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Abstract: During the last decades, in the area of machine learning and data mining,
the development of ensemble methods has gained a significant attention from the scientific
community. Machine learning ensemble methods combine multiple learning algorithms to obtain
better predictive performance than could be obtained from any of the constituent learning algorithms
alone. Combining multiple learning models has been theoretically and experimentally shown to
provide significantly better performance than their single base learners. In the literature, ensemble
learning algorithms constitute a dominant and state-of-the-art approach for obtaining maximum
performance, thus they have been applied in a variety of real-world problems ranging from face and
emotion recognition through text classification and medical diagnosis to financial forecasting.

Keywords: ensemble learning; homogeneous and heterogeneous ensembles; fusion strategies; voting
schemes; model combination; black, white and gray box models; incremental and evolving learning

1. Introduction

This article is the editorial of the “Ensemble Learning and Their Applications”(https://www.mdpi.
com/journal/algorithms/special_issues/Ensemble_Algorithms) Special Issue of the Algorithms journal.
The main aim of this Special Issue is to present the recent advances related to all kinds of ensemble
learning algorithms, frameworks, methodologies and investigate the impact of their application in
a diversity of real-world problems. The response of the scientific community has been significant,
as many original research papers have been submitted for consideration. In total, eight (8) papers
were accepted, after going through a careful peer-review process based on quality and novelty criteria.
All accepted papers possess significant elements of novelty, cover a diversity of application domains
and introduce interesting ensemble-based approaches, which provide readers with a glimpse of the
state-of-the-art research in the domain.

During the last decades, the development of ensemble learning methodologies and techniques has
gained a significant attention from the scientific and industrial community [1–3]. The basic idea behind
these methods is the combination of a set of diverse prediction models for obtaining a composite global
model which produces reliable and accurate estimates or predictions. Theoretical and experimental
evidence proved that ensemble models provide considerably better prediction performance than single
models [4]. Along this line, a variety of ensemble learning algorithms and techniques have been
proposed and found their application in various classification and regression real-word problems.

2. Ensemble Learning and Applications

The first paper is entitled “A Weighted Voting Ensemble Self-Labeled Algorithm for the Detection of
Lung Abnormalities from X-Rays” and it is authored by Livieris et al. [5]. The authors presented a new
ensemble-based semi-supervised learning algorithm for the classification of lung abnormalities from
chest X-rays. The proposed algorithm exploits a new weighted voting scheme which assigns a vector of
weights on each component learner of the ensemble based on its accuracy on each class. The proposed
algorithm was extensively evaluated on three famous real-world benchmarks, namely the Pneumonia
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chest X-rays dataset from Guangzhou Women and Children’s Medical Center, the Tuberculosis
dataset from Shenzhen Hospital and the cancer CT-medical images dataset. The presented numerical
experiments showed the efficiency of the proposed ensemble methodology against simple voting
strategy and other traditional semi-supervised methods.

The second paper is authored by Papageorgiou et al. [6] entitled “Exploring an Ensemble of Methods
that Combines Fuzzy Cognitive Maps and Neural Networks in Solving the Time Series Prediction Problem of
Gas Consumption in Greece”. This paper presents an innovative ensemble time-series forecasting model
for the prediction of gas consumption demand in Greece. The model is based on an ensemble learning
technique which exploits evolutionary Fuzzy Cognitive Maps (FCMs), Artificial Neural Networks
(ANNs) and their hybrid structure, named FCM-ANN, for time-series prediction. The prediction
performance of the proposed model was compared against that of the Long Short-Term Memory
(LSTM) model on three time-series datasets concerning data from distribution points which compose
the natural gas grid of a Greek region. The presented results illustrated empirical evidence that the
proposed approach could be effectively utilized to forecast gas consumption demand.

The third paper “A Grey-Box Ensemble Model Exploiting Black-Box Accuracy and White-Box Intrinsic
Interpretability” was written by Pintelas et al. [7]. In this interesting study, the authors proposed a new
framework for the development of a Grey-Box machine learning model based on the semi-supervised
philosophy. The advantages of the proposed model are that it is nearly as accurate as a Black-Box
and it is also interpretable like a White-Box model. More specifically, in their proposed framework,
a Black-Box model was utilized for enlarging a small initial labeled dataset, adding the model’s most
confident predictions of a large unlabeled dataset. In the sequel, the augmented dataset was utilized
for training a White-Box model which greatly enhances the interpretability and explainability of the
final model (ensemble). For evaluating the flexibility as well as the efficiency of the proposed Grey-Box
model, the authors used six benchmarks from three real-world application domains, i.e., finance,
education, and medicine. Based on their detailed experimental analysis the authors stated that the
proposed model reported comparable and sometimes better prediction accuracy compared to that of a
Black-Box while being at the same time interpretable as a White-Box model.

The fourth paper was authored by Karlos et al. [8] entitled “A Soft-Voting Ensemble Based
Co-Training Scheme Using Static Selection for Binary Classification Problems”. The authors presented
an ensemble-based co-training scheme for binary classification problems. The proposed methodology
is based on the imposition of an ensemble classifier as a base learner in the co-training framework.
Its structure is determined by a static ensemble selection approach from a pool of candidate learners
Their experimental results in a variery of classical benchmarks as well as the reported statistical
analysis showed the efficacy and efficiency of their approach.

An interesting research entitled “GeoAI: A Model-Agnostic Meta-Ensemble Zero-Shot Learning Method
for Hyperspectral Image Analysis and Classification was authored by Demertzis and Iliadis [9]. In this
work, a new classification model was proposed, named MAME-ZsL (Model-Agnostic Meta-Ensemble
Zero-shot Learning), which is based on zero-shot philosophy for geographic object-based scene
classification. The attractive advantages of the proposed model are its training stability, its low
computational cost, but mostly its remarkable generalization performance thought the reduction of
potential overfitting. This is performed by the selection of features which do not cause the gradients
to explode or diminish. Additionally, it is worth noticing that the superiority of MAME-ZsL model
lies on the fact that the testing set contained instances whose classes were not contained in the
training set. The effectiveness of the proposed architecture was presented against state-of-the-art fully
supervised deep learning models on two datasets containing images from a reflective optics system
imaging spectrometer.

Zvarevashe and Olugbara [10] presented a research paper entitled “Ensemble Learning of Hybrid
Acoustic Features for Speech Emotion Recognition”. Signal processing and machine learning methods
are widely utilized for recognizing human emotions based on extracted features from video files,
facial images or speech signals. The authors studied the problem that many classification models
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were not able to efficiently recognize fear emotion with the same level of accuracy as other emotions.
To address this problem, they proposed an elegant methodology for improving the precision of fear and
other emotions recognition from speech signals, based on an interesting feature extraction technique.
In more detail, their framework extracts highly discriminating speech emotion feature representations
from multiple sources which are subsequently agglutinated to form a new set of hybrid acoustic
features. The authors conducted a series of experiments on two public databases using a variety of
state-of-the-art ensemble classifiers. The presented analysis which reported the efficiency of their
approach, provided evidence that the utilization of the new features increased the generalization
ability of all ensemble classifiers.

The seventh paper entitled “Ensemble Deep Learning for Multilabel Binary Classification of
User-Generated Content is authored by Haralabopoulos et al. [11]. The authors presented an multilabel
ensemble model for emotion classification which exploits a new weighted voting strategy based on
differential evolution. Additionally, the proposed model used deep learning learners which comprised
of convolutional and pooling layers as well as (LSTM) layers which are dedicated for such classification
problems. To present the efficiency of their model, they conducted a performance evaluation, on two
large and widely used datasets, against state-of-the-art single models and ensemble models which
were comprised with the same base learners. The reported numerical experiments showed that
the proposed model presented improved classification performance, outperforming state-of-the-art
compared models.

Finally, the eighty paper ”Ensemble Deep Learning Models for Forecasting Cryptocurrency Time-Series”
was authored by Livieris et al. [12]. The main contribution of this research is the combination of three
of the most widely employed ensemble strategies: ensemble-averaging, bagging and stacking with
advanced deep learning methodologies for forecasting the cryptocurrency hourly prices of Bitcoin,
Etherium and Ripple. More analytically, the ensemble models utilized state-of-the-art deep learning
models as component learners, which were comprised by combinations of LSTM, Bi-directional
LSTM and convolutional layers. The authors conducted an exhaustive experimentation in which the
performance of all ensemble deep learning models was compared on both regression and classification
problems. The models were evaluated on forecasting of the cryptocurrency price on the next hour
(regression) and also on the prediction of next price directional movement (classification) with respect
to the current price. Furthermore, the reliability of all ensemble model as well as the efficiency of
their predictions was studied by examining for autocorrelation of the errors. The detailed numerical
analysis indicated that ensemble learning strategies and deep learning techniques can be efficiently
beneficial to each other, and develop accurate and reliable cryptocurrency forecasting models.

We would like to thank the Editor-in-Chief and the editorial office of the Algorithms journal for
their support and for trusting us with the privilege to edit a special issue in this high-quality journal.

3. Conclusions and Future Approaches

The motivation behind this Special Issue was to make a minor and timely contribution to the
existing literature. It is hoped that the novel approaches presented in this Special Issue will be
found interesting, constructive and appreciated by the international scientific community. It is also
expected that they will inspire further research on innovative ensemble strategies and applications in
various multidisciplinary domains. Future approaches may involve exploiting ensemble learning for
improving prediction accuracy, machine learning explainability and enhancing model’s reliability.

Funding: No funding was provided for this work.

Acknowledgments: The guest editors wish to express their appreciation and deep gratitude to all authors and
reviewers which contributed to this Special Issue.

Conflicts of Interest: The guest editors declare no conflict of interest.
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Abstract: During the last decades, intensive efforts have been devoted to the extraction of useful
knowledge from large volumes of medical data employing advanced machine learning and data
mining techniques. Advances in digital chest radiography have enabled research and medical centers
to accumulate large repositories of classified (labeled) images and mostly of unclassified (unlabeled)
images from human experts. Machine learning methods such as semi-supervised learning algorithms
have been proposed as a new direction to address the problem of shortage of available labeled data,
by exploiting the explicit classification information of labeled data with the information hidden in
the unlabeled data. In the present work, we propose a new ensemble semi-supervised learning
algorithm for the classification of lung abnormalities from chest X-rays based on a new weighted
voting scheme. The proposed algorithm assigns a vector of weights on each component classifier of
the ensemble based on its accuracy on each class. Our numerical experiments illustrate the efficiency
of the proposed ensemble methodology against other state-of-the-art classification methods.

Keywords: machine learning; semi-supervised learning; self-labeled algorithms; classifiers; ensemble
learning; weighted voting; image classification; lung abnormalities

1. Introduction

The automatic detection of abnormalities, diseases and pathologies constitutes a significant factor
in computer-aided medical diagnosis and a vital component in radiologic image analysis. For over
a century, radiology has been a typical method for abnormality detection. A typical radiological
examination is performed by utilizing a posterior–anterior chest radiograph, which is most commonly
called Chest X-Ray (CXR). CXR imaging is widely used for health diagnosis and monitoring, due to
its relatively low cost and easy accessibility; thus, it has been established as the single most acquired
medical image modality [1]. It constitutes a significant factor for the detection and diagnosis of several
pulmonary diseases, such as tuberculosis, lung cancer, pulmonary embolism and interstitial lung
disease [1]. However, due to increasing workload pressures, many radiologists today have to daily
examine an enormous number of CXRs. Thus, a prediction system trained to predict the risk of specific
abnormalities given a particular CXR image is considered essential for providing high quality medical
assistance. More specifically, such a decision support system has the potential to support the reading
workflow, improve efficiency and reduce prediction errors. Moreover, it could be used to enhance the
confidence of the radiologist or prioritize the reading list where critical cases would be read first.

The significant advances in digital chest radiography and the continuously enlarged storage
capabilities of electronic media have enabled research centers to accumulate large repositories of
classified (labeled) images and mostly of unclassified (unlabeled) images from human experts. To this
end, researchers and medical staff were able to leverage and exploit these images by the adoption
of machine learning and data mining techniques for the development of intelligent computational

Algorithms 2019, 12, 64; doi:10.3390/a12030064 www.mdpi.com/journal/algorithms5
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systems in order to extract useful and valuable information. As a result, the areas of biomedical
research and diagnostic medicine have been dramatically transformed, from rather qualitative sciences
which were based on observations of whole organisms to more quantitative sciences which are now
based on the extraction of useful knowledge from a large amount of data [2].

Nevertheless, distinguishing the various chest abnormalities from CXRs is a rather challenging
task, not only for a prediction model but even for an human expert. The progress in the field has
been hampered by the lack of available labeled images for efficiently training a powerful and accurate
supervised classification model. Moreover, the process of correctly labeling new unlabeled CXRs
usually incurs monetary costs and high time since it constitutes a long and complicated process and
requires the efforts of specialized personnel and expert physicians.

Semi-Supervised Learning (SSL) algorithms have been proposed as a new direction to address
the problem of shortage of available labeled data, comprising characteristics of both supervised
and unsupervised learning algorithms. These algorithms efficiently develop powerful classifiers
by meaningfully relating the explicit classification information of labeled data with the information
hidden in the unlabeled data [3,4]. Self-labeled algorithms probably constitute the most popular class
of SSL algorithms due to their simplicity of implementation, their wrapper-based philosophy and
good classification performance [2,5–8]. This class of algorithms exploits a large amount of unlabeled
data via a self-learning process based on supervised learners. In other words, they perform an iterative
procedure, enriching the initial labeled data, based on the assumption that their own predictions tend
to be correct.

Recently, Triguero et al. [9] proposed an in-depth taxonomy based on the main characteristics
presented in them and conducted a comprehensive research of their classification efficacy on several
datasets. Generally, self-labeled algorithm can be classified in two main groups: Self-training and
Co-training. In the original Self-training [10], a single classifier is iteratively trained on an enlarged
labeled dataset with its most confident predictions on unlabeled data while in Co-training [11], two
classifiers are separately trained utilizing two different views on a labeled dataset and then each
classifier augments the labeled data of the other with its most confident predictions on unlabeled data.
Along this line, several self-labeled algorithms have been proposed in the literature, while some of
them exploit ensemble methodologies and techniques.

Democratic-Co learning [12] is based on an ensemble philosophy since it uses three independent
classifiers following a majority voting and a confidence measurement strategy for predicting the values
of unlabeled examples. Tri-training algorithm [13] utilizes a bagging ensemble of three classifiers which
are trained on data subsets generated through bootstrap sampling from the original labeled set and
teach each other using on majority voting strategy. Co-Forest [14] utilizes bootstrap sample data from
the labeled set in order to train Random trees. At each iteration, each random tree is reconstructed by
newly selected unlabeled instances for its concomitant ensemble, utilizing a majority voting technique.
Co-Bagging [15] trains multiple base classifiers on bootstrap data created by random resampling with
replacement from the training set. Each bootstrap sample contains about 2/3 of the original training
set, where each example can appear multiple times. Recently, a new approach has been given by
Livieris et al. [2,8,16,17] and Livieris [18] in which some ensemble self-labeled algorithms are proposed
based on voting schemes. The proposed algorithms exploit the individual predictions of the most
efficient and frequently used self-labeled algorithms using simple voting methodologies.

Motivated by these works, we propose a new semi-supervised self-labeled algorithm which
is based on a sophisticated ensemble philosophy. The proposed algorithm exploits the individual
predictions of self-labeled algorithms, using a new weighted voting methodology. The proposed
weighted strategy assigns weights on each component classifier of the ensemble based on its accuracy
on each class. Our main aim is to measure the effectiveness of our weighted voting ensemble scheme
over the majority voting ensembles, using identical component classifiers in all cases. On top of
that, we want to verify that powerful classification models could be developed by the adaptation of
advanced ensemble methodologies in the SSL framework. Our preliminary numerical experiments
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prove the efficiency and the classification accuracy of the proposed algorithm, demonstrating that
reliable prediction models could be developed by incorporating ensemble methodologies in the
semi-supervised framework.

The remainder of this paper is organized as follows: Section 2 presents a brief survey of recent
studies concerning the application of machine learning for the detection of lung abnormalities from
X-rays. Section 3 presents a detailed description of the proposed weighted voting scheme and ensemble
algorithm. Section 4 presents a series of experiments carried out in order to examine and evaluate the
accuracy of the proposed algorithm against the most popular self-labeled classification algorithms.
Finally, Section 5 discusses the conclusions and some research topics for future work.

2. Related Work

The significance of medical imaging for the diagnosis of diseases has been established for the
treatment of chest pathologies and their early detection. During the last decades, the advances of digital
technology and chest radiography as well as the rapid development of digital image retrieval have
renewed the progress in new technologies for the diagnosis of lung abnormalities. More specifically,
research has been focused on the development of Computer-Aided Diagnostic (CAD) models for
abnormality detection in order to assist medical staff. Along this line, a variety of methodologies
have been proposed based on machine learning techniques, aiming on classifying and/or detecting
abnormalities in patients’ medical images. A number of studies have been carried out in recent years;
some useful outcomes of them are briefly presented below.

Jaeger et al. [19] proposed a CAD system for tuberculosis in conventional posteroanterior chest
radiographs. Their proposed model initially utilizes a graph cut segmentation method to extract the
lung region from the CXRs and then a set of texture and shape features in the lung region is computed
in order to classify the patient as normal or abnormal. Their extensive numerical experiments on two
real-world datasets illustrated the efficiency of the proposed CAD system for tuberculosis screening,
achieving higher performance compared to that of human readings.

Melendez et al. [20] recommend a novel CAD system for detecting tuberculosis on chest X-rays
based on multiple-instance learning. Their proposed system is based on the idea of utilizing probability
estimations, instead of the sign of a decision function, to guide the multiple-instance learning process.
Furthermore, an advantage of their method is that it does not require labeling of each feature sample
during the training process but only a global class label characterizing a group of samples.

Alam et al. [21] utilized a multi-class support vector machine classifier and developed an efficient
lung cancer detection and prediction model. The image enhancement and image segmentation have
been done independently in every stage of the classification process. Image scaling, color space
transformation and contrast enhancement have been utilized for image enhancement while threshold
and marker-controlled watershed have been utilized for segmentation. In the sequel, the support
vector machine classifier categorizes a set of textural features extracted from the separated regions of
interest. Based on their numerical experiments, the authors concluded that the proposed algorithm
can efficiently detect a cancer-affected cell and its corresponding stage such as initial, middle, or final.
Furthermore, in case no cancer-affected cell is found in the input image then it checks the probability
of lung cancer.

In more recent works, Madani [22] focused on the detection of abnormalities in chest X-ray images,
having available only a fairly small size dataset of annotated images. Their proposed method deals
with both problems of labeled data scarcity and data domain overfitting, by utilizing Generative
Adversarial Networks (GAN) in a SSL architecture. In general, GAN utilize two networks: a generator
which seeks to create as realistic images as possible and a discriminator which seeks to distinguish
between real data and generated data. Next, these networks are involved in a minimax game to find the
Nash equilibrium between them. Based on their experiments, the author concluded that the annotation
effort is reduced considerably to achieve similar performance through supervised training techniques.

7



Algorithms 2019, 12, 64

In [2], Livieris et al. evaluated the classification efficacy of an ensemble SSL algorithm, called
CST-Voting, for CXR classification of tuberculosis. The proposed algorithm combines the individual
predictions of three efficient self-labeled algorithms i.e., Co-training, Self-training and Tri-training
using a simple majority voting methodology. The authors presented some interesting results,
illustrating the efficiency of the proposed algorithm against several classical algorithms. Additionally,
their experiments lead them to the conclusion that reliable and robust prediction models could
be developed utilizing a few labeled and many unlabeled data. In [16] the authors extended the
previous work and proposed DTCo algorithm for the classification of X-rays. The proposed ensemble
algorithm exploits the predictions of Democratic-Co learning, Tri-training and Co-Bagging utilizing a
maximum-probability voting scheme. Along this line, Livieris et al. [17] proposed EnSL algorithm
which constitutes a generalized scheme of the previous works. More specifically, EnSL constitutes
a majority voting scheme of N self-labeled algorithms. Their preliminary numerical experiments
demonstrated that robust classification models could be developed by the adaptation of ensemble
methodologies in the SSL framework.

Guan and Huang [23] considered the problem of multi-label thorax disease classification on chest
X-ray images by proposing a Category-wise Residual Attention Learning (CRAL) framework. CRAL
predicts the presence of multiple pathologies in a class-specific attentive view, aiming to suppress the
obstacles of irrelevant classes by endowing small weights to the corresponding feature representation
while the same time, the relevant features would be strengthened by assigning larger weights. More
analytically, their proposed framework consists of two modules: feature embedding module and
attention learning module. The feature embedding module learns high-level features using a neural
network classifier while the attention learning module focuses on exploring the assignment scheme
of different categories. Based on their numerical experiments, the authors stated that their proposed
methodology constitutes a new state of the art.

3. A New Weighted Voting Ensemble Self-Labeled Algorithm

In this section, we present a detailed description of the proposed self-labeled algorithm, which is
based on an ensemble philosophy, entitled Weighed voting Ensemble Self-Labeled (WvEnSL) algorithm.

Generally, the generation of an ensemble of classifiers considers mainly two steps: Selection and
Combination. The selection of the component classifiers is considered essential for the efficiency of
the ensemble and the key point for its efficacy is based on their diversity and their accuracy; while
the combination of the individual classifiers’ predictions takes place through several techniques with
different philosophy [24,25].

By taking these into consideration, the proposed algorithm is based on the idea of selecting a set
C = (C1, C2, . . . , CN) of N self-labeled classifiers by applying different algorithms (with heterogeneous
model representations) to a single dataset and the combination of their individual predictions takes
place through a new weighted voting methodology. It is worth noticing that weighted voting is a
commonly used strategy for combining predictions in pairwise classification in which the classifiers are
not treated equally. Each classifier is evaluated on a evaluation set D and associated with a coefficient
(weight), usually proportional to its classification accuracy.

Let us consider a dataset D with M classes, which is utilized for the evaluation of each component
classifier. More specifically, the performance of each classifier Ci, with i = 1, 2, . . . , N is evaluated on D
and a N × M matrix W is defined, as follows

W =

⎡
⎢⎢⎢⎢⎣

w1,1 w1,2 . . . w1,M
w2,1 w2,2 . . . w2,M

...
...

. . .
...

wN,1 wN,2 . . . wN,M

⎤
⎥⎥⎥⎥⎦
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where each element wi,j is defined by

wi,j =
2p(Ci)

j

|Dj|+ p(Ci)
j + q(Ci)

j

, (1)

where Dj is the set of instances of the dataset belonging to the class j, p(Ci)
j are the number of correct

predictions of classifier Ci on Dj and q(Ci)
j are the number of incorrect predictions of Ci that an instance

belongs to class j. Clearly, each weight wi,j is the F1-score of classifier Ci for j class [26]. The rationale
behind (1) is to measure the efficiency of each classifier, relative to each class j of the evaluation set D.

Subsequently, the class ŷ of each unknown instance x in the test set is computed by

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j),

where function arg max returns the value of index corresponding to the largest value from array,
A = {1, 2, . . . , M} is the set of unique class labels and χA is the characteristic function which takes
into account the prediction j ∈ A of a classifier Ci on an instance x and creates a vector in which the j
coordinate takes a value of one and the rest take the value of zero. At this point, it is worth mentioning
that in our implementation we selected to evaluate the performance of each classifier of the ensemble
on the initial training labeled set L.

A high-level description of the proposed framework is presented in Algorithm 1 which consists of
three phases: Training, Evaluation and Weighted-Voting Prediction. In the Training phase, the self-labeled
algorithms, which constitute the ensemble are trained utilizing the same labeled L and unlabeled
dataset U (Steps 1–3). Subsequently, in the Evaluation phase, the trained classifiers are evaluated using
the training set L in order to calculate the weight matrix W (Steps 4–9). Finally, in the Weighted-Voting
Prediction phase, the final hypothesis on each unlabeled example x of the test set combines the
individual predictions of self-labeled algorithms utilizing the proposed weighted voting methodology
(Steps 10–15). An overview of the proposed WvEnSL is depicted in Figure 1.

Algorithm 1: WvEnSL
Input: L − Set of labeled instances (Training labeled set).

U − Set of unlabeled instances (Training unlabeled set).
T − Set of unlabeled test instances (Testing set).
D − Set of instances for evaluation (Evaluation set).
C = (C1, C2, . . . , CN) − Set of self-labeled classifiers which constitute the ensemble.

Output: The labels of instances in the testing set.

/* Phase I: Training */
Step 1: for i = 1 to N do
Step 2: Train Ci using the labeled L and the unlabeled dataset U.
Step 3: end for

/* Phase II: Evaluation */
Step 4: for i = 1 to N do
Step 5: Apply Ci on the evaluation set D.

9
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Algorithm 1: Cont.
Step 6: for j = 1 to M do
Step 7: Calculate the weight

wi,j =
2p(Ci)

j

|Dj|+ p(Ci)
j + q(Ci)

j

.

Step 8: end for
Step 9: end for

/* Phase III: Weighted-Voting Prediction */
Step 10: for each x ∈ T do
Step 11: for i = 1 to N do
Step 12: Apply classifier Ci on x.
Step 13: end for
Step 14: Predict the label ŷ of x using

ŷ = arg max
j

N

∑
i=1

wi,j χA(Ci(x) = j).

Step 15: end for

Phase I
Training

Classifier 1

Labeled
set
L

Unlabeled
set
U

Classifier 2

Labeled
set
L

Unlabeled
set
U

Classifier N

Labeled
set
L

Unlabeled
set
U

Weighted matrix

W =

⎡
⎢⎢⎢⎣

w1,1 w1,2 . . . w1,M
w2,1 w2,2 . . . w2,M

...
...

. . .
...

wN,1 wN,2 . . . wN,M

⎤
⎥⎥⎥⎦

Evaluation
set
D

Phase II
Evaluation

Weighted voting

Test set
T

Phase III
Weighted-Voting
Prediction

Figure 1. WvEnSL framework.
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4. Experimental Methodology

In this section, we present a series of experiments in order to evaluate the performance
of the proposed WvEnSL algorithm for X-ray classification against the most efficient ensemble
self-labeled algorithms i.e., CST-Voting, DTCo and EnSL which utilize simple voting methodologies.
The implementation code was written in JAVA, making use of the WEKA 3.9 Machine Learning
Toolkit [27].

The performance of the classification algorithms is evaluated using the following performance
metrics: F-measure (F1) and Accuracy (Acc). It is worth mentioning that F1 consists of a harmonic
mean of precision and recall while Accuracy is the ratio of correct predictions of a classifier.

4.1. Datasets

The compared classification algorithms were evaluated utilizing the chest X-ray (Pneumonia)
dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images dataset.

• Chest X-ray (Pneumonia) dataset: The dataset contains 5830 chest X-ray images (anterior-posterior)
which were selected from retrospective cohorts of pediatric patients of one to five years old from
Guangzhou Women and Children’s Medical Center, Guangzhou. All chest X-ray imaging was
performed as part of patients’ routine clinical care. For the analysis of chest X-ray images, all chest
radiographs were initially screened for quality control by removing all low quality or unreadable
scans. The diagnoses for the images were then graded by two expert physicians before being
cleared for training the artificial intelligence system. In order to account for any grading errors,
the evaluation set was also checked by a third expert. The dataset was partitioned into two sets
(training/testing). The training set consisting of 5216 examples (1341 normal, 3875 pneumonia)
and the testing set with 624 examples (234 normal, 390 pneumonia) as in [28].

• Shenzhen lung mask (Tuberculosis) dataset: Shenzhen Hospital is one of the largest hospitals in China
for infectious diseases with a focus both on their prevention, as well as treatment. The X-rays
were collected within a one-month period, mostly in September 2012, as a part of the daily routine,
using a Philips DR Digital Diagnost system. The dataset was constructed by manually-segmented
lung masks for the Shenzhen Hospital X-ray set as presented in [29]. These segmented lung masks
were originally utilized for the description of the lung segmentation technique in combination with
lossless and lossy data augmentation. The segmentation masks for the Shenzhen Hospital X-ray
set were manually prepared by students and teachers of the Computer Engineering Department,
Faculty of Informatics and Computer Engineering, National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute” [29]. The set contained 279 normal CXRs and 287
abnormal ones with tuberculosis. All classification algorithms were evaluated using the stratified
ten-fold cross-validation.

• CT Medical images dataset: This data collectioncontains 100 images [30] which constitute part of a
much larger effort, focused on connecting cancer phenotypes to genotypes by providing clinical
images matched to subjects from the cancer genome Atlas [31]. The images consist of the middle
slice of all Computed Tomography (CT) images taken from 69 different patients. The dataset
is designed to allow different methods to be evaluated for examining the trends in CT image
data associated with using contrast and patient age. The basic idea is to identify image textures,
statistical patterns and features correlating strongly with these traits and possibly build simple
tools for automatically classifying these images when they have been misclassified (or finding
outliers which could be suspicious cases, bad measurements, or poorly calibrated machines).
All classification algorithms were evaluated using the stratified ten-fold cross-validation.

The training partition was randomly divided into labeled and unlabeled subsets. In order to
study the influence of the amount of labeled data, four different ratios (R) of the training data were
used: 10%, 20%, 30% and 40%. Using the recommendation established in [9,32] in the division process
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we do not maintain the class proportion in the labeled and unlabeled sets since the main aim of
semi-supervised classification is to exploit unlabeled data for better classification results. Hence, we
use a random selection of examples that will be marked as labeled instances, and the class label of
the rest of the instances will be removed. Furthermore, we ensure that every class has at least one
representative instance.

4.2. Performance Evaluation of WvEnSL against Ensemble Self-Labeled Algorithms

Next, we focus our interest on the experimental analysis for evaluating the classification
performance of WvEnSL algorithm against the ensemble self-labeled algorithms CST-Voting and
DTCo, which utilize simple voting methodologies. It is worth noticing that our main goal is to
measure the effectiveness of the proposed weighted voting strategy over the simple majority voting;
therefore, we will compare ensembles using identical set of classifiers. This will eliminate the source
of discrepancy originated from unequal classifiers. Thus, the difference in accuracy can solely be
attributed to the difference of voting methodologies.

Furthermore, the base learners utilized in all self-labeled algorithms are the Sequential Minimum
Optimization (SMO) [33], the C4.5 decision tree algorithm [34] and the kNN algorithm [35] as in [2,7–9],
which probably constitute the most effective and popular machine learning algorithms for classification
problems [36].

• “CST-Voting (SMO)” stands for an ensemble of Co-training, Self-training and Tri-training with
SMO as base learner using majority voting [2].

• “WvEnSL1 (SMO)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (SMO).

• “CST-Voting (C4.5)” stands for an ensemble of Co-training, Self-training and Tri-training with
C4.5 as base learner using majority voting [2].

• “WvEnSL1 (C4.5)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (C4.5).

• “CST-Voting (kNN)” stands for an ensemble of Co-training, Self-training and Tri-training with
kNN as base learner using majority voting [2].

• “WvEnSL1 (kNN)” stands for Algorithm WvEnSL using the same components classifiers as
CST-Voting (kNN).

• “DTCo” stands for an ensemble of Democratic-Co learning, Tri-training and Co-Bagging with
C4.5 as base learner using majority voting [16].

• “WvEnSL2” stands for Algorithm WvEnSL using the same components classifiers as DTCo.
• “EnSL” stands for an ensemble of Self-training, Democratic-Co learning, Tri-training and

Co-Bagging with C4.5 as base learner using majority voting [17].
• “WvEnSL3” stands for Algorithm WvEnSL using the same components classifiers as EnSL.

The configuration parameters for all supervised classifiers and self-labeled algorithms, utilized in
our experiments, are presented in Table 1.
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Table 1. Parameter specification for all the base learners and self-labeled methods used in
the experimentation.

Algorithm Parameters

SMO Supervised base learner C = 1.0,
Tolerance parameter = 0.001,
Pearson VII function-based kernel,
Epsilon = 1.0 × 10−12,
Fit logistic models = true.

C4.5 Supervised base learner Confidence level: c = 0.25,
Minimum number of item-sets per leaf: i = 2,
Prune after the tree building.

kNN Supervised base learner Number of neighbors = 3,
Euclidean distance.

Self-training Self-labeled (single classifier) MaxIter = 40,
c = 95%.

Co-training Self-labeled (multiple classifier) MaxIter = 40,
Initial unlabeled pool = 75

Tri-training Self-labeled (multiple classifier) No parameters specified.

Co-Bagging Self-labeled (multiple classifier) Committee members = 3,
Ensemble learning = Bagging.

Democratic-Co Self-labeled (multiple classifier) Classifiers = kNN, C4.5, NB.

CST-Voting Ensemble of self-labeled No parameters specified.

DTCo Ensemble of self-labeled No parameters specified.

EnSL Ensemble of self-labeled No parameters specified.

Tables 2–4 presents the performance of all ensemble self-labeled methods on Pneumonia dataset,
Tuberculosis dataset and CT Medical dataset, respectively. Notice that the highest classification
performance for each ensemble of classifiers and performance metric is highlighted in bold.
The aggregated results showed that the new weighted voting strategy exploits the individual
predictions of each component classifier more efficiently than the simple voting schemes, illustrating
better classification performance. WvEnSL3 exhibits the best performance, reporting the highest
F1-score and accuracy, relative to all classification benchmarks and labeled ratio, followed by WvEnSL2.
In more detail, WvEnSL3 demonstrates 82.53–83.49%, 69.79–71.73% and 69–77% classification accuracy
for Pneumonia dataset, Tuberculosis dataset and CT Medical dataset, respectively; while WvEnSL2

reports 81.89–83.17%, 69.79–71.55% and 67–77%, in the same situations.
The statistical comparison of several classification algorithms over multiple datasets is

fundamental in the area of machine learning and it is usually performed by means of a statistical
test [2,7–9]. Since our motivation stems from the fact that we are interested in evaluating the rejection of
the hypothesis that all the algorithms perform equally well for a given level based on their classification
accuracy and highlighting the existence of significant differences between our proposed algorithm
and the classical self-labeled algorithms, we utilized the non-parametric Friedman Aligned Ranking
(FAR) [37] test.
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Table 2. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Pneumonia
dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 83.08% 75.32% 83.26% 75.64% 83.39% 75.80% 83.39% 75.80%
WvEnSL1 (SMO) 83.39% 75.80% 83.48% 75.96% 83.76% 76.44% 83.85% 76.60%

CST-Voting (C4.5) 85.52% 79.97% 85.85% 80.45% 86.68% 81.73% 86.58% 81.57%
WvEnSL1 (C4.5) 85.65% 80.13% 86.08% 80.77% 86.78% 81.89% 86.92% 82.05%

CST-Voting (kNN) 82.91% 75.48% 83.09% 75.80% 83.15% 75.96% 83.73% 76.76%
WvEnSL1 (kNN) 83.63% 76.60% 83.73% 76.76% 83.95% 77.08% 84.23% 77.56%

DTCo 86.79% 81.41% 87.21% 82.05% 87.21% 82.05% 87.74% 82.85%
WvEnSL2 87.12% 81.89% 87.44% 82.37% 87.54% 82.53% 87.97% 83.17%

EnSL 87.19% 82.05% 86.92% 81.57% 87.34% 82.21% 87.61% 82.69%
WvEnSL3 87.51% 82.53% 87.70% 82.69% 88.23% 83.49% 88.17% 83.49%

Table 3. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for Tuberculosis
dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 69.27% 69.43% 68.65% 68.37% 69.50% 69.61% 70.42% 70.32%
WvEnSL1 (SMO) 69.73% 69.79% 69.73% 69.79% 70.32% 70.32% 71.00% 70.85%

CST-Voting (C4.5) 66.67% 67.31% 68.19% 68.02% 67.51% 68.20% 69.52% 69.79%
WvEnSL1 (C4.5) 67.86% 68.20% 69.26% 69.26% 69.63% 69.79% 69.98% 70.14%

CST-Voting (kNN) 65.71% 66.08% 66.43% 66.96% 68.21% 68.55% 68.93% 69.26%
WvEnSL1 (kNN) 65.83% 66.25% 67.14% 67.49% 68.57% 68.90% 69.40% 69.61%

DTCo 69.73% 69.79% 69.96% 69.96% 71.45% 71.20% 71.80% 71.55%
WvEnSL2 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 71.80% 71.55%

EnSL 69.73% 69.79% 69.96% 69.96% 71.00% 70.85% 71.58% 71.38%
WvEnSL3 69.73% 69.79% 70.19% 70.14% 71.58% 71.38% 72.03% 71.73%

Table 4. Performance evaluation of WvEnSL against ensemble self-labeled algorithms for CT
Medical dataset.

Algorithm
Ratio = 10% Ratio = 20% Ratio = 30% Ratio = 40%

F1 Acc F1 Acc F1 Acc F1 Acc

CST-Voting (SMO) 66.67% 66.00% 70.00% 70.00% 73.08% 72.00% 75.00% 74.00%
WvEnSL1 (SMO) 68.00% 68.00% 71.29% 71.00% 73.79% 73.00% 75.73% 75.00%

CST-Voting (C4.5) 67.96% 67.00% 71.84% 71.00% 73.79% 73.00% 73.79% 73.00%
WvEnSL1 (C4.5) 69.90% 69.00% 73.79% 73.00% 75.00% 74.00% 75.73% 75.00%

CST-Voting (kNN) 66.00% 66.00% 69.90% 69.00% 73.79% 73.00% 73.27% 73.00%
WvEnSL1 (kNN) 66.67% 67.00% 70.59% 70.00% 72.00% 72.00% 74.75% 75.00%

DTCo 66.02% 65.00% 69.90% 69.00% 72.55% 72.00% 74.29% 73.00%
WvEnSL2 67.33% 67.00% 71.29% 71.00% 72.55% 72.00% 76.92% 76.00%

EnSL 64.08% 63.00% 71.84% 71.00% 74.29% 73.00% 74.29% 73.00%
WvEnSL3 69.90% 69.00% 75.73% 75.00% 76.47% 76.00% 77.67% 77.00%
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Let rj
i be the rank of the j-th of k learning algorithms on the i-th of M problems. Under the

null-hypothesis H0, which states that all the algorithms are equivalent, the Friedman aligned ranks
test statistic is defined by:

FAR =

(k − 1)

[
k

∑
j=1

R̂2
j − (kM2/4)(kM + 1)2

]

kM(kM + 1)(2kM + 1)
6

− 1
k

M

∑
i=1

R̂2
i

where R̂i is equal to the rank total of the i-th dataset and R̂j is the rank total of the j-th algorithm.
The test statistic FAR is compared with the χ2 distribution with (k − 1) degrees of freedom. It is worth
noticing that, FAR test does not require the commensurability of the measures across different datasets,
since it is non-parametric, neither assumes the normality of the sample means, and thus, it is robust
to outliers.

Additionally, in order to identify which algorithms report significant differences, the Finner
test [38] with a significance level α = 0.05, is applied as a post-hoc procedure. More analytically,
the Finner procedure adjusts the value of α in a step-down manner. Let p1, p2, . . . , pk−1 be the ordered
p-values with p1 ≤ p2 ≤ · · · ≤ pk−1 and H1, H2, . . . , Hk−1 be the corresponding hypothesis. The Finner
procedure rejects H1–Hi−1 if i is the smallest integer such that pi > 1− (1− α)(k−1)/i, while the adjusted
Finner p-value is defined by:

pF = min
{

1, max
{

1 − (1 − pj)
(k−1)/j

}}
,

where pj is the p-value obtained for the j-th hypothesis and 1 ≤ j ≤ i. It is worth mentioning that the
test rejects the hypothesis of equality when the pF is less than α.

The control algorithm for the post-hoc test is determined by the best (lowest) ranking obtained
in each FAR test. Moreover, the adjusted p-value with Finner’s test (pF) was presented based on
the corresponding control algorithm at the α level of significance while the post-hoc test rejects the
hypothesis of equality when the value of pF is less than the value of a. It is worth mentioning that
the FAR test and the Finner post-hoc test were performed based on the classification accuracy of each
algorithm over all datasets and labeled ratio.

Table 5 presents the information of the statistical analysis performed by nonparametric multiple
comparison procedures for all ensemble self-labeled algorithms. The interpretation of Table 5
demostrates that WvEnSL3 reports the highest probability-based ranking by statistically presenting
better results, followed by WvEnSL2 and WvEnSL1 (C4.5). Moreover, it is worth mentioning that all
weighted voting ensemble outperformed the corresponding ensemble which utilize classical voting
schemes. Finally, based on the statistical analysis, we can easily conclude that the new weighted voting
scheme had a significant impact on the performance of all ensemble of self-labeled algorithms.
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Table 5. Friedman Aligned Ranking (FAR) test and Finner post-hoc test.

Algorithm FAR
Finner Post-Hoc Test

pF -Value Null Hypothesis

WvEnSL3 15.667 - -
WvEnSL2 34.958 0.174312 accepted
WvEnSL1 (C4.5) 44.208 0.049863 rejected
EnSL 47.958 0.029437 rejected
DTCo 51.125 0.018734 rejected
CST-Voting (C4.5) 64.042 0.001184 rejected
WvEnSL1 (SMO) 71.417 0.000194 rejected
CST-Voting (SMO) 88.292 0.000001 rejected
WvEnSL1 (kNN) 89.083 0.000001 rejected
CST-Voting (kNN) 98.250 0.000001 rejected

4.3. Performance Evaluation of WvEnSL against Classical Supervised Algorithms

Next, we compare the classification performance of the proposed algorithm against the classical
supervised classification algorithms: SMO, C4.5 and kNN. Moreover, we compare the performance of
iCST-Voting against the ensemble of classifiers (Voting) which combines the individual predictions of
the supervised classifiers utilizing a simple majority voting strategy. It is worth noticing that

• we selected WvEnSL3 from all versions of the proposed algorithm since it presented the best
overall performance.

• all supervised algorithms were trained using with 100% of the training set while WvEnSL3 was
trained using R = 40% of the training set.

Table 6 presents the performance of the proposed algorithm WvEnSL3 against the supervised
algorithms SMO, C4.5, kNN and Voting on Pneumonia dataset, Tuberculosis dataset and CT Medical
dataset. As above mentioned, the highest classification performance for each labeled ratio and
performance metric is highlighted in bold. The aggregated results show that WvEnSL3 is the most
efficient algorithm since it illustrates the best overall classification performance. More specifically,
WvEnSL3 exhibits the highest F1-score and classification accuracy on Pneumonia and Tuberculosis
datasets, while for CT Medical dataset, WvEnSL3 reports the second best performance, considerably
outperformed by C4.5.

Table 6. Performance evaluation WvEnSL3 against state-of-the-art supervised algorithms on
Pneumonia dataset, Tuberculosis dataset and CT Medical dataset.

Algorithm
Pneumonia Tuberculosis CT Medical

F1 Acc F1 Acc F1 Acc

SMO 74.03% 76.76% 71.41% 71.37% 74.91% 75.00%
C4.5 72.41% 74.83% 62.32% 62.36% 79.82% 80.00%
3NN 72.32% 74.51% 67.51% 67.49% 67.08% 67.00%
Voting 73.34% 76.12% 71.00% 71.02% 74.07% 74.00%
WvEnSL3 88.17% 83.49% 72.03% 71.73% 77.67% 77.00%

5. Conclusions

In this work, we proposed a new weighted voting ensemble self-labeled algorithm for the
detection of lung abnormalities from X-rays, entitled WvEnSL. The proposed algorithm combines
the individual predictions of self-labeled algorithms utilizing a new weighted voting methodology.
The significant advantage of WvEnSL is that weights assigned on each component classifier of the
ensemble are based on its accuracy on each class of the dataset.

For testing purposes, the algorithm was extensively evaluated using the chest X-rays (Pneumonia)
dataset, the Shenzhen lung mask (Tuberculosis) dataset and the CT Medical images dataset. Our
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numerical experiments indicated better classification accuracy of the WvEnSL and demonstrated the
efficiency of the new weighted voting scheme, as statistically confirmed by the Friedman Aligned
Ranks nonparametric test as well as the Finner post hoc test. Therefore, we can conclude that the new
weighted voting strategy had a significant impact on the performance of all ensembles of self-labeled
algorithms, exploiting the individual predictions of each component classifier more efficiently than
the simple voting schemes. Finally, it is worth mentioning that efficient and powerful classification
models could be developed by the adaptation of ensemble methodologies in the SSL framework.

In our future work, we intend to pursue extensive empirical experiments to compare the proposed
WvEnSL with other algorithms belonging to different SSL classes, and evaluate its performance using
various component self-labeled algorithms and base learners. Furthermore, since our preliminary
numerical experiments are quite encouraging, our next step is to explore the performance of the
proposed algorithm on imbalanced datasets [39,40] and incorporate our proposed methodology for
multi-target problems [41–43]. Additionally, another interesting aspect is the use of other component
classifiers in the ensemble and enhance our proposed framework with more sophisticated and
theoretically sound criteria for the development of an advanced weighted voting strategy. Finally, we
intend to investigate and evaluate different strategies for the selection of the evaluation set.
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Abstract: This paper introduced a new ensemble learning approach, based on evolutionary fuzzy
cognitive maps (FCMs), artificial neural networks (ANNs), and their hybrid structure (FCM-ANN),
for time series prediction. The main aim of time series forecasting is to obtain reasonably accurate
forecasts of future data from analyzing records of data. In the paper, we proposed an ensemble-based
forecast combination methodology as an alternative approach to forecasting methods for time series
prediction. The ensemble learning technique combines various learning algorithms, including SOGA
(structure optimization genetic algorithm)-based FCMs, RCGA (real coded genetic algorithm)-based
FCMs, efficient and adaptive ANNs architectures, and a hybrid structure of FCM-ANN, recently
proposed for time series forecasting. All ensemble algorithms execute according to the one-step
prediction regime. The particular forecast combination approach was specifically selected due to
the advanced features of each ensemble component, where the findings of this work evinced
the effectiveness of this approach, in terms of prediction accuracy, when compared against other
well-known, independent forecasting approaches, such as ANNs or FCMs, and the long short-term
memory (LSTM) algorithm as well. The suggested ensemble learning approach was applied to three
distribution points that compose the natural gas grid of a Greek region. For the evaluation of the
proposed approach, a real-time series dataset for natural gas prediction was used. We also provided a
detailed discussion on the performance of the individual predictors, the ensemble predictors, and
their combination through two well-known ensemble methods (the average and the error-based)
that are characterized in the literature as particularly accurate and effective. The prediction results
showed the efficacy of the proposed ensemble learning approach, and the comparative analysis
demonstrated enough evidence that the approach could be used effectively to conduct forecasting
based on multivariate time series.

Keywords: fuzzy cognitive maps; neural networks; time series forecasting; ensemble learning;
prediction; machine learning; natural gas

1. Introduction

Time series forecasting is a highly important and dynamic research domain, which has wide
applicability to many diverse scientific fields, ranging from ecological modeling to energy [1],
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finance [2,3], tourism [4,5], and electricity load [6,7]. A summary of applications regarding forecasting
in various areas can be found in a plethora of review papers published in the relevant literature [8–15].
One of the main challenges in the field of time series forecasting is to obtain reasonable and accurate
forecasts of future data from analyzing previous historical data [16]. Following the literature, numerous
research studies show that forecasting accuracy is improved when different models are combined,
while the resulting model seems to outperform all component models [16]. Thus, the combination of
forecasts from different models or algorithms becomes a promising field in the prediction of future data.

