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We are delighted to announce that the Special Issue of Energies on “Intelligent Transportation

Systems (ITS) for Electric Vehicles (EV)” received 25 submissions of which 14 from Asia, Europe,

and America have been selected. In less than a year, 30 citations have already been achieved.

Published work reflects major investigation topics from the charging process, regulation of urban

complexes, a real case study on EV charging on a condo, EV charging stations and dispersed

generation, parking guidance, and change of user behavior in the city. Two other papers cover the

topics “Vehicle Electrification: New Challenges and Opportunities for Smart Grids” and “Optimal

Charging Navigation Strategy Design for Rapid Charging Electric Vehicles”. Another paper explores

train operation and bus fleets. The other published papers are as follows: “Vehicle Extreme Fast

Charging Station”; “Optimal Design for a Shared Swap Charging System Considering the Electric

Vehicle Battery Charging Rate”; “A Method for the Optimization of Daily Activity Chains Including

Electric Vehicles and On-Road Object Detection System Using Monovision and Radar Fusion”;

“Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison,

and Outlook”.

The EV and charging station (CS) markets have been growing exponentially, and a forecast

from the International Energy Agency estimates an increase of EV sales from the current 3 million

to 125 million by 2030. The CS market is growing by 40% a year and is currently worth $300

billion. Electromobility and ITS are essential components in decarbonizing road transportation and

play an essential role in the mobility process of smart cities. ITS also play an essential role in this

transformation, owing to the flexibility of the EV charging process and EV operation, which operates

as an energy storage device; it also helps to facilitate the market penetration of renewable energy

resources.

We would like to thank the extensive list of external reviewers from several areas of expertise

and from numerous countries around the world and the editor Addison Su, who initiated this topic

and provided support during the entire process.

Energies provides an excellent forum for all researchers, developers, and practitioners to discuss

all science and technology aspects that are relevant to energy and in this case related to intelligent

systems and electric vehicles.
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Abstract: Nowadays, concerns about climate change have contributed significantly to changing
the paradigm in the urban transportation sector towards vehicle electrification, where purely
electric or hybrid vehicles are increasingly a new reality, supported by all major automotive brands.
Nevertheless, new challenges are imposed on the current electrical power grids in terms of a
synergistic, progressive, dynamic and stable integration of electric mobility. Besides the traditional
unidirectional charging, more and more, the adoption of a bidirectional interconnection is expected
to be a reality. In addition, whenever the vehicle is plugged-in, the on-board power electronics can
also be used for other purposes, such as in the event of a power failure, regardless if the vehicle is
in charging mode or not. Other new opportunities, from the electrical grid point of view, are even
more relevant in the context of off-board power electronics systems, which can be enhanced with new
features as, for example, compensation of power quality problems or interface with renewable energy
sources. In this sense, this paper aims to present, in a comprehensive way, the new challenges and
opportunities that smart grids are facing, including the new technologies in the vehicle electrification,
towards a sustainable future. A theoretical analysis is also presented and supported by experimental
validation based on developed laboratory prototypes.

Keywords: vehicle electrification; smart grids; renewable energy sources; energy storage systems;
power quality; bidirectional; power electronics.

1. Introduction

Nowadays, modern societies are facing the well-known problems of environmental air pollution,
forcing the adoption of new strategies for mitigating greenhouse gas emissions [1,2]. Some of the
actions for alleviating such emissions are mainly offered by emerging smart grids, and are sustained by:
(a) Renewable energy sources (RES), on small- and large-scale; (b) energy storage systems (ESS), as a
support of RES adoption; and (c) vehicle electrification encompassing advanced functionalities [3–7].
This is even more evident considering that the technologies in the field of industrial and power
electronics have evolved in recent years, contributing towards a profound and motivating change of
paradigm [8,9]. As a positive consequence, new electronics applications encompassing communication
technologies, supported by the Internet of Thing (IoT) concept, will transform the electrical power grid
into a dynamic, autonomous, secure and flexible infrastructure [10–13].

Concerning RES, in recent decades, the production of electricity from this type of source (mainly
supported by wind and solar) has grown significantly as a contribution for optimizing the energy
management in macro- and micro-scenarios. In this perspective, the operation and optimization aspects
regarding the introduction of RES in microgrids is envisaged in [14], whereas an ample perspective of
the RES contribution for disseminating the new paradigm of smart grids is presented in [15]. In order

Energies 2019, 12, 118; doi:10.3390/en12010118 www.mdpi.com/journal/energies1
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to optimize the power generation from RES, especially considering the intermittency associated with
their production, it will also be fundamental, in the near future, to combine the inclusion of flexible
ESS, allowing the establishiment of an efficient harmonization between power production, storage,
and consumption. The present status and the perspectives for the inclusion of RES with intermittent
and unpredictable production is presented in [16], the balancing strategy for power usage from RES,
regarding the user demand, is presented in [17], and a review about the role of ESS for mitigating the
inconsistency of energy production from RES is offered in [18].

Alongside with RES and ESS, the large-scale adoption of vehicle electrification, principally the
electric vehicle (EV), will also be vital for smart grids and smart homes dissemination, as well as
for reducing energy costs and greenhouse gas emissions [19,20]. A synergistic use of RES with the
charging infrastructure of EVS charging toward opportunities related to the RES and EVs power
optimization is offered in [21]. A complete survey concerning the electrification of transportation
contextualized in smart grids is present in [22]. The collaboration of EVs and RES toward cost and
emission reductions is introduced in [23]. The particular case of the power coordination between EVs
and RES in a smart home level is presented in [24]. Concerning this scenario, several perspectives
can be adopted. For example, smart charging approaches for EVs conceived to maximize the usage
of energy from RES are introduced in [25]. Designed to enhance the grid performance, a scheduling
strategy considering the uncertainties from RES and EVs is proposed in [26]. A solar docking charging
station for EVs is described in [27]. The impact of EVs and solar photovoltaic panels (PV) prospecting
the future enegy generation portfolio is investigated in [28]. A cost minimization for reducing the
effect of intermittency in a solar docking charging station with EVs is proposed in [29]. An innovative
integrated topology for RES and EVs is proposed and experimentally validated in [30]. A harmonized
scheduling of distributed energy assets, optimizing the energy management of a smart home is offered
in [31]. The optimization of a smart home prospecting demand response strategies is presented in [32].
A smart charging management for EVs in smart homes is proposed in [33], a control methodology for
the EV charging, considering RES and uncertainties as for the energy price, is proposed in [34], and a
demand-side energy management including EVs, ESS, RES is presented in [35].

From a global point of view, a complete outline about the status and issues toward the vehicle
electrification is offered in [36], whereas an economic investigation of consumers’ lookout for the
electric mobility supremacy is presented in [37]. The impact that vehicle electrification can cause in the
electrical grid is presented in [38], and a survey concerning the vehicle electrification encompassed
in a smart grid background is presented in [39]. On the other hand, as the title indicates, this paper
focuses on the challenges and opportunities that arise from vehicle electrification, concretely in terms
of the utilization of the on-board and off-board EV battery chargers (EVBCs) for innovative operation
modes. Thus, besides the traditional operation modes, grid-to-vehicle (G2V) and vehicle-to-grid (V2G),
this paper focuses on the possibility to integrate power quality features in the on-board and off-board
EVBCs, as a contribution for the grid-side, as well as on the framework with unified technologies with
RES and ESS.

Contextualizing the aforementioned aspects, harmonized for vehicle electrification, the main
contributions of this paper encompass proposals in the following areas: (a) New opportunities of
operation toward on-board EVBCs in a future perspective of smart homes; (b) new opportunities
of operation toward single- and three-phase off-board EVBCs in a future perspective of smart grids;
(c) new operation modes of off-board EVBCs considering the perspective of improving power quality
aspects for the grid-side; (d) new operation modes for single- and three-phase off-board EVBCs
considering a unified integration with RES.

After this brief introduction, Section 2 introduces the operating principle of an EVBC, highlighting
the different configurations of on-board and off-board strands. Section 3 comprehensively presents
the challenges and opportunities that on-board and off-board EVBCs represent for smart grids and
smart homes (considering single- and three-phase interfaces). Section 4 presents three laboratory
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prototypes of EVBCs encompassing innovative features, as well as a brief experimental validation.
Finally, Section 5 highlights the main conclusions that can be drawn from this paper.

2. EV Battery Chargers: Principle of Operation

This section introduces the principle of operation of EV battery chargers (EVBCs), as well as
the future perspectives in terms of on-board and off-board systems, wired and wireless systems,
and integrated coordination towards smart grids.

2.1. On-Board and Off-Board Systems

The principle of operation of an on-board and an off-board EVBC, also highlighting its internal
constitution, is presented in this section. Internally, an EVBC is composed of power electronics
converters and their control systems, responsible for controlling the EV battery charging and,
in conjunction with the other elements of the EV, for establishing a communication with the energy
management system of the smart grid or smart home with the concrete objective of defining set points
of operation. Figure 1 shows the basic and classical structure of an EVBC, composed by two power
converters (a grid-side one interfacing with the electrical grid and a battery-side one interfacing with
the EV battery) and by the digital control system common to both power converters. Since the control is
done with a closed-loop algorithm, this figure also shows the main control variables that are necessary
to acquire, as well as the output control signals for the semiconductors of the power converters.

 

veviev vdc vbat ibat

Figure 1. Structure of an electric vehicle battery charger (EVBC) composed of two power converters
(a grid-side one interfacing the electrical grid and a battery-side one interfacing the EV battery) and the
digital control system.

This is the customary organization of an EVBC, however, it can be classified according to its
arrangement with respect to the EV, i.e., on-board and off-board. An EVBC is classified as on-board
when the power electronics required to charge the EV battery are inside the EV, i.e., the converter
responsible for controlling the stages of battery charging is inside the EV (usually more than a single
controlled stage of voltage and current). Figure 2 shows the interface of an EV with the power grid
through an on-board EVBC and an off-board EVBC. The power converters of the on-board EVBC are
responsible for the bidirectional power flow between the electrical grid and the EV battery. For the
grid-side, the ac-dc converter can be controlled by current or voltage according to the operating mode
and for the battery-side, the dc-dc converter can also be controlled by current or voltage according
to the intended operating mode for the charging system (c.f. Section 3). As shown in the figure,
the operating mode is defined by specific control algorithms, whose management is in accordance
with the information from the battery management system (BMS), i.e., the BMS establishes the limits
of voltage and current during the charging or discharging processes. On the other hand, an EVBC is
classified as off-board when the power electronics required to charge the EV battery are outside the
EV, i.e., the converters that are responsible for controlling the battery charging stages (usually a single
current controlled stage) are outside the EV. An off-board EVBC is composed by a grid-side converter
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and by a battery-side converter, both allowing bidirectional power flow between the electrical grid
(with current control) and the EV battery (also with current control), i.e., in both cases, it is similar to
the operation presented previously for the on-board EVBC. Moreover, for the off-board structure, the
control of the operating mode is also defined in accordance with the information provided by the BMS.

Figure 2. Interface of an EV with the power grid through an on-board EVBC and an off-board EVBC.

2.2. Wireless Charging Systems

In the previous section the on-board and off-board EV battery chargers (EVBCs) were introduced.
Due to weight and volume restrictions from the EV perspective, normally on-board EVBCs are designed
for far lower power ratings than off-board EVBCs. However, it is important to distinguish that, from
the electrical grid point of view, in both cases, the EVBCs can have a galvanic isolation or not, either for
safety reasons or for convenience, in order to reduce operating voltage levels (i.e., the levels between
the grid and the EV battery). In addition to the galvanic isolation that can be implemented for on-board
and off-board systems, EVBCs can also be classified as wired or wireless, depending on whether there
is a physical link between the electrical grid and the EVBC. Usually, in a wireless system, a part of the
power electronics converter is outside the EV (off-board) and the other part is inside the EV (on-board).

Wireless charging systems are becoming popular for different appliances and for EVs; therefore,
the main automakers are also developing realistic solutions for their EVs, including a significant
range of charging levels. These wireless charging systems, which have been explored by different
companies over the last decades, are also seen as a key opportunity to disseminate the electric mobility
market, since it is a new exciting experience for the user. Complete overviews about wireless charging
technologies for applications in electric mobility are presented in [40–43]. A basic wireless charging
system consists in a fixed ground pad that stays below the EV during the charging and a receiving
system that stays embedded in the inferior part of the EV. In addition to the need to increase the
efficiency of the power transfer between the ground pad and the EV, which will involve the use of
innovative technologies of power converters, the full adoption of wireless charging systems will rely
on industry standards, universal communication with any EV and the charging pad, and safety issues
for human beings and animals.

2.3. EV in Smart Grids: Coordination and Power Quality

As demonstrated in [44] and [45], the EV dissemination signifies a vast contribution for electrical
grids, both in terms of future trends and control coordinating strategies. For example, the collaborative
operation between EVs and RES is introduced in [46], and the contextualization with smart homes and
microgrids is presented in [47] and [48]. Taking into account the EV operation in G2V and V2G modes
framed in smart grids, several key points can be addressed. For instance, the impact on distribution
systems is analyzed in [49], the coordination with RES scenarios is explored in [50], the contribution
to reducing operating costs and to regulating the grid voltage frequency is explored in [51], and the
dynamic operation as a function of other appliances is investigated in [52]. Besides the G2V and V2G
modes, the EV can also contribute to improving power quality issues. For instance, the EVBC operation
as an active filter is introduced in [53] and [54], and the EVBC contribution for compensating reactive
power in the electrical grid is investigated in [55] and [56]. In the context of power quality, an overview
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about power quality in smart grids is established in [57], a collaborative support between RES and
EVs for enhancing power grid support is analyzed in [58], the key aspects of the EVs integration into
smart grids are discussed in [59], and innovative operations for the EVs connected into power grids
toward mitigating issues of power quality are proposed in [60].

3. Opportunities for Smart Grids

Section 2 introduced the different structures that can be considered for an EVBC. As the analysis
of the structures in terms of power electronics is not the objective of this paper, but the challenges and
opportunities of vehicle electrification in smart grids and smart homes, the particular details of the
topologies of the converters, either hardware or software, are not presented in this section.

3.1. On-Board EV Battery Charger

This section presents the main operation modes of an on-board EVBC, taking into account its
limitations and the opportunities that they can offer for the operation in smart grids and smart homes,
concretely, in terms of power controllability and new functionalities obtained for the installation where
the EV is plugged-in. As an example case, Figure 3 illustrates the integration of an EV (including the
on-board EVBC) into a smart home. As shown, the EV battery is charged through an on-board EVBC,
which is connected to the electrical grid in parallel with the home loads, i.e., when present, the EV is
treated as an additional home load. As illustrated, bidirectional communication is considered between
the smart home and the electrical grid toward a smart grid perspective in terms of controllability.

 

vg

ig

vev

iev

ihl

vbat

ibat

vhl

Figure 3. Illustration of the integration of an on-board EVBC into a smart home.

3.1.1. Grid-to-Vehicle (G2V)

The G2V operation mode is exclusively concerned with the EV battery charging directly from
the grid, and it is usually the only mode of operation available on EVs. As exemplified in Figure 4,
the on-board EVBC is connected to the electrical grid through a smart home with unidirectional
power flow and with bidirectional communication between the smart home, the electrical grid and the
on-board EVBC. With this operation mode, the value of the EVBC grid-side current (iev) does not take
into account the other loads connected in the same electrical installation (e.g., in the case of a home,
the total current is limited by the main circuit breaker, which may be triggered if the limit is surpassed).
The principle of operation representative of the G2V mode in a smart home is presented in Figure 5,
where the grid voltage (vg), the grid current (ig), the home loads current (ihl) and the EVBC grid-side
current (iev) are represented. In order to avoid deteriorating the power quality indices in the electrical
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grid, the EVBC current is sinusoidal and in phase with the grid voltage. As shown, realistic conditions
are considered in terms of distorted grid voltage (vg) and home loads current (ihl).

 

Figure 4. On-board EVBC: Grid-to-vehicle (G2V) operation mode.

 

vg

ihl

ig

iev

Figure 5. Principle of operation representative of the G2V mode.

Similar to the (basic) G2V mode, the controlled G2V mode refers to the EV battery charging
directly from the grid, but with adjustment of the operating power value according to the other
connected loads [52]. Besides, with this operation mode, for example, the EVBC operating power
may be adjusted according to the power injected by RES, aiming to balance the power production
and consumption from the smart home perspective, and without harming the power quality on the
grid-side (e.g., frequency and amplitude deviations on the grid voltage). In order to implement
this operation mode, it is necessary to establish a communication between the EVBC and the grid
(or the home energy management system, i.e., when considering the EV integration into a smart
home). The principle of operation representative of the controlled G2V mode is exemplified in Figure 6.
Similarly to the aforementioned G2V mode, the EVBC operates with a sinusoidal grid-side current;
however, its amplitude is adjusted in real-time according to the other loads of the home. In the
transition from case #1 to case #2, a home load was turned-off (the current consumption, ihl, decreases),
so the EVBC increases its operating power (increases the current consumption, iev). Nevertheless,
the maximum operating power of the EVBC, which is internally controlled, cannot be exceeded in
any circumstance. Applying this control strategy to the EV battery charging, the maximum operating
power of the smart home is never exceeded, maintaining the same value. This can be observable in the
amplitude of the grid current (ig).

3.1.2. Vehicle-to-Grid (V2G)

The V2G operation mode refers to the return of part of the energy stored in the EV battery to the
grid conferring to the convenience of the grid management system and the EV user, representing a
benefit for the electrical grid, because it allows using the EV as an ESS for supporting the grid stability.
Contrary to the G2V, in this operation mode, the grid-side and the battery-side converters must be
used in bidirectional mode, representing a perspective for the EVBCs of the future EVs. Moreover,
this mode requires communication with a grid aggregator, in order to define in which schedules the
EVBC operates in this mode, as well as the amount of power that is necessary to return to the grid.
This operation mode, illustrated in Figure 7, is controlled according to the power injected into the grid,
but it can also be controlled based on the loads connected in the same electrical installation. Figure 8
presents some results illustrating the V2G mode. Initially, in case #1, the EVBC is operating in V2G
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mode by injecting power into the grid without any control over the other loads, and then, in case #2,
the EVBC injects power into the grid as a function of the other loads. In this specific case, a load was
turned off; therefore, the power injected increases proportionally. As can be observed, in both cases,
the EVBC grid-side current is in phase opposition with the voltage, meaning that power is injected
into the grid.

 

vg

ihl

ig

iev

#1 #2

Figure 6. Principle of operation representative of the controlled G2V mode.

 

Figure 7. On-board EVBC: vehicle-to-grid (V2G) operation mode.
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Figure 8. The principle of operation representative of the V2G mode.

3.1.3. Vehicle-to-Load (V2L)–Voltage Source

In the previously presented operation modes, the EVBC is controlled in order to absorb or inject
power into the grid, where the grid-side converter operates with a current feedback control, i.e.,
the voltage is imposed by the grid and the EVBC defines the current waveform. In the operation mode
as a voltage source, the EVBC operates independently from the grid, i.e., it can be used as a voltage
source to power loads according to the user’s convenience. The principle of operation representative
of the vehicle-to-load (V2L) mode, i.e., as a voltage source, is presented in Figure 9. This operation
mode is useful, for example, in remote locations where a voltage source is only necessary for short
periods. It may also be useful in campsites, or in extreme situations of catastrophic events where the
grid may be unavailable. Thus, in this operation mode, the grid-side converter operates with a voltage
feedback control, i.e., the voltage is imposed by the EVBC and the current waveform is defined by
the linear or nonlinear loads connected to the EVBC. As operation mode uses the energy from the EV
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battery, the EV owner is responsible for the management of the battery state-of-charge, e.g., regarding
the minimum acceptable state-of-charge for the next travel. Internally, the EV battery is protected
by the BMS. Since this operation mode can be used in multiple locations and for various purposes
(e.g., smart homes, remote locations, or in islanding mode), it represents a new contribution for the
future smart grids. It is meaningful to note that Nissan already has a system entitle “LEAF-to-Home”,
where the “EV Power Station” interfaces an EV and a house [61]. However, the key drawback of the
Nissan system is that it can only be used where it is installed, i.e., it cannot be used generically with
the EV in any place other than the home.

In Figure 10 the operating principle of this mode is presented, where ig represents the home
current, iev represents the EVBC grid-side current, and ihl the loads current. As can be seen, when the
EVBC is functioning as a voltage source, the EVBC current is the same as the load current, and the
voltage applied to the loads is the voltage produced by the EVBC, whose value is equal to the nominal
value of the grid voltage. This figure is divided into three distinct cases. In case #1, the EVBC is not
operating in any mode. In case #2, the EVBC is not connected to the grid and starts to produce a
sinusoidal voltage, but no load has yet been connected to the EVBC. In case #3, the EVBC is producing
a sinusoidal voltage and a load is connected to the EVBC. In this case, since a nonlinear load was
connected, it results in a consumed current with a high harmonic content.

 

Figure 9. On-board EVBC: Vehicle-to-load (V2L) operation mode (as a voltage source).

 

vev

ihl

iev

#2 #3#1

Figure 10. The principle of operation representative of the V2L mode (as a voltage source).

3.1.4. Vehicle-to-Home (V2H)–Uninterruptible Power Supply

In addition to the operation mode presented earlier, the EVBC can also operate as a voltage source,
but with the characteristics of an off-line uninterruptible power supply (UPS). This mode represents
a new opportunity for smart homes because, in the event of a power failure, the EVBC can operate
almost instantly as a voltage source for the smart home. In this operation mode, communication is
required between the EVBC and the smart home, in order to identify a power outage and even to some
selected priority loads. The principle of operation representative of the vehicle-to-home (V2H) mode
as a UPS is presented in Figure 11, which clearly identifies that the EVBC operates in unidirectional
mode and disconnected from the electrical grid.

Like the previously presented operation mode, the grid-side converter of the EVBC operates with
a voltage control feedback and the current is defined by the loads. However, unlike the previous
mode, it is necessary to measure the grid voltage in order to detect when a voltage failure happens.
Whenever this occurs, a control signal is sent to the general circuit breaker, to isolate the loads from
the grid, and, almost instantaneously, the EVBC starts its operation as a voltage source. Later, when
the grid voltage is restored, the EVBC recognizes this situation. Then, after some cycles of the grid
voltage, it begins a synchronization with the phase of the voltage and, as soon as the control system is
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synchronized, it makes the transition to the normal mode, i.e., the loads are fed again by the grid. After
this process, the EVBC may either go to an idle state or start another operation mode, such as G2V or
V2G. Figure 12 illustrates the operating principle of this mode, showing the grid voltage (vg), the grid
current (ig), the loads voltage (vhl), the loads current (ihl), the voltage produced by EVBC (vev), and the
EVBC current (iev). This operation mode is divided into four cases. In case #1 the EVBC is connected to
the grid to charge the batteries through the G2V operation mode (i.e., with a sinusoidal current and
unitary power factor). In case #2, there is a fault in the grid voltage, detected by the EVBC, which starts
operating in UPS mode, feeding the loads. In case #3, the grid voltage is restored and the EVBC stops
operating in the UPS mode and the loads are fed back through the electrical grid again, as in case #1.
As shown, even with a distorted grid voltage in cases #1 and #3, during the outage (case #2), the EVBC
produces a sinusoidal voltage.

 

Figure 11. On-board EVBC: Vehicle-to-home (V2H) operation mode (as an off-line uninterruptible
power supply).

 

vg

ihl

ig

iev

#1 #2

vev

vhl

#3

Figure 12. The principle of operation representative of the V2H mode (as an off-line uninterruptible
power supply).

3.2. Off-Board EV Battery Charger

The main operation modes of an off-board EVBC are presented in this section, addressing the
opportunities that they can offer for a contextualized operation with smart grids and smart homes,
both in terms of controllability and new features that can be obtained for the installation where the
EV is plugged-in. It is relevant to note that an off-board EVBC can be classified as slow, semi-fast,
fast or ultra-fast; however, the modes of operation presented in this section are independent of
this classification. Moreover, an off-board EVBC can be installed into the electrical grid through a
single- or a three-phase interface. As an example case, Figure 13 illustrates the integration of an
off-board EVBC into an industry. As shown, the EV battery is charged through the off-board EVBC,
which is connected to the electrical grid in parallel with the home loads. Therefore, the off-board
EVBC is continuously linked to the electrical grid independently of the EV presence. As illustrated,
bidirectional communication is considered between the industry and the electrical grid towards a
smart grid perspective in terms of controllability.
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Figure 13. Illustration of the integration of an off-board EVBC into an industry.

3.2.1. Grid-to-Vehicle and Vehicle-to-Grid

As with an on-board EVBC, an off-board EVBC also enables the G2V mode, regardless of the grid
operation in terms of power management. Therefore, the central difference between an on-board and
an off-board EVBC is the operating power, where, customarily, the off-board EVBC operates with a
significantly higher power. In addition to the G2V operation mode, the V2G operation mode is also
possible in an off-board EVBC, however, this mode is presented as a new opportunity for off-board
EVBCs, since it is important to note that, nowadays, off-board EVBCs are unidirectional, but for
operation in V2G mode they need to be bidirectional.

The principle of operation representative of an EVBC in G2V and V2G modes is presented in
Figure 14, where it is clearly identified that the EVBC operates in a bidirectional mode in terms of
active power and in terms of a communication with the electrical grid. During the charging of the
EV battery using an off-board EVBC, the intention is to carry out the process as quickly as possible.
However, as the EV is connected to an off-board EVBC only for brief periods, the EV can return a
minor part of the stored energy (e.g., for a power management strategy). For example, if the EV is
plugged-in for performing a fast charging of about 30 minutes operating with a power of 30 kW, but
for 30 s, it returns a power of 10 kW back to the electrical grid, then the total time will be exceeded in
just 1 minute and 40 s. This represents a small amount of power for the electrical grid, but considering
an EV fleet with this functionality and an electrical grid with prediction and management algorithms,
this operation mode is quite attractive for off-board EVBCs.

 

Figure 14. Integration of an off-board EVBC into the electrical power grid for G2V and V2G
operation modes.

3.2.2. Power Quality Compensator

As noted earlier, off-board EVBCs are installed externally to the EV and are only used when it is
necessary to charge the EV battery, a task that happens only for brief minutes. Thus, it is foreseeable
that these systems may be out of operation during various periods along the day. In this sense, since an
off-board EVBC is installed in a specific electrical installation, there is a new opportunity of operation
for the off-board EVBC that is related to the possibility to compensate power quality problems for the
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electrical grid (caused by the nonlinear loads consuming distorted currents). This operation mode
is even more significant knowing that it can be accomplished whether or not the EV is present, i.e.,
the power quality compensation can be performed at the same time that the batteries are being charged
(G2V mode) without a detrimental effect on the EV battery or the EVBC operation. Moreover, it should
be noted that this operation mode may also be used with the V2G mode. As the compensation is
made to the grid-side, it is not necessary to transfer active power between the off-board EVBC and the
electrical grid, which is a pertinent benefit to this operation mode. Moreover, no extra hardware is
required for the operation in this mode, and it is only necessary to obtain the instantaneous current
value of the installation.

Figure 15 presents the framework of an off-board EVBC considering this new opportunity of
operation, in which it is possible to compensate power quality problems related to power factor,
current harmonics, and current imbalances. These power quality problems are caused by the loads
presented in the industry, where the off-board EVBC is also installed. Given the offered benefit, this
operation mode is especially suitable for EVBCs installed in industrial zones, where it is intended to
minimize problems of power quality and to charge the EV battery as fast as possible. The operating
principle of this mode is shown in Figure 16. Therefore, a three-phase installation is considered as a
case example. In case #1, the off-board EVBC is connected to the grid without compensating power
quality problems and without an EV in G2V or V2G modes. Therefore, the currents of the electrical
installation are the consumed currents of the industry loads. In case #2, the process of power quality
compensation (e.g., power factor and harmonics) is started without any EV plugged-in. In this case, as
can be seen, on the grid-side, the power factor became unitary and the currents became sinusoidal and
balanced. In case #3, in addition to the previous compensation, the off-board EVBC also starts the EV
battery charging. As can be seen, the currents on the grid-side remain sinusoidal and balanced, only
increasing its amplitude, corresponding to the active power required to charge the EV battery. Once
again, it is imperative to remember that the operating active power of the EVBC is only used to charge
the EV battery.

 
Figure 15. Integration of an off-board EVBC into the electrical power grid for operation as a power
quality compensator.

3.2.3. Unified Operation of Power Quality Compensator with Renewables

In the previous sections, new opportunities were presented for the EVBC operation in the context
of smart grids. Knowing the influence that RES represent for the evolution and maturation of smart
grids, as well as to minimize the impact that the EV battery charging represents in terms of the
necessary power, their integration as close as possible to the off-board EVBC is of extreme relevance.
For instance, solar photovoltaic panels, as an example of RES, can be used as a solar rooftop in EV
charging stations or industries in order to accomplish with the opportunity mentioned in this section.
In addition, since both off-board EVBCs and RES interface with the electrical grid using a grid-side
converter, and each system has its own dc-link, a new opportunity is proposed in this section for
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smart grids, which consists of unifying both systems with only one interface with the electrical grid.
Moreover, bearing in mind the opportunity identified in the previous section, the new opportunity
identified a single interface with the electrical grid and the unification (through the dc-link) of the
EVBC and the RES (which can be photovoltaic panels or wind turbines) is presented in Figure 17.
Furthermore, with this unified strategy, it is conceivable to increase the efficiency compared to the
customary solution in which two interfaces are used with the electrical grid, since the power coming
from the RES can be directly used by the battery-side converter to charge the EV battery, without the
need to use the grid-side converter.

vg{a,b,c}

#1 #2 #3

ihl{a,b,c}

iev{a,b,c}

ig{a,b,c}

Figure 16. The principle of operation representative of the off-board EVBC operation as a power
quality compensator.

 
Figure 17. Off-board EVBC: Unified operation as a power quality compensator with renewables.

Figure 18 presents the principle of operation of this mode, in part, supported by operations
presented in the previous sections. In case #1, the off-board EVBC operates in the same way as in
Figure 16, whereas in case #2 the off-board EVBC is used to inject power into the grid from the RES.
As can be seen in this case, the effective values of the grid currents decrease due to the injected power
from the RES, but the EV battery continues with the same charging power, meaning that the EV battery
is being charged with energy from the RES.
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Figure 18. Principle of operation representative of the off-board EVBC: Unified operation as a power
quality compensator with renewables.

3.2.4. Unified Operation of Power Quality Compensator, Renewables and Energy Storage Systems

Following the opportunity presented in the previous section, providing the off-board EVBC with
another interface on the dc-link, for an ESS, results in a new opportunity that includes the main aspects of
smart grids in terms of power electronics. For instance, it should be noted that solar photovoltaic panels,
as an example of RES, can be used as a solar rooftop in industries. In this way, it is possible to fit, in a
single off-board EVBC equipment, the aspects of electric mobility, power quality, RES and ESS. Figure 19
shows this new opportunity, in which it is possible to recognize a single interface with the electrical grid
and the unification (through the dc-link) of the converters for the EV battery charging, RES and ESS.
Figure 20 shows the operation principle based on this proposal. In case #1, the off-board EVBC operates
in the same way as shown in Figure 18. In case #2, after the EV charging process is completed, the energy
produced by the RES is stored in the ESS. As shown in this case, the off-board EVBC compensates the
currents of the industry loads and stores the power from the RES in the ESS at the same time.

 

Figure 19. Off-board EVBC: Unified operation of power quality compensator, renewables and energy
storage systems.

13



Energies 2019, 12, 118

vg{a,b,c}

#1 #2

ihl{a,b,c}

iev{a,b,c}

ig{a,b,c}

PRES

PESS

Figure 20. Principle of operation representative of the off-board EVBC: Unified operation of power
quality compensator, renewables and energy storage systems.

4. Laboratory Prototypes

This section presents three examples of laboratory prototypes employing some of the operation
modes referred to in the previous section. Figure 21 shows a photograph of a laboratory workbench
where an on-board system and two off-board systems are presented. These prototypes were developed
considering real-scale applications.

 

Figure 21. Photography of the laboratory workbench with the on-board and off-board EVBCs.

The on-board EVBC interfaces the electrical grid through a single-phase connection and allows
operating in controlled G2V and V2G modes, as well as in voltage source mode or UPS mode.
It is composed of two power stages, a grid-side converter and a battery-side converter, joined by a
common dc-link.
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One off-board EVBC interfaces with the electrical grid through a three-phase connection.
It is constituted by two power converters (three-phase grid-side and battery-side) and allows the
simultaneous and controlled G2V operation, as well as the compensation of power quality problems
for the grid (e.g., current harmonics and reactive power), which is a feature that can be accomplished
independently of the EV presence.

The other off-board EVBC interfaces the electrical grid through a single-phase connection. It is
also constituted by two power stages, but with three accessible interface ports. A bidirectional ac-dc
grid-side converter is employed to interface the electrical grid. In the dc-side, two separate interfaces
are possible: A bidirectional dc-dc battery-side converter for the EV battery interface (empowering the
G2V and V2G modes) and a unidirectional dc-dc converter for the interface of a RES (in this case a set
of photovoltaic panels were considered). The simultaneous compensation of power quality problems
is also possible.

It is fundamental to note that it is not the objective of this paper, and in particular this section,
to establish a careful description about the internal constitution of the converters presented in the
various prototypes, as well as the various control algorithms. In counterpart, the evident objective is to
present a set of EVBCs that are capable of operating in several modes, representing new challenges
and opportunities for smart grids and smart homes.

Figure 22 presents some experimental results for the single-phase on-board EVBC shown in
Figure 21. Figure 22a presents the grid-side current (iev) and voltage (vg), evidencing a sinusoidal
current and a distorted voltage, meaning that the control algorithm employs a phase-locked loop,
contributing to reduce power quality problems. A unitary power factor, voltage, and current in phase,
is also verified. Figure 22b shows an experimental result with the on-board EVBC operating as a UPS.
This result is divided into two distinctive circumstances: In case #1, the EVBC operates in G2V mode
and in case #2 in UPS mode. At the beginning of case #2, a power outage occurs in the electrical
grid, interrupting the G2V mode for transition to the UPS mode. This transition was performed
automatically, and the power outage was detected by measuring the root mean square (rms) grid
voltage (vg). As shown, the battery-side current (ibat) is positive during case #1 (meaning the EV battery
charging) and negative during case #2 (meaning the EV battery is discharging for the UPS operation).
The dc-link voltage (vdc) is always positive, controlled by the grid-side converter during case #1 and
controlled by the battery-side during case #2. As shown, a sudden variation occurs in the dc-link
voltage aiming to compensate as fast as possible the power outage, i.e., the transition for the UPS mode.
Lastly, Figure 22c shows the on-board EVBC operation as a UPS. As can be observed, the voltage
produced by the on-board EVBC (vhl) is sinusoidal even when it supplies a nonlinear load, which is
characterized by a high-distorted current consumption (ihl).

Figure 22. Experimental results of the single-phase on-board EVBC: (a) During 50 ms in the
grid-to-vehicle (G2V) operation mode-grid-side current (iev) and voltage (vg); (b) during 50 s in
the operation as a UPS-dc-link voltage (vdc) and battery-side current (ibat); (c) During 50 ms in the
operation as a UPS-produced voltage (vhl) and consumed current (ihl).
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Figure 23 presents some experimental results for the single-phase off-board EVBC. Figure 23a
shows the power in the three interfaces of the single-phase off-board EVBC, namely: The electrical grid
interface (PG); the RES interface, in this case, photovoltaic panels (PRES); and the EV battery interface
(PEV). This experimental result is divided into two distinct cases. During the case #1, the EV battery is
charged from the grid and the RES is not producing energy, meaning that the grid-side power (PG) is
equal to the battery-side power (PEV) and the RES power (PRES) is zero. In this case, the single-phase
off-board EVBC operates in G2V mode. As can be seen, the operating power is increased up to its
nominal value aiming to avoid sudden variations for the grid and for the EV battery. During case
#2, the single-phase off-board EVBC operates in V2G mode and the PV panels start their production,
meaning that the power injected into the electrical grid (PG) is the sum of the power from the EV
battery (PEV) and the power from the RES (PRES). Figure 23b shows the grid-side current (iev) and
voltage (vg) of the off-board EVBC, as well as the dc-link voltage (vdc), the EV battery-side current
(ibat), and the RES (photovoltaic panels) current (ipv). In this mode (G2V), the grid-side current has
a sinusoidal waveform, it is in phase with the voltage, and the dc variables are controlled according
to the operation of the single-phase off-board EVBC. Lastly, Figure 23c shows the grid-side current
(iev) with a sinusoidal waveform, but in opposition with the voltage waveform (vg), signifying that the
single-phase off-board EVBC is operating in V2G mode, i.e., it is injecting power into the grid.

Figure 23. Experimental results of the off-board EVBC considering the integration of renewables
(photovoltaic panels): (a) During 100 s in the grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation
modes with renewables—power in the grid side (PG), power in the EV side (PEV) and power in the
RES side (PRES); (b) during 100 ms in the G2V mode-grid-side current (iev) and voltage (vg), dc-link
voltage (vdc), EV battery current (ibat), and photovoltaic panels current (ipv); (c) during 50 ms in the
V2G mode-grid-side current (iev) and voltage (vg).

Figure 24 presents some experimental results of the three-phase off-board EVBC. Figure 24a
shows the grid-side currents (iga, igb, igc) during the G2V mode, the dc-link voltage (vdc), and the EV
battery current (ibat). As can be observed, the currents are balanced and sinusoidal waveforms are
presented. The dc-side variables (vdc and ibat) are controlled in conformity. Figure 24b presents the
grid-side voltages (vga, vgb, vgc) and the consuming lagged currents (iga, igb, igc) in order to produce
reactive power for the grid, confirming the operation of the off-board EVBC for compensating power
quality problems associated with reactive power caused by the connected loads. Lastly, Figure 24c
presents the aforementioned variables, but in two distinct cases. In case #1, the off-board EVBC is
operating in G2V mode (grid-side currents and voltages in phase) and, in case #2, it is operating with
distorted grid-side currents to compensate the current harmonics presented in the installation (i.e.,
from the grid point of view, the electrical installation operates with sinusoidal currents), validating the
operation of the off-board EVBC for compensating power quality problems related with harmonics.
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Figure 24. Experimental results of the off-board EVBC compensating power quality problems:
(a) During 50 ms in the G2V mode-grid-side currents (ieva, ievb, ievc), dc-link voltage (vdc), and
EV battery current (ibat); (b) during 50 ms compensating power quality problems related with power
factor-grid-side currents (ieva, ievb, ievc) and voltages (vga, vgb, vgc); (c) during 50 ms compensating
power quality problems related with current harmonics-grid-side currents (ieva, ievb, ievc) and voltages
(vga, vgb, vgc).

5. Conclusions

Aiming towards an effective change of paradigm in the urban transportation sector, vehicle
electrification already represents a reality, with a large predictable expansion and related opportunities
ahead. However, new challenges are introduced in order to diminish undesirable effects that this
revolution can cause to the electrical power grid. In this sense, this paper introduces a comprehensive
discussion of new challenges and opportunities in terms of operation modes that can be addressed by
on-board and off-board electric vehicle battery chargers (EVBCs) toward smart grids.

Throughout the paper, it has been demonstrated that on-board EVBCs can be used for other
purposes than just grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation. On the other hand,
as far as off-board EVBCs are concerned, it has been demonstrated that they can be unified with other
features of smart grids, such as renewable energy sources (RES) and energy storage systems (ESS), and,
at the same time, compensating power quality problems in the places where they are installed. In this
sense, the different opportunities that on-board and off-board EVBCs represent for smart grids have
been widely presented and discussed, evidencing the resultant advantages of new technologies toward
a sustainable future. As a case example, an experimental validation employing laboratory prototypes
of on-board and off-board EVBCs was presented, abstracting the topologies of the power converters.
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Abstract: The use of electric vehicles (EVs) is growing in popularity each year, and as a
result, considerable demand increase is expected in the distribution network (DN). Additionally,
the uncertainty of EV user behavior is high, making it urgent to understand its impact on the network.
Thus, this paper proposes an EV user behavior simulator, which operates in conjunction with an
innovative smart distribution locational marginal pricing based on operation/reconfiguration, for the
purpose of understanding the impact of the dynamic energy pricing on both sides: the grid and the
user. The main goal, besides the distribution system operator (DSO) expenditure minimization, is to
understand how and to what extent dynamic pricing of energy for EV charging can positively affect
the operation of the smart grid and the EV charging cost. A smart city with a 13-bus DN and a high
penetration of distributed energy resources is used to demonstrate the application of the proposed
models. The results demonstrate that dynamic energy pricing for EV charging is an efficient approach
that increases monetary savings considerably for both the DSO and EV users.

Keywords: charging behaviors; distribution locational marginal pricing; distribution networks;
electric mobility; electric vehicle; operation; reconfiguration; renewable energy sources; smart city;
smart grid

1. Introduction

The efforts to minimize the carbon footprint using a large-scale integration of renewable energy
sources (RES), such as wind and solar energy, have led to innovative developments in power
distribution systems around the world. Moreover, a new agreement in the European Union (EU) aims
to achieve 27% penetration of RES by 2030 [1], as one-third of EU countries have already achieved the
2020 target [2].

Currently, many people move to cities in search of a better quality of life, and this contributes to
the continuous expansion of urban areas, which play a major role in modern economies. However,
the urban population is responsible for most greenhouse gas emissions, and the United Nations
estimates that the urban population will reach 70% of the world’s total population by 2050 [3].
Consequently, it is necessary to make intelligent use of resources in urban environments, contributing
to the development of smart cities [3]. The energy infrastructure of a smart city (SC), the so-called
smart grid (SG), is one of the most important urban infrastructures that allows creating a sustainable
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city [4]. To this end, it is necessary to modernize grid functionalities through the implementation of
innovative technologies, concretely, SG-enabling technologies for information and communication,
sensing and measurement, automation, control, renewable generation integration, and storage [5,6].

One of the primary sources of CO2 emissions is transportation [7,8]. Several authors have been
analyzing the benefit of changing from traditional transportation (internal combustion engines) to EVs,
in minimizing the transport sector’s greenhouse gas emissions. It is widely acknowledged that the shift
from internal combustion engines to EVs has many environmental and economic advantages. However,
the increasing number of EVs makes it necessary to develop new infrastructure continually for EV
charging, and this, in turn, leads to a growing energy demand [9,10]. These charging infrastructures
are going to burden the distribution power grid [11–13], namely the high charging loads of fast EV
charging stations. Furthermore, some distribution network operating parameters are going to degrade.
Several published works describe the negative impacts of EV charging on the following distribution
network parameters:

• Voltage profile [14–20];
• Peak load increase [21–24];
• Harmonic distortions [25–30].

Thus, a high EV penetration level may congest the distribution network. Congestion problems
can be managed by the DSO, who reinforces the system through long-term planning or market-based
congestion control methods [31]. The transmission systems concept of locational marginal pricing
(LMP) can be extended to distribution systems [32]; it uses distributed generation (DG) units to
handle congestion in distribution networks [33–37] and is usually referred to as distribution locational
marginal pricing (DLMP). To deal with EV demand congestion in DN, the work in [38] proposed a
step-wise congestion management whereby the DSO predicts congestion for the next day and publishes
day-ahead tariff prior to the clearing of the day-ahead market, while [39] solved the social welfare
optimization of the distribution system considering EV aggregators as price takers in the local DSO
market and demand price elasticity. Liu et al. presented in [40] a market-based mechanism taken from
the DLMP concept to alleviate possible distribution system congestion caused by the integration of EVs
and heat pumps. Similarly, the authors in [41] proposed a DLMP based on quadratic programming to
deal with the congestion in distribution networks with a high penetration of EVs and heat pumps.

As is known, the EVs are additional electric loads and represent mobile energy storage,
usually with long resting times. Several mathematical models presented in [42–47] also studied the
impact of EV charging in the distribution networks. The works in [48–53] assessed several possibilities
for demand-side management, as well as better coordination of charging processes through price
incentives that mitigate the impact of EV charging during peak-loads. The works in [54–58] proposed
an increase in EV charging flexibility, contributing to increased utilization of the highly-variable
renewable energy. Moreover, one of the main challenges in facilitating integrated EV charging in
the distribution network is EV user behavior modeling and prediction [59]. Optimal control for
allocating EV charging time and energy optimally has been proposed by Gan et al. [60]. However,
the model requires that users frequently provide the charging schedule, requiring significant effort
on the part of the customer. The algorithms developed in [61] used an EV random user behavior
model with renewable generation for EV scheduling, while [62] provided a smart charging strategy
according to time-of-use price from the day-ahead forecast. The authors in [63–66] examined EV users’
charging behavior and measured psychological variables, an analysis that can help develop new
charging strategies.

SCs feature an active power architecture with a high penetration of distributed energy resources
(DER), challenging the conventional control and operation framework designed for passive distribution
networks. In this context, the loads can be supplied not only by traditional generation units at the
upstream power systems, but also by the DER [67]. Thus, a distribution network reconfiguration
(DNR) will be a very important and significant strategy for the DSO. DNR is a process that changes
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the network topology using the remote switches such that all the network constraints are considered.
Traditionally, the DNR is associated with system power loss minimization [68,69]; however, in the
SG, context the DNR must not only meet the classic objectives, such as power loss, minimization
of power not supplied, and improvement of the voltage profile, but also the problems related to
the high DER integration and the intelligent reconfiguration related to the SG paradigm [70–72].
Several works considering mathematical [73–75], heuristics and metaheuristics [76,77], and hybrid
models [78,79] were developed to deal with DNR and DER penetration.

The above-cited literature has not addressed distribution network operation and reconfiguration
simultaneously in an SG context; neither have they considered the high penetration of DER and EV
user behavior, nor dynamic EV charging price through DLMPs. Thus, to the best of the authors’
knowledge, the answer to the question “Can dynamic EV charging price, have a positive impact
on both the operation of the smart distribution network and on EV user behavior?” has not yet been
answered. To answer this question, the authors combined an EV behavior simulator with a proposed
innovative smart DLMP-based distribution network operation/reconfiguration. This kind of problem
is classified as mixed-integer nonlinear programming (MINLP) due to its nonlinear features requiring
significant computer resources. To deal with the issue of computational burden and at the same time
improve the tractability of the model, the Benders decomposition method is used. This method uses
duality theory [80,81] in linear and nonlinear mathematical programming, and it deals with complex
problems by splitting them into subproblems. The main goal is to minimize all the DSO expenditures.
To this end, the proposed methodology seeks the following:

• Minimize power loss;
• Minimize power not supplied;
• Minimize line congestion;
• Minimize the power generation curtailment;
• Minimize the power from external suppliers;
• Distribution network radial topology.

Considering the research gaps in previous works, this paper presents the following
major contributions:

1. The use of an EV user behavior simulator. This simulator is used to simulate the EV user behavior
aspects, such as: stochastic EV user aspects, importance of EV charging price, importance of
comfort, choosing slow or fast charge, and the user sensibility of the the state of the battery;

2. Present a distribution network operation/reconfiguration optimization problem in an SG context
with high DER penetration concerning the behavior aspects of the EV users and the dynamic EV
charging price considering DLMPs using the Benders decomposition method;

3. Analyze how and to what extent dynamic EV charging prices contribute positively to smart
distribution network operation;

4. Understand how and to what extent dynamic EV charging prices can contribute to a positive
impact on the electric vehicles’ charging cost.

To demonstrate the application of the proposed methodology, the BISITE (https://bisite.usal.es/en)
laboratory’s SC mockup model has been used with a 13-bus distribution network and high DER
penetration. This paper is organized as follows: after this Introduction, Section 2 presents the proposed
methodology and the details of the DLMP-based network operation, as well as the simulation of urban
mobility. To verify the performance of the proposed methodology, a case study has been conducted and
described in Section 3. The results and its discussion are presented in Section 4. Finally, Section 5 presents
the most relevant conclusions.
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2. Proposed Methodology

This section presents a detailed description of the adopted methodology (depicted in the Figure 1).
Section 2.1 provides information about the EV user behavior simulator, while Section 2.2 describes the
DLMP-based network operation model using the Benders decomposition method.

Figure 1. The proposed methodology’s flowchart.

2.1. Simulator of Urban Mobility

The simulator module is able to generate a realistic population, considering the size of the
network and the parking lots. It has several global and behavior-related parameters (user profiles)
discussed later in this section. Figure 2 shows the flowchart of the simulator. After receiving the
necessary information from the optimization model, i.e., the DLMP price in each bus of the network,
the simulator loops for every individual car to perform the next period’s decision (i.e., 15 min).
There are only two possible types of decisions: the decision to travel to a destination or a charging
decision. Indeed, some trips take more than 15 min, so the car can just keep traveling for a certain
number of periods. According to each user preference and behavior, decisions will be affected by the
price and distance to the parking lot. Since, in a realistic scenario, some prefer extra comfort even if
they pay more, e.g., choosing a fast charge or closer parking lot, the simulator allows defining this
range of preferences for each car. These preferences will affect the efficacy of the dynamic EV charging
prices, since individual behaviors may neglect lower prices. Nevertheless, our case study provides a
different range of behavioral aspects to provide an accurate research outcome in this work.

To determine the dynamic EV charging price, the simulator uses the following Equation (1):

DEP = (DLMP + Tari f f MV + ACNR) · PLG · VAT (1)

where:
DEP: Dynamic EV charging price for each period (e/kWh)
DLMP: Distribution locational marginal pricing (e/kWh)
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TariffMV: Energy tariff price for each period (in the Case Study Section, the reader can find the energy
tariff price for each considered period) (e/kWh)
PLG: Additional profit margin of the parking owner
VAT: Value-added tax
ACNR: Additional cost related to the fixed term of network price rate to be charged to the customer
(e/kWh) and given by (2):

ACNR =

(
0.397·CP

720

)
OPR

(2)

The contracted power cost is 0.397 e/kW/month, to be paid to the DSO monthly (www.erse.pt);
the CP is the charging power of the parking lot; 720 are the hours per month; and OPR is the parking
occupation rate. With the ACNR term added to Equation (1), the contracted power cost is transferred
to the final consumer. Moreover, it is important to note that OPR is introduced to approximate the real
occupation rate of each parking lot and thus affects the ACNR cost, which decreases for each customer
as the OPR rate increases.

Figure 2. Flowchart for the EV users’ behavior simulator.

The global parameters of the simulator are described in Table 1. These are permanent parameters
in the simulation; however, their values can be modified according to the needs of each study. Since car
travel is simulated using simplified mathematics for vehicle movement, parameter cdist represents
the penalty on a given distance between two points, e.g., Origin A and Destination B, that the vehicle
has to travel (trips). Ideally, the minimum distance to reach Destination B (e.g., work) would be the
Euclidean distance; however, in a real-world scenario, the road network is not optimal in this sense.
Parameter sf can be used to easily change the scale of the map and increase or decrease distances
regarding a reference scenario. This allows easily studying the effects on the travel times and charging
needs when the urban distance is varied. Parameter hcpower enables setting the amount of charge
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power available when users decide to charge at home. Parameter chargineff is the charging efficiency
considered for the energy transactions with the electrical grid.

Table 1. Global simulator parameters.

Parameter Description

ncars Number of EVs
cdist Distance increase between two Euclidean points

sf Scale factor of the map
hcpower Home charging power

chargineff Charging mode efficiency

Table 2 describes the parameters related to the user profile, namely regarding the initial location
of the car when the simulation begins and its location in subsequent steps. Each car in the simulation
replicates the parameters depicted in this table. Among the defined parameters, the weights of w1,
w2, and ti are significant. The weights correspond to the importance attributed to distance and price,
respectively, while ti is used to prioritize trips, for instance going to work cannot be postponed.
The weights allow the simulator to compute the behavioral score formula and in this way to decide
where to charge the vehicle if needed. For users that give more preference to price while driving long
distances in the quest for parking lots with lower charging prices, these prices are dynamic in time and
space depending on the DLMP status of the grid. Users with hc = 0 cannot charge at home, but can
charge at parking lots (street charging).

Table 2. User profile parameters.

Parameter Description

Ilocation Initial location of the car (usually home)
Clocation Current location at period j

ISoC Initial state of charge
CSoC Current state of charge

ae Car average economy
aeppkm Car average economy percentage per kilometer

arp Available range preference
times Table with the times in which the scheduled trips will be made

as Average speed
nd Number of destinations each car has

dest1 Table with the coordinates of the places of the trips to be carried out
i Boolean variable that determines whether the car will have more than one destination

w1, w2 Weights used in the calculation of the score to determine the best place for charging
ti Table with the importance of each trip (1 being the least important and 3 the most)
hc Boolean variable that determines whether the car has a home charger or not

2.2. DLMP-Based Network Operation

DLMP has been studied to provide electricity players with the effective economic signals for
optimizing their assets. It is known that the resistance of the distribution network lines is higher than
that of transmission lines. Thus, the distribution system losses can be considered one of the main
factors that affect the DLMP.

bus voltage regulation is a critical issue, especially with DER proliferation, that is faced
by the DSO. Therefore, the DLMP could reflect the voltage impact on the distribution system’s
economical operation.

In the proposed methodology, DLMP is defined through Lagrangian multipliers of the
corresponding constraints (power balance) of the optimization problem, whose goal is to minimize the
DSO expenditures.
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The distribution network operation and reconfiguration problem in an SG context with high
DER penetration concerning the behavior aspects of the EV users and dynamic EV charging price
considering DLMPs is classified as MINLP due to the nonlinearity features. To solve complex problems
like this, the Benders decomposition is an adequate technique [80,81]. This technique was presented in
1962 by Jacobus Franciscus Benders to solve mixed integer problems [82]. This method is based on the
principle that the main problem can be decomposed into sub-problems. The Benders decomposition
technique uses duality theory in linear and nonlinear mathematical programming to split a problem
whose resolution is difficult into sub-problems [80]. These sub-problems consider specific variables
that are solved iteratively until the optimal solution is reached [83].

The problem can be divided into subproblems (a master problem and one or more slave problems).
The master subproblem is usually a linear or mixed integer problem including fewer technical
constraints. On the other hand, slave subproblems are linear or nonlinear and attempt to validate if
the solution of the master problem is technically feasible or not. At this level, the network’s technical
constraints are considered. A flowchart of the Benders decomposition technique used in this proposed
research work is presented in Figure 3, and the diagram of the DLMP-based distribution network
operation/reconfiguration model is presented in Figure 4. In Sections 2.2.1 and 2.2.2, the explanation
of the Benders decomposition procedure is discussed.

Figure 3. The Benders decomposition flowchart.

This work deals with a non-convex and non-linear slave subproblem (namely in the power
flow equations) in which the zero-duality gap is not guaranteed. Thus, the Benders decomposition
technique applied in this research work could not converge to the optimal solution. However, most of
the science and engineering mathematical problems are non-convex with a very small duality gap in
most of the cases [83]. Moreover, the convexity is a solid mathematical assumption, and the convexity
is not necessarily restrictive from the practical viewpoint, as many science and engineering problems
in the region where the solution of the interest is located are convex; in other words, where the solution
is meaningful from the viewpoint of the science and engineering [83].
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Figure 4. Diagram of the distribution operation optimization model.

2.2.1. Master Problem

The master subproblem goal consists of finding the network topology configuration for each
considered period by opening/closing tie-switches (using binary variables {0,1}) to:

• Minimize the power losses’ cost;
• Minimize the power not supplied cost;
• Minimize the lines’ congestion cost;
• Minimize the power generation curtailment cost;
• Minimize the power from external suppliers’ cost.

At this level, every binary variables must be included in the optimization problem. The master
subproblem objective function minimizes the operation cost (MOC) and can be formulated as (3):
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MOC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i∈ΩB

∑
j∈ΩB

[(
CongM2

(i,j) + CongM(i,j)

)
· CostCong

]
+

∑
i∈Ωb

BS

(
ExtSup(i) · priceMk

)
+

∑
i∈Ωb

L

(
PNSM(i) · CostPNS

)
+

∑
i∈ΩB

∑
j∈ΩB

(
r(i,j) · FlowM2

(i,j) · CostLoss
)
+

∑
i∈Ωnd

DG

(
PPGCM(i) · PCost

PGC

)
+ ω∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

In the case of infeasibility, one variable is added to the master problem (ω∗), which is called linear
Benders’ cuts. In ideal circumstances, the value for this variable is zero, which means that the network
topology along with its components fulfills every technical constraint. Otherwise, the value presented
in this variable represents the minimal value cost change of the master solution.

The master subproblem (3) is subjected to constraints (4)–(25).

Network constraints

Power balance: First Kirchhoff law

Constraint (4) guarantees the power balance in each distribution network bus.

∑
i∈Ωnd

DG

(
pDG(i) − pPGCM(i)

)
+ ∑

i∈Ωb
BS

ExtSup(i)−

∑
i∈Ωb

L

(
pLoad(i) − PNSM(i)

)
− ∑

i∈Ωb
V

EVP(i)+

∑
i∈Ωb

E

(
STdchM(i) − STchM(i)

)
+

∑
i∈ΩB

(
FlowM(i,j) − FlowM(j,i)

)
= 0 ∀j ∈ ΩB

(4)

Maximum admissible line flow

The maximum power flowing in each line of the network is guaranteed by (5).

0 ≤ FlowM(i,j) ≤ Flowmax
(i,j) · Xstat

(i,j) ∀Xstat ∈ {0, 1} , ∀(i, j) ∈ Ωl (5)

Unidirectionality of power flow

Constraint (6) guarantees unidirectionality between buses i and j.

Xstat
(i,j) + Xstat

(j,i) ≤ 1 ∀Xstat ∈ {0, 1} , ∀(i, j) ∈ Ωl (6)

Radial topology

To ensure the radial topology, Constraint (7) is applied. This constraint imposes that only one line
can enter in each bus.

∑
j∈Ωb

j

Xstat
(i,j) = 1 ∀Xstat ∈ {0, 1} , ∀i ∈ ΩB (7)
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Avoid island creation

To avoid DG isolation from the substation, the constraints (8)–(11) are used. A fictitious flow
(d(i,j)) is created with a fictitious load of each DG (D(g)) to be fed to the substation. If the island is
permitted, the operator can omit these constraints.

∑
i∈ΩB

∑
j∈ΩB

d(i,j)− ∑
i∈ΩB

∑
j∈ΩB

d(j,i)−D(g) = 0 ∀g ∈ ΩDG (8)

D(g) = 1 ∀g ∈ ΩDG (9)

D(g) = 0 ∀g /∈ ΩDG ∪ ΩBS (10)∣∣∣d(i,j)∣∣∣ ≤ nDG · Xstat
(i,j) ∀(i, j) ∈ Ωl (11)

Supplier constraint

Maximum and minimum limits for power supplier

The power is constrained by the maximum and minimum capacity that can be supplied (12).

ExtSupMinLimit(bs) ≤ ExtSup(bs) ≤ ExtSupMaxLimit(bs) ∀bs ∈ ΩBS (12)

Curtailment constraints

Power generation curtailment

The power generation curtailment is verified when the excess generation of the generator g occurs.
This variable is lower or equal to the power generation of the g generator (13).

0 ≤ pPGCM(g) ≤ pDG(g) ∀g ∈ Ωnd
DG (13)

Power not supplied

Constraint (14) guarantees that the power not supplied variable must be lower than or equal to
the load demand.

0 ≤ PNSM(lo) ≤ pLoad(lo) ∀lo ∈ Ωb
L (14)

Lines’ congestion

Lines’ power congestion

The power congestion in each line is constrained by Equation (15). In this work, we assume
that the congestion occurs when the power flow Flow(i,j) is greater than or equal to a factor value
(CongMin) multiplied by the maximum power line capacity (Flowmax

(i,j)
). The factor value is a constant

value between zero and one. In fact, this value represents the percentage of the line capacity that is
being used. Equation Cong(i,j) ≥ 0 is used to ensure a positive or a zero value for Cong(i,j).

CongM(i,j) ≥ FlowM(i,j) − CongMin · Flowmax
(i,j)

∀(i, j) ∈ Ωl

Cong(i,j) ≥ 0
(15)

Energy storage systems (ESS) constraints

Discharge limit for the energy storage systems

The maximum discharge limit of each ESS is represented by the constraint (16).

STdchM(e) ≤ STdchR(e) · STdMstat
(e) ∀e ∈ Ωb

E, STdMstat ∈ {0, 1} , STdchM ≥ 0 (16)
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Charge limit for the energy storage systems

The maximum charge limit for each ESS is represented by the constraint (17).

STchM(e) ≤ STchR(e) · STcMstat
(e) ∀e ∈ Ωb

E, STcMstat ∈ {0, 1} , STchM ≥ 0 (17)

Discharge level limit considering the state of the energy storage system

The maximum discharge limit considering energy storage systems’ capacity constraint for each
ESS is given by (18). The Δt is represented in units of hours.

STdchM(e) ·
1

de f(e)
≤ STdMstat

(e) · STstoM(e) ·
1

Δt
∀e ∈ Ωb

E, STdMstat ∈ {0, 1} , STdchM ≥ 0 (18)

Charge level limit considering energy storage systems’ capacity

The maximum charge limit considering energy storage systems’ capacity constraint for each ESS
is given by (19). The Δt is represented in units of hours.

STstoM(e) + STchM(e) · ce f(e) · Δt ≤ STcMstat
(e) · STcap(e)

∀e ∈ Ωb
E, STcMstat ∈ {0, 1} , STchM ≥ 0

(19)

State of charge of the energy storage systems

The state of charge of each ESS is given by (20). The Δt is represented in units of hours.

STstoM(e) −
(

Δt · STchM(e) · ce f(e)
)
+
(

Δt · STdchM(e) · 1
de f(e)

)
= STstoMt−1

(e)

∀e ∈ Ωb
E, STchM ≥ 0, STdchM ≥ 0

(20)

Maximum ESS capacity limit

The maximum capacity limit of each ESS is represented by (21).

STstoM(e) ≤ STcap(e) (21)

Minimum ESS capacity limit

The minimum capacity limit of each ESS is represented by (22).

STstoM(e) ≥ STstoMmin
(e) (22)

Charging and discharging status

The charging and discharging status of the ESSs are represented by STcMstat
(e) and STdMstat

(e) ,
respectively. Charging and discharging cannot occur simultaneously (23).

STcMstat
(e) + STdMstat

(e) ≤ 1 (23)

where STcMstat
(e) is a binary variable. ESS are able to charge at any moment.

STdMstat
(e) is a variable that assumes zero or one according to the study period market price value

and is given by (24).
STdMstat

(e) = 1 ⇐⇒ priceMk ≥ priceMk
min

STdMstat
(e) = 0 ⇐⇒ priceMk ≤ priceMk

min
(24)
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Linear Benders’ cut

To support the decomposition technique, a linear cuts constraint (25) is used. This constraint
represents feasibility cuts in the problem. These cuts are updated in each iteration applying new
constraints to the problem. The linear cuts establish the link between the master subproblem and
the slave subproblem. To better understand, let us imagine the existence of a cut. Thus, the master
subproblem receives and considers the infeasibility data costs of the previous iteration ω∗ and the
sensitivities λm−1

(i,j) and μm−1
(i) . Those sensitivities are linked to the subproblem master decision in the

previous iteration
(

Xstat
(i,j)

)m−1
and

(
STcMstat

(i)

)m−1
already known. To make a new decision, the master

subproblem is fed these new data.

ω∗ ≥ Zm−1
up +

∑
i∈ΩB

∑
j∈ΩB
j �=i

λm−1
(i,j) ·

[(
Xstat
(i,j)

)m −
(

Xstat
(i,j)

)m−1
]
+

∑
i∈Ωb

BS

μm−1
(i) ·

[(
STcMstat

(i)

)m −
(

STcMstat
(i)

)m−1
] (25)

where index m represents the current iteration and m-1 represents the previous iteration.

2.2.2. Slave problem

One of the goals of the slave subproblem is to verify the feasibility of the master problem.
Moreover, through AC optimal power flow, the slave subproblem provides the optimal value for
the operation variables. The slave subproblem objective function is represented by (26), where the
operation costs and the slack variables ZA, ZQ, and ZF are minimized. Slack variables ZA and ZQ
(for active and reactive power balance) and ZF (for thermal lines capacity) can take any positive value
to make the optimization problem feasible. The value of these variables represents how much some
constraints are being violated. The slave sub-problem cannot change the binary variables, but is free
to explore the continuous variables in order to satisfy the several constraints, while minimizing the
objective function and the value of the slack variables.

SOC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i∈ΩB

∑
j∈ΩB

[(
CongS2

(i,j) + CongS(i,j)

)
· CostCong

]
+

∑
i∈Ωb

BS

(
PSupplier(i) · priceMk

)
+

∑
i∈Ωb

L

(
PNSs(i) · CostPNS

)
+

∑
i∈Ωnd

DG

(
PPGCs(i) · PCost

PGC

)
+

∑
i∈ΩB

∑
j∈ΩB

(
SLoss(i,j) · CostLoss

)
+

∑
i∈ΩB

(
ZA(i) + ZQ(i)

)
· CostIn f+

∑
i∈ΩB

∑
∈ΩB�=i

(
ZF(i,j) · CostIn f

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

The slave subproblem (26) is subjected to Constraints (27)–(52).
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Network constraints

Voltage magnitude

The voltage magnitude of each bus is constrained by a maximum and minimum deviation (27).

Vmin
(i) ≤ V(i) ≤ Vmax

(i) ∀i ∈ ΩB (27)

Voltage angle

The maximum and minimum angle deviation is constrained by (28).

θmin
(i) ≤ θ(i) ≤ θmax

(i) ∀i ∈ ΩB (28)

Active power balance

Constraint (29) guarantees the active power balance in each distribution network bus.

∑
i∈Ωnd

DG

(
PDG(i) − PPGCs(i)

)
+ ∑

i∈Ωb
BS

PSupplier(i)−

∑
i∈Ωb

L

(
PLoad(i) − PNSs(i)

)
− ∑

i∈Ωb
V

EVP(i)+

∑
i∈Ωb

BS

(
STdchS(i) − STchS(i)

)
−

∑
i∈ΩB

PInj(i) + ZA(i,j) = 0

(29)

Reactive power balance

Constraint (30) guarantees the reactive power balance in each distribution network bus.

∑
i∈Ωb

BS

QSupplier(i) + ∑
i∈Ωb

CB

QCbanks(i) − ∑
i∈Ωb

L

QLoad(i)−

∑
i∈ΩB

QInj(i) + ZQ(i,j) = 0
(30)

Injected active power

This Equation (31) represents the injected active power in each bus of the network.

PInj(i) = V(i) ∑
j∈ΩB

V(j)

(
G(i,j) · cos θ(i,j) + B(i,j) · sin θ(i,j)

)
∀i ∈ ΩB, ∀(i, j) ∈ Ωl (31)

Injected reactive power

The injected reactive power in each bus is represented by the Equation (32).

QInj(i) = V(i) ∑
j∈ΩB

V(j)

(
G(i,j) · sin θ(i,j) − B(i,j) · cos θ(i,j)

)
∀i ∈ ΩB, ∀(i, j) ∈ Ωl (32)

Active power flow

The active power flow for each network line is given by the Equation (33).

P(i,j) = (V2
(i) − V(i) · V(j) · cos θ(i,j)) · G(i,j) − (V(i) · V(j) · senθ(i,j)) · B(i,j)

∀i ∈ ΩB, ∀j ∈ ΩB, ∀(i, j) ∈ Ωl
(33)
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Reactive power flow

Equation (34) gives the reactive power flow for each line.

Q(i,j) = −(V2
(i) − V(i) · V(j) · cos θ(i,j)) · B(i,j) − (V(i) · V(j) · senθ(i,j)) · G(i,j)

∀i ∈ ΩB, ∀j ∈ ΩB, ∀(i, j) ∈ Ωl
(34)

Apparent power flow

The apparent power flow equation, as can be seen in Equation (35), is given by the square root of
the active power flow and reactive power flow squares.

S(i,j) =
√

P(i,j)
2 + Q(i,j)

2 ∀(i, j) ∈ Ωl (35)

Active power losses

The active power loss of each line is represented by Equation (36).

PLoss(i,j) =
P2
(i,j) + Q2

(i,j)

V2
(i)

· r(i,j) ∀i ∈ ΩB, ∀(i, j) ∈ Ωl (36)

Reactive power losses

To represent the reactive power loss, the following Equation (37) is used.

QLoss(i,j) =
P2
(i,j) + Q2

(i,j)

V2
(i)

· x(i,j) ∀i ∈ ΩB, ∀(i, j) ∈ Ωl (37)

Apparent power loss

To obtain the apparent power loss in each line, the following equation is used (38).

SLoss(i,j) =
√

PLoss2
(i,j) + QLoss2

(i,j) ∀(i, j) ∈ Ωl (38)

Maximum admissible line flow

The maximum power flow in each line is constrained by (39).

0 ≤ FlowS(i,j) ≤ Flowmax
(i,j)

+ ZF(i,j) ∀(i, j) ∈ Ωl (39)

Supplier constraints

Maximum and minimum limits for active power supplier

The active power is constrained by the maximum and minimum capacity that can be supplied (40).

PSMinLimit(bs) ≤ PSupplier(bs) ≤ PSMaxLimit(bs) ∀bs ∈ ΩBS (40)

Maximum and minimum limits for the reactive power supplier

The reactive power is constrained by the maximum and minimum capacity that can
be supplied (41).

QSMinLimit(bs) ≤ QSupplier(bs) ≤ QSMaxLimit(bs) ∀bs ∈ ΩBS (41)
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Maximum and minimum limits for capacitor banks

The reactive power of a capacitor bank is considered a continuous variable in this model and is
constrained by the maximum and minimum (zero) capacity that can be supplied (42).

0 ≤ QCbanks(cb) ≤ Qmax
Cbanks(cb) ∀cb ∈ ΩCB (42)

Curtailment constraints

Power generation curtailment

Power generation curtailment occurs when the generator generates an excess of power g.
This variable cannot be higher than the generation of the g generator (43).

0 ≤ PPGCs(g) ≤ PDG(g) ∀g ∈ Ωnd
DG (43)

Power not supplied

Constraint (44) guarantees that the power not supplied variable must be lower or equal to the
load demand.

0 ≤ PNSs(lo) ≤ PLoad(lo) ∀lo ∈ Ωb
L (44)

Lines’ congestion

Lines’ power congestion

The power congestion in each line is constrained by the Equation (45). The same considerations
are taken into account in (15) and in (45).

Cong(i,j) ≥ FlowS(i,j) − CongMin · Flowmax
(i,j)

∀(i, j) ∈ Ωl

Cong(i,j) ≥ 0
(45)

Energy storage system constraints

Discharge limit of the energy storage systems

The maximum discharge limit determined by the constraint of each ESS (46).

