+ (5). Then:

(a)  IfRe); < =6 <0, then

limu(t,e) = —A~L()h(t), t € 6o, T], &0 > 0— arbitrarily small;

e—0
(b)  IfReA; <0, thenV ¢(t) € C®[0,T]
T

lim [ (u(te) + A7 ()h(t)) @(t)dt = 0.

e—0.

(a)  The statement of this section directly follows from estimates of the integrals

Us(]g/il""'jp/i”) (t,¢) in the Lemma 1.
(b)  Inthis case Us(,];'ll’““]p'lp ) (t, €) are rapidly oscillating functions and the proof of the passage to the

limit in the weak sense follows from the Riemann-Lebesgue lemma.
O

6. Application

(a0 01
s](ﬂ—( 0 )\z(t)> J(t) +eK(t) <1 0) J(t), ”

_ (L)

where J(t) = h(t) is a vector-function. The system (44) in the general case is not explicitly solved.

We find the solution (44) by the method of successive approximations.

Lemma 1. The solution (44) is represented as a uniformly converging series on [0, T] x (0, &g], which admits
an estimate

(a) IfRe); < =6 <0, then
Mo < e Mg

(b)  IfRe); <O, then
IMcprn <C,

where C > 0 is a constant independent of e.
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Proof. Solving (44) by the method of successive approximations, we obtain:

J(t) = exp (%Aé) +exp (%Aé) ft K(s) exp (f%Aa) -T-exp <% ) ds+
0

+exp (%AB) 0ftK(s) exp <—%A5) -T-exp (%AB) OfSK(sl) exp (—%Af)l) -T-

“exp (%Af}) dsids+...,

_ (01 _[¢m@®) 0
here T_(l 0),/\6—( 10 sz(f)>’

Using property

we get

t s
[K(s)exp (143) [K(s1 exp( 1Asl) ds ds+exp< At) ]K (45)
0 . 0
exp (%AB) gK(sl)exp (—%Aff) ~be 5p) exp (%Aff)Tdszdsl ds+...,
here

£ [ @2(t) —a(t) 0
A°< 0 %m—ww>

Component by component (45) looks like
t
J1(t) = exp (%q)ﬂt)) +exp ( ) OfK exp (%Ago(s)) ds+
t s
+exp (%(pl(t)) fK( exp ( ) J K(s1) exp (——A(p(sl)) dsyds+ ..,
0 (46)
t
wwwﬂwmwwﬁ (1) [ K(s)exp (~19(6)) ds-+
S
+exp< )fK s) exp <——A<p )OfK 51 exp(lAq}(sl)) dsyds+ ..
The uniform convergence of the series (46) follows from the estimates: ko +ky +... +ky =n
(a) ReAd; < -6 <0,M= mux|Mj,,~\, Mj,,‘ = m(lle]'l,'(f)‘ te [O, T]

‘eqn(t)/e < efét/e’

t ReAq(s1)ds Re Ay (sp) d:
(b fK(S)e((PZ(S) 010 /¢ ds| < Mn fe! 1(s1) 1/s+] 2(s2) dsy /¢ ds <

0
t

< Mn [e=d=s+s)/egs = e=%t/e . Mnt,
0
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IN

; .
e?1 (/e [ K(sy)eho(s1)/e ?K(sz)e’A‘/’(SZ)/S... f;f K(sp)el-V"de(sn)/egs,, . dsy
0 0 0

<Mm)P [ [ [ (@10 =91+ +(=D)P g1 (sp)) /e

0
P02+t 10260 o gy s, < o etle . M

In this way

|h(t,8)‘ < e*ﬁt/e A eMnt < eMnT .efzit/e;
similarly
) <e .eTot/e,
|]2(t, )‘ < MnT _—6t/¢

(b) ReA; <0, t€[0,T]
(O] <M T, i=1,2.

Therefore, the series (46) converge uniformly in ¢ ¥ t on [0, T] % (0, &o]. In addition, it is easy to verify
that the rows withstand operator action s% to any degree.
O

7. Example

The simplest case of a weak turning point is the point of the first order, i.e., Ay(t) — A1 (t) =
ta(t),a(t) # 0. The solution to a singularly perturbed Cauchy problem in this case is described in [6].
Here we give a solution to the Cauchy problem

eii(t,e) = A(t)u(te) + h(t), u(t,e) = u°. (47)
and conditions are met:

(1)  Conditions (1) + (3) from (2);
(2)  Weak point condition

Ao(t) = Mi(t) = t(t = Da(t), a(t) # 0,Ax(t) # Mi(t) Vt € (0,1) U (1, TJ;

moreover, the geometric multiplicity of the eigenvalues is algebraic for any t € [0, T|;
(3)  Ai(t) #£0, ReAi(t) =0Vt e [0,T).

The Lagrange-Sylvester interpolation polynomial for function f (t) given at thenodes ty = 0,t; =1
has the form K(¢) f(t) = (1 —t(f(0) + tf(1),Ko(t) =1 —t, Ky (t) = t.
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Singularities are described as

gi(t) = L [ Ai(s)ds,
oio(te) = e?it) =12

t
%) (t,e) = e [ b0 (s1)Ko(s1)ds1,

C—= =

afrll)(t,e) — e?1(t) 2 (s1)Kq (s1)ds,

0‘<0) (t, g) — e92(t)

21 e’A"’(s1)K0(sl)dsl,

(48)

<l)(i’,8) _ e(pz(t)

Ty e (s1)Kq (s1)dsy,

S O O O

51

(51) fe*AlP(Sz)ijil (52)...
0

. . t
(71(,]’17 """ ]p)(t, g) = g‘Pl(’) g‘gA(P(Sl)ij

1 (s

i, (sp)dsp...dsy,

. t 51
Jirees ]P)(t 8) _ e(pz(t) fe—Aq;(sl)ij (51) feA(P<SZ)Kj,,,1(52)~~-
0 0
Sp-1
Ik e(*DpA"’(s!’)Kh(sp)dsp...dsl.
0
t
where p is the number of integrals, j; = 0,1, Ag(t) = [(A2(s) — A1(s))ds.
0

The solution is sought in the form
S KT S Y Ueds) gy es)
u(te) =Y &Y ) ‘ Z zs’;:k P(t)osy (L e) +we(t)]; (49)

Substituting (49) into (41), we obtain a series of iterative problems.
k=0
(A(H) = 4Dz (1) =0,
A(t)wo(t) = —h(E).
21,00(0) +22,00(0) = A~ (0)A(0) + u° (50)
zil ;']6"] R (tj,),p 21,5 =12, j, =0,1determined in the decision process
iterative tasks in 1 step.

Solution (50) can be written as

h= 5 5 POl (0ol (1) — A (bh(r) (51)
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(1,

Being undefined in this step, Ps(t)z o >(t) are found from the solvability theorem at the first

Zs pO
iterative step: k = 1
(A(E) = As(B)2 ) (1) = & (Pu(0)2T) (1) +
! (i
+jV§:0K]V+1( )P3-s(t)z3 15P+!ﬁ) (),
Alw(t) = — (A~ 1(lf)h( )) (62)
21,01(0) + 22,0,1(0) (A7) )2 [y h(s)ds)(0)
zs/p,l(tjp), p>1s=1,2, j,, = 0,1 (determined in the process
solving iterative problems in step 2).

By the solvability theorem, we obtain Cauchy problems for determining the terms of the zeroth
approximation of a solution.

p=0
$(Pu()zs00(8) = Ps(t )(P;(?‘?ng”“)) (53)
Ps(0)z50,0(0) = Ps(0)u +%, s=1,2
Solution (53) can be written as
Pi(B)z500(t) = Us(t,0)(Ps(0)u® + 2000 5 =1, (54)

To find the initial condition for the term p = 1, P; (t)zg}/)o(t), we expand the first Equation (52) for
understanding in more detail

(AW) = As()2501(6) = S (Pu(1)2300(1) + Ko()Ps-21(0) + Ka (P52, 1)

As Ay(t) — Aq(t) = t(t —1)a(t), and then weaning on P3_4(t), putting t = 0 and redesignating
3 —s Hd 5, we get
P (0)247(0) = Px(0)(Ps—5(0)23-500)(0)), s = 1,2
Putting ¢ = 1, we get Py(1)z') (1) = B(1)(Ps_c(1)z3_500(1)), s = 1,2
By induction, we obtain that for p > 1,k = 0
1y 0 . ,
PL(0)20n% (0) = By(0)(Ps_5(0)275(0)), 5 = 1,2
P12 (1) = (1) (P (D (1), s = 1,2

From here are the terms of the zeroth approximation of the solution to the problem (42)

2
g (1,6) = . Us(1,0) (P00 + PO s

S

£ E L Wt hy)R(ty)20 ) )0l (1) — A (k)

s=1p=1j1,...jp=0
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8. Conclusions

In this paper, we considered the singularly perturbed Cauchy problem in the presence of a “weak"
turning point for the limit operator A(t). It turns out that the nature of the “weak” turning point
strongly affects the structure of the regularizing functions describing the singular dependence of
the solution on the parameter ¢ . In contrast to the singularly perturbed Cauchy problems with a
“simple” rational point, the rotations of the limit operator, in which the singularities are described
by a finite number of regularizing functions, in this case there are countably many such functions.
This greatly complicates the asymptotic behavior of the solution of the Cauchy problem at e — 0.
Understanding the nature of the “weak” turning point will help in studying future studies of the
fractional “weak” turning point and the “strong” turning point. We expect that our approach can
be adapted to other related problems, for example, in the context of constructing difference schemes
when solving equations numerically.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Lomov, S.A. Introduction to the General Theory of Singular Perturbations; Nauka: Moscow, Russia, 1981.