Researchers can choose between linear and nonlinear time series forecasting methods, depending
on the nature of the model they are working on. Linear methods, like autoregressive moving average
(ARMA) and autoregressive integrated moving average (ARIMA) [17] are among the methodologies
which have found wide applicability in real-world applications. Traffic [18], energy [19–21], economy [22],
tourism [23], and health [24] are some example fields in which the ARIMA forecasting technique was
used. Considering though that most real-world problems are characterized by a non-linear behavior,
many researchers have investigated the use of non-linear techniques for times series-based forecasting
and prediction. In particular, machine learning and other intelligent methods have been chosen to
address possible nonlinearities in time series modeling, such as nonlinear ARMA time series models,
needing though to tackle the type of nonlinearity that is not usually known. Along with the computing
power growth and the evolution of data management techniques, there has been a growing interest in
the use of advanced artificial intelligence technologies, like artificial neural networks (ANNs) [25] and
fuzzy logic systems for forecasting purposes. ANNs and fuzzy logic systems use more sophisticated
generic model structures having the ability to incorporate the characteristics of complex data and produce
accurate time series models [26], while they also incorporate the advantageous features of nonlinear
modeling and data-based learning capabilities. Moreover, unlike traditional time series methods that
are not able to adequately capture nonlinear patterns of data, neural networks are usually involved in
predicting consumption demand during periods of low or extremely high demand [27]. Among all types
of ANN models, the feed-forward network model with backpropagation training procedure (FFN-BP) is
one of the most commonly used approaches [28].

The technique of combining the predictions of multiple classifiers to produce a single classifier is
referred to as an ensemble [29–32]. Ensemble building has recently attracted much attention among
researchers as an effective method that improves the performance of the resulting model for performing
classification and regression tasks. It has been demonstrated that an ensemble of individual predictors
performs better than a single predictor in the average [33,34], thus achieving better prediction accuracy
than that of the individual predictors. Two popular methods for creating accurate ensembles are
bagging [29] and boosting [35,36]. There are not many research works concerning potency forecasting of
a model in advance, as this is often a difficult task. Trying to avoid the risk of combining models that have
poor performance regarding prediction may result in an overall model with deteriorated forecasting
accuracy. An ensemble model, however, should rather be formed solely from component models that
are rated as adequate, if not good enough, for their forecasting capabilities [37]. Usually, the single
neural network (NN) models are combined to create NNs ensembles, to tackle sampling and modeling
uncertainties that could probably weaken the forecasting accuracy and robustness of component
NN models. Since individual component model could be sensitive under different circumstances,
ensembling them results in more powerful outcomes in the context of a decision-making process.

1.1. Related Literature

In recent years, the natural gas market has progressed greatly in terms of fast development and,
thus, it has become a very competitive area. Undoubtedly, natural gas is among primary energy
sources and has a significant environmental role considering its valuable environmental benefits,
such as low-level emissions of greenhouse gases in comparison with other non-renewable energy
sources [38,39]. Natural gas demand seems to increase considerably due to several socio-economic and
political reasons, while the price and environmental concerns are significant regulatory factors affecting
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natural gas demand. Therefore, the prediction of natural gas consumption, as a time series forecasting
problem, is becoming important in contemporary energy systems, allowing energy policymakers to
apply effective strategies to guarantee sufficient natural gas supplies.

So far, many research papers have tried to give a clear insight regarding natural gas forecasting by
suggesting models for predicting the consumption of this non-renewable energy source. A summary of
natural gas consumption forecasting regarding prediction methods, input variables used for modeling,
as well as prediction area, can be found in many review papers in the relevant literature. Particularly,
there is a thorough literature survey of published papers [38–40] that classifies various models and
techniques that have been recently applied in the field of natural gas forecasting, with respect to the
paradigm that each model/technique is based on, while there has been also an attempt by researchers
to classify all models applied in this area according to their performance characteristics, as well as
to offer some future research directions. The models presented were developed by researchers to
predict natural gas consumption on an hourly, daily, weekly, monthly, or yearly basis, in an attempt to
predict natural gas consumption with an acceptable degree of accuracy. Accurate forecasting of natural
gas consumption can be particularly important for project planning, engineering design, pipeline
operation, gas imports, tariff design, and optimal scheduling of a natural gas supply system [41].

Due to the need for distribution planning, especially in residential areas, the increasing demand for
natural gas, and the restricted natural gas network in many countries, the forecasting of consumption
on a daily and weekly basis seems to be of high importance. In the relevant literature, many
suggestions apply various ANN topologies and methods to support day-ahead natural gas demand
prediction [42–50]. For example, [42] used ANN, while [45] used a combination of ANN forecasters
for predicting gas consumption at a citywide distribution level. For the same distribution level
(citywide), a strategy was proposed in [51] to estimate the forecasting risk by using hourly consumption
data. Having as aim to find the best solution for natural gas consumption, the researchers in [52]
used linear regression with the sliding window technique, while in [53], a univariate artificial bee
colony-based artificial neural network (ANN-ABC) was applied to minimize error in the case of
forecasting day-ahead demand. The researchers in [54] also considered various methods for the
prediction of daily gas consumption, such as the seasonal autoregressive integrated moving average
model with exogenous inputs (SARIMAX), multi-layer perceptron ANN (ANN-MLP), ANN with
radial basis functions (ANN-RBF), and multivariate ordinary least squares (OLS).

In the relevant literature, there are also some research works on neuro-fuzzy methods and genetic
algorithms applied in natural gas demand, as in [41,55–58]. Specifically, a novel hybrid model that
combines the wavelet transform (WT), genetic algorithm (GA), adaptive neuro-fuzzy inference system
(ANFIS), and feed-forward neural network (FFNN) was recently examined in [41] and applied to the
Greek natural gas grid. Moreover, evolutionary fuzzy cognitive maps (FCMs) were recently used for
time series problems modeling and forecasting. FCMs can be understood as recurrent neural networks
inheriting many features from them, such as learning capabilities, which elevate the performance of
FCMs in modeling and prediction and further helped FCMs to gain momentum over recent years [59,60].
The researchers in [61,62] were the first to examine the application of FCMs to time series modeling,
proposing nodes selection criteria in an FCM, which was used to model univariate time series. Further
techniques for simplifying FCMs by removing nodes and weights were investigated, while a dynamic
optimization of the FCM structure was studied in [63] for univariate time series forecasting. Concerning
multivariate interval-valued time series, an evolutionary algorithm for learning fuzzy grey cognitive
maps was developed as a nonlinear predictive model [64]. Taking one step further, the researchers
in [65] and [66] enhanced the evolutionary FCMs with the structure optimization genetic algorithm
(SOGA). These approaches can be used to automatically construct an FCM model after selecting
the crucial concepts and defining the relationships between them by taking into consideration any
available historical data. An example regarding rented bikes’ count prediction was examined, where
SOGA-FCM was compared with the multi-step gradient method (MGM) [67] and the real-coded genetic
algorithm (RCGA) [68]. A two-stage prediction model for multivariate time series prediction, based
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on the efficient capabilities of evolutionary fuzzy cognitive maps (FCMs) and enhanced by structure
optimization algorithms and artificial neural networks (ANNs), was introduced in [69]. Furthermore,
the researchers in [21,60] recently conducted a preliminary study on implementing FCMs with NNs
for natural gas prediction.

1.2. Research Aim and Approach

The purpose of this paper was to propose a new forecast combination approach resulting from
FCMs, ANNs, and hybrid models. This ensemble forecasting method, including the two most
popular ensemble methods, the Average and the Error-based, is based on ANNs, FCMs with learning
capabilities, as well as on a hybrid FCM-ANN model with different configurations, to produce an
accurate non-linear time series model for the prediction of natural gas consumption. A real case
study problem of natural gas consumption in Greece was performed to show the applicability of
the proposed approach. Furthermore, in order to validate the proposed forecasting combination
approach, a comparison analysis between the ensemble methods and an innovative machine learning
technique, the long short-term memory (LSTM) algorithm (which is devoted to time series forecasting),
was conducted, and the results demonstrated enough evidence that the proposed approach could be
used effectively to conduct forecasting based on multivariate time series. The LSTM algorithm, as an
advanced recurrent NN method, was previously used for short-term natural gas demand forecasting
in Greece [70]. In that research paper, LSTM was applied in one day-ahead natural gas consumption,
forecasting for the same three Greek cities, which were also examined in the case study presented in
the current paper. Many similar works can be found in the literature that examine various forecast
combinations in terms of accuracy and error variability but, in the present work, an innovative approach
that combines FCMs, ANNS, and hybrid FCM-ANN models, producing a non-linear time series model
for the prediction of natural gas consumption, was studied exclusively, contributing to the novelty of
the current study. The results demonstrated in a clear way that the proposed approach had attained
better accuracies than other individual models. This study justified the superiority of the selective
ensemble method over combining the important features and capabilities of the models that consist of
the overall approach, making it a useful tool for future work.

The outline of the paper is as follows. Section 2 describes the material and methods of our research
study; Section 2.1 describes the case study problem and refers to the datasets of natural gas demand
that are used, whereas Section 2.2 presents the analyzed approaches for time series forecasting based
on ANNs, FCMs with evolutionary learning algorithms, and their hybrid combinations. The most
widely used ensemble methods for forecasting problems (i.e., the error-based and the simple average
method) are also presented in Section 2.2. In Section 3, the proposed forecasting combination approach
is described. The same Section presents the evaluation criteria, which we have used to analyze the
performance of the analyzed approaches for natural gas prediction. Section 4 presents the results of
simulation analysis for three different Greek cities, as well as the conducted comparative analysis of the
proposed approach with other intelligent techniques. A discussion of the results highlights the main
findings of the proposed ensemble forecasts approach. Section 5 summarizes the main conclusions of
the paper with further discussion and suggestions about future research expansion.

2. Materials and Methods

2.1. Material-Dataset

In the considered case study, three different prediction datasets of natural gas demand, derived
from different districts in Greece, were analyzed from the records of the Hellenic Gas Transmission
System Operator S.A. (www.desfa.gr, DESFA). DESFA company is responsible for the operation,
management, exploitation, and development of the Greek Natural Gas System and its interconnections
in a technically sound and economically viable way. From 2008, DESFA provides historical data of
transmission system operation and natural gas deliveries/off-takes. In this research work, historical
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data with the values of gas consumption for a period of five years, from 2013 to 2017, were used as
initial data to accomplish forecasting. These data were split into training and testing data, where
usually the training data came from the first four years and were used for learning models, whereas
the data of the last year were used for testing the applied artificial intelligence models.

It is crucial for an efficient forecast to properly select the number and types of inputs. Thus,
we emphasized on defining proper input candidates. Six different inputs for time series prediction
were considered. The first three inputs were devoted to month indicator, day indicator, and mean
temperature. Specifically, concerning the calendar indicators, we used one input for months and one
input for days coding. Let m = 1, 2, . . . , 12 be the number of months. We considered the following
matching: January/1, February/2, . . . , December/12. Let l = 1, 2, . . . , 7 be the number of days. The day
type matching was as follows: Monday/1, Tuesday/2, . . . , Sunday/7. The temperature data were
obtained by the nearest to the distribution gas point station. The rest three inputs were the previously
measured values of natural gas demand, for one-day before, two-day before, and the current day.
These six variables were used to form the input pattern of the FCM. The output referred to the total
daily demand for the specific distribution point.

The features that were gathered and used in our study to form the FCM model were enough
and properly selected according to the relevant literature. From a recent literature review regarding
the prediction of natural gas consumption [40], it can be seen that past gas consumption combined
with meteorological data (especially temperature) are the most commonly used input variables for
the prediction of natural gas consumption. A recent study [41] used past consumption, temperature,
months, and days of the week, while in [55], day of week and demand of the same day in the previous
year were used as input variables for natural gas forecasting. Considering the above practices described
in the literature, it can be concluded that the features used in the current work were enough to predict
the consumption of natural gas for the selected areas.

The Greek cities of Thessaloniki, Athens, and Larissa were selected for the conducted simulation
analysis and comparison of the best performing algorithms. These different natural gas consumption
datasets may offer insight into whether the analyzed algorithms perform equally in different locations,
where the energy demand could be completely different for the same days.

2.2. Methods

2.2.1. Fuzzy Cognitive Maps Overview

A fuzzy cognitive map (FCM) is a directed graph in which nodes denote concepts important for the
analyzed problem, and links represent the causal relationships between concepts [71]. It is an effective
tool for modeling decision support systems. FCMs have been applied in many research domains, e.g.,
in business performance analysis [72], strategy planning [73], modeling virtual worlds [74], time series
prediction [69], and adoption of educational software [75].

The FCM model can be used to perform simulations by utilizing its dynamic model. The values
of the concepts change in time as simulation goes on [68]. The new values of the concepts can be
calculated based on the popular dynamic model described as follows [59]:

Xi(t + 1) = F

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Xi(t) +

n∑
j = 1
j � i

Xj(t)·wj,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1)

where Xi(t) is the value of the ith concept at the tth iteration, wj,i is the weight of the connection
(relationship) between the jth concept and the ith concept, t is discrete-time, i. j = 1, 2, . . . , n, n is the
number of concepts, F(x) is the sigmoidal transformation function [58]:
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F(x) =
1

1 + e−cx (2)

where c is a parameter, c > 0. The weights of the relationships show how causal concepts affect one
another. If wj,i > 0, then an increase/decrease in the value of the jth concept will increase/decrease
the value of the ith concept. If wj,i < 0, then an increase/decrease in the value of the jth concept will
decrease/increase the value of the ith concept. If wj,i = 0, there is no causal relationship between the
jth and the ith concepts [74].

The FCM structure is often constructed based on expert knowledge or surveys [74]. We could
also use machine learning algorithms and available historical data to construct the FCM model and
determine the weights of the relationships between the FCM’s concepts.

2.2.2. Fuzzy Cognitive Maps Evolutionary Learning

Evolutionary algorithms are popular techniques for FCMs learning. In this paper, we explored
two effective techniques: the real-coded genetic algorithm (RCGA) [68] and the structure optimization
genetic algorithm (SOGA) [69].

Real-Coded Genetic Algorithm (RCGA)

The RCGA algorithm defines individual in the population as follows [24]:

W′ =
[
w1,2, w1,3, w1,4, . . . , wj,i, . . . , wn,n−1

]T
(3)

where wj,i is the weight of the relationship between the jth concept and the ith concept.
Individual in the population is evaluated with the use of a fitness function based on data error [66]:

f itnessp(MSEtr(l)) =
1

aMSEtr(l) + 1
(4)

where a is a parameter, l is the number of generation, l = 1, . . . ,L, L is the maximum number of
generations, p is the number of individual, p = 1, . . . ,P, P is the population size, and MSEtr(l) is the
data error, described as follows:

MSEtr(l) =
1

Ntr

Ntr∑
t=1

et
2 (5)

where t = 1, . . . ,Ntr, Ntr is the number of training records, and et is the one-step-ahead prediction error
at the tth iteration, described as follows:

et = Z(t) −X(t) (6)

where X(t) is the predicted value of the output concept, and Z(t) is the desired value of the output concept.
When the maximum number of generations L is reached, or the condition (7) is met, which means

that the learning process is successful, then the RCGA stops.

f itnessp(MSEtr(l)) > f itnessmax (7)

where f itnessp(MSEtr(l)) is the fitness function value for the best individual, and f itnessmax is
a parameter.

Structure Optimization Genetic Algorithm (SOGA)

The SOGA algorithm is an extension of the RCGA algorithm [65,66] that allows the decision-maker
to determine the most significant concepts and the relationships between them.
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Individual is evaluated based on the fitness function based on new data error, described as
follows [66]:

MSE′tr(l) = MSEtr(l) + b1
nr

n2 MSEtr(l) + b2
nc

n
MSEtr(l) (8)

where b1, b2 are the parameters of the fitness function, nr is the number of the non-zero relationships,
nc is the number of the concepts in the analyzed model, n is the number of all possible concepts, l is the
number of generation, l = 1, . . . ,L, L is the maximum number of generations.

The fitness function that follows (9) calculates the quality of each population.

f itnessp(MSE′tr(l)) =
1

aMSE′tr(l) + 1
(9)

where α is an experimentally defined parameter, p is the number of the individual, p = 1, . . . ,P, P is the
population size, and MSE′tr(l) is the new error measure.

We could construct a less complex time series prediction model by removing the redundant concepts
and connections between them with the use of a binary vector C and the proposed error function.

The algorithmic steps of the learning and analysis of the FCM in modeling prediction systems
with the use of population-based algorithms (SOGA and RCGA) were analytically presented in [69].

For our experiments, the evolutionary operators, a) ranking selection, b) uniform crossover, and c)
random mutation were used [76,77]. In addition, we applied elite strategy selection, while a probability
of crossover Pc and mutation Pm was assigned to each population.

2.2.3. Artificial Neural Networks

An artificial neural network (ANN) is a collection of artificial neurons organized in the form of
layers [25]. Neurons are connected by weighted connections to form a NN. The most widely used
ANNs in time series prediction are the multilayer perceptrons with an input layer, an output layer, and
a single hidden layer that lies between the input and output layer. The most common structure is an
ANN that uses one or two hidden layers, as a feed-forward neural network with one hidden layer is
able to approximate any continuous function. Supervised learning algorithms and historical data can
be used for the learning process of ANNs. The output of each neuron can be calculated based on the
following formula:

X(t) = F

⎛⎜⎜⎜⎜⎜⎜⎝
m∑

j=1

Xj(t)·wj + b

⎞⎟⎟⎟⎟⎟⎟⎠ (10)

where Xj(t) is the value of the jth input signal, t = 1, . . . ,Ntr, Ntr is the number of training records,
wj is the synaptic weight, m is the number of input signals, b is the bias, and F is the sigmoid activation
function. Training a neural network needs the values of the connection weights and the biases of the
neurons to be determined. There are many neural network learning algorithms. The most popular
algorithm for ANN learning is the back-propagation method. In this learning method, the weights
change their values according to the learning records until one epoch (an entire learning dataset) is
reached. This method aims to minimize the error function, described as follows [14,78,79]:

MSEtr(l) =
1

2Ntr

Ntr∑
t=1

et
2 (11)

where t = 1, . . . ,Ntr, Ntr is the number of training records, l is the number of epoch, l = 1, . . . ,L, L is the
maximum number of epochs, and et is the one-step-ahead prediction error at the tth iteration, which is
equal to:

et = Z(t) −X(t) (12)

where X(t) is the output value of the ANN, and Z(t) is the desired value.
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The modification of the weights in the back-propagation algorithm can be calculated by the formula:

Δwkj(l) = −γ ∂J(l)
∂wkj(l)

(13)

where Δwkj(l) is a change of the weight wkj at the lth epoch, γ is a learning coefficient.
Backpropagation algorithm with momentum modifies the weights according to the formula:

Δwkj(l) = −γ ∂J(l)
∂wkj(l)

+ αΔwkj(l− 1) (14)

where α is a momentum parameter.

2.2.4. Hybrid Approach Based on FCMs, SOGA, and ANNs

The hybrid approach for time series prediction is based on FCMs, the SOGA algorithm, and
ANNs [68]. This approach consists of two stages:

1. Construction of the FCM model based on the SOGA algorithm to reduce the concepts that have
no significant influence on data error.

2. Considering the selected concepts (data attributes) as the inputs for the ANN and ANN learning
with the use of backpropagation method with momentum.

This hybrid structure allows the decision-maker to select the most significant concepts for an
FCM model using the SOGA algorithm. These concepts are used as inputs for the ANN model. Such a
hybrid approach aims to find the most accurate model for time series prediction problems.

2.2.5. The Ensemble Forecasting Method

The most intuitive and popular way of forecast aggregation is to linearly combine the constituent
forecasts [80]. There are various methods proposed in the literature for selecting the combining
weights [81]. The most popular and widely used ensemble methods are the error-based and the simple
average [82]. The easiest among them is the simple average in which all forecasts are weighted equally,
often remarkably improving overall forecasting accuracy [82,83].

Considering that Y =
[
y1, y2, y3, . . . , yN

]T
is the actual out-of-sample testing dataset of a time

series and Ŷi =
[
ŷi

1, ŷi
2, . . . , ŷi

n

]T
is the forecast for the ith model, the linear combination of n forecasts

is produced by [15]:

ŷk = w1 ŷ(1)k + w2 ŷ(2)k + . . .+ wnŷ(n)k =
n∑

i=1

wiŷ
(i)
k , ∀k = 1, 2, . . . , N (15)

Here, our analysis is based on these most popular ensemble methods. A brief discussion follows
for each one.

• The simple average (AVG) method [82] is an unambiguous technique, which assigns the same weight
to every single forecast. Based on empirical studies in the literature, it has been observed that the
AVG method is robust and able to generate reliable predictions, while it can be characterized as
remarkably accurate and impartial. Being applied in several models, with respect to effectiveness,
the AVG improved the average accuracy when increasing the number of combined single
methods [82]. Comparing the referent method with the weighted combination techniques,
in terms of forecasting performance, the researchers in [84] concluded that a simple average
combination might be more robust than weighted average combinations. In the simple average
combination, the weights can be specified as follows:
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wi =
1
n

, ∀i = 1, 2, . . . , n (16)

• The error-based (EB) method [16] consists of component forecasts, which are given weights that are
inversely proportional to their in-sample forecasting errors. For instance, researchers may give a
higher weight to a model with lower error, while they may assign a less weight value to a model
that presents more error, respectively. In most of the cases, the forecasting error is calculated using
total absolute error statistic, such as the sum of squared error (SSE) [80,83]. The combining weight
for individual prediction is mathematically given by:

wi = e−1
i /

n∑
i=1

e−1
i , ∀i = 1, 2, . . . , n (17)

3. The Proposed Forecast Combination Methodology

In the rest of the paper, we explored a new advanced forecasting approach by introducing a
different split of dataset in the case of daily, weekly, or monthly forecasting, as well as a combination
of forecasts from multiple structurally different models, like ANN and FCM with various efficient
learning algorithms and hybrid configurations of them. Also, the two most popular and usually used
ensemble methods, the AVG and the EB methods, were applied to the ensemble forecasts to improve
the prediction accuracy.

In the described ensemble scheme, the selection of the appropriate validation set, i.e., the selection
of the parameter Nvd and the group size Ntr, is very important. The validation set should reflect the
characteristics of the testing dataset that is practically unknown in advance. As such, in this study,
we set the following process of data split. The data split takes place by removing 15% of the total
dataset N and saving for later use as testing data. The remaining 85% of the dataset is then split again
into an 82/18 ratio, resulting in the following portions: 70% for training and 15% for validation. Also,
the group size Ntr (i.e., the training data) should be appropriately selected so that it is neither too small
nor too large.

Due to the problem nature, as we work with time-series data, the most efficient method for
resampling is the boosting/bootstrapping method [85]. In boosting, resampling is strategically geared
to provide the most informative training data for each consecutive predictor. Therefore, in this
study, an appropriate bootstrapping method was applied, so that the training dataset should have
the same size at each resampling set, and the validation and testing sets should keep the same size
(after excluding the k-values from the in-sample dataset).

The proposed effective forecast combination methodology for time series forecasting, presented
in the paper, includes three main processing steps: data pre-processing to handle missing values,
normalize the collected time-series data, and split the dataset; the various forecasting methods of ANNs,
RCGA-FCMs, SOGA-FCMs, and hybrid SOGA FCM-ANN with their ensembles; and evaluation of the
prediction results, implementing the two most popular and used ensemble methods of simple average
(AVG) and error-based (EB). Figure 1 visually illustrates the suggested methodology.

In the followed approach, data preprocessing included outlier detection and removal, handling
missing data, and data normalization, all of which were in accordance with the principles of Data
Science practices described in corresponding literature. For outlier detection, the Z-score was first
calculated for each sample on the data set (using the standard deviation value that is presented in the
descriptive statistics Tables A1 and A2 in Appendix A). Then, a threshold was specified, and the data
points that lied beyond this threshold were classified as outliers and were removed. Mean imputation
was performed to handle missing values. Specifically, for numerical features, missing values were
replaced by the mean feature value.
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Figure 1. Flowchart of the proposed forecasting combination approach.

Each dataset was normalized to [0,1] before the forecasting models were applied. The normalized
datasets were taking again their original values, while the testing phase was implemented. The data
normalizations were carried out mathematically, as follows:

y(new)
i =

yi − y(min)

y(max) − y(min)
,∀i = 1, 2, . . . , N (18)

where Y =
[
y1, y2, y3, . . . , yNtrain

]T
is the training dataset, and Y(new) =

[
y(new)

1 , y(new)
1 , . . . , y(new)

N

]T
is

the normalized dataset, y(min) and y(max) are, respectively, the minimum and maximum values of the
training dataset Y.

We selected the Min-Max normalization method [86] as it is one of the most popular and
comprehensible methods, in terms of performance of the examined systems, while several researchers
showed that it produces better (if not equally good) results with high accuracy, compared to the other
normalization methods [87,88]. In [88], the Min-Max was valued as the second-best normalization
method in the backpropagation NN model, justifying our choice to deploy this method for data
normalization. Moreover, since the FCM concepts use values within the range [0,1] for the conducted
simulations and do not deal with real values, the selected method seemed to be proper for our study.
Also, this normalization approach was previously used in [66,69].

Due to our intention to suggest a generic forecasting combination approach (with ANNs, FCMs,
and their hybrid structures) able to be applied in any time series dataset, the following steps are
thoroughly presented and executed.

Step 1. (Split Dataset) We divided the original time series Y =
[
y1, y2, y3, . . . , yN

]T

into the in-sample training dataset Ytr =
[
y1, y2, y3, . . . , yNtr

]T
, the in-sample validation

dataset Yvd =
[
yNtr+1, yNtr+2, yNtr+3, . . . , yNtr+Nvd

]T
, and the out-of-sample testing dataset
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Yts =
[
yNin+1, yNin+2, yNin+3, . . . , yNin+Nts

]T
, so that Nin = Ntr + Nvd is the size of the total in-sample

dataset and Nin + Nts = N, where N is the number of days, or weeks, or months, according to the
short- or long-term prediction based on the time series horizon.

Step 2. (Resampling method/Bootstrapping). Let’s consider k sets as training sets from the whole
dataset every time. For example, in the monthly forecasting, we excluded one month every time from
the initial in-sample dataset, starting from the first month of the time series values, and proceeding
with next month till k = 12, (i.e., this means that 1 to 12 months were excluded from the initial in-sample
dataset). Therefore, k subsets of training data were created and used for training. The remaining values
of the in-sample dataset were used for validation, whereas the testing set remained the same. Figure 2
shows an example of this bootstrapping method for the ensemble SOGA-FCM approach. In particular,
Figure 2a represents the individual forecasters’ prediction values and their average error calculation,
whereas, in Figure 2b, the proposed forecasting combination approach for SOGA-FCM is depicted for
both ensemble methods.

(a) 

(b) 

Figure 2. (a) Forecasting approach using individual forecasters of SOGA-FCM and mean average,
(b) Example of the proposed forecasting combination approach for SOGA-FCM using ensemble
methods. SOGA, structure optimization genetic algorithm; FCM, fuzzy cognitive map.

If we needed to accomplish daily forecasting, then we preselected the number of days excluded
at each subset k. For the case of simplicity (as in the case of monthly forecasting), we could consider
that one day was excluded at each sub-set from the initial in-sample dataset. The overall approach,
including ANN, FCMs, and hybrid configurations of them, is illustrated in Figure 3. In Figure 3, the
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four ensemble forecasters were produced after the validation process and used for testing through the
proposed approach.

 

Figure 3. The proposed forecasting combination approach using ensemble methods and ensemble forecasters.

Step 3. We had n component forecasting models and obtained Ŷ
i
ts =

[
ŷi

Nin+1, ŷi
Nin+2, . . . , ŷi

Nin+Nts

]T

as the forecast of Yts through the ith model.

Step 4. We implemented each model on Ytr and used it to predict Yvd. Let Ŷ
i
vd =[

ŷi
Ntr+1, ŷi

Ntr+2, . . . , ŷi
Ntr+Nvd

]T
be the prediction of Yvd through the ith model.

Step 5. We found the in-sample forecasting error of each model through some suitable error
measures. We used the mean absolute error (MAE) and the mean squared error (MSE). These are
widely popular error statistics [68], and their mathematical formulation is presented below in this
paper. In the present study, we adopted the MSE and MAE to find the in-sample forecasting errors of
the component models.

Step 6. Based on the obtained in-sample forecasting errors, we assigned a score to each component
model as γi =

1
MSE Yvd, Ŷi

vd
, ∀i = 1, 2, . . . , n. The scores are assigned to be inversely proportional to the

respective errors so that a model with a comparatively smaller in-sample error receives more score and
vice versa.

Step 7. We assigned a rank ri ε 1, 2, . . . , n to the ith model, based on its score, so that ri ≥ rj,
if γi ≤ γ j, ∀i, j = 1, 2, . . . , n. The minimum, i.e., the best rank is equal to 1 and the maximum, i.e.,
the worst rank is at most equal to n.

Step 8. We chose a number nr so that 1 ≤ nr ≤ n and let I = i1, i2, . . . , inr be the index set of the nr

component models, whose ranks are in the range [1, nr]. So, we selected a subgroup of nr smallest
ranked component models.

Step 9. Finally, we obtained the weighted linear combination of these selected nr component
forecasts, as follows:

ŷk = wi1 ŷi1
k + wi2 ŷi2

k + . . .+ winr
ŷinr

k =
∑
iεI

wi ŷi
k, ∀i = 1, 2, . . . , n (19)
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Here, wik =
γik∑nr

k=1 γik
is the normalized weight to the selected component model, so that

∑nr
k=1 wik = 1.

Step 10. The simple average method could be also adopted, as an alternative to Step 6–9,
to calculate the forecasted value.

The validation set was used during the training process for updating the algorithm weights
appropriately and, thus, improving its performance and avoiding overfitting. After training the model,
we could run it on the testing data, to verify if it has predicted them correctly and, if it has been so,
to keep hidden the validation set.

The most popular and widely used performance metrics or evaluation criteria for time series
prediction are the following: coefficient of determination (R2), mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).
The mathematical equations of all these statistical indicators were described in the study [69]. The
goodness of fit and the performance of the studied models, when they applied to a natural gas
prediction process, were evaluated and compared using two of these five commonly used statistical
indicators, namely, the MSE and the MAE [9]. In particular, the performance of the analyzed approaches
for natural gas prediction was evaluated based on the following criteria:

1. Mean squared error:

MSE =
1
T

T∑
t=1

(Z(t) −X(t))2 (20)

2. Mean absolute error:

MAE =
1
T

T∑
t=1

∣∣∣Z(t) −X(t)
∣∣∣ (21)

where X(t) is the predicted value of the neural gas at the tth iteration, Z(t) is the desired value of the
neural gas at the tth iteration, t = 1, . . . , Nts, and Nts is the number of testing records. The lower values
of the MSE and MAE indicate that the model performance is better with respect to the prediction
accuracy, and the regression line fits the data well.

All the modeling approaches, tests, and evaluations were performed with the use of the ISEMK
(intelligent expert system based on cognitive maps) software tool [66], in which all the algorithms
based on ANNs, FCMs, and their hybrid combinations were developed. C# programming language
has been used for implementing ensemble models and also for developing ISEMK, which incorporates
FCM construction from data and learning, both for RCGA and SOGA implementations [69].

4. Results and Discussion

4.1. Case Study and Datasets

The natural gas consumption datasets that were used in this research work to examine the
applicability and effectiveness of the proposed forecast methodology corresponded to five years
(2013–2017), as described in Section 3. Following the first step of the methodology, we split our dataset
into training, validation, and testing ones. For the convenience of handling properly the dataset,
we defined the data of the first three years as the training dataset (1095 days), the data of the fourth
year as the validation dataset (365 days), and the remaining data (5th year) as the testing dataset
(365 days), which approximately corresponded to 60%, 20%, and 20%, respectively, as presented in
Section 3. Thus, it was easier for our analysis to handle the above values as annual datasets and have a
clearer perception of the whole process.

Out of the three years of the defined training dataset, we used the first two as the initial training
dataset, while the third (3rd) year was used as a dataset reservoir for the bootstrapping procedure.
This year was properly selected to be part of the initial dataset, as for each value of k (the bootstrapping
step), a corresponding number of days/weeks/months was additionally needed to be included in the
training dataset during the bootstrapping process, thus, avoiding any possible data shortage and/or
deterioration that would lead to inaccurate results.
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The proposed forecast combination approach, presented in Section 3, offered generalization
capabilities and, thus, it could be applied in various time-series datasets, for a different number of k,
according to daily, weekly, or monthly prediction. Taking as an example the case of a month-ahead
prediction, for each bootstrapping step k, the training dataset shifted one month ahead, getting one
additional month each time from the reserved third year of the initial training dataset. In this case,
k more months in total were needed for implementing efficiently this approach. If we considered
k = 12, then 12 additional months of the initial dataset needed to be added and reserved. This approach
justified our case where one year (i.e., the third year) was added to the initial training dataset and was
further reserved for serving the purposes of the proposed methodology. Different values of k were also
examined without noticing significant divergences in forecasting, compared to the selected k value.

In the next step, the validation procedure (comprising one year of data) was implemented to
calculate the in-sample forecasting errors (MSE and MAE) for each ensemble forecasting algorithm
(ensemble ANN, ensemble hybrid, ensemble RCGA-FCM, and ensemble SOGA-FCM). The same
process was followed for the testing procedure by considering the data of the last year. The two
examined ensemble forecasting methods, i.e., the simple average (AVG) and the error-based (EB),
were then applied in the calculated validation and testing vectors (Yvd) for each one of the forecast
combined methodology (Yvd-ANN, Yvd-Hybrid, Yvd-RCGA, Yvd-SOGA).

4.2. Case Study Results

In this study, we applied both the AVG and the EB method in two different cases: case (A)
where scores were calculated for individual forecaster of each one of the methods ANN, hybrid,
RCGA-FCM, and SOGA-FCM, and case (B), where scores were calculated for each ensemble forecaster
(ANN ensemble, hybrid ensemble, RCGA-FCM ensemble, and SOGA-FCM ensemble).

Considering case (A), Table 1 shows the calculated errors and scores based on the EB method for
individual forecaster of the two forecasting methods: ANN and hybrid for the city of Athens. The rest
calculated errors and scores, based on the EB method, for individual forecaster for the other two
remaining forecasting methods RCGA-FCM and SOGA-FCM for Athens can be found in Appendix A
of the paper (Table A3). In Appendix A, parts of the corresponding results for the other two examined
cities (Larissa and Thessaloniki) are also presented (Tables A4 and A5).

Table 1. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for EB
(error-based) method (Athens).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

ANN1 0.0334 0.0035 0.0350 0.0036 0.2552 Hybrid1 0.0336 0.0034 0.2520

ANN2 0.0354 0.0041 0.0387 0.0043 0 Hybrid2 0.0387 0.0043 0

ANN3 0.0350 0.0037 0.0375 0.0039 0.2442 Hybrid3 0.0363 0.0037 0

ANN4 0.0341 0.0038 0.0365 0.0039 0 Hybrid4 0.0352 0.0035 0

ANN5 0.0335 0.0036 0.0358 0.0037 0.2505 Hybrid5 0.0339 0.0034 0

ANN6 0.0337 0.0039 0.0355 0.0038 0 Hybrid6 0.0348 0.0036 0.2468

ANN7 0.0336 0.0037 0.0362 0.0038 0 Hybrid7 0.0345 0.0035 0.2506

ANN8 0.0340 0.0039 0.0360 0.0039 0 Hybrid8 0.0354 0.0036 0

ANN9 0.0341 0.0039 0.0367 0.0040 0 Hybrid9 0.0349 0.0036 0

ANN10 0.0332 0.0036 0.0355 0.0037 0.2501 Hybrid10 0.0359 0.0038 0

ANN11 0.0338 0.0038 0.0365 0.0039 0 Hybrid11 0.0353 0.0038 0

ANN12 0.0345 0.0038 0.0349 0.0037 0 Hybrid12 0.0347 0.0033 0.2506

AVG 0.0336 0.0037 0.0359 0.0038 AVG 0.0350 0.0036

EB 0.0335 0.0036 0.0358 0.0037 EB 0.0340 0.0034

MSE: Mean Square Error, MAE: Mean Absolute Error.
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Considering case (B), Table 2 presents the calculated weights based on scores for each ensemble
forecaster (ANN (ensemble, hybrid ensemble, RCGA ensemble, and SOGA ensemble) for all three cities.

The calculated weights, based on scores for the EB method, were computed using Equation (17).
According to this equation, the weights of the component forecasts are inversely proportional to their
in-sample forecasting errors, concluding that the model with more error is assigned less weight to it
and vice versa [80]. In this work, as the values of errors were high for certain ensemble forecasters, the
corresponding weights were approximately zero, so they were considered to have a zero value for
further predictions.

Table 2. Case (B)-Calculated weights for each ensemble forecaster based on scores for the EB method.

Athens Thessaloniki Larissa

Weights based on scores
ANN 0.3320 0.34106 0.3369

Hybrid 0.3357 0.35162 0.3546
RCGA-FCM 0.3323 0 0
SOGA-FCM 0 0.30731 0.3083

ANN: Artificial Neural Network, RCGA-FCM: Real Codded Genetic Algorithm-Fuzzy Cognitive Map, SOGA-FCM:
Structure Optimization Genetic Algorithm-Fuzzy Cognitive Map.

The obtained forecasting results of the individual and combination methods are depicted in
Tables 3–8, respectively, for the three cities. In each of these tables, the best results (i.e., those
associated with the least values of error measures) are presented in bold letters. In Figures 4 and 5,
the forecasting results concerning Thessaloniki and Larissa are visually illustrated for both ensemble
methods (AVG, EB). Moreover, Figure 6 gathers the forecasting results for all three cities considering
the best ensemble method.

Table 3. Calculated errors for individual forecaster based on scores for Athens.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0328 0.0333 0.0384 0.0391 0.0336 0.0326
MSE 0.0036 0.0035 0.0036 0.0037 0.0032 0.0032

Testing

MAE 0.0321 0.0328 0.0418 0.0424 0.0345 0.0328
MSE 0.0033 0.0032 0.0038 0.0040 0.0032 0.0031

Table 4. Calculated errors for each ensemble forecaster based on scores for Athens.

Validation
ANN

Ensemble
Hybrid

Ensemble
RCGA

Ensemble
SOGA

Ensemble
Ensemble

AVG
Ensemble

EB

MAE 0.0335 0.0330 0.0388 0.0380 0.0337 0.0337
MSE 0.0036 0.0035 0.0036 0.0035 0.0032 0.0032

Testing

MAE 0.0358 0.0340 0.0422 0.0422 0.0352 0.0352
MSE 0.0037 0.0034 0.0038 0.0037 0.0032 0.0032

Table 5. Calculated errors for individual forecaster based on scores for Thessaloniki.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0343 0.0341 0.0381 0.0380 0.0347 0.0340
MSE 0.0029 0.0028 0.0032 0.0032 0.0028 0.0027

Testing

MAE 0.0366 0.0381 0.0395 0.0399 0.0371 0.0369
MSE 0.0032 0.0033 0.0035 0.0036 0.0032 0.0031
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Table 6. Calculated errors for each ensemble forecaster based on scores for Thessaloniki.

Validation
ANN

Ensemble
Hybrid

Ensemble
RCGA

Ensemble
SOGA

Ensemble
Ensemble

AVG
Ensemble

EB

MAE 0.0363 0.0361 0.0378 0.0374 0.0355 0.0355
MSE 0.0031 0.0031 0.0031 0.0030 0.0028 0.0028

Testing

MAE 0.0393 0.0394 0.0399 0.0391 0.0381 0.0381
MSE 0.0037 0.0037 0.0036 0.0034 0.0034 0.0034

Table 7. Calculated errors for individual forecaster based on scores for Larissa.

Validation ANN Hybrid RCGA SOGA Ensemble AVG Ensemble EB

MAE 0.0322 0.0324 0.0372 0.0365 0.0326 0.0319
MSE 0.0030 0.0028 0.0033 0.0032 0.0027 0.0027

Testing

MAE 0.0412 0.0417 0.0466 0.0468 0.0427 0.0417
MSE 0.0043 0.0041 0.0047 0.0047 0.0040 0.0040

Table 8. Case (B) -Calculated errors for each ensemble forecaster based on scores for Larissa.

Validation
ANN

Ensemble
Hybrid

Ensemble
RCGA

Ensemble
SOGA

Ensemble
Ensemble

AVG
Ensemble

EB

MAE 0.0337 0.0332 0.0371 0.0362 0.0329 0.0326
MSE 0.0032 0.0030 0.0032 0.0031 0.0027 0.0026

Testing

MAE 0.0428 0.0417 0.0458 0.0460 0.0426 0.0423
MSE 0.0048 0.0044 0.0045 0.0045 0.0041 0.0040

 

(a) 

 

(b) 

Figure 4. Forecasting results for Thessaloniki considering the two ensemble methods (AVG, EB)
based on scores. (a) Validation, (b) Testing. AVG, simple average; EB, error-based.

36



Algorithms 2019, 12, 235

 

(a) 

 
(b) 

Figure 5. Forecasting results for Larissa considering the two ensemble methods (AVG, EB) based on
scores. (a) Validation, (b) Testing.

 
(a) 

 
(b) 

Figure 6. Cont.
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(c) 

 
(d) 

Figure 6. Forecasting results for the three cities considering the best ensemble method. (a) Testing all
cities, (b) Testing Athens, (c) Testing Thessaloniki, (d) Testing Larissa.

4.3. Discussion of Results

The following important observations were noticed after careful analysis of Tables and
Figures above.

1. After a thorough analysis of the Tables 3–8, on the basis of examining the MAE and MSE errors,
it could be clearly stated that the EB method presented lower errors concerning the individual
forecasters (ANN, hybrid, RCGA-FCM, and SOGA-FCM) for all three cities (Athens, Thessaloniki,
and Larisa). EB seemed to outperform the AVG method in terms of achieving overall better
forecasting results when applied to individual forecasters (see Figure 6).

2. Considering the ensemble forecasters, it could be seen from the obtained results that none of
the two forecast combination methods had attained consistently better accuracies compared to
each other, as far as the cities of Athens and Thessaloniki were concerned. Specifically, from
Tables 3–6, it was observed that the MAE and MSE values across the two combination methods
were similar for the two cities; however, their errors were lower than those produced by each
separate ensemble forecaster.
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3. Although the AVG and the EB methods performed similarly for Athens and Thessaloniki datasets,
the EB forecast combination technique presented lower MAE and MSE errors than the AVG for
the examined dataset of Larissa (see Figure 5).

The fact that when a forecasting method presented lower MAE and MSE errors than another means
that the accuracy of the results produced with the first method, in terms of predicting consumption,
was higher than the latter forecasting methods examined and compared to, so as the overall performance
of the ensemble method was. Regarding the amount of improvement that was presented when a
forecasting method was applied, slightly better performance of both ensemble forecasting methods
could be noticed, and that constituted strong evidence for the efficiency of the examined method in the
domain of natural gas demand forecasting.

In order to examine the efficiency of the proposed algorithm, a statistical test was conducted to
reveal no statistical significance. Concerning the individual methods, a t-test paired two samples of
mean was previously conducted in [60] for the cities of Thessaly (Larissa, Volos, Trikala, and Karditsa),
for the year 2016, showing that there was no statistical significance among these techniques. In current
work, a t-test paired two samples of mean was also performed, regarding the ensemble methods
(average and error-based) for the examined cities (Athens, Thessaloniki, and Larissa), regarding the
dataset of the same year. The results of the hypothesis tests (Tables A6–A8 in Appendix A) revealed no
statistical significance between these techniques. In all cases, the calculated p-value exceeded 0.05,
so no statistical significance was noticed from the obtained statistical analysis. Therefore, there was
no particular need to conduct a post hoc statistical test, since a post hoc test should only be run
when you have an overall statistically significant difference in group means, according to the relevant
literature [89,90].

Furthermore, for comparison purposes, to show the effectiveness of the proposed forecasting
combination approach of multivariate time series, the experimental analysis was conducted with
a new and well-known effective machine learning technique for time series forecasting, the LSTM
(long short-term memory). LSTM algorithm encloses the characteristics of the advanced recurrent neural
network methods and is mainly applied for time series prediction problems in diverse domains [91].

LSTM was applied in one day-ahead natural gas consumption prediction concerning the
same dataset of the three Greek cities (Athens, Thessaloniki, and Larissa) in [70]. For the LSTM
implementation, one feature of the dataset as a time series was selected. As explained in [70], LSTM
was fed previous values, and, in that case, the time-step was set to be 364 values to predict the next
364. For validation, 20% of random data from the training dataset was used, and for testing, the same
dataset that was used for the ANN, RCGA-FCM, SOGA-FCM, and hybrid FCM-ANN, as well as with
their ensemble structures implementation. In [70], various experiments with different numbers of
units, number of layers, and dropout rates were accomplished. Through the provided experimental
analysis, the best results of LSTM emerged for one layer, 200 units, and dropout rate = 0.2. These
results are gathered in Table 9 for the three cities.

In Table 9, it is clear that both ensemble forecasting methods can achieve high accuracy in the
predictions of the energy consumption patterns in a day-ahead timescale. Additional exploratory
analysis and investigation of other types of ensemble methods, as well as other types of neural networks,
such as convolutional neural networks (CNNs), could lead to a better insight of the modeling the
particular problem and achieve higher prediction accuracy.
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Table 9. Comparison results with LSTM (long short-term memory) (with best configuration parameters).

Best Ensemble LSTM (Dropout = 0.2)

Case (A) (Individual) Case (B) (Ensemble) 1 layer

Validation ATHENS

MAE 0.0326 0.0337 0.0406
MSE 0.0032 0.0032 0.0039

Testing

MAE 0.0328 0.0352 0.0426
MSE 0.0031 0.0032 0.0041

Validation THESSALONIKI

MAE 0.0340 0.0355 0.0462
MSE 0.0027 0.0028 0.0043

Testing

MAE 0.0369 0.0381 0.0489
MSE 0.0031 0.0034 0.0045

Validation LARISSA

MAE 0.0319 0.0326 0.0373
MSE 0.0027 0.0026 0.0029

Testing

MAE 0.0417 0.0423 0.0462
MSE 0.0040 0.0040 0.0042

5. Conclusions

To sum up, we applied a time series forecasting method for natural gas demand in three Greek
cities, implementing an efficient ensemble forecasting approach through combining ANN, RCGA-FCM,
SOGA-FCM, and hybrid FCM-ANN. The proposed forecasting combination approach incorporates the
two most popular ensemble methods for error calculation in forecasting problems and is deployed
in certain steps offering generalization capabilities. The whole framework seems to be a promising
approach for ensemble time series forecasting that can easily be applied in many scientific domains.
An initial comparison analysis was conducted with benchmark methods of ANN, FCM, and their
different configurations. Next, further comparison analysis was conducted with new promising LSTM
networks previously used for time series prediction.

Through the experimental analysis, two error statistics (MAE, MSE) needed to be calculated
in order to examine the effectiveness of the ensemble learning approach in time series prediction.
The results of this study showed that the examined ensemble approach through designing an ensemble
structure of various ANN, SOGA-FCM models by different learning parameters and their hybrid
structures could significantly improve forecasting. Moreover, obtained results clearly demonstrated
that a relatively higher forecasting accuracy was noticed when the applied ensemble approach was
compared against independent forecasting approaches, such as ANN or FCM, as well as with LSTM.

Future work is devoted to applying the advantageous forecast combination approach to a larger
number of distribution points that compose the natural gas grid of Greek regions (larger and smaller
cities) as well as to investigate a new forecast combination structure of efficient convolutional neural
networks (CNN) and LSTM networks for time series prediction in various application domains.
Furthermore, an extensive comparative analysis with various LSTM structures, as well as with other
advanced machine learning and time series prediction methods, will be conducted in future work.
The presented research work could also contribute to explainability, transparency, and re-traceability
of artificial intelligence (AI) and machine learning systems. These systems are being applied in various
fields, and the decisions being made by them are not always clear due to the use of complicated
algorithms in order to achieve power, performance, and accuracy. The authors with the use of
complicated, but powerful algorithms, such as neural networks and ensemble methods, tried to
describe all the steps and models involved in decision-making process to attain explainability and,
in future, they would further explore ways to make the best-performing methods more transparent,
re-traceable, and understandable, explaining why certain decisions have been made [92].
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Appendix A

Table A1. Descriptive statistics values for real dataset Z(t), forecasting values of AVG and EB methods
for the three cities (validation).

