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Preface to “Earth Observations for Geohazards” 
Earth Observations (EO) encompasses different types of sensors (e.g., SAR, LiDAR, Optical 

and multispectral) and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles) and 
enables us to monitor and model geohazards over regions at different scales in which ground 
observations may not be possible due to physical and/or political constraints. EO can provide high 
spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but 
not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of 
satellite measurements, and easier access and interpretation of EO data have all contributed to the 
increased demand for satellite EO data. EO, combined with complementary terrestrial observations 
and with physical models, have been widely used to monitor geohazards, revolutionizing our 
understanding of how the Earth system works.  

This book is the second volume of the 2-volume collection of scientific contributions focusing 
on innovative EO methods and applications for monitoring and modeling geohazards, consisting of 
two chapters: (1) land subsidence hazards, and (2) New EO techniques and services. The first 
volume of this book series contains another two chapters: (1) earthquake hazards, and (2) landslide 
hazards. 

Finally, we would like to take this opportunity to thank all authors, editors, reviewers, and 
supporters for their hard work and dedication that made this Special Issue possible.  

Zhenhong Li and Roberto Tomás 
Guest Editors 
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Abstract: Earth Observations (EO) encompasses different types of sensors (e.g., Synthetic Aperture
Radar, Laser Imaging Detection and Ranging, Optical and multispectral) and platforms (e.g., satellites,
aircraft, and Unmanned Aerial Vehicles) and enables us to monitor and model geohazards over
regions at different scales in which ground observations may not be possible due to physical and/or
political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping
and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite
and sensor technologies, increased frequency of satellite measurements, and easier access and
interpretation of EO data have all contributed to the increased demand for satellite EO data. EO,
combined with complementary terrestrial observations and with physical models, have been widely
used to monitor geohazards, revolutionizing our understanding of how the Earth system works.
This Special Issue presents a collection of scientific contributions focusing on innovative EO methods
and applications for monitoring and modeling geohazards, consisting of four Sections: (1) earthquake
hazards; (2) landslide hazards; (3) land subsidence hazards; and (4) new EO techniques and services.

Keywords: earth observation; EO; geohazards; earthquake; landslide; land subsidence; InSAR;
LiDAR; optical; images; displacement; deformation; damage assessment; satellite; monitoring

1. Introduction

Geohazards are often defined as the events related to the geological state and processes that
pose potential risks to people, properties and/or the environment, which can be classified within
two main categories: natural hazards (such as earthquakes, landslides, volcanic eruptions, tsunamis,
and floods) and human-induced hazards (such as land subsidence due to groundwater-extraction,
water contamination, and atmosphere pollution). Geohazards could cause enormous human
and economic losses and disruption, which continue to grow worldwide. In the past decades,
the annual cost of natural hazards has increased dramatically [1]. Earthquakes represent one
of the most devastating geohazards in terms of human suffering and economic damage, but the
major cause of casualties, infrastructural damage, and economic losses, is the secondary hazard of
landslides [2]. Volcanic eruptions also represent a significant proportion of geohazards [2], and major
eruptions can modulate regional or global atmospheric composition and climate in detrimental
ways. Land subsidence due to anthropogenic processes, such as extraction of groundwater, gas,
oil, and coal, is another worldwide geohazard that affects wide areas, causing infrastructure damage
and increasing flood risk [3,4]. Better decisions require better knowledge to characterize, monitor and
model geohazards and then mitigate their impacts on people and the environment. During the past
decades, Earth Observation (EO) has been widely applied to disaster risk management (including
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disaster preparation, response, recovery and mitigation), especially disaster response [5], since it
provides extremely useful information for researchers, decision makers and plan makers.

EO is the gathering of information about the Earth using remote sensing technologies, which are
often supported by ground surveying techniques. EO has considerably changed our ways of seeing
the world, providing a framework to precisely map and monitor large-scale phenomena in a timely
way. EO from space and aircraft, combined with complementary terrestrial observations and physical
models, have been used to monitor geohazards. An important aspect of space-based (and airborne)
EO is that we can investigate areas in which ground observations are not possible due to physical
or political constraints. EO techniques can be classified according to sensor types, e.g., passive or
active, optical, radar (radio detection and ranging), LiDAR (Laser Imaging Detection and Ranging),
or multispectral/hyperspectral. They can be also classified according to the platforms in which
the sensors are installed: satellite-based, aircraft-based, Unmanned Aerial Vehicle (UAV) based
and ground-based.

This Special Issue contains a collection of articles focusing on the use of EO techniques for the
investigation of geo-hazards. We received a total of 79 manuscripts for consideration of publication,
which were carefully reviewed by external and independent experts in their respective fields.
Forty-three of these manuscripts were accepted for publication. These studies utilize the state-of-the-art
EO techniques to map, characterize, monitor and model a range of geohazards, including earthquakes,
landslides, land subsidence, and tsunamis. The following sections include a study of present and future
trends and challenges on the use of EO and an overview of the 43 contributions in this Special Issue.

2. Use of EO for Geohazards throughout Bibliometric Data

Although EO techniques were firstly used for military and security applications in the Cold
War [6], they have become available for a wide range of applications and users during the past few
decades. In this section, we illustrate the increasing use of EO techniques throughout a bibliometric
study on the occurrence of the term “Earth Observation” in the Web of Science’s bibliographical
database similar to previous studies (e.g., [7]). Our searches are restricted to the “Remote sensing”
and “Geology” segments. Figure 1 shows the increasing number of yearly publications about the
above-mentioned terms. It is clear in Figure 1 that the number of EO publications has started to
increase since the 1990s with an apparent exponential-like trend, indicating that EO literature has
been growing considerably. Although EO techniques were born last century, it is still a topical issue
probably due to its inherent high technological components and wide range of potential applications.

 

Figure 1. Evolution of the number of publications per year (dots) in the database Web of Science (WOS)
containing the term “Earth observation” in the field of TOPICS between 1968 and 2015. Note that the
searches are restricted to (a) “Remote Sensing”; and (b) Geology in the Web of Science. The dashed
lines represent the best fit power function of the dots. The dotted lines correspond to the logistic fit
performed by [8] for the terms “LiDAR” or “Laser scanning” in the GEOREF database.
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3. Overview of Contributions

As mentioned earlier, forty-three papers were published in this Special Issue. These studies cover
a range of geohazards including earthquakes, landslides, land subsidence, and tsunamis (Figure 2a).
Figure 2b shows all the different types of EO sensors used in the published papers such as Synthetic
Aperture Radar (SAR), LiDAR, optical, multispectral, GPS and Altimetry, and Figure 2c shows all the
different platforms such as satellites, aircraft, Unmanned Aerial Vehicles (UAV) and ground-based
platforms. It is clear in Figure 2 that satellite SAR has been widely employed to investigate geohazards
due to its all-weather imaging capabilities. It should also be noted that these 43 studies cover
different EO usages including geohazard mapping, monitoring and modelling. An overview of
all the contributions are presented in the following sections.

 

Figure 2. Number of papers published in this Special Issue (SI) classified according to: (a) the types of
geohazards; (b) the types of sensors employed; and (c) the types of the sensor platforms. Note that
(i) the total number in (a) is less than 43 since one article addresses an EO method that could be applied
to various geohazards; and (ii) the total numbers in (b,c) are greater than 43 because multiple sensors
and/or platforms were utilised in some papers.

3.1. Earthquake Hazards

Earthquakes represent an increasing risk of human loss and severe economic damage as vulnerable
populations grow in areas of seismic hazard. Observations of the seismic cycle not only give insight
into the mechanics of a fault, but also play key roles in estimating the likelihood of future earthquakes.
Interseismic motions build up stress and lead to earthquakes. Zhu et al. [9] employ two tracks of
ENVISAT ASAR images to determine the deformation rate maps of the Altyn Tagh Fault (ATF),
and then calculate the regional strain rate field using a multi-scale wavelet method. Their results
suggest a left-lateral slip rate of 8.0 ± 0.7 mm/year and a locking depth of 14.5 ± 3 km, which is in
agreement with previous GPS and ERS InSAR results.

Postseismic transient deformation is a process that contributes to regional stress evolution,
modifying the background tectonic plate motions. Liu et al. [10] present a method to model postseismic
deformation time series with the combination model of afterslip and viscoelastic relaxation, and
then simultaneously estimate the time-dependent afterslip distribution and the viscosity beneath
the earthquake zone. It is reported that (i) the preferred time-dependent afterslip of the 2009 Mw
6.3 Dachaidan, China earthquake mainly occurs in the upper 9.1 km, and increases with time;
and (ii) the preferred lower bound of the viscosity beneath the Qaidam Basin’s northern side is
1 × 1019 Pa·s, close to that beneath its southern side but different from those in other parts of the
Tibetan Plateau, indicating that the viscosity structure beneath the Tibetan Plateau may vary laterally.

The deformation occurring during an earthquake is referred to as coseismic. Observations of
coseismic deformation are often used to determine earthquake source parameters, slip distributions,
and even the rupture histories. Xu et al. [11] generate continent-wide two-dimensional (2D) (east–west
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and vertical) coseismic displacement maps for the 2015 Mw 8.3 Illapel, Chile earthquake using
Sentinel-1A TOPS imagery, suggesting that the east–west component (up to 2 m) dominates the
2D surface displacement. Using similar Sentinel-1A data, Solaro et al. [12] also produce coseismic
displacement maps for the 2015 Mw 8.3 Illapel, Chile earthquake. Their joint Okada inversion
with multiple Sentinel-1A interferograms suggests that most of the slip occurs northwest of the
epicenter with a maximum located in the shallowest 20 km; their Finite Element Model indicates
that (i) its estimated maximum slip is comparable to the Okada model; and (ii) the von Mises stress
distribution agrees with the depth distribution of the aftershock hypocenters. InSAR observations
are utilised to investigate the 2003–2004 Bange, China earthquake sequence, involving a series of
normal faulting events with Mw > 5.0, indicating that InSAR can provide reliable source parameters of
shallow, moderate-sized earthquakes in areas that lack dense seismic networks [13]. Li et al. [14] use
Sentinel-1A interferograms to model the 2016 Mw 5.9 Menyuan, China earthquake; they find that the
2016 event has a different focal mechanism from a previous Ms 6.5 earthquake although both are at
the two ends of a secondary fault, which is believed to reflect the left-lateral strike-slip characteristics
of the Lenglongling fault zone. Multi-platform InSAR observations are employed to determine the
coseismic and postseismic slip distributions of the 2011 Mw 7.1 Van, Turkey earthquake, indicating
that the upper 7–9 km of the fault, unruptured during the coseismic phase, underwent afterslip in the
postseismic phase that may have reduced the seismic potential in its whole length from NW to SE [15].

3.2. Landslide Hazards

Landslides can be triggered by many different mechanisms, such as sudden large earthquakes,
constant seismic activity in a tectonically active area, monsoonal rainfall or storms. There are a range
of factors that affect landslide motion, including topography, geology, vegetation, precipitation and
anthropogenic factors (building roads, deforestation or agricultural terraces). In total, 13 papers on
landslides are published in this Special Issue. Mapping is the first topic covered by these papers.
Landslide inventory maps document the extent of landslide phenomena in an area and contain
relevant information that can be exploited in different ways [16]. Therefore, EO techniques can play
an important role in landslide mapping. Al-Rawabdeh et al. [17] present an automated approach to use
unmanned aerial vehicles (UAVs) and Semi-Global dense Matching techniques to identify and extract
landslide scarps. Watanabe et al. [18] use airborne L-band fully polarimetric SAR to detect landsliding
areas induced by Typhoon Wipha on 16 October 2013 on Izu Oshima Island (Japan). Plank et al. [19]
propose a fast procedure for mapping landslides based on change detection between pre-event optical
imagery and the polarimetric entropy derived from post-event very high resolution (VHR) polarimetric
SAR data.

Monitoring landslides is a crucial task to understand the mechanisms, adopt preventive measures
and reduce casualties and infrastructure damage [20]. This assignment has been revolutionized by
EO techniques. Several contributions are focused on landslide monitoring, proposing and applying
novel procedures, using different sensors and platforms and evaluating the quality of the results.
Qu et al. [21] develop the hybrid-SAR procedure to combine both amplitude-based and phase-based
methods to map and monitor large landslides exhibiting different deformation magnitudes, sliding
modes and slope geometries. Using the Slumgullion landslide (southwestern Colorado, USA) as
an example, Wang et al. [22] propose a fully polarimetric SAR offset tracking method to improve the
precision of landslide movement monitoring. Taking the Shuping landslide (Three Gorges, China) as
a case study, Sun and Muller [23] demonstrate the capability of sub-Pixel Offset Tracking techniques to
monitor relatively fast slope movements in densely vegetated areas with and without the presence of
artificial corner reflectors. Bardi et al. [24] integrate ground-based and satellite InSAR data to study the
Åknes rockslide (western coast of Norway). Kropáček et al. [25] monitor the displacements of a large
landslide on the western escarpment of the Main Ethiopian Rift (Debre Sina) by means of a multisensor
and multitechnique approach. Fernández et al. [26] use Unmanned Aerial Vehicles imagery and high
resolution photogrammetry to monitor horizontal and vertical displacements of a landslide affecting
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olive groves in La Guardia de Jaén (Spain). Finally, in Hsieh et al. [27], the errors of digital terrain
models (DTMs) derived using different techniques are discussed.

Modelling is also a hot topic in the landslide field. The relationships between triggering factors
and the landslide kinematics are a key aspect for the subsequent prediction of future episodes of
activities. Jiang et al. [28] propose a sequential data assimilation method (i.e., Ensemble Kalman
filter) to couple the surface displacements of the Shuping landslide (Three Gorges, China) derived
from the Pixel Offset Tracking technique with hydrological factors. De Novellis et al. [29] develop
three-dimensional (3D) Finite Element Models (FEM) of the Ivancich landslide located in Assisi town
(Central Italy) through the integration of geological, geotechnical and satellite datasets.

3.3. Land Subsidence Hazards

Land subsidence is an increasing problem worldwide that has strongly attracted the attention
of the InSAR community due to the high capability of InSAR techniques for the study of this type
of phenomena. This is evidenced by the fact that all the contributions dedicated to this topic in this
Special Issue use InSAR techniques for characterizing and monitoring land subsidence.

Beijing and Tianjin are regional economic drivers in Northern China. The aquifers systems in this
region have been massively exploited and land subsidence has become evident. Three papers published
in this Special Issue are focused on the spatio-temporal distribution pattern and the characterization
of land subsidence as well as its triggering and conditioning factors. Zhang et al. [30] study land
subsidence in the Beijing-Tianjin-Hebei region from 1992 to 2014 using ERS-1/2, ENVISAT ASAR
and RADARSAT-2 images. Similarly, Liu et al. [31] present their results from C-band ENVISAT
ASAR and L-band ALOS PALSAR imagery covering the period 2007–2009 , implying Line of Sight
(LOS) displacements up to 170 mm/yr. Chen et al. [32] employ Small Baseline InSAR technique to
process ENVISAT ASAR and TerraSAR-X stripmap images collected from 2003 to 2011 and observe
a maximum subsidence in the eastern part of Beijing with a rate greater than 100 mm/year; they also
find some relationships between land subsidence and different conditioning and triggering factors
(e.g., groundwater levels, soft soil thickness and active faults). This contribution has attracted attention
of a wide range of prestigious international media (e.g., The Guardian, The Telegraph, Huffington Post,
Forbes and BBC), and is ranked in the top 5% of all research outputs ever tracked by Altmetric, a system
that tracks the online attention for a specific piece of research (See: https://mdpi.altmetric.com/
details/8441790#score). This contribution is also selected as TOP 10 published articles in 2016 by MDPI
(http://blog.mdpi.com/2017/02/20/mdpi-altmetrics-top-10-published-articles-in-2016).

Many coastal areas in the world are experiencing land subsidence due to various factors.
The combination of land lowering with rising water levels due to global sea-level rise can make
coastal areas especially vulnerable to flooding [33]. Two papers in this Special Issue study land
subsidence in coastal areas [34,35]. Cianflore et al. [34] analyze different causes contributing to land
subsidence observed in the ancient Greek colony of the Sibari Plain (Southern Italy) using ENVISAT
ASAR and Cosmo-SkyMED images. Xu et al. [35] focus on the land subsidence affecting the land
reclaimed from the sea in Shenzhen (SE China). These authors use a Point Target based Small Baseline
Subset InSAR approach to process ascending and descending ENVISAT ASAR images acquired during
the period from 2007 to 2010, and observe subsidence rates up to 25 mm/year.

Yang et al. [36] perform correlation analyses between potential triggering and conditioning
factors and land subsidence in the Linfen–Yuncheng basin (China) derived from ENVISAT ASAR
data collected in 2009–2010. The authors conclude that the observed land subsidence occurs within
the fault-controlled basin and is mainly caused by groundwater withdrawal. Similarly, Bai et al. [37]
observe a maximum subsidence rate of up to −67.3 mm/year in Wuhan, China using TerraSAR-X
images from 2009 to 2010, which are believed to be mainly caused by anthropogenic activities, natural
compaction and karst dissolution. A seasonal pattern of displacements is also noticed near the Yangtze
River by these authors. Caló et al. [38] use eight-year ENVISAT ASAR images to investigate land
subsidence mainly due to groundwater overextraction in the Konya plain, Turkey, and a joint analysis
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with GRACE data suggests that the groundwater depletion is not limited to the study site but affects
a wider region in the Anatolian Plateau.

Land subsidence information from InSAR observations can be exploited for different purposes.
Pacheco-Martínez et al. [39] present a novel approach to combine InSAR and gravimetric surveys for
risk management related to land subsidence and surface ground faulting generation. Boni et al. [40]
describe a novel methodology for the exploitation of InSAR data to support geological interpretation
in areas affected by land subsidence, uplift and seasonal displacements.

Mining-induced subsidence is another important anthropogenic geohazard. Ma et al. [41] study
mining subsidence in Shendong Coalfield (China), suggesting that the extent of subsidence exhibits
a progressive increase of 13.09 km2 per month during the period from 2012 to 2013.

Surface displacements associated with the geothermal field of Yangbajing (China) are studied and
modelled by Hu et al. [42] using ENVISAT ASAR images collected from 2006 to 2010, allowing for the
interpretation of the volume changes produced in the geothermal field.

Zhou et al. [43] focus on the combination of InSAR observation and numerical modelling to obtain
the physical parameters of the Earth-dam displacements of the Shuibuya Dam (China), and these
parameters are then used to predict future behaviors of the dam.

3.4. New EO Techniques and Services

Several papers in this Special Issue are focused on new EO techniques and services for geohazard
management. Ding et al. [44] develop new methods to reduce stripe artifacts (SA) and Topographic
Shadowing Artifacts (TSA) in surface displacement maps retrieved from Landsat 8 optical images.
Their experiments indicate that their algorithms could improve the precision of surface displacement
maps (near 15%).

Since parameters of satellite orbits of historical declassified intelligence satellite photography
(DISP) imagery are not available and ground control points (GCPs) are lacking, Zhou et al. [45] develop
a second order polynomial equation-based block adjustment model for orthorectification that provides
accuracy in the level of 2.0 pixels (i.e., approximately 2.0–4.0 m) in the assembling of the imagery
for geohazard mapping. Chen et al. [46] illustrate the potential of the BeiDou Navigation Satellite
System (BDS) to serve as a fast and reliable early warning system of tsunamis. Cignetti et al. [47]
propose an iterative procedure which is applied through the Parallel-SBAS web-tool within the Grid
Processing-on-Demand (G-POD) environment to improve SAR data selection and processing by
minimizing the temporal decorrelation effects over high mountain regions to obtain mean deformation
velocity maps and displacement time series.

Following large geohazards, especially those associated with widespread destruction and high
mortality, rapid, accurate and reliable damage assessment is essential to obtain information to guide
response activities in the critical post-event hours. Using airborne LiDAR data, He et al. [48] develop
a 3D shape descriptor to detect surface- and structure-damaged roofs. Using airborne oblique
images, Vetrivel et al. [49] develop a Visual-Bag-of-Words (BoW) based damage classification to
detect structure-damaged areas. Ma et al. [50] present an automatic procedure to generate cloudless
backdrop and disaster change-detection maps from optical imagery, whilst Xie et al. [51] demonstrate
a framework to combine aerial remote sensing imagery with crowdsourcing to support wide-area
assessments of building collapses. Using high resolution multispectral and panchromatic remote
sensing data, Cooner et al. [52] demonstrate the effectiveness of multilayer feedforward neural
networks, radial basis neural networks, and Random Forests in detecting earthquake damage.
It is demonstrated in [53] that a combination of a post-event very high resolution SAR image
with a pre-event building footprint map can be effectively used to detect damaged buildings,
and Zhai et al. [54] demonstrated the feasibility to use a single post-event PolSAR image to assess
building damage.
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4. Current Challenges and Future Trends of EO for Geohazards

In this section, we analyze the evolution of the annual production of EO publications recorded in
the Web of Science’s bibliographical database in the fields of Remote sensing and Geology. Several
previous studies [55–57] conclude that a power model (q > 0, K > 1) can properly explain the growth
of publications and new authors in different fields of science. Therefore, to explore the evolution of
EO publications, we fit power functions to the available data (Figure 1). It is clear in Figure 1 that the
first work in this discipline was published in the middle of the 1970s, but the take-off of this discipline
took place in the 1990s. Since then, the number of EO papers has exhibited an exponential-like growth.
Furthermore, the fittings show that the growth rate (K) in the number of publications is higher in the
remote sensing segment than in the Geology one, because remote sensing includes all the applications
of EO not restricted to geology. In order to provide a reference value to be compared with our data,
we also plot the best-fit logistic functions of the publications focused on LiDAR or Laser scanning
proposed by Derron and Jaboyedoff [8]. Although the data are not directly comparable since their
publication data were extracted from the GEOREF database rather than from the Web of Science (WOS),
which is usually more restrictive, and the LiDAR discipline is much younger that EO, the initial trends
of both EO and LiDAR publications are quite similar.

The high number of manuscripts (i.e., 79) received to be considered for this Special Issue is also
a good indicator of the increasing prosperity of the EO community. Most of the papers published in
this Special Issue are focused on the post-event exploitation of EO products, i.e., they use EO data to
investigate disasters after the event occurs. There is a delay between the event occurrence and the
delivery of the useful EO-derived information for decision-makers. Therefore, a great effort is needed
in the coming years to reduce the response time after disasters. It should be noted that EO can also be
widely applied to disaster preparation, recovery and mitigation. On 1 January 2016, the 17 Sustainable
Development Goals (SDGs) of Transforming Our World: the 2030 Agenda for Sustainable Development
adopted by world leaders at the 2015 UN Sustainable Development Summit officially came into force,
and will run through 2030 and applies to every country. EO and its derived information are specifically
demanded to serve the 2030 Agenda by monitoring the 17 SDGs and associated 169 targets, planning
and tracking progress, and helping nations and other stakeholders make informed decisions.

5. Conclusions

To conclude, EO has reached some degree of maturity although it is still growing fast following
a power trend. The recent success of EO for the investigation of geohazards is mainly due to the
development of new EO sensors and techniques, the improved capabilities of EO data acquisition
and analysis, and the advance in the production of standardized products to be used by planners
and decision makers. It is expected that more and more real-time EO products and services will be
emerging in the near future, which will enable us to better manage geohazards.
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Abstract: Beijing is one of the most water-stressed cities in the world. Due to over-exploitation of
groundwater, the Beijing region has been suffering from land subsidence since 1935. In this study,
the Small Baseline InSAR technique has been employed to process Envisat ASAR images acquired
between 2003 and 2010 and TerraSAR-X stripmap images collected from 2010 to 2011 to investigate
land subsidence in the Beijing region. The maximum subsidence is seen in the eastern part of Beijing
with a rate greater than 100 mm/year. Comparisons between InSAR and GPS derived subsidence
rates show an RMS difference of 2.94 mm/year with a mean of 2.41 ˘ 1.84 mm/year. In addition,
a high correlation was observed between InSAR subsidence rate maps derived from two different
datasets (i.e., Envisat and TerraSAR-X). These demonstrate once again that InSAR is a powerful
tool for monitoring land subsidence. InSAR derived subsidence rate maps have allowed for
a comprehensive spatio-temporal analysis to identify the main triggering factors of land subsidence.
Some interesting relationships in terms of land subsidence were found with groundwater level, active
faults, accumulated soft soil thickness and different aquifer types. Furthermore, a relationship with
the distances to pumping wells was also recognized in this work.

Keywords: radar; InSAR; Beijing; land subsidence; triggering factors; conditioning factors

1. Introduction

Located at the northern end of the North China Plain, Beijing is ranked as the 5th most
water-stressed city in the world [1], and groundwater is the main water source for industrial,
agricultural and household activities. With its rapid urban growth, there has been increasing water
demand in Beijing. Previous studies [2,3] reveal that the Beijing region has been suffering from land
subsidence due to over-exploitation of groundwater since 1935, and more seriously, the rate and extent
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of land subsidence shows an increasing trend. Land subsidence is a severe geohazard threating the
safety of the public and urban infrastructure. Hence, continuous monitoring of land subsidence is
critical for detecting potential hazards and designing compensation strategies.

Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool widely used to map land
subsidence over wide regions with high spatial-temporal resolutions. InSAR time series techniques
such as Persistent Scatterer Interferometry (PSI) [4,5] and the Small Baseline Subset (SBAS) [6–8]
can minimise the limitations of traditional InSAR (e.g., spatial and temporal decorrelation and
atmospheric effects) and have been demonstrated to be able to map ground displacements with
precision comparable to traditional geodetic techniques such as leveling [9–12]. In this work, the Small
Baseline InSAR technique has been employed to investigate land subsidence in the Beijing region and
its relationship with different triggering and conditioning factors.

Gong et al. [13] explored the application of PSI method to monitor land subsidence in Beijing
with C-band Envisat ASAR data acquired from 2003 to 2006. Their results showed that the spatial
pattern of the subsidence is influenced by Quaternary faults, and land subsidence often develops
in areas with clay layer thicker than 50 m. Li et al. [14] employed SBAS InSAR to investigate city
subsidence in Beijing with two adjacent tracks of C-band Envisat ASAR images, reporting a maximum
subsidence rate reaching 100 mm/year in Chaoyang district. Chen et al. [15] studied the spatial and
temporal evolution of the groundwater depression funnels in the Beijing plain and the 2D and 3D
spatial evolution of land subsidence from a model based on the combination of piezometric, GPS, and
radar data. Liang et al. [16] monitored the accumulated crustal deformation and its characteristics
in Beijing and its surrounding areas by traditional D-InSAR method with L-band SAR data. They
reported that the maximum deformation rate along Line of Sight (LOS) was about 125 mm/year
between 2007 and 2010. Ng et al. [17] applied PS InSAR to 41 Envisat ASAR images (acquired from
2003 to 2009) and 24 ALOS PALSAR images (acquired from 2007 to 2009) to investigate the land
deformation rate maps over Beijing showing that the vertical displacement rates were in the range
of ´115 to 6 mm/year. Zhu et al. [18] analyzed the spatial relationship between land subsidence and
three factors (groundwater level, compressible soil thickness and building areas) by means of remote
sensing and Geographical Information System (GIS) tools and used the Back Propagation Neural
Network (BPN) model combined with Genetic Algorithm (GA) to simulate regional distribution of
land subsidence. Hu et al. [19] used 52 Envisat ASAR images acquired from 2003 to 2010 to derive land
deformation information in Beijing, and found a maximum subsidence velocity of up to 110 mm/year.
Zhang et al. [20] utilized stress-strain analysis and oedometer tests to characterize the hydraulic
and mechanical properties of the five hydrogeologic units at different depths in the Beijing plain.
The results revealed that the second (64.5–82.3 m) and third (102–117 m) aquitards contributed 39%
of the total compression deformation, and the second (82.3–102 m) and third (117–148 m) confined
aquifers exhibited elasto-plastic mechanical behaviour. Zhu et al. [21] used SAR images, optical images
and hydrogeological data to study the land subsidence in the northern Beijing plain. PS InSAR was
applied to C-band Envisat ASAR images acquired from 2003 to 2010 to estimate land subsidence on
this area. The results indicated that the largest subsidence rates reached 52 mm/year and the silty clay
layers contribute to the larger land subsidence.

Compared with medium resolution SAR imagery such as C-band Envisat ASAR and L-band
ALOS PALSAR data, recent advanced imaging radar sensors such as the TerraSAR-X SAR system
(X-band radar wavelength and a shorter revisiting interval) can provide higher spatial resolution and
geometric accuracy imagery, which makes it possible to monitor land subsidence at a finer scale [22,23].
Chen et al. [24] utilized C-band Envisat ASAR data and X-band COSMO-SkyMED images to detect
land subsidence rates in Shanghai and validated the results by spirit leveling measurements. The
results indicated the location of a significant subsidence funnel and the root mean square error of
differences of the point targets between two band SAR images was 3 mm/year. Luo et al. [25] extracted
land deformation information from L-band ALOS PALSAR data between 2007 and 2010 and X-band
TerraSAR-X data from 2009 to 2010. The obtained results indicated that the subsidence rate was in
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the range of ´90 mm/year to ´10 mm/year from TerraSAR-X data and ´190 to ´10 mm/year from
PALSAR data, which was in good agreement with leveling and GPS data.

Although existing investigations have tried different ways of monitoring land subsidence in
the Beijing region [13–21], the consistency of the land subsidence monitoring results in this densely
populated area in the world acquired by multi-wavelength InSAR time series analysis and validation
by GPS data is rarely covered. Furthermore, the comprehensive and quantitative spatio-temporal
analysis to identify the main conditioning and triggering factors of land subsidence still need to be
systematically researched further. This paper aims to use TerraSAR-X (X-band) stripmap images
collected from 2010 to 2011 and Envisat ASAR (C-band) images acquired between 2003 and 2010 to
provide a new insight into the spatial and temporal distribution characteristics and main conditioning
and triggering factors of land subsidence in the Beijing plain. The joint cross analysis of radar-derived
deformation data and existing geo-information will help to improve the knowledge of the mechanisms
that govern land subsidence to be used for the development of suitable groundwater management
policies in this area. The paper is organized as follows: Section 2 describes the geographical and
geological setting of the study area. SAR images and InSAR processing used in this work is described
in Section 3. Section 4 shows the main InSAR-derived products, validation of the results and the
spatial-temporal characteristics of land subsidence over the study area. Section 5 discusses and
analyses the effect of different conditioning and triggering factors on land subsidence. The main
conclusions are summarized in Section 6.

2. Description of the Beijing Basin

Beijing is the political, cultural and economic centre of China. As one of the most populated cities
in the world, its population has reached 20 million [26]. As one of the most water-scarce cities in the
world, the major water source for the Beijing municipality is groundwater, accounting for about two
thirds of water use [27].

Beijing is located in northern China (Figure 1a), at 39˝281–41˝051 north latitude and
115˝251–117˝301 east longitude, with an area of 16,807 square kilometers, of which 6390 square
kilometers are the plain. The northern and north-eastern parts of Beijing are dominated by (Figure 1b)
the Jundu Mountains, while the western part of Beijing is framed by the Taihang Mountains.
The southeastern part of Beijing is alluvial-pluvial plains crossed by five rivers (Figure 1b): Chaobai,
Yongding, Wenyu, Ju and Juma. The terrain of Beijing is high in the west-north area but low in
south-east part, sloping from the front of the mountain to the south-east. The elevations range from
around 60–80 m.a.s.l. in the front of mountains to around 20–60 m.a.s.l. in the plains.

The study area is characterized by a monsoon-influenced semi-arid and semi-humid continental
climate [20]. The average annual temperature is around 11.7 ˝C. Annual precipitation, mainly
concentrated in summer months (from June to September), is around 570 millimetres and constitutes
the main source of water resources in Beijing [27].

The thickness of quaternary deposits, whose lithologies change from single gravel to multilayer
structures of clay with sand interbeds and whose grain-size turns from coarse to fine, varies from a few
meters over the mountain-front area to hundreds of meters in the plain zone [20,21]. Groundwater
levels change from deep to shallow and the groundwater varies greatly from phreatic to multilayer
confined water throughout the study area, increasing from tens of meters in the mountain-front zone
to several hundred meters in the central or southeast plain area [28].

The sediment, forming the principal aquifer system units, predominantly consists of gravel,
fine-to-coarse sand, silt and clays (Figure 1c). Figure 1b,c illustrate the gradual transition from
fine-to-coarse sand and gravel in the proximal fan to fine sand, silt or clay in the mid and
distal-fan areas.
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Figure 1. (a) Location of the study area; (b) geology of the Beijing plain (China); (c) hydrogeological
cross-section of the studied aquifer (adapted from [20]).

The Quaternary aquifers of Beijing plain can be divided into three aquifer groups [2,20,29]: (a) The
first aquifer group (late Pleistocene-Holocene) is widespread over the Beijing plain. The depths of
the bottom of this group are less than 100 m. In this aquifer group, the phreatic aquifer with single
gravel structure located in the top area of the alluvial-diluvial fan and over the middle and lower
parts of the alluvial-proluvial fan, distributes phreatic aquifer and the shallow confined water with
a multilayer structure; (b) The second aquifer group (middle Pleistocene) is mainly located over the
middle and lower segments of the alluvial-diluvial fan, which is the middle and deep confined aquifers
with depths of the roof from 80 to 100 m, and depths of the bottom plate around 300 m. This aquifer
group presents a multilayer structure, which is mainly made up of medium-coarse sand and small
amounts of gravel; (c) The third aquifer group (early Pleistocene) consists on deep confined aquifers
with the depth of the top over 300 m. This aquifer group, mainly distributed over the north-east part
and the south-east part of the centre of the depression land in Beijing plain, is mainly composed of
medium-coarse sand and gravel, with clay aquiclude thicker than 30 m covering the top.

The unconfined aquifer and the first confined aquifer are intensely exploited for irrigation
providing about 68% of the total groundwater pumpage of the aquifer system. However, the deeper
aquifer units are not significantly exploited [20].
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Corresponding to the classification of the aquifers, three compressible layers responsible of land
subsidence can be recognized in Beijing [2,29]. The first compressible layer is widely distributed over
the Beijing plain. The depth of the bottom of this layer, which is composed of normally consolidated silt,
silty clay and clay with plastic or hard plastic states, is less than 100 m. The second compressible layer
is widely distributed over the middle and lower parts of the alluvial-proluvial fan in Beijing. The main
lithologics of this layer are silt, silty clay and clay. The depth of the bottom over the south-west part of
Beijing is less than 150 m, while the depth of the bottom over the east and north parts of Beijing can
reach a depth of 280 m. The compressible over-consolidated layers with plastic or hard plastic clays
account for 60~80 percent of the overall thickness. The third compressible layer is distributed mainly
over the centre of the depression of the Beijing plain. The depth of the roof of this layer is larger than
270 m. This layer is mainly composed of over-consolidated clays with a solid state [28].

3. InSAR Processing

The SAR dataset used in this study consists of 41 images from Envisat-ASAR acquired from 2003
to 2010 and 14 images from TerraSAR-X (TSX) acquired from 2010 to 2011. The Envisat ASAR images
were collected in Stripmap mode from descending track with VV polarisation, and the TSX images were
obtained in Stripmap mode from ascending track with HH polarisation (Figure 1). The interferograms
were generated from single-look complex (SLC) images using DORIS (Delft object oriented radar
interferometric software) [30]. Among all the total amount of possible interferograms formed by pairs
of images, only 91 interferograms from Envisat ASAR images and 36 interferograms from TerraSAR-X
images were selected for further processing. The selection of interferograms was restricted to those
interferograms with spatial and temporal baselines smaller than 1070 m and 1500 days for Envisat
ASAR images, and temporal baselines smaller than 200 m and 200 days for TerraSAR-X images.
The external Shuttle Radar Topography Mission (SRTM) DEM with 90 m resolution was used to
remove the topographic component of the interferometric phase and geocode the interferograms.

In this study, land subsidence information was obtained by using a small baseline subset of
interferograms with the StaMPS (Stanford Method for Persistent Scatterer/Multi-Temporal InSAR)
technique [31]. The processing includes three main steps:

Firstly, a network of multi-master differential interferograms was created by taking into account
small spatial and temporal baselines and reduced Doppler centroid frequency differences to minimize
the spatial and temporal decorrelation and topographic errors for the group of small baseline
interferograms. Figure 2 shows the network of the small baseline interferograms used for the SBAS
analysis of the land subsidence in Beijing.

 
Figure 2. Networks of the small baseline interferograms obtained from (a) Envisat ASAR and
(b) TerraSAR-X images used for SBAS InSAR analysis for land subsidence in Beijing.
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Secondly, after filtering the azimuth and range spectra to reduce decorrelation effects due
to geometry and non-overlapping Doppler frequencies, the slowly decorrelating filtered phase
(SDFP) pixels whose phase shows slow decorrelation over short time intervals were selected.
For computational efficiency, the SDFP candidates were initially selected by setting a threshold for the
amplitude difference dispersion, which is the standard deviation of the amplitude difference between
the master and slave divided by the mean amplitude. Afterwards, an iteratively conducted phase
analysis yielded the phase stability estimation of each candidate to generate the final set of SDFP
pixels [31]. The amplitude dispersion index threshold was set at 0.6 to generate the largest set of
candidate pixels.

Thirdly, after the iteratively robust process of SDFP selection and correcting for spatially
uncorrelated look angle errors, a three-dimensional phase unwrapping was applied on the final
sets of SDFP pixels by using a statistical cost flow algorithm [32,33]. The time series of displacement
for each SDFP pixel was derived through a least-squares inversion method [34]. This technique
estimates displacement time series without prior consideration of a temporal model for the deformation
and thus allows the derivation of temporally varying deformation processes. From these values,
long-wavelength atmospheric effects and orbit error are estimated from the SDFP pixels using
a spatial-temporal filter method.

4. Results

4.1. InSAR-Derived Land Subsidence Maps

Figure 3 shows the result of deformation pattern along line of sight (LOS) for the multi-temporal
SBAS processing of the available Envisat ASAR dataset. In this area, a high concentration of SDFP
pixels (i.e., an average density 400 SDFP pixels per square kilometre) is recognized mainly due to
the dense urbanization of the scene. The Beijing plain area exhibits high displacement rates with
an average velocity of up to 110 mm/year in the LOS direction from 2003 to 2010.

 
Figure 3. Mean LOS displacement rates derived from Envisat ASAR (2003~2010) in the Beijing basin.
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Figure 4 illustrates the spatio-temporal evolution of the accumulated LOS surface displacements
at approximately one-year intervals derived from Envisat ASAR images. It is clear that land subsidence
gradually increases with time, mainly in those areas located at the northeast part of the city in which
subsidence rates are higher (Figure 3).

Figure 4. Spatio-temporal evolution of InSAR-derived accumulated LOS displacement in Beijing from
Envisat-ASAR images. Note that for simplicity, the displacement patterns of only 8 of the 41 acquisition
dates are shown (i.e., one per year).
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4.2. InSAR Data Validation

To evaluate the quality of the InSAR derived land subsidence rate map from Envisat ASAR,
a comparison with in situ instrumental data acquired by means of GPS measurement was conducted.
Six GPS points that approximately cover the studied period (i.e., from 2007 to 2010) were utilized as
checkpoints. The GPS data were projected along the LOS according to [35]. Figure 5 shows the scatter
plot of GPS and InSAR solutions over the six GPS points. Note that InSAR-derived displacement rates
considered for the comparison of both techniques are here calculated while averaging displacement
rate values from all SDFP pixels contained in a 50 m vicinity for the regional comparison of deformation
patterns. It can be seen that the maximum discrepancy (MaxD) is 5.34 mm/year, and the minimum
one (mD) is 0.14 mm/year. The mean absolute discrepancies (MD) at six checkpoints is 2.41 mm/year,
the standard deviation of the discrepancies is ˘1.84 mm/year and the root mean square (RMS) is
2.94 mm/year. The data correlation between GPS data and InSAR measurement is over 0.98. This fact
indicates that the overall SBAS results agree well with GPS, suggesting the reliability of InSAR-derived
land subsidence rates.

 

Figure 5. Comparison of GPS and Envisat InSAR results for points G1–G6. See GPS stations location
in Figure 3.

Ten thousand samples of InSAR-derived subsidence rates between multi-wavelength SAR data
(i.e., C- and X- bands) were also compared for further validation. Figure 6 shows the correlation and
differences between the two data sets used in this work. A high correlation coefficient of 0.92 was
observed with an RMS difference of 7.48 mm/year, further indicating the reliability of InSAR retrievals
of land subsidence rate maps.

The overall good agreement at least suggests (1) the study region exhibited similar linear motions
during these two time intervals; and (2) it is sensible to use InSAR derived subsidence rates (rather
than displacement time series) for further analysis (e.g., to identify controlling factors and etc.).
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Figure 6. Displacement rates along LOS derived from (a) Envisat ASAR (2007~2010) and (b) TerraSAR-X
(2010~2011) images. (c) Correlation and (d) differences analysis between Envisat ASAR and
TerraSAR-X data.

4.3. Spatio-Temporal Analysis of Land Subsidence

There are more than 2.5 million high coherent points extracted in the study region with a total
area of around 8000 km2. The reference point, located in the centre of Beijing, shows a relative stable
state without significant subsidence appearance, as shown in Figure 7. The settlement amounts are
relatively minor over the downtown, west, south-east and south-west parts of Beijing city with a mean
subsidence rate of around 10 mm/year. The fillings covering the West part of Beijing mainly consists of
coarse-grain and medium-grain sediments (Figure 1) from proximal fans with low compressibility [20],
resulting in small settlements. Nevertheless, the sediments over the east, north and south parts of
Beijing mainly consist of high compressibility fine-grain sediments [20] with thick quaternary deposits
(Figure 1). The aquifers units of these areas have been intensely over-exploited, generating severe
land subsidence.

The main subsidence bowls are distributed over the Chaoyang, Changping, Shunyi and Tongzhou
Districts. It can be observed in Figure 7 and Figure 8 that the subsidence bowls located in the east,
north-east and north parts of Beijing have been gradually connected, indicating the serious situation
in these areas. Consequently, this bowl, which appeared for the first time in 1975 [15], has gradually
increased in depth and extension until the present.
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Figure 7. (a) Subsidence bowls located in the NE of Beijing; (b) extension of the subsidence bowls.
Mapped InSAR results along LOS have been derived from Envisat ASAR images acquired from 2003
to 2010.

The Xianninghou-Shuangqiao subsidence area, located in the eastern suburbs of Chaoyang
District, is in the maximum settlement centre from the East bowl. The maximum subsidence rate in
this area for the period 2003–2010 is 110 mm/year (Figure 7). The maximum subsidence from the
Northeast bowl is located in Jinzhan-Dongba area with a subsidence rate over 80 mm/year (Figure 7).
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The Laiguangying subsidence area over Chaoyang District is one of the areas affected by severe land
subsidence with displacement rates over 80 mm/year. As mentioned earlier, the subsidence bowls over
the east, northeast and north parts of Beijing have gradually merged, indicating the serious subsidence
situation in these districts.

Figure 8. LOS displacements difference in Beijing obtained from Envisat ASAR images between the
acquisition dates selected in Figure 4.
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In the north part of the Haidian-Changping subsidence area, the maximum displacement
rate reaches 60 mm/year. The Dongbalizhuang-Dajiaoting subsidence area (including Sanjianfang,
Guanzhuang) over the eastern suburbs of Chaoyang District measured settlements exceeding
50 mm/year (with local values up to 80 mm/year) from 2003 to 2010. The subsidence rate in the
Shunyi subsidence area reaches 40 mm/year.

Figure 7 and Figure 8 clearly indicate that the bowls of subsidence in Beijing present a growth
trend. The mean subsidence rate around the centres of subsidence in Chaoyang district, located
in the eastern part of the city, reaches 80 mm/year, and a maximum subsidence rate higher than
100 mm/year.

Figure 8 illustrates the temporal evolution of the accumulated displacements with
an approximately one-year interval, showing that the magnitudes of the annual accumulated
displacement vary from one year to another. However, the subsidence rate clearly decreases in 2008.
For example, comparing the average accumulated subsidence for a group of SDFP pixels located within
the main deformation area (39.898˝N, 116.572˝E) in different years (December 2007–September 2008
with annual displacement of ´99.86 mm and September 2008–October 2009 with annual displacement
of ´119.77 mm), a decrease of the annual accumulated subsidence of 16.6% is observed.

5. Discussion

In this section, different InSAR products including mean displacement rates and displacement
time-series are used for the analysis of InSAR-derived surface displacement in the Beijing plain and
compared with different triggering and conditioning factors.

5.1. Relationships between Land Subsidence and Groundwater Level

The over-exploitation of groundwater in the study region has caused a regional drop
of piezometric levels, decreasing pore pressure and increasing effective stresses according to
Terzaghi’s [36] theory. Consequently, when groundwater is pumped from the aquifer system,
both the aquifers and the aquitards that constitute the aquifer system undergo deformation, but
to different degrees, as most of the permanent subsidence occurs due to the irreversible compression
or consolidation of aquitards [37]. Thus, the deformation of an aquifer-system can be inelastic (the
aquifer-system undergoes permanent rearrangement resulting in irreversible compaction and only
a part of the total deformation is recovered when water level rises) or elastic (when water level rises, the
skeleton of the aquifer-system expands, recovering from the previous occurred deformation) depending
on whether or not the applied stresses are beyond its previous maximum level (preconsolidation stress
threshold) [37].

When land subsidence data are used in conjunction with good well logs and water-level data from
adjacent observation wells, the deformation history can provide the basis for stress-strain analysis [38]
and inverse modeling that defines the average compressibility and vertical hydraulic conductivity of
the aquitards [39]. In the study region, hundreds of observation wells are used to monitor the evolution
of groundwater levels. Figure 9 shows the relationship between piezometric level and land subsidence
for some piezometers from the study region. It is worth noting that the displacements measured by
InSAR on the ground surface are the addition of the deformations occurred in the different aquitard
and aquifer layers underlying the ground surface and, thus, the stress-strain curves shown in Figure 9
correspond to the whole aquifer system. The analysis of the different stress-strain relationship clearly
indicate that the aquifer system presents different behaviour (Figure 9).

If we analyse the general trend of water level and InSAR time series from P1 (see location
in Figure 3) we can realise that from June 2003 to February 2007 the water level fell from 36.1 to
26.87 m.a.s.l. (i.e., ´9.23 m) and the accumulated subsidence was up to 38.2 mm. However, after
this period, the water level recovered up to 33.5 m.a.s.l. in May 2008 (i.e., it increased +6.6 m, near
the original water level) and the ground surface also rose 43.0 mm (the previous deformation was
recovered). So, according to the general trend of both time series (water level and displacements), we
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can see that they both follow a similar trend, i.e., they mainly exhibit an elastic behaviour as when
the support provided by the fluid is removed or partially removed (i.e., when water level falls), the
support provided by the pore pressure is gradually transferred to the soil skeleton, causing subsidence.
Conversely, when the pore pressure recovers (i.e., increase due to water level recovery), the support
provided by the skeleton is gradually transferred to the pore pressure, which in turn leads to soil
expansion (i.e., uplift) [37].

 

Figure 9. Time series of piezometric level and land subsidence measured by means of InSAR (left);
and strain-stress curves, for different areas of Beijing (right). The location of the observation wells is
shown in Figure 3. Note that the wells are ordered from north (top) to south (bottom). A1 to A4 refers
to different aquifers units described in Section 2.
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On the other hand, observation wells P4, P10, P7, P15 exhibit a predominantly inelastic behaviour
as the aquifer system presents a continuous subsidence associated with the gradual water level decrease
(Figure 9). As the fine sediment layers of the study area are normally consolidated [21] (i.e., the present
effective overburden pressure is the maximum pressure that the soil was subjected to in the past), then
the geomechanical behaviour of the aquifer-system is characterized by the inelastic storage coefficient
(Skv). Skv is a dimensionless parameter which is proportional to the deformability of the aquifer
system (i.e., the largest the Skv value, the higher the settlement induced by a water level change). This
parameter has been calculated as the inverse slope of the stress-displacement data trend line, according
to the graphical methodology proposed by Riley [38], for the observational wells P4 to P18 shown in
Figure 9, providing values varying from 4.2 ˆ 10´3 in P4 to 5.6 ˆ 10´2 in P18 and confirming that the
deformability of the aquifer apparently increases from the north towards the south of the studied area.

5.2. Relationships between Land Subsidence and Geological Structures

The distribution and development trend of the land subsidence over the study region are
controlled by geological structures, shown in Figure 10a. Tectonic movements cause tectonic units
to decline entirely and slowly under the regional stress field and, complementarily, the relative
displacement of the hanging walls and the footwalls induces differences in the land subsidence
patterns on both sides of the fault [40]. There are several active high angle normal faults in the Beijing
plain. Huangzhuang-Gaoliying, Shunyi and Nanyuan-Tongzhou faults present a SW-NE direction.
The Huangzhuang-Gaoliying fault dips to the SE with an angle of 55˝~75˝. The Shunyi fault with
a SE dipping angle is a boundary fault controlling the Houshayu Quaternary depression, and the
Nanyuan-Tongzhou fault dips towards the NW. The Nankou-Sunhe fault is the unique active NW-SE
oriented fault in the Beijing basin. The Northwestern segment of the Nankou-Sunhe fault (from Nankou
to Baishan) dipping SW controls the Machikou Quaternary depression with a maximum thickness of
Quaternary sediments about 600 m, and the Southeastern segment of the Nankou-Sunhe fault (from
Baishan to Tongzhou) dipping towards NE controls the depocenter of Dongba, in the southern part
of the Shunyi Quaternary depression [27,41–46]. In the Beijing basin, Dongbalizhuang-Dajiaoting
subsidence area over the eastern subsidence zone is collectively controlled by the Shuyi fault and
the Nanyuan-Tongzhou fault. The Laiguangying subsidence area over northeast subsidence district
is mainly controlled by the Shuyi fault and the northwest subsidence zone is mostly led by the
Nankou-Sunhe and Huangzhuang-Gaoliying faults, for which the main deformation direction is
basically parallel to the fracture direction.

The examples of four profiles of the average subsidence rate for Nankou-Sunhe fault can be
found in Figure 10b. Profiles AA1 and BB1 parallel to the Nankou-Sunhe fault and Profiles CC1 and
DD1 perpendicular to the Nankou-Sunhe fault with a length of about 10 km are chosen to analyze
the spatial characteristics of land subsidence along this fault zone. It can be found that the ground
surface displacement along Profile AA1 located at the north of the Nankou-Sunhe fault shows a relative
stable displacement rate of around 25 mm/year. However, the profile of average subsidence rate
for BB1 located in the south of the fault exhibits a significant increasing trend with the maximum
subsidence rate exceeding 70 mm/year. The profiles of the average displacement rate for CC1 and DD1
perpendicular to the Nankou-Sunhe fault also show a high ground surface displacement gradient along
the profile with maximum values up to 77 mm/year, indicating the markedly differential settlement
existing on both sides of the fault.
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Figure 10. (a) Overlap of main active faults (based on [40]) to InSAR displacement rates; (b) Land
subsidence profiles along the Nankou-Sunhe fault.

5.3. Relationships between Land Subsidence and Compressible Soil Thickness

As is well known, when piezometric levels decrease, the thicker the accumulated compressible
soil is, the greater the land subsidence rates are [47,48]. Land subsidence over the Beijing plain mainly
develops in the sand, gravel and clayey layer of Quaternary system. Among the biggest contributors
to land subsidence is clayey layer. Researches have revealed that given the same underground water
exploitation situation, the clayey units (aquitards made of fine soils) are two or three times more
deformable than those of sand and gravel (coarse soils) [2]. Figure 11a shows the thickness distribution
of the clayey layer existing in the first 100 m depth from surface over the Beijing plain area which is
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superimposed on the land subsidence rate map. Figure 11b shows the statistics of InSAR subsidence
rates for the considered soft soil ranges. As can be seen in Figure 11a, the subsidence bowls, which
present displacement rates ranging from ´110 to ´60 mm/year (i.e., about 123329 SDFP pixels within
this area from ASAR data), are mostly situated in the zone with a clayey layer thickness of around 50
to 70 m (i.e., about 98190 SDFP pixels within this zone from ASAR data), accounting for 79.6% of the
whole amount of subsidence.

 

Figure 11. (a) Distribution of clayey layers on the study area [28]; (b) Statistics of InSAR-derived land
subsidence rate data for the different soft soil ranges.

5.4. Relationships between Land Subsidence and the Aquifer Structure

The structure of the aquifer system in the Beijing plain consists of [20]: (a) coarse-grain sediments
with single sandy gravel; (b) median-grain sediments with multiple layers of pebbles and gravels; and
(c) fine-grain sediments with multiple sand layers and gravel layers. Figure 12 shows the statistics of
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InSAR subsidence data for the different types of aquifers systems. It can be seen that the subsidence
bowls with displacement values varying from ´110 to ´60 mm/year are located over predominantly
fine-grain sediments, accounting for 8% of the total subsidence rate data.

 
Figure 12. (a) Distribution and (b) statistics of InSAR derived data for the different types of aquifers.

5.5. Relationships between Land Subsidence and Main Groundwater Extraction Areas

Groundwater extraction is the main water supply source in the study region [21]. Groundwater
is extracted from different depths for agricultural, industrial and domestic uses. In this section, we
evaluate the effect of groundwater extraction from the Huairou emergency wells drilled in 2003 located
along the banks of Huai, Sha and Yanxi Rivers and the well field located along the Chaobai River
which were drilled in the 70s (Figure 13).

To evaluate the influence of the pumping wells on land subsidence, different buffers at specified
distances were created as shown in Figure 13a. The subsidence rates varied from ´35 to ´5 mm/year
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in the buffer areas. The statistics of InSAR subsidence rates against the distance to the wells are plotted
in Figure 13b. It shows that the proportion of maximum subsidence rates from ´35 to ´25 mm/year
decrease as the distance to the normal pumping wells increases. A similar relationship is found for the
emergency pumping wells (Figure 13b). It indicates that, as expected, land subsidence rates decrease
with the distance to pumping wells according to the shape of the cone of depression that develops
around active pumping wells.

 

Figure 13. (a) Location of the Huairou emergency wells and the well field located along the Chaobai
River overlapped to the InSAR subsidence rate map; (b) Statistics of InSAR-derived data against the
distance to the Chaobai River (left) and Huairou (right) pumping wells.

6. Conclusions

In this study, land subsidence due to over-extraction of groundwater in the Beijing region was
investigated with SBAS InSAR using 41 Envisat ASAR and 14 TSX images. The results reveal that
the Beijing region has experienced significant ground subsidence from 2003 to 2010 with a maximum
accumulative displacement of 790 mm. The SBAS results have been validated by GPS measurements
with a mean difference of 2.41 ˘ 1.84 mm/year and a RMS of 2.94 mm/year, demonstrating that SBAS
InSAR can effectively monitor and detect complicated settlements. A high correlation coefficient of 0.92
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and a standard deviation of 7.48 mm/year between both TerraSAR-X and Envisat ASAR InSAR-derived
subsidence rates was observed, indicating the reliability of InSAR derived land subsidence rate maps.

The spatiotemporal analysis of land subsidence indicates an increasing trend in the rate and
extent of land subsidence. The join spatial and/or temporal analysis of InSAR data and conditioning
and triggering factors shows that land subsidence is correlated with groundwater levels, active faults,
different soft soil ranges and aquifer types. Furthermore, a relationship between land subsidence and
the distance to the pumping wells has been found.

The analysis of different stress-strain relationships shows that the aquifer-system exhibits different
behaviour, such as quite elastic behaviour and predominantly inelastic behaviour. Additionally, the
analysis of the variation of the inelastic storage coefficient (Skv) of the aquifer system computed from
the stress-strain curves shows that the deformability of the aquifer system increases from the north
towards the south.

The distribution and development trends of the land subsidence over the study area are obviously
controlled by its geological structures. Among the biggest contributors to land subsidence are the
clayey layers. The subsidence bowls located in the east, north-east and north are mostly placed over
a zone with a clayey layer underneath, with a thickness around 50 to 70 m, and those subsidence bowls
are located over predominantly fine-grain sediments. The InSAR data statistics and the distance to
the pumping wells show that land subsidence rates are higher near the pumping wells, as expected
according to the shape of a well’s cone of depression.

To summarize, accurate InSAR-derived data from two different sensors have allowed us to
perform a comprehensive spatial and temporal study of the land subsidence in Beijing basin from 2003
to 2011. Complementarily, these data and existing geo-information have been used to perform a study
of the role of the main conditioning and triggering factors controlling land subsidence mechanisms in
this area, providing useful information for improved development of future models for the prediction
of land subsidence affecting this area.
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Abstract: Groundwater is a major source of fresh water in Tianjin Municipality, China. The average
rate of groundwater extraction in this area for the last 20 years fluctuates between 0.6 and 0.8 billion
cubic meters per year. As a result, significant subsidence has been observed in Tianjin. In this study,
C-band Envisat (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images and
L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic
Aperture Radar) data were employed to recover the Earth’s surface evolution during the period
between 2007 and 2009 using InSAR time series techniques. Similar subsidence patterns can be
observed in the overlapping area of the ASAR and PALSAR mean velocity maps with a maximum
radar line of sight rate of ~170 mm¨ year´1. The west subsidence is modeled for ground water volume
change using Mogi source array. Geological control by major faults on the east subsidence is analyzed.
Storage coefficient of the east subsidence is estimated by InSAR displacements and temporal pattern
of water level changes. InSAR has proven a useful tool for subsidence monitoring and displacement
interpretation associated with underground water usage.

Keywords: InSAR; underground water extraction; subsidence

1. Introduction

Subsidence caused by groundwater extraction is a worldwide problem [1–3]. Estimated
subsidence rates range up to several hundred mm per year, highlighting the importance of continuous
displacement mapping. With great demand for fresh water and a limited river water resource, ground
water use seems inevitable for Tianjin City (Figure 1a), which has a population of 12.93 million
and is currently growing at 2.6% per year till 2010 [4]. The maximum pumping rate recorded was
in 1981 with the annual rate of 1.2 ˆ 109 m3. The annual rates from 1981 to 2007 are in the range
0.6–0.8 ˆ 109 m3¨ year´1 (Figure 1b) [5]. As a consequence of this sustained high level of abstraction,
an overall drop in the water table has been observed in Tianjin. Water extraction has increasingly been
from deeper underground [6]. This extensive use of ground water could account for the subsidence in
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Tianjin, which has been observed since 1959. The subsidence can be divided into three different stages:
slow subsidence at 50 mm¨ year´1 from 1959 to 1977, accelerating subsidence from 1978 to 1982 at
100 mm¨ year´1 and attenuating subsidence at 20–30 mm¨ year´1 from 1983 to 1997 [7]. The maximum
total subsidence from 1959 to 2008 has reached 3.2 meters [5]. Locally, higher rates have been recorded:
in the 1980s, the maximum subsidence rate is given as 250 mm¨ year´1 in Tianjin [6]. The current
subsidence rate has been estimated as 8–56 mm¨ year´1 [6] and 30–40 mm¨ year´1 [5].

InSAR (Interferometric Synthetic Aperture Radar) has been used to map subsidence due to
groundwater extraction in Tianjin [8–10] and other areas like Shanghai [11], Mekong delta [12],
Ganges-Brahmaputra delta [13], Iran [14–17], Reykjanes Peninsula [18] and so on. In this study,
an InSAR time series technique is also used to recover the surface displacement field over the urban
area of Tianjin between 2007 and 2009. The patterns of observed subsidence are then interpreted in
details and modeled. Subsidence is concentrated in particular areas of the city, and these subsidence
centers are analyzed in terms of their geological controls and association with groundwater levels. The
effects of groundwater volume changes on surface displacement are investigated for one subsidence
center through inverse modeling of InSAR derived subsidence.

Figure 1. (a) The tectonic framework of the Northern China Plain. Boundary of North China Plain is in
thick red line. Piedmont plain, alluvial fan and flood plain, and coastal plain in North China Plain are
bounded by thick yellow and blue lines. Major faults and subsidiary faults in North China Plain are
shown in thin black and red solid lines, respectively [19]. Palaeogene lacuna (missing line of Paleogene
system) is in thin dotted line, while further details of the fault system in Tianjin are shown by thin yellow
solid lines [20]. Locations of major cities in this area are shown. Envisat ASAR frame, ALOS PALSAR
frame, and political boundary of Tianjin are outlined with dashed lines; (b) Annual groundwater
pumping volume and rainfall in Tianjin City from 1980 to 2007 (after [5]); (c) Stratigraphy in Bohai Bay
Basin (after [21–23]). The upper Tertiary formations can be divided into Neogene Minghuazhen (Nm)
and Guantao (Ng) groups. The lower Tertiary formations can be divided into Eogene Dongying (Ed),
Shahejie (Es), and Kongdian (Ek) formations.
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2. Geological Background

2.1. Tectonic Divisions

Tianjin Municipality is located 130 km southeast of Beijing and is on the western shore of Bohai
Gulf. Tianjin lies on the North China Plain (NCP), also known as Huabei Plain. The NCP is dominated
by Haihe and Cangdong fault systems (Figure 1a). The NNE-SSW oriented alignment of Cangdong
fault, Tianjin fault, and the Paleogene lacuna, forms a horst-graben structure, which is transversely cut
by WNW-ESE aligned faults including Baodi, Hangu, and Haihe faults [24].

In summary, Tianjin is separated by Baodi Fault into the northern Yanshan Folded Belt and the
southern Bohai Bay Basin. The Bohai Bay basin contains three tectonic divisions: Jizhong depression,
Cangxian uplift, and Huanghua depression. Paleogene lacuna separates Jizhong depression and
Cangxian uplift. Cangdong fault separates the Cangxian uplift and the Huanghua depression [25].

2.2. Sediments

The stratigraphy in the Bohai Bay Basin is summarized in Figure 1c. The Bohai Bay Basin
is a tectonically subsiding region filled with continental Tertiary and Quaternary sediments [21].
The Quaternary and Tertiary sediments and aquifer system range in thickness from less than 1000 m in
the Cangxian uplift [22] to 1200–9000 m in the Jizhong depression, and 900–5000 m in the Huanghua
depression [20].

2.3. Hydrogeological Conditions

The ground water system in Tianjin has three main aquifers, the Quaternary, Tertiary and Lower
Paleozoic-Sinian aquifers [22]. Above the depth of 700 m in Tianjin, the ground water system can
be sub-divided into six aquifer layers (Table 1) [26]. Thickness of Aquifers I to V are in the range of
40–60, 25–60, 30–55, 30–50, and 20–30 m, respectively [6]. Aquifer II is in an over consolidated late
Pleistocene strata and Aquifer III is in a normally consolidated middle Pleistocene strata. In Tanggu
district of Tianjin, even though aquifer II and III account for 46% and 24% of ground water exploitation,
respectively, Aquifer III is the greatest deformation contribution source [7]. Layers between 136 m
and 300 m in depth account for more than 65% of subsidence by extensometer observation in Tanggu
district of Tianjin [7].

The ground water extracted from a depth greater than 300 meters is mainly used for geothermal
exchange. The Tianjin geothermal field covers approximately 11,000 km2 [22]. The horst where Tianjin
is located is the most productive geothermal field and the highest measured geothermal gradients are
found here. More than 200 geothermal wells, of which 10–15 are injection wells, are producing waters
from 30 ˝C to boiling for room heating. Shallow geothermal wells range from 300 m in Quaternary
formations to 600 m in Tertiary formations for lower temperatures. Deep wells can reach up to 2600 m
in the Tertiary formation [22].

Table 1. Bottom depth of aquifers in Tianjin. Baodi fault and Plain of Tianjin are depicted in Figure 1a.
Tanggu district is shown in Figure 2.

Location Tanggu District of Tianjin Plain to the South of Baodi Fault Plain of Tianjin

Literature [6] (unit: m) [27] (unit: m) [26] (unit: m)
Aquifer I 60–70 <70 40–123
Aquifer II 170–190 160–220 191–202
Aquifer III 270–310 260–340 309–326
Aquifer IV 370–400 360–430 390–405
Aquifer V ~550 500–550 505–544
Aquifer VI N/A N/A 608–613
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3. Data and Methods

3.1. Data

In order to investigate the subsidence in Tianjin, an InSAR (Interferometric Synthetic Aperture
Radar) method is used [28,29], exploring C-band Envisat-ASAR data from European Space Agency
(ESA) and L-band ALOS-PALSAR data from Japan Aerospace Exploration Agency (JAXA). ASAR
C band images (Table 2) are retrieved with a wavelength of 56 mm compared with PALSAR L
band images (Table 3) of 236 mm. The radar line of sight look angles are 23 and 34 degrees off
nadir for ASAR and PALSAR, respectively, which means a different sensitivity towards the vertical
deformation. The azimuth angles are 166 and 13 degrees counter clockwise from north for ASAR and
PALSAR, respectively.

Table 2. Envisat/ASAR archive with acquisition time and length of perpendicular baseline relative to
the reference image on 10 October 2008.

SAR Image Acquisition Time Baseline Perpendicular

1 4 January 2008 ´401 m
2 8 February 2008 289 m
3 14 March 2008 ´75 m
4 18 April 2008 270 m
5 23 May 2008 32 m
6 1 August 2008 129 m
7 5 September 2008 312 m
8 10 October 2008 0 m
9 23 January 2009 164 m

10 27 February 2009 235 m
11 3 April 2009 624 m
12 8 May 2009 ´48 m
13 12 June 2009 308 m

Table 3. ALOS/PALSAR archive with acquisition time and length of perpendicular baseline relative to
the reference image on 7 December 2008.

SAR Image Acquisition Time Baseline Perpendicular

1 17 January 2007 295 m
2 4 March 2007 1963 m
3 20 July 2007 2700 m
4 20 October 2007 3154 m
5 5 December 2007 3288 m
6 20 January 2008 3764 m
7 21 April 2008 4866 m
8 6 June 2008 4829 m
9 22 July 2008 1624 m
10 6 September 2008 ´746 m
11 7 December 2008 0 m
12 22 January 2009 484 m
13 9 March 2009 938 m
14 24 April 2009 1490 m
15 9 September 2009 1756 m

3.2. Methods

Single look complex image was generated using ROI_PAC [28]. Interferograms were generated
using Doris [30]. SRTM (NASA’s Shuttle Radar Topography Mission) with a 3 arc-second resolution
was used for topography removal [31]. The StaMPS (Stanford Method for Persistent Scatterers) software
was used to process the images using Persistent Scattering (PS) methods inside the package [32,33].
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In contrast to most other PS methods, StaMPS uses phase spatial correlation to identify PS
pixels instead of amplitude analysis [30,34,35]. The advantage of this strategy is the capability to
detect persistent scattering (PS)/slowly decorrelating filtered phase (SDFP) pixels with low amplitude,
which is often the case in natural terrains. The probability for a pixel to be PS/SDFP is estimated
through phase analysis, which is successively refined in a series of iterations. Without any prior
assumption about the temporal nature of ground deformation, StaMPS relies on the spatial correlation
of deformation rather than any assumption of the temporal dependence of deformation [36].

For selected PS points, the two dimensional phases are still modulo 2π. Phase unwrapping is
therefore implemented in order to derive continuous displacement fields. On each interferogram, phase
unwrapping is implemented using the SNAPHU (Statistical-Cost, Network-Flow Algorithm for Phase
Unwrapping) algorithm [37]. SNAPHU is a statistical-cost network flow algorithm. The algorithm
aims to compute the most likely unwrapped solution with maximum posterior probability estimation
given the observable input data.

The topography of the NCP (North China Plain) is quite gentle because it is formed in a coastal
area by sediment aggradations. Large DEM errors are not expected here. The look angle error is
estimated in time series using perpendicular baselines of each scene [32].

The atmospheric effects exhibit spatially correlated pattern. Deformation pattern are also spatially
correlated. However, displacement usually stays in the same area while the atmospheric phase screen
(APS) pattern is variable from one image to another. For a single pixel, the deformation should
be continuous in time, APS will cause unexpected signal in time series. The APS can be estimated
according to its different spatial and temporal nature from displacement. The master atmospheric
effect and orbital error is estimated by its presence in every interferogram. The slave atmospheric
effect and orbital error is estimated by temporal high pass and spatial low pass filtering [32]. As a
flood plain, our research area in NCP shows gentle topography with height ranges between ´16 and
+68 m. As a result, the topography dependent APS [38–40], which could stay in the same area and be
misunderstood as displacement, are believed to be small. Long-wavelength atmospheric effects and
imprecise orbit errors were reduced by a planar phase gradient.

4. Results

4.1. Mean Velocities from ALOS and Envisat

The mean phase values of each image are firstly used as the reference phase in time series analysis
because no ground truth data are available. The area with obvious uplift displacements on the resulting
mean velocity map was then chosen as the reference area (small triangle in Figure 2). The Envisat and
ALOS mean velocity rates are not uniform across the study area with similar pattern of individual
subsidence zones on both maps. Two subsidence areas can be identified from the mean velocity map
(Figure 2).

The west subsidence area is located between Tianjin and its northwest neighbor city Langfang.
The velocity swath in the west subsidence area exhibits similar pattern between ALOS and ENIVSAT
measurements (Figure 3a), which suggest that the mean velocities in the west subsidence area
are reliable.

The other east subsidence area is located around the Tuanbo Reservoir to the east of Jinghai County.
The newly built Jing-Hu High Speed Railway also passes through this area (Figure 2). The mean
velocity swath profile along JH Railway (Figure 3b) indicates the overlap of Jing-Hu High Speed
Railway and the east subsidence area e.g., between 38.8˝ and 39.05˝ N.
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Figure 2. LOS (line of sight) rates from ALOS (17 January 2007 to 9 September 2009) and Envisat
(4 January 2008 to 12 June 2009) satellites. Negative values mean moving away from the satellite
(e.g., subsidence). The straight line “TJLF (Tianjin Langfang)” is located between Tianjin City and
Langfang City. The poly line “HSR (High Speed Railway)” is the path of Jing-Hu high speed railway.
The displacement rates along the two swathes are shown in Figure 3. BM2010 and BM2011, along
with other benchmarks, are shown in white dots. Leveling results for all benchmarks are compared
with InSAR displacements in Figure 4. Reference points for InSAR and leveling are shown in black
triangle and dot respectively. Model area is outlined by rectangle. Counties and districts in Tianjin are
outlined by thin dashed line. Geothermal fields with gradient above 3.5 (˝C/100 m) are outlined by
thick dashed line.

Figure 3. (a) LOS rates against longitude in TJLF swath with buffer distance of 500 meters to both sides
of the line; and (b) LOS rates against latitude in a swath along the Jing-Hu High Speed Railway with
buffer distance of 500 meters to the railway at both sides.
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4.2. InSAR and Leveling Comparison

Leveling data are available in May 2007, March 2008, September 2008 and March 2009 from
13 benchmarks along a 20 km section of the Jing-Hu High Speed railway in this area. InSAR
results are compared with the leveling survey results. Comparison between InSAR and leveling
is not straightforward due to different reference systems. Leveling reference point for Tianjin is the
Liqizhuang bedrock point located in Tianjin institution of surveying and mapping. Liqizhuang bedrock
point is a deep stratum benchmark, with its base 1088 m underground in Cambrian formations [41].
The InSAR results are referenced to the mean value of phases first. Then, the areas with the greatest
uplift signals are chosen as the InSAR reference area. Comparison between leveling and InSAR
displacements can be made through a double difference in time and space [42]. The spatial reference
for InSAR and leveling comparison is leveling point BM2010, which exhibited the least subsidence
among all leveling points. The temporal reference for InSAR and leveling comparison is set at the
first leveling campaign in May 2007. Firstly, LOS InSAR displacements are linearly interpolated at the
leveling times. Secondly, Interpolated LOS InSAR results are double differenced using the spatial and
temporal reference. Finally, LOS Envisat and ALOS results are decomposed into east-west and vertical
components by ignoring north-south horizontal movement for a polar orbit SAR satellite [43]. To be
consistent with InSAR results, the leveling results are re-referenced to BM2010 at May 2007 as well.
It should be noted that first Envisat acquisition is later than first leveling campaign, so InSAR and
leveling results are temporally re-referenced to March 2008 when necessary.

Figure 4. (a) Correlation between ALOS LOS displacements and four leveling campaigns;
(b) correlation between Envisat LOS displacements and three leveling campaigns; (c) correlation
between decomposed vertical displacements and three leveling campaigns; (d) interpolated ALOS
displacements and leveling displacement; (e) interpolated Envisat displacements and leveling
displacement; and (f) decomposed vertical displacement and leveling displacement.

The RMS differences are 9.7 mm between ASAR LOS and leveling, 8.8 mm between PALSAR and
leveling, and 8.3 mm between vertical component and leveling (Figure 4a–c). Slightly improvement
is seen after decomposition of horizontal movement from vertical (Figure 4c,f). The reason lies in
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the fact that the accuracy of Leveling data, interpolated ALOS and Envisat displacement is limited.
On the one hand, the accuracy of interpolated ALOS and Envisat displacement is limited by seasonal
movement. For example, ALOS displacement on 1 March 2009 is interpolated from displacements
of 22 January and 9 March 2009, while Envisat displacement on 1 March 2009 is interpolated from
displacements of 27 February and 3 April 2009. The water level began to drop in late March, so the
interpolated Envisat displacement is greater than ALOS in March 2009. It seems that the decomposition
of horizontal and vertical movement is not highly effective in the presence of seasonal displacement.
On the other hand, the leveling dates available are only accurate to months, and the first day of the
month is assumed as the leveling date for a campaign. However, it still can be seen that interpolated
ALOS and Envisat displacements generally follow the displacement trend of benchmarks, although
with less displacement (Figure 4d,e). It is likely that the vertical displacement is dominant to horizontal
displacement along the leveling line, and the projection from vertical to LOS results in displacement
reduction for both ascending and descending tracks.

4.3. Model of West Subsidence

The western subsidence is modeled using Mogi source solution in a semi-analytical
approach [44,45].

uz px, yq “
ÿ

i

p1 ´ νq ΔVi
π

gz pri, dq (1)

gz pr, dq “ d`
r2 ` d2

˘3{2
(2)

ri “
b

px ´ xiq2 ` py ´ yiq2 (3)

where uz px, yq is the vertical displacement at px, yq, ΔVi is the volume change at reservoir element
i, gz pr, dq is the vertical green/influence function, ν. is the Poisson’s ratio, ri is horizontal distance
between surface point px, yq and reservoir element pxi, yiq, d is reservoir depth. The reservoir is divided
into equal squares.

A semi analytical inversion is performed for Mogi source array to determine the best fit
distribution of source volume change for LOS annual displacements (annual rates times one year).
Modeled surface displacements are the ensemble contributions from each source. Poisson’s ratio of
0.25 is set for this study. Reservoir depth is fixed at about 200 meters as ground water is pumped from
a depth of 100–300 m in Tianjin [7]. The linear least-squares inversion procedure has been adopted to
estimate the source volume change.

It is well known that InSAR observations may contain global bias due to uncertainties in reference
level or other uniform signals (e.g., sediment compaction). Accordingly, a constant offset is allowed in
model inversion to accommodate the global bias.

In the process of inversion, regularization on the source strength is often needed to ensure a
reliable inversion with a faithful representation of the source. Directly modeled reservoir volume
changes (Figure 5a) seem noisier than the regularized source (Figure 5b). This can be caused by
displacement uncertainty due to noise and other error sources. Besides, the semi analytical approach
allows approximation of reservoir change and efficient computations, but it does not assure the physical
process that must involve a continuous contracting/inflating volume. A Laplacian regularization
based process was applied to smooth the source (Figure 5b).

˜
G 1
LF 0

¸ ˜
S
O

¸
“

˜
D
0

¸
(4)

where G is the Green’s function, L is the Laplacian smooth operator, F is the smoothing factor (weight),
and their product LF is the smoothing matrix used in model inversion. S is the source volume change,
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O is the offset term for global bias, and D is the observed displacement. In order to balance the
roughness of source volume change and model fit to displacement, the L curve method (Figure 6) is
adopted to find the best smoothing factor [46].

 

Figure 5. Mogi reservoir model: (a) no smooth applied; and (b) Laplacian smooth.

Figure 6. L curve to determine source smoothness. The horizontal axis denotes the modeled source
smoothness logp||LS||2q, where L and S are defined in Equation (4). The vertical axis denotes source
fit to InSAR observations logp||GS ´ D||2q , where G and D are defined in Equation (4). The curve
is formed by 13 different Laplacian regularized sources S. Each S corresponds to the best-fit result of
each inversion. Smoothing strength for the source is controlled by LF in model inversion. There are 13
smoothing factors F range between 10´4 to 10´1 with exponential step of 0.25. Note that horizontal
axis LS is calculated without multiplying smoothing factor F. The square centered with an asterisk
represents that a value of 10´3 is employed as the smoothing factor for final result.

The modeled source volume change is about ´7694 to +1678 m3 for each element (300 m square)
per year (Figure 7), equivalent to water volume change of ´85,000 to +18,000 m3/km2/year, further
equivalent to water storage change of ´85 to +18 mm¨ year´1 in height. Unfortunately, to the best
of our knowledge, in situ measurements of fluid volume from production wells is unpublished and
is not available for comparison with our modeling results. Ground water storage (GWS) change
from GRACE satellite measurement is about ´17 to ´22 mm¨ year´1 in North China Plain [47–49],
equivalent to ´17,000 to ´22,000 m3/km2/year. The GRACE measurement covers Beijing, Tianjin,
Hebei and Shanxi of ~370,000 km2, while our model is in an area of 860 km2 in Tianjin. Simulated
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recoverable groundwater storage depletion is ´30,000 m3/km2/year (equivalent to 30 mm¨ year´1 in
height) from 1970 to 2008 [50], equivalent to ´2700 m3 for each element (source) per year. Contour
line of ´2700 m3 is superimposed on source volume change (Figure 7d). Line ´2700 m3 coincides
with sharp reduction of both the water extraction volume and subsidence observed. Modeled source
volume change show local water storage increase up to 1678 m3. InSAR observations show subsidence
of ´168.5 to ´2.9 mm in model area (Figure 7a). The volume increase seems to contradict with the fact
that only subsidence is observed in this area. From the perspective of semi-analytical modeling, any
surface deformation is the ensemble contribution of all model sources via their influence functions.
Therefore, for a surface point, the superposition of a remote contracting source with large volume
decrease, and a nearby inflating source with small volume increase, may still generate a surface
subsidence. From the perspective of physical process, aquifer can benefit from precipitation infiltration,
irrigation return, or other vertical or horizontal recharge. For instance, rainfall in summer recharge
local ground water aquifers in North China Plain by 12–29 mm seen from GRACE and 25 mm seen
from ground boreholes [48].

Figure 7. (a) ALOS LOS annual displacements (annual rates times one year); (b) modeled ALOS
LOS annual displacement; (c) residuals between observed and modeled displacements for ALOS;
(d) Envisat LOS annual displacements; (e) modeled Envisat LOS annual displacement; (f) residuals
between observed and modeled displacements for Envisat; and (g) modeled Source array volume
changes from ALOS displacement. Dashed line is a contour of ´2700 m3.

The horizontal displacement can be modeled using horizontal Green’s function and the best-fit
source volume change.

gr pr, dq “ r`
r2 ` d2

˘3{2
(5)

where gr pr, dq is the horizontal green/influence function. Modeled horizontal displacements can be
substantial, with maximum annual horizontal displacements reach up to 74 mm (Figure 8). Maximum
horizontal displacements are located along a semi closed oval around the modeled source center.
The modeled maximum horizontal displacement is 36% of the maximum vertical displacement.
Theoretical ratio of maximum horizontal to maximum vertical displacement is 38% for a single Mogi
source [51]. A field based aquifer test in Nevada shows that the horizontal displacements reach 8 mm
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and vertical displacements reach 12 mm within the first 22 days of pumping before reaching the steady
state pumping [52]. Thus, the horizontal displacement induced by aquifer abstraction can be significant.
Horizontal displacements are believed to be a cause of ground fissures [53]. Ground fissures associated
with subsidence has caused severe infrastructure damage in Taiyuan Basin of China [54]. Hence, it is
worth measuring the horizontal displacements due to ground water depletion, including Tianjin.

Figure 8. Modeled annual: (a) horizontal displacements; (b) horizontal displacements in E-W direction;
and (c) horizontal displacements in N-S direction.

5. Discussion

5.1. Impact of Reservoir Grid Size

Grid-like patterns stand out in the modeled displacement (Figure 9b). The hypotheses that these
are related with reservoir grid size are examined. The 300 m reservoir is now resampled into 270 m,
225 m, and 75 m grids (Figure 9c–e). At the same time, reservoir volume changes are resampled by size
to fit the surface displacement. It can be seen that surface displacements are well represented when
finer reservoir grids are adopted without alternating surface grid size. Hence, the grid patterns that
obscure the modeled displacement are mainly due to the reservoir grid size in this case.

It should be noted that Mogi-type modeling assumes that source radius α is much smaller than
source depth ((α/d)Ñ0). A radius of 1 km is usually assumed for volcano cases [51]. The maximum
displacement for a finite sphere is about 1 + (α/d)3 times of that for a point sphere [51]. Accordingly, the
grid-like patterns appear when the ratio of cavity radius to depth is significant (Figure 9). Hence, water
storage change can be underestimated when reservoir grid size is similar to its depth. However, fine
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reservoir grid causes quadratic growth of source numbers, greatly increasing computational burden in
model inversion.

Figure 9. Observed LOS surface displacement (a) and Modeled LOS displacements with reservoir grid
size of: (b) 300 m; (c) 270 m; (d) 225 m; and (e) 75 m.

5.2. Tectonic Division and Its Effect on Subsidence

There are two kinds of explanations when fault act as a subsidence barrier. First, sediment
deposits separated by the fault exhibit different compressibility [55]. Second, ground water hydraulic
conductivity is low around the fault [56]. In this section, major faults in Tianjin are examined to see if
they are related with subsidence observed. The tectonic division could help address the subsidence
differences seen in Tianjin.

The east subsidence, outlined by B1 in Figure 10b, is controlled by Tianjinbei fault to the west,
and Dasi fault to the east. Most of the east subsidence is located in the area of Shuangyao salient.

Velocity differences (abrupt InSAR mean velocity changes) can be found between the areas to the
west and to the east of lines F1, F2, and F3 (The F lines in Figure 10b are drawn by visual inspection)
(Figure 10b). Line F1 coincides with a fault to the west of Baitangkou depression [57]. Line F2 matches
the central segment of Dasi fault [58]. Dasi fault is also known as Baitangkou fault. Line F3, however,
bends away from Dasi fault and is oriented in NE-SW direction. It remains unclear if a fault exists
along F3. Further geological investigation is needed to confirm this.

The Tianjinbei fault is striking NNE (strike is a line representing the intersection of a fault with a
horizontal plane) and dipping NW (dip is the angle of descent of a fault relative to a horizontal plane).
The Tianjinnan fault is also striking NNE while dipping SE. The Tianjinbei fault and the Tianjinnan fault
are 6–7 km apart. Tianjinbei fault joins Haihe fault to the north in Tianjin city center [59]. A velocity
strip (a long and narrow zone with mean velocities different from neighboring area) matches the
location of the Tianjinnan fault (Figure 10). Dislocated stratum appears at about 47 m in depth from
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TJ08 seismic profile of Tianjinnan fault [59]. Boreholes TS1 and TS4 near profile TJ08 show that a 9.5 m
fault throw (the vertical component of the dip separation) appears at 88.3–90.3 m in depth to the west
of Tianjinnan fault and at 98.9–99.7 m in depth to the east of Tianjinnan fault [60].

Haihe fault separates Tianjinbei fault into north and south segments. A velocity strip matches the
north segment of Tianjinbei fault (Figure 10). In the north segment, dislocated stratum appears at 132 m
and 125 m in depth from TJ01 and SY02 seismic profiles of Tianjinbei fault [59]. Weak velocity differences
can also be observed along line F4 (Figure 10b), which can be the south segment of Tianjinbei fault.

Figure 10. Faults and LOS subsidence rates in Tianjin: (a) Tectonic system of the area includes Dacheng
Salient (DCS), Shuangyao Salient (SYS), Panzhuang Salient (PZS), Xiaohanzhuang Salient (XHZS),
Litan Depression (LTD), Banqiao Depression (BQD), and Baitangkou Depression (BTKD) [57–59,61,62].
Major faults include the Tianjinnan Fault (TJNF), Tianjinbei Fault (TJBF), Dasi Fault (DSF), Haihe Fault
(HHF) and Cangdong Fault (CDF); (b) TJ01 and SY02 are seismic profile of TJBF. TJ08 is seismic profile
of TJNF, and TS1 and TS4 are boreholes near TJ08. TJ23 is seismic profile of CDF [59].

Cangdong fault is striking NNE and dipping SE. Tianjin segment of Cangdong fault is cut by
Baodi fault and haihe fault [62]. Velocity differences are seen along lines F6 and F7 (Figure 10b).
Dislocated stratum appears at 152 m in depth from TJ23 seismic profile of Cangdong fault [59].

Haihe fault is striking NW to NWW and dipping SSW [59]. Distinguishable minimum depth of
Haihe fault is 60–70 m [59]. It crosses the Tianjin urban area where uniform velocities are observed.

The east subsidence area shows greater subsidence rates than urban areas of Tianjin on both
Envisat and ALOS mean velocity maps. This is consistent with the fact that the area of ground water
extraction expanded to the suburban area since 1990s and the ground water pumping volume in urban
area has declined from more than 100 million in 1981 to less than 10 million cubic meters in 2007 [5].

Within a geological uplift, the east subsidence is likely the result of heavy underground water use.
Geological control of the east subsidence is seen along DSF and TJBF. Subsidence is likely to be related
with stratum below 125 m seen from TJBF.

5.3. Water Level and Subsidence

In the east subsidence, the time series displacement of JH-12 Well is plotted against contemporary
precipitation and its water level records of Aquifer II (Figure 11). It can be seen that seasonal InSAR
displacements near JH-12 generally follows the underground water levels of JH-12. North China Plain
is one of the largest agricultural production area in China, accounting for about 50% of wheat and 33%
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of maize grain production in China [63]. The boot growth stage of winter wheat is April, when water
demand by irrigation reaches its peak level. The water table was the lowest from May to June each
year. The irrigation return and abundant precipitation in July and August infiltrated and recharged
ground water [64]. The water level then rose to the highest level in March or April the following year.

Figure 11. Envisat and ALOS LOS displacement at JH-12 Well (the triangle in Figure 12b) in east
subsidence area. Precipitation data are available from China Meteorological Administration, specifically
meteorology station No. 54527 in Tianjin [65]. Water level of JH-12 Well in Aquifer II is available to the
end of 2008 [27].

The water level pattern of JH-12 resembles the lateral recharge-runoff-discharge pattern in the
piedmont of North China Plain [66]. However, JH-12 is at least 100 km away from the piedmont
plain zone besides Yanshan Mountain and Taihang Mountain, and is located in alluvial fan and flood
plain [67]. In central North China Plain, water level is normally low in winter and spring with strong
evaporation and less precipitation [66], while JH-12 show consistently high water level in winter and
spring except a tiny fluctuation of ca. 0.5 m around December (Figure 11). It is likely that JH12 is
laterally recharged since Tuanbo Reservoir is nearby (Figure 12b).

Water level of JH-12 declines sharply from ´62.57 m to ´69.03 m between 23 March and 26 April
2008. Consequent subsidence between 21 April and 22 July in 2008 reaches about 63 mm in ALOS LOS
direction. The short term aquifer compaction should be elastic as the water level recovers to a nearly
identical level next march. Hence we evaluate the elastic storage coefficient Sk̊e near JH-12 by relating
aquifer compaction and effective stress change. Aquifer compaction and stress change are reflected
by ALOS displacement and hydraulic head change respectively [68]. The seasonal LOS deformation,
satellite incidence angle, and water level drop, yield an elastic storage coefficient of 0.0125 for JH-12 from
ALOS. Although 18 mm LOS subsidence is observed between 23 May and 1 August 2008 from Envisat, no
ASAR image can be found in June or July, when subsidence reaches its maximum value seen from ALOS.

In a numerical study of flow system simulation in the North China Plain, storage parameter
set for Aquifer III is in the range of 0.0001–0.005 with geometric mean value of 0.0012, and storage
parameter set for Aquifers I and II are in the range of 0.04–0.25 with geometric mean of 0.075 [50].
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The elastic storage near JH-12 Well triples the maximum storage parameter set for Aquifer III, but is
merely one-third of the minimum storage parameter set for Aquifers I and II [50]. Hence Aquifer II
and other aquifer layers are likely contribute together to the observed surface subsidence.

Subsidence rates are compared with water level of Aquifer III and Aquifer IV in 2008 [26]
(Figure 12). Notably, the water levels are relative because the depth of Aquifer III and Aquifer IV are in
the range of 180–400 m for the east subsidence area in their paper. The water level in Aquifer III of the
east subsidence area is ´70 to ´60 m in depth, while it is >´55 m in the urban area of Tianjin in 2008.
Higher subsidence rates are associated with lower water level in Aquifer III. Aquifer III is likely to be a
subsidence source to the east subsidence due to similarity in map patterns between subsidence and lower
water levels. Correlation between the water level of Aquifer IV and subsidence pattern are not seen.

A wavelet analysis on InSAR displacement and water level time series is implemented
(Appendix). Displacement periodicities and time shift between water level and displacement time
series are analyzed.

Figure 12. Water levels in 2008 superimposed on LOS subsidence rates from Envisat (4 January 2008 to
12 June 2009): (a) Aquifer III; and (b) Aquifer IV. Location of JH-12 Well is marked in triangle. Tuanbo
Reservoir is labeled.

6. Conclusions

Subsidence up to 170 mm¨ year´1 is observed in the Tianjin Municipality from Envisat/ASAR
and ALOS/PALSAR images collected between 2007 and 2009. The subsidence rates are similar across
the overlap area between Envisat and ALOS results. Subsidence along the JH High Speed Railway
has also been verified by four leveling campaigns between 2007 and 2009 with a RMS difference of
8–9 mm between InSAR and leveling.

The west subsidence is modeled using Mogi source array. Best-fit water extraction volume is
obtained through model inversion. Estimated water volume change is ´85,000 to +18,000 m3/km2/year
(equivalent to ´85 to +18 mm¨ year´1 in height). High gradients of subsidence and water storage
change are associated with the recoverable water volume change of ´30,000 m3/km2/year (equivalent
to ´30 mm¨ year´1 in height) from other numerical simulation study.

Geological control of Tianjinnan, Tianjinbei and Dasi faults on the east subsidence can be seen
from InSAR displacement rates. The east subsidence can be related with Aquifer II, seen from temporal
association of subsidence and water level of JH12. The east subsidence can also be related with
Aquifer III, seen from elastic storage coefficient and spatial association of subsidence and water level
of Aquifer III.
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This study demonstrates the capability of time series InSAR to map subsidence, model ground
water volume change, identify geological control factors, and estimate storage coefficients in Tianjin.
InSAR can be an effective tool to investigate ground water use conditions in Tianjin and NCP.
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Abbreviations

The following abbreviations are used in this manuscript:

InSAR Interferometric Synthetic Aperture Radar
ASAR Advanced Synthetic Aperture Radar
ALOS Advanced Land Observing Satellite
PALSAR The Phased Array type L-band Synthetic Aperture Radar
NCP North China Plain
ROI_PAC Repeat Orbit Interferometry PACkage
DORIS The Delft Object-oriented Radar Interferometric software
StaMPS Stanford Method for Persistent Scatterers
SRTM Shuttle Radar Topography Mission
PS Persistent Scatter
SDFP Slowly-Decorrelating Filtered Phase
APS Atmospheric Phase Screen
GWS Ground Water Storage

Appendix

Wavelet tools are used to analyze the seasonal displacements observed from Envisat and ALOS
and the associations between displacements and water level time series at JH-12 Well. The wavelet tools
employed in this study are continuous wavelet transform (CWT), cross wavelet transform (XWT), and
wavelet coherence (WTC). CWT decomposes one dimensional InSAR time series into two dimensional
time frequency space to determine the local periodicities of seasonal variations [69]. The cross wavelet
transform (XWT) and wavelet coherence (WTC) tools indicate the common power and relative phase
between the two time series [70,71].

Common interval for Envisat displacement and water level time series is between 4 January
2008 and 10 October 2008. Linear component of Envisat displacements is estimated by least square
method and subtracted from the time series. The Envisat image number is limited to eight, and down
sampling of water level time series at image acquisition time results in very coarse power spectrum.
Oppositely, the non-linear component of Envisat displacement is over sampled by linear interpolation
at water level time. However, the interpolation also reduces the accuracy of displacements. Envisat
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time series show a two-month cycle (64-day period) between April and May 2008 from CWT analysis
(Figure A1b). No effective cycle can be observed for water level time series (Figure A1d). XWT analysis
shows a phase rotation from about 120˝ out of phase in the one and half month cycle (48-day period) to
about 120˝ in phase in the two month cycle (64-day period) between April and May 2008 (Figure A1e).
Abrupt phase changes occur between adjacent 48-day band and 64-day band. This implies strong
seasonal variations in a short time. It corresponds to the quick water level drop in April. WTC
analysis shows about 90˝ out of phase in cycles of 4–8 days and 16–32 days (Figure A1f). It means
the displacement leads water level by 1–2 days or 4–8 days. Actually, this is due to lower temporal
resolution of Envisat images compared with water level time series. The lowest water level is between
the 4th and 5th Envisat image acquisition time, so it looks as if displacement from 4th to 5th image
happens before the water level rise. In fact, the 4th image corresponds to a water drop stage while the
5th image corresponds to a water rise stage.

Figure A1. Cont.
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Figure A1. (a) Detrend of Envisat time series at JH-12 Well; (b) continuous wavelet power of the
Envisat time series; (c) water level of JH-12 Well; (d) continuous wavelet power of water level time
series; (e) cross wavelet transform of Envisat and water level time series at JH-12 Well; and (f) wavelet
coherence of Envisat and water level time series for JH-12. Images (g–l) are the same for ALOS and
water level time series at JH-12 Well. The thick contour is the 95% confidence level. The cone of
influence (COI) is shown in light shadow.

Common interval for ALOS and water level time series is from 17 January 2007 to 7 December 2008.
CWT analysis of ALOS time series shows a four-month cycle (128 days) between the 8th (6 June 2008)
and the 10th (6 September 2008) ALOS image. CWT analysis for water level time series also shows a
128-day cycle, though at a lower confidence level. XWT analysis show 90˝ in phase in the 80-day band
and 90˝ out of phase in the 128-day band, from the 6th (20 January 2008) to the 9th (22 July 2008) ALOS
image. This means strong seasonality occurs between the two images. WTC analysis shows about
90˝ in phase in cycles of 4–8 days near the 7th ALOS image (21 April 2008). This means water level
leads displacement by 1–2 days, which is beyond the 46-day repetition frequency of ALOS acquisition.
WTC analysis also shows 90˝ in phase in cycles of 64 days between 7th (21 April 2008) and 10th
(6 September 2008) ALOS image, although with lower confidence level. It means water level leads
displacement by 16 days. The displacement began to stabilize at the 10th (6 September 2008) ALOS
image, while the water level’s recent rise stops at 8 August 2008, which is about 29 days ahead of the
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10th ALOS image. The phase shift of 16 days between water level and displacement time series can
be explained by the delay of 29 days. Moreover, it also implies the deformation may have already
stabilized before 6 September 2008, because the phase (time) shift from continuous wavelet analysis is
more robust than direct comparison of isolated time series points.

Wavelet tools are able to find the periodicities of InSAR time series and relative phase (time) shift
between InSAR and water level time series. However, the wavelet power spectrum can be misleading
if the temporal resolution of time series is low. Meanwhile, the phase (time) shift from continuous
wavelet analysis enhances the robustness of time delay analysis between time series.

References

1. Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by
ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [CrossRef]

2. Osmanoglu, B.; Dixon, T.H.; Wdowinski, S.; Cabral-Cano, E.; Jiang, Y. Mexico city subsidence observed with
persistent scatterer InSAR. Int. J. Appl. Earth Observ. Geoinform. 2011, 13, 1–12. [CrossRef]

3. Hu, B.; Wang, H.-S.; Sun, Y.-L.; Hou, J.-G.; Liang, J. Long-term land subsidence monitoring of Beijing (China)
using the small baseline subset (SBAS) technique. Remote Sens. 2014, 6, 3648–3661. [CrossRef]

4. National Bureau of Statistics of the People’s Republic of China. Population of Tianjin in 2010 from
Sixth Nationwide Population Census. Available online: http://www.Stats.Gov.Cn/tjsj/tjgb/rkpcgb/
dfrkpcgb/201202/t20120228_30405.Html (accessed on 11 Novermber 2015). (In Chinese).

5. Yi, L.; Zhang, F.; Xu, H.; Chen, S.; Wang, W.; Yu, Q. Land subsidence in Tianjin, China. Environ. Earth Sci.
2010, 62, 1151–1161.

6. Hu, R.L.; Yue, Z.Q.; Wang, L.C.; Wang, S.J. Review on current status and challenging issues of land subsidence
in China. Eng. Geol. 2004, 76, 65–77. [CrossRef]

7. Hu, R.L.; Wang, S.J.; Lee, C.F.; Li, M.L. Characteristics and trends of land subsidence in Tanggu, Tianjin,
China. Bull. Eng. Geol. Environ. 2002, 61, 213–225.

8. Luo, Q.; Perissin, D.; Zhang, Y.; Jia, Y. L- and X-band multi-temporal InSAR analysis of Tianjin subsidence.
Remote Sens. 2014, 6, 7933–7951. [CrossRef]

9. Zhang, K.; Ge, L.; Li, X.; Ng, A.-M. Monitoring ground surface deformation over the North China Plain
using coherent ALOS PALSAR differential interferograms. J. Geod. 2013, 87, 253–265. [CrossRef]

10. Liu, G.; Jia, H.; Nie, Y.; Li, T.; Zhang, R.; Yu, B.; Li, Z. Detecting subsidence in coastal areas by
ultrashort-baseline TCPInSAR on the time series of high-resolution TerraSAR-X images. IEEE Trans. Geosci.
Remote Sens. 2014, 52, 1911–1923.

11. Chen, J.; Wu, J.; Zhang, L.; Zou, J.; Liu, G.; Zhang, R.; Yu, B. Deformation trend extraction based on
multi-temporal InSAR in Shanghai. Remote Sens. 2013, 5, 1774–1786. [CrossRef]

12. Erban, L.E.; Gorelick, S.M.; Zebker, H.A. Groundwater extraction, land subsidence, and sea-level rise in the
Mekong Delta, Vietnam. Environ. Res. Lett. 2014, 9. [CrossRef]

13. Higgins, S.A.; Overeem, I.; Steckler, M.S.; Syvitski, J.P.M.; Seeber, L.; Akhter, S.H. InSAR measurements of
compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. J. Geophys. Res. Earth Surf. 2014,
119, 1768–1781. [CrossRef]

14. Dehghani, M.; Valadan Zoej, M.J.; Hooper, A.; Hanssen, R.F.; Entezam, I.; Saatchi, S. Hybrid conventional and
persistent scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran. ISPRS J.
Photogramm. Remote Sens. 2013, 79, 157–170. [CrossRef]

15. Motagh, M.; Walter, T.R.; Sharifi, M.A.; Fielding, E.; Schenk, A.; Anderssohn, J.; Zschau, J. Land subsidence in
Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 2008, 35, 428–451. [CrossRef]

16. Anderssohn, J.; Wetzel, H.-U.; Walter, T.R.; Motagh, M.; Djamour, Y.; Kaufmann, H. Land subsidence pattern
controlled by old alpine basement faults in the Kashmar Valley, Northeast Iran: Results from InSAR and
levelling. Geophys. J. Int. 2008, 174, 287–294. [CrossRef]

17. Motagh, M.; Djamour, Y.; Walter, T.R.; Wetzel, H.-U.; Zschau, J.; Arabi, S. Land subsidence in Mashhad Valley,
Northeast Iran: Results from InSAR, levelling and GPS. Geophys. J. Int. 2007, 168, 518–526. [CrossRef]

52



Remote Sens. 2016, 8, 266

18. Keiding, M.; Árnadóttir, T.; Jónsson, S.; Decriem, J.; Hooper, A. Plate boundary deformation and man-made
subsidence around geothermal fields on the Reykjanes Peninsula, Iceland. J. Volcanol. Geotherm. Res. 2010,
194, 139–149. [CrossRef]

19. Han, Z.; Wu, L.; Ran, Y.; Ye, Y. The concealed active tectonics and their characteristics as revealed by drainage
density in the North China Plain (NCP). J. Asian Earth Sci. 2003, 21, 989–998. [CrossRef]

20. Yang, F.; Pang, Z.; Lin, L.; Jia, Z.; Zhang, F.; Duan, Z.; Zong, Z. Hydrogeochemical and isotopic evidence for
trans-formational flow in a sedimentary basin: Implications for CO2 storage. Appl. Geochem. 2013, 30, 4–15.
[CrossRef]

21. Yao, Z.; Guo, Z.; Xiao, G.; Wang, Q.; Shi, X.; Wang, X. Sedimentary history of the western bohai coastal plain
since the late pliocene: Implications on tectonic, climatic and sea-level changes. J. Asian Earth Sci. 2012,
54–55, 192–202. [CrossRef]

22. Minissale, A.; Borrini, D.; Montegrossi, G.; Orlando, A.; Tassi, F.; Vaselli, O.; Huertas, A.D.; Yang, J.; Cheng, W.;
Tedesco, D.; et al. The Tianjin geothermal field (North-Eastern China): Water chemistry and possible reservoir
permeability reduction phenomena. Geothermics 2008, 37, 400–428. [CrossRef]

23. Xu, H. Stratigraphy and sedimentary features of paleogene sediments of Bohai bay basin. Mar. Geol. Res.
1981, 1, 11–27. (In Chinese).

24. Jia, S.; Zhang, C.; Zhao, J.; Fang, S.; Liu, Z.; Zhao, J. Crustal structure of the rift-depression basin and Yanshan
uplift in the northeast part of North China. Chin. J. Geophys. 2009, 52, 51–63. [CrossRef]

25. Zhang, Y.; Meng, P.; Teng, J. Crustal structure and its tectonic responses during mesozoic and cenozoic in
Beijing-Tianjin-Tangshan and its adjacent region. Chin. J. Geophys. 2008, 51, 784–795. [CrossRef]

26. Cui, Y.; Su, C.; Shao, J.; Wang, Y.; Cao, X. Development and application of a regional land subsidence model
for the plain of Tianjin. J. Earth Sci. 2014, 25, 550–562. [CrossRef]

27. Yang, Y.; Li, X.; Wang, L.; Li, C.; Liu, Z. Characteristics of the groundwater level regime and effect factors in
the plain region of Tianjin city. Geol. Surv. Res. 2011, 34, 313–320. (In Chinese)

28. Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic
aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [CrossRef]

29. Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface.
Rev. Geophys. 1998, 36, 441–500. [CrossRef]

30. Kampes, B.M. Radar Interferometry, Persistent Scatterer Technique; Springer: Berlin, Germany, 2006; Volume 12.
31. Farr, T.G. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 37–55. [CrossRef]
32. Hooper, A.; Segall, P.; Zebker, H.A. Persistent scatterer interferometric synthetic aperture radar for crustal

deformation analysis. J. Geophys. Res. 2007, 112, 1–21. [CrossRef]
33. Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and

other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 275–295. [CrossRef]
34. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.

2001, 39, 8–20. [CrossRef]
35. Colesanti, C.; Wasowski, J. Investigating landslides with space-borne synthetic aperture radar (SAR)

interferometry. Eng. Geol. 2006, 88, 173–199. [CrossRef]
36. Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.-P. Using advanced InSAR time series

techniques to monitor landslide movements in badong of the three gorges region, China. Int. J. Appl. Earth
Observ. Geoinform. 2013, 21, 253–264. [CrossRef]

37. Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost
functions in nonlinear optimization. J. Opt. Soc. Am. A 2001, 18, 338–351. [CrossRef]

38. Shirzaei, M.; Bürgmann, R. Topography correlated atmospheric delay correction in radar interferometry
using wavelet transforms. Geophys. Res. Lett. 2012, 39. [CrossRef]

39. Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay
corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38. [CrossRef]

40. Li, Z.; Fielding, E.J.; Cross, P.; Muller, J.-P. Interferometric synthetic aperture radar atmospheric correction:
GPS topography-dependent turbulence model. J. Geophys. Res. 2006, 111, 1059–1075. [CrossRef]

41. Chen, F.; Ji, J.; Han, Y.; Chen, J. Research on vertical stability of Liqizhuang bedrock point. J. Geod. Geodyn.
2013, 33, 49–52. (In Chinese).

42. Leighton, J.M.; Sowter, A.; Tragheim, D.; Bingley, R.M.; Teferle, F.N. Land motion in the urban area of
nottingham observed by ENVISAT-1. Int. J. Remote Sens. 2013, 34, 982–1003. [CrossRef]

53



Remote Sens. 2016, 8, 266

43. Miller, M.M.; Shirzaei, M. Spatiotemporal characterization of land subsidence and uplift in phoenix using
insar time series and wavelet transforms. J. Geophys. Res. Solid Earth 2015, 120, 5822–5842. [CrossRef]

44. Fokker, P.; Orlic, B. Semi-analytic modelling of subsidence. Math. Geol. 2006, 38, 565–589. [CrossRef]
45. McTigue, D.F. Elastic stress and deformation near a finite spherical magma body: Resolution of the point

source paradox. J. Geophys. Res. 1987, 92, 12931–12940. [CrossRef]
46. Hansen, P.C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992, 34, 561–580.

[CrossRef]
47. Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.F.; Li, X.; Zhou, D.; Zhao, W. Subregional-scale groundwater depletion

detected by grace for both shallow and deep aquifers in North China Plain. Geophys. Res. Lett. 2015, 42,
1791–1799. [CrossRef]

48. Shen, H.; Leblanc, M.; Tweed, S.; Liu, W. Groundwater depletion in the Hai River Basin, China, from in situ
and grace observations. Hydrol. Sci. J. 2014, 60, 671–687. [CrossRef]

49. Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion
in north China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based
measurements. Water Resour. Res. 2013, 49, 2110–2118. [CrossRef]

50. Cao, G.; Zheng, C.; Scanlon, B.R.; Liu, J.; Li, W. Use of flow modeling to assess sustainability of groundwater
resources in the North China Plain. Water Resour. Res. 2013, 49, 159–175. [CrossRef]

51. Lisowski, M. Analytical volcano deformation source models. In Volcano Deformation; Springer: Berlin,
Germany, 2006; pp. 279–304.

52. Burbey, T.J.; Warner, S.M.; Blewitt, G.; Bell, J.W.; Hill, E. Three-dimensional deformation and strain induced
by municipal pumping, part 1: Analysis of field data. J. Hydrol. 2006, 319, 123–142. [CrossRef]

53. Yang, C.-S.; Zhang, Q.; Zhao, C.-Y.; Wang, Q.-L.; Ji, L.-Y. Monitoring land subsidence and fault deformation
using the small baseline subset insar technique: A case study in the Datong Basin, China. J. Geodyn. 2014, 75,
34–40. [CrossRef]

54. Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, W. Recent ground deformation of Taiyuan basin (China)
investigated with C-, L-, and X-bands SAR images. J. Geodyn. 2013, 70, 28–35. [CrossRef]

55. Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las
Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999,
27, 483–486. [CrossRef]

56. Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of hydraulic head
changes and characterization of aquifer-system and fault properties from insar-derived ground deformation.
J. Geophys. Res. Solid Earth 2014, 119. [CrossRef]

57. Jiang, G. The Research on the Main Factors of Controlling the Development of Ordovician Geothermal Reservoirs in
Tianjin; China University of Geoscience: Beijing, China, 2014. (In Chinese)

58. Lin, L. Sustainable Development and Utilization of Thermal Groundwater Resources in the Geothermal Reservoir of
the Wumishan Group in Tianjin; China University of Geosciences: Beijing, China, 2006. (In Chinese)

59. Chen, Y. Tectonic Activity Features and Segmentation of Seismic risk of the Buried Haihe Fault in Tianjin; China
Earthquake Administration: Beijing, China, 2007. (In Chinese).

60. Shao, Y.; Li, Z.; Chen, Y.; Ren, F.; Yao, Z. A study on the quaternary activity of the Tianjin fault.
Earthq. Res. China 2010, 24, 353–362.

61. Liu, J. The Geochemical Character of Geothermal Liquid in Tianjin Area; China University of Geoscience: Beijing,
China, 2014. (In Chinese)

62. Zhao, S.; Gao, B.; Li, X.; Li, H.; Hu, Y. Character and water temperature conductivity of the Cangdong fault
Tianjin segment. Geol. Surv. Res. 2007, 30, 121–127.

63. Wang, J.; Wang, E.; Yang, X.; Zhang, F.; Yin, H. Increased yield potential of wheat-maize cropping system in
the North China Plain by climate change adaptation. Clim. Chang. 2012, 113, 825–840. [CrossRef]

64. Lu, X.; Jin, M.; van Genuchten, M.T.; Wang, B. Groundwater recharge at five representative sites in the Hebei
plain, China. Groundwater 2011, 49, 286–294. [CrossRef] [PubMed]

65. China Meteorological Administration. Available online: http://data.Cma.Gov.Cn/ (accessed on
20 September 2015). (In Chinese)

66. Wang, S.; Song, X.; Wang, Q.; Xiao, G.; Liu, C.; Liu, J. Shallow groundwater dynamics in North China Plain.
J. Geogr. Sci. 2009, 19, 175–188. [CrossRef]

54



Remote Sens. 2016, 8, 266

67. Chen, W.; Qinghai, X.; Xiuqing, Z.; Yonghong, M. Palaeochannels on the North China Plain: Types and
distributions. Geomorphology 1996, 18, 5–14. [CrossRef]

68. Hoffmann, J.; Zebker, H.A.; Galloway, D.L.; Amelung, F. Seasonal subsidence and rebound in Las Vegas
valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour. Res. 2001, 37, 1551–1566.
[CrossRef]

69. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78.
[CrossRef]

70. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to
geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [CrossRef]

71. Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using wavelet tools to analyse seasonal variations
from InSAR time-series data: A case study of the Huangtupo landslide. Landslides 2015. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

55



remote sensing 

Article

Ground Subsidence in the Beijing-Tianjin-Hebei
Region from 1992 to 2014 Revealed by Multiple
SAR Stacks

Yonghong Zhang 1,*, Hong’an Wu 1, Yonghui Kang 1 and Chuanguang Zhu 2

1 Chinese Academy of Surveying and Mapping, Beijing 100830, China; wuha@casm.ac.cn (H.W.);
kangyh@casm.ac.cn (Y.K.)

2 Hunan Province Key Laboratory of Coal Resources Clean-utilization and Mine Environment,
Hunan University of Science and Technology, Changsha 411201, China; zhuchuanguang@163.com

* Correspondence: yhzhang@casm.ac.cn; Tel.: +86-10-6388-0521

Academic Editors: Zhenhong Li, Roberto Tomas, Zhong Lu, Xiaofeng Li and Prasad S. Thenkabail
Received: 6 April 2016; Accepted: 15 August 2016; Published: 20 August 2016

Abstract: The coordinated development of the Beijing-Tianjin-Hebei has become a national
strategy with Beijing and Tianjin as twin engines driving the regional development. However,
the Beijing-Tianjin-Hebei region has suffered dramatic ground subsidence during last two to three
decades, mainly due to long-term groundwater withdrawal. Although, annual spirit leveling has
been conducted routinely in some parts of Beijing and Tianjin, and InSAR technique has also been
used to monitor ground subsidence in some local areas of the region, there is a lack of a complete
survey of ground subsidence over the whole region. In this paper, we report a research on mapping
ground subsidence in the Beijing-Tianjin-Hebei region over a long time span from 1992 to 2014. Three
SAR datasets from four satellites are used: ERS-1/2 SAR images from 1992 to 2000, ENVISAT ASAR
images from 2003 to 2010, and RADARSAT-2 images from 2012 to 2014. An improved multi-temporal
InSAR method, namely “Multiple-master Coherent Target Small-Baseline InSAR” (MCTSB-InSAR),
has been developed to process the datasets. A unique feature of MCTSB-InSAR is the adjustment
process useful for wide area monitoring which provides an integrated solution for both calibration of
InSAR-derived deformation and the harmonization of the deformation estimates from overlapping
SAR frames. Three maps of the subsidence rate corresponding to the three periods over the wide
Beijing-Tianjin-Hebei region are generated, with respective accuracy of 8.7 mm/year (1992–2000),
4.7 mm/year (2003–2010), and 5.4 mm/year (2012–2014) validated by more than 120 leveling
measurements. The spatial-temporal characteristics of the development of ground subsidence in
Beijing and Tianjin are analyzed. This research represents a first-ever effort on mapping ground
subsidence over very large area and over long time span in China. The result is of significance to
serve the decision-making on ground subsidence mitigation in the Beijing-Tianjin-Hebei region.