2. Bobodzhanov, A.A.; Safonov, V.E. Regular asymptotic behavior of solutions of partial differential
integro-differential equations with rapidly changing kernels. Ufa Math. ]. 2018, 10, 3-13. [CrossRef]

3. Lioville, J. Second memoire sur le development des fonctions en series dont divers termes sont assujettis,
a une meme equation. J. Math. Pure Appl. 1837, 2, 16-35.

4. Eliseev, A.G.; Lomov, S.A. Theory of singular perturbations in the case of spectral singularities of the limit
operator. Math. USSR-Sb. 1986, 173, 544-557. [CrossRef]

5. Eliseev, A.G; Ratnikova, T.A. A singularly perturbed Cauchy problem in the presence of a rational “simple
turning point at the limit operator. Differ. Equ. Control Process. 2019, 3, 63-73.

6.  Eliseev, A.G. Regularized Solution of a singularly perturbed Cauchy problem in the presence of irrational
simple turning point at the limit operator. Differ. Equ. Control Process. 2020, 2, 15-32.

7. Eliseev, A.G.; Kirichenko, P.V. Paper Solution of a singularly perturbed Cauchy problem in the presence of a
“weak” turning point at the limit operator. Sib. Electron. Mate. Izv. 2020, 17, 51-60. [CrossRef]

® (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses /by /4.0/).

”

325






@ axioms ﬁw\n\py

Atrticle
The Modified Helmholtz Equation on a Regular
Hexagon—The Symmetric Dirichlet Problem

Konstantinos Kalimeris '* and Athanassios S. Fokas 123

1 Research Center of Pure and Applied Mathematics, Academy of Athens, 11527 Athens, Greece;
tf227@cam.ac.uk

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge CB3 0OWA, UK

3 Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089-2560, USA
*  Correspondence: kk364@cam.ac.uk or kkalimeris@academyofathens.gr

Received: 9 June 2020; Accepted: 27 June 2020; Published: 28 July 2020

Abstract: Using the unified transform, also known as the Fokas method, we analyse the modified
Helmholtz equation in the regular hexagon with symmetric Dirichlet boundary conditions; namely,
the boundary value problem where the trace of the solution is given by the same function on each
side of the hexagon. We show that if this function is odd, then this problem can be solved in closed
form; numerical verification is also provided.

Keywords: unified transform; modified Helmholtz equation; global relation

1. Introduction

We analyse the modified Helmholtz equation in a regular hexagon using the unified transform,
also known as the Fokas method. This method was introduced by one of the authors [1], for analysing
integrable nonlinear partial differential equations (PDEs) [2]. Later, it was realized that it also
yields novel results for linear evolution PDEs [3]; results in this direction are obtained by several
authors [4-10]. Furthermore, it yields new integral representations for the solution of linear elliptic
PDEs in polygonal domains [11], which in the case of simple domains can be used to obtain
the analytical solution of several problems which apparently cannot be solved by the standard
methods [12,13]. Recently, researchers utilised the integral representations provided by the Fokas
method for the local and global wellposedness analysis of Korteweg-de Vries and nonlinear
Schrodinger type PDEs [14-18], as well as for studying problems from control theory [19].

The Fokas method is based on two basic ingredients:

(1) aglobal relation, which is an algebraic equation that involves certain transforms of all (known
and unknown) boundary values.
(2) anintegral representation of the solution, which involves transforms of all boundary values.

For linear PDEs, the Fokas method involves the following:

e Given a PDE, define its formal adjoint and construct a one parameter family of solutions of this
equation.

e By employing the given PDE and its adjoint, obtain a one parameter family of equations in
conservation form. This family, together with Green’s theorem, yield the global relation.

e The above family also gives rise to a certain closed differential form. The spectral analysis of
this form gives rise to a scalar Riemann-Hilbert problem, which consequently yields an integral
representation of the solution. This representation involves integral transforms of all the boundary
values, and since some of them are not prescribed as boundary conditions, this form of solution is
not yet effective.

Axioms 2020, 9, 89; d0i:10.3390/axioms9030089 327 www.mdpi.com/journal /axioms
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e  The explicit solution of the problem is derived by determining the contribution of the unknown
boundary values to the integral representation. This can be achieved by using the global relation,
as well as equations obtained from the global relation through certain invariant transformations.

The global relation has had important analytical and numerical implications: first, it has led to
novel analytical formulations of a variety of important physical problems from water waves [20-26]
to three-dimensional layer scattering [27]. Second, it has led to the development of new techniques
for the Laplace, modified Helmholtz, Helmholtz, biharmonic equations, both analytical [28-35] and
numerical [36-47].

The above analytical solutions are given in terms of infinite series; this is to be contrasted to other
techniques based on the eigenvalues of the Laplace operator that yield the solution as a bi-infinite
series. The eigenvalues of the Laplace operator for the Dirichlet, Neumann and Robin problems in the
interior of an equilateral triangle were first obtained by Lamé in 1833 [48]; these results have also been
derived using the Fokas method [49]. Completeness for the associated expansions for the Dirichlet and
Neumann problems was obtained in [50-53] using group theoretic techniques. McCartin rederived
these results [54,55] and studied the connection of the eigen-structure of the equilateral triangle with
that of the regular hexagon [56]. The above remarks indicate that the existing literature is based on an
implicit way for deriving the solution of specific BVPs of the regular hexagon in terms of bi-infinite
series. This is to be contrasted with our work which presents a direct approach for deriving explicit
integral representations of the solution of a special BVP on the regular hexagon; the extension of the
current methodology to more general problems is under investigation.

Organisation of the Paper

In Section 2 we implement the four steps discussed above for solving the symmetric Dirichlet
problem of the modified Helmholtz equation in a regular hexagon. The main achievement of this
work is presented in Section 3 and concerns the fourth step: our analysis yields the solution for the
case of odd symmetric Dirichlet data in the closed form (34). We study the case of even symmetric
data in Section 4, where we derive the expression (37); this expression in addition to known terms
also involves an unknown term. In Section 5, Figures 1 and 2 depict the numerical verification of
the main result of Section 3; also, Figures 7 and 8 indicate that the unknown term in the expression
(37) is exponentially small in the high frequency limit, and hence this result provides an excellent
approximation for this physically significant limit.

2. The Basic Elements

The equation investigated here is the modified Helmholtz equation in the interior of the regular
hexagon, D, namely,
Qex +4qyy — 4?7 =0, (x,y) €D, (1)

where q(x,y) is a real valued function and g > 0.
Using complex coordinates,

z=x+1y, Z=x—1y,

Equation (1) becomes
gzz — B2 = 0. @

2.1. The Global Relation and the Integral Representation of the Solution in the Interior of a Convex Polygon

We first derive the global relation:
The formal adjoint also satisfies the modified Helmholtz equation

fz — B3 = 0. ®)
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Multiplying Equation (2) by §, Equation (3) by g and subtracting, we find

G9zz — 442z = 0, (4)
or equivalently
J . 9, _ .
57 (192 = d20) + 52 (47z — 4zq) = 0. ®)
Using in (5) the special solution § = e #(k=%) and employing Green'’s theorem, we obtain
/ W(zzk) =0, keC, ©)
Q)
where W is defined by
W(z, 2, k) = e~ Pke=F) {(ﬂz +ikpq) dz — (qf + %q) dz} . keC. @)

Suppose that Q) is the polygon defined via the points z1,zy, ..., 2, 2441 = z1. Then (6) gives the
following global relation for the modified Helmholtz in this polygon:

n
Y ai(k)=0, keC, ®)
j=1
where {4;(k) };1 are defined by
gj(k) = /:j+1 e B(ka=%) {(qz +ikpBq) dz — <q2 + §q> dz] , keC, )
i

or equivalently (in local coordinates) by

Zip1 . 5 i 1dz dz ;
) — —ipkz—3) |;,0) B (2% L k22 40
4;(k) /Zj e i {WN(S)—H,B(de—&-de)q (s)} ds, keC,

=1, (10)

In Equation (10) we have used the identity
q-dz — qzdz = iqnds,

where s is the arclength on the boundary z(s) = x(s) + iy(s) of the polygon and gy denotes the
derivative in the outward normal direction to the boundary of the polygon.