Descriptive
Statistics

Athens Thessaloniki Larissa

Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB

Mean 0.2540 0.2464 0.2464 0.2611 0.2510 0.2510 0.2689 0.2565 0.2575

Median 0.1154 0.1366 0.1366 0.1335 0.1393 0.1394 0.1037 0.1194 0.1211

St.
Deviation 0.2391 0.2203 0.2203 0.2373 0.2228 0.2228 0.2604 0.2429 0.2429

Kurtosis 0.3610 −0.2748 −0.2741 −0.1839 −0.5807 −0.5774 −0.6564 −0.8881 −0.8847

Skewness 1.1605 0.9801 0.9803 0.9328 0.8288 0.8298 0.8112 0.7520 0.7516

Minimum 0.0277 0.0367 0.0367 0.0043 0.0305 0.0304 0.0000 0.0235 0.0239

Maximum 1.0000 0.8429 0.8431 1.0000 0.8442 0.8448 1.0000 0.8361 0.8383

Table A2. Descriptive statistics values for real dataset Z(t), forecasting values of AVG and EB methods
for the three cities (testing).

Descriptive
Statistics

Athens Thessaloniki Larissa

Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB Z(t) X(t)AVG X(t) EB

Mean 0.2479 0.2433 0.2433 0.2588 0.2478 0.2478 0.2456 0.2279 0.2291

Median 0.1225 0.1488 0.1488 0.1179 0.1304 0.1304 0.0695 0.0961 0.0972

St.
Deviation 0.2159 0.2020 0.2021 0.2483 0.2236 0.2237 0.2742 0.2399 0.2404

Kurtosis 0.6658 0.2785 0.2792 0.1755 −0.1254 −0.1219 −0.0113 −0.1588 –0.1502

Skewness 1.2242 1.1138 1.1140 1.1348 1.0469 1.0479 1.1205 1.0900 1.0921

Minimum 0.0000 0.0359 0.0359 0.0079 0.0358 0.0357 0.0000 0.0233 0.0237

Maximum 0.9438 0.8144 0.8144 0.9950 0.8556 0.8562 1.0000 0.8291 0.8310

Table A3. Case (A)-Calculated errors and weights for each ensemble forecaster (RCGA and SOGA-FCM)
based on scores for the EB method (Athens).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

RCGA1 0.0386 0.0036 0.0425 0.0038 0.2531 SOGA1 0.0435 0.0037 0.2520

RCGA2 0.0391 0.0038 0.0430 0.0039 0 SOGA2 0.0423 0.0038 0.2509

RCGA3 0.0399 0.0039 0.0428 0.0039 0 SOGA3 0.0425 0.0038 0

RCGA4 0.0384 0.0036 0.0419 0.0038 0.2522 SOGA4 0.0449 0.0042 0

RCGA5 0.0389 0.0037 0.0423 0.0039 0 SOGA5 0.0429 0.0040 0

RCGA6 0.0392 0.0036 0.0424 0.0039 0.2472 SOGA6 0.0432 0.0038 0.2494

RCGA7 0.0398 0.0038 0.0434 0.0041 0 SOGA7 0.0421 0.0039 0

RCGA8 0.0386 0.0037 0.0416 0.0039 0 SOGA8 0.0422 0.0039 0

RCGA9 0.0398 0.0036 0.0436 0.0041 0.2472 SOGA9 0.0434 0.0042 0

RCGA10 0.0388 0.0037 0.0417 0.0039 0 SOGA10 0.0422 0.0040 0

RCGA11 0.0393 0.0038 0.0419 0.0039 0 SOGA11 0.0420 0.0038 0.2475

RCGA12 0.0396 0.0037 0.0434 0.0041 0 SOGA12 0.0425 0.0040 0

AVG 0.0385 0.0036 0.0418 0.0038 AVG 0.0422 0.0039

EB 0.0388 0.0036 0.0422 0.0038 EB 0.0422 0.0037

41



Algorithms 2019, 12, 235

Table A4. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for the
EB method (Thessaloniki).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

Hybrid1 0.0356 0.0030 0.0390 0.0036 0.2565 SOGA1 0.0414 0.0040 0

Hybrid2 0.0381 0.0036 0.0409 0.0042 0 SOGA2 0.0417 0.0040 0

Hybrid3 0.0371 0.0032 0.0398 0.0039 0.2422 SOGA 3 0.0394 0.0034 0

Hybrid4 0.0376 0.0032 0.0403 0.0039 0 SOGA 4 0.0406 0.0038 0

Hybrid5 0.0373 0.0032 0.0401 0.0040 0 SOGA 5 0.0388 0.0033 0.2541

Hybrid6 0.0375 0.0033 0.0403 0.0040 0 SOGA 6 0.0413 0.0038 0

Hybrid7 0.0378 0.0033 0.0405 0.0040 0 SOGA 7 0.0415 0.0039 0

Hybrid8 0.0373 0.0032 0.0402 0.0040 0 SOGA 8 0.0399 0.0036 0

Hybrid9 0.0378 0.0034 0.0407 0.0041 0 SOGA 9 0.0392 0.0035 0.2448

Hybrid10 0.0371 0.0032 0.0397 0.0039 0.2410 SOGA10 0.0400 0.0037 0

Hybrid11 0.0370 0.0033 0.0402 0.0040 0 SOGA11 0.0403 0.0036 0.2439

Hybrid12 0.0364 0.0030 0.0406 0.0036 0.2601 SOGA12 0.0397 0.0034 0.2569

AVG 0.0369 0.0032 0.0398 0.0039 AVG 0.0398 0.0036

EB 0.0361 0.0031 0.0394 0.0037 EB 0.0391 0.0034

Table A5. Case (A)-Calculated errors and weights for each ensemble forecaster based on scores for the
EB method (Larissa).

Validation Testing Testing

MAE MSE MAE MSE Weights MAE MSE Weights

ANN1 0.0339 0.0032 0.0425 0.0047 0.2511 Hybrid1 0.0411 0.0043 0.2531

ANN2 0.0353 0.0036 0.0438 0.0052 0 Hybrid2 0.0435 0.0051 0

ANN3 0.0343 0.0033 0.0433 0.0050 0 Hybrid3 0.0418 0.0045 0.2472

ANN4 0.0347 0.0033 0.0429 0.0049 0 Hybrid4 0.0424 0.0048 0

ANN5 0.0353 0.0035 0.0436 0.0051 0 Hybrid5 0.0436 0.0051 0

ANN6 0.0352 0.0035 0.0432 0.0049 0 Hybrid6 0.0436 0.0051 0

ANN7 0.0354 0.0035 0.0441 0.0053 0 Hybrid7 0.0434 0.0050 0

ANN8 0.0348 0.0033 0.0427 0.0049 0 Hybrid8 0.0425 0.0047 0.2398

ANN9 0.0351 0.0035 0.0439 0.0052 0 Hybrid9 0.0423 0.0047 0

ANN10 0.0343 0.0033 0.0431 0.0049 0.2406 Hybrid10 0.0432 0.0050 0

ANN11 0.0342 0.0032 0.0436 0.0049 0.2472 Hybrid11 0.0444 0.0053 0

ANN12 0.0331 0.0031 0.0428 0.0047 0.2610 Hybrid12 0.0426 0.0043 0.2597

AVG 0.0345 0.0033 0.0431 0.0049 AVG 0.0427 0.0048

EB 0.0337 0.0032 0.0428 0.0048 EB 0.0417 0.0044

Table A6. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Athens).

X(t) AVG Athens X(t) EB Athens

Mean 0.243342155 0.243346733

Variance 0.040822427 0.040826581

Observations 196 196

Pearson Correlation 0.99999997

Hypothesized Mean Difference 0

df 195

t Stat –1.278099814

P(T<=t) one-tail 0.101366761

t Critical one-tail 1.65270531

P(T<=t) two-tail 0.202733521

t Critical two-tail 1.972204051
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Table A7. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Thessaloniki).

X(t) AVG X(t) EB

Mean 0.247811356 0.247811056

Variance 0.050004776 0.050032786

Observations 365 365

Pearson Correlation 0.999999788

Hypothesized Mean Difference 0

df 364

t Stat 0.036242052

P(T<=t) one-tail 0.485554611

t Critical one-tail 1.649050545

P(T<=t) two-tail 0.971109222

t Critical two-tail 1.966502569

Table A8. t-Test: Paired Two Sample for Means between the ensemble methods (AVG and EB) (Larissa).

X(t) AVG Larisa X(t) EB Larisa

Mean 0.227903242 0.229120614

Variance 0.057542802 0.05781177

Observations 365 365

Pearson Correlation 0.999972455

Hypothesized Mean Difference 0

df 364

t Stat –12.44788062

P(T<=t) one-tail 3.52722E-30

t Critical one-tail 1.649050545

P(T<=t) two-tail 7.05444E-30

t Critical two-tail 1.966502569

References

1. Li, H.Z.; Guo, S.; Li, C.J.; Sun, J.Q. A hybrid annual power load forecasting model based on generalized
regression neural network with fruit fly optimization algorithm. Knowl.-Based Syst. 2013, 37, 378–387.
[CrossRef]

2. Bodyanskiy, Y.; Popov, S. Neural network approach to forecasting of quasiperiodic financial time series.
Eur. J. Oper. Res. 2006, 175, 1357–1366. [CrossRef]

3. Livieris, I.E.; Kotsilieris, T.; Stavroyiannis, S.; Pintelas, P. Forecasting stock price index movement using
a constrained deep neural network training algorithm. Intell. Decis. Technol. 2019, 1–14. Available online:
https://www.researchgate.net/publication/334132665_Forecasting_stock_price_index_movement_using_a_
constrained_deep_neural_network_training_algorithm (accessed on 10 September 2019).

4. Livieris, I.E.; Pintelas, H.; Kotsilieris, T.; Stavroyiannis, S.; Pintelas, P. Weight-constrained neural networks in
forecasting tourist volumes: A case study. Electronics 2019, 8, 1005. [CrossRef]

5. Chen, C.F.; Lai, M.C.; Yeh, C.C. Forecasting tourism demand based on empirical mode decomposition and
neural network. Knowl.-Based Syst. 2012, 26, 281–287. [CrossRef]

6. Lu, X.; Wang, J.; Cai, Y.; Zhao, J. Distributed HS-ARTMAP and its forecasting model for electricity load. Appl.
Soft Comput. 2015, 32, 13–22. [CrossRef]

7. Zeng, Y.R.; Zeng, Y.; Choi, B.; Wang, L. Multifactor-influenced energy consumption forecasting using
enhanced back-propagation neural network. Energy 2017, 127, 381–396. [CrossRef]

8. Lin, W.Y.; Hu, Y.H.; Tsai, C.F. Machine learning in financial crisis prediction: A survey. IEEE Trans. Syst. Man
Cybern. 2012, 42, 421–436.

9. Raza, M.Q.; Khosravi, A. A review on artificial intelligence-based load demand techniques for smart grid
and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352–1372. [CrossRef]

10. Weron, R. Electricity price forecasting: A review of the state-of-the-art with a look into the future. Int. J.
Forecast. 2014, 30, 1030–1081. [CrossRef]

43



Algorithms 2019, 12, 235

11. Meade, N.; Islam, T. Forecasting in telecommunications and ICT-A review. Int. J. Forecast. 2015, 31, 1105–1126.
[CrossRef]

12. Donkor, E.; Mazzuchi, T.; Soyer, R.; Alan Roberson, J. Urban water demand forecasting: Review of methods
and models. J. Water Resour. Plann. Managem. 2014, 140, 146–159. [CrossRef]

13. Fagiani, M.; Squartini, S.; Gabrielli, L.; Spinsante, S.; Piazza, F. A review of datasets and load forecasting
techniques for smart natural gas and water grids: Analysis and experiments. Neurocomputing 2015, 170,
448–465. [CrossRef]

14. Chandra, D.R.; Kumari, M.S.; Sydulu, M. A detailed literature review on wind forecasting. In Proceedings
of the IEEE International Conference on Power, Energy and Control (ICPEC), Sri Rangalatchum Dindigul,
India, 6–8 February 2013; pp. 630–634.

15. Zhang, G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003,
50, 159–175. [CrossRef]

16. Adhikari, R.; Verma, G.; Khandelwal, I. A model ranking based selective ensemble approach for time series
forecasting. Procedia Comput. Sci. 2015, 48, 14–21. [CrossRef]

17. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice-Hall:
Englewood Cliffs, NJ, USA, 1994.

18. Kumar, K.; Jain, V.K. Autoregressive integrated moving averages (ARIMA) modeling of a traffic noise time
series. Appl. Acoust. 1999, 58, 283–294. [CrossRef]

19. Ediger, V.S.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35,
1701–1708. [CrossRef]

20. Poczeta, K.; Kubus, L.; Yastrebov, A.; Papageorgiou, E.I. Temperature forecasting for energy saving in
smart buildings based on fuzzy cognitive map. In Proceedings of the 2018 Conference on Automation
(Automation 2018), Warsaw, Poland, 21–23 March 2018; pp. 93–103.
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51. Potočnik, P.; Soldo, B.; Šimunović, G.; Šarić, T.; Jeromen, A.; Govekar, E. Comparison of static and adaptive

models for short-term residential natural gas forecasting in Croatia. Appl. Energy 2014, 129, 94–103. [CrossRef]
52. Akpinar, M.; Yumusak, N. Forecasting household natural gas consumption with ARIMA model: A case study

of removing cycle. In Proceedings of the 7th IEEE International Conference on Application of Information
and Communication Technologies (ICAICT 2013), Baku, Azerbaijan, 23–25 October 2013; pp. 1–6.

53. Akpinar, M.M.; Adak, F.; Yumusak, N. Day-ahead natural gas demand forecasting using optimized ABC-based
neural network with sliding window technique: The case study of regional basis in Turkey. Energies 2017, 10,
781. [CrossRef]
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Abstract: Machine learning has emerged as a key factor in many technological and scientific
advances and applications. Much research has been devoted to developing high performance
machine learning models, which are able to make very accurate predictions and decisions on a wide
range of applications. Nevertheless, we still seek to understand and explain how these models
work and make decisions. Explainability and interpretability in machine learning is a significant
issue, since in most of real-world problems it is considered essential to understand and explain the
model’s prediction mechanism in order to trust it and make decisions on critical issues. In this study,
we developed a Grey-Box model based on semi-supervised methodology utilizing a self-training
framework. The main objective of this work is the development of a both interpretable and accurate
machine learning model, although this is a complex and challenging task. The proposed model was
evaluated on a variety of real world datasets from the crucial application domains of education,
finance and medicine. Our results demonstrate the efficiency of the proposed model performing
comparable to a Black-Box and considerably outperforming single White-Box models, while at the
same time remains as interpretable as a White-Box model.

Keywords: explainable machine learning; interpretable machine learning; semi-supervised learning;
self-training algorithms; ensemble learning; black, white and grey box models

1. Introduction

Machine learning (ML) is a growing and popular field which has been successfully applied in
many application domains. In particular, ML is a subfield of artificial intelligence which utilizes
algorithmic models to extract useful and valuable information from large amounts of data in order
to build intelligent computational systems which make decisions on specific problems in various
fields such as finance, banking, medicine and education. However, in most of real-world applications,
finding sufficient labeled data is a hard task while in contrast finding unlabeled data is an easier
task [1,2]. To address this problem, Semi-supervised learning (SSL) possesses a proper methodology
to exploit the hidden information in an unlabeled dataset aiming to build more efficient classifiers.
It is based on the philosophy that both labeled and unlabeled data can be used to build efficient and
accurate ML models [3].

Self-labeled algorithms form the most widely utilized and successful class of SSL algorithms
which attempt to enlarge an initial small labeled dataset from a rather large unlabeled dataset [4].
The labeling of the unlabeled instances is achieved via an iterative labeling process of the algorithm’s
most confident predictions. One of the most popular and efficient self-labeled methods proposed in the
literature is self-training. This algorithm initially trains one classifier on a labeled dataset in order to
make predictions on an unlabeled dataset. Then, following an iterative procedure, the most confident
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predictions are added to the labeled set and the classifier is retrained on the new augmented dataset.
When the iterations stop, this classifier is used for the final predictions on the test set.

In general, a classification model must be accurate in its predictions. However, another significant
factor in ML models is the explainability and the interpretability of classifiers’ predictions [5–7].
There are many real-world tasks which place significant importance in the understanding and the
explanation of the model’s prediction [8], especially in crucial and decisive decisions such as cancer
diagnosis. Thus, research must focus on finding ML models which are both accurate and interpretable,
although this is a complex and challenging task. The problem is that most of ML models which are
interpretable (White-Boxes in software engineering terms) are less accurate, while models which are
very accurate are hard or impossible to interpret (Black-Boxes). Therefore, a Grey-Box model which is
a combination of black and White-Box models, may acquire the benefits of both, leading to an efficient
ML model which could be both accurate and interpretable at the same time.

The innovation and the purpose of this work lies in the development of a Grey-Box ML model,
based on the self-training framework, which is nearly as accurate as a Black-Box and more accurate
than a single White-Box but is also interpretable like a White-Box model. More specifically, we utilized
a Black-Box model in order to enlarge a small initial labeled dataset adding the model’s most confident
predictions of a large unlabeled dataset. Then, this augmented dataset is utilized as a training set on
a White-Box model. By this combination, we aim to obtain the benefits of both models, which are
Black-Box’s high classification accuracy and White-Box’s interpretability, in order to build a both
accurate and interpretable ensemble.

The remainder of this paper is organized as follows: Section 2 presents in a more detailed
way the meaning and the importance of interpretability and explainability in ML models. It also
presents a detailed explanation of Black-, White-, and Grey-Box models characteristics and the main
interpretation techniques and results. Section 3 presents the state of the art methods for interpreting
machine learning models. Section 4 presents a description of the proposed Grey-Box classification
model. Section 5 presents our datasets utilized in our experiments while Section 6 presents our
experimental results. In Section 7, we conducted a detailed discussion of our experimental results and
model’s method. Finally, Section 8 sketches our conclusions and future research.

2. Interpretability in Machine Learning

2.1. Need of Interpretability and Explainability

As we stated before, the interpretability and the explainability constitute key factors which are of
high significance in ML practical models. Interpretability is the ability of understanding and observing
a model’s mechanism or prediction behavior depending on its input stimulation while, explainability
is the ability to demonstrate and explain in understandable terms to a human, the models’ decision
on predictions problems [7,9]. There are a lot of tasks where the prediction accuracy of a ML model
is not the only important issue but, equally important is the understanding, the explanation and the
presentation of the model’s decision [8]. For example, cancer diagnosis must be explained and justified,
in order to support such vital and crucial prediction [10]. Additionally, a medical doctor occasionally
must explain his decision for his patient’s therapy in order to gain his trust [11]. An employee must be
able to understand and explain the results he acquired from the ML models to his boss or co-workers
or customers and so on. Furthermore, understanding a ML model can also reveal some of its hidden
weaknesses which may lead to further improvement of model’s performance [9].

Therefore, an efficient ML model in general must be accurate and interpretable in its predictions.
Unfortunately, developing and optimizing an accurate and, at the same time, interpretable model is
a very challenging task as there is a “trade-off” between accuracy and interpretation. Most of ML
models in order to achieve high performance in terms of accuracy, often become hard to interpret.
Kuhn and Johnson [8] stated that “Unfortunately, the predictive models that are most powerful are
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usually the least interpretable”. Optimization of models’ accuracy leads to increased complexity, while
less complex models with few parameters are easier to understand and explain.

2.2. Black-, White-, Grey-Box Models vs. Interpretability and Explainability

ML models depending on their accuracy and explainability level can be categorized in three main
domains: White-Box, Black-Box, and Grey-Box ML models.

A White-Box is a model whose inner logic, workings and programming steps are transparent and
therefore it’s decision making process is interpretable. Simple decision trees are the most common
example of White-Box models while other examples are linear regression models, Bayesian Networks
and Fuzzy Cognitive Maps [12]. Generally, linear and monotonic models are the easiest models to
explain. White-Box models are more suitable for applications which require transparency in their
predictions such as medicine and finance [5,12].

In contrast to the White-Box, Black-Box is often a more accurate ML model whose inner workings
are not known and are hard to interpret meaning that a software tester, for example, could only
know the expected inputs and the corresponding outputs of this model. Deep or shallow neural
networks are the most common examples of ML Black-Box models. Other examples are support vector
machines and also ensemble methods such as boosting and random forests [5]. In general, non-linear
and non-monotonic models are the hardest functions to explain. Thus, without being able to fully
understand their inner workings it is almost impossible to analyze and interpret their predictions.

A Grey-Box is a combination of Black-Box and White-Box models [13]. The main objective of
a Grey-Box model is the development of an ensemble of black and White-Box models, in order to
combine and acquire the benefits of both, building a more efficient global composite model. In general,
any ensemble of ML learning algorithms containing both black and White-Box models, like neural
networks and linear regression, can be considered as a Grey-Box. In a recent research, Grau et al. [12]
combined White- and Black-Box ML models following a self-labeled methodology in order to build
an accurate and transparent and therefore interpretable prediction model.

2.3. Interpretation Techniques and Results

The techniques for interpreting machine learning models are taxonomized based on the type of
the interpretation results we wish or we are able to acquire and on the prediction model framework
(White, Black-, or Grey-Box model) we are intending to use.

2.3.1. Two Main Categories

In general, there are two main categories of techniques which provide interpretability in machine
learning. These are intrinsic interpretability and post-hoc interpretability [7,14]. Intrinsic interpretability
is acquired by developing prediction models which are by their nature interpretable, such as all the
White-Box models. Post-hoc interpretability techniques aim to explain and interpret the predictions
of every model, although they are not able to access the model’s inner structure and internals,
like its weights, in contrast to intrinsic interpretability. For this task, these techniques often develop
a second model which has the role of the explanator for the first model. The first model is the
main predictor and is probably a Black-Box model without forbidding to be a White-Box model.
Local interpretable model-agnostic explanations (LIMEs) [15], permutation feature importance [16],
counterfactual explanations [17] and Shapley additive explanations (SHAPs) [18] are some examples
of post-hoc interpretability techniques. We conduct a more detailed discussion on these techniques in
the following section.

2.3.2. Intrinsic vs. Post-Hoc Interpretability

Intrinsic interpretation methods are by nature interpretable, meaning that there is no need of
developing a new model for interpreting the predictions. Thus, the great advantage of these methods
is their uncontested and easy achieved interpretation and explanation of models’ predictions. On the
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other hand, their obvious disadvantage is their low performance in terms of accuracy compared to
post-hoc methods since the output prediction model on intrinsic methods is a White-Box model.

Post-hoc interpretation methods have the obvious advantage of high performance in terms of
accuracy, compared to intrinsic methods, since they often have a Black-Box model as their output
predictor, while the interpretation of the predictions is achieved by developing a new model. In contrast,
the disadvantage is that developing a new model to explain the predictions of the main Black-Box
predictor, is like an expert asking another expert to explain his own decisions, meaning that the
explanation of the predictions in these methods cannot come up from the inner workings of the main
Black-Box predictor and thus it often needs the access of the original dataset in which the Black-Box
model was trained in order to explain its predictions. A further discussion on this subject is conducted
in the next section.

2.3.3. Interpretation of Results

The main types of interpretation methods are feature summary statistic, feature summary
visualization, model internals, and data points. Feature summary statistics could be a table containing
a number per feature, where this number expresses the feature importance. Feature summary
visualization is another way to present features statistics, instead of tables. By this way the feature
summary statistics are visualized in a way to be even more meaningful on the presentation. Model
internals are the inner coefficients and parameters of models, such as the weights of all linear models
and the learned tree structure of all decision trees. All White-Boxes fall in this category as by nature
these models’ inner workings are transparent and thus, they are interpreted by “looking” at their
internal model parameters. Data points [14] are existing instances or artificially created ones which are
used by some methods to interpret a model’s prediction. For example, counterfactual explanations
falls into this category of methods which explains a model’s prediction for a data point by finding
similar data points. A further explanation on this subject is conducted in the next section.

3. State of the Art Machine Learning Interpretability Methods

Based on the main interpretation techniques and the types of interpretation results, as mentioned
above, there has been a significant research work in the last years for developing sophisticated methods
and algorithms in order to interpret machine learning models. These algorithms are always bounded
by the trade-off between interpretability and accuracy, meaning that in order to achieve high accuracy
there is often sacrifice in interpretability, although the main objective of all these algorithms is the
development of both accurate and interpretable models.

LIME [15] can be considered a Grey-Box post-hoc interpretability model which aims to explain
the predictions of a Black-Box model by training a White-Box on a local generated dataset, in order to
approximate the Black-Box model for the local area on the data points of interest (instances we wish
to explain). More specifically, this algorithm generates a fake dataset based on the specific example
we wish to explain. This fake dataset contains the perturbed instances of the original dataset and
the corresponding predictions of the black model, which are the target values (labels) for this fake
dataset. Then, by choosing a neighborhood around the point of interest (define weights of fake data
points depending on their proximity to the point of interest) an interpretable model (White-Box) is
trained with this new dataset and the prediction is explained by interpreting this local White-Box
model. This model does not have to approximate well the Black-Box globally but has to approximate
well the Black-Box model locally to the data point of interest. LIME is an algorithm which has the
potential to interpret any Black-Box model predictions. However, generating a meaningful fake dataset
is a hard and challenging task to do while its great disadvantage lies in the proper definition of the
neighborhood around the point of interest [14].
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Permutation feature importance [16] is a post-hoc interpretation method which can be applied
to Black and White-Box models. This method provides a way to compute features’ importance for
any Black-Box model by measuring the model’s prediction error when a feature has been permuted.
A feature will be considered important if the prediction error increases after its permutation and
considered as “not important” if the prediction error remains the same. One clear disadvantage of
this method is that it requires the actual output of a dataset in order to calculate features’ importance.
In a case where we only have the trained Black-Box model without having access to the labels of
a dataset (unlabeled data), then this method would be unable to interpret the predictions for this
Black-Box model.

Counterfactual explanations [17] is a human friendly post-hoc interpretation method which
explains a model’s prediction by trying to figure out how much the features of an instance of interest
must change in order to produce the opposite output prediction. For example, if a Black-Box model
predicts that a person is not approved for a bank loan and then by changing his age from “10” to “30”
and his job state from “unemployed” to “employed” the model predicts that he is approved for a loan,
then this is a counterfactual explanation. In this example, the Black-Box by itself does not give any
information or explanation to the person for the loan rejection prediction, while the counterfactual
explanation method indicates that if he was older and had a job, he could have taken the loan. One big
disadvantage is that this method may find multiple counterfactual explanations for each instance of
interest and such an explanation cannot be approved since it would confuse most people.

SHAP [18] is another post-hoc interpretation method which has its roots in game theory and
Shapley values. The main objective of this method is the explanation of individual predictions by
computing the Shapley values. Shapley value is the contribution of each feature for an instance of
interest to the model’s prediction. The contribution of each feature is computed by averaging the
marginal contributions for all possible permutations for all features. The marginal contribution of
a specific feature is the value of the joint contribution for a set of features being this specific feature
the last in order, minus the joint contribution for the same set of features with this specific feature
being absent. The main innovation of SHAP, is that it computes the Shapley values in a way to
minimize the computation time, since all possible permutations for a big number of features would
lead to a computationally unattainable task. One disadvantage of this method is that the explanation of
a prediction for a new instance requires access to the training data in order to compute the contributions
of each feature.

Interpretable mimic learning [19] is a Grey-Box intrinsic interpretation method which trains
an accurate and complex Black-Box model and transfers its knowledge to a simpler interpretable
model (White-Box) in order to acquire the benefits of both models for developing an accurate
and interpretable Grey-Box model. This idea comes from knowledge distillation [20] and mimic
learning [21]. More specifically the interpretable mimic learning method trains a Black-Box model.
Then the Black-Box model makes predictions on sample dataset and its predictions with this sample
dataset are utilized for training a White-Box model. In other words, the target values of the student
(White-Box) model, are the output predictions of the teacher (Black-Box) model. One reason that this
technique works is that the Black-Box eliminates possible noise and errors in the original training
data which could lead to the reduction of the accuracy performance for a White-Box model. This
Grey-Box model can have improved performance, comparing to a single White-Box model trained
on the original data, being at the same time interpretable since the output predictor is a White-Box
model and that is the reason why this model falls in the intrinsic interpretation category. The obvious
disadvantage of this method is the same with all intrinsic interpretation models and this is the lower
accuracy comparing to post-hoc models, since the performance of these models is bounded by the
performance of their output predictor which is a White-Box model.
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4. Grey-Box Model Architecture

In this section, we present a detailed description of the proposed Grey-Box model which is based
on a self-training methodology.

In our framework, we aim to develop a Grey-Box classification model which will be interpretable,
being at the same time nearly as accurate as a Black-Box and more accurate than any single White-Box.
We recall that ML models which utilize very complex functions (Black-Box models) are often more
accurate but they are difficult and almost impossible to interpret and explain. On the other hand,
White-Box ML models solve the problem of explainability but are often much less accurate. Therefore,
a Grey-Box model, which is a combination of black and White-Box models, can result in a more efficient
global model which possess the benefits of both.

In our model, we utilized an accurate classification model (Black-Box base learner) on
a self-training strategy in order to acquire an enlarged labeled dataset which will be used for training
an interpretable model (White-Box learner). More specifically, the Black-Box was trained on an initial
labeled dataset in order to make predictions on a pool of unlabeled data, while the confidence rate
of each prediction was calculated too. Then, the most confident predictions (m.c.p) were added to
the initial labeled data and the Black-Box learner was re-trained with the new enlarged labeled data.
The same procedure is repeated till a stopping criterion is met. At the end of iterations, the final
augmented labeled data are utilized for training the White-Box learner.

An overview of this Grey-Box model architecture and flow chart are depicted in
Figures 1 and 2, respectively.

Labeled
set

Unlabeled
set Black box

Enlarged
Labeled

set

Train

Add the mcp

Retrain

Enlarged
Labeled

set

White box

Trained model
used for predictions

Train

Figure 1. Grey-Box model architecture.

It is worth mentioning that by the term White-Box model we mean that a White-Box learner is
used in both left and right architecture displayed in Figure 1, while by Black-Box model we mean that
a black box learner is used in both left and right architecture. Additionally, in case the same learner is
utilized in both left and right architecture, then the proposed framework is reduced to the classical
self-training framework.
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Figure 2. Grey-Box model flow chart.

5. Description of Datasets

In order to evaluate the efficiency and the flexibility of the proposed Grey-Box model,
we utilized in our experiments several benchmark datasets on various real-world application domains.
These datasets are two educational datasets by a private school, two financial datasets (Australian
credit and Bank marketing acquired from UCI Machine Learning Repository) and two medical datasets
(Coimbra and Breast Cancer Wisconsin). A brief description of the datasets characteristics and structure
is presented in Table 1.

The educational datasets were collected by a Microsoft showcase school during the years
2007–2016 concerning the performance of 2260 students in courses of “algebra” and “geometry” of the
first two years of Lyceum [22]. The attributes of this dataset have numerical values ranging from 0
(lowest grade) to 20 (highest grade) referring to the students’ performance on the 1st and 2nd semester
and the dependent variable of this dataset has four possible states (“fail”, “good”, “very good”,
“excellent”) indicating the students’ grade in the final examinations. Since it is of high importance
for an educator to recognize weak students in the middle of the academic period, two datasets have
been created, namely EduDataA and EduDataAB. EduDataA contains the attributes concerning the
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students’ performance during the 1st semester. EduDataAB contains the attributes concerning the
students’ performance during the 1st and 2nd semesters.

The Australian credit dataset [22] concerns approved or rejected credit card applications,
containing 690 instances and 14 attributes (six numerical and eight categorical). An interesting thing
with this dataset is the variation and the mixture of attributes which is continuous, nominal with small
numbers of values and nominal with larger numbers of values. The Bank Marketing dataset [23] is
associated with direct marketing campaigns (phone calls) of a Portuguese banking institution. The goal
is to identify if the client will subscribe a term deposit (target value y). For the bank marketing staff is
very important to know potential clients for subscribing a term deposit since they could decide on
which customer to call and which one to leave alone without bothering them with irrelevant product
calls. The Bank Marketing dataset consists of 4119 instances and 20 features.

The Coimbra dataset [24] is comprised by ten attributes, all quantitative and a binary dependent
variable which indicates the presence or absence of breast cancer. All clinical features were measured
for 64 patients with breast cancer and 52 healthy controls. The developing of accurate prediction
models based on these ten attributes can potentially be used as a biomarker of breast cancer. The Breast
Cancer Wisconsin dataset [22] is comprised by 569 patient instances and 32 attributes. The features
were computed from a digitized image of a fine needle aspirate of a breast mass. They describe
characteristics of the cell nuclei present in the image. The output attribute is the patient’s diagnosis
(malignant or benign).

Table 1. Benchmark datasets summary.

Dataset Application Domain #Instances #Features #Classes

EduDataA Education 2260 5 4
EduDataAB Education 2260 10 4
Australian credit Finance 690 14 2
Bank marketing Finance 4119 20 2
Coimbra Medicine 116 10 2
Wisconsin Medicine 569 32 2

6. Experimental Results

We conducted a series of experimental tests in order to evaluate the performance of the proposed
Grey-Box model utilizing the classification accuracy and F1-score as an evaluation metric with
a 10-fold cross-validation.

In these experiments, we compared the performance of Black-box, White-box and Grey-box
models using five different labeled dataset ratios i.e., 10%, 20%, 30%, 40%, and 50%, in six datasets.
The term “ratio” refers to the ratio of labeled and unlabeled datasets utilized for each experiment.
The White-Box model utilizes a single White-Box base learner in self-training framework, the Black-Box
model utilizes a single Black-Box base learner in self-training framework while the Grey-Box model
utilizes a White-Box learner with a Black-Box base learner in self-training framework.

Additionally, in order to investigate which Black-Box or White-Box combination brings the best
results, we tried two White-Box and three Black-Box learners. For this task we have utilized the
Bayes-net (BN) [25] and the random tree (RT) [26] as White-Box learners and the sequential minimal
optimization (SMO) [27], the random forest (RF) [28], and the multi-layer perceptron (MLP) [29] as
Black-Boxes for each dataset. Probably these classifiers are the most popular and efficient machine
learning methods for classification tasks [30]. Table 2 presents a summary of all models used in
the experiments.

The experimental analysis was conducted in a two-phase procedure: In the first phase,
we compared the performance of Grey-Box models against that of White-Box models, while in
the second phase, we evaluated the prediction accuracy of the Grey-Box models against that of
Black-Box models.
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Table 2. White-, Black-, and Grey-Box models summary.

Model Description

White-Box (BN) base learner: BN
White-Box (RT) base learner: RT

Black-Box (SMO) base learner: SMO
Black-Box (RF) base learner: RF
Black-Box (MLP) base learner: MLP

Grey-Box (SMO- BN) base learners: SMO, BN
Grey-Box (RF- BN) base learners: RF, BN
Grey-Box (MLP- BN) base learners MLP, BN
Grey-Box (SMO-RT) base learners: SMO, RT
Grey-Box (RF-RT) base learners: RF, RT
Grey-Box (MLP-RT) base learners: MLP, RT

6.1. Grey-Box Models vs. White-Box Models

Figures 3–8 present the performance of the Grey-Box and White-Box models. Regarding both
metrics we can observe that the Grey-Box model outperformed the White-Box model for each
Black-Box and White-Box classifier combination in most cases, especially on EduDataA, EduDataAB,
and Australian datasets. On Coimbra dataset the two models exhibit almost similar performance,
with Grey-Box model being slightly better. On Winsconsin dataset the Grey-Box model reported better
performance in general, except for ratio 40 and 50 where the White-Box model outperformed the
Grey-Box, utilizing RT as White-Box base learner. The interpretation of Figures 3–8 reveals that for
EduDataA, EduDataAB and Bank marketing datasets, as ratio value increases, the performance of all
models increases too, while on the rest datasets, it seems that we cannot state a similar conclusion.
We can also observe that the Grey-Box model performs better in most cases for small ratios (10%, 20%,
30%) while it seems that for higher ratios (40%, 50%) the White-Box exhibits similar performance as
the Grey-Box model. Summarizing, we point out that the proposed Grey-Box model performs better
for small labeled ratios. Additionally, the Grey-Box (SMO-RT) reported the best overall performance
reporting the highest classification accuracy in three out of six datasets, while the Grey-Box reported
the best performance utilizing RT as White-Box learner, regarding all utilized ratios.

Figure 3. Box-plot with performance evaluation of Grey-Box and White-Box models for EduDataA dataset.
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Figure 4. Box-plot with performance evaluation of Grey-Box and White-Box models for EduDataAB dataset.

Figure 5. Box-plot with performance evaluation of Grey-Box and White-Box models for Australian dataset.

Figure 6. Box-plot with performance evaluation of Grey-Box and White-Box models for Bank dataset.
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Figure 7. Box-plot with performance evaluation of Grey-Box and White-Box models for Coimbra dataset.

Figure 8. Box-plot with performance evaluation of Grey-Box and White-Box models for Winsconsin dataset.

6.2. Grey-Box Models vs. Black-Box Models

Figures 9–14 present the performance of the Grey-Box and Black-Box models utilized in our
experiments. We can conclude that the Grey-Box model was nearly as accurate as a Black-Box model
with the Black-Box being slightly better. More specifically, the Black-Box model clearly outperformed
the Grey-Box model on EduDataA and EduDataAB datasets while the Grey-Box reported better
performance on Australian dataset. On Bank marketing, Coimbra, and Winsconsin datasets both
models exhibited similar performance.
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Figure 9. Box-plot with performance evaluation of Grey-Box and Black-Box models for EduDataA dataset.

Figure 10. Box-plot with performance evaluation of Grey-Box and Black-Box models for EduDataAB dataset.

Figure 11. Box-plot with performance evaluation of Grey-Box and Black-Box models for Australian dataset.

Figure 12. Box-plot with performance evaluation of Grey-Box and Black-Box models for Bank dataset.

Figure 13. Box-plot with performance evaluation of Grey-Box and Black-Box models for Coimbra dataset.
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Figure 14. Box-plot with performance evaluation of Grey-Box and Black-Box models for Winsconsin dataset.

7. Discussion

7.1. Discussion about the Method

In this work, we focus on developing an interpretable and accurate Grey-Box prediction model
applied on datasets with a small number of labeled data. For this task, we utilized a Black-Box base
learner on a self-training methodology in order to acquire an enlarged labeled dataset which was
used for training a White-Box learner. Self-training was considered the most appropriate self-labeled
method to use, due to its simplicity, efficiency and because is a widely used single view algorithm [4].
More specifically, in our proposed framework, an arbitrary classifier is initially trained with a small
amount of labeled data, constituting its training set which is iteratively augmented using its own
most confident predictions of the unlabeled data. More analytically, each unlabeled instance which
has achieved a probability over a specific threshold is considered sufficiently reliable to be added
to the labeled training set and subsequently the classifier is retrained. In contrast to the classic
self-training framework, we utilized the White-Box learner as the final predictor. Therefore, by training
a Black-Box model on the initial labeled data we obtain a larger and a more accurate final labeled
dataset, while utilizing a White-Box trained on the final labeled data and being the final predictor,
we are able to obtain explainability and interpretability on the final predictions.

In contrast to Grau et al. [12] approach, we decided to augment the labeled dataset utilizing the
most confident predictions from the unlabeled dataset. This way we may lose some extra instances,
leading to a smaller final labeled dataset, but instead we manage to avoid mislabeling of new instances
and thus reduce the “noise” of the new augmented dataset. Thus, we addressed the weakness of
including erroneous labeled instances in the enlarged labeled dataset which could probably lead the
White-Box classifier to poor performance.

Che et al. [19] proposed an interpretable mimic model which falls into the intrinsic interpretability
category similar to our proposed model. Nevertheless, the main difference compared to our approach
is that we aim to add interpretability on semi supervised algorithms (self-training) which means that
our proposed model is mostly recommended on scenarios in which the labeled dataset is limited while
a big pool of unlabeled data is available.

7.2. Discussion about the Prediction Accuracy of the Grey-Box Model

In terms of accuracy, our proposed Grey-Box model outperformed White-Box model in most cases
of our experiments especially on our educational datasets. As regards, Coimbra dataset, the two models
reported almost identical performance with Grey-Box to be slightly better. Relative to Winsconsin
dataset there were two cases in which the White-Box model reported better performance over the
Grey-Box. Probably this occurs due to the fact that these datasets are very small (few number of labeled
instances) and becoming even smaller by the self-training framework as the datasets have to be split in
labeled and unlabeled datasets.

Most of Black-Box models are by nature “data-eaters”, especially neural networks, meaning that
they need a large number of instances in order to outperform most of White-Box models in terms
of accuracy. Our Grey-Box model consists of a Black-Box base learner which was initially trained
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on the labeled dataset and then makes predictions on the unlabeled data in order to augment the
labeled dataset which is then used for training a White-Box learner. If the initial dataset is too small,
there is the risk that the Black-Box could exhibit poor performance and make wrong predictions on the
unlabeled dataset. This implies that the final augmented dataset will have a lot of mislabeled instances
forcing the White-Box, which is the output of the Grey-Box model, to exhibit low performance too.
As a result, the proposed Grey-Box model may have lower or equal performance compared to the
White-Box model.

Moreover, the Grey–Box model performed slightly worse than the Black-Box models as expected
since our goal was to demonstrate that the proposed Grey-Box model achieved a performance almost
as good as a Black-Box model. Thus, in summary our results reveal that our model exhibited
better performance compared to the White-Box model and reported comparable performance to
the Black-Box model.

7.3. Discussion about the Interpretability of the Grey-Box Model

The proposed Grey-Box model falls into the intrinsic interpretability category as its output
predictor is a White-Box model and by nature all White-Box models are interpretable. Nevertheless, it
does not have the disadvantage of low accuracy inherent to methods of this category as it performs as
good as post-hoc methods.

Also, in order to present how the interpretability and explainability of our Grey-Box model
comes up in practice, we conducted a case study (experiment example) for the Coimbra dataset
utilizing Grey-Box (SMO-RT) because this model exhibited better overall performance. For this task,
we made predictions for two instances (persons) utilizing our trained Grey-Box model and now we
attempt to explain, in understandable to every human terms, why our model made these predictions.
Table 3 presents the values of each attribute for two instances of the Coimbra dataset while a detailed
description of the attributes can be found in [24].

Table 3. Feature values for two persons from the Coimbra dataset.

Features

Age BMI Glucose Insulin HOMA Leptin Adiponectin Resistin MCP-1 Class

Instance1 51 22.892 103 2.74 0.696 8.016 9.349 11.554 359.232 Patient
Instance2 36 28.570 86 4.34 0.920 15.12 8.600 9.150 534.22 Healthy

Figure 15 presents the trained Grey-Box model’s inner structure. From the interpretation of the
Grey-Box model, we conclude that the model suggests as the most significant feature, the “age”, since it
is in the root of the tree, while we can also observe that a wide range of features are not utilized at all
from the model’s inner structure.

Furthermore, by observing the inner structure of the model we can easily extract the model
predictions for both instances by just following the nodes and the arrows of the tree, based on the
feature values of each person, this procedure is performed, until we reach a leaf of the tree which
has the output prediction of the model. More specifically, the Instance1 has “Age = 51” and for the
first node the statement “age ≤ 37” is “false”, thus we move right to the next node which has the
statement “HOMA ≤ 2.36”. This is “true”, so we move left to “glucose ≤ 91.5” which is “false” since
the Instance1 has “glucose = 103”. Therefore, the model’s prediction for the Instance1 is “patient”.
By a similar procedure we can extract the model’s prediction for Instance2 which is “healthy”. Next,
we can also draw some rules from the model and translate them into explanations such as

• Rule 1: “The persons which are of age over 37, have HOMA lower than 2.36, and have glucose
over than 91.5, most probably are patients”.

• Rule 2: “The persons which are of age lower than 37 and have glucose lower than 91.5 most
probably are healthy.”
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and so on. Instance1 falls exactly on Rule 1, while Instance2 falls exactly on Rule 2. Thus, an explanation
for the Grey–Box model’s predictions could be that Instance1 is probably “patient” because he/she is
older than 37 years old and has very low HOMA with high glucose level, while Instance2 is probably
“healthy” because he/she is under 37 years old and has low glucose level.

Age ≤ 37

Glucose ≤ 91.5 HOMA ≤ 2.36

Healthy Patient Glucose ≤ 91.5 Glucose ≤ 91.5

Healthy Patient Insulin ≤ 18.99 Insulin ≤ 18.99

Healthy Patient Patient Healthy

Yes No

Yes No Yes No

Yes No Yes No

Yes No Yes No

Figure 15. The interpretation of the learned inner model structure.

8. Conclusions

In this work, we developed a high performance and interpretable Grey-Box ML model. Our main
purpose was to acquire both benefits of black and White-Box models in order to build an interpretable
classifier with a better classification performance, compared to a single White-Box model and
comparable to that of a Black-Box. More specifically, we utilized a Black-Box model to enlarge
an initial labeled dataset and the final augmented dataset was used to train a White-Box model.
In contrast to the self-training framework, this trained White-Box model was utilized as the final
predictor. This ensemble model falls into the category of intrinsic interpretability since its output
predictor is a White-Box which is by nature interpretable. Our experimental results revealed that
our proposed Grey-Box model has accuracy comparable to that of a Black-Box but better accuracy
comparing to a single White-Box model, being at the same time interpretable as a White-Box model.

In our future work, we aim to extend our experiments of the proposed model to several datasets
and improve its prediction accuracy with more sophisticated and theoretically motivated ensemble
learning methodologies combining various self-labeled algorithms.
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Abstract: In recent years, a forward-looking subfield of machine learning has emerged with important
applications in a variety of scientific fields. Semi-supervised learning is increasingly being recognized
as a burgeoning area embracing a plethora of efficient methods and algorithms seeking to exploit
a small pool of labeled examples together with a large pool of unlabeled ones in the most efficient
way. Co-training is a representative semi-supervised classification algorithm originally based on
the assumption that each example can be described by two distinct feature sets, usually referred to
as views. Since such an assumption can hardly be met in real world problems, several variants of
the co-training algorithm have been proposed dealing with the absence or existence of a naturally
two-view feature split. In this context, a Static Selection Ensemble-based co-training scheme operating
under a random feature split strategy is outlined regarding binary classification problems, where the
type of the base ensemble learner is a soft-Voting one composed of two participants. Ensemble
methods are commonly used to boost the predictive performance of learning models by using
a set of different classifiers, while the Static Ensemble Selection approach seeks to find the most
suitable structure of ensemble classifier based on a specific criterion through a pool of candidate
classifiers. The efficacy of the proposed scheme is verified through several experiments on a plethora
of benchmark datasets as statistically confirmed by the Friedman Aligned Ranks non-parametric test
over the behavior of classification accuracy, F1-score, and Area Under Curve metrics.