Keywords: multi-temporal Interferometric SAR; ground subsidence; Beijing-Tianjin-Hebei

1. Introduction

Beijing, the Capital of China, and Tianjin, one of the four municipalities of China, both play very
important roles in the nation’s political and economic framework. Especially since the coordinated
development of Beijing-Tianjin-Hebei became a national strategy in 2013, in which Beijing and Tianjin
are positioned as the twin engines driving the regional development. On the other side, due to
insufficient rainfall in the North China plain, groundwater has been the main water resources
for farmland irrigation, industrial activities, and daily water supply of urban inhabitants since
1970s [1]. Long-term over-withdrawal of groundwater has caused continuous and dramatic decline
of groundwater level in the aquifer system of this region. For example, the groundwater level has
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declined 2.7 m every year in Chaoyang district of Beijing from 2001 to 2010 [2]. Continuous pumping of
aquifer water triggers large scale ground subsidence across the North China Plain. Currently, ground
subsidence has been recognized as the most serious disaster hindering the sustainable development of
this region. In 2012, the central government announced a 10-year plan (2012–2020 plan) swore to take
measures fighting against ground subsidence in several main plains across the country including the
North China Plain. Establishing an effective monitoring network over subsided areas was listed as
a fundamental task of the plan.

Traditionally, the surveying and mapping agencies of Beijing and Tianjin have conducted spirit
leveling once per year routinely since 1990s in some areas of Beijing and Tianjin. Therefore, ground
subsidence information at some sparse leveling points has been obtained, which forms the basis
of official reports on ground subsidence in Beijing and Tianjin. However, such a regular leveling
campaign has never been conducted on a large scale in Hebei province, because the cost would be
unaffordable given the area of more than 180,000 km2 of Hebei province. The main drawback of the
leveling method is that it cannot achieve dense spatial sampling due to cost limitations. For example,
the area of Tianjin municipality is 11,946 km2, while the amount of leveling points routinely measured
every year is less than 1200, equivalent to about one leveling point within every 10 km2. Therefore,
ground subsidence information generated from leveling measurement is incomplete, thus having
limited usefulness.

Interferometric SAR (InSAR) was considered an advantageous technique to monitor ground
deformation over a large area in comparison with traditional ground-based methods when it emerged
in late 1980s [3], but it did not become practically reliable until several kinds of advanced time
series techniques came out around the end of last century, such as the permanent scatterer InSAR
(PS-InSAR) [4–6] or persistent scattered InSAR [7], and the SBAS InSAR [8]. Since then, time
series InSAR techniques have been widely applied to monitor various deformations across the
geosciences community, including those associated with volcanic eruptions [9], earthquakes [10],
landslides [11–13], and urban subsidence [14]. In China, given the significance of ground subsidence
in the Beijing-Tianjin-Hebei region, time-series InSAR techniques have been employed to monitor
ground subsidence in different cities, such as in Beijing [15–17], Tianjin [18–20], and Langfang [21]
and Cangzhou [22] of Hebei province. All these studies concern subsidence over relatively small
areas which can be covered by one SAR frame, and there is a lack of complete information on
ground subsidence over the entire Beijing-Tianjin-Hebei region. In this paper, we report a research
on monitoring ground subsidence using an improved time series InSAR technique for the wide
Beijing-Tianjin-Hebei region over a 22-year time span dating back to 1992 when the European Remote
Sensing (ERS)-1 SAR images became available. This research represents a first-ever effort on mapping
ground subsidence over such a wide area in China. It involves not only technical innovations, but also
significant output which can be used directly for decision-making on subsidence mitigation in the
Beijing-Tianjin-Hebei region.

The paper is organized as follows. Section 2 describes the study area and the SAR images.
The processing method is introduced in Section 3. The mosaics of ground subsidence rate during the
three periods are presented in Section 4. The accuracy validation is also introduced in this section.
In Section 5, the spatial-temporal characteristics revealed by the sequential subsidence rate over Beijing
and Tianjin are described. Finally, conclusions and open problems are addressed in Section 6.

2. SAR Image Stacks and Study Area

We aim to investigate the ground subsidence of the Beijing-Tianjin-Hebei region for a period of
22 years. No single SAR system can provide images over such a long epoch. SAR images from
four satellites are used: ERS-1/2 SAR images acquired between 1992 and 2000; Envisat ASAR
images acquired between 2003 and 2010 and RADARSAT-2 images acquired between 2012 and 2014.
Unfortunately, there are still three-year and two-year gaps between the sequential SAR datasets.

57



Remote Sens. 2016, 8, 675

The plain area of the Beijing-Tianjin-Hebei region is targeted, because it has been confirmed
that groundwater over-withdrawal is the main driving force of ground subsidence in this region and
groundwater over-withdrawal mostly occurs in plain areas. Unfortunately, we could not obtain ERS
and ENVISAT SAR images covering the south part of Hebei province. Therefore, for the period of 1992
to 2010, SAR images cover only the plain areas of Beijing, Tianjin, and Tangshan, Baoding and Langfang
of Hebei province. For the period of 2012 to 2014, the whole plain area of the Beijing-Tianjin-Hebei
region is covered by eight RADARSAT-2 wide mode frames. The study area and SAR coverages are
shown in Figure 1. The number of SAR images over each SAR frame, together with the acquisition
time span of the time series of images, are listed in Tables 1 and 2. We can see, the image stacks of
ERS-1/2 are generally small, with the stack size less than 13 over 4 frames. The inadequacy causes
difficulties in data processing and may result in less accurate deformation retrieval.

 

Figure 1. Location of the study area and coverage of SAR data for subsidence monitoring in the
Beijing-Tianjin-Hebei region. A blue rectangle stands for the coverage of one ERS/ENVISAT SAR
scene, and a green rectangle for one RADARSAT-2 SAR image. The background is SRTM DEM. The red
lines denote provincial boundaries, and the black lines are municipal boundaries.

Table 1. Image numbers and acquisition time span of ERS-1/2 SAR and ENVISAT ASAR stacks.

Track/Frame
ERS-1/2 SAR Stacks ENVISAT ASAR Stacks

Stack Size Acquisition Time Span Stack Size Acquisition Time Span

218/2799 21 17 May 1992–9 June 2000 24 18 June 2003–29 September 2010
447/2799 12 11 August 1992–10 July 1998 21 18 June 2004–15 October 2010
175/2799 13 14 May 1992–21 May 2000 22 15 June 2003–26 September 2010
490/2817 12 18 September 1992–17 August 1998 17 5 August 2003–3 August 2010
218/2817 15 17 May 1992–2 September 1999 25 18 June 2003–29 September 2010
447/2817 10 28 April 1992–3 October 1997 24 17 October 2003–15 October 2010
175/2817 18 14 May 1992–25 June 2000 22 15 June 2003–26 September 2010
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Table 2. Image numbers and acquisition time span of RADARSAT-2 stacks.

Frame No. Stack Size Acquisition Time Span

1 19 4 February 2012–11 July 2014
2 19 4 February 2012–11 July 2014
3 19 28 January 2012–4 July 2014
4 19 28 January 2012–4 July 2014
5 19 28 January 2012–4 July 2014
6 19 14 February 2012–27 June 2014
7 19 14 February 2012–27 June 2014
8 19 14 February 2012–27 June 2014

3. Methodology of Data Processing

An improved multiple InSAR method, which is entitled as “Multiple-master Coherent Target
Small-Baseline InSAR” (MCTSB-InSAR), is developed to process time-series SAR images over a large
area. The basic algorithms of MCTSB-InSAR are based on some classical multiple InSAR methods,
like PS-InSAR [5,6], that presented in [23] and the PSP method in [24]. The general processing
flowchart for deformation mapping over large area using the MCTSB-InSAR method is shown in
Figure 2. When dealing with large area consisting of several SAR frames, the deformation over
a single SAR frame is estimated first. Then, an adjustment process is employed to harmonize the
deformation of overlapping frames, so that a deformation mosaic of the whole area can be generated.
The adjustment process will be described in detail later. Some key steps of the method are overviewed
in the paragraphs followed.

In the step of interferogram formation, interferograms with spatial baseline and temporal
separation within specified thresholds are selected, not limited to one common master image. This is
helpful when dealing with small dataset, like the ERS-1/2 stacks over those four frames in this research.
The coherent targets include two kinds of pixels. The first type is those pixels characterized by point
scatterers whose amplitude keeps stable over temporal acquisitions. These pixels are extracted by
thresholding the dispersion index defined by Ferretti et al. [6]. The other type is those pixels associated
with stable distributed targets which can be extracted by checking the mean coherence of the formed
interferograms [23]. These two groups of pixels are then united and form the coherent target candidates
over which the rest processing is conducted.

Similar with the PS-InSAR and the PSP method [24], the phase difference between two neighboring
coherent targets are considered in MCTSB-InSAR. Therefore the coherent targets have to be networked
firstly. The Delaunay triangulation has been widely employed in many multiple InSAR processing.
However, the network generated by Delaunay triangulation is not robust [25]. MCTSB-InSAR adopts
the local Delaunay triangulation proposed by Zhang et al. [26] which places small overlapping and
regular patches over the entire study area, and then connects the coherent targets within each patch
using Delaunay triangulation. The local Delaunay triangulation performs well in balancing the
robustness and redundancy of connections. The final density of the arcs generated by local Delaunay
triangulation can be controlled by setting the size of the patch and the overlapping rate of two adjoining
patches. Figure 3 shows the performance of networking with Delaunay triangulation and with local
Delaunay triangulation over an image subset consisting of 640 pixels in a row (about 12.8 km) and
600 pixels in a column (about 12.0 km) and 3363 coherent targets. The number of arcs generated
by Delaunay triangulation is 9959, sparser than any of the three connections from local Delaunay
triangulation. Generally, we will obtain dense connections if the patch size is small and the overlapping
rate is high. Of course, to keep atmospheric phase cancelable along an arc, only arcs shorter than
a threshold (1.2 km in this research) are kept.

59



Remote Sens. 2016, 8, 675

 

Figure 2. Processing flow chart of mapping ground deformation over large area using the
MCTSB-InSAR method.
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Figure 3. Comparison of networking with Delaunay triangulation and local Delaunay triangulation.
(a) is the network from Delaunay triangulation, which has 9959 arcs; (b) is from local Delaunay
triangulation with patch size of 100 × 100 pixels and overlapping rate of 75%, and has 13,306 arcs; (c) is
from local Delaunay triangulation with patch size of 100 × 100 pixels and overlapping rate of 50%,
and has 11,575 arcs; (d) is from local Delaunay triangulation with patch size of 150 × 150 pixels and
overlapping rate of 50%, and has 11,104 arcs.

Currently, the linear deformation model is used in MCTSB-InSAR for large area monitoring,
that is, the main part of deformation is represented by a linear process with fixed rate, and the residual
deformation is expressed as a non-linear process. More complicated deformation models such as
high-order polynomial might be applicable for small region, but will cause problems in generating
a mosaic of derived deformation for a large area consisting of several SAR frames. Under linear
deformation assumption, the interferometric phase of the ith coherent target in the kth interferogram
(The interferogram here is a differential interferogram with topographic phase having been subtracted
using a DEM) is

ϕk
i = wrap{a1Bk

i,⊥ · Δhi + a2tk
i · vi + ϕk

i, non-linear + ϕk
i, atmo + ϕk

i, noise} (1)

where wrap{} denotes phase wrapping operator, Bk
i,⊥ and tk

i are the perpendicular baseline and the
temporal separation of the interferogram respectively, Δhi is the DEM error, vi is the linear deformation
rate, ϕk

i, non-linear is the phase associated with non-linear deformation, ϕk
i, atmo is the phase caused by

atmospheric artifacts, and ϕk
i, noise the phase accounting for noise, a1 and a2 are known coefficients.

Consequently, the phase difference between two neighboring coherent targets along an arc can be
expressed as

Δϕk
i, j = wrap{a1 Bk

i,⊥ · Δhi, j + a2 tk · Δvi,j + Δϕk
i, j, res} (2)

where Δhi, j and Δvi,j denote the difference of deformation rate and difference of DEM error between
the two targets i and j, the residual phase Δϕk

i, j, res is the summation of atmospheric phase difference,

61



Remote Sens. 2016, 8, 675

noise phase difference and non-linear phase difference over the two targets. For each arc, we will form
a set of equations like (2) with each corresponding to an interferogram. The unknown variables of
the equation set, namely Δhi, j and Δvi,j, can be solved using the periodogram [5] or 2-D searching
algorithm [27]. After all arcs in the network are processed, the absolute values of the linear deformation
rate v and DEM error Δh for each coherent target can be calculated through an integration process.

After the deformation rate over every single SAR frame has been estimated, an adjustment process
is employed to harmonize the deformation estimates from overlapping frames, which is a unique
feature of the MCTSB-InSAR method, and has seldom been discussed by other multiple InSAR
methods yet. Here only the adjustment of deformation rate is concerned. Accumulative deformations
are difficult to be mosaicked, because the time span of SAR images over different tracks are usually
different. Before the adjustment, the corresponding coherent targets from overlapping frames have
to be recognized. This can be done easily on the basis of geocoded images. The underlying principle
is that the geographic coordinates of two corresponding coherent targets should be similar, that is,
the difference of their coordinates should be smaller than the grid size of geocoding. The adjustment
is to estimate an offset adding to the calculated deformation rate for a frame, so that the adjusted
deformation rate over corresponding coherent targets within overlapped area of neighboring frames is
identical. This forms the first category of adjustment equations, which has the following form

vL(x, y) + ΔL = vR(x, y) + ΔR (3)

where vL and vR are InSAR-derived deformation rate over a corresponding coherence target at position
(x, y) from overlapped frame L and R, ΔL and ΔR are the unknown offset of deformation rate. On the
other hand, the deformation rate calculated from leveling and/or GPS measurements can be used
as reference of the adjustment. Especially, the adjusted deformation rate should be equal to that
calculated from the reference data, which forms the second category of adjustment equations and has
the following form

vL(x, y) + ΔL = vre f (x, y) (4)

where vre f (x, y) denotes deformation rate calculated from leveling and/or GPS measurements.
The two groups of equations join together and form an over-determined linear system with the
offset attached to every overlapped frame as unknown variables. Obviously, these unknowns can be
solved under the least mean square criterion. Finally, a deformation rate mosaic is formed by averaging
the adjusted deformation rates of overlapping frames. The adjustment process is powerful in large
area monitoring. It provides an integrated solution for both calibration of InSAR-derived deformation
rate for every frame and the harmonization of the deformation rates from overlapping frames.

Once the linear deformation rate is determined, the nonlinear deformation is estimated by
temporal and spatial filtering of the residual phase. More information about nonlinear deformation
estimation can be found in [5,23].

4. Result and Accuracy

The three sets of SAR stacks are processed and the deformation of the study area over the three
time spans is calculated, respectively. ERS-1/2 and ENVISAT SAR images are multilooked with a pixel
size on the ground of 40 m. RADARSAT-2 images are multilooked, with a pixel size of 25 m on the
ground. The numbers of final coherent targets over the study area are 518,150 in ERS-1/2 images,
982,045 in ENVISAT images, and 4,906,691 in RADARSAT-2 images. The deformation rate mosaic
of the three time spans is shown in Figures 4–6, respectively. Please note the deformation rate in
SAR line-of-sight (LOS) direction has been projected into the up-down direction as subsidence rate
according to Equation (5):

vu−d(x, y) = vLOS(x, y)/cosθ(x,y) (5)
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where, vu−d(x, y) and vLOS(x, y) are the up-down subsidence rate and SAR LOS deformation rate
respectively, θ(x,y) is SAR viewing angle at position (x, y). Of course, Equation (5) holds only under
an ideal condition that ground uplift or subsidence is the sole deformation. For this study, this
assumption is reasonable, because it has been widely recognized that ground subsidence and uplift
are the dominant ground deformations in the North China plain [1]. Another reason for doing so is
to facilitate the generation of the subsidence rate mosaic for the wide Beijing-Tianjin-Hebei region.
The study area is covered by SAR images from at least three tracks, and the SAR LOS varies with
different tracks. Therefore, in order to generate a mosaic of the deformation rate, we have to choose
a SAR LOS as the reference direction, and project the deformation rate of other LOS into this direction.
This process also involves some assumptions. In conclusion, projecting the deformation rate of all
SAR LOSs into the up-down direction may be a good solution. In the figures, positive value means
uplift, and negative value means subsidence. We have to admit that the subsidence rate estimated
from ERS-1/2 SAR stacks over some frames is not very accurate, which cause obvious inconsistency
between neighboring frames, like the frame 2817 and 2799 of track 175 as shown in Figure 4. Also from
Figure 4, there are some noisy points showing uplift at the rate of 6–15 mm/year, which is inconsistent
with the neighboring subsidence. As mentioned in Section 2, the relatively small size of the image
stack and the heterogeneous spatial and temporal baseline of ERS-1/2 images may result in a less
accurate deformation estimate, thus producing inconsistency in the mosaic. In contrast, the subsidence
rate mosaic generated from ENVISAT and RADARSAT-2 dataset shows very good consistency, which
indirectly indicates that the deformation rate estimates are accurate. You may notice there are obvious
uplifts in the south-western mountainous areas in Figure 6. This may be caused by some topography
induced atmospheric artifacts, or real ground uplift. Unfortunately, there is no leveling measurements
over there. Further research is needed to investigate the uplift over the mountainous areas.

 
Figure 4. Linear subsidence rate over the Beijing-Tianjin-Hebei region from 1992 to 2000 observed by
time series ERS-1/2 SAR images. The red lines denote provincial boundaries, and the black lines are
municipal boundaries.
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Figure 5. Linear subsidence rate over the Beijing-Tianjin-Hebei region from 2003 to 2010 observed by
time series ENVISAT ASAR images.

 

Figure 6. Linear subsidence rate over the Beijing-Tianjin-Hebei region from 2012 to 2014 observed by
time series RADARSAT-2 images.
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We have collected subsidence measurements over 204 leveling points from the surveying and
mapping authority of Tianjin, which were measured every October from 1992 to 2014, and subsidence
measurements over 169 leveling points measured annually through 2005 to 2012, and 34 leveling
points measured annually through 2012 to 2014 from the surveying and mapping authority of Beijing.
Of course, not all of these leveling points are usable, because there may not be a coherent InSAR target
in the vicinity of a leveling point. Only those leveling points in a circle neighborhood with 80-m radius
centered where there is at least one coherent target are used. Generally, around one third of those
usable leveling measurements are used as reference in the adjustment process, and the rest are used to
evaluate the accuracy of InSAR-derived subsidence rate. For example, totally 211 leveling points are
used in the processing of RADARSAT-2 dataset. Out of them, 70 points are used as the references of
adjustment, and 141 points are used in accuracy evaluation. The locations of the 211 leveling points
are plotted in Figure 7a, where the blue points are for adjustment reference, and the red points for
accuracy evaluation. The statistics of the evaluation result are listed in Table 3, including the standard
deviation of the difference between subsidence rate derived from InSAR and leveling measurement,
and the maximum and minimum values of the difference. The differences between the subsidence
rate derived from RADARSAT-2 dataset and that from leveling measurement over the 141 red points
in Figure 7a are shown in Figure 7b. The standard deviation in Table 3 indicates that the subsidence
rate derived from ASAR and RADARSAT-2 images have an accuracy of 4.7 mm/year and 5 mm/year
respectively, while the subsidence rate derived from ERS-1/2 images has an accuracy of 8.7 mm/year,
not as good as the other two. Of course, the leveling measurements are back-projected into the SAR
LOS direction in the accuracy evaluation in some publications. From Equation (5), it can be seen that
the evaluation result of these two processes is linearly correlated. In this case, you may obtain an little
better accuracy result if the leveling measurements are back-projected into SAR LOS, as the scaling
factor cosθ(x,y) tends to reduce the values of deformation. The evaluation results in Table 3 agree with
the visual quality of the three mosaics of subsidence rate shown in Figures 4–6. This also confirms that
the deformation rate derived from the three SAR dataset is generally accurate and the MCTSB-InSAR
method is reliable.

Table 3. Statistics of accuracy evaluation of InSAR-derived subsidence rate in three periods (mm/year).

Time Spans
Number of Used
Leveling Points

Maximum
Difference

Minimum
Difference

Standard Deviation
of Difference

1992–2000 123 14 –12 8.7
2003–2010 166 11 –14 4.7
2012–2014 141 11 –16 5.4

Besides the subsidence rate, the accumulative subsidence over individual coherent targets can
also be estimated from one SAR stack. As mentioned earlier, there are two-to-three year gaps
between the three sequential SAR stacks, therefore we can only obtain three discrete time series
of accumulative subsidence for the period of 1992 to 2014. However, by means of the continuous
annual leveling measurements over some parts of the region, such as Tianjin, the three discrete time
series of accumulative subsidence can be linked together to form a continuous time series of ground
subsidence. Figure 8 shows the time series of subsidence over four coherent targets in Tianjin, together
with the subsidence series from the nearest leveling point. The positions of the four coherent targets
are marked in Figure 7b. We can see that the time series of InSAR-derived subsidence fit well with the
subsidence evolution recorded by leveling measurements, which conforms the accuracy of the ground
subsidence mapped by InSAR.
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(a)

(b)

Figure 7. Locations of the 211 leveling points used for adjustment reference and accuracy evaluation
of the subsidence rate generated from the RADARSAT-2 dataset (a); Blue points are for adjustment
reference, and red points for accuracy evaluation. The errors of InSAR derived subsidence rate over
the 141 red points are shown in (b). The four triangles in (b) mark the locations of the four coherent
targets whose subsidence evolution is shown in Figure 8.
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Figure 8. (a–d) The time series of accumulative subsidence over four coherent targets in Tianjin,
together with the subsidence series of the nearby leveling point.

5. Spatial—Temporal Variation of Ground Subsidence in Beijing and Tianjin

The subsidence rate of the Beijing plain area over the three time spans is shown in Figure 9. During
the time span from 1992 to 2000, most of the Beijing plain is stable. Some small scale subsidence took
place in Haidian, Changping, Chaoyang, and Mentougou districts. The maximum subsidence rate is
48 mm/year in this period which occurred at a mining site in Mentougou district marked by the redline
circle in Figure 9b. The coal exploited in this mine had been the main energy source for heating Beijing
during the winter for decades. The mine site was shut down in 2000. From Figure 9c, the previous
subsiding sites in the Chaoyang district had evolved as large subsiding zones, with a maximum rate
reaching 143 mm/year. Subsiding zones also existed in the north part of the Beijing plain, including
Haidian, Changping, Shunyi, and Pinggu districts. To count the subsiding area, the subsidence rate

67



Remote Sens. 2016, 8, 675

over non-coherent pixels is estimated using the simple Kriging interpolation method with the normal
score transformation and spherical semivariogram model in ArcGIS software. Totally, the subsiding
area with a subsidence rate of more than 50 mm/year was 265.41 km2. A noticeable change is that the
subsidence at the mining site in the Mentougou district disappeared, which turned out to be the result of
the shutdown. During the period from 2012 to 2014 as shown in Figure 9d, the subsidence in the Beijing
plain had continuously developed, with 433.25 km2 area subsiding at a rate more than 50 mm/year.
The subsiding zones of Chaoyang, Tongzhou, Haidian, Changping, and Shunyi districts kept growing
and became geographically joined together. The maximum subsidence rate was 152 mm/year, even
higher than that of the previous time span. Generally, during the last two decades, ground subsidence
mainly occurred in the east and north part of the Beijing plain, with the east rim of Chaoyang district
and the northwest part of Tongzhou district suffering the most severe subsidence. The urban center
consisting of Xicheng and Dongcheng districts and the western part of Beijing kept relatively stable
with little subsidence. More analysis on the relationship between the temporal-spatial variations of
ground subsidence and the groundwater exploration and the hydro-geological environment in Beijing
is needed in the future.

Figure 9. (a–d) Subsidence rate in three stages in Beijing. (b) 1992–2000; (c) 2003–2010; (d) 2012–2014.
The districts and counties of Beijing municipality are shown as polygons in (a) with their names
embedded. The redline rectangle in (a) corresponds to the area shown in (b–d). A mining site in
Mentougou district marked by the redline cycle in (b) had the largest subsidence rate from 1992 to 2000.

The spatial-temporal characteristic of subsidence in Tianjin is a little different from that of Beijing.
The maps of subsidence rate of Tianjin in the three time spans are shown in Figure 10. During the time
span from 1992 to 2000, ground subsidence took place in nearly all the suburb districts surrounding the
urban center, including Wuqing, Beichen, Xiqing, Jinghai, Dongli, Jinnan, Tanggu, and Hangu districts.
The majority of the subsidence rate was in the range of 30 mm/year to 60 mm/year. The maximum
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subsidence rate was 81 mm/year. The area with a subsidence rate more than 50 mm/year was
85.73 km2, in comparison to none in Beijing at that period. During the period from 2003 to 2010, ground
subsidence had developed very quickly. In the north, west, and south of the urban center, ground
subsidence had expanded dramatically, especially in districts of Beichen, Xiqing, Jinghai, Dongli,
and Jinnan as shown in Figure 10c. Only in the coastal area of Hangu district was ground subsidence
relieved somehow. The maximum subsidence rate of Tianjin at this period reached 135 mm/year.
The area with a subsiding rate more than 50 mm/year was 2749.1 km2, 10 times of that in Beijing.
During the period from 2012 to 2014, ground subsidence in Tianjin presented different scenario over
the north part and south part which was approximately marked by the white solid line in Figure 10c,d.
In the northern part, ground subsidence was exacerbated, especially in districts of Beichen and Wuqing.
The subsided area became wider, and the subsidence rate became larger. The largest subsidence
occurred at the town of Wangqingtuo of the Wuqing district reaching 153 mm/year. In the south part
of Tianjin, ground subsidence showed substantial alleviation, which might be the result of control of
groundwater exploration in recent years in this region. As a comparison, the area with a subsiding
rate more than 50 mm/year decreased to 1117.55 km2 in the period of 2012 to 2014, roughly 41% of the
area in previous period. In summary, ground subsidence in Tianjin had already been serious in 1990s,
had dramatically expanded during 2000s, and started to alleviate in recent years.

 

Figure 10. (a–d) Subsidence rate in the three periods in Tianjin; (b) 1992–2000; (c) 2003–2010;
(d) 2012–2014. The districts and counties of Tianjin municipality are shown as polygons in (a) with the
names on.
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6. Conclusions

An application using multi-temporal InSAR technology to map ground subsidence over the wide
Beijing-Tianjin-Hebei region is presented. Three sets of SAR images coming from four satellites are
employed to cover a long time span from 1992 to 2014. An improved time series InSAR methodogy,
namely MCTSB-InSAR, has been developed to deal with small datasets consisting of only 11 to
12 images and to monitor deformation over wide area equivalent to the coverage of several SAR
frames. The adjustment process of MCTSB-InSAR provides an integrated solution for both calibration
of InSAR-derived deformation and the harmonization of the deformation estimates from overlapping
frames. Of course, some aspects of MCTSB-InSAR need to be improved further. For example, the
currently used linear deformation model may not fit a situation with strong non-linear deformation.
More complicated deformation models, such as high-order polynomial and sinusoid model as
presented in [28] should be incorporated into MCTSB-InSAR in the future.

Three subsidence rate maps over the Beijing-Tianjin-Hebei region on three time spans are
generated from SAR images acquired by ERS-1/2, ENVISAT, and RADARSAT-2 satellites. Compared
with more than 120 leveling measurements collected in Beijing and Tianjin, the subsidence rate maps
have a standard deviation of 8.7 mm/year (1992–2000), 4.7 mm/year (2003–2010), and 5.4 mm/year
(2012–2014) respectively. The comparison validates the accuracy the subsidence information derived
from InSAR, and confirms the reliability and robustness of the MCTSB-InSAR method.

During the 22-year time span, the evolution of ground subsidence in Beijing and Tianjin shows
different scenarios. In the period from 1992 to 2000, there were only some sites with small-scale
subsidence mainly scattered in the eastern and northern suburbs of Beijing, with the largest rate being
48 mm/year; while in Tianjin, serious ground subsidence already took place in nearly all the suburb
districts with 85.73 km2 area subsiding at a rate more than 50 mm/year. In the period of 2003 to 2010,
ground subsidence had expanded dramatically in both Beijing and Tianjin. In the period of 2012 to
2014, ground subsidence in Beijing had continuously developed, with the area subsiding at a rate more
than 50 mm/year increasing 63% than that of the previous period; while the development of ground
subsidence in Tianjin had slowed down with the area subsiding at a rate more than 50 mm/year
decreasing 41% than that of the previous period. The different spatial-temporal characteristics of
subsidence evolution in Beijing and Tianjin surely were related to the exploration of groundwater,
precipitation, hydro-geological environment, and others. How these factors affected ground subsidence
need further analysis in the future.

The output of the research provides first-hand, relatively complete and accurate information
about ground subsidence over the Beijing-Tianjin-Hebei region. This information could directly
serve the decision-making on ground subsidence mitigation and water resource management in the
Beijing-Tianjin-Hebei region.

Acknowledgments: This research was supported by National Program on Key Basic Research Project
(No. 2012CB719905) and National Natural Science Foundation of China (No. 41271430, No. 41304010). ESA is
gratefully acknowledged for providing ERS-1/2 SAR and ENVISAT ASAR data to support this research. We also
thank USGS for supporting the SRTM DEM used in this paper.

Author Contributions: Yonghong Zhang led this research, designed the framework of data processing,
and developed the adjustment algorithm. Hong’an Wu contributed to algorithm programming, the Radarsat-2
data processing and accuracy evaluation. Yonghui Kang processed the ERS-1/2 SAR data and contributed to
accuracy evaluation. Chuanguang Zhu contributed to the ENVISAT ASAR data processing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Q.C.; Liu, W.B.; Li, Z.M. Land subsidence survey and monitoring in the North China plain. Geol. J.
China Univ. 2006, 12, 195–209. (In Chinese)

2. Yang, Y.; Jia, S.M.; Wang, H.G. The status and development of land subsidence in Beijing plain. Shanghai Geol.
2010, 31, 23–28. (In Chinese)

70



Remote Sens. 2016, 8, 675

3. Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential
radar interferometry. J. Geophys. Res. Atmos. 1989, 94, 9183–9191. [CrossRef]

4. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. In Proceedings of the IEEE
International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999;
pp. 1528–1530.

5. Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential
SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [CrossRef]

6. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens.
2001, 39, 8–20. [CrossRef]

7. Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and
other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 275–295. [CrossRef]

8. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based
on small baseline differential interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [CrossRef]

9. Lu, Z.; Dzurisin, D.; Biggs, J.; Wicks, C., Jr.; McNutt, S. Ground surface deformation patterns, magma
supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation,
1997–2008. J. Geophys. Res. 2010, 115, B00B02. [CrossRef]

10. Papoutsis, I.; Kontoes, C.; Massinas, B.; Paradissis, D.; Frangos, P. Assessing pre-seismic and post-seismic
displacement in the Athens metropolitan area by SAR interferometric point target analysis, using ERS and
ENVISAT datasets. In Proceedings of the Advances in the Science and Applications of SAR Interferometry
ESA ESRIN, Frascati, Italy, 30 November–4 December 2009.

11. Farinaa, P.; Colombob, D.; Fumagallib, A.; Marks, F.; Moretti, S. Permanent scatterers for landslide
investigations: Outcomes from the ESA-SLAM project. Eng. Geol. 2006, 88, 200–217. [CrossRef]

12. Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Muller, J.-P. Using advanced InSAR time series techniques
to monitor landslide movements in Badong of the three gorges region, China. Int. J. Appl. Earth
Observ. Geoinform. 2013, 21, 253–264. [CrossRef]

13. Bouali, E.H.; Thomas, O.; Rüdiger, E. Interferometric stacking toward geohazard identification and
geotechnical asset monitoring. J. Infrastruct. Syst. 2016. [CrossRef]

14. Adam, N.; Parizzi, A.; Eineder, M.; Crosetto, M. Practical persistent scatterer processing validation in the
course of the terrafirma project. J. Appl. Geophys. 2009, 69, 59–65. [CrossRef]

15. Gong, H.L.; Zhang, Y.Q.; Li, X.J.; Lu, X.J.; Chen, B.B.; Gu, Z.Q. Research on the land subsidence of Beijing
based on PS-InSAR technology. Prog. Natl. Sci. 2009, 19, 1261–1266. (In Chinese)

16. Chen, B.B.; Gong, H.L.; Li, X.J.; Zhang, Y.Q.; Dang, Y.N.; Song, L.L. Monitoring and risk analysis
of land subsidence in Beijing based on interferometric synthetic aperture radar (InSAR) technique.
Geogr. Geo-Inform. Sci. 2011, 27, 16–20. (In Chinese)

17. Hu, B.; Wang, H.S.; Sun, Y.L.; Hou, J.G.; Liang, J. Long-Term land subsidence monitoring of Beijing (China)
using the small baseline subset (SBAS) technique. Remote Sens. 2014, 6, 3648–3661. [CrossRef]

18. Fan, J.H.; Guo, H.D.; Guo, X.F.; Liu, G.; Ge, D.Q.; Liu, S.W. Monitoring subsidence in Tianjin area using
interferogram stacking based on coherent targets. J. Remote Sens. 2008, 12, 111–118. (In Chinese)

19. Liu, G.X.; Jia, H.G.; Nie, Y.J.; Li, T.; Zhang, R.; Yu, B. detecting subsidence in coastal areas by
ultrashort-baseline TCPInSAR on the time series of high-resolution TerraSAR-X images. IEEE Trans. Geosci.
Remote Sens. 2014, 52, 1911–1923.

20. Luo, Q.; Perissin, D.; Lin, H.; Zhang, Y.; Wang, W. Subsidence monitoring of Tianjin suburbs by TerraSAR-X
persistent scatterers interferometry. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 1642–1650.
[CrossRef]

21. Ge, D.Q.; Wang, Y.; Guo, X.F.; Fan, J.H.; Liu, S.W. Surface deformation field monitoring by use of
small-baseline differential interferograms stack. J. Geod. Geodyn. 2008, 28, 61–66.

22. Ge, D.Q.; Wang, Y.; Guo, X.F.; Liu, S.W.; Fan, J.H. Surface deformation monitoring with multi-baseline
D-InSAR based on coherent point target. J. Remote Sens. 2007, 11, 574–580.

23. Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of
interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [CrossRef]

24. Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A new method for identification and analysis of persistent
scatterers in series of SAR images. In Proceedings of the 2008 IEEE International Geoscience and Remote
Sensing Symposium, Boston, MA, USA, 7–11 July 2008.

71



Remote Sens. 2016, 8, 675

25. Liu, G.X.; Luo, X.J.; Chen, Q.; Huang, D.F.; Ding, X.L. Detecting land subsidence in Shanghai by
PS-networking SAR interferometry. Sensors 2008, 8, 4725–4741. [CrossRef]

26. Zhang, L.; Ding, X.L.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between
two SAR acquisitions. ISPRS J. Photogramm. 2011, 66, 146–152. [CrossRef]

27. Zhang, Y.H.; Zhang, J.X.; Wu, H.A.; Lu, Z.; Sun, G.T. Monitoring of urban subsidence with SAR
interferometric point target analysis: A case study in Suzhou, China. Int. J. Appl. Earth Observ. Geoinform.
2011, 13, 812–818. [CrossRef]

28. Leijen, F.J.; Hassen, R.F. Persistent scatter interferometry using adaptive deformation models. In Proceedings
of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

72



remote sensing 

Article

Spatiotemporal Characterization of Land Subsidence
and Uplift (2009–2010) over Wuhan in Central China
Revealed by TerraSAR-X InSAR Analysis

Lin Bai 1,2, Liming Jiang 1,*, Hansheng Wang 1 and Qishi Sun 1,2

1 State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics,
Chinese Academy of Sciences, Wuhan 430077, China; bailin112@mails.ucas.ac.cn (L.B.);
whs@whigg.ac.cn (H.W.); sunqishi14@mails.ucas.ac.cn (Q.S.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: jlm@whigg.ac.cn; Tel.: +86-027-8677-8612

Academic Editors: Zhenhong Li, Roberto Tomas, Zhong Lu and Prasad S. Thenkabail
Received: 10 March 2016; Accepted: 14 April 2016; Published: 20 April 2016

Abstract: The effects of ground deformation pose a significant geo-hazard to the environment and
infrastructure in Wuhan, the most populous city in Central China, in the eastern Jianghan Plain at
the intersection of the Yangtze and Han rivers. Prior to this study, however, rates and patterns of
region-wide ground deformation in Wuhan were little known. Here we employ multi-temporal
SAR interferometry to detect and characterize spatiotemporal variations of ground deformation in
major metropolitan areas in Wuhan. A total of twelve TerraSAR-X images acquired during 2009–2010
are used in the InSAR time series analysis. InSAR-derived results are validated by levelling survey
measurements and reveal a distinct subsidence pattern within six zones in major commercial and
industrial areas, with a maximum subsidence rate up to ´67.3 mm/year. A comparison analysis
between subsiding patterns and urban developments as well as geological conditions suggests that
land subsidence in Wuhan is mainly attributed to anthropogenic activities, natural compaction of
soft soil, and karst dissolution of subsurface carbonate rocks. However, anthropogenic activities
related to intensive municipal construction and industrial production have more significant impacts
on the measured subsidence than natural factors. Moreover, remarkable signals of secular land
uplift are found along both banks of the Yangtze River, especially along the southern bank, with
deformation rates ranging mostly from +5 mm/year to +17.5 mm/year. A strong temporal correlation
is highlighted between the detected displacement evolutions and the water level records of the
Yangtze River, inferring that this previously unknown deformation phenomenon is likely related to
seasonal fluctuations in water levels of the Yangtze River.

Keywords: multi-temporal InSAR; ground deformation; Wuhan city; Urban development;
karst geology

1. Introduction

Accompanying large-scale urbanization and industrialization during the past 35 years, more than
95 megacities in China have undergone rapid land subsidence [1]. The potential consequences of land
subsidence mainly include degradation of the aquifer system and damage to the utility infrastructures,
buildings, railroads, highways and bridges [2,3]. In this context, intensive efforts and investigations
related to land subsidence monitoring have been untaken in four major subsiding regions in China:
the Yangtze River Delta [4,5], the North China Plain [6,7], the Fenwei Basin [8] and the Pearl Delta [9].
As one of the most populous cities in China, Wuhan city has experienced a rapid urban expansion
over the past decades. Consequently, various types of geohazards relevant to ground deformation
have been frequently occurring in Wuhan metropolitan areas, due to anthropogenic activities (e.g.,

Remote Sens. 2016, 8, 350 73 www.mdpi.com/journal/remotesensing



Remote Sens. 2016, 8, 350

groundwater pumping, tunnel excavation) and/or natural geological processes (e.g., alluvial soil
consolidation, karst collapse and surface water loading) [10,11]. Prior to this study, however, rates and
patterns of region-wide ground deformation in Wuhan were still little known. Consequently, there is
an increasing demand for regular and large-scale monitoring of ground deformation to support the
integrated sustainable development of Wuhan.

Over past decades, space-borne Synthetic Aperture Radar Interferometry (InSAR) has been
proven as an effective remote sensing technique to detect ground deformation associated with
earthquakes [12,13], volcano eruptions [14,15], permafrost degradation [16], glacier movement [17] ,
landsides activity [18,19] and subsidence investigation [20–22]. Compared with point-measurement
geodetic techniques such as Global Positioning System (GPS) and levelling surveys, InSAR provides
deformation measurements at a significantly improved resolution over large areas. However, it is still
a challenge as a practical tool for monitoring subtle ground deformation due to temporal and spatial
decorrelation as well as atmospheric disturbances. To overcome the limitations of conventional InSAR
methods, in recent years some advanced InSAR approaches have been developed based on time-series
interferometric analysis of multi-temporal SAR acquisitions over the same areas, herein referred to as
multi-temporal InSAR (MT-InSAR) techniques. The MT-InSAR techniques, mainly involving persistent
scatterer InSAR (PSI) methods [23–25] and small baseline subset (SBAS) methods [26–28], identify and
exploit a subset of image pixels which maintain a high coherence level over the study period, allowing
the average rates and temporal evolutions of ground deformation to be estimated with millimeter-level
accuracy. These advanced InSAR techniques have been widely used in monitoring urban ground
deformation, such as in Macao [3], Shanghai [29], Guangzhou [30], Lisbon [31] and Mexico [32].

In this paper, we present results from the first application of multi-temporal InSAR in
ground deformation monitoring in Wuhan. The StaMPS (Stanford Method for Persistent Scatterer)
approach [24,33] is applied to 12 TerraSAR-X images acquired from October 2009 to August 2010 to
retrieve and characterize spatiotemporal variations of ground deformation in major metropolitan areas
in Wuhan. Moreover, a comparison between InSAR-based results and in situ data is carried out to
validate the InSAR observations. Finally, the potential causes of the observed ground deformation are
discussed through an integrated analysis of multidisciplinary information related to karst geology,
surface hydrology, urban development and geotechnical engineering.

2. Study Area and Data Used

2.1. Geological Setting of Study Area

Wuhan, the capital of Hubei province and the most populous city in Central China, lies in
the eastern Jianghan Plain at the intersection of the middle reaches of the Yangtze and Han rivers.
The city contains many lakes and parks, including expansive East Lake, the largest urban lake in China.
The geology of Wuhan is part of the Yangtze geosyncline sag with the characteristics of paraplatform,
and developed well in a alluvial plain with monadnock. Climatically, Wuhan is in a subtropical
monsoon climate zone, characterized by high temperature in summer, low temperature in winter and
abundant precipitation. The average annual precipitation reaches up to 1261.2 mm, concentrated in
the flood season from June to August [34].

The study area in this work is located at major metropolitan areas in Wuhan, with a total area
of approximately 28 km by 20.5 km, and mainly contains Hankou and Wuchang parts (Figure 1).
The Hankou region is characterized with an alluvial plain formed by flood siltation of Yangtze and
Han rivers as well as lakes, and the Wuchang region is denuded hilly land except the alluvial plain
along the Yangtze River. Soft soils are widely distributed throughout most areas of Hankou and in the
riverside area of Wuchang. There are one or more layers of lens formed by silt clay and silt in the area
5~30 m beneath the ground surface, and the thickness of the lens reaches about 10~20 m. The materials
of the lens, presenting a plastic flow state and strong hydrophilic and alteration features, easily lead to
ground inhomogeneous subsidence under the influence of pumping groundwater and vibration [11].
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In addition, there are insidious carbonate rocks in the second bottom along Yangtze River and the
south of Changjiang Bridge and well-developed karst geology in the Wuhan urban areas (see Figure 1).
A large number of karst collapses caused by human activities, such as pumping groundwater for water
supply and mine dewatering, have been recorded since 1931 and pose a serious threat to buildings
and human safety [35].

 

Figure 1. The geographic location and simplified geological setting of the study area. The distributions
of carbonate belts are redrawn from Luo [36]. L1, L2 and L3 represent three major carbonate rock belts
named Tianxingzhou, Daqiao and Baishazhou, respectively. The red rectangle is the study area’s extent.
The red triangle represents the location of the levelling points, situated around Xunlimen Station in
Hankou district and Mingdu Station in Hongshan district.

2.2. Datasets Used

In this study, 12 TerraSAR-X scenes at HH polarization, acquired between October 2009 and
August 2010 along ascending track 142, are used to investigate the ground deformation in Wuhan.
More parameters of the TerraSAR-X data are summarized in Table 1. The coverage of the TerraSAR
scenes is shown as the red rectangle in Figure 1.
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Table 1. The parameters of the TerraSAR-X data.

Parameters Description

Track no. 142
Imaging Modes StripMap

Polarization HH
Orbit direction Ascending

Looking direction Right
Central incidence angle (degree) 34.9

Range resolution(m) 2.0
Azimuth resolution (m) 3.3

No. of images 12
Date of earliest image used 7 October 2009
Date of latest image used 11 August 2010

SRTM (Shuttle Radar Topography Mission) DEM with a resolution of 30 m are used to remove
the topographic phase and geocode interferograms. This 30-m DEM was released in 2015 by USGS
(U.S. Geological Survey) and can be downloaded at https://lta.cr.usgs.gov/SRTM1Arc. In addition,
daily water level data on the Yangtze River acquired by the Hankou hydrological station from
October 2009 to October 2010, provided by the Hubei Administration of hydrology and water resources,
are used to analyze possible causes for ground uplift along both banks of the Yangtze River.

Finally, in situ measurements collected repeatedly by precise levelling campaigns between 2008
and 2010 are utilized to evaluate the InSAR-derived results. The levelling campaigns were carried
out over two construction areas of Metro Line 2 (see Figure 1), situated around Xunlimen Station in
Hankou district and Mingdu Station in Hongshan district, respectively. More detailed descriptions on
the levelling surveys were reported in [37,38].

3. Multi-Temporal InSAR Data Processing

The StaMPS approach, an implementation of persistent scatterer (PS) Interferometry technique,
is employed in this study to carry out multi-temporal InSAR analysis of the 12 TerraSAR-X data.
The StaMPS approach uses spatial correlation of the interferometric phase to find PS pixels without
prior knowledge of temporal variations in the deformation rate. This strategy can detect low amplitude
pixels with phase stability in most terrain types, with or without buildings, and is applicable in
areas undergoing temporally variable deformation with no prior knowledge [24]. Due to the large
subsidence rates of the study area and the limitation of the quantity of SAR images, we applied the
SB (small baseline) method implemented in the StaMPS approach [39] to derive ground deformation.
The fundamental procedures of the StaMPS-SB method are briefly introduced below and more detailed
descriptions of this method can be consulted in [24,33,39,40].

3.1. Interferogram Formation

The first key step of the StaMPS-SB method is to generate the interferograms. A coregistration
algorithm is applied to reduce the coregistration errors owing to long perpendicular baselines [33].
In order to minimize the temporal and spatial decorrelation, interferometric pairs with small
temporal and perpendicular baselines are selected to generate interferograms. Decorrelation is further
reduced by spectral filtering in range and discarding of the non-overlapping Doppler frequencies in
azimuth [39]. Specifically, we imposed 33 interferograms generated from the 12 TerrSAR-X datasets by
using DORIS (Delft Object-oriented Radar Interferometric Software), with a perpendicular baseline
constraint of 180 m and a maximum temporal baseline of 110 days (Figure 2). After the interferograms
generation, we used 30 m resolution SRTM DEM to remove the topographic phase contribution from
the interferometric phase and geocode interferograms.
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Figure 2. Temporal/perpendicular baseline plots for TerraSAR-X images and interferograms used for
the analysis. The blue circles represent the 12 TerraSAR-X images and the gray lines represent the
33 individual interferograms.

3.2. SDFP Pixel Identification

StaMPS-SB method performs time-series analysis on the pixels whose filtered phase decorrelates
little over short time intervals, referred to as slowly-decorrelating filtered phase (SDFP) pixels [39].

For the consideration of the computational cost, initial SDFP pixels candidates are selected by
setting a threshold (0.6) for the amplitude difference dispersion, which is the standard deviation of the
amplitude difference between the master and slave divided by the mean amplitude [39].

Then, the spatial correlation of interferometric phase analysis is applied to identify SDFP
pixels from the candidates. The wrapped phase Φint,x,i, of the xth pixel in the ith “flattened” and
topographically corrected interferogram can be expressed as the sum of the phase change due to
deformation in the satellite line-of-sight (LOS) direction Φde f ,x,i, the phase due to the difference in
atmospheric retardation between passes Φatm,x,i, the residual phase due to orbit inaccuracies ΔΦorb,x,i,
the residual phase due to look angle error ΔΦθ,x,i, and the noise term due to variability in scattering,
thermal noise, coregistration errors and uncertainty in the position of the phase center in azimuth Φn,x,i:

Φint,x,i “ W
!

Φde f ,x,i ` Φatm,x,i ` ΔΦorb,x,i ` ΔΦθ,x,i ` Φn,x,i

)
(1)

where W{¨ } is a wrapping operator. The SDFP pixels are those for which |Φn,x,i| is small enough
that it does not completely obscure the signal, so Φn,x,i is required to estimate accurately to identify
SDFP pixels. For this purpose, the first four terms on the right-hand of Equation (1) must be estimated
and subtracted from the wrapped phase. A bandpass filtering of surrounding pixels in the frequency
domain is adopted to estimate the spatially-correlated look angle (SCLA) error, including the phase
due to ground deformation (Φde f ,x,i), variation in atmospheric delay (Φatm,x,i), orbital inaccuracies
(ΔΦorb,x,i) and spatially correlated DEM error (ΔΦc

θ,x,i). The spatially uncorrelated look angle (SULA)
error term (ΔΦu

θ,x,i) which is mainly caused by spatially uncorrelated DEM error and deviation of the
pixel’s phase center from physical center of the backscattering object, is then estimated by an inversion
associated with its correlation with perpendicular baseline. Subtracting these estimates from the
interferometric phase, we get an estimate of Φn,x,i which is then characterized with a measure similar
to coherence, referred to as γx, and the candidate pixels with low γx are rejected. The procedure is
adopted iteratively until γx is converged, and a set of SDFP pixels are finally identified [33,39].
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3.3. 3-D Phase Unwrapping and Time-Series Deformation Retrieval

The three-dimensional phase unwrapping algorithm proposed by Hooper [40,41] is applied on
the sets of SDFP pixels to recover the unambiguous phase values. In order to unwrap correctly,
the spatially uncorrelated contribution needs to be subtracted before unwrapping. After phase
unwrapping, spatial and temporal bandpass filtering is applied to remove the spatially correlated
contributions. Finally, the displacement time series for each SDFP pixel is obtained by least-squares
inversion [39]. Deformation rate and displacement time series for each SDFP pixel are finally calibrated
to a stable reference point which corresponds to the WUHN International GNSS Service (IGS) station
located in Wuhan University (114.357259˝E, 30.531654˝N).

4. Results and Interpretations

4.1. InSAR-Derived Results and Validation

A total of more than one million SDFP pixels were ultimately identified and exploited by means
of the StaMPS-SB time-series analysis for the 12 TerraSAR-X images, with an average density of ~1933
SDFP pixels/km2. Figure 3 illustrates the spatial distribution of the SDFP pixels and the corresponding
linear deformation velocity in the radar line-of-sight (LOS) direction. The annual deformation rates of
SDFP pixels relative to the reference point range from ´67.3 mm/year to +17.5 mm/year.

Heterogeneous land subsidence patterns are widely found in major urban areas of Wuhan, mostly
concentrated in commercial zones in Hankou (Zone 1), industrial zones around Wuhan Iron and Steel
Corp. in Qingshan (Zone 3) and the Donghu New Technology Development Zone (Zone 5) in Wuchang,
as well as occurring in karst carbonate areas in Wuchang and Qingshan districts (Zone 2, 4 and 6,
respectively). Causes for the observed subsidence could be generally divided into two categories
of urban development (for Zone 1, 3 and 5) and karst geology (for Zone 2, 4 and 6). More detailed
analysis of possible causes for land subsidence in these zones will be presented in next sub-sections.
It is worth noting that exceptional land-uplift signals, with deformation rates ranging mostly from +5
to +17.5 mm/year, are detected along both banks of Yangtze River especially along the southern bank
(Zone 7), and also in urban areas located on one sector of a carbonate rock belt between Yangtze River
and East Lake (Zone 8). A possible explanation for this anomalous phenomenon in two uplift zones
will be discussed in Section 5.

An accuracy assessment of the InSAR-derived deformation results was performed by comparing
them against the precise levelling measurements as descripted in Section 2. To enable the comparison,
the levelling measurements have been projected along radar LOS direction and interpolated via a linear
fit within the acquisition period of the InSAR observations. A comparison method used in an InSAR
validation project of European Space Agency named as PSIC4 [42] was applied to the accuracy assessment.
In this study the comparison was carried out between each levelling point and all SDFP pixels located
within a circle with 50 m radius around the corresponding levelling point. Results suggest that the
InSAR-derived deformation rates agreed well with the levelling survey measurements with an average
absolute difference of 3.1 mm/year and standard deviation of 1.8 mm/year.
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Figure 3. The mean LOS deformation velocity map over the study area during the period
from October 2009 to August 2010. The red star represents the location of the reference point.
White rectangles indicate Zone 1, 3 and 5 where land subsidence was mainly caused by urban
development. White ellipses indicate Zone 2, 4 and 6 where land subsidence was mainly caused
by karst geology. Red dotted polygons indicate Zone 7 and 8 where the uplift occurs. This result is
superimposed on a Landsat 8 image.

4.2. Subsidence Caused by Urban Development

As shown in Figure 3, major commercial zones in Hankou, industrial zones around Wuhan Iron
and Steel Corp. and the Donghu New Technology Development Zone exhibit wide and continuous
coverage of land subsidence, which are most likely attributed to ground water over-exploitation due
to growing demand for intensive municipal constructions and industrial production in these regions.

In particular, a distinct subsidence bowl with a maximum subsidence rate of ´67.3 mm/year
is detected in the central urban area in Hankou (Zone 1 as show in Figure 3). Thus, we select this
subsiding region for a more detailed analysis of the relationship between urban development and
resulting land subsidence. Figure 4 illustrates a zoomed deformation rate map of this region (white
rectangle 1 in Figure 3). A serious subsidence was detected in these areas in high densities of SDFP
pixels from the InSAR results. In Zone 1, extensive urban construction activities were undertaken
during the period of SAR imagery acquisitions, typically including the Metro Line 2 tunneling as well
as large-scale building constructions such as the outpatient building of Wuhan Union Hospital and
Wuhan International Plaza (see Figure 4b). Furthermore, Figure 4c presents the deformation time series
corresponding to three pixels (labelled in Figure 4a as Point A, B and C), located on buildings near the
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Wuhan Union Hospital, the Wuhan International Conference & Exhibition Center and in the vicinity of
levelling benchmarks in the Xunlimen Station of Metro Line 2, respectively. The subsidence of Point B
is also testified by an in situ photograph of the building (shown in Figure 4d), and the subsidence rate
of Point C consists with measurements of levelling surveys at the Xunlimen Station (´14.7 mm/year
vs. ´11.6 mm/year).

Figure 4. Mean LOS deformation rate map superimposed on Google Earth image over (a) Zone 1;
(b) the area highlighted in Figure 4a (blue box), engineering projects under construction are marked
with light green lines; (c) Displacement time series corresponding to the SDFP pixels labeled as Point
A, Point B and Point C in Figure 4a; (d) A photograph of structural damage on Wuhan International
Conference & Exhibition Center caused by ground subsidence.

Moreover, most subsiding areas of Zone 1 as shown in Figure 4a are situated at an alluvial plane
formed by soft sediment soils of Yangtze and Han rivers as well as lakes. The alluvial deposits in
this region are characterized by a highly compressible layer of silt and clay typically with a depth of
5~30 m below the ground surface [11], and therefore can easily lead to heterogeneous subsidence as
a result of external load on the soft soils due to intensive construction of infrastructure and buildings.

4.3. Subsidence Related to Carbonate Karstification

In Figure 3, we can notice a strong spatial correlation between land subsidence variations and
distributions of the known karst inventory (see Figure 1). Subsiding areas associated with carbonate
karst geology are mainly identified in Zone 2, 4 and 6 (see Figure 3) which are close to the Yangtze
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River and located in three major carbonate rock belts named Tianxingzhou, Daqiao, and Baishazhou,
respectively. In these carbonate belts, various karst types of solution fissures, grooves and sinks as
well as small caves are extensively developed, where the karst cave encountering rate of boreholes
is about 46.0%~50.1%, and about 30% of karst caves are unfilled or half-filled [43]. This shallow
carbonate karstification can provide a channel for loss of the upper sandy soil if hydraulic variations
of groundwater frequently occur in the vertical and horizontal karst seepage zones [44]. In particular,
there is a close hydraulic connection between the karst subsurface water and the Yangtze River, and
consequently, the active water level variations of the river, especially during wet/flood seasons [35],
promote the dissolution of carbonate rocks and amplify karst subsidence or collapses.

Figure 5a,b illustrate the zoomed deformation rate maps of Zone 2 and Zone 4, two representative
karst-impacted sites corresponding to residential and industrial contexts, respectively. In Figure 5a,
heterogeneous subsidence signals (´5~´15 mm/year) are detected in Zone 2, which includes several
urban blocks near Yellow Crane Tower situated on Sheshan (Snake Hill), one of the most renowned
cultural towers in China. Moderate subsidence recoded in the deformation rate map is restricted
to the western sector of the karst area, with maximum LOS displacement rates of ´10 mm/year.
This subsiding area has suffered severe karst collapses in recent years, triggered by groundwater
variations due to building construction in the neighboring Jinduhangong community [45]. Some of the
damage observed in the facades of the buildings and paved surfaces during the collapse event in 2011
are illustrated in Figure 5c,d.

Figure 5. Mean LOS deformation velocity map superimposed on Google Earth image over (a) Zone 2
and (b) Zone 4. The light green polygons represent the distributions of carbonate belts. The subsidence
region in Zone 2 is outlined by a red dashed line. The red triangle represents the karst surface collapse
that occurred in December 2011. The red cross represents the Yellow Crane Tower; (c,d) illustrate the
photographs of structural damage caused by karst collapses that occurred in 2011.
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Comparing with the heterogeneous subsidence pattern in the Zone 2, a relatively significant and
spatially continuous ground settlement, with LOS deformation rates from ´10 to ´30 mm/year, can
be found in Zone 4 (see Figure 5b). These karstification-related subsiding areas, located in a major
industrial region of Wuhan, contain some of production bases of SINOPEC Wuhan Company and
Wuhan Iron and Steel Corp. (Wuhan, China). Therefore, we suggest that dissolution of shallow
carbonate rocks is a major cause for land subsidence in the Zone 4 that might be compounded by
possible groundwater over-extraction for industrial production demands.

5. Discussion

It is noted that a remarkable ground uplift phenomenon has been detected in both bank areas
of Yangtze River, especially along the southern bank (see Zone 7 in Figure 3), with deformation rates
ranging from +5 to +17.5 mm/year. Here this exceptional uplift signal is highlighted in a zoomed
deformation velocity map in Figure 6a for a representative site of the Zone 7 that is located on the bank
sector between the River and the Sha Lake, and is further illustrated in Figure 6b by the deformation
time series corresponding to the SDFP points (labelled in Figure 6a).

Figure 6. (a) Mean LOS deformation velocity map superimposed on Google Earth image over the bank
sector between the Yangtze River and the Sha Lake; (b) Displacement time series relevant to the SDFP
pixels labeled as Point D, E and F in Figure 6a vs. water level time series of the Yangtze River.

Due to a good spatial correlation between the deformation signals and the river locations, the
most likely cause for the ground deformation observed in these areas is groundwater discharges and
recharges related to seasonal fluctuations in water levels of the Yangtze River. In fact, this strong
relationship between mass movements of river banks (e.g., ground deformations, bank erosions or
landslides) and hydrological processes involving both the magnitude and frequency rainfall events and
the seasonal fluctuations of river water levels have been emphasized by previous studies in China [46]
and worldwide [47–50]. Consequently, comparing the LOS displacement histories of these mentioned
SDFP points and the water level changes of Yangtze River during the study period, we can observe
a coherent temporal correlation of variations and amplitudes between them (see Figure 6b). For this
study, we notice a 5 m decrease of the river water level measured in the dry season between autumn
2009 and spring 2010, which corresponds to a mean cumulative deformation of about ´10 mm at
three SDFP points. However, a significant change of the deformation direction occurred around the
lowest water stand in early March 2010, and an accelerating uplift from the beginning of the wet
season in Wuhan lasted until 11 August 2010 when the maximum value of cumulative uplift reached
approximately 15 mm, following the peak of water levels amounting to 27.3 m on 30 July 2010.

In addition, a similar deformation behavior with the southern bank of the Yangtze River is found
in the Zone 8 near Hongshan Square (see Figure 3), which is situated in a sector of the carbonate rock
belt named Daqiao between Yangtze River and East Lake. We suggest that the seasonal fluctuations of
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river water levels might partially contribute to ground deformation variations in this area. However, it
is difficult to provide a comprehensive explanation for this deformation phenomenon due to relatively
complex hydrological-conditions in this area, because ground water and pore water pressure data are
not available for this study.

6. Conclusions

In this work, we applied StaMPS-based multi-temporal InSAR methodology to high-resolution
TerraSAR-X images from 2009 to 2010 to detect ground deformation in Wuhan, and provided detailed
information on spatiotemporal characterization of land subsidence and uplift in this region, for the
first time. The results of accuracy assessment suggest that the InSAR-derived deformation rates agreed
well with the levelling survey measurements with an average absolute difference of 3.1 mm/year and
standard deviation of 1.8 mm/year. We found that noticeable land subsidence occurred widely in
major urban areas of Wuhan and the average measured rates of subsidence ranged from approximately
´5 mm/year to ´67.3 mm/year during the period of observation. These subsiding areas were mostly
concentrated in six commercial and industrial zones in Hankou and Wuchang districts, as well as
three karst carbonate belts in Wuchang and Qingshan districts. The main contributing factors to
the detected land subsidence include anthropogenic activities, natural compaction of soft soil, and
karst dissolution of subsurface carbonate rocks. However, anthropogenic activities, such as intensive
municipal construction (e.g., building and subway tunneling) and industrial production, have more
significant impacts on the measured subsidence rates than natural factors. Moreover, remarkably
secular uplift signals were detected along both banks of theYangtze River, especially along the southern
bank, with deformation rates ranging mostly from +5 mm/year to +17.5 mm/year. A strong temporal
correlation is highlighted between the detected displacement time series and the water level records of
the Yangtze River, suggesting that this previously unknown deformation phenomenon in Wuhan is
likely related to seasonal fluctuations in the water levels of the Yangtze River.

This study demonstrates the potential of multi-temporal InSAR analysis of high-resolution
SAR datasets for ground deformation monitoring in Wuhan, which is characterized by vulnerable
hydrological environments and complex deformation regimes. The InSAR-derived results also indicate
an urgent demand for regular and large-scale monitoring of deformation-relevant geohazards in this
region, which could help not only to better characterize the development of catastrophic hazards
relevant to ground deformation but to recognize previously unknown deformation problems, such
as instability and collapse of Yangtze River embankments. In the near future, more acquisitions of
SAR images (e.g., TerraSAR-X, Sentinel-1) and more ground observations, especially hydrological
and meteorological data, will be collected, meaning a further joint analysis of multidisciplinary data
could be carried out to thoroughly study such complicated ground deformation phenomena in this
study area.

Acknowledgments: The work in this study was supported by the National Natural Science Foundation of China
(No. 41590854, 41274024, 41431070, 41321063), the National Basic Research Program of China (No. 2012CB957702)
and the Hundred Talents Program of The Chinese Academy of Sciences (No. Y205771077). The authors would
like to thank DLR for providing the TerraSAR-X images via the TerraSAR-X AO project (No. MTH1827), TU Delft
for providing the DORIS software, Hooper at the University of Leeds for providing the StaMPS software, and
Li Gang at the Chinese University of Hong Kong for the helpful advice in the data processing.

Author Contributions: Lin Bai designed the study and wrote the manuscript, Liming Jiang supervised the study
and reviewed the manuscript, and Hansheng Wang and Qishi Sun contributed to the discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. He, Q.; Ye, X.; Li, Z.; Liu, W. The status and prevention strategy of land subsidence in China. Geol. J.
China Univ. 2006, 12, 161–168. (In Chinese)

83



Remote Sens. 2016, 8, 350

2. Miller, M.M.; Shirzaei, M. Spatiotemporal characterization of land subsidence and uplift in Phoenix using
InSAR time series and wavelet transforms. J. Geophys. Res. Solid Earth 2015, 120, 5822–5842. [CrossRef]

3. Jiang, L.; Lin, H.; Cheng, S. Monitoring and assessing reclamation settlement in coastal areas with advanced
InSAR techniques: Macao city (China) case study. Int. J. Remote Sens. 2011, 32, 3565–3588. [CrossRef]

4. Perissin, D.; Wang, T. Time-series InSAR applications over urban areas in China. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2011, 4, 92–100. [CrossRef]

5. Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X.; Singleton, A. Extracting vertical displacement rates in Shanghai
(China) with multi-platform SAR images. Remote Sens. 2015, 7, 9542–9562. [CrossRef]

6. Luo, Q.; Perissin, D.; Zhang, Y.; Jia, Y. L-and X-band multi-temporal InSAR analysis of Tianjin subsidence.
Remote Sens. 2014, 6, 7933–7951. [CrossRef]

7. Liu, P.; Li, Q.; Li, Z.; Hoey, T.; Wang, C. Land subsidence over oilfields in the Yellow River Delta. Remote Sens.
2015, 7, 1540–1564. [CrossRef]

8. Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China
2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376.
[CrossRef]

9. Jiang, L.; Lin, H.; Zhao, Q. Spatial and temporal deformation characteristics of marine alluvial deposits due to
land reclamation: implications from InSAR observation and geotechnical estimate. Earth Surf. Process. Landf.
2010, 35, 331–343. [CrossRef]

10. Fan, S. A discussion on karst collapse in Wuhan (Hubei). Resour. Environ. Eng. 2006, 20, 608–616. (In Chinese)
11. Wu, B.; Peng, J.; Wang, Z.; Liu, J. An analysis on geographical backgrounds of disasters in China urban areas.

J. Catastrophol. 1997, 1, 28–33. (In Chinese)
12. Massonnet, D.; Rossi, M.; Carmona, C. The displacement field of the Landers earthquake mapped by

radar interferometry. Nature 1993, 364, 138–142. [CrossRef]
13. Peltzer, G.; Rosen, P. Surface displacement of the 17 May 1993 Eureka Valley, California, earthquake observed

by SAR interferometry. Science 1995, 268, 1333–1336. [CrossRef] [PubMed]
14. Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne Radar interferometry.

Nature 1995, 375, 567–570. [CrossRef]
15. Salvi, S.; Atzori, S.; Tolomei, C.; Allievi, J. Inflation rate of the Colli Albani volcanic complex retrieved by the

permanent scatterers SAR interferometry technique. Geophys. Res. Lett. 2004, 31. [CrossRef]
16. Li, Z.; Zhao, R.; Hu, J.; Wen, L.; Feng, G.; Zhang, Z. InSAR analysis of surface deformation over permafrost

to estimate active layer thickness based on one-dimensional heat transfer model of soils. Sci. Rep. 2015, 5,
1–9. [CrossRef] [PubMed]

17. Kumar, V.; Venkataramana, G.; Høgda, K.A. Glacier surface velocity estimation using SAR interferometry
technique applying ascending and descending passes in Himalayas. Int. J. Appl. Earth Obs. Geoinform. 2011,
13, 545–551. [CrossRef]

18. Kimura, H.; Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng.
Remote Sens. 2000, 66, 337–344.

19. Tomás, R.; Li, Z.; Lopez-Sanchez, J.M.; Liu, P.; Singleton, A. Using wavelet tools to analyse seasonal variations
from InSAR time-series data: A case study of the Huangtupo landslide. Landslides 2015. [CrossRef]
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Abstract: In this work we present an application of InSAR and gravimetric surveys for risk
management related to land subsidence and surface ground faulting generation. A subsidence
velocity map derived from the 2007–2011 ALOS SAR imagery and a sediment thicknesses map
obtained from the inversion of gravimetric data were integrated with a surface fault map to produce
a subsidence hazard zoning in the city of Aguascalientes, Mexico. The resulting zoning is presented
together with specific recommendations about geotechnical studies needed for further evaluation
of surface faulting in these hazard zones. The derived zoning map consists in four zones including
null hazard (stable terrain without subsidence), low hazard (areas prone to subsidence), medium
hazard (zones with subsidence) and high hazard (zones with surface faulting). InSAR results
displayed subsidence LOS velocities up to 10 cm/year and two subsidence areas unknown before
this study. Gravimetric results revealed that the thicker sediment sequence is located toward north of
Aguascalientes City reaching up to 600 m in thickness, which correspond to a high subsidence LOS
velocity zone (up to 6 cm/year).

Keywords: land subsidence; Aguascalientes; surface cracks; ground failure; subsidence zoning;
subsidence hazard

1. Introduction

Land subsidence induced by groundwater extraction is a man-induced geological hazard affecting
many cities in the word. One of the main hazards on ground subsiding areas is the development
of subsidence-related surface faults and earth fissures, because they damage housing and other
infrastructure, decreasing their real estate value. In Aguascalientes (see Section 3.1), surface faults can
develop displacement across their escarpment (Figure 1), with a variable width of an active zone up
to ten meters in which housing structures are easily damaged. Surface faults usually develop over
the bounds of the subsidence zones, but they are not rare toward the central part of subsiding areas.
Another subsidence-related problem is the increased flood likelihood due to the disruption of sewage
utilities and changes in the surface drainage.
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Figure 1. Surface faults due to differential subsidence in Aguascalientes. (a) Surface fault affecting
man-made structures; (b) Surface faulting has developed escarpments up to 1.80 m high. The location
of the subsidence-related surface faults is shown in Figure 2b.

In this work we use the terms “ground fault”, “surface fault”, “surface crack”, or “fissure” to refer
to subsidence-related terrain discontinuities, and the terms “quaternary fault”, “pre-existing fault” or
simply “fault” refer to pre-subsidence tectonic faults.

Land subsidence due to groundwater extraction is a slow and gradual process whose effects are
usually observed long after subsidence has begun. Because there is no loss of life usually associated
with its occurrence, subsidence may not be considered a major disaster. Hence, land subsidence is
usually not considered in risk mitigation public policies in Mexico as opposed to other hazardous
events such as earthquakes, volcanic eruptions, hurricanes and floods. Unlike subsidence, these events
are characterized by short duration and high intensity with consequences and catastrophic effects that
are immediately observable.

The Disaster Risk Index (DRI) defined by the United Nations Development Programme [1]
provides a methodological tool to assess the impact of catastrophic events [2]. Currently, the DRI is
solved for three natural hazards: earthquake, tropical cyclones and flooding, but risk assessment of
other hazards including land subsidence due to groundwater extraction remains as scientific challenges
and as works in progress.

Many studies have reported the occurrence of land subsidence and its effects [3–10]. Studies
dealing with monitoring and detecting subsidence are numerous [11–17], as well as works addressed
to land subsidence modeling for calculating the expected magnitudes and rates of subsidence for
different scenarios [18–23]. Nevertheless, subsidence risk assessment are still scarce [24–29].

In general, risk assessment involves three basic elements: (a) characterization of hazardous event,
which is the natural or anthropogenic event able to cause life-loss or property damage (b) quantification
of physical exposure, which refers the number of lives or assets exposed to the hazardous event;
(c) determination of vulnerability, which is the features that make the physical exposure able to absorb
the impact of the hazardous event [1,2,30,31]. Once the elements of risk have been determined, risk is
calculated through a model which relates these elements of risk.

Risk subsidence assessment has been addressed in different ways. For example some
works propose methodologies for the determination of areas prone to develop subsidence-related
faulting [23,26,27,32–34]. Other works proposed methodologies to determine the areas that are likely
to develop subsidence [29,35]. In all these approaches, the physical exposure has been the terrain but
not constructions.
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In this work we propose an approach for producing subsidence hazard maps, where man-made
structures are the assets exposed to the hazardous event, using the city of Aguascalientes, Mexico as
a study case. We processed InSAR data to derive subsidence velocity maps which were combined with
geophysical and geological information to produce a zoning map of subsidence hazard.

The presented work covers only the first part of the subsidence risk assessment process:
the characterization of the hazardous event. Nevertheless, the resulting maps from this approach
provide valuable information for damage prevention in cities subject to subsidence.

2. Methods

2.1. Identification of Factors Contributing to Subsidence Hazard

Hazard is usually characterized in terms of the probability that a hazardous event occurs with
certain intensity during a given time period [30]. This approach works for phenomena such as
earthquakes or hurricanes, which cannot be avoided and whose magnitude cannot be reduced. In those
cases, historical data of the events and their magnitudes are processed with probabilistic techniques in
order to estimate the magnitude of an event in a particular time period.

However, land subsidence due to groundwater extraction is a predictable phenomenon, whose
occurrence can be avoided if groundwater is not extracted, and whose intensity can be reduced by
changing the ground water extraction policies. The mechanism leading to the generation of subsidence
due to groundwater extraction and associated faulting is well-known [7,36–40]. Nevertheless, the
ability to calculate time, location, speed and magnitude of subsidence is limited due to the difficulty to
determine the parameters that control the process [41,42].

Subsidence occurrence is a combination of two factors: (a) the existence of unconsolidated or
poorly consolidated sediments deposits that comprise the aquifer system and (b) lowering of the
groundwater level [37,38,43]. The existence of large thickness of sediments prone to consolidation in
the subsoil, which contain water susceptible to be pumped, is by itself the geological environment
potentially prone to subside, whilst water table lowering is the triggering factor of subsidence.
However, if the aquifer system is not comprised of unconsolidated sediments, then subsidence will not
develop, even if a groundwater level reduction takes place. Thus, the existence and spatial distribution
of consolidation-prone basin-fill sediments is the first independent factor to be considered for analyzing
land subsidence hazard zoning, which is the mapping of the areas prone to subsidence and the lowest
level of hazardous for constructions.

In areas where subsidence began long ago, subsidence can evolve in two manners: (a) subsidence
develops in a uniform way generating a vertical displacement field with low horizontal gradients;
(b) subsidence develops differentially, then the horizontal gradients of the vertical displacement field
are large enough to develop horizontal stresses leading to ground failure development including
surface faults and cracks [7,23,44,45].

Uniform subsidence changes the surface slope and modifies the slope of the sewer utilities,
developing new flooding-prone areas. Hence, zones where uniform subsidence occurs are the second
hazard level for civil structures and urban infrastructure.

Surface faulting is the main concern for property owners and local governments in subsiding
urban areas not only for their damage potential but also because ground failures can severely reduce
real estate value. As a result, areas where surface faults have developed pose the highest hazard level
to civil structures and other urban infrastructure.

In summary, the key elements to assess the hazard level for man-made structures due to land
subsidence by groundwater extraction are: (1) determination of existence of deformable sediments
containing groundwater; (2) detection of sediment zones with subsidence in progress; and (3) location
of affected areas by surface faulting.
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2.2. InSAR and Gravimetry for Determining Areas Having Subsidence Hazard Factors

Both gravimetry and InSAR are useful tools for determining two of the three subsidence hazard
factors previously discussed. Gravimetric analysis can be used to determine the distribution of
sediments prone to be consolidated, while InSAR detects the affected areas by subsidence. The presence
of surface faults, which is the other subsidence hazard contributing factor, can be obtained through
field based cartography.

Gravimetric measurements have been used successfully to determine the distribution and
thickness of granular filling in sedimentary basins [23,34,46]. In central Mexico, areas undergoing
land subsidence due to groundwater extraction are usually comprised of sequences of unconsolidated
sediment overlying a more dense volcanic or sedimentary rock formation. Consequently, the density
contrast between the underlying consolidated rock and the overlying sediments is significant, which is
very favorable for a gravimetric study.

The result of a gravimetric survey is a gravimetric anomaly map, which is the difference between
the measured and theoretical gravity field. This difference is attributed to the density heterogeneities
in subsurface: low gravimetric anomalies suggest presence of low density material close to the surface,
and high values of the anomaly indicate denser material strata close to the surface. Hence, a gravimetric
analysis provides valuable information about the spatial distribution and thickness of sediments.

Furthermore, some studies have shown that in geological settings susceptible to developing
subsidence by groundwater extraction, there is an inverse correlation between sediment thickness and
the gravimetric anomaly [23,34,47]. This relationship can be used as a qualitative way to characterize
areas with large sediment thickness.

Additionally, gravimetric anomaly data can be inverted or directly modeled in order to elaborate
models of the sediment thickness distribution. The modeling may be enhanced by constraining the
model with lithological and other direct observations, allowing the generation of detailed maps of
sediment thickness distribution

Because land subsidence due to groundwater extraction may affect large areas, its detection
and quantification are quite suitable for satellite remote sensing techniques. interferometric
synthetic aperture radar (InSAR) techniques have been successfully used to characterize subsiding
areas [11,48,49].

3. Case Study: Subsidence Hazard Zoning of Aguascalientes, Mexico

3.1. Study Area

The city of Aguascalientes is located within the Aguascalientes graben in central Mexico, 430 km
NW of Mexico City. Close to one million inhabitants live in the city and suburban municipalities,
725,000 in the city of Aguascalientes, and the other 225,000 in the 7 surrounding municipalities [50]:
Cosio, Jesús María, Rincón de Romos, Pabellón de Aretaga, San Francisco de los Romo, San Pedro
Piedra Gorda and Luis Moya (Figure 2a). Intense groundwater extraction initiated in the early 1970’s
due to an increase in agricultural and industrial activities, triggering land subsidence and development
of surface faults [51–53] and even the reactivation of tectonic faults [7].

According to SIFAGG (Sistema de Información de Fallas y Grietas) [54], currently 208 surface faults
and fractures have been mapped throughout the entire Aguascalientes valley with an accumulated
length of 290 km, affecting 1865 buildings mainly housings, from which 1438 of those are located
within the city of Aguascalientes. Figure 2b shows only those surface faults within Aguascalientes City.
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Figure 2. Location map of the study area: (a) Aguascalientes Valley and urban areas within; (b) Study
area of Aguascalientes City.

3.2. Determination of Deformable Sediment Distribution

The total thickness of the unconsolidated sediments in the study area (Figure 2b) was determined
through a gravimetric study, which consisted in the surveying and processing of 339 ground-based
gravimetric measurements, according to Telford et al. [55] and using a Scintrex CG5 gravimeter.

Figure 3a shows the Bouguer’s anomaly of the study area. Gravity data were modeled according
to Singh and Guptasarma [56] using PyGMI software developed by Cole [57] in order to determine
the shape of the sedimentary package and underlying rocks. The software works out the gravimetric
anomaly produced by an initial model of the rocky stratum and the sediments distribution. That is the
calculated anomaly. The initial model is modified until the calculated anomaly matches the anomaly
determined by processing field data (measured anomaly). The model is more realistic if there are data
for constraining some points of depth to rocky stratum, or density information of the subsoil materials.
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Figure 3. Gravimetric anomaly of the study area. (a) Measured anomaly; (b) calculated anomaly
from model.

We used 1500 ˆ 1500 m and 500 m high blocks for the gravimetric modeling. Figure 3b
shows the calculated Bouguer’s anomaly from the obtained model of bedrock and sediment
thicknesses distribution.

The geology of the Aguascalientes Valley was broadly described by Aranda-Gómez [51] and
Loza-Aguirre et al. [58]. For the purpose of this work, we used a simplified stratigraphic column of
the subsiding area elaborated with lithological logs wells information (Figure 4). The densities
associated to each stratigraphic unit used for the gravimetric modeling were those reported by
Pacheco-Martínez et al. [59]. The non consolidation-prone units are composed of a polycmitic
conglomerated, rhyolite and ignimbrite, and the consolidation-prone unit is a quaternary alluvial
sequence with a diverse content of silt, sand and gravel.

Figure 4. Simplified stratigraphic column of the study area.

The top surface of the rocky stratum (Figure 5a) was constrained in several locations through
information of logs wells lithology and rock outcrops on both sides of the graben. Finally, an isopach
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map (Figure 5b), which is a sediment thickness variations map, was calculated from the resulting
elevation difference between the top bedrock surface of the conglomerate and volcanic rocks and the
ground surface.

Figure 5. (a) 3D model of the surface topography and bedrock topography; and (b) isopach map of
sediment thickness in the city of Aguascalientes.

In order to characterize the subsidence field within the Aguascalientes graben, a subsidence
LOS (line of sight) velocity map was obtained from 34 ALOS scenes (ascending track 191, frames 420,
430) acquired between August 2007 and March 2011. We used the ROI_PAC software developed by
NASA’s Jet Propulsion Laboratory [60]. Imagery was processed with the differential InSAR technique
(D-InSAR) to obtain 28 interferograms to derive an InSAR subsidence LOS velocity map. The InSAR
time series analysis was obtained using the Short Baseline Subset Analysis (SBAS) technique [61–63].
Topographic correction was applied according to Fattahi and Amelung [64]. A threshold of 0.7 temporal
coherence was used for the resulting velocity map (Figure 6a). The high calculated temporal coherence
of the study area indicates a minimal effect from unwrapping errors.

3.3. Determination of the Subsidence-Affected Area

Figure 6a shows three subsiding areas. The largest one corresponds to Aguascalientes Valley,
where the rate of subsidence has reached 10 cm/year in two locations (Rincón de Romos and
José Gómez Portugal). Both locations are agricultural areas with intense groundwater pumping.
The other two subsidence areas located at north Loreto and east NISSAN II (Figure 6a), also correspond
to agricultural zones. These two subsiding areas located outside of Aguascalientes Valley had not been
documented before this study. Subsidence velocity in both areas is up 6 cm/year.

Figures 2a and 6a show that subsidence is developing in flat areas surrounded by topographic
elevations of rocky outcrops. The velocity map of Figure 6a shows that during the period from 2007 to
2012 the area of rocky outcrops encircling at the Valley did not develop subsidence. This is consistent
with other works which indicated that subsidence occurs only within the Valley where a significant
thickness of sediments exists. Hence, the rocky outcrops located outside the valley (dark blue areas
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in Figure 6a and surrounding mountains in Figure 2a) can be considered stable zones and reference
points for monitoring areas with subsidence.

Figure 6. Subsidence velocity maps for (a) Aguascalientes Valley; (b) Aguascalientes City including
surface faults and (c) Subsidence graph from INEGI GPS station. White circled numbers indicate
surface faults outside of subsidence area.

Subsidence in Aguascalientes has a nonlinear trend as shown by a subsidence time series from
the INEGI GPS station (Figure 6c). This graph shows that subsidence velocity is decreasing more and
more since the beginning of the records, but it has been at a steady pace since 2005.

3.4. Surface Faults Mapping

An updated subsidence-related surface fault cartography was generated using both information
available in previous surface fault maps and field verification of recently generated surface faults
not included in the previous maps. The resulting surface fault location was integrated into
Figures 2b and 6b.

Figure 6b shows that subsidence-related surface faults preferentially develop within the subsiding
area and along its limit where differential subsidence favors their formation. Nevertheless, some
segments of them (1, 2 and 3 in Figure 6b) are located away from the limit of subsidence area, in
locations where the subsidence velocity map shows null subsidence. The location of these segments of
surface faults coincides with pre-subsidence tectonic faults [7] which are cutting the sediment unit.
These segments of surface faults located outside of the subsiding area suggest that preexisting tectonic
faults are reactivated by the influence of the subsidence stress field.
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4. Results

Subsidence Hazard Zoning

The subsidence hazard zoning map shown in Figure 7c was calculated from the hazard matrix
described in Table 1. The hazard level is directly dependant on the existence of those factors discussed
in Section 2.1. For example, the null hazard level (last column in Table 1 and green tones in Figure 7c)
corresponds to the area where there is not a single hazard factor: consolidation-prone sediments do
not exist (Figure 7a), and subsidence and faults have not been observed (Figure 7b). Conversely, the
high hazard zone (second column in Table 1 and red lines in the hazard map of Figure 7c) is the area
affected by surface faults, and in which the three hazard factors are present, except for the surface
faults segments 1, 2 and 3 discussed in Section 3.3.

Figure 7. (a) Total sediment thickness map; (b) subsidence LOS velocity map; (c) subsidence hazard
zoning map of Aguascalientes City. Hazard zones are shown over a shaded relief for reference.

Table 1. Hazard factor matrix of subsidence effects on constructions.

Hazard Factors
Hazard Level

High Medium Low Null

Unconsolidated sediments existence Yes Yes Yes No
Subsidence detected by InSAR Yes Yes No No

Observed damages by subsidence-related surface faults Yes No No No

In each of the resulting hazard zones, the effect of ground subsidence on the existing civil
structures and urban infrastructure is different, and the prevention and mitigation actions must be in
accordance with the type of potential threat. We provide recommendations for geotechnical studies
that are needed to assess subsoil conditions according to the hazard level, both for any future real
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estate development and for those existing structures. We list the recommendations from lowest to
highest hazard level.

Null hazard zone: This corresponds to the area in which land subsidence was not detected during
the period of InSAR data acquisitions (subsidence LOS velocity = 0 in Figure 6), and surface faults
have not been observed yet. Furthermore, in this zone the total thickness of unconsolidated sediments
is negligible. Null hazard zone corresponds to the rocky outcrops area and those areas in which the
bedrock is covered by a thin stratum of sediments. Standard geotechnical studies are sufficient for
this zone.

Low hazard zone: This is the zone of unconsolidated sediments forming the overexploited granular
aquifer system (sediment thickness > zero in Figure 5), which are bounded by rocky outcrops, and in
which subsidence LOS velocity was zero for the observation period (dark blue tones in Figure 6) and
surface faults have not been observed.

In this zone, standard geotechnical studies are needed, plus a superficial geological study
searching for evidence of tectonic faults and cracks in the sediment unit, which could be reactivated if
a decline in groundwater table take place in this zone.

Medium hazard zone: This corresponds to the zone of unconsolidated sediments forming the
overexploited granular aquifer system (sediment thickness > zero in Figure 5), and in which subsidence
was detected through the LOS velocity map (subsidence LOS velocity > 0 in Figure 6). Although this
zone is undergoing subsidence, it is presented uniformly, such that terrain ruptures have not developed.

Geotechnical studies similar to those suggested for low hazard zone are needed, plus a geophysical
survey for detecting any incipient or blind surface faulting. Resistivity profiles have been used
with relative success for detecting surface faults in their initial stage when they may not be visible
on the surface yet [7]. In case that resistivity profiles show an anomaly that could be related to
an incipient surface fault, direct excavation of a trench may be needed in order to confirm its existence.
Another threat to buildings in this area is the modification of surface drainage as a result of subsidence,
which could develop flooding areas and also renders sewage systems ineffective. As this is a regional
effect of subsidence, the municipal agency responsible for operating the sewage system along with the
agency responsible for urban planning should take this issue into consideration for developing timely
mitigation measures.

High hazard zone: This zone corresponds to areas where subsidence-related surface faults and
fissures have been detected due to the damages they cause to constructions and terrain surface along
their trace. The zone includes a band of terrain in each side of the trace of the surface fault in which
subsidence is developing in a differential manner.

Geotechnical studies similar to those suggested for the medium hazard zone are needed, plus
a detailed analysis to determine the influence width of subsidence-related faults in which civil
structures may be damaged due to uneven subsidence.

5. Discussion

The approach of this work was to elaborate a zoning map of the hazard to which constructions
are exposed in subsidence areas. The resulting hazard zoning map includes areas prone to subsidence,
those currently undergoing ground subsidence and existent surface fault traces. The hazard map does
not include the zones prone to surface faults generation or future zones of surface faults growth.

Although the subsidence-induced faulting mechanism due to groundwater extraction is very
well understood, examples of determination of parameters involved in surface fault generation are
scarce, and their field and laboratory measurements are still not a common practice for many real
estate developers. As a consequence, subsidence-related fault modeling customized for specific civil
structures that may be derived in individualized construction design is still an unattainable goal.

Some authors have proposed solutions for determining the zones prone to develop
subsidence-related ground faulting [15,23,27,32,33]. These methodologies are based on the
determination of the horizontal gradients of a measured parameter. The proposed solutions correlate
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ground faulting areas to high values of horizontal gradients of gravimetric anomalies [23], soil vibration
frequency [32,33] and high values of horizontal gradients of subsidence magnitude [15,27]. Their results
show that these methodologies can forecast shallow ground fault generation, but further research is
still needed to determine critical gradient threshold values related to ground faulting developing in
specific cases. Also, further work is still needed to improve the temporal and spatial accuracy for
surface fault generation predictions.

The most hazardous zone for constructions is on ground failures. The zoning includes only the
linear feature representing the trace of the terrain rupture. However, ground failures have an active
zone defined by the width of the trace in which differential subsidence is significant to induce damage
to the constructions. Studies to determine the width of the active zone or the influence zone of
a ground failure are practically nonexistent. More research is needed to obtain a reliable and practical
methodology to determine accurately enough this parameter.

The recommendations in this work for geotechnical studies in subsidence areas are to explore
subsoil in order to prevent effects of subsidence, mainly those related to surface faults. The current
practice in Aguascalientes City and other Mexican cities where surface faults have damaged
constructions is the continuous repair of buildings as long as ground failure does not affect their
structural stability. Otherwise, buildings are demolished and the terrain is used for parking, green area
or other uses except for building construction. Performance investigations of constructions built over
ground failures are incipient [65,66]. Preliminary results show that a combination of flexible materials
and special structures, including a device for restoring the level of construction at certain intervals,
could be a solution to prevent damage to constructions.

As subsidence is a progressing deformation and rupture subsoil process, hazard levels could
change with time. If subsidence continues, then new surface faults and fissures will be generated, and
the existing ones will enlarge, producing new zones of high hazard. Conversely, if subsidence stops,
then terrain surface will not experience differential subsidence. Surface faults and fissures will become
inactive, and the terrain surface will be stable for constructions. In any case, the subsidence hazard
zoning map should be periodically updated to prevent the implementation of wrong measures in
risk management.

Parameters to determine hazard factors were obtained directly by on-site measurements
(gravimetry, mapping of subsidence-related surface faults and rocky outcrops) and by remote sensing
(InSAR). Hence, accuracy of the zoning depends on the resolution of the methods used for processing
of measured field data.

In the case of the determination of rocky stratum and sediment distribution (low hazard zone),
we used 1500 ˆ 1500 m and 50 m high blocks for the gravimetric modeling. Hence, the resolution
achieved for the map production was 1500 m. Therefore, features with sizes lesser than 1500 m are not
represented in the model of rocky stratum (Figure 5a). Hence, the model of rocky stratum might not
include detail sufficient to identify topographic features that are triggering differential subsidence and
causing increasing subsidence in specific locations.

However, the resolution of sediment thickness map distribution does not affect the accuracy of
hazard zoning, because the limit of zones of low and null hazard was defined from a GPS surveying
on the bounds of rocky outcrops with an accuracy of ˘4 m. Likewise, the limit of zones of low and
medium hazard is not influenced by the resolution of sediment thickness map because this limit was
determined by subsidence measured by InSAR.

The ALOS-InSAR images used to produce the subsidence velocity map have a resolution of
30 m. Hence, as we used a GPS with sub-meter resolution for surveying of rocky outcrops and
surface faults, the greatest error in zoning map limits could come from the subsidence velocity map.
However, this error is negligible for scale maps 1:10,000 which is the scale more frequently used for
urban planning management.

The zoning map does not include either the effect of lateral variations in the sediment thickness
or the influence of subsidence magnitude developed in specific locations. The insertion of these factors
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would improve the zoning process, which would result in a map with more zones than the map
derived from the factors analyzed in this work.

Each of such zones would indicate the hazard related to subsidence more accurately.
Nevertheless, the simplification of the hazard zoning in four zones as was proposed in this work
allows specific and practical recommendations for geotechnical exploration.

A map with many zones or a continuum zoning map could be an interesting scientific contribution.
However, the resulting zoning map could lose its practicality and usefulness for urban planning and
development. Additionally, zones with higher subsidence can be addressed as special and specific
cases of medium hazard level (as determined in this work).

Risk assessment involves three stages: (1) hazard characterization; (2) quantification of exposed
elements at the hazard and determination of their vulnerability; and (3) calculation of risk. Although
the characterization of hazard factors is really relevant only in the context of risk assessment, our work
represent a significant contribution to the development of a further complete methodology, mainly
because stages 2 and 3 are still unresolved issues and lines of research in progress.

6. Conclusions

A hazard subsidence zoning map is a necessary element in risk management of subsidence
effects on man-made structures. Gravimetric measurements and InSAR-derived subsidence velocity
maps provide valuable information for this hazard map. Gravimetric surveys are quite suitable for
determining sediment thickness which may be prone to consolidation and consequently develop
ground subsidence, while InSAR techniques are most suitable for a precise characterization of the
subsidence field.

A combination of both techniques, along with reliable subsurface surface faulting information,
was used to derive a subsidence hazard map for the city of Aguascalientes. This map will allow state
and municipal government agencies to clearly specify specific geotechnical and geophysical studies
according to the hazard level of the zone in which new constructions are planned.

Due to the dynamic nature of the subsidence process, hazard zoning maps, such as the one
described in this work, need to be continuously updated. Future InSAR analysis using newly acquired
data or enhanced processing techniques along with other geodetic infrastructure development such as
continuously operating GNSS stations will provide updated ground subsidence velocity maps which,
in turn, will allow periodic updates of the subsidence hazard maps.
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Abstract: Recent improvement to Advanced Differential Interferometric SAR (A-DInSAR) time
series quality enhances the knowledge of various geohazards. Ground motion studies need an
appropriate methodology to exploit the great potential contained in the A-DInSAR time series.
Here, we propose a methodology to analyze multi-sensors and multi-temporal A-DInSAR data for
the geological interpretation of areas affected by land subsidence/uplift and seasonal movements.
The methodology was applied in the plain area of the Oltrepo Pavese (Po Plain, Italy) using ERS-1/2
and Radarsat data, processed using the SqueeSAR™ algorithm, and covering time spans, respectively,
from 1992 to 2000 and from 2003 to 2010. The test area is a representative site of the Po Plain, affected
by various geohazards and characterized by moderate rates of motion, ranging from −10 to 4 mm/yr.
Different components of motion were recognized: linear, non-linear, and seasonal deformational
behaviors. Natural and man-induced processes were identified such as swelling/shrinkage of clayey
soils, land subsidence due to load of new buildings, moderate tectonic uplift, and seasonal ground
motion due to seasonal groundwater level variations.

Keywords: Advanced Differential Interferometric SAR (A-DInSAR); land subsidence; expansive
soils; time-series analysis; principal component analysis; Oltrepo Pavese; Po Plain

1. Introduction

Land surface dynamics can be the evidence of different processes (i.e., swelling/shrinkage of
expansive soils, aquifer-system compaction, tectonic movements, and consolidation due to the load
of new buildings) of natural and anthropic origins. In many cases, the movements are due to the
complex interactions of multi-driving forces, which act at various spatial and temporal scales [1–3].
The interference and/or overlap makes the effective decomposition of the components of motion
difficult. For this reason, only a few authors have performed the decomposition of multi-driving force
processes that trigger surface movements [4,5].

The areas affected by displacements need effective identification methods, semi-continuous
spatio-temporal surface deformation monitoring and mechanism recognition analysis, in order
to adopt the appropriate risk mitigation strategies, and to develop a sustainable management of
natural resources.

Advanced Differential Interferometric SAR (A-DInSAR) is a powerful remote sensing tool, capable
of mapping displacements over wide areas at very high spatial resolutions. The technique is based on
the processing of multiple interferograms derived from a large set of SAR images in order to obtain a
displacement time series, along the line of sight (LOS) of the satellite, of radar targets on the Earth’s
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surface [6–8]. To date, several studies have documented the application of A-DInSAR data to monitor
and to improve knowledge regarding different types of land surface dynamics [9–11].

Up to now, geohazard-mapping methodologies are mainly based on the visual inspection of
average LOS velocity, such in the case of the ground stability areas in the framework of the PanGeo
project [12], or in hotspot analysis and hotspot and cluster analysis of average LOS velocity to detect
slow-moving landslides [13,14].

Most of the studies aimed at identifying the areas affected by ground motion, at a regional
and local scale, were focused on the average rates of displacement detected by the A-DInSAR
technique [15–17]. Meisina et al. (2008) [16] implemented a systematic methodology to identify
anomalous areas selected on the basis of the average LOS velocity, and Peduto et al. (2015) [17]
introduced the average LOS velocity by weighting the radar target values on their coherence value.
Both methodologies were mainly based on the average LOS velocity analysis, constrained by the fact
that previous A-DInSAR data allowed the obtaining of noisy time series that are difficult to interpret,
showing some limitations in the distinguishing of ground deformation due to different processes, or in
detecting shallow deformations caused by seasonal processes.

Taking into account the recent improvements of A-DInSAR data acquired by the COSMO-SkyMed
satellites and the current ESA Sentinel missions, which act at higher spatial and temporal resolution,
it is necessary to develop an appropriate methodology to analyze extremely large datasets that consist
of a large number of measuring points.

The goal of this study is to present a novel methodology to analyze multi-sensors and
multi-temporal A-DInSAR data for the geological interpretation of areas affected by land
subsidence/uplift and seasonal movements. The approach is aimed at (i) improving the detection
of ground motion areas; (ii) understanding the spatio-temporal evolution of ground motion areas;
and (iii) supporting the interpretation of driving-force mechanisms. The proposed methodology is
addressed to overcome limitations, such as the analysis of large data sets, by allowing exploitation of
the great potential contained in A-DInSAR time series. In this paper, for the first time, ground motion
areas are identified on the basis of their peculiar ground deformation behaviors.

The procedure was applied in the Oltrepo Pavese (Po Plain, Italy) by use of ERS-1/2 and Radarsat
data processed using the SqueeSAR™ algorithm, and covering the time spans from 1992 to 2000 and
from 2003 to 2010, respectively. The test area is a representative site of the Po Plain, characterized
by various geohazards with moderate rates of motion. The obtained results are helpful for scientists
and authorities in charge of land use planning in order to improve public safety and to assess the
management of groundwater resources.

2. Study Area

The study area is located in the central area of the Po Plain, within the Oltrepo Pavese (Italy),
covering an area of about 440 km2 (Figure 1a). The plain of the Oltrepo Pavese is constituted of alluvial
quaternary deposits, originating from the combined action of Apennine streams that form coalescent
fans and of the Po River. These deposits overly the Miocene-Pliocene marine substratum, constituted
by sandy-marls, sandstones, conglomerates, gypsy-marls, and calcareous-marls [18,19].

Three main geomorphological units composed of quaternary deposits were previously distinguished:
post-Würmian alluvial deposits, Würmian–Holocene alluvial deposits, and pre-Würmian alluvial
deposits [20,21].

The post-Würmian alluvial deposits were sedimented by the most recent depositional activity of
the Po River, and by the recent and present deposition from flooding events of the main Apennine
streams. These deposits are localized in proximity to the Po River, and they are composed of sand,
sandy silt, and silt. The deposits from the Apennine streams are characterized by gravel and sand.
In general, post-Würmian alluvial deposits contain a shallow phreatic aquifer with a water level near
ground surface.
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The Würmian–Holocene alluvial unit is the most prevalent geomorphologic unit of the study area.
These deposits are made up of alternating sand and gravel, with interbedded clays or argillaceous
silt. A shallow phreatic aquifer and deeper aquifers, of both phreatic and confined types, were
distinguished in this unit. Deeply buried structures, consisting of a series of folds and fold-faults,
shaped in the tertiary marine basement, have a direct control over aquifer geometry [22]. These alluvial
deposits show the constant presence of a tabular clayey-silty cover, which acts as a seal, and limits
water infiltration [21]. Groundwater exploitation of the Oltrepo Pavese is mainly derived from the
aquifer contained in this unit.

Conversely, the pre-Würmian unit, located in the southern part of the study area, consists of
older fluvial terraces, and is constituted of gravel and sand with a silty matrix, characterized by lower
permeability [19]. These deposits are strongly weathered and covered with clay soils. Locally, loess
deposits overlap this unit. The depth of the water level in this unit reaches values up to 20 m in depth.

In the study area, quaternary sediment thickness decreases from west to east, with the minimum
thickness and the outcrop of the marine substratum in correspondence with the Stradella thrust,
evidence of the neotectonic activity that affects the area [23]. The distensive regime of the neotectonic
activity supported higher alluvial sediments accumulation in the northwestern sector of the plain with
respect to the southeastern sector [24]. The structural setting of the Oltrepo Pavese plain is conditioned
by the presence of an important NE–SW tectonic discontinuity, known in the literature as the Vogherese
Fault (Figure 1b) [25]. This tectonic lineament is a portion of the composite seismogenetic source called
Rivanazzano-Stradella, belonging to the Northern Apennines outer thrust front [26], which triggered
an earthquake of Mw 3.94 ± 0.34 in 1971 [27].

From the climatic point of view, the plain area of the Oltrepo Pavese is characterized by a humid
continental climate, with average annual rainfall of around 700 mm. Two rainy seasons, with maxima
in May and in October–November, have been detected by previous authors [28]. In the last two
decades, the region has experienced many drought periods, such as from March 1989 to August 1993,
and from May 1998 to September 2000 [28].

Here, the analyses of the drought periods, performed by Meisina et al. (2003) [28] were extended
from 1960 to 2010, using available measurements from 1960 and to match satellite observation time
intervals. Therefore, climatic measurements acquired at the Voghera weather station were exploited,
and the annual rainfall deficit was computed as the difference between the monthly water balance
(difference between precipitation and potential evapotranspiration) and the average monthly water
balance obtained for the period from 1960 to 2010. A significant drought period was identified from
2003 to 2007.

It is worth noting that the plain of the Oltrepo Pavese is characterized by discontinuous urban
fabric, and 68% of the monitored area is covered by non-irrigated arable land [29]. The study area is
a representative site of similar geological contexts in the Po Plain, where geohazards, due to natural
and anthropic factors, were previously recognized. Volume changes of clayey soils; shrinkage during
drying periods, and swelling during wet ones, resulted in severe damage to overlying structures [30].

Engineering Geological Units

Recent investigations have been performed to investigate the geotechnical proprieties of the
quaternary deposits in the first 15 m of depth of the Oltrepo Pavese plain. On the basis of the analyses
of penetrometer results (176 Dynamic Cone Penetration Test, 20 Standard Penetration Test and 266 Cone
Penetration Test), calibrated against soil profile logs, six geotechnical classes of non-cohesive soils
(from I1 to I6) and four geotechnical classes of cohesive soils (from C1 to C4), have been previously
distinguished [31].

105



Remote Sens. 2016, 8, 686

Figure 1. (a) Location of the study area. Sources: Esri, DigitalGlobe, Earthstar Geographics,
CNES/Airbus DS, GeoEye, USDA FSA, USGS, Getmapping, Aerogrid, IGN, IGP, and the GIS User
Community. (b) Distribution of the engineering geological units in the plain area of the Oltrepo
Pavese. Damaged buildings, detected by Meisina et al. (2006) [31], are also reported. (c) Thickness
percentage of the geotechnical classes in different depth intervals for each engineering geological unit
(from Meisina et al., 2006) [31].

Taking into account the geotechnical classification of these soils, eight engineering geological
units were introduced in order to reduce the lithologic variability and to map the geotechnical
behavior of representative and homogeneous geotechnical profiles (Figure 1b,c). Unit 1 represents the
post-Würmian alluvial deposit of the Po River, and is mainly constituted of non-cohesive soils (I3).
Conversely, Units 2, 3, 4 and 7 are Würmian–Holocene alluvial deposits, characterized by cohesive soils.
Unit 5 is composed of the alluvial fan of the Scuropasso River, and Units 6 and 8 of the pre-Würmian
terraced deposits.
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Figure 1b highlights the prevalent reported occurrence of damaged buildings [31], located
over Units 8 (34%) and 6 (29%), which correspond with pre-Würmian deposits, and over Units 5
(20%) and 4 (9%), which correspond, respectively, with the alluvial fan of the Scuropasso River and
Würmian-Holocene deposits, which are characterized by a high content of clay deposits that are
susceptible to swelling/shrinkage processes due to the moisture changes in the dry/wet periods [31].

The majority of problems are experienced by single-story family residences, founded on
conventional shallow strip, concrete footings, which generally extend to a depth of between 1 m
and 2 m below ground level [30]. In most of the cases, the remedial measures adopted were pile
underpinnings, which reduces the value of the house by 20% [30].

3. Advanced DInSAR Data

The Persistent Scatterer Interferometry (PSI) technique represents a class of the A-DInSAR
techniques that uses radar targets on the Earth’s surface to produce, starting from a set of images, the
displacement time series along the line of sight of the satellite (LOS) of individual persistent scatterers
(PS) [6]. The technique allows the obtaining of data regarding land deformation over wide areas with
millimeter precision [6]. However, it has some limitations in rural areas due to low density of PS and
phase ambiguities. A new algorithm, named “SqueeSAR™”, has been developed in order to overcome
this problem and to extract the deformation of distributed scatterers (DS), increasing the density of
measuring points; for this reason, it was exploited to process the SAR scenes used in this work [32].

The input satellite data for this analysis consist of SAR images acquired by sensors operating
in the C-band (wavelength, 5.6 cm; frequency, 5.3 GHz) onboard the ERS-1 and ERS-2 and Radarsat
(RSAT) satellites. The scenes were acquired in the ascending mode, covering the time intervals from
9 July 1992 to 2 August 2000, and from 24 March 2003 to 5 May 2010. The dataset acquired in the
descending mode covers the time intervals from 3 April 1992 to 7 January 2001, and from 28 April
2003 to 5 January 2009. The ERS-1/2 images were acquired with a nominal repeat cycle of 35 days,
while the Radarsat images were acquired with a nominal repeat cycle of 24 days. These scenes were
processed with the SqueeSAR™ technique by Tele-Rilevamento Europa (TRE). The algorithm allows
the extraction of movement measurements, not only from traditional persistent scatterers (PS), such as
anthropic structures or rocks, but also from distributed scatterers (DS), such as sparse vegetated
areas [32]. This permitted a high density of A-DInSAR data over non-urban areas. The algorithm
improved the quality of the displacement time series; atmospheric effects can be better estimated and
removed, and so the resulting time series are characterized by less noise. Available SAR images were
processed with the SqueeSAR™ technique to identify acceleration and slowing of scatterers, in order
to better observe the kinematic evolution of seasonal and non-linear processes.

The processing results have precision along the LOS, usually better than 1 mm/year, depending
on the amount of available data, the local PS density (a key element in the estimation of spurious
atmospheric phase components), and the distance from the reference point.

The geocoding accuracy of the PS locations is around +7 m in the eastern direction, and +2 m in
the north–south direction, while the estimated accuracy of the elevation values was better than 1 m.

Additional details of the SAR datasets are summarized in Table 1. It has been possible to detect
more than 20,000 PS-DS over an area of around 430 km2 (Figure 2). It worth noting that, as explained
in Section 2, the area is mainly characterized by non-irrigated arable land, which was classified by
Plank et al. (2009) [33] as being not at all suitable for the A-DInSAR technique using the C-, X-, and
L-band sensors. To provide a quantitative assessment of the PS-DS density for this area, given the land
use, the Corine Land Cover (CLC), which was implemented by the Lombardia region using color and
infrared orthophotos from IT2007 (made by Blom CGR; 50-cm pixels), and named “DUSAF 2007” [29]
was exploited. More precisely, such analysis was carried out by selecting, respectively, PS and DS in
the non-irrigable arable land (CLC code 211). The results reveal that the ascending scenes show a PS
density of 3.29 and 18.69 PS/km2, respectively, for ERS-1/2 and Radarsat sensors. Conversely, the
PS-DS densities for the same dataset are 20.74 and 39.42 PS-DS/km2. In the case of the descending
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scenes, PS densities are 8.83 and 13.56 PS/km2, respectively, for ERS-1/2 and Radarsat sensors, and
the PS-DS densities for the same dataset are 37.63 and 29.10 PS-DS/km2. By applying the SqueeSAR™
technique, an improvement of measuring-point density was obtained for the non-irrigable land.
However, the PS-DS density for this land use coverage still shows low densities, which are comparable
to values obtained using the PSI technique over the non-irrigable arable land in Britain [34]. Higher
PS-DS density was detected in the continuous and discontinuous urban fabric (CLC code 11), and the
road and rail networks and associated land (CLC code 122), which reach an average of 334.27 ± 43.57
and 137.35 ± 31.96 PS-DS/km2, respectively.

 
Figure 2. Average line of sight (LOS) velocity measured by the use of ERS-1/2 ascending (a) and
descending (b) data (time interval from 1992 to 2000), and Radarsat ascending (c) and descending
(d) data (time interval from 2003 to 2010). The reference point for each dataset is also reported.

Table 1. Details on the SAR datasets, their processing, and results.

Satellite Orbit
Incidence
Angle

N◦ of
Scenes

N◦ of
PS-DS

PS-DS
Density in
Study Area

(PS-DS/km2)

PS-DS
Density for

CLC Code 11
(PS-DS/km2)

PS-DS
Density for

CLC Code 122
(PS-DS/km2)

PS-DS
Density for

CLC Code 211
(PS-DS/km2)

Average
LOS

Velocity
(mm/yr)

ERS-1/2 Asc. 22.1◦ 27 21,308 49 227.46 96.66 20.74 −0.2
ERS-1/2 Desc. 21.2◦ 79 32,917 76 367.77 149.40 37.63 −0.4
RSAT Asc. 35.3◦ 89 34,503 79 369.09 172.32 39.42 −0.3
RSAT Desc. 35◦ 84 27,273 63 322.76 131.03 29.10 −0.2

Asc.: ascending orbit, Desc.: descending orbit. CLC code 11: continuous and discontinuous urban fabric,
CLC code 122: road and rail networks and associated land, CLC code 211: non-irrigated arable land.