In order to derive the integral representation of the solution one has to implement the spectral
analysis of the differential form

d [e*"ﬂ(’“*%)y(z, k)] =W(zzk), keC. a1
This procedure yields the following theorem, proven in [6]:

Theorem 1. Let () be the interior of a convex closed polygon in the complex z-plane, with corners
21, ,2Zn, Zp1 = 21. Assume that there exists a solution q(z,z) of the modified Helmholtz equation, i.e., of
Equation (2) with B > 0, valid on O, and suppose that this solution has sufficient smoothness on the boundary

of the polygon.
Then, q can be expressed in the form
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dk

T ami Z:/ e t? k ’ (12)
where {q;(k)} are defined by (10), and {I;}{ are the rays in the complex k-plane

={ke C:argk = —arg(zj;1 — z))}, j=1,...,n

oriented from zero to infinity.

Observe that the solution given in (12) is given in terms of {4;}] which involve integral transforms
of both g and gy on the boundary, i.e., both known and unknown functions.

2.2. The Dirichlet Problem on a Regular Hexagon

Let D C C be the interior of a regular hexagon with vertices { zj}?,
721 =— —i-=les and zj = w1z, (13)

where [ is the length of the side and w = ¢’F. The sides {(zj,z]-H)}?, zy = z1 will be referred to as
sides {(j)}%.
For the sides {(j)}¢ the following parametrizations will be used:

z1(s) = M +is, zj(s) = <M +zs> W, se {,é, %] )
The general Dirichlet problem can be uniquely decomposed to 6 simpler Dirichlet problems,

by employing the decomposition

w(j’l)“’l)gi(s), j=1,...,6, s € {71 i} ;

-

Il
—

q(j) (s) =

1

indeed the determinant of the matrix {w (-16-1) } is non-zero (Its value is 216 = 6°, and for

ij=1,...6

. . \2-n(n+1)
the general case Det {w(ffl)(’*l) } =i 2 n"?).

ij=1,..n
The existence and uniqueness of the solution of the modified Helmholtz equation shows that

it is sufficient to solve each one of the above Dirichlet problems. The first of them is the symmetric
Dirichlet problem, where the value g1 (s) = d(s) is prescribed on each side. This symmetric problem is
analysed in the next section.

2.3. The Symmetric Dirichlet Problem

The problem analysed in this subsection is the symmetric Dirichlet problem for the modified
Helmbholtz equation in the regular hexagon () = D). Let d(s) be a real function with sufficient
smoothness and compatibility at the vertices of the hexagon, i.e., d <é> =d (— %) We prescribe the

boundary conditions
- 11
() (g) = L
a7 (s) d(s),se{ 2,2},] 1,...,6.

The above ‘symmetry” property also holds for the Neumann boundary values. This fact is the
consequence of the following three observations:
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2

e  The modified Helmholtz operator (% - ﬁ21d> is invariant under the transformation z — wz,

namely under rotation of 27t /3. Since the Dirichlet data are invariant under this rotation, then the
(unique) solution ¢(z, z) of the Helmholtz equation is also invariant under this rotation.

e If gisinvariant under this transformation, then the differential form g.dz is also invariant under
the transformation z — wz:

aq(z)dz = ali(wz)dz - 9wz) n(w2) lﬂl(“’z) - %q(gjzé)d(WZ).

0z 0z oz dlwz) w

e  Evaluating the above differential form on each side we obtain

1. - 1 i
_ L (40 () _ ()
g-dz : (q (s) +iqy (s)) ds : (d (s) +igy (s)) ds,
where the second equality is a direct consequence of the fact that the Dirichlet data are invariant
under this rotation.
Thus,
(D) (s) = L

gy (s) = u(s), s € {—E,E} ,j=1,...,6.

Applying the parametrization of the regular hexagon on Equation (10) we obtain:

Bk =ak), G0 =q (@), =16 (14)

with
q(k) = E(—ik)[iU(k) + D(k)], (15)

where E(k), D(k) and U (k) are defined by

E(k) = eﬁ(k%)%,
1 5 1
D(k) = B (E - > / P K (s)ds, (16)
3 1
Uk) = / | P+ D3y (5)ds, keC.

2

The function D(k) is known, whereas the unknown function U(k) contains the unknown
Neumann boundary value u(s) = gn.
Using (15), the global relation (8) takes the form

E(—ik)U(k) + E(—iwk)U(wk) 4+ E(—iw?k)U(w?k)
+ E(ik)U(—k) + E(iwk)U(—wk) + E(iw*k)U(-w?k) = iG(k), k € C, (17)

where the known function G(k) is defined by
6 . .
Gk =Y E (—iw/-lk) D (wf—lk) ,  keC. (18)
j=1

The integral representation (12) of the solution takes the form

1 & [ ip(kez s i , i1\ 5 dk
q(z,2) = R;/Ije’ﬁ(’“ DE(—iw ) [D (@ 7k) +ill (o 1k)}?, (19)
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where {I;}{ are the rays defined by

lj:{ke(C:argkzllfzzjn}, i=1,...6, (20)

oriented from zero to infinity. The principal arguments of {ly,lp,13,1s,151c} are
3m 7m 57 m m 11w respectivel
276626 6 J P
Since the function d(s) can be uniquely written as a sum of an odd and an even function, we will
only consider two particular cases:

(i) the odd case, d(—s) = —d(s);
(ii) the even case d(—s) = d(s).

The solution and the Neumann boundary values inherit the analogous properties:
(i) inthe odd case, u(—s) = —u(s), which yields U(—k) = —U(k);
(ii) in the even case, u(—s) = u(s), which yields U(—k) = U(k) for all k € C.
3. Derivation of the Solution for the Symmetric Odd Case

In what follows we will show that the contribution of the unknown functions {U (w/~'k) }? to
the solution representation (19) can be computed explicitly.
Applying the condition U(—k) = —U(k) in (17) we obtain the equation

A(ik)U (k) + A(iwk)U(wk) + A(iw?k)U(w?k) = —iG(k), ke C, 1)

where G(k) is given in (18) and A(k) is defined by

Solving (21) for U (k) and substituting the resulting expression in (15) we find

4(k) = E(—ik)D(k) + %
U(wk)

HHE(=ik)E(—ieok) = E(=ik)E(iwh)] =1 5

+ i[E(—ik) E(—iw?k) — E(—ik)E (iw?k))

(22)

The functions §;(k) can be obtained from (22) by replacing k with wkforj=1,...,6.
Regarding the integral representation of the solution, we restrict our attention to the first integral
of (19), namely the integral along /; (the negative imaginary axis).
Let
P — eiblk—7),

Solving (21) for U (k) and substituting the resulting expression in the first integral of (19) we find that
the known part of this integral is given by the expression

F= é/h PE(—ik) {D(k) + m} = (23)
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The unknown part involves the functions U (wk) and U(w?k) and is given by

2
Ci = 4171 '/I1 P {E(fik)E(fiwk) Li((‘zf;:;) n E(—ik)E(fiwzk)%} %
2
- ﬁ /l1 P {E(fik)E(iwk) Li((‘lf;(k)) + E(—ik)E(ico?k) UA(‘(‘;k;‘)} %.