Keywords: binary classification; co-training; ensemble methods; feature views; dynamic ensemble
selection; Soft-Voting

1. Introduction

In recent years, the latest research on machine learning (ML) which has placed much emphasis on
learning from both labeled and unlabeled examples is mainly expressed by semi-supervised learning
(SSL) [1]. SSL is increasingly being recognized as a burgeoning area embracing a plethora of efficient
methods and algorithms seeking to exploit a small pool of labeled examples together with a large
pool of unlabeled ones in the most efficient way. Since in most real-world applications there is an
abundance of unlabeled examples, while labeled examples are either difficult or expensive to obtain,
SSL has emerged as a promising domain with important applications in a variety of scientific fields
with substantial results [2,3].

In general, SSL methods are commonly divided into two key tasks, as follows: semi-supervised
classification (SSC) for discrete-value output variables and semi-supervised regression (SSR) for
real-value ones [4]. The classification task, usually referred to as pattern recognition in engineering or
discriminant analysis in statistics [5], has been widely studied under the semi-supervised framework
for classifying any given example to one out of the included class labels into a predetermined set.
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Depending on the number of class labels, classification problems may be either binary (with two class
labels) or multi-class (with more than two class labels). For that purpose, a number of semi-supervised
algorithms have been developed and successfully implemented, such as self-training [6], co-training [7],
and tri-training [8], as well as approaches that are based on semi-supervised support vector machines
and transductive learning or SSL graph-based methods, to name just a few [9].

Co-training is a representative multi-view SSC algorithm originally based on the assumption that
each example can be described by two distinct feature sets, usually referred to as views [7]. Then,
two classification algorithms are trained separately on each view and the most confident predictions of
each one on the unlabeled data are used to augment the training set of the other. Let LD denote a small
set of labeled examples and UD a large set of unlabeled ones. The two separate classifiers C1, C2 are
retrained on the enlarged set LD and the process is repeated for a predefined number of iterations or
until a stopping criterion is satisfied, such as the UD pool to be empty. However, since such a two-view
assumption can hardly be met in real world problems, several variants of the co-training algorithm
have been proposed dealing with the absence or existence of a naturally two-view feature split with
notable results.

In addition to these, ensemble learning or committee-based learning or learning multiple classifier
systems has emerged recently and is considered as one of the most adequate solutions for building
powerful and accurate classification models [10]. Instead of using one algorithm for building a learning
model, ensemble methods are commonly used to construct and combine a set of classifiers, either weak
or strong, generally called base learners. The fundamental points for the effectiveness of an ensemble
method concern careful selection of both base learners [11] and the combination method for producing
the final hypothesis [12]. Averaging (simple or weighted [13]) and voting (majority, unanimity, plurality,
or even weighted votes) are popular and commonly used combination methods [14] depending on the
problem which needs to be resolved [10]. Moreover, approaches using committees of base learners
into the core of their learning process have also been demonstrated recently, presenting encouraging
results [15].

The necessity of accurate and robust decisions inside a semi-supervised scheme play a cardinal
role, especially in cases where the number of initially labeled instances is quite small and no decision
correcting or editing mechanisms have been placed inside the learning kernel. Therefore, strategies
trying to build an ensemble optimizing well-defined criteria could be a useful asset of a compact
semi-supervised algorithm for selecting the most suitable structure per task. Although this concept
has been highly exploited under the supervised mode, only few works have been detected in the
related literature that apply similar approaches [16,17]. Furthermore, there are some works in this field
that apply mechanisms suitably combining the decisions of selected base learners, failing, however,
to state the reasons of their choice, apart from some generic properties, such as the combination of
one generative and one discriminative approach that favors the diversity of the applied co-training
algorithm [18].

In this context, a soft-Voting ensemble-based co-training scheme using static selection strategy,
regarding binary classification problems, is proposed. Since co-training is primarily relying on
the multi-view assumption, a heuristic scheme is adopted for manually generating the two views.
Although this random split may act towards injecting diversity into a multi-view SSL approach,
the main asset of the proposed algorithm is the construction of an ensemble learner choosing among
five different classifiers, based on a novel objective function that measures the efficacy of any examined
pair of classifiers per dataset, operating under a soft-Voting scheme. The efficacy of the proposed
mechanism for selecting the ensemble’s participants is verified through several experiments against
both single-view SSL variants—through the well-known self-training scheme—and the co-training
scheme, applying all of the 10 different pairs of algorithms into the same soft-Voting learner and the
five individual classifiers, on a plethora of benchmark datasets over five separate labeled ratio values.
The obtained results regarding two well-known classification metrics are statistically confirmed by the
applied Friedman Aligned Ranks non-parametric test.
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The rest of this paper is organized as follows: the co-training framework is presented in Section 2,
while reviewing recent studies concerning both the application of co-training in real world applications
and Ensemble Selection strategies. In Section 3, we propose and describe in detail the proposed
co-training scheme operating under a random feature split using internally a static selection strategy
regarding a soft-Voting algorithm. Section 4 includes the experiments carried out along with the
relevant results. Finally, in Section 5 we comment on the results considering some thoughts for
future work.

2. Related Works

This section consists of two different parts, which highlight the two main points related to our
proposed work. After having mentioned some of the most important works towards these directions,
we can summarize our main contributions into the next section, facilitating the structure of this work.

2.1. Co-Training Studies

The first part of this section is dedicated to Co-training scheme and some of the numerous variants
that have been demonstrated. Hence, Co-training is deemed to be a representative multi-view SSL
method established by Blum and Mitchell [7] for binary classification problems and, in particular,
for categorizing web pages either as course or as non-course. It is based on the premise that each
example can be naturally divided into two separate set of features usually referred to as views,
which is clearly an assumption of great importance for the implementation of the particular method.
Co-training is identified as a “two-view weakly supervised algorithm” [6] since it incorporates
the self-training approach to separately teach each one of the two supervised classifiers in the
corresponding feature view and boost the classification performance exploiting the unlabeled examples
in the most efficient manner [19]. Moreover, Zhu and Goldberg consider co-training as a wrapper
method which is not affected by the two supervised classifiers employed in the relevant procedure,
provided that they produce good predictions on unlabeled data [20]. Several modifications have been
implemented since then, including mutual-learning and co-EM—bringing together the co-training and
Expectation-Maximization (EM) approaches—exploiting mainly simple classifiers like naive Bayes
(NB) [7,21].

In addition to the “two view” assumption, the effectiveness of the particular method depends
largely on two other key assumptions: the first one is that each view is adequate for classifying the
unlabeled data using a small set of labeled examples for training, while the second one is that each
view is conditionally independent given the class label. When either of these assumptions is not
met, different co-training variants have been proposed with comparable results. In the case where
the “two view” assumption is not fulfilled, a random feature partition could take place to facilitate
the application of the method as proposed by Zhu and Goldberg [20]. In such cases, the feature set
is partitioned into two subsets of almost equal size, which henceforth form the two feature views,
while different classifiers C1, C2 are employed. In addition, the same classifiers may be used under
different configuration parameters, thus ensuring the diversity between them [22].

The number of studies that propose co-training as an effective SSL method is really restricted.
One of these is presented in [22], where sentiment analysis is the main focus, while in [23] the authors
have tackled a health care issue. Although the popularity of this type of problem is widespread
and even though any shortcomings that may be associated with a large amount of labeled data
can be efficiently leveraged by other SSL methods, yet co-training seems to not have been delved
into thoroughly enough. In this study, three different sources of text data were examined: news
articles, online reviews, and blogs. A number of co-training variants were designed, focusing on
the way the split of the feature space takes place, fitting appropriately the specific properties that
characterize text data, such as the creation of one view by unigrams and the rest by bigrams or by
adopting character-based language models and bag-of-words models, respectively. The produced
results demonstrate the effectiveness of the co-training algorithm.
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Another task that has been efficiently tackled by using the co-training method is that of drug
discovery, where classification methods need to be applied so as to predict the suitability of some
molecules considering treatments of diseases and their possibly induced side-effects during the initial
steps of tedious experiments [24]. Accurate predictions may save both time and money, since fewer
combinations would be investigated and the final results could be acquired much faster. In this
work, two different views were available, stemming from chemistry and biology, and had to be
mixed to reach the final conclusion. The approaches that were examined may be summed up as
follows: (i) access separately each view either with a base classifier or the partial least squares (PLS)
regression method [25], (ii) fuse the different views, either by joining the heterogeneous data without
any preprocess or after having applied the PLS method, also used for dimensionality reduction, and (iii)
a modification of the co-training method (co-FTF). Ensemble tree-based learners were preferred in
this last approach, handling imbalanced datasets appropriately and leading to promising results,
while examining two labeled ratio scenarios. In addition, a random forest of predictive clustering trees
was incorporated in a self-training scheme for multi-target regression, thus improving the performance
of the employed SSL approach [26].

An expansion of the co-training algorithm, which includes an ensemble of tree-based learners as
base learner, has been proposed in [27]. Under the assumptions that are presented there, the necessity
of two sufficient and redundant views has been eliminated for the proper operation of Co-Forest.
Furthermore, the bootstrap method that is exploited during the creation of the included decision
trees provides the required diversity and, at the same time, reduces the chance of exporting biased
decisions, leading to an efficient operation of the SSL scheme. Adaptive Data Editing based Co-Forest
(ADE-Co-Forest) [28] constitutes a variant of the original Co-Forest algorithm, introducing an internal
mechanism in order to tackle the mislabeled instances, thus improving the total predictive behavior,
since both false negative/positive error rates are further reduced, compared to its ancestor. A boosted
co-training algorithm has also been proposed for a real-task problem—to be more specific, it concerns
the human action recognition—which is based on the mutual information and the consistency between
labeled and unlabeled data. Two metrics, named inter-view and intra-view confidence, are introduced
and exploited dynamically so as to select the most appropriate subset of the unlabeled pool with the
corresponding pseudo-labels [29].

Recently, a quite effective co-training method was introduced in [30] for early prognosis of
undergraduate students’ performance in the final examinations of a distance learning course based
on attributes which are naturally divided into two separate and independent views. The first one
concerns students’ characteristics and academic achievements which are manually filled out by tutors,
while the second one refers to attributes tracking students’ online activity in the course learning
management system and which are automatically recorded by the system. It should be mentioned that
semi-supervised multi-view learning has also been successfully applied for gene network reconstruction
combining the interactions predicted by a number of different inference methods [19]. In a similar
work, an ensemble-based SSL approach has been proposed for the computational discovery of miRNA
regulatory networks from large-scale predictions produced by different algorithms [31].

2.2. Ensemble Selection Strategies

The second part is oriented towards reporting briefly some of the most important points related
with Ensemble Selection concept [32,33]. To be more specific, some usual keywords in this field are
Multiple Classification Systems (MCSs), Static Ensemble Classifier (SEC), and Dynamic Ensemble
Classifier (DEC), as well as classifiers’ competence and diversification. The way that all these terms
are connected is the fact that when a new ensemble learner is designed, the main ambitions are the
employment of complementary and diverse participants, following the main asset of MCSs regarding
the continuous increase of the predictive rate. The main difference between the remaining two
terms is the fact that SEC strategies examine a global solution regarding the total set of unknown
instances, while the DES approaches provide a separate solution per test instance using mainly local
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restrictions. Despite their distinct roles, they can be combined under hybrid mechanisms sharing
similar measurement metrics or ML techniques for converging to their decisions [34,35].

Ensemble Selection has been inserted as a new stage into the original chain of constructing an
ensemble learner, taking into consideration both the importance of computational needs that arise when
we trust ensembles with too many participants and the fact of discarding less accurate models or models
that reduce the internal diversity. This tactic is usually referred to as ensemble pruning or selective
ensemble. A taxonomy of these techniques has been proposed in [36], assigning them to four different
categories: (i) ranking-based, (ii) clustering-based, (iii) optimization-based, and (iv) others, including
the remaining techniques that cannot be strictly categorized to any of the previous three subsets.
Another taxonomy was demonstrated in 2014, concerning mainly the actual need of DES in practice
and the relation between the inherent complexity of classification problem, measured by appropriate
metrics, and the contribution of the examined Dynamic Selection approaches [16]. Prototype selection
techniques have also been examined in the abovementioned framework, acting beneficially towards
both reducing computational resources and boosting the classification accuracy [37]. Furthermore,
one related work on the field of SSL has been proposed using the competence of selected classifiers
that stems from an affinity graph, achieving smoothness of the decisions for neighboring data [17].

3. The Proposed Co-Training Scheme

Motivated by the above studies, in the present paper we make an attempt to put forward an
ensemble-based co-training scheme for binary classification problems adopting a strategy of choosing
the base classifiers of the ensemble from an available pool of candidate classification algorithms per
dataset. The most important points concerning our contribution are outlined below:

• We propose a multi-view SSL algorithm that handles efficiently both labeled (L) and unlabeled
(U) data in the case of binary output variables.

• Instead of demanding two sufficient and redundant views, a random feature split is applied,
thereby increasing the applicability and improving the performance of the finally formatted
algorithm [38].

• We introduce a simple mechanism concerning the cardinality of unlabeled examples per different
class that is mined for avoiding overfitting phenomena in cases where imbalanced datasets must
be assessed.

• We insert a preprocess stage, where a pool of single learners is mined by a Static Ensemble
Selection algorithm to extract a powerful soft-Voting ensemble per different classification problem,
seeking to produce a more accurate and robust semi-supervised algorithm operating under small
labeled ratio values.

Let the whole dataset (X) consist of n instances and k features, apart from the class variable (Y) that,
in the context of this work, is restricted to be a binary one. Thus, without loss of generality, we assume
that yi ∈ {0,1} for each labeled instance {li, 1 ≤ i ≤ ni}, while each unlabeled instance {ui, 1 ≤ i ≤ nu} is
characterized by the absence of the corresponding yi value. The parameters nl and nu represent the
cardinality of L and U subsets, respectively. After having removed all missing values—leading to a
new cardinality of total instances (n′)—it is evident that the following equation holds:

n′ = ni + nu (1)

Besides holding both numeric and categorical features, all the features of the latter form are
converted into binary ones, increasing the initial number of k features into k′, in case X contains at
least one of them. Otherwise, since no augmentation of the initial features has been applied, the next
two quantities coincide: k ≡ k′. Under this generic approach, classification algorithms that cannot
handle categorical data are not rejected by the total proposed process.

This choice seems safe enough, since it does not reject the adoption of any learner—this mainly
refers to learning algorithms that cannot handle efficiently the existence of both numerical and

71



Algorithms 2020, 13, 26

categorical data—although the manipulation of heterogeneous features is an open issue [39]. Afterwards,
without introducing any specific assumption about the relationship or the origination of any included
feature, the available feature vector F: <f1, f2, . . . , fk′> is split into two newly formatted subsets F1 and
F2, where F = F1∪F2. Hence, two different datasets X1, X2 are generated, respectively, both including
disjoint feature sets, but sharing the same class variable Y. Therefore, the final hypothesis space could
be summarized as follows: Fview: Xview→[0, 1], where view = 1, 2.

Through the above described methodology, the following two choices are enabled: either to apply
a common learning strategy for both views, such as adopting the same learner, or tackling each view
separately, depending on underlying properties, such as the views’ cardinalities, independence or
correlation assumptions that affect the views’ internal structure or other kind of relationships that
specify the nature of each view, since two distinct tasks have been raised. Following the majority of the
existing approaches found in the literature and taking into consideration that a random feature split
operates as an agnostic factor regarding the structure of the constructed views, the first approach was
adopted in the present study [40].

Under this strategy, and before the common base learner is built per view, a preprocess stage is
inserted. This aims to measure the rate of the imbalanced instances found in the provided training
set and to define the number of the instances that have to be mined from each class per iteration
(Minedclass0, Minedclass1). Due to the SSL concept, the quota of L and U subsets is defined by a labeled
ratio value (R). Given this setting, the amount of the initial training set (Lview) is computed according
to the following formula:

InitSize = R× size(X), ∀view = 1, 2 (2)

The cardinalities of both classes are then computed (Cmax, Cmin) regarding the available L0
view.

The minimum of them is set equal to 1 (Minedclass0), while the other one is equal to 
Cmax/Cmin�
(Minedclass1). In this way, the provided class distribution of the labeled instances is assumed to be
representative of the total problem defined also by the unknown instances that must be assessed.
Finally, these two variables are exploited during the learning stage to retrieve a suitable number of
unlabeled instances per class during each iteration.

Now, as it regards the choice of the base learners, we selected five representative algorithms from
different learning families, capturing a wide spectrum of properties, concerning both assets and defects,
which should be combined and avoided, respectively, in order to construct appropriately an accurate
and robust enough ensemble learner per dataset so as to initialize the co-training process [41]. For this
purpose, our pool of classifiers (C) consists of support vector machines (SVMs) [42], k-nearest-neighbors
(kNN) [43], a simple tree inducer (DT) from family of decision trees [44], naive Bayes (NB) [45],
and logistic regression (LR) [46]. In order to keep the computational needs of the exported ensemble,
we restrict the cardinality of classifier participants under our Voting scheme, setting this number
equal to 2. Thus, we had to employ a soft variant of Voting scheme which takes into account the
class-probabilities of each algorithm and combines these decisions through averaging process, instead
of hard voting through on-off decisions [29], where the occurrence of ties with the even number of
base learners would appear too frequent. Furthermore, the stage of averaging the decisions of each
individual participant generally leads to the reduction of the ensemble’s variance and helps to surpass
the structure sensitivity that is usually detected in more unstable methods, considering the input data

To be more specific, if we assume that we tackle with a binary classification problem containing
a set of labels Υ = {0, 1} and a feature space X ∈ Rk, such that for any probabilistic classifier F holds
the next function: F : X → Υ , then for each instance m the decision profile of learner j is a pair of
class probabilities

[
Pj0, Pj1

]
which sum up to 1. Consequently, the mechanism of a simple, without
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weighting factors, soft-Voting classifier, given an instance xm, combines the decisions of all the candidate
classification algorithms searching the most probable class (ω) as follows:

ŷm = arg max
ω

|p|∑
j=1

Pj(= ω|xm ), ym ∈ Y, m ∈ {
1, 2, . . . , n′}, (3)

The class with the largest average probability is exported as the prevalent one through this
pipeline, where ŷm ∈ Y and the notation of

∣∣∣p∣∣∣ depicts the number of the combined classifiers.
Trying to uncover the function of our preprocess stage which constructs the base learner of the

proposed co-training scheme, we had to refer that the ambition of any Static Ensemble Selection
strategy is to construct a subset C∗, such that C∗ ⊂ C and |C∗| = 2, which satisfies better the chosen
criteria for obtaining the most desired performance over test instances. In our case, we investigate
the most compatible pair of learners that maximizes our proposed criterion under an unweighted
soft-Voting scheme. Through this, we measure the number of instances for which the decision of the
soft-Voting scheme remains correct when the two candidate participants disagree (qcorrected), normalized
by the total amount of disagreements based on the label of the examined instances (qdisaggre), as well as
the rate of non-common errors (qcommon errors/v). To this end, we introduce the objective function of
Equation (4), which is defined as a linear combination of the mentioned quantities:

Qa
so f t(i, j) = a ∗ qi, j

corrected

qi, j
disagree

+ (1− a) ∗ (1− qi, j
common errors

v ),

0 ≤ a ≤ 1, i, j ∈ {0, 1, 2 . . . , |C∗|} with i � j,
(4)

where a is a parameter to balance the importance between the included terms. Actually, the first one
rewards the pair of classifiers that managed to act complementary, since the more times the confidence
of the classifier that guessed correctly the corresponding class label overpowered against the erroneous
one, the larger values this term records. On the other hand, the second term penalizes the pair of
classifiers whose common decisions coincide with mislabeling cases by reducing its value when such
behavior occurs. The parameter v symbolizes the cardinality of the validation set over which the
rest of quantities are calculated. Giacinto and Roli called this diversity measure as “the double-fault
measure” [47].

Although an analysis of the selected a value could raise the interest of further research, we selected
the value of 0.5 for equal importance. Thus, for each examined dataset D, which contains both labeled
and unlabeled data, we split the labeled set into train and validation set, in a same manner as the
default k-fold-cross-validation strategy, applying the previously referred Static Ensemble Selection
strategy so as to detect the most favorable pair of classifiers for our soft-Voting ensemble learner.
In case that qdisaggre = 0, then a is set equal to 0, holding only the second term.

Exploiting the exported soft-Voting ensemble learner as the base learner of our co-training
variant, each L0

view is fitted with Co(Voteso f t(C∗i , C∗j)) ≡ Co(VoteSEC
so f t )—we use the notation C∗i and C∗j

for the selected learners which are included into C∗—and the corresponding class probabilities for
each unlabeled instance per view (ui

view) are computed per iteration. Next, only the top-class0 and
top-class1 instances per class are selected, based on the estimated confidence measure. Subsequently,
these instances are exported by the current U subset (since both views share the common unlabeled set,
it does not need to use the view index when referring to the U subset). Then, they are added to the
training set of the opposite view along with the most prominent class label based on base learner’s
decision. Therefore, if the target variable of the m-th instance of U is categorized as class0 by the F1

classifier (xm: <f1, f2, . . . , fk′/2 with probclass0first > 0.5), then the Liter
2 subset during the iter-th iteration

has to be augmented with the same instance, using the corresponding features of the second view and
the estimated class variable (xm: <fk’/2+1, fk’/2+2, . . . , fk’|class0>).
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According to this learning scheme whose main ambition is to teach two different learners of the
same classification algorithm through mutual disagreement concept, each learner injects into the other
the information that is retrieved by the supplied view per iteration. A more theoretical analysis of
the error bounds that can be achieved through the disagreement-based concept in case of Co-training
could be found in [48]. Since our strategy of constructing the base learner of co-training through a static
ensemble selection mechanism VoteSEC

so f t , we assume that we provide an accurate enough algorithm
whose both competence’s performance and diversity’s behavior have been verified through a validation
set so as to avoid overfitting phenomena or heavy mislabeling learning behaviors.

To sum up, the pseudo-code of the introduced SEC strategy (SSoftEC) as well as the proposed
co-training variant are presented in Algorithms 1 and 2, respectively.

Algorithm 1. SSoftEC strategy

Input:

L—labeled set
f—number of folds to split the L
C—pool of classification algorithms exporting class probabilities
α—value of balancing parameter
Main Procedure:

For each i, j ∈ {0, 1, . . . , |C|} and i � j do

Set iter = 0, Qa
so f t(i, j) = 0

Split L to f separate folds:
{
L(1), L(2), . . . , L( f )

}
While iter ≤ f do

Train Ci, Cj on L \ L(iter)

Apply Ci, Cj on L(iter)

Update Qa
so f t(i, j) according to Equation (4)

iter = iter + 1
Output:

Return pair of indices i, j such that: (i, j)∗ : arg max
i, j

Qa
so f t(i, j).

Algorithm 2. Ensemble based co-training variant

Mode:

Pool-based scenario over a provided dataset D = Xn × k
⋃

Yn × 1
xi—vector with k features <f1, f2, . . . fk> ∀ 1 ≤ i ≤ n
yi—scalar class variable with yi ∈ {0, 1} ∀ 1 ≤ i ≤ n
{xi, yi}—i-th labeled instance (li) with 1 ≤ i ≤ nl
{xi}—i-th unlabeled instance (ui) with 1 ≤ i ≤ nu

Fview—separate feature sets with view ∈ [1,2]
learnerview—build of selected learner on corresponding View, ∀view = 1, 2
Input:

Liter—labeled instances during iter-th iteration, Liter ⊂ D
Uiter—unlabeled instances during iter-th iteration, Uiter ⊂ D
iter—number of combined executed iterations
MaxIter—maximum number of iterations
C—pool of classifiers ≡ {SVM, kNN, DT, NB, LR}
(f, α)—number of folds to split the validation set during SEC and value of Equation (4)
Preprocess:

k′—number of features after having converted each categorical feature into binary
n′—number of instances after having removed instances with at least one missing value
Cj—instance cardinalities of both existing classes with j ∈ {min, max}
Minedc—define number of mined instances per class, where c ∈ {class0, class1}
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Main Procedure:

Apply SSoftEC(L0, f, C, α) and obtain C∗i , C∗j
Construct Voteso f t(C∗i , C∗j)
Set iter = 0
While iter <MaxIter do

For each view
Train learnerview on Liter

view
Assign class probabilities for each ui ∈ Uiter

For each class
Detect the top Minedclass ≡ Indview

Update:
Liter+1

view ← Liter
view ∪

{
xj, arg max

class
P(Y = class|Xview ) ∀ j ∈ Ind∼view)

}
(The sign ∼ view means the opposite view from the current.

Uiter+1
view ← Uiter

view\
{
xj

}
∀ j ∈ Ind∼view

iter = iter + 1
Output:

Use Voteso f t(C∗i , C∗j) trained on LMaxIter to predict class labels of test data.

4. Experimental Procedure and Results

For the purpose of our study a number of experiments were carried out using 27 benchmark
datasets from UCI Machine Learning Repository [49] regarding binary classification problems (Table 1),
where the sign # depicts the cardinality of the corresponding quantity. Note that the columns entitled
# Features in Table 1, counts all the features apart from the class variable. These datasets have been
partitioned into 10 equal-sized folds using the stratified 10-fold-CV resampling procedure so that
each fold should have the same distribution as the entire dataset [50]. This process was repeated 10
times until all folds were used as the testing set and the results were averaged. Moreover, each fold
was divided into two subsets, one labeled and the other one unlabeled, in accordance with a selected
labeled ratio value (R) which is defined as follows:

R = |LD|/(|LD|+|UD|). (5)

Table 1. Description of datasets used from the UCI repository.

Dataset # Instances # Features Dataset # Instances # Features

bands 365 19 monk-2 432 6
breast 277 48 pima 768 8
bupa 345 6 saheart 468 9
chess 3196 38 sick 3772 33

colic.orig 368 471 tic-tac-toe 958 27
diabetes 768 8 vote 435 16

heart-statlog 270 13 wdbc 569 30
kr-vs-kp 3196 40 wisconsin 683 9

mammographic 830 5

#: the cardinality of the corresponding quantity.

In order to study the influence of the amount of labeled data in the training set, three different
ratios were used, and in particular: 10%, 20%, and 30%. In general, the R (%) values over which
researchers are interested are the smaller ones (R < 50%), so as to be consistent with the practical
aspect of SSL scenario. The effectiveness of the proposed co-training scheme was compared to several
co-training and self-training variants. For verifying the supremacy of the VoteSEC

so f t as base classifier,
we built the soft-Voting versions based on all pairs of the inserted pool of classifiers (C). Furthermore,
the version that exploits the decisions of all the participants of C pool was implemented, as well as the
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individual variants without voting. Thus, 16 different supervised classifiers were exhibited as base
learners, all imported by the scikit-learn Python library [51] and in particular:

The SVMs using Radial Basis Function as kernel inside its implementation, representing one
universal learner that tries to separate instances using hyper-planes and ‘Kernel-trick’ [52],

• The k-Nearest Neighbor (kNN) instance-based learner [53] with k equal to 5, a very effective
method for classification problems, using the Euclidean metric as a similarity measure to determine
the distance between two instances,

• A simple Decision Tree (DT) algorithm, a variant of tree induction algorithms with large depth
that split the feature space using ‘gini’ criterion [44],

• The NB probabilistic classifier, a simple and quite efficient classification algorithm based on the
assumption that features are independent of each other given the class label [54],

• The Logistic Regression (LR), a well-known discriminative algorithm that assumes the log
likelihood ratio of class distributions is linear in the provided examples. Its main function supports
the binomial case of the target variable, exporting posterior probabilities in a direct way. In our
implementation, L2-norm during penalization stage was chosen [55].

For simplicity, we made use of the following notation in the experiments, while the parameters’
configuration for all applied classification methods is presented in Table 2:

• C ≡ {SVM, kNN, DT, NB, LR}, the list of participant classification algorithms,
• Sel f (learner), where learner ∈ C,
• Sel f (Vote(learneri, learnerj)), where learneri, learnerj ∈ C with i � j,
• Sel f (Vote(all)), where all participants of C are exploited under the Voting scheme,
• Co(learner), where this kind of approach corresponds to the case that learner1 ≡ learner2 ≡ learner,

with learner ∈ C,
• Co(Vote(learneri, learnerj)), where learneri, learnerj ∈ C with i � j, and the ensemble Voting learner

is the same for both views, similar with the previous scenario,
• Co(Vote(all)), where all participants of C are exploited under the Voting scheme for each view,

and finally,
• Co(VoteSEC

so f t ), which coincides with the proposed semi-supervised algorithm.

Table 2. Configuration of exploited algorithms’ parameters.

Algorithm Parameters

k-NN Number of neighbors: 5
Distance function: Euclidean distance

SVM Kernel function: RBF
DT Splitting criterion: gini

Min instances per leaf = 2
LR Norm: L2
NB Gaussian distribution

Self-training MaxIter = 20
Co-training MaxIter = 20

As mentioned before, there are 10 different pairs of algorithms that can be formatted with a pool
of five candidate classifiers. In addition, the case of applying each one individually takes also place,
as well as the case that all participants of pool C are exploited under the same Voting stage. Thus,
16 self-training variants and 16 co-training variants are examined against the proposed co-training
algorithm, which selects through a static selection strategy the soft-Voting ensemble base learner into
its operation per different task. As it concerns the parameter f, it has been set equal to 10, leading to a
10-fold-cross-validation procedure per examined dataset. The next tables depict only one out of three
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different labeled ratio scenarios concerning the top five algorithms, based on total Friedman Ranking
statistical process along with a smaller statistical comparison concerning only the top five algorithms.
For a deeper analysis, the total results can be found in http://mL.math.upatras.gr/wp-content/uploads/
2019/12/Official_results_co_training_ssoftec_voting.7z. Moreover, a pie chart has been provided in
Figure 1, depicting the participation, into per centage style, of the pair of classifiers that were employed
into the proposed strategy as base learner during all the experiments.

 
Figure 1. Pie chart depicting the participation of each combination inside our Static Ensemble strategy.

For evaluating the predictive performance of the proposed algorithm, three representative and
widely used evaluation measures were adopted for measuring the obtained performance over the test
set: classification accuracy, F1-score, and Area Under the ROC Curve (AUC). Accuracy corresponds to
the percentage of correctly classified instances, while F1-score is an appropriate metric for imbalanced
datasets and is defined as the harmonic mean of recall (r) and precision (p). In the case of a binary
classification problem, they are defined as:

Accuracy = (tp + tn)/n (6)

F1score = 2× tp/(2× tp + f p + f n). (7)

where tp, tn, fp, fn, and n correspond to the number of true positive, true negative, false positive,
false negative, and total number of instances, respectively. Finally, the latter one is related to the quality
of the examined classifier ranking of any randomly chosen instance and is computed by aggregating
the corresponding performance across all possible classification thresholds. The most favorable manner
to visualize this metric is through plots of TPR vs. FPR or Sensitivity vs. (1-Specificity) relationship at
different classification thresholds, where TPR stands for True Positive Rate, while FPR stands for False
Positive Rate. Their analytical formulas are provided here:

TPR = tp/(tp + f n), (8)

FPR = f p/( f p + tn). (9)

The experimental results using 10% labeled ratio are summarized in Tables 3–5, where the best
value per dataset is bold highlighted. Overall, it appears that the co-training Vote performs better
than the corresponding self-training variants. Moreover, among the co-training variants employed,
the proposed algorithm takes precedence over the rest on most of the datasets. In addition, we applied
a familiar statistical tool to confirm the observed results. Hence, the Friedman Aligned Ranks [56]
non-parametric test (significance level α = 0.05) was used to compare all the employed SSL methods
(Table 6). According to the calculated results, the algorithms are sorted from the best performer (lowest
ranking) to the worst one (higher ranking). Therefore, it is statistically confirmed the supremacy
of the Co(VoteSEC

so f t ) algorithm, while the null hypothesis H0 (i.e., the means of the results of two or
more algorithms are the same) is rejected. Furthermore, the Nemenyi post-hoc test [57] (α = 0.05)
was applied to detect the specific differences between the algorithms, which is a commonly used
non-parametric test for pairwise multiple comparisons. Table 6 includes the computed Critical
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Difference (CD) which is the same for all the cases of this R-based scenario (CD = 2.27). It is statistically
confirmed that the difference between the Co(VoteSEC

so f t ) algorithm and the majority of the other methods
is statistically significant in all examined metrics, thus verifying the predominance of the proposed
co-training scheme. The fact also that the proposed algorithm outperforms the Vote (all) variants
means that the implemented time-efficient SEC strategy provides a more accurate base learner for the
field of SSL. Towards this direction, we visualize the performance of the proposed algorithm against
Co(Vote(all)) for the examined metrics and the case of R = 90% via a violin plot which favors the
comparison of the distribution of the achieved values per algorithm, including also some important
statistical quantities: median, interquartile range, and 1.5× interquartile range (Figure 2). Therefore,
we can deduce experimentally the success of the proposed approach, especially when generic binary
datasets constitute the main issue to be tackled when the collected labeled instances are highly
numerically restricted.

Figure 2. Violin plots of the proposed algorithm against Co(Vote(all)) approach over the three
examined metrics.

Table 3. Classification accuracy (±stdev) values for the best five variants (labeled ratio 10%).

Dataset
Algorithms

Co(VoteSEC
soft ) Co(Vote(all)) Co(Self(all)) Co(LR) Co(Vote(DT,LR))

bands 0.668 ± 0.082 0.668 ± 0.051 0.649 ± 0.036 0.627 ± 0.036 0.657 ± 0.084
breast 0.679 ± 0.065 0.696 ± 0.056 0.7 ± 0.038 0.693 ± 0.056 0.686 ± 0.114
bupa 0.571 ± 0.052 0.603 ± 0.085 0.529 ± 0.041 0.537 ± 0.042 0.591 ± 0.057

chess 0.966 ± 0.013 0.948 ± 0.007 0.955 ± 0.008 0.947 ± 0.011 0.962 ± 0.01
colic.ORIG 0.759 ± 0.055 0.757 ± 0.044 0.724 ± 0.077 0.73 ± 0.053 0.768 ± 0.036

diabetes 0.773 ± 0.038 0.777 ± 0.032 0.738 ± 0.048 0.765 ± 0.03 0.681 ± 0.059
h-statlog 0.719 ± 0.036 0.7 ± 0.027 0.707 ± 0.051 0.77 ± 0.034 0.656 ± 0.08
kr-vs-kp 0.966 ± 0.019 0.947 ± 0.008 0.953 ± 0.008 0.946 ± 0.012 0.963 ± 0.012

mammographic 0.788 ± 0.019 0.796 ± 0.023 0.793 ± 0.024 0.787 ± 0.025 0.78 ± 0.039
monk-2 1 ± 0 0.918 ± 0.019 0.88 ± 0.047 0.784 ± 0.029 1 ± 0

pima 0.691 ± 0.02 0.683 ± 0.025 0.686 ± 0.038 0.697 ± 0.032 0.652 ± 0.033
saheart 0.715 ± 0.021 0.713 ± 0.067 0.702 ± 0.036 0.728 ± 0.02 0.672 ± 0.038

sick 0.976 ± 0.003 0.967 ± 0.005 0.963 ± 0.006 0.95 ± 0.004 0.978 ± 0.004

tic-tac-toe 0.804 ± 0.07 0.805 ± 0.038 0.735 ± 0.037 0.824 ± 0.036 0.796 ± 0.057
vote 0.914 ± 0.026 0.891 ± 0.026 0.916 ± 0.024 0.889 ± 0.02 0.889 ± 0.033

wdbc 0.958 ± 0.021 0.963 ± 0.01 0.972 ± 0.012 0.956 ± 0.021 0.942 ± 0.031
wisconsin 0.974 ± 0.006 0.98 ± 0.01 0.972 ± 0.011 0.97 ± 0.016 0.936 ± 0.039

Bold highlighted means the best value per dataset.
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Table 4. F1-score (±stdev) values for the best five variants (labeled ratio 10%).

Dataset
Algorithms

Co(VoteSEC
soft ) Co(Vote(all)) Co(Vote(DT,LR)) Co(Vote(all)) Co(LR)

bands 0.646 ± 0.096 0.632 ± 0.068 0.643 ± 0.082 0.603 ± 0.049 0.594 ± 0.028
breast 0.652 ± 0.07 0.664 ± 0.076 0.67 ± 0.118 0.669 ± 0.032 0.649 ± 0.072
bupa 0.554 ± 0.049 0.588 ± 0.085 0.586 ± 0.059 0.502 ± 0.042 0.512 ± 0.032
chess 0.966 ± 0.013 0.947 ± 0.007 0.962 ± 0.01 0.955 ± 0.008 0.947 ± 0.011

colic.ORIG 0.745 ± 0.056 0.761 ± 0.043 0.762 ± 0.039 0.708 ± 0.083 0.735 ± 0.049
diabetes 0.765 ± 0.05 0.769 ± 0.034 0.68 ± 0.054 0.723 ± 0.055 0.75 ± 0.042
h-statlog 0.717 ± 0.036 0.7 ± 0.027 0.653 ± 0.082 0.706 ± 0.052 0.77 ± 0.034

kr-vs-kp 0.966 ± 0.019 0.947 ± 0.008 0.963 ± 0.012 0.953 ± 0.008 0.946 ± 0.012
mammographic 0.786 ± 0.019 0.795 ± 0.022 0.779 ± 0.039 0.791 ± 0.025 0.785 ± 0.026

monk-2 1 ± 0 0.918 ± 0.019 1 ± 0 0.879 ± 0.047 0.78 ± 0.03
pima 0.673 ± 0.018 0.664 ± 0.027 0.652 ± 0.034 0.664 ± 0.033 0.685 ± 0.03

saheart 0.65 ± 0.034 0.7 ± 0.073 0.675 ± 0.038 0.688 ± 0.039 0.716 ± 0.019

sick 0.974 ± 0.003 0.962 ± 0.007 0.976 ± 0.004 0.959 ± 0.008 0.939 ± 0.006
tic-tac-toe 0.807 ± 0.069 0.805 ± 0.037 0.799 ± 0.056 0.733 ± 0.038 0.822 ± 0.036

vote 0.914 ± 0.026 0.891 ± 0.026 0.888 ± 0.033 0.916 ± 0.024 0.888 ± 0.02
wdbc 0.958 ± 0.021 0.963 ± 0.01 0.943 ± 0.031 0.972 ± 0.012 0.956 ± 0.02

wisconsin 0.974 ± 0.006 0.98 ± 0.01 0.935 ± 0.04 0.972 ± 0.011 0.969 ± 0.016

Bold highlighted means the best value per dataset.

Table 5. Classification accuracy (±stdev) values for the best five variants (labeled ratio 10%).

Dataset
Algorithms

Co(VoteSEC
soft ) Co(Vote(DT,LR)) Co(Vote(all)) Co(Vote(5NN,LR)) Self(Vote(all))

bands 0.716 ± 0.083 0.652 ± 0.079 0.764 ± 0.063 0.716 ± 0.052 0.69 ± 0.06
breast 0.701 ± 0.077 0.671 ± 0.105 0.652 ± 0.062 0.661 ± 0.071 0.621 ± 0.081
bupa 0.584 ± 0.09 0.567 ± 0.065 0.602 ± 0.08 0.602 ± 0.08 0.54 ± 0.082
chess 0.99 ± 0.004 0.992 ± 0.004 0.985 ± 0.007 0.981 ± 0.006 0.992 ± 0.005

colic.ORIG 0.835 ± 0.044 0.817 ± 0.029 0.722 ± 0.079 0.813 ± 0.026 0.762 ± 0.097
diabetes 0.835 ± 0.037 0.772 ± 0.028 0.854 ± 0.011 0.824 ± 0.035 0.801 ± 0.039
h-statlog 0.765 ± 0.05 0.779 ± 0.053 0.802 ± 0.024 0.73 ± 0.051 0.769 ± 0.033
kr-vs-kp 0.99 ± 0.004 0.991 ± 0.004 0.985 ± 0.007 0.979 ± 0.006 0.992 ± 0.005

mammographic 0.857 ± 0.016 0.876 ± 0.021 0.856 ± 0.015 0.87 ± 0.021 0.874 ± 0.016
monk-2 0.996 ± 0.005 1 ± 0 1 ± 0 0.956 ± 0.018 0.958 ± 0.025

pima 0.655 ± 0.041 0.681 ± 0.031 0.68 ± 0.02 0.647 ± 0.041 0.651 ± 0.041
saheart 0.784 ± 0.057 0.764 ± 0.033 0.772 ± 0.019 0.791 ± 0.028 0.767 ± 0.046

sick 0.956 ± 0.011 0.961 ± 0.013 0.904 ± 0.024 0.917 ± 0.011 0.963 ± 0.025

tic-tac-toe 0.883 ± 0.031 0.903 ± 0.036 0.852 ± 0.054 0.914 ± 0.035 0.804 ± 0.041
vote 0.963 ± 0.005 0.964 ± 0.006 0.953 ± 0.018 0.958 ± 0.007 0.963 ± 0.007

wdbc 0.995 ± 0.003 0.992 ± 0.006 0.993 ± 0.004 0.995 ± 0.003 0.993 ± 0.006
wisconsin 0.998 ± 0.002 0.995 ± 0.007 0.996 ± 0.003 0.997 ± 0.003 0.997 ± 0.002

Bold highlighted means the best value per dataset.
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Table 6. Friedman Rankings for all examined algorithms and statistical importance based on Nemenyi
post-hoc test.

Friedman Ranking

Acc F1-Score AUC

Algorithm Rank Algorithm Rank Algorithm Rank

Co(VoteSEC
so f t ) 9.96 Co(VoteSEC

so f t ) 10.43 Co(VoteSEC
so f t ) 10.43

Co(Vote(all)) 11.59 Co(Vote(all)) 11.29 Co(Vote(DT,LR) 11.33
Self(Vote(all)) 13.19 Co(Vote(DT,LR)) 12.81 Co(Vote(all)) 12.88

Co(LR) 13.36 Self(Vote(all)) 13.28 Co(Vote(kNN,LR) 13.17
Co(Vote(DT,LR)) 13.89 Co(LR) 13.34 Self(Vote(all)) 13.66

Co(Vote(SVM,LR)) 14.13 Co(DT) 13.44 Co(Vote(DT,GNB)) 14.17
Co(DT) 14.41 Co(Vote(SVM,DT)) 13.54 Self(Vote(DT,LR) 14.28

Co(Vote(SVM,DT)) 14.58 Co(Vote(DT,GNB)) 13.64 Co(Vote(SVM,LR) 14.98
Co(Vote(DT,GNB)) 14.58 Self(Vote(DT,GNB)) 14.31 Co(SVM) 14.98
Co(Vote(kNN,LR)) 14.92 Co(Vote(kNN,DT)) 14.54 Co(LR) 14.98

Self(Vote(DT,GNB)) 15.33 Co(Vote(kNN,LR)) 15.06 Self(Vote(DT,GNB)) 15.24
Self(LR) 15.44 Self(DT) 15.12 Co(Vote(GNB,LR)) 15.29

Co(Vote(kNN,DT)) 15.64 Self(LR) 15.31 Self(LR) 16.01
Self(Vote(SVM,LR)) 16.02 Self(Vote(kNN,DT)) 15.46 Self(Vote(kNN,LR) 16.59

Self(DT) 16.04 Self(Vote(DT,LR)) 15.78 Co(Vote(kNN,DT) 16.74
Self(Vote(kNN,DT)) 16.61 Self(Vote(SVM,DT)) 16.33 Co(Vote(kNN,GNB)) 16.81
Self(Vote(DT,LR)) 16.91 Co(Vote(SVM,LR)) 16.33 Co(Vote(SVM,DT) 16.84

Self(Vote(kNN,LR)) 16.96 Co(Vote(kNN,GNB)) 17.05 Co(DT) 16.84
Co(Vote(SVM,kNN)) 17.49 Self(Vote(kNN,LR)) 17.21 Co(Vote(SVM,GNB)) 17.06
Self(Vote(SVM,DT)) 17.56 Self(Vote(SVM,LR)) 17.38 Co(GNB) 17.06
Co(Vote(kNN,GNB)) 18.06 Self(Vote(kNN,GNB)) 17.69 Self(Vote(GNB,LR)) 17.59

Co(kNN) 18.18 Co(kNN) 17.95 Self(Vote(SVM,LR) 18.09
Self(Vote(kNN,GNB)) 18.34 Co(Vote(SVM,kNN)) 19.20 Self(SVM) 18.09
Co(Vote(SVM,GNB)) 19.45 Co(Vote(SVM,GNB)) 19.59 Self(Vote(kNN,GNB)) 18.42
Self(Vote(SVM,kNN)) 19.46 Self(Vote(SVM,GNB)) 19.83 Self(Vote(kNN,DT) 18.54
Self(Vote(SVM,GNB)) 20.01 Self(Vote(GNB,LR)) 19.88 Self(Vote(SVM,GNB)) 18.62
Self(Vote(GNB,LR)) 20.29 Co(Vote(GNB,LR)) 20.02 Co(Vote(SVM,kNN) 19.41
Co(Vote(GNB,LR)) 20.43 Self(kNN) 21.06 Co(kNN) 19.41

Co(SVM) 20.74 Self(GNB) 21.15 Self(GNB) 19.52
Self(kNN) 20.85 Self(Vote(SVM,kNN)) 21.61 Self(Vote(SVM,DT) 21.03
Self(SVM) 21.89 Co(GNB) 21.84 Self(Vote(SVM,kNN)) 22.62
Self(GNB) 22.14 Co(SVM) 24.21 Self(kNN) 24.67
Co(GNB) 22.56 Self(SVM) 25.33 Self(DT) 25.67

Adoption of more dedicated preprocessing stages oriented towards more specific problems should
be applied, in order to boost the performance of the SSoftEC strategy and provide the Co-training scheme
a more appropriate base learner [58–60]. However, in our generic experimental stage, which covers
various applications, the proposed algorithm recorded a both robust and accurate enough performance,
especially in the case of the F1-score metric which is critical for real problems with class distribution
different from the optimal, under a computational inexpensive manner, in contrast with DEC strategies
that employ a new classifier search per test instance. The smoothing of the decisions that are produced
through the proposed soft-Voting ensemble seems to favor the exported decision profile, since a large
number of decisions that were initially misclassified based on individual predictions were reverted
towards the ground truth label. While at the same time, numerous cases where the two participants
disagree over the binary label were not affected. This happens because a large correct confidence value
combined with a smaller incorrect one remains untouched under such a voting scheme, according to
Equation (3).
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5. Conclusions

In the present study, a soft-Voting ensemble-based co-training scheme through a Static Selection
strategy operating under a random feature split, called Co(VoteSEC

so f t ), was presented regarding binary
classification problems. The proposed algorithm harnesses the benefits of the SSL approach and
the ensemble methods that are built using heterogeneous approaches [61–63]. The experimental
results using 27 benchmark datasets demonstrate the prevalence of the proposed algorithm in terms
of classification accuracy and F1-score, compared to several co-training and self-training variants,
while using five different labeled ratios. Thus, the employment of a static selection classifier that tries
to find a suitable combination among five provided classifiers for feeding appropriately an ensemble
scheme seems that has favored the final predictive ability, without consuming much computational
resources during the preprocess step per different task. This was successfully provoked by using
soft-Voting strategy: for each class, the maximum averaged confidence is exported as the most
prominent, taking into consideration the corresponding confidence values of both exploited learners.

Regarding our initial ambition, Co-training scheme seems more favorable for exploiting unlabeled
instances and augmenting the initially collected labeled instances through the most reliable of the
former, even during small labeled-ratio conditions, against Self-training approach. Furthermore,
since the source and the structure of our examined datasets vary, application of the proposed method
under more well-defined fields/tasks could be benefited by more advanced preprocessing stages,
such as feature engineering, or tuning of participant learners, while specific criteria could be defined so
as to avoid random split and converge to a more suitable feature split [40,64]. Increasing the cardinality
and the diversification of the candidate classifiers should also be examined in following research,
and especially the case when more strong classifiers are available, since their decision profile might
demand a weighting soft or hard Voting scheme. In any case, the fact that unlabeled examples may
boost the contribution of ensemble learners and their Selection strategies under SSL schemes seems
to hold our assumption through our experimental stage [65]. Such strategies could also be used for
selecting appropriate learners under more sophisticated ensemble structures like Stacking [66].