STdchS(e) ≤ STdchR(e) ∀e ∈ Ωb
E, STdchS ≥ 0 (46)

Charge level limit for the energy storage systems

The maximum charge level limit determined by the constraint of each ESS (47).

STchS(e) ≤ STchR(e) ∀e ∈ Ωb
E, STchS ≥ 0 (47)

Discharge limit considering energy storage systems’ state

The maximum discharge limit considering the capacity constraint of each energy storage
system (48). Δt is represented in units of hours.

STdchS(e) ·
1

de f(e)
≤ STstoS(e) ·

1
Δt

∀e ∈ Ωb
E, STdchS ≥ 0 (48)
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Charge limit considering energy storage systems’ capacity

The maximum charge level limit is determined considering the capacity constraint of each energy
storage system (49). The Δt is represented in units of hours.

STstoS(e) + STchS(e) · ce f(e) · 1
Δt ≤ STcap(e) ∀e ∈ Ωb

E, STchS ≥ 0 (49)

State of charge of the energy storage systems

The state of charge of each ESS is given by (50). Δt is represented in units of hours.

STstoS(e) −
(

Δt · STchS(e) · ce f(e)
)
+
(

Δt · STdchS(e) · 1
de f(e)

)
= STstoSt−1

(e)

∀e ∈ Ωb
E, STchS ≥ 0, STdchS ≥ 0

(50)

Maximum energy storage systems’ capacity limit

The maximum capacity limit for each ESS is represented by (51).

STstoSe ≤ STcap(e) ∀e ∈ Ωb
E (51)

Minimum energy storage systems’ capacity limit

The minimum capacity limit for each ESS is represented by (52).

STstoS(e) ≥ STstoSmin
(e) ∀e ∈ Ωb

E (52)

3. Case Study

To show how the proposed methodology is applied, a medium voltage (MV) distribution network
of an SC (mock-up) located at BISITE laboratory has been developed for this study (the schematic of
the SC is presented in Figure 5, and the coordinates of each building can be seen in Table 3). In this
case study, a high DER penetration is considered to represent a realistic scenario in the near future.
The single-line diagram of the 13-bus 30-kV distribution network is presented in Figure 6.

Table 3. Building coordinates on the xy plane.

Building L1 L2 L3
L4
to

L18
L19 L20 L21 L22 L23 L24 L25

PL1
to

PL2

PL3
to

PL4

PL5
to

PL6
PL7

Coordinates
(km)

X Axis 10.50 0.50 9.00
3.75
to

8.25
0.50 0.50 2.50 3.00 4.50 6.00 8.00 1.00 7.00 6.00 11.00

Y Axis 3.50 2.00 5.00
1.00
to

3.00
3.50 5.50 2.00 4.50 3.50 5.00 4.00 3.50 5.00 0.50 4.00
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Figure 5. Smart city schematic.

This DN has one 30 MVA substation, 25 load points, and 3 ×35.88 km of underground cables.
For the connections between the substation and the network (bus 1 to bus 2; bus 1 to bus 7), a cable of
type LBHIOV 3 × 150 mm2 (svrweb.cabelte.pt) has been used, while for the remaining connections,
the cable type LBHIOV 3 × 70 mm2 (svrweb.cabelte.pt) has been used. A total of 15 DG units
(i.e., two wind farms and 13 PV parks) and four capacitor banks of 1 Mvar are included in the network,
as can be seen in Figure 6.
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Figure 6. Single-line diagram of the 13-bus distribution network.

The DG penetration corresponds to 27% (10.925 MW) of the total installed power (24% corresponds
to wind generation and 3% to PV). Each wind farm has six E48 800 kW ENERCON wind
turbines (www.enercon.de). The characteristics of PV parking lots are presented in Table 4. The line
congestion cost was 0.02 e/kW when power flow was above 50% of the thermal line rating capacity
(CongMin).

The considered smart city presents five types of loads, namely:

• Residential buildings (1375 homes);
• Office buildings (seven buildings);
• Hospital;
• Fire Station;
• Shopping Mall.
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Table 4. PV characteristics.

Nominal Power (W) 85.00
Short Circuit Current (A) 1.62
Nominal Operating Temperature of the Cell (◦C) 45.00
Open Circuit Voltage (V) 56.70
Current at the Maximum Power Point (A) 1.41
Voltage at the Maximum Power Point (V) 45.50
Voltage High Temperature Coefficient (>25 ◦C) (V/◦C) −0.1531
Voltage Low Temperature Coefficient (−40 ◦C to 25 ◦C) (V/◦C) −0.1134
Current Temperature Coefficient (A/◦C) 6.4800 × 10−4

PV park at bus 12

Number of Modules 104
Number of Panels 120
Total Number of Modules 12,480

PV parks at Buses 2–8, 10, and 11

Number of Modules 104
Number of Panels 30
Total Number of Modules 3120

This study considered one week of input data for every 15-min period with the aim of showing
the effectiveness of the proposed methodology (i.e., 672 periods were considered in the simulation
process). The chosen week was 19 March 2017–25 March 2017. The total renewable generated power
for each period is presented in Figure 7.

Figure 7. Renewable power generation.

Figures 8 and 9 present the power demand and the roof generation, respectively, of the office
buildings, residential buildings, a shopping mall, a hospital, and a fire station. It is important to note
that the power demand presented in these two figures corresponds to the subtraction of the initial
demand for PV power generation, i.e., all the power generated by the PVs is consumed by the building.
The generated power is therefore not sent to the grid in the present study.
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Figure 8. Power demand from office, residential, hospital, fire station, and shopping mall buildings.

Figure 9. Roof PV generation from office, residential, hospital, fire station, and shopping mall buildings.

The market price for the chosen week was obtained from the Iberian electricity market operator
(OMIE) (www.datosdelmercado.omie.es/pt-pt/datos-mercado) and can be seen in Figure 10.
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Figure 10. Market price.

Moreover, the SC has seven parking lot buildings for EV charging, four (two in bus 7 and two in
bus 11) slow charging lots (7.2 kW for each connection point) and three (two in bus 2 and one in bus 5)
fast charging lots (50 kW for each connection point). Each slow charging parking lot has 250 spaces
for EVs, while each fast charging parking lot has 80 spaces. In this case study, we assumed that
each parking lot had a 30% occupation rate (OPR). Thus, in the following equation (2), the additional
cost related to the fixed term of network price rate to be charged to the customer (ACNR) for a slow
charging parking space is 0.0132 e/kWh, while for a fast charging parking space, it is 0.0919 e/kWh.
Furthermore, the parking owner charges an additional 5% fee and 23% of value-added tax (VAT).
Moreover, consider that 50% of the EV users can charge their EV at home (3.7 kW charge point)
with a fixed cost of 0.2094 e/kWh. A total of 5000 EVs were considered in this study, and the initial
battery level was randomly generated between 40% and 65% of the battery capacity. The considered
EV models and their characteristics are listed in Table 5. The weights (w1 and w2) attributed to the
distance and price preference are presented in Tables 6 and 7, respectively. Two possible scenarios are
considered: in one, the user’s priority is to charge his/her EV at a charging station located as close as
possible to them (Table 6); in the second scenario, the users prefer to find charging stations where they
can charge their EV at a low price (Table 7).

Table 5. EV types.

Model
Battery
(kWh)

Slow Charge Power
(kW)

Fast Charge Power
(kW)

Consumption
(kWh/km)

Nissan Leaf 40.00 6.60 50.00 0.1553
Tesla Model S 70D 75.00 7.40 50.00 0.2100

BMW i3 33.20 7.40 50.00 0.1584
Renault Zoe 41.00 7.40 - 0.1460

Renault Kangoo 33.00 7.40 - 0.1926
VW e-Golf 24.20 7.20 40.00 0.1584
Ford Focus 33.50 6.60 50.00 0.1926

Hyundai IONIQ 30.50 6.60 50.00 0.1429
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Table 6. Weights for the user distance preference scenario.

Preference
Weight (%)

Probability (%)
w1 w2

Price 40 60 30

Distance 85 15 70

Table 7. Weights for the user price preference scenario.

Preference
Weight (%)

Probability (%)
w1 w2

Price 15 85 70

Distance 60 40 30

Furthermore, two energy storage systems managed by the DSO were considered in the present
case study, each one with 1 MWh of capacity and 0.5 MW of charge/discharge rate. Moreover,
in this case, the ESS are able to charge at any moment and discharge when the energy market price is
greater than or equal to 45 e/MWh. Is assumed that the ESS had a minimum of 5% of power stored,
i.e., the power stored in the ESS cannot be less than 5%. The input data used in the case study can be
found by the readers in [84].

In this research work, thirty different case studies were performed. Table 8 summarizes the
characteristics of those studies. They have been divided into two types of EV user preference scenarios,
namely the price preference scenario and distance preference scenario. For each of those scenarios,
we considered DG, EV, ESS, dynamic EV charging price, and fixed prices (with three different price
levels) and combined them in the case study. The purpose of these case studies was to determine in
which situations dynamic charging prices were advantageous for DSO and EV users.

Table 8. Case study sets.

User Price Preference Scenario User Distance Preference Scenario

DG EV ESS
Dynamic EV

Charging
Price

Fixed Price
(e/kWh) DG EV ESS

Dynamic EV
Charging

Price

Fixed Price
(e/kWh)

SCh= 0.15
FCh= 0.25

SCh = 0.2
FCh = 0.3

SCh = 0.3
FCh = 0.4

SCh = 0.15
FCh = 0.25

SCh = 0.2
FCh = 0.3

SCh = 0.3
FCh = 0.4

Case A No No No Yes No No No No No No Yes No No No

Case B Yes No No Yes No No No Yes No No Yes No No No

Case C Yes No Yes Yes No No No Yes No Yes Yes No No No

Case D No Yes No Yes No No No No Yes No Yes No No No

Case E No Yes No No Yes No No No Yes No No Yes No No

Case F No Yes No No No Yes No No Yes No No No Yes No

Case G No Yes No No No No Yes No Yes No No No No Yes

Case H Yes Yes No Yes No No No Yes Yes No Yes No No No

Case I Yes Yes No No Yes No No Yes Yes No No Yes No No

Case J Yes Yes No No No Yes No Yes Yes No No No Yes No

Case K Yes Yes No No No No Yes Yes Yes No No No No Yes

Case L Yes Yes Yes Yes No No No Yes Yes Yes Yes No No No

Case M Yes Yes Yes No Yes No No Yes Yes Yes No Yes No No

Case N Yes Yes Yes No No Yes No Yes Yes Yes No No Yes No

Case O Yes Yes Yes No No No Yes Yes Yes Yes No No No Yes

4. Results and Discussion

The proposed methodology has been applied to the case study presented in Section 3 to show
its applicability. The proposed research work has been developed on a computer with one Intel Xeon
E5-2620 v2 processor and 16 GB of RAM running Windows 10 Pro using the MATLAB R2016a and
TOMLAB 8.1 64 bits with CPLEX and SNOPT solvers. As can be seen in Table 9, in each period,
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the optimization model dealt with the master problem, which had 566 constraints and 744 variables,
where 171 were integer variables, and with the slave problem, which had 199 constraints (116 non-linear
constraints) and 286 variables.

Table 9. Computational execution results.

Problem Level
Constraints

Number of Variables
Per Period

Average Execution Time
Per Period

(s)

Peak Memory
(kB)

Linear Non-Linear Total Continuous Integer Total

Master problem 566 - 566 573 171 744 1.2 4656
Slave problem 83 116 199 286 - 286

The average execution time was compatible with operation/reconfiguration time-frame,
presenting an average value of 1.2 s (considering all case studies). The analysis of computer system
resource impact was also evaluated with a memory test for which the MATLAB memory profiler tool
was used. This tool shows the peak memory for each function in the code. The highest computer
resource value is 4656 kB, which is perfectly compatible with today’s computers.

This section looks at the results of the analysis from two perspectives: that of the operator
(Section 4.1) and that of the EV user (Section 4.2).

4.1. The Operator’s Perspective

In this subsection, the results are discussed from the perspective of the operator. Figure 11
presents the total operation and congestion cost (672 periods, one week) for all case studies. This figure
makes evident the advantages in terms of cost when the DG and ESS systems are used in the network.
(a) gives the total operation cost and the total congestion cost for the reference case, i.e., without
EVs. Operation costs and congestion costs are reduced significantly when combined with distributed
resources, namely with RES and ESS.

(b) (RES and ESS are not considered) verifies that with dynamic EV charging price, operation
costs were reduced by 1.20%, 1.20%, and 2.10% when compared to the E, F, and G cases, respectively,
for the user price preference scenario. In the user distance preference scenario, costs were reduced by
0.28%, 0.28%, and 3.20%. Moreover, congestion costs were reduced by 8.35%, 8.35%, and 15.20% thanks
to dynamic EV charging prices in the user price preference scenario and by 2.29%, 2.29%, and 4.59% in
the user distance preference scenario. From the analysis of (c) in Figure 11, compared to fixed prices
(Cases I, J, and K), the dynamic EV charging prices presented a cost reduction in the user preference
scenario by 1.43%, 1.43%, and 2.52% and in the user distance preference scenario by 0.24%, 0.24%,
and 3.43%. Congestion costs were reduced by 13.87%, 13.87%, and 22.62% in the user price preference
scenario and by 1.53%, 1.53%, and 4.60% in the user distance preference scenario. In (d), operation
costs with fixed EV charging prices (Cases M, N, and O) were reduced by 1.47%, 1.47%, and 2.53%
with dynamic EV charging prices. In the user distance preference scenario, cost was reduced by 0.29%,
0.29%, and 3.49%. Congestion costs were reduced by 5.25%, 15.25%, and 23.64% in the user price
preference scenario and by 1.41%, 1.41%, and 4.48% in the user distance preference scenario. It is noted
that there was no difference in operation costs between slow charging of 0.15 e/kWh or 0.20 e/kWh
and fast charging of 0.25 e/kWh or 0.30 e/kWh. Thus, the operator was indifferent to the charging
price for the EV user.

The use of dynamic prices for EV charging is beneficial in terms of reduced operation and
congestion costs when compared to fixed price options. The reductions are more evident when the
fixed prices are higher. Thanks to dynamic EV charging, different charging prices were offered to the
users in the parking lots, and this helped alleviate certain power lines, contributing in this way to the
operational cost reduction.

Total power loss, power generation curtailment, and power not supplied costs in each user
preference scenario are presented in Figure 12a, i.e., with no electric vehicles. It has been verified
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that the costs associated with those three terms reduced once the distributed energy resources were
included (RES and ESS). In fact, the power not supplied (PNS) cost was reduced to zero when the
RES were considered alone or together with ESS. However, with RES and ESS, power generation
curtailment (PGC) was present, but the costs were lower than with the PNS.

Figure 11. Total operation and congestion costs. (a) For cases without EVs. (b) For cases with EVs,
but without DER. (c) For cases with RES, but without ESS. (d) For cases with DER (RES and ESS).

Through the analysis of (b) (RES and ESS were not considered) in Figure 12, it can be observed that
the total power loss (PL) cost was equivalent to the three fixed-price cases with a cost of around 3662 e
in the user price preference scenario. Through the use of the dynamic EV charging price method,
the PL cost reduced by around 17%. Considering the user distance preference scenario, the dynamic
EV charging prices presented a reduction of only 1.03% in Cases E and F and of 1.91% in Case G.
The PNS occurred only in the user distance preference scenario. When the dynamic EV charging prices
were included, the PNS cost was small compared to the fixed price (83.54% smaller than in Cases E and
F and 98.67% smaller than in Case G). Considering the user price preference scenario in (c) of Figure 12,
the observed PL cost reduction with dynamic energy pricing was of 16.75% in Cases I and J and 18.08%
in Case K. Cost reductions were lower in the distance user preference scenario, reducing by 0.21% in
Cases I and J and 1.52% in Case K. The PNS occurred only for the fixed price cases in the user distance
preference scenario, being zero when the dynamic EV charging prices was used. The presence of RES
will create the necessity of PGC in some periods. The dynamic EV charging prices can mitigate the
costs associated with the PGC in the user price preference scenario, by 3.46% in Cases I and J and 4.32%
in Case K. If the user distance preference scenario were considered, it would not be possible to benefit
from dynamic EV charging prices. In (d), the presence of ESS was also considered, and its advantages
in reducing PGC cost were evident. Through the use of dynamic EV charging prices, PL was reduced
by 16.24% in Cases M and N and 18.03% in Case O in the user price preference scenario and by 2.19%
in Cases M and N and 2.29% in Case O in the user distance preference scenario. With dynamic EV
charging prices in the user price preference scenario, the PGC costs were reduced by 6.86% in Cases M
and N and by 8.48% in Case O. In the user distance preference scenario, the cost of PGC did not reduce
with dynamic EV charging prices. As can be seen, the use of dynamic EV charging prices is of great
advantage in the PGC, leading to a zero value.
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Figure 12. Total power loss, power generation curtailment, and power not supplied costs in each user
preference scenario. (a) For cases with no EVs. (b) For cases with EVs, but without DER. (c) For cases
with RES, but without ESS. (d) For cases with DER (RES and ESS).

Once again, the conclusion drawn from the above analysis is that using dynamic energy pricing for
EVs’ charging contributed greatly to a reduction in costs associated with power loss, power generation
curtailment, and power not supplied. The reductions were more evident for PNS, where they reached
100% in Cases H and L.

Table 10 presents the maximum and the minimum voltage reached in each study. It also presents
the buses where those values are verified. As can be seen in this table, the worst voltage values for the
user price preference scenario and for the user distance preference scenario were verified in Case G at
bus 6 and bus 5, respectively, mainly because these cases did not consider DG and ESS. When adopting
dynamic pricing combined with the use of EVs (Cases D, H, and L in the user price preference scenario),
it is possible to verify that this leads to better voltage levels (i.e., min. voltage), demonstrating the
advantage of dynamic charging prices when EVs react to charging price.

Case L (which is a dynamic EV charging price case) and the case with 0.20 e/kWh for slow charge
and 0.30 e/kWh for fast charge (fixed energy charging price) were chosen as an example to present
the total energy charge consumption, the average charge power, and the preference percentages of the
EV users for each bus that had parking lots. Figure 13 illustrates Case L, and Figure 14 presents the
fixed price case.

The preference for a bus with an EV parking lot was counted from the moment the EV began to
charge until the time it left the parking lot (one charging session).

In (a), it is possible to see that when the user price preference scenario was considered, the total
energy consumed when charging an EV in bus 7 (slow charging parking lot) was 88,037 kWh, which in
comparison to the other three buses was 69%, 88%, and 91% more, meaning that the energy price
to charge at this bus was better than at the others. Thus, the average charging power followed the
same trend as energy consumption. In the user distance preference scenario, energy consumption
during charging was spread more evenly over the other parking lot buses. In this case, the highest
consumption was the one in bus 2 (fast charging parking lot) with around 45,500 kWh. This bus
consumed 19%, 35%, and 14% more energy than the remaining parking lot buses. Once again,
the average charge power followed the energy charge consumption trend.
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Figure 13. Energy and preference results in each bus that had parking lots for EV charging, considering
the dynamic EV charging price in Case L. (a) Energy and average charge power at each EV parking
lot bus. (b) Preference percentage for each parking lot bus considering the user price preference scenario.
(c) Preference percentage for each parking lot bus considering the user distance preference scenario.

Figure 13b,c shows the preference percentages of the EV users for each bus with a parking lot,
considering the user price and distance preferences scenarios, respectively. Figure 13b shows that
the parking lot located at bus 7 was the one preferred by EV users, with 69.04% of charged EVs.
The parking lot located in bus 11 was the second most chosen, while the fast charging parking lots
were the ones least used, with a total of 4.85%. The slow charging parking lots were those that had
the lowest energy charging price when compared to the fast charging parking lots. Then, since the
user price preference scenario is being considered here, the choice of the less expensive parking lot
was logical.

In Figure 13c, the user distance preference scenario is considered. In this scenario, the user
preference was to find a parking lot that was as close as possible to the total route that the user would
have to travel, i.e., the lowest summation distance between the current EV location and the parking lot
and the distance between the parking lot and the next destination. In this user preference scenario,
the fast charging parking lots obtained a higher preference when compared to the case where the user
preference was defined by the price. This indicates that when the price was not the most important
factor, fast charging parking lots could attract users who were located close to them. Nevertheless,
we arrived at the conclusion that the location of those parking lots was not optimal, because even when
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considering the user distance preference scenario, the majority of the users chose the slow charging
parking lots: the lease expensive ones.

Figure 14. Energy and preference results at each bus that had parking lots at a fixed price for EV
charging, with 0.20 e/kWh for slow charging and 0.30 e/kWh for fast charging. (a) Energy and
average charging power in each EV parking lot bus. (b) Preference percentage for each parking lot
bus considering the user price preference scenario. (c) Preference percentage for each parking lot bus
considering the user distance preference scenario.

It is also important to note in the user distance preference scenario that even the parking lots
located at bus 11 presented higher user charging preference when compared to the parking lots located
at bus 7; the energy consumption and the average charging power at the parking lots of bus 11 were
not higher than those at bus 7. This means that the energy price in bus 11 presented higher variations,
and it was worse in general when compared to the energy price in bus 7 (it is possible to observe this
in Section 4.2, second box plot figure), which contributed to higher energy charge consumption in bus
7 and a considerable charging preference (37.35%) even though there was only a 30% probability in
the user price preference scenario (see Table 6). Moreover, due to the higher charge preference at bus
11, it is possible to conclude that the location of the parking lots at this bus was better (advantageous
because EV users were at a shorter distance from them) when compared to the parking lots at bus 7.

The total energy charge consumption, the average charge power, and the preference percentages
of the EV users for the fixed energy prices (0.20 e/kWh for slow charge and 0.30 e/kWh for fast
charge) are presented in Figure 14.
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In Figure 14a, it can be observed that in the user price preference scenario, the bus with the highest
total energy consumption for EV charging was bus 11 with 40,733 kWh, that is 9%, 28%, and 13% more
than buses 7, 2, and 5, respectively. Thus, the average charging power followed the same trend of the
energy consumed during charging. In comparison, (a) in Figure 13 shows that the energy consumed
by the charging EVs was spread more evenly among all the parking lot buses, while in the dynamic
EV charging price case, energy consumption due to charging was more concentrated in bus 7 than the
others. This means that bus 7 with respect to dynamic EV charging price presented a better charging
price. In the user distance preference scenario, the energy charge consumption followed the same
trend as in the dynamic EV charging price case, indicating energy consumption of 50,815 kWh at bus 2;
the consumption was higher by 42%, 38%, and 21% in relation to the remaining buses. Regarding the
average charging power, the trend was the same as for energy consumption.

Analyzing Figure 14b, which presents the preference percentages of the EV users for each bus
with parking lots, considering the user price preference scenario, it can be seen that the parking lot in
11 was preferred among users with 49.34% of EV users choosing this lot. The parking lots located at
bus 7 were in second place, while the fast charging parking lots had a total of around 19% preference
among users, quite higher when compared with (b) of Figure 13. This means that in the dynamic EV
charging price case, the most attractive prices were on the buses that had slow charging parking lots,
leading to a great number of users choosing them over the fast charging parking lots. The majority of
the users preferred slow charging due to the lower charging price (0.20 e/kWh).

Table 10. Maximum and minimum voltage magnitude for each case study.

Case

User Price Preference Scenario User Distance Preference Scenario

Max Voltage Min Voltage Max Voltage Min Voltage

bus Value (p.u.) bus Value (p.u.) bus Value (p.u.) bus Value (p.u.)

A 2 0.9996 9 0.9819 2 0.9996 9 0.9819
B 7 0.9998 9 0.9844 7 0.9998 9 0.9844
C 7 0.9998 9 0.9844 7 0.9998 9 0.9844
D 2 0.9996 9 0.9814 2 0.9996 6 0.9690
E 2 0.9996 13 0.9761 2 0.9996 6 0.9688
F 2 0.9996 13 0.9761 2 0.9996 6 0.9688
G 2 0.9996 6 0.9685 2 0.9996 5 0.9623
H 7 0.9999 13 0.9826 7 0.9998 6 0.9692
I 7 0.9998 13 0.9763 7 0.9999 6 0.9690
J 7 0.9999 13 0.9763 7 0.9999 6 0.9690
K 7 0.9999 6 0.9687 7 0.9999 5 0.9624
L 7 0.9999 12 0.9832 7 0.9999 6 0.9710
M 7 0.9998 13 0.9763 7 0.9999 6 0.9690
N 7 0.9999 13 0.9763 7 0.9999 6 0.9690
O 7 0.9999 6 0.9687 7 0.9999 5 0.9624

Once again, in the user distance preference scenario, the fast charging parking lots were a more
popular choice among users than in the user price preference scenario ((c) of Figure 14)). This also
indicates that those parking lots could attract users who find themselves closer to the fast charging
parking lots, if the price is not the most important factor. However, we arrived at the conclusion
that those parking lost cannot be located optimally because the slow charging parking lots were
highly preferred among users due to more attractive EV charging prices (even in the user distance
preference scenario).
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4.2. User Perspective

This subsection looks at the results of the case studies from the perspective of the EV users.
Figures 15 and 16 present the box plots for the dynamic EV charging price cases considering the user
price and distance preference scenarios, respectively. By comparing these two figures, it is possible to
see that the differences between the same cases in each figure were small. The verified variations were
mainly in Quartile 3 (Q3) and were higher in the user price preference scenario, in which the users
gave priority to price.

Figure 15. Electric vehicle charge price variation for the user price preference scenario.

Figure 16. Electric vehicle charging price variation in the user distance preference scenario.

Let us take bus 11 in Case L as an example: it can be seen that the charge price variation in the
user price preference scenario was between 0.0990 e/kWh and 0.2150 e/kWh, while in the user
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distance preference scenario, it was between 0.0990 e/kWh and 0.2000 e/kWh, corresponding
to a 0.0150 e/kWh of difference. Fifty percent of the charge price values (interquartile range)
were located between 0.1210 e/kWh and 0.1600 e/kWh for the user price preference scenario and
between 0.1210 e/kWh and 0.1510 e/kWh for the user distance preference scenario (0.0090 e/kWh of
difference). Twenty-five percent of the values varying between 0.0990 e/kWh and 0.1210 e/kWh for
both user preference scenarios were located in the first quartile (Q1). Seventy five percent of the EV
charging price values were represented by the third quartile (Q3) and varied between 0.0990 e/kWh
and 0.1600e/kWh in the user price preference scenario and between 0.0990e/kWh and 0.1510e/kWh
in the user distance preference scenario. These two figures show that the highest variation in the
charge prices among the dynamic EV charging price cases occurred specifically in slow charge buses
in Case D. This is mainly due to the wind farms (one of them at bus 7 and the other one at bus 11,
corresponding to 24% of the total installed power), which were not considered in Case D (it did not
consider RES nor ESS).

Table 11 presents the results collected over a one-week period during which the case study was
conducted; the average prices paid by EV users in the case of both dynamic EV charging prices and fixed
charging prices. In these average prices values, the home charging price is included (0.2094 e/kWh).
All dynamic EV charging price cases in the user price preference scenario show that the prices paid
by EV users for EV charging were on average lower than what EV users normally would pay if the
charging prices were fixed. However, this was not the case in the user distance preference scenario.
To better understand the values presented in this table, let us analyze Tables 12–14, which stress the
dynamic EV charging price cases with their homologous fixed price cases, presenting the gains in
terms of the percentage of the EV users.

Table 11. Spent average charge price of the EV users for dynamic and fixed prices.

Average Price
(e/kWh)

User
Preference
Scenario

Cases

D H L
SCh = 0.15 e/kWh
FCh = 0.25 e/kWh

SCh = 0.20 e/kWh
FCh = 0.30 e/kWh

SCh = 0.30 e/kWh
FCh = 0.40 e/kWh

Price 0.1925 0.1877 0.1867 0.2005 0.2281 0.2907

Distance 0.2414 0.2180 0.2178 0.2087 0.2370 0.2955

In Table 12, it is possible to see that the dynamic EV charging price Case D for the user price
preference scenario presented gains of 4.03%, 16.63%, and 33.79% over all the homologous fixed
price cases (E, F, and G), respectively. Even comparing a dynamic EV charging price case that did
not consider distributed resources with the lowest fixed prices case (0.15 e/kWh for slow charge
and 0.25 e/kWh for fast charge) verified the charge prices’ advantages. Regarding the user distance
preference scenario, the dynamic EV charging price case did not present advantages in terms of charge
price for the EV users when compared with fixed Cases E and F, which had 0.15 e/kWh for slow
charge and 0.25 e/kWh for fast charge and 0.20 e/kWh for slow charge and 0.30 e/kWh for fast
charge, respectively. Comparing with these two fixed prices cases, if the dynamic EV charging price
were applied, the EV users would have had a loss of 15.66% and 1.88%, respectively, but obtained a
gain of 18.30% when compared with the fixed charge price Case G.

Case H also presented charge price gains when compared with the homologous fixed charge
prices, as can be seen in Table 13. In this case, the gains were 6.42%, 17.73%, and 35.45%, respectively,
and when compared with Case D, it is possible to see a growth in those gains. For the user distance
preference scenario, it can be seen that the dynamic EV charging prices were not also advantageous
for the EV users when compared with the lowest considered fixed energy charge prices, but with a
strong reduction when compared with the case that did not consider RES. Furthermore, a gain of 8%
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can be seen with Case H (a growth of 9.88%) over the charge fixed energy price considered for Case J
(0.20 e/kWh for slow charge and 0.30 e/kWh for fast charge), as well as a growth of 7.92% over the
0.30 e/kWh (slow charge) and 0.40 e/kWh (fast charge) fixed charge prices.

Table 12. Average charge price differences between dynamic Case D and the homologous fixed cases.
The average prices paid by the EV users when Case D was used were 0.1925 e/kWh and 0.2414 e/kWh
for the user price preference scenario and the user distance preference scenario, respectively. Blue color
means that Case D is advantageous for the EV user, whereas the red color means that Case D is not
advantageous for the EV user.

Fixed Prices
Dynamic Price

Case E Case F Case G

Price preference

4.03% 15.63% 33.79%

Distance preference
Case D

−15.66% −1.88% 18.30%

With the RES and ESS presented in the distribution network, the results’ tendency was similar to
Case H. Comparing the differences, it is possible to see through Table 14 that the gains of Case L were
higher than the gains of Case H, namely due to the ESS consideration.

Table 13. Average charge price differences between dynamic Case H and the homologous fixed cases.
The average prices paid by the EV users when Case H was used were 0.1877 e/kWh and 0.2180 e/kWh
for the user price preference scenario and the user distance preference scenario, respectively. Blue color
means that Case H was advantageous for the EV user, whereas the red color means that Case H was
not advantageous for the EV user.

Fixed Prices
Dynamic Price

Case I Case J Case K

Price preference

6.42% 17.73% 35.45%

Distance preference
Case H

−4.45% 8.00% 26.22%

Table 14. Average charge price differences between dynamic Case L and the homologous fixed cases.
The average prices paid by the EV users when Case L was used were 0.1867 e/kWh and 0.2178 e/kWh
for the user price preference scenario and the user distance preference scenario, respectively. Blue color
means that Case L was advantageous for the EV user, whereas the red color means that Case L is not
advantageous for the EV user.

Fixed Prices
Dynamic Price

Case M Case N Case O

Price preference

6.92% 18.17% 35.79%

Distance preference
Case L

−4.33% 8.10% 26.30%
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5. Conclusions

In this research work, the authors investigated if the dynamic EV charging prices have a positive
impact on the smart distribution network operation and on the EV user behavior. To this end,
the authors combined an EV behavior simulator with a proposed innovative smart DLMP-based
distribution network operation/reconfiguration. The main contributions of the conducted study
can be summarized as follows: (a) an EV user behavior simulator has been adopted to generate
a realistic population, considering the network size and parking lots; (b) a distribution network
operation/reconfiguration optimization model has been created in an SG context with high DER
penetration concerning the behavior of the EV users and the dynamic EV charging price considering
DLMPs using the Benders decomposition method; (c) the positive impact of the dynamic EV charging
prices on the smart distribution network operation and on the electric vehicles users has been assessed.

The proposed methodology was tested in a case study, which has been conducted on a
mock-up model of an SC located at the BISITE laboratory with a 13-bus distribution network.
Furthermore, the distribution network operation/reconfiguration optimization model considering two
user preference scenarios (price and distance preference) and using the dynamic EV charging prices
were compared with the model using the EV fixed charging prices to demonstrate the advantage of
the former.

It was verified that the use of dynamic pricing for EV charging is advantageous for the network
operator in all of the considered cases due to reduced cost of operation and the user preference scenarios.
These benefits are even more evident when considering high fixed charging prices (0.30 e/kWh for
slow charging and 0.40 e/kWh for fast charging, −35.79% in the user price preference scenario,
Case L). The lowest cost reduction was 0.24% in Case H of the distance preference scenario. Moreover,
when the distance preference scenario and dynamic price were considered, it was verified that the PNS
was zero, with exception of Case D, which presented an insignificant value (123.35 e).

For the EV users, the dynamic pricing also presented considerable cost advantages, namely when
the price preference was considered. In this scenario, the lowest advantage (4.03% better) was verified
in Case D compared with the lowest considered fixed charging prices (0.15 e/kWh for slow charge and
0.25 e/kWh for fast charge). Furthermore, for this scenario, the advantages can reach 35.75% (Case L),
i.e., around 0.10 e/kWh of savings if the fixed charging prices are 0.30 e/kWh for slow charge and
0.40 e/kWh for fast charge. If the distance preference was considered, the dynamic EV charging price
cases did not present savings in comparison with the lowest fixed charging price cases, namely when
the fixed charging prices were 0.15 e/kWh for slow charge and 0.25 e/kWh for fast charge. Here,
the user lost up to 15.66% for the dynamic EV charging price Case D. Nevertheless, the dynamic price
still presented considerable savings when fixed prices were higher, reaching up to 26.30%.

The results suggest that the dynamic energy pricing for EVs’ charge can be used as an efficient
approach in smart cities that allows important monetary savings for both the distribution system
operator and EV users.

The main drawbacks of the proposed work are: (a) the EV users’ profiles were not adapted to
the different weekdays; (b) the decision charge method was only based on the battery charge level;
(c) vehicle-to-grid was not considered; (d) the ESS charge/discharge decision was limited and based
on rules.

As future work, the authors suggest this research work include more EV user profiles,
an additional charging decision method that depends on the energy price, an optimized ESS
charge/discharge decision, an optimization model for EV users’ costs minimization, solar-powered
charging infrastructures in the parking lots, and also the possibility of vehicle-to-grid.
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Abbreviations

The following abbreviations are used in this manuscript:

DER Distributed energy resources
DG Distributed generators
DLMP Locational marginal pricing
DN Distribution network
DNR Distribution network reconfiguration
DSO Distribution system operator
ESS Energy storage systems
EU European Union
EV Electric vehicle
FCh Fast charge
LMP Locational marginal pricing
MINLP Mixed-integer nonlinear programming
MOC Master subproblem objective function
MV Medium voltage
OMIE Iberian electricity market operator
PGC Power generation curtailment
PL Power losses
PNS Power not supplied
PV Photovoltaic
RES Renewable energy sources
SC Smart city
SCh Slow charge
SG Smart grid
VAT Value-added tax
Indices

c Line options
i Electrical buses
j Electrical buses
lo Loads
bs External supplier
cb Capacitor bank
g Distributed generator unit
e Energy storage systems
v Electric vehicles parking lot
m Bender’s cuts iteration
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Parameters

PCost
PGC Power generation curtailment cost [e/MW]

priceMK Market price [e/MWh]
CostPNS Power not supplied cost [e/MW]
CostLoss Power losses cost [e/MW]
ce f Charge efficiency of energy storage systems
de f Discharge efficiency of energy storage systems
CostCong Lines congestion cost [e/MW]
priceMk Market price [e/MW]
CostPNS Power not supplied cost [e/MW]
r(i,j) Resistance for i,j line[Ω]
CostLoss Power losses cost [e/MW]
PCost

PGC Power generation curtailment [e/MW]
pDG(g) Power generation for g DG unit [MW]
EVP(i) Power charge for EV parking lot in the bus i [MW]
Flowmax

(i,j) Maximum admissible line flow between bus i and bus j [MW]
nDG Number of DG units
ExtSupMinLimit(bs) Minimum limit of power supplied by substation/supplier bs [MW]
ExtSupMaxLimit(bs) Maximum limit of power supplied by substation/supplier bs [MW]
pDG(g) Generated power of distributed generation g [MW]
pLoad(lo) Active power demand for load lo [MW]
CongMin Power congestion factor
STdchR(e) ESS discharge rate [MW]
STchR(e) ESS charge rate [MW]
STdMstat

(e) Decision for ESS e discharge {0,1}

STcap(e) ESS e capacity [MWh]
STdMstat

(e) Decision for ESS e discharge {0,1}

Δt Duration of the period [hours]
STstoMt−1

(e) Energy stored in e ESS in previous period for master subproblem [MWh]

STstoSt−1
(e) Energy stored in e ESS in previous period for slave subproblem [MWh]

STstomin
(e) Minimum capacity limit of the ESS e

priceMk
min Minimum market price value that will permit the ESS discharge

λm−1
(i,j) Sensitivities associated to the radiality decision taken by the master problem in the previous iteration

μm−1
(i) Sensitivities associated to the ESS charge decision taken by the master problem in the previous iteration

CostIn f Slave problem infeasibilities cost [e]
Vmin
(i) Minimum voltage magnitude limit in the bus i [V]

Vmax
(i) Maximum voltage magnitude limit in the bus i [V]

θmin
(i) Minimum voltage angle limit in the bus i [rad]

θmax
(i) Maximum voltage angle limit in the bus i [rad]

QLoad(lo) Reactive power demand for load lo [Mvar]
Qmax

Cbanks(cb)
Maximum limit of the capacitor bank cb [Mvar]

G(i,j) Real term of the element i,j in the bus admittance matrix
B(i,j) Imaginary term of the element i,j in the bus admittance matrix
x(i,j) Reactance for i,j line [Ω]
PsMinLimit(bs) Minimum limit of active power supplied by substation/supplier bs [MW]
PsMaxLimit(bs) Maximum limit of active power supplied by substation/supplier bs [MW]
QsMinLimit(bs) Minimum limit of reactive power supplied by substation/supplier bs [Mvar]
QsMaxLimit(bs) Maximum limit of reactive power supplied by substation/supplier bs [Mvar]
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Variables

D(g) Fictitious load for each distributed generator g
ExtSup(bs) Power supplied by substation bs [MW]
PNSM(lo) Power not supplied for load lo in the master subproblem [MW]
FlowM(i,j) Power flow in the line i,j for the master subproblem [MW]
PPGCM(g) Power generation curtailment for master subproblem in the g DG unit [MW]
ω∗ Linear Benders’ cut variable
STdchM(e) Power discharge of ESS e for master subproblem [MW]
STchM(e) Power charge of ESS e for master subproblem[MW]
Xstat
(i,j) Binary decision variable {0,1} for the line usage between bus i and bus j

d(i,j) Fictitious flow associated with branch i,j
CongM(i,j) Power congestion for line i,j in the master subproblem [MW]
STcMstat

(e) Binary decision variable {0,1} for ESS e charge

STdMstat
(e) Binary decision variable {0,1} for ESS e discharge

STstoM(e) Energy stored in e ESS for master subproblem [MWh]
Zm−1

up Sum of the infeasibilities of the slave problem
ZA Slack variable for active power balance
ZQ Slack variable for reactive power balance
ZF Slack variable for thermal lines capacity
CongS(i,j) Power congestion for line i,j in the salve subproblem [MW]
PSupplier(bs) Active power supplied by substation bs[MW]
QSupplier(bs) Reactive power supplied by substation bs[Mvar]
PPGCs(g) Power generation curtailment for slave subproblem in the g DG unit [MW]
PNSs(lo) Power not supplied for slave subproblem in the load lo [MW]
SLoss(i,j) Apparent power loss in the line i,j [MVA]
V(i) Voltage magnitude in the bus i [V]
θ(i) Voltage angle in the bus i [rad]
PInj(i) Active injected power in the bus i [MW]
QInj(i) Reactive injected power in the bus i [Mvar]
QCbanks(cb) Reactive power from capacitor bank cb [Mvar]
P(i,j) Active power flow in the i,j line [MW]
Q(i,j) Reactive power flow in the i,j line [Mvar]
S(i,j) Apparent power flow in the i,j line [MVA]
PLoss(i,j) Active power loss in the i,j line [MW]
QLoss(i,j) Reactive power loss in the i,j line [Mvar]
FlowS(i,j) Power flow in the i,j line for slave subproblem [MW]
STdchS(e) Power discharge of ESS e for slave subproblem [MW]
STchS(e) Power charge of ESS e for slave subproblem[MW]
STstoS(e) Energy stored in e ESS for slave subproblem [MWh]
DEP Dynamic EV charging price for each period [e/kWh]
Tari f f MV Energy tariff price for each period [e/kWh]
PLG Additional profit margin of the parking owner
ACNR Additional cost related to the fixed term of network price rate to be charged to the customer [e/kWh]

Sets

ΩB Set of buses
Ωb

BS Set of substation buses
Ωb

CB Set of capacitor banks buses
Ωb

L Set of load buses
Ωb

E Set of ESS buses
Ωb

V Set of EV parking lot buses
ΩBS Set of substations
ΩCB Set of capacitor banks
Ωl Set of lines
Ωnd

DG Set of non-dispatchable DG buses
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Abstract: Electric vehicles (EVs) have become an efficient solution to making a transportation system
environmentally friendly. However, as the number of EVs grows, the power demand from charging
vehicles increases greatly. An unordered charging strategy for huge EVs affects the stability of a
local power grid, especially during peak times. It becomes serious under the rapid charging mode,
in which the EVs will be charged fully within a shorter time. In contrast to regular charging, the
power quality (e.g.,voltages deviation, harmonic distortion) is affected when multiple EVs perform
rapid charging at the same station simultaneously. To reduce the impacts on a power grid system
caused by rapid charging, we propose an optimal EV rapid charging navigation strategy based on
the internet of things network. The rapid charging price is designed based on the charging power
regulation scheme. Both power grid operation and real-time traffic information are considered.
The formulated objective of the navigation strategy is proposed to minimize the synthetic costs
of EVs, including the traveling time and the charging costs. Simulation results demonstrate the
effectiveness of the proposed strategy.

Keywords: electric vehicle; rapid charging; charging navigation; internet of things

1. Introduction

With the increasing concern about environmental protection and the energy supply problems,
more attention has been focused on the development of electric vehicles (EVs) [1]. In contrast to the
normal gasoline/diesel powered vehicles, EVs are considered as a kind of zero-emission transportation.
Meanwhile, EVs can function as moving electric storage equipment to help the power balance
between the supply and demand sides [2–4]. The vehicle performances are improved via realizing
the advantages of environmental protection and energy conservation. However, as the number of
EVs grows, the power charging demand increases greatly. The larger-scale and disorganized charging
strategies cause several serious problems for the local power grid. The charging terminals will be
overloaded and the performances of power grids, including the efficiency, stability and reliability will
be directly affected [5,6]. Along with the development of internet of things (IoT) technologies, how to
design an optimal and efficient charging strategy for EVs becomes a critical problem.

Normally, the existing EV charging modes can be classified into: regular (slow) charging, rapid
charging and battery switching [7,8]. In the regular charging mode, the charging power is low. It takes
a longer time for EVs to be fully charged, which can extend EVs’ battery life and reduce the impact of
charging behaviors on the local power grid. Since the charging process is slow, this charging mode
requires a long parking time and the charging stations are often located in the large public/commercial
parking lots or residential underground garages.

Given the limited capacity of EV battery, the drivers who have a long-distance trip should select
a fast charging mode to refuel their vehicles. Compared with regular charging, the charging time
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durations of EVs under the rapid charging and the battery switching modes are reduced. As for the
battery switching mode, the battery parameters and interface standards are different for the various EV
types and manufacturers. Under the battery switching mode, several professional and particular EV
battery switching stations are needed to support the EV traffic [8,9]. It is suitable for public transport
buses, and it has a limited influence on the power grid. Besides battery switching, rapid charging is
another faster charging mode. Under this charging mode, the charging process will be completed in
the charging stations with high power level. It is more convenient and flexible, so the normal drivers
prefer this mode to recharge their EVs to continue driving more quickly.

However, rapid charging may pose threats to the power grid system. A large number of disordered
and random rapid charging behaviors will cause negative effects on the local power grid, especially
during the peak periods. Compared with regular charging, excessive rapid charging loads on the
electric power distribution network can cause more serious problems, such as voltages deviation,
overload of network components (e.g., cables or transformers), and the increase of the harmonic
distortion level of the local power grid [10–12].

To reduce the EV charging impacts on the power grid, many studies have been carried out,
focusing on the charging scheduling design to flatten the peak loads [13,14], via the help of the real
time IoT technologies, such as vehicle-to-grid (V2G) communication, crowd sensing. Ref. [15] proposes
a coordinated architecture to shift the charging loads by dynamic price regulating. Furthermore, in [16],
a fair energy scheduling scheme is proposed to control the charging loads of EVs. By coordinating
both the charging and discharging behaviors, an optimal charging approach is presented in [17] to
achieve peak shaving and minimize the charging power losses. Most of these studies mentioned are
based on the regular charging mode, the main objectives of these scheduling schemes are to change
the charging behaviors of EV drivers. However, when urgent charging demands arrive for the moving
EVs on roads, adjusting the start time of charging reduces the drivers’ satisfaction sharply. When the
EVs are driving on the road outside, the rapid/faster charging modes are needed. It is necessary to
develop a charging navigation strategy for rapid charging EVs.

In the literature about charging navigation, Ref. [18] analyzes the EV navigation problem while
the traveling cost is minimized. Ref. [19] formulates the charging-scheduling problem and proposes an
optimal method to reduce the total charging time of EVs. In terms of navigation in transport sectors,
some necessary navigation applications (e.g., GPS) are installed to guide the EVs to the charging
stations. However, the mentioned navigation strategies [18,19] do not consider the power system
information. Then, the power system performance will be reduced when the mentioned strategies
are utilized for the rapid charging EVs directly. In detail, as the power demand for rapid charging
increases, it causes charging congestion when a large number of EVs arrive at one rapid charging
station at the same time. In China, since the rapid charging stations are generally built in bustling
downtown areas, such behaviors may lead to traffic congestion around rapid charging stations as
well as the power overload of these areas. Likewise, heavy traffic situations also greatly affect the
charging of EVs, including the traveling time on the roads and the waiting time at the charging
stations. An integrated rapid-charging navigation strategy is proposed in [20], that considers both the
traffic condition and power grid status. It develops a strategy considering the total time for charging,
however, the charging expenses are neglected. Ref. [15] formulates an optimized charging model to
minimize the charging cost in response to time-of-use (TOU) price in a regulated market. Even in
the same time period, the charging stations in different areas can adjust their rapid charging prices
according to their operation status. Adjusting the charging prices in real time becomes an efficient
method to control the number of charging EVs. Therefore, besides considering the power grid and
traffic system constraints, it is necessary to satisfy the EVs’ demands with the minimal synthetic cost
(i.e., traveling time and charging expenses) under the rapid charging mode, via the deployed IoT
network in both the traffic and power grid systems.

In this paper, we develop an optimal EV navigation strategy under the rapid charging
mode, while the synthetic costs, including the traveling time and charging expenses are minimized.

62



Energies 2019, 12, 962

Meanwhile, the traffic congestion and the charging station overloading are mainly considered. In our
work, we only focus on private electric vehicles and specifically aim at the Chinese situation. The real
time traffic data and the power grid operation information are the basis of our proposed navigation
strategy. We propose an intelligent transport system framework for the rapid charging EV system,
the data collection and transmission are processed in the distributed computing manner. The rapid
charging stations regulate the charging power of each charging pole dynamically according to the
power grid operation information, and adjust their charging prices base on TOU tariffs and the queuing
number of EVs. During the driving process of EVs, the charging navigation path is updated in real
time, according to the power grid status and the traffic conditions. Therefore, the charging navigation
paths are always optimal in the driving process. In summary, the contributions of this paper are listed
as follows.

1. We design an optimal charging navigation strategy for rapid charging EVs to reduce EV users’
traveling time and charging expenses flexibly.

2. We propose an intelligent transport system framework for our optimal charging navigation
strategy, while the traffic and power grid operation information are considered.

3. To implement our optimal charging navigation strategy, we use the charging power regulation
scheme to reduce the influence for power grid, and charging price adjustment scheme to balance
the number of EVs at each rapid charging station.

The remainder of this paper is organized as follows. The system model is presented in Section 2.
The optimal charging navigation scheme is proposed in Section 3. Simulation results are proposed in
Section 4. In Section 5, we present the conclusions of this paper.

2. System Model

In this section, we propose a comprehensive system model as illustrated in Figure 1. It contains
three parts: Intelligent Transport System center (ITS center), Rapid-Charging Station (RCS), and EV
terminals. Real-time traffic data and power grid operation information are collected and calculated in
a distributed model via the IoT networks (e.g., crowd sensing). The EV navigation system operates
in the slot-by-slot fashion. The structure of each slot is shown in Figure 2. Each slot has three
frames, including calculation and broadcast frame t1, decision frame t2, and monitoring frame t3.
Normally, t3 >> t1 and t3 >> t2. In order to obtain optimal rapid-charging navigation strategies for
EVs, the navigation paths should be updated in each slot. In the monitoring frame t3, the RCS collects
the power grid operation data, meanwhile, the ITS center collects real-time traffic data. In frame t1, the
RCS and ITS center calculate the collected information respectively and then broadcast the charging
station information and road conditions to the EVs. After receiving the broadcasting data, the EVs
determine the navigation paths in frame t2. The integrated system is described in detail as follows.

2.1. Rapid-Charging Station

As shown in Figure 1, there are multiple RCSs deployed around the road. A distribution
management system (DMS) unit is included in each RCS, which is used to connect the local
power grid. In frame t3 of each slot, the RCS collects the power grid operation data via the DMS.
Then, in frame t1, in order to ensure safe and stable operation of the local power grid, after collecting
the power grid information, the DMS calculates the maximum permissible charging load based on the
power loading level of the distribution power system. According to the maximum accessible charging
capacity released by DMS, each RCS calculates and adjusts their charging plans. Then, it distributes
the charging powers to each charging pole dynamically. In addition, according to the TOU electricity
price issued by power grid company in advance, combined with their profitability and the number of
queuing vehicles, the RCSs adjusts their charging prices in each slot. After that, these planned charging
power data and the station information (i.e., charging prices, arrival rate and service rate at RCSs) will
be broadcast to the moving EVs.
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Figure 1. System model overview.

Figure 2. Structure of a slot.

2.2. Intelligent Transport System Center

With the emerging communication and information techniques, the ITS center becomes a transport
management system, which has the remarkable benefits in reducing traffic congestion. In our work,
the ITS center is connected with the traffic communication network. In frame t3, the ITS center collects
real-time traffic data via crowd sensing or other IoT data collecting technologies. Then, in frame t1 of
the next slot, the ITS center calculates the road conditions (e.g., average driving velocities in each road
segment in the slot) and broadcasts them to the moving EVs.

2.3. EV Terminal

We set that the EVs can obtain the electricity from both the regular and rapid charging modes.
In order to balance the gap between the traveling time and cost, we consider that the EVs obtain
the charging energy via the rapid charging only on the trip. When they arrive the destination, their
batteries will be charged fully via using the regular charging mode. On the basis of the received road
condition data and charging station information, in the frame t2 of each slot, the EV terminals calculate
the synthetic costs for all reachable charging stations and develop optimal navigation strategies for
EVs. Thus, with the dynamic information of charging station and traffic conditions, the navigation
strategies can be proposed dynamically and display the result to EVs in each slot.

3. Optimal Charging Navigation Scheme

Assume that the EV starts traveling from the origin and passes through the complex traffic
network to reach the destination, as shown in Figure 3. During the traveling, at the beginning of each
slot in frame t2, the EV terminal determines whether it needs to be charged. When the remaining
amount of state of charge (SoC) is not enough to finish the trip, the EV terminal should design an
optimal charging navigation strategy with the minimum synthetic cost. During the driving process of
charging navigation, the navigation path will be updated at the beginning of each slot, based on the
dynamic information EV terminal receives. The EV arrives at the selected RCS and obtains the suitable
charging energy.
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Figure 3. Topology structure of road network model.

In the proposed optimal navigation strategy, both the time cost and the charging cost are
considered. In detail, the time cost includes the EV driving time, the waiting time and charging
time at the RCSs. Moreover, the charging cost includes the rapid charging cost in the RCSs and the
regular charging cost at the destination. The details are shown below, and the mathematical symbols
in this paper are listed in Table 1.

Table 1. Mathematical symbols used in this paper.

Symbol Description

Tdrive/Twait/Tcharge Driving/waiting/charging time
C/Crapid/Cregular Total cost/rapid charging cost/regular charging cost

ϕ Weight coefficient
Tij Traveling time between locations i and j
dij Distance between locations i and j

v̄ij,k Average driving velocity between locations i and j during time slot k
(∗)j,k At RCS j during time slot k
δj,k EVs’ arrival rate (EV number per minute)
ηj,k EVs’ service rate (EV number per minute)
pj,k Occupation rate per charger
Pj,k Rapid charging power of each charging pole
Qj,k Charging capacity of RCS j during time slot k
nj,k Number of charging EVs
wj,k Queuing number of EVs
ρ̄j,k Rapid charging price
cj Total number of EV chargers at RCS j
ρt TOU charging price in electricity market(Regular charging price)
ρ∗ Additional charging charges

Eca/Emin
ca Rated battery capacity/minimum storage of battery capacity

ϑrapid Rapid charging efficiency
Pmax Maximum charging power of charging pole

ec Battery energy consumption
Erapid

ch /Eregular
ch Rapid charging amount/regular charging amount

SOC0 State of charge at origin
D1

path/D2
path Driving distance from origin to selected RCS/driving distance

from selected RCS to destination
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3.1. Time Cost

3.1.1. Driving Time

Firstly, let Tdrive represent the total driving time from the origin to the destination, which can be
calculated as

Tdrive = ∑
i,j∈{Ω∪Φ}

Tij, (1)

where Tij is the traveling time between locations i and j. Ω and Φ are the sets for all visited locations
and RCSs.

The driving time between locations i and j is expressed as

Tij =
dij

v̄ij,k
, (2)

where dij is the distance between locations i and j. v̄ij,k is the average driving velocity in time slot
k between locations i and j. Here, k ∈ {1, 2, · · · , K}, K is the total number of time slots. We set that
the ITS center broadcasts the average driving velocity v̄ij,k to all EVs at the beginning of each slot in
frame t1.

We set that the EV can complete its journey with only one charging at the RCS. Let T1
j,drive denote

the driving time from origin to RCS j, T2
j,drive denote the driving time from RCS j to destination.

The total traveling time for RCS j is obtained via the below formula

Tj,drive = T1
j,drive + T2

j,drive

= ∑
i,j∈{Ω∪Φ}

Tij

= ∑
i,j∈{Ω∪Φ}

dij

v̄ij,k
. (3)

3.1.2. Waiting Time

We estimate the waiting time Twait at RCS j based on Queue Theory. Let Tk denote the time
duration of slot k. The number of arriving EVs during Tk is denoted by narrive

j,k and the number of EVs

being charged during Tk is denoted by nservice
j,k . These data can be easily obtained via multiple deployed

sensors or devices in the charging station [21]. Then, at RCS j, the EV arrival rate δj,k (EV number per
minute) and service rate ηj,k (EV number per minute) at time slot k are given as

δj,k =
narrive

j,k

Tk
, ηj,k =

nservice
j,k

Tk
. (4)

According to the queuing model M/M/s of queue theory mentioned in [21–24], the arrival rate
is subject to the poisson distribution with parameter δj,k, the service rate is subject to the negative
exponential distribution with parameter ηj,k. The total idle probability of the RCS j at time slot k is
shown as

P0,j,k =

⎡
⎣cj−1

∑
n=0

1
n!

(
δj,k

ηj,k

)n

+
1
cj

(
δj,k

ηj,k

)cj
(

1
1 − pj,k

)⎤⎦
−1

, (5)
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where n is the number of charging EVs, cj is the total number of EV chargers at RCS j. pj,k is the
occupation rate per charger of RCS j and is expressed as

pj,k =
δj,k

ηj,kcj
. (6)

The length of queue Lq,j is calculated as

Lq,j =
pj,k

cj!(1 − pj,k)2

(
δj,k

ηj,k

)cj

P0,j,k, (7)

thus, when a EV arrives at RCS j, the waiting time is

Tj,wait =
Lq,j

δj,k
. (8)

3.1.3. Charging Time

The charging time is related to the charging power of EVs at RCSs. For the safety consideration of
local power grid, we give a rapid charging power regulation scheme similar as Ref. [20]. We define the
maximum rapid charging load of each RCS as the available charging capacity Qj,k. The power system
allocates available charging capacity on the basis of the load condition of power nodes at each slot.
At the RCS, based on the rapid-charging characteristics, the total rapid charging power of all charging
pole should not exceed the available charging capacity Qj,k. Thus, to ensure the safety of a distribution
power grid system, the rapid charging power Pj,k of each charging pole can be obtained from

Pj,k = min

{
Qj,k

nj,k
, Pmax

}
, (9)

where nj,k denotes the number of charging EVs at RCS j at time slot k, and Pmax is the maximum
charging power that charging pole can provide.

Then, the charging time Tj,ch at RCS j is

Tj,ch =
Erapid

ch
Pj,kϑrapid

, (10)

where ϑrapid is the rapid charging efficiency and Erapid
ch is the amount of rapid charging electricity.

3.2. Charging Cost

3.2.1. Rapid Charging Cost

The rapid charging cost is associated with the charging price. From the formulation Equation (9)
of Pj,k, when more EVs perform rapid charging in a RCS simultaneously, the rapid charging power
will be affected. To balance the rapid charging demand of each RCS and avoid overcrowding at the
RCS, we propose a rapid charging price adjustment scheme. We set the rapid charging price base on
TOU tariffs. A parameter ρ∗ is introduced to express the additional charging charges. The charging
price ρ̄j,k at RCS is designed as

ρ̄j,k =

{
λjρt (wj,k = 0)

λjρt + wj,kρ∗ (wj,k > 0)
, (11)
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where ρt denotes the TOU price in electricity market, λj denotes the profit coefficient for RCS j.
The queuing number of EVs is denoted as wj,k (i.e., the number of EVs that waiting to be charged).
If nj,k ≤ cj, we have wj,k = 0, otherwise wj,k > 0. The rapid charging price adjustment scheme is
shown in Figure 4. The charging price will be updated and broadcast to the moving EVs at every time
slot. Once the EV starts charging, the charging price of this EV will remain unchanged during the
whole charging process.
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Figure 4. The rapid charging price adjustment scheme.

The rapid charging cost is calculated as

Crapid = Erapid
ch ρ̄j,k. (12)

3.2.2. Regular Charging Cost

When arriving at the destination, the EV is parked in the residential area or parking lot with
charging poles. The EV will be charged to the rated capacity of battery using the regular charging
mode. The regular charging price is the TOU price ρt in the electricity market. We denote Eregular

ch as
the regular charging amount, we have

Cregular = Eregular
ch ρt. (13)

3.3. Objective Function and Constraints

In summary, the goal of charging navigation scheduling is to minimize the synthetic cost C.
The objective function is formulated as

min C = ϕ (Tdrive + Twait + Tch) + Crapid + Cregular, (14)

where ϕ is the weight coefficient, which is adjusted according to users’ requests. For example, a higher
ϕ means that the driver is more concerned about the time consumption.

The constraints for the objective function are

EcaSOC0 ≥ ecD1
path + Emin

ca , (15)

EcaSOC0 − ecD1
path + Erapid

ch ≥ ecD2
path + Emin

ca , (16)

EcaSOC0 + Erapid
ch + Eregular

ch − ec(D1
path + D2

path) = Eca, (17)

0 < Eregular
ch < Eca, (18)

0 < Erapid
ch < Eca, (19)
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where Eca is the rated battery capacity, Emin
ca is the minimum storage of battery capacity, SOC0 is the

state of charge at origin, ec is the energy consumption per kilometer. D1
path is the driving distance

from origin to the selected RCS and D2
path is the driving distance from the selected RCS to destination.

In detail, constraint (15) means that the remaining battery energy of EVs at origin should be greater
than the energy consumption from origin to the selected RCS. Constraint (16) means that the battery
energy after rapid charging at RCS should be greater than the energy requirement from the selected
RCS to destination. We assume that the EV will be charged to the rated capacity Eca using the regular
charging mode after arriving at the destination, the battery capacity should satisfy the Equation (17).
The regular charging amount and rapid charging amount should satisfy constraint (18), (19).

3.4. Solution

The optimization problem (14) is a typical mixed integer nonlinear programming (MINP) problem,
it is hard to solve directly. The Dijkstra algorithm is a common tool to solve the shortest path
problem [25]. According to Dijkstra algorithm, the traffic network can be modeled with a weighted
directed graph. The weighted lines of the graph represent the road segment and the nodes represent
the intersection of road network. Normally, the attribute of weight value can be either the distance of
road segment or the average time to drive through the road segment. In this paper, we use the synthetic
cost of traveling the road segment as the weight value. We can rewrite the objective function (14)
as the following formulation:

Weight = ϕTime + Expense. (20)

Time represent the time traveling the road segment, Expense represent the expense of electricity
consumption through road segment. ϕ is the weight coefficient, which is also used in the objective
function (14). According to the expression of objective function, the Weight is expressed as

Wij = ϕTij + ρtEij, (21)

where Wij is the weight value of road segment between location i and j, Eij is the electricity consumption
through road segment between location i and j. According to the weight value of each road segment,
we can use the Dijkstra algorithm to plan the optimal driving path. By using the Optimal Path Planning
Algorithm illustrated in Algorithm 1, we can obtain the optimal driving path and the selected RCS for
EV in each slot. According to the proposed charging navigation strategy, we can obtain the solution
procedure of optimal rapid-charging navigation. The solution procedure is illustrated in Figure 5.
After the real-time data is updated, the Optimal Path Planning Algorithm is employed to search
for optimal driving path and the RCS for EV. During the driving process of charging navigation,
the optimization of path planning will be repeated at the beginning of each time slot. The charging
navigation path is also updated through optimization until destination has been reached.

69



Energies 2019, 12, 962

Start

Input traffic network topology information,  initial 

node O, destination node D and SoC of the EV

Start point sp=O,

end point ep=D

Real-time data is 

updated at the beginning 

of each time slot

By using Optimal Path Planning Algorithm

illustrated in Algorithm 1, the optimal driving 

path and the selected RCS can be obtained

EV terminal displays charging 

navigation strategy to EV user and 

carry out the navigation strategy

Whether the next node

has been reached?

Is node  j the RCS?

Is node j the destination?

Queuing for 

charging

End

No

Yes

Yes

Yes

No

No

sp=j

Is the SoC enough 

to finsh the trip?

No

EV drives on the 

original path

Yes

Figure 5. Solution procedure of optimal rapid-charging navigation.
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Algorithm 1 Optimal Path Planning Algorithm at slot k.

Require:

The traffic network topology information.

The parameters listed in Table 2.

The real-time data δj,k, ηj,k, Pj,k, ρ̄j,k

The start point sp and the end point ep.
Ensure:

1: for each j ∈ Φ do

2: Simulate driving path from sp to RCS j and the path from RCS j to ep based on Dijkstra algorithm.

3: if The driving path satisfy the constraints (15) and (16). then

4: Calculate the total cost

Cj = ϕ
(

Tj,drive+Tj,wait+Tj,ch

)
+Cj,rapid+Cregular,

by solving the optimization model proposed in Section 2.
5: else

6: Cj = in f .
7: end if
8: end for
9: Select the driving path and RCS with the minimum total cost C = min{Cj | j ∈ Φ}.

4. Simulation Results

We consider a 25 × 25 km region of a city-center road network, which is similar to Guangzhou
Higher Education Mega Center in Guangzhou, Guangdong Province, China. The topological graph
of the transportation network is shown in Figure 6. The number of RCSs is 4. The RCSs (labeled
with red circle) are located at transportation nodes 17, 21, 37 and 11. Each RCS contains 8 charging
poles with the maximum charging power of 120 kW. The capacity of each EV is 54.75 kWh, and the
energy consumption is 0.147 kWh/km(these data are based on the GACNE Trumpchi GE530 [26]).
We assume the initial SoC of each EV is 20%. The parameters of studied EVs are listed in Table 2.
The TOU charging prices in electricity market are listed in Table 3 [27]. We set the profit coefficient
λj and additional charging charge parameter ρ∗ of each RCS as listed in Table 4. The conventional
load curve over one day is shown in Figure 7. We set that the permissible maximum load of this area
is 25 MW, which means, if the actual load exceeds the maximum load, it will cause a harmful effect
on the power grid. As the conventional load increases, the maximum available charging capacity of
all RCSs decreases as is shown in Figure 8. The charging capacity of each RCS is also dynamically
adjusted as the total available charging capacity changes.

Table 2. Parameters in simulation.

Parameter Values Parameter Values

Eca(kWh) 54.75 Emin
ca (kWh) 2.5

ec(kWh/km) 0.147 ϑrapid 0.9
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Table 3. Time-of-use (TOU) Price of charging in China’s electricity market.

Periods

Bottom Flat Peak

(00:00–06:59)

(23:00–23:59)

(07:00–09:59)

(15:00–17:59), (21:00–22:59)

(10:00–14:59)

(18:00–20:59)

ρt(Yuan/kWh) 0.3818 0.8395 1.3222

Table 4. Profit coefficient and additional charging charge.

Stations RCS1 RCS2 RCS3 RCS4

λj 1.4 1.3 1.25 1.35

ρ∗(Yuan/kWh) 0.15 0.15 0.15 0.15

Rapid-charging station

Figure 6. Transportation network and its topological graph based on Guangzhou Higher Education
Mega Center.
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Figure 7. The conventional load curve.
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Figure 8. The charging capacity of Rapid-Charging Stations (RCSs) at different time.

4.1. Impact Analysis of the Charging Power Regulation Scheme

In our simulation, we test the impacts of two charging approaches: the uncoordinated EV charging
approach and the charging approach using our proposed charging navigation strategy based on the
charging power regulation scheme, as shown in Figure 9. We can find that the uncoordinated EV
charging approach can cause an exceeded load peak over the maximum load. However, with the
proposed charging approach, the charging load can be controlled according to the state of the power
grid, which can effectively avoid overload. Thus, in order to reduce the influence of rapid charging on
the power grid, it is necessary to design an efficient and optimal charging strategy to limit the rapid
charging power, especially at the peak hours.
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Figure 9. Comparison of load curves to demonstrate the impacts of Electric vehicle (EV) charging approaches.
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4.2. Impact Analysis of the Proposed Rapid Charging Price Adjustment Scheme

In Figure 10, we simulate 7 EVs that start from node 1 to node 9. We set their weight coefficients
ϕ = 0.2 (Yuan/min). They start every 5 min one by one from 18:00 to 18:30 under two cases as follows.

Case 1 : Using the proposed rapid charging price adjustment scheme. The rapid charging price is
obtained by Equation (11).

Case 2 : Using the conventional rapid charging price scheme. The rapid charging price is based
on TOU price, i.e., ρj,k = λjρt.

From the Figure 10, we find that, in Case 1, the proposed rapid charging price adjustment scheme
adjusts the charging price according to TOU price and the number of queuing vehicles. The studied
EVs select different RCSs based on minimum synthetic cost. In Case 2, the EVs choose the same
RCS based on the conventional rapid charging price. Obviously, the proposed rapid charging price
adjustment scheme can balance the rapid charging demand of each RCS effectively. When the charging
demand is large, the EVs can be more balanced distributed in each RCS, reducing their waiting time
and the operation pressure of stations.
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Figure 10. Comparison of two rapid charging price scheme.

4.3. Impact Analysis of the Proposed Optimal Navigation Strategy with Different Weight Coefficient

In Figures 11 and 12, the performance of the proposed optimal navigation strategy is compared
with the simple shortest path strategy with different coefficients. The shortest path strategy is that the
EVs choose the path with shortest distance to travel. We select one EV that starts from node 1 to node
9 during the hours between 08:00 and 22:00. Under these two different charging strategies, the total
cost comparisons are shown in Figure 11. The comparisons of average traveling time and charging
cost is shown in Figure 12.
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In Figure 11, with different weight coefficient ϕ, we can find that the total cost of the proposed
charging navigation strategy is lower than the simple shortest path strategy. When ϕ = 0.5 (Yuan/min),
at 18:00, the total cost is reduced about 25% using the proposed charging navigation strategy. This
is because at peak times, when the congestion occurs in some road segments or charging stations,
the proposed charging strategy can update the driving path timely and select other RCS to minimize
the overall cost with a weight coefficient.

In Figure 12, we compare the time costs and charging costs separately under different weight
coefficients. When ϕ = 0 (Yuan/min), the objective is to minimize the charging cost. The average
charging cost of the proposed charging strategy is lower than the shortest path strategy, while their
average time costs are very close. This is because when ϕ = 0 (Yuan/min), the proposed navigation
strategy only considers the charging cost. It selects the path with minimum charging cost even though
the time cost is high. As the weight coefficient increases, the objective is more concerned with the
time consumption and the average traveling time of proposed charging strategy is reduced a lot.
When ϕ = 0.2 (Yuan/min), the average traveling time is reduced about 11 (min). When ϕ = 0.5
or ϕ = 1 (Yuan/min), the average traveling time is reduced about 15 (min). This is because when
ϕ > 0.5, it is difficult to further reduce the time cost under the same road conditions. As the results
show, the proposed strategy can optimize charging navigation path and reduce EV users’ traveling
time and charging expenses flexibly depending on different weight coefficients.
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Figure 11. Total cost comparison of two different navigation strategies.
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Figure 12. Comparison of traveling time and charging cost with different weight coefficients by two
navigation strategies.