In what follows we will show that the contribution of the unknown functions, namely of the sum
yéc j, can be computed in terms of the given boundary conditions.
The first integral in the rhs of C; can be deformed from [; to I{, where ] is a ray with %” <argk <

3, choosing /4 = I, we obtain
C =6+, (24)
where (wk) (w?k)
A~ 1 . o U(wk » o U(w?k) ] dk
and (wk) (w?k)] dk
< _i : . . U(w . . 92 U(w ak
Ci=—p /I]P{E( i) E(icok) g + E(~iR)E(i) 5 } =

The above deformation is justified, since it can be shown that the integrand of ¢ is bounded
and analytic in the region where argk € [77, 37]: letting o = ¢'%, we can rewrite the first term of the

672
integrand of C; in the form

(z‘ak)E(—i%é)-iwk)Eﬁ (k) g5 (wh)Ur (k).

b

PE 5 (iak) £

We observe the following;:

e The zeros of A(ik) occur when ik + + € e '3R, thus k € R.
2 ‘ .
e  The function PE V3 (iak) = ¢iPk(z=2)+(2-2) is bounded and analytic for argk € [7Z, 3]

Indeed, if z € D, then 57” < arg(z —zp) < 37” Thus, if %” < argk < 37", it follows that
27 < arglk(z — z2)] < 37. Hence, Re{ik(z — z5) } < 0.

Therefore, the exponentials ¢/?(2=22) and ¢%#2) are bounded.

1
e The function E~ V3 (wk)U(wk) is bounded and analytic for arg k € [%Z, 13%], namely in the region
where Re(wk) > 0.

Indeed, this expression involves the exponentials eBk(s=3) and ¢ ﬁ(sf%), which are bounded in
this region, since s < é
e  The function ) } ,
E V3 (iak)E(—ik)E(—iwk)EV3 (wk)  EV3(k)
A(ik) A(ik) ’

is bounded and analytic for argk [%”, 37” .

Indeed, since k is at the lower half plane, then

which is bounded if Re (wzk) > 0.

Ifargk € [7Z, 3], then arg (w?k) € [17, 7], which yields Re (w?k) > 0.

i
A
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Similar considerations apply to the second term of the integrand of Cy; this term can be rewritten
in the form s .
EV3 (iak)E(—ik)E(—iw?k)EV3 (w k)
A(ik)

PE 5 (iak) V(@)U (w?k).

We observe the following:

_2 . .
e  The function PE V3 (iak) = ¢iPk(z=22)+ £ (2-2) is bounded and analytic for argk € [7Z, 3]

1
e The function E~ V3 (w?k)U(w?k) is bounded and analytic for argk € [Z, 1L7], namely in the
region where Re(w?k) > 0.
e In the lower half plane

EV3 (iak) E(—ik) E(—ick) EV3 (w?k)
AGR)
71 31w

Thus, it is bounded and analytic for argk € [7F, 5 ].

~1, k — oo.

Using the underlined symmetries, we can express the integral representation of the solution in
the form

q:iFJericj:ijﬁi(éﬁc}), (25)
j=1 j=1 j=1 j=1
where F; and C; are given by applying in (23) and (24) the following rotations:
k=@ h—=1, b=l j=2,...,6 l=I.
We define C = Cj—l +C i, ] =1,...,6, where we employ the notation CO = CAé‘ Then, we rewrite

the expression in (25) in the form

CG+Y ¢=
0 j

g( )=_2Fj+ic]-. (26)

.Mo
M(.n
Mo

q= F+

1 J

\H.M@

1

]

Thus, it is sufficient to compute the contribution {éj}?. In this direction we find (via rotation) that

&= 7$ /1279 {E(fiwk)E(iwzk) LAIEZZ‘)) +E(fiwk)E(iw3k)LAIE;f:))} k.
Thus
G=C+GC
:ﬁ/I;P {E(—ik) (—iwk) Li((‘z"k)) +E(—ik)E(—iw2k)u((Ll;;‘)} %
- i [ [EtienEm S ¢ p i S ] 4

Using that w® = —1 and U(—k) = —U(k) the above expression is simplified to

417[ PE(fzk) (—icok) A(ik)U (k) + A(iwk?u(w(c) + A(iw?k)U(w?k) dk @)

= A(ik) A(iwk) k

Employing the global relation (21) we obtain

1 G(k)  dk

G = 7>E( ik)E(— iwk)m? (28)

47ti
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In summary, the solution takes the form
6 6
q:ZF]+ZC]’ (29)

where F; is defined by

G(wi k)

/PE (—iw k) { (wfflk)—&—m

dk
1= 4mi k (30)

and éj is defined by

1= 4mi

G(wi=2k) dk
Aiw k) A(iwi=2k) k*

/ PE(—iw2k)E(—iw k) (31)

Note also that the integrals of C can be deformed on a sector of angle . For example, in C2 the ray I
can be deformed in a ray I} in the sector argk € (7, 53? ); analogous results are valid for the remaining
{C8.

Observing that G(wk) = G(k), Equation (29) can be further simplified to

S 1 E(—iwlk)G(w/ k) T dk
47[12/ { B(—iel D) + s | (32)

In order to write the integral representation in a more compact form we make the change of
variables k — w!~/k in the integrals in Fjand C;. In this procedure:

1.  the fraction dk remains invariant;

2. therays; become ly;
3. theexponent P = ¢#(k1) becomes e (uﬂ e wli’fk);
4. the remaining integrands are equal to the corresponding integrands in F; and Cj.
Thus, we obtain
q= é /I1 T {E(—ik)D(k) - %G(H % (33)
where

T — 26: eiﬂ(whjkz_mlifk),

j=1

We make the change of variables k — —ik in the integrand of (33), so that the contour of integration
transforms from the negative imaginary axis /1 to the real imaginary axis, and we summarize the above
result in the form of a proposition.

Proposition 1. Let g satisfy the modified Helmholtz Equation (2) in the interior of a regular hexagon defined in

(13). Assume that on each side of this hexagon an odd symmetric Dirichlet boundary condition is prescribed,
namely,

i 11
(1 (g) = LN I
gV (s) = d(s), s€ { 2,2}, i=1...,6

with d(—s) = —d(s) and (75) =d (%) =0
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The solution q can be computed in closed form:

1
47i

© i . E(—wk) 7 dk
/0 R(k,z,2) [E(—k)D(—zk)—mG(—zk) sl (34)

q(z2) = k,
where R(k,z,z), D(k), E(k), G(k), A(k) are defined as follows:

E(k) = eF6+D'Y, Dy=p (% - k) /i PTG (5)ds,
= Zé; E <fiwf‘1k) D (wf—lk) A(k) = E(k) —E(—k), keC.
= ’ '

4. The Symmetric Even Case

Applying the condition U(—k) = U(k) in (17) we obtain the following equation
AT (iK)U (k) + AT (iwk)U (wk) + AT (iw?k)U(w?k) = iG(k), keC, (35)

where
AT (k) = E(k) + E(—k)

and G(k) is known and given in (18).
Following the same stems used in Section 3 we derive the analogue of (28), which yields the
following formula for 62:

1 , Gk)  dk
air J, PECIOE (i) S A ol
U(w?k)  dk
+ ﬂ AT (iR)AT (k) k7

G =
(36)
where in addition to the known part which involves G(k), there now exists an unknown part which

involves U(w?k).
Thus, the analogue of (29) now takes the form

=) F+) Aj+} B (37)

where F; is known function defined by

i G(wi=Yk) 7 dk
: —jwl 1 j—1 [ S A (i
= 4m/ PE(~iw k){ W0+ o)) B @)
Aj is also known and defined by
i G(w/=2k) dk
. —iwl 2 j=1
j= 471’1/PE iw!”k)E(—iw k)A il k)M (i %K) K (39)

whereas B; is the unknown function defined by

j
5 _ U(wik) dk

- —_. 4
I 27r A+(zw/ AT (iwi=2k) k (40)
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It can be shown that each of B; decays exponentially fast as p — oo. The rigorous proof of this
statement will be presented elsewhere. In the next section, this fact will be indicated via the numerical
evaluation of each of the terms appearing in Equation (37).

5. Illustration of the Results

5.1. Odd Case

Below we depict the solution obtained by (34) for various choices of the Dirichlet datum d(s) and
of the parameter 8. At all the examples we have fixed the length of the side of the hexagon I = 2.

For the first example we employ the Dirichlet datum d(s) = sin(7ts) and the parameter p = 1;
see Figure 1.

Figure 1. The solution q given by (34) for d(s) = sin(7ts), | =2and p = 1.

We also depict the deviation of d(s) from the function obtained by the integral representation
(34) evaluated at the side of the hexagon, namely at x = % =+V3andy =s¢€ [—%, %] =[-1,1];
see Figure 2.
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6.x107" |

41077 |

BRI A /\ A £ ot
KAk (R TId

-4.x1077 |

-6.x1077 |

Figure 2. The deviation of ¢ (given by (34)) from the actual Dirichlet datum d(s) evaluated at the side
of the hexagon; here we employ d(s) = sin(7ts), [ =2 and = 1.

For the second example we employ the Dirichlet datum d(s) = sin(7s) and the parameter
B = 1/5; see Figure 3.