One interesting point, especially in the case that such a co-training algorithm should be applied
to datasets that are characterized by more intense imbalanced classes, is the adoption of either
more specified preprocess stages, such as the use of SMOTE algorithm, a well-known oversampling
method that generates new instances or any of its descendants [67] or the embedding of similar
methods inside the operation of base learner (s). Such an approach has been demonstrated recently
in [68], where Rotation Forest, a popular ensemble learner based also on DTs, is combined with an
under-sampling method so as to tackle this kind of issue. Regarding both the produced results and the
fact that in semi-supervised scenarios the amount of collected data is much more restricted than the
default supervised case, more sophisticated approaches for avoiding imbalanced datasets during the
initialization of base learner, could be proven really promising for acquiring better learning rates [69].
Another interesting point is the expansion of the proposed scheme on the multi-class semi-supervised
classification problem, such as in [70] where a new loss function was applied using gradient descent in
functional space.

Moreover, appropriate experiments should be made towards the direction of recognizing the
importance of the included features per view or among all the provided features, in case that random
feature split is applied instead of merging all the distinct views into a compact but still heterogeneous
view, so as to either propose a more detailed strategy for formatting the two separate views or applying
feature reduction techniques that may favor the final predictive performance [64]. The “absent
levels” problem [39] should also be studied under a SSL scenario, avoiding constructing views or
preprocess feature sets that may lead to more implicit approaches, especially in real-life situations that
the interpretability of the exported predictive model is of high priority for the business part or the
corresponding field that is connected with the examined problem [71,72]. Construction of artificially
generated data could be a safe strategy for excluding such conclusion. Otherwise, application to
real-world data from totally different domains might infer biased decisions regarding the applicability
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to a wider range of datasets. Transfer learning, combined probably with Active Learning framework
that permits the knowledge blending of human factors into the learning pipeline, could prove to be a
valuable approach for exporting more robust classifiers by enriching the feature vector and/or applying
more compatible modifications [73].

Finally, deep neural networks (DNNs) [74] could be employed under a co-training scheme to boost
the predictive performance, fed with either raw data or other generic kinds of datasets. More specifically,
long short term memory (LSTM) networks have already proven efficient enough when combined
with SSL methods for constructing clinical support decision systems [75]. In case DNNs should be
exploited, creation of new insights into inserted data could take place, providing either totally new
view (s) or augmenting the existing one (s). Thus, several feature engineering approaches should be
adopted to enhance the quality of the co-training scheme and possibly violate the assumption about
the independent views less.
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Abstract: Deep learning architectures are the most effective methods for analyzing and classifying
Ultra-Spectral Images (USI). However, effective training of a Deep Learning (DL) gradient classifier
aiming to achieve high classification accuracy, is extremely costly and time-consuming. It requires
huge datasets with hundreds or thousands of labeled specimens from expert scientists. This research
exploits the MAML++ algorithm in order to introduce the Model-Agnostic Meta-Ensemble Zero-shot
Learning (MAME-ZsL) approach. The MAME-ZsL overcomes the above difficulties, and it can be used
as a powerful model to perform Hyperspectral Image Analysis (HIA). It is a novel optimization-based
Meta-Ensemble Learning architecture, following a Zero-shot Learning (ZsL) prototype. To the best
of our knowledge it is introduced to the literature for the first time. It facilitates learning of
specialized techniques for the extraction of user-mediated representations, in complex Deep Learning
architectures. Moreover, it leverages the use of first and second-order derivatives as pre-training
methods. It enhances learning of features which do not cause issues of exploding or diminishing
gradients; thus, it avoids potential overfitting. Moreover, it significantly reduces computational cost
and training time, and it offers an improved training stability, high generalization performance and
remarkable classification accuracy.

Keywords: model-agnostic meta-learning; ensemble learning; GIS; hyperspectral images; deep
learning; remote sensing; scene classification; geospatial data; Zero-shot Learning

1. Introduction

Hyperspectral image analysis and classification is a timely special field of Geoinformatics which
has attracted much attention recently. This has led to the development of a wide variety of new
approaches, exploiting both spatial and spectral content of images, in order to optimally classify them
into discrete components related to specific standards. Typical information products obtained by the
above approaches are related to diverse areas; namely: ground cover maps for environmental Remote
Sensing; surface mineral maps used in geological applications; vegetation species maps, employed
in agricultural-geoscience studies and in urban mapping. Recent developments in optical sensor
technology and Geoinformatics (GINF), provide multispectral, Hyperspectral (HyS) and panchromatic
images at very high spatial resolution. Accurate and effective HyS image analysis and classification is
one of the key applications which can enable the development of new decision support systems. They
can provide significant opportunities for business, science and engineering in particular. Automatic
assignment of a specific semantic label to each object of a HyS image (according to its content) is one of
the most difficult problems of GINF Remote Sensing (RES).

With the available HyS resolution, subtle objects and materials can be extracted by HyS imaging
sensors with very narrow diagnostic spectral bands. This can be achieved for a variety of purposes, such

Algorithms 2020, 13, 61; doi:10.3390/a13030061 www.mdpi.com/journal/algorithms87



Algorithms 2020, 13, 61

as detection, urban planning, agriculture, identification, surveillance and quantification. HyS image
analysis enables the characterization of objects of interest (e.g., land cover classes) with unprecedented
accuracy, and keeps inventories up to date. Improvements in spectral resolution have called for
advances in signal processing and exploitation algorithms.

A Hyperspectral image is a 3D data cube, which contains two-dimensional spatial information
(image feature) and one-dimensional spectral information (spectral bands). Especially, the spectral
bands occupy very fine wavelengths. Additionally, image features related to land cover and shape
disclose the disparity and association among adjacent pixels from different directions at a confident
wavelength. This is due to its vital applications in the design and management of soil resources,
precision farming, complex ecosystem/habitat monitoring, biodiversity conservation, disaster logging,
traffic control and urban mapping.

It is well known that increasing data dimensionality and high redundancy between features
might cause problems during data analysis. There are many significant challenges which need to
be addressed when performing HyS image classification. Primarily, supervised classification faces
a challenge related to the imbalance between high dimensionality and incomplete accessibility of
training samples, or to the presence of mixed pixels in the data. Further, it is desirable to integrate the
essential spatial and spectral information, so as to combine the complementary features which stem
from source images.

Deep Learning methodologies have significantly contributed towards the evolution and
development of HyS image analysis and classification [1]. Deep Learning (DL) is a branch of
computational intelligence which uses a series of algorithms that model high-level abstraction data
using a multi-level processing architecture.

It is difficult for all Deep Learning algorithms to achieve satisfactory classification results with
limited labeled samples, despite their undoubtedly well-established functions and their advantages.
The approaches with the highest classification accuracy and generalization ability fall under the
supervised learning umbrella. For this reason, especially in the case of Ultra-Spectral Images, huge
datasets with hundreds or thousands of specimens labeled by experts are required [2]. This process is
very expensive and time consuming.

In the case of supervised image classification, the input image is processed by a series of operations
performed at different neuronal levels. Eventually, the output generates a probability distribution for
all possible classes (usually using the Softmax function). Softmax is a function which takes an input
vector Z of k real numbers and normalizes it into a probability distribution consisting of k probabilities,
proportional to the exponentials of the input numbers [3].

σ(z) j =
ezj∑K

k=1 ezk
j = 1, . . . , k where σ : Rk → Rk Z = (z1, . . . . . . , zk) ∈ Rk (1)

For example, if we try to classify an image as Lim−a, or Lim−b, or Lim−c, or Lim−d, then we generate
four probabilities for each input image, indicating the respective probabilities of the image belonging
to each of the four categories. There are two important points to be mentioned here. First, during
the training process, we require a large number of images for each class (Lim−a, Lim−b, Lim−c, Lim−d).
Secondly, if the network is only trained for the above four image classes, then we cannot expect to
test it for any other class; e.g., “Lim−x.” If we want our model to sort images as well, then we need to
get many “Lim−x” images and to rebuild and retrain the model [3]. There are cases where we do not
have enough data for each category, or the classes are huge but also dynamically changing. Thus, the
cost of data collection and periodic retraining is enormous. A reliable solution should be sought in
these cases. In contrast, k-shot learning is a framework within which the network is called upon to
learn quickly and with few examples. During training, a limited number of examples from diverse
classes with their labels are introduced. The network is required to learn general characteristics of
the problem, such as features which are either common to the samples of the same class, or unique
features which differentiate and eventually separate the classes.
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In contrast to the learning process of the traditional neural networks, it is not sufficient for the
network to learn good representations of the training classes, as the testing classes are distinct and
they are not presented in training. However, it is desirable to learn features which distinguish the
existing classes.

The evaluation process consists of two distinct stages of the following format [4]:
Step 1: Given k examples (value of k-shot), if k = 1, then the process is called one-shot; if k = 5,

five-shot, and so on. The parameter k represents the number of labeled samples given to the algorithm
by each class. By considering these samples, which comprise the support set, the network is required
to classify and eventually adapt to existing classes.

Step 2: Unknown examples of the labeled classes are presented randomly, unlike the ones
presented in the previous step, which the network is called to correctly classify. The set of examples in
this stage is known as the query set.

The above procedure (steps) is repeated many times using random classes and examples which
are sampled from the testing-evaluation set.

As it is immediately apparent from the description of the evaluation process, as the number of
classes increases, the task becomes more difficult, because the network has to decide between several
alternatives. This means that Zero-shot Learning [5] is clearly more difficult than the one-shot, which
is more difficult than the five-shot, and so on. Although humans have the ability to cope with this
process, traditional ANN require many more examples to generalize effectively, in order to achieve
the same degree of performance. The limitation of these learning approaches is that the model has
access to minimum samples from each class and the validation process is performed by calculating the
cross-entropy error of the test set. Specifically, in the cases of one-shot and Zero-shot Learning (ZsL),
only one example each of the candidate classes and only meta-data is shown at the evaluation stage.

Overall, k-shot learning is a perfect example of a problematic area, where specialized solutions are
needed to design and train systems capable to learn very quickly from a small support set, containing
only 1–5 samples per class. These systems can offer strong generalization to a corresponding target set.
A successful exploitation of the above k-shot learning cases is provided by meta-learning techniques
which can be used to deliver effective solutions [6].

In this work, we propose a new classification model, which is based on zero-shot philosophy, named
MAME-ZsL. The significant advantages of the proposed algorithm is that it reduces computational cost
and training time; it avoids potential overfitting by enhancing the learning of features which do not
cause issues of exploding or diminishing gradients; and it offers an improved training stability, high
generalization performance and remarkable classification accuracy. The superiority of the proposed
model refers to the fact that the instances in the testing set belong to classes which were not contained
in the training set. In contrast, the traditional supervised state-of-the-art Deep Learning models were
trained with labeled instances from all classes. The performance of the proposed model was evaluated
against state-of-the-art supervised Deep Learning models. The presented numerical experiments
provide convincing arguments regarding the classification efficiency of the proposed model.

2. Meta-Learning

It is a field of machine learning where advanced learning algorithms are applied to the data and
metadata of a given problem. The models “learn to learn” [7] from previous learning processes or
previous sorting tasks they have completed [8]. It is an advanced form of learning where computational
models, which usually consist of multiple levels of abstraction, can improve their learning ability. This
is achieved by learning some or all of their own building blocks, through the experience gained in
handling a large number of tasks. Their building blocks which are “learning to learn” can be optimizers,
loss functions, initializations, Learning Rates, updated functions and architectures.

In general, for real physical modeling situations, the input patterns with and without tags are
derived from the same boundary distribution or they follow a common cluster structure. Thus,
classified data can contribute to the learning process, while correspondingly useful information related
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to the exploration of the data structure of the general set can be extracted from the non-classified
data. This information can be combined with knowledge originating from prior learning processes
or from completed prior classification tasks. Based on the above theory, meta-learning techniques can
discover the structure of the data, by allowing new tasks to be learned quickly. This is achieved by
using different types of metadata, such as the properties of the learning problem, the properties of
the algorithm used (e.g., performance measures) or the patterns derived from data from a previous
problem. This process employs knowledge from unknown cases sampled from real-world distribution
of examples, aiming to enhance the outcome of the learning task. In this way it is possible to learn,
select, change or combine different learning algorithms to effectively solve a given problem.

Meta-learning is achieved by conceptually dividing learning in two levels. The inner-most levels
acquire specific knowledge for specific tasks (e.g., fine-tuning a model on a new dataset), while the
outer-most levels acquire across-task knowledge (e.g., learning to transfer tasks more efficiently).

If the inner-most levels are using learnable parameters, outer-most optimization process
can meta-learn the parameters of such components, thereby enabling automatic learning of
inner-loop components.

A meta-learning system should combine the following three requirements [9,10]:

1. The system must include a learning sub-system.
2. Experience must be derived from the use of extracted knowledge from metadata related to

the dataset under consideration, or from previous learning tasks completed in similar or
different fields.

3. Learning biases should be dynamically selected.

Employing a generic approach, a credible meta-learning model should be trained in a variety of
learning tasks and it should be optimized for the best performance in generalizing tasks, including
potentially unknown ones. Each task is associated with a dataset D, containing attribute vectors and
class labels in a supervised learning problem. The optimal parameters of the model are [11]:

θ∗ = argmin
θ ED∼P(D)[Lθ(D)] (2)

It looks similar to a normal learning process, but each data set is considered as a data sample.
The dataset D is divided in two parts, a training set S and a set of predictions B for validation

and testing.
D = 〈S, B〉 (3)

The dataset D includes pairs of vectors and labels so which:

D =
{
(xi, yi)

}
(4)

Each label belongs to a known label set L.
Let us consider a classifier fθ. The parameter θ extracts the probability x, Pθ (y

∣∣∣x) of a data point
to belong to class y, given by the attribute vector. Optimal parameters should maximize the likelihood
of identifying true labels in multiple training batches B ⊂ D:

θ∗ = argmaxθE(x,y)∈D[Pθ(y
∣∣∣x)] (5)

θ∗ = argmaxθEB⊂D

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

(x,y)∈B

Pθ(y|x)
⎤⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The aim is to reduce the prediction error in data samples with unknown labels, in which there is a
small set of “fast learning” support which can be used for “fine-tuning”.
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Fast learning is a trick which creates a “fake” dataset containing a small subset of labels (to avoid
exposing all labels to the model). During the optimization process, various modifications take place,
aiming to achieve rapid learning.

A brief step-by-step description of the whole process is presented below [11]:

1. Development of a subset of labels Ls ⊂ L
2. Development of a training subset SL ⊂ D and a forecast subset BL ⊂ D. Both of them include data

points with labels belonging to the subset Ls, y ∈ Ls, ∀ (x, y) ∈ SL, BL.
3. The optimization procedure uses BL to calculate the error and to update the model parameters via

back propagation. This is done in the same way as it is used in a simple supervised learning model.

In this way each sample pair (SL, BL) can be considered to be a data point. The model is trained so
that it can generalize to new unknown datasets.

The following function (Equation (7)) is a modification of the supervised learning model.
The symbols of the meta-learning process have been added:

θ∗ = argmaxθELs⊂L

⎡⎢⎢⎢⎢⎢⎢⎢⎣ESL⊂D,BL⊂D

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

(x,y)∈BL

Pθ
(
x, y, SL

)⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎦ (7)

There are three meta-learning modeling approaches, as presented below [11] and the Table 1:

a. Model-based: These are techniques based on the use of circular networks with external or
internal memory. They update their parameters quickly with minimal training steps. This can be
achieved through their internal architecture or by using other control models. Memory-augmented
neural networks and meta networks are characteristic cases of model-based meta-learning techniques.

b. Metrics-based: These are techniques based on learning effective distance measurements which
can offer generalization. The core concept of their operation is similar to that of the nearest
neighbors algorithms, where they aim to learn a measurement or a distance from objects.
The concept of a good metric depends on the problem, as it should represent the relationship
between inputs to the site, facilitating problem solving. Convolutional Siamese neural networks,
matching networks, relation networks and prototypical networks are characteristic metrics-based
meta-learning techniques.

c. Optimization-based: These are techniques based on optimizing the parameters of the model
for quick learning. LSTM Meta-Learners, temporal discreteness and the reptile plus Model-Agnostic
Meta-Learning (MAML) algorithms are typical cases of optimization-based meta-Learning.

Table 1. Meta-learning approaches.

Model-Based Metric-Based Optimization-Based

Key idea RNN; memory Metric learning Gradient descent

How is Pθ(y|x) modeled? Fθ(x,S)
∑

(xi,yi)∈S kθ(x, xi)yi Pgϕ(θ,SL)(y
∣∣∣x)

kθ is a kernel function which calculates the similarity between xi and x.

The Recurrent Neural Networks (RNNs) which use only internal memory, and also the
Long-Short-Term Memory approaches (LSTM), are not considered meta-learning techniques [11].
Meta-learning can be achieved through a variety of learning examples. In this case, the supervised
gradient-based learning can be considered as the most effective method [11]. More specifically, the
gradient-based, end-to-end differentiable meta-learning, provides a wide framework for the application of
effective meta-learning techniques.

This research proposes an optimization-based, gradient-based, end-to-end differentiable meta-learning
architecture, based on an innovative evolution of the MAML algorithm [10]. MAML is one of the most
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successful and at the same time simple optimization algorithms which belongs to the meta-learning
approach. One of its great advantages is that it is compatible with any model which learns through the
Gradient Descent (GRD) method. It is comprised of the Base-Learner (BL) and the Meta-Learner (ML)
models, with the second used to train the first. The weights of the BL are updated following the GRD
method in learning tasks of the k-shot problem, whereas the ML applies the GRD approach on the
weights of the BL, before the GRD [10].

In Figure 1 you can see a depiction of the MAML algorithm.

Figure 1. Model-Agnostic Meta-Learning algorithm.

It should be clarified that θ denotes the weights of the meta-learner. Gradient Li comprises of
the losses for task i in a meta-batch. The θ∗i are the optimal weights for each task. It is essentially an
optimization procedure on a set of parameters, such that when a slope step is obtained with respect
to a particular task i, the respective parameters θ∗i are approaching their optimal values. Therefore,
the goal of this approach is to learn an intrinsic feature which is widely applicable to all tasks of a
distribution p(T) and not to a single one. This is achieved by minimizing the total loss across tasks
sampled from the distribution p(T).

In particular, we have a base-model represented by a parametric function fθ with parameters θi
and a task Ti∼p(T). After applying the Gradient Descent, a new feature vector is obtained denoted as
θ′i :

θ′i = θ− α∇θLTi( fθ) (8)

We will consider that we execute only one GD step. The meta-learner optimizes the new parameters
using the initial ones, based on the performance of the fθ′ model, in tasks which use sampling from the
P(T). Equation (9) is the meta-objective [10]:

min
θ

∑
Ti∼p(T)

LTi

(
fθ′i

)
= min

θ

∑
Ti∼p(T)

LTi

(
fθ − α∇θLTi( fθ)

)
(9)

The meta-optimization is performed again with the Stochastic Gradient Descent (SGD) and it
updates the parameters θ as follows:

θ← θ− β∇θ
∑

Ti∼p(T)

LTi

(
fθ′i

)
(10)

It should be noted that we do not actually define an additional set of variables θ′i whose values
are calculated by considering one (or more) Gradient Descents from θ relative to task i. This step
is known as the Inner Loop Learning (INLL), which is the reverse process of the Outer Loop Learning
(OLL), and it optimizes Equation (10). If, for example, we apply INLL to fine-tune θ for process i, then
according to Equation (10) we are optimizing a target with the expectation which the model applies to
each task, following corresponding fine-tuning procedures.

The following Algorithm 1 is an analytical presentation of the MAML algorithm [10].
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Algorithm 1. MAML.

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do

3: Sample batch of tasks Ti ∼ p(T)
4: for all Ti do

5: Evalluate ∇θLTi ( fθ) with respect to K examples
6: Compute adapted parameters with gradient descent: θ′i = θ− α∇θLTi ( fθ)
7: end for

8: Update θ← θ− β∇θ ∑
Ti∼p(T)

LTi

(
fθ′i

)
9: end while

Figure 2 is a graphical illustration of the operation of the MAML algorithm.

 

Figure 2. Graphical presentation of the MAML.

It should be clarified that the intermediate parameters θ′i are considered fast weights. The INLL
considers all of the N gradient steps for the final estimation of the fast weights, based on the fact that
the outer learning loop calculates the outer task loss LTi( fθ′i ). However, though the inner learning
loop makes N iterations, the MAML algorithm employs only the final weights to perform the OLL.
However, this is a fairly significant problem, as it can create instability in learning when N is large.

The field of few-shot or Zero-shot Learning, has recently seen substantial advancements. Most
of these advancements came from casting few-shot learning as a meta-learning problem. MAML is
currently one of the best approaches for few-shot learning via meta-learning. It is a simple, general, and
effective optimization algorithm that does not place any constraints on the model architecture or loss
functions. As a result, it can be combined with arbitrary networks and different types of loss functions,
which makes it applicable to a variety of different learning processes. However, it has a variety of issues,
such as being very sensitive to neural network architectures, often leading to instability during training.
It requires arduous hyperparameter searches to stabilize training and achieve high generalization, and
it is very computationally expensive at both training and inference times.
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3. Related Work

Although the MAML algorithm and its variants do not use parameters other than those of the
base-learner, network training is quite slow and computationally expensive as it contains second-degree
derivatives. In particular, the meta-update of the MAML algorithm includes gradient nested in gradient,
or second-degree derivatives, which significantly increases the computational cost. In order to solve
the above problem, several approximation techniques have been proposed to accelerate the algorithm.

Finn et al. [12] developed the MAML by ignoring the second derivatives, calculating the slope in
the meta-update, which they called FOMAML (First Order MAML).

More specifically, MAML optimizes the:

min
θ

ET∼p(T)

[
LT

(
U

k
T(θ)

)]
, (11)

where Uk
T is the process by which k samples are taken from task T and θ is updated. This procedure

employs the support set and the query set, so the optimization can be rewritten as follows:

min
θ

ET∼p(T)

[
LT,Q(UT,S(θ))

]
(12)

Finally, MAML uses the slope method to calculate the following:

gMAML = LT,Q(UT,S(θ)) = U
′
T,S(θ)L

′
T,Q

(
θ̃
)
, (13)

where θ̃ = UT,S(θ) and U′T,S is the Jacobian renewal matrix of UT,S where the FOMAML considers
U′T,S as unitary, so it calculates the following:

gFOMAML = L′T,Q
(
θ̃
)

(14)

The resulting method still calculates the meta-gradient for the parameter values after updating θ′,
which is an effective post-learning method from a theoretical point of view. However, experiments have
shown that the yield of this method is almost the same as the one obtained by a second derivative. Most
of the improvement in MAML comes from the gradients of the objective at the post-update parameter
values, rather than the second-order updates from differentiating through the gradient update.

A different implementation employing first degree derivatives was studied and analyzed by
Nichol et al. [13]. They introduced the reptile algorithm, which is a variation of the MAML, using only
the first derivative. The basic difference from FOMAML is that the last step treats θ̃−θ as a slope and
feeds it into an adaptive algorithm such as ADAM. Algorithm 2 presents reptile.

Algorithm 2. Reptile algorithm.

Initialize θ, the vector of initial parameters
1: for iteration = 1, 2, . . . , do

2: Sample task T, corresponding to Loss LT on weighs vector θ̃
3: Compute θ̃ = Uk

T(θ), denoting k steps of gradient descent or Adam algorithm

4: Update θ← θ+ ε
(
θ̃− θ

)
5: end for

MAML also suffers from training instability, which can currently only be alleviated by arduous
architecture and hyperparameter searches.

Antoniou et al. proposed an improved variant of the algorithm, called MAML++, which
effectively addresses MAML problems, by providing a much improved training stability and removing
the dependency of training stability on the model’s architecture. Specifically, Antoniou et al. [14] found
that simply replacing max-pooling layers with stridden convolutional layers makes network training
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unstable. It is clearly shown in Figure 3 that in two of the three cases, the original MAML appears to be
unstable and irregular, while all 3 MAML++ models appear to converge consistently very quickly,
with much higher generalization accuracy without any stability problems.

Figure 3. Stabilizing MAML.

It was estimated that the instability was caused by a gradient degradation (gradient explosion or
vanishing gradient) which was due to the depth of the network. Let us consider a typical four-layer
Convolutional Neural Network (CNN) followed by a single linear layer. If we repeat the Inner Loop
Learning N times, then the inference graph comprises 5N layers in total, without any skip connections.

Since the original MAML only uses the final weights for the Outer Loop Learning, the
backpropagation algorithm has to go through all layers, which causes gradient degradation. To solve
the above problem, the Multi-Step Loss (MSL) optimization approach was adopted. It eliminates the
problem by calculating the external loss after each internal step, based on the outer loop update, as in
Equation (15) below:

θ = θ− β∇θ
∑B

i=1

∑N

j=1
wjLTi

(
fθi

j

)
, (15)

where β is a Learning Rate; LTi( fθi
j
) denotes the outer loss of task i when using the base-network

weights after the j-inner-step update; and wj denotes the importance weight of the outer loss at step j.
The following, Figure 4, is a graphical display of the MAML++ algorithm, where the outer loss is

calculated after each internal step and the weighted average is obtained at the end of the process.
In practice, all losses are initialized with equal contributions to the overall loss, but as repetitions

increase, contributions from previous steps are reduced, while the ones of subsequent steps keep
increasing gradually. This is to ensure that as training progresses, the final step loss receives more
attention from the optimizer, thereby ensuring that the lowest possible loss is achieved. If the annealing
is not used, the final loss might be higher compared to the one obtained by the original formulation.
Additionally, due to the fact that the original MAML overcomes the second-order derivative cost by
completely ignoring it, the final general performance of the network is reduced. The MAML++ solves
this problem, by using the derivative order annealing method. Specifically, it employs the first order
grade for the first 50 epochs of training and then it moves to the second order grade for the rest of the
training process. An interesting observation is that this derivative-order annealing does not create
incidents of exploding or diminishing gradients, and so the training is much more stable.

Another drawback of MAML is the fact that it does non-use batch normalization statistic accumulation.
Instead, only the statistics of the current batch are used. As a result, smoothing is less effective, as the
trained parameters must include a variety of different means and standard deviations from different
tasks. A naive application would accumulate current batch statistics at all stages of the Inner Loop
Learning update, which could cause optimization problems, and it could slow or stop optimization
altogether. The problem stems from the erroneous assumption that the original model and all its
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updated iterations have similar attribute distributions. Thus, the current statistics could be shared
across all updates to the internal loop of the network. Obviously, this assumption is not correct. A
better alternative solution, which is employed by MAML++, is the storage of per-step batch normalization
statistics and the reading of per-step batch normalization weights and biases for each repetition of the inner
loop. One issue that affects the speed of generalization and convergence is the use of a shared Learning
Rate for all parameters and all steps of learning process update.

 

Figure 4. MAML++ visualization.

The consistent Learning Rate requires multiple hyperparameter searches, in order to find the right
rate for a particular set of data. This is computationally expensive and time consuming, depending on
how the search is shared. Use the shared Learning Rate for all parameters and all the steps of updating
the learning process. In addition, while gradient is an effective data fitting tactic, a constant Learning
Rate can easily lead to overfitting under the few-shot regime. An approach to avoid potential overfitting
is the identification of all learning factors in a way that maximizes the power of generalization rather
than the over-fitting of the data.

Li et al. [15] proposed a Learning Rate for each parameter in the core network where the internal
loop was updated, as in the following equation (Equation (16)):

θ′ = θ− α ◦ ∇θLTi( fθ), (16)

where α is a vector of learnable parameters with the same size as LTi( fθ) and denotes the element-wise
product operation. We do not put the constraint of positivity on the Learning Rate (LER) denoted as
“α.” Therefore, we should not expect the inner-update direction to follow the gradient direction.

A clearly improved approach to the above process is suggested by MAML++ which employs
per-layer per-step Learning Rates. For example, if it is assumed that the core network comprises L layers
and the Inner Loop Learning consists of N stages of updating, then there are LN additional learnable
parameters for the Inner Loop Learning Rate.

MAML uses the ADAM algorithm with a constant LER to optimize the meta-objective. This means
which more time is required to properly adjust the Learning Rate, which is a critical parameter of the
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generalization performance. On the other hand, MAML++ employs the cosine annealing scheduling
on the meta-optimizer, which is defined based on the following Equation (17) [16].

β = βmin +
1
2
(βmax − βmin)(1 + cos (

T
Tmax

π)), (17)

where βmin denotes the minimum Learning Rate, βmax denotes the initial Learning Rate, T is the number
of current iterations and Tmax is the maximum number of iterations. When T = 0, the LER β = βmax.
On the other hand, if T = Tmax, then β = βmin. In practice, we might want T to be Tmax.

In summary, this particular MAML++ standardization enables its use in complex Deep Learning
architectures, making it easier to learn more complex functions, such as loss functions, optimizers or
even gradient computation functions. Moreover, the use of first-class derivatives offers a powerful
pre-training method aiming to detect the parameters which are less likely to cause exploding or
diminishing gradients. Finally, the learning per-layer per-step LER technique avoids potential overfitting,
while it significantly reduces the computational cost and time required to build a consistent Learning
Rate throughout the process.

4. Design Principles and Novelties of the Introduced MAME-ZsL Algorithm

As it has already been mentioned, the proposed MAME-ZsL algorithm employs MAML++ for
the development of a robust Hyperspectral Image Analysis and Classification (HIAC) model, based on
ZsL. The basic novelty introduced by the improved MAME-ZsL model, is related to a neural network
with Convolutional (CON) filters, comprising very small receptive fields of size 3 × 3.

The Convolutional stride and the spatial padding were set to 1 pixel. Max-pooling was performed
over 3 × 3 pixels windows with stride equal to three. All of the CON layers were developed using the
Rectified Linear Unit (ReLU) nonlinear Activation Function (ACF), except for the last layer where the
Softmax ACF [3] was applied, as it performs better on multi-classification problems like the one under
consideration (18).

σ j(z) =
ezj∑K

k=1 ezk
, j = 1, . . . , K (18)

The Sigmoid approach offers better results in binary classification tasks. It is a fact that in the
Softmax, the sum of probabilities is equal to 1, which is not the case for the Sigmoid. Moreover, in
Softmax the highest value has a higher probability than the others, while in the Sigmoid the highest
value is expected to have a high probability but not the highest one.

The fully Convolutional Neural Network (CNN) was trained based on the novel AdaBound
algorithm [17] which employs dynamic bounds on the Learning Rate and it achieves a smooth transition
to stochastic gradient descent. Algorithm 3 makes a detailed presentation of the AdaBound [17]:

Algorithm 3. The AdaBound algorithm.

Input: x1 ∈ F, initial step size α,
{
β1t

}T
t=1, β2 lower bound function ηl, upper bound function ηu

1: Set m0 = 0, u0 = 0
2: for t = 1 to T do

3: gt = ∇ ft(xt)

4: mt = β1tmt−1 + (1− β1t)gt

5: ut = β2ut−1 + (1− β2)g2
t and Vt = diag(ut)

6: η̂t = Clip
(

a√
Vt

, ηl(t), ηu(t)
)

and ηt =
η̂t√

t
7: xt+1 =

∏
f ,diag(η−1

t )

(xt − ηt·mt)

8: end for
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Compared to other methods, AdaBound has two major advantages. It is uncertain whether there
exists a fixed turning point to distinguish the simple ADAM algorithm and the SGD. The advantage of
the AdaBound is the fact that it addresses this problem with a continuous transforming procedure,
rather than with a “hard” switch. The AdaBound introduces an extra hyperparameter to perform
the switching time, which is not very easy to fine-tune. Moreover, it has a higher convergence speed
than the stochastic gradient descent ones. Finally, it overcomes the poor generalization ability of the
adaptive models, as it uses dynamic limits on the LER, aiming towards higher classification accuracy.

The selection of the appropriate hyperparameters to be employed in the proposed method, was
based on the restrictions’ settings and configurations, which should be based on the consideration
of the different decision boundaries of the classification problem. For example, the obvious choice
of classifiers with the smallest error in training data is considered as improper for generating a
classification model. The performance based on a training dataset, even when cross-validation is
used, may be misleading when first seen data vectors are used. In order for the proposed process
to be effective, individual hyperparameters were chosen. They not only display a certain level of
diversity, but they also use different operating functions, thus allowing different decision boundaries
to be created and combined in such a way that can reduce the overall error.

In general, the selection of features was based on a heuristic method which considers the way the
proposed method faces each situation. For instance:

• Are any parametric approaches employed?
• What is the effect of the outliers? (The use of a subgroup of training sets with bagging can provide

significant help towards the reduction of the effect of outliers or extreme values)
• How is the noise handled? For instance: if it is repeatedly non-linear, it can detect linear or

non-linear dispersed data; it tends to perform very well with a lot of data vectors. The final
decision is made based on the performance encountered by the statistical trial and error method.

5. Application of the MAME-ZsL in Hyperspectral Image Analysis

Advances in artificial intelligence, combined with the extended availability of high quality data
and advances in both hardware and software, have led to serious developments in the efficient
processing of data related to the GeoAI field (Artificial Intelligence and Geography/Geographic Information
Systems). Hyperspectral Image Analysis for efficient and accurate object detection using Deep Learning
is one of the timely topics of GeoAI. The most recent research examples include detection of soil
characteristics [18], detailed ways of capturing densely populated areas [19], extracting information
from scanned historical maps [20], semantic point sorting [21], innovative spatial interpolation
methods [22] and traffic forecasting [23].

Similarly, modern applications of artificial vision and imaging (IMG) systems significantly extend
the distinctive ability of optical systems, both in terms of spectral sensitivity and resolution. Thus,
it is possible to identify and differentiate spectral and spatial regions, which although having the
same color appearance, are characterized by different physico-chemical and/or structural properties.
This differentiation is based on the emerging spatial diversification, which is detected by observing in
narrow spectral bands, within or outside the visible spectrum.

Recent technological developments have made it possible to combine IMG (spatial variation in
RGB resolution) and spectroscopy (spectral analysis in spatially emitted radiation) in a new field called
“Spectral Imaging” (SIM). In the SIM process, the intensity of light is recorded simultaneously as a
function of both wavelength and position. The dataset corresponding to the observed surface contains
a complete image, different for each wavelength. In the field of spectroscopy, a fully resolved spectrum
can be recorded for each pixel of the spatial resolution of the observation field. The multitude of
spectral regions, which the IMG system can manage, determines the difference between multispectral
(tens of regions) and Hyperspectral (hundreds of regions) Imaging. The key element of a typical
spectral IMG system is the monochromatic image sensor (monochrome camera), which can be used to
select the desired observation wavelength.
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It can be easily perceived that the success of a sophisticated Hyperspectral Analysis System (HAS)
is a major challenge for DL technologies, which are using a series of algorithms attempting to model
data characterized by high-level of abstraction. HAS use a multi-level processing architecture, which is
based on sequential linear and non-linear transformations. Despite their undoubtedly well-established
and effective approaches and their advantages, these architectures depend on the performance of
training with huge datasets which include multiple representations of images of the same class.
Considering the multitude of classes which may be included in a Hyperspectral image, we realize that
this process is so incredibly time consuming and costly, that it can sometimes be impossible to run [1].

The ZsL method was adopted based on a heuristic [24], hierarchical parameter search
methodology [25]. It is part of a family of learning techniques which exploit data representations to
interpret and derive the optimal result. This methodology uses distributed representation, the basic
premise of which is that the observed data result from the interactions of factors which are organized in
layers. A fundamental principle is that these layers correspond to levels of abstraction or composition
based on their quantity and size.

Fine-Grained Recognition (FIG_RC) is the task of distinguishing between visually very similar
objects, such as identifying the species of a bird, the breed of a dog or the model of an aircraft. On
the other hand, FIG_RC [26] which aims to identify the type of an object among a large number of
subcategories, is an emerging application with the increasing resolution which exposes new details in
image data. Traditional fully supervised algorithms fail to handle this problem where there is low
between-class variance and high within-class variance for the classes of interest with small sample
sizes. The experiments show that the proposed fine-grained object recognition model achieves only
14.3% recognition accuracy for the classes with no training examples. This is slightly better than a
random guess accuracy of 6.3%. Another method [27] automatically creates a training dataset from
a single degraded image and trains a denoising network without any clear images. However, the
performance of the proposed method shows the same performance as the optimization-based method
at high noise levels.

Hu et al., 2015, proposed a time-consuming and resource depended model [28] which learns to
perform zero-shot classification, using a meta-learner which is trained to produce corrections to the
output of a previously trained learner. The model consists of a Task Module (TM) which supplies an
initial prediction, and a Correction Module (CM) updating the initial prediction. The TM is the learner
and the CM is the meta-learner. The correction module is trained in an episodic approach, whereby
many different task modules are trained on various subsets of the total training data, with the rest
being used as unseen data for the CM. The correction module takes as input a representation of the
TM’s training data to perform the predicted correction. The correction module is trained to update the
task module’s prediction to be closer to the target value.

In addition [29] proposes the use of the visual space as the embedding one. In this space, the
subsequent nearest neighbor search suffers much less from the harness problem and it becomes more
effective. This model design also provides a natural mechanism for multiple semantic modalities (e.g.,
attributes and sentence descriptions) to be fused and optimized jointly in an end-to-end manner. Only
the statistics of the current environment are used and the trained process must include a variety of
different statistics from different tasks and environments.

Additionally, [30] propose a very promising approach with high-grade accuracy, but the model
is characterized by high bias. In the case of image classification, various spatial information can be
extracted and used, such as edges, shapes and associated color areas. As they are organized into
multiple levels, they are hierarchically separated into levels of abstraction, creating the conditions for
selecting the most appropriate features for the training process. Utilizing the above processes, ZsL
inspires and simulates the functions of human visual perception, where multiple functional levels and
intermediate representations are developed, from capturing an image to the retina to responding in
stimuli. This function is based on the conversion of the input representation to a higher level one,
as it is performed by each intermediate unit. High-level features are more general and unchanged,
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while low-level ones help to categorize inputs. Their effectiveness is interpreted on the basis of
the “universal approximation theorem,” which deals with the ability of a neural structure to approach
continuous functions and the probabilistic inference which considers the activation of nonlinearity as a
function of cumulative distribution. This is related to the concepts of optimization and generalization
respectively [25].

Given that in deep neural networks, each hidden level trains a distinct set of features, coming
from the output of the previous level, further operation of this network enables the analysis of the
most complex features, as they are reconstructed and decomposed from layer to layer. This hierarchy,
as well as the degradation of information, while increasing the complexity of the system, also enables
the handling of high-dimensional data, which pass through non-linear functions. It is thus possible to
discover unstructured data and to reveal a latent structure in unmarked data. This is done in order to
handle more general problematic structures, even discerning the minimal similarities or anomalies
they entail.

Specifically, since the aim was the design of a system with zero samples from the target class, the
proposed methodology used the intermediate representations extracted from the rest of the image
samples. This was done in order to find the appropriate representations to be used in order to classify
the unknown image samples.

To increase the efficiency of the method, bootstrap sampling was used, in order to train different
subsets of the data set in the most appropriate way. Bootstrap sampling is the process of using
increasingly larger random samples until the accuracy of the neural network is improved. Each sample
is used to compile a separate model and the results of each model are aggregated with “voting”;
that is, for each input vector, each classifier predicts the output variable, and finally, the value with
the most “votes” is selected as the response variable for which particular vector. This methodology,
which belongs to the ensemble methods, is called bagging and has many advantages, such as reducing
co-variance and avoiding overfitting, as you can see in the below Figure 5 [31].

Figure 5. Bagging (bootstrap sampling) (https://www.kdnuggets.com/).

The ensemble approach was selected to be employed in this research, due to the particularly high
complexity of the examined ZsL, and due to the fact that the prediction results were highly volatile.
This can be attributed to the sensitivity of the correlational models to the data, and to the complex
relationship which describes them. The ensemble function of the proposed system offers a more stable
model with better prediction results. This is due to the fact that the overall behavior of a multiple
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model is less noisy than a corresponding single one. This reduces the overall risk of a particularly
bad choice.

It is important to note that in Deep Learning, the training process is based on analyzing large
amounts of data. The research and development of neural networks is flourishing thanks to recent
advancements in computational power, the discovery of new algorithms and the increase in labeled data.

Neural networks typically take longer to run, as an increase in the number of features or columns
in the dataset also increases the number of hidden layers. Specifically, we should say that a single
affine layer of a neural network without any non-linearities/activations is practically the same as a
linear model. Here we are referring to deep neural networks that have multiple layers and activation
functions (non-linearities as Relu, Elu, tanh, Sigmoid) Additionally, all of the nonlinearities and
multiple layers introduce a nonconvex and usually rather complex error space, which means that we
have many local minimums that the training of the deep neural network can converge to. This means
that a lot of hyperparameters have to be tuned in order to get to a place in the error space where the
error is small enough so that the model will be useful. A lot of hyper parameters which could start
from 10 and reach up to 40 or 50 are dealt with via Bayesian optimization, using Gaussian processes
to optimize them, which still does not guarantee good performance. Their training is very slow, and
adding the tuning of the hyperparameters into that makes it even slower, whereas the linear model
would be much faster to be trained. This introduces a serious cost–benefit tradeoff. A trained linear
model has weights which are interpretable and gives useful information to the data scientist as to how
various features should have roles for the task at hand.

Modern frameworks like TensorFlow or Theano perform execution of neural networks on GPU.
They take advantage of parallel programming capabilities for large array multiplications, which are
typical of backpropagation algorithms.

The proposed Deep Learning model is a quite resource-demanding technology. It requires
powerful, high-performance graphics processing units and large amounts of storage to train the models.
Furthermore, this technology needs more time to train in comparison with traditional machine learning.
Another important disadvantage of any Deep Learning model is that it is incapable of providing
arguments about why it has reached a certain conclusion. Unlike in the case of traditional machine
learning, you cannot follow an algorithm to find out why your system has decided which it is a tree on
a picture, not a tile. To correct errors in Deep Learning, you have to revise the whole algorithm.

6. Description of the Datasets

The datasets used in this research include images taken from a Reflective Optics System Imaging
Spectrometer (ROSIS). More specifically, the Pavia University and Pavia Center datasets were
considered [32]. Both datasets came from the ROSIS sensor during a flight campaign over Pavia
in southern Italy. The number of spectral bands is 102 for the Pavia Center and it is 103 for Pavia
University. The selected Pavia Center and Pavia University images have an analysis of 1096 × 1096
pixels and 610 × 610 pixels respectively. Ultrasound imaging consists of 115 spectral channels ranging
from 430 to 860 nm, of which only 102 were used in this research, as 13 were removed due to noise.
Rejected specimens which in both cases contain no information (including black bars) can be seen in
the following figure (Figure 6) below.
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(a) Sample band of Pavia Centre dataset (b) Ground truth of Pavia Centre dataset 

  

(c) Sample band of Pavia University dataset (d) Ground truth of Pavia University dataset 

Figure 6. Noisy bands in Pavia Centre and University datasets.

The available samples were scaled down, so that every image has an analysis of 610 × 610 pixels
and geometric analysis of 1.3 m. In both datasets the basic points of the image belong to nine categories
which are mainly related to land cover objects. The Pavia University dataset includes nine classes, and
in total, 46,697 cases. The Pavia Center dataset comprises nine classes with 7456 cases, whereas the
first seven classes are common in both datasets (Asphalt, Meadows, Trees, Bare Soil, Self-Blocking Bricks,
Bitumen, Shadows) [33].

The Pavia University dataset was divided into training, validation and testing sets, as is presented
in the following table (Table 2) [32].

Table 2. Pavia University dataset.

Class No Class Name All Instances
Sets

Training Validation Test

1 Asphalt 7179
√

- -
2 Meadows 19,189

√
- -

3 Trees 3588
√

- -
4 Bare Soil 5561

√
- -

5 Self-Blocking Bricks 4196
√

- -
6 Bitumen 1705

√
- -

7 Shadows 1178
√

- -
8 Metal Sheets 1610 -

√
-

9 Gravel 2491 - -
√

Total 46,697 42,596 1610 2491

The Pavia Center dataset was divided into training, validation and testing sets, as is presented
analytically in the following table (Table 3) [32].

102



Algorithms 2020, 13, 61

Table 3. Pavia Center dataset.

Class No Class Name All Instances
Sets

Training Validation Test

1 Asphalt 816
√

- -
2 Meadows 824

√
- -

3 Trees 820
√

- -
4 Bare Soil 820

√
- -

5 Self-Blocking Bricks 808
√

- -
6 Bitumen 808

√
- -

7 Shadows 476
√

- -
8 Water 824 -

√
-

9 Tiles 1260 - -
√

Total 7456 5372 824 1260

Metrics Used for the Assessment of the Modeling Effort

The following metrics were used for the assessment of the modeling effort [33,34]:
(a) Overall Accuracy (OA): This index represents the number of samples correctly classified,

divided by the number of testing samples.
(b) Kappa Statistic: This is a statistical measure which provides information on the level of

agreement between the truth map and the final classification map. It is the percentage of agreement
corrected by the level of agreement, which could be expected to occur by chance. In general, it is
considered to be a more robust index than a simple percent agreement calculation, since k takes into
account the agreement occurring by chance. It is a popular measure for benchmarking classification
accuracy under class imbalance. It is used in static classification scenarios and for streaming data
classification. Cohen’s kappa measures the agreement between two raters, where each classifies N
items into C mutually exclusive categories. The definition of κ is [35,36]:

κ =
p0 − pe

1− pe
= 1− 1− p0

1− pe
, (19)

where po is the relative observed agreement among raters (identical to accuracy), and pe is the
hypothetical probability of chance agreement. The observed data are used to calculate the probabilities
of each observer, to randomly see each category. If the raters are in complete agreement, then κ = 1.
If there is no agreement among the raters other than what would be expected by chance (as given by
pe), then κ ≈ 0.

The Kappa Reliability (KR) can be considered as the outcome from the data editing, allowing
the conservancy of more relevant data for the upcoming forecast. A detailed analysis of the KR is
presented in the following Table 4.

Table 4. Kappa Reliability.

Kappa Reliability

0.00 no reliability
0.1–0.2 minimum

0.21–0.40 little
0.41–0.60 moderate
0.61–0.80 important
≥0.81 maximum
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(c) McNemar test: The McNemar statistical test was employed to evaluate the importance of
classification accuracy derived from different approaches [31]:

z12 =
f12 − f21√
f12 + f21

, (20)

where fi j is the number of correctly classified samples in classification i, and incorrect one are in
classification j. McNemar’s test is based on the standardized normal test statistic, and therefore the
null hypothesis, which is “no significant difference,” rejected at the widely used p = 0.05 (|z| > 1.96)
level of significance.

7. Results and Comparisons

The training of the models was performed using a Learning Rate of 0.001. Loss function is the
cross-entropy error between the predicted and true class. The cross-entropy error was used as the
Loss function between the predicted and the true class. For the other parameters of the model, the
recommended default settings were set as in [37].

A comparison with the following most widely used supervised Deep Learning models was
performed to validate the effectiveness of the proposed architecture.

(a) 1-D CNN: The architecture of the 1-D CNN was designed as in [38], and it comprises the input
layer, the Convolutional Layer (COL), the max-pooling layer, the fully connected layer and the
output one. The number of the Convolutional Filters (COFs) was equal to 20, the length of each
filer was 11 and the pooling size had the value of 3. Finally, 100 hidden units were contained in
the fully connected layer.