5. Conclusions

In this paper, we propose an optimal charging navigation strategy for rapid charging EVs,
taking into consideration power grid operation and the real-time traffic information. With the
proposed charging strategy based on the charging power regulation scheme, the proposed strategy can
effectively avoid overload and mitigate the peak load in the distribution network. The proposed rapid
charging price adjustment scheme can balance the rapid charging demand of each RCS, thus reducing
waiting time of EV users and the operation pressure of stations. Moreover, we compare the total cost
with shortest path strategy under different weight coefficients at different times. Both the time cost
and the charging cost with different coefficient are analyzed. The modified Dijkstra algorithm is used
to find the optimal solution. The simulation shows that the proposed strategy can effectively reduce
EV users’ charging navigation cost depending on different optimization objectives.
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Abbreviations

The following abbreviations are used in this manuscript:

EV Electric Vehicle
IoT Internet of Things
V2G vehicle-to-grid
TOU time-of-use
ITS Intelligent Transport System
RCS Rapid Charging Station
DMS Distribution Management System
SoC State of Charge
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Abstract: The increase of variable renewable energy generation has brought several new challenges to
power and energy systems. Solutions based on storage systems and consumption flexibility are being
proposed to balance the variability from generation sources that depend directly on environmental
conditions. The widespread use of electric vehicles is seen as a resource that includes both distributed
storage capabilities and the potential for consumption (charging) flexibility. However, to take
advantage of the full potential of electric vehicles’ flexibility, it is essential that proper incentives
are provided and that the management is performed with the variation of generation. This paper
presents a research study on the impact of the variation of the electricity prices on the behavior of
electric vehicle’s users. This study compared the benefits when using the variable and fixed charging
prices. The variable prices are determined based on the calculation of distribution locational marginal
pricing, which are recalculated and adapted continuously accordingly to the users’ trips and behavior.
A travel simulation tool was developed for simulating real environments taking into account the
behavior of real users. Results show that variable-rate of electricity prices demonstrate to be more
advantageous to the users, enabling them to reduce charging costs while contributing to the required
flexibility for the system.

Keywords: electric charging behaviour; electric mobility; energy prices; EVs; travel simulator

1. Introduction

The need to reduce greenhouse gas emissions is ever increasing, and several nations have
agreed on ambitious targets in the Paris Agreement Treaty [1]. This treaty has the aim to limit global
temperature 2 ◦C above the pre-industrial levels. The transportation and its infrastructure represents
23% of greenhouse gas emissions and is only surpassed by fossil fuel emissions (e.g., energy production)
[2]. This shows that the electrification of transport plays a significant role in making the planet a
greener place, reducing dependence on fossil fuels.

The use of electric vehicles (EVs) not only has the potential to change individual mobility but
also to reduce pollutant emissions, which is considered a major cause of air pollution and causes
serious health problems in the global population. However, as an increasing number of charges
will ideally be covered by renewable production to achieve decarbonization of the transportation
sector, the introduction of dynamic electricity prices could increase the risk of substation overloads [3].
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In Europe, growth in the use of EVs will result in extra energy demand, with consumption increasing
from approximately 0.03% in 2014 to 9.5% in 2050 [4].

Generally, the population is accustomed to deal with fossil energies and with the convenience of
easy to find service stations and fast refueling times. Thus, there are no concerns regarding waiting
times or about the fuel needed to reach the intended destination. When using an electric vehicle
it is essential to consider these factors as the current range of the vehicles is limited and changing
stations are few. Also, there are other challenges such as increasing peak power demand if the charging
events occur at the same instant as residential or industrial peak consumption [5]. The electrical
network reacts according to the level of loads connected to it, and with growing usage of this mean of
transportation in the future, it is necessary to study how the impact of the extra energy required can be
mitigated. Understanding the behavior of electric vehicle users while at the same time recognize the
changes in the network will be a crucial part.

Recent studies suggest that dynamic electricity prices can spur demand and help electric
companies avoid costly investments in infrastructures [6]. However, the lack of variability in electricity
prices does not allow the studies to be completely realistic or in line with the actual variability of
renewable energy generation. In this context, it is crucial to address the following research question:
can electric vehicle users change their charging patterns as a result of varying electricity prices?

Providing incentives to EV users in a way that behavior and charging patterns are changed and
adapted accordingly to the variation of electricity prices is essential to ensure the EV’s flexibility
balances the variation of renewable energy sources. It is in this scope that this paper brings its
main contributions, by presenting a study on the impact of electricity prices variation on EV users’
charging habits.

This study compares the benefits when using a variable and fixed charging prices. The variable
prices are determined based on the calculation of distribution locational marginal pricing (DLMP) using
distribution network operation and reconfiguration optimization model, which enables achieving
prices that are not only continuously recalculated and adaptable to the ongoing changes in the power
network (variation of consumption and generation at each time) but also reflect the situation and
needs in each different location of the network. These prices are used to incentive EV users to change
their charging habits according to the variation of renewable generation in different places of the
power network. A travel simulation tool specifically developed for this study is also presented.
The simulator takes into account the behavior of real users to simulate their trips from the origin
place (e.g., house or workplace) to multiple destinations, and back. The tool also considers different
types of users and vehicles, thus allowing to create personalized profiles, destinations, and schedules.
Moreover, the simulator enables defining the position of the vehicles in a power network continuously
throughout time. In this way, the proposed tool simulates a real environment, with trips and charging
stations (CS). Considering the defined scenarios, users make decisions regarding their charging process,
i.e., if they charge their vehicles or not at each time, according to the behaviors previously analyzed.
For this, intelligent charging is simulated considering variables such as distance and the price of
electricity. In this way, it is possible to test the impact of different types of incentives on EV users’
behavior. A physical laboratory model of a smart city (SC) located at BISITE laboratory with a 13 buses
distribution network with high distributed energy resources (DER) penetration is used to demonstrate
the application of the proposed methodology. Results show that variable charging prices prove to be
more advantageous to the EV users, enabling them to reduce charging costs, while contributing to the
required flexibility for the system. This allows mitigating the problems introduced with the large-scale
penetration of distributed, variable renewable energy sources.

The rest of the paper is organized as follows: Section 2 presents a brief review of state of the art.
The proposed simulator tool is described in Section 3, along with the methodology for the calculation
of the variable electricity prices. The case studies are discussed in Section 4. Finally, the conclusions
are shown in Section 6.
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2. State of the Art

2.1. Electric Mobility

In 2017, the number of EVs on the road was about 3.1 million, an increase of 57% compared
to 2016 (according to Figure 1). This increase was similar to that registered between 2015 and 2016,
of 60% [7]. It is also possible to verify that purely electric vehicles (battery electric vehicle - BEV), had a
more significant growth than the hybrid vehicles (plug-in hybrid electric vehicle - PHEV), representing
two-thirds of the total. China is the country with the largest share, accounting for 40% of the total [7].

Figure 1. Number of EVs globally [7].

With the increasing popularity of EVs, there is the need to improve charging infrastructures and
offer more affordable models. While governments offer incentives for adopting EVs and continue to
invest in infrastructure, the motive that drives people to opt for this type of transportation is socially
driven: it is the cleanest solution that will help sustain a habitable planet. This is reflected in the
satisfaction of EVs’ users, where 51% say that the most significant incentive to buy one is to contribute
to a more sustainable future [8].

Overall, the results show that this adoption does not only depend on incentives but also fewer
obstacles to a more comfortable driving. In this sense, it is essential that charging is accessible,
both monetarily and geographically. It is important to have homes, shopping malls, workplaces,
and parking lot buildings with charging stations.

Another aspect to consider is the type of charging since time spent stopped is perhaps the variable
that the consumer values most. The high power capacity of fast chargers (with a power greater than
40 kW) makes them difficult to implement in residential homes due to possible hazards, which even
being addressed, are still mostly underdeveloped. To this, the implementation of fast CS will facilitate
the user by reducing waiting times.

2.2. Charging Behaviour

Between 2011 and 2013 data about driving and EV demand patterns were collected on a study
conducted in Europe [9]. More than 230,000 charges have been registered. The average state of charge
(SoC) of the battery was of 60% when users recharged it, which shows that users do not let the battery
discharge completely and charge it whenever they have the opportunity and not when the battery
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is low. The average percentage of users who started a journey or a charge with a SoC level of less
than 20% is less than 5%. Regarding the moment of the charging, it is verified that the majority are
performed between 18:00 and 22:00, which corresponds to the peak hours of energy demand.

Franke and Krems [10] analyzed the charging behavior of users in Germany. They concluded
that the true vehicle range affects charging decisions. They have also developed a conceptual model
based on principles of self-regulation and control theory where it is possible to understand the use of
energy resources. This model is based on the premise that whenever users interact with limited power
sources, they continuously monitor and manage their mobility needs and their mobility resources.
For instance, the mobility needs relate to the distance of a trip and the mobility resources relate to the
remaining battery. Users often feel "range anxiety" that can be described as the experience of never
having enough battery to reach a location and getting stranded. Thus, as the anxiety increases so does
the likelihood of resorting to strategies to handle this situation, e.g., driving economically or charging
the car more often.

Marmaras et al. [11] developed two behavioral profiles to be used in a simulation environment:
unaware and aware. The unaware profile tries to find the best possible solution with limited access to
information and minimal interaction with the environment and other EVs’ users. In this case, the level
of range anxiety is strong, and the user is always seeking to charge the vehicle even when it is not
needed. The aware profile has more access to information and interacts with the environment and
other EVs. This profile has a low anxiety level, charging the vehicle only when needed. The results of
this research show that the unaware profile starts charging the vehicle as soon as it is parked, typically
at home between 17:30 and 18:00, whereas the aware profile waits for the off-peak hours between 22:00
and 06:00 h.

Neubauer and Wood [12] applied a battery life analysis and simulation tool for vehicles (BLAST-V)
of the National Renewable Energy Laboratory to study the sensitivity of EVs concerning range anxiety
and different scenarios of different charging infrastructures. The results showed that the effects of
range anxiety might be significant but reduced with access to additional charging infrastructures.

Nicholas et al. [13] studied the charging behavior when simulating trips and charging in public
stations. The results show that more than 5% of trips would require recharging in a public charger for
different charging autonomy and assumptions.

Xu et al. [14] used a mixed logic model to study which factors influence BEV users in the
decision-making of the type of charging (normal or fast) and local. The results suggest that the battery
capacity, the initial state of the battery and the number of fast charges carried out are the predictive
factors for the choice of type and place of charging of the users. Also, the day range between the
current and next trip positively affects normal charging at home/business.

2.3. Distribution Locational Marginal Pricing

The distribution network congestion may occur, with the high penetration level of EVs.
However, the congestion problems can be handled by the distribution system operator (DSO) with
the employment of market-based congestion control methods [15]. The way how locational marginal
pricing (LMP) in transmission systems are obtained can be extended to the distribution systems [16],
usually named as distribution locational marginal pricing (DLMP). It is known that the resistance of
the distribution network lines is higher than that of transmission lines. Thus, the distribution system
losses can be considered one of the main factors that affect the DLMP [17]. To deal with the EV demand
congestion in distribution networks, Reference [18] proposes step-wise congestion management
developed whereby the DSO predicts congestion for the next day and publishes day-ahead tariff
before the clearing of the day-ahead market. Reference [19] solves the social welfare optimization
of the distribution system considering EV aggregators as price takers in the local DSO market and
demand price elasticity. Reference [20] presents a market-based mechanism using the DLMP concept
to alleviate possible distribution system congestion due to EVs and heat pump integration. Additional,
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Reference [21] propose a DLMP-based algorithm with quadratic programming to deal with the
congestion in distribution networks with high penetration of EVs and heat pumps.

2.4. Simulation Tools

SUMO (Simulation of Urban MObility) [22] is perhaps the best-known traffic simulator. It is
an intermodal and multimodal traffic flow simulation platform, which includes vehicles, public
transportation, and pedestrians. SUMO has several tools that allow it to perform tasks such as locating
routes, importing networks and calculating emissions. It can be enhanced with custom templates and
provides multiple application programming interfaces (API) to control the simulation remotely.

MatSim [23] is a framework for large-scale, agent-based simulations. Each agent has a transport
demand represented by a chain of activities that must be done in a day at different times and locations.
Decisions on how to travel between places are planned before the simulation. [24] presents a method
for the synthesis and animation of realistic traffic flows in large-scale road networks. It uses a technique
based on a model of continuous traffic flow. Other multi-agent models are often used to create drivers
behavior models.

When incorporating EVs into the simulation aspects such as power consumption, charging
stations available and the charging duration must be considered [25]. The problem of the shortest
path and travel planning is studied in [26], where the authors designed an approximation scheme
to calculate the most energy-efficient path. In [27] it is possible to do traffic simulations using only
electric vehicles, where EVs are simulated on roads with online charging. A similar case is that of [28],
in which a spatial and temporal model was constructed to charge EVs in highway public chargers.
Soares et al. [29] presents a probabilistic simulator that generates driving and charging profiles of
EVs that can be customized to adapt to different distribution networks. It simulates how vehicles
move to estimate the impacts that charging may have on each configuration of the system, the energy
consumed or emissions.

There are also other simulation tools related to EVs. FASTSim [30] is a simulation tool that
compares vehicles powertrain and estimates the impact of technological improvements to vehicle
efficiency, performance, cost, and battery life. V2G-Sim uses individual driving and charging models
of EVs to generate spatial and temporal impact/opportunity provisions in the electric grid [31].
Alegre et al. [32] proposes a pure and hybrid EV model, using a Matlab/Simulink environment,
focusing on different aspects of the vehicle such as engine power, battery, and observing how the
distance traveled and performance can be affected by the changes of the vehicles’ features.

Table 1 presents a summary of the main characteristics of the reviewed tools. It shows that the
reviewed simulation tools share some limitations, such as the lack of charging decisions using learned to
charge behaviors, and missing variable prices. Our proposed model overcomes both these limitations,
by incorporating dynamic adaptation of charging behaviors from EV users, and the application of
variable charging prices in the simulation model. Moreover, the proposed model includes several
components also considered by other simulators, such as the simulation and analysis of trips, and the
modeling and analysis of charging stations. The proposed model only partially considers the electrical
network distribution impact of the EV user decisions. The effect of changes in demand and generation
throughout the time of the electricity prices is considered using the DLMP-based distribution network
operation and reconfiguration optimization model. The aim is to overcome several limitations in the
current state-of-the-art developments.
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Table 1. Analysed tools.

Tool

Charging
Decisions Using

Learned Charging
Behaviours

Variable
Prices

Simulation/
Trip

Analysis

Model/Charging
Stations
Analysis

Electrical
Network
Impact

[24] No No Yes No No
MATSim [23] No No No No No
SUMO [22] No No Yes No No

[26] No No Yes Yes No
[25] No No No No Yes
[28] No No No Yes Yes

EVeSSi [29] No No Yes No Yes
V2G-Sim [31] No No No No Yes

Proposed tool Yes Yes Yes Yes Partially

3. Proposed Simulation Tool

In this section, the simulation tool parameters and algorithm are described. The tool allows the
simulation of electric vehicle trips in a simple way, and it was developed using R language using
RStudio integrated development environment [33].

3.1. Parameters

The global parameters of the simulator are described in Table 2. These parameters mean that
they are applied to all the generated profiles, i.e., for any moment of the simulation they are the same.
These are default values but can be changed according to user preferences.

Table 2. Global tool parameters.

Parameter Description Example Value

ncars Number of EVs 5000
cdist Compensatory distance between two points 20%

sf Map scale 1
hcpower Home charging power 3.7 kW

chargingeff Charge efficiency 85%

3.2. Simulator Algorithm

The simulator consists of two main parts: data generation and simulation of trips. Data is
generated concerning the profile of each user, such as vehicle features (battery, consumption, etc.),
trips to be performed (locations and departure times) and behavioral parameters.

3.3. Data Generation

Population generation is an iterative process in which each of the variables is generated randomly
from a sample of values with individual probabilities. Initially, each profile is assigned an initial
location, depending on the available positions in the city map. This location will be a residence or a
point of exit/entry into the city, considering users that live the city. Values are generated for the initial
SoC, the preferred charging level, and the travel profile. It also generated the value of the battery
capacity that will determine the rest of the characteristics of the vehicle. In the same way, a weight
is assigned for the distance in terms of the charging station choosing, being the remaining weights
attributed according to this value. The last data sets to be generated are the trips and times as well as
their importance. Algorithm 1 has the following structure:
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Algorithm 1 Data generation algorithm.

1: for each of the cars do
2: Add an x coordinate to variable x
3: if x equal to some of the correspondent existent x available on the map then
4: Add y coordinate to y variable
5: end if
6: Generate initial SoC, available range preference, battery capacity and trip importance
7: Random generate w1
8: if w1 equals to a specific value then
9: w2 = 1-w1-w3

10: w3 = 1-w1-w2
11: end if
12: if cars battery = value then
13: Attribute all data to this car model in the cars data frame
14: end if
15: for i:=0 to 5 do
16: Number of trips = 2, 3, 4 or 10-15
17: Generate trips importance
18: Generate locations for the number of trips
19: Generate work day times, night times and/or leisure times
20: end for
21: end for

3.4. Trip Simulation

The trips simulation runs in periods of 15 min, totalling to 96 (j = 96) for a full day. Its entire
structure and mode of operation are described through a flow chart in Figure 2. Each vehicle has
an initial location and a series of trips to be performed during the day. Each trip has a departure
time, the period j in which the user will make that trip. When this happens, the Euclidean distance is
calculated between the start location and the end location, with a margin of 20%, since the calculated
distance is straight, and then it is multiplied by the scaling factor s f . Knowing the distance, the travel
time is determined according to the average speed of the vehicle. For instance, if the calculated distance
is 9000 m, and the average speed is 35 km/h, the travel time will be 15 min and 26 s, which is longer
than one interval, and thus it will consume two periods. However, if the average speed is 40 km/h,
the travel time will be 13 min and 30 s, which is equivalent to one period. The following equation
determines the travel time:

T =

d
Vm× 1000

3600

60
(1)

where:
T—Travel time (minutes)
d—Distance between destinations (meters)
Vm—Average vehicle speed (km/h)

3.5. Charging Stations

To simulate charging, four public charging stations (parking lot buildings) were created along
with domestic chargers. Of the public stations, two are a slow charge (of 7.2 kW), and two are a fast
charge (of 50 kW). The domestic chargers have a power of 3.7 kW.

The location of the stations was not chosen following a specific methodology. Their distribution
covered all points of the city, with some randomness. In this sense, the objective is to understand what
and how the various factors can influence the choice of charging sites and how energy prices influence
EV users behavior.
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Figure 2. Flowchart of the travel simulation algorithm.

3.6. Charging Decisions

When the user decides to charge the EV, a location must be chosen (a charging station or house).
For this simulation, three variables were considered: distance, energy price and charging time (slow or
fast). After determining the scores of each of those variables and considering the preferences of each
user, it is obtained the final score (Equation (2)). The charging station with the highest score is the one
chosen to charge the vehicle.

FinalScore = Ds × w1 + Ps × w2 + Cts × w3 (2)

where:
Ds—Distance score from 0 to 100
Ps—Price score from 0 to 100
Cts—Charge time score from 0 to 100
w—Weight for each of the variables (w1 for distance preference; w2 for price preference; w3 for
time preference)

The process of selecting the preferred place to charge follows the structure described in Figure 3.
The distances to slow charging stations are calculated. These values, together with the energy price
(e/kWh) and the charging time that the user has, allows a final score between 0 and 100 for each
station. If the vehicle allows fast charging, this process is repeated for these types of charging stations.
Finally, the scores of the charging stations are compared, and the highest is chosen.
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Figure 3. Flowchart for the charging station selection.

To determine how long each user can delay or not a trip to charge his vehicle a variable was
introduced that defines its importance. Thus, three different levels were assigned:

1. Low importance: this trip is discarded, and the car is charged until the next trip;
2. Medium importance: the user delays the trip, and all subsequent ones, until a time limit that varies

according to the user profile;
3. High importance: the user must carry out this trip, not being able to charge, unless the level of

battery charge reaches critical values.

To ensure that each user always has sufficient charge to make the trips, it was considered a critical
battery level. Following the results of [9] this value is set to 20%. Whenever a user reaches a level
lower than this, regardless of the trip, the car must be charged. In this case, there are two options:
either the user finds a place near the workplace (1st destination) and leaves the car there until the next
trip, or looks for the nearest parking place and leave it there overnight until the next scheduled trip.
It is assumed that the user leaves the car at this location and, hypothetically, does the rest of its travel
using another mean of transportation.

3.7. Energy Prices

One of the variables that the users consider when deciding where to charge their vehicle is the
energy price. This price differs between the type of station (slow or fast) and if they are public or
domestic. Also, there are two domains where prices differ: fixed prices or variable prices.

In terms of simulation, in the case of fixed prices the user always pays the same regardless of the
charging time. The only difference is whether it is a fast charging station or a domestic one, as a fast
charging station is more costly. The variable prices vary by 15-min intervals. This is accomplished
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using the model described in Section 2.3. Firstly, an additional cost which is related to the fixed term of
network price rate to be charged to the customer (Equation (3)) is calculated:

ACNR =

(
0.397·CP

720

)
OPR

(3)

where:
ACNR—additional cost related to the fixed term of network price rate [e/kWh]. The contracted

power cost is 0.397 e/kW/month paid to the DSO monthly (www.erse.pt)
CP—charging power of the charging station. 720 h per month
OPR—the park occupation rate.
Then the final energy price for the consumer is calculated (Equation (4)). This value is the sum of

the DLMP received, with the energy tariff and the additional price previously calculated (Equation (3)).
To Equation (4) a fee of 5% is added by the owner of the charging station and the VAT value.

Final Price = (DLMP + Tari f f MV + ACNR)× PLG × VAT (4)

where:
DLMP—Distribution locational marginal pricing [e/kWh]
Tari f f MV—Energy tariff price for each period [e/kWh]
PLG—Additional profit margin of the parking owner
VAT—Value added tax

3.8. DLMP Optimisation Model Description

In this research work, the DLMPs (which will permit to determine the variable charging price
(see Equation (4))) are defined through Lagrangian multipliers of the corresponding constraints (power
balance) of the optimisation problem which has the goal to minimise the DSO expenditures [34]. Thus,
the DSO seeks to:

• Minimize the power losses cost;
• Minimize the power not supplied cost;
• Minimize the power lines congestion cost;
• Minimize the power generation curtailment cost;
• Minimize the power from external suppliers cost.

The DLMPs optimization problem is classified as mixed-integer nonlinear programming (MINLP)
due to the non-linearity features. To solve complex problems like this, Benders decomposition is an
adequate technique [35,36]. The following constraints are considered:

• Network constraints:

– Voltage;
– Power balance;
– Power flow equations;
– Maximum admissible line flow.

• Supplier constraints:

– Maximum and minimum limits for the power supplier;
– Maximum and minimum limits for capacitor banks.

• Curtailment constraints:

– Power generation curtailment;
– Power not supplied.

• Lines congestion;
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• Energy storage systems constraints:

– Charge and discharge limit;
– Charge and discharge limit considering energy storage systems state;
– State of charge;
– Maximum and minimum energy storage systems capacity limit.

4. Case Studies

To carry out the case studies a physical model of SC by GECAD-BISITE [34] was used.
The considered SC presents five types of loads, namely:

• Residential buildings (1375 homes);
• Office buildings (7 buildings);
• Hospital;
• Fire Station;
• Shopping Mall.

The schematic of the SC is presented in Figure 4 and the coordinates of each building can be seen
in Table 3). The distribution network that feeds the entire city has one 30MVA substation and 25 load
points. A total of 15 DG units (i.e., 2 wind farms and 13 PV parks), four capacitor banks of 1 Mvar,
and are included in the network, as can be seen in Figure 5. Moreover, the SC has seven parking lot
buildings (commonly referred as charging stations in this research work) for EV charging, four (two in
bus 7 and two in bus 11) slow charging lots (7.2 kW for each connection point) and three (two in bus 2
and one in bus 5) fast charging lots (50 kW for each connection point). Each slow charging parking lot
has 250 spaces for EVs and 80 spaces for each fast charging parking lot building. The considered value
for OPR is 30% leading to an ACNR value of 0.0132 e/kWh for a slow charging parking space and a
value of 0.0919 e/kWh for a fast charging parking space. Additionally, the parking owner charges
an additional 5% fee and 23% of value-added tax (VAT). Furthermore, it is considered that 50% of
the EV users can charge their EVs at home (3.7 kW charge point) with a fixed cost of 0.2094 e/kWh.
The initial EV battery level is randomly generated between 40% and 65% of the battery capacity and
the considered EV models, and their characteristics can be found in Table 4.

Table 3. Building coordinates on the xy plane.

Building L1 L2 L3
L4
to

L18
L19 L20 L21 L22 L23 L24 L25

PL1
to

PL2

PL3
to

PL4

PL5
to

PL6
PL7

Coordinates
(km)

X Axis 10.50 0.50 9.00
3.75
to

8.25
0.50 0.50 2.50 3.00 4.50 6.00 8.00 1.00 7.00 6.00 11.00

Y Axis 3.50 2.00 5.00
1.00
to

3.00
3.50 5.50 2.00 4.50 3.50 5.00 4.00 3.50 5.00 0.50 4.00

Table 4. EVs types.

Model
Battery
(kWh)

Slow Charge Power
(kW)

Fast Charge Power
(kW)

Consumption
(kWh/km)

Nissan Leaf 40.00 6.60 50.00 0.1553
Tesla Model S 70D 75.00 7.40 50.00 0.2100
BMW i3 33.20 7.40 50.00 0.1584
Renault Zoe 41.00 7.40 - 0.1460
Renault Kangoo 33.00 7.40 - 0.1926
VW e-Golf 24.20 7.20 40.00 0.1584
Ford Focus 33.50 6.60 50.00 0.1926
Hyundai IONIQ 30.50 6.60 50.00 0.1429
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Figure 4. Smart city diagram [34].

Three user preference scenarios are considered, in one, the user’s priority is to charge their EV
at a charging station located as close as possible to them. In the second scenario, the users prefer to
find charging stations where they can charge their EV at a low price. In the third scenario, the EV user
gives its preference to the charging time.

The line congestion cost is 0.02 e/kW when power flow is above 50% of the thermal line rating
capacity.

The study presented in this research paper considers one week of input data for every 15 min
with the aim of showing the effectiveness of the proposed model (i.e., 672 periods are considered in
the simulation process). The chosen week is the 19 March 2017 to 25 March 2017.

This work has been developed on a computer with one Intel Xeon E5-2620 v2 processor and
16 GB of RAM running Windows 10 Pro. In addition to R language (for EV user behavior simulator),
the MATLAB R2016a and TOMLAB 8.1 64 bits with CPLEX and SNOPT solvers were used for the
optimization problems.

Simulations were performed using fixed and variable energy charging prices for two different
populations scenarios, i.e., considering 2500 EVs and 5000 EVs. For each simulation, the following
user preferences were changed: distance, price and charging time. The following features are fixed for
all simulations in each population scenario:

• The amount of vehicles and their models;
• The initial battery charge;
• The amount of trips;
• The trips schedule;
• The starting locations.
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The fixed charging prices are equal for all periods of the day and are 0.15 e/kWh for slow charge
and 0.25 e/kWh for fast charge.

Figure 5. 13-bus distribution network diagram [34].

5. Results and Discussion

This section presents the results for the carried out simulations. Section 5.1 presents the results for
a scenario with 2500 EVs, while Section 5.2 provides the results for a 5000 EVs population scenario.

5.1. Population Scenario with 2500 EVs

Considering a 2500 EVs scenario and using the fixed charging price, it is possible to see in Figure 6
the correspondent charging sessions percentages for each user scenario preference (distance Figure 6a,
price Figure 6b, and time Figure 6c). It is worthy to note, that one charging session is counted from the
moment the EV beings to charge until the time of it leaves the charging station. Analysing Figure 6a
(where the preference is the charging stations proximity to the total path that the user will have to do,
i.e., the lowest sum value of the distance between the current location and the CS and the distance
between the CS and the next EV user destination), it can be seen that the charging station 2 was
preferred by users, with 37% of charging sessions. Since for this user preference scenario, the only
differentiation between normal charging stations is the distance, and it can be concluded that CS 2
will be nearest to the users’ destinations when compared to the remaining CSs. Figure 6b) (EV users’
gives priority to the price over the distance and charging time at the moment to chose a CS) shows that
the CS 2 presents the higher charging sessions around 47% while the CS 1 was the second chosen one.
The CS 3 and CS 4 (fast charging stations) presents together only a percentage around 21% of the total
charging sessions. This is as expected result once the slow charging stations present lower charging
prices compared to the fast charging stations. When the user time preference scenario is considered
the majority of the users prefer the fast charging stations. As can be seen in Figure 6c fast charging
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stations present 55.2% of the total charging sessions. However, this value also shows that the influence
of the distance (CS 2 lower distance) and charging price (slow charging stations—lower price) have a
strong influence on the users’.

Figure 6. Charging sessions using fixed charging prices considering the 2500 EVs scenario. (a) User
distance preference scenario charging sessions. (b) User price preference scenario charging sessions.
(c) User time preference scenario charging sessions.

Figure 7 depicts the charging sessions when the variable charging prices model is used. Like the
fixed prices method when user distance preference is considered the variable model charging price
also gives more sessions to CS 2 (Figure 7a), leading to the same conclusion—this is the CS nearest
to the users’ destinations. Checking Figure 7b it is possible to conclude that CS 1 is the cheapest
one due to the high percentage of charging sessions (71.7%). Regarding to the user time preference
scenario (Figure 7c), the results are very similar to the case where the fixed prices are considered,
i.e., the majority of the users preferring the fast charging stations.

For the user distance and time preference scenarios, the fast charging station obtained a higher
preference when compared to the case where the user preference is defined by the price. This indicates
that when the price is not the most important factor, fast charging stations can attract users who are
located close to them. Nevertheless, we concluded that the location of those charging stations is not
optimal, because even when considering the user distance preference scenario, the majority of the users
choose the slow charging stations—the cheapest ones. Moreover, to highlight this conclusion, when
charging time is the most important factor the slow charging stations also present high preference,
being the CS 2 the second most preferred.
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A comparison between the fixed charging prices and the proposed variable charging prices model
are shown in Figure 8. As can be seen, the proposed model presents advantages in all scenarios for
the EVs users in terms of charging prices. When the user distance preference scenario is considered,
the proposed model presents 4% of gains for users’ (0.0083 e/kWh), for price and time user preference
scenario the benefits are 10% (0.0210 e/kWh), and 2% (0.0046 e/kWh), respectively.

Figure 7. Charging sessions using variable charging prices considering the 2500 EVs scenario. (a) User
distance preference scenario charging sessions. (b) User price preference scenario charging sessions.
(c) User time preference scenario charging sessions.

5.2. Population Scenario with 5000 EVs

In this subsection, it is presented the simulation results for a scenario with 5000 EVs. Figure 9
presents the charging session results for each Charging station in the three EV user scenarios preference
considering fixed charging prices. The achieved conclusions are the same when the scenario with
2500 EVs is considered. Seeing Figure 9a it is also checked through the presented values that CS 2 is
near one to the users’ destinations. Also, when the price preference is considered, the slow charging
stations are proffered (Figure 9b), since they present the lower charging prices. When the charging
time is crucial for the EVs users, the set of charging stations presents a percentage of charging sessions
around 51% (Figure 9c). Nevertheless, it is also verified that slow charging stations have a strong
influence on the users’ choice.

The charging sessions result considering the variable charging price model is depicted in Figure 10.
Once again, the results are very similar to the scenario with 2500 EVs, with more charging sessions in
CS 2 when it is considered the user distance preference scenario (Figure 10a)—CS 2 is the near one to
the users’ destinations. For the user price preference scenario, the CS 1 presents the higher percentage
of charging sessions (Figure 10b). Thus, it can be concluded that CS presents more competitive charging
prices compared to the remaining CSs. Considering the user time preference scenario, the higher
percentage of EVs users’ (Figure 10c) prefer the fast charging stations (51%).
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Figure 8. Average charging price comparison considering the 2500 EVs scenario.

Figure 9. Charging sessions using fixed charging prices considering the 5000 EVs scenario. (a) User
distance preference scenario charging sessions. (b) User price preference scenario charging sessions.
(c) User time preference scenario charging sessions.

The conclusions are the same when the scenario with 2500 EVs is considered, i.e., if time is not
the most important factor, the users can be attracted by the fast charging station which can be closer
to them. However, once again, it can be seen that the location of fast charging stations is not optimal
(the majority of the users choose the slow charging stations even when the user distance preference
scenario is considered). Also, as in the 2500 EVs scenario, when the most important factor for the users
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is the charging time, the slow charging stations also present a considerable preference, with the CS 2 as
the second most preferred.

Figure 11 presents a comparison between the fixed charging prices and the proposed variable
charging prices model. The proposed variable charging price model presents considerable advantages
for the EVs users’ when distance and price preference scenarios are considered, with gains of 5%
(0.0120 e) and 18% (0.0418 e), respectively. Regarding user charging time preference scenario the
variable charging price model does not present advantages in terms of charge price for the EVs users
when compared with fixed charging price (3% higher—0.0073 e).

Figure 10. Charging sessions using variable charging prices considering the 5000 EVs scenario. (a) User
distance preference scenario charging sessions. (b) User price preference scenario charging sessions.
(c) User time preference scenario charging sessions.

Figure 11. Average charging price comparison considering the 5000 EVs scenario.
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6. Conclusions

This research paper presents a study of the impact of the variation of the energy charging prices
on the behavior of electrical vehicle users. It also compared its benefits when using the variable and
fixed charging prices. To this end, the authors developed an EV behavior simulator and combined
it with an DLMP-based distribution network operation and reconfiguration optimization model.
The main contributions of the conducted study can be summarized as follows: (1) EV user behavior
simulator has been developed to generate a realistic population, considering the city size, and charging
stations; (2) the positive impact of the variable EV charging prices on the electric vehicles users has
been assessed.

The proposed methodology was tested in a case study which has been conducted on a mock-up
model of a SC located at the BISITE laboratory with a 13 buses distribution network. Moreover,
three users scenarios preferences (distance, price and time) were considered and were used to compare
the results of the variable EV charging prices and EV fixed charging prices to demonstrate the
advantage of the former.

It was verified that the use of variable pricing for EV charging is advantageous for the EV users
in all scenarios when it is considered 2500 EVs. The gains are 4%, 10%, and 2%, respectively for
distance, price, and time preferences. With 5000 EVs, the variable pricing does not present savings
in comparison with the fixed charging prices when time scenario preference is considered. However,
the proposed variable charging price model still presents considerable savings when the distance and
price preference scenarios are considered. These two scenarios present for EV users 5% and 18% of
gains, respectively.

The results suggest that the use of variable prices is promising, and can be used as an efficient
approach in smart cities by offering to EVs’ users more options (in terms of price) when deciding
where to charge their EVs.

The main disadvantages of the proposed model are: (a) the EV users profiles are not adapted
to the different weekdays; (b) the decision charge method is only based on the battery charge level;
(c) vehicle-to-grid is not considered.

In terms of future work, the authors will address more user profiles and additional charging
decisions that depend on the energy price (increasing the flexibility), and also the possibility of
vehicle-to-grid.
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Abstract: This research work presents an information system to handle the problem of real-time
guidance towards free charging slot in a city using past date and prediction and collaborative
algorithms since there is no real-time system available to provide information if a charging spot is free
or occupied. We explore the prediction approach using past data correlated with weather conditions.
This approach will help the driver in the daily use of his electric vehicle, minimizing the problem of
range anxiety, provide guidance towards charging spots with a probability value of being available
for charging in a context for the app and smart cities. This work handles the uncertainty of the drivers
to get a suitable and vacant place at a charging station because missing real-time information from the
system and also during the driving process towards the free charging spot can be taken. We introduce
a framework to allow collaboration and prediction process using past related data.

Keywords: electric vehicle; charging station; prediction; probability; mobile App

1. Introduction

Electric Vehicles (EV) provide an environment-friendly solution to combustion engine vehicles and
modern cities’ transportation [1], but there still exists some disadvantages of driving EVs, namely the
autonomy of the batteries still being to low when compared to combustion engine vehicles [2], the time
it takes to charge an EV, usually six to eight hours at home and thirty minutes at a high voltage
Charging Station (CS) [1] and also because recharge rate occurs at different rates depending on the
initial state of the charge [3], and the number of stations providing full recharge of batteries is quite
rare [4]. A diversity of challenges and opportunities are identified in [5] and one of the first work to
show the importance of EV information in mobile Apps [6].

Another solution this study tries to tackle is the availability of the CS to recharge the EVs. As we
know, charging an EV could be very time-consuming [7], so reaching a CS and all of the connectors are
being used could be frustrating and make us wait in line. This type of problem could well be compared
to the prediction problem for vehicles open parking spaces, as generally people with EVs leave their
car parked in the CS and go on with their lives, as well as the meteorological effects on the willingness
of users to leave their car at those places [8].

Taking into considerations we try to provide one of the first solutions to this problem, creating a
probabilistic recommended system in a mobile app.

In this research work, we handle the problem of the need for real-time information of free charging
spots for EV without a connection to the proprietary charging system. Since this connection is not
available we apply prediction algorithms taking into account past charging sessions data correlated
with hour, day, month and atmospheric conditions, city location and also a collaborative approach.
We propose a kind of parking recommendation system that aims to present guidance towards this
charging spots during the driving process, while considering the maximum distance the EV can reach
and the braking regeneration that the EVs currently have.
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This is helpful information for EV drivers daily journey and the is one of the most important
problems for the EV drivers when the availability for charging points is not enough taking into account
the increasing number of EV.

Our approach combines information, mobile devices, prediction algorithms and communication
technologies, Web services, geo-positioning techniques for deliverance and exchange of information
and linear programming for optimal scheduling, guidance and prediction of electrical charging
processes.

2. Literature Review

In this section we created a section related to EV (Section 2.1) and consider similar existing solution
systems to guidance for EV towards a CS, where is needed a prediction process because most of the
cases we do not have sensor information to check if a place is occupied or not (Section 2.2).

2.1. Optimal EV Path and Important Constraints

Energy efficient and optimal routing, when applied to EVs, are not the same for a gas powered
vehicles, since for the last one the only worry is simply understanding edge costs as energy values and
applying standard algorithms. This new paradigm of energy-optimal routing for EVs must take into
account multiple different heuristics, namely the recovery of some energy due to their kinetic and/or
potential energy during deceleration phases, able to increase the cruising range of EVs up to 20% when
in typical urban setting and hilly areas [4], meaning that edge costs could be negative [9], the costs
of the edges may depend on parameters only known at query time [10], and at last, battery capacity
limitations that implies that the cost of path is no longer just the sum of its edge costs, since additional
energy losses or gains can occur from taking a path [7].

So, we can conclude that rather than finding the fast or short routes, there is a bigger necessity of
finding energy-efficient routes and the goal of a guidance route is to start at a certain point and with
a battery charge level and find a route to the destination point that respects the EVs constraints and
reaching the endpoint with the maximum battery charge possible. If we ignore the battery constraints,
the problem of finding the most energy-optimal path from a point to other can be described as just
finding the shortest path between the two points, which can be typically solved using a regular shortest
path algorithm, like Dijkstra’s algorithm [4]. Dijkstra’s algorithm cannot be directly used in this type
of problems, as edge costs for an EV can be negative and the battery constraints which seem to require
special algorithmic treatment [9], also has the disadvantage of expanding more vertices than the actual
need, as it can expand all vertices before the shortest path is found, showing a big running time [10].

An algorithm is developed in [4] that extends the generic shortest path algorithm by taking the
initial constraints into account, namely, the route segments can only be feasible if the required energy
to go through does not exceed the charging level of the battery. Other heuristics to take into account
is there are road sections where the energy consumption is negative where the EVs battery can be
recharged, due to elevation differences or changes in the cruising speed. Just like in [4], for [9] the
battery constraints are never running out of energy, there can not be overcharging, meaning that the
battery current charge status can never exceed the maximum charge level and that an EV cannot take a
trip and end up with a higher charge status than the one it started with. So, to perform the decision,
a route only is feasible if there is no point where the required energy charge exceeds the current charge
level from the EV, and a route is less preferred if there is a point where the maximum capacity is already
reached and energy can be recuperated. This algorithm computes the shortest path tree using one
of the four expansion strategies Dijkstra, Expand, Expand-Distance and FIFO. The shortest path tree
represents the solution of all shortest path problems with the source vertex and the strategy determines
the order in which vertices are processed.

In [9] the battery constraints are modeled by cost function on the edges obeying the FIFO property.
Results show that the current implementation of Dijkstra and the results from Contraction Hierarchies
outperform those found by [4], where CH shows the lowest running time for a significant amount.
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Results also show that battery capacity constraints can be modelled as cost functions on the edges,
and a transformation of the edge cost functions permits the application of Dijkstra’s algorithm.

The model created in [10] takes into consideration some default parameters to calculate the
amount of energy consumed or gained by the EV when passing by the edge of the network like the cars
speed is always the speed limit of each road section. Other further parameters that influence vehicle
energy consumption, such as its mass, wind resistance, friction coefficients, and more, are also taken
into account. With these constraints in mind, the authors created a definition for the energy-optimal
routing problem to find a path P in the graph from one source point to a destination point with a
minimal path cost. Those paths correspond to energy-optimal routes which are feasible to use and
where the remaining battery charge at the destination is maximal. The second contribution of this
study is applying the A* algorithm, that determines the shortest path between two points, pursuing
paths that appear to be the best routes to the destination based on the available information, with a
non-trivial and consistent heuristic rather than the common Dijkstra’s algorithm. A* is also know to
be optimally efficient, as it expands the fewest numbers of vertices among all the search algorithms
having access to the same heuristics. The weight function of the A* algorithm is then modified to take
into account the battery constraints. The Energy-A* algorithm shows promising results, as it is faster
than others algorithms used as a baseline, especially for smaller distances where the improvement is
significant, and also shows fewer node expansions and consequently fewer evaluations of the energy
cost function created. The approach described in [10] avoids the use of preprocessing techniques so
that edge costs can be calculated dynamically, and it achieves an order of magnitude reduction in the
time complexity of the algorithm from [4].

None of the methods used in [4,9,10] consider recharging decisions at the nodes, and this is
where [3] has an input. So, the model generated in this study is modelled as a dynamic program
based on a network with recharging capabilities at every node of the graph, except at the destination,
recurring to two algorithms, Backward Recursion, that can be applied when the state space is discrete,
and Approximate Dynamic Programming, that is useful for more general instances of the model.
The underline goal is to create a minimum-cost path from the start point to the end, where the charge
level of the vehicle always remains between a given minimum threshold and the maximum capacity of
the EV battery, removing every unnecessary node where recharge does not happen, when there exists
an optimal path where only recharging nodes exists.

A new method called “EV Assist Route” is proposed in [2], to show a route for EVs that will take
into account stops with over CS to have extra battery charge when current remaining charge is not
enough to reach the destination. This method starts by identifying the potential CS and then searches
the most cost effective route passing through some selected CS, where the cost refers to the travelling
distance or travel time from one point to another. This method takes into account various parameters,
namely the remaining battery level, the battery level when fully charged, electric mileage, location
information from the CS, charging efficiency from the CS, departure and destination points. Recurring
to those parameters and applying the “EV Assist Route” method results on the optimal route for the
EV, with information like the travel distance, travel time, the remaining battery level after reaching the
destination point and the potential stopovers in the CS. Various cases are taken into account when
developing this method, namely if the vehicle has enough battery to reach the destination, if it needs to
stop for at least one CS to recharge, stopping in two or more CS and the case there is no route leading to
the destination, where one of the options of travel distance and travel time can be prioritized, as quick
CS can be farther away than a normal CS, which has more travel distance, but less time is needed to
charge the battery levels.

For [7] EV-reachable node sets are composed by the feasible paths from the source node and
strongly EV-connected node sets is a subset of the EV-reachable node sets, containing only the nodes
that allow the returning to the source without running out of energy. Strong EV-connectivity is not
an equivalence relation as the reflexivity could be compromised due to the existence of negative cost
edges, as EVs are able to recuperate energy when going downhill and/or braking, requiring to model
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those as edge cost functions to obtain efficient running times. Picking up the techniques developed
in [4,9], this study tries to answer the fundamental questions of route planning for EVs, namely the
computing of a set of EV-reachable node and, also determine the minimal battery necessary to reaches
a certain point. To give the shortest path to the destination node recurring to the most optimal route,
Battery Switch Stations (BSS) are taken into account, those enable batteries exchanged in order to
make the recharging not more time-consuming than a normal gas refuelling. Graph preprocessing
techniques that allow efficient computation of EV-reachable and EV-connected sets at query time even
in the presence of BSSs are also proposed. The generated paths to the destination are energy-optimized,
hence avoiding going uphill as far as possible, only showing the necessary detours to visit the BSS
when really needed, resulting on the most useful as possible routes.

2.2. Comparison to Forecasting in Open Car Parks

The small and sparse network of CS also prove to be a disadvantage, when ideally is to have a
dense network of CS, that can allow drivers to travel from one arbitrary source to an arbitrary target
destination and have always an energetically reasonable route [11], but right now, CS is relatively
scarce [3] and until a dense network of CS is established there is a requirement of planning the route of
the trip taking into account the battery-powered EVs energy constraints, or the possibility of getting
stranded with an empty battery is real [7], as well as doing a good management of the charging sessions
on the CS. As we can see, for the process of electrification of the transport sector, the infrastructure is
going to play a key role [12], so CS must have a good availability to encourage the adoption of EVs [13]
and their locations must be well thought out as well, since an infrastructure dedicated to the charging
processes, whether fast or not, requires a large investment [2] and can impact the queuing time in CS
and the traffic conditions in the road network [1], important aspects that have revealed to significantly
impacts the adoption of EVs.

In the past, EV infrastructures were limited to single and slow charging points in urban streets or
parking lots, with little or none attention to their grid operation. With the continuous increase of EVs,
the attention to those infrastructures has increased resulting in the implementation of fast-charging
options for EVs and the option to parallel charge at different charging power levels, so a plan of
CS in low-voltage networks for EV parallel charging is proposed [12], resulting in smaller charging
sessions, thus increasing the availability of CS. Another aspect to take into account when building
such infrastructures is the strategic location that needs to be suitable for EV users. Urban grids have a
big potential to integrate CS, thanks to the proximity of houses and parking lots, however, the CS can
have different impacts on the grid voltage, so the grid constraints should be taken into account when
planning the installation of new CS.

There is a need to identify reasonable locations for the CS with few instances as possible so the
EVs can achieve reachability and connectivity in the network [11]. The authors of [14] say that EVs will
only prevail if a road trip with an EV can be undertaken without taking no significant detour from the
current paths. So, this study proposed a way to solve the problem of placement of the CS in a way that
for every shortest path there are enough CS, meaning that the EV will not get stranded when starting
with a fully loaded battery, called EV Shortest Path Cover. For [15] CS need to be extensively installed,
especially on residential areas, in order to satisfy the need for the number of EVs. Two objectives
for optimal placement of fast CS in residential areas are taken into account, namely the total-costs
of installation for fast CS, the initial investment cost, the annual variance cost of operation and the
travelling cost, and the real power loss in the transmission line of the distribution grid.

Behavioral models are used to predict when and where the vehicles are likely to be parked
in the future in [13], using parking demand as a variable, as a way to help satisfy the demand for
public charging of EVs, as well as land use attributes and trip characteristics. This study took a
three-step approach, and in the first step, the parking locations and durations for all trips and for all
stop that were 15 min or longer in duration, as those represent feasible candidates for public charging.
The second step consists of using parking information for regression models that relate zone-level

102



Energies 2019, 12, 2123

parking demands with land use attributes, as well as trip-level parking demand to individual trip
characteristics. In the last step, the parking information is used as an input to identify the optimal
location for the CS to satisfy as much demand as it is possible. With the help of Ordinary Least Squares,
regression predictions were made to get the parking demand, also revealing that the more important
factors are the number of population and job density in the area. Taking this into account, and drivers
are unlikely to walk long distances for parking, the current locations with no existing CS, the parking
demand and travel costs and applying a General Algebraic Modeling System, a location for the CS is
revealed. Later, the authors apply for a mixed-integer program as a way to reduce total access cost.

A variant of placing CS in the network is proposed in [16], while taking into account the
reasonability of routes and sparsity of the CS set, with the goal of placing CS in certain locations where
the EV drivers do not need to leave the shortest path trips and make large detours for recharging. So a
new and more practical model for placing CS for EVs is proposed, but with a larger complexity. For the
development of this model, the authors looked to this problem as a Hitting Set problem, and used a
modified greedy algorithm to compute the placement of loading stations, as the standard one showed
many memory problems but maintaining the same approximation guarantee for small networks,
showing up to a reduction of 40% of required loading stations by allowing detours.

Just like a normal parking space in an open parking lot or on the street-park, the parking spaces
with electric charging properties can be influenced by weather factors. Temperature, rain and wind
intensity can affect the parking occupancy [8], as bad weather conditions could lead to lower traffic
flow than expected [17], meaning that people may be less susceptible to driving. The period of the
day and time of year are also important [18], like holidays, weekdays and hour of the day could
have a direct impact on park occupancy, in this case in the CS occupancy. The location of the CS can
influence the usability of the station, [19], since if a parking spot is in the proximity of some type of
shopping mall or close to an important public highway, or even if events happen regularly around the
parking lot, like football games and concerts, those can cause a significant increase in the amount of
traffic, consequently increasing the demand for free parking spaces [20]. For [21] the parking cost and
estimated queuing time outside the parking lot are important factors to be taken into consideration,
which can be compared to the charging costs and the queue time to charge the EV.

The prediction of park availability on CS can be very useful and helpful as could improve the
quality of life of the users, not wasting time on queues to charge their vehicle. Historical data is really
important as it could give a notion of seasonal variations over time of charging sessions, as well as
give a more insightful idea of the loading routines, allowing us to build a more robust and precise
predictive model.

To build the predictive model [17] used methods like Gradient Boosting Decisions Trees, as it is
very effective in training and on scoring. Algorithms used on model training for the [20] were Decision
Trees, Support Vector Machine, Multilayer Perceptrons and Gradient Boosted Trees, concluding that
Extreme Gradient Boosting has had the best accuracy result of all of them. For modelling the occupancy
rates after applying different features and for prediction, methods like Regression Trees, Support Vector
Regression and Neural Networks were used, and to prevent overfitting a 5-fold cross validation was
made for training in [18]. Predictions are made for periods of 15 min ahead and all three algorithms
were used, showing better results on Regression Trees when comparing with the NN and SVR.

3. Conceptual Model

Some of the current problems faced by EVs previously stated like the autonomy of the batteries [2]
and the charging times [1] are significant to cause some resistance to the global adoption of EVs.
Another problem that occurs is the time that a user can spend waiting for a CS to be freed. While a
combustion engine vehicle can go to a gas station and fully fill the gas tank in a matter of minutes,
the amount of time it takes an EV to fully charge generally takes around 30 min at a high voltage
CS [1]. Taking this to account, it is unpleasant to reach a CS after driving and spending battery to it
and all charging points are being used, leaving the user to, for at least 30 min, wait for a free charging
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connector. So, in this work, we present a based android application solution for this kind of problem,
as we can see in Figure 1.

Figure 1. Conceptual Model Diagram.

At the center of the solution is the “Charge Time” android application that incorporates two
main components, services from Google, namely the Maps API, Directions API, Elevation API and
Firebase, and a predictive model developed in this study with the help of a charging sessions dataset
and weather data. All of these components are explained in the following sections of the paper.

3.1. Android Application

The Android application, being the center of the solution, gives the user a way to interact and
receive information about the CS. The first step when entering the application is the login, where the
user needs to put his credentials to log in the application, and in case it is the first time logging in,
the user can register a new account by providing the email, username and a password. This login is
important so the user can keep points which are explained later on the study. After filling the login
credentials and entering the app, the user is greeted with a three option menu, shown by the Figure 2,
being explained in the next paragraphs.

Figure 2. Charge Time application menu.

The first option of the application “Navigate”, opening a new window with two input boxes that
the user must fill. The first input being the destination where the user wants to travel to and the second
the current battery level the EV has (in an ideal scenario, this information could be accessed trough the
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vehicle API). After filling those inputs, the user can confirm and a route to the closest and more likely
to have an available place to charge is selected in the surroundings of the searched destination, by a
decision algorithm created in this research. After that, a route is created using the Google Directions
API, starting at the current location of the user to the respective CS. The CS is chosen by the decision
algorithm, that takes into account various conditions: the first and most important is the maximum
possible distance the EV can travel, meaning that all CS further than the maximum possible distance
can not be taken into account, so they are automatically discarded and a pop-up window is sent to
the user informing that the desired destination cannot be reached with the current vehicle battery.
The second most important factor to take into account is the probability to have a free charging spot
on each CS taking into consideration the time it takes the user to reach the CS. This can be achieved by
the predictive model also being developed in this study. The route generated, just like in [2], provides
information like the battery level the EV has at the end of the route, considering regenerative braking,
if possible, the occupancy of the CS at arrival and the time it would take to reach the CS. The time it
would take to reach the CS makes it possible to feed the predictive model with the time of arrival and
is also used as the third condition, already taking into account the intensity of traffic, where the CS
with less travel time has a higher possibility to be chosen. The last heuristic used is the distance to the
CS, where the closest station to the destination the user provided has a bigger probability to be chosen.

The second option shown in the menu is “Check Map” and when clicked a map focused in
the current user location appears. This map shows markers that represent the location of all of the
CS, shown in the Figure 3, and when a marker is clicked a popup information board appears with
information of the CS, as we can see in Figure 4. The information goes from the probability of having a
free charging spot to the name, charging types, number of charging stations and connectors, working
period, charging fees and a button that creates a route to the respective CS. In this case, the current state
of the battery is not taken into account, since the initial battery level is not supplied, but information
about the percentage of occupation in the CS at the end of the route is shown, as well as the duration it
would take to reach the CS.

Figure 3. Location of CS on the map.

The last option “Take a Photo” gives the user the option to collaborate with the system by taking
a photo to a free charging spot on a CS, this way the system will know that a CS is free, making a
re-validation on the probability of having a free charging spot. The photo taken is then sent to the
server, being validated if it really represents an empty spot in the CS by a trained model, that it is out
of scope on this study, and by the current location of the users, if it is in the surroundings of the CS.
In case the photo veracity is checked, then the users will be rewarded with points that could result in
discounts on the charging fees.
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Figure 4. Pop-up information board on a CS.

3.2. Google API Services

The Google API services are of great importance in this application, as the entire application
works around the maps service provided by Google. The Maps API allows the presence of a map
based on Google Maps data, that the user can explore by clicking the “Check Map” or showing the
route to the CS suggested by the “Navigate” option. Another service used in the application is the
Directions API, that allows the application to obtain direction information and draw a route between
two points, taking into consideration traffic stats. This service provides us with information for
different transport modes, waypoints and travel times, as well as one or more travelling routes to the
destination while checking the distance and time it takes from one point to another. In this application,
the only considered transport mode is a car, since all of the studies focus on the EV. One more service
used is the Elevation API, that provides a simple interface to query locations on the earth for elevation
data and with this information we can calculate if any energy was gained and the exact amount of
energy gained by the EV from the source to the destination by the braking, also called by regenerative
braking, calculating the difference in elevation at the start and end of the path, just like in [9] where
the height-dependent part of the cost of a path only depends on the point of start and the destination
point, because all others height-dependent parts cancel each other out, unless overcharging takes
place. In order to calculate the energy gains through the regenerative braking we use the Equation (1),
resulting on the conversion of the vehicle kinetic energy into chemical energy stored in the battery,
where it can be used later to drive the vehicle.

KE =
1
2
∗ m ∗ v2 (1)

The kinetic energy (KE) stored in a moving vehicle is related to the mass in kilograms (m) and
speed of the vehicle in meters per second (v). In order to know the regeneration gained by braking
along the route of the vehicle we would need to have access to information on how the route was
made, namely when the brakes were applied and in which situations. Since we do not have access to
this information at the time of executing the “Navigate” option of the application, we only calculate
the potential energy gains when the difference between the heights of the starting point and the end
point is greater than 0 by a simplified Equation (2).

PE = m ∗ a ∗ h ∗ 0.7 (2)

To get the potential energy (PE) gains we use the Equation (2), achieved by multiplying the mass
(m) of the EV by the acceleration (a) the vehicle has by the difference in height (h) from the starting
point to the destination point. There is always some loss of energy, either by the rolling resistance,
mechanical friction and aerodynamics in the EV, resulting on the dissipation of energy into heating the
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road, the surrounding air and various spinning parts in the EV. In order to interpret these losses in a
very simplistic way, we decided to multiply the PE by an efficiency factor of 0.7.

a = g ∗ sin(slopeangle) (3)

The acceleration is calculated by multiplying the earth surface gravitational value (g), with the
value of 9.8, by the slope angle between the starting and ending points of the route.

By applying the (1) and (2) equations we can calculate the potential gains from regenerative
braking, which can results in an increase of up to 25% in the distance travelled by the EV [22].

Other Google service used is Firebase that supplies the means to build an authentication system
for the login and register option, as well as the database to keep information about the users and
the CS.

3.3. Predictive Model

The predictive model is built on to the android application, but in a commercial use, it would
be advisable to have this model in a server to reduce the total size of the application and the battery
drainage. It would also increase performance and help build a more robust model. This predictive
model is going to be built with the help of the open datasets of EV charging sessions in the city of
Dundee, Scotland [23]. The city of Dundee was awarded in 2018 as the most visionary city in Europe
for EVs at a ceremony in Japan, due to its pioneering initiatives to encourage the use of EVs. The city
council was able to develop the largest fleet of council electric cars in the UK, with almost 40% of
council cars and vans being electric. On top of that, 15% of the city’s taxis are electric [24]. That said,
we have access to four datasets, that combined make a total of a year of charging sessions around the
Dundee city, as well as a dataset that gives us more information of each charging point. To help with
the predictive power of the model, information about the historical weather in the city of Dundee
was obtained with the development of a Web Crawler with the help of the Python Library Selenium.
The historical data was obtained from 1 of September of 2017 up to 6 of September of 2018, matching
the first and last record of the charging sessions in the Dundee combined dataset, taking 1 h and 20 min
to gather all data. Further details from the predictive model and the data used in the creation of the
model are explained in the following section.

4. Development of the Predictive Model

As was said in the previous chapter, the predictive model was built using two combined datasets
and applying predictive algorithms, one of the datasets is from the Dundee City representing the EV
charging sessions and the other is a weather dataset gathered by a web crawler. The algorithm chosen
is evaluated in this chapter, as various algorithms are tested and examined to decide which one is the
most desirable, taking into consideration the accuracy levels and the performance, since the execution
time is important. The developed approach can be applied to any case with the previous datasets of
the charging process and weather dataset.

4.1. Charging Sessions Dataset

Firstly, there are five datasets in public access from the Dundee City Council in the matters
of the EV Charging Sessions divided by charging points. Four of the datasets correspond to the
charging sessions, representing each a time set of three months, a year in total data, and the last dataset
represents information about each CS.

The charging dataset was combined using the four datasets, with data from 1 of September of
2017 to 6 of September of 2018, resulting in a total of 67,112 records with the following columns: CP ID,
that uniquely identifies each charging point; Connector ID, the identifier of the connector since each
charging point can have more than one connector; starting time and end time of the charging session;
and the address of the charging point. In this study, we focused on three areas of Dundee, namely
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Queen Street Park, Dundee Ice Arena and Public Works Department, all of those charging points are
open 24 h per day with zero cost associated and for public access. Removing rows with missing values
resulted in a total of 66,783 records. In short, the CS under study is characterized by the information
presented in Table 1.

Table 1. Charging Points Information.

Charging
Point ID

Location
Number of
Connectors

Type of
Charging

50,692 Dundee Ice Arena 2 Fast

50,911 Queen Street Park 2 Fast

51,087 2 Fast

50,339

Public Works Department

2 Fast

50,235 2 Slow

50,236 2 Slow

50,238 2 Slow

50,270 2 Slow

50,271 2 Slow

50,272 2 Slow

50,232 2 Slow

Having said that, we then removed every row with missing values, as well as every charging
sessions with a duration of less than one minute or of more than two days, as we found those to
most probably be wrong measures or misunderstandings by the users. After that, we have chosen
three locations to continue the study and filtered the complete dataset to have a dataset per location,
namely in the Queen Street Park (QSP) location, for Dundee Ice Arena (DIA) location and for Public
Works Department location (PWD). Those locations were chosen because these are the locations with
the highest number of recharging sessions, more specifically the dataset from QSP has a total amount
of 8147 rows, the DIA dataset has 5209 rows and the PWD dataset has a total of 6264 rows.

We then divided the data from the charging session into intervals of fifteen minutes, as a way
to predict the occupancy in the charging sessions every fifteen minutes, making it more dynamic
and immediate, in case any connector of the station turns unoccupied. The average charging time is
3 h and 26 min for all CS and, more specifically, 51 min for QSP, 29 min for DIA station and 2 h and
35 min for PWD, and so, it is interesting to keep a low time interval for prediction to realize when
the stations have a place available. To all of those records, a column called ’occupied’ was added,
and for the respective datetime, meaning that for every fifteen minutes we would count how many
connectors from the CS were occupied, as a way to know the total number of connectors being used
for that location.

4.2. Weather Dataset

As mentioned earlier, weather conditions can be important in forecasting parking spaces,
which can be equated with the problem we are trying to address. Having said that, we are concentrating
on obtaining meteorological data to help predict the occupation of CS, and this data was obtained
via Web Crawler, developed using the Selenium Python Library from [25], within range of day 1 of
September of 2017 to day 6 of September of 2018, matching the earliest and latest date in the charging
sessions dataset. This historical data was gathered with an interval of 3 h between each measurement,
collecting information like: datetime, showing the time and date of the measurement; temperature,
in Celsius; wind speed, in kilometers per hour; clouds, cloud cover amount in percentage; humidity,
in percentage; precipitation, in millimeters of water per hour; and atmospheric pressure in millibars.
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4.3. Data Analysis

Before starting to apply algorithms, we combined the three datasets, from each location with
the weather dataset, through the datetime column. All of the three datasets where composed by
nine columns, namely occupied and datetime from the CS, as well as the temperature, humidity,
wind speed, clouds, pressure and precipitation from the weather dataset.

After having combined the datasets, we started to check if the weather features had an influence
in the occupation of the CS by analysing the correlation between every weather features and the
target, ‘occupied’. Correlation can give us a relationship between two values indicating that as one
variable changes in value, the other variable tends to change its value in a specific direction. In this
case, we used the Pearson’s Correlation Coefficients, where the correlation coefficient value can range
between −1 and 1, measuring both the strength and direction of the linear relationship between
two continuous variables. Strength reveals that the greater the absolute the correlation coefficient
is, the stronger is the relationship, meaning that as one value changes, the other will also change,
where a coefficient of zero represents no linear relationship. As for direction, the sign of the correlation
coefficient reveals the direction of the relationship, where positive coefficients indicate that when
a value increases, the value of the other variable also tends to increase, and when the coefficient is
negative represents that as a one variable increases the other tends do decreases. Having said that the
correlation values between the target ’occupied’ and the weather features can be seen in Table 2.

Table 2. Correlation of weather features with the target ’occupied’.

Feature

Dataset
QSP DIA PWD

Temperature −0.07 −0.19 −0.18
Humidity −0.14 −0.12 0.07
Cloud −0.02 0.02 0.07
Precipitation 0.01 0.01 0.01
Wind 0.07 0.12 0.09
Pressure −0.05 −0.11 −0.10

By analyzing Table 2 we can conclude that the weather features do not show a high correlation
with the loading sessions. The charging of the EV is necessary in case of lack of battery in the EV,
where weather conditions do not condition it, as the drivers need to have the vehicle operational.
Having said that, we decided to remove the weather data for the creation of the predictive model.

4.4. Testing Algorithms

In this section and taking into consideration the above findings, we started the testing of
algorithms to predict the occupancy of the CS, but firstly we transformed the occupied columns
to represent an occupation tax, instead the true value, as it results in better predictions, meaning that
for the case of the DIA location, if there are 2 cars charging in it at the same time, that means the CS
is full, having a 100% occupation tax. The algorithms chosen to test this were Distributed Random
Forest (DRF), Neural Networks (NN) and Gradient Boosting Machine (GBM), from the python library
H2O [26]. Those algorithms were applied to the three different locations datasets and evaluated using
a five cross-validation, resulting in the outcomes for the accuracy metric present in Table 3.

Table 3. Accuracy and average run time results.

Location

Algorithm
DRF

Run Time
(Seconds)

NN
Run Time
(Seconds)

GBM
Run Time
(Seconds)

QSP 64.64% 40 45.61% 117 54.38% 13
DIA 73.91% 28 69.44% 127 71.37% 9
PWD 69.93% 66 33.62% 114 48.78% 23
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Considering the results obtained, we can verify that the algorithm that presented the best results
was the DRF, reaching around 70% accuracy values and having the second lowest average run time of
all the three algorithms tested. The best value as we can see is using the DRF algorithm with the DIA
location, reaching a robust and efficient accuracy value of 74%, the other locations, QSP and PWD also
had good values, almost 65% and 70%, respectively. The NN algorithm showed the worst values in
accuracy, while also presenting high run times, and so this option was discarded. The GBM algorithm
presents the lowest run time values, and although this metric is important for the efficiency of the
application and the predictive models, the accuracy difference is high enough to choose the DRF as the
adopted algorithm.

To conclude, the algorithm chosen for the creation of the predictive models is the Distributed
Random Forest. These models are built using historical information with an interval of 15 min about
the charging sessions, namely the occupancy rate in each charging station for a given month, day,
hour and minutes the session occur.

5. Results Evaluation

For this assessment we considered two examples of EV, the first being the Renault Zoe and the
second being the Nissan Leaf. These vehicles were chosen because they are two of the most common
EV in Europe [27]. The way in which the EV is driven has a lot of influence on its energy consumption,
from the velocity, braking force, number of times it has been braked, etc, and as we do not have
information on consumption along the route, we then use an average consumption for each of the EVs
taking into account their characteristics.

5.1. Test Example: Renault Zoe

The Renault Zoe R90 model has a total weight of 1455 kg and a reach of 260 km with a battery of
41 kWh and an average consumption of 15.8 kWh per 100 km [28].

So, in the following example we started at Braemar, Ballater, UK, with an elevation of 323 m with
a Renault Zoe at 55% of battery level. We then used the “Navigate” option with Broughty Ferry, UK as
the final destination which is 44 m above the water level.

As we can see in the Figure 5, the user inserted Broughty Ferry on the first input box and the
current battery percentage has 55%. After this, the user would click on navigate and the decision
algorithm would run to calculate the weight of each option. This algorithm takes into consideration
the three heuristics previously announced for each CS, firstly the occupancy of the CS at the time of
arrival, secondly the duration it takes from the current location of the user to the CS, and lastly the
distance from the CS to the destination provided by the user, in this case Broughty Ferry.

Figure 5. Navigate option with Broughty Ferry as the destination.

The algorithm features and weight results for the Renault Zoe can be seen on Table 4.
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Table 4. Navigate option with Broughty Ferry as the destination.

CS
Route Duration

(Seconds)
Distance to CS

(Meters)

Distance from
Destination to CS

(Meters)

CS Occupancy
(Percentage)

Weight

QSP 6819 68,855 841 25 202.80
PWD 6202 64,819 7364 6 201.95
DIA 6038 63,508 9786 0 200.80

The algorithm takes the percentage of occupancy as a higher priority, and the CS with the lowest
occupancy was the DIA location with 0% occupancy at the time of arrival, while PWD location had
a value of 6% and the QSP location an occupancy of 25%. In the case of the duration, the route with
less time was for the DIA location at a distance of 6038 s, about 1 h and 38 min. For the rest of the CS,
we had a total duration of 6202 s (1 h and 43 min) for the PWD location and 6819 s (1 h and 53 min) for
the QSP location. For the distance from destination to the CS, the shortest is the QSP CS with only
841 m away, while the rest of the CS are more than 7 kilometers away. So, taking in those values,
we generated the weight value, to decide which CS suits best, where CS with the highest weight value
is chosen as the optimal CS and the route to that CS is made. The CS with the highest value was the
QSP, with a total of 202.80 weight, so the route to this CS is made while showing the duration to the CS
in bold, as well as the battery level at the destination and the occupancy percentage of the CS while
arriving the CS. In this case the route to the CS takes around 1 h and 38 min, resulting on an occupancy
of 25% at the estimated time of arrival, with a total of 13% battery level, seen in Figure 6.

As the elevation is higher at the start (323.13 m) then in the end (9.73 m) there is a reduced energy
gain, more specifically 4 watts. It is not a very large gain, but it tends to have a greater contribution
in cases of routes with a greater difference in height and where the route is not so long. In this case,
the EV ended the route on the QSP CS with 13 percent battery charge.

Figure 6. The route to the CS chosen from the decision algorithm.

5.2. Test Example: Nissan Leaf

The Nissan Leaf weights 1580 kg with a 38 kWh battery capacity as a total of range of 230 km,
resulting on an average of 16.5 kWh consumption per 100 km [29].

Taking into consideration the Nissan Leaf characteristics and starting at Leuchars Station, UK with
a total of 30% battery level. In this example we executed the “Navigate” option with the Dundee Ice
Arena as the destination, as a way to evaluate once more the decision algorithm. In Table 5 we can
check the features and weight results from the decision algorithm for the Nissan Leaf example.
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Table 5. Decision algorithms heuristics results for the Nissan Leaf example.

CS
Route Duration

(s)
Distance to CS

(m)

Distance from
Destination to CS

(m)

CS Occupancy
(Percentage)

Weight

QSP 1902 9744 9443 25 132.38
PWD 1884 13,651 2429 18 193.97
DIA 2037 15,549 54 50 194.55

In this case the difference between the two points is 89.65 m, where the final destination has a
height of 100.60 m and a total of 10.94 m at the starting point, so there are no energy gains taken into
consideration.

As previously mentioned, the heuristic with the highest priority is the occupancy rate of the
stations, and the station with the lowest occupancy rate in this case was PWD with an occupancy
rate of 18%. The QSP station had an occupancy rate of 25% and the DIA station an occupancy rate of
50%. In terms of duration of the route, the route to PWD is the shortest with 1884 s, a total of 31 min.
For QSP and DIA, we have 1902 s (approximately 32 min) and 2037 s (34 min), respectively. In terms
of distance from the final destination to the CS, the shortest distance is at the DIA station with 54 m
distance from the provided destination, to the PWD station we have a distance of 2429 m and to the
QSP station we have a total of 9443 m distance. After finding all these values, we were able to calculate
the weight of each station to choose the best option for charging, and in this case we verified that the
station with the highest weight is the DIA station with a value of 194.55, being this the selected one.
The Leaf reaches the DIA CS with a total of 19% of battery and a occupancy at the estimated time of
arrival of 50%.

For the Check Map feature, the user decides which CS wants to move to. For example, the user
chooses the location to navigate to manually and the application takes care of creating the route to the
selected CS. As the battery information is not provided in this case, the application does not take this
information into account, only showing the occupancy information upon arrival.