1.0
0.5
0.0
-0.5

-1.0
-2 1 o 1 B

Figure 3. The solution q given by (34) for d(s) = sin(7s), | =2and p = 1/5.

For the third example we employ the Dirichlet datum d(s) = sin(27ts) and the parameter = 1;
see Figure 4.
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Figure 4. The solution ¢ given by (34) for d(s) = sin(27ts), | =2and g = 1.

5.2. Even Case

In this case we employ the Dirichlet datum d(s) = cos (¥s) and the parameter f = 1 at the
known part of the rhs of the formula (37), namely the expression

gl

6
Fi+ 21 Aj, (41)
=

-
Il

where Fj and A; are given by (38) and (39), respectively; see Figure 5.

0.5

0.0 1 L L 1 L L ' TR L PR
2 1 0 -1 -2

Figure 5. The known part of the solution g given by (41) for d(s) = cos (§s), I =2and g = 1.
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We also depict the deviation of d(s) from the above expression evaluated at the side of the hexagon,
namely at x = v/3and y = s € [—1,1]. This is equal to the contribution 2]6:1 Bj, with B; given by (40);
see Figure 6.

-1.0 -05 05 1.0

Figure 6. The deviation of the known part of the solution g given by (41) from the actual Dirichlet
datum d(s) = cos (%s), I =2and = 1, evaluated at the side of the hexagon.

Furthermore, we depict the latter contribution for the different values of g = %, %, 1,2,4, where it
is clearly shown that the error decreases drastically with the increase of §; see Figure 7. We observe
exponential decay for z # zj, j = 1,...,6: in Figure 8 we depict the deviation from the actual Dirichlet
data for three points on side (1) of the hexagon, namely a; = (\@, 0) , 0y = (ﬁ, %) , k3 = (\/g, 1%),
with B in the intervals I = [1,8], I, = [1,10], Iz = [1,58], respectively.

0.15

0.10

0.05F
M‘A
1.0 -05 0.5 1.0

Figure 7. The deviation of the known part of the solution g given by (41) from the actual Dirichlet
datum d(s) = cos (%s) and | = 2, evaluated at the side of the hexagon. This deviation is depicted for
the different values of p = i, %, 1,2,4, and it decreases drastically with the increase of .
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0.01

1074

10 20 % 10 50
Figure 8. The deviation of the known part of the solution g given by (41) from the actual Dirichlet datum
d(s), evaluated at three points of side (1) of the hexagon, namely ay = (\/3, 0) inred, ay = (\/3, %)

in blue, a3 = (\/5, %) in black. The deviation is depicted against 8 and it displays exponential decay.

6. Conclusions

In this work we have presented the explicit solution of a particular boundary value problem
for the modified Helmholtz equation in a regular hexagon: we have solved the case where the same
Dirichlet datum d(s) is prescribed in all sides of the hexagon, and this function is odd. This explicit
solution is described in Proposition 1. We have also obtained an approximate analytical representation
for the solution for the case that d(s) is even. The exact representation is given by Equation (37),
where the terms Fj and A; are given in terms of d(s), but the terms B; involve the unknown Neumann
boundary value. However, these terms are exponentially small as f — co. Thus, for the case of large
B, Equation (37) provides the solution to this problem with an exponentially small error. The above
analytical results were verified numerically in Section 5. The rigorous investigation on the analytical
and numerical accuracy of the latter approximate formula will be presented in future work.

It should be noted that the arbitrary Dirichlet problem can be decomposed into 6 separate and
simpler Dirichlet BVPs, which are defined in Section 2.3; the first of these BVPs is the symmetric
Dirichlet problem. The analysis of the remaining problems is a work in progress.
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1. Introduction

This is part of a series of papers about g-integral representations of g-hypergeometric functions. The
first paper [1] was about g-hypergeometric transformations involving g-integrals. Then followed [2],
where Euler g-integral representations of g-Lauricella functions in the spirit of Koschmieder were
presented. Furthermore, in [3], Eulerian g-integrals for single and multiple g-hypergeometric series were
found. However, this subject is by no means exhausted, and in the same proceedings, [4], concise proofs
for g-analogues of Eulerian integral formulas for general g-hypergeometric functions corresponding to
Erdélyi, and for two of Srivastavas triple hypergeometric functions were given. Finally, in [5], single
and multiple g-Eulerian integrals in the spirit of Exton, Driver, Johnston, Pandey, Saran and Erdélyi are
presented. All proofs use the g-beta integral method.

The history of the subject in this article started in 1889 when Horn [6] investigated the domain of
convergence for double and triple g-hypergeometric functions. He invented an ingenious geometric
construction with five sets of convergence regions in three dimensions which was successfully used
by Karlsson [7] in 1974 to explicitly state the convergence regions for the known functions of three
variables. We adapt this approach to the g-case, by replacing additions by g-additions and exactly
stating the convergence sets for each function. Obviously combinations of the g-deformed rhombus in
dimension three appear several times. It is not possible to depict the g-additions in diagrams, not even
in dimension two; they depend on the parameter q. We recall Karlssons paper, which seems to have
fallen into oblivion. We give proofs for all the convergence regions, and our proofs also work for
Karlssons equations by putting g = 1.

Saran [8], followed by Exton [9] gave less correct convergence criteria. By giving g-integral
representations for these functions, we also correct and give proofs for the formulas in K.J. Srivastava [10]
(not Hari Srivastava). He did not give many proofs, and our proofs also work for his equations by
putting g = 1.

Axioms 2020, 9, 93; d0i:10.3390/axioms9030093 345 www.mdpi.com/journal /axioms
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2. Definitions
Definition 1. We define 10 g-analogues of the three-variable Lauricella-Saran functions of three variables plus

two G-functions. Each function is defined by

+oo xmynzp

Y—
ol iy

s
M1l

M

As a result of lack of space, for every row, we first give the generic name, the function parameters, followed
by the corresponding ¥ according to (1).

Function ¥
LSH p Y
Dg (a1, a1, 00, B1, B2, B2 Y1, Y2, V319 %, Y, 1) e p (Prid)m (o)

rom(v20)n (va:9) p
<I>F X1, &1, K1, .Blr .327 .Bl; Y1, 72, ’72|q; XY,

) mtntp BUDm+p Bod)n
(r1:9)m (72?‘7>n+p
<D‘17‘1>nl+ﬂ+p Bug)m /327‘1>r1</33iq>p
(ri:q)m ('YZW)VHrp
(@1;q) m (@230) nt-p (Brif) m+p (B2:9)
(i) m(v20) n(v3:0) p
(@1;9)m (@2;0) n+p B m+p B2s)n
o m (V2 p
(al?q>nz a2,q)n(83,9)p ﬁl?‘])nHP(ﬁZF‘? n
i) m (2 sy
(“1?'7 m+p<“2?ﬂ n(ﬁl;‘i m+n(B2:q p
<71}ll>m<7277>n+p
(0;0) s p (02:0) n (B m+p B2i)n
<71ifl>m<727‘1>n+p
a1,q) m (22:9) n+-p {B159) m (B2:9) n (B3:q) p
(Y1) mind P
a1;9)m{a2:9) n+p{B1;9) m+p(B2q)n
<71}W>M+n+p
&5q n+p—m<ﬁ1}q m+p ,32}q>n
('Y:'ﬂ)rwp—m
(@)t p—m B m (B2a)n (Bas) p
('Y?q)»wrp—m

&

(1
G, 01,41, B1, B2, B3 11, Y2, 12195 %, Y,
€3}

S

(@1, a2, 02, B1, B2, B Y1, Y2, 1319 X, Y,

S

S

N(@a, a2, a3, B1, B2, B Y1, Y2, Y23 %, 1,

S

p(a1, a2, 00, B1, B1, B2 Y1, Y2, 12|95 %, 1,

S

(1
DR (a1, a2, a1, B1, B2, B1; Y1, Y2, 12|95 %, Y,
s (a1
Dr(ay, a0, B1, B2, B1; 11, Y1, M1 X Y,

Ga(a; B1, B2 v19: %y, 2)
Ga(; B1, B2, B3; v|a: x,,2)

a1, 00,42, B1, B2, B3 Y1, Y1, MG X, Y,

z)
z)
z)
z)
M@, a2, 0, B1, Bo, Br; 11, Y2, 12195 %, Y, 2)
z)
z)
z)
z)
z)

In the whole paper, Agm,n,p denotes the coefficient of x™y"zP for the respective function.
In the following, we follow the notation in Karlsson [7].
Discarding possible discontinuities, we introduce the following three rational functions:

A
Yy (m,n,p) = lim M, m>0,n>0,p>0,

€400 Aem,en,ep

Alemsn

. ,em,en+1,€,

Yo(m,n,p) = lim — P
€—>+o0 Agm,en/ep

,m>0,n>0,p>0, )

Al,em,en,eerl
]

|
g

Y3(m,n,p) = m>0,n>0,p>0.