4. Methodology

Taking into account the quality improvement of the A-DInSAR time series, it is necessary to
develop an appropriate methodology to exploit the great potential contained in the A-DInSAR data
for the geological interpretation of ground-motion areas. A systematic methodology to analyze the
temporal evolution of ground motion areas is proposed here (Figure 3).
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Figure 3. Flowchart of the methodological approach to detect ground motion areas and to recognize
the triggering mechanisms.

The procedure consists of three main phases. In the first phase, the vertical and E-W components
of motion are disentangled, and a displacement time series (TS) accuracy assessment is performed.
In the second phase, different statistical tests are applied in order to find the spatio-temporal pattern
of the principal components of movement, and the kinematic model of the targets. The result of
this step is the identification of areas with significant movement, so-called “ground motion areas”.
Ground motion areas correspond to a cluster of a minimum 3 of PS, with a maximum distance of
50 meters, characterized by the same trends (linear, non-linear, seasonal). Ground motion areas do not
have a geological significance, but the systematic procedure represents a useful and fast approach to
detect sectors where A-DInSAR analysis detects spatio-temporal ground deformation, and where the
attention of scientists has to be focused. Finally, the third step consists of a data fusion of the A-DInSAR
data and the geological data to determine the causes of ground motion processes. Multidisciplinary
data, such as geotechnical, hydrogeological, and land use data, are fundamental to recognize ground
motion mechanisms

Figure 3 illustrates the proposed methodological approach, which consists of the following steps:
Step 1. Decomposition of the vertical and horizontal components of motion (Phase I). A-DInSAR

techniques allow the obtaining of the average LOS velocities of targets. Smaller values of the satellite
incidence angle (usually 23◦–35◦) make the measurements more susceptible to the vertical component
of motion with respect to the horizontal; however, ignoring the horizontal components may implicate
an over-/underestimation of the deformation, leading to misinterpretation of the results [35]. By the
use of the datasets acquired in the ascending and descending modes, the vertical and horizontal
components of target motion can be extracted using the following equations:

VEW =
(Vdesc/hdesc)− (Vasc/hasc)

(edesc/hdesc)− (easc/hasc)
(1)

VVERT =
(Vdesc/edesc)− (Vasc/easc)

(hdesc/edesc)− (hasc/easc)
(2)

Vasc is the average LOS velocity acquired in the ascending mode, Vdesc is the average LOS velocity
acquired in the descending mode, VVERT is the vertical component of motion, and VEW is the E–W
component of motion. The easc, hasc and edesc, hdesc are the LOS directional cosines, respectively, for
ascending and descending orbits. First, the average LOS velocity of each dataset was interpolated by
an inverse distance weighted (IDW) approach, and, then, the component of motion was decomposed
using these interpolated maps. The method was previously used by several authors [36,37]. If the
horizontal component of motion is absent, the vertical component of motion can be extracted using
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the incidence angle (θ) of the dataset acquired in one mode (ascending or descending) using the
following equation:

VVERT =
Vasc,desc

cosθ
(3)

Step 2. A-DInSAR displacement time series accuracy assessment (Phase I). The displacement time
series detected by each target may be affected by local error or regional trends, which can be observed
in the whole dataset. Therefore, post-processing analyses of the A-DInSAR data are fundamental in
order to avoid misinterpretation of unreal ground movements. The check of the displacement time
series is performed by selecting the most coherent (>0.9) targets with an average LOS velocity in the
range ±0.5 mm/yr., where no significant movements are expected. More precisely, the approach
proposed by Notti et al. (2015) [38] was applied in order to correct problems due to phase unwrapping,
regional unreal trends, and anomalous displacement detected on certain dates (i.e., unreal movements
at the same time as meteorological events, such as snowfall).

Step 3. Principal component analysis (PCA) of the A-DInSAR displacement time series (Phase II).
A-DInSAR measurements represent the cumulative ground movements (natural versus anthropic,
superficial versus deep displacements, multi-year, and seasonal components); the overlapping of
several ground motion components may make the accurate interpretation of ground deformation
processes difficult. Recent studies have applied PCA to satellite-based time series analysis [39,40] to
detect spatio-temporal deformation patterns.

Here, principal component analysis (PCA), implementing a matrix organization of location versus
time (T-mode), was performed in order to decompose the long-term (multi-year) and the seasonal
components of ground motion. A matrix, in which each column contains the LOS displacements for
each SAR image, and where each row contains the displacement time series of the targets (PS-DS),
was formed. The main outcomes are the correlation and covariance matrices, the eigenvalues and
eigenvectors, the percent variance that each eigenvalue captures, and the principal component (PC)
score maps. In interpreting the principal components, PC scores related to each observation (PS-DS)
are useful for knowing the correlations with the principal components in the whole dataset; the
higher values correspond to higher correlations with the analyzed PC. To detect the displacement time
series of the PC, the displacement time series can be multiplied for the PC eigenvectors of each SAR
image date.

Step 4. Identification of the kinematic model of the targets (Phase II). A-DInSAR data proves to be
efficient for the estimation of linear and non-linear ground motion movements [8]. Hence, automated
classification of displacement time series (TS) in large datasets are needed for TS interpretation at a
regional scale. Here, an automatic sequential procedure, based on statistical tests, the PS-time program
implemented by Berti et al. (2013) [41], was used to classify the TS into one of three predefined target
trends: uncorrelated, linear, and non-linear. The program permits the detection of the date (break)
where abrupt changes in slope in the non-linear TS are recorded. This tool also assigns an additional
parameter to the non-linear TS, index “BICW”, related to the bi-linearity of the TS (i.e., TS that records
BICW higher than 1.2 indicates a strong bi-linearity [38]).

Step 5. Identification of “ground motion areas” (Phase III). This task aims at detecting ground
motion areas in order to focus the interpretation on significant sectors. Physical processes can be
characterized as linear, non-linear, and seasonal ground movements. While the average velocity
of targets with a linear trend is useful to separate movement and non-movement areas, the same
parameter is not efficient for recognizing ground motion areas affected by non-linear and seasonal
movements. Even targets with an average LOS velocity in the stable range (±1.5 mm/yr) can be
affected by significant seasonal and/or non-linear movements. Taking into account that non-linear and
seasonal movements may cause considerable damage to buildings and infrastructure [42], PCA results
were exploited to identify ground motion areas with linear, non-linear, and seasonal trends. The ground
motion areas were identified using a spatial cluster of significant PC scores. First, we define the
threshold of the PC scores by applying a statistical inspection of the PC score frequency distributions.
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If the histogram of the PC scores shows a normal distribution (skewness = 0), we consider the
threshold equal to twice the standard deviation, while, if the PC scores shows asymmetrical distribution
(skewness �= 0), the threshold is defined as being equal to the interquartile range (IQR). Then, PS-DS
with PC scores higher than the threshold are selected, and a buffer zone of 50 m around the detected
measuring points can be derived.

Therefore, ground motion areas consist of clusters of a minimum of 3 PS-DS with a maximum
distance of 50 meters. The approach to extracting ground motion areas is based on the procedure
proposed by Meisina et al. (2008) [16], but, herein, the delineated areas are derived from the PCA
analysis (Figure 4). The ground motion areas are not found on the basis of unstable velocity; hence,
even seasonal and non-linear processes can be identified and taken into account for the interpretation
of displacement time series. Following this, the kinematic model of the targets is combined with
the ground motion areas in order to distinguish linear and non-linear processes. More precisely,
the TS with BICW higher than 1.2 are selected to distinguish non-linear TS from the linear ground
motion areas.

Figure 4. Flowchart of the phase II in the methodological approach to identify ground motion areas.
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Step 6. Interpretation of “ground motion areas” (Phase III). Once the ground motion areas have
been identified, the processes are interpreted by integrating them into a Geographical Information
System (GIS) with ancillary data (such as geological, geotechnical hydrogeological, compressible
thickness map, digital orthophoto, and damaged buildings distribution). Mechanism recognition
is based on a cross-comparison of the representative subsoil geological profiles, and the relative
displacement time series with multidisciplinary information. Analysis of the breaks and the detection
of the deceleration and acceleration periods are crucial to correlate the processes with the triggering
mechanisms. The final outcome is the attribution of driving-force systems and triggering mechanisms
to ground motion areas.

5. Results

5.1. Post-Processing Elaborations (Phase I)

The decomposition of the horizontal and vertical components of motion highlights that the motion
is mainly vertical, both in the period of 1992–2000 and 2003–2010 in the Oltrepo Pavese. The results are
consistent with literature data over the study area [43]. Therefore, the east–west component of motion
was considered to be negligible. Following this, the procedure was implemented on the datasets
that shows the higher PS-DS density and a higher number of scenes (Table 1) in order to analyze the
datasets with higher spatial and temporal resolutions. Hence, the ERS-1/2 descending and Radarsat
ascending data were exploited to monitor the time intervals, from 1992 to 2000, and from 2003 to 2010.

A-DInSAR displacement time series accuracy assessment has provided the detection of anomalous
displacements recorded on 9 March 1997 and 16 July 2000 by the ERS-1/2 descending datasets, and
on 10 December 2008, for the Radarsat ascending dataset. The anomalous displacement identified
in the Radarsat dataset might be related to the snowfall occurred on the day of SAR acquisition.
Consequently, these scenes were not included in the following analyses.

5.2. Identification of the Ground Motion Areas (Phase II)

Once the post-processing elaborations have been performed on the A-DInSAR data, the improved
displacement time series have been exploited in order to delineate ground motion areas.

In order to achieve the spatio-temporal extraction of the principal components of motion, a matrix
of the ERS-1/2 desc. and Radarsat asc. dataset was formed.

The results show that the PC1 explains 79% of the variance, and PC2 and PC3 explain, respectively,
4.7% and 1.8% of the variance in the ERS-1/2 dataset. In the Radarsat, 69% of the variance is explained
by PC1, while 5.7% and 1.7 % are explained by PC2 and PC3.

Figure 5a,b shows the spatial distribution of the principal components score units. The spatial
pattern of the PC of the deformation highlights that the first and the third principal components
of motion mainly affect the southwestern sector of the study area, while the second component is
mainly localized in the northeastern zone. It is worth noting that the distribution of the components of
motion is heterogeneous across the Oltrepo Pavese, and that the comparison between the ERS-1/2 and
Radarsat data reveals that the spatial distribution of the components of motion detected during the
period 1992–2000 is correlated with that of the period 2003–2010 (Figure 5a,b).

A visual inspection of the principal components eigenvectors (Figure 5c,d) highlights that in the
ERS-1/2 and Radarsat datasets, the first component (PC1) corresponds to the long-term lowering of
the Earth’s surface. The second corresponds to the long-term uplift ground motion, and the third PC
highlights seasonal deformations.

112



Remote Sens. 2016, 8, 686

Figure 5. Principal component score maps for the period 1992–2000 (a) and 2003–2010 (b). Eigenvectors
of the principal components (PC) of the ERS-1/2 desc. (c) and Radarsat asc. (d) datasets.

Ground motion areas were delineated using the PC scores, applying the procedure described in
Section 4, in order to focus the interpretation of the processes on significant sectors. The results reveal
that 30%–40% of the ground motion areas, delineated using the PC1 of the ERS-1/2 and Radarsat
measurements, is located in proximity of the town of Voghera and along the railway of Voghera–Pavia
(Figure 6), and it records an average LOS velocity in the range from −2 to −3.7 mm/yr, in the period
1992–2000, and in the range of −2 to −4.8 mm/yr in the period 2003–2010. A distinct concentration of
ground motion detected by PC1 is visible only in the time span of 1992–2000, along Emilia Road, from
the town of Broni to the town of Redavalle, and along the railway from Broni to the town of Arena Po.
The average LOS velocity ranges from −6.4 to 2 mm/yr.
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Figure 6. Ground motion areas detected using PC1, PC2, and PC3, and non-linear PS-DS of the
ERS-1/2 desc. and Radarsat asc. data overlapped on the engineering geological units. TS of the
deformational behavior detected at Voghera, Stradella–Monteacuto, and Casei Gerola are also reported.
In the case of Voghera, it is represented by the TS linear regression line (dotted red line). Conversely,
for Stradella–Monteacuto a 5◦ order polynomial regression line (dotted red line) is reported. For the TS
detected at Casei Gerola, the red line is the moving average over a period of four months.

Ground motion areas mapped via PC2, of both ERS-1/2 and Radarsat data, are centered in
the area between the town of Stradella and the town of Monteacuto (Figure 6). The average LOS
velocity records an uplift maximum of 3.40 mm/yr, in the period 1992–2000, and 2.58 mm/yr, in the
period 2003–2010.

Ground motion areas observed using PC3 are mainly located in the southern sector of Voghera
and in proximity to Lungavilla, Codevilla, Casei Gerola, and Broni (Figure 6). In the second period,
ground motion areas via PC3 are not present in the southern sector of Voghera, and the movements
are mainly localized along the Coppa River (see location in Figure 1) and in proximity to Verrua Po.
Seventy-four percent and 97% of the ground motion areas detected using PC3, respectively, for the
ERS-1/2 and Radarsat data show an average LOS velocity in the range of ±1.5 mm/yr.

As was previously explained, an automated time series classification tool was used to distinguish
uncorrelated, linear, and non-linear trends. The outcome of this step reveals that around 40% of the
targets are classified as uncorrelated, both in the periods 1992–2000 and 2003–2010. Thirty-five percent
and 22% of the targets are classified, respectively, as non-linear and linear during the time interval
1992–2000. In the following period (2003–2010), 28% and 27% of the targets are classified as linear and
non-linear, respectively.

Furthermore, the results of the kinematic model analysis were combined with the ground motion
areas detected using the PCA approach. Figure 6 shows the results of the overlapping of the ground
motion areas, detected using PC1, PC2, and PC3, and the non-linear PS-DS characterized by a strong
non-linearity (BICW > 1.2). Mainly, changes in trends in displacement time series were identified at
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the end of 1999 and 2008 in the areas of Broni, Voghera, Lungavilla, and Casei Gerola, and, in most of
the cases, the non-linear targets are superimposed on seasonal ground motion areas detected via PC3,
which represent the seasonal components of motion.

Overall, the ground motion area detected at Voghera records a linear displacement time series
that is active during both periods, while, in Broni, the ground motion occurs only in the period from
1992 to 2000.

The ground motion area centered in the north sectors of Voghera could be related to the presence
of over 6–7 m of shallow thick clay deposits in the subsoil, and to groundwater exploitation for
industrial supply. Unfortunately, the lack of historical data regarding the piezometric level variations
did not allow us to analyze the effects of its variations on the land subsidence recognized in this area.
The phenomenon is characterized by a linear trend for both 1992–2000 and 2003–2010, and no evident
acceleration has been recognized (Figure 6).

The ground motion areas along the railway Voghera–Pavia and along the railway from Broni to
Arena Po show a linear trend and rates of average LOS velocities in the range of −5 to 1 mm/yr for
both periods. Given the close association with the local transport network, these ground motion areas
could be due to the consolidation of the railroad embankment, and anthropogenic activity could have
an influence on the surface settlement of these areas.

Areas of moderate uplift were observed via PC2 of the ERS-1/2 and Radarsat data, in the sector
from Stradella to Monteacuto, where geomorphic evidence of an active emergent thrust was previously
observed [43]. The terraced surfaces derived from topographic profiles, combined with inferences
on the ages of the terraces of the exanimated area, were used to carry out estimations about the late
quaternary uplift rates across the escarpment. The agreement between the distribution and trend
of deformation with the uplift trend, found by previous authors in the same area, suggests that the
deformation could be due to deep-ground motion related to tectonic movements.

5.3. Mechanism Recognition (Phase III)

A spatio-temporal analysis for mechanism recognition was performed, considering some factors
and evidence, which might have relevance in explaining the patterns of ground motion, as observed in
others ground motion areas by previous authors [44–46]: (i) the geotechnical properties of the deposits;
(ii) the thickness of the superficial clayey soils and the hydrogeological setting; (iii) the distribution of
damaged buildings; and (iv) land use change effects.

Different natural and man-induced processes were recognized such as swelling/shrinkage of
clayey soils located over engineering geological Unit 8, and seasonal ground motions due to seasonal
groundwater level variations, which are located over engineering geological Units 3 and 4.

Land subsidence due to the load of new buildings was observed over engineering geological
Units 1, 2 and 3, and moderate tectonic uplift was recognized in the sector from Stradella to Monteacuto,
where geomorphic evidence of an active emergent thrust was previously observed [43].

The main conditioning and triggering factors on ground motion are examined in detail in Section 6.

6. Discussion

The approach of this work was to identify areas with significant movements where the attention
of scientists has to be focused by the use of A-DInSAR time series analysis. Ground motion areas
were mapped on the basis of their peculiar ground deformation behaviors using a systematic and
reproducible procedure.

Although various methodologies were implemented to map the ground motion areas using the
average velocity detected by A-DInSAR data [12–17], ground motion areas mapping on the basis of
A-DInSAR time series is still not a common practice in the scientific community.

While the average velocity may be useful to investigate physical processes characterized by linear
trends, the same parameter is not efficient to detect and interpret ground motion areas affected by
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non-linear and seasonal movements. In these cases, the use of the average velocity may result in
misleading interpretations of the process.

Our intent is to propose a novel approach to take into account different deformational behaviors.
Hence, the reliability of the results obviously depends on the quality of the dataset. However, the
first phase of the procedure is focused on the time series check in order to correct problems due to
phase unwrapping, regional unreal trends, and anomalous displacement detected on certain dates.
In addition, if the whole dataset is affected by a relevant error, it can be easily detected by applying
the PCA, being clearly visible as principal component of motion, and could be subtracted from the
entire dataset.

This approach allowed us to detect ground motion areas due to different processes, even at low
average LOS velocities in the range of ±1.5 mm/yr, which are affected by geohazards that may impact
public safety.

In this section, the main conditioning and triggering factors on ground motion were discussed.

6.1. Comparison between Ground Motion and Engineering Geological Units

As regards geotechnical interpretation, the relationship between the engineering geological units
and the ground motion was analyzed by computing the maximum and minimum of the displacement
measured for each unit (Figure 7). Furthermore, the PS-DS density for each unit was extracted in order
to take into account the distribution of measures. Figure 7a,b shows the results of the spatial analysis
for the periods 1992–2000 and 2003–2010. It is worth noting that the extreme values of cumulated
displacement observed in the first period are higher than those of the second one. A decrease of
deformation was observed, and, in general, the cumulated displacement decreases from Unit 1 to 8.
The PS-DS density reaches an average for the engineering geological units of 108 and 113 PS-DS/km2,
respectively, for the ERS-1/2 and Radarsat data.

Figure 7. Cumulated displacement (mm) and PS-DS density (PS-DS/km2) for the periods 1992–2000
(a) and 2003–2010 (b) for each engineering geological unit, which describes the geotechnical properties
of the first 15 m of depth. See Figure 1 for the engineering geological unit map. Areas (km2) of ground
motion detected by PC1, PC2, and PC3 for each engineering geological unit, for the time intervals
1992–2000 (c) and 2003–2010 (d).
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Engineering geological Unit 1, which is composed of recent and actual alluvial deposits of the Po
River, shows the lower PS-DS density (~40 PS-DS/km2), and, for this reason, the maximum cumulated
land subsidence may be due to local movements.

Units 2, 3, and 4 are characterized by cohesive soils (50%–60% of the thickness) in the first
five meters, and show an average PS-DS density of ~100 PS-DS/km2. These units record a maximum
cumulated land subsidence that varies from 100 mm to 200 mm in the first period, and an average
value of 150 mm in the second one.

Unit 5 is composed of the alluvial fan of the Scuropasso River, with heterogeneous soils in the
first 15 m of depth. As shown in Figure 7, this unit shows the highest PS-DS density (~300 PS-DS/km2)
and the maximum cumulated land subsidence reaches ~51 mm for both periods.

Units 6, 7, and 8 are characterized by cohesive soils, predominant only in the first five meters
of depth, and gravel and sand in the sub-soil. The PS-DS detected over these units is around
100 PS-DS/km2 and the maximum cumulated land subsidence reaches values in the ranges of
100–180 mm and 50–100 mm, respectively, for the periods 1992–2000 and 2003–2010. Note that
the maximum cumulated uplift of 159 mm was detected for Unit 6, in the period 1992–2000.

In addition, comparisons between the engineering geological units and the areas of ground
motion detected using the principal component analyses were carried out for the monitored periods
(Figure 7c,d). The results of the analyses show that the area of ground motion reaches around 23 and
17 km2, respectively, in the periods 1992–2000 and 2003–2010. Therefore, the ground motion area
decreases from the first period to the second one. It is worth noting that the study area is mainly
characterized by PC3, which corresponds to seasonal deformation. Seasonal deformations may be due
to seasonal aquifer compaction and/or swelling/shrinkage of clayey soils.

The PC1 ground motion that corresponds to the long-term lowering trend is mainly localized
on Units 2 and 3 for both periods, while PC2 ground motion that corresponds to the uplift long-term
trend is mainly localized on Units 1 and 6 for the entire monitored period.

6.2. Comparison between Ground Motion and Hydrogeological Settings

Another important factor that controls ground motion is the presence, and the thickness, of clayey
soils, which may be susceptible to the consolidation process. A thickness map of the upper clayey-silty
deposits was elaborated by Pilla et al. (2007) [21] by interpolating the thickness data available from
around 490 water wells, performed in the Oltrepo Pavese (Figure 8a). This map allows us to analyze the
relationship between the average LOS velocity and the thickness of the upper compressible deposits.
The Oltrepo Pavese is characterized by the presence of a tabular clayey-silty cover, which increases
from the northeast to the southwest. The thickness of the clayey-silty deposits ranges from 0 to 40 m,
and the maximum thickness is observed in the southeastern sector of Voghera, and in the proximity of
the towns Broni and Stradella (Figure 8b,c). Figure 8d,e shows the comparison between the average
LOS velocity, detected by ERS-1/2 and Radarsat data, and the thickness of the upper clayey-silty
deposits along the N–S and E–W sections (Figure 8a). The results reveal that the peaks of average
LOS velocity are consistent with the maximum thickness of clayey-silty deposits. As a consequence,
the thickness of the upper clayey-silty deposits seems to be a controlling factor of the rate of ground
motion, as observed in others case histories, such as Murcia, Vega Media of the Segura River Basin, and
Alto Guadalentín Basin in Spain [46–48], and along the Venice coast and Sibari plain in Italy [49,50].

Furthermore, the constant presence of a tabular clayey-silty coverage, which acts as a seal, is a
crucial factor in determining the hydraulic condition of aquifer state. Indeed, the clayey-silty cover
limits infiltration, and influences aquifer recharge, which occurs in correspondence with the coalescent
fans originating from the deposition of the Apennine streams [21]. Analysis of the hydraulic condition
role on ground motion was performed using the unsaturated zone thickness, measured in October
2005 (Figure 9). The unsaturated zone thickness detected in October 2005, was established by Pilla et al.
(2007) [21] using a piezometric level obtained from around 60 water wells across the study area.
For the computation of the unsaturated zone, the piezometric levels were subtracted to the base of
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the clayey-silty cover. When the values are negative, the aquifer is confined and the flow is mainly
horizontal. Conversely, when the values are positive, the aquifer is phreatic. Figure 9 shows the
overlapping of the ground motion areas mapped using PC3 of the Radarsat data with the hydraulic
condition of the aquifer in October 2005. The results reveal that the seasonal ground motions (PC3),
which are located over engineering geological Units 3 and 4, occur where phreatic condition of the
aquifer was observed. The role of the seasonal fluctuations of the groundwater level on the ground
motion areas is clear. Seasonal ground motions related to fluctuations in the groundwater level were
previously recognized by other authors in Santa Clara Valley and Los Angeles Basin in the United
States [51,52]. Meanwhile, the ground motion areas located over engineering geological Unit 8 are due
to other processes, which are explained in Section 6.3.

Figure 8. (a) Thickness of the upper clayey-silty deposits (modified from Pilla et al., 2007 [21]).
Hydrogeological sections 1 (b) and 2 (c), simplified from Cavanna et al. (1998) [17]. Relationship
between the average LOS velocity detected by ERS-1/2 asc. and Radarsat (RSAT) desc. sensors, and
the thickness of the upper clayey-silty deposits along sections 1 (d) and 2 (e).
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Figure 9. Thickness of the unsaturated zone in October 2005 (modified from Pilla et al., 2007),
and superimposed ground motion areas detected via PC3 of the Radarsat data (black box).
The pre-Würmian deposits are represented in yellow.

6.3. Comparison between Ground Motion Areas and Damaged Buildings

Most locations in the Oltrepo Pavese experienced damage to buildings due to swelling and
shrinkage of clayey soils, respectively, during wet and dry periods. In most cases, the damaged
buildings are single-story family residences, built on conventional shallow strip concrete footings.
The damage was mainly detected over engineering geological Unit 8, where clayey soils susceptible to
swelling/shrinkage were previously identified [28]. Meisina et al. (2006) [30] implemented a damaged
building database.

Here, comparisons between the damaged building distribution and ground motion areas were
performed. The results of the analyses highlight that the occurrence of damaged buildings is mainly
localized over the ground motion areas detected using PC3. Therefore, this is consistent with the
hypothesis that the seasonal deformational behavior detected by the third component of ground
motion in engineering geological Unit 8 may be explained by the swelling/shrinkage of clayey soils.

In Codevilla (see location in Figure 6), located over engineering geological Unit 8, the higher
density of damaged buildings (12 damaged buildings in an area of around 0.6 km2) corresponds to
ground motion areas delineated using the PC3 of ERS-1/2 and Radarsat data (Figure 10a). In this area,
the shallow alluvial deposits of the first 8 m of depth exhibit swelling potentials from medium to very
high [30].

The swelling potential appears to be in good agreement with the displacement time series.
Average LOS displacement time series was computed in the buffer zone of 100 m from the damaged
building with code 425 in order to consider a significant number of measurements (around 20 PS-DS).
The results reveal that the seasonal component of motion detected in the TS is directly correlated with
the effective rainfall detected at the nearest pluviometric station, located in Voghera (Figure 10a,b).
In particular, significant damage, which consists of cracks, appeared in this building in August 1999
(crack width 5–10 mm). The pre-damage period from 1998 to 1999 was recognized as a drought
period [30], and the average effective rainfall from May to November of 49.45 mm corresponds to
around −6.14 mm of ground motion. In February and March 2001, partial pile underpinning was
carried out as a remedial measure for this building. In the following drought period, 2003–2007, the
variability of the effective rainfall corresponds to there being no clear cyclic displacement time series.
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However, the average effective rainfall from May to November, of 62.95 mm, corresponds to around
−1.27 mm of ground motion.

Figure 10. (a) Ground motion areas in Codevilla, detected by the ERS-1/2 and Radarsat PC3, and
the distribution of damaged buildings detected by Meisina et al. (2006) [30]. (b) Average LOS
displacement time series in the buffer zone of 100 m from the damaged building (code 425) versus
effective rainfall measured at the Voghera weather station. The dotted red line is the polynomial
regression trend (5◦ order) of the displacement time series. The equation for polynomial regression has
been also indicated.

The results confirm that the ground motion areas detected at Codevilla via PC3 are due to
swelling/shrinkage phenomena triggered by the variation of water content in these soils.

Overall, Codevilla seems to be characterized by an average LOS velocity range that is commonly
defined as stable (±1.5 mm/yr.) during the periods 1992–2000 and 2003–2010; however, in this case,
the seasonal deformation is significant, and provides evidence of damage, such as cracks in buildings,
dislocations, and the breaking of walls, which were recognized by Meisina et al. (2006) [30,53].
In particular, the damaged buildings required the installation of micropile construction up to 8 m in
depth, in order to reinforce structures.

6.4. Comparison between Ground Motion and Land Use Change Effects

In order to define the influence of land use change on ground motion, a visual inspection was
performed by comparing orthophoto 1988 and 2000 [54] and orthophoto 2003 and 2007 provided
by the Lombardia Region, with PC1 ground motion areas. In addition, Corine Land Cover changes
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(CLC) from 1990–2000 and 2000–2006, implemented by the Institute for Environmental Protection and
Research (ISPRA) [55,56] that match our satellite data, were exploited. These layers were created by
using a working scale of 100,000; therefore, the land cover cannot be mapped in all its complexity, and
the definitions of the units were established by the combination of surfaces, which are homogeneous to
a greater or lesser degree, whatever the scale used. From the total of the ground motion areas delineated
by PC1 of the ERS-1/2 and Radarsat data, only two and three areas seem to be influenced by land use
changes, respectively. More precisely, in the period 1992–2000, land use change from non-irrigated
arable land to discontinuous urban fabric, which occurred over engineering geological Units 1 and 2,
matches with PC1 ground motion areas detected by ERS-1/2 data. In the period 2000–2006, land
use change from non-irrigated arable land to construction sites occurred over engineering geological
Unit 3, which matches the PC1 ground motion area detected using Radarsat data.

It worth noting that these ground motion areas, detected during the period 1992–2000, are not
present in the period 2003–2010. Therefore, the stress increment produced by a building’s load seems
to have dissipated in the first period. Figure 11 shows ground motion detected by the PC1 of ERS-1/2
data in Voghera. The average displacement time series of the PS-DS in the ground motion areas
highlight the decrease of the average LOS velocity from −3.15 mm/yr during 1992–2000 to −0.80 for
2003–2010 (Figure 11c).

Figure 11. Location of the representative ground motion area detected using PC1 of the ERS-1/2
sensors in Voghera, superimposed on the land use change from 1990–2000, and on the Ortophotos
acquired from 1988 (a) and 2000 (b). (c) Average displacement time series detected in the ground
motion area. The dotted red line is the polynomial regression trend (2◦ order) of the displacement time
series. The equation for polynomial regression has been also indicated.
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7. Conclusions

A challenge to ground motion studies is the disentanglement of different phenomena and to
assess their relative contributions. Indeed, specific causes of deformation phenomena in lowlands
are presently unknown due to the interaction of either deep (“geological”) or superficial causes
(withdrawal of water and gas, soil consolidation, load-induced compaction), which take place at
different spatio-temporal scales and of which the mixed effects must be decorrelated. This paper
demonstrated the ability of a novel methodology to detect and disentangle the contributions of different
geohazards, by analyzing multi-sensors and multi-temporal A-DinSAR data. The principal novelty of
the proposed approach is the exploitation of a full time series, which enables the detection of ground
motion areas affected by linear, non-linear, and seasonal movements. The proposed methodology
consists of three phases:

1. Post-processing elaborations; disentanglement of the vertical and horizontal components of
motion and displacement time series accuracy assessments, performed by selecting the most
coherent (>0.9) targets with an average LOS velocity in the range ±0.5 mm/yr, where no
significant movements are expected.

2. Identification of ground motion areas; application of two approaches for automatic A-DInSAR
time series analyses. First, principal components analysis of the time series is performed,
implementing a matrix organization of location versus time (T-mode). Then, PS-time software is
used to find the kinematic behavior of the time series (i.e., uncorrelated, linear, and non-linear
trend). Finally, ground-motion areas were identified using a spatial cluster with a buffer zone of
50 m around the targets, characterized by a significant correlation with the principal components
of motion. The results of both approaches are overlapped to distinguish linear and non-linear
ground motion areas.

3. Mechanism recognition: Comparison between ground motion areas and ancillary data
(i.e., geological, geotechnical, hydrogeological, and land use information) in order to interpret the
driving forces of the subsidence mechanisms.

The methodology was tested in Oltrepo Pavese (Italy), which is a representative site of moderate
subsidence of the Po Plain, using ERS-1/2 and Radarsat data covering a time span of around 20 years.
Results confirm its suitability for the detection of the temporal evolution of deformation patterns
due to different geohazards, not recognizable by conventional analyses of the average LOS velocity
alone (i.e., seasonal components of motion). Three deformational behaviors were detected: linear,
non-linear (accelerations and decelerations of the movements), and seasonal components of motion.
The comparison between a kinematic model of the ground motion areas and hydrogeological and
engineering geological data allow for an understanding of the causes of motions that are often
superimposed. The main natural and man-induced processes are swelling/shrinkage of clayey soils,
land subsidence due to the load of new buildings, moderate tectonic uplift, and seasonal ground
motion due to seasonal groundwater level variations. Overall, the cumulated displacements observed
in the 1992–2000 period are higher than those detected in the period 2003–2010, and a decrease of
deformation was observed. The findings in this work confirmed that the combination of A-DInSAR
time series analysis and hydrogeological data is capable of supporting knowledge of the relationship
between groundwater level fluctuations and deformations, and of providing fundamental information
about the aquifer state conditions.

The proposed methodology can be easily applied to other geological contexts, using different
A-DInSAR data. The reliability of the results depends on the quality of the dataset. New opportunities
will be provided by the improvement of the time series acquired by new sensors of the COSMO-SkyMed
and Sentinel missions.

The procedure will also allow for specifying the priority area of where to address prevention
activities, in order to optimize the costs and benefits and to draw a management plan of land use
and groundwater resources, at national and regional scales. The procedure may also be used in land
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subsidence studies to discern the contributions of the seasonal components of motion from others
processes, such as soil consolidation and solid and fluid extraction or injection. The approach will be
tested, in the future, in geological contexts characterized by other geohazards, such as landslides.
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Abstract: The Linfen–Yuncheng basin is an area prone to geological disasters, such as surface
subsidence, ground fissuring, fault activity, and earthquakes. For the purpose of disaster prevention
and mitigation, Interferometric Synthetic Aperture Radar (InSAR) was used to map ground
deformation in this area. After the ground deformation characteristics over the Linfen–Yuncheng
basin were obtained, the cross-correlations among regional ground subsidence, fault activity, and
underground water level were analyzed in detail. Additionally, an area of abnormal deformation
was found and examined. Through time series deformation monitoring and mechanism inversion,
we found that the abnormal deformation was related mainly to excessive groundwater exploitation.

Keywords: Complex deformation; time series InSAR; inversion of mechanism; underground water;
fault activity

1. Introduction

The Shanxi fault belt basin is a Cenozoic fault basin that has strong earthquake activity.
The Linfen–Yuncheng basin is located in the south-central region of the Shanxi fault belt basin,
where the crustal structure is especially complex and seismic activity is very strong [1,2] (Figure 1).
In total, 10 earthquakes with Ms ě 5.0 have been recorded since A.D. 1177 (Ms stands for surface wave
magnitude): one event with Ms ě 8.0, one event with 7.0 ď Ms < 8.0, two events with 6.0 ď Ms < 7.0,
and six events with 5.0 ď Ms < 6.0 [3]. According to modern seismic network records, moderate–small
earthquakes have been more frequent in this area in the recent past [3,4] (Figure 1). At the same
time, ground subsidence, ground fissuring, fault activity, and abnormal deformation have been
observed and have received substantial attention from the local government [5,6]. For the purpose of
disaster prevention and mitigation, there is an urgent need to characterize the ground deformation
characteristics within the basin.

Conventional ground-based geodetic techniques, such as GPS and leveling, have difficulties in
detecting more detailed and comprehensive ground deformation due to their low spatial resolution.
Although terrestrial laser scanning can present very high spatial resolutions, it hard to be carried out
ground deformation monitoring in a wide range. Interferometric Synthetic Aperture Radar (InSAR)
has demonstrated potential for high-density spatial mapping of ground displacement associated with
earthquake, volcanic, and other geologic processes [7–11]. However, the application of conventional
InSAR is limited by several inherent factors, such as spatial-temporal decorrelation, DEM inaccuracy,
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phase unwrapping error and atmospheric delay. [12]. Nevertheless, all of these issues can be addressed
with the InSAR time series technique of the Small BAseline Subset (SBAS) [13–17], which combines
interferograms by using a threshold for the temporal and spatial baseline criterions. The SBAS InSAR
technique can also eliminate or mitigate the possibility of phase unwrapping errors and atmospheric
delay errors through temporal high-pass and spatial low-pass filtering of interferogram. Finally, the
time series deformation information of the coherent points can be obtained.

Figure 1. Shaded relief map of the Linfen–Yuncheng basin.

Thus, in this study, we examined basin ground deformation using Envisat ASAR images.
The Stanford Method for Persistent Scatterers (StaMPS) SBAS InSAR technique was used to
obtain the time series surface deformation [17,18]. The ground deformation characteristics over
the Linfen–Yuncheng basin were obtained, and the cross-correlation among the regional ground
subsidence, fault activity, and underground water level were analyzed in detail. At the same time, an
abnormal deformation was identified and analyzed.

The StaMPS InSAR technique is presented in Section 2 of this paper. The data collection and
processing procedures are described in Section 3. The results of the study and some discussion are
provided in Section 4, and the abnormal deformation is discussed in Section 5.

2. StaMPS Method

StaMPS is one of the most mature InSAR time-series analysis software packages. StaMPS uses a
statistical relationship between amplitude stability and phase stability that makes consideration of
amplitude useful for reducing the initial number of pixels for phase analysis. The amplitude dispersion
index, defined by [19], can be written as

DA “ σA
μA

(1)
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where σA is the standard deviation of the amplitude values and μA is the mean of a series of amplitude
values. The amplitude dispersion index threshold value that is used is commonly higher, typically on
the order of 0.4, than the value of 0.12 recommended by [19]. As a result, a large number of pixels are
selected as Persistent Scatterers (PS) initial candidates (PSCs). The PSCs are tested for phase stability
with an indicator γx, which is defined based on the temporal coherence and can be used to evaluate
whether the pixel is a PS:

γx “ 1
N

ˇ̌̌
ˇ̌ Nÿ
i“1

exp
�

jpφint,x,i ´ φint,x,iq ´ Δφ̂h,x,i
(ˇ̌̌

ˇ̌ (2)

where N is the number of interferograms and φint,x,i is an estimate of the wrapped phase φint,x,i of
the xth pixel in the ith flattened and topographically corrected interferogram Δφ̂h,x,i is an estimate
of the DEM error. After every iteration, the root-mean-square change in coherence γx, determined
as in Equation (2), is calculated. When the change is less than a specified threshold, the solution has
converged and the algorithm stops iterating. Then, the selected pixels are considered as PS pixels,
considering their amplitude dispersion, as well as γx (see [18] for details).

Once the PSs have been selected, their phase are corrected for spatially uncorrelated look angle
(SULA) error by subtracting the estimated values, that is the DEM error [20]. As long as the density of
PS is such that the absolute phase difference between neighboring PSs, after correction for estimated
SULA error, is generally less than π, the corrected phase values can be unwrapped. Optionally, after
unwrapping, a high-pass filter can be applied to the unwrapped data in time followed by a low-pass
filter in space in order to remove the remaining spatially correlated errors (atmosphere and orbit
errors). Finally, subtracting this signal leaves essentially deformation and spatially uncorrelated errors
that can be modeled as noise.

The method is able to characterize the temporal model of deformation, rather than using an
assumed model. StaMPS is successful at finding PS pixels in both urban and nonurban areas, which
makes it applicable in areas covered by forest and vegetation.

3. Data Collection and Processing

In total, eight C-band Envisat ASAR images with track 2347 in stripe mode, acquired from
February 2009 to October 2010, were used to study ground deformation in the Linfen–Yuncheng basin
(red frame in Figure 1). Underground water level data also were collected for this study. ASTER
GDEM (Version 2) with resolution of 1 arc-second (30 m) was used as an external DEM to remove the
topographic phase from the interferograms, and ESA DORIS precision orbits data for Envisat satellites
were employed to remove the reference phase and orbital bias from the differential interferograms.

The StaMPS SBAS InSAR technique was used in this experiment [17,21]. First, to ensure the
reliability of the deformation measurements, SAR interferometric combinations with a temporal
baseline of less than 300 days and a spatial baseline of less than 300 m were outlined. Accordingly,
15 interferograms were generated (Figure 2) to study the ground deformation within the basin. After
spatially filtering each interferogram, the spatially uncorrelated DEM error was iteratively optimized
by setting a maximum error of 8 m. The standard deviation of each coherent pixel was estimated
for all of the interferograms. Any pixels with a standard deviation larger than 1.0 radian were
eliminated to refine the coherent points [22]. Considering the deformation gradient within the basin,
the unwrapped grid size was resampled to 50 m. Atmospheric phases were separated from each
differential interferogram by filtering the spatial and temporal domains according to their spatial and
temporal correlations.
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Figure 2. Configurations of Interferometric Synthetic Aperture Radar (InSAR) pairs used for the basin
ground deformation monitoring.

4. Results and Discussion

Ground deformation results over the Linfen–Yuncheng Basin were assessed from 2009 to 2010.
The annual average deformation map is shown as Figure 3, in which positive and negative signs
represent displacement toward and away from the satellite line-of-sight (LOS), respectively. According
to the geological survey, the western mountainous area of Linfen is with hard rock bottom and close to
the stable Ordos block tectonic units. So we selected an area about 10 km ˆ 10 km as the reference
region, which was represented in the Figure 3 as a five-pointed star marked area. The maximum
displacement is from ´62 to 20 mm/a. According to the results, the internal and marginal areas of
the basin have different deformation characteristics. The internal basin showed land subsidence, but
both sides of the basin showed relative uplift. Especially, at the eastern margin of the basin, there is
an obvious difference of deformation on the two sides of the ZhongTiaoShan piedmont fault. From
the local perspective, the tectonic units have different deformation rates, which show a gradually
increasing trend from north to south.

4.1. Deformation Characteristics Analysis

As is well known, the stratification of the lower troposphere may lead to topographically
correlated propagation delays in interferometric phase (hereafter called stratified delay). Hence,
the stratified delay can be approximately considered as a linear function of the terrain, as has been
proven by earlier works [23–28]. After the temporal and spatial filtering in the SBAS–InSAR processing,
the influence of tropospheric effects on the results comes mainly from the stratified delay. Because
the deformation shares an obvious boundary with the basin topography (see Figure 3), we needed to
analyze whether there was a topographically correlated stratified delay in the InSAR results; so we
chose two regions, one in the eastern side and one in western side of the basin (shown as A and B in
Figure 3, respectively), where analyzing the correlation between deformation rate and topography.
The results showed that there was no obvious correlation between deformation rate and topography
(Figure 4A,B). Thus, we concluded that the stratified delay had little effect on the monitoring results in
this study.
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Figure 3. Mean velocity of the Linfen–Yuncheng basin derived from the InSAR time series.

Figure 4. Correlation between ground deformation and terrain: (A) area A Figure 3; and (B) area B in
Figure 3.

According to the results shown in Figure 3, there are two obvious centers of subsidence and an
uplift zone located near the towns of Xiaxian, Xinjiang and Hejin, respectively. Their locations are
depicted in Figure 3. In order to analyze the deformation characteristics of the points that are marked
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with triangle in Figure 3, time series deformation results were extracted (shown in Figure 5). Based
on Figure 5, the cumulative subsidence values around Xiaxian and Xinjiang through nearly one and
one-half years were 100 mm and 70 mm, respectively, whereas the surface uplift in the Hejin region
reached 40 mm. The uplift deformation in Hejin is discussed further in Section 5.

Figure 5. Cumulated subsidence curves. “RefP” is the reference point, “XinJ” is the town of Xinjiang,
“XiaX” is the town of Xiaxian, and “HeJ” is the town of Hejin.

4.2. Fault Activity Analysis

According to the survey, there are more than 10 active faults in the study area. Among these,
the ZhongTiaoShan piedmont fault, Emei–Zijinshan fault, and Mingtiaogang southeast fault are the
three main active faults. In order to analyze the impacts of the faults on the regional deformation, two
profiles were extracted along P1–P1" and P2–P2’, as shown in Figure 3, and the results are shown in
Figure 6. The terrain profiles are also plotted in Figure 6.

Figure 6. Profiles across the faults: (A,B) terrain profiles; and (C,D) surface deformation rate profiles.
The dotted lines show the locations of faults.
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Profile P1–P1’, crossing the FI-2 and FI-3 faults, is shown as Figure 6C. The ground subsidence
shows an obvious difference between the two sides of the faults. The locations of the faults are showed
by the dotted lines in the figure. The middle region of the two faults shows subsidence, but the lateral
sides show uplift. There is about 15 mm/year of differential subsidence. We also extracted profile
P2–P2’ perpendicular to faults FI-1 and FI-2 in Figure 3 (Figure 6D). The deformation difference on
both sides of the faults is not as obvious, which shows that the influence of faults on ground subsidence
varies in different areas.

As shown above, fault activity and the surrounding ground subsidence have a certain spatial
correlation in the Linfen–Yuncheng basin. Deformation occurs within the fault-controlled basin, but
no deformation occurs in the surrounding mountainous region without faults.

4.3. Relationship Analysis between Underground Water and Ground Subsidence

The Linfen–Yuncheng basin is surrounded by mountains. Its annual average rainfall is 572.5 mm,
and the annual average evaporation is 1148.0 mm, twice the former. As a result, underground water is
the main source of drinking water in the region.

Research has demonstrated that groundwater exploitation is an important factor in ground
subsidence [11,29]. In order to study the relationship between ground subsidence and groundwater
exploitation in the area, groundwater level data were collected by pressure-type water level meters,
and the spatial distribution of the sensors was shown as in Figure 7. Two profiles of groundwater level,
along lines P3–P3’ and P4–P4’ in Figure 7, were extracted (Figure 8A,B), along with the corresponding
deformation values (Figure 8C,D), respectively.

Figure 7. Groundwater level contours and groundwater level meter locations.

It is worth noting that the two profiles are located in the groundwater level upheaval area, which is
conducive to investigating the relationship between underground water level and ground subsidence.
As shown in Figure 8, although the ground subsidence along P3–P3’ has small fluctuations, it has
a trend that is generally similar with the trend of groundwater level. This similarity shows that the
ground subsidence in the Xinjiang area is affected to a certain extent by the underground water level.
However, this effect is not obvious in the Linfen region (Figure 8). Due to differences of soil physical
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and mechanical properties, the ground subsidence also shows some differences under the case of
groundwater overexploitation. The Xinjiang–Xiaxian area is part of the Fen River floodplain, which
has obvious plastic characteristics, and the degree of preconsolidation is relatively low. With the
overexploitation of groundwater, pore water pressure was reduced, which inevitably led to ground
subsidence. However, the Linfen region is part of the loess tableland, and the groundwater content
varies widely, leading to the weak correlation between groundwater and land subsidence.

Figure 8. Profiles of groundwater level and ground deformation: (A,B) groundwater level profiles
along P3–P3’ and P4–P4’ (Figure 7); and (C,D) respective deformation profiles along the same lines.

5. Hejin Abnormal Deformation Analysis

The Linfen–Yuncheng basin, where moderate–small earthquakes have occurred frequently in
the recent past, is the only area in Shanxi Province that has incurred an Ms 8.0 earthquake. Hence,
the abnormal deformation that occurred in this areas particularly attracted our attention. The InSAR
results showed that the abnormal deformation is located in Hejin, south of the LuoYunShan fault
(Figure 3). Exploring the process and the cause of this abnormal uplift is very important to an analysis
of the seismic risk of the region.

5.1. Interferogram Analysis

In order to obtain the process of the uplift deformation, we collected 18 scenes of ENVISAT ASAR
standard images with track 2347 (blue frame in Figure 1), covering the Hejin area and spanning the
years of 2003–2010 (there are no archived images for 2007 and 2008). Using these data, we began SBAS
InSAR processing. ASTER GDEM Version 2 with resolution of 1 arc-second (30 m) was used as an
external DEM to remove the topographic phase from the interferograms. Due to the notable temporal
gap (no images for 2007 and 2008), we divided the total images into two subsets and carried out the
processing separately. After careful data processing, 18 interferograms with good coherence were
generated (Figure 9). We show eight typical interferograms, spanning several months to several years,
in Figure 10. From these interferogram patterns, we developed the following observations.

(1) Fringes that persist in time (e.g., Figure 10A–H) show deformation anomalies. These fringes are
unlikely to be atmospheric artifacts because the interferograms were produced from independent
SAR images. Additionally, the signals cannot be attributed to DEM errors because the baselines
of these interferograms are short, making them insensitive to any plausible errors in the DEM.

(2) The deformation patterns are different during the periods spanning 2003–2006 (Figure 10A–D)
and 2009–2010 (Figure 10E–H). The color changes from blue–red–yellow–blue along the direction
of the arrow during 2003–2006 (Figure 10A–D). However, the color change shows the opposite
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trend along the direction of the arrow (yellow–red–blue–yellow) during 2009–2010 (Figure 10E–H).
Another phenomenon of note is that the deformation center moved to the west during 2009–2010
(Figure 10E–H).

Figure 9. Configurations of InSAR pairs used for the abnormal deformation monitoring.

 

Figure 10. (A–H) Interferograms labeled with period (date format is yyyymmdd). The satellite flight
direction and radar look direction are labeled in (A). Each fringe (full color cycle) represents 28 mm of
range change between ground and satellite. Areas that lack interferometric coherence are uncolored.

5.2. Deformation and Mechanism Inversion

In order to understand the uplift deformation process, we obtained the time series results of
the deformation center (Figure 11) using the SBAS method for the data processing. As determined
from the results, the deformation is divided into two stages, a subsidence stage from December 2003
to February 2006, with maximum subsidence of 57 mm, and an uplift stage from February 2009 to
November 2010, with maximum uplift of 38 mm. Because of the absence of images from 2007 to 2008,
we were unable to obtain the deformation process during this time period.
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Figure 11. InSAR Line-Of-Sight (LOS) deformation time series for the HeJin area.

We assumed that the deformation was caused by a volume change beneath the northern Hejin area.
In order to explain the InSAR-derived deformation field, we tried a uniformly opening sill (i.e., crack)
embedded in an elastic half-space to model all the interferograms with reasonably good coherence
individually [30]. Eight parameters defined the sill: length, width, depth, strike, dip, opening, and
location (two parameters). In the model, we introduced linear terms to account for any possible phase
ramp due to uncertainties in satellite positions [31]. We used the downhill simplex method and Monte
Carlo simulations to estimate the optimal parameters and their uncertainties [32] and the root mean
square error (RMSE) between the observed and modeled interferograms as the prediction-fit criterion.
Figure 12 shows two examples with observed (Figure 12A,D), modeled (Figure 12B,E), and residual
(Figure 12C,F) interferograms for the sill models. The models fit each of the observed interferograms
reasonably well. Because the subsidence and uplift may have been caused by different mechanisms,
we separately calculated the parameters of the sill models for seven deflationary and four inflationary
interferograms. In other words, we achieved the parameters of the two sill models by averaging all the
results for seven deflationary and four inflationary interferograms separately. This strategy provided a
first-order approach to reducing errors in the modeling. Table 1 shows the averaged parameters of the
sill sources for the seven deflationary and four inflationary interferograms. All of the model parameters
are well constrained according to the uncertainties shown in Table 1. We attribute the goodness of fit to the
averaging of the many interferograms. The best-fit model sill for the deflationary interferograms is 5.2 km
long, 2.5 km wide, 1.5 km deep, and has a strike of N104˝E, and the best-fit model sill for the inflationary
interferograms is 5.4 km long, 1.6 km wide, 1.4 km deep, and has a strike of N78˝E.

 

Figure 12. (A–F) Observed interferograms; synthetic interferograms for sill sources that best fit the
individual interferograms; and residual interferograms, which are the differences between the observed
(left) and the modeled (middle) interferograms.
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Table 1. Parameters for the best-fitting model sill (see text for details). Uncertainties correspond to
95% confidence.

Parameter Deflation Inflation

Length (km) 5.2 ˘ 0.9 5.4 ˘ 0.5
Width (km) 2.5 ˘ 0.4 1.6 ˘ 0.2
Depth (km) 1.5 ˘ 0.5 1.4 ˘ 0.3

Strike (˝) 104.1 ˘ 1.4 78.3 ˘ 8.7
X (km) 7.7 ˘ 0.3 7.0 ˘ 1.0
Y (km) 3.7 ˘ 0.3 4.7 ˘ 0.1

Open (mm) ´34.5 ˘ 14.5 38.6 ˘ 9.8

5.3. Discussion of Abnormal Deformation

The differences of location and depth of the sill sources beneath the northern Hejin area between
the results of the subsidence and uplift interferograms are not significant at the 95% confidence level
(Table 1), so we attribute both processes to the same source. The dimensions of the two sill models are
also similar.

We speculate that the deformation was caused by underground water withdrawal and influx.
First, no active faults or volcanoes are located in the northern Hejin area. Second, according to the
patterns shown in the interferograms (Figure 10), it does not seem that the deformation was caused
by tectonic movements. Third, the ground surface, as shown by the high-resolution remote sensing
images, is covered mainly by crops, and there are some chemical plant distribution here. Therefore,
we speculate that underground water was overextracted during 2003–2009. According to our field
investigation, more than 50% of the small- and medium-sized enterprises were closed during 2009.
After 2009, the local enterprises and residents stopped extracting underground water excessively,
which caused the ground to rebound, i.e., subsidence to uplift.

6. Conclusions

Linfen–Yuncheng basin has suffered from severe geo-hazards, including large scale land
subsidence and small scale fault activity, which has caused serious infrastructure damages and property
losses. High accuracy InSAR results can show the relationships among the different scale deformation.
In this study, ground deformation, fault activity, and the mechanism of abnormal deformation over
the Linfen–Yuncheng basin were analyzed using InSAR deformation results. The influences of
underground water on ground subsidence were analyzed, as were the controlling effects of the
fault distribution on the deformation trend. The following conclusions were drawn.

First, there are two obvious centers of subsidence and one uplift zone within the Linfen–Yuncheng
basin located in the towns of Xiaxian, Xinjiang, and Hejin, respectively. Second, deformation occurs
within the fault-controlled basin, and the distribution of faults controls the ground subsidence trend.
Third, excessive exploitation of underground water is one of the main causes of land subsidence in
the Linfen–Yuncheng basin, and the effects of underground water level on ground subsidence show
differences in different regions, which are influenced mainly by formation conditions. Fourth, an
area of abnormal deformation was found and this deformation presented a reversal of trend, from
ground subsidence to uplift, in about 2009. The abnormal deformation was mainly related to excessive
groundwater exploitation.
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Abstract: We applied the Small Baseline Subset multi-temporal InSAR technique (SBAS) to two
SAR datasets acquired from 2003 up to 2013 by Envisat (ESA, European Space Agency) and
COSMO-SkyMed (ASI, Italian Space Agency) satellites to investigate spatial and temporal patterns of
land subsidence in the Sibari Plain (Southern Italy). Subsidence processes (up to ~20 mm/yr) were
investigated comparing geological, hydrogeological, and land use information with interferometric
results. We suppose a correlation between subsidence and thickness of the Plio-Quaternary succession
suggesting an active role of the isostatic compensation. Furthermore, the active back thrusting in the
Corigliano Gulf could trigger a flexural subsidence mechanism even if fault activity and earthquakes
do not seem play a role in the present subsidence. In this context, the compaction of Holocene
deposits contributes to ground deformation. Despite the rapid urbanization of the area in the last 50
years, we do not consider the intensive groundwater pumping and related water table drop as the
main triggering cause of subsidence phenomena, in disagreement with some previous publications.
Our interpretation for the deformation fields related to natural and anthropogenic factors would
be a comprehensive and exhaustive justification to the complexity of subsidence processes in the
Sibari Plain.

Keywords: SBAS-InSAR; Sibari Plain; subsidence; geology; anthropic processes

1. Introduction

Many coastal and delta plains worldwide are affected by land subsidence phenomena [1,2], which
often involve inhabited areas causing conspicuous economic costs.

Examples come from different geodynamic, geological, climatic and social contexts. In Italy,
subsidence due to a combination of natural causes and anthropogenic activities is observed in the
Venice coastland and the Po delta plain [3–6], while in the United States in correspondence of the coastal
areas of Southern Louisiana and Mississippi [7–11]. Other examples are observed in the Yellow River
and Yangtze China Deltas [12,13], along the Taiwan coastland [14–16], in the Indonesian Semerang
city [17], in Thessaloniki coastal plain and municipality region (Northern Greece) [18,19].

Over the last decades, the land subsidence monitoring has been significantly improved
thanks to the earth observation techniques based on Interferometric Synthetic Aperture Radar
(InSAR). Furthermore, the recent advances in radar satellite capabilities and techniques based
on the interferometric analysis of large datasets [20–29] have allowed even better spatial and
temporal resolutions.
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We applied multitemporal differential SAR Interferometry technique and specifically the Small
Baselines Subset (SBAS) approach [20] to investigate the ground deformations of the Sibari Plain (SP),
located in the northeastern sector of the Calabria Region (Southern Italy) covering an area of ~500
km2. This Plain involves an important economic weight due to the agricultural production and a
cultural appeal related to the presence of the ancient Sybaris, a powerful Greek colony in Magna
Grecia founded in 720 BC. The area is also susceptible to flooding risk, reduced by means of a drainage
channels network.

The used SAR datasets cover the temporal interval spanning from May 2003 and September
2013 for both ascending and descending orbits acquired by Envisat and COSMO-SkyMed satellites
(for details see Table 1). Envisat is a European Space Agency (ESA) satellite operating in the
C-Band (5.6 cm of wavelength) launched in the 2002 and operating up to 2012, with a revisiting
period of 35 days, covering an area of about 100 ˆ 100 km. The COSMO-SkyMed mission consists
of a constellation from the Agenzia Spaziale Italiana (ASI) in the X-Band frequency (3.2 cm of
wavelength). The first satellite of the constellation has been launched in June 2007 and the constellation
(four satellites) has been fully operative by the end of 2010. The used acquisitions (Himage mode) are
characterized by a swath of about 40 ˆ 40 km2 with a revisiting time period of 16 days.

Table 1. Used image datasets. Ground resolution values are obtained after a multi-looked operation.

Satellite Orbit Type Track/Beam
No. of

Used Images
No. of
Pairs

Temporal Span
Ground

Resolution
(m)

Incidence
Angle

Envisat Ascending 86 38 137 4 May 2003 to
19 September 2010 90 23

Envisat Descending 222 33 115 27 August 2003 to
25 August 2010 90 23

COSMO-SkyMed Ascending B12 12 25 5 December 2012 to
19 July 2013 25 39

COSMO-SkyMed Descending B03 33 60 29 October 2009 to
2 October 2010 25 29.3

Moreover, the availability of ascending and descending datasets allowed us to discriminate the
vertical and east-west displacement components.

Finally, the retrieved InSAR results were validated by means of GPS measurements then analyzed
and interpreted considering the available geological and hydrogeological information as well as new
data collected during our field surveys.

2. Geological Setting

The SP is located along the boundary between Calabrian Arc and Southern Apennines (Figure 1),
with the Pollino massif to the north and Sila massif to the south. The Calabrian Arc represents a
fault-bounded continental fragment within the western Mediterranean orogeny. The tectonic evolution
is related to the subduction and rollback of Ionian oceanic lithosphere and the slow convergence
between the Eurasian and African-Adriatic continental plates [30–32]. The Southern Apennines are a
NW-SE oriented segment of the Apennines thrust belt. It is characterized by a duplex structure, which
consists of two thrusts belts overlapping the Apulian platform [33–36].

In the SP, the chain is prevalently composed by Apenninic terranes overlapped by thin Calabrian
Arc units [37]. The first ones, outcropping along the northwestern side of the SP, are made by
Mesozoic-Tertiary carbonatic succession and “flyschiod” deposits overlapped by Plio-Pleistocene
siliciclastic succession [38–40]. Instead, the Calabrian Arc terranes, cropping out along the southern
margin, consist of igneous and metamorphic rocks [41] (Figure 1).

In the central sector of the SP, the basement is overlapped by a thick Miocene-Holocene succession;
the mio-pliocenic deposits represent the infilling of the Sibari-Corigliano Basin, which evolution is
strictly connected with the Sangineto Line activity [42,43], and they are deformed by fault activity
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with formation of morphological/structural highs and lows [44]. In [45], the authors suggest the
existence of WNW-ESE trending shallow-crustal folds, developed within a recent and still active
transpressional field.

 

Figure 1. Simplified lithological map of the study area with projection of the faults of ITaly HAzard
from CApable faults database [46] and of the Sybaris fault zone (f.z.) [47].

The boundaries between the SP and Pollino and Sila massifs are marked by dislocations produced
along plio-holocenic high angle faults. The latter is represented in the NW sector by the NW-SE
normal fault of the Sangineto Line [48,49], while in correspondence of the Sila Massif it consists
of the WNW-ESE Rossano-Corigliano fault (Figure 1). The recent activity of these faults is still
debated [49–53].

The existence of NE-SW trending normal fault in the area of the Crati Delta is suggested by [48];
recent coseismic evidences related to a NE-SW structural lineament, maybe active during the period
between the II and the VII-IX century A.D., are observed in Parco del Cavallo and Casa Bianca
archaeological sites [47].

Five to eleven different order of marine terraces are recognized along the outer limit of the plain
and uplift rates greater than 3.5 mm/yr are estimated [50,54,55].

Holocene deposits are the result of the post Last Glacial Maximum (LGM) transgression and the
following (started about 6 ka B.P.) normal regression related to the Crati Delta progradation [56,57].
The Holocene evolution occurred in a tectonic-controlled setting, which drives the thickness and the
facies association lateral variability of the deposits [57]. The post LGM succession consists of marine
clayey-silty deposits, overlapping a late Pleistocene coarse-grained unit, passing upward to costal,
deltaic and continental ones [57–59].
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In the Northern sector, the main geomorphological elements are the alluvial fans of Raganello
River, Satanasso Fiumara and Saraceno Fiumara.

Historical Subsidence

Subsidence is a well-known phenomenon in the Sybaris archaeological area (Figure 2), testified
by the presence of three overlapping ancient towns, the Greek Sybaris (720-510 BC), the Hellenistic
Thurii (444-203 BC) and the Roman Copiae (193 BC), presently buried between 7 and 3.5 m [60].

In [61], the author calculates subsidence rates ě0.57 mm/yr (2330–860 ka B.P.) and ě4.31 mm/yr
(860 ka B.P.—present) for Casa Bianca, ě0.35 mm/yr (2660–1600 ka B.P.) and ě2.05 mm/yr (1600 ka
B.P.—present) for Parco del Cavallo, ě0.4 mm/yr for Stombi.

The subsidence in the archaeological area starts in the late Pleistocene up to the Holocene and
is due by a combination of causes as neotectonic activity, glacio-eustatic variations and sediments
compaction [62–64]. In the archaeological area the subsidence variability is correlated to the lateral
variation of facies [65] and the most of geotechnical subsidence can be ascribed to a very compressible
clay layer, laterally discontinuous, between 35 and 40 m of depth [62,65]. Since the 1950s, ~20 cm
of subsidence have been recorded and ascribed to groundwater exploitation and related primary
consolidation [65,66]. The subsidence in the Casa Bianca and Parco del Cavallo sites is confirmed
by [67], which instead calculates a mean uplift rate of ~0.5 mm/yr in the last 11.2 ka for the Stombi site
and hypothesizes that subsidence started 4ka B.P. and is ascribed to the deposition of fine compressible
sediments, so excluding the tectonic contribution. The author of [68] highlights a temporal variability
for the mean subsidence rates showing a peak of ~5–6 mm/yr in the Early Holocene whilst stability
or small uplift in historical age (~3–1.3 ka B.P.) for the Casa Bianca and Parco del Cavallo sites, no
subsidence in the Stombi site and uplift (~1.5 mm/yr) 6 km toward SE from archaeological area; this
differential subsidence is mainly controlled by local tectonic structures.

Figure 2. The archaeological sites of the ancient Sybaris (see inset in Figure 1 for its location).

3. InSAR Adopted Tecnique

The classical differential SAR Interferometry (InSAR) is a technique that allows us to estimate
the ground surface movements occurred between two different passes of the satellite over the same
area using Synthetic Aperture Radar (SAR) data. The phase difference at each pixel is calculated after
proper image co-registration resulting in a new image, called interferogram, an interference pattern
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made up of fringes [69]. Each fringe represents a ground movement along the sensor line of sight
(LOS) equal to λ/2 (where λ is the adopted radar wavelength).

There are many physical phenomena contributing to phase measurements: phase variations
within a pixel, the contribution of orbital variations, topography, atmosphere, and displacement. These
contributions are estimated and then removed so to obtain only the effective ground displacement.

Our goal is to investigate the temporal evolution of the detected deformations. To this aim
several different approaches have been proposed in the last decade to generate time series of ground
displacement, capable of measuring the ground velocities rates with accuracies of ~1 mm/yr [70].
In this work, we applied the Small Baseline Subset InSAR technique (SBAS; [20]). The used SAR images
were coupled based on constraints of small temporal and spatial baselines. The SBAS algorithm
combines these acquisitions, also included in different interferometric subsets, using a minimum
norm criteria combination of the velocity deformation, based on the Singular Value Decomposition
(SVD) method. During the SBAS processing the estimation and removal of temporally decorrelated
atmospheric artefacts are performed using double-pass filtering in the temporal and spatial domains,
as explained in [20]. Moreover, we used the SRTM DEM (90-m resolution) for the subtraction of
topography phase (http://www2.jpl. nasa.gov/srtm). Once the displacement time series is retrieved,
the mean ground velocity in the time period covered by the data was calculated.

In detail, we applied the SBAS technique to four image datasets, two acquired from the European
Space Agency (ESA) Envisat sensor and two from the Italian Space Agency (ASI) COSMO-SkyMed
satellites. The first group contains 32 Envisat images acquired on the descending orbit (track 222, frame
2803), in the period 2004–2010 imposing 700 days as maximum temporal baseline and 350 meters for
the maximum perpendicular one and considering 100 pairs. Instead, the ascending dataset (track
86, frame 789) is formed by 38 ASAR images acquired in the period 2003–2010 setting 900 days
for the maximum temporal baseline and 350 meters for the maximum spatial one resulting in 135
interferograms. The second group (COSMO-SkyMed data) was composed of 28 images from the
ascending orbit considering 180 days for the maximum temporal baseline and 700 meters as maximum
spatial baseline resulting in 137 interferograms, spanning the interval 2011–2013 and 12 images from the
descending orbit, acquired in the interval 2011–2012 setting 100 days for the temporal and 1000 meters
for the spatial maximum baselines respectively forming 47 interferograms. We used the Sarscape
software (Sarmap, CH) applying a looking factors equal to 20 and 4 for the azimuth and range direction,
respectively for the ascending and descending Envisat processing obtaining a ground resolution of
80 meters and 11, 12 for the COSMO-SkyMed case with a final ground posting of 25 meters; later
downgraded to 100 meters for the post-processing analysis. The initial performed multi-looking
operation reduced the image radar noise (speckle) and increased the signal to noise ratio.

During the processing the precise orbital files (Envisat case) were used to estimate and remove
orbital errors and Ground Control Points (GCPs) were selected, especially along the frame borders (in
slant range geometry) and possibly over stable areas, to remove residual ramps. A stable point (under
the geological point of view) was chosen as reference point (red star) for the retrieved mean ground
velocity maps (Figure 3).

Initially, we validated our results comparing the ascending and descending velocity map after
shifting the former with respect to the reference point of the latter preventing the subsidence areas. We
also validated the Envisat results comparing with the available GPS in the whole SAR frames (Figure 3).
Firstly, we projected the GPS velocities onto the ascending and descending SAR LOS respectively then
we averaged the InSAR velocities in correspondence of the GPS benchmarks considering a buffer area
of 200 meters. The comparison between GPS and InSAR velocities is shown in Figure 3a,b for the
ascending and descending tracks. Except for very few GPS benchmarks, the velocities differences are
within 1.5 mm/yr, which is the associated error to the multi-temporal SAR outputs. Unfortunately, it
has not been possible to perform the same validation method for the CSK results because not enough
CGPS are available. However, considering the common similar patterns and trends for both Envisat
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and CSK ascending and descending retrieved maps, we convinced the good quality of the obtained
CSK results. Note that for the CSK processing we focused our study on the Sibari Plain.

To this aim, we calculated the East (E) and Vertical (V) component solving the following system
of equation:

E “ ppu2d{detq ˆ pAsc ´ pn2aq ˆ Nqqq ´ ppu2a{detq ˆ pDsc ´ pn2d ˆ Nqqq (1)

V “ pp´e2a{detq ˆ pAsc ´ pn2aq ˆ Nqqq ` ppe2a{detq ˆ pDsc ´ pn2d ˆ Nqqq (2)

where det “ ppe2d ˆ u2dq ´ pu2a ˆ e2dq
where u2d, e2d, n2d, u2a, e2a and n2a are the descending and ascending cosine directors respectively,
and Asc and Dsc are the ascending and descending mean velocity maps.

Figure 3. (a) Ascending and (b) descending line of sight (LOS) ground velocity maps. Red star
represents the stable point (stable means that the mean velocity is 0 mm/yr) used as reference point. In
the maps are also plotted the GPS benchmarks used during the validation of the Envisat results. The
diagrams show the comparison between the LOS Synthetic Aperture Radar (SAR) velocities and GPS.
The correlation coefficient is respectively 0.51 and 0.65 for the ascending and descending cases, while
the mean squared error is 1.1 mm and 1.2 mm.

Concerning the third condition, we imposed the North equal to the interpolated CGPS one. The
final Vertical and East component (Figure 4) result quite sparse, this mainly depends on the difficulty
to obtain a large coverage for the ascending and descending velocity maps due to the land cover
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and agricultural use of the investigated area leading to a fast coherence loss. Moreover, about the
East component some overestimated values are present in the North Eastern part probably due to
unwrapping errors due to the presence of the mountains.

We performed the previous post-processing steps for the full SAR frames and only at a later stage;
we focused our analysis and interpretations referring to the East and Vertical component about the
Sibari Plain area.

Figure 4. Mean deformation velocity components computed from (a,b) Envisat and
(b,c) COSMO-SkyMed dataset. (a,c) Vertical velocity component; positive values indicate uplift and
negative values subsidence. (b,d) East component; positive values indicate eastward displacement
and negative values indicate westward displacement. The area covered by COSMO-SkyMed data is
represented by inset (1) in the panel a.
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InSAR Results

In the following, we report the deformation pattern of SP at a large scale retrieved by InSAR
processing and discuss the results in detail using available tectonic, stratigraphic, geomorphological
and hydrogeological information. We investigate natural and/or human causes of the vertical and
horizontal surface displacements.

The distribution of Vertical component shows a coastal area (from Villapiana Lido to Marina
di Schiavonea) characterized by subsidence with velocity up to ~´20 mm/yr (Envisat and
COSMO-SkyMed sensors); on the contrary, boundary areas of SP show ~0 mm/yr on the vertical
velocity component (Figure 4).

The horizontal Eat-West component shows low displacement values that are inside the errors
range and are not significant.

In the archaeological area, the subsidence rate is ~2 mm/yr (Envisat) and ~3 mm/yr
(COSMO-SkyMed) for the Parco del Cavallo site and ~2 mm/yr (Envisat) for the Casa Bianca site.
These values are comparable to the velocities calculated by previous authors [61,67].

4. Discussion

We analyzed different causes contributing to subsidence phenomena. To this aim, we compared
the InSAR results in time and space with the geodynamic and structural settings, the seismicity
distribution, the spatial variation of the Plio-Quaternary and Holocene deposits successions thickness
and compaction, depth variation of the water table and urban sprawl.

4.1. Geodynamic Setting

The SP is located at the junction of the Calabrian Arc and the Southern Apennine. Moving
few kilometers towards SE from the SP, the geodynamic setting is complicated by the presence of
the junction (Apulia Escarpment) (Figure 1) between the thin Ionian basin crust (southward) and
the thick crust of the Apulian platform (northward). In the Ionian Sea, in front of the SP an active
oblique-contractional belt (the Amendolara Ridge) is recognized. The latter is due to the combined
effects of subduction retreat of the Ionian slab underneath Calabria and stalling of Adriatic slab retreat
underneath the Apennines [71]. The belt consists of the alignment of three anticlines (Amendolara,
Rossano and Cariati) bounded by a main SW-verging back-thrust (Figure 5a).

A flexural subsidence, probably triggered by a back-thrusting [72], is considered one of the
mechanisms to explain the ground subsidence detected by InSAR results along coastal sector of the SP
(Figure 5b).

4.2. Structural Setting and Earthquakes

Possible relationship between SP subsidence and recent tectonic activity relies on the analysis
of structural lineaments reported into the Italy Hazard from Capable faults database [46]. According
to the main faults bounding the SP, we subdivided it in three sectors (Figure 5a) and with foreseen
different deformation patterns for the three sectors from InSAR ascending and descending time
series (Figure 6). The analysis of the averaged Envisat displacement time series show very similar
trends for the three investigated areas, although with different absolute values. On the other hand,
COSMO-SkyMed time series show a different deformation pattern for each sector.
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Figure 5. (a) The Amendolara Ridge located in the Ionian Sea in front of the Sibari Plain. The
bathymetric map (modified from [73]) shows the presence of three morphological highs (Amendolara,
Rossano and Cariati highs). The main structural elements (thrusts and anticlines) are extracted from [71].
In the map is showed the hypocenters location of the earthquakes occurred between 2003 and 2010
(ISIDe [74]) with the relative magnitude and hypocentral depth. Onshore capable faults from [46]
and focal mechanisms from [45]. Yellow dashed lines are the boundaries of three selected sectors (1.
Corigliano; 2. Crati Delta; 3. Sibari-Villapiana) for Envisat and COSMO-SkyMed time series analysis
(Figure 6). (b) Sketch (based on the interpretation of the seismic profile F75-89 of [45]) representing the
trigger of the flexural subsidence due to the overlap of the Amendolara Ridge back thrusts on Calabrid
and Southern Apennines units.

In detail, the ascending time series reveal a general trend characterized by an increase of the
negative displacements but with greater absolute values in the southern sector. The descending time
series highlight an increase of negative displacements in the Corigliano sector with values between
10 mm and ´5 mm in the Villapiana-Sibari sector, and an expected increasing positive trend in the
Crati Delta sector. This trend can be related to the presence of a horst bounded by Crati and Timparelle
faults [48].

A comparison between ground deformation pattern and seismicity was performed taking into
account the earthquakes occurrences and magnitude [74] during the time covered by SAR data
(Figure 5a). No significant earthquakes struck the study area excepting for one shallow offshore M 4.5
event on 27 June 2006 [74] with none ground deformation effects (Figure 6).

Therefore, we can exclude the presence of seismically-induced displacement and we hypothesize
that the structural settings could indirectly influence the ground subsidence phenomena.
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Figure 6. Envisat and COSMO-SkyMed both ascending and descending time series (error = ˘1 mm)
for the three selected sectors delimited by ITHACA [46] faults (location in Figure 5). Black dotted line
represents the earthquakes (M = 4.5) occurred on 27 June 2006.

4.3. Role of the Plio-Quaternary Succession Load

Possible relationships between subsidence and spatial variation of the Plio-Quaternary succession
thickness in the Crati Delta area (Figure 7a) as reconstructed from multichannel seismic profiles and
well data [75] was investigated. The thickness observed in the seismic profile has been converted from
Two Way Travel time to meter using an average velocity of 2000 m/s for the Pliocene and Pleistocene
deposits based on the sonic logs, available for Thurio and Ogliastrello wells, analyzed by [44].

The Envisat Vertical component superimposed to the Plio-Quaternary succession isopach map
(Figure 7b) shows a prevalent distribution of vertical displacement rates toward the coastline, where
the deposits are thicker.

We compared ground velocity profiles, for the Envisat Vertical component, with the corresponding
profiles of the Plio-Quaternary deposits thickness. The comparison (Figure 7c) shows a good correlation
between the general subsidence trend and the Plio-Quaternary succession thickness. We observed
higher subsidence values in the E and NE sectors of Crati Delta, where the Plio-Quaternary succession
is thicker. In the SW sector, the reduced thickness corresponds with lower subsidence values. Lower
values are also detected in the S-SE sector (Corigliano harbor area), where the presence of shallow
igneous-metamorphic bedrock drives the Plio-Quaternary succession thickness.

Furthermore, we considered the ascending and descending ground velocity values in
correspondence of the seismic profiles and wells locations, correlating the ground velocity with the
thickness of Plio-Quaternary deposits (Figure 8). Both ascending and descending velocities increase
with the growth of the succession thickness.

Based on the above analysis results, we found a direct correlation between subsidence spatial
trends and distribution of the thickness of Plio-Quaternary deposits, which amplify the subsidence
phenomenon as well documented during the evolution of the sedimentary basins [76–81].

4.4. Holocene Deposits

A possible correlation between subsidence and Holocene sediments compaction was investigated
focusing on the lithological features, thickness and stratigraphic architecture of the Holocene deposits.
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We analyzed 200 boreholes (Demanio Idrico Prov. Cosenza, [82,83]) and literature data [57,61,65]
to define lithology, vertical-lateral variations and thickness of the post-LGM deposits. An isopach
map of the Holocene succession superimposed with the Envisat Vertical component was generated
(Figure 9a). The greater vertical displacement values are located in the area of the Holocene deposits
accumulation but the larger subsidence rates do not correspond to the major depozones.

To well investigate the second topic, we compared each Vertical displacement value of with
the corresponding thickness of the Holocene deposits (Figure 9b).We also performed a comparison
between thickness and vertical component in correspondence of each borehole, if SAR data are
available (Figure 9c).

The analysis reveals that the Holocene sediments compaction does not play a dominant role in
the subsidence of the SP area, on the contrary as described for other delta plains [5,7].

Subsidence rates of 3–5 mm/yr induced by to the Holocene deposits consolidation due to phreatic
and confined water tables drop are calculated by [66] and are not sufficient to justify the vertical
displacements inferred by SAR data.

Although the minor role of Holocene deposits compaction, the boreholes analysis highlights a
clear influence of the lateral variations of the sediments lithology for the subsidence phenomena. In
detail, we took into account the ground deformation patterns from ascending and descending Envisat
data, and the boreholes into the Saraceno and Satanasso alluvial fans areas (Figure 10a), considering
the thickness of fine-grained (silt and clay) deposits (Figure 10b,c). Greater ground velocities are
usually retrieved close to the boreholes recording a major thickness of fine-grained sediments while
the lower values are in correspondence of the coarse-grained (gravel and sand) deposits which made
up the alluvial fan bodies. Thus, the lateral variation of the fine-grained materials thickness creates
differential land subsidence.

 

Figure 7. (a) Location of the used wells and seismic profiles. (b) Isopach map of the Plio-Quaternary
succession with the distribution of the Envisat Vertical component. (c) Comparison between the
thickness of the Plio-Quaternary succession and ground velocity, based on the Envisat Vertical
component, along one of the analyzed profiles (its trace in Figure 7a). The discontinuous lines for the
InSAR profile are due to missing data in the ascending and/or descending original velocity maps due
to coherence lack.
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(a) (b) 

Figure 8. Correlation between (a) ascending and (b) descending velocities with the thickness of the
Plio-Quaternary succession.

 

Figure 9. (a) Envisat Vertical component overlapped to the Holocene deposits isopach map. (b) Scatter
plot Envisat Vertical component vs. Holocene deposits thickness inferred from isopach map. (c)
Comparison between Holocene sediments thickness and Envisat Vertical component in correspondence
of each borehole.
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Figure 10. (a) Analyzed boreholes between Saraceno and Satanasso alluvial fans (see Figure 1 for their
location). (b) Correlation among Envisat ascending and (c) descending velocity and the thickness of
fine-grained deposits (silt and clay).

4.5. Land Use and Historical Evolution

SP represents a geomorphological system with a rapid evolution in historical and recent times
controlled by geological processes and anthropogenic activities. The present morphological setting
results from the works of a 1960s–1990s land reclamation project aimed to convert a marshy area to an
agricultural zone. Several widespread agricultural areas (e.g., orchards, arable soils) with localized
urban settlements [84] are present in SP.

In order to define land use variations, we analyzed the 1954 and 1998 aerial photos; for a detailed
analysis of urban area growth effects. We considered three areas (Marina di Sibari; Laghi di Sibari
and C.da Ricota; see Figure 4), characterized by the same subsoil stratigraphy, and compared the
Envisat ascending and descending displacement time series concerning urban and agricultural zones
respectively (Figure 11).

In Laghi di Sibari and C.da Ricota sites, we observe a progressive temporal differentiation in the
subsidence values that increase faster in urban areas reaching a maximum difference compared with
agricultural ones of ~35 mm in August 2010 (for the descending track) and of ~25 mm in September
2010 (for the ascending one). The subsidence values are very similar for the two considered sectors in
the Marina di Sibari zone, where the descending time series show a little increase (~5 mm) of ground
deformation values into the urban area.

We observed a diffuse subsidence irrespective of the land use, with some increments of
deformation velocity in correspondence of Laghi di Sibari and C.da Ricota settlements.

Therefore, we suggest that the urban-induced loading represents an incremental factor
of subsidence.
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Figure 11. Envisat ascending and descending time series (error = ˘1 mm) comparison between urban
and agricultural areas for three selected sectors (see Figure 4 for their location).

4.6. Water Table Variations

SP is characterized by two well-defined aquifers: the shallower one (from soil surface to ´20/´30
m above sea level) separated by clayey and silty-clayey layer and the deeper one (from ´50/´60 m
a.s.l.) [85]. Both the aquifers are characterized by intense water exploitation. The piezometric level
variations of the shallow one shows 5 meters of drop between 1930s and 2002 [86,87].

We investigated to find possible correlation between groundwater exploitation and ground
deformation comparing the spatial distribution of phreatic water table variations in the time interval
1930s–2002 [86] and the Vertical velocity distribution from Envisat and COSMO-SkyMed data in the
following 2003–2013 time interval (Figure 12). In the most recent period, we have observed that
subsidence is present in areas showing rise, drop and stability of the water table.

Considering the effect of water table variation between 2002 (data from [86]) and 2013 (this work),
we analyzed the distribution of the Vertical velocity (from Envisat and COSMO-SkyMed data,
Figure 12). The subsidence location does not show a strict correlation with the water table drop.

 

Figure 12. Envisat and COSMO-SkyMed Vertical component superimposed respectively on the maps
of the water table variations 1930s–2002 (redrawn from [86]) and 2002–2013.

We selected 6 wells (Figure 1), with piezometric records in 2002 and 2013, and we analyzed the
Envisat time series for both ascending and descending orbit (Figure 13) considering a circular buffer
of 500 m radius. For the two wells No. 2 and 3, showing a groundwater drawdown, we observe a
displacement trend similar to the No. 1, 4, 5 and 6 ones characterized by water table rise. Moreover,
the time series show smaller displacements rates in correspondence of the well No. 2. There is no
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evidence of correlation between water table variation and displacement time series, probably because
the progressive groundwater level stabilization from 2002 to 2013. In contrast, the groundwater level
drop between 1930s and 2002 [86,87] could have been caused by a more recent consolidation process
of soft materials as observed by [88] in the Alto Guadalentin Basin.

 

Figure 13. Envisat (both ascending and descending orbit) time series of the wells No. 2 and No. 4
(see Figure 1 for their location) recording respectively a water table drop and rise. In table are reported
the water table variation between 2002 and 2013 for each well.

For the confined aquifer, the lack of historical data did not allow us to analyze the effects of its
variations on subsidence.

Therefore, we conclude that water table variations are only an incremental factor of subsidence in
some areas as the Sybaris archaeological area (see Figure 2 to localize Sybaris site), where a well-points
system (80 l/s) works every time to maintain the excavations above the water table. Moreover, in these
areas, a water depletion in compressible soils could trigger an amplified and long-term subsidence as
shown in other Quaternary basins [88,89].

5. Conclusions

InSAR results from data acquired by Envisat and COSMO-SkyMed satellites, and spanning from
2003 to 2013, are able to detect ground displacements in the SP area (Calabria, Southern Italy). The
ground deformation field is dominated by a widespread-subsidence with rate up to ~20 mm/yr.

We can summarize that the location of the SP in an area marked by geodynamic and geological
complexity precluding the attribution of the ground deformation triggering factor to a unique
subsidence mechanism.

We suppose that the active oblique-contractional belt in the Ionian Sea in front of SP [45] can trigger
a flexural subsidence mechanism due to the back thrusting load above the underlying Calabrid and
Southern Apennines Units. Furthermore, the observed correlation between Plio-Quaternary sediments
thickness and ground deformation suggests that the isostatic compensation plays a major role in the
SP present subsidence. We highlight the absence of correlation between the occurring earthquakes
close to the main capable faults, so excluding the contribution of faulting activity and earthquakes
for the present SP subsidence phenomena, according to [67] (based on geomorphological data); we
hypothesize that the structural settings could indirectly influence the ground subsidence phenomena.

Another minor triggering mechanism of subsidence is represented by the compaction of the
compressible fine-grained sediments related to the Holocene post-LGM transgression and following
Crati Delta progradation. We show the effect of the lateral transition between fine- and coarse-grained
Holocene sediments on the ground deformation spatial pattern.

Anthropogenic activities can be considered as an incremental factor of the SP subsidence. In fact,
we observe higher subsidence velocities in the more anthropized areas, where soil compaction is
amplified by urban-induced loading. In some area showing excessive water withdrawals (e.g., Sybaris
archaeological site), water table variations may increase the deformation velocity because can be the
origin of delayed consolidation process in soft materials.
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The presence of subsidence phenomenon in the whole SP and the complicated identification of a
main triggering mechanism, due to the peculiar geological setting, is also in agreement with [90].

The results of this study show as the deformation field of complex basins may be due to coexisting
regional and local natural processes and anthropic activities. To better assess and monitor the hazard(s)
related to the detected ground deformation phenomena, a multiparametric monitoring of SP area
would be recommended.
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Abstract: In areas where groundwater overexploitation occurs, land subsidence triggered by aquifer
compaction is observed, resulting in high socio-economic impacts for the affected communities.
In this paper, we focus on the Konya region, one of the leading economic centers in the agricultural
and industrial sectors in Turkey. We present a multi-source data approach aimed at investigating the
complex and fragile environment of this area which is heavily affected by groundwater drawdown
and ground subsidence. In particular, in order to analyze the spatial and temporal pattern of the
subsidence process we use the Small BAseline Subset DInSAR technique to process two datasets of
ENVISAT SAR images spanning the 2002–2010 period. The produced ground deformation maps and
associated time-series allow us to detect a wide land subsidence extending for about 1200 km2 and
measure vertical displacements reaching up to 10 cm in the observed time interval. DInSAR results,
complemented with climatic, stratigraphic and piezometric data as well as with land-cover changes
information, allow us to give more insights on the impact of climate changes and human activities on
groundwater resources depletion and land subsidence.

Keywords: remote sensing; Differential SAR Interferometry (DInSAR); Small BAseline Subset (SBAS);
GRACE; subsidence; sinkholes; groundwater; climate change; Turkey

1. Introduction

Protection of water resources and mitigation of the risk associated with their overexploitation
represent challenging issues worldwide. In Turkey, one of the Mediterranean countries more severely
affected by water scarcity [1], the Konya basin, in central Anatolia, is facing with serious water-related
problems, due to climate changes [2] and lack of efficient water management policies especially in the
agriculture sector [3].

Moreover, growing irrigation needs are often satisfied by uncontrolled practices of groundwater
extraction: among 92,000 wells located in the Konya basin, it is estimated that 66,000 are
illegal [4]. Such an aquifer overexploitation has important environmental implications for the region.
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Groundwater overuse and depletion not only directly impact on the hydrological cycle [5,6], but have
several negative side-effects on biodiversity, ecosystem health, soil deterioration and drying up of
lakes and wetlands [7,8]. Moreover, excessive groundwater withdrawal makes the region extremely
vulnerable to natural and man-made hazards. As a result of piezometric level decrease, the Konya area
is extensively affected by two different processes of land subsidence: (1) the progressive settlement
induced by the compression of unconsolidated alluvial sediments; (2) sudden collapses of subterranean
cavities formed by the combination of rock dissolution and suffosion processes. These phenomena
cause damage to buildings and infrastructures, leading to high socio-economic costs for the concerned
communities. To our knowledge, most of the studies conducted on the Konya area have focused on
sinkholes investigations [9–12] while only a few studies on the analysis of the land subsidence caused
by consolidation of alluvial fans [13,14].

In such a context, it is clear that obtaining information on the spatial and temporal evolution
of land subsidence plays an important role on hazard assessment and may significantly contribute
to risk prevention and mitigation. However, the continuous monitoring of surface deformations at
regional/basin scale is a resource-intensive task to be accomplished by using traditional ground-based
techniques. The use of satellite based information in Earth’s surface studies represents an important
breakthrough, fulfilling the requirements of high spatial and temporal coverage. In particular, remote
sensed data acquired by satellite Synthetic Aperture Radar (SAR) sensors and processed through
Differential SAR Interferometry (DInSAR) techniques [15] greatly contribute to surface deformation
analyses. DInSAR firstly relied on the use of a pair of pre- and post- event SAR acquisitions in
order to retrieve ground displacements caused by single trigger events, i.e., earthquakes and volcanic
unrest [16,17]. Since such early applications, relevant algorithmic advances have been achieved and
several DInSAR approaches fully exploiting large SAR datasets to generate time-series of deformations
have been developed. These techniques can be grouped in two main categories: the Persistent
Scatterers (PS) [18,19] and the Small Baseline (SB) [20,21]. In particular, the PS techniques focus on
point-like targets that are not significantly affected by decorrelation noise [22], and are suitable to
monitor deformations affecting point-wise structures. Conversely, the SB methods rely on selecting
SAR data pairs with short temporal (i.e., time interval between two acquisitions) and perpendicular
(i.e., the distance between two satellite passes) baselines in order to reduce the noise, and allow the
investigation of displacements over distributed scatterers (DS) on the ground.

Subsidence studies have greatly benefited from the application of both PS and SB DInSAR
techniques which have been used for the analysis of the temporal evolution of surface deformations
induced by natural and anthropogenic factors, from intense human activities in urban areas [23,24]
to rock dissolution processes (i.e., karst subsidence) [25–27]. In particular, several works have
focused on the application of such DInSAR techniques to the detection and monitoring of land
subsidence induced by groundwater extraction in many regions of the world. Chaussard et al. [28]
and Castellazzi et al. [29] used DInSAR deformation time-series of ALOS and RADARSAT-2 data,
respectively, to study the land subsidence caused by massive groundwater over pumping in the entire
central Mexico. Dehghani et al. [30] exploited both descending and ascending ENVISAT datasets to
measure the magnitude of groundwater related subsidence in the Tehran basin, Iran. The effectiveness
of DInSAR techniques in mapping and monitoring surface deformations has been proved in many
applications from Europe to Asia [31–33] showing that ground subsidence triggered and/or accelerated
by aquifer overexploitation is a common hazard impacting extensive areas worldwide.

In this paper, we apply the SB approach referred to as Small BAseline Subset (SBAS) [20], which
is capable of detecting and measuring displacements affecting extended rural areas, thus resulting
particularly suitable for the regional scale analysis of the land subsidence affecting the Konya plain.
Through the generation of displacement time-series and maps of deformations rate we analyze the
temporal and spatial pattern of the land subsidence caused by groundwater resource overexploitation.
Furthermore, to investigate the correlation between land subsidence and its conditioning/triggering
factors, we adopt a multi-technique approach, based on the use of several data, from traditional
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ground-based measurements (piezometric data) to remote-sensed data which recently opened new
perspectives in water resources studies (GRACE data), from meteorological data to Landsat images
and CORINE Land Cover maps used for extracting land cover information. Integration of such a
variety of data, embedding local- and regional-scale information, allows us to get a holistic insight into
the climatic, hydrogeological and human dynamics of the whole area.

2. Study Area

2.1. Geographic and Climatic Setting

The study area is located within Konya basin, central Anatolia, which is the biggest endorheic
basin in Turkey extending over an area of about 54,000 km2, with elevations ranging from 900 m to
3500 m above sea level (a.s.l.) (Figure 1). The basin lies on the northern side of the Central Taurus
Mountains which have an important role on surface and sub-surface water supply. The Konya basin
has a typical arid to semi-arid climate with a long-term average yearly precipitation of 380 mm, ranging
from 250 mm in the plain areas to more than 1000 mm in the mountainous areas in the south [5], and
an evapotranspiration of about 550–600 mm per year. Winters are generally cold and wet whereas
summers are hot and dry. Despite having such a dry climate with low precipitation input, there
are extensive and intensive agricultural activities in the region, whose main source of water is the
groundwater which is extracted via more than 92,000 groundwater wells distributed around the
basin [34]. In the last years the increase of irrigated land (about 3700 km2) related to some cultivations
like sugar beet and corn caused an increase of groundwater consumption. The estimated groundwater
consumption in 2010 was about 2.7 billion m3 [35]. Numerous smaller fresh/brackish wetlands have
dried out in the last decades as consequence of groundwater depletion [5].

Figure 1. Study area: location and topography. Frames show the footprints of the ascending (red)
and descending (blue) ENVISAT SAR data used in this study. Location of meteorological stations,
groundwater and stratigraphic wells used in this study is also shown.
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2.2. Geological and Geomorphological Setting

In the study area, three main geological sectors can be identified: the Konya-Karapinar plain, the
volcanic field and the Obruk plateau (Figure 2). The Konya-Karapinar plain is characterized by the
presence of Late Miocene to Quaternary formations, the latter mainly made up of lacustrine deposits.
This formation, deriving from the fill of Pleistocenic lakes, is mainly made of unconsolidated clay,
silt and sandstone. In the plain it is also possible to find aeolian and alluvial fan deposits [9,36,37].
The Late Miocene to Pliocene stratigraphy starts with a basal conglomerate and continues upward with
lacustrine limestone and weakly cemented marl and limestone alternation [12]. At S-E of Karapinar, a
volcanic field with age variable from Miocene to Quaternary, whose activity is related to the extensional
phase that originated the Konya basin, is present; cones and other volcanic structures are visible
in the study area. The Obruk plateau is characterized by Mesozoic to Oligo-Miocene formations.
The Oligo-Miocene formations are composed by continental clastics, tuff, limestone and evaporites at
the bottom and gypsum-shale alternation at the top [12]. Mesozoic formations are sparsely distributed
in the western part of the Obruk plateau and along the southern boundary of the Konya plain, and are
made up of carbonates and metamorphic rocks [38].

From the geomorphological point of view, the landscape of the study area is conditioned by several
active processes: volcanism, water and wind erosion, and rock dissolution (Figure 2). Among these,
water erosion and dissolution-induced subsidence are the most widespread phenomena in the study
area, while aeolian processes are effective in relatively local sectors of the Konya basin.

The dissolution-induced subsidence is represented by the karst depressions called ‘sinkholes’.
Sinkholes are common geomorphic features in the study area (Figure 2). These landforms are locally
called “Obruks”. This term is also accepted at international level for describing the large sub-circular
closed depressions observed in the Central Anatolia [39]. There are two groups of obruks according
to [12]: the “old” obruks, characterized by large dimensions (up to 640 m wide), for which the time of
formation is unknown (Figure 2B); the “young” obruks that have been formed during the last decades
and have diameters of less than 50 m (Figure 2A). The “old” obruks are concentrated in the Obruk
Plateau, a horst slightly higher than the surrounding grabens formed by the Konya plain and the
Tuz Lake basin. These “old” obruks can be classified as caprock and bedrock collapse sinkholes [40].
The analysis of geological, geophysical, hydrogeological data and the groundwater chemical and
isotopic compositions indicates a hypogenic origin for these large obruks [12]. There are not evidences
of subsidence activity in these sinkholes so far and they may be defined as relict karst landforms.
On the other hand, most of the “young” obruks can be classified as cover collapse sinkholes [40] and
their formation is associated to the human-induced groundwater withdrawal [9]. In the last decade,
these “young” obruks have caused social alarm in the Karapinar plain. Indeed, 13 collapse sinkholes
up to 25 m in diameter occurred from 2006 to 2009. They are especially concentrated in and around the
Seyithaci settlement (Figure 2A). According to the occurrence of these sinkholes, we can expect future
sudden collapses if the water lowering trend will continue. Future sinkholes could damage buildings
and infrastructures in the study area and represent a hazard for the local population.

Another dynamic process in the region is the sand dunes (Figure 2). The long term displacements
of the sand dunes have caused the formation of sand hills and dunes [37,41]. The movement direction
of the very active sand dunes, that are located at the south of Karapinar settlement (Figure 2C), changes
depending on the dominant direction of the seasonal wind. However, it is observed to be mainly from
south to north [37].

In the study area it is also possible to observe some active faults (Figure 2). In particular, the
Seyithaci fault system is a dynamic process delimiting the Obruck plateau from the plain at north of
Karapinar. The fault has a vertical component character and follows a highly linear form between
the floors of plateau and plain [42]. The fault system is defined as active and is known to establish
a surface rupture during Holocene [43], and has an important effect in the evolvement of Karapinar
plain and in the formation of sinkholes because the karstification of the bedrock may be developed
through fault structures.
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Figure 2. Geological and geomorphological map of the study area (adapted from [37]).
Dynamic geomorphological processes in the study area: (A) Active and (B) relict sinkholes near
the Seyithaci and Kizoren settlements, respectively; (C) Karapinar sand dune field (photo courtesy of
Atlas Dergisi).

3. Data and Methods

Different data and information have been integrated to carry out a comprehensive analysis of
the phenomena under investigation, from satellite images (Table 1) to data acquired through in situ
monitoring techniques (Table 2).

Table 1. Satellite-based data.

Satellite Band/Parameters Final Product Time Interval Revisit Time Spatial Resolution

ENVISAT—ASAR C-band Ground displacements 2002–2010 35 days 20 × 4 m2

Landsat-5/-8 Multispectral Qualitative land cover
changes/mNDVI

May 2000;
May 2015 16 days 30 m

GRACE Gravity field Groundwater storage 2002–2010 30 days 350 km

Shuttle Radar Topography
Mission (SRTM) [44] C-band DEM 3-arc sec 2000 Single mission 90 m
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Table 2. Ground-based data.

Monitoring Product Time Interval Measurement Frequency

Cores Stratigraphic data - -
Wells Groundwater level 2003–2010 Monthly

Meteorological stations Rainfall, Temperature 1935–2014; 2002–2010; 1950–2014 Monthly

3.1. SAR Data and DInSAR Processing

The study area has been investigated by exploiting the European Space Agency (ESA) archives
of raw data collected by the ENVISAT-ASAR satellite (Table 1). These data were acquired with a
35-day revisit period at a look angle of 23◦ and with a C-band frequency (5.65 cm wavelength).
In particular, we processed two datasets spanning overall nearly eight years: 38 SAR images
taken from 5 December 2002 to 9 September 2010 on descending orbits (Track 436, Frame 2838), and
27 SAR images acquired from 14 December 2002 to 5 June 2010 along ascending orbits (Track 71,
Frame 746). We applied the SBAS—DInSAR technique [20] by selecting SAR data pairs characterized
by a perpendicular baseline <400 m and a temporal baseline <1500 days, and generated 111 and
73 interferograms from the ENVISAT descending (Figure 3A) and ascending (Figure 3B) datasets,
respectively. As a next processing step, we computed differential interferograms (embedding only
the information relevant to the deformation phase component). The phase component related to the
topography of the area was estimated and removed using a Digital Elevation Model (DEM) produced
from the Shuttle Radar Topography Mission (SRTM) with about 90 × 90 m2 spacing (Table 1) [44,45].

Then, the differential interferograms were unwrapped by making use of the space-time Extended
Minimum Cost Flow (EMCF) technique proposed in [46] which takes into account both the spatial and
temporal relationships among the sequence of interferograms. After the phase unwrapping operation,
differential interferograms were inverted by solving a Least Squares (LS) minimization problem [20].
SBAS allows retrieving the surface deformation evolution and is also capable to mitigate possible
topographic artifacts and atmospheric phase disturbances [20]. In particular, the filtering operation
for the atmospheric phase component is based on the observation that the atmospheric signal is
highly correlated in space and poorly in time [18]. Moreover, the overall analysis was carried out on
differential interferograms subject to complex multi-look operation with 4 looks in the range direction
and 20 in the azimuth direction in order to significantly reduce the phase noise [45]. Accordingly,
in the ENVISAT case the ground resolution of the DInSAR deformation rate map turns to be about
80 × 80 m2 which is particularly suitable to investigate land subsidence occurring at regional level as
within the Konya plain. According to the experience gathered in the Ebro Valley evaporite karst [26],
this resolution could also be enough to identify progressive subsidence due to karst processes if the
area affected by settlements is over ~50,000 m2. Furthermore, the availability of both ascending and
descending geometries allowed us to investigate the direction of the ground movement and compute
the E-W and vertical components of displacements as follows [47]:

dvert = (ddesc + dasc)/2cosϑ

dE−W = (ddesc − dasc)/2sinϑ
(1)

where ddesc and dasc represent the Line of Sight (LOS)—projected deformation computed from
descending and ascending datasets, respectively, and ϑ the look-angle of the satellite. We remark that
the retrieval of the N-S displacement component is very critical because of the near-polar orbit of the
satellite (i.e., the flying direction of the satellite is nearly parallel to N-S) [48].

The applied decomposition method is performed on the LOS time-series [49], and is based on the
consideration that over our study area the SAR data were acquired quite regularly from both orbits.
Accordingly, the combination has been carried out on ascending and descending data that are temporally
as close as possible each other. This operation is based on the assumption that no significant deformation
has occurred between the two combined acquisitions, and this is reasonable for our case study.
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Figure 3. Distribution of ENVISAT acquisitions (red points), used in the SBAS processing, in the
temporal (x-axis)—perpendicular (y-axis) baseline plane for the descending (A); and ascending
(B) dataset. Black arcs show the computed interferograms.

3.2. Groundwater Level and Stratigraphic Data

Groundwater level data have been provided by the General Directorate of State Hydraulic Works
of Turkey, which is in charge of monitoring the piezometric wells widely distributed along the Konya
plain and the Obruk Plateau (Figure 1, Table 2). We used data recorded in nine wells (Table 3) which,
overall, provide information on the characteristics of the whole Konya plain aquifer and on the areal
extension of the groundwater depletion.

For the analysis of the correlation between groundwater level changes and surface movements we
focused on the piezometric measurements carried out monthly in the period 2003–2010, thus roughly
matching the period of SBAS-derived deformation time-series.
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As regards the stratigraphy of the area, we used data reported in [9] distributed within the Konya
plain and the Obruk Plateau (Figure 1, Table 3). The thickness of compressible layers was derived by
considering the thickness of both clay and silt layers, located within the alluvial sediments of the plain,
which usually influence the processes of subsidence related to groundwater extraction [31,32].

Table 3. Piezometric wells and stratigraphic cores available for this study (for location see Figure 1).

Well/Core
ID

Latitude
(◦)

Longitude
(◦)

Altitude
(m a.s.l.)

Well/Core
Depth (m)

Lithological Unit
Compressible Layers

Thickness (m)
Groundwater

Level Data

181 37.620 32.751 1014 n/a alluvial deposits n/a Yes
9434 37.770 32.450 1048 n/a alluvial deposits n/a Yes
10472 38.078 32.644 1000 n/a alluvial deposits n/a Yes
20826 37.787 32.995 1004 n/a alluvial deposits n/a Yes
42778 37.948 33.841 1075 n/a alluvial deposits n/a Yes
52267 37.486 32.911 1025 n/a alluvial deposits n/a Yes
52268 37.552 33.185 1013 n/a alluvial deposits n/a Yes
2889 37.694 33.254 999 120 alluvial deposits 110 No
4566 37.769 33.540 996 180 alluvial deposits 130 No
4685 37.672 33.381 1001 150 alluvial deposits 40 No
35530 37.710 33.387 1006 100 alluvial deposits 0 No
38306 37.983 33.334 1046 100 Limestone/marl 0 No
42289 37.691 33.400 1006 80 alluvial deposits 0 No
43405 37.790 33.286 1062 135 Limestone/marl 0 No
43666 37.713 33.232 1007 170 alluvial deposits 80 No
47768 37.801 33.433 1040 120 Limestone/marl 0 No
47782 37.850 33.344 1070 130 Limestone/marl 0 No
48083 37.739 33.474 1047 95 Limestone/marl 0 No
49703 37.752 33.248 1025 140 alluvial deposits 80 No
51903 37.768 33.311 1055 140 Limestone/marl 0 No
47761 37.583 33.514 1002 100 alluvial deposits 50 Yes
52258 37.717 33.471 1014 175 limestone/marl 0 Yes

3.3. Meteorological Data

We used precipitation (P) and temperature (T) data acquired monthly by five meteorological
stations of the Turkish State Meteorological Service (Table 4) [50,51]. In particular, for the analysis
of climatic conditions during the 2002–2010 period covered by ENVISAT acquisitions we averaged
data recorded in all five stations; for a more long-term analysis of the climate trend in the area we
exploited the rainfall and temperature measurements collected by the Konya station since 1935 and
1950, respectively.

Table 4. Meteorological stations used for the analysis (for location see Figure 1).

Station ID Location Latitude (◦) Longitude (◦) Altitude (m a.s.l.) Measurement Time (Years) Data

17902 Karapinar 37.7136 33.5277 997 2000–2014 P-T

17244 Konya 37.8691 32.4721 1032
1935–2014 P
1950–2014 T

17248 Ereğli 37.5265 34.0482 1044 2000–2014 P-T
17900 Çumra 37.5662 32.7932 1016 2000–2014 P-T
17264 Karaman 37.1927 33.2212 1021 2000–2014 P-T

3.4. Landsat Data and Land Cover Maps

For the analysis of the land cover (LC) changes occurred in the study area, we used CORINE
Land Cover (CLC) maps relevant to the years 2000 and 2012 [52,53]. For our purposes, the legend of
the CLC maps was simplified to 8 classes as shown in Table 5; the agricultural classes (5)–(7) were
further classified on the basis of irrigated/non-irrigated lands.
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Table 5. Simplified CORINE land cover classes.

Simplified Classes CORINE Classes Description

(1) Artificial surfaces Urban fabric, industrial, transport and commercial units, mine, dump
and construction sites

(2) Natural Vegetation
Natural grasslands, moors and heathland, Sclerophyllous vegetation,
transitional woodland-shrub, inland marshes, peat bogs, salines,
intertidal flats, broad-leaved forest, coniferous forest, mixed forest

(3) Bare rocks/soils Bare rocks, beaches, dunes, sands, salt marshes

(4) Water bodies/Wetlands Water courses, water bodies, coastal lagoons, estuaries, sea and ocean,
inland marshes, peat bogs, salt marshes, salines, intertidal flats

(5) Non-irrigated arable land Non-irrigated arable land

(6) Unknown or mixed
irrigated/non-irrigated land

Complex cultivation patterns, land principally occupied by
agricultural with natural space, vineyards and fruit tree

(7) Irrigated land Irrigated land/rice field

(8) Pastures Pastures

Moreover, we exploited Landsat 5 TM and Landsat 8 scenes acquired, respectively, in May 2000
and May 2015 in order to analyze the irrigated land changes. Landsat images were available from
the USGS Glovis Archive [54] as Standard Terrain Correction products (Level 1T—precision and
terrain correction). For our analysis we used surface reflectance in the blue, near-infrared and
shortwave-infrared wavelength domains (Table 6). We generated false-color images by calibrating the
brightness of each band to obtain similar colors for areas without any change between 2000 and 2015.
Moreover, we produced classified Landsat images by applying a supervised classification based on the
maximum likelihood method.

We have also calculated and calibrated a modified Normalized Difference Vegetation Index
(mNDVI) for the two Landsat images in order to assess the changes of vegetation status in the main
CORINE land cover types.

Table 6. Landsat band combination used for the analysis.

Color Domain
Landsat 5 TM Landsat 8

Band Wavelength (μm) Band Wavelength (μm)

Blue Blue 1 0.45–0.52 2 0.45–0.51
Green NIR 4 0.76–0.90 5 0.85–0.88
Red SWIR 5 1.55–1.75 6 1.57–1.65

3.5. GRACE Water Storage Data

The GRACE satellite provides an estimate of the water storage anomaly by measuring the
variation of the gravity field which is related to the variation of groundwater, soil moisture, snow
coverage and water reservoirs.

In order to assess the groundwater storage variation, we used Level-2 data acquired from 2002
to 2010, available from the University of Colorado GRACE Data Analysis Website [55]. The used
processed data represent the terrestrial water storage (TWS) anomaly (expressed in cm) calculated
on a GRACE cell of about 100 km radius with a 25 km smooth filter. As reported by [56], GRACE is
sensitive to TWS variation over areas smaller than its original footprint (400 km × 400 km) if such
variation is significant. For instance, GRACE observations allow to detect 1 cm of TWS change within
a basin of 200,000 km2 (i.e., 2 km3 TWS volume change). Therefore, its detectability is of the order of
2 m water level change per 1000 km2.

The Konya plain extends for about 6000 km2 and the average groundwater variation is about
10 m, which results to be detectable by the GRACE cell. Moreover, we have corrected the GRACE
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data by using data available from the Global Land Data Assimilation System (GLDAS) [57] in order to
reduce the effect of soil moisture and snow water equivalent (SWE) masses. The residual variation of
TWS can be associated to groundwater and surface water masses.

We remark that GRACE data are used to integrate the information from the available piezometric
wells, and to show that the water resources depletion is an issue to be addressed not only in our study
area but at regional scale.

4. Results

4.1. SBAS-DInSAR Deformation Maps and Time-Series

Maps of the average deformation rate and, for each pixel, displacement time-series spanning the
December 2002–July 2010 time interval have been produced (Figures 4 and 5), allowing to detect a
wide land subsidence extending for about 1200 km2 (see the black dashed line in Figure 4) and measure
its magnitude.

 

Figure 4. SBAS-DInSAR deformation rate maps of the study area, superimposed on hill shade
image derived from DEM. Maps have been produced by processing ENVISAT data acquired in the
December 2002–July 2010 time interval. (A,B) show displacements measured along the satellite LOS
direction during ascending and descending passes, respectively; (C,D) show displacement components
computed along the vertical and (E-W) horizontal directions, respectively. Black dashed line represents
the contour of the DInSAR derived subsidence area.

Maps showing rates and spatial pattern of surface deformations observed from both satellite
orbits (i.e., descending and ascending) are reported in Figure 4A,B. Displacements are measured
along the LOS of the satellite: negative values (yellow to red color) represent movements away from
satellite (i.e., land subsidence) whereas positive values (cyan to blue) represent movements towards
the satellite (i.e., land uplift). Green-color pixels are characterized by velocities within the range of
±0.25 cm/year and are considered stable. DInSAR measurements are related to a reference point
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located in an area assumed to be geologically stable, thus not susceptible to subsidence processes
(for location see black star in Figure 4). The achieved results show an accuracy of 0.8 cm for the
displacements and 0.15 cm/year for the deformation rate.

In order to ensure reliable results, we selected SAR pixels characterized by a temporal coherence
greater than 0.8. However, despite the high coherence threshold applied, the SBAS processing
allowed to achieve a density of 17 and 21 measure points/km2 for descending and ascending datasets,
respectively. Such values are considerably large if we consider that it is an area lacking the radar
targets provided by man-made features, highlighting the capability of the SBAS-DInSAR approach to
effectively investigate displacements in both rural and urban settings.

Maps of the vertical and (E-W) horizontal components of the surface displacements are shown in
Figure 4C,D. The horizontal movement component can be considered negligible confirming that the
regional deformation process mainly occurs along the vertical direction (Figure 4C). This is also clearly
visible from the inspection of the achieved time-series revealing that significant vertical displacements
reaching up to 10 cm have occurred, with an average deformation rate of about 1.2 cm/year for the
period 2002–2010 (Figure 5).