6. Conclusions

This work introduces a novel approach to handle the problem of real-time guidance to free CS
near the desired destination location for EV drivers. As the number of electric cars gets bigger this
problem will be increasingly more important, where the allocation of new CS will be a necessity.
If this increase does not happen in a controlled and intelligent way, the current CS will become too
crowded which can present a huge challenge for EV drivers as well as for the traffic surrounding the
CS, as most of the times they do travels that can be performed with available charge because there is a
big uncertainty about getting a free charging spot. A prediction approach can handle and mitigate this
problem when no real-time connection is available to these proprietary systems. This information is
vital when the CS implementation is lower than the EV market penetration. This predictions model
can reduce this problem proving probabilistic information about the availability and, as we were able
to conclude with this study. A predictive model was built for the three studied locations showing good
accuracy results for the CS, by combining a total of one year of charging sessions data proving to be a
reliable solution. The model developed could also be implemented in other cities, requiring only the
input of datetime features, namely the day, month, hour and minutes of future charging, thus allowing
the model to return a value of the occupancy rate. Current solutions also provide information about
the usage of CS and with this, it is possible to identify zones where there is a need for more CS because
several EV can not charge in the desirable location. This could be useful information for future studies
of the location of CS.
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The following abbreviations are used in this manuscript:

EV Electric Vehicle
CS Charging Station
BSS Battery Switch Stations
QSP Queen Street Park
DIA Dundee Ice Arena
PWD Public Works Department
DRF Distributed Random Forest
NN Neural Networks
GBM Gradient Boosting Machine
API Application Programming Interface
FIFO First In First Out

References

1. Xiong, Y.; Gan, J.; An, B.; Miao, C.; Bazzan, A.L. Optimal electric vehicle charging station placement.
IJCAI Int. Joint Conf. Artif. Intell. 2015, 2015, 2662–2668. [CrossRef]

2. Kobayashi, Y.; Kiyama, N.; Aoshima, H.; Kashiyama, M. A route search method for electric vehicles in
consideration of range and locations of charging stations. In Proceedings of the 2011 IEEE Intelligent Vehicles
Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 920–925. [CrossRef]

3. Sweda, T.M.; Klabjan, D. Finding minimum-cost paths for electric vehicles. In Proceedings of the 2012
IEEE International Electric Vehicle Conference, IEVC 2012, Greenville, SC, USA, 4–8 March 2012; pp. 1–4.
[CrossRef]

4. Artmeier, A.; Haselmayr, J.; Leucker, M.; Sachenbacher, M. The shortest path problem revisited:
Optimal routing for electric vehicles. In Annual Conference on Artificial Intelligence; Springer: Berlin, Germany,
2010; pp. 309–316. [CrossRef]

5. Monteiro, V.; Afonso, J.A.; Ferreira, J.C.; Afonso, J.L. Vehicle electrification: New challenges and opportunities
for smart grids. Energies 2019, 12. [CrossRef]

6. Ferreira, J.C.; Monteiro, V.; Afonso, J.L. Vehicle-to-anything application (V2Anything App) for electric
vehicles. IEEE Trans. Ind. Inform. 2014, 10, 1927–1937. [CrossRef]

7. Storandt, S.; Funke, S. Cruising with a Battery-Powered Vehicle and Not Getting Stranded. Assoc. Adv. Artif.
Intell. 2012, 3, 46.

8. Lijbers, J. Predicting Parking Lot Occupancy Using Prediction Instrument Development for Complex
Domains. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2016.

9. Eisner, J.; Funke, S.; Storandt, S. Optimal Route Planning for Electric Vehicles in Large Networks. IEEE Trans.
Appl. Supercondu. 2011, 108–1113. [CrossRef]

10. Sachenbacher, M.; Leucker, M.; Artmeier, A.; Haselmayr, J. Efficient Energy-Optimal Routing for
Electric Vehicles. In Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI),
San Francisco, CA, USA, 7–11 August 2011; The AAAI Press: San Francisco, CA, USA, 2011; pp. 1402–1407.
[CrossRef]

11. Funke, S.; Storandt, S. Enabling E-Mobility: Facility Location for Battery Loading Stations. In Proceedings of
the Association for the Advancement of Artificial Intelligence (AAAI), Washington, DC, USA, 14–18 July
2013; The AAAI Press: Bellevue, WA, USA, 2013; pp. 1341–1347.

12. Marra, F.; Traeholt, C.; Larsen, E. Planning Future Electric Vehicle Central Charging Stations Connected
to Low-Voltage Distribution Networks. In Proceedings of the 3rd International Symposium on Power
Electronics for Distributed Generation System, Aalborg, Denmark, 25–28 June 2012.

113



Energies 2019, 12, 2123

13. Chen, T.; Kockelman, K.; Khan, M. Locating Electric Vehicle Charging Stations. Transp. Res. Rec. J. Transp.
Res. Board 2013, 2385, 28–36. [CrossRef]

14. Funke, S.; Nusser, A.; Storandt, S. Placement of loading stations for electric vehicles: No detours necessary!
J. Artif. Intell. Res. 2015, 53, 633–658. [CrossRef]

15. Phonrattanasak, P.; Leeprechanon, N.; Member, S. Optimal placement of EV fast charging stations
considering the impact on electrical distribution and traffic condition. In Proceedings of the International
Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Pattaya, Thailand,
19–21 March 2014; pp. 19–21. [CrossRef]

16. Funke, S.; Nusser, A.; Storandt, S. Placement of Loading Stations for Electric Vehicles: Allowing Small
Detours. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS),
London, UK, 12–17 June 2016; The AAAI Press: London, UK, 2016; pp. 131–139.

17. Rong, Y.; Xu, Z.; Yan, R.; Ma, X. Du-parking: Spatio-temporal big data tells you realtime parking availability.
In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
London, UK, 19–23 August 2018; pp. 646–654. [CrossRef]

18. Zheng, Y.; Rajasegarar, S.; Leckie, C. Parking Availability Prediction for Sensor-Enabled Car Parks in
Smart Cities. In Proceedings of the 2015 IEEE Tenth International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Singapore, 7–9 April 2015; pp. 7–9.

19. Predicting the Availability of Parking Spaces with Publicly Available Data. Available online: https://pdfs.
semanticscholar.org/f70d/6ebf231994090c58baeecf1e64d2b199f942.pdf (accessed on 5 May 2019).

20. Ionita, A.; Pomp, A.; Cochez, M.; Meisen, T.; Decker, S. Where to Park?: Predicting Free Parking Spots
in Unmonitored City Areas. In Proceedings of the 8th International Conference on Web Intelligence,
Mining and Semantics, Novi Sad, Serbia, 25–27 June 2018; pp. 22:1–22:12. [CrossRef]

21. Shin, J.H.; Jun, H.B. A study on smart parking guidance algorithm. Transp. Res. Part C Emerg. Technol. 2014,
44, 299–317. [CrossRef]

22. Energy Efficient Electric Vehicle Using Regenerative Braking. 7. Available online: http://large.stanford.
edu/courses/2017/ph240/leis-pretto1/docs/lakshmi.pdf (accessed on 5 May 2019).

23. Electric Vehicle Charging Sessions Dundee. Available online: www.data.dundeecity.gov.uk/dataset/ev-
charging-data (accessed on 1 April 2019).

24. Dundee is Europe’s Most Visionary EV City. Available online: www.dundeecity.gov.uk/news/article?
article_ref=3284 (acessed on 5 May 2019).

25. Dundee Historical Weather. Available online: www.worldweatheronline.com/dundee-weather-history/
dundee-city/gb.aspx (accessed on 1 April 2019).

26. Welcome to H2O 3. Available online: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science.html
(accessed on 8 April 2019).

27. Electric Vehicle Sales Jump 67% In Europe - CleanTechnica EV Sales Report. Available online:
https://cleantechnica.com/2019/03/04/electric-vehicle-sales-jump-67-in-europe-cleantechnicas-europe-
ev-sales-report/ (accessed on 29 May 2019).

28. Renault Zoe R90—Battery Electric Vehicle. Available online: https://ev-database.org/car/1150/Renault-
Zoe-R90 (accessed on 29 May 2019).

29. Nissan Leaf—Battery Electric Vehicle. Available online: https://ev-database.org/car/1106/Nissan-Leaf
(accessed on 29 May 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

114



energies

Article

IoT and Blockchain Paradigms for EV
Charging System

Jose P. Martins 1 , Joao C. Ferreira 1,2,* , Vitor Monteiro 3 , Jose A. Afonso 4 and

Joao L. Afonso 3

1 DCTI, Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL, 1649-026 Lisboa, Portugal
2 INOV INESC Inovação—Instituto de Novas Tecnologias, 1000-029 Lisboa, Portugal
3 ALGORITMI Research Centre, University of Minho, 4800-058 Guimarães, Portugal
4 CMEMS-UMinho Center, University of Minho, 4800-058 Guimarães, Portugal
* Correspondence: jcafa@iscte-iul.pt; Tel.: +351-210-464-27

Received: 13 June 2019; Accepted: 31 July 2019; Published: 2 August 2019

Abstract: In this research work, we apply the Internet of Things (IoT) paradigm with a decentralized
blockchain approach to handle the electric vehicle (EV) charging process in shared spaces, such as
condominiums. A mobile app handles the user authentication mechanism to initiate the EV
charging process, where a set of sensors are used for measuring energy consumption, and based
on a microcontroller, establish data communication with the mobile app. A blockchain handles
financial transitions, and this approach can be replicated to other EV charging scenarios, such as
public charging systems in a city, where the mobile device provides an authentication mechanism.
A user interface was developed to visualize transactions, gather users’ preferences, and handle power
charging limitations due to the usage of a shared infrastructure. The developed approach was tested
in a shared space with three EVs using a charging infrastructure for a period of 3.5 months.

Keywords: electric vehicle; EV charging process; blockchain; IoT; mobile app

1. Introduction

One of the big challenges related with electric vehicle (EV) market penetration is the charging
process, where the main problems are related to the lack of proper infrastructure in residential buildings
(condominiums) since they are not prepared for this new reality. Condominiums have the problem
of shared electricity, which does not meet the EV owner’s requirements. Based on new advances in
the Internet of Things (IoT) [1], and the associated sensing devices and communication platforms,
blockchain and information systems have the potential to create new solutions for these problems.
Another facet of this challenge is the problem associated with rental houses and the eventual need for
supporting EV charging in these cases.

In condominiums, unfortunately, there is a general reluctance regarding the installation of EV
charging stations that will only be used by a few homeowners [2]. In addition, there is also an issue
regarding the safety of the electrical installations, since they are not built proactively to support EV
charging stations, and, adapting the condominium electrical infrastructure will require not only that
a consensus between the majority of the owners is reached, which may be hard to achieve, but also
authorizations issued by the government building safety entities.

Taking into consideration that most residential buildings have shared spaces with common
electrical installations and are not prepared for the installation of new EV charging systems, this is
a barrier to EV uptake [3]. A study by Lopez-Behar et al. [4] identified four main problem domains in
the context of sharing EV charging solutions in buildings: unavailable charging infrastructure, building
limitations, regulation issues and parking availability.
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In this work, we propose a new IoT-based approach for handling the EV charging process,
which can be used in the context of a shared energy infrastructure without requiring a supervision
entity to control the process.

The proposed solution is supported by a decentralized blockchain approach, running on a mobile
device app. Figure 1 shows an overview of a condominium with the proposed EV charging platform.
This work allows the following features: (1) A pre-registration with a local EV charging provider is not
required, avoiding the problem of different cards in different charging infrastructures (every charging
infrastructure has its own cards, and this is a problem for EV owners because they need several
charging cards when different providers are available); (2) it can work with digital currency using
a peer-to-peer (P2P) framework on the same homogeneous blockchain infrastructure and technology;
and (3) reduced cost (almost zero fees), because there is no requirement for a third party management
entity, apart from the condominium, which would create additional costs.

As illustrated in Figure 1, the major features of the proposed system are: (1) User authentication
with a mobile device using Bluetooth Low Energy (BLE) communication and, based on this, release of
energy for the EV charging process; and (2) energy consumption is monitored by Internet of Things (IoT)
sensors and a microcontroller board transmits the data to a web server (Raspberry Pi with Raspbian
operating system), which acts as the management unit, storing the data, handling the transactions in
a blockchain implementation and managing the charging according to the power limitations.

Figure 1. Overview of the proposed electric vehicle (EV) charging platform in shared spaces.

Complementary to the setup presented in Figure 1, which is suitable for deploying the solution at
the local level, in the context of a single condominium, an equivalent model can be applied to scale the
solution to a wider geographical area with an increased number of charging locations. In this sense,
Figure 2 expands the proposed model to an IoT architecture that is suitable to explore cloud paradigms,
such as Infrastructure as a Service (IaaS) or Software as a Service (SaaS), where the local management
unit is replaced by a shared cloud computing platform. Without loss of generality and instantiating the
model with existing platforms, the mobile app can be deployed on the Google Play store or Apple’s
App Store, the Management Unit can be packaged in a Docker container [5], and deployed on the AWS
(Amazon Web Services) cloud computing platform, and the Ethereum open blockchain network can be
used to support the financial transactions originated by the EV charging operation.
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Figure 2. Overview of an IoT/cloud model solution to handle the EV.

Figure 2 also enumerates the sequence steps to initiate a charging process: (1) Using the internet
connection, the payment is sent from the mobile device to the open blockchain network (Ethereum);
(2) the information related to the operation is exchanged between the mobile device and the Management
Unit hosted on the AWS; (3) payment is received from the blockchain network, triggering the charging
process on the Management Unit; and (4) the EV charging process is enabled on the IoT device (installed
on the parking facilities), and the information related to the energy being delivered is sent back to the
Management Unit on the AWS.

This paper is organized as follows. Section 2 presents the state of the art in related work.
An overview of the proposed approach is presented in Section 3, and Section 4 describes the system
implementation. Section 5 presents a case study at a condominium, and Section 6 discusses future
implications of the presented work. Finally, Section 7 presents the conclusions.

2. State of the Art

The proposed approach explores a set of works in several domain areas to create a new approach
to handle the EV charging process in shared spaces, including the use of IoT sensing information to
measure electricity taken on the EV charging process. Concerning driver profiles and EV charging
with power limitations, several studies have been performed, and we apply an approach based
on our previous work described in [6]. In our implementation, it was also considered an implicit
authentication mechanism [7], applied on user’s mobile devices, which confirms the user authentication
based on actions that he had performed on a daily basis. This implicit authentication mechanism can
be used to prevent fraudulent credit transactions on a mobile device, verifying that the user is who
he claims to be during the transaction. After researching systems that meet our criteria, we found
some promising work [8–12]. We apply a solution with user privacy (no identification is performed) in
an approach based on the system proposed by Frank et al., called Touchalytics [13]. We also apply the
blockchain approach to handle distributed transactions without central supervision. The primary goal
of the blockchain is to allow decentralized transactions with a digital currency, such as Bitcoin [14]
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or Etherum [15], without the need of a public authority to control the process. From the technical
perspective, a blockchain is a sequence of blocks associated with transactional data using encryption
based on a private and public key [16]. User A performs a transaction, and this process is associated
with a block encrypted with his private key, in a hash process. User B checks the transaction using the
public key of user A, allowing the following properties:

• Decentralization, since we need confirmation from some party of each block transaction without
central control;

• Anonymity, since it allows for the authentication of transactions without giving up any
personal information;

• Auditability, which is performed based on the fact that each of the transactions is recorded and
validated with a timestamp, where users can trace the previous transactions by accessing any
node in the distributed network.

The application of blockchain in the domain of smart grids has great potential, providing
a decentralized approach to implement management systems [17] and handle power transactions.
Due to the large space occupied by the meter sampling information on a blockchain block, [17] presents
a design to balance the amount of information kept onchain/offchain while keeping the properties
of a block chain implementation. The authors of [18] note the use of an open public cryptocurrency
network, such as Bitcoin or Ethereum, can introduce a high transactional cost, due to the fees associated
with cryptocurrency transaction processing (eventually similar to the cost of the energy supplied),
and propose the development of a private Bitcoin-based blockchain network for EV charging purposes.
Other relevant application cases include micro-generation [19,20], as well as the contribution to handle
the EV charging payment process without the use of propriety company payment systems.

The EV charging payment process is more frequent than fossil fuel refuelling and more complex due
to the immaturity of the service. Specifically, the following issues are fairly common: (1) Transparency
and clarity of rates and charges before they are incurred; (2) ability to pick-and-choose best rates and
location of available charging points on the go; (3) ability to request priority charging and pay for it,
when other EVs do not need priority; (4) ability to select a supplier or source of electricity, which would
also enable greater competition and increase trust of customers; and (5) preferences for various types
of payment, such as post-paid, pre-paid, or one-off payment.

We complement this work with our previous work on an EV charging system [21,22] and IoT
energy measurements using local sensors [23], as well as new challenges of energy markets [19].
Some issues identified are also addressed in [24], which proposes a blockchain-based model with
recourse to a bid to identify charging stations (and eventually schedule the charging), complementary to
the approach suggested in [21]. Another issue originated by the increase of the EV charging needs is the
impact on the energy demands and the power limitation of the existing infrastructure [25], which may
not only increase the operational costs to fulfil the required demand, but also affects the voltage stability
of the network. In [25], the authors introduced the AdBEV, which is an algorithm to optimize the
EV charging schedule, maximizing the voltage stability at the power grid side, and minimizing the
charging costs. In [26] the application of a blockchain-based process is suggested to support the EV
charging queue management.

Together with mobile device authentication and a payment system, we developed a new approach
to be used in shared EV charging spaces. Another interesting output is to use mobile devices to provide
authentication and payment services in the context of the public EV charging systems, exploring
recent advances in mobile device payment systems for public transportation [27] and other application
areas [28]. As a new topic of research, new publications are appearing in the literature concerning the
use of a blockchain approach to handling the EV charging process, such as: testing pilots to use digital
currency for the EV charging process [29,30]; proposal of a P2P energy transaction model to handle the
EV vehicle-to-grid (V2G) operation in smart grids [31]; handling the EV authentication issues based on
a blockchain approach [32]; proposal of a cross-domain authentication scheme with blockchain [33];
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and handling of security and privacy issues for energy transactions based on blockchain. Moreover,
in this context, the EV is identified as part of the energy market [34], and as a contribution to the
contextualization of the local energy market [35], where the blockchain plays an important role in the
decentralization process, as well as for optimization purposes [36].

3. Proposed Approach—Conceptual Model

The EV charging platform is composed of the elements presented in Figure 3, whose roles
are briefly described below, and the implementation details for each component is detailed in the
next section:

• IoT Units. Sensor and power management units that support the interaction with the EV charger,
being used to enable or disable it (on/off switch), to measure the amount of power consumed,
gather environment temperature and humidity (complementary measures), and to upload all
the information to the management unit. Implemented with COTS (commercial off-the-shelf)
components, Arduino microcontrollers, actuators and sensors. Depending on the installation
requirements, different components can be combined to set up the IoT Unit.

• Mobile App. The element that establishes the interaction between the EV owner and the platform,
authenticates the user, starts/stops the charging process, and provides some common operations,
such as configuration management, usage dashboards, transactions lists, etc.

• Management Unit. This element is the heart of the platform, providing not only all the backend
services to support the required operations, but also the management console for the platform.
In the prototype presented in this paper, the management unit was implemented using a Raspberry
Pi, which also acts as a Wi-Fi access point, providing network access to the sensor units and to the
mobile app, but it could also be implemented using a cloud computing platform.

Figure 3. Main architecture of the proposed EV charging platform: Server Application, IoT Units and
Mobile Application.
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4. System Implementation

As previously described, the proposed EV charging platform is composed of three major elements:
IoT units (sensors/actuators devices), a mobile app and a management unit. This section explores the
implementation details of each element.

4.1. IoT Unit

The IoT unit was developed considering the approach described in our previous work [19],
with improvements to the hardware and transmission process, as well as the creation of a prototype
towards a possible commercial system. The first steps were the assessment of the surrounding
environment and context, aiming to review the system design approach. The goal of reaching a potential
commercial system’s architecture led to the consideration of a flexible design, where different network
transmission requirements/devices, current sensor devices and power switching devices should be
available to use, tailoring their combination to match a specific installation requirement. After an
initial period of checking and testing hardware, we implemented a solution based on an Arduino Uno
(microcontroller) combined with the devices listed in Table 1, where only one component for each type
was used to assemble the IoT unit.

Table 1. List of IoT hardware add-ons.

Component Type Device

Network (Shields) Sparkfun ESP8266 (Wi-Fi)
WIZnet’s W5100 (Ethernet)

Current Sensors SCT-013-000 (non-intrusive)
ACS712 20A (intrusive)

Power Switching (*) SRD-05VDC-SL-C (generic network switch)

Temperature and Humidity DHT11

NFC RFID (**) Wireless Module PN532

(*) A generic network-controlled switch can be controlled by the management unit. Approaches such as
BLE-controlled switches can eventually also be used, providing that a BLE add-on is added to the IoT unit.
(**) Near Field Communication e Radio-Frequency IDentification.

4.1.1. Configuration of Variations

Wired (Ethernet) vs. Wireless (Wi-Fi) Network: Taking into account that most existing
condominiums do not have a wired network infrastructure, the use of a Wi-Fi network simplifies
the deployment of the platform, as no other infrastructure components are required, particularly
when using the Wi-Fi network provided by the management unit. For new installations or for larger
installations, a cable-based approach may be more suitable and less error-prone.

Intrusive vs. Non-Intrusive Power Sensing: The non-intrusive approach offers the capability to
measure the energy that passed through a specific IoT unit, allowing the measures to be gathered without
any major changes to the existing infrastructure, as the sensor only needs to be “hooked” around the
power cable that powers the EV charger device socket. However, since no physical devices are installed
between the power plug and the EV charging device, the capability to enable/disable the charging
process needs to be implemented by the EV or by the charging device and exposed as a service to the
charging platform; eventually, the platform network or other communication technologies, like BLE,
could allow the management unit to start/stop the process based on user commands. On the other
hand, although the intrusive approach forces the platform owner to introduce the IoT device between
the power grid and the power socket, which requires some intervention in the existing infrastructure,
it is able to provide a sound solution to the platform owner, as it provides a “one-in-a-box” unit that is
able to measure and control the energy delivery (enabling/disabling) simultaneously, while providing
energy only to authenticated users or inside of a blockchain transactional context.
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Built-In vs. COTS (Commercial Off-The-Shelf) Power Switching: To enable/disable the EV
charging devices, we have considered using the SRD-05VDC-SL-C (Ningbo Song Relay Co., Ningbo,
China) device (see Figure 4f), which, when connected to the Arduino device, can be used as a switch.
A different approach to support this requirement is to use a standard TCP/IP-based (Transmission
Control Protocol—Internet Protocol) switch commonly available as COTS on the market.

4.1.2. Hardware Components

The most relevant characteristics of the hardware components used for the prototype
implementation are:

• Arduino R3 Uno Microcontroller (Figure 4a): based on the microcontroller ATmega328P, it has the
following characteristics (from the Arduino R3 Uno dataset):

� 14 digital input/output pins (the first 2 are commonly used for serial RX/TX (Receive and
Transmit), 6 can be used as pulse-width modulation (PWM) outputs that mimic an analogue
output) and 6 analogue input pins (A0–A6).

� 16 MHZ clock speed (memory: flash, 32 K; SRAM, 2 K; EEPROM, 1 K).
� USB type B connection, ICSP Header.
� Power input 9 V (operating voltage 5 V), built-in LED, reset button.

• Sparkfun Wi-Fi Arduino Shield (based on ESP8266) (Figure 4b): manufactured by Sparkfun this
Arduino shield is commonly used to connect the Arduino microcontroller to a Wi-Fi network and
use the “standard” internet protocols (TCP or UDP).

• Arduino Ethernet Shield (based on Wiznet W5100) (Figure 4c): designed for embedded applications
where ease of integration, stability, performance and cost are required, as well as ease of internet
connection without the need for an operating system to implement. This chip complies with
IEEE 802.3 10Base-T and 802.3u 1000Base-TX standards and includes a TCP/IP hardwired stack,
supports up to four simultaneous socket connections, integrated MAC and PHY Ethernet, and 16
kilobytes of internal buffer for data transmission. The standard RJ45 connection allows speeds
from 10 to 100 megabytes.

• Non-Intrusive Current Sensor SCT-013-000 (non-intrusive) (Figure 4d): a non-intrusive sensor
used to measure the current passing through a conductor without the need to cut or modify the
conductor itself. The measurements are collected from the electromagnetic induction, which is
proportional to the intensity of the current passing through the conductor. This sensor collects
measurements up to 100 A, outputting at 50 mA. In terms of accuracy, it may deviate from 1% to
2% of the actual value.

• Intrusive Current Sensor 20 A (based on ACS712) (Figure 4e): based on ACS712 this intrusive Hall
effect current sensor can be used to measure currents between −20 A and +20 A, with an output
ratio of 100 mV/A.

• Power Switch 10 A (based on SRD-05VDC-SL-C) (Figure 4f): a mechanical relay which operates
a switch. Powered by the standard Arduino 5 Vcc, it has a control line (+5 V) that when powered,
establishes a connection between the terminals common (C) and normally open (NO). The used
part also includes a small LED which is enabled when the circuit between the terminals C and NO
is established.

• Temperature and Humidity Sensor (DHT11 based) (Figure 4g): from DFRobot, can work from 0 to
50 ◦C and humidity from 20% to 90%, and has low power consumption, with a precision of 2 ◦C.

• RFID/NFC Reader/Writer (PN532) (Figure 4h): has several wireless capabilities, it can be used to
read and write RFID and to exchange data with Near Field Communication (NFC) enabled devices.
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Figure 4. Hardware components used in the proposed EV charging platform.

4.1.3. IoT Unit Software

The software implemented in the Arduino Uno microcontroller was developed in C++ through
the Arduino IDE, where the main methods are used to read the sensor data, enable/disable the EV
charging device, authenticate the user, initialize the network shield and obtain an IP (Internet Protocol)
address via DHCP (Dynamic Host Configuration Protocol) or configure a static IP address, buffer the
collected sensor data, and send the data to the management unit. Once the IoT Unit is powered on,
it performs the following steps:
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1. When the device starts, it checks if it contains configuration information stored in the EEPROM.
In this case, it will automatically go to step 3 (if the sensor is started with the reset button pressed
the EEPROM configuration is deleted, Figure 4i).

2. In the absence of a stored configuration, the device contacts the server to obtain the configuration
data, receiving the following parameters in response: (a) Data transmission frequency; (b) sampling
frequency; (c) target server; (d) IP configuration (static or dynamic); and (e) time server. To identify
the sensor together with the central application, the sensor Id is read from the dip-switches shown
in Figure 4i, allowing a total of 64 (26) sensors configured to obtain configuration.

3. After reading the configuration data, the device is ready for operation.

The communication with the server to obtain the configuration and sending of readings is
done using the TCP and Hypertext Transfer Protocol (HTTP) protocols, using the GET and POST
methods, respectively.

4.2. Mobile App

As an integral part of the project and to allow the EV owner to interact with the platform,
a mobile app was developed in C# using the framework Xamarin.Forms, which allows multiplatform
development for Android, iOS and UWP (Universal Windows Platform). Figure 5 presents the use
case diagram that enumerates the most relevant features implemented.

 
Figure 5. Use case diagram of the developed mobile app.

4.2.1. EV Charging Process (Automatic vs. Manual Starting Process)

Initiating the EV charging process is the key function of the mobile app, being simultaneously the
most frequent operation, as charging the EV is the purpose of the entire system. Requiring the EV
owner to connect to a network where the management unit is reachable, as is illustrated in Figure 3
(assuming that the system operates in a closed network), to be able to start the charging process adds
a non-practical, time-consuming process. Aiming to improve the user experience, while performing
the operation, we have implemented two approaches: one automatic approach supported by the
NFC capabilities of the user’s mobile device and one manual approach relying exclusively on the
implemented mobile app. Using a more automatic approach, the user initiates the charging process
using the NFC capabilities of his mobile device to authenticate the operation, starting the process by
placing his mobile device near to the NFC reader attached to the IoT unit. In this case, the process will
use the statistical information collected from the previous operations to confirm the user authentication,
estimate the power needs and the amount of time that the EV will be connected to the charging plug
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(to forecast the power/time usage). Complementary to this process, a more controlled approach can be
used, when the NFC device is not available or not attached to the sensor unit, or if the vehicle owner
needs to configure the charging process (setting parameters such as the amount of the battery energy
according to the state of charge (SoC), the amount of time connected to the platform, time-window for
charging, etc.). In this case, the charging process can be initiated by connecting to the network where
the management unit is reachable, eventually to the Wi-Fi network provided by the management unit,
and manually starting the process, providing the required information. Figure 6 shows the application
interfaces to initiate a charging process and to stop the charging process.

 
(a) (b) 

Figure 6. Mobile app interfaces for starting the EV charging (a) process and for stopping the EV
charging process (b).

4.2.2. General App Features

Apart from the EV charging process, which can be considered the crux of the system,
the mobile app also implements several features that, although not as relevant, are required to
achieve a production-grade design stage. Figures 7 and 8 shows screenshots for some of the
implemented features:

1. Application splash screen, Figure 7a.
2. Current usage pattern, Figure 7b.
3. Application settings, Figure 7c.
4. Energy costs calculated on the basis of kWh and sensor statistical measures, Figure 8a.
5. List of sensor readings received, Figure 8b.
6. Sensor configuration details, Figure 8c.
7. About screen, Figure 8d.
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Figure 7. Mobile app screenshots.

   

(a) Calculated 
Power Costs and 

Current 
(b) Sensor Data  (c) Sensor Details 

(d) About Screen 

Figure 8. Other mobile app major functionalities.

4.2.3. Software Architecture

Figure 9 displays the mobile app software organization. From a functional perspective, the mobile
app is split into several modules enforcing the separation of concerns between each functional
unit. From the software architecture perspective, the mobile app is implemented following the
Model-View-ViewModel (MVVM) pattern, which can be considered one extension of the Presentation
Model (PM) pattern [37], frequently used in Xamarin.Forms applications (as well as other mobile apps)
where each logical layer has a clear separation of concerns, as described:

• View, implemented with XAML (eXtensible Application Markup Language), a declarative language
used to design and structure the user interface.

• View-Model is the binding element that intermediates the relationship between the View and the
Model, mapping the information and actions between both elements.

• Model is the representation of the data.
• Rest Adapter since the mobile app entirely relies on services provided by the management unit,

this component acts as a proxy between the mobile application and the services exposed. Due to
the financial nature of transactions, the information exchanged between the mobile app and
the central management unit uses a secure Hypertext Transfer Protocol Secure [38] (HTTPS)
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connection (secured by a server certificate) and Hypertext Transfer Protocol [39] (HTTP) standard
authentication mechanisms. Stronger authentication schemes can be supported by use of client
certificates to authenticate the mobile app requests on the server; however, this was not considered
for the current implementation to avoid the complexity of introducing a Public Key Infrastructure
(PKI) in the platform.

• Local Storage consists of a small information repository to store local configuration data in the
mobile device.

 
 

 

(*) 3A—Authentication, Authorization and Auditing 

Figure 9. Mobile app functional and software architecture views.

4.3. Management Unit

The management unit is the heart of the platform. This section is divided into the following
subsections: Hardware and Network Infrastructure; Software and Services Infrastructure; Management
Services; Management Web Application; and the Blockchain.

4.3.1. Hardware and Network Infrastructure

The management unit was built using a Raspberry Pi 3 Model B+ hardware, and the Raspbian
operating system. The unit was configured as a Wi-Fi access point, setting up the network to allow
Wi-Fi communications between all the platform components (management unit, sensor units and
mobile app). This configuration allows the deployment of a completely self-contained, pluggable,
low-cost solution, without requiring any other infrastructure components (apart from the energy power
grid), while increasing the security of the overall solution by reducing its exposure to external network
threats. Complementarily, if deployed in a location with existing network support, the management
unit can be connected to the network using the RJ45 Ethernet connector of the Raspberry Pi, allowing
the platform to benefit from the existing infrastructure and to eventually be deployed in setups
where the use of a Wi-Fi network may not be available or the most suitable option, for instance,
a multi-level condominium parking lot, or a parking lot spread over several areas and sharing only
one management unit.

4.3.2. Software and Services Infrastructure

Figure 10 displays the software infrastructure that supports the services exposed to the platform
elements (IoT unit, mobile app).
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Figure 10. Software infrastructure and flows of information.

The platform services, built using the Spring Framework and SpringBoot, are exposed as a set of
Representational State Transfer (REST) endpoints, self-documented through the use of the Swagger
Framework, as presented in Figure 11. This approach exposes an API (Application Programming
Interface) that can be easily used by third-party applications, using standard interoperability tools,
allowing the development of custom-made integrations (for instance, to integrate the platform with
a condominium management system). The platform data is stored in a local MariaDB database server.
Aiming to guarantee the security of the communications between the management console, the mobile
app and the central unit use a standard HTTPS protocol that has been archived by the installation,
and configuration of HTTPS certificates (freely provided by Let’s Encrypt), deployed in an NGINX
(Engine X) web server, which acts as a proxy between the “external world” and the services layer.

 
Figure 11. Self-generated API (to support interfacing with third-party applications).
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4.3.3. Management Services

Figure 12 presents the application level services that constitute the EV charging platform.

 
Figure 12. Management Unit Services.

A brief description of the implemented services and their contribution to the overall platform is
presented below:

• Configuration: Provides a set of services required to configure the EV platform, allowing the user
to define several platform parameters, such as the existing sensors and their configuration (e.g.,
network configuration, maximum current, accounting frequency, measure period, etc.), as well as
the groups of sensors (sensors inside the same group, maximum load per group, etc.).

• 3A (Authentication, Authorization, Auditing): This module has a central role in the entire platform.
It is responsible for centralizing all the operations related to user/system authentication (“who is
who“), authorization (“what can do”) and auditing (“what was done”). Apart from implementing
the set of operations to manage the user access to the platform, it also implements the implicit
authentication [6] to validate the charging request automatically, based on the current user’s
usage pattern.

• Charge Monitor: This module collects and processes all information generated from the installed
sensors to update the EV charging records and detect the end of the charging events, as well as any
anomalies on the charging process (e.g., exceeding the nominal current, temperature, charging
time), and triggering eventual notifications when required. This module also collects the user’s
usage pattern to estimate the power needs for the current charging process, as well as estimate
the leave time of the EV from the charging plug, if that information is not provided explicitly by
the user.

• Charge Management: If the installation has the capability to enable or disable the EV charging
process, by the use of network-controlled charging devices or by the use of charging switches
attached to the sensor unit, the module enables or disables de-charging of the EV, aiming to
properly distribute the available charging windows between all the EVs connected to the charging
group, based on the charging requirements and the amount of time that the vehicle will be
connected to the charging device and using the information provided explicitly by the user or
inferred by the platform based on the users usage pattern.

• Notification Services: This module provides all the notification related services to the platform,
routing the system-generated notifications to users that had subscribed to that notification (i.e.,
vehicle charged, abnormal charge pattern, etc.)

• Transaction/Blockchain: This module supports all the “financial” related operations, for instance,
it records the changing event in the blockchain ledger; if the installation supports the charge
management process (described previously), it allows the platform managers to transfer “charging
tokens” to the user’s wallet (if not using a public crypto-currency network); it monitors the
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reception of user’s transferred credit to start the charging process; and it returns the unused
credit to the user’s wallet. It also provides minimal reporting capabilities to allow the financial
management and analysis of the platform usage.

Each service is implemented following a similar pattern to the pattern presented in Figure 13,
where the responsibilities of each are defined as follows:

• Service Layer: Acts as a mapping service, translating the external representation of the information
to the internal representation.

• Business Layer: All the application behaviour level is defined on this layer, and any interaction
between layers made exclusively through the interface provided at this level.

• Persistence Layer: This layer maps the internal representation of the information to representation
used by the database engine.

 
Figure 13. Software architecture pattern.

4.3.4. Web Application

The management unit exposes a web application, developed in Angular, which relies on the
services exposed and allows the EV platform managers to monitor, configure and operate the platform.
It also provides to the platform users a complementary user interface that, although supporting only
a reduced set of the operations available on the native mobile app, allows the users to interact with the
platform using browser-only technologies, available in a wider range of devices. Figure 14 displays
some screenshots for the management unit web application.

  
Figure 14. Web application: Users list (left) / Sensors list (right).
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4.3.5. Blockchain Implementation and Integration

The transactions between the users and the platform rely on the exchange of EV charging
tokens (self-generated). If using a “public” crypto-currency infrastructure like Ethereum (or Bitcoin),
the trades are made using that crypto-currencies (which can be exchanged in the market). Currently,
the transaction is performed with a fixed energy price or based on pre-defined rules but, in the future,
the price can be negotiated dynamically in full implementation of a smart grid [19]. This implementation
uses the same approach of our previous work on this topic [19]. Figure 15 presents the interactions
with a blockchain network using a private/internal blockchain ledger, whereas Figure 16 shows the
interactions that would be held when using an “open” cryptocurrency (e.g., Bitcoins).

 
Figure 15. Blockchain interactions with an internal ledger.
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Figure 16. Blockchain interactions using an open cryptocurrency.

The sequence of operations presented in Figures 15 and 16 are explained as follows.

1. Using the mobile app, the user registers/creates his account on the blockchain network (if using
public crypto-currency infrastructure, the user creates his crypto-currency wallet).

2. Using real money, the user buys EV charging tokens from the EV platform management, referring
to the web interface of the Management Unit. The charging tokens are transferred from the
platform wallet to the user wallet through a blockchain network (if using a public crypto-currency
the user buys the currency on the market).

3. Using the mobile app, the user sends charging tokens from his wallet to the EV platform wallet,
defining the maximum amount to spend and the maximum time that the vehicle will be connected
to the plug (used to optimize the power distribution). The Management Unit receives the
transfer from the network and triggers the power management unit to start the charging process,
which may not be immediate due to the optimization of the power distribution between the
used chargers.

4. The Management Server receives the power measures from the charger, stopping the charging
process when the maximum amount is reached, the maximum charging time is reached, or when
the vehicle is removed from the charger (detected by a reduction of the consumed power). If the
charging process is interrupted, the remaining amount is returned by the Management Server to
the user wallet using the blockchain network.

5. Case Study at a Condominium

We applied the current approach to a shared place in a condominium, where three EV owners
shared the condominium electric installation available at parking places for a period of 3.5 months.
Each sensor was configured to generate one sample each minute, allowing further study of the current
load patterns during a charging event. A set of three EVs (all Leaf vehicles with 24 kWh battery
capacity) and three independent sensors (Sensor 0; Sensor 1; Sensor 2) were used; Figure 17 presents
the diagram of the test environment for the case study. Due to physical constraints of the installation,

131



Energies 2019, 12, 2987

the charging adapter connected to Sensor 0 was directly connected to the power grid, without one
intermediate switch (“always on” on the scheme).

( y )

Figure 17. Setup diagram of the case study.

Figure 18 presents photos of one of the developed prototypes. Figure 18a shows a photo of one of
the IoT unit prototypes installed (Label (3) in Figure 18a) of the test environment, measuring the current
with the non-intrusive SCT-013-000-100A sensor (Label (1) in Figure 18a). In this case, due to the weak
Wi-Fi signal at the install location and the absence of other network infrastructure, the sensor unit was
connected, using the RJ45 Ethernet interface, to a Wi-Fi Range Extender (Label (2) in Figure 18a) to
amplify the signal, allowing the IoT unit to reach the Management Unit accessible from the network
where the Wi-Fi Range Extender was connected. Figure 18b shows the contents of the IoT unit installed
in Figure 18a (Label (3)).

 
(a) Installed IoT unit 

 
(b) IoT unit contents 

Figure 18. Developed prototype: (a) IoT unit prototype deployed in one test environment to take
measurements at a condominium; (b) contents of the IoT unit prototype.
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Table 2 summarizes the data collected during the case study.

Table 2. Data collected during the case study.

Measure Value

Data Samples 450,000 1

Total Time (hours) 2700
Start Date 20 January 2019
End Date 12 May 2019

Charging Data Samples 63,000
Charging Events 300

Total Charging Time (hours) 1060 h (~40%)
Unused Charging Time (hours) 1640 h (~60%)

Total Energy (kWh) 2450 kWh 2

1 Estimation, based on the configuration, as “empty” data samples are discarded. 2 For the current case study, it was
assumed a voltage of 230 V.

Figure 19 shows the charging time and the average charging power for each charging event
(for events with > 3 h of charging duration), where it is possible to identify an average value of
2.3 kW, approximately (assuming an root mean square, RMS, voltage value of 230 V). The absence of
a strong correlation between the charging time and the average charging power is also observable
(the correlation coefficient between the charging duration and the charging power dataset is −0.30),
which suggests that the average charged power by hour load is limited by the charging device and not
directly dependent of the amount of energy required to charge the EV (e.g., a charging event of 6 h has
a similar average charging power as a charging event with 3 h).
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Figure 19. Average charging power and charging duration during each charging event.

Figure 20 displays simultaneous charging events for the entire period analysed (330 charging
events on 20 January and 12 May). Due to the power limitations, only two EVs are allowed to be
charging at the same time, using full charging power, and the power is delivered on a first-come,
first-served (FCFS) basis, where the platform controls the maximum number of stations that are allowed
to charge the EVs simultaneously, queueing the remaining charging requests until a charging slot
is available.
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Figure 20. Simultaneous charging (during the test period).

Since the charging platform measures the supplied power continuously, it detects when the
EV is fully charged. At that time, it interrupts the EV charging process, transfers the data to the
blockchain network (to account for the transaction performed), and starts supplying energy to the next
EV queued. Supported by the drivers’ consumption profile and the statistical information about their
behavior (taken from past stored data, average power required, the average number of hours before
the vehicle is unplugged, etc.) a priority/utility-based resource scheduler can be applied to maximize
the benefits/utility of the energy supplied.

Figure 21 shows the charging sessions of a Leaf with 24 kWh battery capacity, in a 3.5 month period,
where it is possible to verify charging session periods ranging from 1 to 9 h (with an arithmetic average
of 5.12 h and standard deviation of 2.03 h), and Figure 22 shows the charged energy, which varies
between 2 kWh and 22 kWh (with an arithmetic average of 11.67 kWh and standard deviation of
4.58 kWh). It is possible to identify in this figure that, on average, this driver only charges 52% of the
total charge and uses, on average, 5.5 h to charge the EV. From this approach, it is possible to identify
driver profiles and use this for future charging processes accounting for the power limitation, as is
shown in [19,22].

 
Figure 21. Charging hours (Y-axis) per charging session event in a 3.5-month period for sensor 0, used
to charge a Leaf with 24 kWh battery capacity.
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Figure 22. Energy (kWh) per each EV charging session in a Leaf with 24 kWh battery capacity.

Figure 23 shows the charging process with three EVs at the condominium, where it is possible to
identify that, due to the power limitation, EV2 had to wait for an available charging window.

 
Figure 23. Charging windows (power limitation allows only two EVs to charge simultaneously).

Figure 24 presents the distributions for the charging time (left) and for the charged energy (right)
for each charging event. It can be observed that for 89% of the charging events ((117 + 82 + 69)/300),
the EV will be charging for 6 h or less. A similar analysis can be made for the charging energy, where
for 92% ((108 + 93 + 76)/300) of the charging events, the EV will charge 15 kWh, which represents
roughly 62.5% of the total battery capacity.
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Figure 24. Charging time (left) and energy (right).

Several usages pattern also were observed. Figure 25 displays the distribution of the amount of
time between each EV charging event, which shows that for 64% of the times the driver charges the EV
with less than 20 h between charging events, which may be correlated with the commute journey.

Figure 25. Distribution of time between charging events.

6. Future Implication of Mobile Devices as a Payment System for EV Charging

EVs face several problems when going abroad, due to the need for previous planning in getting
charging cards from foreign operators in a process that is not easy. The developed app for the
condominiums can be adapted for public charging with an identity management process and a secure
environment provided by the blockchain.

This approach can be similarly applied for mobile ticketing systems, allowing users to buy public
transportation tickets using mobile devices (see [27] as an example of this work), or pay motorway fees
and for other services.

Some commercial approaches are currently being tested; for example, charging stations in the UK
will be equipped with NFC payment technology [40]. In future work, we will perform security tests on
this approach and develop an interface to a payment service.

7. Conclusions

The work presented in this paper explores different approaches based on IoT, mobile devices and
blockchain to create a novel solution for the EV charging process in shared spaces with authentication
and security features, accounts and a transaction system. This approach can contribute to the
proliferation of EVs, because one of their current barriers is the charging process at condominiums
and rented houses. Moreover, from this solution, it is possible to identify EV charging profiles,
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create patterns to handle power limitations and share services without the need for new individual
services. This approach can also be applied to handle energy transactions in other application scenarios,
such as micro-generation without a central supervision control mechanism, although the use of open
public cryptocurrency platforms like Bitcoin or Ethereum, due to high transaction costs, can create
some barriers to the acceptance of the model.

The proposed solution demonstrated the robustness of the developed prototype for an EV charging
process in shared spaces in the context of the presented case study at a condominium. During the 3.5
month of operation, there was only one failure of an IoT sensor unit due to a general power failure,
and the problem was corrected by simply delaying the start of the charging process. Although no
network-related limitations were identified while using traditional wired (Ethernet) and wireless
(Wi-Fi) local area network (LAN) technologies to establish communication between the IoT devices
and the Management Unit for the presented case study environment, the implementation of the system
in wider geographical environments or other building topologies may require the use of wireless
communication technologies more suitable for that context, for instance, low-power wide-area network
(LPWAN) technologies such as LoRa, Sigfox, NB-IoT or LTE-M.
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Abstract: In this study, a millimeter-wave (MMW) radar and an onboard camera are used to develop
a sensor fusion algorithm for a forward collision warning system. This study proposed integrating an
MMW radar and camera to compensate for the deficiencies caused by relying on a single sensor and
to improve frontal object detection rates. Density-based spatial clustering of applications with noise
and particle filter algorithms are used in the radar-based object detection system to remove non-object
noise and track the target object. Meanwhile, the two-stage vision recognition system can detect and
recognize the objects in front of a vehicle. The detected objects include pedestrians, motorcycles,
and cars. The spatial alignment uses a radial basis function neural network to learn the conversion
relationship between the distance information of the MMW radar and the coordinate information in
the image. Then a neural network is utilized for object matching. The sensor with a higher confidence
index is selected as the system output. Finally, three kinds of scenario conditions (daytime, nighttime,
and rainy-day) were designed to test the performance of the proposed method. The detection rates
and the false alarm rates of proposed system were approximately 90.5% and 0.6%, respectively.

Keywords: particle filter; histogram of gradient; sensor fusion; neural network; support vector
machine; object recognition

1. Introduction

In recent years, the development of advanced driving assist systems (ADAS) has attracted a large
amount of research and funds from major car factories and universities. The key issues of ADAS
include on road object detection, anti-collision technology, park assist system, etc. Three kinds of
sensors (i.e., radar, Lidar, and camera) are widely adopted for object detection in front of vehicles [1–5].
Since there are limitations of single sensors, multi-sensor fusion technology can be used to compensate
for the disadvantages of each single sensor [6,7].

In reference [8], by using background subtraction and a Haar wavelet translation, the foreground
image was transformed into a second-order feature space. Then, based on the concept of a histogram
of original gradients (HOG), horizontal and vertical high-frequency components were obtained. In a
hierarchical SVM classifier architecture, the proposed system can classify pedestrians, automobiles, and
two wheeled vehicles effectively. Yang et al. [9] used an optical flow method to calculate the motion
vectors of the objects. Subsequently, the focus of expansion (FOE) of each object was found by using
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voting. By using the concept of a hierarchical decision tree, false alarms for detection (e.g., shadows or
ground marking lines, etc.) can be avoided. Finally, the collision time was calculated by using the
motion vectors of the objects.

Millimeter-wave (MMW) radars detect objects by transmitting electromagnetic waves onto the
objects and analyzing the reflected waves that are not affected by light and weather. These radars can
measure the relative distances and speeds of objects. However, millimeter-wave radars are susceptible
to noise and environmental interference. To address the issues related to the microwave radar noise,
Park et al. [10] proposed applying a statistical model to the radar using hybrid particle filter to track
the preceding vehicle.

The laser range finder is an electronic measuring instrument that uses a laser to accurately measure
the distance to the target, which exhibits the advantages of high measurement accuracy and good
stability. Nashashibi et al. [4] developed a method to detect, track, and classify multiple vehicles by
means of a laser range finder mounted on a vehicle. The classification was based on different criteria:
sensor specifications, geometric configuration, occlusion reasoning, and tracking information. The
system was tested in highways and urban centers with three different laser range finders.

In contrast with range finder sensors, camera sensors are not only cost-effective but can also
provide other useful information. Many novel vision-based object detection algorithms for the front of
vehicles have been proposed in the past decade. Vehicle detection and vehicle distance estimation
systems were proposed in reference [11]. By using the histogram of an oriented gradient (HOG) feature
and support vector machine (SVM) classifier, the authors can segment the road area and identify
the shadow area under the vehicle in which to detect the vehicle position. Guo et al. [12] used a
two-stage detection algorithm for pedestrian detection. First, the candidate regions were decided from
foreground image, then the edge features of object were identified in the second stage. The experiment
result verified the accuracy of the proposed method.

Despite the advantages exhibited by all sensors, they have limitations that affect their object
detection abilities. For instance, cameras are susceptible to light and environmental factors, and the
radar stability is affected by the relative speed and surrounding environment. Hence, a sensor fusion
mechanism is developed to compensate for the deficiencies of relying on a single sensor.

The series type fusion architecture based on laser and vision sensors was addressed in reference [13].
The proposed system can quickly find the region of interesting objects without a huge amount of
computation time. The other advantage was that after the verification and comparison of each sensor,
the overall false alarm rate was reduced. Wang et al. [14] proposed a system scheme for on-road
obstacle detection by fusing an MMW radar and a monocular vision sensor. An experimental method
to investigate the radar-vision point alignment was proposed. In addition, a region searching method
for potential target detection was proposed to reduce image processing time. Wang et al. [15] proposed
a tandem sensor fusion of series connection architecture that uses MMW radar to obtain the candidate
position of the detected object. The position coordinates are converted into image coordinates that
considered as regions of interest to reduce the number of window searches. Then the image is
used to recognize and track the vehicle in candidate areas. A Kalman filter is used to compare the
tracking trajectory of the radar and camera to improve the vehicle detection rate and reduce the false
positive rate.

In the aforementioned references, using a single sensor to detect objects has significantly reduced
the detection system cost; however, the system stability is still a challenge when considering special
weather conditions. The main purpose of using series architecture in sensor fusion is to rapidly
determine the candidate area via radar or Lidar and accelerate the image search process. Another
advantage of using a second layer sensor is to reduce noise interference after verification and comparison.
However, the entire tandem architecture system will fail when one of the sensors fails.

This paper extends our earlier vision based research work [16] and proposes a set of MMW radar
and camera fusion strategies based on a parallel architecture that can compensate for the failure of a
single sensor and enhance the system detection rate using the complementary characteristics of the
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sensors. The radar subsystem provides noise filtering, tracking, and credibility analysis. The two-stage
vision detection subsystem can rapidly identify the candidate area form image. The fusion strategy of
parallel architecture systems depends on the confidence index of each sensor. Three kinds of scenario
conditions (daytime, nighttime, and rainy-day) are implemented in an urban environment to verify
the proposed system.

The contributions of this study include the following:

1. In order to solve the shortcomings of each single sensor, by using sensor fusion technology, we
integrated the two sensor systems and improved the reliability of the systems.

2. For the fusion architecture of series type, any single sensor failure causes whole system failure. The
proposed parallel architecture system depends on the confidence index of each sensor. The system
can compensate for each other’s sensors and avoid the limitations of series fusion architecture.

3. Three kinds of scenario conditions (daytime, nighttime, and rainy-day) were implemented in an
urban environment to verify the proposed system’s viability. The experiment results can provide
the baseline of comparison for future research.

2. System Architecture

This study proposed a sensor fusion technology integrating MMW radar and camera for front
object detection. The proposed system consists of three subsystems, including a radar-based detection
system, vision-based recognition system, and sensor fusion system.

The image captured by the camera can easily be affected by lighting and weather conditions.
Furthermore, the estimated distance of the front object derived from the camera image has a low
precision. A sufficiently large velocity relative to the front object is necessary for the MMW radar to
stably detect it. Accordingly, these two sensor subsystems were combined in a parallel connection to
compensate for the limitations of each sensor and improve the robustness of the detection system. The
overall architecture of the proposed detection and recognition system is shown in Figure 1.

Figure 1. Overall architecture of an on-road obstacle detection system.

A clustering algorithm and particle filter were applied to the MMW radar data to achieve noise
removing and multi-object tracking. Then the object detected by the coordinate system of radar sensor
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was converted into an image coordinate. On the other hand, two-stage classifiers were implemented
for the foreground segmentation and object recognition for the image data, respectively, then the object
information could be obtained. Finally, a radial basis function neural network (RBFNN) was used to
fuse the detected object information from the MMW radar and camera.

3. Radar-Based Object Detection

A 24 GHz short-range radar was adopted for front-end environment detection and a multi-object
tracking method based on radar was proposed. This method can facilitate tracking multiple object
simultaneously and removing noises, which were considered as non-real objects. The flow chart of the
proposed radar-based detection subsystem is shown in Figure 2. First, the radar data were divided
into different clusters using a clustering algorithm. The particle filter is then used for signal filtering
and target tracking. Two kinds of probability scores will be evaluated in the particle filter process. The
convergence of the particle swarm can reflect the quality of the tracking. For the stable tracking objects,
the particles around the object have a higher weighting in the importance sampling step. Furthermore,
these particles have a higher probability of survival in the resampling step. We define the range
probability (Pr) as the survival probability of the particles within a radius of 1 m around the object to
evaluate the quality of the tracking. On the other hand, the diversity of the particle swarm can cover of
all the states of the object. We defined the available probability (Pa) as the survival probability of the
particles after the resampling step. During the tracking process, in line with the value of Pa, the system
adjusts the particle percentage of resampling to ensure the diversity of the particle swarm. In addition,
the confidence index of the target object was derived from the range probability and probability of
survival. This confidence index determines the credibility of the actual object. The relative velocity
and distance between the vehicle and front object were provided by this subsystem.

Figure 2. Flow chart of a radar-based object detection subsystem.
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3.1. Radar Data Pre-Processing

The MMW radar signals are electromagnetic waves. Both reflection and refraction will occur
when the electromagnetic waves occur on the medium. In addition to the reflected wave from the
medium itself, some noise signals of non-real objects are also prone to appear. The relationship between
relative distance and echo intensity information was statistically analyzed using a vast amount of data
collected during experiments. The statistical results are shown in Figure 3. The statistical results of the
signal distribution indicate that both real objects and noise show respective concentrations, and only a
small part of the distribution of both overlaps. Accordingly, a noise filtering operation was performed.
As shown in Figure 3a, after the signal on the left side of red curve was filtered, the subsequent target
tracking and particle filter algorithm were performed. Density-based spatial clustering of applications
with noise (DBSCAN) algorithm [17] was used to cluster the radar data, and the number of possible
front objects was estimated.

(a) (b) 

Figure 3. Statistical results of the radar signal: (a) real object and (b) non-real object.

3.2. Particle Filter

A particle filter [18] is widely used in many fields, including object tracking, signal processing,
and automatic control. In this study, particle filtering was used to filter the radar signal and track
the objects in front of a vehicle. The particle filter algorithm uses a finite number of particles to
represent the posterior probability of some stochastic process with partial observations. Each particle
has the respective weight values that represent the probability of the particle being sampled from the
probability density function. The procedure to implement a particle filter algorithm in this study was
roughly divided into four steps as follows:

3.2.1. Particle Initialization

To cover all the potential object positions, n pieces of particles were randomly distributed within
the radar detection area. Each particle represents a potential position of a real object, where the weight
of the particle indicates the probability that the object is at this location.

3.2.2. State Prediction

The state of the object changes over time. Discrete time was used to calculate the object state, and
the state of the particle at next moment was predicted by the state and motion model at time k − 1.
Then the prior probability P(xk|xk−1) was obtained. The equation used to predict the object state is
expressed as follows [19]:
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where T is the sampling time of the radar sensor, Xk =
[
xk yk

.
xk

.
yk

]T
denotes the state vector, and xk

and xk−1 denote the relative lateral distances between the target object and the sensor at the current time
and the previous moment, respectively. yk and yk−1 are the relative longitudinal distances between
the target object and the sensor at the current time and the previous moment, respectively.

.
xk and

.
yk

represent the lateral and longitudinal relative speeds of the target and the sensor, respectively. Wk is
zero-mean Gaussian white noise.

3.2.3. Importance Sampling

This step is based on the concept of a Bayesian filter. The particles that are obtained during
the state prediction stage and the information obtained from MMW radar are used to estimate the
target position. The Bayesian theorem is used to update the prior probability then obtain the posterior
probability. In this step, each particle is assigned a weight. Based on the assumption that the radar
measurement area is M ×N blocks, each block unit is 1 m2. The measurement model of the radar
sensor is expressed by Equation (3),

z(i, j)k = h(i, j)k (xk) + v(i, j)k (3)

where υ(i, j)k is the measured noise in (i, j) block and its Gaussian white noise with the means equal to 0

and the variance σ2, while h(i, j)k (xk) is the signal strength of the object in the (i, j) block and its point
spread function [20] is expressed as follows:

h(i, j)k (xk) =
ΔxΔyIk

2πΣ2 · exp
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(
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)2

2Σ2
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where Δx and Δy are the block sizes, Ik is echo strength of the MMW radar, Σ is the blurring degree of
the sensor, and the weight value of the particle can be obtained by the following equation:

w∼i
k = exp
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The weight of each particle in the space region is normalized. The normalization method is based
on dividing the weight of each particle by the sum of all particle weights, as shown by Equation (6):

ŵ∼i
k =

w∼i
k

n∑
i=1

w∼i
k

. (6)
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After the weight of each particle is obtained, the relative position of the object detected by the
MMW radar can be estimated. The expected value of the target estimation is expressed as follows:

E
(
xk

∣∣∣yk
)
=

n∑
i=1

w∼i
k f

(
x∼i

k

)
. (7)

3.2.4. Resampling

The method of estimating according to the weight of each particle is referred to as the sequential
importance sampling (SIS) particle filter [18]. However, this method involves particle degradation,
leading to insignificant weight values of most particles after several iterative operations. This triggers
the system to perform unnecessary calculations on these particles. Thus, the real target position may
not be covered by the remaining particles. The resampling method was used to address this issue.
In each iteration process, the particles with smaller weight values were discarded and replaced by
particles with larger weight values. After resampling, the weight values of all particles was set at 1

n ,
then the next iteration was performed with new particles. The expected value of the target estimation
is expressed as follows:

E
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)
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3.3. Experimental Verification

A lot of object information was lost while the MMW radar information was processed by internal
algorithms. Therefore, the original unprocessed data was obtained from the MMW radar in this study.
The proposed particle filter algorithm was used to track the front object and address the issue of losing
too much information.

To verify the feasibility of the algorithm proposed in this study, a laser range finder with high
precision was used. The measurement error of the adopted lase finder was ±10 mm to record the
center position of the frontal object. The experimental equipment installed to verify the radar tracking
system is shown in Figure 4. Three verification conditions were set to avoid dark objects and lack of
relative speeds, which can lead to losing laser range finder and radar information, as follows: metal
and light-colored moving objects, a relative velocity of ±15 km/h or more, and objects moving from far
away to nearby.

 
Figure 4. Equipment setup for radar tracking system verification.

The position of the object measured by the laser range finder is considered as the ground truth,
which is illustrated by the blue line seen in Figure 5. The red line represents the tracking result obtained
by the proposed particle filtering algorithm. The result of the internal algorithm of the radar sensor is
illustrated by the green line. An offset between the detected and actual positions of the object may be
observed owing to the characteristics of the radar sensor.
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Figure 5. Estimated trajectories of moving objects using different methods.

The error and standard deviation of our proposed particle filter tracking algorithm and the internal
algorithm of the radar sensor were compared to the ground truth to verify the tracking results. The
error is defined as the absolute value of the estimated position from the algorithm and the ground
truth. The average error is the sum of the errors divided by the number of times of detections. As
shown in Table 1, the proposed algorithm had better performance considering the average error, the
maximum error, and the standard deviation of error of the longitudinal or lateral direction. In addition,
the number of times the proposed algorithm effectively detected objects was also greater than that
obtained by the sensor internal algorithm.

Table 1. Error of each tracking methods (unit: centimeter).

Method
Average Error Standard Deviation Maximum Error

Lateral Longitudinal Lateral Longitudinal Lateral Longitudinal

The proposed particle
filter tracking algorithm 44.48 32.32 18.53 22.35 88.86 99.96

Internal algorithm of
the radar sensor 52.66 33.66 42.08 26.47 169.2 116.8

4. Vision-Based Object Recognition

The two-stage vision-based object recognition system was similar to in our earlier work [16]. In
the first stage, the Haar-like features algorithm was used to identify the candidate regions of object
from foreground segmentation. The second stage is responsible for object recognition. Three kinds of
objects (i.e., pedestrians, motorcycles, and cars) can be identified by SVM classifiers. The scheme of the
two-stage vision-based object recognition process in shown in Figure 6. The object recognition results
are shown in Figure 7.

The distance estimation of image object can be determined by using the polynomial model as
expressed in Equation (9):

f (yim) = g0y5
im + g1y4

im + g2y3
im + g3y2

im + g4yim + g5 (9)

where f (yim) is the estimation of distance, while yim denotes the object coordinates v of the image.
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Figure 6. Vision-based object recognition subsystem.

(a) (b) (c) 

Figure 7. Classification results of vision-based recognition: (a) pedestrian, (b) motorcycle, and (c) car.

5. Sensors Fusion and Decision Mechanism

A single sensor system can operate independently; however, a parallel architecture was adopted
in this study to fuse two different sensors. The main purpose of this is to improve the detection rate
that can be achieved by a single sensor. The sensor fusion was divided into three parts. First, the
two-dimensional coordinate information of the MMW radar was converted into the coordinate of
the image. Afterwards, the information obtained by the two sensors was integrated into the same
coordinate system. Next, the object information needed to be matched to determine whether the
same object information had been obtained by both the MMW radar and camera, and to integrate
the detection results of the two systems. Finally, the trusted sensor was determined based on the
confidence index of the sensor.

5.1. Coordinate Transformation

The supervised learning algorithms was used to learn the relationship between the MMW radar
coordinate and image coordinate system. Before the coordinate transformation, the radar coordinates
(x, y) and image coordinate (u, v) needed to be recorded synchronously to be considered as training
samples for offline learning. An MMW radar uses electromagnetic waves as a medium, and it exhibits
better reflective property to metal objects. Hence, a triangular metal reflector was used as a target
object to gather data obtained from the radar and the camera, as shown in Figure 8. A metal reflector
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was randomly placed in a straight lane at a distance which ranged from 1 m to 12 m in front of the
experimental vehicle, and a total of 280 training samples were established.

Figure 8. Coordinate transformation of data from the radar and camera.

The camera was installed at an angle parallel to the horizon. When the target object moved from
far away to nearby, the position of its center point slightly changed near the center point of the image
in the vertical direction. Thus, the variation in the image v-direction coordinate was not obvious.
Therefore, the fusion system primarily enabled the neural network to learn the relationship between
the MMW radar coordinate (x, y) and the image coordinate (u, v).

From the collected training samples, the longitudinal and lateral distances from the radar were
considered as the input of the RBFNN, and the corresponding u coordinate of horizontal direction in
the image was considered as an output. This network architecture allows for obtaining the coordinate
conversion relationship between these two sensors. The network architecture is shown in Figure 9.

Figure 9. Diagram of radial basis function neural network (RBFNN) architecture.

5.2. Object Match

The MMW radar detection and image recognition systems operate independently, and the two
systems obtain information about the detected objects, respectively. To fuse the information of the two
systems, the object information must be matched first to determine whether the same object information
has been detected by the two sensors. Coordinates shown in the same image may correspond to
several different radar coordinate information, as illustrated by the green points shown in Figure 10. In
addition, the distance estimated from the image coordinates may be inaccurate owing to the bumpy
road surfaces that can cause the vehicle to shake; thus, it is difficult to match the object information
and effectively determine whether the same object is detected.

Another RBFNN is used to match the object information and determine whether the same objects
are detected by the two sensors. Six factors were entered as the network inputs, which affect the object
match, including image coordinate u, object width, object height, object distance estimated from image,
object distance measured by the radar, and the u coordinate converted from the radar to the image.
Either “match” or “non-match” were obtained as the network output.
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(a) (b) 

Figure 10. Diagram of same image coordinates correspond to different radar coordinates (a) Radar
detection distance is 2.2 m and (b) Radar detection distance is 4 m.

5.3. Decision Strategy

If a single sensor in the sensor fusion of cascade architecture fails, then the entire system will
inevitably fail. Meanwhile, the sensor fusion of parallel architecture determines which sensor should
be trusted based on the decision mechanism. Although one of the sensors might not detect an object or
gives a false alarm, if the other sensor correctly detects the object, then the confidence index of each
sensor can be calculated via a scoring mechanism, and a credible subsystem can be determined based
on the confidence index.

The confidence index of the radar subsystem was calculated as follows:

ScoreR = Pr + Pa + Arn × ηr (10)

where Arn is the number of times the object tracked by particle filter. ηr is a constant.
The confidence index of the image subsystem was calculated as follows:

ScoreI = Sd + Ain × ηi + λ (11)

where Sd denotes the distance from the input data point to the SVM hyperplane, Ain is the number of
times the object tracked in image subsystem, and ηr and λ are constants.

The confidence index of the sensor fusion system was expressed as follows:

Score = ScoreR + ScoreI. (12)

When the confidence index Score is greater than the set threshold Th, the reliability of the system
is extremely high, and the output result obtained by the system represents the real situation. If the
confidence index of each subsystem is greater than the threshold Th, then the subsystem with the
highest score is responsible for the entire system decision making process.

6. Experiments

6.1. Experimental Platform and Scenarios

Three kinds of scenario conditions (daytime, nighttime, and rainy-day) were implemented to
verify the proposed system. All the scenarios were carried out on urban roads. The MMW radar and
camera were mounted on the front bumper of the experimental car, as shown in Figure 11.

Considering the effect of pavement puddles and shadow environment, the daytime scenarios
included direct sunlight, pavement puddles, and shadow environments, as shown in Figure 12.

In the nighttime experiment, the scenarios included flashing brake lights of front vehicles, headlight
reflections, and poor lighting environments, as shown in Figure 13.
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Figure 11. Experimental car and sensors setup.

(a) (b) (c) 

Figure 12. Daytime scenarios: (a) sunlight, (b) pavement puddle, and (c) shadow.

(a) (b) (c) 

Figure 13. Nighttime scenarios: (a) brake light, (b) headlight reflection, and (c) poor lighting.

In order to reproduce the actual road conditions, we designed a rainy-day scenario too. As the
sensors are mounted on the front bumper, the raindrops often adhered to the camera lens during the
rainy day experiment, as shown in Figure 14.

 
(a) (b) 

Figure 14. Rainy day scenarios: (a) daytime and (b) nighttime.

6.2. Radar-Based Detection Subsystem

The radar detection subsystem uses MMW radar to perceive the environment ahead. The proposed
multi-object tracking algorithm with a particle filter can effectively track the objects in front and remove
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non-object noise. The radar subsystem experiments tested three different categories of objects under
different conditions. The detection results are shown as green circles in Figures 15 and 16. The tests
primarily involved a single target in a lane. If there were multiple targets, the alert was reported for
closest target to the experimental vehicle. Other targets continued to be tracked.

(a) (b) (c) 

Figure 15. Detection results of radar subsystem, upper row: daytime, lower row: nighttime (a) a
pedestrian, (b) motorcycle, and (c) car.

(a) (b) 

Figure 16. Detection results of radar subsystem for a rainy day, (a) motorcycle and (b) car.

A detection rate exceeding 60% was maintained by the radar detection system during daytime,
nighttime, and rainy days. The experimental tests performed under different weather conditions
verified that the radar detection system is not affected by weather conditions. The experimental results
are listed in Table 2.

Table 2. Detection results of radar systems under different weather conditions.

Condition
Total

Frame
Correct

Detection
Misinformation Misjudgment

False Alarm
Rate

Detection
Rate

Daytime 17,346 11,254 27 6065 0.2% 64.9%
Nighttime 7022 4338 0 2684 0% 61.8%
Rain day 11,193 8135 0 3058 0% 72.6%

Total 35,561 23,727 27 11,807 0.01% 67.0%
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6.3. Vision Recognition

The advantages of two-stage vision-based object recognition system are as follows: By using
Haar-like features, the first-stage classifier can detect efficiently candidate areas. Unfortunately, the
Haar-like algorithm suffers from higher false positive rates (see the purple rectangles in Figure 17).
Therefore, the second-stage PCA-HOG algorithm classifier was utilized to compensate for the higher
false positive rates of the first-stage result.

  

Figure 17. Error detection of the Haar-like algorithm.

The detection results of the vision-based object recognition subsystem are shown as yellow
rectangles in Figure 18. The results of the rainy-day experiment are shown as green rectangles in
Figure 19.

(a) (b) (c) 

Figure 18. Detection results of a vision-based subsystem, upper row: daytime, lower row: nighttime
(a) a pedestrian, (b) motorcycle, and (c) car.

All the experiments performed under different weather conditions involved three classifications
of objects: pedestrians, motorcycles, and cars. The detection results of vision-based systems are listed
in Table 3.

Table 3. Detection results of vision-based systems under the different weather conditions.

Condition
Total

Frame
Correct

Detection
Misinformation Misjudgment

False Alarm
Rate

Detection
Rate

Daytime 17,392 14,909 46 2437 0.3% 85.7%
Nighttime 7043 4915 21 2107 0.3% 69.8%
Rain day 11,193 4335 141 6717 1.3% 38.7%

Total 35,628 24,159 208 11,261 0.5% 67.8%
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(a) (b) 

Figure 19. Detection results by vision-based subsystem for a rainy day, (a) daytime and (b) nighttime.

Due to the high sensitivity to light sources, the performance of camera sensor depends on the
condition of light sources. For example, suffering in an insufficient light source, the vision-based
systems cannot extract completely the features of objects at night. On the other hand, in rainy weather
experiments, the raindrops adhering to the camera lens block the object in front of the vehicle. Thus,
the system cannot effectively identify the information of the target, leading to the failure of the image
subsystem. Therefore, the worst detection rates are achieved at night and on rainy days.