€=+ Aem,en,ep
For 0 < q < 1 fixed, exactly as in Karlsson [7], construct the following subsets of Ri:

Co={(r,5,0)]0<r<[¥1(1,0,0)] 71 A0 < s < [¥2(0,1,0)[ A

> ®
A0 < t< [¥3(0,0,1)] 7'},

Xg={(r,s,0)|V(n,p) e RL:0 <5 < [¥2(0,m,p)| VO <t < [¥3(0,n,p)| "}, @)

Yy = {(r5,0)| Y(m,p) €RZ:0 <1 < [¥1(m,0,p)[ VO <t < [F3(m0,p)}, )

Zg={(r,s,1)|Y(mn) € R% 10 <7 < [¥1(m,n,0)| VO <s<[¥o(m,n0)]"}, ©)
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E;={(r,s,t)|Y(m,n,p) € Rf_ 0<r< \‘Yl(m,n,p)\’lv

7
VO <s < [Ya(mnp)| VO <t< [¥s(mnp)| '}, @

Dy =E;NXNY,NZgNCy; ®)

Then let D; € (R4 U {0})® denote the union of Dy, and its projections onto the coordinate planes.
Horn’s theorem adapted to the g-case then states that the region Dy is the representation in the absolute
octant of the convergence region in Cg. We will describe D;, and D, by that part S; of BD; which is not
contained in coordinate planes.

Theorem 1. For every row, we first give the generic name, Dy, followed by the corresponding q-Cartesian
equations of Sg.

Function name D,; gCartesian equation of S,
O E;  rdgs@gteg2ysvi=1
Pg E;NY, E=1
Dg Y, NZ4 régt=1rd;s=1
Pg E; =1
Dy Y, NG, r@gt=1s=1
Dy Y, NGy rigt=1s=1
Op Yy NZ, r@gt=1rdss=1
o Y,NC,  Vregvit=1s=1
bg Gy r=1s=1,t=1
D Cq r=1s=1t=1
Ga ;NG rdgt=1s=1
Ggp Cq r=1s=1,t=1

The idea is to follow Karlsson’s proofs and then replace the additions by the respective g-additions.
This gives identical convergence regions as for g-Appell and g-Lauricella functions. For each function,
for didactic reasons, we first compute the quotient of corresponding coefficients.

Proof. For the notation we refer to [2]. Consider the function ®g. We have

Aq,m+1,n,p o <Dél +m-+n+ p, ,31 —+m; ¢7>1

Agqmn,p h (71 +m,1+m;q) !

Aq,m,n+1,p _ (061 +m+n+pBa+n+p; q)1 ©)
Agmn,p (y2+n14+nmq) !

Agmuprt (g +m+n+p,Ba+n+pq)h
Aq,m,n/p <73 + prl + Pi‘1>1 ’

Then we have

Co={(rst)]0<r<1A0<s<1A0<t<1}

2 2
_ n P
Xq—{(r,s,t)|0<s<(n+p) /\0<t<(n+p)}

_ m P
Y, ={(rs ] 0<r< m+pAO<t< m+p}

- m n (10)
Zg={(rst)0<r< m+n/\0<s< m—i—n}
m le

E,={(r,s,H]|0<r< ———A0<s< —— A
! m+n+p (m+n+p)(n+p)

2

P
N<t< —F 1,

(m+n+p)(n+p)}
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We have convergence domain <r DgsDgt Dy 2\/§\ﬂ) "o

In the following, we do not write regions which are obviously bounded by 0 < x < 1. Consider
the function ®g. We have

Agmiinp (@ +m+n+p,B1+m+p;qh

Aq/m/n,p <71 +m,1+m; q)l ’

Agmptrp _ (@1 +m+n+p,po+mq) (11)
Agmmnp (t+n+pltmgy ’

Aq,m/n,erl - (e +m+n+p, p1+m+pgh
Aq,m,n,p N <'YZ +n+pl+ p?‘7>1 ’

Then we have the following regions

Yy ={(rs]0<r< (mlﬂ?)z/\0<t< (L>z}

m+p
Zqz{(rls,t)|0<r<m+n/\0<s<m+n} (12)
/\0<t<%}.

We have convergence domain ¥ < 1.
Consider the function ®g. We have

Agmiinp _{mtmtn+tppi+magh

Aq,m,n,p <'Yl +m,1+m; ‘7)1 !

Agmn+1,p _{mtmtntppotngh 13)
Agmn,p (r2+n+pl+ngh ’

Agmnp+1 (o +m+n+p, B3+ pqh
Agmnp (ra+n+pl+pgn

Then we have the following regions

Y, ={(rst)|0<r< " po<t< L }

m+p m+p
m
Z; = t
g=1{(rs)|0<r< ern/\0<s< ern}
m n+p (14)
E;={(rs)0<r< ————A0<s < ———A
m+n+p m+n+p

/\0<t<&}.
m+n+p

We have convergence domain r ©,t <1, r g5 < 1.
Consider the function ®x. We have

Aq,m+l/n,p _ <1X1 +m, ﬁl +m+ P?q>1

Agmnp (71 +m,1+m;q)

Agmurip _ (w2 +n+p,Br+nqn (15)
Aq,m/n,p <’YZ +n,1+ n;q>1

Aq,m,n,p+1 - <“2 +n+p, ,B] +m+ P;q>1
Agmmp (r3+p1+pan '
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Then we have the following regions

- n p
Xy ={(rst)0<s< n+p/\0<t< n+p}

= n _r
Yy ={rs,H]0<r< S n0<t< i)
E, = t)] 0 " AO < n A (16)
q_{(rlsl )| <r<m+p <s m
pz
N<t< —— 1.
CEICEN

We have convergence domain ¥ < 1.
Consider the function ®y;. We have

Aq,m+1,n,p _ <“1 +m, ,Bl +m+ P}q>1

Aq,m,n,p <r)/1 +m,1+m; q>1

Aq/m/nJrl,p _ <1X2 +n+p, ,32 +n; q>1 (17)
Agmn,p (r2+n+pl+mg’

Aq,m,n,erl _ <tX2 +n+4 p, ﬂl +m+ p;q>1
Aq,m/n,p N <’)‘2 +n+p 1+ p;q>1 '

We have the following regions

Y, ={(rst)]0<r< nj_ No<t< P }

m+p m+p (18)
E, ={(r,s,t)|0<r< M po<s<ino<t< P }
1 ” m+p m+p
We have convergence domain r @, t <1, s < 1.
Consider the function ®5. We have
Aq,m+1,n,p _ <0¢1 —+m, ﬁl +m+p; q>1
Agmnp (y1+m,1+m;q)
Agmnt1,p _ (g +n, By +1;q)1 (19)
Agmn,p (r2+n+p1+nq).
Az],m,n,p+1 _ (Dé3 + p, ﬁl +m+ p;l]>1
Aqmn,p (r2+n+p1+pian
We have the following regions
Xq:{(r,s,t)\0<s<¥/\0<t<n;rfp}
m P
Y, = L5, H)0<r< ANO<t< —/——},
3= A0l i T 0)
m n+p n+p
E, = — A<t < ——}
g {(r,s,t)|0<r<m+p/\0<s< " < m+p}

We have convergence domain r St <1, s<1.
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Consider the function ®p. We have

(w1 +m+p,p1+m+n;q)
Aq,m,n,p (71 +m, 1+ m; 61)1

Agmptip _ (a2 +n,p1+m+mq) o
Aq,m,n,p <')’2 +n+p, 1+ n; q>1
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(r2+n+p1+pigh
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Aq,m,n,p

We have the following regions

X;={(rst)|0<s < +p/\0<t< :}-p}

m P
Y, ={(r,s1t)]0<r< ANO<t<
= s nlo<r< I )

m
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m? n+p
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We have convergence domain r ©gt <1, r ®gs < 1.
Consider the function ®r. We have
(y +m+p, Br+m+pigh
Aq,m,n,p <71 +m,1+m; q>1 ’
Aq,m,n+1,p _ <042 +n, ,32 +n; q>1 (23)
Aq,m,n,p <')/2 +n+p, 1+mn; q)l ’
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Agmiinp
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We have the following regions

Xy ={(r,51)]0<s< +p/\O<t<n;;’g}
mo\? 2
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m+p m+p 28)
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We have convergence domain /7 & Vi<l s<1.
The convergence regions for the following two functions are obvious.
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Consider the function ®g. We have

Aq,m+1,n,p _ <0€1 +m, ﬁl +m; ¢7>1
Agmmp  (m+m+n+pl+mg)’
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Aq,m,n,p+1 - (e +n+p,Bs+pah

Aq,m,n,p <'Yl +m+n+Pf1+P?‘i)1.