Figure 5. Average deformation time-series covering the December 2002–July 2010 time interval.
(A,B) show LOS displacements measured during ascending and descending satellite passes,
respectively; (C,D) show the computed vertical and (E-W) horizontal components of the displacements,
respectively. Note that time-series have been obtained by averaging deformation time-series related to
SAR measure points located within the detected subsidence area.

4.2. Land Cover Change Analysis

The analysis of the land cover (LC) changes occurred in the area during the observation period
covered by the SBAS-DInSAR measurements was carried out by using two CLC maps from 2000 and
2012 [53]. Figure 6 shows the spatial distribution of the CLC classes within the whole Konya plain, in
2000 and 2012, and the increase of irrigated land during this period (see blue polygons in Figure 6).
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Figure 6. CORINE Land Cover simplified maps of the Konya plain for years 2000 and 2012.
Blue polygons in 2012 map show areas changed from non-irrigated to irrigated.

Table 7 reports the LC changes affecting the area during the 12-year analyzed period. It is interesting
to note that irrigated lands, pastures and urban areas (i.e., artificial surfaces) increase while natural
vegetation, unknown/not irrigated land and water bodies decrease. Such detected land cover changes
are usually associated to an increase of demand of water supply which main source, in this area, is
represented by groundwater [5]. Indeed, the increasing of crops (e.g., sugar beet and corn) translates
into more irrigation needs as well as the growth of urban areas (i.e., of population and industry) and
pastures (i.e., of breeding) leads to higher water consumption. Land changes that may be correlated to
groundwater overexploitation are also analyzed by using a Landsat 5 TM image acquired on May 2000
and a Landsat 8 image taken on May 2015 (Figure 7A,B). Visual inspection of the two images reveals a
clear pattern of crops in 2015 which is not visible in 2000, pointing out an increase of land covered by
intensive agriculture and irrigated fields over the 15-year period of analysis. Such an observation is not
straightforward for the area around Hotamis, probably due to a change in cultivation type that is not
visible in the 2015 image. Moreover, a supervised classification of SAGA GIS based on the maximum
likelihood method (Figure 7E,F) was applied. Landsat images were classified into four land cover types:
(1) water bodies; (2) irrigated land; (3) not irrigated land/natural vegetation/pastures; (4) rock/bare
soil/salt. Classification results, within the sample area, are in agreement with CORINE data, showing that
irrigated lands increased from 7% to 14% while not-irrigated lands decreased from 26% to 11% (Table 8).

Table 7. Land cover changes computed by using the 2000 and 2012 CLC maps (see Figure 6).

Land Cover Classes
Area (km2)

Change (km2)
2000 2012

Irrigated land 3723.4 3843.9 120.5
Unknown or mixed irrigated/non-irrigated land 509.1 441.0 −68.1

Non-irrigated arable land 1049.4 981.0 −68.4
Pastures 872.1 970.1 98.0

Natural vegetation 1351.2 1227.3 −123.9
Bare soil/Rock 47.5 156.3 108.8

Artificial surfaces 400.5 407.7 7.2
Water bodies/Wetland 149.7 75.5 −74.1

Total Area 8103 8103 -
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We also computed the mNDVI for May 2000 and May 2015 which shows a general increase of
vegetation activity in the cultivated land (Figure 7C,D). Table 9 reports the relative variation of mNDVI
for some categories of CLC. Irrigated land shows the highest mNDVI. New irrigated land shows the
highest increase of mNDVI along with the non-irrigated land, this latter probably partially irrigated.
The other categories of land cover do not show significant changes of mNDVI, pointing out that the
vegetation activity increase is probably more related to irrigation than to climate conditions, as also
reported in [5] using MODIS data.

 

Figure 7. False color images of Landsat 5 TM data (R = Band 5; G = Band 4; B = Band 1) acquired on
May 2000 (A) and of Landsat 8 data (R = Band 6; G = Band 5; B = Band 2) captured on May 2015 (B).
(C,D) mNDVI images associated to (A,B). Blue polygons show areas changed from non-irrigated to
irrigated (see Figure 6). Classified Landsat 5 TM (E) and Landsat 8 (F) images.
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Table 8. Land cover changes computed by using classified Landsat images (see Figure 7).

Land Cover Classes
Area (km2)

2000 2015

Irrigated land 760 1634
Non- irrigated land/Natural vegetation/Pasture 3003 1271

Rock/Bare soils/Salt 7538 8389
Water bodies 20 6
Not classified 59 81

Total Area 11,380 11,380

Table 9. Average mNDVI in 2000 and 2015 for the main CLC categories.

CLC Category
mNDVI

2000 2015 Variation

Natural vegetation 0.45 0.45 −0.001
Bare soilRock 0.28 0.22 −0.068

Pastures 0.47 0.48 0.005
Already irrigated land 0.89 0.96 0.068

New irrigated land (2012) 0.66 0.98 0.325
Non-irrigated arable land 0.52 0.74 0.216

Artificial surfaces 0.57 0.58 0.011

4.3. Meteorological Analysis

The analysis of data recorded by the available meteorological stations (Figure 1, Table 4) allowed
the identification of precipitation (P) and temperature (T) variations occurred in the area.

Analysis of temperature (Figure 8A), based on computing the average annual temperature data
acquired by Konya station from 1950 to 2014, shows an increase of 0.75 ◦C during the observation
period, with an higher rate starting from 1990. This increase is in agreement with the general global
warming and with findings from climate-related studies [2,58,59]. Such a temperature increase may
contribute to the rise of water needs for irrigation.

Analysis of precipitation, carried out by computing 1-year as well as 3-year cumulative rainfall
data collected by Konya station from 1935 to 2014, did not reveal any clear trend (Figure 8B). However,
it is possible to observe cycles of dry and wet periods, probably related to NAO index [60]. In particular,
by analyzing the 3-year cumulative rainfall graph, it is possible to observe two minimum rainfall
periods, in the early 1990s and in the 2004–2008 period, which partially overlap with the ENVISAT
observation period (2002–2010).

Moreover, we performed an analysis on precipitation by averaging data acquired by all the five
available stations during the 2002–2010 period (Figure 8C). The five stations show similar climate
conditions from 2000 to 2010 with a mean annual rainfall ranging from 283 mm of Karapinar to 330 mm
of Cumra. The analysis of 3-months cumulative precipitation data pointed out a typical seasonal trend,
with less than 25 mm in July–September and up to 120 mm in November–January, while the 1-year
cumulative precipitation data analysis revealed a minimum rainfall period from 2004 to 2008, followed
by a wet period in 2009–2010.
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Figure 8. (A) Average annual and 5-year temperature for Konya station; (B) 1- and 3-year cumulative
precipitation for Konya rain gauge; (C) 3-month and 1-year cumulative precipitation obtained by
averaging data recorded by the five stations located in the Konya plain (Table 4).

5. Discussion

In this Section, we analyze the SBAS-DInSAR results in relation to the information derived from
independent (remote sensed and ground-based) data, in order to understand the role of different
factors (i.e., type and thickness of lithology, groundwater depletion induced by natural causes and
human activities) in predisposing and/or triggering land subsidence (Figure 9).
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Figure 9. (A) Subsidence area revealed by the SBAS-DInSAR analysis; (B) Thickness of compressible
layers (i.e., clay and silt) from the available cores. Location of the a-b geological profile reported in
Figure 10 is also shown; (C) Groundwater level changes measured in the available wells.

5.1. Correlation between Land Subsidence and Lithology

As already mentioned in Section 2, alluvial sediments, mainly made up of clay and silt interbedded
by sandstone and gravel, are widely present in the Konya plain. Such clay and silt units are
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characterized by high compressibility, playing as predisposing factor in the processes of subsidence
induced by groundwater extraction.

Due to the number and distribution of stratigraphic cores within the plain, it was not possible to
quantitatively investigate the correlation between subsidence and lithology. Only six of the available
cores are characterized by a significant thickness of compressible layers (which reaches up to 130 m)
and, therefore, the regression analysis carried out to estimate the relationship between subsidence rate
and thickness of such cores is not meaningful. However, the joint analysis of Figure 9A,B allows a
qualitative estimate of the relationship between the spatial distribution of DInSAR derived surface
deformations and the thickness of compressible layers.

Such relationship is better pointed out in Figure 10 showing a simplified geological section
against the vertical deformation rate along a profile extending from Hotamis to Karapinar (for location
see Figure 9). A spatial correlation between land subsidence and alluvial deposits can be observed.
Moreover, fastest subsidence affects the areas with thickest sediments as shown in Table 10, which
reports the vertical deformation rate in relation to the thickness of compressible units.

Figure 10. (A) Simplified geological profile (see Figure 9 for location) vs. (B) profile of DInSAR vertical
deformation rate. The groundwater level for 2002 and 2010 is estimated from the nearest piezometric
well (ID 52258).

Table 10. Vertical deformation rate in relation to thickness of compressible layers.

Compressible Layer
Thickness (m)

Number of Wells
Vertical Deformation Rate (cm/Year)

Min Max Mean

Obruk plateau 3 0.03 0.25 0.15
<10 2 0.06 0.47 0.26

50–100 2 0.30 0.56 0.41
>100 2 0.43 0.49 0.46

5.2. Correlation between Land Subsidence and Groundwater Depletion

Groundwater level variations in the study area have been investigated by analyzing data acquired
by a local network of piezometric wells. Figure 9C shows the cumulative water table depletion during
the period 2003–2010, estimated from wells located in the subsidence area. Wells recorded a significant
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decrease of the piezometric level up to about 14 m, except for well 47,761 located at south of Karapinar,
which measured a lower decrease (about 2 m).

Analysis of time-series of piezometric data reveals a seasonal variation reaching a maximum
piezometric level approximately at the end of winter season (end of March) and a minimum piezometric
level in October (Figure 11A–D). Such a variation, which can be related to climatic conditions and
irrigation cycles, is observed in all the wells located along the plain expect for, as aforementioned, the
well 47761 which shows not significant groundwater changes, probably due to the presence of a local
shallow aquifer (Figure 11E).

Figure 11. (A–E) Groundwater level measured in four wells; (F) Water storage anomaly changes
derived from GRACE data.
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As regards the general trend, it shows a maximum decrease of piezometric level from 2004 to 2008,
which corresponds to a minimum rainfall period (Figure 8), as pointed out from the meteorological
data analysis (see Section 4.3). Subsequently, despite the 2009–2010 time interval was affected by
heavy precipitation events (Figure 8), the groundwater table level remains stationary or shows a little
increase, due to a condition of aquifer overexploitation.

Groundwater level changes occurred at regional scale have been analyzed by using GRACE
satellite data. The water storage anomaly estimated by GRACE (Figure 11F) shows a trend in general
agreement with wells data. In particular, a seasonal trend (about 150 mm of storage water anomaly
oscillation), probably also related to surface water (reservoir), is present. This is superimposed to a
general trend showing a decrease of storage level until 2008 (about −100 mm of water storage) followed
by a weak increase in the 2009–2010 period. It is important to remark that GRACE observations are
characterized by a footprint larger than our study area and may be influenced by various processes
beyond the groundwater level variations (see Section 3.5), thus cannot be used for a direct comparison
with the piezometric measurements available for our study area. However, they can be profitably
exploited for a qualitative assessment of the water resources depletion occurring at regional scale.

As regards the piezometric measurements, we noticed that a groundwater level decrease is
measured in the wells located along the Konya plain and on the Obruk plateau as well. However, such
a groundwater drawdown had a different impact on the surface in terms of deformation.

To investigate the susceptibility of these two geological settings (i.e., plain and plateau) to ground
instability, we performed a joint analysis of DInSAR deformation time-series and piezometric data
time-series for four wells, two located in the alluvial Konya plain (wells 52268 and 47761) and two
on the limestone Obruk plateau (wells 42278 and 52258; Figures 9 and 12). We remark that, despite
the uncertainties related to the few available data which hampered us to carry out a quantitative
correlation analysis between land subsidence and groundwater level changes, our analysis allowed
pointing out the concomitant effect of lithological characteristics and groundwater depletion on
surface displacements.

The well located on the limestone plateau (Figure 12A) and the well located on the boundary
between plateau and plain (Figure 12B) recorded a significant decrease of the piezometric level reaching
about 2 m and 12 m, respectively. However, the deformation times-series associated to SAR points
located near these two wells show a quasi-stable trend with a subsidence rate lower than 0.2 cm/year.
Therefore, such result shows no correlation between groundwater drawdown and subsidence process
in the area where limestone crops out.

On the other hand, as expected, in the plain area where soft soils are present, a correlation
between piezometric level changes and land subsidence is observed. This is particularly evident by
comparing time-series of DInSAR deformations and piezometric data acquired by the 52268 well
(Figure 12C). For this well, the groundwater level decreases of about 12 m during the 2003–2010 period
and the times-series of near SAR points reveal that, in this time interval, a cumulated displacement
of about 5 cm occurs in the compressible layer of alluvial sediments. The high deformability of such
materials is confirmed by the DInSAR time-series of SAR points located in the proximity of well
47761 (Figure 12D). Indeed, such well, probably due to local differences of the aquifer characteristics,
recorded a low piezometric level decrease (<2 m) but it is located in an area affected by moderate
subsidence (0.4 cm/year).
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Figure 12. Average of DInSAR vertical deformation time-series (red squares) associated to SAR
measure points located in similar geological and morphological units, within a distance variable from 1
to 2 km from the relevant well, vs. groundwater level measurements (blue squares). (A,B) refer to wells
located on the limestone plateau and on the boundary between plateau and plain area, respectively.
(C,D) refer to wells located within the plain area.

5.3. Karst Processes and Land Subsidence

Although the groundwater drawdown has not caused detectable progressive subsidence where
limestone crops out, subsidence is also present in the latter area in the form of karst collapses.
As mentioned above, these processes represent a special hazard in the study area and they are
also linked with the decline of the groundwater levels [9]. Unfortunately, we have not detected
displacements associated to dissolution-induced subsidence, even though the time span covered by
SAR measurements (2002–2010) has coincided with a period of high collapse occurrence (13 collapses
between 2006 and 2009). Castañeda et al. [61] were able to detect karst subsidence in the Ebro Valley
(Spain) with a similar resolution (90 × 90 m2) and using the same DInSAR processing technique.
However, the karst processes described in their study area are widely different from those observed
in the Konya basin. The Ebro Valley shows an evaporite karst where large depressions (>50,000 m2)
are developed because of a progressive subsidence associated to the dissolution of gypsum, anhidrite,
and most specially, glauberite and halite. These highly soluble minerals are responsible of a rapid
dissolution phenomenon that accelerates the subsidence and influences its displacement regime
(continuous, episodic or mixed). This is not the case of the Konya basin where a limestone karst
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has been developed and the observed landforms indicate that the processes that control the karst
subsidence seem to have an episodic regime (i.e., collapse). The large sinkhole collapses (the “old”
obruks) and their surroundings appeared to be inactive as our DInSAR results indicate. On the other
hand, the spatial resolution of our displacement maps is a priori inadequate for detecting movements
associated to the “young” obruks. Baer et al. [62] based on ERS data of similar resolution failed to
detect sinkhole induced deformation along the Dead Sea shores, an area widely affected by karst
subsidence processes. Galve et al. [26] show that the minimum detectable sinkhole area in their test site,
using a technique that provides 369.8 points/km2, was approximately 2500 m2. Our analysis provides
17–21 measure points/km2 and the extent of the largest “young” obruk (<500 m2) is also below the
mentioned minimum detectable dimensions. Nof et al. [63] demonstrate that small sinkhole induced
deformation or collapse precursory displacements can be recognized with DInSAR techniques using
high resolution data such as the SAR images provided by the COSMO-SkyMed satellite (pixel size
of 3 m). Moreover, a higher spatial resolution is needed for recognizing sinkhole collapse precursory
displacements. Nevertheless, the displacement maps produced in this research could be used for
assessing the sinkhole hazard in the study area. As the “young” obruks are related to the lowering of
the water table, maps of groundwater drawdown could be derived from our displacement maps and
the latter could be used for assessing the areas with the highest sinkhole hazard.

6. Conclusions

Combining remote-sensed and in situ data and information, we explored the relationship between
land subsidence and its main controlling factors in one of the most vulnerable regions of Turkey, the
Konya plain.

Through space-borne SBAS analyses, we detected a wide subsidence phenomenon extending
for about 1200 km2 in the plain, with a deformation rate up to 1.5 cm/year in the 2002–2010 period.
The SBAS technique allowed achieving a significant density of measure points, demonstrating the
capability of this DInSAR approach to effectively investigate displacements also in semi-rural settings.
Moreover, the availability of ascending and descending SAR datasets allowed us to investigate the
direction of the ground movement and retrieve vertical displacements reaching up to 10 cm in the
observed time interval.

The specific role of the geological and hydrogeological conditions has been explored, revealing
that the consolidation of compressible alluvial sediments associated to the groundwater level decrease
drives the subsidence and controls its temporal and spatial evolution over the plain. Groundwater
lowering is also one of the factors that trigger sinkholes in the Obruk plateau causing damage to
infrastructures and villages.

Groundwater depletion is mainly caused by overexploitation due to uncontrolled irrigation and
unsustainable agricultural practices, as pointed out by our preliminary land cover change analysis
showing an increase of irrigation fields of about 120 km2 during the 2000–2012 period. The analysis
of data acquired by piezometric wells revealed a groundwater level decrease up to about 14 m in
correspondence with the minimum precipitation period (from 2004 to 2008) detected by analyzing
meteorological data. Moreover, the analysis of climatic data shows an increase of temperature of
0.75 ◦C in the last sixty-five years, with an higher rate starting from early 1990s; such an increase
probably further contributed to the rise of water needs for irrigation.

The use of GRACE data allowed us to point out that the groundwater depletion is not limited to
our study area but affects a wider region in the Anatolian Plateau, demonstrating that such satellite
data can be profitably exploited for assessing water resources at regional scale.

Our study has relevant local and global implications. Locally, it provides a holistic view over the
anthropogenic and environmental dynamics in the Konya plain, encouraging the development of an
integrated monitoring system which may play a relevant role for the protection of the area. At a more
global scale, our approach may be extended to investigate land subsidence induced by groundwater
overexploitation in different climatic and geological settings worldwide.
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Abstract: Shenzhen, the first special economic zone of China, has witnessed earth-shaking changes
since the late 1980s. In the past 35 years, about 80 km2 of land has been reclaimed from the sea in
Shenzhen. In order to investigate coastal vertical land motions associated with land reclamation,
we proposed an elaborated Point Target (PT) based Small Baseline Subset InSAR (SBAS-InSAR)
strategy to process an ENVISAT ASAR ascending and descending orbits dataset both acquired from
2007 to 2010. This new strategy can not only select high density PTs but also generate a reliable
InSAR measurement with full spatial resolution. The inter-comparison between InSAR-derived
deformation velocities from different orbits shows a good self-consistency of the results extracted by
the elaborated PT-based SBAS-InSAR strategy. The InSAR measurements show that the reclaimed
land is undergoing remarkable coastal subsidence (up to 25 mm/year), especially at the Shenzhen
Airport, Bao’an Center, Qianhai Bay and Shenzhen Bay. By analyzing the results together with land
reclamation evolution, we conclude that the ground deformation is expected to continue in the near
future, which will amplify the regional sea level rise.

Keywords: coastal subsidence; land reclamation; PT-based SBAS-InSAR; sea level rise; Shenzhen

1. Introduction

The Coastal Zone [1] plays a very important role in transportation, the circulation of resources
and funds, etc. To promote urbanization and economic development, land reclamation [2] from the
sea is a common practice for many countries in the world, such as USA [3], Japan [4], Italy [5], the
Netherlands [6,7], and China [8–10].

Over the past decades, Synthetic Aperture Radar Interferometry (InSAR) [11,12] has been proven
to be a powerful geodetic technique, and been extensively exploited to investigate ground deformation
induced, for example, by earthquake [13–15] or volcano activities [16,17]. Furthermore, recently
remarkable improvements in Multi-Temporal InSAR (MT-InSAR), including the Small Baseline Subset
InSAR (SBAS-InSAR) [18,19] and the Persistent Scatterer InSAR (PS-InSAR) [20–23], enable us to
monitor long period surface deformation caused by permafrost [24], ground water extraction [25–28],
mining [29], and land reclamation [30]. The MT-InSAR exploits a set of high phase-quality pixels [20],
other than the original full two-dimensional image grid, to map the deformation history and the
corresponding average deformation velocity. It can overcome most intrinsic temporal and geometric
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decorrelations [25] of conventional InSAR, and simultaneously estimate the atmospheric effect [26–29]
to generate high accuracy deformation results. In recent years, researches that investigated the ground
deformation related to land reclamation by MT-InSAR have been carried out in reclaimed lands around
the world, such as the Chek Lap Kok Airport in Hong Kong [30], Sibari in Southern Italy [31], and the
Venice coastland [32]. Besides the MT-InSAR techniques, geodetic techniques [33], such as GPS and
leveling, have been widely used in ground deformation monitoring. However, the MT-InSAR could
provide a better spatial resolution to capture the deformation details compared with GPS or leveling.

Shenzhen is a city built on the weak alluvial clay [34] of sludge and reclaimed land. Due to
high compressibility, low permeability, and weak strength of the alluvial clay [35], the soil becomes
compacted under the pressure from constructions and clay self-consolidation. The compaction process
causes ground deformation [36], threatening the stability of ground constructions and underground
man-made facilities [37]. Therefore, ground deformation monitoring is very important for the reclaimed
land utilization in Shenzhen. Dense Point Targets (PTs) for deformation monitoring can be selected
from built-up area [20] that maintains long-time high coherence, while for the non-built-up area,
e.g., reclaimed land, for the area surrounding buildings built on the reclaimed land, few PTs can be
selected [38]. Although previous studies [36,39] have tried to capture the deformation in urban areas
with MT-InSAR, the following two issues remain unsolved: (1) When traditional MT-InSAR methods
are used, the ground deformation is not well determined due to the low PTs density in the reclaimed
land; (2) The deformation associated with land reclamation has not yet been analyzed. So how to select
the appropriate number of usable PTs for MT-InSAR deformation monitoring and the analysis of the
deformation results needs to be further studied for the reclaimed land of Shenzhen.

In this study, an elaborated PT-based SBAS-InSAR strategy is proposed to select usable PTs and
generate an InSAR measurement with full spatial resolution. Based on the selection of PTs, two
independent ENVISAT ASAR datasets along the ascending and descending orbits were used to map
the coastal land deformation in Shenzhen between 2007 and 2010. Inter-comparison of the InSAR
measurements from different orbits was carried out to check the self-consistency of the measurements.
Finally, we discussed the implications and potential subsidence hazards caused by land reclamation in
this area.

2. Background of Study Area

2.1. Geological Environment

Shenzhen is located at the southeast of the Pearl River Delta (PRD) region in China. The city
has complicated topography and is surrounded by the sea in the south and the west. Its elevation
ranges between 1 and 10 m in the southwest of Shenzhen, reaches 30 m in the heart of the city, and
goes up to 80 m at the northeast (see Figure 1). The marine sediments of the Quaternary period widely
spread across the low-lying coastal land areas. This sediment layer is of high water content and high
compressibility, big void ratio, and weak shearing strength [35]. The thickness of this layer is generally
3–10 m, but is up to 20 m in some particular areas [40].
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Figure 1. Study area and SAR data coverage. The study area is outlined by the black rectangle.
Blue rectangles represent the coverage of the SAR dataset used. Red lines denote the fault lines
surrounding [41,42]. Inset, the approximate location of Shenzhen in China. The right sub-figure is the
distribution of the sediment layer in Shenzhen. The colors indicate the thickness.

2.2. Historical Land Reclamation

Due to its geographical location, Shenzhen is the direct link between the China mainland and
Hong Kong. With its economic development and boom [43], the demand for land use [44] is increasing.
The comparison of Landsat satellite images (see Figure A1) shows the dramatic landscape changes
in Shenzhen from 1979 to 2015. Small hills were leveled, and thousands of high buildings have
replaced previous agricultural and vegetated areas. Meanwhile, 80 km2 of land has been reclaimed
from the sea along the coastal zone in the past 35 years [45]. The temporal and spatial evolution of
land reclamation [43] is shown in Figure 2. Land reclamation has brought considerable economic
benefits [46] to the government and led to further economic development in Shenzhen. However,
long-time compaction of the reclaimed land causes ground deformation [30], which affects the stability
of the surface and underground constructions, thereby threatens the safety of people’s lives and assets.

According to an investigation conducted by the Geological Bureau of Shenzhen, Shenzhen
is in a stable tectonic environment with low tectonic hazard risk [41]. However, local ground
deformation [1,42] related to anthropogenic activity has become the major geohazard in Shenzhen,
especially in the coastal reclaimed areas.
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Figure 2. Land reclamation and its evolution in Shenzhen. The reclaimed land for every period is
spatially overlapped on the Landsat-8 background. Inset shows the temporal evolution. The coastlines
are extracted from a set of co-registered Landsat images shown in Figure A1. Firstly, coastlines
are automatically extracted by image segmentation with an appropriate threshold. Then the
initial coastlines are overlaid to the Landsat image in ArcGIS software—we edited the inaccurate
coastline manually.

3. Dataset and Methodology

3.1. Dataset

Two sets of ENVISAT ASAR data acquired between 2007 and 2010, along the ascending
(31 scenes, see Table A1 for detail) and descending orbits (28 scenes, see Table A2 for detail), were
employed to analyze the coastal deformation. Two dense networks of SBAS interferometric pairs (see
Figure 3) with both short perpendicular and temporal baselines were used in the data processing.
The available multi-orbit datasets allow us to validate the self-consistency of the monitoring results by
inter-comparison.

 

Figure 3. SBAS networks of the datasets used. (a) Track 025; (b) track 175. Each black dot denotes one
image. The line between each two dots represents one interferometric pair, whose color indicates the
average coherence of the corresponding interferogram.
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3.2. PT-Based SBAS-InSAR Strategy

In our study area, due to the vegetation covering and humid subtropical climate, the application
of SAR interferometry is mainly limited by temporal decorrelation [25,47] and inhomogeneity in the
tropospheric path delay [27,28]. Besides, the land reclamation related deformation has limited spatial
range, thus we do not multi-look the interferograms to retain deformation details. We processed the
datasets with an elaborated PT-based SBAS-InSAR, and below (Figure 4) is a flow chart showing the
strategy, which consists of four major processing steps.

 

Figure 4. Flow chart of the elaborated PT-based SBAS-InSAR.

3.2.1. Pre-Processing

Data processing starts with a stack of Single Look Complex (SLC) images [48]. To minimize
the effect of mis-coregistration caused by geometric, temporal, and Doppler decorrelations [25], the
images acquired on 28 January 2009 and 17 August 2008 for track 025 and track 175, respectively,
were chosen as geometry references for SLC coregistration using the Formula (4.1) of reference [49].
Interferometric pairs with both short perpendicular and temporal baselines were selected to construct
networks of the SBAS interferometric pairs. Also, two dense networks of SBAS interferometric pairs
(for details see Table 1 and Figure 3) were established. The topographic phase in each interferogram was
removed with the 3-arc SRTM DEM [50]. To preserve the detail deformation pattern, the multi-looking
process was not applied to any interferogram pairs. A reference point, black star in Figures 5 and 6,
was chosen from an inland low-rise building in a stable area.

Table 1. Summary information of the networks of SBAS interferometric pairs.

Orbit Type Track No. of SLC Images No. of Pairs Temporal Span

Ascending 025 31 69 28 February 2007–15 September 2010
Descending 175 28 65 24 June 2007–22 August 2010
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Figure 5. Deformation rates generated with track 025 dataset for the whole study area. The black
star locates the reference point, and the inset shows a more detail location of it. Black dashed lines
represent the Shenzhen Metro Lines. The yellow line denotes the coastline in 1979. The background
is a Landsat-8 image acquired in 2015. Regions A, B, C, and D marked with black rectangles will be
further analyzed together with land reclamation in the discussion section. Points marked with white
cross (×) are selected to show time series deformation.

Figure 6. Deformation rates generated with track 175 dataset for the whole study area. Other remakes
are the same as those in Figure 5.
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3.2.2. Improved Point Target Selection

Recently, many researches demonstrated that exploiting point-like scatterers [20,21] instead
of a two-dimensional grid for deformation monitoring can overcome the effect of interferometric
decorrelation [25,51]. The selection of more usable PTs in a low-coherence area [21] for deformation
retrieval is a key issue in MT-InSAR data processing. In our study, the coastal reclaimed land may
undergo significant deformation and the backscattering coefficients may vary significantly in the time
domain. As a consequence, these two factors limit the application of the dispersion of amplitude
(DA) method [20] or the distributed scatterers (DS) method [38] to select sufficient usable PTs. Besides,
as a phase quality indicator, the coherence maps associated with the interferometric phase could
be exploited to identify usable targets. Point target with coherence greater than a given threshold
could be selected as a usable PT. However, the coherence is underestimated, as the phase values are
non-stationary. Thus non-stationary signals, including DEM, atmospheric effect [26] and possibly the
target motion should be estimated and thus be removed. The space averaging of the data inside a
certain window (e.g., 50 m × 50 m) is used as the estimation of these non-stationary signals [21] for
the center pixel of the window. However, this is not a common case because the average value may
not be the genuine estimate [51].

To select adequate usable PTs, an elaborated strategy based on Spectral Diversity of SLC
images [48] and the SBAS network [18] is exploited. The concept of spectral diversity originates
from Interferometric Point Target Analysis (IPTA) [52], whose principle is that the energy of usable PTs
remains almost the same when processing different looks with fractional azimuth and different range
bandwidths. We calculated the spectral diversity map γ for each co-registered SLC image, and selected
a point target as a usable PT, which has the weighted average of the time series spectral diversity
values greater than a given threshold (e.g., γ > 0.38). Given M SLC images, and N interferometric pairs
in the SBAS network, then γ can be expressed as

γ(r, a) =
1

2N ∑M
m=1 nm · γm(r, a) (1)

where γm(r, a) is the spectral diversity value at pixel location (r, a) (range, azimuth) for the m-th SLC
image, nm denotes the frequency of the m-th SLC image used in the SBAS network, and

2N = ∑M
m=1 nm (2)

Our PT selection strategy is consistent with the one based on the mean interferometric coherence
of interferogram stack for SBAS-InSAR. In the coherence-based method, the more frequently a SLC
image is used to combine an interferometric pair, the larger the weight factor would be assigned to
this image in calculating the mean interferometric coherence for the SBAS network interferogram
stack. Similarly, using the frequency of a SLC image as the weight factor in the calculation of mean
spectral diversity map γ, would also adjust the influence of that image’s spectral diversity map
accordingly. The spectral diversity map could be treated as the Signal-to-Noise Ratio (SNR) indicator
of the SLC pixel’s phase. Two pixels with high spectral diversity values would generate high quality
interferometric phases, and vice versa. As a consequence, the weighted spectral diversity map γ is
the equivalence of the SNR of the interferometric phases for the given SBAS network, which allows
a more accurate PT selection in SBAS-InSAR.

After the PT selection, the data information, including the interferometric phases, spatial
coherence etc., is extracted from the two-dimensional grid and stored in vector format for subsequent
data processing.

3.2.3. Phase Filtering, Orbital Phase Error Removal and Phase Unwrapping

In order to reduce the phase noise, the differential interferometric phase for PTs, was spatially
filtered by an improved SUSAN filter [53,54] with a search window size of 11 × 11 (range × azimuth)
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pixels. This method can avoid noise contamination from unusable PTs. The spatial coherence for each
PT was estimated with the same window. Subsequently, the smoothed phase of each interferometric
pair from the SBAS network was unwrapped by the method based on network programming [55] with
the spatial coherence as the weight factor.

In InSAR processing, the flat-earth phase component is removed with precise orbits. For ENVISAT,
it has an accuracy of 5–7 cm radially and 10–15 cm cross-track [56], and its residual orbital phase
error [57] with long wavelength character may remain in the interferogram. Such error is easy to
discriminate from the local deformation in our study area. Hence, we estimated the orbital error
using quadratic polynomial models [57] and removed it the error from the unwrapped interferogram.
It needs to be noted that the quadratic models would also absorb long-wavelength components of
atmospheric effect [27,28].

3.2.4. Modeling of Deformation and Unwrapping Error Checking

The Singular Value Decomposition (SVD) method was employed to solve the rank-deficient
problem [18] in SBAS-InSAR deformation modeling. The raw time series deformations that are
contaminated by atmospheric delay and phase noise and DEM error correction can be obtained
based on the unwrapped phase obtained in Section 3.2.2. The reliability of phase unwrapping was
evaluated via the phase difference between the unwrapped phase and the one simulated with raw
time series deformation, especially for Qianhai Bay and Shenzhen Bay where sparsely distributed
PTs are identified. If the interferometric phase was unwrapped with error, then the phase difference
would be significantly large. We then computed the histograms of phase difference for statistics (see
Tables A3 and A4). We can see that over 82% of PTs were unwrapped with an error less than 0.5 rad for
Qianhai Bay, and 83.3% and 86.4% of the PTs were unwrapped for track 025 and track 175. For these
two areas, over 95% of the PTs were unwrapped with error less than 1.0 rad. Additionally, the result
showed that over 95% of PTs were unwrapped with error less than 1.0 rad for the whole study area.
As a result, we believe that the interferometric phase was unwrapped without significant error.

In order to remove the error of atmospheric delay and phase noise from the raw time series
deformations, the linear regression with the raw time series deformations was firstly carried out
to inverse the mean deformation velocity map [18]. Then the inverted linear deformation was
subsequently subtracted from the raw time series deformations calculated previously. The remaining
components are the non-linear ground deformation, atmospheric delay, and random phase noise.
Non-linear ground deformations might have some degree of correlation (low-pass) in the temporal
domain, while atmospheric delay and phase noise are both high-pass, thus non-linear deformation
can be separated by the temporal triangle weighted low-pass filter [20] with a certain length of time
window (e.g., 180 days). Finally, we obtained the total deformation by adding up the linear deformation
and non-linear deformation.

4. Results

Due to the side-looking geometry, the InSAR measurement is the sum of the projections of ground
three-dimensional (3-D) ground deformations in the (Line-of-Sight) LOS direction. In Shenzhen coastal
zone, the subsidence of the reclaimed land and sediment layer dominates the ground deformation.
Hence, the deformation in our study area was assumed mainly in the vertical direction and the LOS
displacement was directly back-projected into the vertical direction using the local incidence angle [36].

4.1. Deformation Rate Maps

The deformation rate maps generated from the ascending and the descending data are between
–25 mm/year and 15 mm/year, as shown in Figures 5 and 6, respectively. The deformation patterns are
very similar, suggesting that vertical subsidence dominates the coastal deformation. The deformation
rate maps demonstrate that most of the inland area within the coastline in 1979 is stable, which means
the selected reference point did not undergo obvious deformation. However, the reclaimed land area
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along the coastline in 1979 (the yellow line in Figures 5 and 6) experienced significant subsidence,
especially at Shenzhen Airport, Bao’an Center, Qianhai Bay, and Shenzhen Bay, marked by black
rectangles in Figures 5 and 6. Obvious deformation was not observed in the Chiwan and Shekou
harbors, because the foundation of the wharf apron space was enhanced by using special rammer of
small base [35]. Besides, we also observed non-uniform deformation in the mean deformation rate
maps. The phenomenon is particularly evident in the developed urban region B, Bao’an Center, where
many roads and high rise buildings cover the reclaimed land. In addition to the ground subsidence,
there are several patches with remarkable uplift located around the right bottom corner in region A.
The positive deformation signal may be related to the rise of groundwater level [46]. This area is an
old industrial district, where a great amount of groundwater was extracted for production. Now the
factories are moving out, decreasing the groundwater extraction [46]. As a result, the groundwater
level is recovering.

To validate the non-uniform subsidence, field work was carried out at Bao’an Center (around
point TP4) in 2011. Figure 7a,b show remarkable effects of the differential subsidence rates observed
at a road and a building. This is because they were built on different foundations. The black arrows
in Figure 7 point to the side with solid foundations, which may have slight subsidence. While, red
arrows point to the side with unreinforced foundations, where remarkable subsidence occurred.

 

Figure 7. Field work pictures showing non-uniform subsidence. (a) Site of a road; (b) site of a building.

4.2. Time Series of Selected Points

Several points were selected to show the time series deformation (see Figure 8). The image dataset
start time is usually taken as the reference time of the time series in the SBAS-InSAR technique. As seen
in Table 1, the two datasets have different start times. For comparison, we set one reference time for
these two datasets as 28 February 2007. As a consequence, the time series deformations mapped in
the descending orbit was shifted with a constant, which was calculated according to the deformation
rate and time difference (116 days). Clearly, in the reclaimed land, TP1, TP2, TP4, PT5, and TP6, are
subsiding linearly (see Figure 8). TP3, located inland according to the coastline in 1979, has a different
temporal pattern, showing that the TP3 was in rapid deformation (−31.7 mm/year) before January
2009, then its deformation was slowed down (−18.6 mm/year) between January 2009 and January
2010, and finally the area became stable. This deformation is very consistent with the pattern from
predictions of the consolidation theory of unsaturated soil [58]. Although the subsidence rate at each
selected point is slightly different, the time series obtained from the ascending and descending orbits
matched well.

193



Remote Sens. 2016, 8, 652

 

Figure 8. Time series of the deformation at selected points. (a) TP1; (b) TP2; (c) TP3; (d) TP4; (e) TP5;
(f) TP6. Purple dots and blue triangles represent the ascending (025) and descending (175) tracks.
Purple lines and blue lines represent the linear deformations. The corresponding slopes are given in
the lower left corner.

5. Discussion

5.1. Self-Consistency Checking by Inter-Comparison between the Ascending and Descending
InSAR Measurements

In order to quantitatively check the self-consistency of InSAR measurements, inter-comparison
of the deformation rates between ascending and descending results was carried out. Due to the
uncertainty in SAR geo-location [59], the PTs from different orbits were unlikely to be at the exact
same locations. The resolution of the results is down-sampled to reduce the effect of the geo-location
uncertainty [60]. Firstly, a data grid with a resolution of 50 m × 50 m was created with the tradeoff
between the deformation detail and resolutions. Then InSAR measurements from the ascending
and descending orbits were resampled respectively to the defined data grid by Pixel Aggregate [61].
Finally, the InSAR measurements from different orbits were compared. We assumed that the InSAR
measurements on the defined grid had a common deformation signal. The inter-comparison results
between the ascending and descending InSAR-derived deformation rates showed that correlation
between the two InSAR measurements is 0.92, revealing that the InSAR measurements mapped by
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our PT-based SBAS-InSAR strategy are in good agreement with each other. The Root-Mean-Square
Error (RMSE) of the difference between the ascending and descending orbits is 1.8 mm/year, implying
that the InSAR measurements are highly self-consistent. However, there are points lying away
from the fitted model (the purple line in Figure 9), which may be caused by the errors in InSAR
measurements [57], errors in SAR geo-location [59] (mismatch of the measurements from different
viewing geometries), horizontal displacement and possibly the non-linear deformation process [20].

 

Figure 9. Inter-comparison of the deformation rates between track 025 and track 175. Blue dots
denote the measured points on track 025 and track 175. The purple line is the fitted linear model, i.e.,
f(x) = 0.9245x − 0.07292.

5.2. Deformation Associated with Land Reclamation

As the first special economic zone of China, Shenzhen has witnessed great changes since the 1980s,
accompanied by extensive land reclamation over the past 30 years. The InSAR measurements of regions
A, B, C, and D (Figures 5 and 6) are zoomed in Figures 10–13. According to the InSAR measurements,
we can observe remarkable deformation in most of the reclaimed land, and the maximum rate is up
to 25 mm/year. Generally, ground deformation is induced by primary compaction and secondary
compression of the alluvial clay beneath the reclamation [30]. Previous investigations [30,58] showed
that 90% primary compaction of alluvial clay in Hong Kong Chek Lap Kok Airport, a site that has very
similar land reclamation activity to our study area, took about 10 to 20 years, and longer for a thickness
sediment layer. As shown in Figure 2, about 34.3 km2 of land, accounting for 42.6% of the total, was
reclaimed from the sea during the past 15 years (period of 2000–2015), on which large infrastructure
has been built. Thus, ground settlement is expected in most of the reclaimed area.

Figure 10 shows different subsidence patterns for the new airport built on reclaimed land and the
old airport built inland. The new airport was built between years 2000 and 2010 (See Figure 11), thus
few PTs were selected from that region. Numerous PTs were identified along the dam to the west part
of the new airport. Although the new airport was reclaimed gradually (see the coastline change in
Figure 10, the yellow line, yellow dash line, magenta dash line, and the white dash line), remarkable
deformation was observed during different phases. For region B (Figure 11), Bao’an center, where
many high-rise buildings stand, remarkable subsidence signals in the reclaimed land and along the
Metro Lines were detected in both ascending and descending datasets (Figure 11). The Bao’an Center
was mainly reclaimed in the period 1979–1990 (the area along the coastlines between 1979 and 1990,
see Figure 11). However, it still undergoes remarkable ground deformation, which may be induced
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by engineering construction. Slight subsidence was observed on the newly reclaimed land (the area
outside the coastline of 1990), as little urban construction is in progress. If a new construction were to
be built, the temporary equilibrium could be broken, which may cause additional ground deformation.
The Qianhai Bay, an unexploited reclaimed land area, has a few sites with high deformation rates (see
Figure 12) caused by compaction of the reclaimed foundation and the alluvial soil beneath. The detail
subsidence rate maps of Shenzhen Bay are shown in Figure 13. The results revealed that the body
of Shenzhen Bay Check Point is in a weak deformation state ([−6, −3] mm/year), while evident
settlements were observed in some sites of the reclaimed land, especially the north part of the Check
Point. High deformation rates were also detected along the Shenzhen Metro Line (black dash line in
Figure 13), which was centered on the reclaimed land. Based on these, we can conclude that remarkable
subsidence has occurred on the lands reclaimed 15 years before, such as the Bao’an Center.

 

Figure 10. Subsidence rate of Region A of Figures 5 and 6, Shenzhen Airport. (a) Track 025; (b) track
175. Black dash line with black triangles represents the Shenzhen Metro Line, and the black triangle
denotes the Metro station. The yellow line denotes the coastline in 1979. Background is a Landsat-8
image acquired in 2015.

 

Figure 11. Subsidence rate of Region B of Figures 5 and 6, Bao’an center. (a) Track 025; (b) track 175.
Other remakes are the same as in Figure 10.

In addition, the engineering constructions, e.g., the construction of Shenzhen Airport and
urbanization of Bao’an, would also contribute to subsidence. Considering the deformation maps and
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time series at selected points, we believe that the four major land reclamation regions are undergoing
remarkable subsidence, which can be expected to continue in the near future. Work to further monitor
the ground subsidence shall focus on the coastal land reclamation region, especially Shenzhen Airport,
Bao’an Center, Qianhai Bay, and Shenzhen Bay.

 

Figure 12. Subsidence rate of Region C of Figures 5 and 6, Qianhai Bay. (a) Track 025; (b) track 175.
Other remakes are the same as in Figure 10.

 

Figure 13. Subsidence rate of Region D of Figures 5 and 6, Shenzhen Bay. (a) Track 025; (b) track 175.
Other remakes are the same as in Figure 10.

5.3. Effects of Coastal Subsidence Coupled with Sea Level Changes

The subsidence of the reclaimed land threatens infrastructure, and contributes to the relative sea
level changes [62], which may cause saltwater intrusion [63,64] and destroy coastal biodiversity [37].
Assuming a mean sea level rise of 2.5 mm/year [33,65], the selected regions A, B, C, and D (shown
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in Figures 10–13) would fall to sea level in 114, 121, 225, and 313 years (see Table 2). Compared with
previous studies [38], our deformation rate is slightly larger due to the fact that more PTs have been
selected from significant deformation areas in our method. As a consequence, the large deformation
rate areas have no measurement of their results whereas appropriate PTs have been identified by
our method for deformation mapping. So the difference between their results and ours is expected.
The risk assessment based only on sea level rise had been underestimated in the Shenzhen coastal zone
because of the amplification effect from coastal subsidence. To decelerate the relative sea level rise,
effective measures, such as reinforcing the ground foundation, need to be taken to prevent subsidence
in the coastal zone [66].

Table 2. Estimation of the elapsed time of land surface falling sea level regarding coastal subsidence in
selected regions.

Region Elevation 1 H (m)
Sea Level Rise v1

(mm/year)
Subsidence Rate2

v2 (mm/year)
Elapsed Time 3

Estimated T (year)

Shenzhen Airport 1.5 2.5 −10.7 114
Bao’an Center 1.8 2.5 −12.4 121
Qianhai Bay 1.8 2.5 −5.5 225

Shenzhen Bay 2.0 2.5 −3.9 313
1 average elevation of region; 2 average subsidence rate of region; 3 T = H × 1000/(v1 − v2).

5.4. Potential and Limits of InSAR in Mapping Coastal Subsidence

The InSAR measurements from both ascending (track 025) and descending (track 175) orbits
showed a very similar pattern in the deformation rate maps (Figures 5, 6 and 10–13) derived by
PT-based SBAS-InSAR, and the displacement time-series of the selected points (Figure 8). In order to
properly map the coastal deformation associated with land reclamation, the effect of low-coherence
will be considered in the implementation of data processing. To illustrate this problem, the dataset
from track 175 was also processed with the STAMPS PS method. The comparison (see Appendix B for
detail) between STAMPS result and ours showed that few PTs (see Figures B1–B3) have been selected
by STAMPS due to long time decorrelation. Although the two results (see Figures B2 and B3) have
a similar deformation trend in slight deformation areas, our method has much denser measurements in
both significant deformation and stable urban areas, because the PT-based SBAS-InSAR method utilizes
multi-reference to overcome the decorrelation effect of single reference interferometric phases, whereas
the STAMPS could only select coherent PTs over a long time. As a consequence, such difference is
expected. The results show that our method has great potential in mapping coastal deformation.
However, our PT-based SBAS-InSAR technique also has its limitations. First, the threshold for PT
selection needs to be carefully determined. Second, for a reliable InSAR measurement, a network of
dense SBAS interferometric pairs needs to be constructed. Besides, the phase unwrapping error needs
to be checked carefully, because such an error would become significant on the data margin for phase
unwrapping on the network of irregular PTs.

It is worth remarking that not all coastal zones present subsidence signals in the ENVISAT InSAR
measurements. It can be explained by temporal decorrelation [25,47], causing few usable PTs to be
available. For example, there are several parts in our study area which tend to decorrelate due to
a construction process. Compared with the long revisit cycle (35 days) of ENVISAT, the new generation
of SAR platforms have shorter revisits, such as the ALOS-2 (14 days) and Sentinel-1A (12 days).
SAR images from these new platforms generally maintain much higher coherence. In addition, only
vertical displacement is retrieved, based on the assumption of non-horizontal displacement in this
study. However the horizontal displacement cannot be neglected, especially for areas with a large
subsidence rate. So combined multiple-pass InSAR datasets with different viewing angles can be
considered to reveal ground 3-D deformations further.
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6. Conclusions

To meet the demand of urbanization and economic development, about 80 km2 of land has been
reclaimed from the sea in Shenzhen over the past three decades. The reclaimed land undergoes local
heterogeneous deformation that affects the stability of both ground constructions and underground
man-made facilities. In order to monitor the reclaimed land deformation, we proposed a PTs-based
SBAS-InSAR method, which has the ability to detect large amplitude deformation and choose high
PTs density in a low coherence area. The spatial and temporal variability of the deformation was
discussed over the lands reclaimed over the past decades in Shenzhen. Inter-comparison of the
InSAR measurements from different orbits showed that the correlation between these measurements is
0.92, and the RMSE of the difference between these measurements is 1.8 mm/year, implying a good
self-consistency of the InSAR measurements. The InSAR measurements showed that the reclaimed
land underwent remarkable deformation (up to 25 mm/year in the LOS direction), especially at the
Shenzhen Airport, Bao’an Center, Qianhai Bay, and Shenzhen Bay, and the deformation is expected
to continue in the near future. Therefore, continuous deformation monitoring is necessary in these
reclaimed area.
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SNR Signal-to-Noise Ratio
SRTM Shuttle Radar Topography Mission
TS Time Series
3-D Three-Dimensional
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Appendix A

 

Figure A1. Land reclamation in Shenzhen recorded by the Landsat images. The gray color denotes
the urban areas, green represents natural vegetation, and blue represents water. The yellow line is the
coastline in 1979. The red line denotes the coastline of the corresponding years.

Table A1. Image datasets of track 025 (ascending).

No. Acquisition Date Orbit Number
Perpendicular
Baseline (m)

Temporal
Baseline (day)

Doppler
Baseline (Hz)

1 28 February 2007 26131 1.200 −700 25.565
2 4 April 2007 26632 −44.517 −665 −95.094
3 9 May 2007 27133 53.848 −630 24.165
4 13 June 2007 27634 83.181 −595 −35.858
5 18 July 2007 28135 249.955 −560 −13.692
6 22 August 2007 28636 330.813 −525 −36.740
7 31 October 2007 29638 168.819 −455 10.479
8 5 December 2007 30139 −198.362 −420 10.734
9 9 January 2008 30640 248.996 −385 −19.445

10 19 March 2008 31642 255.402 −315 22.999
11 23 April 2008 32143 141.737 −280 8.279
12 2 July 2008 33145 −93.116 −210 −109.998
13 6 August 2008 33646 216.613 −175 23.050
14 15 October 2008 34648 45.448 −105 20.116
15 19 November 2008 35149 −180.867 −70 −93.809
16 28 January 2009 36151 0.000 0 0.000
17 4 March 2009 36652 67.309 35 27.292
18 8 April 2009 37153 −218.997 70 −72.524
19 13 May 2009 37654 −7.443 105 7.185
20 17 June. 2009 38155 −199.092 140 5.291
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Table A1. Cont.

No. Acquisition Date Orbit Number
Perpendicular
Baseline (m)

Temporal
Baseline (day)

Doppler
Baseline (Hz)

21 22 July 2009 38656 121.769 175 67.987
22 26 August 2009 39157 274.131 210 −1.431
23 30 September 2009 39658 −279.599 245 −92.997
24 13 January 2010 41161 42.797 350 3.044
25 17 February 2010 41662 −116.154 385 −77.225
26 24 March 2010 42163 167.457 420 7.420
27 28 April 2010 42664 −17.800 455 −89.608
28 2 June 2010 43165 201.274 490 20.132
29 7 July 2010 43666 −183.277 525 −36.164
30 11 August 2010 44167 153.339 560 8.991
31 15 September 2010 44668 311.510 595 −0.209

Table A2. Image datasets of track 175 (descending).

No. Acquisition Date Orbit Number
Perpendicular
Baseline (m)

Temporal
Baseline (day)

Doppler
Baseline (Hz)

1 24 June 2007 27784 −54.492 −420 −9.713
2 29 July 2007 28285 −120.473 −385 −6.183
3 2 September 2007 28786 64.293 −350 −10.988
4 7 October2007 29287 −177.061 −315 −3.644
5 11 November 2007 29788 87.049 −280 −11.855
6 16 December 2007 30289 −204.988 −245 −9.418
7 20 January 2008 30790 −212.565 −210 −12.067
8 24 February. 2008 31291 −282.373 −175 −6.489
9 30 March 2008 31792 137.053 −140 −7.713
10 4 May 2008 32293 −85.548 −105 −14.254
11 8 June 2008 32794 66.104 −70 −8.627
12 13 July 2008 33295 174.508 −35 −3.449
13 17 August. 2008 33796 0.000 0 0.000
14 21 September 2008 34297 −184.108 35 2.401
15 4 January 2009 35800 36.880 140 −7.600
16 8 February 2009 36301 −227.607 175 −7.695
17 15 March 2009 36802 395.745 210 −2.732
18 19 April 2009 37303 −159.084 245 −16.068
19 24 May 2009 37804 21.721 280 −17.713
20 28 June 2009 38305 156.203 315 −9.648
21 2 August 2009 38806 −116.555 350 −9.147
22 6 September 2009 39307 133.858 385 −8.236
23 20 December 2009 40810 −153.050 490 −11.066
24 28 February 2010 41812 −269.032 560 −1.572
25 4 April 2010 42313 232.788 595 −21.591
26 9 May 2010 42814 171.201 630 −35.714
27 13 June 2010 43315 143.627 665 −15.045
28 22 August 2010 44317 −191.774 735 −7.937

Table A3. Statistics of the phase unwrapping error in track 025.

Phase Unwrapping
Error (rad)

Qianhai Bay Shenzhen Bay Whole Area

Percentage (%) Percentage (%) Percentage (%)

[−0.5, 0.5] 82.70 83.33 85.12
[−1.0, 1.0] 95.35 96.06 96.53
[−1.5, 1.5] 98.98 99.14 99.26
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Table A4. Statistics of the phase unwrapping error in track 175.

Phase Unwrapping
Error (rad)

Qianhai Bay Shenzhen Bay Whole Area

Percentage (%) Percentage (%) Percentage (%)

[−0.5, 0.5] 82.81 86.43 87.15
[−1.0, 1.0] 96.25 97.52 97.65
[−1.5, 1.5] 99.46 99.58 99.63

Appendix B

To evaluate the effectiveness of the proposed strategy, the dataset from track 175 is processed
with the STAMPS PSI method [21,49] (see Figure B1). Numerous PTs in built-up areas have been
detected by the STAMPS method and the proposed method. However, in low-coherence areas, the
STAMPS method can select few PTs due to the decorrelation effect, while our strategy can select an
appropriate number of PTs. The density of PTs selected by STAMPS is 301 points/km2, however, it is
779 points/km2 by our method. Such difference is particularly evident in reclaimed land areas, such
as Bao’an Center, the north to the Shenzhen Bay Checkpoint, and the dam of Shenzhen Airport.

For more detailed comparison, the regions A and B marked with a black rectangle (see Figure B1)
were further analyzed with zoom-in view shown in Figures B2 and B3. The deformation rate maps
obtained by STAMPS and our method have a very similar deformation trend (see Figures B2 and B3).
However, our deformation rate can detect much larger deformation than that of the STAMPS results.
As shown in Figures B2 and B3, few PTs have been selected from areas with large deformations
by the STAMPS method. As a consequence, the area that undergoes rapid deformation has few
measurements on STAMPS results, while appropriate PTs have been identified by our method for
deformation mapping.

Figure B1. Deformation rate maps extracted by (a) PT-based SBAS-InSAR and (b) STAMPS. We can
see that more PTs have been selected by our method (PT-based SBAS-InSAR). Regions A and B are
further analyzed.
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Figure B2. Deformation rate maps for region A, Bao’an Center extracted by (a) PT-based SBAS-InSAR
and (b) STAMPS. Numerous PTs have been selected in the urban area, upper-right part of the Figure.
However, the density of PTs selected by our method is larger than that of STAMPS, especially in areas
with large deformation. However, in (b) the significant deformation could not be well mapped, due to
the sparse PTs density of the STAMPS method.

 
  (a) (b)

Figure B3. Deformation rate maps for region B, Shenzhen Bay extracted by (a) PT-based SBAS-InSAR
and (b) STAMPS. Numerous PTs have been selected in the urban area. However, our method can select
more PTs than the STAMPS method in areas with a large deformation rate, especially the northern part
of the Shenzhen Bay Check Point, which enables us to map the significant deformation.
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Abstract: High-intensity coal mining (large mining height, shallow mining depth, and rapid advancing)
frequently causes large-scale ground damage within a short period of time. Understanding mining
subsidence under high-intensity mining can provide a basis for mining-induced damage assessment,
land remediation in a subsidence area, and ecological reconstruction in vulnerable ecological
regions in Western China. In this study, the mining subsidence status of Shendong Coalfield
was investigated and analyzed using two-pass differential interferometric synthetic aperture radar
(DInSAR) technology based on high-resolution synthetic aperture radar data (RADARSAT-2 precise
orbit, multilook fine, 5 m) collected from 20 January 2012 to June 2013. Surface damages in
Shendong Coalfield over a period of 504 days under open-pit mining and underground mining
were observed. Ground deformation of the high-intensity mining working faces 22201-1/2 in Bu’ertai
Mine, Shendong Coalfield was monitored using small baseline subset (SBAS) InSAR technology.
(1) DInSAR detected and located 85 ground deformation areas (including ground deformations
associated with past-mining activity). The extent of subsidence in Shendong Coalfield presented a
progressive increase at an average monthly rate of 13.09 km2 from the initial 54.98 km2 to 225.20 km2,
approximately, which accounted for 7% of the total area of Shendong Coalfield; (2) SBAS-InSAR
reported that the maximum cumulative subsidence area reached 5.58 km2 above the working faces
22201-1/2. The advance speed of ground destruction (7.9 m/day) was nearly equal to that of
underground mining (8.1 m/day).

Keywords: multi-temporal InSAR; small baseline subset (SBAS); deformation monitoring; damage
assessment; mining subsidence; Shendong Coalfield; Bu’ertai Mine

1. Introduction

Shendong Coalfield is one of the largest coal production bases in the world. The high-density fields
and high-intensity mining in Shendong Coalfield will profoundly influence the ecological environment
of northwestern China. Therefore, assessing mining-induced damage and understanding mining
subsidence in the high-intensity mining environment of Shendong Coalfield are important for the land
remediation and ecological reconstruction of mining subsidence areas. Traditional mining subsidence
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monitoring approaches mainly include geodesy, global navigation satellite system measurements,
and electronic distance measurements. These approaches exhibit the following shortcomings. (1) They
are labor-intensive, time-consuming, costly, and difficult to keep the monitoring flags in good condition
for a long time; (2) The survey crew has to enter the region being monitored, which increases the
difficulty and risks of the task; (3) These approaches are inapplicable to fast and accurate large-scale
real-time monitoring of mines and cannot monitor subsidence in unknown regions because of the
limited spatial extent of monitoring, the low spatial resolution, and the long work cycle; (4) Theoretical
analysis is restricted within-data observation of discrete points; hence, identifying the ground
deformation characteristics while satisfying the actual requirements of mining subsidence prediction
and disaster prevention is difficult [1,2].

Interferometric synthetic aperture radar (InSAR) offers a novel Earth observation approach
and can provide all-weather, all-day, and cloud influence free monitoring. Differential InSAR
(DInSAR), as an extension of InSAR in terms of monitoring ground deformation, is mainly used
to capture centimeter-level or smaller ground deformations along the line of sight (LOS) of a radar
satellite. Considerable developments related to DInSAR monitoring of earthquake deformation [3,4],
volcanic activities [5,6], glacial shift [7,8], urban water-loss settlement [9,10], mining subsidence [11,12],
and landslides [13,14] have been achieved. However, DInSAR technology can easily cause interference
decorrelation for mining subsidence with immense deformation and short deformation period.
Moreover, for the conventional DInSAR, it is a challenging task to distinguish, and thus, effectively
eliminate orbit residue error, residual terrain, atmospheric delay, and other phase errors. Nevertheless,
several successful applications of the conventional DInSAR have been reported. In the past 10 years,
many scholars have monitored mining subsidence in selected mines using DInSAR and have conducted
corresponding experimental research. Perski et al. successfully measured ground settlement caused
by underground mining using DInSAR [15–20]. Other scholars have successfully applied DInSAR
to mining subsidence monitoring experiments, thereby confirming the feasibility of using DInSAR
in large-scale mining subsidence monitoring and geological disaster assessment [21–28]. Therefore,
the conventional DInSAR coupled with an appropriate interferometric strategy can recognize ground
deformation associated with past-mining activities and atmospheric effects (e.g., water vapor in the
troposphere and fluctuations in the ionosphere). It can also reduce data costs and increase observation
efficiency [29].

To overcome the shortcomings of DInSAR and to acquire accurate subsidence data,
the deformation velocity of highly coherent target points was computed via least squares (LS)
estimation [30]. In 2002, Berardino et al. proposed the small baseline subset (SBAS) algorithm
based on the LS model [31–33]. SBAS was developed from the traditional DInSAR. It combined
multiple small baseline subsets via the singular value decomposition (SVD) method based on InSAR
data pairs with small spatial and temporal baselines. Therefore, SBAS does not only inherit the
advantages of the traditional DInSAR, but can also effectively solve the time discontinuous problem
caused by extremely long spatial baselines among SAR data sets, thereby obtaining subsidence
values with high coherence targets during different periods. SBAS becomes increasingly optimized
and its monitoring accuracy increases accordingly with the development of three-dimensional (3D)
phase unwrapping algorithms, extraction algorithms of coherent target points, and error elimination
algorithms, as well as the improvement of the time-series deformation model [34–40]. Nevertheless,
it still has low computational efficiency. Moreover, precise observation is limited within a small scale,
and thus, a substantial part of mining subsidence (i.e., maximum subsidence) cannot be covered.

Therefore, given the limited data set, macroscopic and microscopic studies on global and
local ground displacement features caused by mining subsidence were performed by combining
conventional and advanced interferometric techniques (DInSAR and SBAS-InSAR). On the one hand,
the large-scale dynamic characteristics of mining subsidence were identified through a comparative
analysis of multi-temporal data by combining two DInSAR interferences. On the other hand,
a time-series analysis of a typical working face was conducted based on SBAS-InSAR and several
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ground displacement parameters were determined. These processes not only provide complete control
of the maturity and stability of DInSAR to perform a fast assessment of mining-induced damage in
the entire coalfield, but also fully utilize the technical advantages of SBAS-InSAR in increasing the
time sampling rate as well as in inhibiting terrain and atmospheric delay influences on the algorithm.
Consequently, an accurate analysis of the subsidence feature of a typical working face is realized.

2. Site Selection and Methods

2.1. Site Selection

2.1.1. Study Area 1: Shendong Coalfield

Shendong Coalfield, an immense coal production base in China, is located in the northern
region of Shenmu County, the western region of Fugu County (Yunlin City, Shaanxi Province)
and Ejin Horo County, and the southern region of Dongsheng District and Junggar County
(Ordos City, Inner Mongolia). Its geographical coordinates are 38◦52′–39◦41′N and 109◦51′–110◦46′E.
Its north–south length is approximately 38–90 km and its east–west width is approximately
35–55 km, thereby covering an area of approximately 3481 km2. The proven reserves are 727 Gt.
Shendong Coalfield covers a cluster of the mines of 10-million-tons annual production that
comprise 14 underground coal mines, including Bu’ertai (20.0 Mt/year), Daliuta (25.0 Mt/year),
Bulianta (21.0 Mt/year), Halagou (12.0 Mt/year), Shangwan (10.0 Mt/year), and Shigetai
(10.0 Mt/year) mine, as well as 5 open-pit mines, including Ha'erwusu (30.0 Mt/year) and Heidaigou
(31.0 Mt/year) mine. Shendong Coalfield is one of the largest combined open-pit–underground mining
enterprises with the highest degree of modernization in the world (Figure 1). Shendong coalfield
is suffering from a large-scale, centralized distribution of mining subsidence and ground damage
because it is being large-scale exploitation, the main mineable coal beds is particularly thick, and the
ratio of mining depth/mining thickness is smaller. (Figure 2).

Figure 1. Geographical location of Shendong Coalfield. Background data: Satellite imagery acquired
by Landsat 7 on 10 April 2013.
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Figure 2. The photographs of subsidence damage types in Shendong Coalfield (2009–2015).

2.1.2. Study Area 2: 22201-1/2 Working Face

The 22201-1/2 long wall belongs to Bu’ertai Mine and is composed of two columns of working
faces. 22201-1 was exploited in 2012, whereas 22201-2 was exploited in 2013 (Figure 3). The mining
width of the working face that corresponded to the subsidence area was about 300 m. The mining length
from 20 January 2012 to June 2013 was about 3950 m. The 22# coal bed was exploited. The mining
seam thickness was 2.2–2.9 m (2.5 m on average), and the average mining depth was about 260 m [41].

Figure 3. Mining layout plan of 22201-1/2 long wall.

In Figure 2, the mining boundaries (the purple vertical line) of the working face, while the
RADARSAT-2 were imaging, were calculated according to the monthly stopping lines (the green
vertical line marked by the arrow symbol) of the coal excavation plans.

2.1.3. Data used

RADARSAT-2 data from 20 January 2012 to June 2013 were used, and the data revisit period
was set to 24 day. The spatial resolution was 5 m. Moreover, this study adopted the C wave band
as the working wave band, HH polarization mode, multilook fine beam, and 50 × 50 km2 coverage
area. The digital elevation model (DEM) data required for processing were 90 m elevation data of
the Shuttle Radar Topography Mission (SRTM DEM). Images that covered the entire Bu’ertai Mine
(within 39◦24′–39◦26′N and 109◦58′–110◦1′E) were collected by subset 18 SAR scenes via region
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of interests (ROIs) Data from September 2012, 20 January13, and May 2013 were missing, but the
remaining revisit period data were all collected (Table 1).

Table 1. Imaging parameters and geometry of RADARSAT-2 MF6 data used in this work.

No. Orbit Frame
Acquisition Date

(yyyymmdd)

Cumulative Pattern Consecutive Pattern

Time Baseline
(Days)

Perp. 1 Baseline
(m)

Time Baseline
(Days)

Perp. 1 Baseline
(m)

1 53987 513409 20120120 0 0 - -
2 53987 513410 20120213 24 406.3809 24 406.3809
3 53987 513411 20120308 48 483.7567 24 58.5609
4 53987 513412 20120401 72 566.6843 24 91.5228
5 53987 513413 20120425 96 431.9236 24 −140.4887
6 53987 513414 20120519 120 169.2050 24 −271.0147
7 53987 513415 20120612 144 399.0324 24 226.9379
8 53987 513416 20120706 168 518.7924 24 116.9807
9 53987 513417 20120730 192 480.6470 24 −35.4784
10 53987 513418 20120823 216 216.5596 24 −261.8938
11 53987 513419 20121010 264 242.0272 48 25.1972
12 53987 513420 20121127 312 461.3537 48 216.3279
13 53987 513421 20121221 336 470.9812 24 14.7253
14 45789 439762 20130207 384 94.9292 48 −376.3826
15 45791 439765 20130303 408 226.1092 24 131.7180
16 57396 539004 20130327 432 463.3215 24 229.4834
17 57396 539005 20130420 456 489.2963 24 26.8207
18 57396 539006 20130607 504 593.3395 48 107.6413

1 An abbreviation of the perpendicular component of the spatial baseline.

2.2. Methods

In view of the lack of field data, we will adopt a joint calculation and mutual authentication
method, such as consecutive DInSAR, cumulative DInSAR and SBAS-InSAR, in order to achieve a
high reliability by the way.

2.2.1. Multi-Temporal InSAR Technology

The interferometric principle of mining subsidence based on DInSAR has been discussed in
many studies [11,12,15–29], and will not be duplicated in this work. Instead, multi-temporal InSAR
technology was applied and two interferometric processing techniques were used for the entire
coalfield: the consecutive (i.e., adjacent acquisitions) DInSAR interferometry and the cumulative
DInSAR interferometry. These techniques require various physical values and mathematical methods.
They use different temporal and spatial baseline combinations, and thus, the corresponding results
provide varying geological significance. The consecutive DInSAR interferometry, which is defined
that the two adjacent scenes of time series of SAR data (their temporal baseline is the shortest) carry
out an interferometry one another and eventually achieve a complete time series interferemetric
results (e.g., φ1,2, φ2,3, . . . , φn−1,n), is convenient for the quantitative analysis of interferometric
phase changes and can obtain a subsidence extent within a single period. The cumulative DInSAR
interferometry, which is defined that the master image is fixed the first scene of time series of SAR data,
meanwhile the next scene is selected (their temporal baseline is gradually lengthened) to implement
interferometry with it and eventually achieve a complete time series interferograms(e.g., φ1,2, φ1,3,
. . . , φ1,n = φ1,2 + φ2,3 + . . . + φn−1,n), is convenient for identifying the phase change features in a
mining area and can obtain the maximum subsidence magnitude. This technique is conducive to
evaluating the variation characteristics for mining subsidence on a deformation field from different
spatio-temporal perspectives.
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2.2.2. Brief Description of SBAS-InSAR

To improve the monitoring accuracy of the InSAR technique, one of the advanced InSAR
techniques termed short baseline subsets (SBAS) InSAR was developed and has been frequently
applied since 2002 [31–33,42,43].

This algorithm uses interferograms with small baselines that overlap in time in order to reduce
spatial decorrelation, and to mitigate atmospheric artifacts and topographic errors in time-sequential
interferometric pairs. The differential phase for a generic coherent pixel of the range and azimuth
coordinates (x, r) in interferogram j that is generated by combining SAR acquisitions at times tB and
tA is

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r) ≈ 4π

λ
[d(tB, x, r)− d(tA, x, r)] +

4π

λ

B⊥jΔz
Rsinθ

+[φatm(tB, x, r)− φatm(tA, x, r)] + Δnj, ∀j = 1, · · · , M
(1)

where λ is the transmitted radar wavelength; φ(tB,x,r) and φ(tA,x,r) are the phases that correspond to
times tB and tA; and d(tB,x,r) and d(tA,x,r) are the radar LOS projection of the cumulative deformation
referenced to the first scene, which implies φ(t0,x,r) = 0. We also include a phase term related to possible
errors Δz in the applied DEM used to generate differential interferograms. This phase component is
proportional to the perpendicular baseline for each interferogram B⊥j, range distance R, and beam
incident angle θ. A possible atmospheric signal is included in the terms φatm (tB,x,r) and φatm (tA,x,r).
Decorrelation effects and other noise sources are included in the last term Δnj.

Therefore, Equation (1) can be expressed as follows:

δφj(x, r) = δφdisp
j(x, r) + δφtopo

j(x, r) + δφatm
j(x, r) + δφnoise

j(x, r), ∀j = 1, · · · , M (2)

where δφdisp is the slant deformation phase between tB and tA; δφtopo represents the topographic
phase error of the external DEM used for differential interferogram generation; δφatm accounts for
temporal atmospheric variation at different SAR acquisition tB and tA; and δφnoise denotes temporal
decorrelation, orbital errors, thermal noise effects, etc.

The cumulative deformation between tB and tA can also be expressed as follows:

δφdisp
j(x, r) =

4π

λ

B−1

∑
k=A

vtk ,tk+1(tk+1 − tk) (3)

where k indicates the sequence index of SAR acquisition time between tB and tA, and v represents the
mean phase velocity in the period from k to k+1.

Given M unwrapped interferograms, the cumulative deformation at different SAR acquisition
times can be achieved using the LS or SVD methods.

3. Results

3.1. DInSAR Data Processing

3.1.1. Spatio-Temporal Baselines of Two Interferometric Strategies

The temporal baseline of the consecutive DInSAR interferometry can be controlled efficiently
within 24–48 days (Figure 4a), which will produce an ideal interferometric effect. However, the temporal
baseline of the cumulative DInSAR interferometry increased continuously from the initial 24 days
to the final 504 days (Figure 4b), which indicated that the influence of temporal decorrelation
increasingly intensified.
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Figure 4. Distribution of the spatiotemporal baseline. (a) Spatiotemporal baseline distribution of
consecutive DInSAR; (b) Spatiotemporal baseline distribution of cumulative DInSAR.

3.1.2. Results of Consecutive and Cumulative DInSAR Interferometries

(1) For the consecutive DInSAR interferometry, no image is fixed to a master image. The advanced
17 images were in turn used as the master image, whereas the subsequent image was used as the
slave image. The temporal baseline was the same with the revisit period. The interferogram was
characterized by independent differential phase changes in various periods and a forward movement
of the footprint of the deformation phase of mining subsidence (Figure 5).

 
20 January to 13 February 2012 13 February to 8 March 2012 8 March to 1 April 2012 

 
1 April to 25 April 2012 25 April to 19 May 2012 19 May to 12 June 2012 

Figure 5. Cont.
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12 June to 6 July 2012 6 July 6 to 30 July 2012 July 30 to August 23 2012 

 
23 August to 10 October 2012 10 October to 27 November 2012 27 November to 12 December 2012 

 
12 December to 7 February 2013 7 February to 3 March 3 2013 3 March to 27 March 2013 

 

 

27 March to 20 April 2013 20 April to 7 June 2013  

Figure 5. The results of the consecutive DInSAR pattern (January 2012–June 2013).

An ionospheric disturbance occurred during the interference process. Large reverse phase regions
were observed from two interferometric pairs, namely, 20120425–20120519 and 20120519–20120612,
which indicated that an atmospheric effect was present during the imaging of 20120519. The large
reverse phase of 20120612–20120706 and 20120706–20120730 implied the presence of an atmospheric
effect during the imaging of 20120706.
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(2) For the cumulative DInSAR interferometry, the first image was set as the master image
(Master, 20 January 2012) and the subsequent 17 images were alternately used as slave images.
The interferogram indicated that the differential phase changes covered all previous phase changes,
the deformation phase center of mining subsidence moved forward, and the deformation region
expanded monthly (Figure 6).

 

20 January to 13 February 2012 20 January to 8 March 2012 20 January to 1 April 2012 

20 January to 25 April 2012 20 January to 19 May 2012 20 January to 12 June 2012 

20 January to 6 July 2012 20 January to 30 July 2012 20 January to 23 August 2012 

 
20 January to 10 October 2012 20 January to 27 November 2012 20 January to 21 December 2012 

Figure 6. Cont.
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20 January to 7 February 2013 20 January to 3 March 2013 20 January to 27 March 2013 

 

 

20 January to 20 April 2013 20 January to 7 June 2013  

Figure 6. The results of the cumulative DInSAR pattern (January 2012–June 2013).

The cumulative DInSAR interferometry was influenced simultaneously by temporal and spatial
decorrelations. The interferogram had many unstable patches and several phase residues. It failed in
retaining coherence and phase unwrapping during the last three periods.

3.2. SBAS-InSAR Data Processing

To eliminate spatiotemporal decorrelation and atmospheric effects, an experimental plot was
selected to test SBAS-InSAR, which was expected to reduce or eliminate the influences of decorrelation
factors during DInSAR data processing by selecting appropriate spatiotemporal baseline thresholds.

3.2.1. Spatiotemporal Baseline Optimization of SBAS

All interferometric pairs within the thresholds of the spatial and temporal baselines were screened
based on a preset spatial baseline threshold, a temporal baseline threshold, and relevant input
parameters, thereby generating the SAR data pair connection diagram (Figure 7). In this experiment,
the maximum critical baseline percentage was set at 5%. The maximum perpendicular component
of the spatial baseline was 422 m. The maximum temporal baseline was set 200 days. The system
automatically screened the super master image (20120823). Interferometric pairs with low coherence
and poor unwrapping were eliminated, and finally, 47 interferometric pairs were selected.
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(a) (b) 

Figure 7. Spatiotemporal baseline distribution of the connection diagram and unwrapping results:
(a) Spatiotemporal baseline distribution of the connection diagram; (b) 3D unwrapping sub-pairs.

3.2.2. Interferometry Results of SBAS

Considering significant computational efforts and necessary disk space, SBAS was applied finely
in a single working face of the 22201-1/2 long wall. Interferometry was performed on each image pair
according to their connection relationship based on the aforementioned optimized baselines of SBAS,
and 47 interferograms were obtained. A total of 17 time-series cumulative phase deformation diagrams
were collected through orbit refining, reflatting, phase unwrapping, and geocoding. Subsequently,
a −10 mm subsidence contour map was acquired based on the further processing of these diagrams
(Figure 8a–q).

(a) 20 January to 13 February 2012 (b) 20 January to 8 March 2012 

(c) 20 January to 1 April 2012 (d) 20 January to 25 April 2012 

Figure 8. Cont.
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(e) 20 January to 19 May 2012 (f) 20 January to12 June 2012 

(g) 20 January to 6 July 2012 (h) 20 January to 30 July 2012 

(i) 20 January to 23 August 2012 (j) 20 January to 10 October 2012 

(k) 20 January to 27 November 2012 (l) 20 January to 21 December 2012 

Figure 8. Cont.
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(m) 20 January to 7 February 7 2013 (n) 20 January to 3 March 3 2013 

(o) 20 January to 27 March 2013 (p) 20 January to 20 April 2013 

 

(q) 20 January to 7 June 2013  

Figure 8. (a–q) Interferograms of SBAS-InSAR.

4. Discussions

4.1. The Reliability Validation of the Interferometry

Because of the past mining subsidence and lack of field data, the reliability of interferometric
measurements needs to be verified and validated. We randomly selected three subsidence basins
(basin A,B,C) and some understanding are gotten by comparing the results of the two interferometry
measurements(i.e., SABS-InSAR and the consecutive DInSAR).

See Figures 9–11, using the same profile line, we extract the subsidence values in the two
subsidence basins by SABS-InSAR and the consecutive DInSAR, and then perform the overlay analysis.

The unwrapping of the central area of the subsidence basin is erroneous due to the influence of
decoherence. So we only compare the information at the edge of the subsidence basins. We found that
the results of two interferometric measurements coincide each other fairly well. For example, the Root
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Mean Square Error (RMSE) of the subsidence values on both sides of basin A are ±0.6 mm (left) and
±0.3 mm (right) respectively (see Figure 9), the RMSE of the subsidence values on both sides of basin
B are ±0.6 mm (left) and ±0.2 mm (right) respectively (see Figure 10), and the RMSE of the subsidence
values on both sides of basin C are ±0.4 mm (left) and ±0.1 mm (right) respectively (see Figure 11).
Therefore, through the above cross-validation, we believe that our data processing scheme is highly
reliable, and it can be used for large-scale investigation of past mining subsidence.
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Figure 9. Example I: verification and validation of Interferometric Measurement.
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Figure 10. Example II: verification and validation of Interferometric Measurement.
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Figure 11. Example III: verification and validation of Interferometric Measurement.

4.2. Mining Subsidence Status in Shendong Coalfield

4.2.1. Interpretation based on the consecutive DInSAR interferometry

The results of the 17-temporal the consecutive DInSAR interferometry were interpreted using
the subsidence value of −10 mm recommended by a literature as the outer boundary of mining
subsidence [44]. Polygons with low speckle in the interpreted subsidence were further screened.
Some polygons, which did not change during three revisit periods (According [44], the zone,
where mining subsidence is less than −50 mm during 3 months, is considered to be the residual
deformation zone.), will be removed, thereby obtaining the time-series subsidence map of the
consecutive DInSAR interferometry (Figure 12).

The interpretation results indicated that Huhewusu Mine, Erlintu Mine, Zhugaita Mine,
and Dahaize Mine in Shendong Coalfield had been hardly any exploited, whereas the remaining
mines produced an average of 45 ± 3 dynamic subsidence regions during each observation period
from 20 January 2012 to 7 June 2013. The average mining extent during each observation period
reached as high as 57.00 ± 0.24 km2, which indicated the active production activities in the
coalfield. Approximately 45 mining areas were exploited simultaneously, which caused serious mining
subsidence. Interpretation was a difficult task accomplished through team cooperation. The concerned
subsidence quantity and area would differ to a certain extent given that the team members had varying
work experiences.
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Figure 12. Interpretation results of the consecutive interferometry (January 2012–June2013).

4.2.2. Interpretation Based on the cumulative DInSAR Interferometry

Similarly, the results of the 14-temporal the cumulative DInSAR interferometry were interpreted
using the subsidence value of −10 mm recommended by [44] as the outer boundary of mining
subsidence. The polygons with low speckle in the interpreted subsidence were further screened,
and those that did not change successively will be removed. Finally, the time-series subsidence map
was obtained (Figure 13).
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Figure 13. Interpretation results of the cumulative interferometry (January 2012–June2013).

Interpretation became more difficult given the influence of temporal decorrelation, and the
interpretable degree was lower than that of the consecutive DInSAR interferometry. Evidently,
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the characteristic of the time series of the cumulative DInSAR interferometry was that polygons with low
speckle in the subsidence range expanded to a fixed direction. An average of 46 ± 5 subsidence areas
expanded stably during each study period from 20 January, 2012 to 21 December 2012. The subsidence
area increased from an initial value of 54.98 km2/24 day to 225.20 km2/504 day throughout the
observation period (20 January 2012 to June 2013), which indicated an average rate of 13.09 km2.

In general, it is still difficult to obtain a continuous series of subsidence areas. On the one
hand, mine production regarded mine as a unit, which was not uniform. Several subsidence areas
were caused by ground deformation associated with post-mining activities, others resulted from the
preparation of alternate long walls, whereas some areas were produced by trial mining. On the other
hand, mining developments in different mines varied because of the different geological conditions of
the mines. Moreover, surface construction might also cause misjudgment of interpretations.

4.3. Mining Subsidence Characteristics in Shendong Coalfield

To identify the mining subsidence characteristics in high-intensity mines, 19 continuous
deformation areas with mining subsidence in the west bank of Wulanmulun River were investigated.
These study areas were divided into A (A1, A2, A3, A4, and A5), B (B1, B2, and B3), C (C1), D (D1, D2,
D3, and D4), E (E1, E2, and E3), F (F1 and F2), and G (G1) (Figure 14 A–G).

 

 

 

 

Figure 14. (A–H) Subsidence areas obtained from the InSAR time-series analysis (Western region to
the Wulanmulun River).
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In order to ensure that the section lines of each period would pass through the maximum
subsidence point, the coherence images of the consecutive DInSAR interferometry were used, in which
mining subsidence areas were determined as low-coherence areas. The centroids (i.e., geometric
centers) of low-coherence areas were connected, thereby forming the principal sectional line of the
maximum subsidence. Subsequently, this sectional line was used to extract the subsidence values
under the consecutive DInSAR interferometry and the cumulative DInSAR interferometry. Then,
the subsidence characteristic curve of 19 continuous deformation areas was drawn (Figure 15).

Only several representative working faces were illustrated and analyzed in this paper given the
limit in article length.

In Figure 14, the subfigures(‘A’–’G’) show 7 sub-regions of the focused investigation in the west
bank of Wulanmulun River, and they contain a total of 19 continuous deformation areas. The Subfigure
‘H’ is a regional aerial view that represents the relative spatial relationships of the 7 sub-regions.

In Figure 15, in a sectional graph way, interferometric results from 6 working faces (A3, B2, C1, D2,
E1, and G1) are shown concentrately, which comprise that of the consecutive DInSAR interferometry
located in left and that of the cumulative DInSAR interferometry located in right. The 6 working faces
are located in Cuncaota No. 2 Mine, Cuncaota No.1 Mine, Bu’ertai Mine, Buliantai Mine, Shangwan
Mine, and Huojitu Mine respectively (see also Figures 1 and 14).
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Figure 15. Cont.
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Figure 15. (a–l) Time-series analysis based on multi-temporal DInSAR.

Along the centroids of subsidence basin of the working faces (see also Figure 14), 6 observation
lines (length difference from 2200 m (B2) to 4840 m (G1)) were set, and re-sampled at an interval of
20 m along the line. So a series of subsidence curves were drawn along the time axis (interval difference
from 336 day (A3, B2, and E1) to 504 day (C1 and G1)).

In Figure 15, a common attribute is in that the results of the consecutive DInSAR interferometry
reappear some phenomena of a forward movement of the footprint of the deformation area with a
series of perfect subsidence basins of subcritical mining such as the Figure 15a,c,e,g. Only in Figure 15i,k
it represents a bit of fluctuate due the influence of near mining. Mean over, another common attribute
is in that the results of the cumulative DInSAR interferometry represent a pattern of the subsidence
basin area continuously expanded and the center of mining subsidence continuously moved forward
(such as the Figure 15b,d,f,h,j,l).

Nevertheless, the Figure 15 also represents the characteristic of high-intensity mining subsidence.
Firstly, it is in that maximum subsidence cannot be obtained from the results of the consecutive
DInSAR interferometry due to strong phase discontinuities caused by the large deformation gradient.
In other words, the subsidence curve is incorrect in the bottom of the bowl. Secondly, the results of the
consecutive DInSAR interferometry express three different patterns of subsidence that the subcritical
mining (Figure 15d,j), the critical mining (Figure 15b,l), and the supercritical mining respectively
(Figure 15f,h). Finally, the results of the average subsidence rate during the observation period were
range from 240 mm/year to 720 mm/year, which is a far less than that of the Poland [43] and of the
Australia (a private communications, Ge, L.L., 2016.7 [45]).
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4.4. Mining Subsidence Characteristics in Working Face 22201-1/2 in Bu’ertai Mine

Time-series analysis was conducted to discriminate ground deformation associated with
past-mining activity and atmospheric effects, and consequently, acquire the spatial distribution
characteristics, deformation pattern, development direction, evolution property, and temporal
correlation of the multi-temporal mining subsidence phase-changing areas. For the determined
boundaries of mining-induced damages, the classification of ground displacement and the calculated
ground displacement parameters have practical significance. The experimental research only focused
on working face 22201-1/2 in Bu’ertai Mine considering the heavy computing and analysis workloads.
Multi-temporal DInSAR interferometry and SBAS-InSAR interferometry were adopted to calculate
the available parameters. The subsidence patterns obtained using these two interferometric strategies
were compared. The results are shown in Figure 16.
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Figure 16. Comparative analysis between multi-temporal DInSAR and SBAS-InSAR. (a) Time-series
subsidence areas of the consecutive DInSAR; (b) Time-series subsidence curves of DInSAR;
(c) Time-series subsidence areas of SBAS-InSAR; (d) Time-series subsidence curves of SBAS-InSAR.

The subsidence curves of multi-temporal DInSAR interferometry with SBAS-InSAR interferometry
were compared, and the following conclusions were drawn.
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(1) In Figure 16a,b, the 17-temporal subsidence curves were obtained from the superposition of
multi-temporal DInSAR interferometry, which could reflect general mining subsidence characteristics.
That is, underground mining caused subsidence. With the expansion of the mining area, the subsidence
area gradually expanded toward the advancing direction and subsidence continuously increased.
The maximum subsidence became stable when it reached a certain extent, thereby forming a critical
mining-induced subsidence bowl. However, rapid considerable subsidence caused by high-intensity
mining (large mining height, thin bedrock, and fast advancing) brought serious decorrelation, and the
principal value of phase change could not be effectively extracted. Accordingly, only the first temporal
subsidence curve was connected smoothly because subsidence was within the unwrapping capacity of
DInSAR (λ/4 = 14 mm) [46].

By contrast, in the subsequent observation the large deformation gradient resulted unwrapping
failure and had a noise phase that was beyond the calculation capacity of the DInSAR. Such subsidence
curves had no practical significance and could not obtained maximum subsidence. Furthermore,
the effect of temporal decorrelation increased with temporal baseline, and the subsidence curve
became insensitive. This condition was accompanied by a certain delay in the middle-temporal and
late-temporal subsidence curves. The accumulation of residual phase changes also caused unexpected
subsidence in non-mining areas.

(2) As shown in Figure 16c,d, SBAS-InSAR interferometry optimized the spatio-temporal baselines
and improved the spatio-temporal sampling rates. The obtained results were more reliable than those of
DInSAR. The 17-temporal subsidence curves of SBAS-InSAR did not only reflect the mining subsidence
characteristics more accurately, but was also closer to the subsidence curve of probability integral
estimation and maintained good continuity. However, it still failed to extract the principal value of
phase changes because of the large deformation caused by mining subsidence. The acquired maximum
subsidence was smaller than 200 mm, which was significantly different from that in practical situations.

(3) The mining area (1.23 km2) and subsidence area (5.58 km2) of the 22201-1/2 working face
were calculated by further interpreting the results of SBAS-InSAR. The ratio of the mining area to
the subsidence area was 1:4.5. The daily average advance rate of the working face was 8.1 m/day,
and the daily average advance rate of subsidence area was 7.9 m/day. The average maximum
subsidence angle was 67.3◦. The advance angles of influence of DInSAR and SABS-InSAR were 53.5◦

and 50.5◦, respectively.

5. Conclusions

In this study, InSAR and SBAS-InSAR techniques allow us understand the annual growing
characteristics of subsidence disasters under high-intensity mining in Shendong Coalfield,
and recognize the ground deformation features above a single working face.

(1) Conventional DInSAR is an effective approach for investigating ground damages caused by
mining subsidence in coal mining areas. It demonstrates our tremendous destructive capability of
the high-intensity coal exploitation. Over 85 phase change regions are identified within 504 days
(20 January 2012 to June 2013) in Shendong Coalfield, including at that time and in the past,
and including open-pit mining and underground mining areas. Annual subsidence area is about
150km2, approximately, which accounted for 4% of the total area of Shendong Coalfield (3481 km2).

(2) The time-series analysis of SBAS-InSAR achieves more reliable results and more accurately
reflects the mining subsidence characteristics of a single working face. It makes some important
parameters (such as the advance distance of influence and the advance angle of influence,
which parameters can be used to predict the extent of mining subsidence so that action can be taken to
prevent buildings from being damaged or other measures taken to control potential geohazards, etc.)
is possible to be obtained.

(3) We find that the ground damage rate(7.9 m/day) caused by the high-intensity mining, is almost
equal to mining rate of the working face(8.1 m/day), which should be a unique phenomenon occurred
only at high-intensity mining conditions. In addition, we find that the advance distance of influence
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is much greater than the distance of the exploitation, but the advance angle of influence(50.5◦–53.5◦)
is much smaller than the angle of conventional mining(67.0◦–70.0◦), this may be due to the rate of
water-loss settlement is much than that of mining subsidence.

(4) We find that some uplift are occurred at the front of working face in the direction of advancing,
which may be caused systematically by orbit error, or by an inappropriate selection of the reference
points. It is more likely a unique phenomenon associated with high-intensity mining. Although we
have not yet to find a well-received explanation, it should be the focus of our future work, and we will
try to understand and explain this phenomenon by means of the in-situ field measurements.
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Abstract: Ground deformation contains important information that can be exploited to look into
the dynamics of a geothermal system. In recent years, InSAR has manifested its strong power
in the monitoring of ground deformation. In this paper, a multi-temporal InSAR algorithm,
WLS InSAR, is employed to monitor and characterize the Yangbajing geothermal field in Tibet,
China, using 51 ENVISAT/ASAR images acquired from two overlapping descending tracks.
The results reveal that the WLS InSAR algorithm can suppress the adverse effects of seasonal
oscillations, associated with the freezing-thawing cycle of the permafrost in the Qinghai-Tibet Plateau.
Deformations of up to 2 cm/yr resulting from the exploitation of the geothermal resource have
been detected in the southern part of the Yangbajing field between 2006 and 2010. A source model
inversion of the subsurface geothermal fluids was carried out based on the elastic half-space theory
using the accumulated deformations. It was found that most geothermal fluid loss has occurred in
the southern part of the shallow reservoir as the pore space beneath the northern part of field was
recharged by the ascending flow from the deep layers of the reservoir through well-developed faults
in the region.

Keywords: InSAR; Yangbajing Geothermal Field; deformation monitoring; source model inversion;
Qinghai-Tibet Plateau

1. Introduction

The Yangbajing geothermal field, located 94 km northwest from Lhasa City, the capital of the Tibet
Autonomous Region, is characterized by the highest reservoir temperature in China. Since its initial
exploration in 1976, the Yangbajing geothermal field has played an important role for the electricity
power supply in Lhasa [1]. It is widely acknowledged that the production from the geothermal
reservoir has caused considerable surface deformation in the Yangbajing basin, which could cause
environmental and structural hazards, such as damage to the power plants [2]. However, the surface
deformation provides useful information about the volume, pressure and temperature variations
within the geothermal system, which makes it possible to study its dynamics [3]. The relationship
between ground deformation and geothermal dynamics is straightforward, i.e., stress change caused
by injection or production of fluid leads to surface deformation. Therefore, it is essential to employ
geodetic techniques for monitoring the surface deformation in order to minimize the associated
damage and infer the dynamics of the geothermal field and the injection/extraction processes.

Remote Sens. 2016, 8, 191 232 www.mdpi.com/journal/remotesensing



Remote Sens. 2016, 8, 191

Recent decades have witnessed a significant development of geodetic tools for ground
deformation measurements. In addition to ground-based measurements (e.g., leveling and GPS), active
geothermal fields can now be monitored using InSAR technology and satellite data. The advantages of
InSAR, e.g., large-scale, high spatial resolution, low cost, all-day and all-weather imaging capability,
have been widely proven in monitoring ground deformation caused by natural disasters [4–7] and
anthropological activities [8–10]. In addition, many advanced InSAR algorithms have been developed
since the beginning of this century [11–15]. By analyzing a time series of SAR images acquired along
the same track, we find that these advanced InSAR algorithms enhance the accuracy and reliability
of the derived average deformation and enable us to measure the evolution of surface deformation
over a long period of time. Many geothermal fields have also been successfully observed by InSAR.
For instance, the deformation and seismicity in the Coso geothermal field in eastern California have
been observed by processing 10 ERS-1/2 images acquired between 1993 and 1998 [16]. The ground
subsidence at the Tauhara and Ohaaki geothermal fields in New Zealand have been analyzed with
12 ALOS PALSAR images between 2007 and 2009 [17]. The deformation and its temporal variation at
the Geysers geothermal field in California has been resolved by using two distinct sets of InSAR data
(i.e., ERS-1/2 and TerraSAR-X), which agreed well with the coupled numerical modeling results [18].

In this paper, we present a study of the Yangbajing geothermal field during the time period
2006–2010 by analyzing a set of ESA ENVISAT C-band SAR data collected from two overlapping
descending tracks. The Yangbajing geothermal field has already been monitored by the SBAS algorithm
with C-band SAR data and the PS algorithm with X-band SAR data, respectively [19,20]. However,
the seasonal oscillations of the permafrost, which have been detected in the Qinghai-Tibet Plateau due
to the freezing-thawing cycle of the permafrost [21], were not previously considered in the retrieval
of the displacements caused by geothermal exploitation. In this study, a WLS InSAR algorithm [22],
a modified version of the SBAS algorithm, is used to distinguish the geothermal exploitation-related
displacements and seasonal oscillations. Furthermore, the resolved deformation is used to characterize
the source model, which can describe the behavior of the Yangbajing geothermal system. The source
model parameters are searched by using a nonlinear optimization method (i.e., genetic algorithm),
followed by a linear least square adjustment.

2. Study Area

The Yangbajing basin (Figure 1a), bordered by Pangduo Mountain to the southeast and Nyenchen
Tonglha Mountain to the northwest, is one of the most developed and largest fault basins in the
Qinghai-Tibet Plateau, with a length of ~90 km and an area of ~450 km2 [23]. The terrain of the
basin is characterized by steep slopes in the southern area of the Zangbo River and gentle relief
in the northwestern area, where several creeks have developed [2]. The China-Nepal Highway
and Zangbo River pass through the basin. There has been intensive tectonic activity in the basin.
For instance, 30 earthquakes with a magnitude ě4.75 have occurred from 1921–1991 in the Yangbajing
geothermal field [24]. As no evidence shows any occurrence of Quaternary volcanic eruptions in the
basin, the Yangbajing geothermal field belongs to the non-volcanic high-temperature fields in the
Qinghai-Tibet Plateau [24]. The basin is covered by different types of frozen soil, including seasonally
frozen ground and permafrost [23].

The Yangbajing geothermal system includes two reservoirs at distinct depths [1,24,25].
The shallow reservoir, divided into northern and southern parts by the China-Nepal Highway,
covers an area of approximately 14.6 km2 at a depth of 180 ~ 280 m (Figure 1b). The temperature in the
shallow reservoir ranges from 150 ˝C to 160 ˝C, and the northern part is generally a little hotter than
the southern part. As the primary electricity generation source, the shallow reservoir yields thermal
water at a rate of 1200 tons/day to the Yangbajing geothermal power plant [24]. The deep reservoir is
a typical bedrock-fractured geothermal reservoir and covers an area of approximately 3.8 km2 in the
northern part of the field. The deep geothermal fluid is stored in fracture zones and tectonic fissures in
the rocks, and migrates along the faults in the region. Downhole temperature measurements show that
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the deep reservoir is characterized by higher temperatures and has at least two layers [2]. The upper
layer, below a depth of at least 950 m, has a temperature of 250~275 ˝C and a thickness of more than
350 m. The lower layer is found below a depth of 1850 m and has a temperature higher than 300 ˝C.
Although the shallow and deep reservoirs are distinguished depthwise by different temperatures,
they belong to the same geothermal system. It has been confirmed that the occurrence of the Yangbajing
geothermal field is due to a magmatic heat source [26]. The recharge of the Yangbajing geothermal
fluids occurs because of the snowmelt water from the Nyenchen Tonglha Mountains at altitudes
of 4400~5800 m [1]. The primary discharge paths were the hot springs before the power plant was
built. Since the Yangbajing geothermal field started to produce electricity in 1977, intense exploitation
dominates the discharge of the geothermal fluids [25].

Figure 1. (a) Optical image of the Yangbajing Basin. Dashed boxes outline the footprints of the
ENVISAT ASAR descending images. The black rectangle indicates the study area. The inset provides
the location of the study area in the Qinghai-Tibet Plateau; (b) Optical image of the study area, i.e., the
Yangbajing geothermal field.

3. Datasets and Processing

A total of 51 SAR images acquired from two ENVISAT descending tracks are analyzed in the
investigation of the Yangbajing geothermal field. The datasets span a time interval of four and a half
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years from April 2006–September 2010. The footprints of the two sets of SAR images can be seen
in Figure 1a. Clearly, more than half of the frames overlap, providing an opportunity to conduct
a quantitative comparison. The datasets include 29 scenes from Track 176 and 22 scenes from Track
405, allowing us to generate 121 and 68 interferograms, respectively, after applying thresholds for the
spatial-temporal baselines (Figure 2). The selected thresholds are a temporal baseline smaller than
700 days (approximately 2 years) and a perpendicular baseline shorter than 150 m. Precise orbital data
provided by ESA are employed to refine the orbit vectors of the ENVISAT SAR images.

 
Figure 2. Spatial-temporal baselines of the SAR data: (a) Track 176; and (b) Track 405. Circles and lines
represent the SAR images and small-baseline interferograms.

The standard two-pass differential InSAR approach is used to process each small baseline
interferogram. The 90-m SRTM DEM data were used to remove the topographic contribution
in the interferograms. A multi-look processing (i.e., 2 looks in range and 10 looks in azimuth
directions) is adopted to suppress the decorrelation noise. In addition, the decorrelation noise in
the generated differential interferograms is further minimized by using an improved Goldstein
filter [27]. After a reference pixel is selected, the differential interferograms are then unwrapped
by a minimum-cost flow algorithm in order to retrieve the real phase at the coherent pixels.

3.1. WLS InSAR Estimation

The phase at a pixel in a differential interferogram, including the contributions from the surface
deformation, topographic residuals, orbital errors, atmospheric artifacts, and remaining phase noises,
can be written as:

φint “ 4π
λ

Δdlos ` 4πBK
λRsinθ

Δε ` φorbit ` φatmo ` φnoise, (1)

where φint is the phase in the differential interferogram, Δdlos denotes the phase component due to
the LOS surface deformation between the master and slave acquisitions, Δε is phase component due
to the topographic residuals, φorbit and φatmo are the phase components due to the inaccurate orbit
and atmospheric delays, respectively (which usually behave as phase ramp throughout the whole
image and can be removed by the polynomial fitting method [28,29]), φnoise is the phase component
due to the remained noises, λ is the wavelength, BK is the perpendicular baseline, R is the slant range
between the sensor and the target, and θ is the incidence angle.

According to Equation (1), it is obviously difficult to resolve the deformation of interest from
other contributions (e.g., the topographic residuals), if only a single differential interferogram were
used. However, when many differential interferograms along the same track are available, a time
series analysis can be conducted to estimate the LP temporal component of the surface deformation.
This is how most current advanced InSAR algorithms work. Although the production-induced
deformation can generally be characterized by gradual accumulation, the seasonal variations require
consideration in this study due to the freezing-thawing cycle of the permafrost in the Qinghai-Tibet
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Plateau. Therefore, the LP deformation component can be modeled by the following superimposed
function [22]:

Δdlos “ α1¨Δt ` α2¨sin
ˆ

2π
T

¨Δt
˙

` α3¨cos
ˆ

2π
T

¨Δt
˙

(2)

The first term on the right side of this equation is the linear deformation component, the second
and third terms reflect the seasonal deformation component, Δ t is the time interval between the master
and slave acquisitions, T is the period of the seasonal deformation (one year in this study), and α1, α2

and α3 are the amplitudes of the base functions requiring estimation. Assuming there are m differential
interferograms available along a track, a linear system with four unknowns and m observations can be
constructed as:

Φ “ B¨X (3)

where Φ “ “
φint,1,φint,2, ¨ ¨ ¨ ,φint,m

‰T is the observation matrix, X “ rα1,α2,α3, ΔεsT is the unknown
matrix, and B is the design matrix
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(4)

This linear system can be resolved using the WLS adjustment when m ě 4:

X “
´

BTΣ´1
Φ B

¯´1
BTΣ´1

Φ Φ, (5)

where ΣΦ reflect the stochastic properties of the observation matrix, composed by the variances of the
differential interferograms. For each pixel, the variance estimate is based on the probability density
function of the differential phase, which depends on the interferometric coherence and multi-look
number [22].

The phase residuals, contributed by the HP temporal phase components and the unmodeled
atmospheric phase components (i.e., turbulent atmosphere), can be separated from the phase
measurements after removing the estimated LP deformation components and topographic residuals.
A least-squares inversion is then applied to retrieve the time series of the phase residuals, corresponding
to the SAR images, assuming its mean is zero. Subsequently, spatial median and temporal triangle
filtering are carried out to separate the turbulent atmospheric phase components from the time
series of the phase residuals. Thus the estimated turbulent atmospheric phase components and
topographic residuals are subtracted from the differential interferograms. Finally, the refined
differential interferograms are processed using the WLS adjustment again, in order to estimate the
time series of surface displacements.

3.2. Source Model Inversion

Once the surface deformation due to the dynamics of the geothermal system is accurately
measured, it should be inverted to retrieve the geothermal parameters at depth. In this study,
we assume a volumetric source component for the Yangbajing geothermal system based on the
elastic half-space theory [3]. This means that the surface deformation at the geothermal field is caused
by the movement of fluids and gases generated by the geothermal activity beneath the field. It should
be noted that although not all tectonic stresses can be described, the volumetric source component is
an acceptable assumption for a geothermal system [30]. Therefore, when the Earth deforms elastically,
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a linear relationship between the surface displacement and the subsurface volume change can be
constructed as [31]:

di pxq “
ż

V
Gi px, yq Δv pyq dy, (6)

where di pxq is the ith component of surface displacement at pixel x (i “ 1, 2, 3 correspond to the
up, east, and north components, respectively), Δv pyq is the fractional volume change of block y with
a source volume V, and Gi px, yq is the Green’s function of the observation pixel x and source block
y using a homogeneous elastic half-space assumption [32], the Green’s function can be expressed
as follows:

Gi px, yq “ pν ` 1q
3π

pxi ´ yiq
S3 , (7)

where S “
b

px1 ´ y1q2 ` px2 ´ y2q2 ` px3 ´ y3q2 is the distance between the observation pixel x and
the source block y, and ν is Poisson’s ratio (0.25 in this study).

For more details about the presented forward modeling of the volumetric source component,
see [33]. However, it should be noted that other sources, such as finite rectangular source [34],
nucleus-of-strain formulation [35] and its developers in geophysics [36] and reservoir engineering [37],
can also be used to construct the relationship between the surface displacement and the
subsurface dynamics.

Since the InSAR-derived LOS measurement is related to the up, east, and north deformation
components according to the radar imaging geometry [38,39], Equation (6) can be rewritten as:

dlos pxq “
ż

V
pu1G1 px, yq ` u2G2 px, yq ` u3G3 px, yqq Δv pyq dy, (8)

where u1, u2 and u3 are the components of unit vector, projecting from the up, east, and north directions
onto the LOS direction, respectively:

$’&
’%

u1 “ cosθ

u2 “ ´sinθcos pα ´ 3π{2q
u3 “ ´sinθsin pα ´ 3π{2q

, (9)

where θ is the radar incidence angle and α is the azimuth angle (clockwise from north).
Since a number of displacement measurements are provided by InSAR, the set of Equation (6) can

be written into a vector-matrix form:
D “ GV , (10)

where D is the observation vector containing the InSAR LOS displacement measurements at the
surface points, and V is the unknown vector containing the fractional volume changes within
a grid of subsurface blocks. Apparently, this system can be solved by the linearization approach
(i.e., least-squares adjustment) if the design matrix G is accurately determined and the number of
the observations is larger than that of the surface blocks. The latter condition can be easily satisfied,
since we can divide the subsurface volume into a coarse gird (several times the InSAR pixel size)
and a few layers (fewer than three layers). However, the former condition depends on the a priori
geometrical information about the source volume, i.e., the depth and thickness of the geothermal
system. We can employ a nonlinear optimization method (e.g., genetic algorithm) to estimate the
best-fitted geometrical parameters in case they are not accurately provided. In order to balance the
estimation accuracy and the computation burden of the nonlinear inversion we assume that the
fractional volume changes are uniform at all blocks, so that only three unknowns (depth, thickness,
and uniform volume change) require estimation. In addition, a quadtree down-sampling algorithm is
applied to reduce the large number of InSAR point observations, while retaining sufficient information
for inversion.
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As the geometric parameters of the geothermal system are either provided in advance or estimated
by the genetic algorithm, the fractional volume change at each block can be estimated by applying the
least-squares adjustment to Equation (10). Note that the original sampling InSAR point observations
are used in the linear inversion in order to make use of as many observations as possible. However,
although the linear system is over-determined, the solution of the fractional volume changes could be
unstable, due to the observation errors and the errors of design matrix. A roughness penalty should be
included in the system to stabilize the least-squares inversion [3,40]:

«
D
0

ff
“

«
G

Wr¨Π

ff
V , (11)

where Π is the penalty matrix that estimates the spatial derivative of the fractional volume change,
and Wr is a weighting factor controlling the relative importance of the roughness penalty term with
respect to the data misfit term, which can be solved by the method of trial and error in a number of
inversions [3]. Therefore, continuity can be preserved for the estimated fractional volume changes,
which ensures that the geothermal system represents a connected network rather than a collection of
isolated blocks. The roughness penalty is however not necessary if the a priori knowledge about the
reservoir is provided [41,42].

Besides the presented two-step scheme, the inversion can also be conducted by some integrated
schemes (e.g., the Ensemble-based approaches [42,43]), which can avoid the possible inappropriate
results yielded by the nonlinear inversion. The two-step scheme is preferred in this study since its
applicability has been widely demonstrated in many geophysical inversion problems related to such
seismic events. In addition, it is quite simple and efficient to conduct the two-step scheme.

4. Results

The linear LOS surface displacement velocity maps are first estimated by the WLS InSAR
algorithm for Tracks 176 and 405, respectively, as shown in Figure 3a,b. Note that the exposed rock at
the foot of the Nyenchen Tonglha Mountain is selected as the reference area, where the deformation
can be neglected (see black square in Figure 4a). In addition, the areas with low coherence (<0.35)
have been masked out to avoid unwrapping errors induced by large decorrelation noise. Figure 3
shows that most areas in the Yangbajing basin were rather stable, with LOS displacement rate below
0.5 cm/yr. However, the linear displacement velocity estimated by the data from Track 176 (Figure 3a)
shows that the Yangbajing geothermal field (black box in Figure 1a), has experienced obvious local
surface deformation. This ground subsidence is also detected by the data from Track 405, although
only the right half of the geothermal field is covered (Figure 3b). As mentioned above, a linear ground
deformation is expected to be caused by the withdrawal of subsurface fluid from the Yangbajing
geothermal system. Figure 4a shows the superimposed displacement velocity fields estimated by
both sets of SAR data, where the overlapping regions are difficult to distinguish due to their good
resemblance. An enlarged view of the Yangbajing geothermal field is shown in Figure 5a. Most of the
ground subsidence occurs in the southern part of the Yangbajing geothermal field, with a maximum
LOS velocity of ~2 cm/yr. The northern part experiences gentle, smaller-scale ground subsidence,
with LOS velocities generally smaller than 1 cm/yr. It is also observed that the ground subsidence
increases from the margins to the center of the geothermal field. However, the displacements near the
hydrothermal explode hollow and the Zangbo River are unavailable due to decorrelation of the InSAR
observations. This is somewhat expected since the moist and changeable features of the ground surface
at the discharge area of the geothermal field is quite unfavorable for InSAR observations. It is possible
that even larger ground subsidence have occurred in that area.
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Figure 3. Linear LOS displacement velocity maps for the Yangbajing basin, which are superimposed
on the SRTM-derived shaded relief map. (a) Track 176; (b) Track 405. Black squares represent the
reference area.

 
Figure 4. (a) Superimposed LOS linear displacement velocity map. The black rectangle marks the
study area (Yangbajing geothermal field); (b) Histogram of the differences between the displacement
results estimated from the SAR data of Tracks 176 and 405.

From the LOS surface displacement evolution estimated by the WLS InSAR algorithm for Tracks
176 and 405, we found that the whole Yangbajing basin experiences obvious seasonal oscillations,
i.e., ground uplift in the cold season and subsidence in the warm season. This is to be expected,
since this area is covered by the permafrost, deforming with the freezing-thawing cycle of the active
layer [23]. However, the surface displacements induced by geothermal production are somewhat
obscured due to the seasonal oscillations. In order to present the details of the local deformation
evolution, the deformations at two selected points marked A and B in Figure 5a, are shown in
Figure 6a,b, respectively. It is observed that the displacement evolutions estimated from Track 176
and 405 agree quite well with each other. Point A shows seasonal variations in the margins of the
geothermal field, where the cumulative displacement velocities are smaller than 2 mm/yr. Point B
at the center of the geothermal field is characterized by both seasonal variation and cumulative
displacement. The cumulative displacement velocity at point B, about ´1.5 cm/yr, reveals that the
Yangbajing geothermal field experiences obvious ground subsidence. Profile CC’ across the field,
whose location is marked with a dashed line in Figure 5a, is also shown in Figure 6c, exhibiting the
progress of the deformation along the profile. In order to better represent the cumulative deformation
associated with the production of the Yangbajing geothermal system, four deformation evolutions
acquired on nearly the same dates (but different years), i.e., 15 April 2007, 4 May 2008, 19 April 2009,
and 9 May 2010, are selected to minimize the effects of the seasonal oscillations. The reference time of
the four deformation evolutions is 30 April 2006. As displayed in Figure 6c a subsidence funnel was
clearly formed in the Yangbajing field that kept growing with time.
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Figure 5. Maps of measured and simulated displacement velocities at the Yangbajing geothermal
field, as superimposed on the optical map. (a) Linear displacement velocity map from InSAR;
(b) Down-sampled linear displacement velocity; (c) Simulated linear displacement velocity;
(d) Differences between the InSAR-estimated and the simulated linear displacement velocity. Triangles
mark selected points A and B (see text). The dashed line shows the location of profile CC’. Black and
white solid lines mark the China-Nepal Highway and Zangbo River, respectively.