(b) 2-D CNN: The 2-D CNN architecture was designed as in [39]. It includes three COLs which were
supplied with 4×4, 5×5 and 4×4 CON filters respectively. The COL except of the final one were
followed by max-pooling layers. Moreover, the numbers of COFs for the COLs were to 32, 64 and
128, respectively.

(c) Simple Convolutional/deconvolutional network with the simple Convolutional blocks and the
unpooling function, as it is described in [40,41].

(d) Residual Convolutional/deconvolutional network: Its architecture used residual blocks and a
more accurate unpooling function, as it is shown in [42].

The following Tables 5 and 6 show the classification maps which have emerged for the cases of
the Pavia University and Pavia Center datasets. Moreover, they present a comparative analysis of the
accuracy of the proposed MAME-ZsL algorithm, with the performance of the following classifiers;
namely: 1-D CNN, 2-D CNN, Simple Convolutional/Deconvolutional Network (SC/DN), Residual
Convolutional/Deconvolutional Network (RC/DN).

A single dataset including all records of the Pavia University and Pavia Center datasets was
developed, which was employed in an effort to fully investigate the predictive capacity of the proposed
system. It was named General Pavia Dataset (GPD), and it was divided into training (Classes 1–7),
validation (Classes 8 and 9) and testing subsets (Classes 10 and 11). It is presented in the following
Table 7.
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As it can be seen from Table 8, the increase of samples has improved the results in the case of the
trained algorithms and in the case of the ZsL technique. It is easy to conclude which the proposed
MAME-ZsL is a highly valued Deep Learning system which has achieved remarkable results in all
evaluations over their respective competing approaches.

The experimental comparison does not include other examples of Zero-shot Learning. This
fact does not detract in any case from the value of the proposed method, taking into account that
the proposed processing approach builds a predictive model which is comparable to supervised
learning systems. The appropriate hyperparameters in the proposed method are also identified
by the high reliability and overall accuracy on the obtained results. The final decision was taken
based on the performance encountered by the statistical trial and error method. The performance of
the proposed model was evaluated against state-of-the-art fully supervised Deep Learning models.
It is worth mentioning that the proposed model was trained with instances only from seven classes
while the Deep Learning models were trained with instances from all eleven classes. The presented
numerical experiments demonstrate that the proposed model produces remarkable results compared to
theoretically superior models, providing convincing arguments regarding the classification efficiency
of the proposed approach. Another important observation is that it produces accurate results without
recurring problems of undetermined cause, because all of the features in the considered dataset are
efficiently evaluated. The values of the obtained kappa index are a proof of high reliability (the
reliability can be considered as high when κ ≥ 0.70) [35,36].

The superiority of the introduced, novel model focuses on its robustness, accuracy and
generalization ability. The overall behavior of the model is comparable to a corresponding supervised
one. Specifically, it reduces the possibility of overfitting, it decreases variance or bias and it can fit
unseen patterns without reducing its precision. This is a remarkable innovation which significantly
improves the overall reliability of the modeling effort. This is the result of the data processing
methodology which allows the retention of the more relevant data for upcoming forecasts.

The following Table 8 presents the results obtained by the analysis of the GPD.
The above, Table 8, also provides information on the results of the McNemar test, to assess the

importance of the difference between the classification accuracy of the proposed network and the
other approaches examined. The improvement of the overall accuracy values obtained by the novel
algorithm (compared to the other existing methods) is statistically significant.

Finally, the use of the ensemble approach in this work is related to the fact that very often in
multi-factor problems of high complexity such as the one under consideration, the prediction results
show multiple variability [43]. This can be attributed to the sensitivity of the correlation models to
the data. The main imperative advantage of the proposed ensemble model is the improvement of
the overall predictions and the generalization ability (adaptation in new previously unseen data).
The ensemble method definitely decreases the overall risk of a particularly poorer choice.

The employed bagging technique offers better prediction and stability, as the overall behavior of
the model becomes less noisy and the overall risk of a particularly bad choice that may be caused from
under-sampling is significantly reduced. The above assumption is also supported by the dispersion
of the expected error, which is close to the mean error value, something which strongly indicates the
reliability of the system and the generalization capability that it presents.

As it can be seen in Tables 5–8, the ensemble method appears to have the same or a slightly lower
performance across all datasets, compared to the winning (most accurate) algorithm. The highly overall
accuracy shows the rate of positive predictions, whereas k reliability index specifies the rate of positive
events which were correctly predicted. In all cases, the proposed model has high average accuracy and
very high reliability, which means that the ensemble method is a robust and stable approach which
returns substantial results. Tables 7 and 8 show clearly that the ensemble model is very promising.
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8. Discussion and Conclusions

This research paper proposes a highly effective geographic object-based scene classification system
for image Remote Sensing which employs a novel ZsL architecture. It introduces serious prerequisites
for even more sophisticated pattern recognition systems without prior training.

To the best of our knowledge, it is the first time that such an algorithm has been presented in
the literature. It facilitates learning of specialized intermediate representation extraction functions,
under complex Deep Learning architectures. Additionally, it utilizes first and second order derivatives
as a pre-training method for learning parameters which do not cause exploding or diminishing
gradients. Finally, it avoids potential overfitting, while it significantly reduces computational costs
and training time. It produces improved training stability, high overall performance and remarkable
classification accuracy.

Likewise, the ensemble method used leads to much better prediction results, while providing
generalization which is one of the key requirements in the field of machine learning [38]. At the
same time, it reduces bias and variance and it eliminates overfitting, by implementing a robust model
capable of responding to high complexity problems.

The proposed MAME-ZsL algorithm follows a heuristic hierarchical hyperparameter search
methodology, using intermediate representations extracted from the employed neural network and
avoiding other irrelevant ones. Using these elements, it discovers appropriate representations which
can correctly classify unknown image samples. What should also be emphasized is the use of bootstrap
sampling, which accurately addresses noisy scattered misclassification points which other spectral
classification methods cannot handle.

The implementation of MAME-ZsL, utilizing the MAML++ algorithm, is based on the optimal
use and combination of two highly efficient and fast learning processes (Softmax activation function
and AdaBound algorithm) which create an integrated intelligent system. It is the first time which this
hybrid approach has been introduced in the literature.

The successful choice of the Softmax (SFM) function instead of the Sigmoid (SIG) was based on the
fact that it performs better on multi-classification problems, such as the one under consideration, and
the sum of its probabilities equals to 1. On the other hand, the Sigmoid is used for binary classification
tasks. Finally, in the case of SFM, high values have the highest probabilities, whereas in SIG this is not
the case.

The use of the AdaBound algorithm offers high convergence speed compared to stochastic gradient
descent models. Moreover, it exceedes the poor generalization ability of the adaptive approaches, as it
has dynamic limits on the Learning Rate in order to obtain the highest accuracy for the dataset under
consideration. Still, this network remarkably implements a GeoAI approach for large-scale geospatial
data analysis which attempts to balance latency, throughput and fault-tolerance using ZsL. At the same
time, it makes effective use of the intermediate representations of Deep Learning.

The proposed model avoids overfitting, decreases variance or bias, and it can fit unseen patterns,
without reducing its performance.

The reliability of the proposed network has been proven in identifying scenes from Remote Sensing
photographs. This suggests that it can be used in higher level geospatial data analysis processes, such
as multi-sector classification, recognition and monitoring of specific patterns and sensors’ data fusion.
In addition, the performance of the proposed model was evaluated against state-of-the-art supervised
Deep Learning models. It is worth mentioning that the proposed model was trained with instances
only from seven classes, while the other models were trained with instances from all eleven classes.
The presented numerical experiments demonstrate that the introduced approach produces remarkable
results compared to theoretically superior models, providing convincing arguments regarding its
classification efficiency.

Suggestions for the evolution and future improvements of this network should focus on comparison
with other ZsL models. It is interesting to see the difference between ZsL, one-shot and five-shot
learning methods, in terms of efficiency.
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On the other hand, future research could focus on further optimization of the hyperparameters of
the algorithms used in the proposed MAME-ZsL architecture. This may lead to an even more efficient,
more accurate and faster classification process, either by using a heuristic approach or by employing a
potential adjustment of the algorithm with spiking neural networks [44].

Additionally, it would be important to study the extension of this system by implementing more
complex architectures with Siamese neural networks in parallel and distributed real time data stream
environments [45].

Finally, an additional element which could be considered in the direction of future expansion,
concerns the operation of the network by means of self-improvement and redefinition of its parameters
automatically. It will thus be able to fully automate the process of extracting useful intermediate
representations from Deep Learning techniques.
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Abstract: Automatic recognition of emotion is important for facilitating seamless interactivity between
a human being and intelligent robot towards the full realization of a smart society. The methods of
signal processing and machine learning are widely applied to recognize human emotions based on
features extracted from facial images, video files or speech signals. However, these features were not
able to recognize the fear emotion with the same level of precision as other emotions. The authors
propose the agglutination of prosodic and spectral features from a group of carefully selected features
to realize hybrid acoustic features for improving the task of emotion recognition. Experiments were
performed to test the effectiveness of the proposed features extracted from speech files of two public
databases and used to train five popular ensemble learning algorithms. Results show that random
decision forest ensemble learning of the proposed hybrid acoustic features is highly effective for
speech emotion recognition.

Keywords: emotion recognition; ensemble algorithm; feature extraction; hybrid feature; machine
learning; supervised learning

1. Introduction

Emotion plays an important role in the daily interpersonal interactions and is considered an
essential skill for human communication [1]. It helps humans to understand the opinions of others
by conveying feelings and giving feedback to people. Emotion has many useful benefits of affective
computing and cognitive activities such as rational decision making, perception and learning [2]. It has
opened up an exhilarating research agenda because constructing an intelligent robotic dialogue system
that can recognize emotions and precisely respond in the manner of human conversation is presently
arduous. The requirement of emotion recognition is steadily increasing with the pervasiveness of
intelligent systems [3]. Huawei intelligent video surveillance systems, for instance, can support
real-time tracking of a person in a distressed phase through emotion recognition. The capability to
recognize human emotions is considered an essential future requirement of intelligent systems that
are inherently supposed to interact with people to a certain degree of emotional intelligence [4]. The
necessity to develop emotionally intelligent systems is exceptionally important for the modern society
of the internet of things (IoT) because such systems have great impact on decision making, social
communication and smart connectivity [5].

Practical applications of emotion recognition systems can be found in many domains such
as audio/video surveillance [6], web-based learning, commercial applications [7], clinical studies,
entertainment [8], banking [9], call centers [10], computer games [11] and psychiatric diagnosis [12].
In addition, other real applications include remote tracking of persons in a distressed phase,
communication between human and robots, mining sentiments of sport fans and customer care
services [13], where emotion is perpetually expressed. These numerous applications have led to the
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development of emotion recognition systems that use facial images, video files or speech signals [14].
In particular, speech signals carry emotional messages during their production [15] and have led to
the development of intelligent systems habitually called speech emotion recognition systems [16].
There is an avalanche of intrinsic socioeconomic advantages that make speech signals a good source
for affective computing. They are economically easier to acquire than other biological signals like
electroencephalogram, electrooculography and electrocardiograms [17], which makes speech emotion
recognition research attractive [18]. Machine learning algorithms extract a set of speech features with a
variety of transformations to appositely classify emotions into different classes. However, the set of
features that one chooses to train the selected learning algorithm is one of the most important tools for
developing effective speech emotion recognition systems [3,19]. Research has suggested that features
extracted from the speech signal have a great effect on the reliability of speech emotion recognition
systems [3,20], but selecting an optimal set of features is challenging [21].

Speech emotion recognition is a difficult task because of several reasons such as an ambiguous
definition of emotion [22] and the blurring of separation between different emotions [23]. Researchers
are investigating different heterogeneous sources of features to improve the performance of speech
emotion recognition systems. In [24], performances of Mel-frequency cepstral coefficient (MFCC),
linear predictive cepstral coefficient (LPCC) and perceptual linear prediction (PLP) features were
examined for recognizing speech emotion that achieved a maximum accuracy of 91.75% on an acted
corpus with PLP features. This accuracy is relatively low when compared to the recognition accuracy
of 95.20% obtained for a fusion of audio features based on a combination of MFCC and pitch for
recognizing speech emotion [25]. Other researchers have tried to agglutinate different acoustic features
with the optimism of boosting accuracy and precision rates of speech emotion recognition [25,26].
This technique has shown some improvement, nevertheless it has yielded low accuracy rates for
the fear emotion in comparison with other emotions [25,26]. Semwal et al. [26] fused some acoustic
features such as MFCC, energy, zero crossing rate (ZCR) and fundamental frequency that gave an
accuracy of 77.00% for the fear emotion. Similarly, Sun et al. [27] used a deep neural network (DNN) to
extract bottleneck features that achieved an accuracy of 62.50% for recognizing the fear emotion. The
overarching objective of this study was to construct a set of hybrid acoustic features (HAFs) to improve
the recognition of the fear emotion and other emotions from speech signal with high precision. This
study has contributed to the understanding of the topical theme of speech emotion recognition in the
following unique ways.

• The application of a specialized software to extract highly discriminating speech emotion feature
representations from multiple sources such as prosodic and spectral to achieve an improved
precision in emotion recognition.

• The agglutination of the extracted features using the specialized software to form a set of hybrid
acoustic features that can recognize the fear emotion and other emotions from speech signal better
than the state-of-the-art unified features.

• The comparison of the proposed set of hybrid acoustic features with other prominent features of
the literature using popular machine learning algorithms to demonstrate through experiments,
the effectiveness of our proposal over the others.

The content of this paper is succinctly organized as follows. Section 1 provides the introductory
message, including the objective and contributions of the study. Section 2 discusses the related studies
in chronological order. Section 3 designates the experimental databases and the study methods. The
details of the results and concluding statements are given in Sections 4 and 5 respectively.

2. Related Studies

Speech emotion recognition research has been exhilarating for a long time and several papers
have presented different ways of developing systems for recognizing human emotions. The authors
in [3] presented a majority voting technique (MVT) for detecting speech emotion using fast correlation
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based feature (FCBF) and Fisher score algorithms for feature selection. They extracted 16 low-level
features and tested their methods over several machine learning algorithms, including artificial neural
network (ANN), classification and regression tree (CART), support vector machine (SVM) and K-nearest
neighbor (KNN) on berlin emotion speech database (Emo-DB). Kerkeni et al. [11] proposed a speech
emotion recognition method that extracted MFCC with modulation spectral (MS) features and used
recurrent neural network (RNN) learning algorithm to classify seven emotions from Emo-DB and
Spanish database. The authors in [15] proposed a speech emotion recognition model where glottis
was used for compensation of glottal features. They extracted features of glottal compensation to zero
crossings with maximal teager (GCZCMT) energy operator using Taiyuan University of technology
(TYUT) speech database and Emo-DB.

Evaluation of feature selection algorithms on a combination of linear predictive coefficient (LPC),
MFCC and prosodic features with three different multiclass learning algorithms to detect speech
emotion was discussed in [19]. Luengo et al. [20] used 324 spectral and 54 prosody features combined
with five voice quality features to test their proposed speech emotion recognition method on the Surrey
audio-visual expressed emotion (SAVEE) database after applying the minimal redundancy maximal
relevance (mRMR) to reduce less discriminating features. In [28], a method for recognizing emotions
in an audio conversation based on speech and text was proposed and tested on the SemEval-2007
database using SVM. Liu et al. [29] used the extreme learning machine (ELM) method for feature
selection that was applied to 938 features based on a combination of spectral and prosodic features
from Emo-DB for speech emotion recognition. The authors in [30] extracted 988 spectral and prosodic
features from three different databases using the OpenSmile toolkit with SVM for speech emotion
recognition. Stuhlsatz et al. [31] introduced the generalized discriminant analysis (GerDA) based
on DNN to recognize emotions from speech using the OpenEar specialized software to extract 6552
acoustic features based on 39 functional of 56 acoustic low-level descriptor (LLD) from Emo-DB and
speech under simulated and actual stress (SUSAS) database. Zhang et al. [32] applied the cooperative
learning method to recognize speech emotion from FAU Aibo and SUSAS databases using GCZCMT
based acoustic features.

In [33], Hu moments based weighted spectral features (HuWSF) were extracted from Emo-DB,
SAVEE and Chinese academy of sciences - institute of automation (CASIA) databases to classify
emotions from speech using SVM. The authors used HuWSF and multicluster feature selection (MCFS)
algorithm to reduce feature dimensionality. In [34], extended Geneva minimalistic acoustic parameter
set (eGeMAPS) features were used to classify speech emotion, gender and age from the Ryerson
audio-visual database of emotional speech and song (RAVDESS) using the multiple layer perceptron
(MLP) neural network. Pérez-Espinosa et al. [35] analyzed 6920 acoustic features from the interactive
emotion dyadic motion capture (IEMOCAP) database to discover that features based on groups
of MFCC, LPC and cochleagrams are important for estimating valence, activation and dominance
emotions in speech respectively. The authors in [36] proposed a DNN architecture for extracting
informative feature representatives from heterogeneous acoustic feature groups that may contain
redundant and unrelated information. The architecture was tested by training the fusion network to
jointly learn highly discriminating acoustic feature representations from the IEMOCAP database for
speech emotion recognition using SVM to obtain an overall accuracy of 64.0%. In [37], speech features
based on MFCC and facial on maximally stable extremal region (MSER) were combined to recognize
human emotions through a systematic study on Indian face database (IFD) and Emo-DB.

Narendra and Alku [38] proposed a new dysarthric speech classification method from a coded
telephone speech using glottal features with a DNN based glottal inverse filtering method. They
considered two sets of glottal features based on time and frequency domain parameters plus parameters
based on principal component analysis (PCA). Their results showed that a combination of glottal
and acoustic features resulted in an improved classification after applying PCA. In [39], four pitch
and spectral energy features were combined with two prosodic features to distinguish two high
activation states of angry and happy plus low activation states of sadness and boredom for speech
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emotion recognition using SVM with Emo-DB. Alshamsi et al. [40] proposed a smart phone method for
automated facial expression and speech emotion recognition using SVM with MFCC features extracted
from SAVEE database.

Li and Akagi [41] presented a method for recognizing emotions expressed in a multilingual
speech using the Fujitsu, Emo-DB, CASIA and SAVEE databases. The highest weighted average
precision was obtained after performing speaker normalization and feature selection. The authors
in [42] used MFCC related features for recognizing speech emotion based on an improved brain
emotional learning (BEL) model inspired by the emotional processing mechanism of the limbic system
in human brain. They tested their method on CASIA, SAVEE and FAU Aibo databases using linear
discriminant analysis (LDA) and PCA for dimensionality reduction to obtain the highest average
accuracy of 90.28% on CASIA database. Mao et al. [43] proposed the emotion-discriminative and
domain-invariant feature learning method (EDFLM) for recognizing speech emotion. In their method,
both domain divergence and emotion discrimination were considered to learn emotion-discriminative
and domain-invariant features using emotion label and domain label constraints. Wang et al. [44]
extracted MFCC, Fourier parameters, fundamental frequency, energy and ZCR from three different
databases of Emo-DB, Chinese elderly emotion database (EESDB) and CASIA for recognizing speech
emotion. Muthusamy et al. [45] extracted a total of 120 wavelet packet energy and entropy features
from speech signals and glottal waveforms from Emo-DB, SAVEE and Sahand emotional speech (SES)
databases for speech emotion recognition. The extracted features were enhanced using the Gaussian
mixture model (GMM) with ELM as the learning algorithm.

Zhu et al. [46] used a combination of acoustic features based on MFCC, pitch, formant, short-term
ZCR and short-term energy to recognize speech emotion. They extracted the most discriminating
features and performed classification using the deep belief network (DBN) with SVM. Their results
showed an average accuracy of 95.8% on the CASIA database across six emotions, which is an
improvement when compared to other related studies. Álvarez et al. [47] proposed a classifier
subset selection (CSS) for the stacked generalization to recognize speech emotion. They used the
estimation of distribution algorithm (EDA) to select optimal features from a collection of features
that included eGeMAPS and SVM for classification that achieved an average accuracy of 82.45% on
Emo-Db. Bhavan et al. [48] used a combination of MFCCs, spectral centroids and MFCC derivatives of
spectral features with a bagged ensemble algorithm based on Gaussian kernel SVM for recognizing
speech emotion that achieved an accuracy of 92.45% on Emo-DB. Shegokar et al. [49] proposed the use
of continuous wavelet transform (CWT) with prosodic features to recognize speech emotion. They
used PCA for feature transformation with quadratic kernel SVM as a classification algorithm that
achieved an average accuracy of 60.1% on the RAVDESS database. Kerkeni et al. [50] proposed a
model for recognizing speech emotion using empirical mode decomposition (EMD) based on optimal
features that included the reconstructed signal based on Mel frequency cepstral coefficient (SMFCC),
energy cepstral coefficient (ECC), modulation frequency feature (MFF), modulation spectral (MS) and
frequency weighted energy cepstral coefficient (FECC). They achieved an average accuracy of 91.16%
on the Spanish database using the RNN algorithm for classification.

Emotion recognition is still a great challenge because of several reasons as previously alluded in
the introductory message. Further reasons include the existence of a gap between acoustic features
and human emotions [31,36] and the non-existence of a solid theoretical foundation relating the
characteristics of voice to the emotions of a speaker [20]. These intrinsic challenges have led to the
disagreement in the literature on which features are best for speech emotion recognition [20,36]. The
trend in the literature shows that a combination of heterogeneous acoustic features is promising for
speech emotion recognition [20,29,30,36,39], but how to effectively unify the different features is highly
challenging [21,36]. The importance of selecting relevant features to improve the reliability of speech
emotion recognition systems is strongly emphasized in the literature [3,20,29]. Researchers frequently
apply specialized software such as OpenEar [31,32,35], OpenSmile [30,32,34,36] and Praat [35] for
extraction, selection and unification of speech features from heterogeneous sources to ease the intricacy
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inherent in the processes. Moreover, the review of numerous literature has revealed that different
learning algorithms are trained and validated with the specific features extracted from public databases
for speech emotion recognition. Table 1 shows the result of the comparative analysis of our method
with the related methods in terms of the experimental database, type of recording, number of emotions,
feature set, classification method and maximum percentage accuracy results obtained. It is conspicuous
from the comparative analysis that our emotion recognition method is highly promising because it has
achieved the highest average accuracy of 99.55% across two dissimilar public experimental databases.

Table 1. A comparison of our method with related methods.

Reference Database
Type of

Recording
Number of Emotions Feature Set

Classification
Method

Result (%)

[3] Emo-DB Acted Angry, Happy,
Neutral, Sad

Energy +MFCC +
ZCR + voicing
probability +
fundamental

frequency

FCBF +MVT 84.19

[11] Spanish Acted
Anger, Disgust, Fear,

Neutral, Surprise,
Sadness, Joy

MFCC +MS RNN
classifier 90.05

[15] Emo-DB Acted Angry, Happy,
Neutral GCZCMT SVM 84.45

[19] Emo-DB Acted Anger, Happiness,
Neutral, Sadness

Prosodic +
sub-band +MFCC

+ LPC

SFS
algorithm +

SVM
83.00

[28] eNTERFACE’05 Elicited
Disgust, Surprise,

Happy, Anger, Sad,
Fear,

Pitch, energy,
formants, intensity

and ZCR + text
SVM 90.00

[29] CASIA Acted
Neutral, Happy,

Sadness, Fear, Angry,
Surprise

Prosodic + quality
characteristics +

MFCC

correlation
analysis +
Fisher +

ELM
decision tree

89.60

[36] IEMOCAP Acted Angry, Happy,
Neutral, Sad

IS10 +MFCCs +
eGemaps +
SoundNet +

VGGish

SVM 64.00

[39] Emo-DB Acted
Anger, Boredom,
Happy, Neutral,

Sadness

Prosodic features
+ paralinguistic

features
SVM 94.90

[42] CASIA Acted Surprise, Happy, Sad,
Angry, Fear, Neutral MFCC GA-BEL +

PCA + LDA 90.28

[46] CASIA Acted Angry, Fear, Happy,
Neutral, Surprise, Sad

MFCC, pitch,
formant, ZCR and
short-term energy

SVM + DBN 95.80

[47] Emo-DB Acted
Sadness, Fear, Joy,
Anger, Surprise,
Disgust, Neutral

eGeMAPS
CSS stacking

system
+SVM

82.45

[48] Emo-DB Acted
Anger, Happiness,
Sadness, Boredom,

Neutral, Disgust, Fear,
MFCCs

bagged
ensemble of

SVMs
92.45

[49] RAVDESS Acted
Neutral, Surprise,

Happy, Angry, Calm,
Sad, Fearful, Disgust

CWT, prosodic
coefficients SVM 60.10

[50] Spanish Acted
Anger, Joy, Disgust,
Neutral, Surprise,

Fear, Sadness

SMFCC, ECC,
MFF, MS and

EFCC
RNN 91.16

Proposed
model RAVDESS/SAVEE Acted

Angry, Sad, Happy,
Disgust, Calm, Fear,

Neutral, Surprise

Prosodic +
spectral

RDF
ensemble 99.55

3. Materials and Methods

Materials used for this study included speech emotion multimodal databases of RAVDESS [51]
and SAVEE [52]. The databases, because of their popularity were chosen to test for the effectiveness
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of the proposed HAF against two other sets of features. The study method followed three phases of
feature extraction, feature selection and classification, which were subsequently described. The method
was heralded by the feature extraction process that involves the abstraction of prosodic and spectral
features from the raw audio files of RAVDESS and SAVEE databases. This phase was subsequently
followed by the feature selection process that involved the filtration, collection and agglutination of
features that have high discriminating power of recognizing emotions in human speech. Classification
was the last phase that involved the application of the selected learning algorithm to recognize human
emotions and a comparative analysis of experimental results of classification. In the classification
phase, several experiments were carried out on a computer with an i7 2.3GHz processor and 8 GB
of random access memory (RAM). The purpose of the experiments was to apply standard metrics of
accuracy, precision, recall and F1-score to evaluate the effectiveness of the proposed HAF with respect
to a given database and ensemble learning algorithm.

3.1. Databases

The speech emotion database is an important precursor for analyzing speech and recognizing
emotions. The database provides speech data for training and testing the effectiveness of emotion
recognition algorithms [15]. RAVDESS and SAVEE are two public speech emotion databases used in
this study for experiments to verify the effectiveness of the proposed HAF for emotion recognition.
The two selected experimental databases were fleetingly discussed in this subsection of the paper.

3.1.1. RAVDESS

RAVDESS is a gender balanced set of validated speeches and songs that consists of eight emotions
of 24 professional actors speaking similar statements in a North American accent. It is a multiclass
database of angry, calm, disgust, fear, happy, neutral, sad and surprise emotions with 1432 American
English utterances. Each of the 24 recorded vocal utterances comprises of three formats, which are
audio-only (16bit, 48kHz .wav), audio-video (720p H.264, AAC 48kHz, .mp4) and video-only (no
sound). The audio-only files were used across all the eight emotions because this study concerns
speech emotion recognition. Figure 1 shows that angry, calm, disgust, fear, happy and sad emotion
classes constituted 192 audio files each. The surprise emotion had 184 files and the neutral emotion
had the lowest number of audio files of 96.
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Figure 1. The Ryerson audio-visual database of emotional speech and song (RAVDESS).
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3.1.2. SAVEE

SAVEE is a speech emotion database that consists of recordings from four male actors in seven
different emotion classes. The database comprises of a total of 480 British English utterances, which is
quite different from the North American accent used in the RAVDESS database. These vocal utterances
were processed and labeled in a standard media laboratory with high quality audio-visual equipment.
The recorded vocal utterances were classified into seven classes of angry, disgust, fear, happy, neutral,
sad and surprise emotional expressions. The neutral emotion constituted 120 audio files, while all the
other remaining emotions comprised of 60 audio files each as illustrated in Figure 2.
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Figure 2. The Surrey audio-visual expressed emotion (SAVEE).

3.2. Feature Extraction

The speech signal carries a large number of useful information that reflects emotion characteristics
such as gender, age, stuttering and identity of the speaker. Feature extraction is an important mechanism
in audio processing to capture the information in a speech signal and most of the related studies
have emphasized on the extraction of low-level acoustic features for speech recognition. Feature
representation plays a prominent role in distinguishing the speech of speakers from each other. Since
no universal consensus on the best features for speech recognition, certain authors have mentioned
that prosody carries most of the useful information about emotions and can create a suitable feature
representation [20]. Moreover, spectral features describe the properties of a speech signal in the
frequency domain to identify important aspects of speech and manifest the correlation between
vocal movements and changes of channel shape [35,42]. Prosodic and spectral acoustic features were
suggested as the most important characteristics of speech because of the improved recognition results
of their integration [25,42,53,54]. The blend of prosodic and spectral features is capable of enhancing
the performance of emotion recognition, giving better recognition accuracy and a lesser number
of emotions in a gender dependent model than many existing systems with the same number of
emotions [25]. Banse et al. [54] examined vocal cues for 14 emotions using a combination of prosodic
speech features and spectral information in a voiced segment and unvoiced segment to achieve
impressive results.

The present authors have applied the selective approach [35] to extract prosodic and spectral
features, taking cognizance of features that could be useful for improving emotion recognition. These
are features that have produced positive results in the related studies and those from the other
comparable tasks. We carefully applied the specialized jAudio software [55] to construct MFCC1,
MFCC2 and HAF as three sets of features representing several voice aspects. MFCC1 is the set of MFCC
features inspired by the applications of MFCC features [24,40,42]. MFCC2 is the set of features based on
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MFCC, energy, ZCR and fundamental frequency as inspired by the fusion of MFCC with other acoustic
features [11,25,26,44,46]. The HAF is the proposed set of hybrid acoustic features of prosodic and spectral
carefully selected based on the interesting results in the literature [11,20,24–26,29,30,39,40,42,44,46,48].

The feature extraction process was aided by the application of a specialized jAudio to effectively
manage the inherent complexity in the selection process. The jAudio software is a digital signal
processing library of advanced audio feature extraction algorithms designed to eliminate effort
duplication in manually calculating emotion features from an audio signal. It provides a unique
method of handling multidimensional features, dependency and allows for iterative development of
new features from the existing ones through the meta-feature template. Moreover, it simplifies the
intrinsic stiffness of the existing feature extraction methods by allowing low-level features to be fused
to build increasingly high-level musically meaningful features. In addition, it provides audio samples
as simple vectors of features and offers aggregation functions that aggregate a sequence of separate
feature sets into a single feature vector.

3.2.1. Prosodic Features

Prosodic features are acoustic features prominently used in emotion recognition and speech signal
processing because they carry essential paralinguistic information. This information complements
a message with an intention that can paint a flawless picture about attitude or emotion [35,56]. In
addition, prosodic features are considered as suprasegmental information because they help in defining
and structuring the flow of speech [35]. Prosodic continuous speech features such as pitch and energy
convey much content of emotions in speech [57] and are important for delivering the emotional cues of
the speakers. These features include formant, timing and articulation features and they characterize the
perceptual properties of speech typically used by human beings to perform different speech tasks [57].

The present authors have included three important prosodic features of energy, fundamental
frequency and ZCR. Signal energy models the voice intensity, volume or loudness and reflects the
pause and ascent of the voice signal. It is often associated with the human respiratory system and
is one of the most important characteristics of human aural perception. The logarithm function is
often used to reflect minor changes of energy because the energy of an audio signal is influenced by
the recording conditions. Fundamental frequency provides tonal plus rhythmic characteristics of a
speech and carries useful information about the speaker. ZCR determines the information about the
number of times a signal waveform crosses the zero amplitude line because of a transition from a
positive/negative value to a negative/positive value in a given time. It is suitable for detecting voice
activity, end point, voiced sound segment, unvoiced sound segment, silent segment and approximating
the measure of noisiness in speech [58]. ZCR is an acoustic feature that has been classified as a prosodic
feature [49,59,60]. In particular, energy and pitch were declared prosody features with a low frequency
domain while ZCR and formants are high frequency features [60].

3.2.2. Spectral Features

Spectral features of this study include timbral features that have been successful in music
recognition [61]. Timbral features define the quality of a sound [62] and they are a complete opposite
of most general features like pitch and intensity. It has been revealed that a strong relationship exists
between voice quality and emotional content in a speech [58]. Siedenburg et al. [63] considered spectral
features as significant in distinguishing between classes of speech and music. They claimed that
the temporal evolution of the spectrum of audio signals mainly accounts for the timbral perception.
Timbral features of a sound help in differentiating between sounds that have the same pitch and
loudness and they assist in the classification of audio samples with similar timbral features into unique
classes [61]. The application of spectral timbral features like spectral centroid, spectral roll-off point,
spectral flux, time domain zero crossings and root mean squared energy amongst others has been
demonstrated for speech analysis [64].
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The authors have included eight spectral features of MFCC, spectral roll-off point, spectral
flux, spectral centroid, spectral compactness, fast Fourier transforms, spectral variability and LPCC.
MFCC is one of the most widely used feature extraction methods for speech analysis because of its
computational simplicity, superior ability of distinction and high robustness to noise [42]. It has been
successfully applied to discriminate phonemes and can determine what is said and how it is said [35].
The method is based on the human hearing system that provides a natural and real reference for speech
recognition [46]. In addition, it is based on the sense that human ears perceive sound waves of different
frequencies in a non-linear mode [42]. Spectral roll-off point defines a frequency below which at least
85% of the total spectral energy are present and provides a measure of spectral shape [65]. Spectral flux
characterizes the dynamic variation of spectral information, is related to perception of music rhythm
and it captures spectrum difference between two adjacent frames [66].

Spectral centroid describes the center of gravity of the magnitude spectrum of short-time Fourier
transform (STFT). It is a spectral moment that is helpful in modeling sharpness or brightness of
sound [67]. Spectral compactness is obtained by comparing the components in the magnitude spectrum
of a frame and magnitude spectrum of neighboring frames [68]. Fast Fourier transform (FFT) is a
useful method of analyzing the frequency spectrum of a speech signal and features based on the FTT
algorithm have the strongest frequency component in Hertz [69,70]. Spectral variability is a measure
of variance of the magnitude spectrum of a signal and is attributed to different sources, including
phonetic content, speaker, channel, coarticulation and context [71]. Spectral compactness is an audio
feature that measures the noisiness of a speech signal and is closely related to the spectral smoothness
of speech signal [72]. LPCCs are spectral features obtained from the envelope of LPC and are computed
from sample points of a speech waveform. They have low vulnerability to noise, yielded a lower
error rate in comparison to LPC features and can discriminate between different emotions [73]. LPCC
features are robust, but they are not based on an auditory perceptual frequency scale like MFCC [74].

3.3. Feature Selection

Feature selection is a process of filtering insignificant features to create a subset of the most
discriminating features in the input data. It reduces the cause of dimensionality and improves the
success of a recognition algorithm. Based on the literature review, we observed that most methods
used for feature selection are computationally expensive because of the enormous processing time
involved. Moreover, accuracy and precision values of some of these methods are reduced because of
redundancy, less discriminating features and poor accuracy values in certain emotions such as the fear
emotion. The authors have selected 133 MFCC spectral features for the MFCC1 and 90 features based
on MFCC, ZCR, energy and fundamental frequency for the MFCC2. In a nutshell, the effectiveness of
the HAF was tested against one homogenous set of acoustic features (MFCC1) and another hybrid set
of acoustic features (MFCC2).

Table 2 presents the list of prosodic and spectral features of this study in terms of group, type and
number of features with their statistical characteristics obtained with the aid of jAudio that generated a
csv file with numerical values for each feature together with the respective emotion class. The literature
inspired brute force approach was then explored to select non-redundant features that are likely to help
improve emotion recognition performance. This implies inspecting through a series of experiments
for possible combinations of features to discover the right features that define HAF. This approach is
although laborious to require the help of a stochastic optimization technique, it has yielded excellent
performance results in this study.
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Table 2. List of the selected prosodic and spectral features.

Group Type Number

Prosodic

Energy Logarithm of Energy 10

Pitch Fundamental Frequency 70

Times Zero Crossing Rate 24

Spectral

Cepstral MFCC 133

Shape Spectral Roll-off Point 12

Amplitude Spectral Flux 12

Moment Spectral Centroid 22

Audio Spectral Compactness 10

Frequency Fast Fourier Transform 9

Signature Spectral Variability 21

Envelope LPCC 81

Total 404

3.4. Classification

Emotion classification is aimed at obtaining an emotional state for the input feature vector using a
machine learning algorithm. In this study, classification experiments were conducted using ensemble
learning algorithms to verify the effectiveness of the proposed HAF. Ensemble learning is considered a
state-of-the-art approach for solving different machine learning problems by combining the predictions
of multiple base learners [75]. It improves the overall predictive performance, decreases the risk of
obtaining a local minimum and provides a better fit to the data space by combining the predictions of
several weak learners into a strong learning algorithm. In this study, we applied bagging and boosting
machine learning because they are widely used effective approaches for constructing ensemble learning
algorithms [76–79]. Bagging is a technique that utilizes bootstrap sampling to reduce the variance of a
decision tree and improve the accuracy of a learning algorithm by creating a collection of learning
algorithms that are learned in parallel [79–81]. It performs random sampling with replacement over a
simple averaging of all the predictions from different decision trees to give a more robust result than a
single decision tree. Boosting creates a collection of learning algorithms that are learned sequentially
with early learners to fit decision trees to the data and analyze data for errors. It performs random
sampling with replacement over a weighted average and reduces classification bias and variance of a
decision tree [79]. One of the bagging ensemble algorithms investigated in this study was random
decision forest (RDF), which is an extension over bagging that is popularly called random forest [75,82].
RDF can be constituted by making use of bagging based on the CART approach to raise trees [83]. The
other bagging ensemble learning algorithms investigated in this study were Bagging with SVM as the
base learner (BSVM) and bagging with the multilayer perceptron neural network as the base learner
(BMLP). The boosting ensemble algorithms investigated in this study were the gradient boosting
machine (GBM), which extends boosting by combining the gradient descent optimization algorithm
with boosting technique [75,82,84], and AdaBoost with CART as the base learner (ABC), which is one
of the most widely used boosting algorithm to reduce sensitivity to class label noise [79,85]. AdaBoost
is an iterative learning algorithm for constructing a strong classifier by enhancing weak classification
algorithms and it can improve data classification ability by reducing both bias and variance through
continuous learning [81].

The standard metrics of accuracy, precision, recall and F1-score have been engaged to measure
the performances of the learning algorithms with respect to a particular set of features. The accuracy
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of a classification algorithm is often judged as one of the most intuitive performance measures. It is
the ratio of the number of instances correctly recognized to the total number of instances. Precision
is the ratio of the number of positive instances correctly recognized to the total number of positive
instances. Recall is the ratio of the number of positive instances correctly recognized to the number
of all the instances of the actual class [86]. F1-score constitutes a harmonic mean of precision and
recall [87]. Moreover, the training times of the learning algorithms are also compared to analyze the
computational complexities of training different ensemble learning classifiers. The flow chart for
different configurations of the methods of experimentation is illustrated in Figure 3.

 
Figure 3. Flowchart for different configurations of emotion recognition methods.

4. Results and Discussion

The present authors have extracted the set of 404 HAFs from RAVDESS and SAVEE experimental
databases. The features were used to train five famous ensemble learning algorithms in order to
determine their effectiveness using four standard performance metrics. The performance metrics were
selected because the experimental databases were not equally distributed. Data were subjected to 10
fold cross-validation and divided into training and testing groups as the norm permits. Gaussian noise
was added to the training data to provide a regularizing effect, reduce overfitting, increase resilience
and improve generalization performance of the ensemble learning algorithms.

Table 3 shows the result of the CPU computational time of training an individual ensemble
learning algorithm with three different sets of features across two experimental databases. The
training time analysis shows that RDF spent the least amount of training time when compared to
other ensemble learning algorithms. The least training time was recorded with respect to MFCC1
and MFCC2 irrespective of databases. However, the training time of RDF (0.43) was slightly higher
than that of BSVM (0.39) with respect to SAVEE HAF, but it claimed superiority with respect to the
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RAVDESS HAF. The reason for this inconsistent result might be because of the smaller data size (480)
of SAVEE when compared to the size (1432) of RAVDESS. The experimental results of a study that
was aimed at fully assessing the predictive performances of SVM and SVM ensembles over small
and large scale datasets of breast cancer show that SVM ensemble based on BSVM method can be
the better choice for a small scale dataset [78]. Moreover, it can be observed that GBM and BMLP
were generally time consuming when compared to the other ensemble learning algorithms because
they took 1172.3 milliseconds to fit MFCC2 RAVDESS and 1319.39 milliseconds to fit MFCC2 SAVEE
features respectively.

Table 3. Processing time of learning algorithms trained with Mel-frequency cepstral coefficient 1
(MFCC1), Mel-frequency cepstral coefficient 2 (MFCC2) and a hybrid acoustic feature (HAF).

SAVEE Feature RAVDESS Feature

Classifier MFCC1 MFCC2 HAF MFCC1 MFCC2 HAF

RDF 0.03 0.38 0.43 0.052 1.62 0.06

GBM 2.30 579.40 343.10 5.90 1172.30 6.90

ABC 0.47 22.16 1.38 2.59 2.79 1.89

BSVM 0.20 49.79 0.39 0.42 211.54 0.48

BMLP 3.13 1319.39 952.46 76.00 231.16 7.18

The experimental results of the overall recognition performance obtained are given in Table 4.
The percentage average recognition performance rates differ depending on critical factors such as the
type of database, the accent of the speakers, the way data were collected, the type of features and
the learning algorithm used. In particular, RDF consistently recorded the highest average accuracy,
while BMLP consistently recorded the lowest average accuracy across the sets of features, irrespective
of databases. These results indicate that RDF gave the highest performance because the computed
values of the precision, recall, F1-score and accuracy of the ensemble learning algorithm are generally
impressive when compared to other ensemble learning algorithms. However, average recognition
accuracies of 61.5% and 66.7% obtained by RDF for the SAVEE MFCC1 and MFCC2 were respectively
low, but the values were better than that of BMLP (55.4% and 60.7%) for SAVEE MFCC1 and MFCC2
respectively. In general, an improvement can be observed when a combination of features (MFCC2)
was used in an experiment drawing inspiration from the work done in [46], where MFCC features were
combined with pitch and ZCR features. In addition, we borrowed the same line of thought from Sarker
and Alam [3] and Bhaskar et al. [28] where some of the above mentioned features were combined to
form hybrid features.
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Table 4. Percentage average precision, recall, F1-score and accuracy with confidence intervals of
learning algorithms trained with MFCC1, MFCC2 and HAF.

SAVEE Feature RAVDESS Feature

Classifier/Measure MFCC1 MFCC2 HAF MFCC1 MFCC2 HAF

RDF

Precision 63.4 (±0.044) 78.1 (±0.037) 99.1(±0.009) 90.1 (±0.016) 93.1 (±0.013) 99.6 (±0.003)

Recall 72.1 (±0.041) 77.4 (±0.038) 99.1(±0.009) 88.9 (±0.016) 94.0 (±0.012) 99.5 (±0.004)

F1-score 63.6 (±0.043) 76.6 (±0.039) 99.1(±0.009) 88.5 (±0.017) 92.5 (±0.014) 99.8 (±0.002)

Accuracy 61.5 (±0.044) 66.7 (±0.043) 99.3 (±0.008) 90.7 (±0.015) 93.7 (±0.013) 99.8 (±0.002)

GBM

Precision 64.0 (±0.043) 75.6 (±0.039) 99.4 (±0.007) 85.0 (±0.019) 86.5 (±0.018) 95.3(±0.011)

Recall 66.6 (±0.043) 74.6 (±0.039) 99.1 (±0.009) 82.9 (±0.020) 88.1 (±0.017) 94.8(±0.012)

F1-score 62.6 (±0.044) 72.7 (±0.040) 99.3 (±0.008) 82.6 (±0.020) 85.9 (±0.018) 96.8(±0.009)

Accuracy 61.5 (±0.044) 65.5 (±0.043) 99.3 (±0.008) 85.4(±0.018) 86.7(±0.018) 92.6(±0.014)

ABC

Precision 62.9 (±0.044) 73.4 (±0.040) 99.1 (±0.009) 81.3 (±0.020) 85.4 (±0.018) 94.3(±0.012)

Recall 64.1 (±0.044) 73.7 (±0.040) 99.4 (±0.007) 84.0 (±0.019) 87.5 (±0.017) 94.5(±0.012)

F1-score 63.1 (±0.044) 74.1 (±0.040) 97.9 (±0.013) 82.6 (±0.020) 84.5 (±0.019) 95.9(±0.010)

Accuracy 58.0 (±0.044) 62.8 (±0.043) 98.0 (±0.008) 83.0 (±0.020) 85.2 (±0.018) 92.0 (±0.014)

BSVM

Precision 61.4 (±0.044) 71.4 (±0.041) 98.7 (±0.010) 81.0 (±0.020) 84.1 (±0.019) 91.1(±0.015)

Recall 61.0 (±0.044) 72.6 (±0.041) 99.0 (±0.009) 82.5 (±0.020) 82.3(±0.020) 92.0(±0.014)

F1-score 61.9 (±0.044) 72.0 (±0.041) 99.3 (±0.008) 80.5 (±0.021) 83.5 (±0.019) 90.3(±0.015)

Accuracy 56.0 (±0.045) 61.5 (±0.044) 96.0 (±0.013) 82.7 (±0.020) 84.5 (±0.019) 91.8 (±0.014)

BMLP

Precision 59.4 (±0.044) 69.0 (±0.042) 97.9 (±0.013) 78.8 (±0.021) 77.5 (±0.022) 93.0 (±0.013)

Recall 60.1 (±0.044) 72.0 (±0.041) 98.4 (±0.011) 75.8 (±0.022) 80.3 (±0.021) 88.0(±0.017)

F1-score 59.6 (±0.044) 70.3 (±0.041) 98.1 (±0.012) 74.4(±0.023) 78.3 (±0.021) 89.0 (±0.016)

Accuracy 55.4 (±0.045) 60.7 (±0.044) 94.6 (±0.002) 75.6 (±0.022) 79.3 (±0.021) 91.3 (±0.015)

The results in Table 4 can be used to demonstrate the effectiveness of the proposed HAF. The
values of the precision, recall, F1-score and accuracy performance measures can be seen to be generally
high for the five ensemble learning algorithms using the HAF irrespective of databases. Specifically,
RDF and GBM concomitantly recorded the highest accuracy of 99.3% for the SAVEE HAF, but RDF
claims superiority with 99.8% accuracy when compared to the 92.6% accuracy for the HAF RAVDESS.
Consequently, the results of RDF learning of the proposed HAF were exceptionally inspiring with
an average accuracy of 99.55% across the two databases. The ranking of the investigated ensemble
learning algorithms in terms of percentage average accuracy computed for HAF across the databases
is RDF (99.55%), GBM (95.95%), ABC (95.00%), BSVM (93.90%) and BMLP (92.95%). It can be inferred
that application of ensemble learning of HAF is highly promising for recognizing emotions in human
speech. In general, high accuracy values computed by all learning algorithms across databases indicate
the effectiveness of the proposed HAF for speech emotion recognition. Moreover, the confidence
factors show that the true classification accuracies of all the ensemble learning algorithms investigated
lie in the range between 0.002% and 0.045% across all the corpora. The results in Table 4 show that
HAF significantly improved the performance of emotion recognition when compared to the methods
of the SAVEE MFCC related features [42] and RAVDESS wavelet transform features [49] that recorded
the highest recognition accuracies of 76.40% and 60.10% respectively.
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In particular, the results of precision, recall, F1-score and accuracy per each emotion, learning
algorithm and database were subsequently discussed. Table 5 shows that angry, calm and disgust
emotions were easier to recognize using RDF and GBM ensemble learning of RAVDESS MFCC1
features. The results were particularly impressive with RDF ensemble learning with perfect precision,
recall and F1-score computed by the algorithm, which also recorded highest accuracy values across all
emotions. However, BMLP generally gave the least performing result across all emotions. RAVDESS
MFCC1 features achieved a precision rate of 92.0% for the fear emotion using RDF ensemble learning,
which is relatively high when compared to the results in [27].