Consider the function ®1. We have
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Consider the function ¢, . We have
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Agmuip _ (at+n+p—mps+mqh 27)
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We have convergence domain r @, t <1, s < 1.
Consider the function ®g,. We have
Aq,m+1,n,p _ (y+n+p—m—1,B1+m;q)
Agmnp (a+n+p—m—1,1+m;q)’
Agmn+1,p _ (a+n+p—m,Ba+n;q) 29)
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The convergence region is obvious. [

The convergence region xy < z for functions ®r and ® is shown in Figure 1.
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xy<z

1

Figure 1. Convergence region xy < z for functions ®p and ®.
3. g-Integral Representations

We now turn to g-integral expressions of the respective functions. Sometimes we abbreviate the
integral ranges by vectors with numbers of elements equal to the numbers of g-integrals.

Theorem 2. A triple g-integral representation of Px. A q-analogue of Dwivedi, Sahai ([11] 4.33). Put

_ €1,€2,C3
=T a1,by,ba, c1 —ay,ca — by, c3 — by } ' 30)
Then
™ <b1+P?‘1>m<”2?‘1>n+pxmyan 1 _
Pg =C %uu1+m1 u; o
K WEZO GGy, o (@9)ei -1 (31)
0" (q0; )y, 10" TP (903 )y -y 1 dg (1) dg (0) dg ().

Proof. The equation numbers in the proof refer to the authors book [12]

—
by 5 (i) (b1 + P2

LHS

a (La)m(La)n(L;q)

m,n,p=0 m n P 32)
, c1,C2,63,81 +m, by +p, by +n by3x (7.55) REIS.
ay,by, by, 01 +m,co+m,c3+p
|

Definition 2. Assume that n = (my,...,my), m = my + ...+ my and a € R*. The vector

g-multinomial-coefficient ( %); [3] is defined by the symmetric expression

M)y L Dm (L @m, - (Lq)m,

The following formula applies for a g—deformed hypercube of length 1 in R". Note that
formulas (34) and (35) are symmetric in the x;.
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Definition 3 ([3]). Assuming that the right hand side converges, and a € R*:

B ) n /—a * i
(189" x18;...Byq"xn) "= ) (—xj)"™i < 7 ) g (2)+am, (34)
my,..., My =0 j=1 q

The following corollary prepares for the next formula.

Corollary 1. A generalization of the q-binomial theorem [3]:

E| a E EI a —a __ & <11,' >m'x_m7 R*
(18y9°x18;...859°x,) "= ), ~ =, s e R™ (35)
iz (L

Proof. Use formulas (33) and (34), the terms with factors q*(%*”m cancel each other. [

Theorem 3. A double g-integral representation of ®y; with g-additions. A q-analogue of Saran ([8] 2.13).

101
Y172 a—1 a1
D =T 1 . o 2
MZET 0y, a0, 71 — 1,72 — 2 -/0 /0 R (36)
(qUJQ)WZ—aZ—lm(l = qﬁl ux By 451 Z’Z)iﬁ] dg(u) dg(v).
4 2
Proof. The equation numbers in the proof refer to the authors book [12]
LHS — Jri:o </32r'Q>n<ﬁ1?‘7>m+p<“1?@m (“2?q>n+p Xy1zP
5 WL (La)n(La)p(v2 @nsp
by (146) 2 By q)n (B Qmtp mynzp T Y Y2, 00 M0+t p
=L (La)n (L) " a0, 1 +mytntp
by (7.55) r, 1,72 37)
Q1,082,771 — K1, Y2 — A2

1,1
A A ) PR V) M

] (B2 @)n(B1; Q) m+p

P2 4)n{P1q)mtp p by (727),65)
0 (Lq)m (L q)n(L; ‘7)}7

(ux)™(vy)" (vz) RHS.

|

Remark 1. Saran ([8] 2.12) gives a similar formula for Oy without proof. It is, however, not clear how it is proved.

All the following vector g-integrals have dimension three. We denote § = (s,t,u). The short
expression to the left always means the definition.

Theorem 4. A g-integral representation of Pg. A q-analogue of ([9] (3.11) p. 22).

Dg (a1, a1, 00, B1, B2, B2 Y1, Y2, 13|95 %, Y, 2)

1,772,773 /1 T
! s si)y y 1 38
TN 11,09, 03,91 — V1,72 — V2, 73 — 13 } J5 (9 ‘7)77%1 (38)

Dg(ay, a1, 01, B1, B2, B2; V1, V2, V3|q; 5%, ty, uz) dg (s).
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Proof. Put

D=T, 11,72,73
Vi,V2,V3,71 — V1,72 — V2,73 — V3
<1xl}q>m+n+p<.81;q>m<.52;q>"+r7 m, o p
x™MyzP.
o (L @)m(Lv2;q)n(1,v3:q)p

+oo (39)

Then we have (The equation numbers in the proof refer to the authors book [12])

by (:654) D(l _ q)3 +Z°° qk(v]+m)+i(vz+n)+j(V3+p)
k=0

A+ Kq) - 10+ 54) g1 (14 i g1

by (6.8,6.10)

RHS

D(1 —q)3 Jio qk(ll1+m)+i(vz+n)+j(V3+}7)
ki j=0
(1 —vir(r2 —v29)i(v3 —v3:9);(L L, 1 q)e
(La(La)i{La) (v — v, 72 — V2,73 — 13)e0
by<:727)D(l_ E (m+y,n+7,p+7,1,1L1L7)
(V1 +m, vy +n,v3+p, 71— V1,72 — V2,73 — V3 Q)0
HS.

(40)

by (1.45,1.46
y ( ) I
O

Theorem 5. A g-integral representation of Px. A q-analogue of ([9] (3.13) p. 23).

1 =
Y1,72,73 -1/ =
=T / F1(g5q), <

T vi,vo,va,71 — Vi, 72 — V2,73 — Vs } i (45:0)5 -7

(41)

D (aq, a2, 02, B1, B2, B1; V1, V2, V3| X, ty, uz) dy(s).

Proof. See the proof (40). [
Theorem 6. A g-integral representation of ®g. A g-analogue of ([9] (3.12) p. 22).

D¢ (ay, a1, 01, B1, B2, B3 Y1, V2, V2|95 %, ¥, Z)

A, A2, A3 /T_, 7
=T s S;q)s z =7 42
d { Bu, B2, B M — P, A2 — Ba, Aa — s } 5 ¢ WEDip “2)

-

Dg (g, a1, 01, A1, A2, A3; Y1, Y2, 2 G5 5%, by, uz) dg (s).
Proof. Put
A1, A2, A3
D=T
1 { B1, B2, B3, A — B, A2 — B2, A3 — B3

(061;q>m+n+p</\1}11>m</\2}‘1>n<)\3/"7>17 o p
x"My"zP.
m,1,p=0 <lr'71”7)”’<1;q>ﬂ<1;q>p<72?q>n+p

+o0 (43)
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Then we have (The equation numbers in the proof refer to the authors book [12])
+oo
RHS % ¢ D(1-gq)° y. gF(Brtm)+i(Batn)+j(Ba+p)
k,i,j=0
A+lqr-p -1+ 50 r—p—1 L+ 1) A—ps—1

bYOS6I0) [y 3§ KBt it (pa+y)
kij=0

(44)
(M = B k(A2 — B2 7)ifAs — B3:9) (L, 1L, L 1) eo
(Lae(La)i(L9)j{(AM — B1, A2 — B, Az — B3)eo
by(:727)D(1_q)3 (m+A,n+2A2,p+23,1,1,19)e
(B1+m, By +1n, B3+ p, A1 — B1, A2 — B2, A5 — B3 9)oo
by (145146) | oo
|
Theorem 7. A g-integral representation of ®N. A q-analogue of ([9] (3.14) p. 23).
On (a1, a2, 03, B1, B2, B 11, 12, 1219 %, Y, 2)
M, A2, A3 /T AT
=T 7
| ann5, 0 —a, A — g, As—as | Jo (503 z-1 (45)
(A1, A2, A3, B, Bas Bi Y1, Y2, Y2l 5, ty, uz) dy (s).
Proof. See the proof (44). [
Theorem 8. A g-integral representation of ®s. A g-analogue of ([9] (3.15) p. 23).
s (ay, a2, 02, B1, B2, B3s 11, 11, 1119 X, Y, 2)
M, A2, As /T 2 D
=T s S;q)s 7z 7 46
7| Br,Bas B3 — B Az — Ba s 133} 5 i (46)
Dg(ag, o, a2, A1, A2, A3 Y1, 71,7195 8%, ty, uz) d[(s).
Proof. See the proof (44). [
Theorem 9. A g-integral representation of ®g. A g-analogue of ([9] (3.16) p. 24).
Op(ar, 21,01, B1, Bo, B3 11,72, 12195 X, Yz, 2)
{ 11,72,72
| viva, B — v 2 — V2,2 —
V2, P2, 11—V, 12— V2, 12— P2 “7)