6.4. Sensor Fusion System

This system integrates MMW radar and camera information and improves the scene when one of
the detection systems fails by using the sensor fusion of parallel architecture. The system presents
complementary characters. For example, as shown in Figure 20, the radar did not detect the front
vehicle when the relative speed of the radar and object was relatively small; thus, the camera was used
to compensate for the radar failure. On the other hand, when the raindrops adhering to the camera
lens blocked the scene, leading to image detection failure, the radar compensated for this situation, as
shown in Figure 21.

Did not detect 
the object

Radar informationImage information

Figure 20. Sensor fusion compensate radar failure.

Radar informationImage information

Coordinate
transformation

Figure 21. Sensor fusion compensate for image failure.

155



Energies 2020, 13, 116

In addition to compensating for single sensors failures, the system integrates the sensors’
information when both the radar and camera detect objects simultaneously. The system relies
on the coordinate transformation and object matching decision mechanism to determine whether the
same objects are detected by the two sensors, as shown in Figure 22.

 
Figure 22. Detection result of sensor fusion system.

The parallel sensor fusion architecture proposed in this study exhibits the advantages of
compensating for the disadvantages of relying on a single sensor. It improves the scene in case
of subsystem failure and significantly increases the system detection rate and stability, as listed in
Table 4. Regardless of the weather conditions, better detection rates were achieved by the sensor fusion
system than those obtained when relying on a single subsystem.

Table 4. Detection results of each system under different weather conditions.

Condition Sensor
Total

Frame
Correct

Detection
Misinformation Misjudgment

False Alarm
Rate

Detection
Rate

Daytime
radar 17,392 11,254 27 6065 0.2% 64.7%
image 17,392 14,909 46 2437 0.3% 85.7%
fusion 17,392 16,414 46 978 0.3% 94.3%

Nighttime
radar 7043 4338 0 2684 0% 61.6%
image 7043 4915 21 2107 0.3% 69.8%
fusion 7043 6450 21 593 0.3% 91.6%

Rain day
radar 11,193 8135 0 3058 0% 72.6%
image 11,193 4335 141 6717 1.3% 38.7%
fusion 11,193 9413 141 9985 1.3% 84.1%

Table 5 lists the detection results of each system for the three object categories under different
weather conditions. The sensor fusion system can achieve a detection rate of more than 90%.

Table 5. Detection results of each system.

Sensor
Total

Frame
Correct

Detection
Misinformation Misjudgment

False Alarm
Rate

Detection
Rate

Radar
subsystem 35,628 23,727 27 11,807 0.01% 66.6%

Image
subsystem 35,628 24,159 208 11,261 0.6% 67.8%

Sensor fusion
system 35,628 32,277 208 3143 0.6% 90.5%

We also compared our results with existing related works. The comparison results are listed in
Table 6.
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Table 6. Comparison with existing related works.

Sensor Type Object Fusion Type Environment Time Cost Hardware

Camera [9] X X Daytime 50 ms Intel i7 3.4 GHz
Camera [12] Pedestrian X Daytime 66–100 ms Core 2 2.66 GHz

Camera & Lidar [13] Pedestrian Series Daytime 66 ms Dual-core PC
Camera & Radar [15] Car Series Daytime 16 ms Intel i7 3.0 GHz

Camera & Radar
(the proposed

approach)

Car
Motor

Pedestrian
parallel

Daytime
Nighttime
Rainy-day

60 ms Intel i7 2.6 GHz

7. Conclusions

Two types of sensors, an MMW radar and a camera were integrated in this study to develop a frontal
object detection system based on sensor fusion using parallel architecture. A particle filter algorithm
was employed by the radar detection subsystem to remove noise from non-objects while tracking
objects at the same time, and converting the target information into the image coordinates using RBFNN.
On the other hand, the image object could be identified as one of three main categories (pedestrians,
motorcycles, and cars) by the two-stage vision-based recognition subsystem. The information obtained
by the two subsystems was integrated. The sensor with higher credibility was selected as the system
output result. Three kinds of experiments (daytime, nighttime, and rainy-days) were performed to
verify the proposed system. The experiment results show the detection rates and the false alarm rates
of proposed system were approximately 90.5% and 0.6%, respectively. These detection rates are better
than those obtained by single sensor systems.
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Abstract: The reduction of pollutant emissions in the field of transportation can be achieved by
developing and implementing electric propulsion technologies across a wider range of transportation
types. This solution is seen as the only one that can offer, in areas of urban agglomeration, a reduction
of the emissions caused by the urban transport to zero, as well as an increase in the degree of the
health of the citizens. This paper presents an analysis of the direct and indirect environmental aspects
of a fleet of real electric buses under service in the city of Cluj-Napoca, Romania. The solution of
using 41 electric buses to replace Euro-3 diesel buses (with high pollution levels) in the city’s transport
system eliminates a local amount of 668.45 tons of CO2 and 6.41 tons of NOx—pollutant emissions
directly associated with harmful effects on human health—annually.

Keywords: electric bus; emissions; urban transportation; energy mix

1. Introduction

Contemporary trends of population migration to urban centers and the “metropolization” of
urban cities (especially those that are local and regional centers) have been continuously increasing,
which has been confirmed by a global increase in population migration. With such an increase in
the number of inhabitants in these urban agglomerations, problems related to the public transport
of passengers (as an integrated part of the functionality and sustainability of a city) have arisen,
which must be solved through the prism of several factors, such as efficiency, versatility, punctuality,
modularity, and comfort.

The fact that, in general, the road transport sector is one of the largest net contributors to the
generation of NOx pollutants (about 13% of total pollutant emissions) and 27% of total greenhouse gas
(GHG) emissions in the atmosphere at the European level presently cannot be ignored [1]. For this
reason, the European Union has adopted (and will adopt) numerous laws and regulations related to
the substantial reduction of pollutant emissions caused by transport using internal combustion engines
as an energy source.

At the present time, most urban public transportation systems use buses equipped with internal
combustion engines, which use fossil fuels as an energy source. Even in the short term, the use of
renewable sources (biofuels) has been accepted worldwide as an immediate solution to completely or
partially replace fossil fuels (as they can contribute to reducing global GHG emissions); however, there
are many limitations to their use, regarding the protection of the environment.

Pollutant emissions and greenhouse gas emissions caused by functioning of internal combustion
engines, such as CO2, NOx, and PM (particulates), have been shown to lead to serious problems, with
negative impacts on the environment and human health [2–5].
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Thus, the electrification of urban passenger transport systems (in the form of electric vehicles) is
currently seen (and has been implemented, in places) as a relevant/potential solution for a massive/total
reduction of local pollution and greenhouse gas emissions.

Especially in Europe, urban centers are often characterized by unique architectural structures,
with development occurring around an old town center populated with historic and public buildings.
These buildings are permanently exposed to the corrosive effects of emissions and vibration caused by
road traffic and, accordingly, several limitations have been imposed on vehicular access in such areas.
Primary initiatives in this regard have been made in big cities, such as Vienna, Winchester, Madrid,
Berlin, and Cluj-Napoca [6–9]. As a conclusion, studies have generally shown that small and medium
cities could successfully adopt sustainable urban transport technologies based on the use of electric
transport vehicles [10,11].

It is worth mentioning that emissions reduction is done locally, using electric vehicles—the so
called zero emission vehicle (ZEV) concept—and, in the global mode, the intensity of the emissions
depends directly on the energy mix used in the production of electricity [12].

The recent massive addition of the electric powertrain in vehicles has been mainly implemented
in the construction of cars used as a means of personal travel and in the construction of buses for
passenger transport. Conceptually, the construction of an electric powertrain does not differ between a
car and an electric bus; the general structures are shown in the Figure 1.

 

(a) 

 

(b) 

 

(c) 

Figure 1. General structures of electric and hybrid powertrains used in the construction of buses:
(a) electric bus; (b) hybrid series; and (c) hybrid parallel. 1, battery; 2, electric motor; 3, transmission; 4,
final drive; 5, auxiliaries; 6, generator; 7, engine; and 8, torque converter/coupler.

Electric buses have different constructive solutions for the powertrains, these differences relating
to the power source for the electric engine. Generally speaking, most common construction solutions
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for contemporary electric buses are: battery electric, hybrid series, and hybrid parallel; their basic
structures (configurations) are shown in Figure 1.

The hybrid technology (both series and parallel types) uses both an internal combustion (IC)
engine and an electric motor to produce the required traction power. In the serial configuration of a
hybrid propulsion unit, the IC engine is used only to generate the electricity (through a generator)
required by the electric traction motor(s) or to be stored in the bus batteries. In the parallel configuration
of a hybrid propulsion unit, both the internal combustion engine and the electric motor provide the
traction force necessary to move the bus. The traction force can be supplied by both engines (IC engine
and/or electric motor) through a torque converter, as well as by independent driving of the traction
wheels. In general, the storage capacity of the batteries is much higher in the case of electric buses
(being the only energy source available), compared to the buses with hybrid propulsion, where the
electric motor operation is performed only in well-defined situations (i.e., starting, slope climbing,
increasing the acceleration in the case of overtaking, and so on), the rest of the operations using the IC
engine. The hybrid type construction of powertrain greatly helps to significantly reduce the pollutant
emissions caused by transport equipped with only an IC engine (using petrol, diesel, gas, or renewable
fuels); but does not totally eliminate emissions, as battery electric buses do.

The main barrier that must be overcome for the massive penetration of electric means of transport is
that related to the autonomy or range (distance in km) that the vehicles have, compared to the autonomy
of those vehicles powered by internal combustion engines. At the beginning of the development of
electric vehicles (EVs), the autonomy was relatively low (40–60 km) and the electric vehicles were
intended only for urban use and for small trips within the urban surroundings; however, at present,
the autonomy achieved by certain electric vehicles has approached the threshold of traveling 400 km
with only a single battery charge [13,14].

This has been made possible due to the exponential development of technologies related to
increasing the storage capacity of electricity in batteries (as well as the energy source of the electric
vehicle), Li-Ion technology being one of the most versatile and efficient technologies from this point
of view.

Li-Ion technology is not a new technology just emerging into the market; research into the energy
performance of Li-Ion batteries has been carried out since the 1970s, with their primary application
being in the field of mobile electronic equipment. However, their application in the electrification of
vehicles has been delayed, due to their high manufacturing costs and the safety restrictions, which had
to be overcome by manufacturers [15,16]. Due to the high cost of these batteries, the purchase price of
EVs is expected to remain higher than that of gasoline or diesel vehicles; this condition will be a key
determinant of further massive penetration in the automotive market (despite EV’s savings in fuel and
maintenance costs) [17–20]. Once these barriers (along with many others [21]) in the market have been
overcome, an increasing number of electric vehicles will be available in the automotive market, both
for personal use and as a means of transport for passengers in urban agglomerations.

Studies on the possibilities of implementing electric buses in urban transport systems have been
carried out by numerous researchers. Most of them analyzed computer simulation methods for
different operating scenarios and proposed various algorithms for calculating and estimating the
energy efficiency of electric buses. Stempien and Chan [22] presented a comparative study of different
bus powertrain designs by a comparison that included such factors as powertrain technologies (i.e.,
fuel cell, fuel cell electric, battery electric, hybrid electric, IC diesel, and compressed natural gas buses),
capital and operating costs, fuel consumption, and fuel cycle emissions. In their study, they used
the data presented by Erkkilae et al. [23], which considered bus energetic consumption values (used
also further to calculate the amount of indirect emissions) of 0.66–1.23 kWh/km for a lower load
and 0.7–1.45 kWh/km for a higher load. By compiling the existent data in the literature, the authors
affirmed, as a major conclusion, that the battery electric bus technology is one of the most competitive
options for advanced public transport systems in constrained urban areas in the future. Lajunen A. [24]
presented an analysis regarding the energy consumption and cost-benefits of hybrid and electric city
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buses. The analysis was made by simulation (using the ADVISOR vehicle simulation program) to
define the energy efficiency of buses. The author did not use real data from exploitation as data sources
for models, stating that “ . . . there are no available, comparable results of the energy consumption
in the literature for the plug-in hybrid and electric city buses because their commercialization is in
early stages”. Moreover, an important remark (conclusion) of the author was that the exploitation
condition (operation schedule and route planning) of a hybrid or electric bus is a condition that must be
considered before introduction in an urban transport system for efficient energy use. A recent study of
Vepsalainen et al. [25] studied the energy efficiency of an electric bus using a computationally efficient
model for energy demand prediction. This study represented a novel approach to predict energy
consumption variation with a wide range of uncertain factors (i.e., temperature, battery technical and
functioning parameters, rolling resistance, and payload) and the simulation results gave values of
0.43–2.30 kWh/km (1.20 kWh/km average value with standard deviation of 0.32 kWh/km) net energy
consumption. No data about real routes were applied as computational data in this study, however.

Data from the real exploitation of three types of electric buses in certain traffic conditions over
a particular route in Macao (8.8 km long) was presented by Zhou et al. [26]. The net energetic
consumption measured was 1.38–1.75 kWh/km for a 12 m e-bus type and 0.79 kWh/km for an 8 m e-bus
type, resulting a reduction in CO2 emissions, from a life-cycle perspective, of 19%–35% (compared
with a diesel bus). Based on the same exploitation condition previously presented, Song et al. [27]
continued the study, regarding the benefits of the introduction of electric buses into Macao’s urban
transportation system by calculating the reduction of GHG emissions. The results were situated between
56.47–133.76 kgCO2eq/100 km (average value of 127.99 kgCO2eq/100 km), taking into consideration
the particularities of the energy mix for electricity production.

The aim of this paper is to quantify the direct and indirect CO2 and NOx pollutant emissions due
to real urban exploitation of an electric bus fleet under service, in the particular case of Cluj-Napoca city.
Real technical data related to the energy efficiencies of the electric buses, which have been integrated
into the urban transport system of Cluj-Napoca, are presented and analyzed (from direct and indirect
pollutant emissions emission point of view), in order to show that there are major differences between
data obtained by computer simulation and the real ones (taking into account the particular operating
conditions).

2. Materials and Methods

2.1. Cluj-Napoca City’s Urban Passenger Transportation System

The city of Cluj-Napoca is a large urban agglomeration located in Transylvania, in the northwestern
area of Romania, with a stable population of approx. 400,000 inhabitants. Besides the stable population,
the city is an important university (academic) center and, so there is also a permanent fluctuation of
approx. 100,000 students that study and live in the city. Thus, the city of Cluj-Napoca can be seen
as a large urban agglomeration with an architectural mix between the old central area (medieval)
and the peripheral neighborhoods (contemporary), featuring all of the typical problems related to
the optimal operation of a public passenger transport system. From the point of view of the main
characteristics of the urban transport system, the total length of the routes served for the urban public
transport of passengers in the city of Cluj-Napoca is 355.3 km, of which buses are used on 279.4 km
(47 lines), trolleybuses are used on 51.95 km (seven lines), and trams are used on 23.95 km (four lines).
In addition to these, there are also routes in the metropolitan area, which total 278.45 km.

The totality of the urban means of transport for passengers of Cluj-Napoca city consists of 297 buses
(of which 41 are electric buses and 256 are diesel buses Euro 4–Euro 6), 81 trolleybuses, 27 trams, and
nine diesel minibuses. The 41 electric buses represent 13.8% of the total buses and 9.90% of the total
means of the urban transport fleet. Furthermore, 149 (36% of the total) vehicles out of the total means
of transport use electric powertrains. From the point of view of the number of passengers transported,
78.6% are transported by buses, 14.6% by trolleybuses, and 6.8% by trams.
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The need to reduce local pollutant emissions has become a stringent contemporary demand and,
from this point of view, the administration of the City of Cluj-Napoca has decided to purchase and put
under service a fleet of 41 electric buses. The model that won the international tender was the Solaris
12E, a bus model that meets all the standards and requirements of a passenger transport in terms of
energy efficiency, security, and comfort.

In the construction of the Solaris 12E electric buses (Figure 2, Table 1), which are used for urban
passenger transport, two types of Li-Ion type battery are used. A total of 11 buses use LiFePO4-type
batteries and the other 30 are equipped with NMC (LiNiMnCoO2)-type batteries (arranged in five
separate packs). The predicted range is approx. 140 km for a single (full) battery charge, a charging
process that can be performed in both slow and fast modes.

  
(a) (b) 

Figure 2. Overall dimensions of the Solaris 12 E bus. (a) side view (b) front view.

Table 1. Main technical data of the Solaris 12 E bus.

Parameter Value

Engine Electric portal axle ZF AVE130 2 × 110 kW

Traction battery technology
LiFePO4 technology:

58.8 kW pack nominal energy; 687.02 V nominal voltage

NMC technology:
50.7 kW pack nominal energy; 651.20 V nominal voltage

Charging system Plug-in
(optional pantograph)

Front axle ZF independent suspension

Rear (drive) axle ZF portal axle with integrated electric motors

Suspension leveling system
ECAS air suspension with lowering/raising function:

lowering and raising the bus, lowering right side by 70 mm, raising by
approx. 60 mm.

Passenger capacity seated Max. 37 + 1
(depending on door arrangement and batteries)

2.2. Research Methodology

As presented above, the aim of this paper was to quantify the direct and indirect CO2 and NOx

emissions due to urban exploitation of an electric bus fleet, in the particular case of Cluj-Napoca city.
There were two directions we might take to estimate the environmental effects of exploitation of

the electric bus fleet: calculation of the direct reduction of pollutant emissions as a result of replacing
IC Euro-3 norm buses (diesel) with electric buses, and calculation of the indirect reduction of pollutant
emission by considering the energy mix for production of electrical energy.

The intensity of CO2 and NOx emissions for a Euro 3 bus were derived as the average value from
different specialized studies on urban bus emissions [28–32]; from which, we arrived at the values of
1259 gCO2/km and 12.08 gNOx/km.

Also, a scenario was considered in which the 41 Euro 3 buses would have been replaced with new
Euro 6 buses. In this case, for the Euro 6 buses the emissions values were considered to be 1133 g/km
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for CO2 and 1.11 g/km for NOx (based on reference [33]). It can be observed that the difference of the
CO2 emissions is approx. 10% lower for Euro 6 buses, but the use of selective catalytic reduction (SCR)
systems using aqueous urea solutions for Euro 6 bus’s exhaust emissions control, results in a reduction
of NOx emissions by more than 10 times.

The fleet of electric buses is permanently monitored by the management center for urban
transportation of Cluj-Napoca city, which is achieved by direct internet connection between each
electric bus and the management center. The technical parameters for the operation of the electric
buses (e.g., energy consumed—related to battery-out current and voltage, energy recovered—related
to brake regeneration, battery state of charge, temperature inside the bus, speed, operation of auxiliary
systems, temperature of electric motor, operating errors, and so on) and specific data taking into
account the routes on which the buses are under service (e.g., route served, GPS position, number of
passengers ascended, number of passengers descended, and so on) are provided in real time. Thus,
these data have been stored and can be accessed for the continuous monitoring of the electric bus fleet
from the energetic and economic efficiency points of view. According to the main data of the electric
bus fleet over one year, a total distance of 530,944 km had been traveled, an average load of 3089
passengers per month per bus (1,519,788 passengers per year for the 41-bus fleet), and with an average
energy consumption of 0.96 kWh/km and 0.38 kWh/km energy recovered/generated (i.e., net energy
consumption was 0.58 kWh/km). The energy recovered/generated by electric buses was obtained
due to the regenerative braking process (converting the kinetic energy of the bus into electric energy,
which is stored in its batteries). This process improves the overall efficiency of a bus by increasing its
operational range (autonomy).

It should be mentioned that there were no dedicated (preferred) exploitation routes for each
electric bus, since they served passenger transport routes depending only on the management and
transport needs at that time. For the fluidization of traffic in the city of Cluj-Napoca, there are traffic
lanes dedicated to buses and trolleybuses, in which their average speed is approx. 15 km/h (compared
to the average city traffic speed of 13.7 km/h) with a peak speed of 50 km/h, which means that the
energy recovered by the electric buses by the regenerative braking process had high values. Aspects
related to the exploitation and operational data of the electric bus fleet under service are presented in
Figures 3–7.

  
(a) (b) 

Figure 3. Number of kilometers traveled annually per each e-bus: (a) LiFePO4 battery bus type; and
(b) NMC battery bus type.
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Figure 4. Number of passengers carried per month.

Figure 5. Passenger number dynamics for one day’s operations of an electric bus.

Figure 6. Energy balance of the fleet of electric buses (kWh/km).
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Figure 7. Energy balance (net energy consumption), according to battery type.

3. Results and Discussions

3.1. Direct Emissions Reduction

The direct emissions reduction due to replacing 41 diesel buses (Euro-3 pollution norm) with
electric buses, considering the emissions intensity of the considered pollutants and the exploitation data
presented previously, was found to be 668.45 tons of CO2 and 6.41 tons of NOx per year. Furthermore,
taking into account the number of passengers transported by the electric bus fleet, it can be said that
each passenger contributed to reducing the local pollution caused by urban traffic by 439.83 gCO2 and
4.22 gNOx per year.

In the case of the scenario of replacing Euro 3 buses with new Euro 6 buses, the direct reduction
of CO2 emissions would be only 66.9 tons and in the case of NOx emissions of 5.83 tons, per year.
Under these conditions, taking into account the intensity of the use of buses as a means of urban
transport from the point of view of the transported passengers, the reduction of local pollution would be
44 gCO2/passenger/ year and 3.8 gNOx/passenger/year. It can be observed that when using Euro 6 buses
instead of Euro 3 buses, the difference between CO2 emissions does not show great differences, but the
reduction of NOx emissions is large, sensitive equal to the reduced amount by using electric buses.

3.2. Indirect Emissions Reduction

To estimate the indirect pollutant emissions reduction by exploitation of the electric bus fleet, it is
necessary to analyze the energetic mix of energy production used in charging the batteries of the fleet.

The method used to calculate the amount of emission of each considered pollutant is presented
in Equation (1) (in the case of CO2, but applicable also for the NOx pollutant emission calculation),
considering the energy consumption of the buses (kWh/km) and the intensity of pollutant emission
function of energy source mix:

EVBCO2 (g/km) = TDkm × CO2 (emissivity) × Ebalance × Plosses, (1)

where EVBCO2 (g/km) represents the amount of CO2 emissions, TDkm is traveled distance, CO2 (emissivity)

is the pollutant emissivity due to the energy source mix used for electric energy production, Ebalance

is the effective energy consumption of an e-bus, and Plosses = 1.15–1.22 are the losses caused by the
electric distribution grid and the EVs internal electrical circuits. Since there are no official final data for
Romania regarding the emission intensity for the electricity production in 2019 year (on the basis of the
used fuel), data were taken from the references [12,34] and Figure 8 [35].
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Figure 8. The energy mix of the electricity production in Romania (historical, current, and forecast) [35].

Figure 8 shows the Romanian energy mix over a period of 9 years (both historical and that forecast
for 2020 and 2021) [35]. It can be noted that, within this energy mix, the “green energy” in 2019
represented a share of 34.2% of the total (renewable + nuclear), from which the average value of the
intensity of CO2 production of 434.38 g/kWh and the average value of the intensity of NOx emissions
production of 2.17 g/kWh for 2019 were derived (Table 2).

Table 2. CO2 and NOx emissions intensities, depending on the energy mix for the year 2019 [11,34].

Electricity
Generation

Sources

Energy Mix
(%)

CO2 Emission
Factor

(gCO2eq/kWh)

Direct CO2

Emission by Fuel
(gCO2/kWh)

NOX Emission
Factor

(gNOXeq/kWh)

Direct NOX

Emission by Fuel
(gNOX/kWh)

Coal 17.6 1000 170 6 1.056
Oil 12.9 650 83.85 4 0.516

Natural Gas 35.3 500 176.5 1.7 0.6001
Renewable 23.2 15 3.48 0.006 0.001392

Nuclear 11 5 0.55 0 0

Based on this data, it is possible to calculate the amount of pollutant emissions indirectly eliminated
in the atmosphere by using the fleet of 41 electric buses: 153.83–163.19 tons of CO2 per year (average
value of 158.51 tons of CO2 per year) and 0.770–0.815 tons of NOx per year (average value of 0.792 tons
of NOx per year). If considering the total number of kilometers traveled annually by all 41 electric buses
under service, then the reduction of the considered emissions was 298.54 gCO2/km and 1.49 gNOx/km
per year.

3.3. Effect of Battery Technologies

A separate discussion is related to the battery technologies used in the bus powertrain designs.
As mentioned before, there were two types of batteries used: LiFePO4-type and NMC-type.

Li-Ion technology has been used in the construction of many types of batteries, the difference being
the material used in the construction of the cathode (generally, graphite is used as the anode material).
Thus, different acronyms have been used to identify this, such as: LFP, lithium iron phosphate; LCO,
lithium cobalt oxide; LMO, lithium manganese oxide; NMC, lithium nickel manganese cobalt oxide;
and NCA, lithium nickel cobalt aluminum oxide [15]. This particularity in the construction of the
cathode causes differences in battery properties, in terms of specific energy, specific power, energy
density, performance, voltage level, safety behavior, life span, and cost.
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The major differences between the LiFePO4 and NMC batteries used for the electric powertrain of
the Solaris 12E can be identified according to the following main operating characteristics:

• Cycle life: LiFePO4—10,000 (80% retained capacity), NMC—10,000 (60% retained capacity);
• Recommended C-rate: LiFePO4—C/2, NMC—C/5;
• Ability to work in high-temperature environments: LiFePO4—YES (up to 120–140 ◦C), NMC—NO;
• Danger of thermal runaway and fire hazard: LiFePO4—NO, NMC—YES; and
• Thermal management equipment: LiFePO4—NO, NMC—YES.

Based on these main characteristics (among others), it has been considered that NMC-type batteries
can cover a large variety of different applications (from small and home electronics to industrial energy
storage facilities) and show great potential for the future automotive industry, mainly due to their
higher energy density, as compared to LiFePO4 technology.

Nevertheless, it can be seen, from Figure 7, that the differences regarding the net energy consumption
are relatively negligible and do not significantly influence the values of pollutant emissions by e-bus
exploitation; however, they can be helpful in managing the fleet, by allocating routes in which the
possibility of energy recovery (by the regenerative braking process) is greater. The energetic balance
between energy consumption and energy generated (recovered) is 0.55 kWh/km for LiFePO4-type
batteries and 0.58 kWh/km for NMC-type batteries (5.45%), which indicates that the influence of battery
type on bus exploitation parameters does not have a major influence on the overall energetic efficiency
of an electric bus.

4. Conclusions

Even though, at present, the costs associated with the introduction of electric buses into urban
passenger transport systems are comparatively high, compared to buses equipped with modern internal
combustion engines, their immediate utility is given by the local reduction of polluting emissions;
appealing to the zero emission vehicle (ZEV) concept. In the particular case of the city of Cluj-Napoca,
defined as a city with a medieval structure and infrastructure (old and historic buildings, narrow
streets, multiple markets place, and so on), the introduction and operation of a fleet of 41 electric buses
managed to eliminate a local amount of 668.45 tons of CO2 and 6.41 tons of NOx—pollutant emissions
directly associated with harmful effects on human health—annually.

The emission balance was positive in both the cases of CO2 and NOx pollutants. The exploitation
of 41 electric buses (in the particular traffic conditions of Cluj-Napoca city) had managed to reduce
global pollution emissions by 509.95 tons of CO2 and 5.618 tons of NOx each year.

These values could be improved further, in order to increase the values of the indirect pollutant
and GHG emissions eliminated through local energy management, whereby the energy mix used
by the city contained a higher percentage of green energy (such as wind, solar, and/or energy from
renewable sources).

The operation of a fleet of urban electric buses was shown to be feasible, taking into account
the small average speeds of traffic in urban agglomeration areas and the fact that, when stopped in
traffic, an electric bus consumed a minimal amount of energy (only that needed for supplying its
auxiliary systems).

The obtained values of the net energy consumption (lower than those found in the specialized
literature) were directly influenced by the type and power of the electric propulsion group of the bus
(162 kW power of the Solaris 12 E electric motor, comparative to 180 kW for BYD 9K and 240 kW for
e-CITARO), the traffic conditions (the existence of dedicated/exclusive lines for buses and which by
their nature increase the efficiency of the braking energy regeneration process) and the traffic conditions
and the behavior of driver.

Furthermore, local policies to reduce polluting emissions need to be developed and supported
further (taxes, preferential parking places, dedicated commuting lanes, education, and so on) in the
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personal and passenger transportation fields, in order to increase the share of electric and hybrid
vehicles in the urban transport system.
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Abstract: In this paper, an improved multi-objective shark smell optimization algorithm using
composite angle cosine is proposed for automatic train operation (ATO). Specifically, when
solving the problem that the automatic train operation velocity trajectory optimization easily
falls into local optimum, the shark smell optimization algorithm with strong searching ability is
adopted, and composite angle cosine is incorporated. In addition, the dual-population evolution
mechanism is adopted to restrain the aggregation phenomenon in shark population at the end
of the iteration to suppress the local convergence. Correspondingly, the composite angle cosine,
considering the numerical difference and preference difference, is used as the evaluation index,
which ameliorates the shortcoming that the traditional evaluation index is not objective and
reasonable. Finally, the Matlab/simulation and hardware-in-the-loop simulation (HILS) results for
automatic train operation show that the improved optimization algorithm proposed in this paper has
better optimization performance.

Keywords: automatic train operation; multi-objective optimization; shark smell optimization algorithm;
composite angle cosine; dual-population evolution mechanism; hardware-in-the-loop simulation

1. Introduction

Railway transportation is an essential means of transportation; it cannot be replaced by others owing
to its own superiorities such as safety, energy efficiency, comfortable nature, punctuality, large volume
of transport, convenient, accurate parking, etc. [1]. Automatic train operation (ATO) target velocity
trajectory optimization is a practical multiple optimization problem for railway transportation,
the multiple performance indicators such as energy consumption, parking punctuality, comfort, accurate
parking, and so on. Of particular note is the increasing energy demand, thus energy-saving is becoming
a research hot spot in automatic train operation [2]. Many researchers’ studies about energy efficiency or
energy-saving have been proposed in recent literatures [3–6]. The function of automatic train operation
(ATO) target velocity trajectory optimization is crucial, it could make the train in the real-time optimal
state as much as possible with multi-objective comprehensive performance index satisfied, so as to reduce
energy consumption in automatic train operation. Therefore, improving the optimization and tracking
control effect involves using the corresponding optimization algorithm effectively by incorporating
improvement strategies appropriately.

Multi-objective train operation optimization has been a hot issue in the field of railway research
in recent years. To obtain more satisfactory optimization results, a multi-objective optimization model
of the speed trajectory for the high-speed train is established and an improved algorithm based
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on differential evolution and simulated annealing algorithms is designed [7]. A genetic algorithm
with the binary encoding method is designed for obtain the high-quality timetables of urban rail
transit systems based on two-objective (energy-saving strategies and service quality levels) model
formulated [8]. A method about design speed profiles to be programmed robustly and efficiently is
proposed in automatic train operation equipment for one metro line based on the two indicators of
the running time and the energy consumption [9]. The balance between saving energy and running
faster has been investigated, and an improved genetic algorithm is used to search the ideal optimal
train target trajectories [10]. A novel multiple optimization model based on switching optimization
framework for moving block signal (MBS) system is proposed [11]. A predictive train rescheduling
model incorporating the model predictive control (MPC) mechanism and the non-analytical prediction
model are proposed to be taken into consideration synergistic safe and efficient operations in high
speed trains [12]. A microsimulation system about train timetable evaluation from the viewpoint of
passengers to simulate both train operation and passengers’ train choice behavior is developed [13].

Further research is necessary based on some of the above research results, and three crucial factors
about multi-objective automatic train operation (ATO) target velocity trajectory optimization should
be taken seriously. First, there are many uncertainties and complex relations in actual automatic
train operation (ATO), and it is difficult to obtain ideal optimization results only by using traditional
optimization algorithm. Many literatures (e.g., [7–10], etc.) have studied and improved traditional
optimization algorithms about automatic train operation (ATO) optimization, so as to obtain more
ideal optimization results. It is easy for traditional optimization algorithms to fall into the local
optimum, and there are also problems of blind searching, premature stagnation, and slow convergence,
in the end of iteration especially. Compared with improved traditional algorithms, the improved
shark smell optimization (SSO) algorithm has more powerful searching capabilities, even in the
end of the iteration. To improve the global optimization performance of shark smell optimization
(SSO) algorithm, relevant researchers have proposed quite a few improvement strategies and relevant
experiments showing that the improved SSO algorithm has more effective performance than other
algorithms contrasted. The intrinsic mechanism of SSO algorithm is introduced in detail [14]. To solve
the optimal capacitor placement problem satisfying the operating constraints, a new shark smell
optimization (SSO) algorithm is proposed [15]. A new model for multiyear expansion planning of
distribution networks (MEPDN) is proposed, and, to solve the above MEPDN model optimization
problem, a new evolutionary algorithm-based solution method called Binary Chaotic Shark Smell
Optimization (BCSSO) is presented [16]. A novel forecasting algorithm based on neural network (NN)
and a novel chaotic shark smell optimization (CSSO) algorithm are proposed [17].

Meanwhile, the driving experience for automatic train operation (ATO) target velocity trajectory
optimization should not be ignored. A considerable number of researchers are interested in researching
the affect of driving experience for automatic train operation (ATO) optimization, such as in [3,4,9,10],
etc. In addition, a series of manual driving strategies that will minimize energy consumption for
high-speed trains have been researched [18]; an expert system that contains expert rules and a
heuristic expert inference method about intelligent train operation optimization for subway has
been developed [19]; an intelligent safe driving method (ISDMs) is proposed to obtain better
speed–distance curves [20]. Note that preference indices of driving experience are applied in automatic
train operation algorithm [21]. Preference information is widely used in multiple decision-making
(MPDM) problems such as multi-objective optimization problems, plenty of research findings show
that the optimization performance of multi-objective optimization algorithm can be significantly
improved using incorporated appropriate preference information. A new method to solve multiple
decision-making (MPDM) problems based on the preference information is proposed [22]. A preference
information based on the weighted sum aggregation is proposed to better solve the multi-objective
optimization problem, and the numerical experiments show that the method has obvious advantages
in both calculation accuracy and computation time [23]. A multi-criteria selection method that the
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preference scale changes with the change of multi-criteria decision-making problem is proposed,
and Monte Carlo method is used to verify the feasibility of the algorithm [24].

In fact, during automatic train operation, there are extensive problems need to be considered such
as real-time velocity sampled inaccurately, signal delay, and packet loss in transmission and a certain
degree of unstable in tracking control system, so a certain proportion of literatures use real vehicle
experiments and actual driving data (Ning’xi line, Yizhuang line, Shanghai Railway Transit in China)
to verify the effectiveness of the algorithm [4,19,21]. Due to the situation of the actual automatic train
operation experiment, it is difficult to implement, and traditional simulation based on pure software
environment cannot truly reflect the actual automatic train operation process; hardware-in-the-loop
simulation (HILS) is often used in automatic train operation due to its characteristics [25,26]. At present,
plenty of HILS-related products are researched, developed, and applied in various fields of rail vehicles,
traction control system, hybrid electric vehicles, and electric cars, and numerous relative research
findings have been achieved [27–30].

Based on the above research findings, an effective automatic train operation velocity trajectory
optimization algorithm that can give full play to the role of driving preference information is needed,
and multi-objective shark smell optimization algorithm with powerful optimization should also be
emphasized, so as to achieve more satisfactory optimization results for the automatic train operation
(ATO). An improved multi-objective shark smell optimization algorithm using incorporated composite
angle cosine for automatic train operation is proposed in this paper on the basis of literatures [14,23,28]
and several similar literatures. The following summarizes the main contributions of this paper.

(I) An improved multi-objective shark smell optimization algorithm (ISSO) based on
incorporated composite angle cosine, dual-population mechanism and fusion distance measurement
index is proposed to solve practical automatic train operation (ATO) target velocity trajectory
optimization effectively.

(II) To verify the effectiveness of ISSO, two scenarios about rail transit line No.12 and Jinpu
line No.1 in Dalian, China are chosen for simulation test. The results of Matlab/simulation and
hardware-in-the-loop simulation (HILS) show that the ISSO proposed in this paper (ISSO) (I) has good
performance in optimization precision, (II) has fast optimization speed, and (III) can obtain the smooth
target velocity trajectory tracked control by “Controller” easily achievable.

The paper is organized as follows. Section 2 introduces the optimization model of automatic
train operation. Section 3 illustrates the improved multi-objective shark smell optimization algorithm
(ISSO) using incorporated composite angle cosine for automatic train operation proposed in this paper.
Section 4 provides the Matlab/simulation results and hardware-in-the-loop simulation (HILS) results
to illustrate the proposed method. Section 5 concludes this article.

2. Automatic Train Operation Target Velocity Trajectory Optimization Model

2.1. Constraint Model of Automatic Train Operation

For ensuring the automatic train operation is secure, stable, and accurate, many constraints such
as the dynamic equation of automatic train operation, position variable constraint, velocity limitation
and so on should be considered [31].

The dynamic equation of automatic train operation is described as follows,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mv dv
ds = u f Ft (u, v)− R (v, s)− ubBr (u, v)

dt
ds = 1

v
v(s) ≤ vlim(s)
sS = 0, Δs = |sE − D| < Δsmax

(1)

where t is the present running time of the train; s is the present running position of the train; M is the
train mass, M = (1 + rm)MT ; rm is the rotating mass factor; MT is the weight of the train; u f Ft (u, v)
and ubBr (u, v) are the traction force and braking force of the current velocity, respectively; R (v, s) is
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the additional resistance determined by the current speed and position of the train; sS and sE are the
positions of starting point and terminal point respectively; D is the actual running distance; Δsmax

represents the allowable maximum parking error; Δs represents the actual parking error; v(s) is the
actual velocity of the position s; vlim(s) are the limit velocity of the position s; and u represents the
control sequence of automatic train operation [32,33]. The control modes for the above control sequence
of full traction, partial traction for cruising, coasting, and partial braking for cruising and full braking
are adopted in the paper, which are represented by [1, 0.5, 0,−0.5 − 1]. u f and ub are the traction and
braking coefficients which needs to satisfy the following constraints, respectively.

{
u f , ub ∈ [0, 1]
u f · ub = 0

(2)

The inflection position corresponding to each control modes should keep increasing order [34].

0 < S1 < S2 < · · · < Sj < · · · < Sk < Dmax (3)

where Sj represents the j th inflection point position for corresponding control mode and k represents
the size of control sequence.

For ensuring the automatic train operation is secure and prevent accidents such as derailment,
the velocity limitation should be set up in advance.

0 ≤ v ≤ Vx

Vx =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vx1 (0 ≤ S < Sp1)

Vx2 (Sp1 ≤ S < Sp2)

Vx3 (Sp2 ≤ S < Sp3)

· · ·
Vxkx (Spkx−1 ≤ S ≤ Spkx)

Vxkx+1 (Spkx ≤ S ≤ D)

(4)

where Vx represents the maximum train velocity allowed in each subinterval, Spj represents the
starting point of the j + 1 th subinterval (also the terminal point of the j th subinterval), and kx + 1
represents the number of the subintervals.

2.2. Multi-Objective Index for ATO Target Velocity Trajectory Optimization

Automatic train operation (ATO) target velocity trajectory optimization is a practical optimization
problem that needs to meet multiple performance indicators such as energy consumption,
parking punctuality, comfort, accurate parking, and so on.

The train energy consumption is expressed as the energy consumed by overcoming resistance
during the whole process, and the specific calculation formula is described as follows,

KE =
∫ D

0
f (u, v) ds ≈

n

∑
i=2

(Mai + Ri) (si − si−1) (5)

where KE is the energy consumption, ai is the acceleration of the i th condition, si is the position of the
i th condition, and Ri is the resistance of the i th condition [19].

The comfort level is expressed by the sum of the absolute value of the difference of the acceleration
of the adjacent working conditions in the running process, and the specific calculation formula is
described as follows,

KJerk =

∫ D
0 |Δa| ds

D
≈

n
∑

ia=2
|aia − aia−1|

D
(6)

174



Energies 2020, 13, 714

where KJerk is the measure of comfort, aia is the acceleration of the ia th condition, T represents the
actual running time, and |Δa| is the absolute value of the acceleration changing rate [35].

The train punctuality is the absolute value of the difference between the actual running time and
the prescribed running time, and the specific calculation formula is described as follows,

KT =
∣∣T − TExp

∣∣ (7)

where KT is the measure of punctuality and TExp represents the prescribed running time [35].
The target vector of the multi-objective optimization problem is F(x) = ( f1(x), f2(x), · · · , fk(x)) ,

and the optimization model is described as follows,
⎧⎪⎨
⎪⎩

min {F(x)}
s.t. g(x) ≤ 0, i = 1, 2, · · · , m

x = (x1, x2, · · · , xn), x ∈ D∗
(8)

where k is the number of optimization targets, x is the decision variable, and g(x) is the inequality
constraint for x. x′′ is the absolute optimal solution, and if and only if any x′ ∈ D∗, F(x′′) is superior
to F(x′).

The multi-objective comprehensive performance index F(u) is composed of energy consumption,
comfort, and running time. {

F(u) = (KE(u), KJerk(u), KT(u))
min {F(u)} (9)

where min denotes the minimum value of F(u), which is the minimum value of each sub-objective
function of F(u).

2.3. Linear Weighted Target Method

Compared with the multi-objective optimization problem, the single objective optimization
problem is easier to solve. It is a practical and effective way to transform the original multi-objective
optimization problem into a single objective optimization problem. For multi-objective optimization
problems, there is a degree of unfair measures caused by units and magnitude orders difference
of various evaluation indexes. Therefore, index importance and difference between units and
magnitude orders need to be considered, so as to give the appropriate weight factors. To eliminate the
negative influence caused by the difference between units and magnitude orders, the data needs to be
normalized. The calculation formula of the normalized linear weighted target F′(x) can be expressed
as follows, ⎧⎪⎨

⎪⎩
F′(x) =

k
∑

i=1
ω′

iω
′′

i fi(x)

ω′′
i =

fi(x)−min( fi(x))
max( fi(x))−min( fi(x))

(10)

where ω′
i represents the index importance weight factor (

k
∑

i=1
ω′

i = 1), which reflects the relative

importance of the i th optimization index. ω′′ denotes the correction weight factor, which eliminates
the negative influence caused by the difference of dimensions and orders of magnitude for i th
optimization index. max and min, respectively, represent the maximum and minimum values of the
function [35,36].

As can be seen from the calculation Formula (10), normalization adopting can reduce the difficulty
setting weight factors, index importance need to be considered exclusively, the other factor (difference
between units and magnitude orders) have been solved by normalization effectively. Yet, the selection
of the index importance weight factor by the linear weighted target method lacks the specific theoretical
basis, so there is certain subjective limitation in this method.
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2.4. Angle Cosine Method

For multi-objective optimization problems, there is an angle between any solution vector and
the target demand vector in the solution space, and the angle cosine is less than or equal to 1.
The target demand vector is the target vector of the desired optimal solution which may not be
the final optimization solution. However, the target demand vector plays an active role in guiding the
global convergence of the optimization algorithm in the process of iterative optimization. The specific
angle cosine of the target vector and the target demand vector is shown in Figure 1, where the two axes
represent two optimization objectives; the three solid lines in the axes, respectively, denote the solution
vector T1, the solution vector T2, and the target demand vector C; the arc expresses the solution space;
the two dotted lines in the axis represent the boundary of the solution space; the angles between the
solution vector T1, T2, and the target demand vector C are, respectively, represented by the angles � 1
and � 2; and the angle cosines are expressed by γ1 and γ2 [37].

Figure 1. The angle cosine diagram of the solution vector and the target demand vector.

The calculation formula of the angle cosine γ1 and γ2 is expressed as follows,

γ1 = (T1,C)
‖T1‖•‖C‖ =

ni
∑

i=1
t1,i•ci√

ni
∑
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2,i•
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∑
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i
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∑
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2,i•

√
k
∑
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i

(11)

where (T1, C) and (T2, C) represent the dot product between the solution vector T1, T2, and the target
demand vector C; ‖A‖ is the length of vector A; • represents the numerical multiplication; t1,i, t2,i, and
ci express the normalized value of the i th optimization index of the solution target vector T1, T2, and
the target demand vector C; and ni represents the optimization index number.

As can be seen from Figure 1, the solution vector T1 is worse than the solution vector T2 caused
by the solution vector T2 closer to the target demand vector C; meanwhile, � 1 > � 2 and γ1 < γ2.
Thus, angle cosine can be used as the multi-objective optimization evaluation index. The target
demand vector can be estimated and calculated reasonable in practical, so the angle cosine method is
more objective and reasonable.
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3. Improved Shark Smell Optimization Algorithm for ATO Target Velocity
Trajectory Optimization

3.1. Shark Smell Optimization Algorithm

As the best hunter in nature, the shark has foraging behavior that goes forward and rotates,
which can be extremely efficient in finding prey [16]. The optimization algorithm for simulating shark
foraging is a highly efficient optimization algorithm [18]. For any given location, the sharks move
at a speed to the particle that has the more intense scent, so the initial velocity vectors are defined
as follows. [

V1
1 , V1

2 , ..........., V1
NP

]
(12)

The shark has inertia when it swims, so the velocity formula of each dimension is defined
as follows,

Vk
i,j = ηk · R1 · ∂(OF)

∂xj

∣∣∣∣∣
xk

i,j

+ αk · R2 · vk−1
i,j (13)

where j = (1, 2, · · ·, ND),i = (1, 2, · · ·, NP), and k = (1, 2, · · ·, kmax); ND represent the number of
dimension; NP represents the number of velocity vectors (size of shark population); kmax represents
the number of iteration; OF represents the objective function; ηk ∈ [0 , 1] represents the gradient
coefficient; ak represents the weight coefficient, it is also a random number between [0, 1]; and R1 and
R2 are two random numbers between [0, 1].

The speed of the shark is necessary to avoid over the boundary, and the specific speed limitation
formula is described as ∣∣∣vk

i,j

∣∣∣ = min
[∣∣∣vk

i,j

∣∣∣ ,
∣∣∣βk · vk−1

i,j

∣∣∣] (14)

where βk represents the speed limit factor of the k th iteration.
The shark has a new position Yk+1

i due to moving forward, and Yk+1
i is determined by the

previous speed and position, which is expressed as

Yk+1
i = Xk

i + Vk
i · Δtk (15)

where Δtk represents the time interval of the k th iteration. In addition to moving forward,
sharks usually rotate along their path to look for stronger odor particles and improve their direction of
movement, which is a real way of moving.

The rotating shark moves in a closed interval which is not necessarily a circle. From the point of
view of optimization, sharks implement local search at each stage to find better candidate solutions.
The search formula for this position is as follows,

Zk+1,m
i = Yk+1

i + R3 · Yk+1
i (16)

where m = (1, 2, · · ·, M) presents the number of points at each stage of the location search; R3 is the
random number between [−1, 1]. If the shark finds a stronger scent point in the rotation, it moves
toward the point and continues the search path. The location search formula is described as follows,

Xk+1
i = arg max

{
OF(Yk+1

i ), OF(Zk+1,1
i ),

· · · , OF(Zk+1,M
i )

} (17)

As can be seen from the above formula, Yk+1
i is obtained from the linear movement and Zk+1,M

i
is obtained from the rotation movement. Sharks will choose the candidate solution with higher
evaluation index value as shark’s next location Xk+1

i .
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3.2. Preference Information and Composite Angle Cosine

To improve the optimization effect, the preference phenomenon should be considered, and the
data or information used to quantify the impact of preferences on evaluations is called preference
information [38]. The preference vector angle is a kind of preference information, which is used
to reflect the degree of preference between the solution vector and the target demand vector.
The schematic diagram of the preference phenomenon classification and the preference angle is
shown in Figure 2.

Figure 2. Schematic diagram of the preference phenomenon classification and the preference angle.

As can be seen from Figure 2, according to the preference phenomenon, preference event Ω is
divided into three categories: (ClassI, ClassI I, and ClassI I I), and the corresponding preference angles
are ( � PI , � PII , and � PIII).

If only the numerical angle cosine is used as evaluation index in optimization, the preference
phenomenon will be ignored, and it is easy to lead the evaluation result unreasonable. To take account
of the numerical difference and preference difference between the solution vector and the target
demand vector, a new evaluation index is proposed in this paper, that is, the compound angle cosine.
The compound angle cosine is the cosine of the sum of the numerical angle and the preference angle.
The schematic diagram of the compound angle cosine is shown in Figure 3.

Figure 3. The schematic diagram of the compound angle cosine.

In Figure 3, the angle � N represents the numerical angle; it is used to reflect the numerical
calculated result between solution vector and the target demand vector. The angle � N represents the
preference angle; it is used to reflect the preference value between solution vector and the target demand
vector; the angle � C represents the composite angle, � C = � P + � N. The composite angle cosine
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is used as the evaluation index for the optimization algorithm proposed in this paper. The specific
calculation formula of the composite angle cosine is as follows.

� C = � P + � C
cos C = cos P cos N − sin P sin N

(18)

In some optimization problems, there are several the preference events. The specific calculation
formula of the composite angle is as follows,

� P =
np
∑

ip=1
� Pip (19)

where ip represents the preference event index, np represents the preference event number, and Pip
represents the preference angle of the i th preference event.

There are three preference events in the automatic train operation velocity trajectory optimization
with the multi-objective comprehensive performance index F(u) ,(F(u) = (KE(u), KJerk(u), KT(u))).
The specific preference categories categories circumstances in automatic train operation velocity
trajectory optimization are shown in Table 1. Where, “Prefect”, “Qualified”, and “ Unqualified”
represents the valuation level of preference event according to preference phenomenon, the preference
angle for “Prefect”, “Qualified”, and “Unqualified” are 0, π/24, π/12, respectively; E1, E2, and E3

represent the boundary values of valuation level for energy consumption, which are decided by train
parameters, line conditions, prescribed running time, and running distance; the boundary values of
valuation level for “Comfort level” and “Time error” are decided by train operation regulation.

Table 1. The preference categories circumstances in automatic train operation velocity
trajectory optimization.

Categories & Valuation Level Prefect Qualified Unqualified

Energy Consumption KE(u) < E1 KJ KE(u) < E2 KJ KE(u) < E3 KJ
Comfort level KJerk(u) < 4.2 m/s3 4.2 m/s3 ≤ KJerk(u) < 7.5 m/s3 7.5 m/s3 ≤ KJerk(u) < 13.4 m/s3

Time error KT(u)) < 0.16 s 0.16 m/s ≤ KT(u)) < 0.20 m/s 0.20 m/s ≤ KT(u)) < 0.50 m/s

If a certain performance index of the solution vector T cannot reach the valuation level
“Unqualified”, solution vector T is impermissible. At present, only valuation level “Prefect” and
“Qualified” are permitted for most of automatic train operation scenarios.

3.3. Fusion Distance

Mahalanobis distance is the data covariance distance defined by Mahalanobis, which can
accurately calculate the covariance distance between two samples. The formula of Mahalanobis
distance between the sample X to be examined and the basic space set Y is expressed as

Σ = Cov(X, Y) = E [(X − E (X)) (Y − E (Y))]

=

⎡
⎢⎢⎢⎢⎣

Cov (x1, y1) Cov (x1, y2) · · ·Cov
(

x1, yj
)

Cov (x2, y1) Cov (x2, y2) · · ·Cov
(

x2, yj
)

...
...

. . .
...

Cov
(

xj, y1
)

Cov
(
xj, y2

) · · ·Cov
(

xj, yj
)

⎤
⎥⎥⎥⎥⎦

(20)

where Σ is the expected matrix of the covariance matrix for the basic space set Y.
The fusion distance is the combination of Mahalanobis distance and Euclidean distance,

taking into account the independence and relevance of the characteristic variables, which can
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effectively improve the accuracy of distance calculation [39]. The specific formula for calculating
fusion distance is expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMix = ω × MD(X, Y) + (1 − ω)× ED(X, Y)

CY =

⎡
⎢⎢⎢⎢⎣

ρY1Y1
ρY1Y2 · · · ρY1Yn

ρY2Y1 ρY2Y2 · · · ρY2Yn
...

...
. . .

...
ρYnY1

ρYnY2 · · · ρYnYn

⎤
⎥⎥⎥⎥⎦

ω =
√

1 − |CY|

(21)

where dMix represents the fusion distance, MD represents the Mahalanobis distance, CY represents
the correlation coefficient matrix for the sample set Y, n is the size of sample set Y, Yi (i = 1, · · · , n) is
the corresponding elements of sample set Y, and ρ is the correlation coefficient. The fusion distance is
fused by the weight ω with the relevant information, and the Euclidean distance is fused by 1 − ω .

3.4. Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization algorithm proposed by American
psychologist Kennedy and electrical engineer Eberhart in 1995. The update formula of the velocity and
position of the particle in dimensional space is described as follows,

⎧⎪⎨
⎪⎩

vd
ip,t+1 = ω × vd

ip,t + c1 × rand × (pd
ip,t − xd

ip,t)

+ c2 × rand × (pg
t − xd

ip,t)

xd
ip,t+1 = xd

ip,t + vd
ip,t+1

(22)

where ip ∈ [1, 2, ..., N] is ip th particle of the particle population; N represents the size of particle
population; d ∈ [1, 2, ..., D] is the d th dimension of the particle; D represents the number of
dimension; t ∈ [1, 2, ..., T] is the t th iteration; T represents the number of iteration; c1 and c2
represents the acceleration constants; rand is the random real number of the interval (0,1); ω is
the weight coefficient, which is used to balance the degree of global search and local search;

the position vector is represented as
→

Xip = (xip,1, xip,2, · · · , xip,d, · · · , xip,D); the velocity vector is

expressed as
→

Vip = (vip,1, vip,2, · · · , vip,d, · · · , vip,D); the optimal location of the particles’ individual

is recorded as
→

Pip,t = (p1
ip,t

, p2
ip,t

, · · · , pd
ip,t

, · · · , pD
ip,t); the best position of the swarm is denoted as

→
Pg,t = (p1

g,t , p2
g,t , · · · , pd

g,t , · · · , pD
g,t).

3.5. Dual-Population Evolution Mechanism

Due to the limitations of both the evolutionary environment and the initial population,
the problem of slow evolution and even stagnant evolution will appear during late iteration [40].
In the long process of iteration, the optimal individual will dominate all the population to some
extent, making it difficult to converge globally. The proposal of dual-population strategy makes the
optimal individuals of two populations exchange with each other, and the long-term dominance of
the optimal individual in the original population is easily lost due to the change of the population
environment [41,42].

To improve the optimization performance of SSO algorithm, an improved strategy combining
genetic algorithm, particle swarm algorithm, and SSO algorithm based on dual-population Evolution
Mechanism is proposed in this paper. In the process of iteration, the SSO algorithm brings each
individual of the shark population into the optimal position rapidly. Particle swarm algorithm has the
same defect of local convergence as SSO algorithm due to its fixed foraging behavior. At the same time,
the crossover and mutation of genetic algorithm can prevent the SSO algorithm based on evolutionary
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from stalling immediately when it falls into the local optimum, and it can cause certain disturbance and
mutation, which can help the SSO algorithm to jump out of the local optimum dilemma. In addition,
the composite angle cosine is used as the evaluation index and the parallel evolutionary mechanism of
dual-population is adopted to prevent the population from being dominated by extreme individuals.
The flowchart of improved shark smell optimization algorithm proposed in this paper is shown in
Figure 4.

Figure 4. The flowchart of improved shark smell optimization algorithm proposed in this paper.

As can be seen form Figure 4, the dual-population strategy uses two populations (shark population
S1 and particle swarm S2) to evolve at the same time, and compares the optimal individuals of the two
populations, so as to break the equilibrium state in the population and to jump out of the local optimum.
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In the optimization process, some generated particle may be beyond the boundary, the specific
treated formula is described as follows,

¬xk
i > xmax ⇒ xk

i = xmax

¬xk
i < xmin ⇒ xk

i = xmin
(23)

where ¬... ⇒ ... represents the sign of “if ... then ...” ;xk
i is the updated particle; xmax is the maximum

value of particle boundary; xmin is the minimum value of particle boundary.

4. Experimental Simulation

4.1. Data and Parameters for Experimental Simulation

In this paper, the scenarios about Jinpu line No.1 and rail transit line No.12 in Dalian, China
are selected as the research objects. Jinpu line No.1 is the intercity railway line that is 46.76 km long
and has 11 stations in the initial stage, which extend from Jiuli light rail station to the terminal of
Zhenxing road in Dalian under construction. Rail transit line No.12 is an urban rail transit line that
is 40.38 km long and has 8 stations, which extend from Hekou station to terminal of Lvshun New
Port. The simulation running line of scenario about Jinpu line No.1 is from the Jiuli to the 19th bureau,
and the interval length between the above two station is 2.74 km. The running simulation line of
scenario about rail transit line No.12 is from Lvshun New Port to Tieshan Town, and the interval length
between the above two station is 2.94 km, with two long downhill and a long uphill ramps. The main
parameters of the above scenarios are shown in Tables 2 and 3, ramp parameters and velocity limit for
automatic train operation are shown in Figure 5.

Table 2. The main parameters of the scenario about Jinpu line No.1 in Dalian.

Parameter Name Parameter Characteristics

Train weight (t) 209
Maximum running speed (km/h) 80
Formation plan 2 motor 2 trail
Mean starting acceleration (m/s2) (0∼35 km/h) ≥ 1.0
Mean acceleration (m/s2) (0∼80 km/h) ≥ 0.6
Mean braking deceleration (m/s2) (80∼0 km/h) ≥ 1.0

Table 3. The main parameters of the scenario about rail transit line No.12 in Dalian.

Parameter Name Parameter Characteristics

Train weight (t) 211
Maximum running speed (km/h) 80
Formation plan 2 motor 2 trail
Mean starting acceleration (m/s2) (0∼35 km/h) ≥ 1.0
Mean acceleration (m/s2) (0∼80 km/h) ≥ 0.6
Mean braking deceleration (m/s2) (80∼0 km/h) ≥ 1.0

The calculation formula of traction characteristics is expressed as follows,
⎧⎪⎨
⎪⎩

F(v) = Fmax vq ≤ v ≤ vc

F(v) = Pmax/v vc ≤ v ≤ vd

F(v) = Pmax × vd
/
v2 vd ≤ v ≤ vmax

(24)

where F(v) is the instantaneous traction of vehicles, Fmax is the vehicle’s maximum traction, Pmax is
the maximum traction power of the vehicle, vd is the switching velocity of the constant power zone
and the reduced power zone, vq is the switching velocity of the traction starting region and constant
torque region, and vmax is the maximum design speed of the vehicle.
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Figure 5. The ramp parameters and the speed limit of experiment simulation for two ATO scenarios.
(a) Jinpu line No.1 in Dalian scenario. (b) rail transit line No.12 in Dalian scenario.

Simulation optimization results must satisfy the following conditions; the train instantaneous
speed cannot surpass the speed limit, the train must finish the whole process, and the parking error
is less than 0.2 m. The improved shark smell optimization algorithm parameters are set as follows;
the particle swarm size is 40, the weight coefficient is 0.9, the acceleration coefficients C1 and C2 are
0.5, crossover probability is 0.7, mutation probability is 0.09, selection probability is 0.5, the iteration
number is 200, the shark population size is 40, the random number R1 = 0.4, R2 = 0.3, R3 = 0.25,
ηk = 0.2, speed limit factor βk is 1.3, and the weight coefficient αk is 0.15. Setting parameters for the
optimization algorithm is necessary to consider the convergence speed and optimization effect, such
as population size and iteration number, with the increase of population size, the global search ability
of the optimization algorithm will be enhanced, but the convergence speed will be reduced; similarly,
with the increase of the number of iterations, the finding opportunity of optimal solution will be
increase, and the more computing time and resource will be expend. The parameters characteristics
and multiple experimental simulation results are taken into account for the above parameters setting.
The multi-objective optimization parameters of the ATO scenario simulation of Jinpu line No.1 in
Dalian are set as follows; the scheduled running time is 177s; KE ∈ [90,000, 150,000]; KT ∈ [0, 0.2];
KJerk ∈ [6, 10]; the intrinsic weight factors ω′

1; ω′
2 and ω′

3 are, respectively, 0.5, 0.3, and 0.2; the target
demand vector is [98,000, 6.2, 0.01]. The multi-objective optimization parameters of the ATO scenario
simulation of rail transit line No.12 in Dalian are set as follows; the scheduled running time is 180 s,
KE ∈ [80,000, 130,000], KT ∈ [0, 0.2], KJerk ∈ [5, 10], the intrinsic weight factors ω′

1, ω′
2, and ω′

3 are,
respectively, 0.5, 0.3, and 0.2, the target demand vector is [90,000, 5.2, 0.01].
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4.2. Matlab/simulink Simulation Results for Automatic Train Operation Scenarios

According to the automatic train operation scenarios of rail transit line No.12 and Jinpu line
No.1 in Dalian, China, the approximate optimal solutions are obtained by using the improved
algorithm proposed in this paper, traditional improved shark smell optimization algorithm (chaotic
shark smell optimization) [17] and traditional improved particle swarm optimization (dynamic
multiple populations particle swarm optimization algorithm based on decomposition) [43], the above
Matlab/simulink platform is chosen as a simulation platform. The specific configuration of
the Matlab/simulink platform used in this paper is described as follow: the Matlab/simulink
revision is Matlab GUI 2016b; the major computer configuration is “CPU Core i9-7920X @
2.9 GHZ” and “Windows 10”. The specific Matlab/simulink optimization simulation results are
shown in Figures 6 and 7 and Tables 4–7, and three different algorithms are recorded as ISSO,
CSSO, and dMOPSO.

Figure 6. The Matlab/Simulink optimization curves of different algorithms for Jinpu line No.1
in Dalian scenario. (a) Jinpu line No.1 in Dalian scenario. (a) Target velocity trajectory profiles.
(b) Operating condition distance curves. (c) Iterative convergence curves of each optimization objectives.
(d) Iterative convergence curves of unified goals.

Table 4. The Matlab/simulink optimization results of different algorithms for Jinpu line No.1 in
Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 104,739 KJ 177.0153 s 6.392 m/s2/km
CSSO 110,910 KJ 177.0387 s 7.142 m/s2/km

dMOPSO 116,157 KJ 177.0924 s 7.655 m/s2/km
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Table 5. The Matlab/simulink evaluate results of different algorithms for Jinpu line No.1 in
Dalian scenario.

Algorithm Angle Cosine Linear Weighted Target Computation Time Convergence Evolution Generations

ISSO 0.9446 0.1498 1722 s 96
CSSO 0.8760 0.2554 1833 s 126

dMOPSO 0.7129 0.3602 2585 s 137

Figure 7. The Matlab/simulink optimization curves of different algorithms for rail transit line No.12
in Dalian scenario. (a) Target velocity trajectory profiles. (b) Operating condition distance curves.
(c) Iterative convergence curves of each optimization objectives. (d) Iterative convergence curves of
unified goals.

Table 6. The Matlab/simulink optimization results of different algorithms for rail transit line No.12 in
Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 98,749 KJ 180.0139 s 5.638 m/s2/km
CSSO 107,154 KJ 180.0394 s 6.537 m/s2/km

dMOPSO 109,469 KJ 180.0878 s 7.408 m/s2/km

Table 7. The HILS evaluation of the results of different algorithms for Jinpu line No.1 in Dalian scenario.

Algorithm Angle Cosine Linear Weighted Target Computation Time Convergence Evolution Generations

ISSO 0.9566 0.1776 4476 s 109
CSSO 0.8711 0.2759 4962 s 130

dMOPSO 0.8542 0.3501 7031 s 146

As can be seen in Tables 4–7, the optimization solution obtained by the improved ISSO is superior
to that of CSSO and dMOPSO, and three indexes of energy saving, punctuality, and comfort have been
improved considerably. The ATO experiment simulation scenario for Jinpu line No.1 from Jiuli to the
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19th bureau is a typical slope with ups and downs. It is necessary to keep the train at high speed before
driving down the long down ramp. The ATO experiment simulation scenario for rail transit line No.12
from Lvshun New Port to Tieshan Town is in the hilly of Dalian Lvshunkou district, and the hilly
region is the typical characteristics of Dalian. When the train is running in such a terrain, the control
sequence should be concise. The train speeds up in the long down slope and slows down in the long
up slope as much as possible, which can save energy and avoid turbulence. As can be seen from
Figures 6a,b and 7a,b ( the target velocity trajectory and control sequence ), the improved algorithm
ISSO can obtain extremely simple control sequence and make the most of long down and up slopes, so
as to obtain the target velocity trajectory as smooth as possible. As can be seen from Figures 6c,d and
7c,d (the iterative convergence curves), the convergence rate of ISSO is faster than that of CSSO and
dMOPSO. Even in the late iterations, ISSO has a strong ability of global convergence performance.

Compared with other comparison optimization algorithms, ISSO has several obvious advantages
in matlab/simulation environment, as there is huge difference between matlab/simulation
environment and actual scenario yet, the effectiveness of ISSO is necessary to further test and verify.

4.3. HILS Results for Automatic Train Operation Scenarios

Matlab/Simulink is a simulation technology that is completely separated from the real train
operation environment. Therefore, some problems (such as real-time velocity sampled inaccurately,
signal delay and packet loss in transmission, a certain degree of unstable in tracking control system, etc.)
need to be considered in the actual control process and are cannot be truly reflected. To more effectively
test the performance of the optimization algorithm in the actual train operation environment, dSPACE
hardware-in-the-loop simulation (HILS) technology is adopted to write the verified optimization
algorithm or control algorithm to the chip of the optimizer or controller. Compared to traditional
simulation platform based on pure software environment, dSPACE HILS platforms contain the real
on-board equipments, which can truly reflect the the real situation for automatic train operation. Due
to the restriction of funds and experiment conditions, it is difficult to implement the corresponding
actual automatic train operation experiment. Moreover, compared with real actual experiments,
dSPACE HILS has the advantages of low experimental cost, implement easily, and high security
protection of personal and equipment [33]. Therefore, HILS is highly valued by researchers and
developers, abundant HILS-related products are researched, developed, and applied in various fields
and numerous relative research results have been achieved [44,45]. The semi-physical simulation
equipments in automatic train operation mainly include optimizer, controller, sensors, simulator,
conditioning circuit, signal conditioning unit, and connector. The simulation topology diagram of
automatic train operation HILS platform, the structure diagram for automatic train operation HILS,
and the physical diagram of controller cabinet and simulation cabinet for automatic train operation
HILS are shown in Figures 8 and 9.

Figure 8. The simulation topology diagram of automatic train operation hardware-in-the-loop
simulation (HILS) platform.
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Figure 9. The structure diagram for automatic train operation HILS.

As can be seen from Figure 8, the Controller/Optimizer and its Service equipment make
up the automatic train operation HILS platform, the Monitor serves as the monitoring center for
human–computer interaction, and the Alarm set and Circuit breaker are the warning and protection
center. Alarm set detects the working status of each HILS device in real-time, and the Circuit
breaker is used to protect equipment by breaking when a certain kind of exception is detected.
As can be seen from Figure 9, the automatic train operation HILS platform contains various actual
hardware, and simulation hardware for automatic train operation. The “lower-layer control loop”
based on controller and “upper-layer optimization loop” based on optimizer of HILS constitute the
two independent communication systems, respectively, and there is a certain connection between
the two loops. “Controller” is also named as traction control unit (TCU), which could provide
control commands for corresponding equipments in real-time using a proper control algorithm
in real-time, enable the the urban rail vehicle to track the ideal profile curve; “Optimizer” is also
named as main processor unit (MPU), which could provide the velocity ideal trajectory profile (target
speed curve of automatic train operation) for “lower-layer control loop” tracking control based on
’dSPACE emulator’. Second, the “dSPACE emulator”, “conditioning circuit”, “signal processing
unit”, “sensors”, “connectors”, and so on are service equipments for ATO HILS: “dSPACE emulator”
provides some correlative simulation environments for the automatic train operation HILS, the related
models included such as accurate braking model, traction transformer model, running line model,
velocity fluctuation model, etc.; “conditioning circuit” can regulate electrical waves properly for
“Controller” appropriately; “signal processing unit” can regulate net signals properly for “Optimizer”
appropriately; and the “sensors” and “connectors” are used to feed electrical waves and net signals
back to the “Controller” and “Optimizer” in real-time. Third, the “DC power source”, “Converter
system”, “Electric motor”, “Digital rheostat box”, and “Gear box” are simulation electric hardware
equipments of in place of the actual: “DC power source” acts as the actual pantograph; “Converter
system” transfer the electric energy from “DC power source” to “Electric motor” through a series of
current-voltage conversion processes, it includes AC–DC converter, DC–AC converter, low-pass filters,
etc.; “Electric motor” acts as the actual urban rail vehicle motors set; the capacity of simulation circuit
loop is smaller than actual. In Figure 11, “train controller cabinet” and “train emulator cabinet” are
the vital equipments for automatic train operation HILS, except controller and emulator, conditioning
circuit, signal processing unit and corresponding switch groups are included.

Obviously, compared with these automatic train operation scenarios based on pure software
(such as Matlab/simulink simulation), their identical scenarios based on HILS are closer to
actual. Therefore, based on the same scenarios, tracking control algorithm and HILS platform,
the comprehensive performance index for automatic train operation obtained by optimization
algorithms could reflect the optimization performance of these algorithms effectively. To further
verify the effectiveness of the algorithm, according to the automatic train operation scenarios of
rail transit line No.12 and Jinpu line No.1 in Dalian, China, the approximate optimal solutions are
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obtained by using ISSO, CSSO, and dMOPSO, the above ATO HILS platform is chosen as simulation
platform. The specific configuration of the ATO HILS platform used in this paper is described as
follow: the Matlab/simulink revision is Matlab GUI 2016b; the major computer configuration is
“CPU Core i9-7920X @ 2.9 GHZ” and “Windows 10”; the core chip of “Controller” and “Optimizer”
is “TMS320F28335”; the simulation software of “dSPACE emulator” is dSPACE software(revision is
control desk 6.1); the communication protocol of the ATO HILS is MVB (multifunction vehicle bus);
the MPC (model predictive control) algorithm is adopted as tracking control algorithm; the three
optimization algorithms (ISSO, CSSO, and dMOPSO) used are written in the kernel chip of “Optimizer”
in “upper-layer optimization loop” for contrasting. The specific HILS optimization results obtained by
“Optimizer” in “upper-layer optimization loop” are shown in Figures 10 and 11 and Tables 8–11.