Table 5. Percentage precision, recall and F1-score and accuracy on RAVDESS MFCC1.

Emotion

Classifier/Measure Angry Calm Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 100.0 100.0 100.0 92.0 80.0 53.0 87.0 96.0

Recall 100.0 100.0 100.0 83.0 82.0 86.0 79.0 91.0

F1-score 100.0 100.0 100.0 87.0 81.0 66.0 83.0 94.0

Accuracy 91.0 90.0 91.0 89.0 91.0 89.0 91.0 93.0

GBM

Precision 94.0 100.0 100.0 87.0 69.0 39.0 87.0 85.0

Recall 100.0 100.0 100.0 74.0 69.0 78.0 72.0 87.0

F1-score 97.0 100.0 100.0 80.0 69.0 52.0 79.0 86.0

Accuracy 86.0 85.2 87.0 81.0 83.0 85.0 86.0 90.0

ABC

Precision 91.0 82.0 78.0 79.0 81.0 79.0 81.0 81.0

Recall 100.0 100.0 100.0 81.0 56.0 85.0 71.0 82.0

F1-score 95.0 100.0 91.0 65.0 69.0 70.0 81.0 79.0

Accuracy 85.0 84.0 85.0 75.0 81.0 79.0 87.0 88.0

BSVM

Precision 83.0 84.0 82.0 75.0 75.0 77.0 79.0 89.0

Recall 82.0 83.0 91.0 73.0 79.0 81.0 84.0 87.0

F1-score 81.0 82.0 79.0 79.0 81.0 79.0 82.0 84.0

Accuracy 83.0 85.0 81.0 79.0 80.6 81.0 86.0 86.0

BMLP

Precision 72.0 81.0 78.0 68.0 70.0 70.0 75.0 81.0

Recall 78.0 84.0 82.0 70.0 76.0 79.0 78.0 83.0

F1-score 74.0 82.0 80.0 67.0 71.0 75.0 77.0 80.0

Accuracy 80.0 77.0 76.0 71.0 74.0 75.0 75.0 77.0

Table 6 shows the results of percentage precision, recall, F1-score and accuracy performance
analysis of RAVDESS MFCC2 features. The performance values were generally higher for recognizing
angry, calm and disgust emotions using RDF. However, the performance values were relatively low for
happy and neutral emotions showing that the hybridization of MFCC, ZCR, energy and fundamental
frequency features yielded a relatively poor result in recognizing happy and neutral emotions using
ensemble learning. The MFCC2 combination of acoustic features achieved an improved recognition
performance of the fear (90.0%) emotion using RDF in comparison with the report in [44], where 81.0%
recognition was achieved for the fear emotion using the CASIA database.
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Table 6. Percentage precision, recall and F1-score and accuracy on RAVDESS MFCC2.

Emotion

Classifier/Measure Angry Calm Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 100.0 100.0 100.0 91.0 95.0 64.0 90.0 100.0

Recall 100.0 100.0 100.0 89.0 78.0 100.0 90.0 95.0

F1-score 100.0 100.0 100.0 93.0 86.0 78.0 90.0 98.0

Accuracy 96.0 93.0 92.0 90.0 94.0 91.0 96.0 97.6

GBM

Precision 100.0 100.0 100.0 87.0 79.0 55.0 80.0 86.0

Recall 100.0 100.0 100.0 87.0 75.0 86.0 67.0 90.0

F1-score 100.0 100.0 100.0 87.0 77.0 67.0 73.0 88.0

Accuracy 88.0 84.0 83.0 82.0 85.0 85.0 88.0 98.6

ABC

Precision 94.0 93.0 91.0 78.0 71.0 79.0 81.0 89.0

Recall 96.0 100.0 100.0 86.0 76.0 73.0 83.0 86.0

F1-score 92.0 95.0 100.0 79.0 74.0 76.0 81.0 86.0

Accuracy 86.0 82.0 83.0 81.0 87.0 82.0 88.0 92.6

BSVM

Precision 81.0 94.0 91.0 77.0 74.0 79.0 78.0 94.0

Recall 92.0 89.0 90.0 76.0 74.0 77.0 74.0 90.0

F1-score 94.0 91.0 91.0 77.0 74.0 78.0 76.0 92.0

Accuracy 84.0 81.0 80.0 78.0 85.0 85.0 87.0 96.0

BMLP

Precision 76.0 89.0 86.0 72.0 70.0 76.0 74.0 83.0

Recall 75.0 86.0 86.0 74.0 67.0 75.0 72.0 85.0

F1-score 77.0 91.0 87.0 74.0 73.0 76.0 74.0 90.0

Accuracy 85.0 81.0 78.0 73.0 78.0 77.0 78.0 84.0

Emotion recognition results shown in Table 7 with respect to the RAVDESS HAF were generally
impressive across emotions, irrespective of the ensemble learning algorithms utilized. RDF was highly
effective in recognizing all the eight emotions because it had achieved perfect accuracy value by 100.0%
on almost all the emotions, except fear (98.0%). Moreover, perfect precision and accuracy values were
achieved in recognizing the neutral emotion, which was really difficult to identify using other sets of
features. In addition, 98.0% accuracy and perfect values obtained for precision, recall and F1-score for
the fear emotion is impressive because of the difficulty of recognizing the fear emotion as reported
in the literature [25–27]. All the other learning algorithms performed relatively well, considering the
fact that noise was added to the training data. These results attest to the effectiveness of the proposed
HAF for recognizing emotions in human speech. In addition, the results point to the significance of
sourcing highly discriminating features for recognizing human emotions. They further show that the
fear emotion could be recognized efficiently when compared to other techniques used in [44]. It can
be seen that the recognition of fear emotion was successfully improved using the proposed HAF. In
addition, HAF gave better performance than the bottleneck features used for six emotions from CASIA
database [27] that achieved a recognition rate of 60.5% for the fear emotion.
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Table 7. Percentage precision, recall and F1-score and accuracy on RAVDESS HAF.

Emotion

Classifier/Measure Angry Calm Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 98.0

Recall 100.0 100.0 100.0 100.0 100.0 96.0 100.0 100.0

F1-score 100.0 100.0 100.0 100.0 100.0 98.0 100.0 99.0

Accuracy 100.0 100.0 100.0 98.0 100.0 100.0 100.0 100.0

GBM

Precision 93.0 100.0 100.0 94.0 100.0 95.0 99.0 93.0

Recall 92.0 100.0 100.0 93.0 97.0 100.0 76.0 100.0

F1-score 92.0 100.0 100.0 93.0 98.0 97.0 86.0 96.0

Accuracy 95.0 91.0 92.0 88.0 91.0 90.0 96.0 98.0

ABC

Precision 92.0 100.0 96.0 94.0 100.0 95.0 93.0 97.0

Recall 91.0 100.0 100.0 95.0 93.0 76.0 100.0 100.0

F1-score 92.0 100.0 98.0 93.0 95.0 91.0 87.0 98.0

Accuracy 93.0 90.0 92.0 86.0 93.0 91.0 95.0 96.0

BSVM

Precision 91.0 100.0 99.0 92.0 89.0 74.0 83.0 94.0

Recall 91.0 100.0 100.0 90.0 86.0 85.0 86.0 98.0

F1-score 93.0 100.0 100.0 91.0 86.0 77.0 87.0 95.0

Accuracy 93.0 93.0 92.0 86.0 90.0 91.0 93.0 96.0

BMLP

Precision 92.0 100.0 93.0 90.0 88.0 73.0 81.0 91.0

Recall 91.0 100.0 97.0 93.0 88.0 86.0 88.0 97.0

F1-score 90.0 100.0 91.0 88.0 83.0 75.0 84.0 91.0

Accuracy 92.0 91.0 93.0 89.0 91.0 88.0 92.0 94.0

Table 8 shows the results of percentage precision, recall, F1-score and accuracy analysis of SAVEE
MFCC1 features. In the results, the maximum percentage precision F1-score of the neutral emotion
had achieved 94.0% using the RDF ensemble algorithm. This F1-score was quite high when compared
to the F1-score obtained from RAVDESS database using the same features. The percentage increase in
overall precision of neutral emotion was observed to be 133.33%, 77.36%, 18.57%, 12.66% and 10.39%
using GBM, RDF, BMLP, ABC and BSVM respectively. Moreover, RDF and GBM algorithms achieved
perfect prediction (100.0%) for recognizing the surprise emotion. The results show that MFCC features
still achieved low recognition rates for the fear emotion as reported by other authors [25]. However,
RDF (94.0%) and GBM (91.0%) show higher precision rates for the neutral emotion, which is higher
than what was reported in [11].
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Table 8. Percentage precision, recall and F1-score and accuracy on SAVEE MFCC1.

Emotion

Classifier/Measure Angry Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 65.0 24.0 65.0 48.0 94.0 48.0 100.0

Recall 65.0 83.0 57.0 65.0 52.0 83.0 100.0

F1-score 65.0 37.0 60.0 55.0 67.0 61.0 100.0

Accuracy 69.0 66.0 60.0 75.0 64.0 77.0 81.0

GBM

Precision 65.0 29.0 75.0 26.0 91.0 62.0 100.0

Recall 62.0 67.0 48.0 55.0 62.0 72.0 100.0

F1-score 63.0 40.0 59.0 35.0 74.0 67.0 100.0

Accuracy 70.0 66.0 57.0 74.0 62.0 79.0 84.0

ABC

Precision 66.0 28.0 64.0 36.0 89.0 59.0 98.0

Recall 68.0 29.0 62.0 40.0 91.0 59.0 100.0

F1-score 65.0 28.0 63.0 38.0 91.0 58.0 99.0

Accuracy 60.0 57.0 53.0 66.0 62.0 79.0 83.0

BSVM

Precision 65.0 23.0 61.0 41.0 85.0 57.0 98.0

Recall 64.0 26.0 57.0 38.0 81.0 61.0 100.0

F1-score 66.0 29.0 62.0 36.0 83.0 58.0 99.0

Accuracy 56.0 54.0 51.0 69.0 56.0 77.0 85.0

BMLP

Precision 64.0 23.0 59.0 38.0 83.0 54.0 95.0

Recall 63.0 25.0 55.0 39.0 85.0 57.0 97.0

F1-score 64.0 25.0 59.0 37.0 81.0 55.0 96.0

Accuracy 52.0 50.0 49.0 51.0 53.0 64.0 69.0

Table 9 shows the analysis results of the percentage precision, recall, F1-score and accuracy
obtained after performing the classification with SAVEE MFCC2 features. It can be observed from
the table that all the learning algorithms performed well for recognizing the surprise emotion, but
performed poorly in recognizing other emotions. In general, all learning algorithms achieved a low
prediction of emotions with the exception of surprise emotion in which the perfect F1-score was
obtained using the RDF algorithm. The lowest precision value of 93.0% was achieved for the surprise
emotion using MFCC2 features with BMLP. These results indicate the unsuitability of MFCC, ZCR,
energy and fundamental frequency features for recognizing human emotions. However, RDF and
GBM gave higher recognition results for happy and sad emotions, RDF gave a higher recognition
result for fear emotion while ABC and BSVM gave higher recognition results for the sad emotion that
the traditional and bottleneck features [27].
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Table 9. Percentage precision, recall and F1-score and accuracy on SAVEE MFCC2.

Emotion

Classifier/Measure Angry Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 71.0 85.0 69.0 68.0 95.0 59.0 100.0

Recall 70.0 84.0 65.0 67.0 68.0 88.0 100.0

F1-score 71.0 84.0 68.0 68.0 74.0 71.0 100.0

Accuracy 77.0 73.0 63.0 70.0 69.0 82.0 100.0

GBM

Precision 72.0 65.0 83.0 47.0 93.0 69.0 100.0

Recall 69.0 74.0 69.0 62.0 71.0 77.0 100.0

F1-score 70.0 68.0 71.0 48.0 77.0 75.0 100.0

Accuracy 74.0 71.0 59.0 73.0 69.0 86.0 92.0

ABC

Precision 74.0 71.0 70.0 58.0 69.0 73.0 99.0

Recall 76.0 72.0 68.0 61.0 68.0 71.0 100.0

F1-score 74.0 75.0 73.0 59.0 65.0 73.0 100.0

Accuracy 71.0 67.0 56.0 69.0 69.0 71.0 99.0

BSVM

Precision 71.0 68.0 66.0 59.0 67.0 71.0 98.0

Recall 72.0 72.0 64.0 61.0 64.0 75.0 100.0

F1-score 70.0 70.0 66.0 60.0 65.0 73.0 100.0

Accuracy 71.0 62.0 51.0 67.0 68.0 73.0 100.0

BMLP

Precision 70.0 66.0 64.0 57.0 66.0 67.0 93.0

Recall 72.0 70.0 66.0 59.0 68.0 72.0 97.0

F1-score 71.0 68.0 64.0 59.0 65.0 69.0 96.0

Accuracy 56.0 52.0 49.0 65.0 54.0 64.0 85.0

Table 10 shows the analysis results of the percentage precision, recall, F1-score and accuracy
obtained after performing classification with SAVEE HAF. Accordingly, all the emotions were much
easier to recognize using the HAF that had tremendously improved the recognition of the fear emotion
reported in the literature to be difficult with lower performance results recorded with traditional and
bottleneck features for fear emotion [27]. Moreover, Kerkeni et al. [11] obtained a recognition accuracy
rate of 76.16% for the fear emotion using MFCC and MS features based on the Spanish database of
seven emotions. These results show that using HAF with ensemble learning is highly promising for
recognizing emotions in human speech. The study findings were consistent with the literature that
ensemble learning gives a better predictive performance through the fusion of information knowledge
of predictions of multiple inducers [75,85]. The ability of ensemble learning algorithms to mimic the
nature of human by seeking opinions from several inducers for informed decision distinguish them
from inducers [73]. Moreover, it can be seen across Tables 4–10 that the set of HAF presented the
most effective acoustic features for speech emotion recognition, while the set MFCC1 presented the
worst features. In addition, the study results supported the hypothesis that a combination of acoustic
features based on prosodic and spectral reflects the important characteristics of speech [42,53,54].
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Table 10. Percentage precision, recall and F1-score and accuracy on SAVEE HAF.

Emotion

Classifier/Measure Angry Disgust Fear Happy Neutral Sad Surprise

RDF

Precision 100.0 100.0 94.0 100.0 100.0 100.0 100.0

Recall 100.0 94.0 100.0 100.0 100.0 100.0 100.0

F1-score 100.0 100.0 100.0 100.0 100.0 97.0 97.0

Accuracy 100.0 99.0 97.0 100.0 99.1 100.0 100.0

GBM

Precision 100.0 96.0 100.0 100.0 100.0 100.0 100.0

Recall 100.0 100.0 94.0 100.0 100.0 100.0 100.0

F1-score 100.0 98.0 97.0 100.0 100.0 100.0 100.0

Accuracy 100.0 98.1 99.0 100.0 100.0 100.0 100.0

ABC

Precision 100.0 94.0 100.0 100.0 100.0 100.0 100.0

Recall 100.0 100.0 96.0 100.0 100.0 100.0 100.0

F1-score 100.0 94.0 91.0 100.0 100.0 100.0 100.0

Accuracy 100.0 99.0 99.0 100.0 100.0 100.0 100.0

BSVM

Precision 100.0 93.0 99.0 99.0 100.0 100.0 100.0

Recall 100.0 96.0 98.0 99.0 100.0 100.0 100.0

F1-score 100.0 96.0 99.0 100.0 100.0 100.0 100.0

Accuracy 100.0 94.0 96.0 96.0 100.0 100.0 100.0

BMLP

Precision 100.0 90.0 98.0 97.0 100.0 100.0 100.0

Recall 100.0 93.0 97.0 99.0 100.0 100.0 100.0

F1-score 100.0 91.0 98.0 98.0 100.0 100.0 100.0

Accuracy 100.0 93.0 95.0 99.0 100.0 100.0 100.0

Tables 4–10 show that HAF features had a higher discriminating power because higher performance
results were achieved across all emotion classes in the SAVEE and RAVDESS corpora. The performance
of each ensemble learning algorithm was generally low when MFCC1 and MFCC2 were applied
because the sets of the features had a much lower discriminating power compared to HAF. The
recognition results across the experimental databases were different because RAVDESS had more
instances than SAVEE. Moreover, SAVEE constitutes male speakers only while RAVDESS is comprised
of both male and female speakers. According to the literature, this diversity has an impact on the
performance of emotion recognition [35]. The literature review revealed that most emotion recognition
models have not been able to recognize the fear emotion with a higher classification accuracy of 98%,
but the results in Table 4 show that HAF significantly improved the recognition performance of emotion
beyond expectation.

5. Conclusions

The automatic recognition of emotion is still an open research because human emotions are
highly influenced by quite a number of external factors. The primary contribution of this study is
the construction and validation of a set of hybrid acoustic features based on prosodic and spectral
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features for improving speech emotion recognition. The constructed acoustic features have made it
easy to effectively recognize eight classes of human emotions as seen in this paper. The agglutination
of prosodic and spectral features has been demonstrated in this study to yield excellent classification
results. The proposed set of acoustic features is highly effective in recognizing all the eight emotions
investigated in this study, including the fear emotion that has been reported in the literature to be
difficult to classify. The proposed methodology seems to work well because combining certain prosodic
and spectral features increases the overall discriminating power of the features hence increasing
classification accuracy. This superiority is further underlined by the fact that the same ensemble
learning algorithms were used on different feature sets, exposing the performance of each group of
features regarding their discriminating power. In addition, we saw that ensemble learning algorithms
generally performed well. They are widely judged to improve recognition performance better than a
single inducer by decreasing variability and reducing bias. Experimental results show that it was quite
difficult to achieve high precisions and accuracies when recognizing the neutral emotion with either
pure MFCC features or a combination of MFCC, ZCR, energy and fundamental frequency features
that were seen to be effective in recognizing the surprise emotion. However, we provided evidence
through intensive experimentation that random decision forest ensemble learning of the proposed
hybrid acoustic features was highly effective for speech emotion recognition.

The results of this study were generally fantastic, even though the Gaussian noise was added to the
training data. The gradient boosting machine algorithm yielded good results, but the main challenge
with the algorithm is that its training time is long. In terms of effectiveness, the random decision forest
algorithm is superior to the gradient boosting machine algorithm for speech emotion recognition with
the proposed acoustic features. The results obtained in this study were quite stimulating, nevertheless,
the main limitation of this study was that the experiments were done on acted speech databases in
consonance with the research culture. There can be major differences between working with acted
and real data. Moreover, there are new features such as breath and spectrogram not investigated in
this study for recognizing speech emotion. In the future, we would like to pursue this direction to
determine how the new features will compare with the proposed hybrid acoustic features. In addition,
future research will harvest real emotion data for emotion recognition using the Huawei OceanConnect
cloud based IoT platform and Narrow Band IoT resources in South Africa Luban workshop at the
institution of the authors, which is a partnership project with the Tianjin Vocational Institute in China.
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Abstract: Sentiment analysis usually refers to the analysis of human-generated content via a polarity
filter. Affective computing deals with the exact emotions conveyed through information. Emotional
information most frequently cannot be accurately described by a single emotion class. Multilabel
classifiers can categorize human-generated content in multiple emotional classes. Ensemble learning
can improve the statistical, computational and representation aspects of such classifiers. We present
a baseline stacked ensemble and propose a weighted ensemble. Our proposed weighted ensemble
can use multiple classifiers to improve classification results without hyperparameter tuning or
data overfitting. We evaluate our ensemble models with two datasets. The first dataset is from
Semeval2018-Task 1 and contains almost 7000 Tweets, labeled with 11 sentiment classes. The second
dataset is the Toxic Comment Dataset with more than 150,000 comments, labeled with six different
levels of abuse or harassment. Our results suggest that ensemble learning improves classification
results by 1.5% to 5.4%.

Keywords: ensemble learning; sentiment analysis; multilabel classification; deep neural networks;
pure emotion; Semeval 2018 Task 1; toxic comment classification

1. Introduction

Sentiment analysis is the process by which we uncover sentiment from information. The sentiment
part could refer to polarity [? ], fine grained or not [? ], or to pure emotion information [? ? ? ].
The most common source of information for sentiment analysis is Online Social Networks (OSNs) [? ?

]. User-generated content provides a unique combination of complexity and challenge for automated
sentiment classification.

Automated classification refers to methods that can identify and classify information based on
an inference process. Machine Learning (ML) studies these types of methods and can be generally
separated in three parts: Modeling, Learning, and Classification. Given a classification task, a ML
method has to create a model of the data, learn based on a set of pre-classified examples and perform a
classification, as required by the task. Ensemble learning refers to the combination of finite number of
ML systems to improve the classification results [? ].

Various ML systems exist, most frequently characterized by the model and the training methods
they employ. Artificial Neural Networks (ANNs) are one type of ML systems [? ]. These networks
have three layers: input, hidden, and output. In the input layer, data is initially fed into a model.
The model parameters are then (re)calculated in the hidden layer, and data is classified in the output
layer. Each layer consists of a set of nodes or artificial neurons which are connected to the next layer.
When an ANN consists of multiple hidden layers, it is referred to as a Deep Neural Network (DNN) [?
].
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DNNs have been widely used in computer vision problems [? ? ? ], where the goal of the
classification is to identify or detect objects/items/features in an image. When the goal of the
classification is to detect multiple objects in an image then the task is considered multilabel. These types
of problems can be extended from computer vision to text analysis. In emotion related classification,
a textual input can convey one or multiple emotions.

Traditional sentiment analysis is focused on a confined polarity or single emotion basis. Our main
goal is to present the effectiveness of ensemble learning in text-based multilabel classification.
In addition, we aim to trigger the researcher interest for considering multilabel emotion classification
as a significant aspect regarding sentiment analysis.

Our contributions are as follows. We create and present five multilabel classification architectures
and two ensembles, as well as a baseline stacked ensemble and a weighted ensemble that assigns
weights based on differential evolution. Then, we highlight the effectiveness of ensemble learning
in modern multilabel emotion datasets. Our results show that ensemble learning can be more
effective than single DNN networks in multilabel emotion classification. In addition, we also
incorporate a high-level description of the most commonly used hidden layers to introduce readers to
deep-learning architectures.

The remainder of our work is formatted as described. Section ?? covers some introductory
bibliography alongside state-of-the-art ensemble publications. Section ?? presents in detail our diverse
DNN architectures and their individual components. Section ?? describes the ensemble methods we
employed as well as some key sub-components. Section ?? presents the datasets we used and some of
their properties. Section ?? details our results and potential improvements. Section ?? concludes our
study with the summary and future work direction.

2. Related Work

Sentiment analysis is extensively studied since the early 2000s [? ? ]. With the advent of internet,
OSNs soon became the most used source for sentiment analysis [? ? ]. Some of the applications of
sentiment analysis are: marketing [? ], politics [? ], and more recently medicine [? ? ]. Affective
computing, as suggested by Picard [? ], has sparked the interest in the specific emotion analysis of
texts [? ? ].

Machine learning has been successfully applied to sentiment analysis of texts [? ? ? ]. ML methods
that have been used for sentiment analysis are: Support Vector Machines [? ? ], Multinomial Naïve
Bayes [? ] and Decision Trees [? ], while DNNs were introduced more recently [? ? ].

DNNs can be used in text related applications as well. In [? ] Severyn and Moschitti rerank short
texts in pairs and present the per pair relation without manual feature engineering. Lai et al. [? ] perform
unsupervised text classification and highlight key text components in the process via a recurrent convolutional
neural network. The authors of [? ] perform a named entity recognition task and generate relevant word
embedding with two separate DNNs. Text generation is addressed via a recurrent neural network in [? ] and
an extensively trained model outperforms the best non-NN models. Sentiment classification of textual sources
had its own fair share of DNN implementations [? ? ? ].

Learning ensembles have been used to combine different types of information, such as audio
video and text towards sentiment and emotional classification [? ]. Araque et al. use an ensemble of
classifiers that combines features and word vectors [? ] for sentiment classification with greater than
80% F-Score. A soft voting ensemble is used in [? ] for topic-document and document classification the
results suggesting a significant improvement over single-model methods. The authors of [? ] use a
stacked two-layer ensemble of CNN to predict the message level sentiment of Tweets, with the addition
of a distant supervision phase. A pseudo-ensemble, essentially an ensemble of similar models trained
on noisy sub-data, is used for sentiment analysis purposes in [? ], but is ineffective for regression
classification problems.

Multilabel classification problems assign multiple classes per item. Such problems are frequently
observed in the field of computer vision [? ? ? ]. With regards to multilabel text-based sentiment
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analysis, Chen et al. [? ] propose an ensemble of a convolution neural network and a recurrent neural
network for feature extraction and class prediction correspondingly. The authors of [? ] propose a
Maximum Entropy model for multilabel classification of short texts found in OSNs. Furthermore, they
present an emotion per term lexicon as generated by the model, based on six basic emotions. However,
they calculate a micro averaged F1 based on the top emotions per item, essentially converting each
weighted label to binary format. Johnson and Zhang [? ] present a combination of word order and bag
of words in a CNN architecture and point out the threshold sensitivity in multilabel classification.

3. DNN Architectures

We create five different DNNs, with diverse architectures, suited to a multilabel classification
problem. Model 1, Figure ??, is a simple CNN with one fully connected layer. Model 2, Figure ??,
combines a Gated Recurrent Unit and a Convolution layer, similar to [? ]. Model 3, Figure ??, uses Term
Frequency Inverse Document Frequency Embeddings and three fully connected layers, inspired by [?
]. Model 4, Figure ??, architecture is based on the top performing single model of the Toxic Comment
Classification Challenge in Kaggle https://www.kaggle.com/c/jigsaw-toxic-comment-classification-
challenge. Model 5, Figure ??, combines uni/bi/tri grams follow by three interconnected CNN
processes, as presented in [? ]. Each of the modules used in these models is presented in this section.

Figure 1. A Convolutional Neural Network.

Figure 2. A Recurrent CNN with pre-trained Embeddings.

Figure 3. A Deep Neural Network with Tf-Idf Embeddings.

Figure 4. A Long Short-Term Memory network.

Figure 5. A CNN with Uni/Bi/Trigrams consideration.
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3.1. Pre-Processing

For each dataset used, we perform a pre-processing that includes term lemmatization and
stemming, lowercase conversion, removal of non-pure text elements (such as Uniform Resource
Locators or Emotes), stop word filtering and frequency-based term exclusion. Although some
information is lost, extensive term filtering is shown to improve classification results [? ].

3.2. Tokenization

Tokenization is performed on a term level for all the five methods presented. Each term is
represented by a unique token. Further linguistic elements such as abbreviations and negations are
cleaned, returned to their canonical form, and get assigned a token. For example, commonly used
negation ‘don’t’ is tokenized to ‘do’, ‘not’.

3.3. Embedding

We assign a vector value for each token in a sentence, e.g., based on the order they appeared in
our corpus, and we create a vector of numerical values. The mapping of word tokens to numerical
values of vectors is referred to as embedding. There are various ways of creating word embeddings.
Term Frequency-Inverse Document Frequency Tokenization creates a matrix of TF-IDF features which
are used to create the embedding. Every sentence is converted to a single dimension vector of numerical
elements regardless of the tokenization method. To address variable sentence length, we define a large
vector length and we fill the numerical vector with zeroes, a process known as padding. Most common
and effective word embedding methods are created based on term co-occurrence throughout a large
corpus [? ? ].

3.4. Dropout

Neural networks are prone to overfitting. Overfitting is essentially the exhaustive training of the
model in a certain set of data, so much that the model fails to generalize. As a result, the model cannot
effectively work with new unknown data. A solution to overfitting is to train multiple models and
combine their output afterwards, which is highly inefficient.

Srivastava et al. [? ] proposed randomly dropping neural units from the network during the
training phase. Their results suggested an improvement of the regularization on diverse datasets.
Spatial dropout refers to the exact same process, performed over a single axis of elements, rather
than random neural units over each layer. Furthermore, dropout has a significant potential to reduce
overfitting and provide improvements over other regularization strategies such as L-regularization
and soft-weight sharing [? ].

3.5. LSTM and Gated Recurrent Unit

A feed-forward neural network has a unidirectional processing path, from input to hidden layer to
output. A recurrent network can have information travelling both directions by using feedback loops.
Computations derived from earlier input are fed back into the network, imitating human memory.
In essence, a recurrent neural network is a chain of identical neural networks that transfer the derived
knowledge from one to another. That chain creates learning dependencies that decay mainly due to
the size of the chained network.

Hochreiter and Schmidhuber [? ] proposed Long Short-Term Memory networks to counter that
decay. The novel unit of the LSTM architecture is the memory cell that forgets or remembers the
information passed from the previous chain link. The Gated Recurrent Unit of Model 2 was introduced
by Cho et al. [? ]. Its architecture is similar to LSTM units, but with the absence of an output gate. It is
shown that GRU networks perform well on Natural Language Processing tasks [? ].
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3.6. Convolution

The convolution layer receives as input a tensor, which is convolved and its output, the feature
map, is passed to the next layer. A tensor is a mathematical object that describes a mapping of an input
set of objects to an output set. Therefore The convolution layers in all models are one-dimensional,
with a convolution window of size 3 and an output space dimensionality of 128. The only exception
is Model 5, where the convolution windows is different for each layer to provide a differentiated
architecture. The primary focus of this layer is to extract features from the input data by preserving the
spatial relationship between terms.

3.7. Pooling and Flattening

A pooling layer allows us to reduce the dimensionality of the processed data by keeping only the
most important information. Common types of pooling are max, average and sum. The respective
operation, per pooling type, is performed in a predefined window of the feature map. A pooling layer
reduces the computational cost of the network, leads to scale invariant representations and counters
small feature map transformations. Finally, by having a reduced number of features, we decrease the
probability of overfitting. Various pooling types were used, based on the architecture. Model 1 uses a
single global max pooling layer; the global parameter is outputting the single most important feature
of the feature map instead of a feature window. Model 2 uses a combination of global max and a global
average pooling layers, while Model 4 uses the local pooling equivalents. Model 5 uses three local max
pooling layers, one for each convolution.

The flattening layer on the other hand reduces the dimensionality of the input to one. For example,
a feature map with dimensions 5 × 4 when flattened would produce a one-dimensional vector with
20 elements. The flattening layer passes the most important features of the input data to a fully
connected dense layer comprised of the classification neurons.

3.8. Dense

The dense layer is comprised by fully connected neurons both forward and backward.
Every element of the input is connected with every neuron of this layer. In four out of five models,
a dense layer can be seen at the end of the pipeline. The number of neurons in these layers is the
number of classes in our dataset. For the third model, where TF-IDF tokenization takes place, we chose
a simple DNN with 3 fully connected layer, which decreasing number of neurons for each subsequent
layer. DNNs with multiple dense fully connected layers is shown to perform better than shallow
DNNs [? ].

3.9. Classification

The output of our model is a multilabel classification vector. Each of the neurons in the final
dense layer of the models interact with the classes of the dataset and provide a decimal value (ranging
from 0 to 1) which is then rounded for each class. The number of classes defines the number of fully
connected neurons in the final dense layer.

4. Ensembles

We previously mentioned that a method to counter overfitting is to train multiple models and
then combine their outputs. Ensemble learning combines the single-model outputs to improve
predictions and generalization. Ensemble learning improves upon three key aspects of learning,
statistics, computation and representation [? ]. From a statistics perspective, ensemble methods reduce
the risk of data miss-representation, by combining multiple models we reduce the risk of employing a
single model trained with biased data. While most learning algorithms search locally for solutions
which in turn confines the optimal solution, ensemble methods can execute random seed searches with
variable start points with less computational resources. A single hypothesis rarely represents the target
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function, but an aggregation of multiple hypothesis, as found in ensembles, can better approximate
the target function.

We present two ensemble architectures, stacked and weighted [? ]. Other popular ensemble
methods include AdaBoost, Random Forest and Bagging [? ]. Stacked ensembles are the simplest yet
one of the most effective ensemble methods, widely used in a variety of applications [? ? ]. Stacked
ensemble acts as our baseline ensemble, compared with our proposed weighted ensemble based
on differential evolution, a meta-heuristic weight optimization method. Meta-heuristic weighted
ensembles have achieved remarkable results in single label text classification [? ? ].

4.1. Stacked

The main idea behind stacked ensembles is to combine a set of trained models through training
of another model (meta-model). The output predictions of the meta-model are based on the training of
the model outputs, Algorithm ??. In our implementation we fit the models output into a DNN with
two hidden dense layers, Figure ??.

Figure 6. The Stacked Ensemble Architecture.

Algorithm 1 Stacked Ensemble Pseudo-code
1: Input ← Fixed Length Input
2: Output ← Model[1,2,3,4,5] Outputs
3: SE() ← Stacked Ensemble
4: Input → SE(Output) → Class
5: return Class

The outputs of the models are merged with the concatenation function of Keras https://keras.io/.
The input of the concatenation is a fixed size output tensor of each model. The output of the
concatenation is a single tensor, which is then used as an input to the fully connected layer. A second
fully connected layer follows similar to the final dense layer on each model.

4.2. Weighted

The weighted ensemble has a similar philosophy behind it. Instead of equally merging the outputs,
we merge the outputs by co-calculating a weight. Given a set of weighted tensors and a vector-like
object, we sum the product of tensor elements over a single axis, as specified by the one-dimensional
vector, Figure ??.

Figure 7. The Weighted Ensemble Architecture.
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The ‘fitting’ process of the second ensemble is a heuristic process for the best possible weights
combination, i.e., looking for the global minimum of a multivariate function. We propose differential
evolution [? ] to scan the large space of five distinct weights, Algorithm ??.

Algorithm 2 Differential Evolution Pseudo-code
1: MF() ← Multivariate Function
2: Target ← Initialize Target Vector
3: Base = Target Vector+Random Integer
4: for number of iterations do
5: TempVector1 = Target+RandomDeviation
6: TempVector2 = Target−RandomDeviation
7: Weighted = WeightedDifference(TempVector1,TempVector2)
8: Base = Base+Weighted
9: Trial = Aggregate(Target,Base)

10: if MF(Trial) < MF(Base) then
11: Base = Trial
12: else
13: Base = Target
14: end if
15: end for
16: return Base

5. Datasets

For our comparison, we require datasets with binary multilabel categorization. We identified
two modern datasets, Semeval 2018 Task 1 Dataset (SEM2018) https://competitions.codalab.org/
competitions/17751 and Toxic Comments Dataset from Kaggle (TOXIC) https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge.

Both datasets exhibit a level of class imbalance, Figures ??a and ??a. However, they are different
not only in context, where SEM2018 is based on Twitter and TOXIC in Wikipedia, but also in the
properties of the actual text. The sentence length, after the source is cleaned, is different from the
original mainly due to the removal of infrequent terms, Table ??. We discussed before that the
dimensions of our term embeddings need to be low. We reduced the dimension by removing the terms
that appear no more than 10 times, alongside a tailored stop term removal.

Table 1. Sentence length.

Original Cleaned

Mean Median Mean Median

SEM2018 Train 16.06 17.0 8.52 9
Dev. 15.85 16 8.55 9

TOXIC Train 25.11 15 17.79 11
Dev. 16.06 17.0 10.22 6

(a) (b)

Figure 8. SEM20118 Class Distribution (a) and frequency of unique class combinations (b).

143



Algorithms 2020, 13, 83

5.1. Semeval 2018

The SEM2018 Train is a collection of 6838 Tweets with emotion labeling of 11 classes. The classes
are: anger, anticipation, disgust, fear, joy, love, optimism, pessimism, sadness, surprise and trust.
Some examples of Tweets included in SEM2018 are:

• Whatever you decide to do make sure it makes you happy.
• Nor hell a fury like a woman scorned—William Congreve
• chirp look out for them Cars coming from the Wesszzz
• Manchester derby at home revenge

The Development dataset consists of 886 Tweets with the 11 aforementioned classes and their
respective labels. The class distribution in Train dataset is skewed in favor of five emotions, anger,
disgust, joy, optimism, and sadness. The same class distribution is evident in the Development dataset,
which is dominated by the same five emotions, Figure ??a.

SEM2018 contains 329 unique class combinations. The frequency of these unique combinations
follows a power law distribution for both Train and Development datasets Figure ??b. The most
frequent class combination for Train and Development was: anger and disgust, followed by joy and
optimism. One third of the class combinations appears only once and often combine contradiction
emotions, such as joy and sadness.

5.2. Toxic Comments

The Toxic dataset consists of two datasets as well, Train and Development. Train dataset consists
of 159,571 unique comments labeled with 6 different types of toxicity: toxic, severe_toxic, obscene, threat,
insult and identity_hate. Some example of comments are:

• I don’t anonymously edit articles at all.
• Dear god this site is horrible.
• Please pay special attention on this
• Cant sing for s**t though.

The Development dataset consists of 63,978 toxic comments with the same classes and their
respective labels. The class distribution is heavily skewed towards toxic, obscene and insult, in both
Train and Development, Figure ??a.

TOXIC Train includes 29 unique class combinations, while Development has 21. Both frequencies
follow a power law distribution, similar to SEM2018, Figure ??b. The most common class combinations
for Train and Development are: obscene and insult, obscene only and insult only. The most uncommon
class combinations included threat and severe_toxic classes. Out of 29 unique classes for Train 12 have
more than 100 occurrences, while out of 21 unique class combinations of Development 7 appear more
than 100 times.

(a) (b)

Figure 9. TOXIC Class Distribution (a) and frequency of unique class combinations (b).
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6. Results

The accuracy scores are validated via 10-fold validation. The baseline neural network (NN)
model [? ] expectedly under-performs [? ]. For the SEM2018 datasets, both ensembles outperform each
individual model. The stacked ensemble provides the best results in the Train subset while the weighted
ensemble marginally outperforms stacked ensemble in the Development subset, Table ??. The accuracy
of both ensembles is limited, to a degree, by the inherit bias of the dataset. The performance of
our ensembles outperforms all submitted models in the Codalab Competition https://competitions.
codalab.org/competitions/17751#results.

Table 2. Accuracy score for SEM2018.

Model Train Dev.

NN 0.2946 0.1710
Model1 0.8351 0.8032
Model2 0.8352 0.8094
Model3 0.8283 0.8019
Model4 0.8385 0.8138
Model5 0.8309 0.7737

Stacked En. 0.87 0.8149
Weighted En. 0.8472 0.8151

The baseline NN performed better in TOXIC dataset. NN performance is boosted by the big
number of unclassified elements in the dataset, Table ??, more than 40% of the samples as seen in
Figure ??b. TOXIC dataset included more than 25,000 unique terms before cleaning. The number of
unique terms affects the length of the tokenization and subsequently the dimension of the embedding.
The required dimension reduction reduced the training time of each model but affected its performance.
Our best performing model is in the op 35% of the Kaggle Competition submissions https://www.
kaggle.com/c/jigsaw-toxic-comment-classification-challenge/leaderboard but more than 1% worse
when compared to the top performing one.

Table 3. Accuracy score for TOXIC.

Model Train Dev.

NN 0.8981 0.9013
Model1 0.9759 0.9643
Model2 0.9637 0.9623
Model3 0.9777 0.9672
Model4 0.9776 0.968
Model5 0.9768 0.9623

Stacked En. 0.9776 0.9667
Weighted En. 0.9782 0.9698

Our ensemble methods improved upon single models in six out of eight cases. The classification
accuracy is improved by at least one of the ensembles across both datasets. The ensembles for SEM2018
dataset performed excellently compared to other architectures. On the other hand, the extensive data
cleaning of TOXIC -requirement due to computation/time constraints- hindered the performance of
our models and their ensembles. Given the heavy class imbalance and the cleaning of TOXIC, the
achieved accuracy of 97+% is decent. The baseline stacked ensemble under-performed our proposed
weighted ensemble in three out of four cases.

All the models presented, and in extent their ensembles, can be further improved by a range of
techniques. Test augmentation [? ], hyperparameter optimization [? ], bias reduction [? ] and tailored
emotional embeddings [? ? ] are some techniques that could further improve the generalization
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capabilities of our networks. However, the computational load over multiple iterations is extensive,
as the most complex models required hours of training per epoch and dataset.

7. Conclusions

We demonstrated that ensemble learning can improve the classification accuracy in multilabel
text classification applications. We created and tested five different deep-learning architectures capable
of handling multilabel binary classification tasks.

Our five DNN architectures were ensembled via two methods, stacked and weighted, and tested
in two different datasets. The datasets used provide a similar multilabel classification but vary in
size, term distribution and term frequency. The classification accuracy was improved by the ensemble
models in both tasks. Our proposed weighted ensemble outperformed the baseline stacked ensemble
in 75% of cases by 1.5% to 5.4%. Hyperparameter tuning, supervised or unsupervised, could further
improve the results but with a heavy computational load, since each hyperparameter iteration requires
the re-training/re-calculation of the ensemble.

Moving forward we aim to explore the creation and use of tailored emotional embeddings
concatenated with word embeddings. Additionally, we are currently developing new data
augmentation methods, tailored to text datasets. We are also exploring multilabel regression ensembles
and architectures that could be considered to be the refinement of binary classification, whether
multilabel or not.
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Abstract: Nowadays, cryptocurrency has infiltrated almost all financial transactions; thus, it is
generally recognized as an alternative method for paying and exchanging currency. Cryptocurrency
trade constitutes a constantly increasing financial market and a promising type of profitable
investment; however, it is characterized by high volatility and strong fluctuations of prices over time.
Therefore, the development of an intelligent forecasting model is considered essential for portfolio
optimization and decision making. The main contribution of this research is the combination of
three of the most widely employed ensemble learning strategies: ensemble-averaging, bagging and
stacking with advanced deep learning models for forecasting major cryptocurrency hourly prices.
The proposed ensemble models were evaluated utilizing state-of-the-art deep learning models as
component learners, which were comprised by combinations of long short-term memory (LSTM),
Bi-directional LSTM and convolutional layers. The ensemble models were evaluated on prediction
of the cryptocurrency price on the following hour (regression) and also on the prediction if the
price on the following hour will increase or decrease with respect to the current price (classification).
Additionally, the reliability of each forecasting model and the efficiency of its predictions is evaluated
by examining for autocorrelation of the errors. Our detailed experimental analysis indicates that
ensemble learning and deep learning can be efficiently beneficial to each other, for developing strong,
stable, and reliable forecasting models.

Keywords: deep learning; ensemble learning; convolutional networks; long short-term memory;
cryptocurrency; time-series

1. Introduction

The global financial crisis of 2007–2009 was the most severe crisis over the last few decades with,
according to the National Bureau of Economic Research, a peak to trough contraction of 18 months.
The consequences were severe in most aspects of life including economy (investment, productivity,
jobs, and real income), social (inequality, poverty, and social tensions), leading in the long run to
political instability and the need for further economic reforms. In an attempt to “think outside the box”
and bypass the governments and financial institutions manipulation and control, Satoshi Nakamoto [1]
proposed Bitcoin which is an electronic cash allowing online payments, where the double-spending
problem was elegantly solved using a novel purely peer-to-peer decentralized blockchain along with a
cryptographic hash function as a proof-of-work.

Nowadays, there are over 5000 cryptocurrencies available; however, when it comes to scientific
research there are several issues to deal with. The large majority of these are relatively new, indicating
that there is an insufficient amount of data for quantitative modeling or price forecasting. In the
same manner, they are not highly ranked when it comes to market capitalization to be considered
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as market drivers. A third aspect which has not attracted attention in the literature is the separation
of cryptocurrencies between mineable and non-mineable. Minable cryptocurrencies have several
advantages i.e., the performance of different mineable coins can be monitored within the same
blockchain which cannot be easily said for non-mineable coins, and they are community driven
open source where different developers can contribute, ensuring the fact that a consensus has to be
reached before any major update is done, in order to avoid splitting. Finally, when it comes to the top
cryptocurrencies, it appears that mineable cryptocurrencies like Bitcoin (BTC) and Ethereum (ETH),
recovered better the 2018 crash rather than Ripple (XRP) which is the highest ranked pre-mined coin.
In addition, the non-mineable coins transactions are powered via a centralized blockchain, endangering
price manipulation through inside trading, since the creators keep a given percentage to themselves,
or through the use of pump and pull market mechanisms. Looking at the number one cryptocurrency
exchange in the world, Coinmarketcap, by January 2020 at the time of writing there are only 31 mineable
cryptocurrencies out of the first 100, ranked by market capitalization. The classical investing strategy in
cryptocurrency market is the “buy, hold and sell” strategy, in which cryptocurrencies are bought with
real money and held until reaching a higher price worth selling in order for an investor to make a profit.
Obviously, a potential fractional change in the price of a cryptocurrency may gain opportunities for
huge benefits or significant investment losses. Thus, the accurate prediction of cryptocurrency prices
can potentially assist financial investors for making their proper investment policies by decreasing their
risks. However, the accurate prediction of cryptocurrency prices is generally considered a significantly
complex and challenging task, mainly due to its chaotic nature. This problem is traditionally addressed
by the investor’s personal experience and consistent watching of exchanges prices. Recently, the
utilization of intelligent decision systems based on complicated mathematical formulas and methods
have been adopted for potentially assisting investors and portfolio optimization.

Let y1, y2, . . . , yn be the observations of a time series. Generally, a nonlinear regression model of
order m is defined by

yt = f (yt−1, yt−2, . . . , yt−m, θ), (1)

where m values of yt, θ is the parameter vector. After the model structure has been defined, function
f (·) can be determined by traditional time-series methods such as ARIMA (Auto-Regressive Integrated
Moving Average) and GARCH-type models and their variations [2–4] or by machine learning methods
such as Artificial Neural Networks (ANNs) [5,6]. However, both mentioned approaches fail to
depict the stochastic and chaotic nature of cryptocurrency time-series and be successfully effective
for accurate forecasting [7]. To this end, more sophisticated algorithmic approaches have to be
applied such as deep learning and ensemble learning methods. From the perspective of developing
strong forecasting models, deep learning and ensemble learning constitute two fundamental learning
strategies. The former is based on neural networks architectures and it is able to achieve state-of-the-art
accuracy by creating and exploiting new more valuable features by filtering out the noise of the input
data; while the latter attempts to generate strong prediction models by exploiting multiple learners in
order to reduce the bias or variance of error.

During the last few years, researchers paid special attention to the development of time-series
forecasting models which exploit the advantages and benefits of deep learning techniques such as
convolutional and long short-term memory (LSTM) layers. More specifically, Wen and Yuan [8] and
Liu et al. [9] proposed Convolutional Neural Network (CNN) and LSTM prediction models for stock
market forecasting. Along this line, Livieris et al. [10] and Pintelas et al. [11] proposed CNN-LSTM
models with various architectures for efficiently forecasting gold and cryptocurrency time-series price
and movement, reporting some interesting results. Nevertheless, although deep learning models are
tailored to cope with temporal correlations and efficiently extract more valuable information from
the training set, they failed to generate reliable forecasting models [7,11]; while in contrast ensemble
learning models although they are an elegant solution to develop stable models and address the high
variance of individual forecasting models, their performance heavily depends on the diversity and
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accuracy of the component learners. Therefore, a time-series prediction model, which exploits the
benefits of both mentioned methodologies may significantly improve the prediction performance.