Figure 6. Point time series of deformation and deformation profiles. (a,b) Evolutions of LOS surface
deformation at points A and B marked in Figure 5a. Circles and triangles represent the results of Track
176 and 405, respectively; (c) LOS surface deformation (with respect to 30 April 2006) along profile CC’.
Deformations acquired on similar dates in four consecutive years are presented, in order to minimize
the effects of seasonal variations.

240



Remote Sens. 2016, 8, 191

The estimated LOS linear surface displacements at the Yangbajing geothermal field are further
down-sampled by the quadtree algorithm to provide less-dense observations for the nonlinear
inversion of the geometrical information about the source volume. In the quadtree down-sampling,
the LOS displacement field is first divided by the blocks with a dimension size of 64 ˆ 64. These initial
blocks are then divided into four equal-sized square blocks if the difference between the maximum
and the minimum displacements of the block elements is less than 2 mm, until the dimension size of
block reaches 4 ˆ 4. The result is shown in Figure 5b, achieving 844 data points, 2% of the original
43,684 displacement observations. Using the down-sampled InSAR displacement observations, the best
fitted geometrical parameters are inverted by using a genetic algorithm with 51 iterations. These
estimates are 189.1 and 81.0 m for the reservoir depth and thickness, respectively. Subsequently, the
shallow reservoir is divided into a rectangular grid of size 100 ˆ 128, i.e., two times coarser than that of
the InSAR pixel grid. This means that the grid spacing of the shallow reservoir is ~90 m. The fractional
volume change at each block is then determined by using a least-squares adjustment with a roughness
penalty, as shown in Figure 7. The total value of the fractional volume change is estimated at ´21.5,
which is comparable to that of the uniform volume change (i.e., ´24.3). Since no a priori information
about the reservoir can be used to constrain the distribution of volume change, the roughness penalty
term Wr of 10 is used in the inversion, on the basis of an examination of the data misfit. In other words,
we pick Wr such that the difference between the InSAR-measured and the simulated displacement
velocity fields is insignificant. In addition, we adopt an iterative strategy to ensure the robustness
of the inversion. In the initial processing, the variety range of uniform volume change is relatively
large to cover most situations. In the iterative processing, the variety range of uniform volume change
is set to smaller by using the average value of the fractional volume change estimated from the last
iteration as the reference. The iterative processing will be terminated when the standard deviation
of the difference between the two consecutively estimated fractional volume changes is smaller than
a pre-determined threshold (0.002 in this study).

Figure 7. Fractional volume changes of the Yangbajing geothermal system inverted from the InSAR
displacement observations. Black and white solid lines represent the China-Nepal Highway and
Zangbo River, respectively. Red dashed lines and black dots mark fault locations and the locations of
production wells [2].
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The linear displacement velocity field simulated by the inverted source model is shown in
Figure 5c and then compared with the InSAR-estimated one. The two displacement velocity fields
are rather similar. Figure 5d shows the differences between the InSAR-estimated and the simulated
displacement velocities. Most of the differences range from ´1 to 1 mm, de monstrating that the
inverted source model for the shallow reservoir can well explain the linear surface displacements
measured in the Yangbajing geothermal field. Despite the overall agreement, some relatively large
residuals (up to 4 mm) can be found around the decorrelated areas. They are characterized by a
grid-shape, mostly due to the InSAR observation noises and errors associated with the sparse grid
used for the geothermal model inversion.

As expected, obvious volume changes are found under the ground where subsidence occurs
(Figure 7). The total volume change of the Yangbajing geothermal system was estimated at
´1.41 ˆ 107 m3/yr, indicating that a significant volume of geothermal fluids had been extracted
from the shallow reservoir during the investigated period. Most of the source volume reduction
occurred in the southern part of the field, between the Nepal Highway and the Zangbo River.

5. Discussion

Field surveys have been carried out in the Yangbajing field since 1983 to monitor the ground
subsidence associated with the geothermal exploitation. The observed mean annual velocity reached
~3.5 cm/yr at the southern part of the field [2]. Field work was suspended in 1994 due to shortage of
financial support, so there are no in situ data to assess the accuracy of the InSAR-measured surface
deformation. However, the decrease of the mean annual velocity during the investigated period is
reasonable, since the main geothermal exploitation gradually transferred from the southern to the
northern field [44]. The observed deformation velocities are comparable to other measurements with
the InSAR technique [19,20]. Furthermore, we performed quantitative comparisons in the overlapping
area between the displacement fields observed using SAR data from Tracks 176 and 405. As shown
in Figure 4b, the differences basically range from ´2 to 2 mm/yr, with a standard deviation (STD) of
0.1 mm/yr and a mean of 0.4 mm/yr. This good agreement indicates that the WLS InSAR algorithm
is suitable to estimate the linear surface displacements in the geothermal field. The residuals can be
explained by the differences between the incidence angles of the two sets of SAR images. Compared to
conventional survey methods, InSAR requires much less human and financial support, and therefore
can be used as a routine tool in the investigation of the geothermal field.

Also, a 4-km portion of the China-Nepal Highway passes through the subsidence region.
Although the highway and railway constructed in the permafrost area have been designed to prevent
hazards related to the freezing-thawing cycle of the active layer, the cumulative inhomogeneous
deformation induced by the geothermal production represents a more serious threat to road
infrastructure. Therefore, the InSAR-derived displacements should be taken into account in any
further exploitation plan for the Yangbajing geothermal field.

Although it has been reported that the Yangbajing geothermal system consists of shallow and
deep reservoirs [25], in this study we only consider the shallow layer for the source model inversion.
This simplification is realistic for three reasons. First, most thermal water used for electricity generation
was extracted from the shallow reservoir during the study period [24]. Second, the deep geothermal
fluid is stored in the fracture zones and tectonic fissures at least 950 beneath the surface m, where
the space and pressure are fairly steady. Therefore, it has quite limited effect on the ground surface
deformation, which depends on the combination of pressure reduction and the effective elastic modulus
of the reservoir. Thirdly, the deep reservoir is expected to be located in the northern part of the
Yangbajing field and to generate the shallow reservoir in the Quaternary pores through a side flow
recharge of hot fluids [2]. Therefore, monitoring the dynamics of the shallow reservoir reflects in
a certain degree the dynamics of the deep reservoir.

The production wells are distributed uniformly in the Yangbajing field, 24 in the northern part
and 31 in the southern part (see dots in Figure 7). The localization of the volume reduction in the
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southern part indicates that the deep reservoir is located in the northern field and recharges the shallow
reservoir there. This result supports the conceptual reservoir models for the Yangbajing geothermal
system proposed in [1,2]. Red dashed lines in Figure 7 denote the observed and inferred faults in the
Yangbajing field. We found that rhombic block structures are crossly formed along the northeast and
the northwest striking faults. The longest northeast striking fault is located near the Nepal Highway,
serving as a boundary between the northern and southern geothermal systems. The mature faults in
the northern part provide ideal conditions for the ascending flows from the deep reservoir. However,
only one of the northwest striking faults extends to the southern field. This could explain why the
fluid loss in the southern part of the shallow reservoir cannot be immediately replenished by the flow
from the deep reservoir.

6. Conclusions

Monitoring the surface deformation induced by the geothermal production is essential to prevent
possible geo-hazards, as well as to infer the dynamics of the subsurface flow fluids. In this study we
employ an advanced InSAR algorithm, termed WLS InSAR, to investigate the Yangbajing geothermal
field in the Qinghai-Tibet Plateau. We used a set of ENVISAT ASAR data acquired from two adjacent
descending tracks from 2006 to 2010. By introducing a seasonal deformation model, the accumulated
displacements caused by the geothermal production are separated from the seasonal oscillations
associated with the freezing-thawing cycle of the permafrost. The elastic half-space theory is then
applied to characterize the source model of the Yangbajing geothermal system from the WLS InSAR
displacement measurements. Two main conclusions can be summarized from this study:

(1) The WLS InSAR algorithm can be applied to detect and monitor ground deformation occurring
in geothermal fields. Although in situ observations are unavailable during the study period, the pattern
and amplitude of the InSAR-measured displacements are reasonable according to the field survey
between 1983 and 1994. A cross-validation has been conducted between the two adjacent tracks’
InSAR measurements, indicating an accuracy of millimeter or even sub-millimeter level. It is observed
that the southern part of the Yangbajing field experiences considerable linear deformation along
the LOS direction, of up to ~2 cm/yr, which behaves as ground subsidence and radial contraction.
In addition, almost 8 cm peak-to-peak seasonal oscillations have been inferred from the deformation
evolution results.

(2) InSAR-measured displacements are very useful for the inversion of the source model of the
subsurface geothermal fluids. The geometrical parameters and the fractional volume changes of
the Yanbajing geothermal system have been determined by a genetic algorithm and least squares
adjustment, respectively. The results reveal that geothermal fluids of 1.41 ˆ 107 m3 had been extracted
from the shallow reservoir every year in the period 2006–2010. The fluid loss in the southern part of
the shallow reservoir dominates the source volume reduction. In the northern part, the discharged
fluid has been refilled by ascending flow from the deep reservoir. The reason for these assumptions
is that the deep reservoir is located in the northern field and has several developed faults serving as
natural pipelines for the thermal fluids.

Since field surveying is always a time- and labor-consuming work, InSAR should be viewed as
a routine tool to monitor and characterize the Yangbajing geothermal field in the future. In particular,
the newer TerraSAR-X, COSMO-SkyMed and Sentinel-1 SAR data have finer resolution and shorter
revisit period than the ENVISAT ASAR data, and the use of them will significantly enhance the spatial
and temporal resolutions of the measured surface displacements. Although the volume change in
the shallow reservoir is proven sufficient to fit the InSAR-measured displacements, the interactive
behavior of the fluid flows between the shallow and deep reservoirs should be considered in order to
investigate the interior dynamics of a geothermal system, especially when more surface displacement
observations and subsurface geometrical information are provided.
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Abstract: How to accurately determine the mechanical parameters of rockfill is one of the key
issues of concrete-face rockfill dams. Parameter back-analysis using internal or external monitoring
data has been proven to be an efficient way to solve this problem. However, traditional internal
or external monitoring methods have limitations in efficiency and long-term monitoring. In this
paper, the displacement of the Shuibuya concrete-face rockfill dam is monitored by the space-borne
Interferometric Synthetic Aperture Radar (InSAR) time series method. Using the InSAR results and
the finite element method, the back-analysis of the mechanical parameters of the rockfill dam is
investigated, and the back-analysis results of InSAR and levelling are compared. A high correlation
of 0.99 for the displacement results generated from InSAR and the levelling offers good agreement
between the two methods. The agreement provides confidence that the external InSAR monitoring
measurement allows producing a reliable back-analysis and captures the displacement properties
of the dam. Based on the identified parameters from the InSAR results, the dam displacement is
predicted. The prediction of the maximum settlement of the dam is 2.332 m by the end of 2020,
according to the dam displacement characteristics, which agrees well with the results derived from
the recorded internal monitoring data. Therefore, the external monitoring results from the InSAR
observation can be used as a supplement for traditional monitoring methods to analyse the parameters
of the dam.

Keywords: Interferometric Synthetic Aperture Radar (InSAR) time series; Concrete-Face Rockfill
Dam (CFRD); numerical modelling; finite element method; back-analysis

1. Introduction

In the stability and security analysis of the concrete-face rockfill dams (CFRDs), the physical
parameters of the rockfill are pre-requisite for settlement prediction. Because of the complexity of
the dam characteristics, the material properties are influenced by the loading, load size, stress path
and other factors in the engineering project. Currently, engineering analogy, expert experience and
experimentation are used to determine the material parameters of the rockfill. However, engineering
analogies and expert experience require users who have rich experience in engineering and detailed
engineering data. Lots of subjective factors are contained in the results. Due to the scale effect, sample
disturbance and the impact of random sampling, it is difficult to guarantee the representation of the
experiment results [1,2]. Moreover, even though the accurate design parameters of the rockfill are
obtained by experiment, the values are greatly different from the actual engineering parameters due to
the influence of the construction process, construction technology, construction quality, the external
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environment and other factors. Therefore, the stress–strain analysis, operational behaviour analysis
and safety evaluation based on the experimental parameters cause great error in CFRDs.

Parameter back-analysis using the internal or external monitoring data has proven to be
an efficient way to identify the physical parameters of the rockfill [3,4]. Based on the identified
parameters, the stability and security analysis of the CFRDs can be investigated using the finite
element method (FEM) [5]. The internal monitoring methods include tension wire alignment and
hydraulic overflow settlement gauges [6–8]. However, these internal monitoring methods do not meet
the safety monitoring requirements of large dams in terms of efficiency and long-term observations
because of their low coverage and durability, and labour-intensive monitoring needs. The internal
monitoring data, the optimization algorithm and the artificial neural network are used in traditional
back-analysis to identify the parameters of the rockfill dam [3,9–11]. Generally, external monitoring
methods include levelling or Global Position System (GPS) measurement, but they are rarely used
in back-analysis. Traditional back-analysis requires many training samples when using the artificial
neural network and is time-consuming and inefficient. To overcome these disadvantages, a response
surface method (RSM) may be applied during the processing [4].

In the past two years, interferometric synthetic aperture radar (InSAR) has proven to be a powerful
tool to measure the Earth’s surface movements. Few studies have focused on using InSAR to map the
displacement of dam bodies and/or reservoir slopes [12–15], and back-analysis in high CFRDs based
on InSAR observations has not been performed. In this study, we aim to use the space-borne InSAR
time series results of Shuibuya (SBY), the RSM and the FEM to investigate the physical parameters of
the rockfill of the SBY Dam and to predict its long-term displacement of the dam. The numerical results
calculated using the back-analysis model parameter set based on the InSAR results are compared with
the levelling monitoring data.

This paper is structured as follows: Section 2 presents the general description of the SBY Dam.
Section 3 presents the SAR data, a short description of InSAR time series processing and the InSAR
time series results. The constitutive model, back-analysis method, identified parameters set, validation,
stress and displacement analysis are given in Section 4. Finally, the discussions and conclusions are
presented in Sections 5 and 6.

2. Study Area

Located on the middle stream of the Qingjiang River in the Enshi Autonomous Prefecture,
Hubei Province, China, the SBY CFRD (110.3377◦N, 30.4374◦E) is approximately 117 km upstream of
the city of Enshi and 92 km from the downstream Geheyan Hydropower Plant (Figure 1). The height of
the SBY CFRD is up to 233.5 m, and the crest length is 675 m. The normal water level of the reservoir is
400 m above sea level, and the maximum water storage of the reservoir is approximately 4.59 × 109 m3.
The SBY Dam has four generators in its underground power plant, with a total electric generating
capacity of 1840 MW. It is a typical concrete-face rockfill dam, and its body is composed of six material
zones: arbitrary fill material, bedding material, transition material, primary rockfill, secondary rockfill
and downstream rockfill (Figure 2a). The upstream and downstream of the dam has the same slope of
1:1.4. The construction began in October 2002 and can be divided into three reference periods:

I Dam construction period (before October 2006).
II The first reservoir filling period (October 2006–September 2007, when the water level was

between 205.06 m above sea level and 389.61 m).
III Operation period (after September 2007).

Because of the significance of the project, an improved and detailed settlement monitoring
system was implemented for the SBY CFRD, including eleven levelling monitoring stations distributed
downstream of the dam. The eleven monitoring stations (WS1 to WS11) were established at elevations
of 235 m, 265 m, 300 m, 335 m, and 370 m to monitor the settlement of the downstream dam surface
(as shown in Figure 2b).
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Figure 1. The location of the study area and the Shuibuya Reservoir: (a) The location of the Shuibuya
Reservoir (red triangle); and (b) View of the Shuibuya concrete-face rockfill dam (CFRD). This figure is
adapted from [16].

Figure 2. Typical zoning and layout of the exterior settlement monitoring system of the Shuibuya CFRD:
(a) The six material zones; and (b) The eleven external settlement monitoring stations. This figure is
adapted from [16].

3. InSAR Data Analysis and Results

A detailed InSAR data processing steps and analysis about the SBY dam is performed in our
previously paper [16]. Here, we present a short description of the InSAR processing and related results.
Twenty-one ascending ALOS-1 PALSAR L-band (~23.6 cm wavelength) images acquired from the
Japan Aerospace Exploration Agency were used to map the displacement of the SBY Dam. The ALOS-1
satellite was launched in January 2006 and terminated in April 2011. Only images from 28 February
2007 to 11 March 2011 were processed, representing the period after completion of the dam (Figure 3).
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In the single-imaging mode, the resolution of the images is approximately 4.7 m in the slant range
and 4.5 m in the azimuth direction. The incidence angle is approximately 38.7◦. There are many
archived ESA Envisat ASAR C-band (~5.6 cm) images, however the resolution is too low (~20 m).
Considering the scale of the dam, ASAR data is not suitable for this study. Although the resolution of
the TerraSAR-X and Cosmo-SkyMed X-band (~3 cm) images are much higher (up to 1 m), there is very
little archived data in this area at present. That means these data are not suitable for the InSAR time
series analysis.

 

Figure 3. Interferogram distribution in terms of the spatial and temporal baseline, adapted from [16].
Each black circle represents one SAR image and the black solid line between two circles represents
one interferogram.

The GAMMA processing package was used to generate single look complex (SLC) products
from the set of raw SAR images [17]. All SLC images were co-registered to a chosen master
image (2 June 2008) to match the dataset to its later interferogram generation. Next, an area of
approximately 5 km × 5 km (1000 pixels × 1000 pixels) centred on the SBY Dam was cropped from
the original 70 km × 70 km SLC images (Figure 4a). All possible interferograms were generated
with a spatial baseline below 2000 m and temporal baselines below 30 months. Then, interferograms
were investigated visually, and only interferograms with a valid phase and coverage greater than
70% were kept for later InSAR time series analysis. Finally, 26 interconnected interferograms were
selected (Figure 3). Topographic fringes of each interferogram was subtracted by using the 1-arc second
(~30 m) Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) [18], and the MCF
algorithm was used to unwrap the phase [19]. Given the image resolution and the scale of the SBY
Dam, multi-looking processing was not performed in this study.

Figure 4. The cropped study area and the average coherence map in radar geometry (not geocoded):
(a) The amplitude image of the study area; and (b) The average coherence map, where white indicates
pixels with strong coherence and black indicates pixels with low or no coherence. This figure is quoted
from [16].
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Generally, the unwrapped phase consists of five terms: displacement signal, inaccurate orbital
information, topographic error, atmospheric propagation delays (atmospheric phase screen, APS), and
noise [20]. There are various approaches have been developed to reduce the latter four terms based
on multi-interferogram analysis [21–25]. In this study, the InSAR Time Series with the Atmospheric
Estimation Model (InSAR TS + AEM, [26]) is used to perform the time series analysis, which is based
on the Small BAseline Subset algorithm (SBAS) (e.g., [22]). The temporal or intermittent coherent pixels
strategy was applied to increase the density and distribution of stable pixel [27,28]. The Figure 4b
shows the average coherence of the study area.

Because the study area is approximately 5 km × 5 km, a linear plane across the entire interferogram
is sufficiently accurate to remove the orbital error [20]. For a given set of unwrapped interferograms,
topographic error signals can be separated because they are proportional to the perpendicular
baselines [20]. Therefore, the orbital and topographic error can be estimated and individually removed
from the unwrapped phase. Taking into account the spatial structure of atmospheric effects (only
correlated in space) (e.g., the power-law process [29,30]), the APS can be estimated using a temporary
linear velocity (TLV) model and can be distinguished from non-linear surface motion, more details
can be found from [26]. The algorithm was applied iteratively until convergence was achieved [26,31].
A small area (500 m × 500 m) in the village was assumed to be stable during the InSAR observations and
was therefore selected as the reference site for the InSAR time series analysis (Figure 4a). For a given
pixel, the LOS displacement contains three displacement components in east, north and up direction.
It is a function of incidence angle and above three components:

dlos = cosα sinϑde − sinαcosϑdn − cosϑdu (1)

where de, dn, du, are displacements in east, north and up directions respectively, α is the azimuth of the
satellite heading (positive clockwise from the north) and ϑ is the radar incidence angle.

In this study, we assume that the horizontal components are negligible. Assuming this, the vertical
component can then be converted from dlos using the local incidence angle: du = −dlos/cosϑ. The LOS
mean velocity and LOS time series were both converted into vertical direction measurements
(Figure 5a). Eleven points at the same locations as the eleven WS stations of the dam were used
to investigate the accuracy of the InSAR measurements. These eleven locations were carefully selected
by cross-reference of the optical image, SAR amplitude image, and the ground monitoring locations.
Finally, a high correlation of 0.9 and an RMS of 1.5 cm/year provided confidence that InSAR can
produce reliable monitoring results (Figure 5b).

Figure 5. InSAR Vertical displacement velocity of the study area in radar geometry (not geocoded),
and comparisons between the levelling: (a) The vertical displacement velocity, the blue star presents
the reference location; and (b) The comparisons between InSAR and levelling measurements, black
lines is a 1:1 line. This figure is adapted from [16].
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4. Mechanical Parameter Back-Analysis Using the FEM and InSAR Results

4.1. Mechanical Parameters Back-Analysis Method

Rockfill model parameters back-analysis is used to find one group of parameters that make the
calculated and observed displacement correspond. This process includes the following steps (shown
in Figure 6):

1 Build the objective function using the InSAR results, as Equation (2). Equation (2) presents the
InSAR results of ith monitoring point.

2 Perform the strain-stress analysis using the FEM (see Section 4.1.1) and the calculation of the RSM
as defined in Section 4.1.2. Using the RSM, simulate the relationship between the parameter set
and the displacement of each monitoring point.

3 Find the optimal parameter set of the objective function using the modified genetic algorithm
(GA) introduced in Section 4.1.3. The optimal parameter set is a combination of the material
parameters that minimize the objective function. During the process of searching, these RSM are
used to replace the FEM to calculate the fitness of all the measurement points.

Figure 6. The flow chart of the parameter back-analysis.

The 2-norm of the difference between the calculated and observed displacement at the measuring
points is used to build the objective function.

f (λ1, λ2 · · · , λn) =

[
1
n

n

∑
i=1

(
ui − u∗

i
u∗

i

)2
]0.5

(2)

where (λ1, λ2 · · · , λn) is a group of constitutive parameters to be identified, ui is the calculated
displacement at the monitoring point i, u∗

i is the corresponding measured displacement and n is the
number of monitoring points used in the back-analysis.

4.1.1. The FEM Model and the Constitutive Model

To further extend the investigation of the settlement determined by the InSAR analysis, we used
the finite element method to conduct mechanical parameter back-analysis and strain-stress analysis,
which allowed us to account for all geological and geophysical information available for the considered
area. As a numerical technique, the FEM is used to find approximate solutions to boundary value
problems consisting of partial differential equations and boundary conditions. The FEM subdivides
a large problem into smaller, simpler, parts, called finite elements. The simple equations that model
these finite elements are then assembled into a larger system of equations that models the entire
problem. Then, the FEM uses variational methods from the calculus of variations to approximate
a solution by minimizing an associated error function. The principle of the variational methods has
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been proven to be the equivalent integral of the differential equations and boundary conditions in
mathematics. If the finite element conforms to the convergence criteria, the final approximate solution
of the FEM converges to the exact solution of the original mathematical model [32]. The Duncan
EB model is the most widely used nonlinear elastic constitutive model in the FEM analysis of soil
structure [33,34]. In particular, we analysed the stress–strain characteristics of the dam in a 3-D FEM
model to solve for the retrieved displacements (Figure 7). We defined the subdomain setting of the
FEM model using the available geological and structural information. The process and the reservoir
water filling were simulated in the analysis (Figure 8).

Figure 7. The 3D FEM mesh of the Shuibuya CFRD: (a) 3D FEM mesh, 1-1 is the biggest cross section
of the SBY dam (0 + 212 m); and (b) 2D FEM mesh of the cross section of the 1-1 (0 + 212 m).

Figure 8. The process of construction and reservoir water filling. The numbers indicate the step of the
dam construction and reservoir filling.

Due to its simplicity and the explicit physical meaning of its input parameters, the constitutive
model proposed by Duncan has been widely used in civil engineering, especially for rockfill dams in
China [33,34]. It can be described as follows:
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Et = Kpa(
σ3
pa
)

n
[1 − SLRf]

2 , Eur = Kur pa(
σ3
pa
)

n

SL = (1−sinϕ)(σ1−σ3)
2ccosϕ+2σ3sinϕ , Bt = Kb pa

(
σ3
pa

)m (3)

where Et is the tangent modulus, K is the modulus number, pa is the atmospheric pressure, and σ3 is the
minor principal stress. n and Rf are the exponent and failure ratio, respectively. ϕ = ϕ0 − Δϕlg(σ3/pa)
is the internal friction angle, and c is the cohesive strength. σ1 and σ3 are the major and minor principal
stresses, respectively. Bt is the bulk modulus. The rockfill of the dam has obvious creep characteristics.
In this paper, the Merchant five-parameter creep model is used to describe the creep behaviour of
rockfill materials [35].

εt = εf(1 − e−αt), εsf = d
(

SL
1−SL

)
εvf = b

(
σ3
pa

)mc
+ βS

(4)

where εt is the creep strain, εf is the limit of the creep strain, α is a coefficient related to the creep strain
rate, εsf is the limit of shear creep strain, and d, b, mc and β are the creep parameters.

4.1.2. The Response Surface Method

Because of the complexity of engineering problems, the implementation of back-analysis is often
time-consuming for a large number of the finite element analyses. In this study, the RSM with strong
nonlinear mapping ability, is used to simulate the relationship between the parameter sets and the
displacement of the monitoring points [4].

Twenty-seven parameter sets are generated using the orthogonal algorithms. Then, the FEM
program that takes the static and creep properties of material into account is adopted to calculate the
displacement at different monitoring points. The process of construction and reservoir water filling
are simulated in the FEM analysis as show in Figure 8. In Li’s [4] study, the RSM considers only the
static displacement of the rockfill. In this paper, the creep displacement is also taken into consideration.
The RSM is given as follows:

Sk (x) = a +
N

∑
i=1

bixi +
N

∑
i=1

cixi
2 +

M

∑
j=1

djyj +
M

∑
j=1

f jeyi (5)

where xi and yi are the static and creep parameters to be identified, respectively. N and M are the
numbers of the static and creep parameters, respectively a, bi, ci, dj and fj are the coefficients of the
RSM to be identified. xi and yi can be calculated as follows:

x =
{

ϕ0, Δϕ, k, n, R f , Kb

}T

ϕ0 = ϕ0
ϕ01

; Δϕ = Δϕ
Δϕ1

; k = k
k1

;

n = n
n1

, R f =
R f
R f 1

, Kb = Kb
Kb1

⎫⎬
⎭

(6)

y =
{

α, b, mc, β, d
}T

α = α
α1

, b = b
b1

,= mc
mc1

,

β = β
β1

, d = d
d1

⎫⎬
⎭

(7)

where ϕ01, Δϕ1, k1, n1, Rf1 and Kb1 are the values of the Duncan EB model parameters obtained from
the laboratory; ϕ0, Δϕ, k, n, Rf and Kb are the values after zooming in; a1, b1, mc1, β1 and d1 are the
values of the Merchant creep model parameters obtained from the laboratory; and a, b, mc, β and d are
the values after zooming in.
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Then, the results of strain-stress analysis are used to calculate the coefficients of the RSM of every
monitoring point using Equation (6). The RSM can simulate the relationship between the parameter
set and the displacement of every monitoring point.

S1
1 (x) = S (x1, x2 . . . . . . xM)

S2
1 (x) = S (x1 + dx1, x2 . . . . . . xM)

S3
1 (x) = S (x1 − dx1, x2 . . . . . . xM)

· · · · · ·
S26

1 (x) = S (x1, x2 . . . . . . xM + dxM)

S27
1 (x) = S (x1, x2 . . . . . . xM − dxM)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8)

4.1.3. The Modified Genetic Algorithm

The parameter back-analysis of rockfill dams can be abstracted as an optimization problem in
mathematics. The GAs proposed by Hollandin 1975 [36] have proven to be powerful for solving
optimization problems. In this paper, a modified GA with global convergence is used to find the
optimized parameter set of the objective function.

In GAs, the diversity of the population and the disproportionation between exploitation and
exploration is conditioned by the crossover operator, which also influences the speed of convergence
and determines the global convergence of the algorithm. The crossover operator is a basic operation
with great importance. However, in the crossover operation of the traditional GA, the crossover points
and the gene fragments are selected with randomness and blindness. It is difficult to generate new
individuals when the selected gene fragments are highly similar to each other, that is, traditional
crossover is not very effective in producing new generations that have great differences with their
parents. This crossover operation is invalid and may decrease the diversity of the population.

Inspired by genetic engineering and the cloning of superior genes, a novel genetic crossover
operator based on the sum of differences in gene fragments (SoDX) is proposed. The fragments’
crossing probabilities are first evaluated based on the differences. The gene fragments are then selected
and exchanged according to the crossing probability. This process can reduce inbreeding and the
possibility of invalid crossover operations. A new GA code named SoDX-NUM was implemented in
MATLAB by combining the crossover operator SoDX and the non-uniform mutation (NUM).

4.2. The Back-Analysis Results and the Argumentation

In this paper, six monitoring points (WS06–WS11) from levelling and InSAR with high precision
and large displacement are used to invert the parameters. Using the displacement back-analysis
method proposed in this paper, the identified model parameters set of rockfill based on the levelling
and InSAR is determined, as shown in Table 1. Identified 1# and Identified 2# present the back-analysis
results based on the levelling and InSAR monitoring results, respectively. K1, n1, Kb1 and m1 are the
parameters of the Duncan EB model in the first material zone of the rockfill dam. K2, n2, Kb2 and m2

are the parameters of the Duncan EB model in the second material zone of the rockfill dam. a, b, mc, β

and d are the parameters of the creep constitutive model of the rockfill.

Table 1. The identified parameters using the back-analysis method based on the levelling and
InSAR results.

Parameters K1 n1 Kb1 m1 K2 n2 Kb2 m2 a b (%) mc β (%) d (%)

Experimental 1100 0.35 600 0.1 850 0.25 400 0.05 0.009 0.0098 1.1338 0.64 0.21
Identified 1# 876 0.284 512 0.115 967 0.203 320 0.0579 0.00069 0.0113 1.334 0.77 0.168
Identified 2# 958 0.31 550 0.10 816 0.225 375 0.05 0.0007 0.0088 0.907 0.512 0.17

Identified 1# and Identified 2# are the back-analysis results of the levelling and InSAR, respectively.
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Using the identified parameter sets of Identified 1# and Identified 2#, the FEM analysis is
implemented. In the analysis, the process of dam construction and the water filling are simulated.
The results are shown in the Figure 9, including the settlement process of the levelling, the identified
parameter set based on the levelling, and the identified parameter set based on InSAR.

Figure 9. The displacement for WS05–WS11 based on the levelling, levelling-identified, InSAR and
InSAR-identified parameters.

The traditional back-analysis methods use internal monitoring data. In this study, the external
monitoring results are used as the objective function to perform the back-analysis. The correlation of
the levelling monitoring data and the computed results based on Identified 1# of the six points are
0.97, 0.96, 0.95, 0.96, 0.93 and 0.96. This suggests that the displacement pattern of the calculated results
using the identified parameters set of levelling agree well with the observed levelling values, which
indicates that the identified parameters, in general, satisfactorily reflect the displacement properties
of the dam. The external monitoring data could be used to map the displacement properties of the
dam. The InSAR results are also used to perform the parameters back-analysis. Figure 9 shows the
computed settlement based on Identified 2# and the InSAR monitoring results. They have similar
magnitude and distribution.

The back-analysis results based on levelling data and InSAR monitoring data are also compared.
The displacement from 28 February 2007 to 11 March 2011 is shown in Figure 10a,b and the higher
elevation, the greater the displacement increment. In addition, the differences and the correlation are
shown in Figure 10c,d. The computed displacement of the two identified parameter sets have little
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difference with each other (Figure 10c). The correlation of the displacement results generated from
InSAR and levelling is 0.99 (Figure 10d). The displacement in the middle of the dam is greater than at
the two sides. The greatest total displacement increment of the FEM computed result is 0.467 m, which
is similar to the InSAR results. It also shows that the computed results and the results of InSAR have
similar displacement increment distributions, and the displacement computed using the parameters
Identified 2# has similar magnitude and distribution as the InSAR monitoring results.

Combining the time series analysis and back-analysis, it can be concluded that InSAR technology
can be used as a supplement for the traditional monitoring method to monitor high dams and can also
be used as a method to invert the parameters of the dam.

Figure 10. Comparison of the displacement increment from 28 February 2007 to 11 March 2011:
(a) Vertical displacement computed by the FEM model and the identified parameters based on levelling
(1#); (b) Vertical displacement computed by FEM model and the identified parameters based on the
InSAR results (2#); (c) The displacement difference between (a) and (b); (d) The Correlation between
InSAR and levelling measurements, and black line in is a 1:1 line. XCoor means the direction of the
river flow, YCoor means the direction from the left bank to the right bank. The units of X and Y-axes
are in meters.
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4.3. Settlement Prediction for the SBY Dam

The FEM model, the constitutive model and the back-analysis results can accurately represent the
time-dependent displacement of the SBY dam. To study the post-construction settlement of the SBY
dam, further FEM analysis is performed to predict the dam displacement using the parameters
identified based on the InSAR results. The settlement contours of cross-section 0 + 212 m for
30 December 2020 are given in Figure 11. The maximum settlement is 2.332 m, approximately 1% of
the dam height. The maximum settlement occurs in the centre of the dam body, whereas the settlement
of upstream (left) and downstream (right) of the dam is smaller (<40 cm), and the settlement increases
towards the centre. The biggest settlement located at the core of the dam mainly because of following
two reasons: (1) Because of the gravity of rockfill in different layers and intervals between the different
stages of concrete-face construction, most settlement of the lower layer filled rockfill is happened when
the upper layer rockfill is completed on the dam. The SBY dam has different material zones, which are
shown in Figure 2a). The rockfill is gradually filled according to layer during the construction period.
For example, the first stage of concrete-face is constructed after the rockfill of the dam was decreased
six or nine months, then the second stage concrete-face and the third concrete face. (2) Because of
arching effects caused by different settlement rate of the dam body in the parallel and perpendicular
direction of the river. In the direction of perpendicular to the river, due to the V-shaped valley, the
arching effect is raised when the settlement rate of the central rockfill is faster than the two sides of the
rockfill, which contributes an uplift force to the central rockfill. While in the direction of parallel to the
river flow, the other arching effect is caused because of the settlement rate in the central is faster than
the upstream and downstream of the dam, which also produces an uplift force to the central rockfill.
Therefore, the maximum displacement occurs in the centre of the dam.

The settlement increments from 28 February 2007 to 11 March 2011 and to 30 December 2020
are given in Figure 12a,b, respectively, and their corresponding difference is shown in Figure 12c.
Figure 12a,b shows that the displacement increment is approximately 60 cm at the dam crest, and the
upstream is greater than the downstream. From the Figure 12c, it can be observed that the settlement at
the top and upstream (left) is much greater than that downstream (right) from the dam. This difference
is due to water filling; the load of the upstream (left) of the dam is greater than the downstream
load (right). The settlement is smaller than 10 cm from 11 March 2011 to 30 December 2020 and is
approximately 60 cm from 2007 to 2011. This suggests that the displacement increases rapidly in
the early reservoir period, and the settlement trends toward stability in the later operation period.
The displacement consists of instantaneous and creep displacement. Most of the later settlement is
creep displacement, and the basic characteristic of creep displacement is that it decreases gradually
with the time. These results agree with the displacement characteristics of the dam.

 
Figure 11. The settlement contours of cross-section 0 + 212 m for 30 December 2020. XCoor means the
direction of the river flow. The units of X and Y-axes are in meters.
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Figure 12. The settlement increment contours of cross-section 0 + 212 m: (a) The settlement increment
from 28 February 2007 to 11 March 2011; (b) The settlement increment from 28 February 2007 to
30 December 2020; and (c) The settlement increment from 11 March 2011 to 30 December 2020. XCoor
means the direction of the river flow. The units of X and Y-axes are in meters.

5. Discussions

In our previous study, the InSAR technique was used to investigate the displacement of the SBY
Dam, and the reliability was compared with levelling measurements. The results provide confidence
that the InSAR time series is a useful tool for CFRD displacement monitoring [16]. In this study,
to further investigate the inside features of the SBY dam, the FEM, RSM and GA are used to identify
the mechanical parameters of the rockfill, and then the associated displacement time series and
settlement is simulated. The Duncan EB model is the most widely used nonlinear elastic constitutive
model in the numerical analysis of soil structure. The triaxial shear tests show that the Duncan EB
model is capable of simulating the stress–strain relationship of rockfill materials. The computed results
of the previous rockfill dams and the in situ monitoring data have proven the precision of the Duncan
EB model [4,9,33].

To examine the stability and security of the CFRD, the physical parameters of the rockfill are
pre-requisite for settlement prediction. Due to the size effect, sample disturbance and the impact
of random sampling, it is difficult to guarantee the represent activeness of the experiment results.
Parameter back-analysis is an efficient way to identify parameters. In this paper, the levelling and
InSAR measurement results are used to perform the parameter back-analysis. The results show that
the trend, the magnitude and the distribution of the displacement of the SBY Dam downstream surface
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agree well with each other (Figures 9 and 10). The high correlation of 0.995 and a low RMSE of 0.055 m
between the results based on InSAR and the results based on the levelling measurements suggest that
the back-analysis based on the InSAR technique is a reliable way to identify the parameters of a rockfill
dam. The low RMSE indicates that the back-analysis method is accurate and useful for obtaining
the mechanical parameters of the dam. The internal ground monitoring data continues to 16 March
2012. The maximum settlement from the ground monitoring data is 2.536 m, and it is 2.156 m based
on the rockfill parameters from the InSAR results, which confirms that the combination of InSAR
measurement and the FEM back-analysis is a reliable way to identify the parameters and to predict
the displacement of rockfill dams. The results also suggest the stability and security of the SBY CFRD
between 2007 and 2020.

The density and coverage of the InSAR measurement can be much higher than conventional
survey methods, such as levelling and GPS. In addition to the displacement of the dam body,
the stability of the surroundings of the dam can be determined by the InSAR method. This is important
because the geologic stability of a dam’s surroundings has a great impact on its behaviour. Moreover,
many high CFRDs will be built in the northwest of China, where earthquake frequently occur; thus,
accurate monitoring is a guarantee of their security. Compared to conventional measurements,
the InSAR is an efficient supplement technology to the traditional methods in the long term.

6. Conclusions

The physical parameters of the SBY dam are identified using the proposed back-analysis method
by combining the FEM model and the InSAR time series results. The displacement results using
the identified parameters agree well with the observed levelling values in both magnitude and
distribution. The settlement prediction of the SBY Dam is performed using the identified parameters,
and the maximum settlement is 2.332 m, approximately 1% of the dam height. The settlement of the
SBY Dam becomes stable in the later operation period. The back-analysis method using the external
monitoring data from InSAR can record the displacement properties of the dam. The InSAR technology
can be used as supplement for the traditional monitoring methods to monitor high dams and can also
be used to invert the parameters of the dam.
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Abstract: Global Positioning System (GPS) has been proved to be a powerful tool for measuring
co-seismic ground displacements with an application to seismic source inversion. Whereas most of
the tsunamis are triggered by large earthquakes, GPS can contribute to the tsunami early warning
system (TEWS) by helping to obtain tsunami source parameters in near real-time. Toward the
end of 2012, the second phase of the BeiDou Navigation Satellite System (BDS) constellation was
accomplished, and BDS has been providing regional positioning service since then. Numerical results
indicate that precision of BDS nowadays is equivalent to that of the GPS. Compared with a single
Global Satellite Navigation System (GNSS), combined BDS/GPS real-time processing can improve
accuracy and especially reliability of retrieved co-seismic displacements. In the present study, we
investigate the potential of BDS to serve for the early warning system of tsunamis in the South China
Sea region. To facilitate early warnings of tsunamis and forecasting capabilities in this region, we
propose to distribute an array of BDS-stations along the Luzon Island (Philippines). By simulating
an earthquake with Mw = 8 at the Manila trench as an example, we demonstrate that such an array
will be able to detect earthquake parameters in real time with a high degree of accuracy and, hence,
contribute to the fast and reliable tsunami early warning system in this region.

Keywords: BDS; BDS/GPS; South China Sea; tsunami early warning system

1. Introduction

As one of the most devastating natural coastal disasters, tsunamis are triggered mostly by shallow
earthquakes in submarine subduction zones [1] producing the most damage in the near field but also
propagating basin-wide. Consequently, traditional Tsunami Early Warning Systems (TEWS) mainly
rely on seismic methods in order to evaluate source parameters (magnitude, epicenter) and forecast
tsunamis as soon as possible. Corresponding seismic instrumentation mainly includes broadband
seismometers as well as strong-motion sensors (accelerometers). Despite the fact that these traditional
techniques have proved their reliability for most historical cases over the last decades, they have failed
to provide correct rapid magnitude estimation for several important events like the 2004 Mw = 9.3 Great
Sumatra earthquake, the 2010 Mw = 7.8 Mentawai tsunami earthquake and the 2011 Mw = 9.0 Great
Tohoku event. For example, in the latter case, the true magnitude was significantly underestimated
during the fifty minutes after the earthquake [2]. Magnitude underestimation, in turn, may result in
the underestimation of the tsunami forecast in the near field [2].

The reasons for magnitude underestimation during the first several minutes after large
earthquakes vary for different seismic instruments as well as earthquake evaluation procedures.
Broadband seismometers saturate near the source in case of strong shaking so that the full rupture
image can be analyzed only at larger epicentral distances, causing unavoidable delay due to the finite
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speed of seismic wave propagation. Strong motion sensors, in turn, do not saturate by amplitude and
can be employed close to the source; however, the usual band-pass filtering of waveforms aimed to
avoid processing unambiguity caused by co-seismic tilting [3] effectively leads to magnitude saturation
due to removal of long periods which are essential for huge earthquakes [4]. See, for example, [2,5]
regarding the analysis of the strong-motion magnitude saturation during the Great Tohoku earthquake.

The 2004 Great Mw = 9.3 Sumatra earthquake and tsunami boosted the development of new
seismic approaches that are aimed toward the faster and more reliable characterization of tsunamigenic
earthquakes. During the GITEWS Project (German-Indonesian Tsunami Early Warning System),
Bormann and Saul [6] proposed a fast, non-saturating cumulative magnitude estimator based on
the P-wave train. The procedure was tested at epicentral distances starting from 5˝ and is currently
operated by the INATEWS (Indonesian Tsunami Early Warning System) [7]. Additionally, Kanamori
and Rivera [8] suggested a new broadband W-phase source inversion algorithm, which is currently
running in operation at PTWC (Pacific Tsunami Warning Center). During the 2011 Great Mw = 9.0
Tohoku event, this algorithm automatically detected the focal mechanism and came with magnitude
estimate of Mw = 8.8 22 min after the earthquake (the true magnitude Mw = 9.0 was estimated
40 min after the earthquake) [9]. Another approach was suggested by Lomax and Michelini [10],
who introduced an original duration-amplitude procedure to estimate the tsunamigenic potential
of earthquakes.

Significant efforts were also undertaken to improve the quality of real-time strong-motion data
processing. New studies [4,11,12] proposed fast and effective procedures for automatic base-line
correction. Furthermore, the novel technique of collocation of strong-motion and GPS sensors [13,14]
should help to overcome the problem of magnitude saturation since the band-pass filtering is no longer
required [15].

Rapid improvement of the real-time GPS processing precision put GPS-technology at the front
end of current progress in the earthquake and tsunami early warning system. Compared with seismic
approaches, continuous GNSS real-time data processing provides arbitrary ground displacements that
can be directly inverted into source parameters in (near-) real time. Hence, it is considered to be a
more trustworthy tool, especially for the near field tsunami early warning. Several previous studies
have discussed or demonstrated the potential of using GPS data for tsunami early warnings. For
example, Blewitt et al. [16] showed that the magnitude, mechanism, and spatial extent of rupturing of
the 26 December 2004 Sumatra earthquake might have been accurately determined using only 15 min
of GPS data following an earthquake initiation. Simultaneously, Sobolev et al. [17] pointed out that
the reliable prediction of tsunami waves on the Indonesian coast can be issued within less than 5 min
of an earthquake by incorporating special types of near-field GPS arrays (“GPS-Shield” concept for
Indonesia). They also proposed deployment of such arrays for other tsunamigenic active regions.
Following this idea, GITEWS (German Indonesian Tsunami Early Warning System) became the first
TEWS to implement real-time GPS for a tsunami early warning [18,19]. Recently, Hoechner et al. [20]
replayed the Great Tohoku 2011 event in that they presented a complete processing chain starting from
actual raw GPS data and fully simulated the situation as it would be in a warning center ending up
with a very fast and qualified tsunami early warning. Now using real-time GPS for earthquake and
tsunami early warnings is an active area of research (e.g., [18–26]).

To date, geo-hazard monitoring with GNSS is restricted to the oldest, largest and most-used
GPS system. Around the end of 2012, China has completed the regional constellation of the BeiDou
Satellite System (BDS), and the system has been running routinely since then. Even at its second-phase
stage, numerous studies (e.g., [27–29]) have demonstrated that precise positioning performance of
BDS is equal in match against that of GPS in the Asia-Pacific region. Compared with a single satellite
navigation system, the fusion of GPS, GLONASS, GALILEO and BDS can significantly increase the
number of observed satellites, reduce the position dilution of precision (PDOP) [29] and, thus, increase
robustness and the reliability of observations. What is more, BDS, due to its similarity to GPS signal
structure and frequencies, provides a much better chance for investigating the impact of multi-GNSS
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capacity on real-time precise positioning in terms of accuracy and reliability. In the present study, we
investigate the potential of the BDS system to contribute to the tsunami early warning system in the
South China Sea region. In particular, we assess the accuracy of the real-time BDS processing and
corresponding source inversion due to a hypothetical tsunamigenic earthquake at the Manila trench.

As shown in previous studies (e.g., [30–33]), the Manila subduction zone (Figure 1) has been
identified as a zone of potential tsunami hazard in the SCS region. Despite the absence of clear
historical evidence on large tsunamis generated at the Manila trench, tsunami deposits found at the
Xischa Islands (~1024 AD) may be attributed to a large event in this source region [34]. According to
the recently compiled historical tsunami database for the northeastern South China Sea [35], annual
probability of a tsunami in this region from any source is very high (~33%). However, the likelihood of
a damaging tsunami per year is much smaller (1%–2%). In the absence of large historical events from
the Manila Trench, damaging tsunamis in the South China Sea have been previously studied by means
of numerical modeling. Simulations [30,36] suggest that an earthquake with a magnitude of Mw = 8.0
or larger at the Manila trench may cause significant tsunami damage along the whole south-eastern
coast of China, Southwestern Taiwan and West Philippines. Taking the potential large-scale disaster
into account, the tsunami early warning system in the SCS region was suggested by [30,37,38] based
on DART-type deep ocean buoys. In fact, China has installed two buoys in SCS in 2014. In the present
paper, we propose to improve the regional TEWS by installing real-time continuous BDS-network
at the Luzon Island, Philippines. Being integrated with traditional seismic networks, the proposed
GNSS-array will contribute to fast and reliable source inversion, which is one of the most important
tasks in the early warning and forecasting of tsunamis.

 
Figure 1. Seismotectonic map of the Southern China Sea. The red thick line represents the Manila
trench of the seismogenic Manila subduction zone. The red points show the earthquakes that have
occurred from 1976 to 2015 with a magnitude larger than Mw = 6.5 (GCMT catalog). The yellow line
E2 indicates the rupture area used in this study. The two multi-GNSS stations used in Section 2 are also
shown by green triangles.

In Section 2, we test the real-time precise positioning performance of BDS and compare it with
GPS and joint BDS/GPS in the SCS region. In Section 3, we simulate a test scenario of an Mw = 8.0
earthquake along the Manila trench and its corresponding tsunami to demonstrate the feasibility of
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incorporating BDS, BDS/GPS into the regional TEWS. In Section 4, we discuss additional issues related
to the performance of BDS, BDS/GPS based TEWS. Finally, Section 5 summarizes results and presents
an outlook.

2. Real-Time Kinematic Precise Positioning Performance of BDS in South-East Asia

Generally, there are two kinds of precise positioning algorithms, i.e., relative positioning and
single-point positioning. With respect to relative positioning, most of the error budgets can be cancelled
through double differencing between reference station and rover station; as a result, its mathematical
model is relatively simple and easy to be conducted. Most importantly, double-differencing
integer-cycle phase ambiguities can be resolved to their correct integer values, reliably ensuring
its high precision. However, the reference station of relative positioning must be fixed, which
requires that, during an earthquake, it should be located outside the zone of deformation. The
latter cannot always be satisfied, especially during large tsunamigenic earthquakes [21]. By contrast,
the single-point positioning approach does not need a fixed reference station to form double-difference
observations and, in theory, is more desirable for the retrieval of co-seismic displacements [25].
Nonetheless, it should be pointed out that for Precise Point Positioning (PPP), ambiguity resolution
needs a convergence phase that may be as long as 20 min. Fortunately, the Variometric Approach
for Displacements Analysis Stand-alone Engine (VADASE) [39] and the Temporal Point Positioning
(TPP) [40] are able to overcome this disadvantage. The TPP has been employed in this study.

Up to now, no BDS or BDS/GPS data recorded during an earthquake is publicly available.
Considering that performances of GNSS positioning are not different between earthquake-free and
earthquake-breaking periods [13], to exploit the potential of BDS and BDS/GPS in retrieving co-seismic
displacements, we selected two weeks of data (from 29 December 2013 to 11 January 2014) from IGS
Multi-GNSS Experiment (MGEX) stations in the Asia-Pacific region. In this case, data from a 1-Hz
sampling rate MGEX stations GMSD and SIN1 were used (see station distribution in Figure 1). Since
no earthquake happened, we take zero displacement as ground truth. In this paper, real-time precise
BDS/GPS orbits and clocks were produced according to the strategies suggested by Li et al. [29]. For
every station, the length of each TPP session was set to 10 min, and, in each individual hour, we
employed four sessions with evenly distributed start points; in total, we have 96 sessions per day for
two weeks, which ensures a more trustworthy conclusion on the precise positioning performance.
Figure 2 presents the TPP results in modes of BDS-only, GPS-only and BDS/GPS at station GMSD
which can be taken as a typical example. As clearly shown, BDS-only and GPS-only show similar
positioning performances while a BDS/GPS combined solution significantly improves the accuracy.
Statistical Root Mean Square (RMS) is summarized in Table 1.

Table 1. Expected RMS of BDS, GPS, and joint BDS/GPS real-time precise positioning using TPP in
South-East Asia.

RMS (m) BDS GPS BDS/GPS

East 0.0095 0.0071 0.0049
North 0.0068 0.0101 0.0048

Up 0.0203 0.0207 0.0098
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Figure 2. TPP solutions of BDS, GPS and BDS/GPS at stationary station GMSD on 30 December 2013.
Additionally shown is the corresponding PDOP, which specifies the effect of navigation satellite
constellation geometry on positional precision. Note that, since the station did not move, the above
graphs can be used to evaluate the expected uncertainty of TPP displacements.

3. Testing the Feasibility of BDS Real-Time Network at the Luzon Island for the Tsunami Early
Warning in the South China Sea

In this section, we demonstrate the feasibility of BDS for the tsunami early warning in the Southern
China Sea. To do that, we simulate a hypothetical tsunamigenic earthquake along the Manila trench
and try to invert resulting co-seismic displacements at a virtual BDS/GPS array distributed along
the Luzon Island, northern Philippines. Previously, Kirby and Geist [41] and Liu et al. [30] assessed
tsunamigenic potential of six rupture scenarios along the Manila trench. We follow their approach
and place our fault model along the northern part of the Manila subduction zone (Figure 1). Fault
parameters correspond to the rupture model E2 from Liu et al. (2006). This rupture scenario was
selected due to its highest impact potential for the south Chinese coast. The accepted source model
has a magnitude of Mw = 8.0 with the central point located at 119.8˝ E/18.7˝ N. The length is 180 km,
the width 35 km, and the strike and the dip angles of the rupture plane are fixed to 35 and 20 degrees.
The only difference with the original E2 rupture model is in slip distribution: we use a bell-shaped
distribution rather than a uniform slip. The rupture plane consists of 75 sub-faults with a symmetry
maximum at the slip center, and with the rake angles varying between 80 and 100 degrees.

We use code QSSP developed by Wang [42] to calculate synthetic displacement waveforms at
stations of our virtual GNSS-array. With respect to the Earth model, in this study, the average global
1-D reference earth model AK135Q [43] is adopted. Figure 3 demonstrates simulated displacement
waveforms at the selected station B1 (see virtual array in Figure 4a). To make our test even more
realistic, we contaminate synthetic co-seismic displacements with a typical real-time BDS and BDS/GPS
processing noises derived from a random segment of the GMSD (or SIN1) residual displacement time
series, and the corresponding “noisy” displacements are also shown at Figure 3. These “noisy”
displacements will be used for source inversion.

Figure 4a presents an overview of our forward rupture model: It shows assumed slip distribution
together with the corresponding co-seismic vertical deformation as well as horizontal static offsets at
the virtual BDS/GPS network.
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Figure 4. (a) Assumed slip distribution (colored dots) and correspondent co-seismic surface
deformation for an event with a magnitude of Mw = 8.0 rupturing along the Northern Manila
mega-thrust: our forward-model scenario. Red arrows show horizontal displacements computed
at the virtual BDS/GPS network (black triangles). The yellow triangle (B1) marks the station from
Figure 3; (b) Colored dots represent slip distribution as inverted from the simulated BDS-displacements
(note, synthetic BDS-displacements include real-time processing noise). Additionally shown is the
resulting vertical deformation; (c) Same as (b), but for the inversion of the joint BDS/GPS displacements.

Based on the suggested rupture, the corresponding tsunami scenario was simulated (Figure 5)
using the easyWave wave propagation code [20]. easyWave follows the numerical algorithm
by Goto et al. [44] for the simulation of linear long-wave propagation in spherical coordinates.
Tsunami propagation was computed on the 1 arc minute GEBCO (General Bathymetric Chart of
the Oceans) bathymetric grid [45], and the sea-level heights at offshore positions were projected to the
coast using Green’s amplification law [46]. As expected, due to the predominantly SW-NE orientation

271



Remote Sens. 2015, 7, 15955–15968

of the rupture, main tsunami energy is radiated towards the southeastern coast of China, between the
cities of Hong Kong and Shantou (Figure 5). Expected maximum tsunami wave heights may reach up
to 10 m at the west coast of the Luzon Island. At the southwest coast of Taiwan and southeastern coast
of China, tsunami wave heights may reach 1–2 m.

In order to issue a reliable tsunami early warning as soon as possible, seismic parameters
(e.g., epicenter, magnitude, slip distribution) should be inverted from co-seismic signal immediately
after the earthquake breaks. Since the Luzon Island is located close to the northern Manila trench,
our scenario rupture causes significant horizontal co-seismic displacements throughout the island.
As shown in Figure 4a, stations distributed along the northwest part of the Luzon Island will experience
northwest-directed surface displacements in excess of 10 cm. Taking into account the horizontal
accuracy of real-time BDS and GPS processing of about 1 cm (Table 1), we conclude that co-seismic
displacements due to an earthquake with a size of Mw = 8.0 should be well-detected and accurately
measured with the present-day BDS/GPS observation and processing precision, which, in turn, should
enable reliable source inversion and tsunami forecasting.

 
Figure 5. Simulated tsunami scenarios. The color map shows the maximum wave height in the forward
model (Figure 4a) after 6 h of tsunami propagation. Vertical bars are maximum wave heights as
recorded at selected coastal locations for the three propagation models: forward model (black); with
source as inverted from BDS-displacements (dark grey in Figure 4b); with source as inverted from joint
BDS/GPS-displacements (light grey, Figure 4c).

To illustrate this, we retrieved static offsets from our simulated kinematic BDS and BDS/GPS
displacements (Figure 3) and invert them back into the source parameters (Figure 4b,c). Finally, we
compute tsunami propagations from the “inverted sources” and compare them to the forward
scenario (vertical bars on Figure 5). In order to get static offsets at virtual BDS/GPS stations
from the contaminated displacement waveforms (Figure 3), we employ a method introduced by
Ohta et al. [21]. Resulting static displacements were subsequently inverted into the slip distribution
along the predefined geometry of the Manila trench using the SDM software [47]. Here, in order to
make the inversion test closer to the real world scenario, we did not constrain the possible rupture
geometry to the forward model area by length and width. Additionally, we employed alternative
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fault discretization with 23 ˆ 9 subfaults. Since we were expecting predominantly thrust events at the
Manila trench, the rake angle was allowed to vary between 70 and 100 degrees. The two horizontal
components were weighted twice as much as the vertical component, and a smoothing constraint was
imposed to avoid unrealistic slip patterns.

Figure 4b,c present slip distributions as inverted from the simulated real-time co-seismic BDS
(Figure 4b) and joint BDS/GPS (Figure 4c) displacements. Inverted slip distributions from single BDS
and BDS/GPS show a high degree of consistency, which is obvious since the processing accuracy is
very similar in both cases (Table 1). In contrast, comparison with the forward model (Figure 4a) shows
some bias. To be exact, inverted slip distribution covers a somewhat larger area than the original
model; the maximum slip of the forward model is 8.4 m while the inverted maximum slips are 7.31 and
7.32 m, respectively, and the derived moment magnitudes are both Mw = 8.06, slightly greater than the
input value of Mw = 8.0. This insignificant discrepancy is explained, first of all, by the fact that our
virtual observational network is located, due to natural reasons, only on one side of the Manila trench.
Nevertheless, tsunami wave heights as predicted from the inverted source models are very similar to
the forward computations (compare vertical bars on Figure 5 and refer to the supplementary Table S1
for more detailed information). Note that the difference in estimated wave heights is larger along the
Luzon coast compared to the distant coasts of China and Taiwan. This demonstrates the known fact
that, for reliable near-field tsunami early warnings, a trustworthy slip distribution is favorable.

From this synthetic inversion test, we conclude that a BDS (or a BDS/GPS) network with real-time
processing, if deployed at the Luzon Island, will be able to contribute to a fast and reliable tsunami
source inversion at the Manila trench.

4. Discussions

As we have noted before, precise real-time GNSS processing is a prerequisite for incorporation of
coastal GNSS-arrays into tsunami early warnings. In this context, we assessed the potential capability
of using real-time BDS to detect on-land co-seismic displacements caused by submarine rupture
and addressed the special contribution from combined BDS/GPS solutions as well. According to
our estimations from Section 2, horizontal accuracies of single BDS and GPS at the test site were
1.1 cm and 1.2 cm, respectively, while the joint BDS/GPS accuracy reached about 0.7 cm. For vertical
component, BDS/GPS improved accuracy from about 2 cm to about 1.0 cm. In terms of current
accuracy, BDS is close to GPS in the Asia-Pacific region, and the advantage of fusion of BDS and GPS is
clear. Nonetheless, our simulation of the Mw = 8.0 earthquake did not show any notable difference
in the case of BDS-only or BDS/GPS joint inversion (compare Figure 4b,c). For an earthquake with a
magnitude of Mw = 8.0, near field deformation can be as large as tens of centimeters (Figure 4a); with
respect to this scale of deformation, the signal-to-noise ratio (SNR) improvement by joint BDS/GPS
processing is not clear in this case. However, joint BDS/GPS processing may show its advantage for
smaller but still tsunamigenic earthquakes.

Consider a scenario of a smaller earthquake. Figure 6 presents a forward model as well as the
two source inversion models for an Mw = 7.5 earthquake at the Manila trench (compare Figure 6
to Figure 4). Earthquakes of this magnitude will not pose a significant tsunami threat for the coasts
of China and Taiwan but can still be dangerous in the near field (Figure 7). In this case, simulated
co-seismic displacements are significantly smaller (Figure 6a), and the better signal-to-noise ratio of
the joint BDS/GPS real-time processing results in better restoration of the original slip distribution
(compare Figure 6b,c) and, therefore, in better tsunami forecasting for the near field (compare vertical
bars on Figure 7 and refer to the supplementary Table S1 for more detailed information).
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Figure 6. (a) Assumed slip distribution (colored dots) and correspondent co-seismic surface
deformation for an event with a magnitude of Mw = 7.5 rupturing along the Northern Manila
mega-thrust. Red arrows show horizontal displacements computed at the virtual BDS/GPS
network (black triangles); (b) Colored dots show slip distribution as inverted from the
simulated BDS-displacements (note, synthetic BDS-displacements include real-time processing noise).
Additionally shown is the resulting vertical deformation; (c) Same as (b), but for the inversion of the
joint BDS/GPS displacements.
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Figure 7. Simulated tsunami scenarios. The color map shows the maximum wave height in the forward
model (Figure 6a) after 6 h of tsunami propagation. Vertical bars are maximum wave heights as
recorded at selected coastal locations for the three propagation models: the forward model (black); the
model with the source as inverted from BDS-displacements (dark grey, Figure 6b); and the model with
the source as inverted from joint BDS/GPS-displacements (light grey, Figure 6c).

Notice that our models are simple and generic enough to illustrate the main message of the present
study: Tsunamigenic earthquakes at the Manila trench will trigger significant co-seismic deformation
at the Luzon Island. Deformation amplitudes will be far above modern real-time GNSS resolution.
That is why it makes sense to employ coastal GNSS-arrays for tsunami early warnings in the Southern
China Sea.

At the same time, authors understand that there are many open questions regarding practical
incorporation of GNSS component into any particular TEWS. For example, we opted for static inversion
of final co-seismic displacements. Alternatively, some very recent studies [48,49] showed that static
inversions have a tendency to over-smoothen slip distribution, which, in turn, can result in the
under-prediction of tsunami heights. Kinematic (waveform) inversions demonstrate better spatial
resolution and have a clear advantage when static displacements are small. On the other hand, static
inversions are fast and robust, and use less data and a smaller number of control parameters.

The problem of optimal choice of methods and algorithms is not, of course, restricted to static vs.
kinematic inversion. If the source alone is considered—the GNSS array distribution; the source forward
model, which includes geometry, the elastic model, slip distribution; inversion algorithm itself—there
is only a short list of issues requiring testing and optimization. It is the same for tsunami simulation
and decision-making; each of them also have dozens of options. Authors believe that decisions about
better methods and better practices should be taken on an individual basis, in harmonization within
particular TEWS and its individual components.

5. Conclusions

In this study, we investigated the precise positioning performance of BDS and BDS/GPS in the
Asia-Pacific region, and we specifically focused on their applications to tsunami early warnings in the
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SCS region. By analyzing two MGEX stationary stations, we demonstrated that BDS and GPS display
similar positioning accuracy in the Asia-Pacific region. Combined BDS/GPS solution not only shows a
somewhat higher degree of precision but, what is even more important for operational implementation
in decision-making applications like tsunami early warnings, also improves the robustness.

By considering a scenario of a devastating tsunami in the Southern China Sea triggered by a
Mw = 8.0 earthquake along the Manila trench, we propose deploying a continuous BDS/GPS-network
at the western coast of the Luzon Island, Philippines. This network, if complemented with the
modern real-time processing technique (here TPP), will contribute to a very fast (2–3 min) earthquake
evaluation and source inversion, moving toward a higher reliability of the local and regional tsunami
early warning.

Using a scenario with a smaller but still tsunamigenic earthquake (Mw = 7.5), we demonstrate
that the advantage of combined BDS/GPS over single GNSS processing by source inversion grows
with decreasing earthquake magnitudes. To conclude, BDS and BDS/GPS can become an important
component of the future TEWS in the SCS, although numerous factors need to be optimized in
future studies.

Considering that the BDS constellation is still under construction, with increasing numbers of
BDS satellites and ground-tracking stations arising in the coming years, its visibility in other places
in the world will improve significantly, and the orbit and clock bias products will be more accurate,
which indicate that precision of BDS is expected to be equal on a global level. That is to say, the concept
of BDS and BDS/GPS as a tsunami early warning component is not limited to the Asia-Pacific region,
but will be able to be applied worldwide.
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Abstract: Because of the advantages of low cost, large coverage and short revisit cycle, Landsat 8
images have been widely applied to monitor earth surface movements. However, there are few
systematic studies considering the error source characteristics or the improvement of the deformation
field accuracy obtained by Landsat 8 image. In this study, we utilize the 2013 Mw 7.7 Balochistan,
Pakistan earthquake to analyze error spatio-temporal characteristics and elaborate how to mitigate
error sources in the deformation field extracted from multi-temporal Landsat 8 images. We found
that the stripe artifacts and the topographic shadowing artifacts are two major error components
in the deformation field, which currently lack overall understanding and an effective mitigation
strategy. For the stripe artifacts, we propose a small spatial baseline (<200 m) method to avoid
the stripe artifacts effect on the deformation field. We also propose a small radiometric baseline
method to reduce the topographic shadowing artifacts and radiometric decorrelation noises. Those
performances and accuracy evaluation show that these two methods are effective in improving the
precision of deformation field. This study provides the possibility to detect subtle ground movement
with higher precision caused by earthquake, melting glaciers, landslides, etc., with Landsat 8 images.
It is also a good reference for error source analysis and corrections in deformation field extracted
from other optical satellite images.

Keywords: Landsat 8; cross-correlation; displacement monitoring; error analysis; spatial baseline;
radiometric baseline

1. Introduction

With the continuous improvements of optical satellites in both hardware and software,
moderate and high-resolution optical images are increasingly applied in ground surface displacement
measurement [1]. Bindschadler et al. [2] took the lead in extracting the velocity field of an Antarctic
ice stream by matching multi-temporal Landsat 5 TM images. Crippen et al. [3] preliminary
investigated sand dunes migration in the southernmost California, USA with SPOT (Systeme Probatoire
d’Observation de la Tarre) images. The image matching theory was subsequently expanded as feature
tracking in SAR (Synthetic Aperture Radar) imagery [4–6] and firstly applied to obtain coseismic
deformation of the 1992 Mw 7.3 Landers earthquake [4]. Puymbroeck et al. [7] captured surface
ruptures and horizontal coseismic deformation field of the 1992 Mw 7.3 Landers earthquake using
the SPOT images with cross-correlation technique. After the software Coregistration of Optically
Sensed Images and Correlation (COSI-Corr) had been released, the theory and algorithms of the optical
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images cross-correlation technique were greatly improved and matured, especially in accuracy and
computation efficiency [8]. The COSI-Corr is originally used to extract crustal deformation induced
by earthquake released by Tectonics Observatory at Caltech in 2008 [8,9]. The technique is now
widely used to monitor the earth surface changes and dynamics [8–15]. As richer and constantly
updated satellite observation data become available, the application of optical images cross-correlation
technique has been expanded to fields such as glacier flow velocity extraction [10–12], quantification of
sand dune migration [13–15], terrain-deformation measurements of slow landslides [16], monitoring
process of significant rift events [17], volcanic monitoring [18] and particularly extensive coseismic
deformation extraction [19–21].

As a continuation of the NASA Landsat program, the Landsat 8 satellite was launched in February
2013 and is operating in a good condition now. Equipped with OLI (Operational Land Imager)
and TIRS (Thermal Infrared Sensor) sensors, Landsat 8 can obtain image data of 11 bands, wherein
the panchromatic band (Band 8) has a ground resolution of 15 m, equivalent to ASTER (Advanced
Spaceborne Thermal Emission And Reflection Radiometer) VNIR bands but with a larger spatial
coverage [22–25]. Since its operation, the Landsat 8 data have been applied to monitor earth surface
movements. Many studies demonstrate that the Landsat 8 image cross-correlation technique has
advantages in measuring surface deformation, such as mapping ice sheet velocity [26], coseismic
deformation extraction [25,27–29] and volcano deformation monitoring [30]. Many researchers have
done a lot of analyses and error source correction of displacement measurement, but they mainly
focused on a few data sources, such as SPOT, ASTER, HiRISE (High Resolution Imaging Science
Experiment) and aerial imagery [3,8,11,13–17,19–21,31,32]. In general, the deformation field obtained
by different types of optical sensors with cross-correlation technique has disparities in error structure
and magnitude level. As one of the few free available in-orbit operational data sources, Landsat
8 imagery has a relatively higher resolution, high imaging quality (12 bit) and short revisit cycle
(16 days). The Landsat 8 surpasses most satellites in both scientific performances and economic cost.
No doubt, earth surface deformation monitoring based on the Landsat 8 image will be more widely
used in the future. Currently, there are few detailed studies on the error sources of deformation fields
obtained by the Landsat 8 image. Thus, it is necessary and important to systematically study the error
source components, characteristics and corresponding correction methods of the Landsat 8 image
deformation field.

Based on this, we firstly analyze the error source compositions, distribution patterns and
magnitude variation of the Landsat 8 image deformation field. Then, we give comprehensive
explanations on the reason of error generation and propose corresponding correction methods. We also
compare the results obtained by our method and traditional method, and validate the results’ precision.
Finally, we discuss the potential application of our proposed methods in time series analysis with the
Landsat 8 image.

2. Experimental Design and Data Processing

Balochistan, Pakistan is selected as the study area because it has dry climate and little cloud cover,
which is favorable for optical images acquisition (see Figure 1). In addition, a Mw 7.7 earthquake
happened there on 23 September 2013, leaving obvious surface ruptures [25,27–29]. Totally, 25 images
covering the study area (Path: 154, Row: 42, see Figure 1, Table A1) are selected, pairing freely with a
temporal baseline of 16 days (see Figure A1) and calculating mutually image deformation fields.

Considering the computational efficiency, we uses a phase correlation algorithm in frequency
domain in the experiments, which can quickly obtain the translation between correlated images
and easily separate frequency-dependent noises in images. The Fast Fourier Transformation (FFT)
correlation engine embedded in the algorithm of COSI-Corr [8–15] improves the traditional peak
correlation algorithm, and its accuracy can reach 1/50 pixel [8]. Thus, we select COSI-Corr as the data
processing platform. We set both the initial and final search window size as 32 pixel × 32 pixel, step as
4 pixel × 4 pixel and the corresponding ground resolution is 60 m × 60 m. For mitigating the effects of
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high-frequency noises on the accuracy of correlation results, we set the frequency mask threshold as
0.9 and robust iteration as 2. To maintain a good consistency of results correlated by different temporal
images, these configuration parameters are used in cross-correlation calculation proceeding for the
whole study.

 
Figure 1. Coverage of Landsat 8 images over the study area. The red star indicates the epicenter of
the 2013 Mw 7.7 Balochistan, Pakistan earthquake. The black boxes are the footprint of the Landsat 8
images in this study. The red rectangle frame in the inset represents the approximate location of the
study area in Pakistan.

In order to obtain sufficient correlation samples and weaken the long-time baseline influence, we
select 16 days as the temporal baseline to pair freely the 25 images (Path: 154, Row: 42) in Table A1.
To maintain the uniform standard of temporal baseline (16 days) of pair images, we acquire redundant
observations containing enough variables, such as different orbit overlap and shadowing differences.
This can facilitate the analysis of error source including stripe artifacts and topography-dependent
artifacts relevant to these variables. We obtain 16 pairs of image deformation fields totally (East–West
and North–South) with a ground resolution of 60 m × 60 m, as shown in Figure 2. It should be
noted that these results have not been post-processed, so there are a variety of error sources in
deformation fields.
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Figure 2. E/W and N/S components of image deformation fields. The serial numbers of all sub-graphs
correspond to correlation image pairs in Table 1. Displacements are positive toward the East and North
in this and following figures.

3. Error Source Analysis and Correction Methods

As shown in Figure 2, by analyzing results in both E/W and N/S components, we can find that
there are following types of error sources affecting the measurement accuracy, including temporal
decorrelation noises, long wavelength orbital error, stripe artifacts (SA), attitude jitter distortions and
topography-dependent artifacts. Figure 3 shows patterns of these errors, but excludes the attitude
jitter distortions with a small magnitude. In the following, we will analyze these error sources, and
propose some mitigation methods.

 
Figure 3. Error sources in E/W and N/S components of image deformation field, selecting the
correlation image pair 29 November 2013–15 December 2013 as an example. We can see there are
obvious orbital error, decorrelation noises, topography-dependent artifacts, and stripe artifacts in
image deformation field.
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3.1. Decorrelation Noises

Decorrelation noises are closely correlated to the radiometric properties of earth surface. Too high,
too low or invariant radiation can lead to inconspicuous texture features, and drastic radiometric
changes commonly can cause texture defect. Thus, it is difficult to achieve the best correlation based
on window matching, showing inaccurate random measurements and low signal-to-noise ratio (SNR)
values in corresponding regions. To reduce the effect of decorrelation noises, this study masks out
measurements with low SNR (<0.9) and null values (Nan) in image deformation fields, and manually
removes the large range of decorrelation noises caused by clouds, water regions, etc.

3.2. Long Wavelength Orbital Error

If Landsat 8 images downloaded from the USGS website are not orthorectified enough, they will
cause significant signals of linear ramp in image deformation fields. In the image pre-processing, this
type of error can be eliminated by rigorous geometric correction to original images if the state vector
of the Landsat 8 image is available. In this study, we remove this error using the first-order polynomial
fitness [25] because Landsat 8 images do not provide the state vector in these products. The results are
detailed in Figure 4. The polynomial curve fitting method is also used to remove the orbital error in
InSAR (Interferometric Synthetic Aperture Radar) interferogram [33–44].

 

Figure 4. E/W and N/S components of image deformation field before and after removing the orbital
error, taking the correlation image pair 29 November 2013–15 December 2013 as an example.

3.3. Stripe Artifacts

Misalignment of Charge Coupled Device (CCD) arrays is a common problem in push-broom
satellites with mosaic CCD imaging cameras. The general orthorectification cannot completely
eliminate the CCD distortions, which perform as stripe artifacts (SA) in image deformation fields [31].
In Figure 5, there are many obvious evenly spaced bands along the flight direction in the crustal
deformation field. We find that those SA are correlated with the corresponding spatial positions of
CCD line-arrays imaging of pre- and post-event images. A method called “mean subtracting” was
proposed to measure the patterns of SA in deformation fields [8,11,31]. This method can partly estimate
and remove the SA using the mean value along the satellite flight direction in the stable area away
from tectonic signals and serious decorrelation regions.
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Figure 5. Relevance of the SA (stripe artifacts) and the CCD (Charge Coupled Device) arrays’
relative locations superimposed on the E/W component of the crustal deformation field. The yellow
rectangles represent CCD arrays’ locations acquired on the images from: 10 September 2013 (top);
and 26 September 2013 (bottom). The dislocation between the two CCD arrays presents inconsistency
in scene center (spatial baseline), which is the main reason causing the SA. The misalignment
between CCD sub-arrays in a single CCD chip is identified as the essential reason. Blue profile line
represents the average along flight direction of gray block area with a magnitude range of −1.5 m–2 m
(−0.1–0.13 pixels).

In this study, we try to understand the relationship between the SA and CCD arrays’ relative
locations between correlated images. We acquire patterns of the SA for those 16 pairs of images in
Figure A2. It can be found that most patterns of the SA jag significantly, and only three pairs (22 April
2014–8 May 2014, 16 November 2014–2 December 2014 and 20 February 2015–8 March 2015) present
approximate straight lines with the mean value closing to zero. From Table 1, we find that those three
pairs are different from the rest pairs in the spatial distances between the correlated image centers.
Spatial distances of these three pairs are shorter than 180 m, while that of other pairs are up to several
thousands (see Table 1). Here we use “spatial baseline” to define this spatial distance between two
correlated images’ centers, which can be calculated based on the orthoimages centers’ coordinates in
master and salve images. To quantify the magnitude level of the SA in different image pairs, we define
a value γ as a factor for quantifying the average magnitude of the SA.

γ =

n
∑

i=1
|Ti|

n
(1)

where, as shown in Figure A2, i represents the transverse-axis parameter with a total number of n, and
T represents the measurement values on the vertical-axis in a single pattern of the SA. Using these data,
we perform a regression analysis to examine the relationship between the spatial baseline and γ in
Figure 6. We find that variant γ and spatial baseline have an approximately positive linear correlation,
meaning the smaller the spatial baseline, the lower the magnitude level of the SA.

284



Remote Sens. 2016, 8, 937

Table 1. Spatial baseline and γ of all the correlation image pairs in this study.

Pairs Num. Correlation Image Pairs Spatial Baseline (m)
γ

E/W (m) N/S (m)

1 21 May 2013–6 June 2013 618 0.1127 0.2488
2 10–26 September 2013 2324 0.3151 0.2472
3 26 September 2013–12 October 2013 1859 0.2155 0.1596
4 12–28 October 2013 2224 0.2362 0.1996
5 29 November 2013–15 December 2013 1013 0.1669 0.1363
6 22 April 2014–8 May 2014 164 0.0853 0.0675
7 8–24 May 2014 3370 0.2704 0.2400
8 24 May 2014–9 June 2014 1601 0.1552 0.1888
9 9–25 June 2014 1922 0.1685 0.1970

10 13–29 September 2014 1038 0.1610 0.2250
11 29 September 2014–15 October 2014 1992 0.2238 0.1843
12 16 November 2014–2 December 2014 171 0.0800 0.0686
13 3–19 January 2015 867 0.1156 0.1218
14 20 February 2015–8 March 2015 174 0.0544 0.0760
15 9–25 April 2015 3275 0.3326 0.2185
16 25 April 2015–11 May 2015 1789 0.1733 0.1427

 

Figure 6. Correlation analysis of γ and spatial baselines of the correlated image pairs. Note that we
deleted the first dataset due to high measurement bias, and fit the function using the other 15 datasets.

In fact, the SA are common in horizontal deformation fields extracted from the current mainstream
optical images (e.g., ASTER, SPOT, and Landsat 8). The “mean subtracting” method is a conventional
approach to mitigate similar linear artifacts [11,25,27]. In this study, we proposed a new method to
reduce the SA by selecting correlation image pairs with small spatial baseline. In order to compare
the performance of these two methods, we select two image pairs, 21 May 2013–11 May 2015 with a
small spatial baseline (<100 m) and 10–26 September 2013 with a large spatial baseline 2324 m, for
mapping coseismic deformation of this event. As shown in Figure 7, it has no significant SA in the
E/W and N/S components of crustal deformation field produced by image pair 21 May 2013–11 May
2015. In contrast, the correlation results of image pair 10–26 September 2013 processed by the “mean
subtracting” method still have some unmolded residuals, suggesting the “mean subtracting” method
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cannot completely remove the SA, especially when the stable regions are hard to choose for the
calibration. Furthermore, the magnitude of the SA along the flight direction would be variable, not
constant, if the topography along the satellite flight direction is changeable. In this study, the statistical
results indicate that the image pair with the spatial baseline 200 m can lead to a γ less than 0.095 m,
which can be neglected in surface deformation. Thus, it can be a recommended threshold value for
spatial baseline selection in other cases.

 

Figure 7. Comparison between the “mean subtracting” method and small spatial baseline method
in terms of the SA reduction: (a,b) the E/W components of 10–26 September 2013 using the “mean
subtracting” method and 21 May 2013–11 May 2015 using the small spatial baseline method; and
(c,d) the N/S components of 10–26 September 2013 using the “mean subtracting” method and 21 May
2013–11 May 2015 using the small spatial baseline method. This comparison further demonstrates that
the magnitude level of SA has a strong correlation with spatial baseline of the correlated image pair.
In addition, the ellipse lines circle the topography-dependent artifacts area, in which the red arrows in
(c) indicate the specific locations.

3.4. Satellite Attitude Distortions

As the satellite attitude variations are sparsely sampled during flying, deformation fields (see
Figure 8a) have cyclical distortions along the satellite flight direction, which are roll variations on the
East–West component and pitch variations on the North–South component. Such error is distributed
approximately constant along the satellite across-track direction. Thus, for the deformation fields with
a serious attitude jitter distortions, the destriping procedure can be used to reduce cyclical distortions
by subtracting the average along azimuth vertical direction based on stable calibration regions [11].
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E/ d / b f d f b b h d d
(a) (b) 

Figure 8. E/W and N/S components before (a) and after (b) subtracting the attitude distortions (red
line) along the across-track direction in correlation image pair 16 November 2014–2 December 2014.

3.5. Topographic Shadowing Artifacts

Solar position change, described by variation of sun azimuth and sun elevation angle, will cause
shadowing difference in orientation and length (see Figure 9). The COSI-Corr algorithm will calculate
related “offset” when the shadow texture dominates the correlation window. The experimental results
in Figure A3 show that there are obvious topography-dependent biases in the Hinglaj Mountains
area of the southeast image deformation fields, especially in the N/S component. Comprehensive
analysis of Figure A3 and Table A2 shows that topography-dependent artifacts change with the sun
angle disparity. The larger the difference in sun angle, the more obvious the artifacts. Generally, the
artifacts are about 3–4 m, and the maximum is up to 10 m in the steep mountain area. Furthermore, the
positive and negative variations of topography-dependent artifacts have a good correlation with the
shadowing orientation changes (see Figure 9). Thus, we draw a conclusion that shadowing difference
can be a source of the topography-dependent artifacts in image deformation fields, which is referred to
“topographic shadowing artifacts” (TSA) in this study.

Based on above analysis, we can see the TSA is usually fixed in the spatial location and strongly
related to the disparity of sun elevation and azimuth of the image. A factor “radiometric baseline” can
be defined to evaluate the influence level of the TSA using the orientation and length of vector offset
in Figure 9 and Table 2. The smaller is the radiometric baseline, the lower the level of the TSA and
radiometric decorrelation noises becomes. As shown in Figure 7c,d, the radiometric baseline (0.14 h)
in N/S component of image pair 10–26 September 2013 is much larger than that (0.05 h) of image pair
21 May 2013–11 May 2015 (h is the height of a reference datum in Figure 9). Thus, the TSA in the
former pair is more significant than that of later pair in Figure 7. Moreover, the offset bias caused by
the sun angle difference in 10 September 2013 and 26 September 2013 is mainly along N3◦ orientation
(see Equation (3)), so the positive values TSA mainly distribute in the N/S component displacement
map (see Figure 10a,d).
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Table 2. Radiometric baseline list of the Landsat 8 correlation image pairs.

Pairs Num. Image Pair
Δ = Pre. − Pos. Radiometric Baseline

Δ Azi. Δ Ele. Orientation-θ (◦) Magnitude

1 21 May 2013–6 June 2013 7.09 −0.25 N 91.7 0.046 h
2 10–26 September 2013 −9.46 3.98 N 3.1 0.139 h
3 26 September 2013–12 October 2013 −7.22 4.64 N 1.3 0.153 h
4 12–28 October 2013 −4.82 4.82 N 357.1 0.163 h
5 29 November 2013–15 December 2013 0.98 2.26 N 324.1 0.107 h
6 22 April 2014–8 May 2014 9.80 −2.93 N 164.7 0.097 h
7 8–24 May 2014 9.28 −1.36 N 171.0 0.070 h
8 24 May 2014–9 June 2014 6.24 −0.07 N 94.4 0.042 h
9 9–25 June 2014 1.68 0.64 N 140.9 0.017 h
10 13–29 September 2014 −9.14 4.07 N 2.9 0.142 h
11 29 September 2014–15 October 2014 −6.88 4.65 N 0.8 0.155 h
12 16 November 2014–2 December 2014 −0.36 3.39 N 338.8 0.143 h
13 3–19 January 2015 3.08 −1.47 N 106.1 0.101 h
14 20 February 2015–8 March 2015 4.46 −5.27 N 162.5 0.183 h
15 9–25 April 2015 8.33 −4.10 N 160.5 0.116 h
16 25 April 2015–11 May 2015 9.77 −2.68 N 165.2 0.093 h

Notes: The ΔAzi. and ΔEle. represent the sun azimuth disparity and sun elevation disparity, respectively.

 

Figure 9. Mechanism of topographic shadowing artifacts. Equations below the figures show how to
calculate the magnitude and orientation of the offset caused by shadowing variation. (α1, β1) and
(α2, β2) represent the sun elevation and azimuth of pre- and post-event images, respectively. L1 and L2
represent the shadow lengths on a flattish surface of a reference datum named O with height h at the
sun elevation of α1 and α2, respectively. Equations (2) and (3) show how to calculate the magnitude
and orientation θ of vector offset due to shadowing variation, in which Δα and Δβ denote the sun
elevation and sun azimuth disparity, respectively. Equations (4) and (5) represent how to calculate the
E/W offset and N/S offset decomposed from the vector offset, and the results are positive toward East
and North.
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Figure 10. Horizontal coseismic deformation of the 2013 Mw 7.7 Balochistan, Pakistan earthquake
obtained by our small radiometric baseline method, before and after masking out TSA and other
non-targeted offsets: (a) E/W displacement field before masking; (b) E/W mask image, in which the
white denotes the region that need to be masked; (c) E/W displacement field after masking; (d) N/S
displacement field before masking; (e) N/S mask image; and (f) N/S displacement field after masking.

Here we can reduce the TSA in the deformation field by choosing the image pairs with a small
radiometric baseline. The good performance of this strategy has been demonstrated by image pair
21 May 2013–11 May 2015 of Figure 7. We can also utilize the combined radiometric baseline to reduce
TSA using multi-pair of images, if the single small radiometric baseline image pair is unavailable due
to few archived images in the study area. Based on these analyses, we can summarize the strategy
of reducing the TSA and radiometric decorrelation noises as the small radiometric baseline method
corresponding to two situations of single and combined radiometric baselines. In the situation of single
radiometric baseline, there is only one correlated image pair with a very small radiometric baseline.
The TSA and radiometric decorrelation noises in the correlation result are very small in this situation,
so it can be ignored. Furthermore, in the corresponding situation of combined radiometric baseline,
there are two or more correlated image pairs with very similar radiometric baselines. The TSA and
radiometric decorrelation noises in those correlation results are very close each other, so it can be
cancelled by combination of image pairs. In the 2013 Mw 7.7 Balochistan, Pakistan earthquake study,
we find the radiometric baseline of image pair 13–29 September 2014 (0.142 h, N 3.1◦) is very similar
to that of image pair 10–26 September 2013 (0.139 h, N 2.9◦) (see Table 2). Thus, we firstly acquire
the image deformation field associated with the TSA and other seasonal errors except the earthquake
event, using the correlation image pair 13–29 September 2014. The noise level of the TSA in the image
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deformation field extracted from image pair 13–29 September 2014 is very similar to the counterpart in
the coseismic deformation field extracted from image pair 10–26 September 2013, due to the similar
radiometric baseline in Table 2. After removing the decorrelation noises, orbital error, SA and attitude
jitter distortions, we can obtain a mask image from image pair 13–29 September 2014 by setting its
deformation field greater than a threshold both in E/W and N/S components (see Figure 10b,e).
We choose the non-seismic deformation threshold value as 0.8 m because the surface displacements
with 1/10–1/20 pixel magnitude accuracy can be usually detected by COSI-Corr [8]. Finally, we mask
out corresponding TSA in the coseismic deformation field (10–26 September 2013) using the mask
image obtained. This method can also be used to identify other non-targeted deformation regions
with a high magnitude level, such as melting glaciers, migratory sand dunes and creeping landslides.
Figure 10c, f indicate the E/W and N/S components of coseismic displacement field processed by our
small radiometric baseline method in situation of combined radiometric baseline. Comparing between
Figure 10d,f, we can find that TSA in the southeast and the moving sand dune area located in the
northwest has been masked out effectively. We also use a non-local means filter tool in COSI-Corr to
further reduce the noises in the deformation field.

4. Discussion

4.1. Error Analysis and Accuracy Assessment

Using the methods described in Section 3, we can remove most error sources in Landsat 8 image
deformation fields. In order to analyze the error characteristics and validate the performance of
our new methods in deformation fields, we have analyzed statistically the error level of a stable
area far from the crustal deformation field in image pair 10–26 September 2013 (see the polygon
area in Figure 11). The selected area contains a variety of land features, including rolling hills, flat
plains and vegetation area. We divide the whole data process into four steps and calculate the means
and standard deviations after those procedures in Table 3 and Figure 11. Those four steps’ results
(R0, R1, R2, and R3) represent the process results of the original COSI-Corr process, after removing
orbital error, after removing SA and attitude jitter distortions, and after removing TSA, respectively,
in Figure 11. It should be noted that the procedures of reducing SA and attitude jitter distortions have
been combined in R2, because they have similar error patterns.

Table 3. Accuracy evaluation results.

Experimental Region
Mean/m Standard Deviation/m

R0 R1 R2 R3 R0 R1 R2 R3

E/W 0.251 0.083 0.013 0.012 0.685 0.648 0.523 0.504
N/S −0.819 0.122 −0.012 −0.063 0.888 0.711 0.611 0.518

Figure 11. Flow chart of accuracy improvement in the Landsat 8 crustal deformation field. The black
polygon line denotes the area used for accuracy assessment.

In Figures 11 and 12, we use image pair 10–26 September 2013 instead of the small spatial
baseline pair 21 May 2013–11 May 2015 for accuracy analysis because the former is more effective
for the 2013 Mw 7.7 Balochistan, Pakistan earthquake study. It has been widely used for geophysical
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interpretation of this earthquake and also can be used for different error source validation in our study.
The comparison in Figure 7 has explicitly proved the advantage of the small spatial baseline method.
From Figure 12, both the mean and standard deviation of R1 and R2 become smaller compared to R0.
It indicates that these two corresponding methods used in this paper are effective in reducing noises
in coseismic deformation fields. After removing the TSA by the small radiometric baseline method,
the noise level of R3 is further reduced, in which the standard deviation of E/W component reduces
about 3.7% (around 0.02 m) and N/S component reduces about 15.2% (around 0.09 m). It is worth
noting that, after subtracting the TSA from the N/S component of the coseismic deformation field
(represented by R3), the absolute mean value increased from 0.012 m to 0.06 m (0.012 m vs. 0.06 m).
As the TSA in the N/S component of the deformation field mainly have positive magnitudes, masking
operation to reduce the TSA will mask amount of positive values. Thus, the mean of process result
R3 shows a slight increase in the selected small area. We believe that the process result R3 would not
increase the absolute mean value in large areas. As shown in Table 3, the final standard deviations of
E/W and N/S components are 50.4 cm and 51.8 cm, respectively. From this perspective, the selected
threshold (0.8 m) in the process of removing TSA is just about |μ ± 2σ| (μ—mean, σ—standard
deviation, [μ − 2σ, μ + 2σ] account for 95.45% measured values), which further validates the statistical
reasonability of the threshold.

 
Figure 12. Histograms of the process results R0, R1, R2, and R3 in the selected area. The histograms
are shown as below: original COSI-Corr process result (R0, red line), result after removing orbital
error (R1, black line), result after removing SA and attitude jitter distortions (R2, blue line), and result
after removing TSA (R3, pink line). The vertical dotted lines represent the relevant mean (location) of
histogram curves in the same color.
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4.2. Comparison with Current Researches

In the process of error analysis, we could know the magnitude level of every type of error sources
in Landsat 8 image deformation field, such that the orbital error with around −5–5 m, the SA with
around −2–2 m, the attitude distortions with around −0.5–0.5 m, and the TSA with around −10–10 m.
In our study, we could easily remove the orbital error and attitude distortions. However, we can
find little detailed studies with respect to the SA and TSA in Landsat 8 image deformation field.
Thus, we endeavor to give comprehensive explanations for the reasons of error sources and propose
corresponding weaken methods to reduce the SA and TSA from the perspective of time series analysis
in our study. This is a work discriminating from other researches.

Due to differences in CCD sensors, the SA has different patterns and correction methods in
different optical satellite images [31]. For example, the rigorous CCD calibration model proposed by
Leprince et al. [31] has a good applicability for the SPOT4 image, but it is not suitable for the Landsat 8
image due to lacking reference images and auxiliary state vector. In this study, we propose the small
spatial baseline method for the Landsat 8 image to reduce the SA. Compared with the traditional
“mean subtracting” method, it can obtain much cleaner and more accurate results if suitable spatial
baseline image pair is available. Basing on the experimental results, we suggest that the spatial baseline
of 200 m can be used as a reference threshold to select correlation image pairs. However, the “mean
subtracting” method can be a complementary approach when the archived Landsat 8 image is very
limited in the study area. Furthermore, for sudden events study, such as earthquakes, the “mean
subtracting” method can also be a complementary approach, because the larger temporal baseline may
introduce much larger signals and decorrelation noises into the crustal deformation field.

Topographic shadow effect is a common problem in optical images, its orientation and length
variations can lead to the TSA, especially in monitoring glacier and landslide [1,29]. Due to no
effective reduction method, the TSA still remain in the coseismic deformation field of the 2013 Mw 7.7
Balochistan, Pakistan earthquake [25,27]. In this study, we introduce a small radiometric baseline
method to reduce the TSA and radiometric decorrelation noises. The TSA and other non-targeted
displacements, crustal deformation excluding the coseismic deformation, are effectively masked out
by our method, with much smaller mean and standard deviation both in E/W and N/S components.
However, it is worth noting that although we could reduce the influence of TSA and radiometric
decorrelation noises by our proposed method based on combined radiometric baselines, the crustal
signals sometimes are also masked out when the signals and noises simultaneously occur in masked
gaps. In addition, the TSA and stereoscopic parallax effects are easily confused, as they both having
characteristics associated with topographic features. However, the latter also belongs to the geometric
distortions and can be mitigated by a rigorous geometric model [1]. We can discriminate them by
analyzing base-height ratio or the temporal variation characteristics of these two types of errors.

The Landsat 8 satellite has been continuously monitoring the surface change since the first half
year of 2013 and it has acquired sufficient images worldwide. Thus, it enables exploring the time series
surface deformation by the multi-temporal Landsat 8 images. The key issue is how to construct the
optimal image pairs to accurately acquire the crustal deformation fields. Our small spatial baseline
and small radiometric baseline methods based on various error analyses and interpretations can be
verified as effective time series analysis methods. The richer the Landsat 8 archived images, the more
effective these methods are able to extract the earth surface deformation, with higher precision, which
is very helpful for investigating the slow but steady dynamic phenomenon of earth surface, such as the
melting glaciers and migratory sand dunes. Furthermore, based on detailed studies on error sources
in this paper, we can acquire more precise fault rupture geometry and coseismic displacement field,
which may be helpful for us to strengthen the understanding of fault displacement mechanism and
improve the fault slip modeling.
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5. Conclusions

In this study, we summarize spatio-temporal distribution characteristics and completely
systematic removal processes of error sources in correlation results of Landsat 8 images. Through error
analysis, we propose two new conceptual terms of “spatial baseline” and “radiometric baseline”, as
influential factors with relevance to the SA and TSA, respectively. Then, innovatively, we introduce
the small spatial baseline method and small radiometric baseline method to reduce the SA and TSA
in deformation field. Confirmatory experiments verify that the spatial baseline of correlated images
with below 200 m is effective in reducing the influence of the SA in correlation results. Furthermore,
the small radiometric baseline method, using combined radiometric baseline, improves the precision
of the deformation field with apparent TSA by around 15% in our study. Meanwhile, the small
radiometric baseline method, using single radiometric baseline, can also be helpful for reducing the
radiometric decorrelation noises in deformation field. We also expect the content of this study can
provide theoretical and experimental guidance for further utilizing the Landsat 8 image to monitor
earthquakes, glaciers and so on.
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USGS United States Geological Survey
FFT Fast Fourier Transformation
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SAR Synthetic Aperture Radar
InSAR Interferometric Synthetic Aperture Radar
SA Stripe artifacts
TSA Topographic shadowing artifacts
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Appendix A

 

Figure A1. Matching distribution of 16 correlation pairs using 25 Landsat 8 panchromatic images,
following the uniform temporal standard of 16 days.

Table A1. Parameters catalog of Landsat 8 OLI Pan images used in the study.

ID Codes Acquired Time Sun Azimuth Sun Elevation Cloud Cover

LC81540422013141LGN01 21 May 2013 101.360 69.407 0.74
LC81540422013157LGN00 6 June 2013 94.267 69.655 6.26
LC81540422013253LGN00 10 September 2013 131.684 60.502 1.37
LC81540422013269LGN00 26 September 2013 141.144 56.521 0.70
LC81540422013285LGN00 12 October 2013 148.360 51.883 3.08
LC81540422013301LGN00 28 October 2013 153.179 47.062 0.38
LC81540422013333LGN00 29 November 2013 156.360 38.990 1.32
LC81540422013349LGN00 15 December 2013 155.384 36.729 0.64
LC81540422014112LGN00 22 April 2014 118.468 64.727 0.76
LC81540422014128LGN00 8 May 2014 108.668 67.655 0.60
LC81540422014144LGN00 24 May 2014 99.387 69.013 1.99
LC81540422014160LGN00 9 June 2014 93.145 69.080 0.58
LC81540422014176LGN00 25 June 2014 91.468 68.439 8.62
LC81540422014256LGN01 13 September 2014 132.788 59.586 1.05
LC81540422014272LGN00 29 September 2014 141.927 55.520 1.34
LC81540422014288LGN00 15 October 2014 148.802 50.866 1.68
LC81540422014320LGN00 16 November 2014 155.558 41.757 0.54
LC81540422014336LGN00 2 December 2014 155.921 38.370 1.20
LC81540422015003LGN00 3 January 2015 152.443 36.075 0.48
LC81540422015019LGN00 19 January 2015 149.367 37.544 1.92
LC81540422015051LGN01 20 February 2015 141.845 45.076 1.07
LC81540422015067LGN00 8 March 2015 137.384 50.341 0.50
LC81540422015099LGN00 9 April 2015 125.252 61.051 7.07
LC81540422015115LGN00 25 April 2015 116.927 65.146 0.59
LC81540422015131LGN00 11 May 2015 107.159 67.828 1.59
LC81540412013253LGN00 10 September 2013 133.903 59.699 0.01
LC81540412013269LGN00 26 September 2013 142.841 55.534 0.03
LC81540412014256LGN01 13 September 2014 134.905 58.761 0.01
LC81540412014256LGN01 29 September 2014 143.547 54.520 0.73

Notes: All images are acquired in Nadir and processed into L1T level.
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Figure A2. Patterns of the SA in E/W and N/S deformation fields. Clearly, patterns of these three pairs
(22 April 2014–8 May 2014, 16 November 2014–2 December 2014, and 20 February 2015–8 March 2015)
with much less variation are different from the ones of the rest image pairs.
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Abstract: Due to the lack of ground control points (GCPs) and parameters of satellite orbits, as well
as the interior and exterior orientation parameters of cameras in historical declassified intelligence
satellite photography (DISP) imagery, a second order polynomial equation-based block adjustment
model is proposed for orthorectification of DISP imagery. With the proposed model, 355 DISP images
from four missions and five orbits are orthorectified, with an approximate accuracy of 2.0–3.0 m.
The 355 orthorectified images are assembled into a seamless, full-coverage mosaic image map of the
karst area of Guangxi, China. The accuracy of the mosaicked image map is within 2.0–4.0 m when
compared to 78 checkpoints measured by Real–Time Kinematic (RTK) GPS surveys. The assembled
image map will be delivered to the Guangxi Geological Library and released to the public domain
and the research community.

Keywords: declassified intelligence satellite photography (DISP); rectification; imagery distortion;
second polynomial equation

1. Introduction

Rocky karstification in karst areas (also called karst rocky desertification (KRD)) is considered one
of the major factors that contribute to the global carbon balance as a global CO2 sink [1–3]. With the
increasing interest in global carbon emissions, studies and analyses have compared historical data
with current data to discover how rocky karstification contributes to long-term environmental changes
over decadal spans.

Guangxi is located in the southwestern karst area in China, and the KRD area is approximately
23,790.80 km2, accounting for 19.8% of the total KRD area in China in 2005. It shrunk to 19,260.00 km2

in 2011, accounting for 16.0% of the total KRD area in China. Although many researchers have
investigated the Guangxi KRD area associated with its environmental evolution in recent decades,
there have been no investigations or analyses of the KRD area that focused on the early 1960s.
Fortunately, declassified intelligence satellite photography (DISP) released to the public domain in
February 1995 has provided researchers with a unique opportunity to investigate the KRD in Guangxi
in the 1960s. The DISP was collected by the first generation of United States photoreconnaissance
satellites between 1960 and 1972 through the systems named CORONA, ARGON, and LANYARD.
More than 860,000 images of the Earth’s surface were declassified with the issuance of this executive
order and were contracted to the USGS for sale.
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However, further processing and application of DISP has resulted in various problems:

(1) The USGS does not provide Chinese users with the parameters required to further process
DISP. These parameters include satellite orbit parameters (e.g., inclination, flight height, descent
time, etc.) and the camera’s interior orientation parameters (IOP) (e.g., focal length, principal point
coordinates, fiducial marks, etc.). This implies that traditional bundle block adjustment based on the
photogrammetric collinearity equation is not applicable [4,5].
(2) It is very difficult to obtain sufficient ground control points (GCPs) in the historical DISP imagery
due to the time intervals of several decades and cloudy coverage in Southern China. Thus, it is almost
impossible to rectify each DISP image on a frame-by-frame base.

For the two reasons above, this paper presents a second order polynomial equation-based
rectification model for orthorectification of DISP images. The previous relevant studies on this
topic are as follows: Kim et al. utilized a collinearity equation to rectify ARGON imagery from
1963 to study the seasonal variations of glaciers on the Queen Maud Land coast of Antarctica [6].
Zhou and Jezek proposed a collinearity equation-based self-calibration block bundle adjustment
method that integrates the bundle adjustment method and satellite orbital parameters, solving interior
orientation (including lens distortion) and exterior orientation parameters (EOPs) simultaneously
to rectify ARGON images from 1962 and 1963 [4]. The rectified ARGON imagery was employed
to mosaic Greenland ice sheets from the 1960s, which were then quantitatively compared to the ice
sheet extent over a 30-year interval [5]. Kim and Jezek applied a state-of-the-art digital imaging
technology based on an extended block adjustment to rectify ARGON imagery from 1963 that covered
Antarctica [7]. They assembled all images into a quality mosaic of coastal Antarctica to study glaciers.
In addition, due to the imaging model limitations of high-resolution satellites, such as IKONOS, rational
polynomial-based block adjustment, also called rational polynomial coefficient (RPC), was proposed
by multiple authors. For example, Tao et al. analyzed the accuracy of orthorectification of a Systeme
Probatoire d’Observation de la Terre (SPOT) image and an aerial image using the RPC model [8,9].
Yang suggested that the RPC model can replace the rigorous sensor model orthorectification of SPOT
images [10]. Liu developed a stereotaxic method of IKONOS images based on the RPC model [11].
Huang proposed a rational polynomial-based block adjustment for orthorectification of Synthetic
Aperture Radar (SAR) images [12]. Grodecki and Gene Dial rectified IKONOS satellite imagery using
the RPC method. The RPC model incorporates a priori constraints into the images described by RPC,
and multiple independent images can be added in accordance with the needs of users [13]. However,
the RPC model requires a number of GCPs, and the computation is very time consuming. Therefore,
the RPC method is not applicable to DISP images that the USGS provides because the imaging model
of DISP was not provided by the USGS. Additionally, few GCPs are available in the study area. Thus,
this paper presents an effective and simple mathematical model for geometric rectification of DISP
images, considerably improving the computational effectiveness.

2. The Second Order Polynomial Equation-Based Rectification Model Method

2.1. Polynomial Equation-Based Block Adjustment Model

The objective of polynomial equation-based block adjustment is to tie overlapping images together
without the absolute need for ground control points in each image and obtain coordinates of tie points
and conversion parameters for rectification. Since the study area is a karst landform with a large
wavy terrain and large elevation differences, the relief displacement is large. For correction of relief
displacement, relief displacement is introduced into the block adjustment model shown below.

Figure 1 shows the imaging geometry of DISP from the CORONA mission. S −WVU(W ′V′U′) is
a camera coordinate system, o − xy is an image plane system, and O − XYZ is a geographic coordinate
system. There is relief displacement (Δh) in the imaging process; therefore, the relief displacement
must be corrected in the rectification process. First, distortion caused by elevation differences should
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be corrected. Then, other distortions should be corrected by utilizing a polynomial model, and the
reverse is true in the resampling process.

 

Figure 1. The imaging geometry of declassified intelligence satellite photography (DISP) from the
CORONA mission.

Since the relief displacement only occurs in the direction of scanning, CORONA images are
panoramic camera images, and the panoramic projection scan direction is the x-direction. Therefore,
as shown in the imaging equation above, there is no relief displacement in the y-direction. The relief
displacement correction functions are as follows:

Δh = Z · h/M (1){
Δx = x · Z/M
Δy = y · Z/M = 0

(2)

where x and y are image coordinates; Δx and Δy are image distortions in the x- and y-directions,
respectively, caused by elevation differences; Z is the elevation; h is the distance from the image point
to the nadir point; and M is the satellite flight altitude. Since the relief displacement occurs in the
direction of scanning and the KH-4A/B’s images are panoramic camera images, the images can be
rectified using the second-order polynomial equation-based model.

2.1.1. Traditional Second-Order Polynomial Equation

The traditional second order polynomial model has been widely applied for image rectification.
This paper extends the traditional equation into a block situation by adding tie points, which tie
overlapping images together. With the extended model, the 2D coordinates of tie points and the
coefficients of second order polynomial equations are solved. Furthermore, these parameters are used
for orthorectification of DISP imagery without the absolute requirement of at least six GCPs in each
DISP image.

The traditional second order polynomial equations are expressed as follows [14]:

{
x + Δx = a0 + a1X + a2Y + a3XY + a4X2 + a5Y2

y + Δy = b0 + b1X + b2Y + b3XY + b4X2 + b5Y2 (3)

where α = (a0, a1, a2, a3, a4, a5)
T and β = (b0, b1, b2, b3, b4, b5)

T are coefficients; x and y are image
coordinates; Δx and Δy are image distortions in the x- and y-directions, respectively; and X and Y are
2D coordinates in a given map coordinate system.
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For a given GCP, Equation (3) can be linearized using a Taylor series and is expressed as follows:

{
vx = Δa0 + XΔa1 + YΔa2 + XYΔa3 + X2Δa4 + Y2Δa5 − lx

vy = Δb0 + XΔb1 + YΔb2 + XYΔb3 + X2Δb4 + Y2Δb5 − ly
(4)

where Δai(i = 0, 1, · · · , 5) and Δbi(i = 0, 1, · · · , 5) are correction terms of coefficients; vx, vy are
residuals; X and Y are 2D coordinates of GCPs; and lx and ly are constants expressed by Equation (5).

{
lx = x − (a0 + a1X + a2Y + a3XY + a4X2 + a5Y2)

ly = y − (b0 + b1X + b2Y + b3XY + b4X2 + b5Y2)
(5)

As shown in Equation (4), one GCP only establishes two observations, but Equation (4) has
12 unknown parameters. Therefore, six GCPs, which establish 12 observation equations, are needed to
solve the 12 coefficients that are used for to rectify a single image. Generally, more than six GCPs are
observed in each image to establish more than 12 observation equations. The least-squares estimation
is employed to calculate the 12 coefficients. Mathematically, the solution can be described as follows.

Assuming that N GCPs (N ≥ 6) are observed, the observation equations are expressed in matrix
form as follows:

V = A · α − L (6)

where:
V =

[
Vx1 Vy1 ... ... VxN VyN

]T
,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 X1 Y1 X1Y1 X2
1 Y2

1 0 0 0 0 0 0
0 0 0 0 0 0 1 X1 Y1 X1Y1 X2

1 Y2
1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1 XN YN XNYN X2
N Y2

N 0 0 0 0 0 0
0 0 0 0 0 0 1 XN YN XNYN X2

N Y2
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

α =
(

a0 a1 a2 a3 a4 a5 b0 b1 b2 b3 b4 b5

)T

and:
L =

[
lx1 ly1 ... ... lxN lyN

]T
.

The least-squares estimation, i.e., VT PV = min, gives the solutions of the coefficients of the
second order polynomial equation below:

α = (AT A)
−1

AT L (7)

We can further obtain the following expressions from Equation (7):

ai = a0
i +

Nite

∑
j=1

Δaj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (8)

bi = b0
i +

Nite

∑
j=1

Δbj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (9)

where a0
i , b0

i are initial values; Δaj
i , Δbj

i are increases during each iteration; and Nite is the number
of iterations.
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2.1.2. The Second-Order Polynomial Equation-Based Rectification Model

As mentioned above, due to the shortage of GCPs in each of the DISP images, the tie points
(TPs) must be identified to tie images with the same overlapping areas. Under this condition, the TPs
whose XY-coordinates are unknown are introduced into the traditional second order polynomial
equation. This extended model is called the second-order polynomial equation-based rectification
model (2OPE-RM) in this paper (see Figure 1). Equation (3) is extended with considering TPs as
unknown parameters and linearized into the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vx = Δa0 + XΔa1 + YΔa2 + XYΔa3 + X2Δa4 + Y2Δa5

+(a1 + a3Y + 2a4X)ΔX + (a2 + a3X + 2a5Y)ΔY − lx

vy = Δb0 + XΔb1 + YΔb2 + XYΔb3 + X2Δb4 + Y2Δb5

+(b1 + b3Y + 2b4X)ΔX + (b2 + b3X + 2b5Y)ΔY − ly

(10)

Then, Equation (10) can be rewritten as follows:

{
vx = Δa0 + XΔa1 + YΔa2 + XYΔa3 + X2Δa4 + Y2Δa5 + f1ΔX + f2ΔY − lx

vy = Δb0 + XΔb1 + YΔb2 + XYΔb3 + X2Δb4 + Y2Δb5 + g1ΔX + g2ΔY − ly
(11)

where:
f1 = a1 + a3Y + 2a4X,

f2 = a2 + a3X + 2a5Y,

g1 = b1 + b3Y + 2b4X, and

g2 = b2 + b3X + 2b5Y.

The symbols above are the same as those in Equation (10).
Additionally, assuming that there are N GCPs (N ≥ 6), M TPs in t images are collected at the

GCPs. Similarly, Equation (10) can be expressed in matrix form as follows:

V = A · α + B · β − L (12)

where:

V =
[

vGCP
x1

vGCP
y1

... ... vGCP
xn vGCP

xn | vTP
x1

vTP
y1

... ... vTP
xM

vTP
xM

]T
,

α = (Δα1
0, Δα1

1, Δα1
2, Δα1

3, Δα1
4, Δα1

5, · · · , Δαt
0, Δαt

1, Δαt
2, Δαt

3, Δαt
4, Δαt

5),

β = (ΔX1
1, ΔY1

1 , · · · , · · · , ΔXt
M, ΔYt

M),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 X1
1 Y1

1 X1
1Y1

1 X1
1

2 Y1
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 Xi

N1
Yi

N1
Xi

N1
Yi

N1
X1

N1

2 Y1
N1

2

⎫⎪⎪⎬
⎪⎪⎭The 1st image with N1 GCPs

1 Xi
1 Yi

1 Xi
1Yi

1 Xi
1

2 Yi
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1 Xi
Ni

Yi
Ni

Xi
Ni

Yi
Ni

Xi
Ni

2 Yi
Ni

2

⎫⎪⎪⎬
⎪⎪⎭The ith image with Ni GCPs

1 XN
1 YN

1 XN
1 YN

1 XN
1

2 YN
1

2 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 1 XN

Nn YN
Nn

XN
Nn

YN
Nn

XN
Nn

2 YN
Nn

2

⎫⎪⎪⎬
⎪⎪⎭The Nth image with Nn GCPs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f 1
1 f 1

2
...