Figure 10. The HILS optimization curves of different algorithms for Jinpu line No.1 in Dalian scenario.
(a) Target velocity trajectory profiles. (b) Operating condition distance curves. (c) Iterative convergence
curves of each optimization objectives. (d) Iterative convergence curves of unified goals.

Table 8. The Matlab/simulink evaluate results of different algorithms for rail transit line No.12 in
Dalian scenario.

Algorithm Angle Cosine Linear Weighted Target Computation Time Convergence Evolution Generations

ISSO 0.9722 0.2205 1935 s 114
CSSO 0.8829 0.3571 2194 s 134

dMOPSO 0.7564 0.4547 2896 s 119
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Table 9. The HILS optimization results of different algorithms for Jinpu line No.1 in Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 106,741 KJ 177.0135 s 6.824 m/s2/km
CSSO 115,245 KJ 177.0430 s 7.508 m/s2/km

dMOPSO 119,569 KJ 177.0428 s 8.029 m/s2/km

Figure 11. The HILS optimization curves of different algorithms for rail transit line No.12 in
Dalian scenario. (a) Target velocity trajectory profiles. (b) Operating condition distance curves.
(c) Iterative convergence curves of each optimization objectives. (d) Iterative convergence curves
of unified goals.

Table 10. The HILS optimization results of different algorithms for rail transit line No.12 in
Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 98,524 KJ 180.0194 s 5.712 m/s2/km
CSSO 110,524 KJ 180.0294 s 7.194 m/s2/km

dMOPSO 114,755 KJ 180.0921 s 7.844 m/s2/km

Table 11. The HILS evaluate results of different algorithms for rail transit line No.12 in Dalian scenario.

Algorithm Angle Cosine Linear Weighted Target Computation Time Convergence Evolution Generations

ISSO 0.9515 0.2260 4365 s 99
CSSO 0.8441 0.4009 5027 s 126

dMOPSO 0.7682 0.5251 7885 s 133
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In Figures 10a,b and 11a,b (which is related to the optimization effect of automatic train operation
process), the power is switched on, the pantograph is raised, the dSPACE simulator is in the working
state (the “dSPACE” button is pressed), the human–computer interaction signal is normal (the “Design”
button is green), and the circuit breaker is normally closed, which is in a normal optimization
simulation state.

According to optimization simulation results of different algorithms in Tables 8–11,
compared with the traditional improved particle swarm optimization algorithm (dMOPSO) and
traditional improved shark smell optimization algorithm (CSSO), the improved algorithm proposed in
this paper (ISSO) has the obvious performance improvement effect, the three indexes of energy saving,
punctuality and comfort of target velocity trajectory have been improved considerably; meanwhile,
and the convergence evolution generations and computation time have been reduced considerably.
As can be seen from Figures 10a,b and 11a,b, the ideal target velocity trajectory obtained by ISSO
was the smoothest, compared with the contrasted algorithms (CSSO and dMOPSO), ISSO obtained
extremely simple control sequence and made use of the most of long down and up slopes sufficiently,
it enables the train to reduce unnecessary traction and braking status and to make full use of coasting
status as much as possible. As can be seen from Figures 10c,d and 11c,d, compared with contrasted
algorithms (CSSO and dMOPSO), the three optimization objective indexes and two unified goals
obtained by ISSO have been improved to a considerable extent not only in the optimization effect but
also in the computation efficiency.

Compared with the improving optimization effect of ATO target velocity trajectory optimization,
improving the actual tracking control effect is more practical. The optimization effect calculation speed
could estimate the performance of the ATO target velocity trajectory optimization algorithms,
achievable difficulty for tracking control is also a significant evaluation index. To better verify the
effectiveness of the ISSO, the “lower-layer control loop” is used to tracking control according to optimal
target velocity trajectory generated by the “upper-layer control loop”. The MPC (model predictive
control) algorithm has some its own advantages such as good performance in tracking precision,
powerful robustness, fast tracking speed, etc. and widely in ATO traction system, so it is selected
as tracking control algorithm in this paper. The specific HILS tracking control results obtained by
“Controller” in “lower-layer control loop” are shown in Figures 12 and 13 and Tables 12 and 13.

Table 12. The HILS tracking control results of different algorithms for Jinpu line No.1 in Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 117,259 KJ 177.0351 s 32.947 m/s2/km
CSSO 134,845 KJ 177.1045 s 41.859 m/s2/km

dMOPSO 138,672 KJ 177.1282 s 43.578 m/s2/km

Table 13. The HILS tracking control results of different algorithms for rail transit line No.12 in
Dalian scenario.

Algorithm Energy Consumption Actual Time Comfort Level

ISSO 115,168 KJ 180.0397 s 37.027 m/s2/km
CSSO 128,122 KJ 180.0823 s 44.254 m/s2/km

dMOPSO 137,485 KJ 180.1465 s 47.966 m/s2/km

In Figures 12 and 13 (which relate to the tracking control effect of automatic train operation process
according to optimization result), the power is switched on, the pantograph is raised, the dSPACE
simulator is in the simulation state (the “dSPACE” button is pressed), the design parameters cannot
be changed (the “Design” button is white), and the circuit breaker is normally closed, which is in a
normal tracking control simulation state.

190



Energies 2020, 13, 714

Figure 12. The HILS tracking control curves of different algorithms for Jinpu line No.1 in
Dalian scenario.

Figure 13. The HILS tracking control curves of different algorithms for rail transit line No.12 in
Dalian scenario.

According to optimization simulation results of different algorithms from Tables 12 and 13,
compared with the traditional improved particle swarm optimization algorithm (dMOPSO) and
traditional improved shark smell optimization algorithm (CSSO), the corresponding tracking control
curve tracking the target velocity trajectory, obtained by improved algorithm proposed in this paper
(ISSO), has the obvious performance improvement effect, the its three indexes of energy-saving,
punctuality, and comfort have been improved considerably. As can be seen from Figures 12 and 13,
compared with the contrasted algorithms (CSSO and dMOPSO), the corresponding tracking control
curve for ISSO has better tracking control effects. As can be seen from the enlarged areas of
Figures 12 and 13, the velocity fluctuation of the velocity distance trajectory curves corresponding to
ISSO is weaker, because the target velocity trajectory obtained by ISSO was more ideal and tracking
controlled easily in the automatic train operation simulation scenarios.

To verify that the improved algorithm (ISSO) in this paper has more superiorities, such as
optimization effect, calculation speed, easily achievable in tracking control, etc., two scenarios about
rail transit line No.12 and Jinpu line No.1 in Dalian, China are chosen as optimized objects for
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ISSO and some comparison algorithms, the corresponding optimization and tracking control results
of matlab/simulation and hardware-in-the-loop simulation (HILS) as shown in Tables 4–13 and
Figures 5 and 6, and 10–13. Obviously, compared with the contrasted algorithms (CSSO and dMOPSO),
the corresponding optimization and tracking control results obtained by ISSO are more ideal. It is
indicate that ISSO is a appropriate algorithm with powerful optimization capability, so as to solving
practical automatic train operation more effectively.

5. Conclusions

Automatic train operation target velocity trajectory optimization is a very complex issue that
needs to take into account multiple objectives, and the ideal optimization solution is not easy to be
obtained. An improved multi-objective dual-population shark smell optimization algorithm using
incorporated composite angle cosine for automatic train operation velocity trajectory optimization is
proposed in this paper, and the specific advantages are described as follows.

For the multi-objective optimization problem, the evaluation index of the solution is very
important. Nonetheless, the linear weighted target belongs to the common multi-objective unified
target, and there is a problem that subjective parameters are selected blindly. In this paper,
the multi-objective angle cosine is used as evaluation index, which can effectively avoid the blind
selection of subjective parameters. To make the evaluation index more reasonable, on the basis of
the preference information, the composite angle cosine which takes into account both the preference
difference and the numerical difference is be used as the evaluation index of the solution in this paper.

Because the updating rules of velocities and positions in the SSO and PSO make all individuals
close to the extreme individuals, after a long iteration, the extreme individuals will form
a certain degree of dominance over the population, which makes it difficult to converge globally.
First, the dual-population evolution mechanism is used to jump out of the local optimum. Second,
to suppress the local convergence of optimization algorithm, it is necessary to determine accurately
whether the individual aggregation occurs in shark population. In this paper, the fusion distance can
be used to take into account the relativity and independence of speed and time, which can detect
whether there is the phenomenon of individual aggregation preciously, so the local convergence is
better suppressed. At the same time, this paper also introduces the dual-population collaborative
optimization mechanism of SSO algorithm and particle swarm algorithm to further improve the
optimization performance of the algorithm.

According to the the Matlab/simulink results and HILS results about automatic train operation
scenarios, compared with the conventional improved shark smell optimization algorithm and the
conventional improved particle swarm optimization algorithm, the improved algorithm (ISSO)
proposed in this paper improves the calculation accuracy and optimization ability of the optimization
algorithm to some extent, so that more ideal target velocity trajectory can be obtained. This clearly
shows that ISSO have been improved to a considerable extent for the automatic train operation target
velocity trajectory optimization not only in the pure software scenarios but also in the semi-physical
scenarios. As the automatic train operation HILS is close to its actual experiment, the problem that
the ISSO has worse improvement optimization effect in the actual than anticipatory could be avoid to
certain extent.
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Abbreviations

The following abbreviations are used in this manuscript:

ATO automatic train operation
HILS hardware-in-the-loop simulation
ISSO improved shark smell optimization
CSSO chaotic shark smell optimization
dMOPSO multi-objective particle swarm optimization based on decomposition
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Abstract: The focus of this article is to introduce a method for the optimization of daily activity
chains of travelers who use Electric Vehicles (EVs) in an urban environment. An approach has been
developed based on activity-based modeling and the Genetic Algorithm (GA) framework to calculate
a suitable schedule of activities, taking into account the locations of activities, modes of transport,
and the time of attendance to each activity. The priorities of the travelers concerning the spatial and
temporal flexibility were considered, as well as the constraints that are related to the limited range of
the EVs, the availability of Charging Stations (CS), and the elevation of the road network. In order
to model real travel behavior, two charging scenarios were realized. In the first case, the traveler
stays in the EV at the CS, and in the second case, the traveler leaves the EV to charge at the CS while
conducting another activity at a nearby location. Through a series of tests on synthetic activity chain
data, we proved the suitability of the method elaborated for addressing the needs of travelers and
being utilized as an optimization method for a modern Intelligent Transportation System (ITS).

Keywords: daily activity chains; electric vehicles; optimization; charging stations; intelligent
transportation systems; ITS

1. Introduction

In most urban environments, there is an ever-growing need for navigation through transportation
networks. Although more and more mobility services are offered to travelers, the complexity of their
use has risen alongisde the offer and demand for such services. Thus, the utilization of Intelligent
Transportation Systems (ITS) and the development of travel-related services have become an immense
need for the facilitation of the everyday life of citizens.

With the expected rise of the use of Electric Vehicles (EVs) all over the world [1] and the positive
impacts that they are expected to bring [2], advanced EV travel planning algorithms are now essential
more than ever [3]. Alongside the growth of EVs on global markets and the impact that they will have
on power grids, transportation networks, and the environment [4], the study for intelligent driver
assistance solutions for EV users is critical. Not only their development and availability are vital, but
also the user experience and the satisfaction of specific user preferences are two crucial points when
creating such services [5]. Nonetheless, those solutions can help to mitigate the risk of electrification of
transportation and deal with one of the enormous obstacles in EV adoption that is called range anxiety,
a term used to describe the psychological worry of EV drivers that the remaining electric energy in the
vehicle is not enough to attend their destination. While the battery capacity of the EVs is growing at a
satisfactory rate and is even expected to double until 2030 [6], it is proven that range anxiety is still
one of the most significant concerns of EV drivers and is one of the most critical obstacles towards
universal adoption and mainstream use [7]. While it has been shown that EV users that have a charger
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available at home mainly cover their needs at a satisfactory rate, for users that solely depend on public
charging infrastructure, charging can be a more challenging task [8].

Alongside the ability of those methods to address problems of EV drivers on an individual level,
they can improve the situation for the system-level [3], too. Mitigation strategies on electrification on a
regional level, as their importance as highlighted in recent articles [9], can benefit from driver assistance
ITS, since the underlying methods can be independent of the spatial-context and are reproducible over
several regions according to needs of travelers of those specific regions.

Apart from the work of Cuchý et al. [3], little research has been conducted to study the flexibility
or willingness to use travel planning services for EV drivers. However, the authors believe that based
on other previous research on other modes of transport, and mainly conventional automobiles [10],
a driver assistance system customized for EV users can be of crucial importance. This observation can
be further highlighted by other literature studies that have shown that travel patterns can vary further
when influenced by technologic systems [11]. While traveler groups’ flexibility can differ according to
age groups [12] and social characteristics [13], if the benefits acquired from the planning process are
perceived as worthy [14], benefits emerge for planning trips in pre-trip phase [15] or in real-time [16].

The goal of this research is to provide a realistic approach to the Daily Activity Chain Optimization
(DACO-EV) problem by exploiting activity-based modeling and the Genetic Algorithm (GA) framework.
While the incorporation of the EV range constraints is a significant part of our work, a particular focus
is also given to mechanisms that enable the implementation of such a system in a real-world ITS system
that will serve the travelers. Section 2 presents a literature review on related topics. Section 3 provides
a detailed description of the DACO-EV method, its parameters, and its attributes. Section 4 discusses
the implementation of the method and to provide realistic solutions to travelers. Section 5 presents the
results, including use cases. Section 6 serves as a conclusion to the article and its contribution.

2. Literature Review

To the best of our knowledge, an approach to the DACO-EV method, including enough parameters
to render its solution useful in realistic settings, does not exist in the scientific literature prior to the
publication of this article. However, insights and valuable research directions can be extracted from
articles regarding the incorporation of electromobility into transportation problems.

The activity-based analysis of transportation systems stems from the idea that the demand for
transportation between locations is interconnected with the demand for participation in some activity.
As indicated by a series of works in the literature [17–19], it has been extensively studied and used
for the analysis of travel behavior and the planning of transportation systems. Our work on the
optimization of daily activity chains falls under the umbrella of activity-based research in transportation.
Recent notable articles [20,21] show that activity-based modeling has been successfully applied to cases
where electromobility is incorporated into transportation systems. In the first paper by Dong et al. [20],
the impact of different types of deployment of charging infrastructure is analyzed in regard to the range
anxiety of EV users. An activity-based method is used to evaluate the deployments according to travel
patterns. In the work by Kontou et al. [21], activity-travel patterns from a National Household Travel
Survey data are used, in order to assess two schemes for centralized charging management of EVs, one
scheme that regards preferences of individuals and another that considers the government perspective.
The results indicate the differing nature of the interests of those two stakeholders, and confirm that the
availability of charging stations at the workplace can greatly affect the charging profiles of EV travelers.
The latter observation is one of great importance that can be found in other studies [8], too.

In regard to the problem of Daily Activity Chains Optimization (DACO), the basic instance
of DACO-EV, it has been previously addressed in the literature, and a GA approach has been
introduced [22,23]. Charypar et al. [24] have addressed a similar problem and introduced a similar
solution approach. The authors have considered several simplifications, such as the computation
of distances according to geometric distance and not based on the real transportation network.
Another similar work was conducted by Abbaspour et al. [25], where the authors tackled the
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same problem but had a specific focus on the touristic aspect of the optimization of activity chains.
Although the aforementioned papers regard heuristic optimization methods that have been developed
to solve the DACO problem, different modelings could also be considered. A modern approach was
presented by Liao et al. [26], who modeled the problem as a graph super-network. They included
space-time constraints to enable the valid selection of locations for activities in time, multi-modal
transport options and modeled the parking choice. While their activity-travel scheduling algorithm
computes the final solutions to the problem in minimal time, in the scheduling problem and the
modeling, the priorities and the flexibilities of the travelers are not included, like in the case of DACO.

There is a lack of exact optimization approaches for the DACO or DACO-EV in the literature.
Exact optimization methods, where the gap between the solution calculated and the globally optimal
solution of the problem is zero, are based on mathematical models of the transportation problem.
Although exact approaches tend to provide better solutions in terms of reduction of cost according
to criteria, they cannot yield solutions in the amount of time that heuristics can, and usually take
much more time to complete the calculations. Works can be found in the literature where routing in
multi-modal networks has been addressed with exact approaches [27,28].

One motivation for the extension of our method was to provide an efficient tool dealing with the
range anxiety of EV drivers in urban environments. Range anxiety is one of the main bottlenecks of EV
adoption and affects both inner-city and inter-city trips. Many studies [29] exist in the literature that
addressed this topic and provided useful insights regarding key factors that can evaluate its effect and
help deal with it. Although technology, and its advancement, is one of the main ways to deal with
range anxiety, other key factors are considered as important for the medium-term horizon, such as
battery costs, coverage of the charging stations network and CO2 vehicle standards [7]. Range anxiety
has also been studied in the context of daily schedules by Neubauer et al. [8]. Significant findings in
their studies showed that workplace charging could play an essential role in promoting the utility
of EVs for high mileage commuters. Additionally, the broadly available charging infrastructure has
been shown to be important to both high and low mileage commuters. Range anxiety importance has
also been shown in computational studies that discussed its relationship with the CS network. In the
work by Guo et al. [30], the battery charging station location problem was addressed where range
anxiety and distance convenience were taken into account. While the KSIGALNS algorithm that they
developed to solve their bi-level integer programming model was proven to be very effective compared
to standard and previous solutions approaches, the analysis of range anxiety as a parameter shows
that it is an essential factor to the location strategy of the CS network. Other interesting computational
studies exist in the context of range anxiety, such as the one by Esmaili et al. [31], where the authors
examine EVs as distributed energy storage units and their potential contribution to microgrids when
vehicle-to-grid service is considered. An interesting result that emerges from the solution of their
Mixed-Integer Linear Programming (MILP) model is that when range anxiety, as modelled in their
mathematical optimization program, is in higher levels, then the average State of Charge of the EV
drivers rises and, as a result, the total cost of the microgrid is higher, too.

Range anxiety, however, is a phenomenon that is being progressively dealt with on both a personal
and systemic level. It is more evident than ever that not all EVs are the same regarding experiencing
range anxiety [32]. There are observations that range anxiety is minimally experienced by users of
specific types of EVs in specific regions, such as in the study by Gorenflo et al. [33], in which, their
analysis of the e-bike usage and battery charging data supports that range anxiety does not exist among
the participants of the survey. Finally, in order to underline the importance of guidance systems, like
the one presented in this paper, we further present the study of Cuchý et al. [3]. In their work, they
were able to evaluate multi-destination transportation scenarios according to single-user perspective
and infrastructure perspective by using AgentPolis simulation framework. Except for the obvious
benefits for EV users, they showed that when users plan their mobility up-front, the total utilization of
infrastructure can increase by more than 100%.
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Particular focus was given to articles dealing with EV routing and the parameters that were
considered when it comes to the range that vehicles can cover. Extensive work on the subject has been
conducted by the team of Baum. Notably, in work conducted in 2013 [34], they extended their algorithm,
named Customizable Route Planning (CRP), to calculate fast queries on graphs that are suited to
Electric Vehicles (EV). Their goal was to calculate energy optimal routes, where several parameters can
be included, such as the recuperation of the electric vehicle, the battery capacity constraints, and the
dynamic behavior in energy consumption of the vehicle. In their next work conducted in 2016 [35], they
proposed a framework with a more holistic approach to the problem, where parameters are included,
such as the use and location of charging stations, turn costs, and the adjustment of speed in order
to save energy. In their work conducted in 2015 [36], they introduced an approach named CHArge,
which solves the EV routing problem in realistic settings. They discussed the properties of charging
functions, which are used to map an initial State of Charge (SoC) and the duration of charging sessions
with a resulting SoC. The works by Baum et al. [34–36], are very close to our approach in terms of
methods and calculation mechanisms that were used to deal with the incorporation of electromobility.
Additionally, useful information about the charging network, charging sessions, plugs, and strategies
were also extracted from the work of Moghaddass et al. [37].

There is a series of articles that are connected to our work since they address the optimization of
activity chains considering the use of EVs. The work of Liao et al. [38] is very close to our approach,
but they do not solve the same problem. The authors provide modeling and solution to the EV shortest
travel time path problem and the fixed tour EV touring problem. They consider a battery swap system
for the touring problem, where two cases are discussed: the on-site station model, where each city is
considered as a swapping station, and the off-site model, where the swapping station is further away
from the city. Although their approach addresses a similar problem to ours, the presented work is not
directly linked to a real-world application. In the works of Cuchý et al. [39,40], the authors tackled the
Whole Day Mobility Planning with Electric Vehicles (WDMEV) problem and modeled it according to
graph theory. The definition of the problem is similar to DACO-EV, but the authors included fewer
parameters than in our problem definition. They did not include the priorities of the travelers, and they
are neglecting the time windows of the desired attendance of the traveler. Furthermore, the authors
did not include in the models the consumption according to Worldwide Harmonized Light Vehicle Test
Procedure (WLTP), different EV models, and it is not clear if they consider the charging connector types.
In the modeling, the overall weight of the vehicle and the option to have a final desired amount of
energy in the battery when the tour ends were not included. Finally, the availability of the chargers was
not taken into account in the calculation of the routes, but they considered waiting time at Charging
Station (CS) according to randomly parameterized models. The aforementioned parameters may lead
to very different solutions spaces and computational results, so the two problems and methods cannot
be directly compared.

Overall, the main contribution of this article lies in the elaboration of a method that addresses
the DACO-EV problem, including all the necessary parameters that allow the solution of the problem
to be personalized to the specific needs of travelers, and enabling the use of the method in realistic
settings. The method includes:

• Consumption calculation mechanisms of the EV according to the features of the road network
and the EV market model (battery capacity, weight, charging rate, charging plug, WLTP ratings).

• The Starting State of Charge (SSoC) and the desired Final Stage of Charge (FSoC) of the EV used
by the traveler.

• A real charging stations network and the availability of those charging stations based on past
usage data.

• Two charging scenarios in order to further model realistic travel behavior.
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3. Method Description

3.1. Parameters of the DACO-EV

The DACO-EV method incorporates the use of an EV; therefore, it requires modeling of the
constraints regarding the energy equilibrium that takes place in the energy storage mechanism of
the car while visiting several locations. Because EVs are still in an early phase in their adoption by
the public, the available charging facilities are not always optimally distributed, and the minimum
distance between available charging points can reach up to several kilometers depending on the type
of road network [41]; this situation renders a demanding reality for EV drivers that need to utilize the
public charging network to cover their charging needs. The extra parameters that affect this energy
equilibrium can be grouped into three major categories, such as vehicle design, driver behavior, and the
environment [42]. In our attempt to provide a realistic and practical method for the elaboration of
meaningful solutions to the EV drivers, we have included several of those parameters, while we
ignored others of lesser importance.

The problem and the elaborated method are based on three sets of parameters. The first set
is defined by the traveler and refers to his or her schedule and overall preferences concerning the
activities. The second group of parameters is about the constraints related to electromobility when the
traveler utilizes an EV. The third set consists of the parameters that do not depend on the user and
refer to the existing network, the timeframe of operation of facilities and services. Table 1 refers to the
parameters that are set by the traveler.

Table 1. The first group of parameters.

Parameter Description

Starting time of the tour Earliest time in the day when the first trip to the first activity can begin.
Solutions that start earlier than this time are considered infeasible.

Ending time of the tour Latest time in the day when the traveler can arrive at the ending
(final) activity.

The starting position of the traveler The starting location of the tour. Commonly it is also the ending position of
the tour and is associated with the traveler’s home.

The ending position of the traveler The ending location of the tour.

Activities and their type
This parameter refers to the types of activities that need to be conducted.

The type can be chosen from a predefined list (e.g., bank, restaurant,
hairdresser, bakery).

Locations of the activities Defines which are the locations that the traveler would like to conduct
each activity.

Processing time at each activity This parameter is used to specify how much time is needed for the traveler
to conduct each activity.

Priorities of the activities
The traveler specifies the level of flexibility for each activity. It can be
spatially and temporally fixed, only spatially flexible, only temporally

flexible, or flexible.

Desired earliest start time for each activity The traveler must specify when the preferred time for each activity to
start is.

Desired latest end time for each activity The traveler must specify when the preferred time for each activity to end is.

Used EV model

By having specified the manufacturer and the model of EV that is used by
the traveler, we can utilize the information about several aspects of the
vehicle. The range and the possible charging locations of the EV are the
most important of those aspects (if the mode of transport used is EV).

Starting State of Charge (SSoC) The energy level of the battery at the start of the tour (if the mode of
transport used is EV).

Final State of Charge (FSoC) The desired energy level of the battery at the end of the tour (if the mode of
transport used is EV).
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Particular emphasis should be put on the second group of parameters about the EV and its use.
Since the traveler specifies the used EV model, the parameters of this second group can be considered
as sub-parameters of the first group (Table 2).

Table 2. The second group of parameters concerning the characteristics of the Electric Vehicle (EV).

Parameter Description

The capacity of the battery of the EV Also referred to as usable battery capacity, which is the
maximum amount of energy that can be stored in the vehicle.

Plug type of the EV The type of plug that the vehicle uses for charging.

The consumption rate of the EV
The consumption rate of energy is a function of the vehicle
speed and the use of auxiliaries. This rate can be extracted

from an EV database.

Charging rate of the EV The time needed to reach the desired energy levels while
charging. This rate can also be extracted from an EV database.

Energy recuperation The EV can recharge its battery while braking, especially when
the path to be followed is a downhill road.

Vehicle weight
The weight of the vehicle plays a vital role in how much energy
is consumed, especially in cases where the tour includes gains

or losses of elevation.

Finally, there is the third group of parameters that are needed for the problem to be fully described.
Those parameters are not defined for each passenger, but instead, they are specified for the network,
the modes of transport, and the types of activities available. They can also be described as the static
parameters of the DACO-EV problem (Table 3).

Table 3. The third group of parameters that are independent of the user’s input.

Parameter Description

Network topology
The transportation network that is connecting the available
locations for each type of activity. The elevation of the road

segments is considered part of this parameter.

Alternative locations and Time-windows
Locations of facilities of activities, time-windows of operation
of the facilities, and types of activities that can be conducted at

each location.

Charging stations network Locations of charging points and types of chargers available at
each point.

Availability of charging points Availability of charging stations as calculated by past
usage data.

3.2. Degrees of Freedom of the Problem and Decision Variables of the Solution

At this point, we should make a reference to the decision variables of the DACO-EV that fully
define a solution for the travelers. Those decision variables are essential for the modeling as they will
form the chromosomes of the solution encoding of the Genetic Algorithm. In Table 4, the decision
variables and their descriptions are provided.

All of the aforementioned variables (ones included in Table 4) are the independent variables of
the problem. By deciding on the order, the locations, the time windows of attendance, the modes of
transport, and the charging time, we decide on a specific way that the first tour changes and gets
optimized. Of course, that information is not enough in order to fully articulate a meaningful solution
for a traveler in a human-readable format. From the independent variables, we can extract a series of
information, such as exact paths to be followed in between activities, battery power after the visits at
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each of the locations, starting and ending time of the whole tour, travel time of the tour, starting and
final state of charge of the EV.

Table 4. Decision variables of DACO-EV.

Decision Variables Description

Order of the activities in the chain The order of the activities in the tour in relation to their
initial order.

Locations of activities
The traveler can conduct the same activity at multiple locations.

This variable refers to one of the available locations that have been
chosen for a specific solution.

Time windows of attendance to
each activity

This variable is used to specify the arrival and departure of the
traveler to the activity.

Charging time, charging station and
subtour information

This variable is a set of quantities that contains all the information
that regards the subtour for charging if one is included.

3.3. Charging Scenarios

To fully cover the description of the DACO-EV problem, we also need to deal with the possible
types of charging. As a first charging scenario, we consider the case where the EV users want to charge
their vehicle at a CS, and they want to conduct one of their activities at another location. This is called
the en passant charging scenario. Usually, it can occur when a charger and a location for an activity are
close to each other, and the user can just walk a few hundred meters to the facility and back to the
charging station after completing the activity. As a second charging scenario, the classic scenario of
charging is included, where the traveler again deviates from the first tour and embarks on a subtour to
a CS, but in this case, he or she just waits in the car until the charging is finished.

First, we provide a graphical example of the classic charging scenario of the DACO-EV (Figure 1).
Given a set of five initial activities, the activity chain is optimized. For simplicity reasons, we only
provide an optimized tour where nothing changes in the spatial context except for the inclusion of
a charging session. The charging station is indicated by the blue circle, which is a new activity in
the chain.

Figure 1. The classic charging scenario of the DACO-EV problem.

In Figure 2, present the en passant charging scenario of the DACO-EV. The charging detour happens
between Activities 4 and 5, and the transfers from the CS to the location of Activity 5 are represented
by the dotted lines. In this case, the EV remains at the CS, while the user processes Activity 5 using
another mode of transportation (e.g., walking).
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Figure 2. The en passant charging scenario of the DACO-EV problem.

3.4. Optimization Method

The method is based on a Genetic Algorithm (GA) that iteratively solves the Travelling Salesman
Problem with Time-Windows (TSP-TW) for different combinations of the characteristics of the possible
solutions and evaluates each of them according to several criteria. The efficiency of the proposed
method has been previously tested and proved for the primary instance of the problem in the articles
by Esztergár-Kiss et al. [22,23]. After running the algorithm for several iterations, a more optimal
solution for the initial schedule and the preferences of the traveler is derived. In the algorithm, we
make sure that after the traveler executes the tour suggested, and given the EV usage constraints,
the EV has the desired FSoC when it reaches home.

By defining the properties (i.e., decision variables) of an individual (i.e., candidate solution) of the
problem, we can form the populations of solutions in the solution space. Then the genetic operators of
selection, mutation, and crossover are utilized to search the available space of solutions and derive the
ones that are more suitable for each case of traveler. Except for the genetic operators that have been
used, and according to GA literature [43], the method is characterized by a set of parameters, such as:

• Population size—Number of solutions initially created at the solution space initialization phase
and kept by the selection operator at the end of each iteration of the algorithm. The population
size that was selected for the solution of the DACO-EV is 30 individuals.

• Base mutation probability—Defines how much we want to search for solutions with totally new
attributes compared to an initial population of solutions. The mutation probability that was
selected is 20%.

• Crossover probability—Defines how many new solutions (i.e., individuals) are produced at each
iteration of the algorithm based on previous populations. The crossover probability that was
selected for the efficient solution of the problem is 10%.

• Generations—Defines the iterations of the GA algorithm that run until we get a final solution.
No other termination criterion is used for the algorithm, which means the number of generations,
will define the final optimality gap of the solution calculated by the run of the algorithm.
The number of generations until a more optimal solution is calculated for the traveler is 30.
The number of generations for this algorithm can vary according to if pre-optimization techniques
are applied to the solution approach or not.

3.4.1. The Genetic Algorithm

Although the GA framework contains more or less standard data structures, functions,
and operations utilized for each application, it was considered appropriate that a more formal
specification of the algorithm is presented. This algorithm describes how temporal and spatial
flexibility were handled and includes several technical details in order to enable its reproduction.
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Algorithm 1 A genetic algorithm for addressing the DACO-EV problem

Input: Parameters for the execution of the GA, Parameters of the problem
Output: The solution of the problem: an optimal schedule for the traveler
Steps:

1: Read the data and the parameters, create appropriate data structures;
2: Initialize a population of feasible solutions (i.e., individuals) for the DACO-EV problem;
3: For generation i in the range [0, generations):

3.1: Apply the crossover operator between the individuals of generation i;
3.2: Apply the mutation operator to the individuals of generation i;

3.2.1: Stochastically swap the order of two activities in any individual;
3.2.2: If there is a spatially flexible activity, then stochastically change its location to a new suitable location;
3.2.3: If an EV is used and if the SoC at the final location is not at the desired level, or a negative number at

any point in the tour, add a detour at a random CS. If the detour exists, stochastically change the
location of the CS in the tour;

3.3: Calculate the distances matrix (and the kilometric distances, elevation gained, and elevation lost
matrices if needed) for the locations involved in the individuals of generation i; Normalize the
attributes (calculate time-windows, battery power at each activity/location) of the individuals
according to the order of the activities and the detour;

3.4: Evaluate all individuals according to the fitness function;
3.4.1: Label as infeasible all individuals who do not satisfy the temporal constraints;
3.4.2: Label as infeasible all individuals who do not satisfy the priorities’ constraints;
3.4.3: Label as infeasible all individuals who do not satisfy the energy equilibrium. Apply Scaled Ranking of

infeasible solutions;
3.4.4: If an EV is used, label infeasible all individuals who include CS which are unlikely to be available

(As described in Section 4.3. Availability of Charging Stations) ;
3.5: Select the individuals with the best fitness to form a population and reproduce in the next generation;

4: Select the individual with the best fitness from the population of the final generation;
5: End of the algorithm.

3.4.2. Fitness Function and Optimization Criteria

For the efficient solution of the DACO-EV, several criteria have been considered. While most
of them regard travel time, whose reduction has been our primary aim, a few more criteria were
considered as important to include. The method is capable of handling five criteria. They were
weighted by the corresponding parameters a, b, c, d, e to create an efficient multi-criteria fitness function
for the problem.

U(X) = (a ∗ TT) + (b ∗ TTST) + (c ∗AT) + (d ∗WT) + (e ∗CT) (1)

Fitness function U has been applied to every candidate solution X that has been calculated by
the genetic algorithm. This evaluation, as indicated in the algorithm at Step 3.4, was applied to each
potential solution, when not infeasible, and has been utilized to label and prioritize according to
the potential needs of travelers. For the first criterion, TT, its actual value is given in regard to the
time that the user has spent traveling within his or her tour. The second criterion, the Travel Time
in the Subtour (TTST), regards travel time only in the charging subtour. This specific type of travel
time has been calculated as an extra variable, in order to be able to be separately included in cases,
where the effect of the subtour needs to be minimized in the overall solutions. Arrival Time (AT) at
the final destination is also another criterion considered that can be essential for some users, as well
as, the Walking Time(WT), when it occurs in the sub-tour for charging, and the en-passant scenario.
Finally, Charging Time (CT) has been additionally considered as an extra criterion, and has been added
to the function as a possibility for optimization. The reason for including all five criteria was to provide
a robust optimization approach that is applicable to a wide set of real-world applications. While usage
of the method is independent of spatial context, the potential needs of travelers vary across different
cities, countries, and the available charging stations network.
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For the values of the parameters a, b, c, d, e, different solutions are derived. The proper choice of
the values is of great importance to the type of solutions that will be calculated. A sensitivity analysis
of the effect of the parameters on the solutions produced is one of the future steps to take in order to
assure suitable performance for each real-world case (i.e., region of application) and understand the
effect of each criterion on the activity chain.

4. Implementation of the Method

For the efficient functioning of a modern application that will support the travelers in their
daily commutes, the implementation of the method has been realized. Because of the complexity of
the problem addressed and the vast amount of calculations needed, a series of heuristic rules were
applied to the method in order to direct the search of the solution space and yield meaningful results
within realistic computation times. This addition to the method is called the pre-optimization phase,
which creates a smaller solution space for the algorithm to search. However, in this paper, we focus on
the charging related functions of the method.

For the implementation of the method, Python programming language was utilized. Data from
OpenStreetMap and Geofabrik [44] was used for establishing the road network, OpenTripPlanner (OTP)
engine [45], was the primary tool for the calculation of road distances and routes, and calculations
for the availability of CS were conducted based on data from e-MOBI [46] about the charger network.
The chargers based on which the availability was calculated were 89. Elevation data are taken from
NASA’s Shuttle Radar Topography Mission (SRTM). Regarding the EV model used, the traveler is
allowed to enter the vehicle that he or she is going to use, and we were able to extract the properties
(battery capacity, available plug types, consumption according to WLTP, vehicle weight) of each
vehicle from an electric vehicle database [47]. A simplification was made regarding the charging rate,
which was considered according to the available plug types at both the charging station and the EV.
A matchmaking mechanism was developed to match EVs with fast charging plugs if they are likely to
be available, or with standard charging plugs, otherwise. Regarding the priorities of the travelers, we
included them in four levels which are described in Table 5:

Table 5. Priorities of the travelers considered.

Priority Label Priority Label Description Spatial Flexibility Temporal Flexibility

1 Totally fixed × ×
2 Spatially flexible

√ ×
3 Temporally flexible × √
4 Totally flexible

√ √

When an activity is assigned with Priority Label 1, it means that the traveler considers this activity
as both spatially and temporally fixed. Priority Label 2 is assigned by the travelers to activities that are
spatially flexible, which means they can be conducted at several locations, but temporally not, meaning
that the algorithm is bound to calculate the visit within the desired time windows. With Priority
Label 3, the traveler indicates that the activity must be conducted at the provided location, but it can
happen in any time-window within the day. Oppositely to Priority Label 1, Priority Label 4, is the
case where the traveler indicates that the activity is totally flexible, which means that it can be both
conducted in another location (providing the same type of service) and at any time (within the overall
timeframe of the user and the operating hours of venues and shops).

Before actually providing information about the implementation of the GA and its mechanisms
that allow the effective solution of the DACO-EV, an overview of the work is presented in Figure 3
that depicts the method, its parameters, external tools, and data used. On the one hand, the traveler
provides an initial activity chain and information about his or her preferences by setting the first,
and thus the second, group of parameters. On the other hand, the third group of parameters provide
external information, such as the network topology (road network and elevation), the electric vehicle
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database for consumption calculations, and the alternative activities’ location database for calculating
the optimized activity chain by examining the full spectrum of the spatial possibilities for the activity
chain. Finally, based on the charging station usage data and other related information to the CS (i.e.,
charging stations database), the availability of charging stations was calculated using data mining
techniques. Before using the heuristic optimization model, a pre-optimization is performed, and the
routing engine is used to calculate optimal routes between activity locations. As a result, the genetic
algorithm calculates optimized activity chains for users.

 

Figure 3. The method elaborated.

4.1. Explanation of the Pre-Optimization Phase

The pre-optimization of each solution is a useful tool that can help make the GA approach more
efficient. In the context of this work, several techniques were implemented in order to make the GA
compute better results faster. The pre-optimization phase aims at reducing the initial solution space of
the algorithm, which is created every time that an instance of the problem is created according to the
static and dynamic parameters of the problem, from a generalized vast solution space to, what one can
call, a personalized solution space.

The personalized network is achieved by deciding on some aspects of the solution before triggering
the actual search for the optimal solution, thus creating a smaller solution space. It considers the
activities with spatially fixed priorities to serve as gravity points for the optimization procedure.
More specifically, after the traveler provides the input of the preferences, we have an initial set of
choices that the traveler initially intends to follow. This cutting of the solution space happens around
the locations of activities that the travelers consider as totally or spatially fixed. This creates a subset of
alternative locations of activities and charging stations. Then this subset of the initial space is searched
with the GA in the main optimization phase.

For example, if an activity is fixed (Priority Label 1) in the search for an optimal solution, all other
temporal and spatial choices concerning this activity can be ignored. In the same way, if the activity is
temporally fixed, we include all alternative facilities (locations), but we do not permit the algorithm to
search outside the time windows specified by the traveler. If the activity is spatially fixed, then we
cut out the parts of the solution space that has to do with other location of facilities for the activity,
and we only allow the algorithm to search for different time windows. If we have the fourth case of
total flexibility, then we have to search both for alternative facilities and time windows of attendance,
and we cannot pre-optimize.
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4.2. Calculation of the Charging Time and Deciding the Charging Scenario

Charging time is a deterministic variable and a function of the rest of the attributes. The amount
of time spent at the CS is calculated with a forward lookup of the energy requirements of the EV
to cover the full tour. This calculation occurs by comparing the SSoC, the FSoC, and the remaining
energy in the battery of the vehicle at every location. The candidate solutions (i.e., individuals) to the
problem fully describe the locations to visit and the order of attendance to the activities. From those
two attributes, we can extract the exact routes between locations of activities, as well as the kilometric
distance, elevation gained and lost, and charging time at the CS.

Several aspects of the detour are modeled as independent variables and can stochastically change.
Thus, we included a heuristic rule in the solution process that further directs our search. This rule
defines that if the CS is within a direct distance K from the location of the activity after the trip to
the CS, then the charging scenario is set to en passant charging scenario. When the CS is at a direct
distance greater than K, then the charging scenario is set to a classic charging scenario. By setting K to
the appropriate value, the algorithm can lead to better solutions by avoiding assigning the en passant
scenario to cases where the location of the CS is too far away from the next location of the activity.
The values of K can vary according to what modes are included and are available in the detour when
the EV is left for charging. In our implementation, we only added walking mode for the en passant
scenario, and we have noticed that the implementation yields satisfying results for the values of 800 to
1000 m for urban environments.

In the cases where the solution gets mutated to include the detour right at the end of the tour
before the traveler goes to the desired final destination, the charging scenario is always set to the classic
charging scenario. In Figure 4, a combination is given, where the heuristic rule is applied, and charging
station A is utilized with the en passant scenario, while charging station B is utilized with the classic
charging scenario. For the optimization of this initial activity chain (i.e., green markers), charging
stations that fall within a distance K from the location of Activity 5, can be utilized under the en passant
scenario (dotted lines) since the walking distance is considered walkable. Otherwise, the algorithm
sets the charging method to the classic charging scenario.

Figure 4. The difference between the classic and the en passant charging scenarios, and the role of
distance K.

4.3. Availability of Charging Stations

Regarding the availability of charging stations, a method has been elaborated in order to incorporate
this parameter of the problem. We used the data provided by e-Mobi [46], which is the organization
responsible for e-mobility investments (especially for deploying charging stations) in Hungary, to
derive a suitable metrics that could be included in the optimization of the DACO-EV problem for
travelers in Budapest. The dataset provided information about the names, locations, and plug types of
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chargers in Budapest. Furthermore, we had a list of charging sessions for those chargers that happened
between the 23rd of February 2018 and the 12th of February 2019. For this period, we applied data
mining techniques to derive average statistical properties that lead to a percentage of the occupation,
in similar terms, probability for the charger to be occupied for each hour of a day. If the charger was
occupied for 20 min on average in a specific hour in the examined period, then it was assumed that
this charger was occupied for 33.33% on average.

These statistics were included in the method for the optimization of the DACO-EV. The main
component of the method that was utilized for including the availability of CS was the evaluation
operator of the GA. Every time we needed to evaluate a solution that emerged from the mutation
and crossover operators of the GA, we applied the evaluation operator and checked whether the CS
included in the solution is likely to be occupied. We aimed to prioritize solutions in the population
that include chargers that are less likely to be occupied. The prioritization occurs only by labeling the
solutions, and the corresponding charger as feasible or infeasible. Other than that, the percentage to be
occupied did not have any impact on the fitness function and did not change its value. In order to
avoid empirical bias in how the solutions get labeled, we implemented a labeling mechanism based
on stochasticity. The method produced a random percentage in the positive continuous set of [0,100],
and if that random percentage was lower than the calculated percentage of the occupation, then the
solution was marked infeasible. In that regard, CS, whose rate of occupation was high were more
likely to be labeled as infeasible and were not included in the population of solutions.

In Figure 5, we provide example graphs for the availability of Charging Stations (CS) as calculated
by the method. The percentage of occupation for four random CS in Budapest can be seen for 24 h.
The percentage of hourly occupation can significantly vary between the chargers. In the case of CS 1
and CS 3, nearly 0% occupancy rate can be derived, while in the case of CS 2 and CS 4, the occupancy
rate reaches almost 50% in the morning hours.

Figure 5. Examples of the availability of charging stations throughout the day.

As a future step of the data mining method for the calculation of the availability of charging
stations, we would include a calculation of the rate of occupation also according to the day of the week.
A more enormous dataset than the one available would be more suitable for this kind of extension.
For example, this extension would help the method performing better on special days like weekends,
where the availability may be different from weekdays.
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4.4. Energy Consumption Model and the Incorporation of Elevation

The incorporation of elevation of the road segments was a significant part of our work, and it was
based on several articles [48–51], with the work of Fišer [52] being a vital starting point to our work.
In his thesis, he proposed an Approximated Consumption Function:

g(e, m) =

{
κ·δ(e) + λ·Δeleve, i f Δeleve ≥ 0
κ·δ(e) + a·Δeleve, otherwise

(2)

where g is the consumption function, δ is a function that assigns a distance to an edge, e and m are the
edge traversed and the EV model correspondingly, Δeleve is the difference in elevation from the start
of the edge u to end of it, v. Furthermore, κ, λ, and a are tuning constraints through which we can
control the values of function g in order to yield realistic results. However, to cover the needs of our
more practical approach, we moved on to introduce the Practical Consumption Function, which can be
described by the following equation:

g(e, m) =

{
ConsWLTPe,m + coe f fuphill ∗ (m ∗ g ∗Δeleve), i f Δeleve ≥ 0
ConsWLTPe,m − coe f fdownhill ∗ (m ∗ g ∗Δeleve), otherwise

(3)

where ConsWLTP is the consumption according to EV model and the WLTP standard, and the Electric
Vehicle database [47]. The reason for using coeffuphill and coeffdownhill is to emulate the performance of
the motor of the vehicle when going uphill and the performance of the recuperation system going
downwards. The energy recuperated while braking on a flat road is ignored. In comparison to
other approximation functions used for considering the consumption for EV routing, our Practical
Consumption Function avoids using further tuning parameters and includes the actual interchange
between the potential and kinetic energy of the vehicle. Nonetheless, the results derived from our
Practical Consumption Function are realistic and very close to findings reported in the literature of EV
routing. The incorporation of more advanced formulas like ones presented in [53,54] our method can
be considered as the next step in our research.

In order to provide the necessary background for the use of the Practical Consumption Function,
the data for the distance and elevation are derived from the OpenTripPlanner API, which bases
its calculations on OpenStreetMap data for the road network and SRTM data for the elevation.
The aim of this model is not to introduce an EV consumption calculation model as compared to
recent approaches [53,54], but to provide a mechanism for our method calculating meaningful
results considering limited computation times. The model itself is based on WLTP standard for
the consumption of EV models that already includes several parameters and laboratory tests and is
only extended to include the effect of elevation, for the road segments traversed in the tour of the
traveler. The consideration of more complex approaches are not necessary and not within the scope of
this research.

5. Results

5.1. Use Cases

The experiments were run on ten instances of problems, where the solution space can significantly
differ according to different preferences of the user. While one traveler may need to attend a set of fixed
activities, another may be flexible concerning the locations of the activities or the temporal schedule
of the activities. This means that the first traveler’s initial schedule and preferences would not allow
the method to search for alternatives since there is no flexibility concerning the schedule, while the
second traveler’s preferences would enable the method to search through a vast solution space for
other options.

For all of the cases used for our tests, the activity chains contained at minimum one out-of-the-house
activity and at maximum four out-of-the-house activities. For the first six instances of problems, cases 1
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to 6, we considered synthetic cases of the problem, where the locations, types of activities, and flexibility
were based on real activity chains of travelers, but also randomized in some of their attributes to a
certain degree. For the rest of the examined cases, cases 7 to 10, we kept the set of locations and types
of activities the same as in case 6, and then we included potential combinations of flexibility flags.
We consider cases 1 to 6 the balanced cases, which could be input from real-world travelers, and cases 7
to 10, the extreme cases where the computational limits of the algorithm are tested.

In our use cases for the DACO-EV, the same vehicle was considered, and the SSoC was set to a
medium-range percentage while the FSoC was required to be at a higher percentage than the SSoC,
which means that a detour for charging is needed in all cases of problems displayed. For the results
presented, and regarding case-specific characteristics, and the results presented below, for the provided
instance of tests, for cases 1, 2, and 5 to 10 we have four out-of-the-house activities, whereas for cases 3
and 4, three out-of-the-house activities were conducted. Finally, let us state that the results provided
here are calculated based on one of the criteria that are available in the method described and in
Section 3.4.2, that of travel time. Thus, the parameters in the fitness function are all set to 0 except for
parameter a that is set equal to 1.

5.2. DACO-EV Results

The results for the evaluation of the performance of the method in addressing the DACO-EV
problems are presented. The performance of the algorithm is compared in regard to the travel
time in the initial activity chain of the travelers and the resulting activity chain in both cases when
precomputation is applied and when not, are given. The columns of the tables are the following:

• Initial time: Average travel time of the initial tour of the traveler (min)
• Opt. time (no pre): Average travel time for an optimized tour (without precomputation applied to

the solution process) (min)
• Subtour (no pre): Average travel time in the subtour for a DACO-EV tour (without precomputation

applied to the solution process) (min)
• Comp. time (no pre): Average computation time for the optimization of a tour (without

precomputation applied to the solution process) (s)
• Opt. time (pre): Average travel time for an optimized tour (with precomputation applied to the

solution process) (min)
• Subtour (pre): Average travel time in the subtour for a DACO-EV tour (with precomputation

applied to the solution process) (min)
• Comp. time (pre): Average computation time for the optimization of a tour (with precomputation

applied to the solution process) (min)

In Table 6, the results addressing the several cases of experiments are presented.

Table 6. Comparisons for the runs addressing the DACO-EV—effect of precomputation on solutions
and computation time.

Initial
Time
(Min)

Opt. Time
(No Pre)

(Min)

Subtour
(No Pre)

(Min)

Comp.
Time

(No Pre) (s)

Opt. Time
(Pre)

(Min)

Subtour
(Pre)

(Min)

Comp.
Time (Pre)

(s)

Case 1 32.61 57.79 30.19 59.25 38.11 23.57 14.28
Case 2 79.60 85.62 33.5 72.56 75.79 21.37 24.41
Case 3 70.75 66.73 27.23 85.53 55.37 13.83 17.59
Case 4 67.28 65.73 28.81 25.49 59.27 22.94 13.94
Case 5 81.28 85.33 39.82 110.43 75.64 33.95 19.89
Case 6 79.98 74.82 28.71 105.05 62.35 10.36 26.95
Case 7 79.98 81.15 26.38 35.48 80.72 24.34 20.50
Case 8 79.98 87.32 35.04 67.42 31.57 15.6 41.85
Case 9 79.98 81.67 30.86 37.65 76.03 25.19 18.81
Case 10 79.98 77.77 31.52 303.78 28.43 9.74 51.68

211



Energies 2020, 13, 906

It can be stated that the developed approach provides appropriate results that can serve EV
drivers in their daily commutes. On the one hand, the overall travel time gets optimized(travel time for
attending activities plus travel time in the introduced subtour), while the computation times remain at
acceptable levels for a driver assistance system, that can be run by the driver for a few seconds in his or
her pre-trip planning phase.

The optimized overall travel time is not reduced in all cases. This is because for the tests that we
have run, in which charging is required because of the SSoC and FSoC levels, an extra charging activity
or charging session was added. Although activity chains are optimized to reduce travel time, in some
cases (e.g., cases 1 and 2), the travel time is raised. When precomputation is applied, the algorithm
still finds only a solution with more travel time than the initial one (e.g., case 1), but it can calculate
solutions that have less travel time than the initial one (e.g., case 2). It can be noticed that the travel
time for the subtour, which, in most cases, is a big part of the overall travel time. A positive observation
is that the computation time in balanced cases was 19.51 seconds(s) on average, which is a reasonable
solution time if the method can be possibly reproduced to serve real travelers in their daily lives.

In Figures 6 and 7, and Tables 7 and 8, we present an instance of case 3 in more detail to show
how an activity chain of the traveler is initially set and how it can change after applying our algorithm.
In Figure 6, we can see the initial activity chain, and in Figure 7, we can see how the algorithm produces
an optimal activity chain. The travel time of the tour depicted in Figure 6 is 70.75 minutes (min), while
the tour depicted in Figure 7 takes 55.37 min. The figures present the spatial aspects of the initial and
optimized activity chain, and the tables present the temporal attributes of the two activity chains.

 

Figure 6. Initial activity chain of the traveler for case 3.

 

Figure 7. Optimized activity chain of the traveler for case 3.
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Table 7. Part of the input of the traveler regarding the spatial and temporal aspect of activities.

Activity Order
Type of
Activity

Processing
Time

Priority Label
Demand Time

Start
Demand Time

Close

Start Home 0 1 480 480
1 University 480 1 540 1020
2 Burger Place 30 4 1060 1090
3 Coffee Shop 20 2 1170 1190

End Home 0 3 1440 1440

Table 8. Attributes of the solution regarding the visits to the activities.

Activity Order Type of Activity
Processing

Time
Priority
Label

Time of
Attendance Start

Time of
Attendance Close

Start Home 0 1 480 480
1 University 480 1 540 1020
2 Burger Place 30 4 1024.37 1054.37

CS Charging Station 97.2 − 1064.57 1161.77
3 Coffee Shop 20 2 1170 1190

End Home 0 1 1201.3 1201.3

Regarding the initial activity chain of the traveler, it can be noticed that it includes three
out-of-the-house activities, each with different levels of flexibility. Except for the first visit, that is
conducted at the university, the other two activities are spatially flexible. This fact, in combination
with the significant difference between the SSoC and the FSoC that forces the algorithm to add a visit
to a CS, changes the spatial attributes of the initial activity chain to a great extent. In other words,
the method proposes different locations to be visited by the traveler. In this specific example, the order
of the visits to the activities does not change, but a charging session is added between the visits to the
locations for the second and the third activities. Finally, we can notice that while the optimized activity
chain includes an extra activity that corresponds to the detour for charging, the selection of alternative
locations and suitable CS enables the reduction of the overall travel time.

5.3. Research Implications for EV Usage and Energy Systems

Apart from the obvious benefits that the method presents on an individual level for travelers,
such as decreasing the travel time in their daily activity chains and dealing with range anxiety, there
are two main takeaways regarding the use of EVs. Firstly, on an individual level, the method can
be an effective supporting tool that helps minimize consumption, distributing drivers to the suitable
CS according to availability and allowing them to find possible charging opportunities according to
two realistic charging scenarios. The travelers that do not own chargers at their homes can greatly
benefit from this method since it allows the calculation of tours and routes, that guarantee a FSoC for
the drivers when reaching their home. On a system-level, the use of such a method, although it is
aimed for personal usage, can provide benefits for cities. The better distribution of drivers to charging
stations is a major possible benefit, as well as, the more efficient tours that are to be followed will
minimize the consumed energy and the load on the charging stations network as a whole. As shown
in work by Cuchý et al. [3], and their simulation efforts based on multi-destination planning tools like
the one provided in this article, those methods can allow the better alignment of supply and demand
and can help to make the overall transition to electromobility smoother.

6. Conclusions

A method has been elaborated for the solution DACO-EV problem, which many EV drivers face
in their daily lives. Given the initial schedule of activities of the traveler, their locations, and priorities
concerning each activity, our method calculates an optimal tour that guides the travelers in a better way.

213



Energies 2020, 13, 906

At the same time, travelers do not need to face range anxiety since the solution guarantees that the EV
battery level remains above the desired energy level. In the modeling, two charging scenarios were
included, where the traveler can charge the EV either while staying in the EV at the CS or leaving it for
charging at a CS while conducting another activity. This article describes the following contributions
of the method:

• Consumption calculation mechanisms based on previous literature and real-world EV
usage attributes.

• Calculation of an optimal tour based on the Starting State of Charge (SSoC) and the desired Final
Stage of Charge (FSoC) of the EV used.

• A real charging stations network for Budapest, Hungary, and the availability of those charging
stations based on past usage data.

• Two real-world charging scenarios for the detour of travelers, when they need to charge
their vehicles.

Our research efforts aimed to develop an optimization model that is capable of modeling the
real-world problem of optimization of daily activity chains for EV users and can serve as a driver
assistance solution that reduces the range anxiety of EV users. The model itself can be used for
studying the utilization of CS networks in urban environments and the study of the expected behavior
of EV drivers. As discussed earlier in this article, although those methods address the problem on an
individual level, they can be beneficial for the system-level, the CS network infrastructure, and the
road network.

As a few next steps in this research, we propose further investigation of the incorporation of the
availability of charging stations. It should be studied how solution times and the quality of solutions
delivered by the algorithm change when the availability is considered according to different data
mining methods. A worth mentioning research direction is the inclusion of the effect of traffic on the
tours that happen on rush-hours and may get delayed travel times in regard to traffic. The utilization
of this algorithm as part of a simulation framework based on activity-based modeling is a long-term
research goal.
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Abstract: Electric Vehicles (EVs) are becoming one of the main answers to the decarbonization of
the transport sector and Renewable Energy Sources (RES) to the decarbonization of the electricity
production sector. Nevertheless, their impact on the electric grids cannot be neglected. New
paradigms for the management of the grids where they are connected, which are typically distribution
grids in Medium Voltage (MV) and Low Voltage (LV), are necessary. A reform of dispatching rules,
including the management of distribution grids and the resources there connected, is in progress in
Europe. In this paper, a new paradigm linked to the design of reform is proposed and then tested, in
reference to a real distribution grid, operated by the main Italian Distribution System Operator (DSO),
e-distribuzione. First, in reference to suitable future scenarios of spread of RES-based power plants
and EVs charging stations (EVCS), using Power Flow (PF) models, a check of the operation of the
distribution grid, in reference to the usual rules of management, is made. Second, a new dispatching
model, involving DSO and the resources connected to its grids, is tested, using an Optimal Power
Flow (OPF) algorithm. Results show that the new paradigm of dispatching can effectively be useful
for preventing some operation problems of the distribution grids.

Keywords: Dispatching Service; Dispersed Generation; Distribution Grid; Electrical Vehicle; Optimal
Power Flow; Power Flow; Power System; Simulation Models

1. Introduction

Stopping climate change requires a revolution in the way we produce and consume energy. On the
production side, the most important step is to reduce the generation from carbon and other fossil fuel
to near-zero, and to increase the amount of the Renewable Energy Sources (RES). On the consumption
side, the revolution requires an improvement of the efficiency and in the electrification of the energy
demand. In the transport sector, these two objectives can be reached thanks to the spread of Electric
Vehicles (EVs), whose Charging Stations (EVCS) power is enhancing (up to 250 kW) to allow a faster
recharge [1–4]. All these changes affects the operation of the power systems, at transmission grids level
in High Voltage (HV) and distribution grids level in Medium Voltage (MV) and Low Voltage (LV) [5,6].
The issues are different in the two stages of the power system: most of the RES-based power plants are
connected to the distribution grids (Dispersed Generation, DG) and all the EVCS are connected to the
distribution grids, thus, the first impact is on the distribution level. However, at the same time, the DG,
typically RES-based, also has indirect impacts on the transmission level. some problems related to the
operation of the transmission grids, due to the DG, are:
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- Reduction of the equivalent load on the HV grid, with reactive power management problems in
light-load hours and thus high voltage problem;

- Reduction or turning off of conventional power plants generation, reducing the reserves for the
control of the whole power system, and in particular causing a reduction of the inertia and of the
spinning reserve and thus frequency control issues,

- Inverse power flows on the primary substations in some hours,
- Dispatching reserves and rules for controlling the frequency, inappropriate for the reliability

of the grid, increasing costs of the dispatching service for the Transmission System Operators
(TSOs).

On the other hand, some problems related to the operation of the distribution grid, due to DG
and EVCS are:

- Congestions on some branches,
- Voltage drops and critical voltage control,
- Inverse power flows on some lines through the primary substations,
- Increasing of the power losses,
- Power quality issues.

Many of the listed issues are due to the fact that the RES-based DG and EVCS are still managed
with a “fit and forget” approach: the amount of electricity available in production or needed in
consumption is put into or delivered by the system, without any limits. This type of approach is no
longer feasible, especially when the rate of DG and EVs become high, as is the case in Europe.

A solution of most of the listed issues could be an active management of distribution grids and
of the sources, there connected, in charge to the Distributor System Operators (DSOs), similar to the
management done by the TSOs with the HV grids. For all these reasons, a reform of the electrical
dispatching is in progress in Europe, including Italy [7]. The common objective of the review process
in all the European Countries is to test new ways for getting the necessary resources to guarantee the
reliability of the whole power system, through a new form of dispatching service. It also includes taking
in new entities, such as DG, MV and LV flexible end-users (such as EVCS) and their combinations, and
thus involving in the dispatching functions the DSOs.

In literature, many recent works are present on the impact on the transmission and distribution
grids of RES-based DG and EVCS. Some paper are dedicated only to the impacts and possible
management solution for the RES-based DG on the distribution grids [8–11]. Others are related
only to the influence and possible control strategies of EVCS, in distribution grids, according to a
Vehicle-to-Grid approach, in reference to a smart grid environment [11–21]. Other papers are dedicated
to analyze the combination of the effect of the two (DG and EVCS) and of their suitable management in
the distribution grids operation and planning [22–25]. Few papers deal with the problems related both
to the distribution and transmission grids, linked to the DG and EVCS [26,27].

In this context, the originality of the present work is to propose and test a new dispatching model
on a real distribution system, in line with the reform that is in progress in Europe and in Italy [7],
that implies a smart management of EVCSs, coordinated with DG, mainly RES-based. Analyses and
simulations are done on the new model in reference to a real distribution system, in reference to future
scenarios (2030), owned and operated by the most important DSO in Italy, e-distribuzione.

The work is so organized. Section 2 includes a short description of new dispatching models
proposed by the reform in progress. The main features of the real grid object of the analysis are in
Section 3. Section 4 shows the methodologies and the assumptions for the simulations. Section 5
describes and discusses the obtained results. In Section 6, conclusions are drawn.

2. Dispatching Models in the European Reform

The Italian TSO (TERNA) is moving forward in the dispatching reform guided by the Italian
Authority for electricity (ARERA) in accordance with the European policies and rules [7]. In 2013, the
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debate concerning new dispatch models started. The investigation was through three possible models
managing the dispatching sources that exploit RES-based generators, which can be summarized as
follows:

- Model 1, called “Extended Central Dispatching”: all the sources connected to the transmission
and distribution grids, including generators and flexible end-users, must provide dispatching
services to the TSO, through the ancillary service market, and only local system services to the
DSO for solving grid problems at distribution level, with a direct call.

- Model 2, called “DSO Local Dispatching”: the TSO can purchase system services from traditional
generation power plants, RES-based power plants or flexible end-users connected to the High
Voltage (HV) grids, and directly from DSO, through the ancillary service market. The DSO itself
can indeed purchase dispatching services or local system services, from the DG and flexible
end-users, connected to its medium voltage (MV) and low voltage (LV) grids, through a new
ancillary service market at distribution level.

- Model 3, called “Planned Profile Exchange at HV/MV Electrical Substation (ESS)”: all the sources
connected to the transmission grids, including generators and flexible end-users, must provide
dispatching services to the TSO. The DSO is responsible only for the planned energy exchange
in a single primary ESS, or in a zone that includes several primary ESS, but it does not provide
any dispatching service to the TSO. This profile is guaranteed by DSO, using the DG and flexible
end-users, connected to its MV and LV grids; they can be also called for system services on the
distribution grids with a direct call by DSO.

Nowadays the reforms are heading toward Model 1, where the TSO can directly draw new
dispatching sources from entities connected to the distribution system. The requests of the TSO do
not consider the issues that may arise in the distribution grids, such as congestions, under-voltage
and over-voltage phenomena and so on; thus, the DSOs are not only suffering the unavoidable spread
of DG, but also an external control, which may lead to further problems. The control of the DG
and of the flexible loads, by the DSO over its system, could be the best solution to avoid technical
issues (Model 2 or 3). In the meantime, to guarantee a predictable exchange profile at primary ESS,
reducing the global dispatching cost could be easy in this case for the DSO and could be useful for
TSO (Model 3). Obviously, this can be done in a smart grid, where suitable communication [15] and
control technologies are available between the DSO and the dispersed resources. This is the reason
why the most important Italian DSO, e-distribuzione, is investigating the opportunity to apply Model 2
or 3 instead of Model 1, which is currently tested by the Italian TSO.

3. E-Distribuzione Test Case

The study has been carried out on a real distribution grid belonging to e-distribuzione, which is
the most important DSO in Italy, and is involved in many studies on the impact of EVCS and DG on
distribution grids [28–32]. The main features of the distribution grid are summarized in Figure 1.
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Figure 1. e-distribuzione distribution grid.

The system is located in Southern Italy and it is subtended to a primary Electrical Sub-station (ESS)
with a 25 MVA power transformer and includes four lines. The main data on the lines are summarized
in Table 1.

Table 1. MV lines characteristics.

Line Length [km]
% in Overhead

Line Naked
% in Underground

% in Overhead
Line Insulated

1 18.6 59% 0% 41%
2 2.3 0% 0% 100%
3 24.3 1% 0% 99%
4 21.9 85% 4% 11%

Tot 67.1 45% 1% 54%

All the MV generators are Photovoltaic (PV) systems with a total peak power of 8.76 MW. The
powers and the lines to which they are connected are detailed in Table 2.

Table 2. MV PV Generators.

MV Generation Plants Power [kW] Line

G1 7983 2
G2 48 3
G3 1250 3
G4 60 3

Big consumers connected directly to MV lines are detailed in Table 3 with their available power
and delivery line.

For each passive customer (industrial and residential) in MV, e-distribuzione has provided data
about the active and reactive power profile in time, every 15 min, in reference to the four seasons
and the two typical days of the week (workdays and weekends). The LV loads and generators are
represented, in their respective secondary ESS, as aggregate profiles of active and reactive power,
because the information about the LV network are not given. The production profile of the PV systems
have been calculated in reference to the irradiation values in the analyzed area through System Advisor
Model (SAM) software [33,34]. In addition, e-distribuzione provides the technical features of the MV
grid components.
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All these data, useful for the simulations, are not reported here, both for lack of space and
privacy policies.

Table 3. MV passive customers.

MV Customers Power [kW] Line

C1 20 3
C2 550 3
C3 350 4
C4 64 2
C5 500 4
C6 866 1
C7 505 4
C8 501 1
C9 567 1
C10 682 1
C11 300 3
C12 120 3
C13 250 3
C14 1500 3
TOT 6775 -

4. Models for Simulations

The system has been implemented in a MATLAB environment and simulated through MATPOWER
Power Flow (PF) and Optimal Power Flow (OPF) algorithms [35,36]. Twelve simulations have been
analyzed according to season and the day of the week was considered. The PF and OPF run every
15 min. The simulations take into account only the active powers as control variables, because it is
assumed to be a dispatching model that deals only with the control of the active power of the sources
involved with a different objective, according to the reform proposals in progress in Europe and in Italy.

A first PF analysis in the present scenario was performed, to check the operation of the grid in
the present and without any type of dispatching action implemented. The results show that the peak
demand is reached during the summer evening. Nevertheless, the grid constraints, such as voltage and
current limits, are widely respected all year long and the grid turns out to be discharged and highly
suitable for new sources integration.

4.1. Assumptions for Simulations

An evaluation was carried out about possible future scenarios in 2030 considering the targets
imposed by the European Commission and Italian Authority [1–3]. The future scenarios have been
chosen based on the experience on the field of e-distribuzione authors and their expertise coming out by
the management and operation of the Italian distribution grid [28]. It is well known that the forecasts
are dependent on many different factors, such as investments, policies and politics of the selected
nation. For these reasons, three different scenarios have been deduced according to the speed of the
growth, as shown in Table 4.

Table 4. Percentage of growth for 2030.

Growth
PV Increase at LV Level PV Share at MV Level EVs Share

[%] [%] [%]

Slow +100 50 10

Moderate +150 70 12
Fast +200 90 15
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Since 31 GW of PV power has to be installed at distribution level to reach 51 GW, for the LV size,
the installed power of domestic PV plants should at least double and in the fast growth scenario, it
should triple. Thus, the variation will be considered within 100 and 200%. Concerning the PV installed
at MV, the current plants are left as they are, while new PV plants are supposed to rise in the proximity
of the MV customers, affecting between 50% and 90% of them. Most of the studies highlight a sudden
boom in the sale of EV between 2020 and 2025, when the technology would be mature to be worldwide
adopted. Unfortunately, nowadays, Italy holds one of the last positions in the European ranking of EV
readiness, hence, the forecasts are discouraging; even in the best scenario the percentage goal to contain
the emission is not achieved. The Italian percentages of EV share in 2030 according to e-distribuzione
fluctuate between 10 and 15%.

The integrated EVCSs are assumed to be:

• Home station, with a rated power of 7.2 kW;
• Pole station, with a rated power of 22 kW;
• Super-fast station, with a rated power of 350 kW + 2150 Kw;

The number of every kind of EVCS is proportional to the EVs share and the number of vehicles
circulating in the area, but it is obtained following different methodologies and considering a battery
capacity of 80 kWh. It is worth to note that the study is focused on how the distribution grid could
be affected by the increase of installed PV power, EVCSs and their management. Thus, any kind of
technical information, such as kind of socket connection, details of the recharge and battery properties,
is avoided, because they do not concern this dissertation.

From the DSO point of view, the EVCS could be seen as a flexible load. Indeed, the charging
stations can not only withdraw energy from the grid, as is pretty much common today, but they
will be able to inject power, as is shown in many pilot projects, with so-called Vehicle to Grid (V2G)
technology [13–21]. In this framework, an assumption for simulations is to consider that 25% of the
batteries are not accessible, because they need to be charged.

4.2. OPF Objetive Functions

In reference to these scenarios and assumptions, different OPF analyses have been performed in
reference to different objective function. In particular, to minimize the losses, to get a peak shaving
function and to get a voltage drop containment.

The higher the power crossing the primary ESS, the higher are the losses in the system, and
consequently, the operation cost. This is the reason why the DSOs are often concerned about the
minimization of the active power flow in the primary ESS. The peak shaving concept lies on the
assumption that some loads or generator can be shifted in time to avoid high losses on the grid. Any
storage available in the grid could be a source to fulfil this need, since it can inject and withdraw
energy whenever it is needed, respecting the capacity and maximum power constraints. The batteries
of the EV connected to the distribution grid can be a useful storage for this task. In particular, the
peak shaving corresponds to an energy injection (or withdraw in case of negative peak) that has to be
withdrawn (or injected) within the day to allow the daily cycle of an EV battery. The proposed EV
battery cycle considers that the EV drivers change the range setting of the lower limit of the State of
Charge (SOC) to 50%. Furthermore, the hypothetic daily trip (9% of discharge) is divided into the route
from home to office and vice versa (Figure 2).
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Figure 2. EV battery cycle of use hypnotized in the simulations.

The energy injected to the grid has to be the 82% of the energy withdrawn during the day to have
a perfect charging cycle. The energy spent during the route is seen as a loss from the grid point of view,
but it is in fact the energy that makes the EVs move, thus, the most useful from the driver’s point of
view. Two algorithms have been carried on with two different primary goals: to reduce the evening
peak and to reduce the reverse power flow. These two purposes cannot be completely decoupled
from each other; indeed, as an EV battery is going to be discharge in the evening, it will unavoidably
recharge during the day, flatting the negative peak and vice versa. The goal of the analysis is to evaluate
the power, the energy and the percentage of EVs involved guaranteeing a given peak shaving service.
This evaluation of peak shaving potential is based on thresholds that limit the positive active power,
which can flow through the primary ESS; once this limit is broken, the algorithm is set to exploit the
charging station to balance the grid. The evening peak set point is 4.7 MW, because it allows a realistic
exploitation of the EVs batteries without requiring more power than the available one. The minimum
active power threshold is set to –2.7 MW.