The main contribution of this research is the combination of ensemble learning strategies
with advanced deep learning models for forecasting cryptocurrency hourly prices and movement.
The proposed ensemble models utilize state-of-the-art deep learning models as component learners
which are based on combinations of Long Short-Term Memory (LSTM), Bi-directional LSTM (BiLSTM)
and convolutional layers. An extensive experimental analysis is performed considering both
classification and regression problems, to evaluate the performance of averaging, bagging and
stacking ensemble strategies. More analytically, all ensemble models are evaluated on prediction
of the cryptocurrency price on the next hour (regression) and also on the prediction if the price on
the following hour will increase or decrease with respect to the current price (classification). It is
worth mentioning that the information of predicting the movement of a cryptocurrency is probably
more significant that the prediction of the price for investors and financial institutions. Additionally,
the efficiency of the predictions of each forecasting model is evaluated by examining for autocorrelation
of the errors, which constitutes a significant reliability test of each model.

The remainder of the paper is organized as follows: Section 2 presents a brief review of state of the
art deep learning methodologies for cryptocurrency forecasting. Section 3 presents the advanced deep
learning models, while Section 4 presents the ensemble strategies utilized in our research. Section 5
presents our experimental methodology including the data preparation and preprocessing as well as
the detailed experimental analysis, regarding the evaluation of ensemble of deep learning models.
Section 6 discusses the obtained results and summarizes our findings. Finally, Section 7 presents our
conclusions and presents some future directions.

2. Deep Learning in Cryptocurrency Forecasting: State-of-the-Art

Yiying and Yeze [12] focused on the price non-stationary dynamics of three cryptocurrencies
Bitcoin, Etherium, and Ripple. Their approach aimed at identifying and understand the factors which
influence the value formation of these digital currencies. Their collected data contained 1030 trading
days regarding opening, high, low, and closing prices. They conducted an experimental analysis
which revealed the efficiency of LSTM models over classical ANNs, indicating that LSTM models are
more capable of exploiting information hidden in historical data. Additionally, the authors stated
that probably the reason for the efficiency of LSTM networks is that they tend to depend more on
short-term dynamics while ANNs tends to depend more on long-term history. Nevertheless, in case
enough historical information is given, ANNs can achieve similar accuracy to LSTM networks.

Nakano et al. [13] examined the performance of ANNs for the prediction of Bitcoin intraday
technical trading. The authors focused on identifying the key factors which affect the prediction
performance for extracting useful trading signals of Bitcoin from its technical indicators. For this
purposed, they conducted a series of experiments utilizing various ANN models with shallow and deep
architectures and datasets structures The data utilized in their research regarded Bitcoin time-series
return data at 15-min time intervals. Their experiments illustrated that the utilization of multiple
technical indicators could possibly prevent the prediction model from overfitting of non-stationary
financial data, which enhances trading performance. Moreover, they stated that their proposed
methodology attained considerably better performance than the primitive technical trading and
buy-and-hold strategies, under realistic assumptions of execution costs.

Mcnally et al. [14] utilized two deep learning models, namely a Bayesian-optimised Recurrent
Neural Network and a LSTM network, for Bitcoin price prediction. The utilized data ranged from the
August 2013 until July 2016, regarding open, high, low and close of Bitcoin prices as well as the block
difficulty and hash rate. Their performance evaluation showed that the LSTM network demonstrated
the best prediction accuracy, outperforming the other recurrent model as well as the classical statistical
method ARIMA.
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Shintate and Pichl [15] proposed a new trend prediction classification framework which is
based on deep learning techniques. Their proposed framework utilized a metric learning-based
method, called Random Sampling method, which measures the similarity between the training
samples and the input patterns. They used high frequency data (1-min) ranged from June 2013 to
March 2017 containing historical data from OkCoin Bitcoin market (Chinese Yuan Renminbi and US
Dollars). The authors concluded that the profit rates based on utilized sampling method considerably
outperformed those based on LSTM networks, confirming the superiority of the proposed framework.
In contrast, these profit rates were lower than those obtained of the classical buy-and-hold strategy;
thus they stated that it does not provide a basis for trading.

Miura et al. [16] attempted to analyze the high-frequency Bitcoin (1-min) time series utilizing
machine learning and statistical forecasting models. Due to the large size of the data, they decided
to aggregate the realized volatility values utilizing 3-h long intervals. Additionally, they pointed out
that these values presented a weak correlation based on high-low price extent with the relative values
of the 3-h interval. In their experimental analysis, they focused on evaluating various ANNs-type
models, SVMs and Ridge Regression and the Heterogeneous Auto-Regressive Realized Volatility
model. Their results demonstrated that Ridge Regression considerably presented the best performance
while SVM exhibited poor performance.

Ji et al. [17] evaluated the prediction performance on Bitcoin price of various deep learning
models such as LSTM networks, convolutional neural networks, deep neural networks, deep residual
networks and their combinations. The data used in their research, contained 29 features of the Bitcoin
blockchain from 2590 days (from 29 November 2011 to 31 December 2018). They conducted a detailed
experimental procedure considering both classification and regression problems, where the former
predicts whether or not the next day price will increase or decrease and the latter predicts the next
day’s Bitcoin price. The numerical experiments illustrated that the deep neural DNN-based models
performed the best for price ups-and-downs while the LSTM models slightly outperformed the rest of
the models for forecasting Bitcoin’s price.

Kumar and Rath [18] focused on forecasting the trends of Etherium prices utilizing machine
learning and deep learning methodologies. They conducted an experimental analysis and compared
the prediction ability of LSTM neural networks and Multi-Layer perceptron (MLP). They utilized daily,
hourly, and minute based data which were collected from the CoinMarket and CoinDesk repositories.
Their evaluation results illustrated that LSTM marginally outperformed MLP but not considerably,
although their training time was significantly high.

Pintelas et al. [7,11] conducted a detailed research, evaluating advanced deep learning models
for predicting major cryptocurrency prices and movements. Additionally, they conducted a detailed
discussion regarding the fundamental research questions: Can deep learning algorithms efficiently
predict cryptocurrency prices? Are cryptocurrency prices a random walk process? Which is a proper
validation method of cryptocurrency price prediction models? Their comprehensive experimental
results revealed that even the LSTM-based and CNN-based models, which are generally preferable
for time-series forecasting [8–10], were unable to generate efficient and reliable forecasting models.
Moreover, the authors stated that cryptocurrency prices probably follow an almost random walk
process while few hidden patterns may probably exist. Therefore, new sophisticated algorithmic
approaches should be considered and explored for the development of a prediction model to make
accurate and reliable forecasts.

In this work, we advocate combining the advantages of ensemble learning and deep learning for
forecasting cryptocurrency prices and movement. Our research contribution aims on exploiting the
ability of deep learning models to learn the internal representation of the cryptocurrency data and the
effectiveness of ensemble learning for generating powerful forecasting models by exploiting multiple
learners for reducing the bias or variance of error. Furthermore, similar to our previous research [7,11],
we provide detailed performance evaluation for both regression and classification problems. To the
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best of our knowledge, this is the first research devoted to the adoption and combination of ensemble
learning and deep learning for forecasting cryptocurrencies prices and movement.

3. Advanced Deep Learning Techniques

3.1. Long Short-Term Memory Neural Networks

Long Short-term memory (LSTM) [19] constitutes a special case of recurrent neural networks
which were originally proposed to model both short-term and long-term dependencies [20–22].
The major novelty unit in a LSTM network is the memory block in the recurrent hidden layer which
contains memory cells with self-connections memorizing the temporal state and adaptive gate units
for controlling the information flow in the block. With the treatment of the hidden layer as a memory
unit, LSTM can cope the correlation within time-series in both short and long term [23].

More analytically, the structure of the memory cell ct is composed by three gates: the input gate,
the forget gate and the output gate. At every time step t, the input gate it determines which information
is added to the cell state St (memory), the forget gate ft determines which information is thrown away
from the cell state through the decision by a transformation function in the forget gate layer; while the
output gate ot determines which information from the cell state will be used as output.

With the utilization of gates in each cell, data can be filtered, discarded or added. In this way,
LSTM networks are capable of identifying both short and long term correlation features within time
series. Additionally, it is worth mentioning that a significant advantage of the utilization of memory
cells and adaptive gates which control information flow is that the vanishing gradient problem can be
considerably addressed, which is crucial for the generalization performance of the network [20].

The simplest way to increase the depth and the capacity of LSTM networks is to stack LSTM
layers together, in which the output of the (L − 1)th LSTM layer at time t is treated as input of the Lth
layer. Notice that this input-output connections are the only connections between the LSTM layers
of the network. Based on the above formulation, the structure of the stacked LSTM can be describe
as follows: Let hL

t and hL−1
t denote outputs in the Lth and (L − 1)th layer, respectively. Each layer

L produces a hidden state hL
t based on the current output of the previous layer hL−1

t and time hL
t−1.

More specifically, the forget gate f L
t of the L layer calculates the input for cell state cL

t−1 by

ft = σ
(

WL
f [h

L
t−1, hL−1

t ] + bL
f

)
,

where σ(·) is a sigmoid function while WL
f and b f are the weights matrix and bias vector of layer L

regarding the forget gate, respectively. Subsequently, the input gate iL
t of the L layer computes the

values to be added to the memory cell cL
t by

iL
t = σ

(
WL

i [h
L
t−1, hL−1

t ] + bL
i

)
,

where WL
i is the weights matrix of layer L regarding the input gate. Then, the output gate oL

t of the Lth
layer filter the information and calculated the output value by

oL
t = σ

(
WL

o [h
L
t−1, hL−1

t ] + bL
o

)
,

where Wo
f and bo are the weights matrix and bias vector of the output gate in the L layer, respectively.

Finally, the output of the memory cell is computed by

ht = oL
t · tanh

(
cL

t

)
,

where · denotes the pointwise vector multiplication, tanh the hyperbolic tangent function and
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cL
t = f L

t · cL
t−1 + iL

t · c̃L
t−1,

c̃L
t = tanh

(
WL

c̃ [h
L
t−1, hL−1

t ] + bL
c̃

)
.

3.2. Bi-Directional Recurrent Neural Networks

Similar with the LSTM networks, one of the most efficient and widely utilized RNNs architectures
are the Bi-directional Recurrent Neural Networks (BRNNs) [24]. In contrast with the LSTM,
these networks are composed by two hidden layers, connected to input and output. The principle
idea of BRNNs is that each training sequence is presented forwards and backwards into two separate
recurrent networks [20]. More specifically, the first hidden layer possesses recurrent connections from
the past time steps, while in the second one, the recurrent connections are reversed, transferring
activation backwards along the sequence. Given the input and target sequences, the BRNN can be
unfolded across time in order to be efficiently trained utilizing a classical backpropagation algorithm.

In fact, BRNN and LSTM are based on compatible techniques in which the former proposes the
wiring of two hidden layers, which compose the network, while the latter proposes a new fundamental
unit for composing the hidden layer.

Along this line, Bi-directional LSTM (BiLSTM) networks [25] were proposed in the literature,
which incorporate two LSTM networks in the BRNN framework. More specifically, BiLSTM
incorporates a forward LSTM layer and a backward LSTM layer in order to learn information
from preceding and following tokens. In this way, both past and future contexts for a given
time t are accessed, hence better prediction can be achieved by taking advantage of more
sentence-level information.

In a bi-directional stacked LSTM network, the output of each feed-forward LSTM layer is the
same as in the classical stacked LSTM layer and these layers are iterated from t = 1 to T. In contrast,
the output of each backward LSTM layer is iterated reversely, i.e., from t = T to 1. Hence, at time t,

the output of value
←
h t in backward LSTM layer L can be calculated as follows

←
f t = σ

(
WL←

f
[hL

t−1, hL−1
t ] + bL←

f

)
,

←
i

L
t = σ

(
WL←

i
[hL

t−1, hL−1
t ] + bL←

i

)
,

←
o

L
t = σ
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.

Finally, the output of this BiLSTM architecture is given by

yt = W
[→

h t,
←
h t

]
+ b.

3.3. Convolutional Neural Networks

Convolutional Neural Network (CNN) models [26,27] were originally proposed for image
recognition problems, achieving human level performance in many cases. CNNs have great potential
to identify the complex patterns hidden in time series data. The advantage of the utilization of CNNs
for time series is that they can efficiently extract knowledge and learn an internal representation from
the raw time series data directly and they do not require special knowledge from the application
domain to filter input features [10].
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A typical CNN consists of two main components: In the first component, mathematical operations,
called convolution and pooling, are utilized to develop features of the input data while in the second
component, the generated features are used as input to a usually fully-connected neural network.

The convolutional layer constitutes the core of a CNN which systematically applies trained filters
to input data for generating feature maps. Convolution can be considered as applying and sliding a
one dimension (time) filter over the time series [28]. Moreover, since the output of a convolution is a
new filtered time series, the application of several convolutions implies the generation of a multivariate
times series whose dimension equals with the number of utilized filters in the layer. The rationale
behind this strategy is that the application of several convolution leads to the generation of multiple
discriminative features which usually improve the model’s performance. In practice, this kind of layer
is proven to be very efficient and stacking different convolutional layers allows deeper layers to learn
high-order or more abstract features and layers close to the input to learn low-level features.

Pooling layers were proposed to address the limitation that feature maps generated by the
convolutional layers, record the precise position of features in the input. These layers aggregate over
a sliding window over these feature maps, reducing their length, in order to attain some translation
invariance of the trained features. More analytically, the feature maps obtained from the previous
convolutional layer are pooled over temporal neighborhood separately by sum pooling function or by
max pooling function in order to developed a new set of pooled feature maps. Notice that the output
pooled feature maps constitute a filtered version of the features maps which are imported as inputs in
the pooling layer [28]. This implies that small translations of the inputs of the CNN, which are usually
detected by the convolutional layers, will become approximately invariant.

Finally, in addition to convolutional and pooling layers, some include batch normalization
layers [29] and dropout layers [30] in order to accelerate the training process and reduce
overfitting, respectively.

4. Ensemble Deep Learning Models

Ensemble learning has been proposed as an elegant solution to address the high variance of
individual forecasting models and reduce the generalization error [31–33]. The basic principle behind
any ensemble strategy is to weigh a number of models and combine their individual predictions for
improving the forecasting performance; while the key point for the effectiveness of the ensemble is that
its components should be characterized by accuracy and diversity in their predictions [34]. In general,
the combination of multiple models predictions adds a bias which in turn counters the variance of a
single trained model. Therefore, by reducing the variance in the predictions, the ensemble can perform
better than any single best model.

In the literature, several strategies were proposed to design and develop ensemble of
regression models. Next, we present three of the most efficient and widely employed strategies:
ensemble-averaging, bagging, and stacking.

4.1. Ensemble-Averaging of Deep Learning Models

Ensemble-averaging [35] (or averaging) is the simplest combination strategy for exploiting the
prediction of different regression models. It constitutes a commonly and widely utilized ensemble
strategy of individual trained models in which their predictions are treated equally. More specifically,
each forecasting model is individually trained and the ensemble-averaging strategy linearly combines
all predictions by averaging them to develop the output. Figure 1 illustrates a high-level schematic
representation of the ensemble-averaging of deep learning models.
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Figure 1. Ensemble-averaging of deep learning models.

Ensemble-averaging is based on the philosophy that its component models will not usually
make the same error on new unseen data [36]. In this way, the ensemble model reduces the variance
in the prediction, which results in better predictions compared to a single model. The advantages
of this strategy are its simplicity of implementation and the exploitation of the diversity of errors
of its component models without requiring any additional training on large quantities of the
individual predictions.

4.2. Bagging Ensemble of Deep Learning Models

Bagging [33] is one the most widely used and successful ensemble strategies for improving the
forecasting performance of unstable models. Its basic principle is the development of more diverse
forecasting models by modifying the distribution of the training set based on a stochastic strategy.
More specifically, it applies the same learning algorithm on different bootstrap samples of the original
training set and the final output is produced via a simple averaging. An attractive property of the
bagging strategy is that it reduces variance while simultaneously retains the bias which assists in
avoiding overfitting [37,38]. Figure 2 demonstrates a high-level schematic representation of the bagging
ensemble of n deep learning models.
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Figure 2. Bagging ensemble of deep learning models.

It is worth mentioning that bagging strategy is significantly useful for dealing with large and
high-dimensional datasets where finding a single model which can exhibit good performance in one
step is impossible due to the complexity and scale of the prediction problem.
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4.3. Stacking Ensemble of Deep Learning Models

Stacked generalization or stacking [39] constitutes a more elegant and sophisticated approach for
combining the prediction of different learning models. The motivation of this approach is based on the
limitation of simple ensemble-average which is that each model is equally considered to the ensemble
prediction, regardless of how well it performed. Instead, stacking induces a higher-level model for
exploiting and combining the prediction of the ensemble’s component models. More specifically,
the models which comprise the ensemble (Level-0 models) are individually trained using the same
training set (Level-0 training set). Subsequently, a Level-1 training set is generated by the collected
outputs of the component classifiers.

This dataset is utilized to train a single Level-1 model (meta-model) which ultimately determines
how the outputs of the Level-0 models should be efficiently combined, to maximize the forecasting
performance of the ensemble. Figure 3 illustrates the stacking of deep learning models.

Training
set

Deep learning
model 3

Deep learning
model 2

Deep learning
model 1

Deep learning
model n

•
•
•

Meta-model

Level-0 Level−1

Figure 3. Stacking ensemble of deep learning models.

In general, stacked generalization works by deducing the biases of the individual learners with
respect to the training set [33]. This deduction is performed by the meta-model. In other words,
the meta-model is a special case of weighted-averaging, which utilizes the set of predictions as a
context and conditionally decides to weight the input predictions, potentially resulting in better
forecasting performance.

5. Numerical Experiments

In this section, we evaluate the performance of the three presented ensemble strategies which
utilize advanced deep learning models as component learners. The implementation code was written
in Python 3.4 while for all deep learning models Keras library [40] was utilized and Theano as back-end.

For the purpose of this research, we utilized data from 1 January 2018 to 31 August 2019 from
the hourly price of the cryptocurrencies BTC, ETH and XRP. For evaluation purposes, the data were
divided in training set and in testing set as in [7,11]. More specifically, the training set comprised
data from 1 January 2018 to 28 February 2019 (10,177 datapoints), covering a wide range of long
and short term trends while the testing set consisted of data from 1 March 2019 to 31 August 2019
(4415 datapoints) which ensured a substantial amount of unseen out-of-sample prices for testing.

Next, we concentrated on the experimental analysis to evaluate the presented ensemble
strategies using the advanced deep learning models CNN-LSTM and CNN-BiLSTM as base learners.
A detailed description of both component models is presented in Table 1. These models and their
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hyper-parameters were selected in previous research [7] after extensive experimentation, in which
they exhibited the best performance on the utilized datasets. Both component models were trained
for 50 epochs with Adaptive Moment Estimation (ADAM) algorithm [41] with a batch size equal to
512, using a mean-squared loss function. ADAM algorithm ensures that the learning steps, during the
training process, are scale invariant relative to the parameter gradients.

Table 1. Parameter specification of two base learners.

Model Description

CNN-LSTM Convolutional layer with 32 filters of size (2, ) and padding = “same”.
Convolutional layer with 64 filters of size (2, ) and padding = “same”.
Max pooling layer with size (2, )
LSTM layer with 70 units.
Fully connected layer with 16 neurons.
Output layer with 1 neuron.

CNN-BiLSTM Convolutional layer with 64 filters of size (2, ) and padding = “same”.
Convolutional layer with 128 filters of size (2, ) and padding = “same”.
Max pooling layer with size (2, ).
BiLSTM layer with 2 × 70 units.
Fully connected layer with 16 neurons.
Output layer with 1 neuron.

The performance of all ensemble models was evaluated utilizing the performance metric:
Root Mean Square Error (RMSE). Additionally, the classification accuracy of all ensemble deep models
was measured, relative to the problem of predicting whether the cryptocurrency price would increase
or decrease on the next day. More analytically, by analyzing a number of previous hourly prices,
the model predicts the price on the following hour and also predicts if the price will increase or decrease,
with respect to current cryptocurrency price. For this binary classification problem, three performance
metrics were used: Accuracy (Acc), Area Under Curve (AUC) and F1-score (F1).

All ensemble models were evaluated using 7 and 11 component learners which reported the
best overall performance. Notice that any attempt to increase the number of classifiers resulted to no
improvement to the performance of each model. Moreover, stacking was evaluated using the most
widely used state-of-the-art algorithms [42] as meta-learners: Support Vector Regression (SVR) [43],
Linear Regression (LR) [44], k-Nearest Neighbor (kNN) [45] and Decision Tree Regression (DTR) [46].
For fairness and for performing an objective comparison, the hyper-parameters of all meta-learners
were selected in order to maximize their experimental performance and are briefly presented in Table 2.

Table 2. Parameter specification of state-of-art algorithms used as meta-learners.

Model Hyper-Parameters

DTR Criterion = ’mse’,
max depth = unlimited,
min samples split = 2.

LR No parameters specified.

SVR Kernel = RBF,
Regularization parameter C = 1.0,
gamma = 10−1.

kNN Number of neighbors = 10,
Euclidean distance.
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Summarizing, we evaluate the performance of the following ensemble models:

• “Averaging7” and “Averaging11” stand for ensemble-averaging model utilizing 7 and 11
component learners, respectively.

• “Bagging7” and “Bagging11” stand for bagging ensemble model utilizing 7 and 11 component
learners, respectively.

• “Stacking(DTR)
7 ” and “Stacking(DTR)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and DTR model as meta-learner.

• “Stacking(LR)
7 ” and “Stacking(LR)

11 ” stand for stacking ensemble model utilizing 7 and 11 component
learners, respectively and LR model as meta-learner.

• “Stacking(SVR)
7 ” and “Stacking(SVR)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and SVR as meta-learner.

• “Stacking(kNN)
7 ” and “Stacking(kNN)

11 ” stand for stacking ensemble model utilizing 7 and 11
component learners, respectively and kNN as meta-learner.

Tables 3 and 4 summarize the performance of all ensemble models using CNN-LSTM as base
learner for m = 4 and m = 9, respectively. Stacking using LR as meta-learner exhibited the best
regression performance, reporting the lowest RMSE score, for all cryptocurrencies. Notice that
stacking(LR)

7 and Stacking(LR)
11 reported the same performance, which implies that the increment

of component learners from 7 to 11 did not affect the regression performance of this ensemble
algorithm. In contrast, stacking(LR)

7 exhibited better classification performance than Stacking(LR)
11 ,

reporting higher accuracy, AUC and F1-score. Additionally, the stacking ensemble reported the worst
performance utilizing DTR and SVR as meta-learners among all ensemble models, also reporting worst
performance than CNN-LSTM model; while the best classification performance was reported using
kNN as meta-learner in almost all cases.

The average and bagging ensemble reported slightly better regression performance, compared to
the single model CNN-LSTM. In contrast, both ensembles presented the best classification performance,
considerably outperforming all other forecasting models, regarding all datasets. Moreover, the bagging
ensemble reported the highest accuracy, AUC and F1 in most cases, slightly outperforming the
average-ensemble model. Finally, it is worth noticing that both the bagging and average-ensemble did
not improve their performance when the number of component classifiers increased. for m = 4 while
for m = 9 a slightly improvement in their performance was noticed.

Table 3. Performance of ensemble models using convolutional neural network and long short-term
memory (CNN-LSTM) as base learner for m = 4.

Model
BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-LSTM 0.0101 52.80% 0.521 0.530 0.0111 53.39% 0.533 0.525 0.0110 53.82% 0.510 0.530

Averaging7 0.0096 54.39% 0.543 0.536 0.0107 53.73% 0.539 0.536 0.0108 54.12% 0.552 0.536
Bagging7 0.0097 54.52% 0.549 0.545 0.0107 53.95% 0.541 0.530 0.0095 53.29% 0.560 0.483
Stacking(DTR)

7 0.0168 49.96% 0.510 0.498 0.0230 50.13% 0.506 0.497 0.0230 49.67% 0.530 0.492
Stacking(LR)

7 0.0085 52.57% 0.530 0.524 0.0093 52.44% 0.513 0.515 0.0095 52.32% 0.537 0.514
Stacking(SVR)

7 0.0128 49.82% 0.523 0.497 0.0145 51.24% 0.501 0.508 0.0146 51.27% 0.515 0.508
Stacking(kNN)

7 0.0113 52.64% 0.525 0.511 0.0126 52.85% 0.537 0.473 0.0101 52.87% 0.536 0.514

Averaging11 0.0096 54.16% 0.545 0.534 0.0107 53.77% 0.542 0.535 0.0107 54.12% 0.531 0.537
Bagging11 0.0098 54.31% 0.546 0.542 0.0107 53.95% 0.548 0.536 0.0094 54.32% 0.532 0.515
Stacking(DTR)

11 0.0169 49.66% 0.510 0.495 0.0224 50.42% 0.512 0.500 0.0229 50.63% 0.519 0.501
Stacking(LR)

11 0.0085 51.05% 0.529 0.475 0.0093 51.95% 0.514 0.514 0.0094 52.35% 0.529 0.512
Stacking(SVR)

11 0.0128 50.03% 0.520 0.499 0.0145 51.10% 0.510 0.506 0.0145 51.11% 0.511 0.506
Stacking(kNN)

11 0.0112 52.66% 0.526 0.511 0.0126 52.65% 0.538 0.481 0.0101 53.05% 0.530 0.512
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Table 4. Performance of ensemble models using CNN-LSTM as base learner for m = 9.

Model
BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-LSTM 0.0124 51.19% 0.511 0.504 0.0140 53.49% 0.535 0.513 0.0140 53.43% 0.510 0.510

Averaging7 0.0122 54.12% 0.549 0.541 0.0138 53.86% 0.539 0.538 0.0138 53.94% 0.502 0.538
Bagging7 0.0123 54.29% 0.549 0.543 0.0132 54.05% 0.541 0.539 0.0093 52.97% 0.501 0.502
Stacking(DTR)

7 0.0213 50.57% 0.510 0.504 0.0280 51.58% 0.509 0.511 0.0279 51.87% 0.514 0.514
Stacking(LR)

7 0.0090 51.19% 0.530 0.503 0.0098 52.17% 0.525 0.503 0.0098 51.89% 0.524 0.506
Stacking(SVR)

7 0.0168 50.54% 0.523 0.503 0.0203 51.94% 0.515 0.513 0.0203 51.86% 0.518 0.512
Stacking(kNN)

7 0.0165 52.00% 0.525 0.509 0.0179 52.66% 0.526 0.487 0.0100 51.91% 0.521 0.522

Averaging11 0.0122 54.25% 0.545 0.542 0.0136 54.02% 0.542 0.540 0.0136 54.03% 0.501 0.539
Bagging11 0.0124 54.30% 0.555 0.542 0.0134 54.11% 0.541 0.540 0.0093 53.11% 0.502 0.509
Stacking(DTR)

11 0.0209 50.43% 0.510 0.502 0.0271 51.69% 0.510 0.512 0.0274 51.85% 0.519 0.512
Stacking(LR)

11 0.0087 50.99% 0.529 0.492 0.0095 52.43% 0.522 0.507 0.0096 52.11% 0.514 0.501
Stacking(SVR)

11 0.0165 50.66% 0.520 0.504 0.0202 51.85% 0.512 0.512 0.0202 51.82% 0.517 0.511
Stacking(kNN)

11 0.0165 52.13% 0.526 0.505 0.0179 52.19% 0.523 0.489 0.0100 52.49% 0.521 0.520

Tables 5 and 6 present the performance of all ensemble models utilizing CNN-BiLSTM as base
learner for m = 4 and m = 9, respectively. Firstly, it is worth noticing that stacking model using LR as
meta-learner exhibited the best regression performance, regarding to all cryptocurrencies. Stacking(LR)

7
and Stacking(LR)

11 presented almost identical RMSE score Moreover, stacking(LR)
7 presented slightly

higher accuracy, AUC and F1-score than stacking(LR)
11 , for ETH and XRP datasets, while for BTC dataset

Stacking(LR)
11 reported slightly better classification performance. This implies that the increment of

component learners from 7 to 11 did not considerably improved and affected the regression and
classification performance of the stacking ensemble algorithm. Stacking ensemble reported the worst
(highest) RMSE score utilizing DTR, SVR and kNN as meta-learners. It is also worth mentioning that it
exhibited the worst performance among all ensemble models and also worst than that of the single
model CNN-BiLSTM. However, stacking ensemble reported the highest classification performance
using kNN as meta-learner. Additionally, it presented slightly better classification performance using
DTR or SVR than LR as meta-learners for ETH and XRP datasets, while for BTC dataset it presented
better performance using LR as meta-learner as meta-learner.

Table 5. Performance of ensemble models using CNN and bi-directional LSTM (CNN-BiLSTM) as base
learner for m = 4.

Model
BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-BiLSTM 0.0107 53.93% 0.528 0.522 0.0116 53.56% 0.525 0.521 0.0099 53.72% 0.519 0.484

Averaging7 0.0104 54.15% 0.548 0.537 0.0114 53.87% 0.530 0.536 0.0096 54.73% 0.555 0.532
Bagging7 0.0104 54.62% 0.549 0.544 0.0114 53.88% 0.532 0.529 0.0096 55.42% 0.557 0.520
Stacking(DTR)

7 0.0176 50.33% 0.498 0.503 0.0224 51.20% 0.501 0.509 0.0155 51.66% 0.510 0.515
Stacking(LR)

7 0.0085 51.67% 0.527 0.494 0.0095 52.81% 0.536 0.517 0.0093 51.04% 0.541 0.498
Stacking(SVR)

7 0.0085 51.67% 0.510 0.494 0.0159 51.99% 0.513 0.517 0.0118 51.14% 0.511 0.510
Stacking(kNN)

7 0.0112 52.18% 0.526 0.519 0.0126 54.15% 0.544 0.503 0.0101 52.56% 0.536 0.510

Averaging11 0.0105 54.41% 0.546 0.543 0.0114 53.83% 0.531 0.538 0.0095 55.55% 0.525 0.547
Bagging11 0.0104 54.66% 0.548 0.541 0.0113 54.07% 0.532 0.529 0.0096 55.64% 0.524 0.530
Stacking(DTR)

11 0.0178 50.22% 0.494 0.502 0.0226 51.11% 0.510 0.508 0.0157 51.61% 0.518 0.514
Stacking(LR)

11 0.0085 51.72% 0.527 0.499 0.0095 51.69% 0.533 0.492 0.0092 50.42% 0.545 0.496
Stacking(SVR)

11 0.0085 51.72% 0.512 0.499 0.0161 52.36% 0.512 0.521 0.0116 51.82% 0.512 0.517
Stacking(kNN)

11 0.0112 52.34% 0.521 0.504 0.0126 54.14% 0.542 0.492 0.0101 52.53% 0.529 0.509
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Table 6. Performance of ensemble models using convolutional neural network with CNN-BiLSTM as
base learner for m = 9.

Model
BTC ETH XRP

RMSE Acc AUC F1 RMSE Acc AUC F1 RMSE Acc AUC F1

CNN-BiLSTM 0.0146 53.47% 0.529 0.526 0.0154 53.87% 0.531 0.529 0.0101 50.36% 0.506 0.394

Averaging7 0.0146 53.58% 0.547 0.535 0.0151 54.03% 0.540 0.539 0.0095 50.04% 0.537 0.428
Bagging7 0.0143 53.20% 0.541 0.528 0.0155 54.09% 0.540 0.539 0.0095 51.11% 0.540 0.417
Stacking(DTR)

7 0.0233 50.84% 0.521 0.507 0.0324 52.23% 0.522 0.517 0.0149 52.19% 0.519 0.521

Stacking(LR)
7 0.0091 52.30% 0.518 0.516 0.0105 52.26% 0.525 0.512 0.0093 50.10% 0.522 0.488

Stacking(SVR)
7 0.0109 52.30% 0.517 0.516 0.0235 52.10% 0.513 0.514 0.0112 51.28% 0.518 0.512

Stacking(kNN)
7 0.0166 52.00% 0.522 0.508 0.0142 51.91% 0.529 0.475 0.0101 52.50% 0.523 0.510

Averaging11 0.0144 53.53% 0.548 0.535 0.0151 54.02% 0.539 0.537 0.0093 50.22% 0.549 0.437
Bagging11 0.0143 53.32% 0.547 0.530 0.0155 54.20% 0.539 0.539 0.0093 51.15% 0.551 0.470
Stacking(DTR)

11 0.0235 50.76% 0.513 0.506 0.0305 52.41% 0.513 0.520 0.0152 51.72% 0.522 0.516

Stacking(LR)
11 0.0088 50.48% 0.527 0.489 0.0098 52.67% 0.524 0.515 0.0092 50.68% 0.529 0.505

Stacking(SVR)
11 0.0108 50.48% 0.513 0.489 0.0235 52.12% 0.516 0.514 0.0110 51.68% 0.517 0.516

Stacking(kNN)
11 0.0166 52.00% 0.526 0.496 0.0142 51.95% 0.517 0.475 0.0100 52.32% 0.526 0.505

Regarding the other two ensemble strategies, averaging and bagging, they exhibited slightly better
regression performance compared to the single CNN-BiLSTM model. Nevertheless, both averaging
and bagging reported the highest accuracy, AUC and F1-score, which implies that they presented
the best classification performance among all other models with bagging exhibiting slightly better
classification performance. Furthermore, it is also worth mentioning that both ensembles slightly
improved their performance in term of RMSE score and Accuracy, when the number of component
classifiers increased from 7 to 11.

In the follow-up, we provided a deeper insight classification performance of the forecasting
models by presenting the confusion matrices of averaging11, bagging11, stacking(LR)

7 and stacking(kNN)
11

for m = 4, which exhibited the best overall performance. The use of the confusion matrix provides a
compact and to the classification performance of each model, presenting complete information about
mislabeled classes. Notice that each row of a confusion matrix represents the instances in an actual class
while each column represents the instances in a predicted class. Additionally, both stacking ensembles
utilizing DTR and SVM as meta-learners were excluded from the rest of our experimental analysis, since
they presented the worst regression and classification performance, relative to all cryptocurrencies.

Tables 7–9 present the confusion matrices of the best identified ensemble models using
CNN-LSTM as base learner, regarding BTC, ETH and XRP datasets, respectively. The confusion
matrices for BTC and ETH revealed that stacking(LR)

7 is biased, since most of the instances were
misclassified as “Down”, meaning that this model was unable to identify possible hidden patterns
despite the fact that it exhibited the best regression performance. On the other hand, bagging11

exhibited a balanced prediction distribution between “Down” or “Up” predictions, presenting its
superiority over the rest forecasting models, followed by averaging11 and stacking(kNN)

11 . Regarding
XRP dataset, bagging11 and stacking(kNN)

11 presented the highest prediction accuracy and the best
trade-off between true positive and true negative rate, meaning that these models may have identified
some hidden patters.
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Table 7. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Bitcoin (BTC) dataset.

Averaging11

Down Up

Down 1244 850

Up 1270 1050

Bagging11

Down Up

Down 1064 1030

Up 922 1398

Stacking(LR)
7

Down Up

Down 1537 557

Up 1562 758

Stacking(kNN)
11

Down Up

Down 1296 798

Up 1315 1005

Table 8. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Etherium (ETH) dataset.

Averaging11

Down Up

Down 1365 885

Up 1208 955

Bagging11

Down Up

Down 1076 1174

Up 866 1297

Stacking(LR)
7

Down Up

Down 1666 584

Up 1593 570

Stacking(kNN)
11

Down Up

Down 1353 897

Up 1203 960

Table 9. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-LSTM as base model for Ripple (XRP) dataset.

Averaging11

Down Up

Down 1575 739

Up 1176 923

Bagging11

Down Up

Down 1314 1000

Up 984 1115

Stacking(LR)
7

Down Up

Down 1072 1242

Up 815 1284

Stacking(kNN)
11

Down Up

Down 1214 1100

Up 991 1108

Tables 10–12 present the confusion matrices of averaging11, bagging11, stacking(LR)
7 and

Stacking(kNN)
11 using CNN-BiLSTM as base learner, regarding BTC, ETH and XRP datasets, respectively.

The confusion matrices for BTC dataset demonstrated that both average11 and bagging11 presented
the best performance while stacking(LR)

7 was biased, since most of the instances were misclassified as
“Down”. Regarding ETH dataset, both average11 and bagging11 were considered biased since most
“Up” instances were misclassified as “Down”. In contrast, both stacking ensembles presented the best
performance, with stacking(kNN)

11 reporting slightly considerably better trade-off between sensitivity
and specificity. Regarding XRP dataset, bagging11 presented the highest prediction accuracy and the
best trade-off between true positive and true negative rate, closely followed by stacking(kNN)

11 .

Table 10. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for BTC dataset.

Averaging11

Down Up

Down 983 1111

Up 864 1456

Bagging11

Down Up

Down 1019 1075

Up 915 1405

Stacking(LR)
7

Down Up

Down 1518 576

Up 1569 751

Stacking(kNN)
11

Down Up

Down 1272 822

Up 1288 1032
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Table 11. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for ETH dataset.

Averaging11

Down Up

Down 1913 337

Up 1721 442

Bagging11

Down Up

Down 1837 413

Up 1631 532

Stacking(LR)
7

Down Up

Down 1322 928

Up 1199 964

Stacking(kNN)
11

Down Up

Down 1277 973

Up 1083 1080

Table 12. Confusion matrices of Averaging11, Bagging11, Stacking(LR)
7 and Stacking(kNN)

11 using
CNN-BiLSTM as base model for XRP dataset.

Averaging11

Down Up

Down 1518 796

Up 1146 953

Bagging11

Down Up

Down 1440 874

Up 1062 1037

Stacking(LR)
7

Down Up

Down 1124 1190

Up 831 1268

Stacking(kNN)
11

Down Up

Down 1221 1093

Up 998 1101

In the rest of this section, we evaluate the reliability of the best reported ensemble models by
examining if they have properly fitted the time series. In other words, we examine if the models’
residuals defined by

ε̂t = yt − ŷt

are identically distributed and asymptotically independent. It is worth noticing the residuals are
dedicated to evaluate whether the model has properly fitted the time series.

For this purpose, we utilize the AutoCorrelation Function (ACF) plot [47] which is obtained from
the linear correlation of each residual ε̂t to the others in different lags, ε̂t−1, ε̂t−2, . . . and illustrates
the intensity of the temporal autocorrelation. Notice that in case the forecasting model violates the
assumption of no autocorrelation in the errors implies that its predictions may be inefficient since there
is some additional information left over which should be accounted by the model.

Figures 4–6 present the ACF plots for BTC, ETH and XRP datasets, respectively. Notice that the
confident limits (blue dashed line) are constructed assuming that the residuals follow a Gaussian
probability distribution. It is worth noticing that averaging11 and bagging11 ensemble models violate
the assumption of no autocorrelation in the errors which suggests that their forecasts may be inefficient,
regarding BTC and ETH datasets. More specifically, the significant spikes at lags 1 and 2 imply that
there exists some additional information left over which should be accounted by the models. Regarding
XRP dataset, the ACF plot of average11 presents that the residuals have no autocorrelation; while
the ACF plot of bagging11 presents that there is a spike at lag 1, which violates the assumption of
no autocorrelation in the residuals. Both ACF plots of stacking ensemble are within 95% percent
confidence interval for all lags, regarding BTC and XRP datasets, which verifies that the residuals have
no autocorrelation. Regarding the ETH dataset, the ACF plot of stacking(LR)

7 reported a small spike at
lag 1, which reveals that there is some autocorrelation of the residuals but not particularly large; while
the ACF plot of stacking(kNN)

11 reveals that there exist small spikes at lags 1 and 2, implying that there is
some autocorrelation.
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Figure 4. Autocorrelation of residuals for BTC dataset of ensemble models using CNN-LSTM as base learner.
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Figure 5. Autocorrelation of residuals for ETH dataset of ensemble models using CNN-LSTM as base learner.
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Figure 6. Auto-correlation of residuals for XRP dataset of ensemble models using CNN-LSTM as base learner.

Figures 7–9 present the ACF plots of averaging11, bagging11, stacking(LR)
7 and stacking(kNN)

11
ensembles utilizing CNN-BiLSTM as base learner for BTC, ETH and XRP datasets, respectively.
Both averaging11 and bagging11 ensemble models violate the assumption of no autocorrelation in
the errors, relative to all cryptocurrencies, implying that these models are not properly fitted the
time-series. In more detail, the significant spikes at lags 1 and 2 suggest that the residuals are not
identically distributed and asymptotically independent, for all datasets . The ACF plot of stacking(LR)

7
ensemble for BTC dataset verify that the residuals have no autocorrelation since are within 95% percent
confidence interval for all lags. In contrast, for ETH and XRP datasets the spikes at lags 1 and 2
illustrate that there is some autocorrelation of the residuals. Regarding the ACF plots of stacking(kNN)

11
present that there exists some autocorrelation in the residuals but not particularly large for BTC and
XRP datasets; while for ETH dataset, the significant spikes at lags 1 and 2 suggest that the model’s
prediction may be inefficient.
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Figure 7. Autocorrelation of residuals for BTC dataset of ensemble models using CNN-BiLSTM as base learner.
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Figure 8. Autocorrelation of residuals for ETH dataset of ensemble models using CNN-BiLSTM as base learner.
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Figure 9. Autocorrelation of residuals for XRP dataset of ensemble models using CNN-BiLSTM as base learner.

6. Discussion

In this section, we perform a discussion regarding the proposed ensemble models,
the experimental results and the main finding of this work.

6.1. Discussion of Proposed Methodology

Cryptocurrency prediction is considered a very challenging forecasting problem, since the
historical prices follow a random walk process, characterized by large variations in the volatility,
although a few hidden patterns may probably exist [48,49]. Therefore, the investigation and the
development of a powerful forecasting model for assisting decision making and investment policies is
considered essential. In this work, we incorporated advanced deep learning models as base learners
into three of the most popular and widely used ensembles methods, namely averaging, bagging and
stacking for forecasting cryptocurrency hourly prices.

The motivation behind our approach is to exploit the advantages of ensemble learning and
advanced deep learning techniques. More specifically, we aim to exploit the effectiveness of ensemble
learning for reducing the bias or variance of error by exploiting multiple learners and the ability
of deep learning models to learn the internal representation of the cryptocurrency data. It is worth
mentioning that since the component deep learning learners are initialized with different weight states,
this leads to the development of deep learning models each of which focuses on different identified
patterns. Therefore, the combination of these learners via an ensemble learning strategy may lead to
stable and robust prediction model.

In general, deep learning neural networks are powerful prediction models in terms of accuracy,
but are usually unstable in sense that variations in their training set or in their weight initialization
may significantly affect their performance. Bagging strategy constitutes an effective way of building
efficient and stable prediction models, utilizing unstable and diverse base learners [50,51], aiming to
reduce variance and avoid overfitting. In other words, bagging stabilizes the unstable deep learning
base learners and exploits their prediction accuracy focusing on building an accurate and robust final
prediction model. However, the main problem of this approach is that since bagging averages the
predictions of all models, redundant and non-informative models may add too much noise on the final
prediction result and therefore, possible identified patterns, by some informative and valuable models,
may disappear.

167



Algorithms 2020, 13, 121

On the other hand, stacking ensemble learning utilizes a meta-learner in order to learn the
prediction behavior of the base learners, with respect to the final target output. Therefore, it is able
to identify the redundant and informative base models and “weight them” in a nonlinear and more
intelligent way in order to filter out useless and non-informative base models. As a result, the selection
of the meta-learner is of high significance for the effectiveness and efficiency of this ensemble strategy.

6.2. Discussion of Results

All compared ensemble models were evaluated considering both regression and classification
problems, namely for the prediction of the cryptocurrency price on the following hour (regression)
and also for the prediction if the price will increase or decrease on the following hour (classification).
Our experiments revealed that the incorporation of deep learning models into ensemble learning
framework improved the prediction accuracy in most cases, compared to a single deep learning model.

Bagging exhibited the best overall score in terms of classification accuracy, closely followed
by averaging and stacking(kNN); while stacking(LR) the best regression performance. The confusion
matrices revealed that stacking(LR) as base learner was actually biased, since most of the instances
were wrongly classified as “Down” while bagging and stacking(kNN) exhibited a balanced prediction
distribution between “Down” or “Up” predictions. It is worth noticing that since bagging can be
interpreted as a perturbation technique aiming at improving the robustness especially against outliers
and highly volatile prices [37]. The numerical experiments demonstrated that averaging ensemble
models trained on perturbed training dataset is a means to favor invariance to these perturbations
and better capture the directional movements of the presented random walk processes. However,
the ACF plots revealed that bagging ensemble models violate the assumption of no autocorrelation
in the residuals, which implies that their predictions may be inefficient. In contrast, the ACF plots of
stacking(kNN) revealed that the residuals have no or small (inconsiderable) autocorrelation. This is
probably due to fact that the use of a meta-learner, which is trained on the errors of the base learners,
is able to reduce the autocorrelation in the residuals and provide more reliable forecasts. Finally, it is
worth mentioning that the increment of component learners had little or no effect to the regression
performance of the ensemble algorithms, in most cases

Summarizing, stacking utilizing advanced deep learning base learner and kNN as meta-learner
may considered to be the best forecasting model for the problem of cryptocurrency price prediction and
movement, based on our experimental analysis. Nevertheless, further research has to be performed
in order to improve the prediction performance of our prediction framework by creating even more
innovative and sophisticated algorithmic models. Moreover, additional experiments with respect to
the trading-investment profit returns based on such prediction frameworks have to be also performed.

7. Conclusions

In this work, we explored the adoption of ensemble learning strategies with advanced deep
learning models for forecasting cryptocurrency price and movement, which constitutes the main
contribution of this research. The proposed ensemble models utilize state-of-the-art deep learning
models as component learners, which are based on combinations of LSTM, BiLSTM and convolutional
layers. An extensive and detailed experimental analysis was performed considering both classification
and regression performance evaluation of averaging, bagging, and stacking ensemble strategies.
Furthermore, the reliability and the efficiency of the predictions of each ensemble model was studied
by examining for autocorrelation of the residuals.

Our numerical experiments revealed that ensemble learning and deep learning may efficiently be
adapted to develop strong, stable, and reliable forecasting models. It is worth mentioning that due
to the sensitivity of various hyper-parameters of the proposed ensemble models and their high
complexity, it is possible that their prediction ability could be further improved by performing
additional optimized configuration and mostly feature engineering. Nevertheless, in many real-world
applications, the selection of the base learner as well as the specification of their number in an ensemble
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strategy constitute a significant choice in terms of prediction accuracy, reliability, and computation
time/cost. Actually, this fact acts as a limitation of our approach. The incorporation of deep learning
models (which are by nature computational inefficient) in an ensemble learning approach, would
lead the total training and prediction computation time to be considerably increased. Clearly, such an
ensemble model would be inefficient on real-time and dynamic applications tasks with high-frequency
inputs/outputs, compared to a single model. However, on low-frequency applications when the
objective is the accuracy and reliability, such a model could significantly shine.

Our future work is concentrated on the development of an accurate and reliable decision support
system for cryptocurrency forecasting enhanced with new performance metrics based on profits
and returns. Additionally, an interesting idea which is worth investigating in the future is that in
certain times of global instability, we experience a significant number of outliers in the prices of all
cryptocurrencies. To address this problem an intelligent system might be developed based on an
anomaly detection framework, utilizing unsupervised algorithms in order to “catch” outliers or other
rare signals which could indicate cryptocurrency instability.
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List of Acronyms and Abbreviations

Acronym Description

BiLSTM Bi-directional Long Short-Term Memory
BRNN Bi-directional Recurrent Neural Network
BTC Bitcoin
CNN Convolutional Neural Network
DTR Decision Tree Regression
ETH Ethereum
F1 F1-score
kNN k-Nearest Neighbor
LR Linear Regression
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
SVR Support Vector Regression
RMSE Root Mean Square Error
XRP Ripple
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