...
f M1
2 f M1

2

⎫⎪⎪⎬
⎪⎪⎭The 1st image with M1 TPs

f i
1 f i

2
...

...
f Mi
1 f Mi

2

⎫⎪⎪⎬
⎪⎪⎭The ith image with Mi TPs

f M
1 f M

2
...

...
f Mn
1 f Mn

2

⎫⎪⎪⎬
⎪⎪⎭The Mth image with Mn TPs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Equation (12) is the 2OPE-RM model derived in this paper. Relative to the traditional model in
Equation (6), this model introduces TPs as unknown parameters.

Equation (12) is usually solved using least-squares estimation, which is expressed as follows:

Φ = VTV = min (13)

With least-squares estimation, the normal equation matrix can be written as follows:

(
AT A AT B
BT A BT B

)(
δα

δβ

)
=

(
AT L
BT A

)
(14)

Thus, the solution of the unknown parameters is given by Equation (15):

{
Δa = − (Qαα AT L + QαβBT L

)
Δb = − (Qβα AT L + QββBT L

) (15)

where Qij(i, j = 1, 2) gives the components of the covariance matrix, which is the inverse of the normal
matrix, as shown in Equation (16):

Qij =

(
AT A AT B
BT A BT B

)−1

=

(
Qαα Qαβ

Qβα Qββ

)
(i, j = 1, 2) (16)

The coefficients of the 2OPE-RM in each image and the 2D coordinates (XY) of each TP are
as follows:

ai = a0
i +

Nite

∑
j=1

Δaj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (17)

bi = b0
i +

Nite

∑
j=1

Δbj
i (i = 1, · · · , 5; j = 1, · · · , Nite) (18)

Xti
i = X0

i +
Nite

∑
j=1

ΔXj
i (i = 1, · · · , 5; j = 1, · · · , Nite; ti = 1, · · · , t) (19)

Yti
i = Y0

i +
Nite

∑
j=1

ΔYj
i (i = 1, · · · , 5; j = 1, · · · , Nite; ti = 1, · · · , t) (20)

where Xi, Yi are coordinates of the i-th TP in image ti; ΔXi, ΔYi are increases in Xi and Yi; a0
i and b0

i
are initial values; and Δai and Δbi are increases in the coefficients in each iteration.

As shown in Equation (12), each image has 12 unknown parameters (ai, bi; i = 0, 1, · · · , 5),
and each TP has two unknown parameters (XY-coordinates). Two equations can be established
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for each GCP or TP. Moreover, the TPs and/or GCPs should be well distributed in each image.
For example, there are four images, 12 GCPs, and nine TPs in Figure 2. The four images imply that
there are 48 unknown parameters. The 12 GCPs can be used to establish 42 observation equations
(i.e., seven GCPs in Image #1 can be used to establish 14 observations, three GCPs in Image #2 can
be used to establish six observations, six GCPs in Image #3 can be used to establish 12 observations,
and five GCPs in Image #4 can be used to establish 10 observations). The nine TPs can be used to
establish 34 observation equations (i.e., three TPs in Image #1 can be used to establish six observations,
three TPs in Image #2 can be used to establish six observations, six TPs in Image #3 can be used to
establish 12 observations, and 5 GCPs in Image #4 can be used to establish 10 observations). With this
model, we have 76 (76 = 42 + 34) observations and 66 (66 = 48 + 18) unknown parameters. Thus,
2OPE-RM does not require each DISP image to have more than six GCPs.

The accuracy of the adjustment computation is evaluated using Equation (21):

δo =

√
VTV

r
(21)

where δo is the standard deviation of the unit weight, V is the matrix of residuals, and r is the number
of redundant observations. Thus, the standard deviations of individual unknown parameters can be
calculated as follows:

δXi = δo

√
QXi (22)

To evaluate the accuracies of TPs, assuming that there are n TPs, the average of δXi is as follows:

μX =
1
n∑ δXi (23)

where n is the number of TPs.

 

Figure 2. Illustration of the second-order polynomial equation-based rectification model (2OPE-RM).

2.2. Orthorectification of DISP Images

With the established model and the coefficients determined in Section 2.1, each original DISP
image can be orthorectified. The steps are as follows:

1. Step 1: Determination of the Rectified Image Size

To properly establish the storage space of the orthorectified image, the size of the resulting image
(upper left, lower left, upper right, and lower right) must be determined in advance. This procedure is
proposed as follows.
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• Determination of the four corner coordinates: The four corner coordinates of the original image are
projected into the UTM coordinate system. Then, eight coordinates are obtained:

(Xul , Yul) , (Xll , Yll) , (Xur, Yur) , (Xlr, Ylr) .

The maximum and minimum values of X and Y (Xmin, Xmax, Ymin, and Ymax) are calculated from
the eight coordinates above to constitute four coordinate pairs. These pairs are the map coordinates of
the four boundaries of the resulting image’s scope.

Xmin = min(Xul , Xll , Xur, Xlr) , Xmax = min(Xul , Xll , Xur, Xlr)

Ymin = min(Yul , Yll , Yur, Ylr) , Ymax = min(Yul , Yll , Yur, Ylr)
(24)

• Determination of the resulting image’s size: The size of the resulting image can be determined by M
and N as follows:

M =
Ymax

YGSD
+ 1 , N =

Xmin

XGSD
+ 1 (25)

where M = row, N = col, and YGSD, XGSD are the ground-sampled distances (GSD) in the
resulting image.

2. Step 2: Coordinate Transformation

Because the orthorectification model only expresses the relationship between the original
coordinates (xori, yori) and ground coordinates

(
Xgro, Ygro

)
, the ground coordinates should be

transformed into the coordinates of the resulting image (xre, yre) as follows:

xre =
Ymax − Ygro

YGSD
+ 1 ; yre =

Xgro − Xmin

XGSD
+ 1 (26)

where Ygro , Xgro are the ground coordinates of the pixel after rectification.

3. Step 3: Orthorectification

The calculation of the geographic coordinates of individual pixels, resampling of the original
image, and registration of the chosen map coordinates system are carried out as follows:

• The process can be applied to any point P(I, J) in the resulting image with image coordinates (I, J).
• In accordance with image coordinates (I, J) and GSD, calculate the geographic coordinates (X, Y).
• Compute the image coordinates (i, j) of point P in the original image using Equation (5).
• Calculate the gray value gori via bilinear resampling interpolation.
• Assign the gray value gori to point P as gres in the resulting (rectified) image/pixel.

The above procedure is then repeated for each pixel that must be rectified until the entire image is
completely rectified.

2.3. Data Set

• Study area

The study area is located in Guangxi, China, spanning from 20.54◦N to 26.24◦N latitudes and
104.26◦E to 112.04◦E longitudes (Figure 3) and encompassing 23,790.8 km2. The study area is in the
south central subtropics of China.
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Figure 3. Study area, which is located in Guangxi, China, with the encompassing 23,790.8 km2.

• Dataset

DISP imagery: In total, 444 DISP images from five orbits of different missions, including the
CORONA 1035-1 Mission (24 images) on 25 September 1966, the CORONA 1102-2 Mission (48 images)
on 18 December 1967, and the 1106-1/2 Mission (39 images) on 7 February 1969, were purchased from
the USGS (Figure 4).

Aerial photos: Five aerial photos with film formats of 18 × 18 cm2 from 1961 were acquired at
a photographic scale of 1:14,000. Each photo covers approximately 6.35 km2. Five aerial photos were
purchased from the Guangxi Bureau of Geospatial Information, China.

Coordinate data of GCPs: The coordinate data associated with GCPs in the KRD area were collected
from Google Earth.

Figure 4. DISP image dataset (There are 444 DISP images from five orbits of different missions covering
the whole study area).
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3. Results and Accuracy Analysis

3.1. Image Preprocessing

The DISP film was scanned into digital images, producing film-grain noise and resulting in image
quality degradation. Many noise filters have been used in the public domain. However, most of these
approaches are either time consuming, because of complex modelling, or they erroneously remove
geophysical features because of noise in the overall image. The filter algorithm developed by Zhou et al.
was used to remove noise in this study [5]. One of the advantages of the algorithm is that it avoids
the problems noted above because this approach performs statistical calculations within variable-size
and variable-shape sub-windows (see Figure 5) that are determined individually for every pixel in
the image, rather than modelling the noise in the overall image. The algorithm is briefly described
as follows:

(1) Select a window of 5 × 5 pixels.
(2) Calculate the mean ni(i = 1, 2...9) and variance αi(i = 1, 2...9) of nine masks.
(3) Select one mask with the lowest variance αk and mean ni, and calculate the weights of every pixel

within the kth mask using the following equation:

ωi = e|Δi |, Δi = grayi − nk (27)

(4) Calculate the output using Equation (28):

grayoutput =

(
M

∑
i=1

Wi · grayi

)/(
M

∑
i=1

ωi

)
(28)

where M is the number of pixels in the kth mask and grayi(i = 1, 2...9) is the intensity.

With the filter algorithm above, the results of removing the DISP image noise are depicted in
Figure 6, which demonstrates the effectiveness of the proposed approach.

Figure 5. The adaptive filter algorithm.
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Figure 6. The results of noise removing: (a) The original image, and (b) The filtered image.

3.2. DISP Image Orthorectification and Accuracy Analysis

3.2.1. DISP Image Orthorectification

Since sufficient numbers of GCPs are not observed in each DISP image, TPs are identified to tie
overlapping images together and solve for the coefficients of the 2OPE-RM. The study area consists
of 355 DISP images (there are 444 DISP images in total, but we only employed 355 high-quality
images). Thus, it is impractical to construct a block in the entire study area and then solve for the
orthorectification parameters of all DISP images simultaneously because such a large block will
produce a significantly large number of observation equations, resulting in a huge computational
burden during matrix inversion. Therefore, this paper divides the study area into 24 blocks consisting
of various DISP images (see Figure 7a). Each block was rectified independently. For example, Block 1
consists of nine images in Figure 7b, in which 20 GCPs and 29 tie points were identified and measured.
The 20 GCPs are employed 36 times to establish 72 observation equations. The 29 TPs are employed
60 times to establish 120 observation equations. Thus, 192 observation equations (72 + 120 = 192)
are established in Block 1. There are 166 unknown parameters (9 × 12 + 29 × 2 = 166). There are
26 redundant observations (i.e., 192 − 166 = 26), meeting the requirements of least squares adjustment.

With the 192 observation equations established using Equation (12); the parameters used to rectify
the nine DISP images are solved simultaneously using Equation (15). The 2D coordinates of TPs
are obtained using Equations (19) and (20). With the solved coefficients and TP coordinates in each
image, orthorectification is performed for each DISP image at a GSD of 2.0 m. Figure 8a is part of one
orthorectified DISP image.

The computational accuracies of TPs using the 2OPE-RM are evaluated by Equation (23).
The standard deviations of TPs (μX and μY) are averagely 0.34 m and 0.23 m, respectively. In addition,
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the “absolute” accuracy of the orthorectified aerial photo created in 1961 is calculated using the
following equations:

ΔXRMSE =

√
∑n

k=1 (Xk − xk)
2

n − 1
(29)

ΔYRMSE =

√
∑n

k=1 (Yk − yk)
2

n − 1
(30)

where Xk and Yk are XY-coordinates of TPs in the orthorectified DISP image, xk and yk are
XY-coordinates in the orthorectified aerial photo created in 1961, and n is the total number of TPs.
Using Equations (29) and (30), ΔXRMSE and ΔYRMSE are 2.0 m and 1.6 m, respectively. These values
are equivalent to approximately 2.0 pixels in the orthorectified DISP imagery.

Figure 7. The polynomial block adjustment: (a) Design of polynomial block adjustment in the entire
area, which is divided into 24 blocks; (b) One block, which is used to explain establishment of the
observation equations.

Figure 8. Accuracy verification using orthorectified aerial photos from 1961: (a) DISP image
orthorectified using the proposed method; and (b) orthorectified aerial photo from 1961.
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3.2.2. Accuracy Comparison Analysis

Accuracy comparison between the DISP images orthorectified using the traditional second-order
polynomial model and the 2OPE-RM was conducted. Two test fields, which are located in mountainous
and flat areas, were selected for the accuracy comparison.

(1) The Bameng Field is a mountainous area located in Bameng County to the west of the city of
Baise, Guangxi, China, at 23.671◦N to 24.135◦N and 106.941◦W to 107.698◦W. This test area covers
the entire DS1106-2119DF107a image. The maximum and minimum elevations are 1128 m and
790 m, respectively, above mean sea level (MSL). Therefore, the relief displacement is significant.
There are 12 GCPs and seven TPs scattered throughout the test field. The 12 GCPs are used for
second order polynomial equations to solve for the 12 rectification coefficients, and the 12 GCPs
and seven TPs are used in the 2OPE-RM to calculate the coefficients. Twenty-three checkpoints
were chosen to evaluate the achievable accuracy. The orthorectified aerial photo provided by the
Bureau of Guangxi Geomatics and Geographic Information is considered to represent the “true”
values for validation. The results are listed in Table 1.

(2) The Longzhou field is a flat area located in Longzhou County to the west of the city of Chongzuo,
Guangxi, China, at 22.105◦N to 22.469◦N and 106.593◦W to 106.878◦W. This test field completely
covers the entire DS1106-2119DF110a image. In this test field, 11 GCPs and seven TPs are
scattered throughout the DISP image. The same GCPs are employed in the traditional second
order polynomial model and the 2OPE-RM. Twenty-three checkpoints were chosen to evaluate
the accuracy. The planimetric accuracies of the two models relative to the orthorectified aerial
image are shown in Table 1.

Table 1. Accuracy comparison of mountainous and flat areas.

Models

Test Area
Bameng Field

(Located in A Mountainous Area)
Longzhou Field

(Located in A Flat Area)

ΔXRMSE (m) ΔYRMSE (m) ΔXRMSE (m) ΔYRMSE (m)

Second order polynomial model 1.96 1.84 1.85 1.57

Our model 1.85 1.69 1.67 1.49

3.3. Image Mosaicking

Based on the individual image orthorectification above, the next work is to mosaic the individual
orthorectified DISP images into an image map. First, the characteristics of the study area and DISP
images must be understood:

1. The study area covers 23,790.8 km2 (between latitudes 20.54◦N and 26.24◦N and longitudes
104.26◦E and 112.04◦E), which consists of 355 DISP images that total 100 GB. A good mosaicking
scheme may save computational time and computer storage;

2. The study area is located in a karst landscape, where mountainous and hilly terrain areas account
for two-thirds of the total area;

3. The overlap between neighboring images must be less than 30%; and
4. The study area is covered by five strips of DISP images from four missions (Figure 9).

To minimize the influence of error propagation and avoid repeatedly sampling images, based on
the characteristics above, the mosaicking is designed as follows (see Figure 9):

1. The 16 DISP images from Mission 1106 were first mosaicked, covering the western portion of the
study area. The mosaicked map is depicted in Figure 10a. Twenty DISP images from Mission
1102-2 were mosaicked, and the mosaicked map is depicted in Figure 10b. Twenty-eight DISP
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images from Mission 1106 were mosaicked, and the mosaicked map is depicted in Figure 10c.
Twenty-three DISP images from Mission 1106 were mosaicked, as the mosaicked map is depicted
in Figure 10d. Finally, 18 DISP images from Mission 1106 were mosaicked, and the mosaicked
map is depicted in Figure 10d, covering the eastern portion of the area; and

2. With the five mosaicked maps above, a map image of the entire study area was assembled by
merging the five mosaicked images. The order of mosaicking is from the east and west to the
middle of the study area (see Figure 10).

Figure 9. Mosaicking process from east/west to the middle.

Figure 10. The mosaicked images of the various missions.

3.4. Radiance Balance

Due to the differences in the imaging date/time and different imaging conditions during different
missions, brightness differences between neighboring strips are unavoidable. In addition, patchwork
lines are also unavoidable. To produce a seamless mosaic of the entire study area, this paper used
a histogram equalization method to adjust the brightnesses of two neighboring strips. The boundary
line was chosen along the center image, and overlapping areas were feathered. Figure 11 shows the
result of the radiance balance.
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Figure 11. Radiometric balance of neighboring strips: (a) The image before radiometric balancing;
(b) The image after radiometric balancing.

3.5. Mocsaicking Result and Accuracy Evaluation

The entire study area has been mosaicked by 355 orthorectified DISP images (Figure 12a).
A mountainous area located in Du’an County (Figure 12b) and a flat area located in Xingbin County
(Figure 12c) are select as the samples for accurate validation. Seventy-eight GCPs, which were
measured by RTK GPS measurements, are uniformly distributed in other countries throughout the
entire study area. These include 25 check points (CPs) scattered throughout the two test fields. ΔXRMSE
and ΔYRMSE in Equations (26) and (27) are used to measure the accuracy. The results are listed in
Table 2. As shown in Table 2, the accuracy in flat areas is better than that in mountainous areas, and the
overall accuracies of the entire study area are 2.11 m and 1.74 m.

Table 2. Final accuracies of the assembled DISP image map in the study area.

Area ΔXRMSE (m) ΔYRMSE (m)

Mountainous area 2.07 1.60
Flat area 1.86 1.79

The entire study area 2.11 1.74
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Figure 12. Mosaic results: (a) a completely assembled 1960s mosaic of the Guangxi karst area;
(b) accuracy validation in a mountainous area; and (c) accuracy validation in a flat area.

4. Discussions

The results of the accuracy comparison for the DISP images orthorectified by the 2OPE-RM and
by traditional second order polynomial model [14] are listed in Table 1. As observed from Table 1, it is
demonstrated that the RMSEs of XY-coordinates in the DISP images orthorectified by the 2OPE-RM are
smaller than those orthorectified by traditional second order polynomial model in both mountainous
and flat areas. With the experimental result, it can be concluded that:

(1) The proposed 2OPE-RM method can successfully solve the problems below when orthorectifying
the DISP images that:

(a) Each of the original DISP image has insufficient GCPs;
(b) The camera’s imaging model is unknown; and
(c) The camera’s interior orientation parameters (IOPs) including camera’s principal point

coordinates, focal length, and lens distortion parameters are unknown.

(2) The proposed 2OPE-RM is capable of obtaining a higher accuracy than the traditional second
order polynomial method does when orthorectifying the images under the above conditions (see
Table 2).
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(3) Although the proposed 2OPE-RM method is experimented and validated on the DISP images
with a satisfied accuracy, it should be suitable for the high-resolution of satellite images whose
imaging model and whose camera IOPs are not released.

The major limitations of the proposed 2OPE-RM method include:

(a) The proposed method needs a lot of tie points, which tie all images together. As observed in
Table 1, the accuracy of images rectified by the proposed method can be increased with increasing
the number of TPs. For example, if only the 12 GCPs are used in Bameng Field, the RMSEs of
the XY-coordinates are 1.96 m and 1.84 m, respectively. If seven TPs are added in addition to
12 GCPs, the RMSEs of XY- coordinates reach 1.85 m and 1.69 m, respectively. The accuracy of
the rectification result has been improved. Thus, the more the tie points, the higher the accuracy
of orthorectification.

(b) The proposed method is time-consuming and labor-intensive, because a lot of tie points,
which are usually feature points in images, are manually selected and measured. Although
a semi-automation of measurement and selection of TPs are used in this paper, a zoom-in window
operation for high-accuracy of location of the TPs is usually employed.

5. Conclusions

This paper presents a highly effective, simple, practical mathematical model for the
orthorectification of CORONA DISP images from the 1960s, whose interior and exterior parameters
are unknown and in which GCPs are lacking. The model is called the second order polynomial
equation-based block rectification model (2OPE-RM). With the proposed model, all images can be
orthorectified at an accuracy level of 2.0 pixels, corresponding to approximately 2.0–4.0 m with respect
to the WGS 84 datum. All of the images covering the entire karst area of Guangxi, China, are assembled
into a high-quality image map. The sampled distance of the assembled mosaicking map is 2.0 m.
The proposed model can solve the problems associated with the traditional second order polynomial
model, such as lack of GCPs, yielding acceptable and improved accuracy. The assembled image map
of the entire rock desertification area in Guangxi, China, will be delivered to the Guangxi Geological
Library for use by the research community.
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SPOT Systeme Probatoire d’Observation de la Terre
SAR Synthetic Aperture Radar
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Abstract: This paper presents a methodology taking advantage of the GPOD-SBAS service to
study the surface deformation information over high mountain regions. Indeed, the application of
the advanced DInSAR over the arduous regions represents a demanding task. We implemented
an iterative selection procedure of the most suitable SAR images, aimed to preserve the largest
number of SAR scenes, and the fine-tuning of several advanced configuration parameters.
This method is aimed at minimizing the temporal decorrelation effects, principally due to snow cover,
and maximizing the number of coherent targets and their spatial distribution. The methodology
is applied to the Valle d’Aosta (VDA) region, Northern Italy, an alpine area characterized by
high altitudes, complex morphology, and susceptibility to different mass wasting phenomena.
The approach using GPOD-SBAS allows for the obtainment of mean deformation velocity maps and
displacement time series relative to the time period from 1992 to 2000, relative to ESR-1/2, and from
2002 to 2010 for ASAR-Envisat. Our results demonstrate how the DInSAR application can obtain
reliable information of ground displacement over time in these regions, and may represent a suitable
instrument for natural hazards assessment.

Keywords: high mountain regions; ground surface deformation; DInSAR; GPOD-SBAS

1. Introduction

Glaciers and paraglacial processes, as landslides and rock glaciers, play an important role in
the short- and long-term landscape evolution of high mountain regions [1–3]. Changes in climatic
conditions, as well as human activity, can have a severe influence on such geomorphological processes,
and increase the frequency and intensity of catastrophic mass wasting events [4,5]. In alpine
regions, glaciation has been recognized as one of the most important agents influencing the regional
geomorphology [6,7]. Indeed, several geological and geomorphological studies have outlined the
relation between large slope instabilities and deep-seated gravitational slope deformation located in
glacial valleys, likely due to the debuttressing caused by glacier retreat [8–11].

In this scenario, monitoring surface deformation in high mountain regions can help to better
interpret the kinematic behavior of mass wasting processes, and to infer potential influences of
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meteo-climate variables on their evolution [12–14]. This information is crucial to increase our
capability to assess landslide hazards, and to manage the associated risks [15–18]. In recent decades,
surface deformation in mountain environments has been measured by means of diverse monitoring
approaches, ranging from classical in situ instruments [19–24] to more advanced remote sensing
methods [25–28]. In situ instruments are typically installed to obtain a time series with high
temporal resolution, which allows for a better analysis of local phenomena over time, while remote
sensing techniques are more suitable for the evaluation of deformation trends at regional scales.
Among different techniques, space-borne differential synthetic aperture radar (SAR) interferometry
(DInSAR) has gained an important role in measuring ground displacements over the last few years [29].
DInSAR is a consolidated method used to provide data with extensive spatial coverage and to
investigate different types of phenomena simultaneously, including those hindered by limited or
difficult access. For example, DInSAR was successfully applied to detect and monitor slow movements
of mountain slopes in the order of few centimeters/year in the Austrian and Swiss Alps, and the
Pyrenees, confirming its operational potential in high mountain areas [30–32].

Advanced DInSAR methods have been developed to derive ground velocity maps and
displacement time series [33–35]. The small baseline subset (SBAS) technique [34], which combines
sets of interferograms with small orbital separation (baseline) and short revisiting time to reduce the
temporal decorrelation and maximize the number of coherent SAR targets, has proven to be suitable in
different deformation scenarios [36–39]. Accuracies are in the order of 1 mm/year for mean surface
velocities and 5 mm for displacement measurements [40].

Nowadays, the increasing availability of multi-temporal satellite acquisitions allows for the
generation of time series of ground deformation spanning periods as long as 20 years. This information
is particularly suitable for studying the long-term behavior of landslides, rock glaciers, and glaciers.
However, the analysis of surface deformation via DInSAR is challenging for several reasons, including
(i) the high topographic gradients associated with the complex orography; (ii) abundant vegetation
affecting the temporal correlation of the SAR signal; and (iii) unsuitable valley flank orientations
relative to the SAR view angle [41–44]. Moreover, DInSAR ground deformation monitoring for
systematic analyses is complicated due to the intrinsic limitations of the technique (i.e., coherence
loss due to large revisit time, phase decorrelation due to large or rapid displacement, and line-of-site
(LOS) measurements only) [33,45–47]. Additional issues are caused by the atmospheric phase screen
(APS), which is amplified by high topographic gradient in high mountain regions. The APS, caused by
the atmospheric pressure, temperature, and water vapor variations between two SAR acquisitions,
may cause artifacts on the surface deformation results [48]. Moreover, SAR images acquired in winter
periods are highly affected by snow cover, which causes temporal coherence loss [47,49,50].

All these factors have to be carefully taken into account for SAR data processing to thoughtfully
interpret the ground deformation in high mountain regions. In several cases, however, the complexity
of SAR data processing, as well as the large number of attempts to be performed before obtaining
reliable results, hinders the achievement of surface deformation results. Currently, the application
and the treatment of SAR data in high mountain regions requires specific background knowledge
of the user and demand the application of complex processing algorithms and software. Moreover,
the increasing amount of SAR data available from different satellites missions leads to rising needs of
storage and computing resources. Recently, a relevant service was released within the ESA GRID-based
operational environment [51], i.e., the unsupervised implementation of the Parallel-SBAS (P-SBAS)
algorithm [52]. GPOD is coupled with high-performance and sizeable computing resources managed
by GRID technologies, and it provides flexibility for building an application virtual environment with
quick accessibility to data, computing resources, and results. The users access various services useful
in the EO applications through a web interface, which guides the users from the creation of a new task
until the results publication, passing through the data selection and the job monitoring. The P-SBAS
algorithm has been implemented to exploit the GPOD resources, and to process the SAR data archived
by ESA to perform the full SBAS-DInSAR processing chain in an unsupervised fashion from the
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Level 0 (raw) SAR data to the generation of surface velocity maps and displacement time series [53].
Since the average processing time is smaller than 24 h, several processing attempts can be performed in
a reasonable time-span to optimize the final results on a specific target area. The main advantage of this
service, hereafter referred to as GPOD-SBAS, is that users with different backgrounds, more interested
in the analysis of the surface deformation due to different natural and/or anthropic processes than in
the details of the SAR data processing, can apply a reliable and validated state of the art algorithm
without downloading large amounts of input data, nor owning costly processing hardware or learning
specific software [53].

In this study, we define best practices to obtain surface displacement time series in high mountain
regions by using the GPOD-SBAS service. Our work derives from a specific need: even though the
unsupervised GPOD-SBAS service provides a great advance and allows a larger number of users to
carry out advanced DInSAR analyses, obtaining reliable results in mountain areas is not a trivial task.
The proposed methodology is applied to the Valle d’Aosta (VDA) region, Northern Italy, an alpine
area characterized by high altitudes, complex morphology, and susceptibility to different mass wasting
phenomena (e.g., landslides, rock glaciers, and glaciers), in some cases threatening urban areas and
human activities, and it can be easily borrowed in similar areas.

The paper is organized as follows. We first introduce the area of study by highlighting the
geomorphological, environmental, and climatic characteristics. Then, we describe the method applied to
analyze, through the use of the GPOD-SBAS service, the data acquired by ERS-1/2 and ASAR-Envisat
during the 1992–2000 and 2002–2010 periods, respectively, in ascending orbit for ERS-1/2, and in
ascending and descending orbit for ASAR-Envisat. Finally, we present the results, discuss our findings,
and propose a number of suggestions and best practices to be considered to retrieve effective and
reliable information while approaching the analysis of SAR data in high mountain areas.

2. The Valle d’Aosta Region, Northern Italy

The Valle d’Aosta region (3200 km2) is located in the Northwestern Italian Alps (Figure 1).
More than 50% of the Valle d’Aosta (VDA) territory has an elevation above 2000 m a.s.l., though
topographic relief is highly variable, ranging from 300 m a.s.l. to peaks higher than 4000 m a.s.l.
(e.g., Mt. Bianco, 4810 m a.s.l.; Mt. Rosa, 4635 m a.s.l.; Cervino, 4478 m a.s.l.: Gran Paradiso, 4061 m a.s.l.).

Figure 1. Relief terrain of the study area (the Valle d’Aosta (VDA) region, Northwestern Italy). The map
shows the high and complex morphology of this mountainous area; the light blue polygons correspond
to the present glaciers of the region, modified from the Glacier map of Fondazione Montagna Sicura [54].

From a geological point of view, the VDA region is part of the alpine chain [55–59], passing through
the principal Europe-vergent Austroalpine-Penninic structural domain of the Western Alps. The Valley
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presents a complete section of the orogenic prism including (i) the Austroalpine domain; (ii) the
ophiolitic Piedmont zone; and (iii) the Pennidic domain. These tectonic-metamorphic units composed of
a complex pile of nappes, which present a post-collisional tectonic activity and a neo-tectonic dislocation
system activation (e.g., semi-graben Aosta-Ranzola fault) [57]. The morphological traits of the VDA are
characterized by the main valley trending east–west (Dora Baltea Valley). This is a wide (3400 km2) glacial
valley with several tributary valleys (trending north–south), which ends around the Pont Saint Martin
municipality, at the Ivrea moraine amphitheater, the main evidence of Quaternary glaciations [60].

As typical in alpine valleys, VDA has a prevalence of highly vegetated areas, while human
settlement distribution is located at the valley bottom. The land cover is prevalently represented
by forest, natural grassland, and rock outcrops with little or no vegetation. In addition, the massifs
dominating the VDA landscape act as morphological boundaries and deeply influence the local climatic
conditions. Indeed, the high peaks limit the access of air masses from the Mediterranean Sea or the
Atlantic Ocean, causing a clear difference in the rain and snow precipitation regimes [61]. The regional
climate, in mountainous and marginal sector, is characterized by wide range of temperatures and
rainfall/snowfall (min, max and average values of 1000–1100 mm/year, while, in correspondence of
the principal valley bottom, by a temperate climate, characterized by relatively lower rainfall (lower
than 600 mm/year) [62].

2.1. Mass Movement in the Valle d’Aosta Region

The slopes of VDA are characterized by high density of mass movements, which can be
synthetically grouped in glaciers, rock glaciers, and landslides. These phenomena are mainly
related to the long- and short-term evolution of glacial, periglacial, and paraglacial processes [63,64].
Glaciers nowadays occupy as much as 5% of the regional territory, which represent one-third of
the Italian glaciers [65]. The rate of ground deformation vary significantly passing from glacier
flows, which is characterized by rates of tens to hundreds of meters per year, to permafrost creep,
in order of cm to m per year [63,66,67]. The alpine permafrost has a very variable and fragmented
distribution, showing creep deformation depending on permafrost temperature [68]. Rock glaciers
(RGs), i.e., periglacial landforms common in high alpine environments, occupy about 2% of the VDA
territory [69,70]. RGs are defined as lobate to tongue-shaped structure of frozen rock debris, with steep
front and side slopes, interstitial ice cement, ice lenses, a core of massive ice, or a combination thereof.
These ice-rocky structures may creep depending on the mountain permafrost condition. Due to the ice
content, the RGs are classified as active, inactive, or relict [70–72]. Active RGs have higher ice content
and move downslope with velocities ranging from several cm/year to several m/year [73]. Inactive
RGs contain some ice, but do not move. Finally, relict RGs present a front slope less steep gradient and
are frequently covered by vegetation, do not contain ice, and do not move. In VDA, 937 rock glaciers
were identified, and most of them (56%) were classified as relict [74–76]. The intact RGs are located at
a higher altitude, presenting a lower limit variable from 2126 m and 3150 m a.s.l., and a prevalently
northeast-to-northwest exposure. The relict RGs are located not below 1600 m a.s.l. altitude, and reach
on average at the upper limit of 2700 m a.s.l., presenting variable exposure.

Another important gravitational process that affects 18% of the VDA territory [77,78] are
landslides. These phenomena vary in size and typology, from shallow landslides (soil slips, planar,
and rotational sliding) to large slope instabilities. In the VDA region, deep-seated gravitational slope
deformations (DsGSDs) affect at least 13.5% of the regional territory [77], for a total of 280 phenomena
inventoried. These large slope instabilities are widespread phenomena in mountain areas of the
entire European Alps [11,79] and represent a large mass movement of an entire high-relief flank
valley [80]. Their evolution is controlled by the interaction of different factors: lithology, geology,
climate weathering, seismicity, and deglaciation [11]. In most cases, DsGSDs are located in initially
glacial valleys and related to Lateglacial trigger [80]; for these phenomena, the major cause of instability
is ascribed to glacial debuttressing. These phenomena generally present very slow–slow deformation
rates, variable from a few millimeters per year to a maximum of a few centimeters per year in
uncommon cases [81].

322



Remote Sens. 2016, 8, 852

2.2. Challenges for Retrieving Surface Deformation with DInSAR of VDA

The geomorphological and meteo-climatic characteristics make VDA a challenging environment
for the analysis of surface deformation with DInSAR, including (i) a high topography gradient,
(ii) complex orography, (iii) a predominance of forest or abundant vegetated areas, and (iv) unsuitable
valley flank orientations, specifically due to the alternatively west- and east-facing orientation of the
tributary valleys.

By assuming ERS-1/2 and ASAR-Envisat acquisitions, we aim at understanding the theoretical
distribution of scatters in the VDA region. This analysis has been carried out by computing the
R-Index [82], which considers slope and aspect angles of the ground surface, as well as the satellite’s
incident acquisition geometry (incident angle, i.e., 23◦, and an azimuth angle of the satellite orbit from
north (clockwise), i.e., 345◦ in ascending orbit and 195◦ in descending orbit, respectively). The resulting
map reveals, for the north–south oriented valleys, layover (thus less exploitable scatters) on the
west-facing slope in ascending orbit (Figure 2a) and layover on the east-facing slope in descending
orbit (Figure 2b). On the other end, east–west oriented valleys experience layover or foreshortening on
the north-facing slopes in ascending orbit and the south-facing slope in descending orbit.

 

Figure 2. R-Index map (a) of the ascending orbit and (b) of the descending orbit for the VDA region.
Layover/foreshortening cases are present for values lower than zero (blue portion).
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Furthermore, land use is also an important factor that has effects on the SAR result distribution
(Figure 3). The prevalence of natural and high-vegetated areas for the entire VDA regional territory
generates temporal decorrelation effects [47]. In addition, temporal coherence loss may occur due to
the meteo-climatic conditions of the investigated area, characterized by a prevalent snow cover during
the winter season.

Figure 3. Land cover map of the VDA region (redraw from CORINE 2006).

3. Methods

By taking into account the challenges outlined above, here we present a methodology to exploit the
capabilities and potentialities supplied by the GPOD-SBAS service to retrieve the surface deformation
information over high mountains. The VDA region is a representative area of investigation where we
apply GPOD-SBAS processing.

We consider SAR images collected by ERS-1/2, in ascending orbit, and ASAR Envisat missions
from ascending and descending orbits (see Table 1). The tracks cover most of the VDA regional
territory, excluding only about 10% of the entire region localized in the eastern portion (see Figure 4).
The reference point is selected corresponding to an area assumed stable, on the basis of geological
and geomorphological background analysis, during the investigation period, and where DInSAR
coherence values are expected to be high (i.e., within the Aosta municipality, see Figure 4).

Table 1. Summary of the ERS-1/2 and ASAR Envisat images considered for the VDA study area.

Satellite Observation Period Track Frame Orbit Acquisition Number of Images

ERS-1/2 April 1995–May 2000 301 909 Ascending 32
ENVISAT June 2004–October 2010 301 909 Ascending 50
ENVISAT September 2004–October 2010 294 2673 Descending 46
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Figure 4. Map of the VDA region study area (in light grey). The red box represents the extent
of ERS-1/2 and ASAR Envisat track in ascending orbit, while the blue box represents the track in
descending orbit. The reference point (REF) is located in the Aosta municipality.

Though the SBAS approach can be jointly applied to ERS-1/2 and ASAR Envisat datasets to
retrieve a continuous time series covering almost 20 years [83], at the moment of the processing,
the implementation available in GPOD allows us to process the datasets only separately. To retrieve
reliable results and to maximize the spatial coverage of the achieved coherent points, we perform
an iterative procedure in order to choose the most suitable SAR dataset, to minimize the temporal
decorrelation effects mainly related to the presence of snow cover in the areas of interest, and to
preserve the processing of the largest number of SAR scenes. We perform four tasks (named from T1 to
T4) for each orbit, summarized in Table 2. It is worth noting that such an analysis phase, addressed to
select the most suitable dataset, plays a key role when analyzing mountain areas. Indeed, the presence
of several decorrelation sources, i.e., vegetation and snow cover, requires proper identification of the
SAR acquisitions less affected by noise through an iterative mechanism. This analysis can be easily
and efficiently carried out within the GPOD environment thanks to its capability to perform SBAS
analyses in a reasonably short time (about 24 h). As a final remark, the following analysis is based
on the two available Envisat datasets because they have a good number of SAR acquisitions (more
than 50 acquisitions) uniformly distributed during the observed time period, and permit a better
investigation of the impact of winter acquisition on the final results. As regards ERS-1/2 dataset,
due to the limited number of available SAR acquisitions, it is directly processed by selecting the images
and the processing parameters on the basis of the Envisat analyses. Finally, we advise that GPOD-SBAS
operates with the three-arcsec DEM free available from the SRTM archive.
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Table 2. Summary of the features of the attempts processed by the GPOD-SBAS service for the
ASAR Envisat database in the VDA study area, also reporting the different values of the GPOD-SBAS
processing parameters.

Attempt Satellite Orbit Images
Results (Number

of Targets)
Increment from

T1 (%)
Ground Pixel

Size (m)
Coherence
Threshold

T1 ENV
ASC 50/50 4598

80 0.7DESC 46/46 2143

T2 ENV
ASC 38/50 13343 193%

80 0.7DESC 38/46 5987 179%

T3 ENV
ASC 37/50 19011 313%

80 0.7DESC 37/46 9748 355%

T4 ENV
ASC 37/50 33086 620%

40 0.8DESC 37/46 20317 848%

In T1, we processed all the available images for each Envisat dataset by keeping the default
parameters of the GPOD-SBAS unmodified; this task is very important because it allows us to produce
a large number of interferograms involving all the available SAR scenes and to retrieve a complete
overview of the whole SAR dataset. Moreover, the results achieved represent a backbone analysis
carried out with the maximum number of available acquisitions; thus, they provide a deformation
time series with the highest temporal sampling. However, the spatial distribution of resulting coherent
targets is limited.

In order to increase our capacity for image surface deformation phenomena, in T2 we reprocessed
only the images acquired from April to November without changing any other input or parameter,
assuming that the snow season in VDA corresponds to the December–March period [84]. The approach
followed in T2 can be particularly critical because it introduces very long temporal gaps in the SAR
dataset during the winter periods and can strongly reduce the number of available acquisitions.
Moreover, it does not guarantee the removal of all acquisitions affected by snow cover because
the climatic conditions in mountain areas can significantly change year-by-year and zone-by-zone.
However, the second analysis significantly improved the number of targets with respect to the first
one: if we consider, for example, the Envisat ascending data, we registered an increase in the number
of targets of 193% (Table 2).

As stated above, snow seasons in VDA mainly range from December to March; however, there are
exceptions. For example, the 2008–2009 winter registered extraordinary snow season from November
to May [84]. According to this experience, in T3 we improved the SAR image selection method
throughout the analysis of meteorological records coeval to SAR observation. Considering several
weather stations of the regional meteorological network, a day-by-day analysis in correspondence
to the satellite acquisition epochs is carried out. All the considered weather stations [85] are located
above 2000 m a.s.l. to guarantee the significance of the meteo-climatic measurements for high
mountain environments. This analysis is performed in two phases: (i) snow coverage identification and
(ii) interferogram evaluation. In particular, we examined the daily rainfall (in mm) and the snow
depth (in cm) parameters. The images characterized by abundant rain or snow precipitation were
discarded from further analyses. Successively, an interferogram analysis was performed to identify
SAR acquisition strongly affected by snow cover. During this analysis, arbitrary thresholds were
considered. We observed that over 50 cm in snow depth could generate noisy interferograms.
Regarding rainfall, only a single image was discarded from the analysis (28 May 2007), associated with
a rainfall event of more than 30 mm/day, which has also generated, in this case, noisy interferograms.
According to the analysis of the meteo-climatic parameters, we discarded only the images associated
with the most critical values of daily rainfall and snow depth to ensure the SBAS processed the
largest number of acquisitions. Using this fine-tuning, in T3 we still improved the number of targets:
considering the Envisat ascending orbit again as a reference, the increment of coherent points with
respect to the first analysis is of 313% (Table 2); with respect to T2, an increase in the number of targets
to 5668 was revealed.
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It is worth noting that, for the reliability of the SBAS-DInSAR analysis, it is very important to
keep in the processed dataset a number of SAR acquisitions as large as possible to preserve a good
temporal sampling and to limit as much as possible the presence of temporal gaps [86]. Accordingly,
we only removed the SAR acquisitions affected by a widespread snow cover that clear impacts on the
spatial coherence of the interferograms. To this aim, it was crucial to crosscheck the meteo-climatic
conditions that provide local information and with the quality of the interferograms that supply
large-scale information.

Finally, in T4, we performed a final tuning of the processing parameters [53], such as the ground
pixel dimension (from 80 m to 40 m) and the coherence value of the analyzed pixels (from 0.7 to 0.8),
while the default values of the maximum perpendicular (400 m) and temporal baseline (1500 days)
were maintained. The increment of the number of targets (Envisat ascending orbit) for this last
processing corresponds to about 620%.

Similar or even larger increments were observed for the Envisat descending analysis (Table 2).
The significant increment of coherent targets due to the fine-tuning of the processing parameters in T4
is worth noting. This can be mainly explained by the coherence value used in this task. This parameter
allows users to define the selection of the pixels to be considered in the SBAS analysis by changing
the spatial network of the pixels to be unwrapped [87]. The default value in the GPOD-SBAS service
is 0.7, and it is suitable for a very large number of test sites. However, in some particular sites, the
presence of a very large number of target with poor coherence can hinder the phase unwrapping (PhU)
operation [87] within the GPOD-SBAS service processing chain. In these cases, the PhU results can be
significantly improved if only the targets with very high coherence are selected. This generally happens
in mountain areas, where the pixels are characterized by lower coherence values and, moreover,
have a sparse distribution over the scene, thus making PhU step a challenging operation.

4. Results

By exploiting the GPOD-SBAS, we obtained mean deformation velocity maps and displacement
time series for the VDA regional territory, covering a time interval of more than 4 years (ERS-1/2)
and of more than 6 years (ASAR-Envisat), respectively (see also Figure S1). Table 2 summarizes
the testing activity done to perform the iterative procedure implemented for the high mountain
region, operating on the Envisat dataset, and later directly applied to the ERS-1/2 dataset. All of the
processed tasks were successfully completed by the unsupervised GPOD-SBAS service in less than 24 h.
Depending on the SAR images considered, and on the processing parameters applied, we obtained a
different amount of coherent targets (see Table 2). In Figure 5, we show the distribution of coherent
targets subdivided according to slope class, obtained by the slope calculation from a DTM with 10 m
square grid spacing for each processed task of the Envisat datasets. We note that, for all the datasets,
we have a general increase in the number of coherent targets for all slope classes. In the first task T1,
the prevalent distribution corresponds to the lowest degree slope (0◦–20◦), coincident to the most
urbanized areas, corresponding to the most coherent sectors. On the contrary, on the high to very
high classes (40◦–60◦ and >60◦), we note a general lack of target distribution. However, the number of
targets obtained in T4 is as large as one order of magnitude with respect to T1.

In Figures 6 and 7, we present the best results obtained for both Envisat (ascending and descending
orbits) and ERS (ascending orbit) datasets (see also Figure S1). Coherent targets are mainly located at
the main valley bottom, where urbanized areas (e.g., streets, railway, main towns, hamlets, and isolated
building) are located. Within the observed period, LOS velocities in these areas are rather small, ranging
from about ±0.2 cm/year and comparable between Envisat and ERS processes, confirming an overall
ground stability. Relative to the ERS-1/2 dataset, directly processed on the basis of the results achieved
with the Envisat analysis, a significantly lower data coverage respect to the Envisat resulted, presenting
a total amount of targets of 8574. As expected from the SAR visibility analysis performed (see Figure 2),
coherent target distribution is mainly on east-facing slopes, in ascending orbit, and on west-facing
slopes, in descending orbit. Moreover, in the valleys, targets are mainly localized in hamlets and
villages, as well as in areas of little or no vegetation (e.g., talus, moraine, and bare rock).
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From the comparison between the GPOD-SBAS process results and the known distribution of
the VDA gravitational process considered in this work, we notice that, in correspondence to glaciated
sectors, a decorrelation effect due to their large displacement, and a consequently total absence of
targets, was revealed.

 

Figure 5. Graph of the number of targets of each dataset available for the Envisat satellite for each task
processed. The targets are subdivided and classified with respect four slope classes, based on the slope
calculation of the VDA region.

Figure 6. Surface velocities measured along the satellite LOS for the Envisat dataset: (a) in ascending
orbit for the time period from June 2004 to October 2010 and (b) in descending orbit for the time period
from September 2004 to October 2010. The light blue polygons correspond to the present glaciers.
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Figure 7. Surface velocities measured along the satellite LOS for the ERS-1/2 dataset in ascending
orbit for the time period from June 1995 to May 2000. The light blue polygons correspond to the
present glaciers.

4.1. Deep-Seated Gravitational Slope Deformations

We compared the ground velocity map obtained through the GPOD-SBAS processing to the
DsGSD phenomena present in the area of investigation, according to the IFFI (Italian Landslides
Inventory) catalogue [88], and found a good correlation between deforming areas observed and the
occurrence of DsGSD phenomena. We performed this comparison making use of Envisat results (both
ascending and descending orbits), which present the best coverage of the VDA study area and a higher
number of targets with respect to the ERS-1/2 results. Considering the ascending orbit, the inventoried
DsGSDs included within the track considered are 179, and only 44% present targets inside, of which
25% present more than ten targets. Considering the descending orbit, 191 DsGSDs inventoried are
included within the track considered; in this case, 35% of these phenomena present targets inside,
of which only 19% present more than ten targets (Table 3). Moreover, the highest coherent target
density for the east face-oriented DsGSD cases in ascending orbit, and for the west face-oriented
DsGSD cases in descending orbit was observed.

Table 3. Summary of the number of deep-seated gravitational slope deformations (DsGSDs) inventoried
in the IFFI project covered by targets generated by the GPOD-SBAS process.

DsGSD
(from IFFI)

Number of DsGSD
(within the Track)

Number of DsGSD
Covered by Targets

Number of DsGSD
with >10 Targets

ENVISAT Ascending
280

179 79 44
ENVISAT Descending 191 66 36

Two specific examples are reported and illustrated in Figures 8 and 9. The first example is the
Beauregard DsGSD, located in the southwest portion of the region, while the second is the Quart
DsGSD, located in the middle portion of the principal valley.

The Beauregard DsGSD is an extended phenomena, going from 1700 m a.s.l., close to the
valley bottom, up to 2900 m a.s.l. in the northern sector, corresponding to its main scarp. In [89],
a non-homogeneous deformation pattern of this phenomenon is described, with the upper part
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presenting the highest displacement rates, and a slow and constant deformation along the basal
portion of the phenomenon.

Exploiting our results (Figure 8a), we noted a good density of the target distribution, higher
than that in other DsGSDs. The target distribution mainly covers the upper-northern and the central
sector, while no targets were revealed in the southern part and in general at the DsGSD toe, where
only a small basal portion of the landslide close to the dam structure is covered. The distribution of
the targets is influenced by the distribution of bedrock outcrops: in the area covered by grassland or
woods, the number of targets is very poor.

Figure 8. (a) Mean deformation velocity map of the Beauregard DsGSD case study, for Envisat
ascending dataset. (b,c) Time series corresponding to the targets signed by the white dots in the map.
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Figure 9. (a) Mean deformation velocity map of Quart DsGSD case study, for Envisat ascending dataset.
(b) Time series corresponding to the targets signed by the white dots in the map.

In general, we notice a good agreement between our results and the hypothesized kinematic
domains presence. In fact, it is possible to identify two distinct portions presenting different LOS
velocity values for the observed period: (i) the upper sector, corresponding to the main scarp and
constitute by two sub-domains belonging to the DsGSDs (reported in the IFFI project), present
velocities ranging from −1.04 up to −0.5 cm/year, while (ii) the basal sector present the lowest LOS
velocity, with a range variable from −0.4 to −0.2 cm/year. Moreover, observing Figure 9a, additional
kinematic domains can be identified, i.e., a central sector, presenting ground LOS velocities from −0.8
to −0.5 cm/year, and a sector in the west portion of the gravitational phenomenon, characterized by
LOS velocities from −0.57 to −0.25 cm/year.

Analyzing the ground deformation time series available for several targets within the
phenomenon, we observe a substantially constant deformation rate, represented by a linear trend;
however, several accelerations, related to the later spring–summer period, are observed. Specifically,
five targets distributed within different Beauregard domains, are presented (Figure 8b,c). The higher
displacement of −3.7 cm (away from the satellite), for the observed period from June 2004 and October
2010, was registered by the target B1 located in correspondence to the main scarp of the DsGSD,
while the target B5 located in correspondence to the toe of the DsGSD, close to the dam, registered
a maximum displacement of −1.07 cm. Instead, a displacement comparable to what was observed for
the B1 target, is registered by target B4, with a maximum of −3.5 cm.
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The DsGSD of Quart is located on the north side of the broad middle portion of the principal
valley. This phenomenon covers an area of about 13 km2 from 530 m a.s.l. at the valley bottom up
to 2200 m a.s.l., in the terminal part of the main DsGSD scarp. In [10], the complex evolution of this
phenomenon is described, and the ongoing deformation was attributed to an interaction between
gravitational movements with glacial and fluvial processes operating over a long time period.

The mean deformation velocity map obtained with GPOD-SBAS processing confirms the ground
deformation trend outlined in the literature [10] (Figure 9a) and allows for the identification of ground
LOS velocities in the upper and central portions of about −0.8 and −0.6 cm/year, respectively, while
lower sectors appear relatively stable over time. Furthermore, in this case, the ground deformation
time series generally present a constant deformation rate and show local acceleration during the
summer months; the maximum displacement of −5.25 cm for the observed period was registered by
the upper sector of the DsGSD (Figure 9b); going down to the valley bottom, the central sector presents
a maximum displacement of −1.9 cm, up to −0.2 cm in the lower sector of the slope.

4.2. Periglacial Ground Deformations

We compared the ground velocity map obtained by the GPOD-SBAS and the VDA rock glaciers
(RGs) inventory [76]. In general, despite the widespread lack of targets coverage associated with the
rock glaciers, we found a fairly good correlation. Considering the ascending orbit, 759 inventoried
RGs were observed within the track considered (Table 4); in this case, just the 16% present targets
inside, and only 4% present more than ten targets. For the descending orbit, a total of 811 phenomena
inventoried are included within the task considered, of which 8% present targets, and only 2% present
more than ten targets.

Table 4. Summary of the number of rock glaciers, inventoried in the Glacier Inventory, covered by
targets generated by the GPOD-SBAS process.

Rock Glaciers (from
Glaciers Inventory)

Rock Glaciers
(within the Track)

Rock Glaciers
Covered by Targets

Rock Glaciers
with >10 Targets

ENVISAT Ascending
937

759 123 31
ENVISAT Descending 811 65 13

The mean deformation velocity maps obtained for both ascending and descending orbits of
the Envisat processing results reveal a generally low coverage of the rock glaciers by the targets.
Figure 10 shows the mean deformation velocity map detail for the descending orbit acquisition,
reporting an example of an intact rock glacier and a relict one. The Petit Emilius (PE in Figure 10a) RG
corresponds to the intact one and presents only one target within, with a LOS velocity of −0.8 cm/year,
while the Becca di Nona (BN in Figure 10a) RG corresponds to the relict one and presents more than
ten targets within, with a mean LOS velocity of −0.5 cm/year, for the entire observed period.

For these two cases, the analysis of the ground deformation time series of the targets (Figure 10b)
reveals a constant deformation rate, with a maximum displacement of −1.4 cm for the observed period
from September 2004 to October 2010. Analyzing the time series in detail, they seem to display a sort
of acceleration in correspondence to the summer and the mid-autumn (e.g., summer 2009). It is worth
noting that such phenomena present a seasonal fluctuation [68], where the highest velocities appear
during the summer to early autumn months; looking at the results from year to year, comparing the
late summer with respect to the early subsequent summer, a moderate acceleration can be observed.

Finally, considering the rock glaciers included within each track (Table 4), we observed in general
that the intact rock glaciers present the largest deformation, while, for the rock glaciers identified as
relict, a modest displacement, a smaller deformation with respect to the intact ones, was disclosed.
In Figure 11, we present the Clapey Gerbioz relict rock glacier example: in ascending orbit (Figure 11a),
this RG presents mean LOS velocities from −1.1 cm/year up to −0.26 cm/year; in descending orbit
(Figure 11b), a range from −0.7 cm/year up to −0.3 cm/year.
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Figure 10. (a) Mean deformation velocity map of the Becca de Nona (BN) and Petit Emilius (PE) rock
glaciers in descending orbit; (b) time series corresponding to the targets signed by the white dots in
the map.

Figure 11. Cont.
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Figure 11. Mean deformation velocity map of La Clapey Gerbioz relict rock glacier for (a) Envisat
ascending orbit and (b) descending orbit.

5. Discussion

We have shown that the GPOD-SBAS service may allow for the revelation of information about
the ground displacements occurring in difficult environments such as high mountain regions.

The GPOD-SBAS service, which is a completely free web-tool, operating on a grid infrastructure,
supplies the resources to process an enormous amount of data through the distribution of computing
environments via the Parallel-SBAS (P-SBAS) technique [52]. The web-tool operates in an unsupervised
manner, processing the P-SBAS chain step-by-step: (i) raw data focusing; (ii) SAR image co-registration:
(iii) interferogram generation; (iv) the unwrapping of the computed phases; (v) the generation of the
final results. However, in most cases all over the world, the unsupervised manner is not sufficient.
For this reason, in order to maximize the number of coherent targets and their distribution over those
areas, a number of best practices have to be performed. First, geomorphological and meteo-climatic
settings of the study area have to be carefully considered. High topography gradients and complex
orography, the predominance of abundant vegetation (e.g., forested areas), and unsuitable valley flank
orientation are recognized as challenging environments for DInSAR techniques. The computation of
the R-Index [43], considering the satellite’s acquisition geometries to analyze the potential distribution
of the targets, is important preliminary information. In our example, the prevalent distribution has
been observed not only on the south-facing slope in the ERS and Envisat ascending orbits and on
the north-facing slope for the descending orbits, for the east–west oriented valleys, but also on the
east-facing slope in the ascending orbits and on the west-facing slope in the descending orbits, for
the north–south oriented valleys. Moreover, our results have shown the importance of a day-by-day
analysis of the meteo-climatic parameters in correspondence to the satellite acquisition epoch, removing
the SAR acquisitions affected by snow, causing temporal decorrelation effects. It is worth noting that
the crosscheck of the local information obtained by the weather stations parameters available, with
the large-scale information provided by the interferograms elaborated by the GPOD-SBAS service,
has been crucial. In addition, by fine-tuning the advanced parameters of the GPOD-SBAS service,
we have additionally improved the number of coherent targets and their distribution over the study
area (Table 2). In particular, we have proved that of the parameter “coherent threshold,” which
influences the spatial network of the pixels to be unwrapped, mountainous environments have to be
increased with respect to the default values, and only very high-quality targets guarantee a significant
improvement in the PhU operation. Our study allowed for the obtainment of ground deformation
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maps and the associated time series of ERS-1/2 and ASAR-Envisat data, over the entire VDA territory,
for the time period respectively from June 1995 to May 2000 and from June 2004 to October 2010.

The comparison of the results obtained for the VDA region to the regional inventory including
glaciers, rock glaciers, and DsGSDs shows good general agreement describing the deformation
processes of already known phenomena. On glaciers, no displacement has been retrieved due to
decorrelation effects caused by their fast evolution. On rock glaciers, a general lack of targets has been
observed, limiting the deformation degree establishment (e.g., active, inactive, and relict). In general,
an increment in LOS deformation during summer and mid-autumn could be revealed for the intact
rock glaciers, while for the relict rock glaciers a slight LOS displacement has been detected, despite
the absence of ice within. Finally, on DsGSDs already known and inventoried, a good coverage and
distribution of targets have been observed on a regional scale. A downslope velocity deformation
comparable with the DsGSDs of very slow moving phenomena [90] has been detected. Moreover,
the results obtained showed different activity domains within DsGSD phenomena, in agreement with
studies [10,89] of such phenomena in this region, presenting LOS deformation with a linear trend
characterized by several acceleration related to the later spring–summer period.

Since in situ measurements suitable for a regional data comparison were not available,
we compared our results to the data available on the Portale Cartografico Nazionale [91]. In this
web-portal, the ERS-1/2 and ASAR-Envisat acquisitions are processed by the PSInSAR technique,
over the entire Italian national territory. For the comparison, we selected a common stable area
(Figure 12) and a number of targets presenting significant ground deformation (Figures 13 and 14).

Figure 12. Cont.
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(a)

Figure 12. Comparison between the Envisat ascending (A) GPOD-SBAS results and (B) the PSInSAR
results (from the Portale Cartografico Nazionale) over the Aosta municipality, considered as common
stable area; (C) time series corresponding to the SBAS target and the Permanent Scatterers (PS), signified
respectively by the black square in (A) and by the red square in (B).

Figure 13. Cont.

336



Remote Sens. 2016, 8, 852

Figure 13. Comparison between the Envisat ascending (A) GPOD-SBAS results and the (B) PSInSAR
results (from the Portale Cartografico Nazionale) over the Quart DsGSD; (C) time series corresponding
to the SBAS target and the PS, signified respectively by the black square in (A) and by the red square
in (B) within the Quart DsGSD phenomenon.

Figure 14. Cont.
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Figure 14. Comparison between the Envisat ascending (A) GPOD-SBAS results and the (B) PSInSAR
results (from the Portale Cartografico Nazionale) over the Valtourenenche Valley corresponding to the
Mont Meabè rock glacier; (C) time series corresponding to the SBAS target and the PS, signified respectively
by the black square in (A) and by the red square in (B), within the Mont Meabè RG phenomenon.

The comparison shows good agreement between the measurements performed with different
DInSAR approaches. Furthermore, the number of SBAS coherent targets and their distribution are
comparable with the PS of the Portale Cartografico Nazionale.

6. Conclusions

The possibility to investigate surface deformation over wide areas with sub-centimeter accuracy
can be very useful for the interpretation of the kinematic behavior of mass wasting phenomena typical
of high mountain region (e.g., landslides, rock glaciers, and glaciers). However, the high complex relief,
together with the land use and the snow cover, typical of mountainous areas, constitute important
limitations for the DInSAR processing applications [42–44,86], also associated to the well-known
intrinsic limitations of these techniques [33,45,46].

The proposed iterative procedure, applied through the P-SBAS web-tool within the GPOD
environment, allowed us to improve SAR data selection and processing, over high mountain regions.
The G-POD user-friendly interface permits to everyone—not just experienced users—quick accessibility
to the SAR data and an analysis of SAR data using validated process, without tinkering with the
different SBAS-DInSAR processing steps of specific and costly software.

Our processing strategy shows that it is possible to obtain long-term deformation analysis of
diverse phenomena affecting mountain areas, and demonstrates how the DInSAR application could
obtain reliable information about the ground displacement in the area without in situ instruments.
This will be even more evident with the new Sentinel-1 satellite constellation that provides SAR
acquisition characterized by significantly reduced revisit time (6 days), which represents an important
improvement for the application and exploitation of the DInSAR results.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/852/s1;
Figure S1: Maps of surface velocities measured along the satellite LOS, for the Envisat dataset in ascending
and descending orbit. The four images represent the results of the performed tasks for each orbit using the
GPOD-SBAS service.
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Abstract: The rapid and accurate assessment of building damage states using only post-event remote
sensing data is critical when performing loss estimation in earthquake emergency response. Damaged
roof detection is one of the most efficient methods of assessing building damage. In particular,
airborne LiDAR is often used to detect roofs damaged by earthquakes, especially for certain
damage types, due to its ability to rapidly acquire accurate 3D information on individual roofs.
Earthquake-induced roof damages are categorized into surface damages and structural damages
based on the geometry features of the debris and the roof structure. However, recent studies have
mainly focused on surface damage; little research has been conducted on structural damage. This
paper presents an original 3D shape descriptor of individual roofs for detecting roofs with surface
damage and roofs exhibiting structural damage by identifying spatial patterns of compact and regular
contours for intact roofs, as well as jagged and irregular contours for damaged roofs. The 3D shape
descriptor is extracted from building contours derived from airborne LiDAR point clouds. First,
contour clusters are extracted from contours that are generated from a dense DSM of individual
buildings derived from point clouds. Second, the shape chaos indexes of contour clusters are
computed as the information entropy through a contour shape similarity measurement between
two contours in a contour cluster. Finally, the 3D shape descriptor is calculated as the weighted sum
of the shape chaos index of each contour cluster corresponding to an individual roof. Damaged roofs
are detected solely using the 3D shape descriptor with the maximum entropy threshold. Experiments
using post-event airborne LiDAR point clouds of the 2010 Haiti earthquake suggest that the proposed
damaged roof detection technique using the proposed 3D shape descriptor can detect both roofs
exhibiting surface damage and roofs exhibiting structural damage with a high accuracy.

Keywords: contour cluster; 3D shape descriptor; shape similarity; entropy; building damage detection

1. Introduction

Building collapse is one of the primary causes of heavy human casualties in destructive
earthquakes [1]. Rapid and reliable damage assessment on the individual building level following
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earthquakes has become imperative for the optimal utilization of available resources for rescue [2,3].
Damage to roofs is an important feature for distinguishing extreme damage states, i.e., collapsed
buildings, from lesser damaged or undamaged buildings [4]. Therefore, vertical remote sensing,
including optical, SAR and LiDAR, represents an efficient tool for rapid damage assessment due to its
low cost, high availability, minimal corresponding fieldworks, large coverage, digital processing and
quantitative results. The effectiveness of remote sensing has also been proven following earthquakes
worldwide [5–8]. Numerous methods have been reported for building damage detection using 2D
features, such as gray scale, spectra, texture, edge and morphological features, and amplitude and
phase information derived from optical or SAR imagery [8–17]. However, certain damage types
(e.g., pancake collapse) cannot be identified using vertical remote sensing data due to the absence of
precise height data [18]. Airborne laser scanning systems are particularly suitable for damaged roof
detection because precise 3D point clouds can be rapidly obtained at all times and under most weather
conditions without entering the quake-stricken area [19,20], and the elevation accuracy is higher
compared to point clouds derived from vertical optical or SAR imagery [18,21]. Change detection
using both pre- and post-event remote sensing data is a popular method of acquiring building damage
information because detailed pre-event data are invaluable in reconnaissance [18,22–24]. However,
the major limitation concerning this method is the lack of homogeneous pre-event reference data in
many situations [18]. The method of damage interpretation using post-event remote sensing data
can be applied even in the absence of homogeneous reference data, which is an alternative to rapid
damage assessment during earthquake emergency response when pre-event data are limited.

According to the essential clue that damaged buildings, unlike organized manmade patterns on
intact buildings, usually manifest themselves as disturbed spatial or spectral patterns [25], various
methods have been developed to infer damage patterns from post-event data. The 2D features,
including edge, texture and spectra, have been assessed by numerous studies [17,26–28] as important
cues for damage detection because damaged regions tend to exhibit disturbed spatial or textural
patterns, in contrast to intact buildings [29]. On the other hand, 3D features have been found to be
useful for identifying specific damage types based on geometric reasoning, as highlighted by some
studies [30–33]. Therefore, this paper focuses on severely damaged buildings and proposes a damaged
roof detection approach based on the roof’s 3D features extracted from only post-event airborne LiDAR
point clouds. In the following subsection, we do not provide an exhaustive review of all these methods;
instead, we highlight only the 3D-feature-based approaches using only post-event airborne point
clouds that are directly relevant to our work in the next subsection.

1.1. Damage Types

Prior knowledge about damaged buildings is necessary when performing building damage
detection using airborne LiDAR point clouds [34]. A building damage catalog, as shown in Figure 1,
including typical damage types of buildings, is used to identify buildings exhibiting different damage
types based on geometry features such as reductions in volume and height, changes in the inclination
of building surfaces and surface structures as well as the size of debris [35]. However, extracting
geometry features such as reductions in volume and height and changes in the inclination of building
surfaces using only post-event airborne LiDAR point clouds is difficult. Therefore, a majority of the
building damage detection approaches using only post-event airborne LiDAR point clouds utilize
geometry features including the surface structure and debris.
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Figure 1. Compilation of damage types [35].

This paper categorizes the building damage catalog into two categories based on geometry
features of roofs including debris and the roof structure. The first category, named surface damages,
contains damaged building with debris surfaces such as multilayer collapse (2), top story pancake
collapse (4c, 5, 5c), heap of debris (6, 7a, 7c) and heap of debris with planes (3, 7b). The second category,
named structural damages, contains damaged buildings with relatively intact surfaces and includes
inclined plane (1), middle or lower story pancake collapse (4a, 4b, 5a, 5b) and inclination (9a). Pancake
collapse is a damage type of concern. The top story pancake collapse types, including damage types 4c,
5 and 5c, can be detected using post-event airborne LiDAR point clouds because the roofs are collapsed
or damaged, whereas middle or lower story pancake collapses, including damage types 4a, 4b, 5a and
5b, are difficult to detect because the roofs are nearly intact. However, few perfect middle or lower story
pancake collapses wherein the building entirely maintains its surface and structure during destructive
earthquakes occur; the majority of buildings exhibiting this type of pancake collapse usually exhibit an
inclination as well [36]. Therefore, this form of pancake collapse can be detected through the structure
analysis of inclination.

1.2. Building Damage Detection Approaches

The majority of approaches to damage detection using only post-event airborne LiDAR data can
be categorized into surface damage detection approaches and structural damage detection approaches,
according to the damage categories defined in the above section.

The majority of methods for surface damage detection detect the surface damages of collapsed
buildings based on the planarity of the roof surface because airborne LiDAR point clouds are
particularly suited to extracting planar roof surfaces [37–39]. Rehor et al. [40] produced a 2.5D planar
Delaunay-based triangulated irregular network (TIN) using planar segments and non-segmented
points segmented from roof points and extracted debris triangles from the TIN as the damaged building
parts. Rehor et al. [41] compared the random sample consensus (RANSAC) and region-growing
algorithms applied to Digital Surface Models (DSMs) for building damage detection and suggested
that the region-growing algorithm is more suitable for building damage detection than the RANSAC
algorithm. Labiak et al. [42] presented a line-based slope threshold method for evaluating and
identifying the damaged points of each roof based on the idea that points in intact roof planes
have constant slopes, whereas points in damaged roof surfaces have varying slopes. Segment-based
classification methods have been presented to detect collapsed buildings using only post-event airborne
LiDAR point clouds based on the assumption that damaged buildings are represented as many small
planar segments or unsegmented points, whereas intact buildings are represented as large planar
segments [43–45].

346



Remote Sens. 2016, 8, 189

Structural damage detection approaches detect damaged buildings via structure analysis based
on prior knowledge about intact buildings. Shen et al. [31] extracted the geometric axis line of a
flat or symmetric roof and identified the inclined roofs based on the assumption that the inclined
roof’s angle between its geometric axis line and plumb line is greater than an empirical threshold
angle. Gerke and Kerle [32] presented a graph-based approach for structural seismic damage
assessment based on oblique airborne images. The structural integrity of a building is inferred
based on the spatial relation between observable features such as vegetation, façade, intact roofs
and destroyed roofs. The relations are represented through a directed graph and are trained by a
graph-based learning algorithm. However, this approach is difficult to apply directly to airborne
LiDAR point clouds because it is difficult to extract building façades from airborne LiDAR point
clouds. Vetrivel et al. [29] developed a gap-based classification method for building structural damage
assessment using post-event image-based 3D points. In this method, 3D points of building elements
are voxelized based on a pre-defined voxel size; then, gaps are identified as the voxels that are visible
from a sufficient number of cameras but that are not occupied by 3D points. Finally, using radiometric
features, the gaps caused by damage are detected based on surrounding damage patterns such as
spalling or debris. However, it is difficult to extract such evidence from airborne LiDAR point clouds
because of their limited radiometric information. As a result, damage-related gaps cannot be reliably
classified using airborne LiDAR point clouds. Fernandez Galarreta et al. [4] presented an UAV-based
method for urban structural damage assessment using object-based image analysis and semantic
reasoning. In this method, the detailed 3D point clouds were generated from multi-view imagery
obtained by unmanned aerial vehicles; then, the z component of the normal of a local tangent plane
of each point was computed from the co-variance matrix of the neighborhood points and was used
to visually assess the D4-D5 damage elements in terms of the European Macroseismic Scale 1998
(EMS-98). Finally, the D1-D3 damage features were extracted via a more detailed façade and roof
analysis using object-based image analysis and semantic reasoning. However, the D4-D5 damages
were identified not by automatic analysis but by visual analysis.

The above-mentioned methods using airborne LiDAR point clouds all mainly focus on surface
damage and pay minimal attention to structural damage. Thus, the spatial relations between
the components of a building must be analyzed to infer structural damage [32]. The topological
relationships between adjacent planar segments can be described and reconstructed using a roof
topology in building modeling [46–48]. However, it is challenging to mathematically describe and
explain the topological relationships of complex, damaged roofs based on a scattered point cloud
at a low level, including at the point level and segment level, because the topology of random and
irregularly damaged roofs is uncertain.

The 3D shape of a complex, damaged roof can be quickly represented by contours, which avoids
the problem of topological analysis and reconstruction based on planar segments [49]. By analyzing the
characteristics of a building’s contours, some of their features, such as closed and regular shapes, simple
topology and density, are leveraged to extract and reconstruct buildings [49–52]. Our previous studies
have shown that it is possible to detect roof damage using a contour-based method [53]. Damaged
roofs with confusing contours were detected by a shape similarity analysis algorithm applied to
building contours derived from airborne LiDAR point clouds. However, the damage feature based on
contours was not explicitly described, and the automation of the algorithm was poor.

Focusing on surface and structural damages on roofs, this paper defines a 3D shape descriptor
based on shape analysis of the contour clusters of buildings for detecting severely damaged buildings
from post-event airborne LiDAR point clouds. The contribution of the paper lies in the presentation of
a 3D shape descriptor that provides a comprehensive description of both surface and structure features
of roofs based on the shapes and spatial relations of building contours. Compared to other 3D features
of roofs, the 3D shape descriptor can more reliably and completely detect damaged roofs.

The remainder of this paper is organized as follows: Section 2 details the key procedures of
damaged roof detection, including the data preprocessing, the definition and calculation algorithm of
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the proposed 3D shape descriptor, and damaged roof detection based on the 3D shape descriptor using
a maximum entropy threshold. Section 3 introduces the study area and the data source. Section 4
presents experimental results and discussion about damaged roof detection on the airborne LiDAR
dataset of the Haiti earthquake in 2010. The selection of values for algorithmic parameters is also
discussed in Section 4. The conclusions are presented in Section 5.

2. Methodology

This study proposes a method of damaged roof detection for both roofs suffering surface damage
and roofs suffering structural damage based on a 3D shape descriptor using post-earthquake airborne
LiDAR point clouds. The 3D shape descriptor is used to quantitatively describe both surface and
structure features of roofs based on the shapes and spatial relations of a building’s contours. The
descriptor is a more comprehensive description of 3D shapes of damaged roofs compared to other 3D
features. Therefore, damaged roof detection based on the 3D shape descriptor can be more reliably
and effectively performed.

There are three key procedures that constitute this method: data preprocessing, feature extraction
and damaged roof detection. In data preprocessing, the DSM of each individual building is extracted
from post-earthquake airborne LiDAR point clouds with guidance from 2D GIS vector data of building
footprints and a digital elevation model (DEM). In feature extraction, the 3D shape descriptor of each
building is calculated based on contour clusters generated from the DSM of each individual building.
In damaged roof detection, damaged roofs are detected based on the 3D shape descriptor. Figure 2
illustrates the detailed procedures.

Figure 2. Flow chart of damaged roof detection.
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2.1. Data Preprocessing

With the guidance of the 2D GIS vector data on building footprints, a dense DSM of an individual
building is constructed using the airborne LiDAR point cloud and the DEM. The individual building
points are extracted from the point cloud according to the building footprint, as observed in Figure 3b,f.
A thin plate spline (TPS) interpolation method is used to interpolate the dense DSM with a grid cell
size of λ to remove the impact of noise and to create a continuous and smooth surface [54,55], as shown
in Figure 3c,g. The ground points are set as having the same height, which is acquired from the DEM.

Figure 3. The data processing samples: (a) The image of an intact building with an arched roof;
(b) The airborne LiDAR point cloud; (c) The dense DSM; (d) Contour clusters colored with different
colors; (e) The image of a completely collapsed building with intact walls; (f) The airborne LiDAR
point cloud; (g) The dense DSM; (h) Contour clusters colored with different colors.

2.2. Feature Extraction

The shapes and spatial relations of building contours can represent the roof’s 3D shape feature
integrated with both surface and structure features more effectively than can planar segments.
A 3D shape descriptor is defined to quantitatively describe the 3D shape feature using the shapes and
spatial relations of building contours. Therefore, the 3D shape descriptor can potentially be used to
identify surface or structural damages on roofs.

2.2.1. Feature Definition

The 3D shape of a roof’s surface and structure can be represented by a contour cluster, which is a
set of contours extracted from a contour tree based on a containment relationship. A contour tree is
a data structure addressing the description of surface topologies and is built upon the containment
relationship between contours [56]. A contour cluster is defined as a subtree in the contour tree
according to the following three conditions: (1) the subtree’s root node has no parent node or has
a brother node in the contour tree; (2) the subtree’s terminal node has no child node or has at least
two child nodes in the contour tree; and (3) the subtree’s other node has only one child node in the
contour tree. The building’s surface regions belonging to the same structure are segmented from the
complex building surface by the contour cluster based on a homogeneous spatial topology relationship,
and each region is represented by a set of contours in the contour cluster, as shown in Figure 4.
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Figure 4. Three building surface regions belonging to different structures are segmented by
three contour clusters and are different colors: (a) Contours of the building; (b) Contour clusters
of different structures that are represented as nodes colored with the same color in a contour tree.

The 3D shape difference between damaged and intact roof surface regions can be reliably
distinguished using the full 3D geometric relationships among the contour clusters. One of the
essential differences between damaged and intact buildings is that the former usually manifest as
disturbed spatial patterns such as irregular surfaces and structures, unlike the organized, manmade
patterns of the latter [25], as demonstrated in Figure 5. For an intact roof, the organized manmade
pattern of the regular surface and structure is represented by a contour cluster containing similar shape
contours. For a damaged roof, the disturbed spatial pattern of the irregular surface and structure
is represented by a contour cluster containing chaotic shape contours. Therefore, the shape chaos
of a contour cluster can be used to describe the irregular 3D shape of a damaged roof’s surface and
structure and thus represents a potential feature for reliably distinguishing between intact roofs and
damaged roofs due to surface or structural damages.

Figure 5. The spatial patterns of complex roof surfaces are represented by contour clusters:
(a) The complex surface of Haiti’s National Palace, which was destroyed in the 2010 Haiti earthquake
(obtained from Google Earth); (b) Contour clusters of the roof are rendered in different colors according
to different surface or structural morphologies, such as contours of surfaces with debris (red), twisted
surfaces (purple) and inclined roof structures (blue), which are jagged or irregular, and contours of
intact surfaces and structures (green) are compact and regular.
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According to the concept of information entropy developed by Shannon [57], the shape chaos
index is defined to quantitatively describe the shape chaos based on the contour shape similarity
measurement. The principle of information entropy is to use uncertainty as a measure to describe
the information contained in a source [58]. For example, entropy is used to quantitatively measure
the spatial information of a map such as metric information, topological information and thematic
information [59]. In this paper, entropy is used to quantitatively measure the shape chaos of the entire
contour cluster based on the shape similarities between two contours.

This can be achieved using the ratio between the number of contours with similar shapes and
the total number of contours in the contour cluster as the probability Pi used in the definition of the
entropy E, as shown in Equation (1). Let N be the total amount of contours, clustered into n groups
with similar shapes, and let the number of contours in each group be Ni. Thus, the probability Pi can
then be defined as shown in Equation (2). Specifically, if each contour is sufficiently similar, the shape
chaos index will equal zero. If each contour is very different, which leads to each group having only
one contour, the contour cluster will be clustered into N groups, and all probabilities will be 1/N;
therefore, the shape chaos index will reach a maximal value: ln(N). Thus, the shape chaos index C is
the entropy E normalized by the maximal value, as shown in Equation (3).

E “ ´
ÿ

n
1 Piln pPiq (1)

Pi “ Ni
N

(2)

C “ ´řn
1 Piln pPiq
lnpNq (3)

The 3D shape descriptor is the weighted sum of the shape chaos indexes of contour clusters
corresponding to a single building, which describes the chaotic 3D shape of the entire building surface.
The 3D shape descriptor is defined as shown in Equation (4).

S “
ÿ

m
1 pQi ˆ Ciq (4)

where m is the number of contour clusters corresponding to a single building, Qi is the weight of
each contour cluster, and Ci is the shape chaos index of each contour cluster. In this paper, Qi can be
determined using the ratio between the area of the building surface region segmented by the contour
cluster and the total area of the building. Let A be the total area, and let Ai be the area of each region.
Such a weight can then be defined as shown in Equation (5). Because the shape chaos index and the
weight are both normalized, the 3D shape descriptor is also normalized.

Qi “ Ai
A

(5)

The damaged roof can be explicitly described by the 3D shape descriptor based on contour
clusters. The 3D shape descriptor measures the chaotic degree of the entire roof surface’s 3D shape
based on the shape chaos index. According to the Shannon entropy [57], the greater the difference
between the contour shapes within the contour cluster, the larger the shape chaos index of the contour
cluster, which means that the 3D shape of the surface region segmented using the contour cluster is
more irregular. If the area of the irregular surface region is greater, the 3D shape descriptor will be
larger. This means that the probability that the roof was damaged is higher. Accordingly, we assume
that damaged roofs can be distinguished from intact roofs by a threshold δ of the 3D shape descriptor.
Furthermore, the damaged roof is defined using the 3D shape descriptor, as shown in Equation (6).

D “ tS |S ą δu (6)
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2.2.2. Feature Extraction Algorithm

This paper proposes a feature extraction algorithm for a 3D shape descriptor based on the shape
analysis of contour clusters. There are three key procedures in the feature extraction algorithm: the
contour cluster extraction, the shape chaos index calculation and the 3D shape descriptor calculation.
Contour clusters are extracted from the contour tree, which is built using relationships based on the
containment method for contours generated from the DSM. The shape chaos index of the contour
cluster is calculated based on the information entropy of shape similarities, which are computed based
on the shape similarity measurements among contours. The 3D shape descriptor is calculated based
on the shape chaos indexes. Figure 6 shows the complete workflow of the feature extraction algorithm.

Figure 6. The complete workflow of the feature extraction algorithm.

(1) Contour Cluster Extraction

Contour clusters are extracted from the contour tree based on the three conditions discussed
in Section 2.2.1. Dense contours with a contour interval of ε are generated from a dense DSM of an
individual-building-based grid-tracking method that interpolates points at given heights between
grid cells and connects them sequentially [60,61], as shown Figure 3d,h. The contour tree is built
using relationships based on the containment method [62,63]. The containment method suffers from
the limitation that all contours are considered closed, and the unclosed contours are thus initially
excluded. In a contour tree, each node represents a different contour, and every node may have
a list of descendants. If one contour is contained by another, then that contour is a descendant.
The containment method begins from the root node with the lowest elevation and recursively creates
the contour tree in a depth-first manner.

(2) Shape Chaos Index Calculation

The shape chaos index of the contour cluster is used to quantitate the chaotic spatial pattern as
the information entropy of shape similarities among contours. The shape similarity measurement is a
crucial step in calculating the shape chaos index. The shape similarity is measured using the Euclidean
distance between the normalized Fourier descriptors (FDs) of two contours. FDs are typically used in
image retrieval and pattern recognition because of their insensitivity to geometric translation, rotation,
and scaling [64–67]. We employ the normalized Fourier descriptor (nFD) to measure the approximate
shape similarity between two contours based on the assumption that the shape differences among the

352



Remote Sens. 2016, 8, 189

intact contour clusters are only produced by geometric translations and scaling, whereas the damaged
contour clusters do not follow this assumption. Thus, the shape similarities based on nFDs among
the intact contour clusters will remain small, and the shape similarities among the damaged contour
clusters will be random. This results in the shape chaos indexes of contour clusters of intact roof surface
regions having small values, whereas such values will be large in damaged roof surface regions.

Suppose a contour is composed of M points as a discrete complex function; then, the function can
be transformed into the frequency domain without any loss of information by the Discrete Fourier
Transformation (DFT), defined as a(k) in Equation (7). The coefficients a(k) are FDs that represent the
discrete contour of a contour line in the Fourier domain [64].

apkq “ 1
M

M´1ÿ
j“0

rxpjq ` iypjqse´ ijk2π
M , k “ 0, 1, ..., M ´ 1 (7)

The Fourier coefficients a(k) are normalized to make them invariant to the translation, rotation,
and scaling of contours [67]. The normalized FDs are defined as in Equation (8). Translation invariance
can be achieved by omitting the Fourier coefficient a(0) and using the other Fourier coefficients because
translation affects only the first Fourier coefficient a(0), and the other FDs retain their values [64].
The FDs are made invariant against rotation by taking the magnitude of each Fourier coefficient, and
they are made scale invariant by dividing all Fourier coefficients by the magnitude of a(1) [64,67].
The normalized FD na(k), defined in Equation (8), also omits the second Fourier coefficient because it
is a constant value of 1.

napkq “ |apk ` 2q|
|ap1q| , k “ 0, 1, ..., M ´ 3 (8)

The Euclidean distance is based on the normalized FDs of two contours following Equation (9).

s “
gffe Lÿ

i“0

pnaαpiq ´ naβpiqq2 (9)

where naα and naβ are the normalized FDs of contour α and contour β, respectively, and L is the
number of normalized Fourier coefficients. In most cases, these two contours contain a different
number of points, and their normalized Fourier coefficients are not same; therefore, the Euclidean
distance cannot be directly calculated. To solve this problem, both contours are first sampled such that
they have the same number of points before FDs are applied to the two contours [67].

The shape chaos index is calculated based on an entropy definition whereby the probability is
defined as the ratio between the number of contours with similar shapes and the total number of
contours in the contour cluster, as detailed in Section 2.2.1. The first step is to cluster contours into
several groups following the clustering rule that the shape similarity between two contours in the
group must be less than a threshold ω. Based on the results of contour clustering, the probabilities of
the shape distributions are computed, and the shape chaos index is calculated following Equation (3).

(3) 3D Shape Descriptor Calculation

The 3D shape descriptor calculation is dependent on the shape chaos indexes of contour clusters
and their area weights. The area weight is defined as the ratio between the area of the roof surface
region segmented by the contour cluster and the total area of the roof. Thus, it is crucial to estimate the
area of the roof surface region for the weight calculation. The contour cluster is used to estimate the
area of the corresponding roof surface region. Based on the containment relationship between contour
clusters, there are two types of contour clusters. The first type of contour cluster does not contain
any other contour cluster and has the same area as its outermost contour. The other type of contour
cluster fully contains some contour clusters. The area of the cluster is the area of the outermost contour
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reduced by the areas of the outermost contours in contour clusters contained by the contour cluster.
The total area of the roof’s surface is the sum of the areas of all contour clusters. Finally, the weight is
computed following Equation (5).

2.3. Damaged Roof Detection

The damaged roof detection problem is transformed into a roof classification problem by using
a maximum entropy threshold for the 3D shape descriptor. The maximum entropy threshold is
implemented to select the optimal threshold δ from a group of buildings that includes intact and
damaged buildings. As an optimal criterion, the maximum entropy was initially used for image
thresholding by Pun [68] and was later corrected and improved by Kapur [69]. The maximum
entropy threshold considers an image histogram as a probability distribution, and later, one obtains an
optimal threshold value by maximizing the upper bound of the a posteriori entropy [58,70]. This paper
adopts Kapur’s method based on the Shannon entropy to select an optimal threshold δ that yields the
maximum entropy between damaged and intact buildings.

Suppose that all roofs are classified as intact or damaged roofs using a threshold of the 3D shape
descriptor, which is denoted as t. Thus, the numbers of intact and damaged roofs are determined by
the threshold t and are defined as functions of t, as shown in Equations (10) and (11).

NI “ Intactptq (10)

ND “ Damageptq (11)

where NI is the number of intact roofs and ND is the number of damaged roofs. Intact and damaged
roof histograms are built based on the 3D shape descriptor with a bin width ϕ. Because the 3D shape
descriptor is normalized, the number of bins is denoted as B, which is determined using Equation (12).
The frequency of each bin of the intact roof histogram is FIi, as given in Equation (13), and the frequency
of each bin of the damaged roof histogram is FDi, as given in Equation (14).

B “ 1
ϕ

(12)

Bÿ
i“1

FIi “ NI (13)

Bÿ
i“1

FDi “ ND (14)

The entropy of the intact roofs is EI , as given in Equation (15), and the entropy of the damaged
roofs is ED, as given in Equation (16). The a posteriori entropy is defined as a function of the threshold t
according to Kapur’s method [69], as in Equation (17). The optimal threshold δ is obtained by adjusting
the threshold t iteratively to maximize the upper bound of the a posteriori entropy. When the threshold
δ is determined, damaged roofs will be identified following Equation (6).

EI “ ´
Bÿ

i“1

FIi
NI

lnp FIi
NI

q “ ´
Bÿ

i“1

FIi
Intactptq lnp FIi

Intactptq q (15)

ED “ ´
Bÿ

i“1

FDi
ND

lnp FDi
ND

q “ ´
Bÿ

i“1

FDi
Damageptq lnp FDi

Damageptq q (16)

Eptq “ ´
Bÿ

i“1

FIi
Intactptq lnp FIi

Intactptq q ´
Bÿ

i“1

FDi
Damageptq lnp FDi

Damageptq q (17)
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3. Study Area and Data

3.1. Study Area

The study area (Figure 7) is located in the area surrounding Haiti’s National Palace, Port-au-Prince,
Haiti. The site is approximately 776,660 square meters of flat terrain with dense buildings. On Tuesday,
12 January 2010, Haiti was hit by an earthquake that struck nearly 15 miles from Haiti’s capital,
Port-au-Prince. According to official estimates, 316,000 people were killed, 300,000 were injured,
1.3 million were displaced, 97,294 houses were destroyed, and 188,383 houses were damaged in
the Port-au-Prince area and in much of southern Haiti [71]. Many buildings in the study area were
destroyed by the earthquake.

 

Figure 7. The location of the study area.

3.2. Data Source

The airborne LiDAR data were acquired between 21 January and 27 January 2010, and had an
average point cloud density of approximately 3.4 points per square meter [72], as shown in Figure 8a.
A 2D GIS vector data of building footprints of the area, which contains 1875 buildings, as shown in
Figure 8b, were provided by a third party.

Figure 8. Data sets of the study area; (a) The airborne LiDAR point cloud; (b) The 2D GIS vector data
of building footprints.
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4. Results and Discussion

4.1. Damaged Roof Detection

In this paper, the detection of damaged roofs is based on damage interpretation using post-event
airborne LiDAR data. The process includes three key procedures: data preprocessing, feature
extraction and damaged roof detection. Five algorithm parameters, as shown in Table 1, are estimated
experimentally or automatically during the workflow, which will be discussed in the Section 4.3.

Table 1. The parameter list for damaged roof detection based on the 3D shape descriptor.

Procedure Symbol Value Set Mode Description

Data preprocessing λ 0.1 m Experimentally The grid cell size of DSM

Feature extraction
ε 0.08 m Experimentally The contour interval
ω 0.02 Experimentally The shape similarity threshold

Damaged roof detection ϕ 0.05 Experimentally The bin width of the histogram
δ 0.4269 Automatically The threshold of the 3D shape descriptor

During data preprocessing, 1875 individual buildings are extracted from the raw experimental
airborne LiDAR data guided by building footprints, and a dense DSM of each building is generated
with a grid cell size of λ from the building points. During feature extraction, first, contour clusters
are extracted from each individual building’s contours, which are generated based on the contour
interval ε from the dense DSM. Two examples of the procedure are shown in Figure 3. Second, the
shape chaos index of each contour cluster is calculated using the shape similarity measurement based
on the normalized FDs. Contours of the contour cluster are clustered into some groups using the
shape similarity threshold ω. Entropy is calculated based on the probability of each contour group
and is normalized as the shape chaos index. Third, the 3D shape descriptor of each roof is calculated
based on the shape chaos indexes and the area weights of the contour clusters. In damaged roof
detection, damaged roofs are discriminated from intact roofs using the optimal threshold δ, which
is automatically selected using the maximum entropy threshold based on the roof histogram with a
bin width of φ, as shown in Figure 9. The results of damaged roof detection are given as building
footprints in a polygon shape file, as shown in Figure 10.

Figure 9. The distribution of all intact and damaged roofs based on the 3D shape descriptor and the
shape similarity threshold δ. The damage information of roofs is from the reference data.
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Figure 10. The validated results of damaged roof detection, where correctly detected intact roofs
(identified intact roofs) are colored green, correctly detected damaged roofs (identified damaged
roofs) are colored red, undetected damaged roofs (misidentified intact roofs) are colored yellow, and
undetected intact roofs (misidentified damaged roofs) are colored blue.

4.2. Accuracy Evaluation

For validation, the results are compared to manually labeled reference data based on
remote-sensing-based building damage assessment data on the 2010 Haiti earthquake [73], where
buildings were classified using the EMS-98 criteria. In these criteria, safe buildings with intact roofs
and damaged walls are given grades of 1–3, and heavily or completely collapsed buildings with
damaged roofs are given grades of 4–5 [74]. To evaluate the accuracy of damaged roof detection in this
paper, buildings with grades of 1–3 are re-categorized as intact roofs, and buildings with grades of 4–5
are re-categorized as damaged roofs.

The results of the validation were compared to the reference data, and the accuracy indices,
including the overall accuracy (OA), Kappa accuracy (KA), completeness (Compl.) rate and correctness
(Corr.) rate, are listed in the confusion matrix in Table 2. The results show that the damaged roof
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detection technique performed well at classifying both intact and damaged roofs, as shown in Figure 10:
the detection technique correctly identified 652 out of 767 (85.01%) damaged roofs and 985 out of 1108
(88.90%) intact roofs. The overall accuracy is 87.31%, and the Kappa accuracy is 73.79%.

Table 2. Confusion matrix assessing the accuracy of damaged roof detection based on the 3D
shape descriptor.

Roof Status
Reference Data

Intact Damage Row Total Corr.

Intact 985 123 1108 88.90%
Damage 115 652 767 85.01%

Column Total 1100 775 1875
Compl. 89.55% 84.13%

OA 87.31%
KA 73.79%

Some examples of typical buildings, including intact, surface-damaged and structurally damaged
roofs, are shown in Figure 11. A surface-damaged roof with debris (Figure 11a) and intact roofs
including a flat (Figure 11b), hipped (Figure 11c), gabled (Figure 11d) and pyramid (Figure 11e) roof
are correctly identified; this result can also be reliably obtained using other surface damage detection
methods using features based on points or planar segments. A completely collapsed building with
intact walls as shown in Figure 3e is also detected as a roof with surface damage. Structurally damaged
roofs with large planar segments are correctly identified; identifying these structural damages using
planar-segment-based features can be difficult. The inclined roof shown in Figure 11f perhaps is a
combination of middle and lower story pancake collapse. The inclined roof can be easily confused
with an intact single sloping roof; therefore, this structural damage is difficult to identify using
segment-based detection methods but is easily identified by the method based on the 3D shape
descriptor. Top story pancake collapse, as shown in Figure 11g, with a twisted roof is distinctly
represented by contour clusters and is correctly identified. Some intact regular arched roofs are also
correctly identified, as shown in Figure 11h, i.

Figure 9 presents the distributions of intact and damaged roofs using a histogram based on the 3D
shape descriptor. The undetected damaged roofs mainly show distributions in the critical region below
the threshold, whereas undetected intact roofs are widely distributed above the threshold. The main
cause of damaged roofs being undetected is that the number and extent of contours affected by
damages in some partially damaged roofs are relatively low, which results in the 3D shape descriptors
having small values. For example, there is a gap caused by damage on the roof, as shown in Figure 12a.
The gap containing points is represented as a contour cluster with various shapes, where the outermost
contour has the maximum elevation and is easily detected by the shape chaos index based on contour
clusters. However, the area of the gap is very small compared to the whole roof; therefore, the 3D
shape descriptor is understated. There are three main reasons for some intact roofs being undetected.
The first reason is that the 3D shape characteristics of many shanties exhibit similarities with those
of damaged shanties. The second reason is that small components or sundries on intact roofs lead to
various irregular contours, as shown in Figure 12b. The third reason is that some intact roofs have
regular but dissimilar contours, such as L roofs, as shown in Figure 12c. The shape transformation
among these contours is not a translation or scaling transformation; rather, it is an approximate distance
transformation. As a result, the normalized FD with invariance under shifting and scaling produces
large values of the corresponding shape similarities as well as the 3D shape descriptors. Therefore,
the normalized FD is not suitable for measuring the shape similarities among these contours. Some
intact roofs are misidentified as damaged because the 3D shape descriptors are overstated for the
above reasons.
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Figure 11. Contour clusters of typical buildings: (a) Completely collapsed building with debris;
(b) Intact flat roof; (c) Intact hipped roof; (d) Intact gabled roof; (e) Intact complex building consisting
of pyramid roof; (f) Inclined roof; (g) Completely collapsed building with twisted roof; (h) Intact ruled
surface roof; (i) Intact arched roof.

Figure 12. Contour clusters of typical buildings that are difficult to identify using the proposed 3D
shape descriptor: (a) Partially damaged roof with gaps; (b) Intact roof exhibiting complex features;
(c) Intact L-shaped roof.

In addition, many roofs had already experienced substantial decay prior to the earthquake and
were often unfinished [75], thus incorrectly appearing as earthquake-induced damage in post-disaster
data. Nevertheless, in the context of earthquake emergency response, undetected damaged roofs are
considerably more problematic than misidentified damaged roofs [42].
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4.3. Parameter Selection and Sensitivity Analysis

In damaged roof detection based on the proposed 3D shape descriptor, four parameters are
experimentally estimated, as shown in Table 1. Several key parameters, such as the grid cell size λ,
the contour interval ε and the shape similarity threshold ω for contour clustering, are determined
using the characteristics of the airborne LiDAR data. It is generally impossible to have each point
of an unorganized point cloud associated to one grid height. Consequently, dense DSM is used to
approximate the complex building surface represented by the unorganized point cloud. Considering
the size of the roof structure and the computational efficiency, the grid cell size of each individual
building’s DSM is set as 0.1 m in the experiments. The quality of contours derived from a DSM is
associated with the grid cell size of the DSM and the average slope in the topography [76]. To achieve a
comparable quality of contours derived from a DSM, the average horizontal distance between contour
lines of the same vertical interval should be approximately equal to the grid cell size. Therefore,
we suppose that the optimal average horizontal distance is the grid cell size λ, and the contour interval
can be determined as Equation (18).

ε “ tanpθq ˆ λ (18)

where ε is the contour interval, θ is the average roof slope, and g is the grid cell size of the DSM.
According to general building structure knowledge, the average slope is usually less than 45˝; therefore,
the optimal contour interval should be no more than the grid cell size of the DSM. To select the key
parameters ε and ω, a sensitivity analysis is conducted using the variations in each parameter in a
reasonable range while the other parameter is fixed at the value that leads to an optimum accuracy.
The overall accuracy (OA), completeness (Compl.) rate and correctness (Corr.) rate are used to evaluate
ε and ω.

The quantitative analysis results for the two parameters are shown in Figures 13 and 14 which
compare several reasonable values of ε and ω. As the parameter ε increases, the overall accuracy (OA)
and the completeness (Compl.) rate increase at first and then decrease; the correctness (Corr.) rate
follows the opposite trend. When the parameter ε is 0.08 m, which is less than the DSM’s grid cell size
of 0.1 m, the OA reaches the local maximum. The result verifies that a relatively reliable result can be
achieved when the contour interval is no more than the grid cell size of the DSM. The exact roof slope
estimated based on the point cloud can be used to select an ideal contour interval for each building.
The OA, Compl. and Corr. also increase at first and then decrease as the parameter ω increases. When
the parameter ω is 0.02, the OA reaches a local maximum. It is difficult to quantitatively analyze
the parameter ω because it is affected by many factors such as the roof structure, the quality of the
contours and the characteristics of the shape similarity measurement based on the normalized FDs.
The sample training of contour clusters represents a good option toward selecting a proper parameter
ω. Based on the experiments, the values of ε and ω are set as 0.08 m and 0.02, which produce the
optimum accuracy in damaged roof detection, as shown in Table 2.

 

Figure 13. Sensitivity test of the contour interval ε.
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Figure 14. Sensitivity test of the shape similarity threshold ω.

4.4. Comparison

The main objective of this paper is for reliable and complete damaged roof detection using
post-earthquake airborne LiDAR point clouds. The relevant methods in the literature usually only
focused on one or several damage types of roofs. Consequently, in this section, the damage types
and the accuracy of the proposed method are compared to those of other methods of damaged roof
detection using 3D geometric features extracted from post-earthquake data.

Buildings are usually characterized by various damage types in a serious earthquake zone.
In this situation, if a method can detect more damage types of buildings, it will have wide applicability,
especially for earthquake emergency response. According to the damage types mentioned in Section 1.1,
the damage types of roofs that can be detected by building damage detection methods using 3D
geometric features are listed in Table 3.

Table 3. The applicability comparison results and damage types that can be detected by the building
damage detection methods using 3D geometric features.

Methods

Damage Types

Surface Damages Structure Damages

Multilayer
Collapse

(2)

Top story
Pancake
Collapse
(4c, 5, 5c)

Heap of
Debris

(6, 7a, 7c)

Heap of
Debris with

Planes (3, 7b)

Inclined
Plane (1)

Middle or Lower
Story Pancake

Collapse
(4a, 4b, 5a, 5b)

Inclination
(9a)

Rehor et al. [40]
‘ ‘ ‘ ‘ ˆ ˆ ˆ

Rehor et al. [41]
‘ ‘ ‘ ‘ ˆ ˆ ˆ

Labiak et al. [42]
‘ ‘ ‘ ‘ ˆ ˆ ˆ

Oude Elberink et al. [44]
‘ ‘ ‘ ‘ ˆ ˆ ˆ

Shen et al. [31] ˆ ˆ ˆ ˆ ‘ ‘ ‘
Gerke and Kerle [32]

‘ ‘ ‘ ‘ ˆ ˆ ‘
Vetrivel et al. [29] ˆ ˆ ˆ ˆ ˆ ˆ ˆ

Fernandez Galarreta
et al. [4]

‘ ‘ ‘ ‘ ‘ ‘ ‘
The proposed method

‘ ‘ ‘ ‘ ‘ ‘ ‘

Many methods [40–42,44] extract debris for damaged roof detection based on the planarity of
the roof. These methods are suitable for detecting surface-damaged roofs but present difficulties in
detecting structurally damaged roofs because there is minimal debris in a structurally damaged roof.
Vetrivel et al. [29] only focused on the gaps caused by damage and could not detect these building
damage types. Gerke and Kerle [32] detected surface-damaged and inclined buildings based on the
spatial relation between observable features such as façades, roofs and rubble piles. However, their
method cannot detect inclined planes (1) and middle and lower story pancake collapse (4a, 4b, 5a, 5b)
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because façades are intact and because rubble piles do not exist for these damage types. Shen et al. [31]
was able to detect structurally damaged roofs using the geometric axis lines of the roofs. However,
it was difficult to detect inclined flat roofs because this building damage type is easily confused with an
intact single sloping roof. Fernandez Galarreta et al. [4] was able to detect both surface- and structurally
damaged roofs via visual analysis.

A fair comparison between the precision of these methods depends on the type and accuracy of the
remote sensing datasets, the number of damage classes, and the type and accuracy of the reference data.
The methods in [42,44] and the proposed method detected intact and damaged roofs from different
study areas using airborne LiDAR point clouds of the Haiti earthquake, and the results were evaluated
using a damage assessment performed by the Global Earth Observation—Catastrophe Assessment
Network (GEO-CAN). Labiak et al. [42] obtained an overall accuracy of 73.40% and a Kappa accuracy
of 27.51%. Oude Elberink et al. [44] achieved an overall accuracy of 60%. In contrast, the proposed
method achieved a high overall accuracy and Kappa accuracy of 87.31% and 73.79%, respectively.

The comparison suggests that the proposed method based on the 3D shape descriptor
automatically detects both surface- and structurally damaged roofs and achieves a higher accuracy
in damaged roof detection using the 3D geometric features extracted from post-earthquake airborne
LiDAR point clouds. This is because the 3D shape descriptor provides a comprehensive description of
both surface and structure features based on the shapes and spatial relations of building contours, thus
significantly improving the completeness and accuracy of damaged roof detection. A major drawback
of the proposed method is that it is difficult to automatically identify specific damage types using the
3D shape descriptor. However, the first priority is to reliably and completely detect damaged roofs in
earthquake emergency response.

5. Conclusions

This paper focuses on both surface-damaged and structurally damaged roof detection using
post-event data and proposes a 3D shape descriptor based on building contour clusters derived from
airborne LiDAR point clouds for practical application.

The novelty of the 3D shape descriptor is that the 3D shapes of complex roof surfaces are
quantitatively described through the spatial patterns of contours. The significant 3D features of surface
and structural damages are characterized as a chaotic spatial pattern of contours and are represented
as a group of contours with chaotic shapes. The shape chaos index of contour clusters quantitates the
chaotic spatial pattern as the information entropy of shape similarities among contours by integrating
the spatial attributes and spatial relationships of complex roof surfaces at the regional level. The
3D shape descriptor quantitatively describes the characteristics of chaotic 3D shapes of surface and
structural damages at the whole roof level by combining the shape chaos indexes using the area weight.

A significant performance improvement is achieved through the use of the novel 3D shape
descriptor based on contour clusters compared to other geometric features directly extracted from
point clouds. The experiments produce good results for the airborne LiDAR point cloud used in
Haiti earthquake damaged roof detection, which classifies roofs solely using the 3D shape descriptor
with the maximum entropy threshold. The overall accuracy and Kappa accuracy are 87.31% and
73.79%, respectively. This damaged roof detection approach is quite valuable for rescue efforts in
earthquake-struck areas, especially when pre-event 3D data are difficult to obtain.

Future work will be devoted to identifying specific damage types of damaged roofs detected
using the proposed 3D feature, as well as to improving the shape analysis between contours to increase
the robustness of the 3D shape descriptor.
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Abstract: Automatic post-disaster mapping of building damage using remote sensing images is an
important and time-critical element of disaster management. The characteristics of remote sensing
images available immediately after the disaster are not certain, since they may vary in terms of
capturing platform, sensor-view, image scale, and scene complexity. Therefore, a generalized method
for damage detection that is impervious to the mentioned image characteristics is desirable. This
study aims to develop a method to perform grid-level damage classification of remote sensing images
by detecting the damage corresponding to debris, rubble piles, and heavy spalling within a defined
grid, regardless of the aforementioned image characteristics. The Visual-Bag-of-Words (BoW) is one
of the most widely used and proven frameworks for image classification in the field of computer
vision. The framework adopts a kind of feature representation strategy that has been shown to
be more efficient for image classification—regardless of the scale and clutter—than conventional
global feature representations. In this study supervised models using various radiometric descriptors
(histogram of gradient orientations (HoG) and Gabor wavelets) and classifiers (SVM, Random Forests,
and Adaboost) were developed for damage classification based on both BoW and conventional global
feature representations, and tested with four datasets. Those vary according to the aforementioned
image characteristics. The BoW framework outperformed conventional global feature representation
approaches in all scenarios (i.e., for all combinations of feature descriptors, classifiers, and datasets),
and produced an average accuracy of approximately 90%. Particularly encouraging was an accuracy
improvement by 14% (from 77% to 91%) produced by BoW over global representation for the most
complex dataset, which was used to test the generalization capability.

Keywords: damage detection; feature representation; oblique airborne images; supervised learning;
texture; UAV; Visual-Bag-of-Words

1. Introduction

Rapid damage assessment after a disaster event such as an earthquake is critical for efficient
response and recovery actions. Direct manual field inspection is labor intensive, time consuming,
and cannot assess the damages in inaccessible areas. Remote sensing technology is the most
predominant and early source to provide data for performing such assessments, either manually or
using automated image analysis procedures [1,2]. Various kinds of remote sensing data such as optical,
synthetic aperture radar (SAR), and LiDAR are being used for the damage assessment process [1].
However, optical data are often preferred as they are relatively easy to interpret [1]. Moreover, optical
remote sensing provides very high resolution images ranging from the decimeter to the centimeter
scale through various platforms such as satellites, manned aircrafts, and unmanned aerial vehicles
(UAVs) [3–5]. This allows for performing comprehensive damage assessment through identifying
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different levels of damage evidence, ranging from complete collapse to cracks on the building roof
or façades, by choosing images at appropriate scales. Particularly oblique airborne images are
recognized as the most suitable source, as they facilitate the damage assessment on both roofs and
lateral elements [6,7]. For example, even extensive building damage such as inter-story collapse or
pancake collapse can be identified reliably only with oblique view images, while conventional nadir
views at best provide damage proxies such as external debris [1,7,8]. Although current remote sensing
yields images at a vast range of views and scales, automatic recognition of even heavy damages to
buildings is still challenging [1]. This is due to various reasons such as the complexity of the scene,
uncertain characteristics of damage patterns, and the varying scale problem in oblique view images.

Generally, the regions corresponding to heavy damage are determined through the identification
of damage patterns corresponding to rubbles piles, debris, and spalling in an image region (refer
to Figure 1) [8]. Those damage evidences have a specific meaning and play a major role in damage
classification. For example, the presence of significant amounts of debris/rubble piles around the
building is the strong indication of (partial) building collapse. Spalling is an indicator of minor damage
or partially broken structural elements. The recognition process of those damage patterns can be
performed by analyzing features extracted either at the pixel or the region level [1,9,10]. However,
the pixel level analysis is not meaningful for very high spatial resolution images, particularly in the
context of damage assessment, as the evidences are identified based on the characteristics of their
radiometric distribution pattern, which can be captured more precisely at a region level. However,
in region-level classification the critical step is to define the region that is appropriate to identify the
specific damage patterns. Generally, image regions are obtained either through a gridding approach
or though image segmentation [11]. The most simple, efficient, and straightforward strategy is the
gridding approach, where the image is split into uniform rectangular cells. However, the regions
derived from gridding are often cluttered, as they may comprise different kinds of objects. For example,
a single cell may contain trees, building elements, cars, road sections, debris, etc. Moreover, oblique
images are more complex compared to nadir images, since they also capture façades that frequently
comprise various elements, such as windows, balconies, staircases, etc. They generally also look more
cluttered than nadir images containing largely roofs, and reveal façade information only at the image
border, depending on the lens opening angle. It is quite challenging to identify the damage patterns in
such a cluttered region. This can be alleviated by using a segmentation approach, which segments
the damaged portions and other objects in the scene as separate regions. However, the selection of
appropriate features and a segmentation algorithm that is suitable for a given damaged and cluttered
environment is a challenging problem, one that requires substantial semantic analysis. Apart from
clutter, the regions obtained from oblique images vary in scale. Nevertheless, the identification of
damage patterns regardless of image scale is an important prerequisite in damage assessment. For
example, damage at a building level such as inter-story collapse can be captured better at coarser
scales (e.g., 100 ˆ 100 pixel region in an image of the decimeter scale), while minor damages such as
spalling at a building element level require finer scales (e.g., 100 ˆ 100 pixel region in an image of the
centimeter scale). Therefore, a robust method is required to recognize the damage pattern in a defined
region irrespective of the scale and clutter. This is an analogue of the human visual pattern recognition
system, which is extremely proficient at identifying the damage patterns regardless of the scale and
complexity of the scene.
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Figure 1. An example of debris, rubble piles, and spalling.

In the field of computer vision, various methods have been reported for pattern recognition
tasks in various applications, such as object categorization, face recognition, and natural scene
classification [12–14]. These methods are mostly based on supervised learning approaches, which
work well for conventional image classification applications. However, the overall performance of
the learning approach completely depends on the discriminative power of the image descriptors
(features) considered for the classification [15]. Generally, images are described through either global
(e.g., textures) or local features, like point descriptors such as Scale Invariant Feature Transform
(SIFT) [13,16]. However, most global features are very sensitive to scale and clutter [17]. In contrast, the
local descriptors are robust to clutter but cannot capture the global characteristics of the image [18,19].
An alternate feature representation strategy, such as Visual-Bag-of-Words (BoW), captures the global
characteristics of the image through encoding a set of local features, which makes them robust to
scale and clutter [20,21]. For example, in texture-based classification, the global texture pattern of
the image is captured by the frequencies of the co-occurrence of the local texture patterns. This
kind of feature representation outperforms the conventional global feature representation approaches
in image classification [22]. Apart from general image classification, the Bag-of-Words framework
has been demonstrated as a potential approach in many image-based domain specific applications
including image retrieval [23], human action and facial expression recognition [24,25], image quality
assessment [26], and medical image annotation [27]. Conceptually, thus, the BoW approach seems to
be appropriate for identifying the damaged regions in airborne oblique images, which generally look
cluttered and vary in scale.

Pattern recognition methods including BoW are based on a supervised learning approach that
attempts to learn the underlying relationship between the image-derived features and the pattern of
a specific category, in this case the damage pattern. Therefore, apart from a feature representation
strategy, the choice of features that best discriminate the damaged and non-damaged regions is also
a key element. Numerous studies reported that textures are the most influential feature for damage
pattern recognition, as the damaged regions tend to show uneven and peculiar texture patterns,
in contrast to non-damaged regions [28–30]. Many damage classification studies used statistical
textures such as grey level co-occurrence matrix (GLCM)-based features for the damage pattern
recognition [10,31,32]. However, other texture measures such as wavelets have been recognized as
superior to GLCM in many pattern recognition problems, including land cover classification [33].
Particularly for region-level pattern classification problems, descriptors such as Histogram of Gradient
Orientation (HoG), Gabor wavelets, SIFT and Speeded-Up Robust Features (SURF) have led to good
results [34–36]. All these features describe the pattern of the given region in a unique way, based on
the magnitude of gradient along various orientations and scales. Vetrivel et al. [37] demonstrated the
potential of HoG and Gabor features to classify the damaged regions in very high resolution UAV
images. However, they found limitations with the conventional global representation of HoG and
Gabor features, especially with respect to generalization. So far, however, to our knowledge no work
exists that combines the named features in a BoW fashion for damage mapping.