As the voltage drop is remarkable during summer evening, the home stations are programmed to
inject power to the grid when violation occurs. An important assumption is made: the stations belong
to the DSO or the EVs users are inclined to accept less power availability, the available power indeed
can be modified to provide local services, only if there is a will from the battery side. The percentage of
the availability of the battery to be charged or discharged and the presence of the vehicles have been
considered equal to 45% of the total installed power. This analysis aims to verify whether the defined
percentage of dispatchable power can guarantee the containment of the voltage drop within ±6.3%.

5. Results and Discussion

5.1. PF Analysis

A first PF analysis has been made in reference to the future scenarios, for checking the performance
of the grid, without any dispatching model implemented. The results are here reported in reference
to the case more stressing, which is the one for the fast growth scenario in spring and summer. The
impact of increased PV systems, home stations and pole stations on the grid in terms of active power
at the MV bus-bar is shown, for the fast growth scenario, in Figure 3a for the spring season and in
Figure 3b for the summer season, compared to the real profile of nowadays. It is evident that the
presence of the EVCS has as results an increasing of the amount of active power at MV bus-bar, only
during evening hours, linked to the evening use of the home stations. During the noon hours, the
prevalent effect is of increasing of the negative active power at MV bus-bar (up to 5 MW), due to the
higher production by new PV plants.
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(a) (b) 

Figure 3. Active power at MV side of the primary ESS for fast growth scenario during spring (a) and
summer (b) considering the impact of Home stations and pole stations.

Figure 4 shows the trend of the active power in the primary ESS adding also the super-fast EVCS,
which could require up to 750 kW, during spring season (a) and summer season (b). The effect is the
same described for the case in Figure 3.

 
(a) (b) 

Figure 4. Active power at MV side of the primary ESS for fast growth scenario during spring (a) and
summer (b) considering the impact of Home stations, pole stations and super-fast stations.

From the simulation results, the voltage was also checked: a drop of 6.71% was tested during
summer, but it was confined within 5% during the rest of the year. Nevertheless, the grid still did not
experience any congestion and it is highly suitable for further installations.

5.2. OPF Analysis In Case Of Evening Peak Shaving Service

The most interesting scenario analyzed is the most stressful, that is, the fast growth one during a
summer weekday. A threshold assumed to be of 4.7 MW implicates an energy injection of 760 kWh,
which stands for an exploitation of 29 home stations more than the foreseen ones. The peak power
indeed reaches 800 kW (Figure 5), which means a contemporary recharge of about 111 EVs. The
recharges consider the energy spent for the daily trip and they occur during the rest of the day,
preferably during the time of reverse power flow. The 111 vehicles are 60% of the total EVs fleet, but
79% of the available EVs.
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(a) (b) 

Figure 5. Active power at the MV side of the primary ESS and power injected by the EV home stations
for the evening peak shaving (a); power available by the home stations (b).

5.3. OPF Analysis In Case Of Reverse Power Flow Shaving

From the energy point of view, the system will need to charge 22 EVs more to increase the energy
demand of 880 kWh. On the other hand, 949 kW of peak power (Figure 6) requires 21 EVCS more,
with the strong assumption that they are used at the same time. In this case, the peak power dictates
the right spread of EVs which is equal to 49%. Nevertheless, this percentage is not actually a needed
condition for the right functioning of the system, it should need just 42 EVs plugged at the same time.
The recharge implies the discharge of part of the battery during the evening; this helps to smooth out
the peak power and the voltage.

(a) (b) 

Figure 6. Active power at MV side of the primary ESS and power injected by the EV pole station for
the reverse power flow shaving (a); power withdrawn by the EV pole stations (b).

Table 5 shows the results of the peak shaving analysis: the power and energy required by the DSO
vary according to the goal set. The EV drivers’ awareness is calculated as the number of EV drivers
that allow the grid to use their own battery over the total number of EV drivers in the area. The easier
objective to implement appears to be the noon negative peak shaving, which requires only 22% of
drivers’ awareness. Nevertheless, this solution implies that installing 21 EVCS is too many compared
to the circulating fleet (420 more EVs should be bought).
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Table 5. Power and energy required for peak shaving services.

Goal Set-Point Withdrawal Injection EV Drivers Awareness

Evening peak shaving 4.7 MW
926 kWh 760 kWh

60%- kW 800 kW

Noon negative peak shaving −2.7 MW
880 kWh 721 kWh

22%949 kW 100 kW

The noon shaving goal instead could be reach without any economic effort; it simply depends on
the EVS drivers’ availability, which should reach a quite high percentage.

5.4. OPF Analysis In Case Of Voltage Drop Containment

The active power through the primary ESS has not changed a lot, except for the evening peak
between 8 pm and 10 pm, when the home stations inject active power to compensate the voltage
violation (Figure 7). The home stations are indeed the only source that can be exploited because it is
the only one available during those hours.

(a) (b) 

Figure 7. Profile of the minimum voltage in the whole network (a); power injected by the EVs home
station to contain the voltage violation (b).

The total power requested by the grid is 273 kW, thus, 57% of the total dispatchable power. The
violation is highly contained within the threshold; this scenario requires only 37 available EVs batteries
for a total of 160 kWh. The energy needed is much lower than the one that the involved EVs can
provide; thus, the reduction of energy in each car will be almost derisory.

6. Conclusions

A new paradigm for the management of distribution grids, with big amount of EVCS and
RES-based DG, is investigated in reference to a real distribution grid, belonging to the main Italian
DSO, e-distribuzione. First, in reference to future scenarios of spread of RES-based power plants and
EVCS, some PF analyses have been made to check the performance of the distribution grid in reference
to the usual operation. Second, considering a new dispatching model involving DSO and EVCS, the
opportunity to provide different local and system services are tested, using OPF algorithms.

The impact of EVCS and DG power growth, in 2030, is modelled and simulated in MATLAB
environment, for three future scenarios, according to the intensity of the diffusion. After running a first
PF simulation, the network detected a high peak power, given by the evening loads and a negative peak
power provided by the DG plants. Thus, with OPF algorithms, the flexible management of the installed
EVCS for providing services to the DSO was tested. The first algorithm was intended to cut off the
voltage violations that occur if the voltage limits are at ±6.3%, as local service. The OPF algorithm tends
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to maximize the available power at the EVCS and acts only if a violation occurs. The study proved that
it is possible to successfully contain the voltage drop within 6.3%, assuming an EVs availability of 45%.
Another OPF algorithm had the goal to restrict the active power flow in the primary ESS within an
upper and lower limit. This is effectively done to lessen the grid losses and provides a given value
of maximum input/output power to the transmission grid, as system service. The tests have shown
that the availability of EVs drivers to provide this kind of services is fundamental rather than high
spread of EVs. In general, all the results show that the proposed paradigm of dispatching involving
DSO and their resources (EVCS and DG) can effectively improve the distribution grid performance,
to prevent its operation problems (such as under-voltages or congestions) and to support the whole
power system management with system services.
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Abstract: Swap charging (SC) technology offers the possibility of swapping the batteries of electric
vehicles (EVs), providing a perfect solution for achieving a long-distance freeway trip. Based on SC
technology, a shared SC system (SSCS) concept is proposed to overcome the difficulties in optimal
swap battery strategies for a large number of EVs with charging requests and to consider the variance
in the battery charging rate simultaneously. To realize the optimal SSCS design, a binary integer
programming model is developed to balance the tradeoff between the detour travel cost and the total
battery recharge cost in the SSCS. The proposed method is verified with a numerical example of the
freeway system in Guangdong Province, China, and can obtain an exact solution using off-the-shelf
commercial solvers (e.g., Gurobi).

Keywords: shared swap charging system; electric vehicle; operational design; battery charging rate;
binary integer programming

1. Introduction

Electric vehicles (EVs) are a promising technology for reducing the environmental impacts of
road transport [1] and have increased rapidly in number over the past ten years [2]. However, there
are several barriers to overcome for expanding the adoption of EVs. One problem with large-scale
EV adoption is the limited maximum driving range [3,4] and range anxiety [5–8], which may make it
difficult to complete some long-distance tours. The other problems are high battery purchase cost [9–11]
and long charging time [11–13]. To solve the problems above, an increasing number of researchers have
focused on deploying EV charging systems, which will significantly shape current EV coverage [10,14].
These infrastructures can generally be divided into three categories [15]: plug-in EVs (PEVs, i.e.,
slow chargers and fast chargers) [16], wireless charging EVs (WCEVs, i.e., inductive charging during
driving) [17,18], and swap charging EVs (SCEVs) [19,20]. Table 1 shows the comparisons between
these infrastructures.
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Battery swap stations (BSSs) were originally implemented by the company Better Place, which
went out of business in 2013 [15]. Then, five cities in China start testing BSS technology, where they
serve personal vehicles, and commercial vehicles [21]. Although BSSs best replicate the experience
of existing gas stations, there are still issues that prevent their wide-scale implementation. These
include battery ownership, high battery purchase cost, complicated battery standardization issues,
and safety issues in the swap and charge process. Since not only do an increasing number of EV
consumers expect charging approaches that include short charging times (similar to refueling their
current fuel vehicles) [22], but also global economic growth means more people can afford high-cost
options, the SCEV mode is becoming increasingly popular [4,19,23–25]. SCEVs are good in that they
have both fast and economical charging modes [4,26,27]. As shown in Figure 1, a driver can drive into
a battery swap station, and a robot replaces the depleted battery with a fully charged spare [28,29].
This swap time could be very short (e.g., less than one minute based on a report from Tesla) with
further automation and refinements on the vehicle [30].

Figure 1. Battery swap automation and refinements on the vehicle (figure source: SUN mobility
and Tesla).

Swap charging (SC) can reduce the peak consumption of electricity by centralized charging [30,31]
and avoid grid overloading due to mass EV charging [32] because the empty batteries that are
swapped out can be charged when electricity is cheap or demand is low. Since SCEVs are considered
to be a suitable EV mode, an increasing number of studies on the SC system (SCS) have emerged
worldwide [4,19,25,27,33]. The Fluence Z.E. was the first electric car enabled with battery swapping
technology and deployed within the Better Place network in Israel and Denmark in 2012 [4,20,27]. Then,
with the advanced SC technology, fully automatic battery swapping was even faster than refueling at
gas stations. NIO proposed the smallest power swap station in the world which only took up three
parking spaces [2,31]. Based on these state-off-the-art battery swapping technologies’ tests, some
researchers have proposed an advanced concept called shared SCS (SSCS) [31]. The SSCS is an SCS
that can provide heterogeneous services and requires online reservations in advance. The SSCS has a
lot of differences from the regular SCS mode, and the comparisons are shown in Table 2.

The SCS and the SSCS proposed in this paper are both used for SCEVs, which separate the batteries
from the vehicles and allow the SC mode. The SSCS has a few new features, as listed below:

1. Reserved charging demand: This feature differs this system from the regular SCS, which
can supply service on a come and served basis, as the newly proposed SSCS requires online
reservations in advance. All vehicle service strategies (e.g., routing and swapping battery types)
can be calculated according to their origins and destinations (ODs), their initial battery power
level, etc.

2. Multi-type battery supplied: The SCS can only provide fully charged batteries [29], while the
SSCS can provide online reservations and allow the BSS to optimally deploy their state of charge
(SOC) battery.

235



Energies 2020, 13, 1213

3. Accurate cost calculated: Different from a regular SCS, where the economic essence is battery
leasing, the SSCS conducts energy leasing. In the pricing strategy, the SCS sets a price for each
battery, while the SSCS sets a price for the process of recharging the depleted battery to the same
power level as the new battery.

4. Charging rate considered: In this proposed system, the recharge cost of depleted batteries is
calculated by considering the battery charging rate curve. The SSCS can help achieve an optimal
charging strategy and improve energy usage efficiency.

Table 2. Comparisons between the SCS mode and SSCS mode *.

EV Type System Mode Operation Mode
Battery
Type **

Average SC
Cost

Charging
Rate

Average
Charging

Cost

Residual
Value

Capacity of
BSS

SCEV
SCS Come and served Single M − M − −

SSCS
(this paper)

Reserved online in
advance Multiple L • L • •

* The symbol • in this table denotes that the factor is considered and symbol − denotes otherwise. ** Battery types:
single type—fully charged battery; multiple types—varying state of charge (SOC) batteries. Cost abbreviations:
L—low; M—medium. Abbreviations: BSS—battery swap station; SC—swap charging; SCS—swap charging system;
SSCS—shared SCS.

1.1. Literature Review

Since public power charging infrastructure plays a critical role in EV systems [7,14,34], an increasing
number of researchers have begun to focus on EV routing problems under SC technology and with the
battery charging dispatch model [1,4,20,24,25,27,29,30,35], which holds promise to realize long-distance
EV travel [4,20]. Here, we summarize some applications and modeling attempts to develop SC in
recent years, as shown in Table 3, and the findings can be briefly synthesized as follows.

• The battery charging dispatch model was set up from the grid side to minimize the total cost
(e.g., infrastructure deployment cost [4] and sequential decision cost [26]) while satisfying
various physical constraints. Later, an increasing number of researchers began focusing on the
transportation side due to the massive traffic issue and then dealt with this SCS as a vehicle
routing problem (VRP) [27,36,37], location routing problem (LRP) [3,24,38], or battery dispatch
management problem [15,26,29,32,39,40]. In this paper, we propose vehicle routing and battery
dispatching as two vital indices for optimizing an SSCS.

• Due to technological or application limitations (i.e., an internet-based booking platform;
BSS operation information processing center (IPC); centralized vehicle introduction systems)
over the past few years, there are only a limited number of recent studies [27] on the BSS
online reservation system that focused on various vehicle demands. This study proposes a new
operational mode under a new information system (i.e., vehicles require advanced reservations
and the IPC gives various service strategies).

• Most previous studies provided only a single battery type (i.e., fully charged battery) [4,36,40],
and they only allow depleted batteries to be replaced by a standard SOC battery. However, some
researchers have considered providing multi-type batteries, as stated in the references [15,27,29],
and the introduction of varying SOC batteries gives more flexibility in optimal applications. Since
our SSCS model is based on the battery charging rate, we propose an optimal operation strategy,
deploying multi-type batteries simultaneously.
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Although research focusing on BSS strategies has been ongoing, the results are fragmented.
Currently, an integrated way of considering the VRP, battery dispatching, and battery charging
efficiency (considering the battery charging rate) has not been fully investigated. To bridge these
research gaps and realize the vision of the SSCS, this paper proposes an exact approach to describe the
EV routing problem and BSS battery dispatching and determine the optimal SSCS design to minimize
the overall system operational cost. We formulate this problem into a binary programming model so
that it can deal with the various large-scale strategy issues. This model has a binary decision variable
and thus quickly solves an exact solution by off-the-shelf commercial solvers (e.g., Gurobi).

1.2. Contributions

This paper focuses on SC technology and proposes a new structured SSCS to overcome the
difficulties in optimal swap battery strategies for a large number of EVs with charging requests and
simultaneously considers the varying battery charging rate. The contributions of this paper are
mainly three-fold.

• First, we propose an innovative binary programming SSCS model to balance the tradeoff between
the vehicle travel cost and battery dispatching cost. This model is a linear integer problem that
solves exact solutions by off-the-shelf commercial solvers (e.g., Gurobi).

• Second, we propose an optimal operation strategy for deploying multi-type batteries and
simultaneously consider the charging process. In this process, a large number of various charging
requests with various initial battery power levels are given various charging strategies (i.e., optimal
routes to BSS and battery types). These charging strategies can help improve charging efficiency
and minimize the overall system operational cost.

• Finally, a numerical example with real-world freeway data from Guangdong Province, China is
conducted to demonstrate the applicability of the proposed model and its effectiveness in reducing
construction costs. Overall, this paper provides valuable insights into the future integration of
BSSs into long-distance freeway services and offers a numerical method for designing an optimal
operational plan for this integrated system.

The remainder of this paper is organized as follows. Section 2 introduces the operation
characteristics, notation, and concept of the proposed SSCS. Section 3 formulates the SSCS model
with alternative systems. Section 4 tests the proposed model with a numerical example in China and
conducts corresponding sensitivity analyses. Finally, Section 5 provides conclusions and recommends
future research directions.

2. Model Description

This section introduces the operational process of the SSCS and underlying assumptions. For the
convenience of readers, we list some notation frequently used in the paper in Table 4.

Consider a set of vehicle stations I{1, . . . , I} in space. For each vehicle station i ∈ I, there is a BSS.
These stations can also be the ODs of vehicles. Consider a set of batteries with varying SOC Q{1, . . .Q }
that a shared BSS can provide. Let q ∈ Q denote the battery SOC. For each station, the number of
battery types can be different. Consider a set of the vehicle trip characteristic indexU{1, . . . , U} which
has a series of various travel demands (i.e., origin station i+u , destination station i−u , and the initial state
of the battery charge q0

u). Let xujq denote whether vehicle i heads to station j and replaces the depleted
battery with a well-charged battery in the state of q ∈ Q.

To fully understand the operation process of an SSCS, Figure 2 shows an example with shared BSS
stations I = {1, . . . , 5} and three types of battery SOCs q = {1, 2, 3}. In this figure, on each link between
two stations, the segment of a different number represents the travel distance between the stations.
The different combinations of colors for the stations represent the battery types they provide.
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Table 4. Notation.

Sets

U Set of the vehicle trip characteristic index,U{1, . . . , U}
I Set of vehicle stations (i.e., origin stations and destinations), I{1, . . . , I}
J Set of the shared BSS index, J{1, . . . , J}
Q Set of varying SOCs that shared the BSS provided, Q{1, . . .Q}

Parameters

u Index of the vehicle trip characteristics, u ∈ U
j Shared BSS index, j ∈ J

i+u Origin for vehicle trip characteristic index u
i−u Destination for vehicle trip characteristic index u
q0

u Initial battery SOC for vehicle trip characteristic index u
q Battery SOC that shared the BSS provided, q ∈ Q
qu

Battery capacity of the shared BSS provided for the vehicle trip characteristic
index u. qu ∈ Q

di, j Travel distance between station i to station j
Δdi+u , j,i−u Distance for charging detour, Δdi+u , j,i−u di+u , j + dj,i−u − di+u ,i−u

C1 Unit detour cost, Yuan/km
C2 Unit time cost for battery charging process, Yuan/min
C3 Unit power cost for battery charging process, Yuan/kW
C4 Unit power salvage value in the battery, Yuan/kW
s Unit energy consumption per kilometer, kW/km

f (q) Formula of the battery charging time rate with varying SOC
qL Lower band of the battery SOC
njq Swapping battery supplement at station j ∈ J , with battery SOC q ∈ Q

Decision variables

xujq

Binary variables, xujq = 1 when vehicle i goes to power station j and the battery is
replaced by a new battery with power quantity q; xuj = 0 otherwise

u ∈ U, j ∈ J , q ∈ Q

 
Figure 2. Example network with different battery mode supplies in the SSC station.

In the SSCS, the entire operation process can be divided into three steps, as shown in Figure 3.
The vehicle side allows the EV to make online reservations in advance and then follow the instructions
from the IPC. The IPC side requires all the vehicles and BSSs to follow centralized guidance, and the
BSS side follows the optimal battery replacement and charging strategies. All these system components
operate smoothly under the proposed SSCS model.
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Figure 3. Operation process in the SSCS. Abbreviation: IPC—information processing center.

In previous studies [29,41–43], the battery charging rate is a concave function that satisfies formula
f (q) > 0, f ′(q) < 0. The charging time function can be approximately formulated as a piecewise

function f (q) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k1q + b1, 0 < q ≤ q1

k2q + b2, q1 < q ≤ q2

. . .
kmq + bm, qm−1 < q ≤ qm

. In Figure 4, we plot the varying SOC (q), the battery

charging rate ( dt
dq ), and the cumulative time functions of the SOCs of the batteries.

 
(a) (b) 

Figure 4. Performances of charging times with current battery power levels: (a) curve of the varying
SOC (q) and the battery charging rate (dt/dq ); (b) cumulative time curve of the SOCs of batteries.

To facilitate the model formulation, we introduce the following assumptions in the investigated
problem. These assumptions have been used in other studies on operational design for the SC
battery system.

Assumption 1. The battery power consumption of EVs is proportional to the driving distance [37,44]. It is
hard to relax this assumption when a battery consumed along a stretch of road is not dependent on the distance;
then, the problem becomes an NP-hard problem and appears to be mathematically intractable [14,45,46].

Assumption 2. All vehicles in our system share the same battery capacity size. In the previous study, many
researchers have already focused on optimizing the battery size to reach a better system income [47].
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Assumption 3. All vehicles in this system reserve swap batteries online and follow the instructions. This
assumption will not be strict in the future because of the connected and autonomous vehicle atmosphere and
because it has already been applied in previous studies [27].

3. Model Formulation

This section provides a model formulation of the investigated problems. Section 3.1 proposes a
model to describe the above-defined SSCS problem. Section 3.2 puts forward the physical constraints
that make this model applicable in real-world cases. Finally, Section 3.3 compares this proposed system
with the benchmark system.

3.1. Objective Function

The objective function formulated in Equation (1) aims to minimize the SSCS system operational
costs, which includes three components: the travel cost of the detour in the swapping battery process
(F1), the total battery cost in the battery recharging process (F2), and the residual value of electricity
power in moving EVs (F3).

min
xujq

F1 + F2 − F3 (1)

As shown in Equation (2), F1 denotes the travel cost of the detour in the swapping battery
process, and C1 denotes the unit detour cost. Let Δdi+u , j,i−u denote the distance of the charging detour,
Δdi+u , j,i−u di+u , j + dj,i−u − di+u ,i−u . The total battery cost in the battery recharging process includes charging
time costs and charging energy consumption costs. The total battery recharge cost is cumulative and
can be calculated by Equation (3). In this formula, let C2 denote the unit time cost for the battery
charging process, and let C3 denote the unit power cost for the battery charging process. Equation (4)
presents the electricity power residual values of the EVs.

F1C1

∑
u∈U, j∈J ,q∈Q

xujqΔdi+u , j,i−u (2)

F2

∑
u∈U, j∈J ,q∈Q

xujq

∫ q

q0
u−di+u , js

(C2 f (r) + C3)dr (3)

F3C4

∑
u∈U, j∈J ,q∈Q

xujq
(
q− dj,i−u s

)
(4)

3.2. Constraints

The above objective function is subject to a set of constraints, as formulated below.

q0
u −

∑
j∈J ,q∈Q

di+u , jsxujq ≥ qL u ∈ U (5)

qu −
∑

j∈J ,q∈Q
dj,i−u sxujq ≥ qL u ∈ U (6)

(
q0

u − di+u , js
)
xujq ≤ qu u ∈ U, j ∈ J , q ∈ Q (7)
∑

j∈J ,q∈Q
xujq ≤ 1 u ∈ U (8)

∑
u∈U,q∈Q

xujq ≤ nj j ∈ J (9)

xujq = 0, 1 u ∈ U, j ∈ J , q ∈ Q (10)
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Constraints (5) and (6) are related to the safety constraints, which mandates that for each vehicle
in the SSCS, the lowest power level value should always exceed the lowest level value (qL) on the
right-hand side (RHS). The left-hand side (LHS) in Constraint (5) denotes the battery power level of
vehicle u when it obtains access to a BSS, and the LHS in Constraint (6) denotes the battery power
level when vehicle u finishes its trip at its destination. Constraint (7) is a limitation that the SOC of a
new swap battery is always higher than the SOC of the depleted battery. Constraint (8) is proposed to
limit the EV to only swap the battery once in this model, and the side effects of this constraint can be
relieved by multiple inputs and by solving this model. In the future, we will try to put forward a more
integrated model. Constraint (9) sets some general constraints of the model, which are related to the
network battery power balance, similar to reference [38], which describes the maximum permitted
capacity of the battery swapped in each BSS.

3.3. Alternative Systems

A single-type battery system (STBS) is used as an alternative system. The only difference between
the STBS and SSCS is that each BSS can only supply a fixed SOC of qF in an STBS, while the SSCS can
supply multiple types of SOCs.

4. Numerical Example

To examine the model performance over different network topologies, we present a numerical
example with the designed SSCS over the Guangdong Province freeway network and compare it with
the alternative STBS simultaneously. As shown in Figure 5a, the input data included 205,876 records
of vehicles passing through 14 key toll stations between 17:00 and 18:00 throughout May 2019. We
obtained the corresponding vehicle OD demands, as shown in Figure 5b, and assumed that 50% of the
passengers use SCEVs. Then, we assumed that the initial battery SOC of these vehicles followed a
random distribution.

 
(a) 

 
(b) 

Figure 5. The input data for this numerical example: (a) designed BSSs in Guangdong Province, China;
(b) origin and destination (OD) demand distribution.

4.1. Input Parameters

All experiments were performed on a PC with an Intel® Core™ i7-8550U @1.99 GHz CPU and
24 GB RAM. The code was implemented in MATLAB 2019a, calling a commercial solver Gurobi [48–50].
The charging rate we used is normally and approximately fitted to a linear function [41,42], and in
this paper, we selected the parameters considering both the vehicle battery characteristics and electric
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grid characteristics, which are f (q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1q + 0.2, 0 < q < 0.6
2q− 0.4, 0.6 < q < 0.8

4q− 2, 0.8 < q < 1
. Other default parameter values were

stated in Table 5.

Table 5. Default parameter settings.

Parameter Description Value Data Source

C1 Unit detour cost 1 Yuan/km EV travel cost (https://afdc.energy.gov/fuels/)

C2 Unit time cost 1 Yuan/h Guangzhou Municipal Human Resources and Social Security Bureau reports in
2019 (http://gzrsj.hrssgz.gov.cn/english/)

C3 Unit power cost 1 Yuan/kW Electricity price in China (https://www.ceicdata.com/china/electricity-price)

C4 Unit power salvage value 0.4 Yuan/kW Related to the PEV charging price
(https://afdc.energy.gov/fuels/electricity_charging)

s Unit energy
consumption/km 0.25%/km Most EVs are currently capable of approximately 100–250 miles of driving before

they need to charge (Data source: UC Davis; https://phev.ucdavis.edu/)

v Average vehicle travel speed
in km/h 100 km/h The operating speed of EVs on the freeway

(http://www.0512s.com/lukuang/G94.html)
pL Lower battery power limit 20% Safety suggestion from EV enterprises (e.g., Beijing Automotive Group Co., etc.)

4.2. Optimal Location Result

By solving the proposed SSCS model, the optimal objective value (system operational cost) is
926.3, with a CPU time of 0.6359 s. Figure 6 shows the battery swaps of different OD pairs. In this
figure, on each row and column intersection, the different color circles represent the different battery
types (i.e., SOC q = 60%, 80%, and 100%), and the circle size represents the type of dispatch frequency.
The results show that the total number of batteries swapped for SOC types of 60%, 80%, and 100% are
139, 940, and 352, respectively.

 
(a) 

 
(b) (c) 

Figure 6. Battery swaps with different OD pairs with battery SOCs of (a) q = 60%; (b) q = 80%; and (c)
q = 100%.

We compared the SSCS solutions with the benchmark STBS. In this experiment, we compared the
system operational cost and the average battery level before and after SC, with the average energy
gap filled, the average battery level at the destination, and the average energy consumption over the
traveled distance as the criteria to evaluate the performance of the proposed system. Figure 7 shows
the comparison between the SSCS and STBS in a multi-type battery deployment. Most of the batteries
deployed in the SSCS and STBS were the same except for stations 4, 5, 9, 10, and 12, which indicates
that the introduction of multiple types of batteries does not significantly change the total amount of
battery management.

More detailed results are shown in Table 6. As we can determine from the comparison result, the
total number of batteries the two systems swapped was the same (i.e., 1431). Since they share different
battery types (i.e., SSCS has multi-type batteries, and STBS has single-type batteries), their optimal
battery levels are different. Compared to the average battery level before SC, the optimal battery level
of the STBS (65%) was much higher than that of the SSCS (32.1%), which is not efficient for energy
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usage. When compared to the average energy gap the charging process fills, the performance of the
SSCS (50.9%) was also better than that of the STBS (35%), which is significantly related to the SC
efficiency. Since the average energy consumption for traveled distance was similar (SSCS and STBS
are 53% and 54%, respectively), the detour distance did not make a noticeable impact. Overall, the
multi-type SC strategies for the SSCS could reduce the system operational cost (54.3%) when compared
with the STBS.

Figure 7. Comparison of the number of swapped batteries.

Table 6. Results comparison with the alternative system.

SSCS STBS

Evaluation Criteria SOC Multi-Type Single Type q = 100% * Rate **

• Total number of batteries swapped

60% 139 − −
80% 940 − −
100% 352 1431 −

• Average battery level before SC 32.1% 65% 2.025
• Average battery level after SC 83.0% 100% 1.205
• Average energy gap filled 50.9% 35% 0.687
• Average battery level at the destinations (residual energy level) 30.0% 46% 1.533
• Average energy consumption for traveled distance 53% 54% 1.019
• System operational cost 926.3 1428.9 1.543

* q = 100% indicates that the depleted battery is replaced by a fully charged battery, which is commonly used in the
market. ** The rates are calculated by the value of the single-type battery system (STBS) divided by the value of
the SSCS.

4.3. Sensitivity Analysis

This section analyzes the sensitivity of critical parameters to the cost components in the SSCS.
In each instance, only one parameter is varied, and the other parameters maintain their default values.
To evaluate the performances of different parameter combinations, we compared the overall system
cost and the multi-type battery combinations. To simplify the sensitivity analysis for vectors C1, C2, C3

and C4, we varied the values of these parameters and plotted the results in Figure 8. The findings can
be briefly summarized as follows.

• We perform a regression analysis of C1, C2, C3, and C4 with the system operational cost (simplified
as FSSCS), as shown in Figure 8a–d and obtain FSSCS = 541.1C1 + 304.0C2 + 276.4C3 − 436.56C4 −
78.2 with R2 = 0.995. This result reveals a high linear correlation with all four critical parameters.

• The optimal result of battery type performance stability with varying values of C1, C2, and C3 is
shown in Figure 8. The varying value of C4 can change the optimal strategy significantly, as shown
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in Figure 8d,e. The increased value of C4 would result in an increased number of vehicles holding
more residual energy at the destination.

• Figure 8f shows the performance of the average battery charging time with varying C2. We learn
that C2 is related to the unit time cost for the battery charging process, and it reaches a plateau
period when the value of C2 is over 1.5.

 
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8. System operational cost performance and number of batteries swapped with varying values
of (a) C1; (b) C2; (c) C3; and (d) C4. (e) Average battery charging time with varying C2. (f) System
operational cost performance and battery level at the destination with varying C4.

5. Conclusions

SC technology offers the possibility of EVs swapping batteries with other EVs and provides
plausible solutions for realizing a long-distance freeway trip. By taking advantage of SC technology,
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this paper proposes an exact approach to describe SSCS operations and determine the optimal SSCS
design (i.e., optimal swap battery strategies for EVs with charging requests and the consideration of
varying battery charging rates simultaneously) to minimize the overall system operational cost. In this
proposed SSCS system, we formulated this problem into a binary integer programming model that
could be solved by off-the-shelf commercial solvers (e.g., Gurobi). We explored a numerical example to
illustrate the applications of this model from the freeway system in Guangdong Province, China, and
compare it with alternative systems (the STBS). The SSCS was shown to be more effective than the
alternative (e.g., a reduction of 54.3% in system operational cost).

This study can be extended in several directions. Future research can be conducted to explore
the dynamic and stochastic demands of SCEVs, more variables such as maintenance and service
levels of BSSs, variation of electricity prices, more complicated multi-type SC strategy combinations,
associated vehicle coordination, more efficient customized solution methodologies, and the allowance
of these vehicles to participate in peak shaving and valley filling to improve unreasonable charging and
discharging. Moreover, it would be interesting to examine the impact of combinations of autonomous,
modular, and EV technologies into this SSCS.
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Abstract: Considering the fact that electric vehicle battery charging based on the current charging
station is time-consuming, the charging technology needs to improve in order to increase charging
speed, which could reduce range anxiety and benefit the user experience of electric vehicle (EV).
For this reason, a 1 MW battery charging station is presented in this paper to eliminate the drawbacks
of utilizing the normal 480 VAC as the system input to supply the 1 MW power, such as the low
power density caused by the large volume of the 60 Hz transformer and the low efficiency caused by
the high current. The proposed system utilizes the grid input of single-phase 8 kVAC and is capable
of charging two electric vehicles with 500 kW each, at the same time. Therefore, this paper details
how high-voltage SiC power modules are the key enabler technology, as well as the selection of a
resonant-type input-series, output-parallel circuitry candidate to secure high power density and
efficiency, while intelligently dealing with the transient processes, e.g., pre-charging process and
power balancing among modules, and considering the impact on the grid, are both of importance.

Keywords: silicon carbide; extreme fast charging; DC transformer; electric vehicle

1. Technical Challenges of EV Extreme Fast Charging Stations

Transportation is revolutionizing as the world welcomes the benefits of electric transportation.
The growing interest in electric vehicle (EV) technology is due to their minimum fuel emissions and
air pollution. The demand for this kind of vehicles is growing, and the rate of this growth is also
expected to increase in the forthcoming years [1,2]. However, there are concerns to be addressed in
this regard, including time of charge, range anxiety, cost of charging, and negative impact of charging
demand on the grid. Range anxiety and time of charge are the issues that have been addressed in
recent years through developing EV fast chargers. Sixteen hours are needed for level-1 chargers, while
only 10 minutes are needed for extreme fast chargers (XFCs). This by itself shows how the charging
process can impact the adoption of plug-in hybrid electric vehicles. The concept of a gas-station-like
experience for charging EVs has become a reality in recent years due to the advancement of XFCs [3,4],
e.g., chargers rated at 400 kW and above. The focus of this work is to design a 1 MW XFC station for
two EVs, i.e., 500 kW per car. Take Tesla Model S as an example, which has 75 kWh battery pack. If the
state-of-charge (SOC) window is 80%, a 500 kW XFC is then able to charge an EV within 75 kWh ×
80%/500 kW = 7 m, presuming the charging loss is ignorable.

While the majority of EV fast charging stations in the United States have a grid connection of
three-phase 480 VAC, which is rectified into a DC bus (normally between 600 VDC and 800 VDC),
followed by a DC/DC converter with galvanic isolation. Using such an approach to provide 1 MW
sees a challenge from high grid current, which in turn challenges the 480 VAC transformer design.
As shown in Table 1, the traditional 500 kVA XFC uses a grid transformer of more than 5000 L and
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more than 2000 kg. To enhance the system power density and reduce cost, elimination of such bulky
and heavy grid transformers is a must [5].

Table 1. Comparison of Metrics for a Traditional and Proposed 500 kVA Fast Charging System.

Figures of Merit Traditional 500 kVA System HV SiC Enabled 500 kVA System

Power losses (%/kW)
η = ηxfmr × ηfast charger = 94.38% @

rated power
Plosses = 28.09 kW

η ≥ 97.75% @ rated power
Plosses ≤ 11.25 kW

η ≥ 95% @ 5% rated power
Plosses ≤ 1.25 kW

Size–footprint (dm) Areatotal = 3.5 m2 Areatotal ≤ 0.875 m2

Size–form factor (dm3) Vtotal = 5190 liters Vtotal ≤ 1298 liters
Weight (kg) Wtotal = 3537 kg Wtotal ≤ 530 kg

Specific Power 0.14 kVA/kg >5 kVA/kg
Power Density 0.09 kVA/L >9.2 kVA/L

Cooling Method Air Cooled/Oil Filled Liquid Cooled

MTTF (Targets) 68,960 h (7.9 years)
(PFC + DCX)

75,856 h (8.66 years)
(PFC + DCX)

Recently, wide-bandgap (WBG) semiconductor devices have played a role in developing EV
chargers [6,7], not only increasing the power density thanks to the higher switching frequency than
Si, but also undertaking higher input voltage, such as 6.5 kV silicon carbide (SiC). This potentially
allows the medium voltage (MV) transmission lines (2.4–13.4 kVAC) directly to come into the charging
station, thereby saving the 480 VAC step-down grid transformers. As compared in Table 1, elimination
of the grid transformer can significantly reduce the size and weight of the overall XFC system. Even
though the DC/DC converter such as dual active bridge (DAB) and resonant circuits (LLC and CLLC)
all need transformers [8–10], such transformers can be operated at a much higher switching frequency,
thereby seeing less weight and size penalty while maintaining galvanic isolation.

From Table 1, we can find that the overall efficiency of the proposed 500 kVA system based on the
HV SiC switches is improved by 3%. The main reasons for the higher efficiency of the proposed system
are as follows. 1) The normal input grid voltage of the traditional 500 kVA system is three-phase
480 VAC, and the input grid voltage of the proposed 500 kVA system is single-phase 8 kVAC, which is
more than 17 times that of the traditional system. Given the same power level, higher voltage means
lower current, which is beneficial to reduce the power loss of the whole transmission and improve
system efficiency. 2) Enabled by 6.5 kV high voltage SiC power modules, the proposed system will
connect to MV transmission lines (2.4–13.4 kVAC), thereby directly saving the 480 VAC step-down
grid transformers. Therefore, the large power loss of the 60 Hz transformer is eliminated, which helps
to achieve the higher efficiency. Additionally, a bidirectional feature is highly demanded, especially
when there is a grid outage.

With the above consideration and enabled by high voltage (HV) SiC power modules, an approach
shown in Figure 1 is proposed. The input 8 kVAC was split evenly among three H-bridge modules,
which act as the power factor controller. The AC is then rectified into 4.3 kVDC, which is forwarded
to a resonant-type DC transformer circuit (DCX) made of a primary half-bridge, a three-winding
transformer, and two low-voltage H-bridge paralleled to output 1.3 kVDC. Note that this allows the
two low-voltage DC (LVDC) buses to be isolated, thereby charging two cars in an isolated manner.
The outputs of each of the DCX modules are connected in a parallel output to generate 1 MW power.
Each LVDC bus then is connected to a 500 kW buck converter to charge one EV, as shown in Figure 1b.
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(a) 

 
(b) 

Figure 1. (a) Block Diagram of proposed design of electric vehicle (EV) extreme fast charger (XFC)
station for two vehicles. (b) Block diagram of the following 500 kW DC/DC converter.

Essentially, such an input-series, output-parallel (ISOP) design successfully eliminates the
480 VAC/60 Hz transformer, while it also realizes bidirectional power flow. Such an ISOP system,
however, brings other challenges. 1) Device electrical ratings. With 8 kVAC single-phase grid, the grid
connection of each power factor correction (PFC) module is desired to be at 2.6 kVAC, which is further
boosted to 4.3 kVDC. For a 1 MW charging capability, each DC/DC converter module undertakes
333 kW. Selecting the right topology to minimize electrical stress of the switches is key to the success,
especially for the DC/DC stage. A detailed comparison of various DC/DC topologies is shown in
Table 2, including DAB, DCX, and CLLC. These topologies were chosen because they all provide
isolated bidirectional DC/DC conversion by means of a high-frequency transformer and are all widely
used [8–12]. As seen in Table 2, even though the peak current and root mean square( RMS) current are
high with the DCX converter, the maximum switching off current is close to 0. This is because the DCX
topology always operates at the resonant frequency, which is the main reason this paper selects such
topology. All SiC devices are switched at 30 kHz in all compared topologies.
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Table 2. DCX topology comparison.

Parameter DAB CLLC DCX

Peak Current [A] 112 275 250
RMS Current [A] 93 193 170
Maximum Switching-off Current [A] 112 154 15
CDC (DC-bus cap between PFC and DCDC [mF]) 0.8 0.6 0.01
Cout (DC-bus cap at output [mF]) 0.085 0.085 1 × 2
Cr (resonant cap [μF]) N/A 0.316 12.665
Transformer [kVA] 420 423 592

The electric stress is then shifted to the resonant circuit and MV transformer. The PFC stage also
needs to realize unity power factor and reduce total harmonic distortion (THD), and given the input
series structure of the PFCs, the interleaved gate signal is supplied to the PFCs to achieve much smaller
current ripple, which could help to reduce the demand of the large bulky DC bus capacitor. This is of
importance when reducing the dimensions and cost of the system and improving the power density of
the system. Besides, the smart output voltage balancing control is proposed to make sure the three PFC
modules have balanced output voltage even under the different load conditions. The balanced output
could ensure the same voltage stress among different modules, which is beneficial to the safe operation
of the system. This part will be discussed further in Section 2. The DCX topology steps down 4.3 kVDC
to a level of ~1.3 kVDC. Considering the importance of the resonance of the DCX, the intelligent
resonant frequency tracking method based on the master–slave control is proposed. This control
method could adjust the working frequency automatically to reach the resonant frequency, and the
master-slave control enables the automatic change of the frequency adjustment operand. Considering
that the resonant condition is necessary for the low switching loss of the switches, this novel control
method is indispensable for the high-efficiency and safe operation of the system. Given the high-power
level and high-voltage level, to avoid the inrush current at the start of the system, the DCX is responsible
for pre-charging the output capacitor of the LVDC buses before charging. These control methods will
be detailed in Section 3. Section 4 will discuss the impact on the grid. Section 5 is the conclusion.

2. PFC-Stage Control

2.1. Power Balancing

Since the basic control method of the totem-pole PFC has been widely discussed [13,14], this paper
will particularly focus on the power balancing among modules. To simplify the analysis, just consider
two series PFC stages as shown in Figure 2.

To rectify the AC power from the power grid, the bridge leg of the PFC #n {Sn3, Sn4} is operated
with main power frequency, i.e., 50/60 Hz, which could be seen as the rectifier bridge leg. Another
bridge leg of the PFC #n {Sn1, Sn2} is pulse width modulation (PWM) controlled to achieve the power
factor correction and low THD. In the steady state of this system, because the voltage and current are
in phase, the DCX could be considered as the resistive load. Because the switching frequency fs is
much higher than the line frequency fg, vin(t) can be assumed as constant within one switching period.
Considering the continuous conduction mode (CCM) for both PFCs, steady-state equations can be
derived as follows [15]:

Vo1(1− d1) + Vo2(1− d2) = |Vin| (1)

Vo1 = |iin| · (1− d1) ·R1 (2)

Vo2 = |iin| · (1− d2) ·R2 (3)

where d1 and d2 represent the duty cycle of the high-frequency gate signals of PFC#1 and PFC#2.
From Equations (2) and (3), it can be seen that to achieve the output voltage balancing control

under the unequal load condition, the duty cycles of two PFCs need to be modulated to accommodate
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the load difference [15,16]. Figure 3 shows the control block of the PFC weighted output voltage
balancing control, composed of three loops, i.e., inner current control loop, outer voltage control loop,
and the supplementary voltage balancing loop. The slower outer voltage control loop is to make the
PFC stage output voltage follow the reference voltage and supply the reference current to the inner
current control loop. The reference current is generated by the averaged voltage loop output Vvoa and
the grid side voltage Vin, where Vvoa supplies the magnitude and vin with its RMS value Vin provides
the phase of the reference current.

Lin1
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R1
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Figure 2. Schematics of two power factor correction (PFC) modules in series.
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Figure 3. Control scheme for series-connected PFC modules.

The impact of the load difference is thereby eliminated through the voltage balancing control loop,
as simulated in Figure 4a,b, where the load of each PFC is not identical, R2 = 1.1R1. Without balancing
control, some diversity of the switch can cause the DC-bus variation. Based on Equations (2) and (3),
the same duty cycle will be supplied to two PFCs. Because of the series input structure, the input
current will be the same for two PFCs. Therefore, the different load resistance will cause the unbalanced
output. The simulation results of the steady-state output voltage waveform without the balancing
control is shown in Figure 4a. When the voltage balancing loop is integrated into the control loop, two
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PFCs can be controlled individually. Voltage balancing loop could compensate for the deviation of the
duty cycle caused by the different loads. After the compensation, the different duty cycle generated
based on the output voltages of two PFCs will be supplied to the corresponding PFCs, such that
the balanced output could be achieved. Figure 4b shows the voltage balancing control performance
based on the simulation model. We then further experimentally validated the voltage balancing
control for PFC stages, where we consider the load resistances of two PFCs to be 2R1 = R2 = 25 Ω.
The experimental setup and the Field Programmable Gata Array (FPGA) control block diagram is
shown in Figure 5, and the experimental results are shown in Figure 6. Figure 6a shows the steady-state
input and output waveform without the balancing control. It can be seen that the output DC voltage of
PFC#1 is almost twice of the output DC voltage of PFC#2. Considering that the load R2 is twice of the
load R1, the experimental results are consistent with the theoretical analysis. As shown in Figure 6b,c,
after integrating the voltage balancing control, the DC bus voltages are kept the same once the system
reaches steady state. Therefore, the voltage balancing control method is validated by the simulation
and experiments.

 
(a) 

(b) 

Figure 4. Simulation results of the DC output voltage for series-connected PFC modules: (a) without
the balancing control and (b) with the balancing control.

 
(a) 

Figure 5. Cont.
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(b) 

Figure 5. (a) Experimental setup of two input series-connected PFC; (b) FPGA control block diagram.

(a) 

(b) 

Figure 6. Cont.
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(c) 

Figure 6. Experimental results for series-connected PFC modules (a) without the balancing control;
(b) with the balancing control and (c) Zoom-in view with the balancing control.

2.2. Interleaving Control

Once the three PFC modules balance the power in the modules, we can further employ interleaving
control for each PFC, i.e., shifting the gate signals by 120◦ (1/3Ts). This helps further reduce the
grid-side current. As shown in Figure 7a, without the interleaving, the grid side current (I_inductor)
sees over 20 A current ripple. With the interleaving control, as shown in Figure 7b, the grid current
ripple drops to ~5 A.

(a) 

Figure 7. Cont.
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(b) 

Figure 7. Simulated grid current (a) with same gate signal and (b) with interleaving gate signal.

3. DCX Stage Control

3.1. Power Balancing Control

The DCX converter topology, as seen in Figure 1a, consists of a MOSFET half-bridge converter on
the primary side, a three-winding MV transformer, a resonant capacitor and a MOSFET full-bridge
converter on each secondary side. The primary-side and secondary-side MOSFETs share the same
complementary PWM gate signals with 50% duty cycle. The relationship of the resonant frequency fr
and the resonant parameters can be expressed by Equation (4), where Lr is the leakage inductance of
the transformer and Cr represents the capacitance of the resonant capacitor.

2π fr =
1√

LrCr
(4)

As previously mentioned, the PFC stage could achieve balanced output voltage, which means that
each of the DCX converters will have the same input voltage. However, a slight difference between
transformers leakage inductance or the resonant capacitance will lead the converter to deviate away
from the resonance point and further creates an unbalanced output current. The main challenge of this
unbalanced problem is that when the switching frequency is higher or lower than the actual resonant
frequency of the DCX, they both can cause the output current to decrease and unbalance the outputs.
Thus, we need to detect the impedance of the resonant tank to determine the changing direction of the
switching frequency. To solve this problem intelligently and easily, output current balancing control
based on the resonant frequency control is proposed in this paper and shown in Figure 8.

It is noticeable that when the switching frequency of one DCX converter in this paralleled structure
is closer to its resonant frequency, its output current will be larger. Thus, in this control method, the
DCX converter which has the highest output current will be set as the master converter, and other
DCX converters will automatically become the slaves. The frequency of the master will be constant,
and the frequency of the slave will be adjusted to match the resonant frequency of the DCX converter.
The resonant frequency tracking control is mainly controlling the changing direction of switching
frequency based on the changing of the output current. The time step ts and frequency step Δf are
constant and can be adjusted according to the system parameters and requirements of the control
accuracy. Then, if the output current of DCX #n increased after the last change of the frequency (when
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time t = (k − 1)ts), the changing direction of the frequency will stay the same as the last time (when
time t = kts). Conversely, the frequency will change in the opposite direction. The control goal is to
track the resonant frequency of each DCX automatically and achieve the balanced output currents.

 

Figure 8. Algorithm depicting output current balancing control of the paralleled DC transformer
circuits (DCXs).

Compared with the control method based on phase relationship detection [17] and time
measurement of zero diode current [18], among others, the proposed method has three main advantages:
1) changing fs bi-directionally and automatically tracking the resonant condition; 2) setting the master
automatically to make all the DCX converters work under the resonant conditions when the system is
at the steady state; and 3) having no extra detection and measurement circuit.

Based on three paralleled DCXs, the simulation is conducted to validate the output current
balancing control. Three DCXs have different resonant inductors but have the same initial working
frequency finitial:

finitial =
1

2π
√

LrdCrd
= 20kHz (5)

where Lrd and Crd represents the designed resonant inductance and capacitance.
Figure 9a,b shows the output current balancing process of three parallel-connected outputs under

two sets of different initial parameters of inductors, 1) Lr1 = Lrd, Lr2 = 0.9 Lrd, Lr3 = 0.95 Lrd and
2) Lr1= 1.05 Lrd, Lr2 = 0.9 Lrd, Lr3 = 0.95 Lrd. For the first set, based on the control algorithm, there are
mainly three stages for the balancing process. First, when t < 0.02 s, the system works without the
balancing control, and the output currents are unbalanced, which is caused by the different resonant
condition. From Figure 9a, when t < 0.02 s, it can be seen that the DCX#1 with the best resonant
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condition has the largest output current, which is consistent with the theoretical analysis that a better
resonant condition will lead to larger output current. Then, when t > 0.02 s and before the system
reaches the balanced condition (where the deviation of currents are less than 0.3 A), the first DCX is the
master controller as it has the largest current and the other two DCXs become the slave automatically.
The frequency of the master converter will keep consistent, and two slaves will adjust the frequency to
reach the resonant frequency based on the algorithm. Finally, when the output currents reach balance,
the algorithm will automatically stop changing the frequency and keep the system working under this
steady-state condition. Similar to the first set, the modulation process of the second set also has three
modulation stages, which are shown in Figure 9b. The difference is that, for the second set, DCX#1 and
DCX#3 have similar frequency deviation, so at first, the output current of these two DCXs are close to
each other.

Figure 10 shows the voltage and current waveforms of the transformer primary sides of DCX#2
before and after the DCX reaches the resonant condition. After the DCX reaches the resonant condition,
the transformer current waveform changes to a sinusoidal waveform, and the current and voltage
are exactly in phase, which indicates zero-current switching-on and -off loss. Figure 11 shows the
frequency modulation process of DCX#2 and DCX#3 when the system works under the first set of
the parameters of inductance shown in Figure 9a. From Figure 11, we can find that first, the DCX#2
and DCX#3 could modulate the frequency to the real resonant frequency, which is determined by the
inductor and capacitor, based on the deviation of the resonant frequency; and second, when the system
reaches the resonant condition, the frequency modulation will stop and the controller will keep the
frequency constant, such that three DCXs will work on the steady state with balanced outputs.

 

(a) 

 

(b) 

Figure 9. Output current balancing control performance with the resonant inductance of (a) Lr1 = Lrd,
Lr2 = 0.9 Lrd, Lr3 = 0.95 Lrd and (b) Lr1 = 1.05 Lrd, Lr2 = 0.9 Lrd, Lr3 = 0.95 Lrd.
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(a) 

 
(b) 

Figure 10. Voltage and current waveforms of the primary side of the DCX transformer (a) before the
DCX reaches the resonant condition and (b) after the DCX reaches the resonant condition.

 
(a) 

 
(b) 

 

 
(c) 

Figure 11. Cont.
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(d) 

Figure 11. Output current and switching frequency regulation of the DCX#2 and DCX#3. (a) Output
current changing with the switching frequency of DCX#2; (b) Switching frequency regulation of DCX#2;
(c) Output current changing with the switching frequency of DCX#3 and (d) Switching frequency
regulation of DCX#3.

3.2. Pre-Charging Process

Considering high power and voltage level, we need to pre-charge the output capacitor of the LVDC
bus before starting to charge the vehicle. Given the nature of its voltage source, directly providing 50%
duty cycle for all switches will induce the large inrush current [19]. Instead, we propose to use a smaller
duty cycle for the primary-side switch of the DCX in the starting process and prolong the charging time.
The simulation results of pre-charging control are shown in Figure 12. Figure 12a shows the pre-charging
process; meanwhile, Figure 12b shows the duty cycle of the gate signal changing process. When the
system works at steady state, for DCX, the gate signals for the primary and secondary side switches are
exactly in phase and with duty cycle of 50%. Differently from the steady state, when the system works on
pre-charging stage, the duty cycle of the primary side will increase gradually from 0% to 50%. In this way,
we can make sure that the charging power is small at first, which could decrease the dv/dt and charging
current of the DC bus capacitor. Figure 12c shows the waveform of the current and voltage during the
pre-charging process. From Figure 12c, we can find that the duty cycle smaller than 50% could decrease
the current flowing to the capacitor, which is achieved by smaller conduction time. Figure 12d shows the
relationship of the pre-charging time and peak value of the current flowing through the primary side
switches. The peak current can be seen decreasing as the pre-charging time is increased, which could
help to choose the appropriate pre-charging time based on the current rating of devices.

(a) 

Figure 12. Cont.
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Time/s

 
(b) 

 
(c) 

 
(d) 

Figure 12. Pre-charging mode of the DCX stage. (a) Pre-charging process when the pre-charging time
= 1 s; (b) Gate signals modulation of the switches; (c) Zoom-in waveform of primary and secondary
voltage and current; and (d) Relationship of the peak current and pre-charging time.
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4. Interaction with the Grid

How to fit such a charger to the grid is another concern of this study. In this study, we are using a
quasi-steady-state approach with a one-hour resolution to study the effect of installing XFCs on the
feeders. For this purpose, the highest load day in 2019 has been picked and the one-hour snapshots
of the grid have been selected as the base cases. The snapshots are basically real-time models of the
network generated from the real energy management system (EMS) data by state estimators. Topology
changes, load variations, generation units’ dispatch, and all other grid specifications that are subject to
change are included in these models. These snapshots are being generated every ten minutes, but
since the demand model for the XFC demand has a one-hour resolution, the snapshots are chosen
accordingly. The models are real models of “Utility D”.

The XFC demand model that has been chosen for this study is the model that has been suggested
in [20]. Authors suggested this demand model based on field data surveys and used statistical methods
to generate a MW/time model for the demand for a week, which is shown in Figure 13. What we are
using is an hourly demand model for a day which has the highest value during the week.

Figure 13. Demand MW/Time model of an XFC station during a week for a ~500 kW station.

In our study, to have a more realistic sense of the effect of chargers on the higher-level grid,
we have considered 20% of maximum loadability of the Transmission/Distribution transformer as
the aggregated nominal charging power of the stations which are installed at the feeder. The MW
demand associated with the time of the day is being added to a certain predetermined substation in the
corresponding snapshot. For example, MW demand for 23:00 is added to the substation in the 23:00
snapshot. For each location, it is done for 24 h of a day. Then, the voltage variation, voltage violation,
and transformer rating violation are monitored during the day. The results are further investigated for
the aforementioned penetration of the EV chargers in the selected locations.

The first step for implementing the study was to choose the substations and geographic areas
which make sense in the real world to install XFC stations. Through the field research from operational
planning engineers in “Utility D”, five different areas with 19 transformers in total have been selected
as candidates for the study. These areas are mostly airport, commercial, residential, or touristic areas in
the state. All the locations in one area are studied together so that we can have a good understanding
of how moving the XFC station might affect the grid locally. In all cases, the power factor has been
considered. Therefore, the station is not absorbing any reactive power from the network.
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To explain the research findings compactly, only the simulation results of four feeders in Area 2
are shown in Figure 14. Other areas have similar results with Area 2. Area 2 is mostly an important
business area with four feeders as the options for connecting the XFC stations. From Figure 14a,b,d,
we can find that tx-05, tx-06 and tx-08 are able to supply the demand while the stations are working
throughout the day. At feeder tx-07, there is a voltage violation at 3 p.m, which can be found in
Figure 14c. Although, the voltage violation also exists in the base case, the 2% voltage drop due
to charging load at the time intensifies the problem and might cause a relay action at the location.
This case could cause trouble and needs further study. As can be seen from Figure 14, the planner
might decide to move the station to another feeder or to take remedial action by installing capacitor
banks in the same location.

 
(a) (b) 

 
(c) (d) 

Figure 14. Voltage profile of feeder head before and after XFC installation on 20% penetration in area 2.
(a)TX05; (b)TX06; (c)TX07 and (d)TX08.

As has been presented in the last section, we have observed voltage violations on the transformers
after XFC integration to the network in four feeders. The voltage problem can be solved using
conventional solutions like changing taps or switching in the capacitor banks, if any exist at the
location. But in this section, we tend to evaluate the potential use of reactive power injection from
the chargers to the grid. This could shed light on the possibility of using the converters as voltage
improvement devices so that at least they do not worsen the voltage condition at the feeder at which
they are connected. For the purpose of this study, we consider four different scenarios for all five
feeders that have a voltage problem. The first scenario is the base case scenario before any station
is attached to the grid. The second scenario is the same as we have demonstrated in the previous
section. The third scenario is to deploy half the capacity of reactive power (VAR) injection of all stations.
Typically, the converters are designed to be able to provide reactive power equal to 1.7 times of their
nominal active power. Therefore, the half capacity of the VAR injection will be 0.85 MW. The fourth
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scenario is applying the full capacity of VAR injection, which is 1.7MW. From Figure 14, we know that
the voltage profile of the tx-07 is not ideal even before the installation of the XFC station. To improve
the voltage profile, four scenarios are applied to the tr-07, and the results are shown in Figure 15.

 

Figure 15. Voltage profile on tx-16 in different scenarios.

At tx-07, when we use half VAR capacity, the voltage profile improves significantly; meanwhile,
the daily voltage dip is restored to base case level. At full-capacity VAR injection, there will not be
any voltage violation as it can be observed. Therefore, to successfully deploy such XFC, the PFC
stage should not always work at unity power factor. When the grid voltage dips, it needs to generate
capacitive reactive power to back up the grid.

5. Conclusions and Future Work

A single-phase 1 MW EV XFC station is presented in this paper. Essentially, this is an input-series,
output-parallel design that includes a PFC stage and DCX per module. This paper addressed the
output voltage balancing control of the series-input PFC considering the unbalanced load condition.
The integrated voltage balancing control loop could compensate for the deviation of the duty cycle
and achieve the independent control of two PFCs, which could satisfy the output voltage balancing.
Considering the paralleled output structure of three DCXs in our model, the output current balancing
control is proposed to compensate for the resonant frequency deviation in this paper. Based on the
master–slave resonant frequency modulation control, the working frequency of each of the DCXs
could be modulated to the corresponding resonant frequency, which could be different from the
initially designed value. In addition, the pre-charge mode is investigated to make sure the system
could start safely considering the high level and potential large inrush current without the addition of
external hardware.

The success of such an XFC is not only determined by the power electronics design and control
but also up to the interaction with the grid. This paper finds that such high power can cause the
grid-voltage dip at some special moment and location. The proposed approach is to let the PFC stage
generate reactive power to support the grid. Future work of this research is to test the system up to
1 MVA once the hardware is ready.
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Nomenclature

The following abbreviations are used in this manuscript:

AC Alternating Current
CCM Continuous Conduction Mode
Cr Resonant Capacitance
DAB Dual Active Bridge
DC Direct Current
DCX DC Transformer
DC/DC DC to DC
d1, d2 Duty Cycles for PFC stage
EMS Energy Management System
EV Electric Vehicle
FPGA Field Programmable Gata Array
fr Resonant Frequency
fs Switching Frequency
finitial Initial working frequency
Lrd Designed resonant inductance
Crd Designed resonant capacitance
HV High Voltage
ISOP Input Series Output Parallel
Lr Resonant Inductance
LVDC Low-Voltage DC
MOSFET Metal Oxide Semiconductor Field Effect Transistor
MTTF Mean Time To Failure
MV Medium Voltage
MW Megawatt
PFC Power Factor Correction
PWM Pulse Width Modulation
RMS Root Mean Square
R1, R2 PFC Load Resistances
Si Silicon
SiC Silicon Carbide
SOC State of Charge
Ts Switching Period
THD Total Harmonic Distortion
VAC AC Voltage
VAR Reactive Power
VDC DC Voltage
Vin Input Voltage
Vo1, Vo2 PFC Output Voltages
Vvoa Average Output Voltage
WBG Wide Bandgap
XFC Extreme Fast Charger
XFMR Transformer
η Efficiency
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Abstract: Urban complex (UC) is the main place of citizens’ life and work. The construction of
an UC often needs to expand the capacity of the power equipment. This paper proposes to use
electric vehicles (EVs) in an UC to reduce the power load of the UC during peak periods, so that
lower capacity power equipment can be used to reduce the construction costs of the UC and the
transformation of electrical facilities. In order to find the relationship between parking and power
load in the UC, the UC is decomposed into different functional areas for research. Then, we build a
parking information database for clustering and calculation. Divide the load peak into adjustment
intervals of equal duration. The EVs parked in the UC for each regulation interval (RI) are grouped
according to parking characteristics. Establish an objective function with the minimum load variance
during peak hours. The discharge capacity of each group in each RI is obtained and distributed
to each EV to realize peak load reduction of UC. Finally, the results of case analysis show that the
strategy can reduce the peak load effectively thus save the cost of UC construction.

Keywords: electric vehicle; V2G; urban complex; peak shaving; smart grid

1. Introduction

The consumption of fossil fuels has brought about serious ecological issues such as global
warming and air pollution. The promotion of electric vehicles (EVs) can effectively solve these
problems. Therefore, many countries have promulgated various policies to support the development
of EVs. It can be predicted that the number of EVs will increase rapidly in the future. The large-scale
popularization of EVs will require huge demand for electricity. As electricity consumers, uncontrolled
charging of many EVs may cause unsafe operations in the power grid, but EVs can also be used as
mobile energy storage for load regulation. Hence, proper control of EVs’ charging and discharging
will have an important impact on the construction and operation of the power grid. As the busiest
place for people and cars gathering in the city, the urban complex (UC) has high electricity demand.
The construction of UCs will cause the reconstruction and expansion of the surrounding distribution
power grid. It will cost lots of money for reconstruction and expansion of the power grid. To solve this
problem, we will mainly study EVs with the function of participating in the load regulation of UC.

There are many studies on charging load mode of EVs at present. In order to establish the
charging load model of EV cluster in charging stations and residential areas, a queuing theory modeling
method was employed in [1]. Based on the National Household Travel Survey (NHTS) database of the
United States Department of Transportation in 2009, the statistical rules of EV trips, ending time and
driving distance are studied and analyzed. On this basis, the probable charging model of EVs was
completed in [2]. Considering the price and tax rate, fuel price, policy support and charging safety of
EVs, a forecasting method based on an agent model was proposed and used to predict the development

Energies 2020, 13, 2939; doi:10.3390/en13112939 www.mdpi.com/journal/energies269



Energies 2020, 13, 2939

scale of EVs in Iceland from 2012 to 2030 in [3]. A statistical analysis of the 24-hour travel of EVs was
carried out, and the load curve of charging at home was calculated in [4]. An Autoregressive Integrated
Moving Average model (ARIMA) method for demand forecasts of conventional electrical load and
charging demand of EVs’ parking lots was presented in [5], and the parameters of the ARIMA model
should be tuned so that the mean square error of the forecaster could be minimized. Researchers in [6]
pointed out that in the United Kingdom, EVs with 10% permeability would lead to a 17.9% increase in
peak power demand per day, and a 35.8% increase if permeability reaches 20%.

The strategies of peak-shaving and valley-filling are one of the research focuses. A time-sharing
charging control strategy for EVs based on the predicted load curve is presented in [7]. By increasing
the tariff during the peak load period and reducing the tariff during low load period, users can choose to
charge during low load period to realize peak shift [8]. Researchers in [9–11] established the simulation
model of EV participating in load frequency adjustment and study its mechanism and control effect.
They demonstrated the feasibility of EV participating in grid frequency regulation. When the grid
frequency is high, controlling a large number of EVs charging promotes the frequency of the grid to
decline; and when the grid frequency is low, controlling a large number of EVs discharge promotes
the frequency of power grid to rise. Scholars simulate and calculate the potential benefits of 250 EVs
participating in grid regulation in New England. The calculation results show that when EV only
provides downward FM service (the EV only charges), each EV can bring about an annual revenue
of $700–900. When the EV provides both upward and downward FM service (EVs both charge and
discharge), each EV can annually generate revenue of $1250 to $1400 for its users [12].

The authors in [13] proposed a stochastic unit commitment for isolated power systems in which
the risk of high operating costs is limited using the conditional value-at-risk risk measure. A unit
commitment formulation that accounts for the requirements of spinning reserves was presented
in [14]. A procedure to determine the optimal design of an isolated system with a high penetration
of renewable energy sources was proposed in [15]. Several electric vehicle charging algorithms were
proposed explicitly considering their negative impacts on the transmission and distribution grids
in [16]. An agent-based coordinated dispatch strategy for electric vehicles and renewable units at
distribution level was presented in [17]. A reserve contract optimization model designed for electric
vehicles with vehicle-to-grid capability was proposed in [18]. The authors in [19] investigated the
optimal planning of the Nordic transmission system in 2050 for a 100% electric vehicle penetration.

Researchers in [20] found that V2G strategy effectively reduced contamination emissions and cut
down the investment of variable load plants. Researchers in [21] also considered that the participation
of V2G into power systems could reduce peak power generation costs. The authors in [22] believed
that V2G application of heavy-duty electric vehicles was not only possible but also necessary for more
profits while electric buses without V2G revenue would not be cost-effective compared with traditional
diesel buses. The results in [23] showed that electric trucks could generate an additional enormous
income for owners if they provided V2G regulation service. The authors in [24] proposed a two-stage
approximate dynamic programming framework for the optimal charging strategy in a commercial
building parking lot and simulates a number of scenarios where the vehicle arrival behavior is modeled
as a Poisson process.

The coordination of EVs and distributed energy sources is another research focus. When there
are enough intelligent generators, power electronic devices and interactive chargers in the power
grid, EVs can be used as energy storage devices and standby power supply in case of accidental
power outages [25–28]. EVs can help integrate intermittent renewable energy such as wind and solar
energy into the grid more efficiently. V2G system can provide more help for grid operators, including
reactive power support, active power regulation, and load balancing through peak shaving and valley
filling, current harmonic filtering. These systems can provide auxiliary services such as frequency
control and rotating reserve, which can significantly improve the efficiency, stability and reliability of
power grid [29–32]. According to the Demand Side Management (DSM) method, the charging and
discharging status of EVs will change with the load, which can not only improve the reliability of
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power grid operation, but also reduce the impact on power grid if a large number of EVs are connected
to the power grid [33]. A strategy to optimize the control of EV group, not only considering the cost of
EV users, but also considering the benefits of EVs accessing the grid to participate in auxiliary peak
shaving, frequency modulation and standby [34,35]. EV clusters and a double-level optimal strategy
are used according to different priorities in [36], and a real-time optimal strategy from EV clusters to
individuals is completed.

We can find that most of studies have considered that EVs should charge or discharge at the
charging station. In fact, users prefer to charge near home because the charging stations are always
located in remote places. The smart city is a new urban construction concept. This means the integration
of urban function and services to optimize efficiency of urban management and services. It will
improve the quality of citizens’ life. The UC is generally located in busy areas with business, office,
residential functions and so on. This aligns with the smart cities concept. Many people live near the
UC. Obviously, it is a better choice for users to charge and discharge in the UC. It is convenient for
people if we build the garage of an UC as a charging and discharging power station. This design can
not only meet the charging needs of users, but also let EVs participate in the load regulation of the UC.
Therefore, EVs participating in the load regulation of UC can facilitate the safe and stable operation
of the power grid and efficient utilization of power resources in a smart city. This is conducive to
establishing the power supply systems of smart cities. However, there are few studies about EVs
participating in load regulation of an UC. The vehicle behavior of UCs is very complex. There are many
cars of malls, consumers, white-collar workers and residents in an UC, so the relationship between the
load characteristics and parking characteristics of different functional areas is obtained by studying
the different function areas of an UC in our research. Then, the EVs are clustered into a controllable
group and an uncontrollable group. Each group will be regarded as a whole to participate in the load
regulation of the UC. In order to make more EVs with different parking times participate in the load
regulation, we divide the peak load period into many small time periods defined as the regulation
interval (RI). In this way, if the parking time of some vehicles can cover a certain RI, the vehicles can
participate in the load regulation of this RI. We set the objective function which minimize the mean
square deviation of load and get the total discharge power of each group in each RI and allocate it
to each vehicle. Last, the case study proved that the EVs can reduce the peak load of UC effectively.
In summary, the main contributions of our research are:

(1) The random charging load model of EVs is established according to the daily travel habits of
residents. The influence of the EVs’ number and charging power on the charging load is analyzed.
It is confirmed that large-scale EV use with random charging will produce a serious charging
load, which will influence the safe operation of the power grid.

(2) The construction of UCs is becoming more and more popular among real estate developers.
There are few studies about EVs participating in load regulation of UCs. The research carried
out in this paper can reduce the peak load of UCs and improve the security of local power
grid operation.

(3) It is proposed to divide the UC into different functional areas. Then, we get the relationships
between load ratio and parking ratio of these different functional areas. The vehicles parked in
the UC are divided into three groups according to the functional areas of the UC. The problem is
simplified by this way.

(4) We propose a load shaving strategy involving three types according to their controllability, and the
objective function was established to minimize load variance during the peak period of the UC.
A case study was done to verify the strategy. The result proves that the strategy proposed in the
paper can effectively reduce the peak load through appropriate parameter matching, which is
safe to the operation of the power grid.

The rest of the paper is organized as follows: Section 2 describes the problem faced by EV charging.
The calculation model of random charging load of EVs is established according to the user’s habit.
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Then, the relationship between load and parking of the UC is studied. The relationship between
load ratio and parking ratio can be obtained by decomposing the UC into different functional areas.
In Section 3, the EV discharging strategies in UCs are illustrated and thoroughly described. In Section 4,
the effectiveness of the strategy is verified by case study, and the influence of permeability and length
of regulation interval on peak shaving is analyzed. Finally, the conclusions are presented in Section 5.

2. Model Description

With the increase of EVs, the concentrated charging of EVs may cause power shortages in local
areas. The charge power of EVs during peak load periods will increase the burden of the distribution
power network. Since the existing local distribution networks and facilities did not consider the charge
demand of EVs during the construction period, they need to invest a lot of money to expand and
transform the local distribution power grid for EV charging.