1
/6 T (qs; q)"n —vp—1 (qt; q)vrﬁz—l (qu; q)vzfvrl

-

Dp(a, a1, a1, B1, Y2, B1; V1, V2, V2|q; X, tuyz, uz) dg(s).
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Proof. Put
_ Y172, 72
D=T
" v B v — v — B2
- (48)
2 (01; @ mtntp (B O mtp (12 D My ntp,
g0 LV ) m (L @)n (L a)p (v2; ) ntp
Then we have (The equation numbers in the proof refer to the authors book [12])
+o00
RHS by (:6‘54) D(l _ q)3 Z qk(l/]+)ﬂ)+i(ﬁ2+n)+](Vz+n+p)
k,i,j=0
(1+ k?q>w1*V171 (1+ i;q>727ﬁ271<1 + jl"?)“yzfvz—l
+00
by (62,6410) D(1 - q)3 Z qk(w+m)+i(ﬁ2+n)+j(vz+n+p)
k,i,j=0 (49)
(M = vk = B2 3 i{12 —v29);{L L 19w
(La(La)i(La)i{rn — v, v2 — B2, 72 — 12)eo
YOI bq gy (m+y,n+v2,n+p+7,1114)e
(i +m,Br+nva+n+py1—v,72 - 2,72~ B2
by (1.451.46) LES.
O
Theorem 10. A g-integral representation of ®yg. A g-analogue of ([9] (3.17) p. 25).
Dyi(ag, a2, @, B1, B2, B15 V1, Y2, V2195 X, Y2, 2)
-T { Y1,72,72 }
-1
V1,V2, P2, 71 — V1,72 — V2,72 —
] 1,V2, B2, 71 — V1,12 — V2, Y2 — B2 (50)
! vi—1Bo—1, 1p—1
/O ST (05;.q) 3y 1y -1 (98 9) gy pr—1 (943 0) -0y
D, a2, 02, B1, V2, B1; Vi, V2, Va| 5%, bz, uz) dg (s).
Proof. Put
_ Y172, 72
D=T
i { v1,v2, B2, 71 — V1,72 — V2, 12 — B2 ]
(51)

Vv 0 @m (02 Dty B Dy V2 D s
m,m,p=0 <11V1}q>m<1}q>n<1;q>p<v2}q>n+p

356



Axioms 2020, 9,93

Then we have [12]

RHS by (:6‘54) D(1— q)3 +Z°° qk(m+m)+i(,82+n)+j(vz+n+p)
ki,j=0
(1+ k;q>"rl*V1*1<1 + i?q>727ﬁ271<1 + ]';q>'yzfvz—1
by 6B610 g 3 *Z":" K i) 404 p)
ki,j=0
(11 = v (2 = B2 9)i{r2 —v2,9)i(1, 1, 1, 9)eo
(La(La)i{La) (v — v, 72— B2, 72 — 12)es
Y02 g _ g3 (m+y,n+v,0+p+7,111L0)w
(vi+m,Ba+n,va+n+p,y1—v,72— V2,72~ B2

(52)

b 45,1
v (L5146 1 Hg,

|

Theorem 11. A g-integral representation of ®p. Almost a g-analogue of ([9] (3.18) p. 25).

Dp(ay, ap, a1, B1, B1, B2 11, Y2, V2145 X, 2, 2)

-T Y1,Y2,72
1 X2, V1,V2,Y1 — V1,72 — Q2,72 — V2 (53)
1
/a S (/%) PRI (/177 ) PRI (/7777 ) S

-

Dp (a1, 72,01, B1, B1, Boi Vi, V2, va|g; sx, tuyz, uz) dg(s).

Proof. Put

D= rq Y172, 72
&2, V1, V2, Y1 — V1,2 — Q&2,Y2 — V2

_io <0(1,‘ q) m+p <72; Q)n <ﬁl; q>m+n <.32; q>}” xmynzn+p

mip=0 LV @)m (L 4)n (L) p(va; g)nsp

(54)

Then we have [12]

by (6.54) D(1 - q)3 +Z°:° qk(vl+m)+i(oc2+n)+j(1/z+n+p)
kyi,j=0

A+kD) - -1+ 50 y—a—1 (1 + i D)y 1y -1

by (6.8,6.10)

RHS

D(1 *11)3 Jio qk(i/l+m)+i(a2+n)+j(vz+n+p)
ki, j=0
M =vi (2 —a2;0)i(72 —12;9){L L 1 9)eo
(L)L a)i(La) (v —vi, 72 — &2, 72 — V2)eo
by(:7-27)D(17 E (m+y,n+v,n1+p+72,111 )
(Vi +map+n,v2+n+p, 71—V, 72— 02,72 — 12 ])e

(55)

by (1.45,1.46
y (L8196 1 b,
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Theorem 12. A g-integral representation of Pr. A g-analogue of ([9] (3.19) p. 26).

DR (a1, a2, a1, B1, B2, B1s 11, Y2, 2195 X, 2Y, Z)

-T Y1, 72,72
B2,v1,v2,71 — V1, Y2 — B2, 72 — V2

3 (56)
181 11
/6 ST (S5 ) 3y 1y 1 (08 9) 5y —pr—1 (943 9) -1, -1
DR (aq, a2, a1, B1, Y2, B V1, V2, V2q; 5, tuyz, uz) dﬂS).
Proof. See formula (49). [
Theorem 13. A g-integral representation of 1. A g-analogue of ([9] (3.20) p. 27).
Dr(ar, a2, a2, B1, B2, B1; Y1, 11, M| X2, Y2, 2)
=T g/ /M6
v, o E— a1, —Bam — 1 57)
g wp—14Br—1, v1—1
e (7 PR T PSR ) P
D7 (&, an, 0, B1, 1, P1; V1, V1, V1|5 suxz, tuyz, uz) dqzs).
Proof. Put
_ Sim
D=T
i [ vy, 01, B2, & — a1, — B2, 11 — 11 58)
Jio <§?‘1>m<0<2?‘7>n+p<ﬁl?q>m+p<’7?‘7>nxm n m+n+tp
mipeo (L Dm (L@ n(La)p(ve; Qminsp
Then we have [12]
RHS by (2654) D(l o q)3 Jio qk(al+m)+i(ﬁz+74)+j(v1+m+n+p)
ki,j=0
U+kg)ea 10+ 5000 g1 L+ )71
by (6-:&6~10) Zo:o k(avq +1)+i(Bo+1)+j(vy +mntp)
b0 (59)
(€ —a;q)k(n = B2;9)i(m —vi;9)(L L, 1 9)eo

(L)L a)i(Lg) (¢ — a1, — B2, 71— Vi)eo
by (7.27) 3 m+gn+ym+n+p+1,11159)
= "D(-q) = T
<’X1 +m1,32+”,1/1+m+1’l+p,§ ®1,71 — V1,1 ,32/q>oo

LHS.

by (1.45,1.46)

O

4. Discussion

We have successfully combined the convergence condition [13] (r @4 £)" < 1 with the
Horn-Karlsson convergence rules for most of the known triple g-hypergeometric functions.
The Cartesian equation r + s + t = 1 is thereby replaced by its g-analogue r &4 s @y t in the spirit of
Rota. The graph for the convergence region xy/z < 1 could also be of interest for the case g = 1.
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Similarly, the proofs for g-Beta integrals also work for the case ¢ = 1. These proofs have the same form
as in previous and future papers of the author.

5. Conclusions

In the book [14] more triple hypergeometric functions are discussed. It would be interesting to
compute convergence regions for their g-analogues. From our convergence theorems it is obvious that
the following theorem from ([14], p. 108) can be extended to the g-case. The region of convergence
for a hypergeometric series is independent of the parameters, exceptional parameter values being
excluded. In this way, we plan to write a book on multiple g-hypergeometric series.
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