369



Remote Sens. 2016, 8, 231

The objective of this paper is thus to develop a robust method based on the BoW approach that is
suitable especially (but not only) for oblique images to identify the damage patterns related to rubble
piles, debris, and spalling, regardless of the scale and the clutter of the defined region in an image.
Following the above argumentation, a grid-based region definition is pursued. The robustness of the
developed method based on this BoW approach is analyzed by comparing the performance of various
learning algorithms and image descriptors (Gabor and HoG) under both the conventional and the
BoW approach. Also, the generalization capability of the developed method is analyzed, by testing it
on a variety of images corresponding to various scales, camera views, capturing platforms, and levels
of scene complexity.

2. Methods

For the identification of damaged regions in an image, as a preparation step we provide reference
data. That is, the given image is split into M ˆ N regions, which are termed image patches. The image
patches are manually labeled as damaged if any kind of damage pattern related to debris, spalling, and
rubble piles is observed in them. The automatic detection of those damage patterns within the patches
is carried out using two different feature representation approaches: global and BoW representation.
The feature descriptors and learning algorithms considered for both the global and BoW-based damage
classification process are described in the respective sub-sections.

2.1. Damage Classification Based on Global Representation of Features

This process includes two steps: (1) extraction of image descriptors that provide the global
description of the given image patch; and (2) classification of the given image patch as damaged or
non-damaged, based on the extracted feature descriptors using a supervised learning algorithm.

2.1.1. Extraction of Feature Descriptors

The HoG and Gabor wavelets-based feature descriptors are considered for the global feature
representation-based damage classification process.

(a) Histogram of Gradient Orientation (HoG)

The standard approach is used to extract the HoG features (e.g., Dalal Triggs [38]), where the
given image patch is split into a number of overlapping blocks, and histograms of gradient orientation
derived for each block are concatenated to form a feature vector. This gives the global representation
of the image patch.

Procedure:

(1) Derive gradient magnitude and its orientation for each pixel in the image patch.
(2) Split the gradient image into A ˆ B cells.
(3) Again split the gradient image into a number of overlapping blocks, where each block contains

C ˆ D cells with 50% of overlapping cells between the blocks.
(4) Define the bin size for the histogram of gradient orientation, where each bin corresponds to a

specific orientation (the bin size remains fixed for all experiments later).
(5) For each cell, compute the histogram of gradient orientation by adding the magnitude of the

gradient to its corresponding orientation bin. Therefore, the size of the feature description of each
cell is equal to the number of bins.

(6) Concatenate the histograms of gradient orientation of all cells within each block to get the block
level description. Normalize the histograms’ magnitude within the block to compensate for the
local illumination variations [39].

(7) Concatenate all block level descriptors to form the global descriptor of the patch.
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(b) Gabor wavelets descriptors

The Gabor wavelets descriptors are obtained by convolving the image with a set of Gabor
wavelet filters. These filters are derived by appropriate rotation and scaling of the mother Gabor
wavelet function, where each filter is tuned to capture the pixel information at a specific orientation
and frequency. The detailed procedure for Gabor wavelets filter generation can be found in
Arivazhagan et al. [40]. After obtaining the Gabor filter responses for each pixel in the image patch, the
region-level Gabor wavelet descriptor is represented by the histogram of magnitude of filter responses
for all combinations of orientations and frequencies (cf. Jun Fei [41]). This histogram is computed for
three consecutive pyramid levels of image patches, in order to capture the variation across scales, in
addition to the variation across frequencies and orientations. The procedure used for extracting the
global Gabor feature descriptors for an image patch is described below.

Procedure:

(1) Generate I ˆ J number of 2D Gabor wavelet filters, where I and J are the number of frequencies
and number of orientations used to generate the Gabor wavelet filters, respectively.

(2) Convolve the image patch with the generated filter banks, which results in I ˆ J number of
feature images.

(3) Normalize each feature image using l2 normalization.
(4) Compute the histogram of Gabor filter responses, where each histogram bin corresponds to a

specific frequency and orientation. Therefore, the number of histogram bins is equal to I ˆ J,
which is the size of the final feature vector.

(5) Also, extract the Gabor wavelet features for the other two pyramid levels of the image patch, by
subsampling it to ½ and ¼ of the image patch size.

(6) Feature vectors derived at different scales are concatenated to form the final feature vector.
Therefore, this final feature vector will comprise features extracted at multiple scales, multiple
frequencies, and multiple orientations.

2.1.2. Damage Classification Using the Derived Global Feature Descriptors

Supervised learning approaches are adopted to classify the given image patch as damaged
or non-damaged, based on the global feature descriptors. Three state-of-the-art and widely used
supervised learning algorithms, Support Vector Machines (SVM) [42], Random Forests (RF) [43], and
Adaboost [44], are considered for the damage classification process. These learning algorithms belong
to the families of different learning paradigms, which learn the underlying relationship between the
input features and the output label in a unique way. Three different learning paradigms are considered
in order to analyze whether the considered feature descriptors are independent of the supervised
algorithm, i.e., how the classification task is solved independently of the applied learning strategy.
Also, each learning algorithm has a number of tunable parameters, referred to as hyper-parameters,
which have a significant impact on the performance of the learning model [45]. Therefore, the
hyper-parameters are tuned for the best model by searching the parameter space using the grid space
search approach [46]. This approach constructs a number of learning models for different settings
of the hyper-parameters, using the training set. The performance of each model is assessed using
a cross-validation procedure. The best performing model is selected as the final model with tuned
hyper-parameters, and then evaluated using the testing set.

2.2. Damage Detection Using Visual-Bag-of-Words

The standard BoW framework is adopted for the damage classification process. The BoW
framework comprises different components, such as feature point detection, feature descriptors,
visual word dictionary, and a classifier. The algorithms used for each component and the overall
procedure are described below.
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Overall, the BoW-based damage classification process is carried out in two stages: (1) construction
of visual word dictionary; and (2) representation of the image in terms of BoW (histogram of visual
words), and training the classifier based on them.

Stage 1:

(a) Feature point detection

The basic idea behind this step is that an image can be described by a small number of significant
pixels (salient points). For example, pixels corresponding to edges and corners contain the most
significant information compared to pixels of homogenous regions. Salient point descriptors that are
invariant to scale and orientation are most appropriate to build an image classification model that
is robust to scale and rotation. Numerous such salient point detection methods are available, with
SIFT and SURF commonly being used in the BoW context [19]. In this study, SURF was used since it
is faster than SIFT and its descriptor is suitable to be used as the feature in the BoW framework, as
discussed in the following sub-section. A description of the SURF points detection process can be
found in Bay et al. [47].

(b) Feature extraction

The purpose of this step is to extract the local feature descriptor for each salient point in the
given image patch. The feature descriptors HoG and Gabor wavelets, which are used in the global
representation-based damage classification, are also considered here for the local description of
salient points in the BoW-based damage classification. This allows us to compare the potential of
BoW and global feature representation irrespective of the features. In the BoW approach the SURF
descriptor is additionally used to describe the salient points. This is because SURF is a well-proven
point descriptor (local descriptor), widely used in BoW-based image classification processes [48].
Furthermore, SURF descriptors are based on wavelet responses, which also describe the image region
in terms of textures, similar to HOG and Gabor feature descriptors. Therefore, the three feature
descriptors HoG, Gabor wavelets, and SURF are used independently to describe each salient point in the
given image patch for the BoW-based damage classification. The local pattern description for each
salient point is derived by considering a local neighborhood of P ˆ Q pixels around the salient point.
The same procedure as described in Section 2.1.1 is followed to extract the Gabor and HoG features.
The standard procedure is used to extract the SURF feature descriptor (cf. Bay et al. [47]).

(c) Visual words dictionary construction

The feature descriptors of salient points from all image patches (regardless of their class) are
concatenated into a single feature vector. Numerous feature encoding methods have been reported
for visual word dictionary construction [49]. We adopted the most commonly used iterative k-means
clustering algorithm [48]. The obtained feature vector is clustered into k clusters using the iterative
k-means clustering [50]. Each cluster center is considered as the visual word, and the cluster centers
are collectively referred to as a visual word dictionary.

Stage 2:

(a) Image description based on visual words

To represent the given image patch in terms of BoW (histogram of visual words), the salient points
in the image patch are detected and feature descriptors are obtained for each point. The detected points
in the image are assigned to their closest visual word in the dictionary. Subsequently, the frequency of
occurrence of the visual words in the image is represented as a single histogram, which is referred to
as the BoW representation of the image, which will be fed into the classifier in the next step.
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(b) Classification of visual words using machine learning algorithms

Again, the three learning algorithms SVM, RF, and Adaboost are used as classifiers for classifying
the damage and non-damaged image patches based on BoW. The procedure described in Section 2.1.2
is followed to develop the supervised learning models based on the BoW features.

The overall workflow of BoW-based damage classification process is depicted in Figure 2.

 

Figure 2. Overall process of the BoW-based damage classification.

3. Experiments and Results

The damage classification method was evaluated using four different datasets, with each differing
in its image characteristics such as scale, camera view, capturing platform, and scene complexity.
Each data set was independently analyzed for the damage classification process based on the three
feature descriptors HoG, Gabor wavelets, and SURF. The performances of HoG and Gabor wavelets for
damage classification were analyzed by representing them in both a conventional and BoW framework.
Also the potential of the SURF descriptor was analyzed for damage classification by representing it in
a BoW framework and comparing it with BoW-based Gabor and HoG.
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Three supervised learning algorithms, SVM, RF, and Adaboost, were used for analyzing the
performance of the feature descriptors. Therefore, each dataset was tested with different combinations
of feature descriptors and supervised learning algorithms, as depicted in Figure 3.

The conducted experiments for the damage classification process include a number of algorithms,
and each algorithm was associated with a number of parameters. The values used for the parameters
of the algorithm are shown in Table 1. The hyper-parameters considered for tuning the learning
algorithms (cf. Section 2.1.2) are described in Table 2.

 
Figure 3. Combinations of feature descriptors and learning algorithms tested for each dataset.

Table 1. Definition of parameters associated with each algorithm/method used in the experiment.

Algorithm/Method Parameter Values Description Reference

Image patch
generation M = 100; N = 100 To generate 100 ˆ 100 image patches Section 2

HoG procedure
A = 25; B = 25 Cell size A ˆ B–25 ˆ 25 pixels

Section 2.1.1C = 4; D = 4 Block size C ˆ D–4 ˆ 4 cells

bin size = 9 Bin size of histogram of the
gradient orientations

Gabor wavelet
descriptor I = 5; J = 8

I, J are the number of frequencies and
orientations respectively to generate the

Gabor wavelet filters
Section 2.1.1

Feature extraction P = 10; Q = 10
10 ˆ 10 local neighborhood is

considered for deriving descriptor for
each salient point

Section 2.2

Visual word
dictionary

construction
k = 500 k value for k-means clustering Section 2.2

Supervised model
for damage

classification

10-fold cross validation
Cross-validation to identify the optimal
hyper-parameters for a learning model

based on the grid search approach Section 2.1.2

The dataset is split into
70% and 30% for training
and testing, respectively

Training set is used to train the model
and also for cross-validation for tuning

the hyper-parameters. Testing set is
used for evaluating the trained model.
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Table 2. Definition of grid search space for tuning the hyper-parameters of the classifiers.

Supervised
Classifier

Hyper-Parameter Grid Search Space Description

SVM

C 0.001 to 100, step
size—multiples of 10

Regularization parameter which has a
significant effect on the generalization

performance of the classifier.

Kernel
Linear, radial basis function

(RBF) and histogram
intersection

The function used to compute the
kernel matrix for classification.

gamma 0.0001 to 1.0, step
size—multiples of 10

Regularization parameter used in RBF
kernel (Gaussian kernel function) which

has significant impact in the
performance of the kernel.

RF

N_estimators 3 to 20, step size 2 Number of trees in the forest.

Max_depth 1 to 5, step size 1 Maximum depth of the tree.

Min_samples_split 1 to 4, step size 1 Minimum number of samples required
to split a node.

Min_samples_leaf 1 to 3, step size 1 Minimum number of samples required
in newly created leaf after the split.

Adaboost
N_estimators 100 to 1000, step size 100

The maximum number of estimators
that can be used to build the ensemble

learning model.

Learning rate 0.01 to 0.1, step size 0.01 Regularization parameter that scales the
contribution of each weak estimator.

3.1. Dataset 1: UAV Images

UAV images captured over two different areas were considered: (1) a small region around a
church (“Church of Saint Paul”) in Mirabello, Italy, damaged by a 2012 earthquake; (2) a small region
around a partly demolished industrial facility in Gronau, Germany. Both regions possess similar
characteristics, and they contain only a few buildings that are largely disconnected. One building in
each region was partially collapsed and produced a significant quantity of debris and rubble piles
(cf. top left image in Figure 4—UAV image-subset of the Mirabello church). The UAV images were
captured at different heights, positions, and views (nadir and oblique) with a spatial resolution of
1–2 cm. The images of both regions corresponding to various orientations and heights were split into
100 ˆ 100 pixel rectangular image patches for framing of the training and testing datasets for the
damage classification process. The patches are labeled as damage if at least 25% of their area represents
damage evidences (debris/rubble or spalling) that are unambiguously recognizable by human analyst.
For example, the samples of damaged and undamaged image patches of each dataset are shown to
provide better insights (refer to Sections 3.1–3). Since the image resolution is very high, the defined
rectangular patches cover only a small region (approximately 1 m2) and, therefore, most of them
contain only either damage evidences or single homogenous object, i.e., the defined regions are mostly
uncluttered; refer to the image training samples in Figure 4. In total 966 samples (482 damaged, 484
non-damaged) each of size 100 ˆ 100 pixels, were considered. The dataset was constructed by selecting
the specific samples across different regions within the scene that highly vary in their characteristics to
avoid a large number of repetitive samples. The damage classification was performed for this dataset
based on different combinations of feature descriptors and learning algorithm as described above, and
the results are reported in Table 3.
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Figure 4. Samples of image patches in dataset 1—UAV images.

Table 3. Performance of feature descriptors when associated with different learning algorithms
for dataset 1 comprising patches from the UAV images (training samples = 676, testing
samples = 290)—bold numbers indicate best performance per indicator.

Dataset1
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.91 0.87 0.90 0.99 0.92 0.95 0.81 0.76 0.79
HoG 0.87 0.86 0.86 0.94 0.93 0.93 0.71 0.67 0.69

BoW-Gabor 0.96 0.93 0.95 0.99 0.98 0.98 0.96 0.71 0.83
BoW-HOG 0.98 0.97 0.98 0.97 0.95 0.95 0.95 0.87 0.90
BoW-SURF 0.97 0.92 0.94 0.90 0.88 0.90 0.80 0.81 0.81

3.2. Dataset 2: Oblique View Manned Aircraft Images

The airborne oblique images (Pictometry) with a Ground Sampling Distance (GSD) between 10 cm
(foreground) and 16 cm (background) captured over Port-au-Prince after the 2010 Haiti earthquake
were considered. The images cover almost the entire city, and contain numerous buildings ranging
from simple to complex. Most of the buildings are densely clustered in such a way that it is difficult to
differentiate each building even visually from the images. Numerous buildings are partially covered
with densely leafed tall trees, adding to the clutter of the scene. A significant number of buildings
are damaged, ranging from complete/partial collapse to heavy spalling on the intact elements of the
building (cf. Figure 5). The images are split into 100 ˆ 100 pixel images/patches to frame the training
and testing datasets for the damage classification process. The defined image patches are highly
cluttered as they cover a large area (at least 10 m2) and comprise different kinds of objects, such as
trees, building elements, cars, road sections, and debris (cf. Figure 5). The dataset was constructed by
selecting the specific samples across different regions within the city that vary highly in terms of their
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characteristics. Again, the selection of samples was driven by the idea of covering different damage
characteristics rather than piling up redundant information. In total 1256 samples (698 damaged,
558 non-damaged) were selected and tested for the damage classification based on the developed
approach. The patches cover an area of approximately 13,000 m2. The results are reported in Table 4.

Figure 5. Samples of image patches in dataset 2, images © Pictometry.

Table 4. Performance of feature descriptors when associated with different learning algorithms for
dataset 2, comprising patches from Pictometry images (training samples = 879, testing samples = 377).

Dataset2
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.81 0.76 0.79 0.82 0.76 0.79 0.78 0.61 0.72
HoG 0.78 0.61 0.72 0.67 0.61 0.66 0.62 0.58 0.63

BoW-Gabor 0.89 0.86 0.88 0.88 0.88 0.88 0.80 0.79 0.79
BoW-HOG 0.93 0.89 0.91 0.85 0.83 0.84 0.80 0.69 0.75
BoW-SURF 0.91 0.89 0.90 0.84 0.82 0.83 0.80 0.78 0.80

3.3. Dataset 3: Street View Images

Street view close-range images of damaged buildings captured by hand-held cameras after
earthquakes in different geographic locations were used. These images were collected from two
sources: (1) Governmental organization: the German Federal Agency for Technical Relief, THW;
(http://www.thw.de); and (2) the Internet (various websites). The collected images vary in scale;
however, the actual scale is unknown. Therefore, the 100 ˆ 100 pixel patches generated from those
images may cover small areas (e.g., an element of the building) or large areas (e.g., entire or major
portion of the building). The collected images contain buildings with various kinds of damages, such

377



Remote Sens. 2016, 8, 231

as complete collapse, partial collapse, inter-story collapse, and heavy spalling. In total 887 samples
(384 damaged, 503 non-damaged) were considered to construct and evaluate the supervised model for
the damage classification. Sample image patches used for the training and testing of the supervised
model are depicted in Figure 6. The results are reported in Table 5.

Figure 6. Samples of image patches in dataset 3: street view images.

Table 5. Performance of feature descriptors when associated with different learning algorithms for
dataset 3, comprising patches from street view images (training samples = 620, testing samples = 267).

Dataset 3
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.89 0.85 0.87 0.88 0.80 0.85 0.91 0.85 0.89
HoG 0.95 0.74 0.86 0.94 0.81 0.89 0.84 0.84 0.85

BoW-Gabor 0.99 0.91 0.95 0.92 0.77 0.86 0.92 0.72 0.84
BoW-HOG 1.0 0.93 0.96 0.98 0.94 0.96 0.98 0.82 0.90
BoW-SURF 0.99 0.89 0.94 0.98 0.82 0.91 0.98 0.77 0.89

3.4. Dataset 4: Datasets 1, 2, and 3 Are Combined

The samples from datasets 1, 2, and 3, which vary in scale, camera view, and platform and scene
complexity, were combined into a single dataset in order to assess the generalization capability of the
damage classification methods. In total 3109 samples (1564 damaged, 1545 non-damaged; subsequently
termed COM3109) were used to develop and test the supervised models for damage classification. The
results are reported in Table 6. For visual analysis, an UAV image of dataset 1 and a Pictometry image
of dataset 2 were classified for the damage detection using the best performing model (BoW-Gabor
with SVM). The classified images are depicted in Figure 7. The classification is quite accurate, showing
only very few false positives and false negatives, which are also highlighted in the classified images
(cf. Figure 7). The false positives and negatives are the examples where our assumption fails: i.e.,
a surface with unusual radiometric characteristics is assumed to be damaged, while manmade objects
are assumed to have a regular shape and uniform radiometric characteristics. For example, in Figure 7b
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the leaf-off tree was misdetected as damage, since it shows a strong irregular texture pattern. Similarly,
the damaged regions are not detected as they show smooth texture.

 

(c) 

(a) 

(b) 

Figure 7. Damage classification of images based on best performing supervised model: (a) UAV
image of dataset 1 (left); detected damaged regions are highlighted in red, and the false positives are
highlighted using yellow circles (right); (b) Subset of Pictometry image of dataset 2 (left); detected
damaged regions are highlighted in red, and the false positives and false negatives are highlighted
using yellow and green circles, respectively (right). Images © Pictometry; (c) Street view image of
dataset 3 (left); detected damaged regions are highlighted in red, and the false positives and false
negatives are highlighted using yellow and green circles, respectively (right).
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Table 6. Performance of feature descriptors when associated with different learning algorithms for
dataset 4 (COM3109) comprising patches from UAV, Pictometry, and street-view images (training
samples = 2176, testing samples = 933).

Dataset 4
SVM RF Adaboost

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Gabor 0.79 0.75 0.77 0.76 0.64 0.72 0.62 0.58 0.62
HoG 0.81 0.62 0.73 0.79 0.64 0.71 0.71 0.57 0.61

BoW-Gabor 0.95 0.88 0.91 0.93 0.79 0.86 0.64 0.68 0.67
BoW-HOG 0.89 0.87 0.88 0.83 0.76 0.80 0.80 0.64 0.74
BoW-SURF 0.90 0.84 0.87 0.83 0.77 0.80 0.79 0.75 0.77

4. Observations and Analysis

For convenient analysis of the results, datasets 1 and 3, which were not cluttered and less affected
by shadows and trees, are referred to as non-complex datasets, while datasets 2 and 4, where the image
patches were mostly cluttered and severely affected by shadows and trees, are referred to as complex
datasets. Also for convenience, the datasets are named based on the image characteristics and number
of samples as described in Table 7.

Table 7. Naming of datasets based on the image characteristics and number of samples.

Dataset Name Description Scene Complexity

Dataset 1 UAV966 966 image patches generated from UAV images. Non-complex
Dataset 2 PIC1256 1256 image patches generated from Pictometry images. Complex
Dataset 3 SVI887 887 image patches generated from street view images. Non-complex

Dataset 4 COM3109
Comprehensive dataset, where datasets 1, 2 & 3 are

combined, containing 3109 image patches. Complex

4.1. Global Representation of HoG and Gabor Wavelet for Damage Classification

The results show that the global representations of HoG and Gabor wavelet feature descriptors
have great potential to identify the damaged regions in the image, if the defined image patches are
non-complex. For example, the supervised models constructed for UAV966 (non-complex) based on
the global representation of Gabor wavelet and HoG features resulted in accuracies of 95% and 93%,
respectively (Table 3). However, the same feature descriptors Gabor and HoG produced accuracies of
82% and 72%, respectively for PIC1256 (Table 4), where the defined image patches were mostly complex.
Moreover, the same features Gabor and HoG produced highly inferior results for COM3109, which was
more complex than the other datasets (Table 6). This clearly indicates that the robustness of the global
representation of HoG and Gabor features declines with an increase in image patch complexity. This is
because in the global representation the radiometric characteristics of the complex region (e.g., clutter,
shadows, and trees) resemble the radiometric characteristics of damaged regions, which are generally
more non-uniform than radiometric patterns of non-damaged regions (cf. Figure 8). Consider an image
patch that contains different objects with different dominant orientations. The global description of this
image patch based on gradient orientation is the aggregation of all gradient orientation information
within this patch. In such a case the image patch would seem to possess gradient orientations in
many directions, which resembles the radiometric characteristics of damaged regions. For example,
consider Figure 8a as an image patch that contains four different objects (annotated as A, B, C, and D)
with different gradient orientation patterns. The gradient pattern derived locally for each object was
overlaid on the corresponding object with a black background. These local patterns show that each
object possesses dominant orientations that were more uniform. However, the global gradient pattern
derived for the whole image patch was non-uniform and resembles the characteristics of damaged
regions (cf. Figure 8a). Thus, it is difficult to classify an image patch based on global features in case it
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is cluttered. Also, trees and shadows possess irregular shapes and non-uniform gradient orientations,
which also resemble the radiometric characteristics of the damaged regions. Hence, global feature
descriptors-based damage classification did not efficiently classify the image patches that were strongly
affected by trees and shadow.

Figure 8. (a) Local and global gradient pattern of an image patch that contains four objects with
different dominant orientations; (b) gradient pattern of damaged regions.

4.2. BoW-Based Feature Representation for Damage Classification

The Gabor and HoG features produced superior results for all datasets when represented in a
BoW framework than represented in conventional global scale for damage classification. Although
the BoW approach produced superior results to the conventional approach, there was no significant
difference in the performance between them when the considered image regions were not complex, e.g.,
UAV966 (cf. Table 3). However, in complex image regions there was a significant performance difference
between the BoW and conventional feature representation. This is evident from the results for PIC1256,
where the BoW-based Gabor and HoG produced maximum accuracies of 88% and 91%, respectively,
which are 9% and 19% higher than the accuracies obtained by those features when represented at a
global scale (cf. Table 4). This shows that BoW-based Gabor and HoG features are more robust to clutter,
trees and shadows than when they are represented at a global scale. The following characteristics
made the BoW approach more robust compared to the global representation:

(1) Unlike the global representation, the BoW approach does not aggregate the radiometric
patterns within the image patch. Instead, it describes the image patch based on the number of salient
points, where each point is described by the local radiometric pattern derived from its neighborhood.
Therefore, in case of no damage, the image patch will be represented by points with a uniform
radiometric pattern (gradient orientation), even if the image patch contains objects with different
dominant orientations. On the other hand, if the image patch contains damage it will be represented
by the points with non-uniform gradient orientations. The final damage classification is performed by
analyzing the pattern of the occurrences of local radiometric patterns within the image patch. This
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eliminates the ambiguity caused by mixed radiometric pattern typical for the global representation,
making the BoW comparatively more robust.

(2) The BoW approach considers only the salient points as representatives to describe the image
patch. The salient point selection method based on SURF mostly did not consider the pixels of shadows
and trees as salient points. Figure 9a,b show the strongest 300 SURF points in the image, where most
of the detected points are not corresponding to trees and shadows. Thus, the BoW approach largely
eliminates the shadows and trees in the damage classification process, which was one of the major
problems in the global descriptors-based damage classification. Moreover, the pixels corresponding to
the damaged regions were often detected as salient points, as they show a stronger gradient than other
objects (cf. Figure 9a). This ensures that the number of points corresponding to the damaged portion
will always be proportional to the number of points corresponding to the non-damaged objects, even
if only a small portion of the image patch is damaged (cf. Figure 9a,b). This specific characteristic of
the SURF points made the BoW-based damage classification approach invariant to scale, clutter, and
scene complexity.

(a) (b) 

Figure 9. Detected SURF points are plotted on the image. (a) Strongest 300 SURF points among
4032 ˆ 3024 pixels; (b) strongest 300 SURF points among 977 ˆ 835 pixels. Images © Pictometry.

4.3. Impact of Choice of Learning Algorithm

The results show that the choice of learning algorithm has a significant impact on damage
classification performance, since the feature descriptors performed differently for different datasets
when associated with different learning algorithms. The accuracies produced by SVM, RF, and
Adaboost for all datasets when they were associated with different feature descriptors are depicted
in Figure 10. The plot shows that (1) SVM and RF mostly outperformed Adaboost; (2) using the
global feature descriptors the performances of RF and SVM varied with the datasets: RF produced
superior results compared to SVM for UAV966 and SVI887, whereas it produced inferior results than
SVM for PIC1256 and COM3109. This shows that the performance of the learning algorithm is highly
dependent on the characteristics of the datasets, with SVM performing well for complex datasets
and RF performing well for non-complex dataset. However, using the BoW approach the SVM
mostly outperformed RF in the classification for all datasets, irrespective of the feature descriptors
(cf. Figure 10). One overall conclusion from this is that the SVM-based, supervised models were
more reliable and mostly showed better generalization performance than RF, particularly for the
complex datasets.
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Figure 10. The accuracy produced by the feature descriptors for each dataset when associated with
different classifiers.

5. Discussion

The primary objective of this paper was to develop a damage classification method that classifies
a given image patch as damaged or non-damaged, irrespective of scale, image characteristics, and
scene complexity. The damage classification method was developed by considering various feature
descriptors (HoG, Gabor, and SURF), different feature descriptor representations (Global and BoW),
different learning algorithms (SVM, RF, and Adaboost) and image datasets with different levels of
scale and scene complexity. It was shown that the feature representation has a significant impact on the
performance of the damage classification compared to other components such as features descriptors
and learning algorithms. For all datasets, the BoW-based damage classification models performed
well for all combinations of feature descriptors and learning algorithms, compared to the models
developed based on global representation. Particularly, concerning COM3109 (the comprehensive
dataset), the accuracy obtained with the best-performing feature descriptor (Gabor) and learning
algorithm (SVM) with the global representation improved by 14% (from 77% to 91%), when tested
with the BoW representation (cf. Table 6). The choice of learning algorithm was found to be the
second significant factor in the performance of the damage classification model: the SVM produced
significantly better results than RF and Adaboost for all feature descriptors in the BoW representation
(cf. Table 6). The considered feature descriptors performed equally well and, hence, the choice of
feature descriptor was found to have least impact on the performance of the model. The Gabor features
led to a 3% and 4% improvement in accuracy compared to HoG and SURF, respectively, when the
image patches were classified with SVM in the BoW framework. This small improvement also may be
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due to the additional information that Gabor features possess compared to HoG. For example, in Gabor,
the gradient orientations information is extracted based on five different frequency scales, whereas in
HoG the gradient orientation information is extracted at only one frequency scale (cf. Section 2.1.1).
However, these improvements are significantly more modest when compared to the 14% improvement
in accuracy between BoW and global representation (cf. Table 6). This highlights the importance of
feature representation, regardless of the potential of features. Overall, SVM associated with Gabor
feature descriptors in the BoW framework was found to produce the most robust and generalized
damage classification model. Even visually, the damage classification was found to be more accurate
when the images of different scales, camera views, and capturing platforms, and different levels of
scene complexity, were classified by the best performing model (cf. Figure 7). Shadowed areas continue
to pose a major problem in damage classification. Since the damaged regions covered by shadows
show low contrast, they were not detected by our BoW-based approach (no SURF points in those
areas). However, it is important to identify the damages in low-contrast regions as well; therefore,
further tuning of the methods or identifying the optimal strategy that can make our approach work
even in low contrast regions is required to increase the robustness of the model.

The BoW framework consists of various components such as feature descriptors, learning
algorithms, and the visual word dictionary construction. The algorithms used for each component
are associated with a number of parameters (cf. Table 1). The performance of the BoW-based
damage classification model might be further improved by tuning the parameters of the algorithm
or modifying/replacing the algorithm of the specific component. For example, the iterative k-means
clustering was used to construct the visual word dictionary, whereas other feature encoding methods
such as auto-encoders (e.g., Vincent et al. [51]), which encode the features differently compared to
k-means, may produce a better visual word dictionary and thereby can potentially improve the
performance of the model as well. Concerning the feature descriptors, all three-feature descriptors
were used independently to construct the damage classification models, whereas the combined use of
feature descriptors may also improve the performance of our model. Similarly, concerning the learning
algorithm we used a single kernel-based SVM for constructing the damage classification model,
whereas the multiple-kernel (e.g., Bucak et al. [52]) based learning may improve the performance of the
model as well. We did not attempt to fine-tune the model by exploring all those possible approaches,
because the principal focus of this paper was to analyze the potential of the BoW framework in
damage classification.

The developed method can identify the damages related to debris/rubble piles that are strong
indicators of building collapse or severe structural damage, which would be very useful for first
responders involved in disaster response, but also other stakeholders such as governmental agencies
assessing post-disaster construction needs, or insurance companies. However, for detailed building
level damage assessment, this evidence alone is not sufficient to infer the complete damage state of
the building, nor the total damage cost, as the latter also depends on internal (invisible) damage,
and on building functions being affected, which is not always visible. However, along with other
damage evidences such as cracks, inclined elements, etc., this evidence is also important in the damage
classification process. From a practical point of view, especially, the observations we made using the
combined dataset 4 (COM3109) are very interesting. Although the used patches vary significantly in
terms of scale and complexity, an overall accuracy of around 90% was reached (cf. Table 6). Transferred
to an actual disaster scenario, where quick interpretation of image data is needed, this would mean
that an already existing database can be used to train a model and new images can be readily classified,
and a similar overall accuracy might be expected. Hence, at least for a first damage assessment, the
tedious manual referencing might not be necessary.

6. Conclusions and Outlook

A damage classification based on BoW was developed to classify a given image patch as
damaged or non-damaged, irrespective of scale, image characteristics, and scene complexity. Various
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combinations of image features (Gabor wavelets, HoG, and SURF) and supervised classifiers (SVM, RF,
and Adaboost) are tested in both the BoW framework and conventional global feature representation
approach using four different datasets. The BoW framework outperformed conventional global
feature representation approaches in all scenarios (i.e., for all combinations of feature descriptors,
classifiers, and datasets) and produced an average accuracy of approximately 90%. Although the
developed model can identify the damaged regions in the images well, it cannot classify the detected
damaged regions into specific types, such as debris, rubble piles, spalling, and inter-story collapse.
We need contextual information and 3D geometric features such as shape, location, characteristics
of the neighboring elements, and local height variation of the damaged region to identify the actual
category of damage. For example, the damage patterns on large intact planar elements could be
classified as spalling, whereas the damage pattern on the ground with large local height variations
and no large 3D segments could be classified as debris. Therefore, the potential extension of this work
will be the development of methods for classification of the detected damaged regions into actual
damage categories.

As stated earlier, the feature descriptor component in the BoW framework has a significant impact
on the performance of the model. Here, the texture features are chosen to examine our BoW framework
as their potential in damage detection has been demonstrated well by previous studies, as highlighted
in the Introduction. However, recent studies report that supervised feature learning methods such
as convolutional neural networks (CNN) could learn the feature and its representation directly from
the image pixel values chosen for a specific application [53]. Hence, these features are referred to as
data-adaptive features and are found to be superior to well-proven handcrafted features such as Gabor
and HoG for many computer vison applications including image classification [54,55]. Therefore, we
intend to explore the potential of CNNs for damage classification in the future.
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Abstract: Disaster change mapping, which can provide accurate and timely changed information
(e.g., damaged buildings, accessibility of road and the shelter sites) for decision makers to guide
and support a plan for coordinating emergency rescue, is critical for early disaster rescue. In this
paper, we focus on optical remote sensing data to propose an automatic procedure to reduce the
impacts of optical data limitations and provide the emergency information in the early phases of a
disaster. The procedure utilizes a series of new methods, such as an Optimizable Variational Model
(OptVM) for image fusion and a scale-invariant feature transform (SIFT) constraint optical flow
method (SIFT-OFM) for image registration, to produce product maps including cloudless backdrop
maps and change-detection maps for catastrophic event regions, helping people to be aware of the
whole scope of the disaster and assess the distribution and magnitude of damage. These product
maps have a rather high accuracy as they are based on high precision preprocessing results in spectral
consistency and geometric, which compared with traditional fused and registration methods by
visual qualitative or quantitative analysis. The procedure is fully automated without any manual
intervention to save response time. It also can be applied to many situations.

Keywords: disaster emergency mapping; optical image; automatic procedure; OptVM; SIFT-OFM

1. Introduction

Natural disasters, such as earthquakes, landslides, avalanches and debris flows, occur
unexpectedly and suddenly, claiming huge losses of life and property and causing significant damage
to the surrounding environment. A large number of cases show that rapid emergency response is
effective in reducing the casualties and the loss caused by disasters. However, effectively making
proper contingency plans is a troublesome problem faced by governments and experts [1].

Remote sensing technologies have the unique ability to help emergency managers streamline
response and recovery by providing a backdrop of situational awareness which can be invaluable for
assessing the impacts of the damage and to guide the disaster rescue [2]. Remote sensing plays an
important role for the disaster rescue from the very early phase of a disaster, right through to long-term
recovery [3]. Especially during the early stages of disaster response, a coordinated and reasonable
plan for search and rescue (S&R) activities, logistics planning, and monitoring can save lives and
property. However, the information (e.g., the geographical scope of the disaster areas, the magnitude
and the spatial distribution of damage, and transportation infrastructures conditions) to support rapid
response is limited. Remote sensing is a critical option for obtaining a comprehensive information
about the disaster and for assessing the scope of damage, in particular to remote areas, where other
means of assessment or mapping either fail or are of insufficient quality [4].
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Various type of remote sensing sensors, platforms and techniques can be considered for emergency
mapping [5]. The choice is mainly based on the type of disaster, the approximate extent of the affected
areas and the requirement for monitoring the event. Generally, the main source of data for response
activities is satellite remote sensing, as this gives the ability to monitor a wide footprint on the ground
with limited or no access. In addition, modern satellite platforms can be triggered to change the
acquisition angle to cover the affected areas in a short time for increasing the observation frequency
of the regions of interest. The satellite imagery of disaster-hit areas can be obtained every day or
even every few hours. Regarding the sensor type, the synthetic aperture radar (SAR) data and optical
high-resolution (HR) or very high-resolution images (VHR) are generally obtained when disaster
occur. SAR or InSAR systems are of great value for disaster response as it is a utility further enhanced
by its all-weather capabilities, especially when the persistent of cloud cover over the affected areas
make optical data unusable [6]. It has been achieved success in detecting surface displacement and
offsets and height change of disaster areas by using the intensity, coherence or phase information
of post-event SAR or InSAR data. However, for structural damage or some temporary change (e.g.,
damage buildings and the shelter sites), SAR and InSAR data are insufficiently sensitive and the final
mapping results have been less conclusive, and marked by uncertainties. And most SAR-based change
detection approaches suffer from a lack of archive data with the same acquisition parameters as the
post-crisis imagery [7]. In addition, SAR imagery is less intuitive and is difficult to be interpreted
by nonexperts, who must rely on sophisticated software to analyze the interferometry or amplitude
coherence that require a longer processing time. Almost from the very onset of the disaster, optical
satellite imagery is always available and provides the first glimpse of the disaster devastation. Optical
high resolution imagery is the preferred choice to delineate the feature of interest (e.g., building, tents)
and their current status (e.g., destroyed, burned, or moved) [5]. Generally, optical data can provide
useful information to discriminate between damaged or non-damaged areas. Even though no further
classification with respect to damage levels can be retrieved, the information derived from optical
imagery can be effective [8]. The advantage of optical data is that their interpretation is intuitive for
nonexperts, it can provide an overview of affected regions and sufficiently detailed information for
decision-makers or aid workers to make S&R plan. However, the presence of cloud and shadows and
variations in observation angles and geometric distortions limit the application of optical imagery for
rapid emergency mapping [9].

This paper focuses on optical remote sensing image processing for the disaster mapping. One
widely used approach for producing damage mapping is visual interpretation [10,11], which is tedious
and labor intensive. Several automatic methodologies have been presented for disaster mapping,
however, geometric distortions and improper co-registration between pre- and post-disaster imagery
can result in a high false alarm rate in these automatic change detection approaches [7]. Therefore, a
balance must be found between the product accuracy and the labor-cost, and a compromise must be
found between the response time, the analysis depth, and the mapping accuracy. In this respect, we
propose an automatic Optimizable Variational Model (OptVM) and scale-invariant feature transform
(SIFT) constraint optical flow method (SIFT-OFM) to improve the accuracy of change mapping to
produce the preliminary damage map, which usually will have a rather coarse character. In the early
period of disaster, these initial maps could quickly provide some crucial information to relief teams
and support the planning and coordination of rescue operations for emergency response. At the same
time, these maps would give professional analysts or the public a guide to further checking whether
a detected change is correct to improve the accuracy of the damage map by visual validation. With
the availability of further earth observation data and more in-depth image analysis, the maps can be
updated to incorporate this new information and provide a refined damage assessment [7].

Therefore, we propose an automatic optical remote sensing process to produce a cloud free
product as a situation awareness map for identifying the overall damage and potential cascading
effects, a change detection map for estimating the impacts of damage, and a temporal change map
of key areas (such as the heavily damaged areas and temporary resettlement of victims) quickly in
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order to monitor the recovery process and guide the disaster recovery. This process can rely on the
newest available optical data to rapidly produce the up-to-date maps, cover large parts of the affected
area, and enable disaster managers to obtain an overview of the situation, assess the damage, and
supply local logistic teams with reliable information on very short notice. The procedure and methods
are introduced in Section 2. The experimental results and analyses, using the Nepal magnitude
8.1 earthquake on 25 April 2015, as an example, are given in Section 3. A discussion is presented in
Section 4. The last section concludes the paper with the significance of this research and proposed
future work.

2. The Procedure and Methods

The timeliness of receiving data and the length of time needed for data processing are key
factors in rapid emergency mapping for disaster events. When a large disaster occurs (e.g., the Haiti
earthquake, the forest fires in Australia, and the Nepal earthquake), many international organizations
or commercial companies decrease the satellite revisit time to obtain the newest data for the affected
areas by adjusting the acquisition angle [12,13]. This timely triggering provides enough data for
disaster mapping. However, these agencies only offer the original satellite imagery, rather than
processing or analysis results. The orderly organization and management for effective processing is
scanty; and these multi-source and multi-temporal data are not sufficient for developing information
applicable in humanitarian and natural crisis situations.

In this paper, a procedure is proposed to deal automatically with multi-source and multi-temporal
remote sensing data, in order to produce a product that can serve in the early stages of disasters.
The procedure is shown in Figure 1, which includes image fusion, image registration, and the
production of maps. The procedure ultimately offers a cloudless remote sensing map, a change
detection map, and a local temporal variation map for some typical areas during a short period of time.
The proposed procedure is based mainly on the general rapid mapping framework proposed by Ajmar
and Boccardo [14], but our proposed procedure is a specific implementation of a general framework
except for map dissemination. In our procedure that uses some new techniques and methods, the
accuracy of the products in each step has been greatly improved. Additionally, the whole procedure is
fully automated without any artificial participation. The methods applied in each step of the procedure
are described below.

Figure 1. Procedure for dealing with multispectral and multi-temporal remote sensing images.
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2.1. Image Fusion

Recently high spatial resolution images, such as QuickBird, WordView, GeoEye and GF-1, have
been favored in many remote sensing applications, especially for the assessment of disasters [15].
Usually, high spatial resolution satellites provide image data with a low-resolution multispectral (LRM)
image and a high-resolution panchromatic (HRP) image [16]. In order to obtain the high-resolution
multispectral (HRM) images needed for detailed damage assessment, the image fusion process must
be implemented. This is the first key step in our procedure.

There has been much research done on image fusion. The methods can be categorized into five
types, including variable substitution (VS) methods, such as the IHS and PCA algorithms [17,18];
modulation fusion methods (MF), such as the Brovery algorithm [19]; multi-scale analysis (MSA)
such as the wavelet fusion algorithm [20]; restoration based methods (RB), such as the adjustable
model-based fusion algorithm [21]; and compressed sensing methods (CS) [16,22]. The first three types
of methods can be viewed as traditional methods, which tend to cause color distortions. Additionally,
spatial information weakens due to the wavelength extension of the new satellite HRP images. Inspired
by the rapid development of super-resolution techniques, RB methods have been applied routinely
to image restoration and fusion. These methods view the LRM image and the HRP image as the
observations of the HRM image via an image degradation model. The HRM image is obtained
by setting up a model and solving the model. The CS method is based on sparse representation,
which utilizes the strong correlation between the LRM and HRP images to obtain a sparse coefficient,
construct two coupled dictionaries, and reconstruct the fused image by the fused measurement [23].
This method usually needs a large collection of training images to obtain trained dictionary, requiring
significant computing time.

In this paper, an improved fusion model, OptVM, is applied to produce high-quality HRM images
automatically. The flowchart of the OptVM is shown in Figure 2. First, a PAN image is simulated
by MS image, and the simulated PAN and original HRP image are matched. Next, the restored MS
image is obtained by the relationship of spectrum and grayscale between the simulated PAN and LRM
images; and finally, the model (Equation (1)) is optimized to get the HRM image. The model defines
Pan-sharpening as an optimization of a linear over-determined system, which is based on gray-value
and spectral sensitivity relationships between the original multispectral (MS), panchromatic (PAN),
and fused images.

 

Figure 2. Flowchart of image fusion method.
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The OptVM constructs a cost function to generate the HRM image based on three constrained
hypotheses: (1) the radiation of an object in an LRM image should be equal to the integral average
radiation of the same object in the HRM image; (2) spatial details of the HRP image and the HRM
image (the target fused image) should be similar; (3) the values in the panchromatic band should be
the summation of the respective multispectral band, if the spectral response range of the LRM image is
nearly the same as the HRP image. According to the three assumption, the cost function can be defined
as follows in Equation (1):

EpPH , XSH , XSLq “ λ1
4ř

n“1

ş `
XSn

Lpxq ´ k ˆ XSn
Hpxq˘2 dx

`λ2
4ř

n“1

ş ˜
XSn

Hpxq ´ ř
SPNpxq

WsxXSn
Hpsq

¸2

dx

`λ3
ş ˆ

4ř
n“1

WnXSn
Hpxq ´ PHpxq

˙2

dx

(1)

where XSL, XSH and PH are the radiation of pixels in the LRM image, the HRM image and the HRP
image respectively. The variables, λ1, λ2 andλ3 represent the weight of the three models in the total
energy function, which can be adjusted according the fusion result. Here, in next experiment, λ1, λ2

and λ3 are set 1. The variables, n is number of fusion band. The parameter of k is based on the fact that
the low-resolution pixels are formed from the high-resolution ones by low pass filtering followed by
subsampling [24], and k represents the low pass filtering followed by subsampling. The express of k is
shown as follows in Equation (2):

XSLpxq “ k ˆ
ÿ

jPMpxq
PHpjq (2)

In the Equation (2), the pixel j is one of the pixels set M in HRP image which corresponds to the
pixel x in LRM image. For example, if the resolution of LRM image is 8 m and HRP image is 2 m, each
pixel in LRM image corresponds to 4 ˆ 4 pixels set in HRP image in the same object. The variables in
Equation (1), Wsx represents the weighted value of the pixel s which in the neighborhood window of
pixel x in HRP image, the express is as follows Equation (2), including δx is the standard deviation.

Wsx “ e´pPHpxq´pPHpsqq2{2σ2
x (3)

In the Equation (3), the size of neighborhood window is set 9 ˆ 9 in the next experiment.
The variables in Equation (1), Wn is the band weights of multispectral image in spectral response
relationship. The express is shown as follows in Equation (4):

Phpλq “
4ÿ

n“1

WnXSLpλq (4)

In the Equation (4), λ represent the Spectral value. The process of image fusion is the global
minimum of E(PH,XSH,XSL),which is the linear constraint of the three basic models. The least square
technique—LSQR [25] is applied to optimize the model. An important step of the processing is the
image registration of the HRP image and the simulated panchromatic image by the LRM image to
avoid fusion image distortion and spectral offset based on the optical flow and feature constraint
method (introduced in Section 2.2).

2.2. Image Registration

Image registration is an important procedure in remote sensing image applications [26] and a
crucial step in our chain. Previous studies of image registration methods can be divided into three
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categories, including area-based method, such as Cross-Correlation (CC) method [27], the mutual
information (MI) [28]and the Sequential Similarity Detection Algorithms (SSDAs) [29]; feature-based
method such as SIFT [30–32] and physically-based methods, such as multi-resolution elastic model [33]
and the optical flow model [34,35]. The first two methods, which are based on the gray information and
the spatial features of the images to register the images, cannot meet the real time requirements, as they
require large computing capacity and highly complex algorithms, They are also not very robust. The
physically based methods utilize physical models to describe the process of image deformation and
solve the image physical model to achieve image registration. These methods have great advantages
for speed and accuracy. In this paper, a physically-based method, the SIFT feature constraint optical
flow method (SIFT-OFM), is proposed to register images. Figure 3 shows the flowchart of the algorithm.
First, homologous points are obtained for the reference image and the sensed image using the SIFT
feature matching method [36]. Then the affine transform coefficients are calculated to be a constraint
for an optical flow model. Finally, the parameters of optical flow model are optimized through an
iterative process to obtain high accuracy registration images.

Figure 3. Flowchart of image registration method.

The optical flow model method is based mainly on the assumption of the local gradient model
and the overall smoothness model of the pixel gray values, which regard the change of image gray
scale as the change of optical flow [35]. The algorithm is able to get the high-precision matched image
by considering the optical flow change as the displacement of the reference image and the sensed
image to the register.

The optical flow model is based on the assumption of the constancy of brightness, which means
that the gray value of the same object is not changing with time and the radiance consistent is in
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motion [37]. Thus, the spatial variation of the optical flow model can be expressed as follows in
Equation (5):

Egray “
ż ż

ϕ
´

pI px ` u, y ` vq ´ I px, yqq2
¯

dxdy (5)

where I is the image intensity function of interval Ω (x, y), (x, y) ε Ω; u and v are the displacements in
the x and y directions, respectively, which is the offset between the reference image and the sensed
image. The symbol, Ψ, represents a differentiable function on the interval Ω. To reduce the impact
of light changes, the gradient energy equation is added into the total energy formula. The gradient
energy equation is defined as follows in Equation (6):

Egradient “
ż ż

ϕ
´

|∇Ipx ` u, y ` vq ´ ∇Ipx, yq|2
¯

dxdy (6)

where ∇I “ “
Ix, Iy

‰T , and ∇ I is the gradient vector of the image. For every pixel, there is only one
equation (the sum of Equations (2) and (3)); but there are two variables, u and v, which can cause
uncertain solutions and aperture problems. Thus, there is a need to add a regularization constraint.
The regularization constraint plays an important role in the estimation intensity, the edge smoothness,
and the edge retention of the optical flow field. In this algorithm, a global smoothness constraint
proposed by Horn [37] is used to minimize the constraint term. The global smoothness constraint is
described as follows in Equation (7):

Esmooth “
ż ż

ϕ
´

|∇u|2 ` |∇v|2
¯

dxdy (7)

where ∇ :“ pBx, Byq is two dimensional differential operator.
Optical flow model is not suitable for matching large displacement images since the optical flow

model can be expressed by expanding the Taylor series and omitting the high-order terms. Therefore,
the SIFT-OFM adds the SIFT feature as a constraint into the optical flow model. The generation of the
SIFT feature points includes four steps: extreme space detection, precise positioning of the SIFT feature
point, determination of the main direction of the feature point, and the description of the building
features. Based on these SIFT feature points, the affine coefficients are calculated as the initial value of
the optical flow field to match the image. The total energy equation of SIFT-OFM is defined as follows
in Equation (8):

E “ Egray ` λEgradient ` αEsmooth ` τESIFT
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¯
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¯
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(8)

where λ, α and τ are the coefficient of the last three component. Based on previous experience, these
are set to λ “ 1, α “ 50 and τ “ 1 in next experiment.

The minimum of
Ñ
u and

Ñ
v , are solved based on the energy function E, using Successive Over

Relaxation (SOR) iterative method [38]. This is the displacement of the reference image and the
sensed image. Then calculate the displacement based

Ñ
u and

Ñ
v and resample to get high-precision

matched image.

2.3. Map Production

The procedure mainly provides two kinds of products. These are the cloudless maps for the
disaster regions and the change detection maps for the early stage of the disaster. The flowchart for
map production is shown in Figure 4. After obtaining the high precision matched disaster image, the
clouds on the images are detected and removed to get cloudless remote sensing maps for determining
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the overall scope of the disaster and for automatically detecting the change between the pre- and
post-disaster cloudless images. For the automated change map, artificial checking is needed to exclude
the error detection, which is caused by the different types of sensors and the observed conditions
between the two images. In cases of emergency, the automated coarse change map can be used directly
to offer approximate information for managing crisis issues.

Figure 4. Flowchart of products processing.

Much research has been focused on the task of cloud removal to relieve the influences of
clouds. In fact, the process of cloud removal is an information reconstruction process for missing
information. The proposed approaches can be grouped into three categories [39,40]: (1) spatial-based
methods without any other auxiliary information source; (2) spectral-based methods, which extract
the complementary information from other spectra; and (3) temporal-based methods, which extract
the complementary information from other data acquired at the same position and at different time
periods. Spatial-based methods are often used for some small missing regions by interpolation, such
as for the scan line (SLC) missing from Landsat-7 [41]. It is not appropriate for large-scale cloud
removal. Spectral-based methods are based on the relationship of spectra in clear regions and restore
the contaminated band of data by modeling a relationship between the contaminated band and the
auxiliary band by methods such as the HOT method [42], and the STARFM method [43]. It is usually
constrained by the spectral compatibility and has difficulty with thick clouds. Temporal-based methods
utilize multi-temporal clear data for the same region to simulate the cloud cover area data for acquiring
cloud-free images, such as local linear histogram matching (LLHM) approach [44], spatio-temporal
MRF model [45] and etc. In this paper, we produce the cloud free maps by the temporal phases
simulation method proposed by Gui [46], which utilize spectrum relationship, vegetation index and
HOT parameters [47] to detect clouds on the images and calculate the feature difference between two
temporal images to make up the cloud regions. The simulation method uses the minimum value of the
feature difference and a multi-grid optimization algorithm. It converts the features of one image to the
features of the reference image and then fills the areas of the clouds by the converted image that has no
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cloud in the same region. This generates a cloud free image in the disaster districts. In this study, time
to acquire the difference between the images is very short, so the generated image can truly reflect the
overall situation after the disaster by this method.

Several authors have presented semi- or fully- automatic methods to analyze images for damage
change detection and assessment by optical data [3,48–50]. But geometric distortion, improper
co-registration of pre- and post-disaster images can result in a high false alarm rate of automatic
change detection methods. In this procedure, the new methods, OptVM and SIFT-OFM, are utilized
to improve the accuracy of preprocessing results. And based on the high-precision preprocessing
images, the Iteratively Re-weighted modification to the Multivariate Alteration Detection (IR-MAD)
method proposed by Nielsen [51,52] is used for detecting change automatically in this procedure.
IR-MAD is mainly based on the means of canonical correlation analysis (CCA). First, the maximum
canonical correlation coefficient after linear transformation is determined for the pre- and post-disaster
images [53]. The D-value and the variance of the linear transformed images are calculated. Finally, the
pixel change is checked by the Chi-square distribution of the D-value and the variance. In order to
highlight the changing information of the pixels to improve the accuracy of the change detection map,
a weighted iteration method is used during the process of transformation. The iterations continue
until the absolute value is less than the error limit (for this paper, the error limit is set as 0.001). The
absolute value is the difference of correlation coefficient maximum value from two iterations, namely,
before and the current conversion.

However, the change detection map has some error detection points because the map, which is
generated by IR-MAD, could be influenced by the different conditions during the acquisition of the
two images. Artificial checking is essential for removing the errors in the changed regions. Changes are
totally possible during the early stages of disasters, since many people and agencies from other regions
or countries have a great enthusiasm and willingness to help the victims and local government in
relief and reconstruction activities. There are many public community remote sensing platforms, such
as TomNod [54] and GIS Corps [55] which could add and update the information (not only in vector
format but also by means of geotagged pictures and textual information), validate the information
conveyed, and actively participate in the map production phase by coordinating the efforts of ordinary
people and experts [56]. It could gather every tiny force to provide significant assistance for the victims
and decision making department in the disaster region [57]. The automatic production change map
can be used in on a community remote sensing platform to reduce labor costs and to provide a rapid
response to the disaster.

3. Experiments Results and Analysis

3.1. Study Area and Data Sets

A powerful earthquake shook Nepal near its capital, Kathmandu, at 11:56 NST on 25 April 2015,
killing more than 8000 people and flattening section of the city’s historic center. Some of the oldest parts
of the city, including seven UNESCO World Heritage sites, were severely damaged in the earthquake.
This paper uses the Nepal earthquake as an example. The location of the study area, the center of
Kathmandu, is shown in Figure 5. Four images from a GF-1 PMS sensor were selected, including
a pre-earthquake image on April 11 and post-earthquake images on 27 April, 1 May, and 2 May, as
shown in Figure 6. The specific observation parameters of the data set are shown in Table 1, and the
parameters for the PMS GF-1 sensor are shown in Table 2. The proposed procedure was followed
without any human intervention. The procedure will be discussed clearly, including the intermediate
results of the image fusion and registration and the final products of the cloudless maps and the
change map.
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Figure 5. Spatial location of the study area (the resolution of left map is 2 m after fusion).

Table 1. The specific observations parameters of data set.

Acquisition Date Sensor Viewing Angle

11 April 2015 PMS-1 0˝
27 April 2015 PMS-2 ´24˝
1 May 2015 PMS-1 ´23˝
2 May 2015 PMS-1 23˝

Table 2. Parameters of GF-1 PMS sensor.

Parameter PMS-1/PMS-2 Sensor

Spectral range

PAN 0.45–0.90 μm

MS

0.45–0.52 μm
0.52–0.59 μm
0.63–0.69 μm
0.77–0.89 μm

Spatial resolution PAN 2 m

MS 8 m
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Figure 6. The four images of data set (all the four image is the original image of MS with 8 m resolution).

3.2. Image Fusion Results and Analysis

In this section, the image from 27 April is taken as an example to show the accuracy of the
image fusion results. Figure 7 shows part of the whole image to exhibit the image details clearly. The
left image is multi-spectral data, and the right is panchromatic data. The upper left corner image
in each view is an enlarged view of the small red box. Figure 8 shows the result of PCA fusion,
GS-pansharpening fusion, wavelet transform fusion, and the proposed OptVM method. Visually,
the four methods have achieved spatial resolution enhancement and keep a certain spectral fidelity;
but the results of PCA, GS, and wavelet transforms have virtual phenomena in the edge of objects,
especially the wavelet transform result being the worst. In detail, from the enlarged image of the
small red box, the resulting color recovery of OptVM is finer than with the other three algorithms. For
example, observe the red roof in the enlarged image in Figure 8. The OptVM method restored the red
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color of the roof regularly, while the color recovery results of the other three algorithms deviate from
the red color, with some parts of roof being white.

Figure 7. Multispectral (left) and panchromatic data (right) of the original image on 27 April (upper-left
small image is the detail from the area of the red rectangle).

Six typical surface features are shown in Figure 9 which are sampled from the fused results (seen
in Figure 8). These are sampled in relatively uniform areas to assess the spectral fidelity and the
spatial location of the six points marked in Figure 9A. These pixels cover a large set of material in the
scene and are uniform around their neighborhood. The spectra of the original MS image are used
as ground truth for comparisons based on the reasonable assumption that the spectra around such
uniform areas are most likely unchanged. The spectra results of the image fusion methods are shown
in Figure 10; and the Euclidean distance difference and the spectral difference, expressed in spectral
angle difference, are shown in Table 3. For uniformity of comparison, the values of the fusion results
are normalized to 0–255. From Figure 10 and Table 3, it can be seen that the result of OptVM method
can preserve the spectra of these pixels well, whereas the spectra from the PCA, the Gram–Schmidt
(GS), and the wavelet fusion are very different from the truth. For example, the red roof of pixel #1 is
shifted seriously in the result from wavelet fusion. For the ordinary roof (pixel #4) and bare land (pixel
#6), the results of PCA and GS are lower than the truth, especially in red band, and the difference of the
spectral angle is larger. In the vegetation area, the colors of the results based on the wavelet method
(see Figure 9D) lack fidelity, while our algorithm performs very well in most regions (Figure 9F). In our
method, a crucial step is that the simulated PAN and the original PAN need to be matched to reduce
the distortion that is caused by the geometric deviation of the original MS and PAN images.
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Figure 8. Result of various image fusion methods using (A) PCA; (B) wavelet; (C) GS; and (D) OptVM.
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(A)PAN (B)Nearest neighbor MS (C)PCA 

(E)GS(D)Wavelet (F)OptVM 

Figure 9. Comparison of the various algorithms on the urban area scene. (A) the PAN image; (B) the
MS image after resampling using the nearest neighbor; (C) the PCA result; (D) the wavelet result;
(E) the GS result; and (F) the OptVM result.

Figure 10. Spectral comparison between the various approaches in the urban area scene. The site of
pixels marked in Figure 9A.
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Table 3. Spectral angle difference and Euclidean distance difference of marked pixels.

Category
Spectral Angle Difference Euclidean Distance Difference

PCA Wavelet GS OptVM PCA Wavelet GS OptVM

Red roof 29.75 25.71 30.10 19.13 0.066 0.108 0.065 0.044
Water 41.33 16.79 42.00 13.04 0.056 0.058 0.055 0.028
Grass 26.65 10.72 28.53 5.48 0.068 0.048 0.075 0.017
Roof 39.01 14.90 37.87 9.49 0.063 0.059 0.060 0.023
Road 26.44 12.37 26.70 7.94 0.051 0.050 0.054 0.030

Bare land 26.44 9.00 26.70 7.75 0.051 0.039 0.054 0.031

In order to comprehensively assess the quality of fused images, four objective evaluation metrics
are selected, which include the spectral angle mapper (SAM), the error of relative dimensionless global
in synthesis (ERGAS) metric, the Q4 index [58] and Quality with No Reference (QNR) metric [59].
The equations of four metrics are presented in the Appendix. SAM and ERGAS are measures of the
global radiometric distortion of the fused images, and a smaller value indicates better fusion results.
Q4 and QNR reflect the spectral and spatial quality of the fused images. Values closer to 1 denote
the better result. The results of the four metrics are shown in Figure 11 and Table 4. In regards to the
fidelity of the image spectrum and the image clarity, the fused images by GS and by our proposed
algorithms appear better than those obtained by the PCA and the wavelet fusion methods. The QNR
index obviously displays this difference, since replacing the original MS image information leads to the
loss of information. Compared with the other fused methods, the SAM value of the GS fused image is
very large, with the degree of sharpening being excessive in some parts of the results. The values for
the four metrics for our method show that it is the best of the four methods. In fact, most of the existing
image fusion algorithms are based on the band-to-band correlation, whereas our method synthetically
utilize the relationship of spectrum, grayscale and spatial to produce an image with fewer distortions.

Figure 11. Line chart of the four metrics comparing fusion methods (ERGAS and SAM values are better
when approaching 0, while Q4 and QNR values are better when approaching 1).

Table 4. Comparison of the value of above four index.

Index PCA Wavelet GS OptVM

ERGAS 4.118 6.551 4.214 3.485
SAM 3.566 2.957 3.656 2.492
Q4 0.533 0.527 0.846 0.894

QNR 0.878 0.886 0.86 0.931

3.3. Image Registration Results and Analysis

Image registration is based on the results of image fusion and select two images as the example
(pre-earthquake on 11 April 2015, and post-earthquake on 27 April 2015). The pre-earthquake image is
the reference image to match with the post-seismic image of 27 April. In Figure 12, the middle image
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is a combined image, which takes a 100 ˆ 100 block from the reference image and also from the sensed
image, alternately. Figure 12A–D are the detailed enlarged images, which show the position offset of
the reference image and of the sensed image. In Figures 13–16 the middle combined image is obtained
in the same way as Figure 12. These figures are based on the reference image and the matched image
using the optical flow model algorithm (Figure 13), the SIFT feature algorithm (Figure 14), the ENVI
software registration workflow (Figure 15), and our proposed SIFT-OFM method (Figure 16).

 

Figure 12. The combined image of the reference image and the sensed image (A–D show the detail of
each red rectangle on the combined image).

Figure 13. The combined image of the reference image and the matched image only using the optical
flow model (A–D show the detail of each red rectangle on the combined image).
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Figure 14. The combined image of the reference image and the matched image only using the SIFT
algorithm (A–D show the detail of each red rectangle on the combined image).

Figure 15. The combined image of the reference image and the matched image by using GCP in ENVI
software (A–D show the detail of each red rectangle on the combined image).

Figure 16. The combined image of the reference image and the matched image using SIFT-OFM (A–D

show the detail of each red rectangle on the combined image).
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From the detailed images in Figure 12, the dislocation between the reference image and the sensed
image is very obvious, so it is necessary to register the two images for producing the products. From
Figure 14 to Figure 16, the results are good. Figure 13 shows that the result that is based only on the
optical flow model algorithm is the worst. It is because optical flow algorithm model is not suitable
for the large displacement of two images, generally not more than two pixels; but in this study, the
difference of the two images significantly exceeds at least 10 pixels. Furthermore, comparing the
detailed image from Figure 14 to that in Figure 16, the SIFT algorithm performed well in Figure 14A,D;
but in Figure 14B, the image of the dislocation of the bridges is very clear, while the road in the
Figure 14C image is broken. The linear correction model of the affine transformation is utilized in SIFT
feature algorithm and can cause some nonlinear distortions to be uncorrected. The result of Figure 15
is based on ENVI registration process, in which 34 ground control points (GCP) are marked by artificial
selection and the overall error of these GCP is not more than 0.43 pixels. However, in both Figure 15A,B
the discrepancy of the bridges is obvious and serious. This is related to the maldistribution of the
GCP and the linear calibration model in the registration process. There is no obvious displacement or
deviation in any of the images of Figure 16 produced by the SIFT-OFM method, which restricts the
larger deviation by the SIFT feature and corrects the local linear or nonlinear distortion by the optical
flow model.

The structural similarity index measurement (SSIM) [60] is the quantitative evaluation metric
used to evaluate the precision of a registration image. The SSIM maps in Figure 17 are obtained by
calculating the SSIM between the reference image and the matched image in a sliding window within
9 ˆ 9. In the SSIM map, red indicates SSIM values close to 1; that is, the areas with high precision
registration. It can be seen that the precision of the proposed method is higher for the SIFT feature
and the ENVI automatic registration process. The existence of clouds and shadows in sensed images
and the lack of clouds in the reference image leads to the low SSIM value in the clouds and shadows
regions. Therefore, in the Table 5, the overall SSIM value in the whole image shows relatively low.

Table 5. Comparison of SSIM value for whole subset image using three methods.

Index SIFT ENVI SIFT-OFM

SSIM 0.6266 0.6415 0.7442

Figure 17. SSIM maps of three methods (the red area indicates SSIM values close to 1; that is, the more
high precision registration regions).

3.4. Cloudless Product and Analysis

The generation of cloudless maps includes cloud detection and temporal simulation based on
the result of image fusion and image registration. The four images after image fusion and image
registration are shown in Figure 18. From Figure 18, all the post-event images (images of 27 April,
1 May, and 2 May) included clouds and shadows, which affect the ability of the decision makers
and analysts to estimate and grasp the overall situation. Therefore, cloud and shadow removal and
temporal simulation for producing a cloud free image is indispensable.
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Figure 18. The data set of four images after image fusion and registration (compared with Figure 6, the
resolution and the registration accuracy have been improved greatly).

The cloud detection results by our method introduced in Section 2.3 are shown in Figure 19,
in which red areas represent cloud regions and green areas represent shadow regions. By visual
comparison, most of the cloud and shadow have been detected, while only a small portion of the
thin clouds have not been detected. The cloud and shadow based on the result in Figure 19 is used
to produce the cloud free image by temporal simulation based on the adjacent time image after the
earthquake. The cloudless image is shown in Figure 20, in which Figure 20A is the image of 1 May and
Figure 20B is the image of 2 May. Figure 20C is the cloudless map. The image, Figure 20C, is based
mainly on the Figure 20B image, with the cloud and shadow regions made up from the Figure 20A
image. Figure 21 show the detailed enlarged images of the rectangle in Figure 20. In Figure 21, the
scenes in the cloud and shadow regions are recovered by the temporal simulation method and keep
consistency in color and texture using neighbors. It provides a high quality cloudless image and
identifies the overall damage and potential cascading effects accurately. Figure 22 shows the cloudless
maps of the post-event on 27 April, 1 May, and 2 May. Comparing with the original image of Figure 18,
the cloudless maps eliminate the influence of clouds and shadows and can be used easily as backdrop
maps or situation maps. The cloud and shadow regions of the image on 27 April (seen Figure 18
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right-up image and Figure 19 right-up image) is replaced by the pre-event cloudless image on 11 April
(seen Figure 18 left-up image) to obtain a cloudless map (seen Figure 22 left image), as there is no
post-event image before 27 April to make up the cloud and shadow regions. The left cloudless image of
Figure 22 contains some pre-event information, which may make a confusion by users if they only use
the single cloudless map, so some red vectors of cloud and shadow regions are added to distinguish the
pre and post event data. In the internal regions of the vectors are the pre-event information, while the
external region are the post-event information. This kind maps is only used in the short time after the
event when there are few post-event images and the images still have overlapping cloud-covered areas.

Figure 19. The cloud detection products of the four image in Figure 18 (red areas represent cloud
regions and green areas represent shadow regions).

 

Figure 20. The cloudless map of 2 May. (I and II are the original images of 1 May and 2 May, III is the
cloudless map after removing the cloud and shadow). (A) and (B) are the shadow and cloud regions in
the original image; (C) and (D) are the same areas after removing the influence of cloud and shadow
corresponding to (A) and (B) regions. The detail of A–D are shown in Figure 21).
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Figure 21. The detailed enlarged images of the rectangle in Figure 20. (A and B are the original images
from 2 May, C and D are the simulated cloudless images).

 

Figure 22. The cloudless maps for the post-event images from 27 April, 1 May, and 2 May.

3.5. Change-Detection Product and Analysis

The change-detection map produced by IR-MAD in this paper is a coarse detection map and
needs further manual checks to improve the accuracy of the product. In this section, the four images of
Figure 18 are tested. The image in Figure 23I is the change-detection map between 11 April and 27 April,
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in which clouds and shadows are considered as the change, and Figure 23II is the change-detection
map after removing the cloud and shadow regions based on the Figure 23I image. Figure 23A–D give
the detailed enlarged images of the red rectangle in the large maps. Figure 23A illustrates the change
of open grass land before and after earthquake, where some tents have been put up as temporary
refuge. Figure 23B indicates the landmark building of the Kathmandu, Bhimsen Tower, completely
collapsed after the earthquake. Figure 23C represents an error change detection result, as the different
imaging angle of two images result in the different positions of tall buildings and their shadows in the
images. Though the images are matched by the method proposed in Section 2.2, the differences caused
by the viewing angle is very difficult to be corrected. Figure 23D also shows an error change-detection
result, because part of the shadow area is missing from detection. From the above analysis, the
change-detection map produced by our proposed procedure is a coarse result without distinguishing
the type and grade of change and many errors are detected, which require manual checking to refine
the work.

 

Figure 23. The change-detection map of image between 11 April and 27 April. (I image contains
the cloud and shadow, II image remove the impact of cloud and shadow based on I image, A–D

are the different detected changing scenes, A and B are the right detected scenes, C and D are false
detected scenes).

The image in Figure 24I is the same image shown in Figure 23II, which is the change map between
11 April and 27 April. The image in Figure 24II is the change between 1 May and 11 April and the
image in Figure 24III is the change between 27 April and 1 May. All of these eliminate the impact of
cloud and shadow. Figure 25 shows the detailed enlarged images of the red rectangles of Figure 24. In
Figure 25A, the Durbar Square of Kathmandu, which damaged severely in the earthquake, is shown,
but this change (the damage) is not discovered because the clouds and shadows exist in the image
of 27 April (seen in Figure 25A). In Figure 24III, the change is observed, since the image of 1 May is
cloudless in this region. For B sense in the Figure 24, the reason of discovering the change in II, not in I
and III map is the same with the A sense as the influence of shadow (seen the detail in Figure 25B).
Figure 25C shows the Kal Mochan Temple of Kathmandu, which also collapsed after the earthquake.
In Figure 24I,II, the change area is the same large, but small in Figure 24III map. This is because the
feature on the ground has no major changes in the post-earthquake images (27 April and 1 May), while
the feature changed obviously between pre- and post-earthquake images (Figure 24I is the result of
11 April and 27 April, Figure 24II is the result of 11 April and 1 May). There are just some rocks from
the collapsed temple that have been consolidated during the period from 27 April to 1 May to clean
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the area of the ruins (shown in Figure 25C). By these comparisons, the progress of the rescue will be
learned. The same reason applies to the Figure 25D,E scenes. From these images, we see that many
tents were put up in some open space nearby the houses of victims as temporary shelters because of the
constant large aftershocks. The temporary shelters were migrated or revoked on 1 May as the rescue
proceeded. So some temporary facilities would disappear on the image of 1 May (seen in Figure 25D,E);
and no or few change areas would be detected in image III of Figure 24. The results of this paper
mainly provide a quick change detection map to determine the urgent requirements, as well as offer
guidance to check the change regions precisely through a community remote sensing platform for
experts or the public, which is possible to reduce labor costs and improve efficiency in the maximum
extent. Figure 26 show the detected changes vector superposition on cloudless maps of 27 April. The
vector of the left hand map is the final result, which was extracted from the image I of Figure 26; and
the vector of the right hand map removes the error regions of the final result by visual checking. The
right vector map is the combination of visual interpretation by four independent people. This vector
map can be considered the relative correct result for comparing. The simple statistic is shown in Table 6.
The number of change regions in the original vector map (shown in Figure 26 left hand map) is 758,
while the number in the checked vector map (shown in Figure 26 right hand map) is 556, and the error
detected change regions are 202. The percentage of truth change regions and original change detected
regions is 73.4%. This can meet the application requirements to a certain degree. In the true change
regions, most of them are tents or shelters (shown Figure 23A, Figure 25D,E, and Figure 27A), some
are cars on the street or other temporary features, and a few are the collapsed or damaged buildings
(shown in Figures 25C and 27B). In the error change regions, as analyzed above, most of the error is
caused by the changes in different view angles between pre-event maps and post-event maps, and
some are caused by undetected clouds, thin clouds, shadows, or other unknown errors.

Figure 24. The change-detection map of image between 11 April, 27 April and 1 May after removing
the cloud and shadow (I is the change map of 11 April and 27 April, II is the change map of 11 April
and 1 May, III is the change map of 27 April and 1 May. A–E region are the different sense and the
detail show in Figure 25).
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Figure 25. The detailed enlarged images of the red rectangle in Figure 24 (A and B are influenced
by clouds and shadows; C is a collapsed temple; D and E are the open spaces where many tents are
being set up).

Figure 26. The detected changes vector superposition on the cloudless map of 27 April. (the vector of
the left hand map is extracted from the I image of Figure 24, and the vector of the right hand map has
removed the error regions of the left hand vector map by visual checking).
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Table 6. The simple statistic of detected changes vector map and checked changes vector map.

Method
Number of

Regions
Change Category

Number of
Regions

Total detected change 758

Visual interpretation
checking real change

556
Damage Building(collapsed) 21

Tent/shelter 396
Cars or other temporary feature 139

Visual interpretation
checking error change

202
changes as different view angles 112

change as undetected thin cloud or shadow 34
other error detected changes 56

 

Figure 27. The temporal change detail map of two scenes (A shows a series of changes in Center Park
from 27 April to 2 May and B shows the change of a collapsed tower).

Through the change detection map, the rescue progress can be observed. An example is shown in
Figure 27. The image in Figure 27A shows the difference over four days in the open space of a park
in the center of Kathmandu. The image from 27 April, the day after earthquake, indicates that the
situation in this open space is in chaos, with a variety of temporary residences set up. However, by the
sixth day after the earthquake, on the 1 May, the temporary settlements are orderly. This phenomenon
is more obvious and more and unified residences and relief tents are set up by 2 May. The image in
Figure 27B shows the series of changes of Bhimsen Tower. From 27 April to 2 May, the bricks and
masonry from the ruins are cleaned up effectively and the situation changed from one of chaos to
order. These temporal change maps indicate the progress of the disaster rescue, allowing for more
objective guidance to formulate the next plan of rescue and allocate rescue resources reasonably.

4. Discussion

The goal of this work was to solve the problems related to the use of optical remote sensing data
in disaster emergency mapping. The main problems are the impact of clouds in obtaining a clear
situation backdrop map after the disaster and the contradiction between obtaining the poor precision
change detection maps by automated methods and the relatively labor intensive process by visual
interpretations. Through a series of new methods proposed in this paper, the accuracy of optical data
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pre-processing results have been improved greatly and the produced change detection maps can fulfill
the fundamental requirement of disaster S&R activities, which is the information regarding the disaster
in terms of the number, location, distribution, arrangement, extent, and impact of the devastation.
These rather coarse change maps also can be used as a guideline and the basis for visual observation
to check the correctness of the detected change in objects. This can then generate more refined damage
assessment maps and up-to-date maps for evaluation.

4.1. Map Accuracy and Timeliness

Reliability of the results and timeliness of the process are the key factors in emergency mapping.
In previous studies, the biggest problem of optical data used in damage mapping by automatic change
detection method was the calibration stage, which is a time consuming procedure with poor accuracy
of results. In this paper, OptVM for image fusion and SIFT-OFM for image registration are proposed
for producing a high accuracy fused image and matched image to obtain a rather high precision change
detection map. Comparing the results based on traditional image fusion and registration methods, the
results based on our proposed methods are the best overall (see the analysis in Sections 3.2 and 3.3).
The false alarm rate of the final change detection scenes, which are caused by improper co-registration,
can be reduced by relying on the rather high accuracy of the fused image and the matched image.
Timeliness is also an issue. The time for processing the images of 11 April, 27 April, and 1 May from
the Kathmandu example was only about 46 min to obtain the cloudless map shown in Figure 20 and
the change map shown in Figure 24 using a PC with 8GB RAM and a 64-bit operating system. This is
well worth the effort to obtain a cloudless situation backdrop map and a rather coarse change map.
The time can be shortened if cluster or GPU parallel computing is used.

4.2. Limitations

Although a series of methods or strategies are used in this study to reduce the effects of optical
imagery limitations, some limitations are still presented in the maps produced by this study. First,
cloudless situation maps are available only when cloud cover is less than 50% of the image taken on the
same day; otherwise, the cloudless maps contain a lot of information from the previous images. When
the cloud coverage in the image is more than 80%, the image is completely unavailable, and only the
SAR data is available to determine the situation of the cloud and shadow areas. The other limitation is
that the generation of cloudless maps requires at least two post-event images with non-overlapping
cloud covered areas. Post-event data are a bit more challenging due to cloud cover during the time of
satellite passes. In some cases, getting a post-event cloudless map of the entire damaged area requires
a great deal of time. However, multiple satellites passes and multiple data increase the possibility of
obtaining cloudless images. Generally, a single post-event imagery is available in the first hours after
the event. If it has cloud covered areas, there is no method other than to just replace the cloud areas
with the nearest pre-event clear data when we want to get cloudless maps. Our proposed method can
produce a cloudless map in this case. It is also useful for rescue teams to learn the situation of the
affected areas using cloudless maps before they start search and rescue (S&R) activities within a few
hours after the disaster. In parts of the country without internet access, the professional rescue teams
need to take a cloudless printed map. It is important to provide cloudless maps even though cloud
cover areas are replaced by pre-event clear data. In this kind cloudless map (seen Figure 22 left image),
the vectors of detected cloud and shadow regions are provided to distinguish where is the pre-event
or post-event data to avoid confusion for users.

Next, undetected clouds and shadows, variations in solar illumination, different off-nadir angles,
and some temporary objects (e.g., car traffic), which could influence the results of change detection, still
exist and reduce the accuracy of change maps in this example (as shown in Figure 23C,D). These errors
are difficult to exclude from automatic change detected maps. It is only by manual visual checking that
errors can be removed to obtain more precise change maps. That is why we emphasize the important
of manual participation for further checking the change maps in this study. These change maps are just
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the coarse result, which provides some basic main information for the affected regions. In addition,
the detected changes in the product maps are not divided into categories and degrees, which also rely
on manual interpretation to measure.

Then, a main limitation is the data resolution. As the policy of data acquisition and fund problems,
the highest data resolution obtained was only 2 m with GF-1. This is not sufficient for detecting and
assessing the damaged buildings, except those that are completely collapsed (shown in Figure 27B)
or partially collapsed (shown in Figure 25C). The main purpose of the change detection maps in
this study is to detect the scene after the earthquake to determine whether it was changed or not.
The change detection maps could provide guidance of the changed regions for further checking as
mentioned above.

Lastly, though image-based mapping has played an important role in rapid post-disaster damage
assessment, the detail and accuracy of assessment has not reached the level of ground-based surveys [9].
The limitation of image-based damage assessment is not only related to the spatial resolution of the
sensors, but also the reflected information reflected by image itself. Generally, most of the satellite
images for disaster mapping are acquire by vertical angle (or small angle offset vertical), and the
provided information of images, such as for building, is the situation of roofs. The roof information is
well suited for the identification of extreme damage states, i.e., completely destroyed structures [61].
But for some not collapsed buildings with cracks or inclined walls, the results of image-based mapping
are largely missed and lead to assessment deficiency of this type damage in the final results. Recently
oblique or multi-perspective data, which provide information of both roofs and facades, has been
identified as a potential data source for a more comprehensive building damage assessment [62,63].

5. Conclusions and Future Work

Using remote sensing for emergency mapping is now a common operational approach for disaster
risk management. Both optical and radar data are the main input data when disasters occur. However,
for damage assessment or analysis purposes, a number of results have been presented after every
event mostly based on optical data. These can be easy to read and analyze to generate fast maps
showing the location, scale, or the extent of disaster or crisis situation. In this study, a rapid procedure
for transforming optical remote sensing data is proposed to produce cloudless situation backdrop
maps and change detection maps for the emergency needs in the early phases of disaster recovery. On
the one hand, the precision and reliability of the products has improved significantly by using the new
methods, which include OptVM and SIFT-OFM. On the other hand, the automatic processing time
is shortened by proposed procedure. It is useful to provide some rapid and actionable information
for the governmental agencies, multilateral organizations, and NGOs in a timely fashion. While only
the GF-1 temporal data were tested in this study as the limitation of data acquisition, the proposed
procedure is also applicable to the other remote sensing data. It can even provide up-to-date situation
awareness, loss estimation, and recovery monitoring maps to support decision making by processing
multi-source and multi-temporal optical remote sensing data together.

The accuracy of the results from the automatic methods is obviously not as good as the manual
visual interpretation by good cooperation of professional image analysts or skilled operators [63].
Manual visual interpretation, is always a rather labor intensive task. An ideal solution is to minimize
the impact of restrictions to improve the accuracy of automatic methods results continuously. These
automatic methods results can save the labor-cost to the maximum extent and provide some guideline
for further refine the results by manual visual checking, though the results is rather coarse. This is
also our main purposes of this study. International cooperation and volunteer contributions play an
important role in mapping for disaster impact assessment at the urban level. International agencies
and volunteers should be coordinated properly to ensure that common mapping guidelines and proper
communication mechanisms are in place, for more effective cooperation among the involved actors
especially during major emergencies.
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Remote sensing is an effective tool at the disposal of a disaster manager. It can supply authentic
and objective information for various rescue resources and the general public, especially in remote
or inaccessible areas during the early period of the disaster. It would be strongest when allied with
other tools, such as catastrophe risk models or GIS tools [64], to provide a powerful guidance to
streamline evacuation, issue disaster declarations, coordinate S&R, coordinate logistics, conduct
damage assessment, distribute relief supplies, and aid in long-term recovery. Some emerging
technologies and initiatives will provide updated change and geospatial information as well as the
resources distribution and demand data to analyze it in a time frame suitable for emergency response
purposes. In the future, integrating different remote sensing data based on emergency mapping
and other GIS information or analysis tools will be the popular trend to reduce economic losses,
ensure public safety, and meet the basic subsistence needs of the people affected in an emergency
response context.
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Appendix

The four indices used in this paper are defined as follows
(1) The Spectral Angle Mapper (SAM): The SAM measures the absolute angle between the spectral

vectors between the reference and fused images, which reflects the spectral distortion. The best value
is 0, and the equation is shown as follow

SAMpApi, jq, Bpi, jqq “ arccos
ˆ xApi, jq, Bpi, jqy

||Api, jq||2¨ ||Bpi, jq||2

˙

where A(i, j) and B(i, j) are the value of pixel (i, j) on the reference and fused images.
2) The error of relative dimensionless global in synthesis (ERGAS): ERGAS is a comprehensive

index, which gives a global depiction of the radiometric difference between the reference and fused
images. The best value is 0 and it is defined as

ERGASpAk, Bkq “ 100
ratio

gffe 1
N

Nÿ
k“1

˜
RMSEpAk, Bkq2

MeanpBkq

¸

where A is the fused image and B is the reference image, ratio is the ratio of the spatial resolutions of
the PAN image and the MS image, RMES is the root mean square of image A and B, Mean represents
the average value of the image.

3) The Q4 Index: the Q4 index [34] is an extension of the quality index, which is a product of
the correlation coefficient, mean bias, and contrast variation. The best value is 1 and it is described
as follow:

Q4DˆD “ δZ1Z2

δZ1 δZ2

¨ 2δZ1 ¨ δZ2

δ2
Z1

` δ2
Z2

¨ 2
ˇ̌
Z1

ˇ̌ ¨ ˇ̌
Z2

ˇ̌
ˇ̌
Z1

ˇ̌2 ` ˇ̌
Z2

ˇ̌2
Z1 “ X1 ` i ˆ X2 ` j ˆ X3 ` k ˆ X4

Z2 “ Y1 ` i ˆ Y2 ` j ˆ Y3 ` k ˆ Y4

Z1̊ “ X1 ´ i ˆ X2 ´ j ˆ X3 ´ k ˆ X4
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ˇ̌
Z1

ˇ̌ “
b

Z1 ˆ Z1̊ “
b`

Xi
1

˘2 ` `
Xi

2
˘2 ` `

Xi
3
˘2 ` `

Xi
4

˘2

where
ˇ̌
Z2

ˇ̌
is the same way with

ˇ̌
Z1

ˇ̌
, X1 and Y1 are the first band of image A and B respectively, and

so are the other bands. σz1z2 is the covariance of z1 and z2, andσz1 and σz2 is the variance of z1 and z2.
The first term of the equation is the modulus of the hyper-complex CC between z1 and z2, and the
second and third terms measure contrast changes and the mean bias on all bands, respectively. D is
block size of image and in this paper the size is 32*32.

4) Quality with No Reference (QNR): QNR measure the quality of fused image and reference
image from the spectral and spatial distortion. The best value is 1 and it is defined as follow:

QNR “ p1 ´ Dλqαp1 ´ Dsqβ

Dλ “
p

gffffffe
1

L pL ´ 1q
Lÿ

l“1

Lÿ
r “ 1
r ‰ 1

ˇ̌̌
Q

`
Ĝl , Ĝr

˘ ´ Q
´ ĂGl ,ĂGr

¯ˇ̌̌P

DS “ q

gffe 1
L pL ´ 1q

Lÿ
l“1

ˇ̌̌
Q

`
Ĝl , P

˘ ´ Q
´ ĂGl , rP¯ˇ̌̌q

where L is the number of bands, Ĝ is fused HRM image ,and
„
G is LRM image. p is integer index of

amplifying the spectrum distortion, generally taking p = 1. P is HRP image and
„
P is panchromatic

image after processing by low-pass filter. q is integer index of amplifying of spatial distortion, generally
taking q= 1,and α=β=1.
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Abstract: Remote sensing (RS) images play a significant role in disaster emergency response.
Web2.0 changes the way data are created, making it possible for the public to participate in
scientific issues. In this paper, an experiment is designed to evaluate the reliability of crowdsourcing
buildings collapse assessment in the early time after an earthquake based on aerial remote sensing
image. The procedure of RS data pre-processing and crowdsourcing data collection is presented.
A probabilistic model including maximum likelihood estimation (MLE), Bayes’ theorem and
expectation-maximization (EM) algorithm are applied to quantitatively estimate the individual
error-rate and “ground truth” according to multiple participants’ assessment results. An experimental
area of Yushu earthquake is provided to present the results contributed by participants. Following the
results, some discussion is provided regarding accuracy and variation among participants.
The features of buildings labeled as the same damage type are found highly consistent. This suggests
that the building damage assessment contributed by crowdsourcing can be treated as reliable samples.
This study shows potential for a rapid building collapse assessment through crowdsourcing and
quantitatively inferring “ground truth” according to crowdsourcing data in the early time after the
earthquake based on aerial remote sensing image.

Keywords: crowdsourcing; building collapse assessment; earthquake; aerial image; EM algorithm

1. Introduction

Building collapse is one of the most serious types of earthquake damage. Most casualties
from earthquakes are associated with collapsing buildings [1]. The extent of buildings damage
reflects seismic intensity, which is important information to assess the losses of life and property
in an earthquake-hit area [2]. Rapid assessment of collapsed buildings early after the earthquake
can be instrumental in search and rescue during an emergency. It is hard to obtain the whole in-situ
information of building damage in a short time after the earthquake, because the earthquake-damaged
zones are not accessible in most cases. However, the aerial or satellite remote sensing can provide
the image of the whole disaster area, making it possible to estimate the building damage of large
disaster-affected regions in the early time. Many methods to visually interpret or automatically extract
the building damage after the earthquake were proposed based on high-resolution aerial or satellite
remote sensing image over the past ten years, which made a great contribution in estimating damage
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extent of buildings caused by earthquake using remote sensing data. Chiroiu uses post-earthquake
Ikonos imagery to assess the collapsed buildings by visual interpretation [3]. Saito et al. demonstrated
that more collapsed buildings were recognized using pre- and post-earthquake QuickBird imagery,
because the pre-earthquake imagery is a good reference of the building outlines [4]. Vu et al.
uses the region-independent edge detection algorithm to detect the collapsed buildings based on
Ikonos imagery. The results of “very heavy damage” and “destroyed” are consistent with visual
interpretation and site survey [5]. Huyck et al. uses texture change detection algorithm based on
pre- and post-earthquake imagery of mono-sensor and multi-sensor, respectively, finding that the
results are quite different and only “hardest hit area” is recognized consistently [6]. Hutchinson et al.
firstly extracts building boundary based on pre- and post-earthquake satellite imagery, then calculated
the boundary compactness index defined as the ratio of the number of boundary pixels in the post- and
pre-earthquake house, finally identifies the damage buildings through a threshold [7]. Chen and
Hutchinson proposed a probabilistic classification framework by means of a multiclass classifier
based on bitemporal satellite images to address the major limitation in past attempts which is the
use of deterministic approaches to classify damage levels [8]. Geiß et al. quantitatively evaluates the
suitability of multi-sensor remote sensing to assess the seismic vulnerability of buildings showing
potential for a rapid screening assessment of large areas [1].

Due to the complex image characteristics of post-disaster ground objects and the limitation of
resources, automated damage detection techniques with remote sensing are still in the preliminary
stage [9]. The last decade has seen a proliferation of sophisticated sensors and technology capable of
capturing, transferring and storing immense amounts of data, like remote sensing image, increasing the
importance and demand for fast and reliable methods of analysis [9]. Web2.0 technology has
resulted in changes in the way that data are created. Individuals, who have the characteristics
of large quantity, flexible time and uncertain location, now provide vast amounts of information to
websites and online databases, much of which is spatially referenced [10]. This phenomenon called
“crowdsourcing” is the product of the network society, which is an online and distributed pattern of
problem-solving and producing. Therefore, remote sensing combined with crowdsourcing was used
to quickly and accurately analyze large data sets by creating and leveraging a distributed network of
human analysts. Crowdsourcing geographic information for disaster response has become a research
frontier [11]. The Virtual Disaster Viewer, which was a pilot project following the May 2008 Wenchuan,
China earthquake, provided damage assessments through crowdsourcing by having experts interpret
pre- and post-event satellite imagery [9]. After the 2010 earthquake in Haiti, the GEO-CAN initiative
utilized crowdsourcing through the recruitment of experts to make critical damage assessments
based on high-resolution post-event satellite and aerial imagery [12]. Building upon the GEO-CAN
effort in Haiti, damage assessment after the Christchurch 2011 was improved by asking participants,
including non-experts, to delineate damaged buildings use a polygonal tool, in order to making
crowdsourcing damage assessments of disaster areas faster and more accurate [13]. The above
studies have clearly demonstrated the power of crowdsourcing for damage assessment to improve
disaster response. As such, it offers substantial advantages, but suffers from a general lack of quality
assurance [14]. The participants with different professional background and knowledge level have
different understanding of remote sensing image. The interpretation results of the same image may be
different. It is necessary to quantitatively evaluate the quality of crowdsourcing data to ensure the
accuracy of damage assessment.

In this paper, Yushu earthquake is chosen as a case study. A web-based platform is built to
collect the post-earthquake building damage assessment results contributed by public participants.
High-resolution aerial remote sensing images are used due to the advantage of being captured and
processed faster and higher spatial resolution than satellite imagery [15]. The problem we focus
on is damage “extent” identification for buildings which is relatively straightforward and fast by
means of RS images, instead of damage “level” assessment which is based on ground evaluations
requiring a considerable amount of time and effort [16]. The next section describes the details of
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study area. The data used for this research and overview of processing are introduced in the third
section. The probabilistic model is applied to estimate individuals’ error-rates and infer ground truth.
The experiment results are presented in the fourth section. Following the results, some discussion is
provided regarding the accuracy of EM algorithm compared to the “majority” method and the variation
distribution of assessment results among participants on each building. In addition, the features of
each crowdsourcing-derived damage type are analyzed, which can be regarded as reliable samples to
train machine learning to recognize objects of interest. Our main conclusions are presented in the final
section and future work is proposed.

2. Materials and Methods

2.1. Study Area and Data

On 14 April 2010, a 7.1 magnitude earthquake occurred near Yushu, China, at 7:49 a.m. local time.
The epicenter was located at 33.1 degrees north latitude, 96.6 degrees east longitude and focal depth
was 14 km. The terrain is mainly mountainous, with an average elevation of 4493 m. The earthquake
caused a large number of casualties and collapsed houses. The site survey data of Chinese scholars
after the earthquake demonstrate that houses in the central area of Jiegu Town are mainly with brick
and concrete structure, while other houses are mainly with brick and civil structure. Some of the brick
and concrete structures in the town center area suffered serious damage, and almost all the brick and
civil structures in the western and southern regions of the town were totally damaged [17]. Figure 1
below shows the location of Jiegu Town, where the earthquake happened.

Figure 1. Maps about administrative areas and terrains: (a) the geographical location of Qinghai
Province, China; (b) the geographical location of Yushu County in Qinghai Province; (c) the geographical
location of Jiegu Town in Yushu County; and (d) the topographic map of Jiegu Town made by Landsat 8
OLI image (true color).

The data used for this application are a 0.4 m resolution multispectral aerial image of the damaged
zones of Jiegu Town captured on 14 April 2010, provided by Institute of Remote Sensing and Digital
Earth, Chinese Academy of Sciences (Figure 2).
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Figure 2. The aerial image of Jiegu Town captured on 14 April 2010, which was the area severely
damaged by the earthquake.

2.2. Methods

2.2.1. Architecture of Processing

The architecture consists of four parts, which are, in order, basic imagery preparation,
damage assessment collection, data quality evaluation and damage map export (Figure 3).

(1) Basic imagery preparation

In this part, we take the post-event high resolution aerial image (Section 2.1 mentioned) as basic
imagery, which crowdsourcing participants use to visually interpret collapsed buildings. We obtain
two images that cover the different part of the study area, respectively, but having the overlapping
zone. To generate the entire region image, image registration, mosaic and clipping are applied to the
two images we obtain.

(2) Damage assessment collection

We publish the pre-processed image online that is accessible to participants. Each visible building
in the image is assigned one of the damage types according to the observed damage.

(3) Data quality evaluation

Because of the different professional background of participants, the quality of the data provided
by the individual is uneven. The term crowdsourcing has three distinct meanings proposed by
Goodchild [14]. The first meaning refers to the solution of a problem by referring it to a number of
people, without respect to their qualifications. The second meaning refers to the ability of a group
to validate and correct the errors that an individual might make. The third interpretation refers to
the ability of the crowd to converge on the truth. We could not get the field data in a short time after
the earthquake. However, we could infer ground truth from subjective labeling of the post-event
high-resolution aerial image by participants. In the next section, we introduce the details of how we
use maximum likelihood estimation, Bayes’ theorem and EM algorithm to estimate the ground truth
and individual error rate.

(4) Damage map export

In the last part, the results integrated by the previous part are visualized, generating a damage
map that shows the spatial distribution of damage types. The damage distribution map is generated
with individual buildings rendered with colors representing the type of damage.
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Figure 3. The architecture of processing.

The process above enables assessing the damage of buildings rapidly and flexibly through
crowdsourcing without considering the constraint conditions when using algorithm to process image.
Each participant is regarded as a “classifier”, which classifies post-disaster buildings into three
categories according to human’s understanding of the image, and then we evaluate the accuracy
of each person and integrate the multiple people’s results into a final reliable result.

2.2.2. Probabilistic Model

Note that there are W participants to assess I buildings, which may be damaged using K damage
types. It is assumed that all responses given by a single participant are independent and all the
participants interpret independently. In addition, a participant may interpret the same building more
than once. Note that α

(w)
kl (k = 1, . . . , K; l = 1, . . . , K; w = 1, . . . , W) are the probability that a participant

w will label l given k is the true type, which are called the individual error rate. n(w)
il (i = 1, . . . , I; l = 1,

. . . , K; w = 1, . . . , W) are the number of times participant w label building i as l, and pk (k = 1, . . . , K)
are the probability that the true damage type of building is k. Let Gik (k = 1, . . . , K) be a binary variable
of building i. If t is the true damage type of building i, then Git = 1 and Gik = 0 (k �= t), namely,
p(Gik = 1) = pk. We follow a general model for subjective labeling originally proposed by Dawid and
Skene [18] and apply it to the building damage labeling problem. The data from all participants are
assumed to be independent and all the true damage types of buildings are assumed to be available.
Generally, the likelihood function for the full data is

∏I
i=1 ∏K

k=1 {pk ∏W
w=1 ∏K

l=1 (α
(w)
kl )

n(w)
il }

Gik

. (1)

Using maximum likelihood estimation, and we obtain estimators

α̂
(w)
kl =

∑i Gikn(w)
il

∑l ∑i Gikn(w)
il

. (2)
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When pk (k = 1, . . . , K) are unknown, these can be estimated:

p̂k =
∑i Gik

I
. (3)

At this point, the true damage types of buildings are unknown. We using Bayesian theory to
estimate the binary variable Gik (k = 1, . . . , K),

p (Gik = 1|data) =
p (data |Gik = 1 )p (Gik = 1)

p (data)
=

p (data |Gik = 1 )p (Gik = 1)

∑K
t=1 p (data |Git = 1 )p (Git = 1)

. (4)

Therefore,

p (Gik = 1|data) =
∏W

w=1 ∏K
l=1 (α

(w)
kl )

n(w)
il pk

∑K
t=1 ∏W

w=1 ∏K
l=1 (α

(w)
tl )

n(w)
il pt

. (5)

Then, we use EM algorithm for finding maximum likelihood estimates of parameters in the model
above, due to the dependency of the hidden variables Gik. EM algorithm is short for Expectation
Maximization algorithm, which was described by Dempster et al. in 1977 [19]. It is an iterative
optimization method for maximum likelihood estimation of parameters, which can estimate the
parameters from incomplete data set.

In this problem, we treat Gik as missing data then the conditions of the EM algorithm are satisfied.
The iterative procedure is as follows:

1. Give initial estimates of the Gs.
2. Use Equations (2) and (3) to obtain estimates of the ps and αs.
3. Use Equation (5) and the estimates of the ps and αs to calculate new estimates of the Gs.
4. Repeat Steps 2 and 3 until the results converge.

In Step 1, we use the equation below to calculate initial estimates of Gs,

Ĝik =
∑w n(w)

ik

∑w ∑l n(w)
il

3. Experiment Results

Our project asked the participants to classify the post-earthquake damage buildings into one
of three damage types: (1) basically intact; (2) partially collapsed; and (3) completely collapsed.
These type numbers are used in subsequent tables. Here, the Yushu earthquake case study was
selected to illustrate the results. The experiment area was a sub-region of Jiegu Town, which had
visible various types of damage extent, shown in Figure 4, and contained 3456 data points labeled
by 27 volunteers, describing the damage buildings at 127 locations. As can be seen in Figure 4,
“basically intact”, “partially collapsed” and “completely collapsed” are represented by green,
yellow and red points, respectively.

The system consists of a database for damage assessment accessed through a browser-based
interface built using the ArcGIS API. Data from the participants are collected in the browser and
transferred into the database through AJAX and PHP. One selects a damage type and then draws
a point on the corresponding building. When a participant assesses a building’s damage, the record is
stored along with the longitude and latitude of the point he draw, the damage type he select and his id.
The data we collected were used later to estimate the error-rate of each participant in identifying the
damage extent of each building and infer the ground truth.

Figure 5 gives the variation tendency of marginal probabilities of the three damage types with
the iteration of EM algorithm. As shown in Figure 5, the results converge when the iteration is
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12 times. Table A1 (see Appendix A) gives the estimates of the individual error-rates (α) of the
27 participants. The diagonal elements of each matrix are the estimate of the probability of a correct
allocation by a participant. Table A2 (see Appendix A) gives the estimated probabilities for the Gs
for each building. For most buildings, the posterior probability is 1 for one damage type, and the
consensus appears obvious.

Figure 4. The experiment area and the location of the 3456 data points, which were contributed by
27 participants online. In the map, the green, yellow and red points indicate the damage type of
“basically intact”, “partially collapsed” and “completely collapsed”, respectively.

Figure 5. The red, blue and green lines demonstrate the fluctuation of marginal probability of “basically
intact”, “partially collapsed” and “completely collapsed”, respectively, with the increase of the number
of iterations. When the number of iterations reaches 12, EM algorithm converges.
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4. Discussion

Of the 3456 damage assessments received for the experiment region, we find that “basically intact”
annotations made up 52.14%, “partially collapsed” made up 34.64% and “completely collapsed” made
up 13.22%. There is no clear bias towards one or two damage types. However, if using the EMS-98
scale, the distribution of annotations reveals an overall bias to assess a building as “No Damage” or
“Destroyed” [13]. In order to demonstrate the advantage of EM algorithm in terms of inferring ground
true, we make a comparison with “majority” method. Figure 6a,b shows the assessment results of EM
algorithm and “majority” method, respectively.

Figure 6. Comparison of the results between the two different methods: (a) the result of EM
algorithm; and (b) the result of “majority” method, which are generated with individual buildings
rendered with colors representing the type of damage. The rectangles represent the buildings,
and green, yellow and red indicate “basically intact”, “partially collapsed” and “completely collapsed”,
respectively. The rectangles with the id number on them have the different results between the
two methods.

As shown in Figure 6, there are 11 buildings that have different results between the two methods:
21, 24, 29, 33, 61, 66, 67, 75, 78, 105 and 107. The first nine buildings are completely collapsed in
EM results while are partially collapsed in “majority” method. The No. 105 building is basically
intact in EM results while is partially collapsed in “majority” method. The situation of No. 107
building is opposite to No. 105. The “majority” method does not take into account the accuracy
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of the participants, and EM may not choose the majority damage types as the final result of one
building due to the low accuracy of participants who make the assessment. For example, the No. 33
building received the assessment results of 26 participants. Among them, there are 19 participants
who gave the “partially collapsed” result and six participants who assessed the No. 33 building
as “completely collapsed”. Consequently, the “majority” method regards the No. 33 building as
“partially collapsed”. According to Table A1, we calculate the average accuracy of 19 participants
who label as “partially collapsed” when the true is partially collapsed and the average accuracy
of six participants who label as “completely collapsed” when the true is completely collapsed.
The calculation results are shown in Table 1. We also calculated the corresponding incidence defined
as the product of individual accuracy and marginal probability of damage type, as seen in Table 2.
Obviously, the average accuracy of the latter is larger than the former and so is the average incidence,
indicating that the participants who label the No. 33 building as “completely collapsed” have
more “weight”.

Table 1. The accuracy of 19 participants who label No. 33 building as “partially collapsed” and
6 participants who label No. 33 building as “completely collapsed”. The averages are calculated in the
last line of the table.

Participant ID Accuracy of 2 Accuracy of 3

1 0.5021
2 0.2699
3 0.3825
4 0.6200
5 0.6806
6 0.7419
8 0.5761
9 0.8492

10 0.6132
11 0.8465
12 0.7924
13 0.6200
14 0.5246
15 0.6887
16 0.5912
17 0.6015
18 0.5011
20 0.7608
21 0.7306
22 0.7602
23 0.1905
24 0.3056
25 0.9523
26 0.2712
27 0.5359

Average 0.5570 0.7211

To demonstrate the variation distribution of assessment results that participants give on each
building, the percentage of each damage type on each building is presented in Figure 7, in which the
building ids are sorted by the percentage of “basically intact” from small to large. Besides, the standard
deviation of participants’ assessment results on each building is shown in Figure 8. No clear
agreement between participants on each building apart from the No. 99 that all participants label as
“basically intact”. This is because participants with different professional background have different
cognition, or due to the limitation of image inherent characteristics such as spatial resolution and
angle of view. Whatever limitations the professional faces naturally also apply to volunteers [20].
However, no obvious bias towards extreme value indicates that a majority of participants worked
without malice.
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Table 2. The incidence of 19 participants who label No. 33 building as “partially collapsed” and
6 participants who label No. 33 building as “completely collapsed”. The averages are calculated in the
last line of the table.

Participant ID Incidence of 2 Incidence of 3

1 0.1030
2 0.0553
3 0.0784
4 0.1024
5 0.1395
6 0.1521
8 0.1181
9 0.1402

10 0.1257
11 0.1736
12 0.1625
13 0.1024
14 0.0866
15 0.1412
16 0.1212
17 0.1233
18 0.1027
20 0.1560
21 0.1498
22 0.1255
23 0.0391
24 0.0627
25 0.1572
26 0.0556
27 0.1099

Average 0.1142 0.1190

In remote sensing applications, “ground truth” data are often used as the basis for training pattern
recognition algorithms to detect objects of interest [21]. Many semiautomatic techniques have been
designed to exploit Earth Observation (EO) data for earthquake damage assessment to the maximum
possible extent, yet visual inspection still remains the best way to achieve meaningful results [16].
Combined with multiple participants, probability model-derived final results are used as the reliable
samples to analyze the features of each damage type.

Figure 7. The percentage of each damage type on each building. The green, yellow and red bars
represent the percentage of “basically intact”, “partially collapsed” and “completely collapsed”,
respectively, on each building. The building ids depicted by X-axis are in ascending order according to
the percentage of “basically intact” on each building.
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Figure 8. The standard deviation of participants’ assessment results on each building. The building
ids depicted by X-axis are also in ascending order according to the percentage of “basically intact” on
each building.

We select some samples of each damage type from the results of EM algorithm, as shown in Table 3.
The number 1, 2 and 3 represent the damage type of basically intact, partially collapsed and completely
collapsed, respectively. The common features of damage type 1 have a clear outline and regular shape,
and an intact shadow. Damage type 2 has fuzzy boundaries, irregular shape, offset orientation, and loss
of shadow effects. Damage type 3 has no visible characteristics of man-made objects.

Some limitations of our experiment are discussed below.

Table 3. The crowdsourcing-derived samples of each damage types.

Damage Types Sample 1 Sample 2 Sample 3 Sample 4

1

 11  98  109  110

2

 15  19  36  96

3

 0  2  8  76

The study area in this paper is one part of the whole damage area, which we used as an experimental
area to apply our methods on it and present the results clearly. In addition, the approach is also
applicable in the wide area, which is the most important purpose of the crowdsourcing damage
assessment. Because the model is proposed for the general circumstance without the limits of area,
we will extend the application to wide interpretation in future work. The raw data we collected
show that most participants interpret only once, although the method allows participants to interpret
multiple times. We could not determine the minimum number of the participants, because the
web-based interface is open to the public and any case could appear. We could calculate a result based
on a span from the start to the time we choose, for example a week. The method would give a result
based on any data collection phase.

Although “actual” ground truths of building damage are necessary in order to truly discuss the
applicability of the proposed method, we could not find ground photographs or broadcasted videos on
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TV of the damaged buildings in the target area, only text information or papers are available. We focus
on using the wisdom of the public to find more damaged buildings in the early stage of the earthquake.
The assessment results of the target area in this paper are highly consistent with results of the existing
study published by Dou et al. [17] in the corresponding area.

5. Conclusions and Future Work

Building damage assessment in the early time after an earthquake is a very crucial problem.
Knowing where the collapsed buildings are and to what extent buildings have been damaged are
closely related to life-saving for emergency response. However, it is hard to survey the whole
in-situ information in a short time after an earthquake. Satellite or aerial remote sensing technology
has the capability of earth observation, and becomes a useful tool for damage estimation without
being physically present in disaster area. Aerial remote sensing images, which are captured and
processed faster and have higher spatial resolution, make it possible to rapidly assess collapsed
buildings early after the earthquake. A web-based interface was built. Anyone who accessed
our website was required to assign one of the three damage types for each buildings based on
the aerial image. The 3456 data points from 27 participants on the experimental area, which is
a sub-region of Yushu, were collected. MLE, Bayes’ theorem and EM algorithm were applied to
estimate the individual error-rates and infer “ground truth” according to the 3456 data points of
27 participants. The results suggest that EM algorithm is better than “majority” method and there is
no clear bias towards extreme value among damage types contributed by participants. This study
shows that the variation of image understanding among participants exists, due to their different
professional background. We demonstrated how to collect and store the data created by individuals
online, how to make them contribute their results flexibly and easily, drawing a point instead of
a polygon, and how to quantitatively estimate individuals’ accuracy and the “ground truth” of each
building, using a probabilistic model. By means of a sequential procedure of RS image pre-processing,
publishing RS image online, collecting crowdsourcing building damage assessment data, evaluating
the quality of data contributed by crowdsourcing and damage mapping, the building collapse can be
rapidly assessed with viable accuracies in the early time after the earthquake. We conclude that RS data
combined with crowdsourcing have a high capability to support large-area assessments of building
collapse, meeting the need of disaster emergency response. A new processing framework is proposed
to establish the connection between remote sensing image and crowdsourcing, demonstrating potential
for crowdsourcing rapid assessment of building collapse early after the earthquake based on aerial
remote sensing image. Future efforts will focus on providing multi-source and multi-temporal remote
sensing image. Multi-source RS data, such as oblique images, can provide more views of buildings on
the ground. Multi-temporal RS data, such as pre-earthquake images, are considered to be very useful
as a reference in identifying the damage in the post-event image [4]. Although these adjustments will
refine the final results towards rapid damage assessment, a problem should be considered: how to
balance the operational complexity of system and the improvement of results, because ordinary people
are more inclined to use easy-to-operate systems without spending too much time. In summary,
the aim is that the rapid assessment results through crowdsourcing could meet the needs of deploying
rescue forces in the early time after the earthquake. More details about the damage level of buildings
surveyed on the spot afterwards are beyond the scope of this paper.
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Appendix A

Table A1. The estimates of the individual error-rates.

Participant 1 Participant 15

Observed Observed
True 1 2 3 True 1 2 3

1 0.64 0.35 0.01 1 0.52 0.48 0
2 0.38 0.5 0.11 2 0.15 0.69 0.16
3 0 0.35 0.65 3 0.1 0.29 0.62

Participant 2 Participant 16

Observed Observed
True 1 2 3 True 1 2 3

1 0.83 0.12 0.05 1 0.7 0.3 0
2 0.5 0.27 0.23 2 0.07 0.59 0.34
3 0 0.36 0.64 3 0.06 0.11 0.83

Participant 3 Participant 17

Observed Observed
True 1 2 3 True 1 2 3

1 0.9 0.08 0.03 1 0.99 0.01 0
2 0.62 0.38 0 2 0.4 0.6 0
3 0.24 0.53 0.24 3 0.1 0.8 0.1

Participant 4 Participant 18

Observed Observed
True 1 2 3 True 1 2 3

1 0.66 0.3 0.04 1 0.76 0.24 0
2 0.23 0.73 0.04 2 0.25 0.5 0.25
3 0.09 0.29 0.62 3 0 0.37 0.63

Participant 5 Participant 19

Observed Observed
True 1 2 3 True 1 2 3

1 0.94 0.06 0 1 0.91 0.09 0
2 0.32 0.68 0 2 0.39 0.61 0
3 0.05 0.8 0.15 3 0.11 0.37 0.53

Participant 6 Participant 20

Observed Observed
True 1 2 3 True 1 2 3

1 0.46 0.5 0.04 1 0.46 0.29 0.24
2 0.12 0.74 0.14 2 0 0.76 0.24
3 0 0.32 0.68 3 0 0.11 0.89

Participant 7 Participant 21

Observed Observed
True 1 2 3 True 1 2 3

1 0.47 0.47 0.06 1 0.83 0.15 0.02
2 0.46 0.54 0 2 0.27 0.73 0
3 0.25 0.35 0.4 3 0.05 0.67 0.29

Participant 8 Participant 22

Observed Observed
True 1 2 3 True 1 2 3

1 0.9 0.09 0.01 1 0.54 0.45 0.01
2 0.42 0.58 0 2 0 0.46 0.54
3 0.08 0.61 0.3 3 0 0.24 0.76
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Table A1. Cont.

Participant 9 Participant 23

Observed Observed
True 1 2 3 True 1 2 3

1 0.26 0.56 0.17 1 1 0 0
2 0.04 0.4 0.56 2 0.81 0.19 0
3 0 0.15 0.85 3 0.43 0.43 0.14

Participant 10 Participant 24

Observed Observed
True 1 2 3 True 1 2 3

1 0.73 0.27 0 1 0.94 0.06 0
2 0.08 0.61 0.31 2 0.69 0.31 0
3 0 0.3 0.7 3 0.26 0.48 0.26

Participant 11 Participant 25

Observed Observed
True 1 2 3 True 1 2 3

1 0.91 0.09 0 1 0.48 0.49 0.02
2 0.15 0.85 0 2 0 0.77 0.23
3 0 0.73 0.27 3 0 0.05 0.95

Participant 12 Participant 26

Observed Observed
True 1 2 3 True 1 2 3

1 0.36 0.64 0 1 0.98 0.03 0
2 0 0.79 0.21 2 0.69 0.27 0.04
3 0.05 0.68 0.26 3 0.2 0.35 0.45

Participant 13 Participant 27

Observed Observed
True 1 2 3 True 1 2 3

1 0.77 0.18 0.05 1 0.76 0.19 0.05
2 0.23 0.5 0.27 2 0.35 0.54 0.12
3 0 0.38 0.62 3 0.05 0.38 0.57

Participant 14

Observed
True 1 2 3

1 0.67 0.33 0
2 0.09 0.91 0
3 0.05 0.43 0.52

Table A2. The estimated probabilities for the Gs.

Building ID
Damage Types

Building ID
Damage Types

1 2 3 1 2 3

1 0 0 1 65 1 0 0
2 0.002 0.998 0 66 0.024 0.976 0
3 0 0 1 67 0 0 1
4 1 0 0 68 0 0.003 0.997
5 1 0 0 69 1 0 0
6 0.006 0.994 0 70 1 0 0
7 1 0 0 71 1 0 0
8 0.996 0.004 0 72 0.956 0.044 0
9 0 0 1 73 0.999 0.001 0

10 1 0 0 74 0 1 0
11 1 0 0 75 0 1 0
12 1 0 0 76 0 0 1
13 0.01 0.99 0 77 0 0 1
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Table A2. Cont.

Building ID
Damage Types

Building ID
Damage Types

1 2 3 1 2 3

14 0 1 0 78 1 0 0
15 1 0 0 79 0 0 1
16 0 1 0 80 0 0 1
17 1 0 0 81 1 0 0
18 1 0 0 82 1 0 0
19 0 1 0 83 1 0 0
20 0 1 0 84 1 0 0
21 0 0 1 85 1 0 0
22 0 0 1 86 1 0 0
23 0 1 0 87 1 0 0
24 1 0 0 88 0 0.97 0.03
25 0 0.072 0.928 89 1 0 0
26 1 0 0 90 1 0 0
27 1 0 0 91 0 1 0
28 1 0 0 92 0.001 0.999 0
29 0 1 0 93 1 0 0
30 0 0 1 94 0 1 0
31 0 1 0 95 0 1 0
32 0 1 0 96 0 1 0
33 1 0 0 97 0 0.99 0.01
34 0 0 1 98 1 0 0
35 0 0 1 99 1 0 0
36 1 0 0 100 1 0 0
37 0 0.998 0.002 101 1 0 0
38 1 0 0 102 0 1 0
39 1 0 0 103 1 0 0
40 1 0 0 104 1 0 0
41 1 0 0 105 0.999 0.001 0
42 0 0 1 106 1 0 0
43 0 0 1 107 1 0 0
44 1 0 0 108 0 1 0
45 1 0 0 109 1 0 0
46 1 0 0 110 1 0 0
47 1 0 0 111 1 0 0
48 0 1 0 112 1 0 0
49 1 0 0 113 1 0 0
50 1 0 0 114 1 0 0
51 1 0 0 115 1 0 0
52 1 0 0 116 1 0 0
53 1 0 0 117 1 0 0
54 0 1 0 118 1 0 0
55 1 0 0 119 1 0 0
56 1 0 0 120 1 0 0
57 1 0 0 121 1 0 0
58 1 0 0 122 0 0 1
59 1 0 0 123 1 0 0
60 1 0 0 124 1 0 0
61 1 0 0 125 1 0 0
62 0 0 1 126 0 0 1
63 0 0 1 127 1 0 0
64 1 0 0
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Abstract: Remote sensing continues to be an invaluable tool in earthquake damage assessments
and emergency response. This study evaluates the effectiveness of multilayer feedforward neural
networks, radial basis neural networks, and Random Forests in detecting earthquake damage
caused by the 2010 Port-au-Prince, Haiti 7.0 moment magnitude (Mw) event. Additionally, textural
and structural features including entropy, dissimilarity, Laplacian of Gaussian, and rectangular fit
are investigated as key variables for high spatial resolution imagery classification. Our findings
show that each of the algorithms achieved nearly a 90% kernel density match using the United
Nations Operational Satellite Applications Programme (UNITAR/UNOSAT) dataset as validation.
The multilayer feedforward network was able to achieve an error rate below 40% in detecting
damaged buildings. Spatial features of texture and structure were far more important in algorithmic
classification than spectral information, highlighting the potential for future implementation of
machine learning algorithms which use panchromatic or pansharpened imagery alone.

Keywords: earthquake damage; machine learning; computer vision; Random Forests; neural networks

1. Introduction

Earthquakes accounted for over 60% of all natural disaster-related deaths from 2001 to 2011—a
danger that will likely increase due to rapid global urbanization [1]. Immediately after an earthquake
occurs, satellite imagery is a critical component of damage mapping. Hussain et al. noted that
“information derived from remote sensing data greatly helps the authorities in rescue and relief efforts,
damage assessment, and the planning of remedial measures to safeguard such events effectively” [2].
For immediate rescue operations, rapid damage maps derived from satellite imagery must be
developed quickly. A study of the 1995 Kobe earthquake in Japan showed a drastic reduction of
the total rescued and the proportion of survivors after the third day of recovery efforts [3,4]. However,
because rapid mapping is required to balance immediacy with in-depth analysis, early mapping efforts
often yield coarse damage assessments [5].

Remote sensing has been used widely to map the effects of major disasters such as earthquakes.
Numerous studies have utilized electro-optical (EO), synthetic aperture radar (SAR), light detection and
ranging (LiDAR), ancillary data, or a combination thereof for post-earthquake damage detection [1,5,6].
One technique for damage detection involves fusion of SAR and EO data in pixel-based damage
detection. Stramondo et al. used a maximum likelihood (ML) classifier on SAR features derived
from the European Remote Sensing mission in combination with EO data provided by the Indian
Remote Sensing satellite in order to identify damaged structures following the 1999 Izmit, Turkey
earthquake [7]. A similar approach combined SAR from COSMO/SkyMed mission and very high
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resolution (VHR) EO data from the Quickbird satellite to improve damage detection at block level after
combining the two datasets in a pixel-based classification following the 2009 L’Aquila earthquake [8].

As early as 1998, object-based image analysis (OBIA) has been used to detect earthquake damage
from remote sensing [9]. More recently, OBIA has been a continual focus in earthquake detection
damage with many studies focusing on the use of unmanned aerial systems (UAS), LiDAR, and the
popular image segmentation and classification software eCognition. Hussain et al. [2] fused GeoEye-1
VHR EO data and airborne LiDAR elevation models derived from the RIT-ImageCAT UAS for image
segmentation using the Definiens (now eCognition) software suite. The data were classified using
nearest neighbor and fuzzy membership sets to detect damaged buildings and rubble following the
2010 Haiti earthquake. Similarly, Pham et al. [6] used aerial VHR RGB composite and LiDAR data (also
from the RIT-ImageCAT UAS) along with eCognition for object segmentation and damage detection.

The application of machine learning algorithms (MLAs) to earthquake damage detection is a
relatively new area of study. MLAs actively adapt and learn the problem at hand, often mimicking
natural or biological systems, instead of relying on statistical assumptions about data distribution [10].
In addition to overall improved accuracy [11,12], MLAs have several advantages compared to
traditional classification and change detection methods. MLAs work with nonlinear datasets [11,13],
learn from limited training data [12,14], and successfully solve difficult-to-distinguish classification
problems [15].

Ito et al. [16] used learning vector quantization (LVQ), a type of artificial neural network (ANN)
to classify SAR features signifying damage after the 1995 Kobe earthquake. Li et al. [17] used a
two-class support vector machine (SVM) on pre- and post-earthquake Quickbird imagery along
with spatial relations derived from the local indicator of spatial association (LISA) index to detect
structures damaged by the Wenchuan earthquake of 2008. Haiyang et al. utilized a SVM approach
in combination with eCognition image segmentation on the RIT-ImageCAT RGB and LiDAR data,
as well as the textural features of contrast, dissimilarity, and variance derived from the gray level
co-occurrence matrix (GLCM) to detect urban damage in Port-Au-Prince [18]. Kaya et al. [19] used
OBIA in combination with support vector selection and adaptation (a type of SVM) on pansharpened
Quickbird imagery to conduct damage detection for specific buildings within Port-au-Prince after
the 2010 earthquake. While OBIA using SVMs have been researched extensively in the past, ANNs,
particularly radial basis function neural networks (RBFNNs), and Random Forests (RF) have shown
promise in pattern recognition and image classification [15,20] and have yet to be examined in the
application of earthquake damage detection. All three algorithms require parameter-tuning process
to achieve optimal performance and a cross-validation approach can be applied to automate the
parameter-tuning. SVM has an advantage in dealing with small sample size problems due to its sparse
characteristics. However, for applications where a large number of training samples are available,
SVM often yields a large number of support vectors, resulting in unnecessary complexity and a long
training time [21].

Evaluating structural dimensions such as the Laplacian of Gaussian (LoG) and object-based
metrics in addition to spectral and textural information could greatly increase damage detection rates.
LoG, a blob detection technique, has been used for medical applications in nuclei mapping [22] and
for the detection of buildings in bitemporal images [23]. As discussed earlier, OBIA has shown strong
results in urban scenes and earthquake damage detection. Huang and Zhang had success applying
the popular mean-shift segmentation algorithm for urban classification in hyperspectral scenes while
statistical region merging (SRM) is another segmentation approach which is robust to noise and
occlusions [24,25]. Additionally, various metrics such as rectangular fit, morphological shadow index,
and morphological building index can describe the structure of objects in the scene before or after
segmentation [26,27]. Applying structural descriptors such as a LoG filter and segmentation derived
metrics to high resolution satellite imagery as an additional input to an MLA could evince damage in
difficult to detect scenarios such as a pancake collapse [22,28]. The robustness and generalizability
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of RF and ANN along with the additional dimensions of texture and structure may provide higher
accuracies in the face of imperfect input data.

In past disasters, by the time an automated change detection scheme is ready for implementation,
a crowdsourced team of visual interpreters is already mapping damaged buildings [29]. Dong and
Shan mention that while manual digitization of damaged structures requires trained image analysts
and is unsuitable for large areas, “visual interpretation remains to be the most reliable and independent
evaluation for automated methods” [1]. Additionally, many previous studies suggest detection schema
which require ancillary data such as UAS products, LiDAR, or GIS databases. Many of these products
are unavailable in developing regions where the death toll is highest [30]. Using MLAs (RF and
ANN), a rapid damage map derived from readily available multispectral imagery could allow for a
minimal compromise between time and accuracy and allow first responders to more rapidly allocate
their resources in a crisis. RF and ANNs along with derived textural and structural features may
provide improved balance between rapid and accurate damage detection. The main purposes of this
study include:

• Assess the performance of neural networks (to include radial basis function neural networks),
and Random Forests on very high resolution satellite imagery in earthquake damage detection

• Investigate the usefulness of structural feature identifiers to include the Laplacian of Gaussian
and rectangular fit in identifying damaged regions

2. Materials and Methods

2.1. Study Area and Data

The earthquake on 12 January 2010 near Port-au-Prince, Haiti, was an exceptionally devastating
event. The initial shock of 7.0 Mw caused an astounding death toll: between 217,000 and 230,000
were reported dead by the Haitian government [2] and the official estimate has grown to 316,000 [31].
Additionally, the earthquake and its subsequent aftershocks caused extensive damage in and around
Port-au-Prince including numerous landmark buildings such as the National Palace [2]. Because of
the high density of collapsed and damaged structures available for training and validation of MLAs,
the 2010 Haiti earthquake is an ideal case study to evaluate automated damage detection methods.

For this research, we obtained high resolution multispectral and panchromatic remote sensing data
from the DigitalGlobe Foundation. A pre-disaster panchromatic image was acquired in December of
2009 by the WorldView-1 satellite (accessed via DigitalGlobe’s EnhancedView system) and post-disaster
multispectral and panchromatic images were acquired on 15 January 2010 by the Quickbird 2 satellite.
All datasets (see Table 1) were resampled to 0.6 meters using the nearest neighbor technique. Images
were atmospherically corrected to top of atmosphere (TOA) reflectance [32] and clipped to the study
area of central Port-Au-Prince. Pre- and post-earthquake imagery were coregistered using 15 control
points and a third order polynomial transformation with a root mean square error (RMSE) of 0.55 m.

Table 1. Data used for the analysis. Note the similar look angles between the two satellite images used
and the relatively short gap between the pre- and post-earthquake images.

Sensor Native Resolution Acquisition Date Look Angle

WorldView-1 0.5 m panchromatic 7 December 2009 27.62

QuickBird-2 2.4 m multispectral
0.6 m panchromatic 15 January 2010 20.7

Remote sensing damage assessment:
UNITAR/UNOSAT, EC JRC, World Bank Vector (point) 15 January 2010 N/A

The study area (Figure 1) was divided into training and validation regions. Training samples for
the algorithms were selected by manually digitizing polygons over damaged structures, ensuring that
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training data represented the input space of the entire study area. A total of 1,214,623 undamaged
and 134,327 damaged pixels were used for training. For validation purposes, over 900 buildings
were digitized and marked as damaged or undamaged according to the UNOSAT Haiti damage
assessment [33]. This dataset classifies damage as points classified according to the European
Macroseismic Scale developed in 1998 [34]. This classification schema defines five damage levels
ranging from minor/no damage to destruction [1,5,6,35]. In order to simplify the damage detection
problem, the UNOSAT points belonging to the most severe damage class (EMS grade V) were
extracted for the validation sets and used for the damaged building class. This action is required
primarily because visual distinction between classes is difficult even with sub-meter pixel resolution [1].
While these validation points have been previously used in several studies [6,36], it is important to note
that the UNOSAT/UNITAR dataset was derived through manual interpretation of satellite and aerial
imagery and very few points were ground verified. However, the assessment remains the standard for
the validation of damage that occurred in the 2010 Haiti earthquake.

Figure 1. Study area in Port-au-Prince showing training, building test and kernel density test sites
(satellite image courtesy of the DigitalGlobe Foundation).

2.2. Texture and Structure

Because several studies have shown that classification and change detection performance can
be increased with the addition of spatial information [11,20], textural and structural information was
extracted from the pre- and post-earthquake panchromatic images. Figure 2 shows the impact of
earthquake damage on two selected textural and structural features. Entropy, energy, dissimilarity,
and homogeneity are all second order texture features derived from the GLCM that have been
correlated with damage or used as proxies for damage in previous studies [35,37–39]. In order to
reduce dimensionality and eliminate redundancy, the two consistently correlated GLCM features of
Entropy (a measure of gray level randomness) and Dissimilarity (a measure of gray level difference
(the square of contrast)) were chosen as texture inputs.

Entropy = −∑
i,j

GLCMi,j × log
(
GLCMi,j

)
(1)
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Dissimilarity = ∑
i,j

GLCMi,j × |i − j| (2)

In order to reduce noise, a Gaussian filter (σ = 1) was applied to the panchromatic images
before measuring image Entropy and Dissimilarity. A 7 × 7 sliding window was used to compute
the 0◦ GLCM and the corresponding texture values were calculated for both the before and after
panchromatic images.

To define structural features, a Laplacian of Gaussian (LoG) filter was applied as it is one of the
most commonly implemented methods of blob detection. A 2-dimensional LoG filter of size (x, y) can
be constructed using:

LoG(x,y,σ) =
x2 + y2 + 2σ2

πσ4 × e−
x2+ y2

2σ2 (3)

Because the Laplacian computes the second derivative, abruptly changing regions of an image will
be highlighted. When combined with a Gaussian smoothing filter, blobs can be detected at different
scales defined by σ = (r − 1)/3 where r is the radius of a blob of interest [22]. In order to detect
buildings of different sizes, a multiscale approach is required. A total of 50 separate convolutions of
the LoG filter were applied to the pre- and post-earthquake imagery with sigma adjusted at equal
intervals between the values of 15 and 35. Additionally, the LoG filter size was increased from 10 × 10
to a 25 × 25 window in order to accommodate the larger sigma values. The minimum response in
scale space was assigned to each pixel due to the fact that LoG filters produce negative responses for
bright areas (the majority of buildings produced high reflectance in the panchromatic images).

(a) (b) 

Figure 2. This figure comparing building damage shows the effects of an entropy filter and a LoG
filter on pre- and post- earthquake imagery considering two different collapse scenarios: (a) a normal
structural collapse; (b) a pancake collapse. Pre-earthquake satellite images © copyright DigitalGlobe.
Post-earthquake satellite images courtesy of the DigitalGlobe Foundation.

Other structural identifiers can be derived through object-based image analysis (OBIA). While a
number of geometric indices are possible through OBIA, this study chose rectangular fit as an input
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feature due to its obvious possibility for correlation with building shape. The analysis of equal area
rectangles, drawn according to object moment, has been used as a more robust version of minimum
bounding rectangle comparison [26]. Rectangular fit is defined as

RectFit =
(AR − AD)

AO
(4)

where AO is the area of the original object, AR is the area of the equal rectangle (AO = AR) and AD is
the overlaid difference between the equal rectangle and the original object [26]. For this study, image
segmentation was performed on both the before and after panchromatic images using statistical region
merging (SRM) as posited by Nock and Nielsen because of its fast and simple implementation [40].
Setting the scale parameter Q = 512 enabled the many small buildings in the scene to be distinguished.
Each object’s rectangular fit was calculated and included as an input dimension.

2.3. Machine Learning Algorithms

Once all preprocessing steps were taken and textural and structural features were derived,
the training and validation datasets were transformed into 14-dimensional arrays consisting of
pre-panchromatic; pre-entropy; pre-dissimilarity pre-LoG; pre-rectangular fit; post-panchromatic;
post-entropy; post-dissimilarity; post-LoG; post-rectangular fit; blue; green; red, and near infrared
multispectral layers (see Table 2). Values in these layers were normalized to fall between the values
of −1 and 1 in order to standardize the input and validation layers. While cross-validation was
implemented for each MLA, exhaustive parameter analysis was not performed due to the large
number of training samples available. All MLA design, algorithm implementation, training and
validation were performed using MATLAB release 2015a on a 3.5 GHz quad core processor with
64 GB RAM.

Table 2. List of the input features and their corresponding data sources which were used as predictors
for earthquake damage.

Input Feature Source

Panchromatic (450–900 nm) WV1 and QB2
Entropy WV1 and QB2

Dissimilarity WV1 and QB2
LoG WV1 and QB2

Rectangular fit WV1 and QB2
Blue (450–520 nm) QB2

Green (520–600 nm) QB2
Red (630–690 nm) QB2

Near infrared (760–900 nm) QB2

2.3.1. Neural Networks

Artificial neural networks (ANN) are of continued interest due to their ability to approximate
any function given sufficient neurons in each layer, the flexibility of data distribution, and their
reduced computational complexity compared with statistical classification methods [11,13,20,41].
A feedforward ANN (also known as multilayer perceptron) assigns small random multiplicative weights
and additive biases to input neurons and iteratively adjusts them with each additional training data
input, minimizing the surface of the performance function representing the error between the training
data and the network’s output in order to make the best classification [11,13,41]. Neural network
design is difficult due to the number of free parameters and ambiguous requirements for network
depth and complexity which depend upon the problem at hand [41]. As a result, neurons were grown
and pruned in various combinations within 1 to 3 hidden layers until the network performance was
maximized. The resulting ANN consisted of two hidden layers of 20 neurons each with sigmoid
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transfer functions, and a binary softmax output layer (see Figure 3). Training was accomplished using
backpropagation and the scaled conjugate gradient algorithm to minimize cross-entropy and two-fold
cross validation via early stopping (when decrease of cross-entropy in a validation subset ceased)
was used to prevent overfitting [41,42]. Finally, variable importance was measured by retraining the
network an additional 14 times with one of each of the input dimensions set to zero for all data points
and recording the change in cross-entropy after a set number of iterations (400).

Figure 3. A simplified design layout of the feedforward ANN used for training and testing. For input
layer detail, see Table 2. In reality each of the twenty neurons in Hidden Layer 1 is connected to each of
the twenty neurons in Hidden Layer 2.

An additional ANN which has been used for classification is the radial basis function neural
network (RBFN). The first layer of RBFNs consists of basis functions, centered throughout the input
space and the second layer consists of a transfer function which combines the results from the basis
functions and classifies them into the categories of interest [41]. Similar to the backpropagation
network design, the number of basis functions was determined through trial and error and grown
until performance was maximized. The radial basis layer consisted of 150 Gaussian functions centered
using an unsupervised k-Means approach, which intelligently assigns cluster centers in areas of the
input space where high activity exists [43,44]. The radial basis outputs fed into the second layer,
which consisted of a softmax transfer function, trained by minimizing cross-entropy using the scaled
conjugate gradient with early stopping as before.

2.3.2. Random Forests

Random Forests, which was originally proposed by Breiman [45], is an ensemble classifier
consisting of a large number of classification and regression trees (CART), where final classification is
performed by a winner-takes-all voting system. The algorithm trains each tree on an independently
drawn subset of the original data (bootstrap aggregating or bagging) and determines the number
of features to be used at each node by the evaluation of a random vector [45,46]. Because RF is an
ensemble classifier, the Law of Strong Numbers dictates that RF will converge without overfitting
the model, so that the computationally optimal number of trees can be found through testing the
algorithm. Additional benefits include robustness to outliers and noise and built-in estimates of error
and variable importance [45,47]. Using MATLAB’s TreeBagger function, training was accomplished
using 400 (additional tree growth resulted in no further decrease in out-of-bag error) classification
trees grown by selecting three variables (at random) for each node split. Additionally, the out-of-bag
error was collected and variable importance was measured for comparison with the ANN approach.
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2.4. Testing and Accuracy Assessement

After training, validation testing was performed on two different datasets. The first dataset
consisted of an area including the National Palace just to the south of the training area where building
footprints were previously digitized. For this testing area, output from the algorithms was converted
to polygons and a building by building accuracy assessment was performed on the first dataset,
resulting in a simple confusion matrix. This approach was taken in order to ensure that our accuracy
measurements were based on actual objects in the scene rather than a pixel-by-pixel assessment.
The second validation dataset included a larger area in order to test the algorithms’ performance when
based on kernel density map rank matching. This secondary assessment followed the procedures
used by Tiede et al. [36] and Pham et al. [6] in which the centroid points of the damage polygons are
computed and kernel density raster maps are generated for both the test damage points as well as
the UNOSAT/UNITAR control data points. The damage density for each dataset was projected onto
a 20 m raster grid and the rank value of each cell was computed according to the quartile of density
that the cell belonged to. The two maps were overlaid and accuracy was assessed by subtracting the
UNOSAT/UNITAR kernel density map from the test kernel density maps, with final output values
ranging from −3 (omission error) to +3 (commission error).

3. Results

Table 3 (supplemented by the confusion matrices in Appendix A) compares overall performance
of three MLAs using building-by-building and kernel density accuracy assessment. Our findings
showed that the multilayer feedforward ANN outperformed both the RBFNN and random forests with
an omission error rate of 37.7%. Figure 4 matches the spatially explicit locations of damage detected
by the ANN algorithm with the digitized buildings marked as damaged or undamaged (please refer
to Appendix B for the other algorithms’ damage maps). Both RBFNN and RF had higher overall
accuracies, yet drastically underestimated damage. RBFNN and RF created a high user’s accuracy
for the damaged building class, but a lower producer’s accuracy. The feedforward ANN also had the
shortest runtime, an advantage that was primarily gained through the extremely fast implementation
of the ANN for testing. The kappa value for each of the algorithms indicated that the distribution of
damaged and undamaged buildings could not be accounted for by random chance, however both of
the ANNs clearly outperformed Random Forests in this measure as well.

Table 3. Results from the test datasets.

Algorithm
Train + Test
Runtime (s)

Overall
Accuracy (%)

Building Class
Omission Error (%)

Cohen’s
Kappa

Kernel Density
Match (%)

ANN 623 74.14 37.69 0.402 87.41
RBFNN 1532 77.26 55.97 0.3951 90.25

RF 8692 76.14 71.27 0.3057 88.77

For the kernel density accuracy assessment, a good result was measured as a value in the
comparison map that ranged between −1 and 1 in accordance with the Tiede et al. [36] approach.
RBFNN reached a 90% kernel density map match (shown in Figure 5), outperforming the standard
ANN and RF, which were not far behind. This indicates that the radial basis function ANN may be able
to generalize to a larger area with greater success than either a feedforward network or Random Forests.
Even so, each of the algorithms performed at higher accuracies when generalizing the distribution of
damage over a wide area instead of detecting individual, building level damage.
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Figure 4. Results of the feedforward ANN (highest performer) on the building test dataset.
Direct output of the algorithm (pink) overlays the building categories are represented by shaded
polygons (satellite image courtesy of the DigitalGlobe Foundation).

Figure 5. Results of the RBFNN algorithm on the kernel density test dataset. Each 20 m cell is marked
from −3 to 3, where an adequate density match falls between −1 and 1 (satellite image courtesy of the
DigitalGlobe Foundation).

As well as examining an algorithm’s wide area generalizability, kernel density accuracy
assessment also allowed for investigation into areas of common error of both omission and commission.
One of the more interesting results was that these areas were common in all three algorithms.
A common error of commission occurred in the north-center of the test area and coincided with
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the development of an internally displaced persons (IDP) camp (see Figure 6). According to the
algorithms, this camp broke up the “structure” of the underlying field and increased the randomness
of the texture, which led it to misclassifying the area as a damaged building. Figure 7 shows a common
area of omission error contained within the map in the central region of the testing area. The underlying
cause of error in this region is the scene complexity and high density of small structures before the
earthquake occurred. This preexisting randomness and highly variable structure and texture were
difficult for the algorithm to interpret, leading to an error of omission. Even so, with kernel density
matching occurring in nearly 90% of cells for each algorithm, a wide area damage density classification
was successful for both of the algorithms tested.

 
(a) (b) 

Figure 6. Results of the RBFNN on the kernel density test dataset overlaid before (a); and after
(b) panchromatic imagery. This ad hoc IDP caused an error of commission among each of the algorithms.
Pre-earthquake satellite image copyright © DigitalGlobe. Post-earthquake satellite image courtesy of
the DigitalGlobe Foundation.

 
(a) (b) 

Figure 7. Results of the RBFNN on the kernel density test dataset overlaid before (a); and after
(b) panchromatic imagery. This area of complex small structures was a common error of omission
among the algorithms. Pre-earthquake satellite image copyright © DigitalGlobe. Post-earthquake
satellite image courtesy of the DigitalGlobe Foundation.
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Finally, variable importance shows similar trends for ANN and RF algorithms. There were a few
variables that showed rather different utilization between the algorithms. Figure 8 shows the change
in error between each variable and was developed by averaging the assigned variable importance
between the pre- and post-earthquake datasets. Overall, the multispectral variables had lower changes
in out-of-bag error and cross entropy in comparison to the textural and structural values, however
the panchromatic images and the near infrared band was useful to each of the algorithms. Of the
two texture measures, entropy was utilized more than dissimilarity in all three algorithms. Rectangular
fit was marked as important for both the ANN and RF however the Laplacian of Gaussian filter was
more impactful on the RBFNN assessment and also had a moderately high impact on RF performance.
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Figure 8. Chart of variable importance for both ANNs and RF. Overall, structure and texture played a
larger role in classification than spectral information. Random Forests use the ΔOOB Error measure
while ANN and RBFNN use ΔCross Entropy.

4. Discussion

It is difficult to determine outright which algorithm is better. While the multilayer ANN outperformed
RF in building by building assessments and required slightly less overall training time, it required
a large number of training samples in order to perform well. This is not necessarily the case for the
RF algorithm. Also, it is rather easy to overfit an ANN to the training data, which can be avoided
using RF due to its nature as an ensemble classifier [41,45]. Finally, ANNs can also become stuck at
local minima in the performance surface without reaching the global solution, yielding an insufficient
result [41]. However, in our study, the multilayer ANN had the lowest rates of error in detecting
damaged buildings, without sacrificing much performance in wide area generalization or overall
accuracy. SVMs, while not examined here, have shown promise in earthquake detection in previous
studies [17–19]. While our study focused on ANNs and RF, as little research has been done on their
applicability to earthquake detection problems, future studies may investigate the performance of
these algorithms (to include SVM) with respect to training sample size.

Beyond damage detection performance, practical considerations require an investigation into
time complexity, particularly when considering any kind of operationalization of an algorithm in
automatic damage detection. RF took much longer than either of the ANNs to train and test the
datasets. The time complexity of a single classification and regression tree is O(mn·logn) where m is
the total number of variables and n is the number of samples [48]. Because RF is an ensemble classifier,
the overall time complexity of Random Forests can be summarized as O(M(mn·logn)) where M is the
number of trees grown. For a large number of samples with moderate dimensionality, this can be quite
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time consuming. In contrast, neural network complexity is highly dependent on network architecture.
Time complexity for the scaled conjugate descent algorithm is often polynomial, overall complexity is
determined by the problem and the number of free parameters (weights, biases, or basis functions
(in the case of RBFNN)) required to describe that problem [49]. As such, testing showed that the ANNs
trained faster and tested faster, which is important to consider given the requirement to process a
potentially large amount of imagery in an operational context.

As previously discussed, a number of preprocessing steps are required to develop each of the
textural and structural dimensions. Also, a k-means unsupervised clustering was used as part of
the RBFNN algorithm to intelligently center the basis functions before training. Each of these steps
adds time and complexity to the final product. For future studies, the parallelization of many of
these processes is one way to greatly reduce computational time. Our data were gathered using serial
processing (primarily because a parallel implementation of k-means was not immediately available)
in order to establish a baseline and fairly assess each algorithm, however parallel implementations
(which include graphics processing units [GPUs]) of both ANN and RF training are readily available
for use and will greatly speed up training and implementation of these machine learning algorithms.

The actual results from this study mirrored what was expected quite well; the areas of imagery
where texture and structure were broken up were often identified as damage, as one would expect.
As mentioned in the results section, one interesting finding was that each of the algorithms erroneously
identified IDP camp areas as building damage. These IDP camps are ad hoc structures (tents, tarps,
and shanties) built primarily on open spaces. As these IDP camps were erected, they broke up the
coherent texture and structure of the underlying terrain, causing the algorithm to mark them as
damage. While this is technically an error of commission, it is nevertheless a useful result in showing
the power of MLAs in seeking out patterns as well as their ability to simultaneously detect damage and
displaced persons. In an operational context, the MLA results in combination with a priori knowledge
of building distribution via a GIS database would allow first responders and emergency planners to
easily distinguish damaged structures from these IDP camps.

As the experiment on variable importance showed, the textural and structural features were some
of the most important factors which allowed both ANNs and RF to detect damage and IDP camps.
Stramondo et al. [7] also used important textural features for earthquake damage detection although
in their study a maximum likelihood classifier was used. This line of thinking, paramount to computer
vision applications, is expanded here by using more intelligent algorithms and readily available data.
The importance of the panchromatic features along with the texture and structure products derived
exclusively from that panchromatic imagery presupposes that future implementations of machine
learning may be able to perform earthquake damage detection from panchromatic imagery alone.
One reason that the multispectral imagery was not a driving variable is simply due to resolution;
the native 2.4 m is too coarse to detect many of the features associated with earthquake damage.
Interestingly, the only multispectral product which was found to be an important variable for each
of the algorithms was the near infrared band, which may have resulted from a correlation between
exposed rubble and a higher near infrared reflectance. These findings may guide future research in
determining which variables to focus on in earthquake damage studies.

Our focus on simple panchromatic imagery is a departure from many previous earthquake
studies. The state-of-the-art focuses on LiDAR, SAR, unmanned aerial vehicles, and the software suite
eCognition [1]. However, the access and availability of these additional data requirements may be
limited in the aftermath of a destructive earthquake in a less developed region such as Haiti. A return
to easily accessible data products such as multispectral or even panchromatic imagery alone could
allow a MLA (potentially even one that is pre-trained) to detect imagery without the requirement
of ancillary data. One potential disadvantage of the reliance on bitemporal VHR imagery is the
requirement for precise coregistration. Different look angles can cause problems in classification and
change detection. While image registration is still important to our study, a small look angle difference
may not be critical due to our use of textural and structural features rather than the VHR imagery
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alone. Additionally, registration errors can be seen as a source of noise in the system; each of the MLAs
used has been shown to be robust to noise [41,45]. The difference in our look angles (~7◦) did not
appear to cause any damage detection errors in a visual survey of our results. Future research may
investigate the limits of acceptable look angle differences or use a complex coregistration approach to
eliminate the issue altogether [50].

The future of earthquake damage detection may lie in deep convolutional neural networks
(DCNN) coupled with high performance computing and GPUs. DCNNs have already pushed
the boundaries of artificial intelligence and image recognition; rather than being told which
textural, structural, or spectral inputs should be used, these networks automatically learn and
identify the defining features (convolutions) of the problem at hand in order to classify future
samples [51,52]. Initial results are promising. Using MatConvNet (a deep learning library for
Matlab), we experimented with training a DCNN with the VGG-F architecture following the
approach and using the hyperparameters described by Chatfield et al. [52,53]. We segmented the
post-earthquake pansharpened image using SRM and trained the DCNN on each labeled, extracted
object. The DCNN was not only able to detect buildings at a comparable rate (>55% detection
rate), it was able to distinguish between damage and IDP camps (>65% detection rate) and did so
using an after-only pansharpened image, reducing data requirements and eliminating the need for
coregistration. A pre-trained DCNN optimized specifically for earthquake detection may offer a robust
and operationally implementable solution to the much studied topic of earthquake damage detection.

5. Conclusions

This study analyzed the use of machine learning algorithms to include feedforward neural
networks, radial basis function neural networks, and Random Forests in detecting earthquake damage
caused by the 12 January 2010 event near Port-au-Prince, Haiti. The algorithms’ efficacy was improved
by providing coregistered 0.6 m multitemporal imagery, texture features (dissimilarity and entropy),
and structure features (Laplacian of Gaussian and rectangular fit) as inputs. Detection results were
assessed on a structure specific basis by digitizing more than 900 buildings and comparing each MLA’s
response to the UNITAR/UNOSAT validation set. For a wide area generalization, a kernel density
map comparison was performed between each of the algorithms’ classification results and the UN
damage validation points.

The feedforward ANN consisting of two hidden layers had the lowest error rate (<40%) without
sacrificing much performance in overall accuracy or generalization to wider area damage estimates.
Additionally, textural and structural features derived from panchromatic imagery were shown to be
more important than spectral variables in the algorithms’ classification process. Each algorithm had
common errors of commission occurring around ad hoc IDP camps that were spontaneously formed
in open spaces following the earthquake; this technically incorrect result can be easily integrated with
a GIS layer containing building footprints.

The results of this study show that not only do MLAs have potential for use in earthquake
damage detection, but that panchromatic or pansharpened imagery can be the exclusive data source
for training and testing. Measures of variable importance found that the panchromatic derived
texture and structure products are the main drivers behind the success of these “shallow” machine
learning algorithms. Future research into an operationally implementable machine learning method
is warranted. An attractive next step is to transition into deep learning where convolutional neural
networks move beyond pixel-based or object-based paradigms and begin to detect remotely sensed
features in ways akin to natural image recognition.
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Appendix A

Table A1. Confusion matrices for each of the algorithms, including user’s accuracy (UA) and producer’s
accuracy (PA).

Undamaged UNOSAT Damaged UNOSAT ANN UA

Undamaged ANN 498 101 83.14
Damaged ANN 131 167 56.04

ANN PA 79.17 62.31
RBFNN UA

Undamaged RBFNN 575 150 79.31
Damaged RBFNN 54 118 68.60

RBFNN PA 91.41 44.03
RF UA

Undamaged RF 606 191 76.04
Damaged RF 23 77 77.00

RF PA 96.34 28.73

Appendix B

Appendix B.1. Algorithmic Damage Map for the RBFNN Algorithm

Figure A1. Results of the RBFNN algorithm on the building test dataset. Direct output of the algorithm
(pink) overlays the building categories are represented by shaded polygons (satellite image courtesy of
the DigitalGlobe Foundation).
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Appendix B.2. Algorithmic Damage Map for the Random Forests Algorithm

Figure A2. Results of the RF algorithm on the building test dataset. Direct output of the algorithm
(pink) overlays the building categories are represented by shaded polygons (satellite image courtesy of
the DigitalGlobe Foundation).
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Abstract: Compared with optical sensors, Synthetic Aperture Radar (SAR) can provide important
damage information due to its ability to map areas affected by earthquakes independently from
weather conditions and solar illumination. In 2013, a new TerraSAR-X mode named staring spotlight
(ST), whose azimuth resolution was improved to 0.24 m, was introduced for various applications.
This data source made it possible to extract detailed information from individual buildings. In this
paper, we present a new concept for individual building damage assessment using a post-event
sub-meter very high resolution (VHR) SAR image and a building footprint map. With the building
footprint map, the original footprints of buildings can be located in the SAR image. Based on the
building imaging analysis of a building in the SAR image, the features in the building footprint can be
extracted to identify standing and collapsed buildings. Three machine learning classifiers, including
random forest (RF), support vector machine (SVM) and K-nearest neighbor (K-NN), are used in the
experiments. The results show that the proposed method can obtain good overall accuracy, which is
above 80% with the three classifiers. The efficiency of the proposed method is demonstrated based
on samples of buildings using descending and ascending sub-meter VHR ST images, which were all
acquired from the same area in old Beichuan County, China.

Keywords: earthquake; damage assessment; building; Synthetic Aperture Radar; TerraSAR-X;
high resolution

1. Introduction

Damage detection after earthquakes is an important issue for post-disaster emergency response,
impact assessment and relief activities. Building damage detection is particularly crucial for identifying
areas that require urgent rescue efforts. Remote sensing has shown excellent capability for use in
rapid impact assessments, as it can provide information for damage mapping in large areas and in an
uncensored manner, particularly when information networks are inoperative and road connections
are destroyed in areas impacted by earthquakes. Compared with optical sensors, Synthetic Aperture
Radar (SAR) can provide important damage information due to its ability to map affected areas
independently from the weather conditions and solar illumination, representing an import data source
for damage assessment.

Many approaches for damage detection with SAR imagery have been introduced [1,2].
Change detection with pre- and post-event SAR images is widely used for damage assessment,
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and it has become a standard procedure [3]. The differences between the backscattering intensity and
intensity correlation coefficients of images before and after earthquakes indicate potential damage areas.
In addition, the interferometric coherence of pre- and post-event SAR data can also provide important
information for damage assessment [1]. In the case of change detection, the pre- and post-event data
are needed for comparison. However, in many areas, almost no archived SAR images, especially for
high-resolution SAR data, are available. Therefore, research on building damage assessment with only
post-event SAR images is necessary.

The new generation of high-resolution SAR satellite systems was first deployed for earthquake
monitoring during the Wenchuan Earthquake in 2008 [3]. Meter-resolution SAR images from
TerraSAR-X and COSMO-SkyMed were acquired for damage assessment. Although the image
resolution has improved, it is difficult to identify collapsed buildings using single meter-resolution
SAR images [3,4]. After 2013, a new TerraSAR-X mode named staring spotlight (ST), whose azimuth
resolution was improved to 0.24 m, was introduced. The sub-meter very high resolution (VHR) SAR
data source provides new opportunities for earthquake damage mapping because more details can be
observed in images, making it possible to focus an analysis on individual buildings.

Previous works have generally concentrated on the building block level of damage assessment
with low- or medium-resolution SAR images. Few studies have focused on individual buildings due
to lack of VHR SAR images. Balz et al. [3] analyzed the appearances of destroyed and partly destroyed
buildings using high-resolution SAR images and proposed a technical workflow to identify building
damage using post-seismic high-resolution SAR satellite data. Another method was developed to
detect building damage in individual building units using pre-event high-resolution optical images
and post-event high-resolution SAR data based on the similarity measurement between simulated
and real SAR images [5]. Wang et al. [6] proposed an approach for post-earthquake building damage
assessment using multi-mutual information from pre-event optical images and post-event SAR images.
Brunner et al. [4] analyzed a set of decimeter-resolution SAR images of an artificial village with
different types of destroyed buildings. The analysis showed that the decimeter-resolution SAR data
are fine enough to classify building signatures according to basic damage classes. Kuny et al. [7] used
simulated SAR images of different types of building damage for feature analysis and proposed a
method for discriminating between debris heaps and high vegetation with simulated SAR data and
TerraSAR-X images [8]. Wu et al. [9,10] analyzed different building damage types in TerraSAR-X ST
mode data by visual interpretation, statistical comparison and classification assessment. The results
showed that the data effectively separated standing buildings from collapsed buildings. However, the
damaged building samples were obtained by expert interpretation and manual extraction. This method
is time consuming and technique dependent because the exact edges of buildings and debris must
be acquired.

In sub-meter VHR SAR images, more features, such as points and edges of objects, become visible,
more details of individual buildings can be observed and new features of buildings are shown [11]. It is
difficult to detect specific buildings in complicated surroundings in VHR images. Moreover, collapsed
building debris is visually similar to other objects such as high vegetation [8]. This could lead to false
alarms when detecting debris heaps.

Therefore, in this paper, we propose a method to assess the damage to individual buildings
affected by earthquakes using single post-event VHR SAR imagery and a building footprint map.
Given a building footprint map, which can be provided by a cadastral map or extracted from a pre-event
VHR optical image, the original footprints of buildings can be located in the geometrically-rectified
post-event VHR SAR image. Because collapsed and standing buildings exhibit different characteristics
in their original footprints, features can be extracted from the image. Then, the buildings can be
classified as different damage types. We demonstrate the feasibility of the proposed method in Qushan
town (31.833◦N, 104.459◦E), old Beichuan County, China, which was heavily damaged in the Wenchuan
Earthquake on 12 May 2008. The ruins in the area are preserved as the Beichuan Earthquake Memorial
Park. Therefore, some damaged buildings in the area can be used for algorithm analysis. In our
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experiments, the post-event descending and ascending TerraSAR-X ST data are used for building
damage assessment. Post-event airborne optical images, light detection and ranging (LIDAR) data, as
well as in situ photography are used as reference data. The main novelty of the paper is the use of the
VHR TerraSAR-X ST data for individual damage building analysis and demonstrating the concept for
collapsed building assessment with building footprints.

The remainder of this paper is structured as follows. In Section 2, the properties of damaged
buildings in VHR SAR images and damage detection problems are stated. In Section 3, we introduce
the basic principle of the proposed method and describe damage detection with sub-meter VHR
SAR data in detail. The study area and dataset are introduced in Section 4. Section 5 gives the
results and analysis of the experiments. Finally, the discussion and conclusions are presented in
Sections 6 and 7, respectively.

2. Properties of Damaged Buildings in VHR SAR Images and Damage Detection Problems

Due to the side-looking image mode of SAR sensors, some unique features, such as layover,
fore-shortening effects and multi-path propagation, can be observed in SAR images. Those effects
make interpretation with SAR images difficult compared to using optical images. However, the effects
are also the unique patterns of buildings, which can be differentiated from other objects in SAR images.

In general, buildings have very distinct appearances in SAR images due to their cube-like or
regular shapes. Buildings in SAR images typically consist of four zones: a layover area, corner
reflection, roof area and shadow area. When an earthquake occurs, buildings may be destroyed or
collapse. Destroyed buildings have different scattering distributions. Strong double-bounce scattering
may be missing because the vertical wall facing the sensor may be collapsed, and the wall-ground
dihedral corner reflector may be destroyed. The layover area may also be missing. Furthermore, the
shadow area of a building will be reduced and potentially missing, depending on the structure and
slope of the ruins.

Figure 1 illustrates a standing building after an earthquake. Figure 1a is an in situ photograph;
Figure 1b is an optical image; and Figure 1c,d show the building in ascending and descending
TerraSAR-X ST mode SAR images, respectively. The azimuth direction of Figure 1c is from bottom
to top, and the range direction is from left to right. The azimuth direction of Figure 1d is from top to
bottom, and the range direction is from right to left. The building has a flat roof with slight damage.
In the SAR image, the double-bounce line, layover area and shadow area are obvious. The layover
areas can be detected as the areas facing the sensor. The shadow areas are distinguishable from
their surroundings.

 
(a) (b) (c) (d) 

Figure 1. A standing building: (a) in situ photograph; (b) optical image acquired in 2013; (c) TerraSAR-X
staring spotlight (ST) ascending SAR image (the azimuth direction is from bottom to top, and the range
direction is from left to right); (d) TerraSAR-X ST descending SAR image (the azimuth direction is from
top to bottom, and the range direction is from right to left).

Figure 2 illustrates a totally collapsed building after an earthquake. Figure 2a is an in situ
photograph; Figure 2b is an optical image; and Figure 2c,d show the building in TerraSAR-X ST
ascending and descending SAR images, respectively. The azimuth direction of Figure 2c is from bottom
to top, and the range direction is from left to right. The azimuth direction of Figure 2d is from top to
bottom, and the range direction is from right to left. The damaged building was collapsed entirely,
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leaving a heap of randomly-oriented planes mainly made of concrete. In the SAR image, the heap of
debris of the collapsed building shows random scattering effects. Some bright scattering spots can
be found, which are caused by corner reflectors, resulting from the composition of different planes.
However, the double-bounce line, layover area and shadow area are missing in this case.

 
(a) (b) (c) (d) 

Figure 2. A collapsed building: (a) in situ photograph; (b) optical image acquired in 2013;
(c) TerraSAR-X ST ascending SAR image (the azimuth direction is from bottom to top, and the range
direction is from left to right); (d) TerraSAR-X ST descending SAR image (the azimuth direction is from
top to bottom, and the range direction is from right to left).

Thus, in Figures 1 and 2, we can see that the standing building and the totally collapsed building
have their own unique features in the VHR SAR images. However, high vegetation shows features
that are similar to those of the debris of the totally collapsed building and may cause false alarms [8].
Moreover, it is not easy to extract the exact edges of the debris due to the similarity between the debris
and surroundings. Therefore, although the signature of the standing building shows different features
compared to those of the collapsed building in the VHR SAR images, detecting the collapsed building
debris using only post-event VHR SAR images by the traditional image processing method remains
problematic. Overcoming this issue is the motivation of the paper.

3. Proposed Methodology for Damage Detection Using VHR SAR Images

3.1. Concept of Damage Detection

Figure 3 gives an ideal example of SAR imaging of a flat roof building. In Figure 3b, the layover,
double-bounce line and shadow area can be observed. The shadow caused by the standing building
covers the majority of the building’s footprint (denoted by the red line). Generally, there is no return
from the building or the ground in the shadow area. Therefore, the backscattering intensity in the area
is lower than that in the surrounding area.

(a) (b)

Figure 3. An illustration of SAR imaging of a flat roof building: (a) Relationship between the sensor
and the building; (b) building in the image plane.

For further investigation, Figures 4 and 5 show examples of the backscattering range profiles of
flat roof and gable roof buildings under different boundary conditions [12]. In Figure 4, the scattering
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effects of flat roof buildings for three different situations can be observed according to the boundary
conditions among the building height h, width w and incidence angle θ (Figure 4a–c). The symbols l
and s denote the lengths of the layover and shadow in the ground-projected image space, respectively;
b is the double bounce caused by the dihedral corner reflector formed by the vertical wall of the
building and the surrounding ground; and e represents the shadow area from which there is no return
from the building or the ground. In Figure 4, some regularity can be observed. The double bounce
always appears as a linear feature corresponding to the building’s front wall, and it can indicate the
presence of a building. Near the double bounce, the shadow areas (e in Figure 4b,c) usually appear in
the image and cover the area of the building’s footprint. In Figure 4a, there is backscattering return
from the roof between the double bounce and shadow. If the roof is flat, minimal backscattering from
the roof is received by the sensor. Thus, d (backscattering from the roof) in Figure 4a usually appears
as a dark region in SAR images. Figure 5 shows the scattering effects of a gable roof building. It shows
three examples of backscattering profiles from a gable roof building with roof inclination angles α for
different incidence angles θ. Near the double-bounce line, the shadow areas (e in Figure 5) also cover
the majority of the building’s footprint.

(a) (b) (c) 

Figure 4. Backscattering range profiles from a simple flat roof building model with width w and
different heights h. Ground scattering a, double bounce b, scattering from the vertical wall c,
backscattering from the roof d and shadow area e are labeled. The gray values in the backscattering
profiles correspond to the relative amplitudes. (a) h < w·tan(θ); (b) h = w·tan(θ); (c) h > w·tan(θ)
(re-edited from [12]).

(a) (b) (c) 

Figure 5. Backscattering range profiles from a gable roof building with roof inclination angles α.
The legend is similar to that used for the flat roof buildings in Figure 3. The gray values in the backscattering
profiles correspond to the relative amplitudes. (a) θ < α; (b) θ = α; (c) θ > α (re-edited from [12]).

Generally, for a flat or gable roof building, no matter how the aspect angle is changed, the building
profile incised by the incidence plane of the radar wave will keep its basic shape. Figure 6 shows some
examples of the profiles of a flat roof and a gable roof building with different aspect angles. In Figure 6,
φ1–φ4 show examples of four different aspect angles; w1–w4 are the widths of the four building profiles.
The figures show that the building profiles keep the basic shapes, which are similar to the building
profiles shown in Figures 4 and 5, if the aspect angle is changed. Therefore, a conclusion can be made
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that when the flat roof and gable roof buildings are illuminated by the radar in different aspect angles,
the backscattering range profiles of the buildings can also be explained by Figures 4 and 5.

(a) (b)
  

 
(c) (d)

Figure 6. Illustrations of the building profiles of a flat roof building and a gable roof building
with different aspect angles. (a) A flat roof building model illuminated by radar waves in four
directions; (b) building profiles corresponding to the four different directions; (c) a gable roof building
model illuminated by radar waves in four directions; (d) building profiles corresponding to the four
different directions.

Based on the analysis above, we can conclude that if the building is still standing, the region of the
building’s footprint in an SAR image usually has low backscattering intensity and is dark compared
to surrounding areas under the condition of various incidence angles and aspect angles. However,
if the building is totally collapsed, debris piles form. The debris exhibits brighter scattering spots
caused by smaller corner reflectors resulting from the composition of different planes [4]. Therefore,
if the footprint of a building can be obtained, standing buildings and collapsed buildings can be
separated based on features derived from the original footprint of the building. Based on this concept,
we proposed a new scheme for detecting totally destroyed buildings with post-event single polarization
VHR SAR images (Figure 7).

Figure 7. Block scheme of the proposed methodology.
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3.2. Preprocessing

The main inputs of the method are a sub-meter resolution SAR image and a building footprint
map. Before analysis, the digital numbers of the TerraSAR-X SAR data were converted into radar
sigma naught values as follows [13]:

σ◦ = (ks × |DN|2 − NEBN) ×sinθloc (1)

where ks is the calibration and processor scaling factor given by the parameter calFactor in the annotated
file, DN is the pixel intensity value and NEBN is the noise equivalent beta naught. It represents the
influences of different noise contributions on the signal. θloc is the local incidence angle [13].

The building footprint map in Figure 7 can be provided by a cadastral map from the
government. If there is no building footprint map of the affected area, the map can be obtained by
interpreting high-resolution pre-earthquake optical images. Unfortunately, we have no pre-earthquake
high-resolution remote sensing images covering the research area. Therefore, we obtained the building
footprint map by careful interpretation of the post-earthquake optical image with information of the
in situ investigation and LIDAR data of the research area in our experiment. To register the building
footprint map, the SAR data should be geometrically rectified. The ground control points, which
provide the relationships between pixel coordinates in the image and geo-coordinates, can be found
in the XML file in SAR products. After geometric rectification, the SAR image can be matched to
the building footprint map, which also has geo-coordinates information. To improve the registration
precision, registration between the geo-rectified SAR images and optical image is implemented with
ENVI software by manually selecting the control points in the images in our experiment. The SAR
images we used are single look complex (SLC) products. For real operation, the geocoded ellipsoid
corrected (GEC) or enhanced ellipsoid corrected (EEC) products of the SAR data can be ordered to
avoid geometric rectification by users. Although a layover, shadow area of a building usually occurs in
the very high resolution SAR image, the footprint indicates the real location of the building. Therefore,
with the building footprint map, the original footprints of buildings can be located in the descending
and ascending SAR images. Then, features can be extracted based on the footprints in the SAR image.

3.3. Features for Classification

Four first-order statistics and eight second-order image statistical measures are investigated for
analysis and damage type classification.

3.3.1. First-Order Statistics

Statistical features including mean, variance, skewness and kurtosis are selected for first-order
statistical analysis. Setting f1 = μ as the mean value and f2 = σ2 as the variance value, the skewness
and kurtosis can be expressed as follows.

(1) Skewness:

f3 =
E (x − μ)3

σ3 (2)

In Equation (2), E(·) represents the expected value of variables. Skewness is a measure of the
asymmetry of the data distribution around the sample mean. If skewness is negative, the data are
spread out more to the left of the mean than to the right. If skewness is positive, the data are spread
out more to the right. The skewness of the normal distribution is zero [14].

(2) Kurtosis:

f4 =
E (x − μ)4

σ4 (3)
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Kurtosis describes how peaked or flat a distribution is, with reference to the normal distribution.
The kurtosis of the normal distribution is 3. If kurtosis has a high value, then it represents a sharp peak
distribution in the intensity values about the mean and has a longer, fat tail. If kurtosis has a low value,
it represents a flat distribution of intensity values with a short, thin tail [15].

Skewness and kurtosis are features that describe the position and shape of a data distribution.
SAR data usually exhibit long-tail distributions, and standing and collapsed buildings show different
pixel intensities based on the above analysis. Therefore, skewness and kurtosis are selected as features
to describe these differences.

3.3.2. Second-Order Image Statistics

The second-order image statistics measure the relationships between pixels and their
neighbors [16]. To calculate the second order statistics, the pixel values for a given scale of interest
are first translated into a gray level co-occurrence matrix (GLCM). Texture measures derived from
the GLCM have been widely used for land cover classification and other applications with radar and
optical data.

GLCM describes the frequency of one gray tone appearing in a specified spatial linear relationship
with another gray tone in the area under investigation [17]. The textural statistics are calculated
based on GLCM. The GLCM-based textural features are second-order features widely used in texture
analysis and image classification. Recently, GLCM features have been used to analyze the signatures
of damaged buildings in real and simulated VHR SAR images [8,10,18].

Haralick et al. proposed 14 features based on GLCM for textural analysis [19]. These features
measure different aspects of the GLCM, and some features are correlated. In this paper, eight texture
features are chosen for analysis: the mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment and correlation. Let p (i, j) be the (i, j)-th entry in a normalized GLCM. The features
are as follows [19–21].

(1) Mean:
g1 = ∑

i
∑

j
i × (i, j) (4)

(2) Variance:
g2 = ∑

i
∑

j
(i − μ)2 p (i, j) (5)

(3) Homogeneity:

g3 = ∑
i

∑
j

1

1 + (i − j)2 p (i, j) (6)

(4) Contrast:

g4 =
Ng−1

∑
n=0

n2

{ Ng

∑
i=1

Ng

∑
j=1

p (i, j) ||i − j| = n

}
(7)

In Equation (7), Ng is the number of distinct gray levels in the quantized image.

(5) Dissimilarity:
g5 = ∑

i
∑

j
|i − j| × p (i, j) (8)

(6) Entropy:
g6 = −∑

i
∑

j
p (i, j) log (p (i, j)) (9)

(7) Second moment:
g7 = ∑

i
∑

j
{p (i, j)}2 (10)
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(8) Correlation:

g8 =
∑i ∑j (ij) p (i, j)− μxμy

σxσy
(11)

where μx, μy, σx and σy are the means and standard deviations of px and py.
The GLCM mean measures the average gray level in the GLCM window. The GLCM variance

measures the gray level variance and is a measure of heterogeneity. GLCM homogeneity, which is
also called the inverse difference moment, measures the image homogeneity, assuming larger values
for smaller gray tone differences in pair elements. GLCM contrast is a measure of the amount of
local variation in pixel values among neighboring pixels. It is the opposite of homogeneity. GLCM
contrast is related to first-order statistical contrast. Thus, high contrast values reflect highly contrasting
textures. GLCM dissimilarity is similar to contrast and inversely related to homogeneity. GLCM
entropy measures the disorder in an image. When the image is not texturally uniform, the value will
be very large. The GLCM second moment is also called energy. It measures textural uniformity. If the
image patch is homogeneous, the value of the second moment will be close to its maximum, which
is equal to 1. GLCM correlation is a measure of the linear dependency of pixel values on those of
neighboring pixels. A high correlation value (close to 1) suggests a linear relationship between the
gray levels of pixel pairs. Therefore, we can see that the GLCM homogeneity and second moment
are measures of homogenous pixel values across an image, while the GLCM contrast, dissimilarity
and variance are measures of heterogeneous pixel values. Based on the analysis of Section 2, we can
observe that the standing building shows relative homogeneity in the footprint, while the collapsed
building shows more heterogeneity. Therefore, these features are selected for analysis. In addition, the
GLCM mean, entropy and correlation are also considered for analysis. In this paper, image texture
measures are calculated for every pixel using ENVI software.

3.4. Classifier

Three machine learning methods involving random forest (RF) [22], support vector machine
(SVM) [23] and K-nearest neighbor (K-NN) [24] classifiers are used to classify collapsed and standing
buildings in our experiments.

Ensemble learning algorithms (e.g., random forest) have received increased interest because they
more accurately and robustly filter noise compared to single classifiers [22,25,26]. RF is an ensemble of
classification trees, where each tree contributes a single vote to the assignment of the most frequent
class of the input data. An RF can handle a number of input variables without variable deletion, and it
estimates the importance of variables in the classification.

Support vector machine (SVM) is a supervised learning model with associated learning algorithms
that analyze data and recognize patterns based on the structural risk minimization principle in statistics.

The K-NN algorithm is a statistical instance-based learning method [27,28]. It decides that a
certain pattern X belongs to the same category as its closest neighbors given a training set of m labeled
patterns. The algorithm estimates the probabilities of the classes using a Euclidian metric.

The three machine learning methods are supervised classifiers, and they have been widely used
for remote sensing image classification. We adopt the methods to evaluate the results of building
damage detection using VHR SAR images.

4. Study Area and Materials

The study area is located in old Beichuan County. On 12 May 2008, the Wenchuan Earthquake with
a magnitude of 8.0 occurred in Sichuan province, China [29]. The earthquake devastated a huge area in
Sichuan province, killing and injuring a large number of people and causing major damage to buildings
and other infrastructures. Beichuan County (centered at approximately 31.833◦N and 104.459◦E) was
one of the most affected areas. The Beichuan County was originally located in Qushan Town. After the
earthquake, the county was moved to Yongchang Town, which belonged to An County before the
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earthquake. The old Beichuan County seat was abandoned, and some ruins were preserved as the
Beichuan Earthquake Memorial Park. The study area belongs to the Beichuan Earthquake Memorial
Park. Therefore, some damaged buildings are preserved in the area and can be selected for analysis.

Three decimeter level resolution TerraSAR-X ST mode SAR images acquired in 2014 and 2015 are
used for analysis and experimentation. One is ascending SAR image, and two are descending SAR
images. TerraSAR-X ST SAR is a new mode that was introduced in 2013 by the German Aerospace
Center (DLR). With the new mode, a spatial resolution of approximately 0.24 m can be achieved in the
azimuth direction of the system by widening the azimuth beam steering angle range [30]. With coarse
spatial resolution data, damage detection is usually performed on the building group or residential
area level. While in the VHR SAR image, much more building features like edges and point structures
become visible. Therefore, it is possible to focus an analysis on individual buildings. Table 1 gives
detailed information regarding the data.

Table 1. Detailed image information.

Number Polarization
Orbit

Direction

Date of
Acquisition

Resolution (m) Look
Direction

Incidence
Angle (◦)Ground Range Azimuth

1 HH Ascending 4 December 2014 0.86 0.23 Right 43.0
2 HH Descending 8 December 2014 0.86 0.23 Right 42.6
3 HH Descending 8 April 2015 0.86 0.23 Right 42.8

An optical multispectral image and LIDAR data covering the study area are used as reference data.
In May 2013, 5 years after the earthquake, the Airborne Remote Sensing Center (ARSC) of the Institute
of Remote Sensing and Digital Earth carried out a campaign for monitoring the areas affected by the
Wenchuan earthquake in 2008. One remote sensing airplane carrying an optical ADS80 sensor collected
a number of images of the areas, including the old Beichuan County. The data acquired by ADS80
are multi-spectral images, and the resolution of the image is approximately 0.6 m. The optical image
has been rectified when we obtained it from ARSC. In situ investigations were carried out in 2014 and
2015, corresponding to the ST SAR data acquisition dates. Based on the post-earthquake optical image,
LIDAR data and in situ investigation, a reference map of the standing and collapsed buildings can be
generated by careful interpretation. The reference map of the standing and collapsed building can be
regarded as the ground truth for analysis and validation. Figure 8 illustrates the research area, the SAR
image and building footprint map. Figure 9 presents the optical image (Figure 9a) and the reference
map (Figure 9b). Figure 9c,d illustrates a descending and ascending SAR image superimposed by the
reference map, respectively. In order to illustrate the image more clearly, the values of the SAR image
in Figure 9c,d have been stretched to the 0–255 gray level. The building footprint map and reference
map are generated by optical image, LIDAR data and in situ investigations.

(a) (b) 

Figure 8. The study area: (a) a post-earthquake descending SAR image (the azimuth direction is from
top to bottom, and the range direction is from right to left); and (b) building footprint map.
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(a) (b)

 
(c) (d)

Figure 9. Reference data: (a) optical image acquired in 2013; (b) reference map; (c) a post-earthquake
descending SAR image superimposed by the reference map (the azimuth direction of the SAR image is
from top to bottom, and the range direction is from right to left); (d) a post-earthquake ascending SAR
image superimposed by the reference map (the azimuth direction of the SAR image is from bottom
to top, and the range direction is from to left right). The SAR images have been stretched so as to be
illustrated more clearly.

5. Experimental Results and Analysis

Three sub-meter VHR TerraSAR-X ST SAR images are used in the experiments and algorithm
evaluation. With the building footprint map, the original footprints of the buildings can be
obtained in the SAR images. Then, the features are calculated, forming a feature vector
FV = { f1, f2, f3, f4, g1, g2, g3, g4, g5, g6,g7, g8} for classification.

5.1. Parameters of GLCM-Based Textural Features

Generally, if the textural measures derived from the GLCM are used, some fundamental
parameters should be defined, including the quantization levels of the image, the window size
used to calculate the GLCM and the displacement and orientation values of the measurements.
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5.1.1. Quantization Level

The quantization level is a fundamental parameter. A value that is too low can lead to substantial
information reduction. However, fewer levels reduce noise-induced effects and directly affect the
computing cost because the number of bins determines the size of the co-occurrence matrix [7].
This tradeoff was discussed by Soh et al. [20], with the conclusion that 64 levels are suggested for sea
ice in SAR images. Additionally, they have that a 256-level representation is not necessary and an
eight-level representation is undesirable. A level of 256 was applied in [16]; a level of 128 was adopted
in [7]; and a 64-level quantization was applied in [8] to detect and distinguish debris in SAR images.
Additionally, 16-level, 64-level and 32-level quantization was adopted in [31–33], respectively, for sea
ice classification and other applications. Based on [20] and [7,8], a 64-level quantization using ENVI
software is adopted in our experiments. Figure 10 illustrates the histograms of the sigma naught of the
SAR images (Figure 10a) and the 64-level quantization images by ENVI (Figure 10b). It shows that the
shapes of the histograms of the images are kept well after quantization.

(a) (b)

Figure 10. Histograms of (a) sigma naught of the SAR image and (b) 64-level quantization image
by ENVI.

5.1.2. Window Size

In order to calculate texture features for each pixel in an image, a moving window is usually used
to define the neighborhood of a pixel, and the texture measurement calculated from the window is
assigned to the center pixel [26,34]. The window size for texture analysis is usually related to image
resolution and the contents within the image. However, it might be difficult to determine the window
size through a formula. In the experiments, we chose 13 × 13 pixels as the window size to calculate
the texture features. The analysis is as follows.

(1) Estimation by classification result:

The overall accuracy or kappa coefficient of the classification results is usually applied for
estimating the window size [26,34]. If the texture features can give the highest classification accuracy,
then the widow size will be chosen as the optimal size. Figure 11 shows the influence of window
size on the overall accuracy and accuracy of the classification results of texture features for collapsed
and standing buildings. The classifier is random forest. With the whole of 192 samples (36 collapsed
buildings, 156 standing buildings), 1/3 of samples are for training, and 2/3 of samples are for testing.
The figure shows that the classification results of small window size are not stable. The overall accuracy
increases when the window size is larger than 7 × 7 pixels and decreases when the window size is
larger than 15 × 15 pixels. The overall accuracy is stable when the window size is between 9 × 9 pixels
and 15 × 15 pixels. It appears that the window sizes of 13 × 13 pixels and 15 × 15 pixels can be
identified as appropriate to achieve best overall accuracy.
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Figure 11. Influence of window size on the overall accuracy and the accuracy of the classification
results of texture features for collapsed and standing buildings.

(2) Estimation by coefficient of variation of texture measures:

To facilitate the choice of an optimal texture window, the coefficient of variation of each texture
measure for each class in relation to window size was also calculated [35]. The chosen optimal window
size is usually that in which the value of the coefficient of variation starts to stabilize to the smallest
value [35]. Figure 12 presents the evolution of the variance in relation to different window sizes for
the textural measures. Figure 12a–c is the results of the second moment, homogeneity and entropy,
respectively. The red starred line indicates the collapsed building, and the blue open-circled line
represents the standing building values. The variances of textural features of the second moment and
homogeneity decrease at larger window sizes; while the values of entropy show general increasing
trends at small window sizes and decrease with increasing window size. The variation starts to
stabilize at a 13 × 13 pixels window in Figure 12a–c. The results show that a 13 × 13 pixels window
size can be a good choice for the textural measures.

 
(a) (b) (c) 

Figure 12. Evolution of the variation coefficient in relation to different window sizes for textural
measures of the (a) second moment; (b) homogeneity; and (c) entropy.

(3) Estimation by visual interpretation:

If the building is still standing, the footprint is usually covered by shadow area. If the building is
collapsed, the footprint is usually covered by debris. Figure 13 shows examples of shadow and debris in
building footprints in the SAR image. The red and yellow rectangles indicate the footprints of standing
and collapsed buildings, respectively. The debris usually contains some heaps of randomly-oriented
planes mainly made of concrete. The planes are usually not very large and may be 1–3 m in width or
length. After geometric rectification, the SAR image is resampled to a 0.6-pixel spacing, which is the
same as the optical image. Therefore, in the 0.6-pixel spacing SAR image, the planes may be usually
2–5 pixels (Figure 13). Consequently, we think the window size of 13 × 13 pixels may be proper for
texture analysis.
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Figure 13. Examples of shadows of standing buildings (red rectangle) and collapsed building (yellow
rectangle) debris in building footprints in the SAR image.

Generally, the larger the window size is, the coarser the information that can be provided by
textural features. Therefore, the window size used to compute textural features should not be too large.
Based on the quantitative and qualitative analysis, a 13 × 13 pixels window size is chosen to calculate
the GLCMs in the experiments.

5.1.3. Orientation and Displacement

The orientation parameter is less important compared to other factors in the co-occurrence
matrix [20]. We investigate the values of the textural measures of collapsed (red starred line) and
standing buildings (blue open-circled line) in four directions, including 0◦, 45◦, 90◦ and 135◦. Figure 14
gives the results of the values of GLCM-based textural features with different orientations. It shows
that the features have relatively stable values when the orientation changes. However, we also found
that the texture features of 45◦ and 135◦ have similar values. Additionally, they have some differences
from the values in 0◦ and 90◦. In Figure 9, it can be observed that most of the buildings’ orientations
are about 135◦ or 45◦. This may be the reason that the values of features in 45◦ and 135◦ have a similar
tendency. In the experiments, the orientation of 135◦ is chosen for the calculation of GLCM.

(a) (b) (c) 

Figure 14. GLCM features with different orientations. (a) Mean of second moment; (b) Mean of
homogeneity; (c) Mean of entropy.

The GLCM describes the probability of finding two given pixel gray-level values in a defined
relative position in an image [36]. Displacement indicates the inter-pixel distance. Figure 15 presents
the investigation of GLCM features with different displacements. In the experiment, the features are
calculated at an orientation of 135◦, with a 13 × 13 window size. The results show that the values
changed little when the displacement increased, indicating that the parameter displacement is not
important in the co-occurrence matrix. The ideal distance of pixel offset depends on the level of detail
of the texture that is analyzed. The GLCM cannot capture fine-scale textual information if a large pixel
offset is used [7]. Accordingly, in our experiment, an orientation of 135◦ and a displacement of one
are selected.
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(a) (b) (c) 

Figure 15. GLCM features with different displacements. (a) Mean of second moment; (b) Mean of
homogeneity; (c) Mean of entropy.

5.2. Classification Results

5.2.1. Features for Classification

Classification experiments had been carried out for features analysis. Random forest (RF) is
the classifier. Based on the reference map, we obtained original footprints of 12 totally collapsed
buildings and 52 standing buildings (Figure 9b) in each image. For each test, 6 collapsed buildings and
17 standing buildings are used to train samples, and the corresponding numbers of test samples are six
and 35, respectively. Table 2 shows the classification results with only first-order statistics. Table 3 is
the classification results with only second-order statistics. Table 4 gives the classification results with
all features.

Table 2. Classification results with only first-order statistics (CO = totally collapsed building,
ST = standing building; Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

8 April 2015 4 December 2014 8 December 2014

CO ST Pa CO ST Pa CO ST Pa

CO 5 1 83.3% 4 2 66.7% 6 0 100%
ST 6 29 82.8% 6 29 82.8% 3 32 91.4%
Ua 45.5% 96.7% 40% 93.5% 66.7% 100%

Overall 82.9% 80.5% 92.7%

Table 3. Classification results with only second-order statistics (CO = totally collapsed building,
ST = standing building; Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

8 April 2015 4 December 2014 8 December 2014

CO ST Pa CO ST Pa CO ST Pa

CO 5 1 83.3% 5 1 83.3% 5 1 83.3%
ST 3 32 91.4% 5 30 85.7% 6 29 82.9%
Ua 62.5% 97.0% 50% 96.8% 45.5% 96.7%

Overall 90.2% 85.4% 82.9%
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Table 4. Classification results with all features (CO = totally collapsed building, ST = standing building;
Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

8 April 2015 4 December 2014 8 December 2014

CO ST Pa CO ST Pa CO ST Pa

CO 6 0 100% 5 1 83.3% 6 0 100%
ST 5 30 85.7% 3 32 91.4% 4 31 88.6%
Ua 54.5% 100% 62.5% 97.0% 60% 100%

Overall 87.8% 90.2% 90.2%

Figure 16 illustrates the overall accuracy of the classification results of different images with
different features. The red line in Figure 16 is the results with only first-order statistics of the images.
The green line indicates the results with only second-order statistics of the images. The blue line is
the results with all features of the images. It shows that the classification result with all features is
good and stable for all images, and the overall accuracies are all above 85%. However, the results are
relatively unstable with only first-order statistics and only second-order statistics. As mentioned in
Section 3.3, the mean and variance values can describe the difference of backscattering of the standing
and collapsed buildings. The skewness and kurtosis reflect the difference of shapes of histograms of
the standing and collapsed buildings. The textural measures can reveal textural characteristics of the
two kinds of buildings. Therefore, all features are recommended for classification due to the good
ability to discriminate the standing and collapsed buildings.

Figure 16. Overall accuracy of the classification results of different images with different features.

5.2.2. Classification Results

Based on the reference map, we obtained original footprints of 12 totally collapsed buildings
and 52 standing buildings (Figure 8b) in each image. For each classifier, six collapsed buildings and
17 standing buildings are used to train samples, and the corresponding numbers of test samples are
six and 35, respectively. In the experiments, 10, 20, 50, 100 and 200 trees are used for the RF classifier,
and the classification result with the highest accuracy is recorded and reported. For the SVM classifier,
the C-support vector classification (C-SVC), which was introduced by Cortes et al. [37] and presented
by Chang and Lin [23], is adopted. As suggested by Chang, the radial basis function (RBF) is chosen
as the kernel function to construct the classifier. Furthermore, the two parameters (the kernel width
and penalty coefficient) of the RBF are determined by performing a grid search and cross-validation
method in our study.

Tables 5–7 present the classification results of different classifiers in the three images. For Image 1,
Table 5 shows that the collapsed buildings can be classified well by the three classifiers. Only one
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collapsed building was misclassified as a standing building by the RF. The K-NN classifier gives
the lowest overall accuracy of 80.5%, as there are six standing buildings misclassified as collapsed
buildings. The overall accuracies of RF and SVM reach 90.2%. For Image 2, Table 6 shows that RF
and SVM yield the same results, with overall accuracies of 90.2%. The overall accuracy of K-NN is
87.8%. For Image 3, Table 7 shows that SVM gives the best result, with an overall accuracy of 92.7%.
The overall accuracies of RF and K-NN are 87.8% and 82.9%, respectively.

Table 5. Classification results of Image 1 using different methods (CO = totally collapsed building,
ST = standing building; Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

RF SVM K-NN

CO ST Pa CO ST Pa CO ST Pa

CO 5 1 83.3% 6 0 100% 6 0 100%
ST 3 32 91.4% 4 31 88.6% 9 26 74.3%
Ua 62.5% 97.0% 60% 100% 40% 100%

Overall 90.2% 90.2% 80.5%

Table 6. Classification results of Image 2 using different methods (CO = totally collapsed building,
ST = standing building; Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

RF SVM K-NN

CO ST Pa CO ST Pa CO ST Pa

CO 6 0 100% 6 0 100% 6 0 100%
ST 4 31 88.6% 4 31 88.6% 5 30 85.7%
Ua 60% 100% 60% 100% 54.5% 100%

Overall 90.2% 90.2% 87.8%

Table 7. Classification results of Image 3 using different methods (CO = totally collapsed building,
ST = standing building; Pa = producer’s accuracy, Ua = user’s accuracy).

Type

Classification

RF SVM K-NN

CO ST Pa CO ST Pa CO ST Pa

CO 6 0 100% 6 0 100% 6 0 100%
ST 5 30 85.7% 3 32 91.4% 7 28 80%
Ua 54.5% 100% 66.7% 100% 46.2% 100%

Overall 87.8% 92.7% 82.9%

Based on the analysis above, collapsed buildings and standing buildings can be effectively
separated by the three classifiers, as the overall accuracies of the three classifiers all exceed 80%.
The results of RF and SVM are similar, and these methods outperform the K-NN classifier. Thus,
collapsed buildings can be detected well by the proposed method.

5.2.3. Further Analysis about the Classification

In our experiments, the classifiers adopted are supervised classifiers. Furthermore, they are also
machine learning techniques. The training dataset is very important for these classifiers. To obtain
the training samples, the ground truth must be known. However, after the training dataset has been
built, the classifier can be performed when a new SAR image is input. Table 8 shows the results of
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three tests by the RF classifier. The aim of the tests is to evaluate the ability to classify a new image
based on an existing training dataset. In Test 1 and Test 2, the training dataset is samples from Image 3
(8 April 2015) and Image 2 (8 December 2014), respectively. In Test 3, the training dataset is all samples
from Images 2 and 3. Image 1 (4 December 2014) is the input image for the classification of all of the
tests. As mentioned in Table 1, Images 2 and 3 are descending images, and Image 1 is an ascending
image. In Test 1, the accuracy of the collapsed building is not good. However, the result of Test 2
is acceptable. In Test 3, the results are stable and improved slightly. The results indicate that it is
possible to classify a new image if there is an existing training dataset for the classifier. The result will
be better if the training dataset contains more training samples. In future work, more samples should
be acquired, and images of other research sites should be tested for a more precise conclusion.

Table 8. RF classification results of different tests (CO = totally collapsed building, ST = standing
building, Pa = producer’s accuracy, Ua = user’s accuracy. In Test 1 and Test 2, the training dataset is
samples from Image 3 (8 April 2015) and Image 2 (8 December 2014), respectively. In Test 3, the training
dataset is all samples from Images 2 and 3. Image 1 (4 December 2014) is the input for classification of
all of the tests).

Type

Classification

Test 1 Test 2 Test 3

CO ST Pa CO ST Pa CO ST Pa

CO 6 6 50.0% 8 4 66.7% 8 4 66.7%
ST 1 51 98.1% 4 48 92.3% 3 49 94.2%
Ua 85.7% 89.5% 66.7% 92.3% 72.7% 92.5%

Overall 89.1% 87.5% 89.1%

6. Discussion

Compared with low- or medium-resolution SAR images, VHR SAR image can provide more
detailed information of man-made objects, such as buildings. In 2013, the TerraSAR-X mission was
extended by implementing two new modes including the staring spotlight. The azimuth resolution of
this mode is significantly increased to approximately 0.24 m by widening the azimuth beam steering
angle range [30]. The sub-meter VHR SAR data source provides new opportunities for earthquake
damage mapping and makes it possible to focus an analysis on individual buildings. A new method is
proposed in the paper to use these VHR SAR data for collapsed building detection. The method is
based on the concept that the original footprints of collapsed and standing buildings show different
features in sub-meter VHR SAR images. In an SAR image, the shadow of a standing building covers
the majority of the building’s footprint; thus, the footprint of a standing building usually exhibits low
backscattering intensity. For a collapsed building, debris piles up above the footprint. Some bright
spots can be observed, which are caused by corner reflectors resulting from the composition of different
planes. Therefore, the collapsed building displays different features than do standing buildings in
their original footprints. For the proposed method, the features for classification are derived from
building footprints. Therefore, the high image resolution is the key factor to ensure that the building
footprint contains more pixels for classification. If the building size is large, it also will benefit building
damage detection.

The proposed method avoids the difficulties of finding exact edges for building damage detection.
In VHR SAR images, more features, such as the points and edges of objects, become visible.
Debris exhibits similar features as the surroundings (e.g., vegetation). It is not easy to identify debris
from surroundings such as vegetation with a single SAR image. To solve this problem, the proposed
method uses a building footprint map to locate the original footprints of buildings. The key algorithm
begins with the footprint of a building in an SAR image. The footprint of a building can be provided
by cadastral maps or directly extracted from a pre-event SAR image or other VHR optical data.
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The approach shows a good ability for isolated buildings. However, if the buildings are too
close, the footprint of a low building may be affected by a nearby tall building’s layover in the image.
Because the layover usually shows relatively high backscattering intensity, the low standing building
may be misclassified as a collapsed building by the method. If the debris of a collapsed building is near
a standing building, the incidence wave from the senor may be obstructed by the standing building,
as little of the backscatter wave from the collapsed building can be received by the sensor. In this
case, the collapsed building also shows low backscattering intensity in the footprint, and it may be
misclassified as a standing building.

The high resolution of an SAR image usually means small coverage of a single scene. The scene
extent of a TerraSAR-X ST mode image usually varies between 2.5 and 2.8 km in the azimuth direction
and 4.6 km and 7.5 km in the range [30,38]. The small coverage of ST mode data may not be adequate for
damage detection over a wide area with a single image. Commercial TerraSAR-X services commenced
in January 2008. A TerraSAR-X rebuild was launched as TanDEM-X in 2010 to fly in close formation
with TerraSAR-X [39]. The almost identical Spanish PAZ satellite will be launched in 2016 [40]
and added to the TerraSAR-X reference orbit. The three almost identical satellites will be operated
collectively and deliver optimized revisit times, increase coverages and improve services [41]. When we
monitor Earth surface deformation by earthquakes, SAR images with large coverages are preferable.
When detecting building damage in a town or a city, the coverage requirements of the image may be
smaller. If the study area is a large city, the data can be acquired from TerraSAR-X, TanDEM-X and
PAZ to cover a large area. Therefore, in real applications, we can use large-coverage SAR images to
locate the city or town influenced by an earthquake and perform preliminary damage assessments.
The ST data from TerraSAR-X , TanDEM-X and PAZ can be obtained to monitor the region for a more
detailed and accurate assessment. In addition, airborne VHR SAR images covering the study area can
be used to detect building damage.

7. Conclusions

In this paper, we present a new damage assessment method for buildings using single
post-earthquake sub-meter resolution VHR SAR images and original building footprint maps.
The method can work at the individual building level and determines whether a building is destroyed
after an earthquake or is still standing. First, a building footprint map covering the study area is
obtained as prior knowledge. Then, an SAR image is geometrically rectified by the ground control
points provided by the SAR product files. After rectification, the SAR image can be registered as the
building footprint map. Thus, with the building footprint map, the original footprint of a building can
be located in the SAR image. Then, features can be extracted in the image patch of a building’s footprint
to form a feature vector. Finally, the buildings can be classified into damage classes with classifiers.

We demonstrated the effectiveness of the proposed approach using spaceborne post-event
sub-meter VHR TerraSAR-X ST mode data from old Beichuan County, China, which was heavily
damaged in the Wenchuan earthquake in May 2008. The results show that the method is able to
distinguish between collapsed and standing buildings, with high overall accuracies of approximately
90% for the RF and SVM classifiers. We tested the method using both ascending and descending data,
demonstrating the effectiveness of the proposed method. The results also show that the first-order
statistics and second-order image features derived from building footprints have a good ability to
discriminate standing and collapsed buildings. Furthermore, for the supervised classifiers in our
experiments, after the training dataset has been built, the classifier can be well performed when a new
SAR image is input. In future work, more samples should be acquired, and images of other research
sites should be tested for a more precise conclusion.
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Abstract: After an earthquake, rapidly and accurately obtaining building damage information can
help to effectively guide the implementation of the emergency rescue and can reduce disaster losses
and casualties. Using a single post-earthquake fully-polarimetric synthetic aperture radar (PolSAR)
image to interpret building damage information not only involves a guaranteed data source but is also
easy and can be rapidly implemented. This paper is focused on rapid building earthquake damage
detection in urban areas using post-earthquake PolSAR data. In PolSAR images, the undamaged
buildings parallel to satellite flight pass are different from the collapsed buildings, but the undamaged
buildings divergent to satellite flight pass are very similar to collapsed buildings because of their
volume scattering characteristics. In this paper, the method of polarization orientation angle (POA)
compensation is employed to increase the scattering power of buildings divergent to satellite flight
pass, and then Wishart supervised classification is implemented on the PolSAR data after POA
compensation. In addition, the two parameters of normalized difference of the dihedral component
(NDDC) and ρHHHV are proposed to improve the classification accuracy of the Wishart supervised
classification, and both the undamaged buildings and collapsed buildings are determined. The study
was carried out after the “4.14” Yushu earthquake in Yushu County, Qinghai province, China.
The three damage levels are set for the urban area at the city block scale according to the values of the
BBCR building damage index. The experimental results confirm that the scheme proposed in this
paper can greatly improve the accuracy of the extraction of building damage information.

Keywords: earthquake; buildings; damage assessment; PolSAR

1. Introduction

In recent years, earthquake disasters have become more frequent around the world. The earthquake
is one of the most dangerous natural disasters for human beings, and tens of billions of dollars in
property loss are caused by earthquakes every year. Unfortunately, earthquakes cannot be predicted
accurately at the current scientific level. Rapid and accurate damage assessment can help to reduce the
disaster loss and can provide decision support for the rescue and reconstruction efforts. Buildings are
the places where people live, and most of the casualties and economic losses in an earthquake are
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caused by the damage to buildings [1]. Therefore, building damage assessment is one of the most
important parts of earthquake damage assessment.

The earthquake damage information obtained from a ground survey is the most accurate, but this
process is inefficient and takes a long period of time. Remote sensing, which is characterized by wide
coverage and speediness, is very suitable for areas with poor transport infrastructure and where there
is a risk of secondary disasters. Optical remote sensing images allow easy interpretation, but they are
susceptible to illumination variation [2]. Radar, with its strong penetrating ability, can operate day
and night, independent of weather conditions. As a result, radar has become an important means of
disaster assessment [3–6], but most of the studies of disaster assessment are based on multi-source [7,8]
or multi-temporal data [9–12]. However, obtaining the matched pre-earthquake data is difficult in
some situations, and the registration of the pre- and post-earthquake data is tricky and time-consuming.
Therefore, it is quicker and more convenient to undertake earthquake damage assessment using only
post-event single-temporal data.

Balz [13], Dell’Acqua et al. [14], and Polli et al. [15] have all evaluated building earthquake damage
using only post-earthquake single-polarization synthetic aperture radar (SAR) data. Nevertheless,
PolSAR (fully-polarimetric SAR) data record the scattering amplitude and phase of the HH
(horizontal/horizontal polarization), HV(horizontal/vertical polarization), VH(vertical/horizontal
polarization), and VV(vertical/vertical polarization)polarizations four ways for ground objects, and
can better assist with the understanding of scattering mechanisms [16] than single-polarization SAR
imagery. As a result, building damage assessment using PolSAR imagery is more accurate and more
reliable. Guo et al. [17] and Li et al. [18] introduced the parameter of ρ (circular polarization correlation
coefficient) and proposed the H-α-ρ method to extract the spatial distribution of collapsed buildings in
the Yushu urban area by using only a single post-earthquake SAR image. Subsequently, Zhao et al. [19]
improved the H-α-ρmethod and replaced the parameter of ρ with the normalized circular-pol correlation
coefficient (NCCC), and, at the same time, the homogeneity texture feature was employed to solve
the problem of collapsed buildings and buildings divergent to satellite flight pass being mixed with
each other. Shen et al. [20] extracted collapsed buildings based on feature template matching, using
13 polarimetric features. On account of the present research into building earthquake damage information
extraction being rather limited, this work aims to undertake some new research in this area.

A new scheme for earthquake damage assessment using only a single post-earthquake PolSAR
image is proposed in this study. This work explores the potential of using polarimetric information
to estimate earthquake damage for urban regions. In full PolSAR imagery, the scattering power of
collapsed buildings characterized by volume scattering is weak, and the undamaged buildings are
mainly characterized by double-bounce scattering, for which the scattering power is strong. However,
the buildings divergent to satellite flight pass, which are not parallel to the flight pass, with significant
cross-polarization backscattering, are similar to the collapsed buildings. This ambiguity between the
building types commonly results in overestimation of collapsed buildings in damage assessment.

The buildings divergent to satellite flight pass, rather than the buildings parallel to satellite flight
pass, rotate the polarization basis and induce a polarization orientation angle (POA) shift from zero [21].
Therefore, we first implement POA compensation for the original PolSAR data in order to solve the
scattering mechanism ambiguity between collapsed buildings and buildings divergent to satellite flight
pass. Wishart supervised classification is then performed on the PolSAR data after POA compensation
to extract the initial earthquake damage information. The parameters of the normalized difference of
the dihedral component (NDDC) and the HH-HV correlation coefficient (ρHHHV) are then introduced
to extract the buildings divergent to satellite flight pass, which are added to the undamaged buildings
generated from the Wishart supervised classification. The ρHHHV parameter is also used to improve
the vegetation classification result of the Wishart supervised classification. When the undamaged
buildings and collapsed buildings are acquired, the building collapse rate is quantized at the block
level by the building block collapse rate (BBCR). Finally, a map with three building damage levels for
the whole urban region is drawn according to the threshold value of the BBCR at the block scale.
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2. Methodology

2.1. The Damage Assessment Procedures

There are five key procedures in the process flow of the damage estimation framework proposed
in this study, as shown in Figure 1. Firstly, according to Section 2.2, the method of POA compensation is
performed using the PolSAR data after preprocessing, and the new [T3] matrix after POA compensation
is obtained.

 

Figure 1. The process flow diagram of the damage estimation framework. “YFCD”, “BB”, “Re” and
“Im” represent the Yamaguchi four-component decomposition, the buildings divergent to satellite
flight pass, and the real part and imaginary part of the complex number, respectively. ε, ε1, and ε2 are
the threshold values.

Secondly, the Wishart supervised classification is performed on the PolSAR data after POA
compensation, and this procedure classifies the ground objects into the four classes of undamaged
buildings, collapsed buildings, vegetation, and bare areas.

Thirdly, Yamaguchi four-component decomposition is performed on the PolSAR data before and
after POA compensation, respectively. At the same time, the two dihedral components are respectively
extracted to compute the NDDC, as described in Section 2.4. Next, the ρHHHV parameter described in
Section 2.4 is computed. The buildings divergent to satellite flight pass are then extracted using the
two parameters of the NDDC and ρHHHV. The data items of buildings divergent to satellite flight pass
are added to the undamaged buildings generated from the Wishart supervised classification, and they
become the total undamaged buildings.

According to the third step, the undamaged buildings are extracted. The collapsed buildings are
extracted in the fourth step. The vegetation class generated from the Wishart supervised classification
is corrected by meeting the condition of NDDC < ε. The final output of the class of bare areas is the
same as the classification result of the Wishart supervised classification. After the three classes of
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undamaged buildings, vegetation, and bare areas are determined, the remaining data items are the
collapsed buildings.

Finally, the building collapse rate of each block is derived from the BBCR index described in
Section 2.6, and the damage levels of all the blocks are divided into three levels according to the
threshold values of the BBCR index. The earthquake damage assessment with three damage levels
is then mapped out for the whole urban region. The methodology and parameters are introduced in
detail in the next section.

2.2. Polarization Orientation Angle (POA) Compensation

For enhancing the contrast between buildings divergent to satellite flight pass and collapsed
buildings, the scheme of POA compensation can be used to increase the double-bounce scattering
power of buildings divergent to satellite flight pass.

The buildings divergent to satellite flight pass patch can induce the POA shift θ, which can be
estimated by Equation (1) based on the circular polarization method [21,22]:

θ “
$&
%

θ0, i f θ0 ď π

4
θ0 ´ π

2
, i f θ0 ą π

4

(1)

where
θ0 “ 1

4
rArg pxSRRSL̊Lyq ` πs (2)

According to Lee [21], the data compensation of the orientation angle of θ can be achieved by:

Tθ “ R pθq TR pθqT (3)

where the superscript T denotes the matrix transpose, and the rotation matrix R(θ) is given by:

R pθq “
»
—– 1 0 0

0 cos2θ sin2θ

0 ´sin2θ cos2θ

fi
ffifl (4)

2.3. Wishart Supervised Classification

The scattering power of PolSAR imagery can be greatly increased using the method of POA
compensation. Therefore, in order to extract the undamaged buildings as completely as possible,
Wishart supervised classification based on the complex Wishart distribution of the polarimetric
coherency matrix [23] is performed on the PolSAR data after POA compensation. The classification
algorithm proposed in [24] for polarimetric SAR images is the recommended method for supervised
classification. Details of the Wishart supervised classification algorithm can be found in [23].
The ground objects are classified into four categories using the Wishart supervised classification:
undamaged buildings, collapsed buildings, vegetation, and bare areas. Among the classification
results, the buildings divergent to satellite flight pass will be mixed in both the collapsed buildings
and vegetation classes, so the two classes obtained from the Wishart supervised classification will be
inaccurate. The undamaged buildings class still lack some of the buildings divergent to satellite flight
pass whose scattering power is not strong enough. However, the bare areas class has a high reliability.
Therefore, the results of the Wishart supervised classification are considered as the initial classification
results for extracting the building damage information. The initial extraction results are then improved
using the following two indicators.
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2.4. Building Divergent to Satellite Flight Extraction

Because the results of the Wishart supervised classification are not very accurate, the
two parameters of the NDDC and ρHHHV are proposed to correct the initial classification results.
The buildings divergent to satellite flight pass are extracted using the two parameters of the NDDC
and ρHHHV, which are introduced in the following.

The indicator of the difference of the dihedral component (DDC) is defined as the difference
between the dihedral component obtained from the Yamaguchi four-component decomposition [25,26]
before and after POA compensation. It can be expressed as: the DDC equals the dihedral component
after POA compensation minus the dihedral component before POA compensation. The DDC is
normalized to a positive value range, which is named the normalized difference of the dihedral
component, or the NDDC for short.

The scattering power of the buildings divergent to satellite flight pass is greatly increased after the
POA compensation. Meanwhile, the scattering intensity of the dihedral component generated from
the Yamaguchi four-component decomposition is also increased. The NDDC can measure the change
in the double-bounce scattering power after the POA compensation. The double-bounce scattering
power of the buildings divergent to satellite flight pass changes a great deal after the POA compensation,
while that of the targets with reflection symmetry changes little. That is, the NDDC values of the
buildings divergent to satellite flight pass are high and those of the targets with reflection symmetry are
low. Hence, the NDDC can be introduced in the process of earthquake damage assessment to find the
buildings divergent to satellite flight pass, which can be used to correct the classification result of the
undamaged buildings generated from the Wishart supervised classification. The scattering intensity of
some buildings divergent to satellite flight pass is not increased to as strong as the buildings parallel to
satellite flight pass using the method of POA compensation. Therefore, the class of undamaged buildings
obtained from the Wishart supervised classification is not complete. The main missing undamaged
buildings are the buildings divergent to satellite flight pass whose scattering intensity is not significantly
increased. The data items with high NDDC values correspond to the buildings divergent to satellite
flight pass, which can be added to the undamaged buildings. The threshold value εof the NDDC is set to
distinguish the buildings divergent to satellite flight pass from the other ground objects:

x P buildings divergent to satellite f light pass, i f NDDC pxq ą ε (5)

The ρHHHV parameter is computed using the following equation:

ρHHHV “ xSHHSHV
˚yaxSHHSHH

˚yaxSHVSHV
˚y (6)

where the superscript * denotes the complex conjugate.
In our experiments, we found that the distributions in the complex plane of the ρHHHV parameter

for the buildings divergent to satellite flight pass and collapsed buildings are different. The ρHHHV

parameter for the collapsed buildings is mainly distributed in the third quadrant of the complex plane,
while the ρHHHV parameter for the buildings divergent to satellite flight pass is mainly distributed in
the other areas of the complex plane. Therefore, the buildings divergent to satellite flight pass can be
extracted using the ρHHHV parameter by the expression:

x P buildings divergent to satellite f light pass,
i f pRe pρHHHV pxqq ă ε1 & &Im pρHHHV pxqq ă ε2q “ 0

(7)

where x is the data sample of the PolSAR imagery; “Re” and “Im” denote the real part and imaginary
part of the complex number, respectively; and ε1 and ε2 are the two threshold values of the real part
and imaginary part of ρHHHV, respectively.
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The ρHHHV parameter is computed using the PolSAR data without POA compensation, which
can better distinguish collapsed buildings from buildings divergent to satellite flight pass than using
the PolSAR data after POA compensation, based on experiments.

In this work, the parameters of ρHHHV and the NDDC together determine the buildings divergent
to satellite flight pass. The buildings divergent to satellite flight pass extracted using the NDDC include
some collapsed buildings with the walls divergent to satellite flight, but the buildings divergent to
satellite flight pass extracted by the ρHHHV parameter contain a few collapsed buildings with the walls
divergent to satellite flight. Therefore, the data items simultaneously satisfying the two conditions of
ρHHHV and the NDDC are determined as the buildings divergent to satellite flight pass, which can result
in a higher extraction accuracy for the buildings divergent to satellite flight pass. Using the parameters
of ρHHHV and the NDDC to extract the buildings divergent to satellite flight pass can be expressed as:

x P buildings divergent to satellite f light pass,
i f NDDC pxq ą ε &

pRe pρHHHV pxqq ă ε1 & &Im pρHHHV pxqq ă ε2q “ 0
(8)

The buildings divergent to satellite flight pass extracted by the parameters of ρHHHV and the
NDDC, together with the undamaged buildings generated from the Wishart supervised classification,
are the final output undamaged buildings.

2.5. Collapsed Building Extraction

The vegetation class generated from the Wishart supervised classification still needs to be corrected.
The NDDC values of vegetation items with reflection symmetry are low, and this property can be
used to correct the classification result of the Wishart supervised classification for the vegetation class.
Therefore, the data items of the vegetation generated from the Wishart supervised classification should
simultaneously satisfy the condition of NDDC < ε, and can be determined as the final output of the
vegetation class. The buildings divergent to satellite flight pass are determined according to Section 2.4,
and the bare areas are obtained through the Wishart supervised classification. By excluding the data
items of the above three classes, the remaining data items can be classified as the collapsed buildings.

2.6. Building Collapse Rate Calculation

The building collapse rate is calculated at the block scale, and is defined as the ratio of the
collapsed building samples to the total number of building samples in one block. The damage level
of one block can be indexed by the building collapse rate of the block. The building collapse rate of
blocks is introduced to handle the damage assessment at the block scale, and it is termed the building
block collapse rate (BBCR). The blocks separated by roads are regarded as individual areas of similar
built-up patch structure [19]. Each block is assigned a BBCR to assess the damage level of the block.
The BBCR is expressed as:

BBCRj “
ř
i

Cijř
i

Uij ` ř
i

Cij
(9)

where BBCRj is the BBCR of the jth block; Cij indicates whether pixel i in the jth block belongs to
a collapsed building or not, with values of 0 or 1; and Uij indicates whether pixel i in the jth block
belongs to a undamaged building or not, with values of 0 or 1.

3. Experimental Results and Analysis

3.1. Experimental Data

The study case is the “4.14” Yushu earthquake with magnitude 7.1 which occurred on 14th April, 2010.
This earthquake severely affected the county of Yushu in Qinghai province of China. The location of the
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epicenter was 33.1˝N and 96.6˝E, as shown in Figure 2. The area is characterized by complicated terrain,
poor transport infrastructure, and harsh climate. The vegetation of the Yushu urban region is sparse
and low level, and the buildings are mainly rural residential buildings. More than 240,000 people were
affected by the earthquake, and more than 2600 people died as a result of the earthquake. There were
many collapsed buildings and more than 22 billion CNY of direct economic losses. The experiments
were carried out on the post-event airborne PolSAR imagery to validate the effectiveness of the
proposed approach for earthquake damage assessment. The PolSAR imagery was acquired one
day after the earthquake by the Chinese airborne SAR mapping system (SARMapper), which was
developed by a group led by the Chinese Academy of Surveying and Mapping (CASM). The system
collects P-band data, and both the range resolution and azimuth resolution are approximately 1 m.
Some specific information about the PolSAR data used in this work is listed in Table 1. The Pauli RGB
image is shown in Figure 3, formed as a color composite of |HH ´ VV| (red), |HV| (green), and
|HH + VV| (blue), with the size of 8192 ˆ 4384 pixels. The mountains surrounding Yushu County
account for a large part of the imagery. In order to focus on analyzing the buildings of the urban
area, an urban area mask was applied to discard the mountains and preserve the urban area as the
region of interest. To allow a comparison with the existing damage assessment maps of the 4.14 Yushu
earthquake [19,27,28], the geographic information system (GIS) data layer was depicted manually
along the major roads and by reference to these damage assessment maps. The urban area was divided
into 72 blocks by the GIS data layer containing 72 polygons, and the layout and characteristics of the
buildings within the city blocks were similar. The ground-truth map shown in Figure 4 was drawn
with reference to the above-mentioned damage assessment maps [19,27,28] and the high-resolution
QuickBird image of Yushu County, and the damage levels were grouped into three levels for the
72 city blocks.

Table 1. Information about the fully-polarimetric synthetic aperture radar (PolSAR) data used in this work.

Date Flight Direction
Illumination

Direction
Incidence

Angle
Band

Flight
Altitude (m)

Spatial
Resolution (m)

15 April 2010 From right to left Bottom 50˝ P 10,079 1 (range);
1 (azimuth)

O

130°E

130°E

120°E

120°E

110°E

110°E

100°E

100°E

90°E

90°E

80°E

80°E

50
°N

50
°N

40
°N

40
°N

30
°N

30
°N

20
°N

20
°N

±

0 990,000 1,980,000 Meters

"4.14" Yushu Earthquake
Ms7.1
Date: 14 April,2010
Depth: 33km
Epicenter: 33.1°N, 96.6°E

Yushu County

Qinghai

Figure 2. Map of the location of Yushu earthquake.
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Figure 3. Pauli RGB color composite (|HH ´ VV| (red), |HV| (green), and |HH + VV| (blue)) image
of Yushu County. The areas marked by red and blue rectangles are the samples for collapsed buildings
and buildings divergent to satellite flight pass, respectively. The center coordinates of the image are
33˝01911N and 97˝011111E.

 
Figure 4. Reference map for the earthquake damage assessment, with three damage levels: slight
damage, moderate damage, and serious damage. If more than half of the buildings collapsed after
the earthquake, the city block was considered as serious damage. The city block with less than
one-third buildings collapsing was considered as slight damage. The city block with the damage level
between slight damage and serious damage was considered as moderate damage.

3.2. The Results of the Experiments

According to the process flow of the earthquake damage assessment shown in Figure 1, the POA
shift was first estimated based on the circular polarization method, and the POA compensation described
in Section 2.2 was carried out for the PolSAR data after speckle noise filtering. The two dihedral
components before and after POA compensation were then extracted on the basis of Yamaguchi
four-component decomposition. As can be seen from Figure 5, the dihedral component image brightness
changed after the POA compensation, and there are great differences in some parts of the two images,
such as the upper right part and the bottom left part. These areas are mainly undamaged buildings
divergent to satellite flight pass and collapsed buildings divergent to satellite flight pass. The NDDC
parameter described in Section 2.4 was calculated and is shown in Figure 6. According to the color
bar in Figure 6, 190 can be easily chosen as the threshold value for distinguishing the buildings
divergent to satellite flight pass from the other ground objects, which are mainly reflection symmetric.
The areas corresponding to NDDC > 190 are mainly buildings divergent to satellite flight pass.
Meanwhile, the PolSAR data after POA compensation were classified into undamaged buildings,
collapsed buildings, vegetation, and bare areas using the Wishart supervised classification described
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in Section 2.3. For vegetation, the NDDC was less than 190. Therefore, if a data item was classified as
vegetation by the Wishart supervised classification, and simultaneously satisfied NDDC < 190, it was
finally classified as vegetation.

 
(a) 

 
(b) 

Figure 5. Images of the dihedral component before and after POA compensation. (a) before POA
compensation; (b) after POA compensation.

Figure 6. NDDC map.

The ρHHHV parameter was calculated according to Section 2.4 using the PolSAR data without
POA compensation. The 5000 samples were randomly selected from the two regions of interest (ROIs)
of buildings divergent to satellite flight pass and the two ROIs of collapsed buildings, respectively,
and are shown in Figure 7. As can be seen from Figure 7, the collapsed building samples are mainly
distributed in the third quadrant of the complex plane, and the buildings divergent to satellite flight
samples are mainly located in other parts of the complex plane. Therefore, the buildings divergent to
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satellite flight pass class can be finally determined by the condition that the complex number ρHHHV

is not in the third quadrant of the complex plane, and the NDDC is greater than 190. The buildings
divergent to satellite flight pass and the undamaged buildings generated from the Wishart supervised
classification, which are mainly undamaged buildings parallel to satellite flight pass, together form the
final classification result of the undamaged buildings.

Figure 7. ρHHHV of the building divergent to satellite flight samples and collapsed building samples.
The red dots and blue dots represent the collapsed building samples and the building divergent to
satellite flight samples, respectively.

The bare areas class was determined by the classification result of the Wishart supervised
classification. The collapsed buildings were considered to be the remaining parts after removing
the three classes of vegetation, undamaged buildings, and bare areas. The distribution map of the
non-buildings and the three kinds of buildings is shown in Figure 8. The building damage level index
of each block was implemented using the BBCR method described in Section 2.6, as shown in Figure 9.
A greater BBCR value corresponds to a more seriously damaged block. Three damage levels were set
for the building collapse degree of the blocks. When the BBCR was less than 0.3, the damage level was
set as slight damage. A BBCR of greater than 0.5 was set as the serious damage level, and a BBCR value
of between 0.3 and 0.5 was considered to be moderate damage. The results of the damage assessment
are shown in Figure 10, where the numbered blocks are the misclassified blocks, and the color of the
numbers denotes the correct damage level. For example, the no. 8 block should actually be slightly
damaged (green), but is misclassified as moderate damage (blue).

Figure 8. Distribution map of the non-buildings and the three kinds of buildings at the block scale.
The NB, PB, BB and CB represent the non-buildings, the buildings parallel to satellite flight pass, the
buildings divergent to satellite flight pass and the collapsed buildings, respectively.
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Figure 9. BBCR map for each block.

 

Figure 10. The damage assessment results. The numbered blocks are misclassified, and the color of the
numbers denotes the color of the correct damage level.

3.3. Analysis and Discussion

The whole procedure of the production of a damage assessment map has taken five to six hours,
which can meet rapid acquisition for buildings damage information after an earthquake. The damage
assessment accuracies of the proposed method and the method only using the PolSAR data without
POA compensation for the Wishart supervised classification are listed in Table 2. As can be seen in
Table 2, the method proposed in this study significantly improves the damage assessment accuracy.
In addition, compared with the method proposed by Zhao et al. [19], the proposed method again
greatly improves the damage assessment accuracy. For the seriously damaged blocks, there are
actually 25 blocks in the ground-truth map, but there are 31 blocks classified by the Wishart supervised
classification using the PolSAR data without POA compensation, while there are 26 blocks generated by
the proposed method. Therefore, the method proposed in this study also reduces the over-assessment
of the building collapse rate, which could help to save human, physical, and financial resources for the
emergency rescue after an earthquake.

Table 2. Comparison of the damage assessment accuracy of the two methods.

The Proposed Method Wishart Supervised Classification

(Experiment)

SLD MOD SED SLD MOD SED

(No. of Blocks)

(Reference)
SLD 10 4 0 9 3 2

MOD 1 30 2 3 22 8
SED 0 1 24 0 4 21

OA: 88.89% OA: 72.22%

OA, SLD, MOD, and SED represent overall accuracy, slight damage, moderate damage, and serious
damage, respectively.
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For the results of the method proposed in this study with the Yushu earthquake data, there are
eight blocks misclassified. Among them, the damage levels of both block no. 1 and block no. 4 are
underestimated, while the damage levels of blocks no. 2 and no. 3 and blocks nos. 5 to 8 are overestimated.
These blocks are mainly low-rise and small rural residential buildings with earth/wood structure
or masonry structure. The remaining walls of the collapsed buildings present dihedral scattering
characteristics and are easily misclassified as undamaged buildings. Thus, some remaining parts
of the damaged buildings parallel to satellite flight pass and the damaged buildings divergent to
satellite flight pass may be misclassified as undamaged buildings, which is the main reason for the
underestimation of the block damage level. The buildings divergent to satellite flight pass cannot be
completely extracted with just the two parameters of the NDDC and ρHHHV, so some ground objects
with comparatively weak scattering power and characterized by volume scattering are still classified as
collapsed buildings. This results in the overestimation of the building collapse rate at the block scale.

4. Conclusions

Collapsed buildings caused by an earthquake are one of the main causes of casualties, so rapid
acquisition of the collapsed building information after the earthquake can play an extremely important
role in saving lives. The use of only a single post-earthquake PolSAR image to extract the collapse
information can meet the needs of rapid and accurate disaster information acquisition, and can assist
with a rapid and effective emergency rescue operation. In this study of earthquake damage assessment,
the two parameters of the NDDC and ρHHHV were used to improve the classification results of Wishart
supervised classification performed on the PolSAR data after POA compensation, with the aim of
obtaining non-buildings, undamaged buildings (including the buildings parallel to satellite flight pass
and the buildings divergent to satellite flight pass), and collapsed buildings.

This feasibility study was performed on the airborne PolSAR imagery acquired one day after
the Yushu earthquake. The buildings divergent to satellite flight pass were extracted based on the
conditions of NDDC > 190 and ρHHHV not being in the third quadrant of the complex plane, and were
included in the undamaged buildings. These operations improved the accuracy of the undamaged
building extraction. Using the condition of NDDC < 190 to restrict the vegetation generated from
the Wishart supervised classification improved the non-building extraction accuracy and reduced the
numbers of collapsed buildings divergent to satellite flight pass mixed with the vegetation class. At the
same time, the above operations excluded the non-buildings and undamaged buildings as much as
possible, and also improved the extraction accuracy of the collapsed buildings. Finally, the earthquake
damage assessment map of the Yushu urban region with three damage levels at the block scale was
obtained according to the value of the BBCR index for each block. The damage assessment at the block
scale can not only be flexibly applied to multiple-resolution radar images and can avoid some of the
errors of damage assessment at the single-building scale, but could also be more effective in assisting
with making comprehensive arrangements in the process of emergency rescue.

All in all, the method proposed in this study can greatly improve the accuracy of earthquake
damage assessment. Nevertheless, some undamaged buildings divergent to satellite flight still cannot
be extracted, and some remaining parts of collapsed buildings are easily misidentified as undamaged
buildings, which is the main reason for the errors in the building earthquake damage information
extraction. In our future work, state-of-the-art filtering methods [29] and multi-classifier fusion [30,31]
will be considered to improve the current results.
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