This section will study the influence of stochastic charge on power grid, load characteristics of
the UC, the parking patterns in the UC and model the stochastic charge load of EVs. Based on this,
our research further proposes a parking garage which can be used in an UC. This parking garage will
be built as a charge center with the function of both parking and charge/discharge for EVs. Through
the cooperation of flexible charge/discharge strategies, it can solve the problems of grid planning lag
in the construction of UCs and the dangers of power grid operation which caused by the stochastic
charge of EVs. In this paper, we will propose a discharge strategy for the peak load period.

2.1. Load Model of Stochastic Charging

With the expanded development of EVs, the number of EVs will reach a new scale. Their charging
demands will increase significantly. The charge load generation by EVs will represent and ever
increasing proportion of the power grid electricity consumption if the number of EVs is increasing.
In addition, the charge behavior of EVs users is clustered. The peak load of the power grid will increase
dramatically. It is necessary to increase the capacity of the power network to satisfy the demand of EV
charging in the future. Therefore, for construction and operation of the power grid, it is particularly
important to establish a model of the EVs’ charging load.

The factors affecting the charging load can be summarized as battery capacity, charge power and
users’ behavior. The power battery capacity determines the users’ charging frequency. The larger
battery capacity means the lower the charging frequency. The charge power is related to the charge
time. The greater charge power means the shorter charge time. At the same time, the charge power will
influence the peak charge load. Compared with the objective factors mentioned above, users’ behavior
is the key factor affecting the charging load. The user behaviors have an impact on charging load
mainly includes two aspects: the start charge time and State Of Charge (SOC). Concentration of the
user’s initial charging time will cause the greater the charging load. SOC reflects the user’s current
battery capacity consumption. If the battery capacity is small, the users generally charge every day.
With the increase of the battery capacity of EV, the users’ charge frequency will decrease. Our research
will consider these factors and establish a power demand model of EV in one day.

According to the National Household Travel Survey 2001 of American, the daily routine mileage s
obeys the log-normal distribution [4]:

f (s) =
1√

2πsδD
exp[− (lns− μD)

2

2δ2
D

] (1)

where, μD is the expectation of probability density function, δD is the standard deviation.
Assume the SOC is full at the first travel in a day. The remain SOCend after the last travel is:

SOCend = 1− k · s (2)
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where, k is the SOC consumption per kilometer.
The peak time of off-duty travel of private EVs is typically 17:00–19:00 [4]. Assuming that

the starting charge time is the last return time of the trip, combined with the survey results of the
United States Department of Transportation on American household vehicles, the final return time of
the vehicle is a normal distribution. In Equation (3), t is the final return time of the vehicle, and its
probability density function is as follows:

fs(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

δs
√

2π
exp[− (t−μs)

2

2δs
2 ], (μs − 12) < t < 24

1
δs
√

2π
exp[− (t+24−μs)

2

2δs
2 ], 0 < t ≤ (μs − 12)

(3)

where μs is the expectation of probability density function, δs is the standard deviation.
The charge power of EVs is related to the characteristics of batteries. The classical three-stage

charge mode is usually adopted in the charge process of lithium batteries: pre-charge stage, constant
current charge stage and constant voltage charge stage. In the pre-charge stage, lithium batteries are
activated to a certain state by a small current, which is usually about 10% of the constant current stage.
Constant current charge stage is the main stage of charging. When the battery voltage is higher than
2 V, the activity of the lithium-ion battery is fully activated and the internal resistance is smaller. It can
accept a high current charge. Generally, this period is used to charge the battery capacity to about 80%.
When the voltage of the lithium battery reaches the predetermined value, the third stage of constant
voltage charge is carried out. The current gradually decreases until it drops to 0. The period of first
stage and third stage are short, so the charge power can be regarded as a constant.

The charge time tc can be calculated according to SOCend and charge power.

tc =
(1− SOCend) ·W

Pcη
(4)

where Pc is the charge power; η is the charge efficiency, chosen as 0.90 [37], W is the battery capacity of
the EVs. Table 1 shows the top 10 most popular EV types in 2019 in China [38]. The battery capacity of
the top 10 most popular EVs in China is generally above 40 kWh, except for some mini-cars. According
to the data in Table 1, the battery capacity is more than 40 kWh after weighting the market share.
With the development of electric vehicle technology, the battery capacity will be larger and larger in the
future. In order to simplify the calculation process, the average capacity of power batteries is chosen as
W = 40 kWh in our research.

Table 1. Battery capacity and market share of the top10 most popular EV types in 2019 of China.

Type Battery Capacity (kWh) Market Share

BAIC EU 53.6 13.3%
BYD Yuan EV 40 7.4%

Baojun EV 24 7.2%
Chery eQ 23.6 4.7%

BYD Tang DM 82.8 4.1%
BYD E5 60.48 3.9%

GAC Aion S 49.4 3.9%
Roewe Ei5 52.5 3.7%
GWM R1 28.5 3.4%

Emgrand EV 52 3.4%

According to the travel characteristics, the Monte Carlo method is used to simulate the charging
load of EVs. Firstly, we assume the total number of EV is N. For the n-th EV, the daily routine mileage
of vehicles sn and the final return time of the vehicle tn is randomly generated by Equations (1) and (3).
Then, the charge time tn

c can be calculated by Equation (4). The charging load Pn
c will last from tn to
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tn + tn
c for the n-th EV. By adding up the charging load of each vehicle in each period T we get the total

charging load P(T). Algorithm 1 in Table 2 is the calculation process of stochastic charging load of EVs.

Table 2. Calculation process of stochastic charging load of EVs.

Algorithm 1 Calculation process of stochastic charging load of EVs.

Input probability density function of daily routine mileage and final return time
output Random charging load P(t) of EVs.
Step1 Generate sn and tn by the Monte Carlo method
Step2 Calculate the charge time tn

c
Step3 When n ≤ N

Add the Pn
c to the P(T) from tn to tn + tn

c
Step4 Output the random charging load of EVs

According to the calculation process, the stochastic charge load of EVs is established. We take a
residential area with 1000 households as an example to calculate the stochastic charge load. Supposing
there are 1000 parking spaces, of which 250 parking spaces can provide charging services. We set
the charge power as P = 10 kW, and explore the influence of EV number on charge load. As can be
observed from the Figure 1, the peak charge load concentrate between 19:00 and 22:00, and with the
increase of EV number, the charge load will increase rapidly. When 250 EVs are charged, the peak
charge load exceeds 1000 kW. This is a large valve for 1000 residential households.

Figure 1. Uncontrolled charge load with different number of EVs when the charge power is 10 kW.

Then, we set the number of EV is N = 100, and find the influence of charge power on charge load.
As can be observed from Figure 2 the peak charge load will decrease with the decrease of charge power.
It can reduce the charge load impact on power grid effectively. At the same time, the charge time will
last long if the charge power decrease. So, if the charge power is too low, the charge period will be
too long to satisfy the usage for next time. With the development of battery technology, the battery
capacity will be larger and larger. The requirement of charge power will also be greater and greater.
There is no point by reducing charge power simply.
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Figure 2. Uncontrolled charge load with different charge powers when the number of EVs is 100.

2.2. Characteristic of UC Load

As shown in Figure 3, an UC is a group of buildings with at least three of a series of functions
such as shopping, entertainment, office space, accommodation, residential living and so on. Its area
can reach more than hundreds of thousands of square meters or even millions of square meters. It is a
multi-functional, efficient and convenient synthetic assembly, which is formed to realize the complete
operation system of work and life in smart city. It can provide people with a colorful life. More and
more people like to live in or near the UC. Real estate companies will also build more UCs to meet
people’s needs. However, in order to recoup funds as soon as possible, real estate companies need to
take as little time as possible to construct an UC. There is a large demand for electricity, as a result,
the original power planning of the region may not meet the needs of the UC.

 
Figure 3. A typical urban complex with a huge underground parking lot.

275



Energies 2020, 13, 2939

There are differences between different functional areas of UC in work and rest time. Therefore,
the load characteristics of UC are closely related to its functions. Our research divides UC into three
types of individual buildings based on the function and running time of UC: commercial type, office
type and residential type. Then, the real data of different types is analyzed to get the load and parking
characteristics of the different types.

Because the power load of different UC is different in different days, our research uses the load
ratio to analyze the load characters at different times of the day, and randomly selects three different
types of single buildings on the working day for analysis.

The load ratio αT can be calculated by:

αT =
PT

con
Pmax (5)

Figure 4 shows the load ratio curves at different times for the residential type of building. In the
residential type, the load increases significantly from 8:00 a.m., with the peak occurring between 19:00
and 23:00 a.m. This is closely related to residents’ living habits. Residents start a new day after waking
up at about 8:00 am. Most people will leave home to work during the daytime, but some unemployed
residents stay at home for their own business during the daytime on the power load remains at a low
level before the other residents come back. Residents will return to the home after work at about 18:00.
Then, the demand for electricity will increase. There will then be a peak of electricity consumption
until the residents rest at night.

 
Figure 4. Load ratio curves of residential type buildings at different days.

Figure 5 shows the load ratio curve of office type buildings at different times. It is obvious that the
peak load period of office type is mainly concentrated between 9:00 a.m. and 18:00 p.m. The rest of the
time load the load is relatively low. The peak load period basically coincides with companies’ working
hours. The load ratio is relatively stable in peak and valley sections, respectively. The employees’
demand for electricity is mainly concentrated on lighting, air conditioning and the consumption of
office equipment such as computers during working hours. The demand for electricity is stable. During
non-working hours, there is almost nobody in the office, and only a small amount of power is needed,
such as emergency channel lighting.
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Figure 5. Load ratio curve of office type buildings at different days.

Figure 6 shows the load ratio curves at different times in commercial type buildings. The peak
load period of this type mainly concentrated between 9:00 a.m. and 22:00 p.m. which coincides with
the usual business hours in the business district. During business hours in business districts, shopping
malls, entertainment facilities and restaurants need a large amount of electricity. When business areas
are closed, there will be little electricity demand. Therefore, the peak and trough periods of the load
ratio curves are obviously the same as the office type.

 
Figure 6. Load ratio curves of commercial type buildings at different days.

The typical load ratio curves of the different types are shown combined in Figure 7. The load
ratio is obviously closely related to the activity hours of the different types of building. Especially in
commercial and office type buildings, the peak load period is concentrated during business hours.
The load ratio of the rest of the time is much lower than the peak period, which is not conducive to the
operation of the power grid.
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Figure 7. Typical load ratio curve of different building function types.

The overall load ratio αT
UC can be calculated by the following expression:

αT
UC =

PT
UC

Pmax
UC

(6)

where PT
UC is the power load at time T, Pmax

UC is the maximum power load in the day.
The overall load ratio of the UC is determined by the load ratio and maximum load of the

building types, therefore, the proportion of different building types directly affects the overall load
ratio. Developers’ positioning to build UCs will determine the load ratio curve of the UC. Figure 8
shows the overall load ratio of a city complex. From Figure 8, it can be observed that the peak load
period of the UC is still relatively concentrated, and the peak-valley difference is large.

 
Figure 8. Load ratio curve of UCs at different days.

2.3. Parking Behavior of UC

The parking characteristics of commercial type, office type and residential type building in an
UC are quite different. The peak parking time and parking turnover ratio are different in different
UC building functional types. In order to analyze the parking characteristics more conveniently
and accurately, we should find out the rules relating different parking characteristics and load
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characteristics [39]. There are three types of UC, so the parking ratios under these three types of UC
are discussed separately.

The parking ratio αpark is defined as the ratio of the number of parking lots to the number of
parking spaces provided by the garage per period.

αpark =
Nt

Nmax
(7)

where Nt is the number of parking lots available at time t and Nmax is the total number of parking
spaces in the garage

Figure 9 is a typical residential type parking ratio curve. The parking ratio of residential type
buildings mainly depends on the habits of residents. Some residents drive to work during the day.
After work, these residents drive home. Therefore, the probability of parking during the day is
relatively low, while the ratio of parking at night is higher. Some families have more than one car,
and some cars are used for other temporary trips besides work. These cars will be parked in the garage
for long time during a day. Therefore, the parking ratio in residential areas is always high.

 
Figure 9. Typical parking ratio curves of residential type buildings at different days.

Figure 10 is a typical parking ratio curve of an office type building. Employees drive from home
to work and leave their cars in the garage. Some of the employees go home for a rest or out for lunch,
so there is a slight drop in parking at noon. The utilization ratio of the garage maintains at a high level
during the working hours, and utilization ratio of the garage is very low during other periods.

 
Figure 10. Typical parking ratio curve of office type at different days.
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Figure 11 shows typical parking ratio curves of a commercial type building. The parking
characteristics of commercial format are related to many factors, such as pedestrian flow, position and
development of the UC. At the early opening period of the UC, the parking demand is low because of
the low business ratio. With the increase of business, the demand for parking spaces also increases.
Overall, the parking ratio during opening hours is much higher than at other times. The parking ratio
is at a very low level in other times, especially in the early morning.

 
Figure 11. Typical parking ratio curves of commercial type buildings at different days.

We can observe that there is a strong correlation between the load characteristics and parking
characteristics of office business and commercial business type buildings. The calculation and analysis
of the load ratio and its corresponding parking ratio are carried out. The correlation coefficients of
different dates are obtained in Table 3. There is a strong positive correlation between the load ratio and
parking ratio of office type and commercial type buildings. Although the correlation coefficients of
residential type buildings are low, the parking ratio of residential type buildings remains at a high
level. Therefore, our research takes advantage of EVs as mobile energy storage terminals, and the
correlation between parking ratio and load ratio of an UC, and presents the strategy of peak-shaving
during the peak load time of the UC.

Table 3. Correlation between the load ratio and parking ratio of different function types.

Date Commercial Office Residential

Day1 0.93026 0.960493 −0.32142
Day2 0.958525 0.95422 −0.31743
Day3 0.951995 0.95055 −0.27929
Day4 0.937235 0.953497 −0.14804
Day5 0.95543 0.953404 −0.32844
Day6 0.949204 0.957675 −0.16634
Day7 0.953815 0.950329 −0.34091
Day8 0.943993 0.951152 −0.16013
Day9 0.955598 0.95061 −0.27576
Day10 0.932579 0.953988 −0.27335
Day11 0.928337 0.944777 −0.32217
Day12 0.931294 0.946525 −0.31062
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3. Math Description and Control Strategy

According to the analysis presented in the previous section, the market entry of large-scale UCs
basically breaks the upper limit of the original urban grid planning. This will cause power shortages
and equipment failures in some areas. The construction speed of large-scale UCs is usually very fast.
Even if the grid projects that need supporting construction are synchronously set up to carry out
preliminary work, they cannot be completed and put into operation when a large UC is put into use.
It is often necessary to adopt emergency distribution network projects to complete the temporary
transition of the power supply scheme. Large-scale UCs have high electricity consumption and large
daily load peak-valley differences. If they blindly invest in power grid construction according to the
maximum load requirements, it will inevitably lead to unnecessary waste of resources. In order to meet
the multi-functional needs of the UC, we should support the construction and use of large garages
to meet the parking demands of consumers. With the development of EVs, more and more EVs will
replace petroleum fuel vehicles. Random charging of these EVs will also have a huge impact on the
power grid, greatly increasing the risk of power grid accidents. In our research, the advantages of EVs
as mobile energy storage terminals are put forward. According to the load and parking characteristics
of the UC, a large UC garage can be used to control the charging of EVs in an orderly way, making them
participate in the UC load control and solving the potential safety problems caused by the disorderly
charging of EVs. The large daily load peak-valley differences of the UC cause the problem of excessive
distribution network equipment resources [40], as well as the problem of lagging behind the planning
of the power grid due to the large number of UCs.

In order to control the task conveniently and reduce the operation time and size of the necessary
control center, our research proposes a two-tier real-time control strategy based on the EV user layer
and the grid load decision-making layer. The lower layer divides the EVs into groups according to the
load characteristics and parking characteristics of the UC, and then integrates the state information of
the EVs in each group. We calculate the maximum electricity that can participate in the regulation in
each regulation interval of each group. Due to the randomness of the behavior of EVs, the dynamic
callable power of the first regulation period is updated continuously according to the changes in the
number of EVs. The integration state information of each group calculated by the user layer will be
send to the grid layer. The power grid decision-making level determines the power size of each group
by formulating a dynamic target load curve according to the dynamic callable EV power of each group
in each period. Thus, the load of the UC can be reduced to fill valleys and peaks. The upper decision is
fed back to the lower. The lower level determines the charge power of each vehicle according to the
power required by each group.

Aiming at EVs participating in load regulation of UC, our research puts forward the following
main ideas:

(a) The users’ willingness to participate in UC load control will be affected by battery status, periods
of initial parking and other factors. Therefore, UC managers can specify price strategies to
attract more users to participate in load control. Many scholars have studied the price strategy
of V2G, and our research does not elaborate on this topic. When the user agrees to participate
in load control, the load control center will collect the relevant data of the EVs to formulate a
control strategy.

(b) The start parking period of EVs is random, and the parking requirement in the UC is large.
If the new parked EV data is imported when each vehicle stops, the EV charging strategy will
be changing constantly, which makes the strategy infeasible. Therefore, our research divides
the peak period into equal time intervals. At the end of the last adjustment interval (K − 1),
the control strategy of the next interval (K) is worked out. When EVs are parking in the T-interval,
they will not participate in the load regulation of the K-interval. The EVs parking in T-interval
will participate in the strategy formulation of the next RI (K + 1). This method can avoid the
strategy from changing too frequently.
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(c) According to the analysis of different function types of UC, there are some typical parking
characteristics of business type buildings such as short parking periods, high turnover ratio and
large parking quantities. Although the total battery capacity which can participate in the strategy
formulation is very large, most of them can’t be controlled flexibly. They can only participate
in the load control in their short parking period. As for office buildings, most of the parking
periods are as long as the working hours, and the turnover ratio is low. That means they can
be controlled flexibly. The parking ratio in residential type buildings is always at a high level.
Therefore, the parking EVs of residential type can be controlled flexibly, so we use a large number
of EVs in commercial type buildings for inflexible control, and EVs in office and residential type
buildings for further flexible control.

(d) The number of parking EVs in the UC is large. In order to reduce the computational load of
the control center, our research clusters the EVs in the UC according to the previous analysis.
Parking EVs in commercial areas is mainly for consumers, whose initial parking time is random.
We take them as a group. In order to ensure the availability if a suitable numbers of EVs that
can participate in load regulation flexibly, we formulate preferential policies to attract and sign
agreements with users with long parking time and low frequency in office type and residential
type buildings. According to the parking period, those EVs in the UC are divided into office EV
group and residential EV group. According to the parking characteristics, the EVs are divided
into groups, and the group is taken as a whole to participate in the formulation of the strategy
and get the total discharge power of each group in each RI. Then, the discharge of each group is
allocated to each EV.

3.1. Regulation Interval And EV Model

According to Figure 8 and previous study on the load characteristics of UC, the peak load
regulation period will be 9:00–22:00, so the peak load of the UC lasts 13 hours a day. The scheduling
cycle is divided into several regulation intervals Δt on average. Therefore, the number of RI in the
peak load hour is:

K =
13
Δt

(8)

The discharge strategy does not change in each regulation period. If Δt is too small, the strategy
changes quickly. The computation will be so complex that there is no enough time to work out the
strategy. If Δt is too long, the uncertainties of EV will increase during the regulation period, and less
EV satisfy the Δt parking period conditions [41]. The number of EVs that can participate in dispatching
decreases, which affects the total battery capacity provided for the UC.

When the EV parks in the garage, the control center will collect the state information represented
by Γ

Γ = [IDEV Tarrive Tleave SOCarrive SOCleave L] (9)

where IDEV is the car number of an EV; Tarrive is the time when the car arrives at the UC; Tleave is the
time for leaving the UC; SOCarrive is remaining SOC of EVs parking at k-interval; SOCleave is the SOC
when a user leaves the garage; L represents which functional areas the EV belong and whether the car
participates in discharge control.

When the EV is parked in the garage, the garage dispatching system will collect the status
information of the vehicle. At the same time, the user’s willingness to participate in load regulation is
sought [42]. Users willing to participate in load regulation will be required to input the earliest time
they plan to leave the garage and the minimum target power when the user leaves.

According to the state information of the car, the parking period Tpark(n) and the maximum
capacity SOCcon(n) providing for UC of the n-th EV can be obtained by using Equations (10) and (11):

Tpark(n) = Tleave − Tarrive (10)
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SOCcon(n) = SOCarrive − SOCleave (11)

As shown in Figure 12. Tavai(n) is the regulation interval which the n-th EV can participate in.
It can be calculated as follows:

Tavai(n) = Tleave − Tarrive (12)

where, Tleave means the beginning time of the control period interval not greater than Tleave, and Tarrive
means the end time of the control period interval not less than Tarrive.

Figure 12. The regulation interval that the EV can participate in.

The garage parking information matrix of the k-th interval Λk can be obtained from the parking
state information of vehicles and for the further application:

Λk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Γ1

1 Γ1
2 · · ·

Γ2
1

. . .
... Γk

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (13)

3.2. Clustering of EVs

EVs are divided into three groups based on the analysis of Section 2:
(1) The first type is the EVs parked in residential type of UC buildings and contracted with the

control center. The vehicles will park in the garage most of the time, which always keeps a high parking
ratio in the garage. These cars are parked in garages most of the day and have shorter travel times plus
shorter distances. They can be observed as a dynamic balanced whole part. They can participate in
load regulation during the peak load period. By signing a contract with the owner, the control center
can get the total amount of electricity of EVs in advance and take them as a whole part. We define
those EVs as Group A.

The control center gets the target SOC of each user set by the contract and calculates the controllable
electricity. Then, the maximum total controllable electricity of Group A in a day is obtained by adding
up that of each EV. Considering that some EVs will leave temporarily during peak load period,
we define SAtotal as the controllable electricity of group A participating in regulation in one day which
can be obtained by multiplying a coefficient on the total electricity:

SAtotal = η ·
∑

C(n) · (SOCAstart(n) − SOCAtarget(n)) (14)

where, C(n) is the battery capacity of the n-th EV; SOCAstart(n) is the n-th EV’s SOC of starting parking
and SOCAtarget(n) is the target SOC set by the EV owner.

(2) The second type is the EVs parked in office type buildings and contracted with the control
center. The parking period of these contracted EVs is the same as the working hours. Therefore,
the time for these vehicles to participate in load regulation is working hours. These vehicles are
classified as Group B. In the paper, the regulation period of Group B is 9:00–18:00. Before 9:00 a.m.,
the cars will be parked in the garage. We define SBtotal as the total electricity involved in the regulation
according to the target SOC set by the users:

SBtotal = η ·
∑

C(n) · (SOCBstart(n) − SOCBtarget(n)) (15)
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(3) The third type is the EVs parked in commercial type building garages. The starting parking
time and parking period of these vehicles are related to the purpose of consumers going to the UC.
The number of cars parked is large, but we cannot estimate the number of cars parked in each RI
accurately. When the vehicle stops in the (K-1)-interval, the control center will inquire about the owners’
willingness to participate in load regulation. For the vehicles involved in the regulation, the electricity
of each vehicle in K-interval is calculated according to Equations (8) and (11), and we define SCk

total
as the total controllable electricity of Group C in the k-th RI which can be obtained by adding up the
electricity of each vehicle parked in the k-th RI:

SCk
total = η ·

∑
C(n) · (SOCCstart(n) − SOCCtarget(n)) (16)

3.3. Objective Function And Constraints

The electricity of group C has been determined in each RI and cannot be controlled. The controllable
total electric quantity of group A and group B during peak load periods need to be determined as
well. We define that Pk represents the conventional load after subtracting the discharge power in the
k-th interval. Pk

A and Pk
B represent the total discharge capacity of group A and group B in the k-th

interval. They can be decided by the objective function Equation (17) which minimizes the mean
square deviation of load [43].

F = min
1

22/Δt− k

K∑
k

(Pk − Pk
B − Pk

A)
2

(17)

The discharge power of each EV participating in load regulation should be within the threshold
power allowed in the garage. The total amount of discharge electricity in each RI of each vehicle is not
greater than the total controllable electricity. At the same time, the electric quantity of each vehicle in
each RI is not greater than the total electricity, that is:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PAk(n), PBk(n) ≤ Pmax
22/Δt∑

k=1+9/Δt
Δt · PAk(n) ≤ SA(n)

NA∑
n=1

22/Δt∑
k=1+9/Δt

Δt · PAk(n) ≤ SAtotal

18/Δt∑
k=1+9/Δt

Δt · PBk(n) ≤ SB(n)

NB∑
n=1

18/Δt∑
k=1+9/Δt

Δt · PBk(n) ≤ SBtotal

(18)

where Pmax is the threshold power allowed in the garage; NA is the number of EVs in Group A; PAk(n) is
n-th EV’s discharge power in the k-th RI of Group A; SA(n) is the n-th EV’s total controllable electricity
in Group A; NB is the number of EVs in Group B; PBk(n) is the n-th EV’s discharge power in the k-th RI
of Group B and SB(n) is the n-th EV’s total controllable electricity in Group B.

3.4. Discharge Power of Each EV

After getting the total discharge electricity of Group A and Group B in each RI, the discharge
electricity will be allocated to each EV. When the EV’s power is less than the average value of discharge,
the vehicle will discharge all the electricity during the RI. The discharge power of the other EVs is the
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average power of the vehicles excluded from the EVs whose power is less than the average value [44].
Taking group A as an example, the average discharge power PAk

ave in the k-th RI is:

PAk
ave =

SAk
total

Δt ·Nk
A

(19)

where SAk
total is the total electricity in Group A that will discharge in the k-th RI, Nk

A is the number of
Group A EVs in the k-th RI.

We define that SAk
total(n) is the controllable electricity of the n-th EV in the k-th RI and PAk(n) is

the discharge power of the n-th EV in the k-th RI.
If:

SAk
con(n) < Δt · PAk

ave (20)

then:

PAk(n) =
SAk

con(n)
Δt

(21)

otherwise:

PAk(n) =
SAk

total −
∑

SAk′
con(n)

Δt · (Nk
A −Nk′

A )
(22)

where SAk′
con(n) is the controllable electricity of Group A in the k-th RI excluding the EVs whose power

is less than PAk
ave and Nk′

A is the number of EVs whose power is less than PAk
ave.

The discharge power allocation of Group B (PBk(n)) is the same as that of Group A, so it will not
be discussed repeatedly in our research.

In order to maximize the available electricity in Group C to participate in the regulation, the EVs
in Group C will feed back to the UC with the maximum discharge power until the EV leaves or the
remaining SOC reaches the target.

We define PCk(n) as the discharge power of the n-th EV in group C in the k-th RI. It can be
calculated by the following expression:

PCk(n) =
SCk

con(n)
Δt

(23)

If:
PCk(n) ≥ Pmax (24)

then, the discharge power is decided by Pmax:

PCk(n) = Pmax (25)

Based on the above mathematical description, the load regulation strategy can be briefly
summarized as follows. Firstly, we divide peak load period into several regulation intervals Δt
on average, and get the garage parking information matrix Λk, and then, we calculate the parking
period Tpark(n) and the maximum capacity SOCcon(n) of each EV. Secondly, EVs are divided into three
groups and the total controllable electricity SAtotal and SBtotal and uncontrollable electricity SCk

total in
each RI can be calculated by Λk. Thirdly, we set the total discharge power of group A and group B in
each RI (Pk

A and Pk
B) as the decision variables, and then, set the objective function as Equation (17) and

constraints as Equation (18). Finally, calculate the discharge powers PAk(n), PBk(n) and PCk(n) of each
EV in the different groups in each RI.
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4. Case Analysis

4.1. Case Statement

Our study chooses an UC as the research object, which integrates the functions of commercial retail,
business offices, hotel catering, comprehensive entertainment facilities and apartment housing as a whole
thing. It covers an area of 360,000 square meters and consists of a commercial building, four residential
buildings and an office building. The parking space can hold 2000 vehicles, and 500 vehicles can be
charged and discharged here now. The typical conventional daily load of the UC is shown as Figure 13.

Figure 13. Typical conventional grid load of a UC.

At present, the proportion of EVs is still very low compared with traditional vehicles. We assume
that 50 office EVs agree to establish a contract to participate in the load regulation during working
hours and 50 household EVs participate as well. The number of EVs entering the commercial type area
is 4000 a day. The parking characteristics of Group C are randomly generated by using the typical
parking ratio fitting curve of commercial type buildings analyzed in Section 2. Suppose the initial SOC
of each EV starting discharging in the garage meets a normal distribution N (0.65, 0.05).

4.2. Influence of The Permeability

The scale of Group C is large, so the permeability of EVs is an important factor affecting the
efficiency of the strategy. We assuming that the length of the RI is set to be 30 min, and we change the
different permeabilities for Group C. When there is no group A and group B involved in the regulation,
the impact of EVs participating in UC load regulation with different peak load permeabilities is
shown in Figure 14. It can be observed from the figure that peak load decreases with the increase of
permeability of EVs. EVs in Group C can relieve the peak load pressure. However, group C loads
cannot be regulated. As shown in Figure 14, load reduction is obvious in the evening when the parking
time of group C is concentrated. However, the effect of load regulation is poor at noon when the
number of vehicles in group C is small. It is the reason why peak load decreases about to 9.43%
when the permeability reaches 100%.

The effects of load regulation are obviously improved as shown in Figure 15 when group A and
group B EVs participate. Group A and Group B EVs can discharge more power if the load is high and
discharge less or no power if the power load is low. When the permeability reaches 100%, the peak
load decreases by 14.25%, and the peak load becomes more stable.
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Figure 14. The load when only group C EVs participate in load regulation with different permeabilities.

Figure 15. The load when group A,B and C EVs participate in load regulation with different permeabilities.

The load of UCs can be reduced effectively by increasing the permeability of EVs, although the
permeability of EVs is still very low at present, and the peak load reduction is limited. However,
with the increase of EVs’ popularity and permeability, this strategy will play an important role in
improving the load situation of UCs. It is very effective to reduce the peak load of UC by this strategy.

4.3. Influence of The Regulation Interval

Another influence on the effect of load regulation strategy is the length of RI. If the RI is too long,
the parking period in the garage of EVs cannot meet the length of RI. The number of EVs of Group C
participating in load regulation will be reduced greatly. If the length of RI is too short, the frequency of
the strategy formulation will increase, which will increase the operational burden of the control center.

Assuming that the permeability of Group C is 40%, we set the RI as 15, 30 and 60 min, and explore
the influence of different interval lengths when only group C EVs participate in load balancing.
The simulation results are shown in Figure 16. When the RI is too long (60 min), the number of EVs
that can satisfy the RI is very small, and it has little effect on load regulation. When the regulation
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time is shortened to 15 min, load regulation strategy works well. The peak load decreases about
9.44%, which is same as the situation (RI = 30 min, permeability = 40%, without Group A and B EVs).
The shorter interval makes more EVs participate in the discharge, so that more electricity from Group
C EVs can participate in the regulation.

Figure 16. The load when only group C EVs participate in load regulation with different RIs.

As shown in Figure 17, when group A and group B EVs participate in load regulation, the peak
load is further reduced by 14.6%. The numbers of EVs of group A and B that participate in load
regulation is relatively small compared with Group C ones. However, they still play an important role
in peak load reduction and load fluctuation reduction. From the simulation results, this strategy can
effectively reduce the peak load. Therefore, in the construction of an UC, less money will be spent
in the transformation of the local distribution system and the operation of the local power grid will
be safer.

Figure 17. The load group when A,B and C EVs participate in load regulation with different RIs.

However, when the length of the interval is short enough, the number of EVs that can participate
in the discharge will not change anymore. Shortening the interval length will no longer optimize the
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load curve regulation of the UC, but will increase the operational load of the control center. Therefore,
it is important to adopt an appropriate RI length in any load regulation strategy. The actual position and
operational location of UC are different, so the parking characteristics of cars are different, which means
the best RI length is different. It is necessary to determine the optimum RI length by analyzing the
actual parking characteristics.

5. Conclusions

During the construction of an UC, due to the huge power consumption during peak periods,
the capacity of power distribution equipment is high, and it is often necessary to transform the nearby
power facilities, which will increase construction and maintenance costs. The popularity of EVs can
improve the environment, but the stochastic large-scale charging of cars may pose a threat to the
regional grid [45]. In view of the above problems, a strategy for EVs participating in load regulation
of a UC was proposed. The stochastic charging load of EVs was modeled according to the users’
habits. It was verified that the peaks of charging load and conventional loads will be superimposed.
This situation may have a bad influence on the operation of the power grid. Because it is difficult to
put forward a load regulation strategy if an UC is regarded as a whole, we divide UCs into different
functional areas. The relationship between parking ratio and load ratio was obtained after dividing
UCs into different functional areas. There are large numbers of vehicles in the commercial functional
areas with high mobility (Group C), and vehicles in office and functional areas with low mobility
(Group A and B). Then, we formulate the load regulation strategy: we divide the peak load period
into several equal RIs, and establish a the parking information database. The EVs in group C of each
RI will feed back to UC with maximum discharging power. The objective function was established
to minimize load variance during the peak period of the UC, and the discharge power of Group A
and B EVS of each RI was calculated by an objective function. Finally, the case analysis proved that
the strategy in our research can effectively reduce the load of the UC during the peak load period.
The results show that with the increase of the permeability, the number of EVs participating in load
regulation also increases, which means more electricity from EVs is fed back to the UC to make the peak
load smaller. Shortening the RI can make more vehicles from group C participate in load regulation
and also improve the effect of load regulation. In the future, the strategy of charging EVs in UCs during
valley load period will be studied to reduce the peak-valley load difference of the UC and improve the
energy utilization structure of the UC. Considering that EVs can be used as mobile power sources,
the characteristics of vehicles parked in the UC are analyzed in depth.
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Abstract: Hybrid Electric Vehicles (HEVs) have been proven to be a promising solution to
environmental pollution and fuel savings. The benefit of the solution is generally realized as
the amount of fuel consumption saved, which by itself represents a challenge to develop the right
energy management strategies (EMSs) for HEVs. Moreover, meeting the design requirements are
essential for optimal power distribution at the price of conflicting objectives. To this end, a significant
number of EMSs have been proposed in the literature, which require a categorization method to better
classify the design and control contributions, with an emphasis on fuel economy, providing power
demand, and real-time applicability. The presented review targets two main headlines: (a) offline
EMSs wherein global optimization-based EMSs and rule-based EMSs are presented; and (b) online
EMSs, under which instantaneous optimization-based EMSs, predictive EMSs, and learning-based
EMSs are put forward. Numerous methods are introduced, given the main focus on the presented
scheme, and the basic principle of each approach is elaborated and compared along with its advantages
and disadvantages in all aspects. In this sequel, a comprehensive literature review is provided.
Finally, research gaps requiring more attention are identified and future important trends are discussed
from different perspectives. The main contributions of this work are twofold. Firstly, state-of-the-art
methods are introduced under a unified framework for the first time, with an extensive overview of
existing EMSs for HEVs. Secondly, this paper aims to guide researchers and scholars to better choose
the right EMS method to fill in the gaps for the development of future-generation HEVs.

Keywords: Hybrid Electric Vehicles (HEVs); energy management strategies (EMSs); driving cycle
prediction; optimization

1. Introduction

Hybrid Electric Vehicles (HEVs) are composed of different types of energy sources and power
converters, which generally refer to vehicles consisting of an internal combustion engine (ICE) with an
electric motor. HEVs seem to be the most economically viable solution so far and probably for the
upcoming decades. The general goal to develop HEVs is to reduce fuel consumption and emissions
while ensuring drivers’ power demands by investigating the appropriate energy management strategies
(EMSs). Energy management aims to obtain an optimal power split in view of complex driving
conditions, as well as to minimize fuel consumption and emissions. It is commonly acknowledged
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that improvements in the fuel economy of HEVs, and thus the consequent reduction in emissions,
depend crucially on their energy management strategies (EMSs) [1]. The complex configuration and
behavior of multi-source hybrid energy systems introduce challenges to the performance of EMSs.
Regardless of the topology of the powertrain, the EMS aim is to instantaneously manage the power
flows from the energy converters to achieve the control objectives [2]. The optimal control algorithms
employed under a given driving cycle are therefore the representative research outline in the field of
energy management strategies.

Various EMSs for HEVs have been conducted in recent years. In the existing literature reviews,
a number of classifications for the energy management strategy are reported [3–7]. Generally, EMSs can
be divided into three categories: rule-based EMSs, local optimization-based EMSs, and global
optimization-based EMSs [3]. An overview of EMSs for plug-in Hybrid Electric Vehicles is
presented in [4]. The classification of energy management, such as rule-based control strategies
and optimization-based control strategies, are introduced according to their mathematical models
and the approach commonly used. In [5], EMSs are divided into two categories as rule-based and
optimization-based methods for parallel Hybrid Electric Vehicles, and the pros and cons of each
approach are compared. Finally, some real-time implementation issues are discussed from different
aspects (e.g., computational burden and optimality). The different classifications for hybrid vehicles
focusing on hydraulic drives is introduced and discussed in [6]. Different kinds of approaches like offline
and online strategies are classified and compared. As intelligent transportation system (ITS) technology
has emerged and machine learning methods have been widely used, some new EMSs have been
developed to improve the performance requirements (e.g., adaptability and real-time implementation).
However, there is still a need for a comprehensive review of the EMSs to better elucidate the
state-of-the-art approaches and potential future research directions. To this end, the present review,
different from the aforementioned review papers in EMSs, proposes a comprehensive hierarchical
classification scheme for the first time. In the first category, offline EMSs are presented based on the
level of driving information under global optimization-based EMSs and rule-based EMSs. In the
second category, online EMSs are layered as instantaneous optimization-based EMSs, predictive EMSs,
and learning-based EMSs. Since the presented scheme covers various approaches in terms of targeted
solution objectives, optimality, and real-time implementation, an important number of literature
studies are extensively overviewed. The principle of each approach along with its pros and cons are
illustrated and compared within the design and operational characterization of the proposed scheme.
Finally, a good number of emerging innovative EMSs and recent literature that have not been covered
in previous review papers are summarized and important future trends for HEVs are highlighted.
This study is intended to serve as a comprehensive reference for researchers in the field of development
and optimization of EMSs.

The remainder of the paper is organized as follows. Different powertrain topologies of Hybrid
Electric Vehicles are briefly discussed and compared in Section 2. In Section 3, a hierarchical classification
scheme of EMSs is presented. In the following Sections 4 and 5, offline and online EMSs categories are
stated in more detail. Each approach is elaborated and compared according to its principles, as well as
pros and cons. Some important future trends of EMSs are discussed in Section 6.

2. The Powertrain Topologies of Hybrid Electric Vehicles

It is well known that there are mainly three kinds of topologies for Hybrid Electric Vehicles:
series, parallel, and power-split. A series hybrid powertrain is regarded as a simple extension of
a battery-powered electric vehicle that is propelled only by motor. The engine drives a generator,
producing electrical power, which can be summed to the electrical power coming from the energy
storage system and then transmitted, via an electric bus, to the electric motor(s) driving the wheels [8].
In principle, the advantage of the series hybrid powertrain is that only electrical connections between
the main power conversion devices are required. Thus, vehicle packaging and design are simplified.
Meanwhile, the engine that is completely off the wheels offers great freedom in selecting speed and
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load, thus allowing the engine to operate at a high-efficiency region. On the other hand, the series
hybrid powertrain requires two energy conversions (i.e., from mechanical to electrical in the generator,
and from electrical to mechanical in the motor), which result in a loss of efficiency, even when there is a
direct mechanical connection between the engine and the wheels in the existing configuration. As a
result, in some cases, a series hybrid electric vehicle consumes more fuel than a traditional vehicle,
especially in highway driving. Furthermore, one of the two electromechanical energy converters
must be sized to meet the maximum power demand of the vehicle, as it is the primary source of
propulsion [2,8]. The series topology is shown in Figure 1.

 

Figure 1. Series hybrid electric vehicle.

As for the parallel topology, the engine is connected to the powertrain by a mechanical coupling
device while the motor propels the vehicle. Either engine or motor could propel the vehicle according
to different load conditions, which makes it possible to greatly increase the fuel economy. The motor
provides the power when the vehicle operates at lower speed to reduce fuel consumption. Thus, this
configuration is capable of maintaining a higher efficiency and better fuel economy. The power
summation is mechanical rather than electrical, and the engine and the electric machines (one or more)
are connected with a gear set, a chain, or a belt; thus, their torques are summed and transmitted to
the wheels [8]. In this configuration, there is no need to size one of the two electromechanical energy
converters to meet the maximum power demand for parallel hybrid powertrain; however, unless it is
significant oversize, the electric motors have less power than those used in a series hybrid powertrain
(since not all the mechanical power goes through them), thus reducing the possibility of regenerative
braking. Meanwhile, the engine operating conditions cannot be regulated as freely as in a series
hybrid powertrain, since the engine speed is mechanically related (via the transmission system) to the
vehicular velocity [2,8]. The parallel topology is illustrated in Figure 2.

Figure 2. Parallel hybrid electric vehicle.

As for the power-split topology, the most important improvement is the ability to operate as
either a series or parallel topology, which provides more operation modes to substantially improve the
overall efficiency under complex driving conditions. Although the series path is generally avoided

295



Energies 2020, 13, 3352

because it is less efficient, the main feature of this design is that the engine, generator, and motor speed
are decoupled, allowing additional freedom in control. The engine and two electric machines are
connected to a power split device (usually a planetary gear set), so that the power from the engine and
the electric machines can be merged through both a mechanical and an electrical path, allowing series
and parallel operations [8].Compared to the parallel hybrid powertrain, the power-split architecture
is the most flexible and represents a higher control ability on the engine operating conditions while
adopting the double energy conversion, which is typical of a series operation only in a small portion of
the total power demand, thus decreasing overall losses [2,8]. The power-split topology is presented
in Figure 3.

 
Figure 3. Power-split hybrid electric vehicle.

3. The Classification of EMSs

In this paper, we propose a new hierarchical classification scheme of EMSs for all kinds of Hybrid
Electric Vehicles via two main headlines: (1) offline EMSs are categorized according to the information
level of the driving conditions utilized, including global optimization based-EMSs and rule-based
EMSs; and (2) online EMSs are represented as instantaneous optimization-based EMSs, predictive
EMSs, and learning-based EMSs. The classification of the EMSs is illustrated in Figure 4. It is noted that
a flexible EMS can include a mixture of various techniques (offline and online) to form an integrated
EMS for improving the fuel economy and performance. Thus, in this paper, these combinations with
other techniques may be included while providing a particular EMS classification. For offline EMSs,
two categorizations are illustrated: the global optimization-based and rule-based EMSs. The main goal
of global optimization-based EMSs is to achieve a global optimal power split under a given driving
cycle and provide modified online EMSs. They are not directly applicable in real-time control due
to their computational complexity and the requirement of a priori knowledge of the entire driving
cycle. However, it can be used as a benchmark to adjust the control parameters. Typical methods,
such as dynamic programming, can implement global optimization over given driving cycles, but
it cannot be directly employed in a real vehicle. Therefore, this method can be used to evaluate
the performance of other optimization methods to extract the control rules. Rule-based EMSs are
considered as an offline method since the rules are derived from pre-production tests. Rule-based
EMSs are based on pre-defining a series of control rules to determine the power split while it cannot
achieve optimal allocation of power as compared to offline globally optimized energy management.
Online EMSs, however, are based on local optimization and causal with the potential of being applied
in real-time control. Among these strategies, Instantaneous optimization EMSs can minimize the
instantaneous fuel consumption at each instant without a priori knowledge of the entire driving
cycle and only obtain local optimal results. The instantaneous optimization-based EMSs are (1) the
equivalent consumption minimization strategy (ECMS); (2) adaptive-ECMS (A-ECMS); and (3) robust
control (RC). As a fundamental method, ECMS can be used for real-time implementation due to
its adjustability, which is related to the equivalent factor (EF). It is realized that the performance of
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ECMS is closely tied to the equivalent factor. The next question on how to select an appropriate
equivalent factor remains a key issue for ECMS. Therefore, different methods are proposed to adjust
the equivalent factor online and split the power on the basis of ECMS, for example A-ECMS. Next, the
discussion continues for the predictive EMSs, whereby the main idea is to optimize the power split
based on the predicted velocity over a certain horizon. The future power demand over the horizon is
calculated via the traffic information received through ITS and GPS. As the intelligent transportation
system technologies are increasingly utilized in traffic management systems, useful information of the
preceding vehicle through communication channels among the vehicles lead to an implementation
of predictive control that distributes the power by maximizing the fuel economy over a certain time
window. Thus, the driving cycle prediction is significant for predictive EMSs. As a common solution
method, model predictive control (MPC), which depends on the accuracy of a vehicle model for
prediction, can be implementable in predictive control for HEVs. Learning-based EMSs mainly update
the control parameters by training data to improve the adaptability to the changing driving conditions.

 
Figure 4. The proposed categorization of the energy management strategies.
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4. Offline EMSs

4.1. Global Optimization-Based EMSs

These types of methods are non-causal and seek global optimal solutions since they need a prior
knowledge of the typical driving cycle. Because of the non-casual solution, they cannot directly be
employed in real-time problems; however, non-causal optimal solutions can be obtained offline under
a given driving cycle, which can provide a benchmark for other algorithms or modified online EMSs.
Thus, as a benchmark, these methods can be adopted to obtain globally optimal results under a specific
driving cycle. The commonly methods, such as dynamic programming (DP), stochastic dynamic
programming (SDP), genetic algorithm (GA), game theory (GT), robust control (RC), pseudospectral
method, and convex optimization, are illustrated and compared in this section. To clearly illustrate
the pros and cons of each approach, a comparison of different approaches is shown in Table 1.
The “computational complexity” requires low computational burden to score well since this is desirable
for fast operation and efficiency. The “adaptability” refers to the flexibility of the EMSs adapted in
different driving cycles. It scores well when the control parameters are easy to adjust to different driving
cycles for fuel economy. The SDP can provide the best adaptability in comparison with other methods.
The “priori knowledge of driving cycle” denotes the amount of driving future information required for
calibration and formulation. For these methods, the DP requires the most a priori knowledge of the
future information of the driving cycle and obtains the best fuel economy.

Table 1. Comparison of different approaches.

Approaches Main Advantages Main Disadvantages Literature

DP

• achieves global optimal results
• benchmark for other EMSs

• less adaptability to changeable
driving cycles

• highest computational complexity
(3-level)

• prior knowledge of entire
driving cycle

[9–22]

SDP
• more adaptability
• achieves near-optimal

fuel economy

• highest computational complexity
(3-level)

• requires driving cycle database

[23–28]

GA
• global optimality
• good global

search performance

• higher computational complexity
(2-level)

• less adaptability

[29–33]

GT

• trade off among
conflicting objectives

• consider driver behaviors
in EMSs

• highest computational complexity
(3-level)

• poor adaptability

[34–45]

Pseudospectral
method

• global optimality
• more accurate

numerical computation

• higher computational complexity
(2-level)

• requires analytic expressions for
vehicle models

[46–49]

Convex
optimization

• fast computation
• easy to implement

• requires convex models
• limited applications

[50–54]

PMP
• achieve near-optimal results
• lower computational burden

• complex mathematical models
• require co-state estimation

[55–68]

Note: The computational complexity of other algorithms refers to the computation time compared to dynamic
programming (DP). The smaller of the level represents less computation burden compared to DP.
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4.1.1. Dynamic Programming (DP)

Dynamic programming, as an offline optimization approach, can realize a global optimal solution
for a given driving cycle; however, it cannot directly be used in a real vehicle EMS because it is impossible
to know the future driving conditions (speed, road slope as well as traffic dynamics). DP also suffers
from considerable computing time for solving the optimal problem of the backward duration of the trip
from the future state to find the initial control input in a feasible region. Especially, the computation
burden increases as the dimension of the system states raise. However, as a benchmark, it can be used
to determine the operating conditions that yield a globally optimal fuel consumption, which is then
further used to evaluate the performance of other energy management algorithms and extract some
heuristic rules. Moreover, it can be employed to obtain an optimal solution over a prediction horizon
for model predictive control, such as in [9].

The basic principle of DP is illustrated as shown in Figure 5. The optimal process is formulated as
to find the best cost function from A to F. Firstly, the feasible region is discretized and cast into the grid
to calculate all possible paths from A to F. Then, starting from F and proceeding backwards, the best
path is computed from F to E at time t. Similarly, the global optimal solution is calculated step-by-step
starting from E and to an ending at the initial state. The shortest path is A-B-J-H-E-F and the minimum
cost is 1.2 + 0.6 + 0.7 + 0.6 + 0.8 = 3.9. The general optimal objective function is defined as follows

J =
N−1∑
k=0

[L(x(k), u(k))] + G(x(N)) =
N−1∑
k=0

[
.

m f uel(k) + μ ·NOx(k) + α · PM(k)] + β(SOC(N) − SOC f )
2 (1)

where N is the driving cycle time; L is the cost function, including fuel consumption; NOx is
emissions, etc.; and G is the constraint of the state-of-charge (SOC) and gear shifting.

Figure 5. The principle of dynamic programming.

Guzzella et al. [10] put forward an energy management strategy with DP for parallel Hybrid
Electric Vehicles. Dynamic programming is used to design an optimal gear shift strategy in [11].
A cost function representing a combination of fuel consumption and emissions over a driving cycle
is defined to sustain battery SOC. The optimal gear shifting schedule that can be implemented to a
real vehicle is extracted from DP by splitting the power between the engine and the motor. To reduce
the computational complexity and implement easily, Patil et al. [12] proposed a novel dynamic
programming that is calculated by a backward simulation model for a series hybrid electric vehicle.
This approach evaluates state constraints before choosing the optimal paths rather than using penalty
functions, which can avoid the requirement interpolation by considering transitions to only the finely
discretized nodes of the state space.
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A novel dynamic programming, on the basis of machine learning, is proposed in [13]. An EMS for
a power-split HEV with an on-line trained neural network is developed to predict traffic congestion and
road types. DP is adopted to split the power between engine and motor over a specific driving cycle.
The neural network is utilized to predict the traffic conditions and road type with vehicle historical data.
This is called an on-line intelligent energy management strategy by combining a machine self-learning
algorithm and dynamic programming. In [14], a gear shifting strategy and a power allocation strategy
for a hydraulic hybrid vehicle were obtained by dynamic programming, which is utilized in a real-time
controller by extracting the control rules. Simulation results show that fuel savings can be improved by
47% over a conventional vehicle. Kutter et al. [15] combined dynamic programming with an equivalent
consumption minimization strategy to solve the conflict between global optimality and real-time
capability, which is performed by an independent calculation of the main control parameters using
dynamic programming, and the power split is optimized online by the ECMS. In [16], a weighted,
improved dynamic programming technique is proposed to allocate the power for a hybrid fuel cell
vehicle, proving that it converges faster than the traditional dynamic programming methods that
suffer from a dimensionality problem. Simulation results reveal that, when compared to the rule-based
EMSs, lower costs and a lower hydrogen consumption are achieved using the weighted, improved
dynamic programming. To improve the computation efficiency, Zhuang et al. [17] extracted a mode
shift map for a multi-mode hybrid powertrain with the DP optimal results using the support vector
machine. This can be combined with ECMS to implement real-time control. More works can be viewed
in related studies [18–21].

It is well known that DP is a numerical method to solve a dynamic optimal control problem.
However, it may lead to optimization inaccuracy when the continuous states are implemented in a
discrete framework. To address this issue, Berkel et al. [22] proposed a new implementation method by
extending the discrete method by storing the quantization residual after the nearest neighbor, rounding
of the continuous state at each node. This can avoid the implementation difficulty of the interpolation
method and the inaccuracy of the discrete method.

4.1.2. Stochastic Dynamic Programming (SDP)

Although DP is regarded as a useful tool to obtain a global optimal solution, it is impossible to
know exactly the whole driving cycle conditions (speed, road slope, etc.) in advance. To address this
issue, stochastic dynamic programming is proposed by researchers. The basic principle of stochastic
dynamic programming is that assuming that the sequence of values can be modeled using Markov
chain power, the state transition matrix map of the future driver’s power demand is generated to
estimate the driver’s power demand. The power sequence demand is calculated by discretizing the
historical driving data at a certain step, and the determination of the current power demand is made
in terms of the vehicular speed. The maximum likelihood estimation method is utilized to obtain
the state transition probability from the current state to the next one by distributing the total power
using discrete dynamic programming. It has been successfully applied as a promising approach for
obtaining a quasi-optimal policy that is implementable on-line and in real time, since only historical
driving data is needed without a priori knowledge of the driving cycle. However, there are differences
between the power demand using the Markov chain model and actual driver power demand, leading
to poor adaptability to different driving cycles because of the complexity and randomness of the actual
driving cycles. Moreover, the computation process for solving the SDP is still time consuming due to
the policy iterations. The future discounted costs are chosen based on the mathematical expediency,
leading to difficulties in validation on engineering applications.

The state transition probability is described as in Formula (2).

pi, j,a = P
{
Pdem(k + 1) = i

∣∣∣Pdem(k) = j, v(k) = a
}

(2)

where I and j is the power demand at state k+1 and k, respectively, and a is the velocity at state k.
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In [23], a stochastic dynamic programming algorithm for a power-split hybrid vehicle is proposed,
which is performed by establishing drive power sequence demand over different driving cycles based
on the Markov process to obtain a state transfer matrix of the driver’s power demand. The optimal
problem is formulated to maximize the fuel and electricity economy as the objective function in a
constraint domain, on the condition of the torque of the engine and motor, as well as the battery charging
and discharging power. The energy price was introduced into the objective function. The simulation
results are compared with that of the charge-depleting and charge sustainability (CD-CS) strategy in
terms of fuel consumption, engine control principle, engine start-stop control, and energy price.

Researchers mainly focus on minimizing the fuel consumption by using SDP. To incorporate
the drivability, Opila et al. [24] formulated a stochastic dynamic programming to gain a trade-off
between fuel economy and drivability, including engine start–stop and gear shifting time. The driving
cycle is modeled by the Markov process considering driver power demand as a stochastic process.
The simulation results in FTP and NEDC demonstrate that fuel savings of the proposed EMSs improve
by 11%. The influence of engine start–stop and gear shifting time on fuel economy is also investigated
and compared with baseline EMSs. In [25], an optimal energy management for a series hybrid
electric vehicle is presented on the basis of SDP and considering the fuel consumption and emissions.
However, the computational burden is intractable for SDP due to the large state space in this problem.
Thus, a new neurodynamic programming (NDP) is proposed to solve the issue. Finally, an SDP
controller and NDP controller are compared with a baseline one, indicating that both SDP and NDP
can achieve significant fuel economy compared to rule-based EMSs. References [26–28] can be referred
to for more information on the subject.

4.1.3. Genetic Algorithm (GA)

The genetic algorithm (GA) in evolutionary computing has become one of the most popular
algorithms among modern optimization algorithms due to its good global search performance and
low algorithm complexity [29]. As a random search method, the genetic algorithm is performed
by global searching to converge to an optimal solution based on the law of biological evolution.
These advantages are well suited to optimizing the rules, parameters, or evaluation criteria in EMS for
better performance [29]. The optimization problem is solved by simulating biological phenomena,
such as genetic variation. GA can be applied in EMSs to obtain global optimal solutions; however, the
computational load is heavy, especially for more variables due to the repeated searches, and can be
regarded as an offline optimization method, which guides researchers to select the optimal parameters
(e.g., engine size and battery size) for an HEV. Zhou et al. [30] obtained the optimal parameters by GA
and analyzed the energy management for fuel cell Hybrid Electric Vehicles. Figure 6 shows the basic
flow of the genetic algorithm. The main steps to implement the GA are as follows:

(1) Initial population: Select an initial population in a feasible solution domain.
(2) Genetic operation: A new population is generated by the selection, crossover and variation of the

initial population to converge to the global optimal solution.
(3) Decide if the population meets the ending criteria, referring to the iterations of the intelligent

optimal algorithm.

Piccolo et al. [31] put forward an energy management strategy using the genetic algorithm to
implement global optimization, which can be performed by adjusting the control parameters to
minimize fuel consumption and emissions. This method can obtain the global optimal solution
and yield better robustness; however, the computational complexity is higher than the other EMSs.
To improve the optimal performance of a genetic algorithm, Liu et al. [32] proposed a hybrid genetic
algorithm for a series hybrid electric vehicle, with faster convergence and better adaptability compared
to the traditional GA that performs the global search randomly. The proposed algorithm can acquire
fast convergence to a global solution using the quadratic programming algorithm. In addition, the
GA is combined with other algorithms to address the energy management optimization problem.
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In [33], an energy management strategy is proposed based on fuzzy logic and genetic algorithm
optimization. The membership function of a fuzzy logic controller is optimized using the genetic
algorithm. The simulation results show that the presented EMSs are clearly capable of improving
the fuel economy and reducing the gas emissions as compared to the deterministic rules without
adjustment by the GA.

Figure 6. The flow of the genetic algorithm.

4.1.4. Game Theory (GT)

As a branch of operational research, game theory is commonly used in multi-subject optimization
problems by taking into account the forecast and actual behavior of individuals in a game. In the 1950s,
cooperative game theory enjoyed its peak and non-cooperative game theory began to develop [34].
During this time, a legendary figure, John F. Nash, deserves special mention for his two essays in
1950 [35] and 1951 [36], firstly using rigorous mathematical language and then simple words to
accurately define the Nash Equilibrium, which was a significant milestone in game theory history.
The basic idea of game theory is to determine, through formal reasoning alone, what strategies the
players ought to choose in order to pursue their own interests rationally, and what outcomes will result
if they do so [37]. In recent years, game theory-based EMSs, which are sensitive to the variations in
vehicle parameters, have been developed.

Gielniak et al. [38] proposed an integrated system approach based on game theory for automotive
electrical power and energy management systems. The objective of the players is to maximize their
payoff that is a function of vehicle performance and powertrain efficiency. Yin et al. [39] formulated the
energy management problem as a non-cooperative current control game. The Nash equilibrium
is analytically derived as a balanced solution that compromises the different preferences of the
independent devices. Dexireit et al. [40,41] designed a controller for a parallel hybrid electric vehicle
using game theory with the objectives of fuel economy and emission. First, the vehicle operating
conditions and the powertrain are viewed as two players in a finite-horizon non-cooperative game.
A cost function of this game is formed by weighting the fuel consumption, NOx emissions, and the
deviation of the battery SOC from the setpoint, as well as the deviation from the vehicle operating
conditions. The policy is established as a function of wheel speed, torque, and battery SOC to decide
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the control mode of the engine, motors, and battery. Compared to traditional EMSs, this control policy
is independent of the time and driving cycle. Therefore, it can achieve better performance under
different driving cycles. Test results validate that the game theory controller substantially outperforms
the baseline controller under NEDC. Xu et al. [42] proposed a game-theoretic energy management
strategy with velocity prediction for a hybrid electric vehicle. A recurrent neural network structure was
realized to predict the future velocities and Nash equilibrium of game-theoretic energy management,
and was implemented through the best response functions. Chen et al. [43] developed a game-theoretic
approach for solving the complete vehicle energy management problem of a hybrid heavy-duty truck
with a high-voltage battery and an electric refrigerated semi-trailer. The solution concept is based
on a two-level single-leader multi-follower game model. The game-theoretic approach presented
the optimal performance in the simulation. Chen et al. [44] introduced an adaptive game-theoretic
approach for solving the complete vehicle energy management problem of a hybrid heavy-duty truck
with a high-voltage battery and an electric refrigerated semi-trailer. The proposed method enhances
the game-theoretic approach, such that the strategy is able to adapt to real driving behavior. The fuel
reduction results are compared and the adaptive game-theoretic approach shows improved and more
robust performance over different drive-cycles compared to the non-adaptive one. A game-theoretic
solution concept for solving the complete vehicle energy management (CVEM) of a hybrid heavy-duty
truck can be found in [45].

4.1.5. Pseudospectral Method

Pseudospectral method, also known as the discrete variable representation method [46], is a direct
numerical algorithm for optimal control problems. In the energy management problem, the optimal
control theory is utilized to optimize the energy distribution. The pseudo spectral method can be
used as a direct numerical method to obtain the optimal energy distribution. The continuous energy
management optimization problem can be solved by discretizing and transforming it into a nonlinear
programming problem. Hu et al. [47] proposed a double objective charging optimization strategy for
two kinds of lithium-ion batteries, by considering the influence of battery charging time and charging
energy loss on HEV energy management. A multi-objective optimal charging control problem was
constructed, and then solved by using the Radua pseudospectral method. Zhou et al. [48] utilized the
pseudospectral method to solve an HEV energy management problem and optimized the energy
management and co-state trajectory simultaneously. The results showed that the computation efficiency
of the pseudospectral method is higher than that of DP, while the optimization performance is close to
DP. Wu et al. [49] developed a hierarchical EMS with the pseudospectral method for Hybrid Electric
Vehicles, which incorporates velocity planning, with a tradeoff between fuel consumption and path
tracking accuracy.

4.1.6. Convex Optimization

As an optimization algorithm, convex optimization is utilized for solving convex problems [3],
whose objective function and constraints are convex. In convex optimization problems, the results
of local optimization and global optimization are consistent, which greatly simplifies the solution
process [50]. As compared to other global optimization algorithms, it is easy to obtain optimal solutions
with a higher computation efficiency. The optimization of HEV energy management can be regarded
as a nonlinear programming problem, which can be transformed into a semi convex problem by using
a convex optimization method that offers a simplified calculation process and better optimization effect.
Murgovski et al. [51] presented an EMS with convex optimization for a plug-in hybrid electric bus.
The influence of battery size, gearshift, and engine on/off on energy management was investigated
by transforming these problems into semi convex problems with a convex optimization method.
In addition, the optimal results obtained from the convex optimization were compared with dynamic
programming. Nafisi et al. [52] considered the influence of the power grid on the energy management
of plug-in HEVs, and proposed a two-level optimization method based on convex optimization to

303



Energies 2020, 13, 3352

reduce the energy loss. However, the disadvantage of convex optimization is that the objective function
and inequality constraint must be convex [53], and it yields limited applications. Especially for a
parallel HEV, the gearshift strategy should be devised separately, instead of optimizing the gearshift
and power split simultaneously, such as in [54].

4.1.7. Pontryagin’s Minimum Principle (PMP)

PMP is an analytical optimization method to solve optimal control problems to provide a
necessary condition. PMP transforms a global optimization problem into an instantaneous Hamiltonian
optimization problem, derived from DP through a variational approach. Thus, an optimal solution can
be obtained by minimizing the instantaneous Hamiltonian that includes fuel consumption and battery
SOC. Similar to ECMS, an optimal co-state is a key factor that needs to be determined appropriately.
A shooting method is commonly adopted to calculate the optimal co-state λ, for example in [55].
More works can be found in [56–59]. The form of instantaneous optimization shown in PMP makes it
possible to implement real-time control. The basic principle is generally formulated as Equations (3)–(7).
It is obvious that a differentiable objective function is required for deriving the optimal solution;
however, it is difficult to obtain a continuous Hamiltonian for Hybrid Electric Vehicles, especially for a
parallel HEV. To this end, a simplified PMP is proposed in [60] to avoid the adaptation mechanism
of the co-state for real-time applications. The main drawback of the control concept is that the
PMP-based EMS will not guarantee optimality if no information regarding the future driving condition
is provided [61].

The augmented cost function for a general problem can be given as Equation (3):

Q = ϕ(x f , t f , υ) +
∫ t f

t0

L(x, u, t)dt (3)

where L(x, u, t) is the cost function and ϕ
(
x f , t f , v

)
is presented as Equation (4):

ϕ(x f , t f , υ) = ϕ(x f , t f ) + υ
Tψ(x f , t f ) (4)

The state dynamic is described as Equation (5) and x(t0) = x0 is also satisfied:

.
x = g(x, u, t) (5)

Thus, the Hamiltonian function can be formulated as Equation (6):

H(x, u, t) = L(x, u, t) + λT g(x, u, t) (6)

where λT is the co-state. Given the problem settings in Equations (3)–(6) and assuming the problem is
convex, the necessary condition that minimize Equation (3) are given as Equation (7).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
λ= −HT

x and ϕx f = λT(t f )
.
x = g(x, u, t) and x(t0) = x0

Hu = 0

(ϕt + H)
∣∣∣∣t f = 0

ψ(x f ,t f ) = 0

(7)

In [62], three kinds of EMSs, namely DP, PMP, and ECMS, are conducted and compared.
By comparing ECMS and PMP, it is found that they are similar in terms of equivalent factor and
co-state. The author suggested that the ECMS becomes the implementation of the optimal solution of
PMP, which also obtains results close to the DP optimal solution, with an improvement in comparison
to the traditional ECMS. To adjust the control parameters, adaptive PMP is proposed using the total
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trip length and the average cycle speed in [63]. The results demonstrate that improvement in fuel
consumption can reach 20% compared to an on-board controller. Kim et al. [64] proposed an EMS-based
on PMP considering the battery efficiency of the plug-in Hybrid Electric Vehicles (PHEVs) and derived
an additional condition for the inequality state constraints. The results prove that the PMP can achieve
similar performance to the global optimal results obtained by DP. In [65], PMP is introduced by solving
the Hamiltonian function to find the battery current command, and the simulated annealing algorithm
is used to calculate the engine-on power and the maximum current coefficient. The simulation
results demonstrate that the proposed algorithm can reduce the fuel consumption as compared with
charge-depleting and charge-sustaining EMS. Although PMP is utilized to solve the optimal control
problems for the energy management by simplifying the engine fuel map, engine on/off control is
not considered. To address this issue, the approximate PMP is proposed in [66]. A piecewise linear
approximation to fit the fuel rate map for a plug-in HEV has been developed based on PMP to avoid
distortion in the fuel map. The results show that the engine state switching frequency is reduced by
43.40% with engine on/off optimal EMSs.

Previous works mainly focus on the determination of an optimal co-state with future driving
cycles or a prior knowledge of the driving cycles, such as [67]. Kim et al. [61] presented an adaptive
energy management strategy with PMP by analyzing the past driving patterns and updating the
control parameters with an assumption that vehicles operate under repeated driving conditions
(e.g., commuting buses). In real conditions, the driving cycle is affected by numerous factors,
for example, driver behaviors and traffic conditions. To this end, Park et al. [68] investigated a
PMP-based energy management strategy for plug-in HEVs incorporating the driver’s characteristics to
improve the adaptability of PMP.

4.2. Rule-Based EMSs

Generally, rule-based EMSs can be performed by predefining the logical rules according to the
HEV system characteristics and operation mode. The rules are determined based on the battery SOC,
driver power demand, and vehicle velocity through an “if–then” structure. Given these rules, the
power split can be performed to meet the driver power demand and maintain the SOC at a certain range.
Instead of a prior knowledge of the driving cycle, this method mainly depends on logical rules and local
constraints. The control parameters cannot be tuned due to a lack of future information on the driving
cycle, making it less adaptable to varying driving conditions. The typical methods, like deterministic
rule-based control and fuzzy rule-based methods, are introduced in the following sequel.

4.2.1. Deterministic Rule-Based EMSs

In this method, based on the engine map and motor efficiency map, a series of logical rules are
predefined to split the power between the engine and motor, considering the efficiency of the motor and
engine and battery SOC simultaneously. The control rules are easy to implement on-line by a look-up
table due to its simplicity. Thus, it is widely utilized in the commercial application of vehicle controllers.
The rules are commonly devised based on specific driving cycles (e.g., ECE). However, the varying
traffic conditions make it less adaptable to different driving cycles. Peng et al. [69] present a rule-based
EMSs for a parallel hybrid electric vehicle. Thus, conventional rule-based power management is not
optimal for real driving cycles since a unique approach to design the logical rules does not exist. In most
cases, this depends on the engineer’s experiences and driving cycles. In the following subsections,
rule-based strategies, including on/off and power follower EMSs, are discussed in more detail.

(1) on/off EMSs

As for this strategy, a battery SOC is always maintained between its preset minimum and
maximum thresholds by turning the engine on/off. The basic control rules are as follows:

1� The engine starts to work at the highest efficiency region or sub-optimal emissions area and
supplies constant power when the battery SOC is lower than the preset minimum threshold.
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A portion of the engine power is provided to the motor to satisfy the power requirement while
the rest is used on charging the battery.

2� The engine is shut off when the battery SOC increases to the pre-set maximum threshold and
only the battery provides the driving power.

In some cases, a surge of instantaneous power may be supplied from the battery with this
EMSs, which makes battery charge and discharge period shorter and the engine start–stop frequently.
The main advantage is that the average efficiency of the engine is higher and the battery charging
and discharging period became shorter, but leads to negative effects, such as more power loss due
to frequent engine start–stop, less total energy efficiency, and shorter battery life [70]. Although this
method is simple relative to the optimal EMSs, it cannot satisfy the vehicle power demand at all
operating conditions.

(2) The power follower EMSs

Based on the battery SOC and vehicle load, the output engine power as well as the moment to
start or shut off the engine are determined to satisfy the driver power demand. The control rules are
as follows:

1� If the power demand is less than the maximum engine power at its operating speed, the operation
point is adjusted to work at the minimum output power line.

2� If the battery SOC is higher than the preset minimum value and lower than maximum value
while driver power demand is less than the battery capacity and greater than the maximum
engine power at the operating speed, the engine operates at the maximum output power line and
the rest of the power demand is supplied by the battery.

3� If only the battery SOC is higher than the preset maximum value and able to satisfy the power
demand, the engine should be shut off.

The main advantage of this strategy is that it can reduce the frequency of battery charging and
discharging and lower the system energy loss to extend the battery life. This method yields better
adjustability for engine output power to the power demand, but the engine operation region becomes
wider to lower the overall efficiency.

The rule-based EMSs is easy to implement on-line; however, it is not optimal and cannot guarantee
the optimality for different driving cycles. It is also not capable of adjusting the control parameters to
achieve the best fuel economy due to the complexity of the driving conditions.

4.2.2. Fuzzy Logic-Based EMSs

Fuzzy logic control theory is composed of fuzzy set theory and fuzzy logic. The former is an
extension of TRUE and FALSE (1 and 0) set theory and the latter is an extension of conventional
logic in how the system determines the output [71]. Fuzzy relations depend largely on the similarity
or the degree of similarity between data sets, and fuzzy reasoning is represented by the IF–THEN
format, giving birth to some popular reasoning approaches, for example, the Mamdani method [72]
and Takagi–Sugeno method [73]. Fuzzy logic-based EMSs have been conducted throughout the years
in the literature [74–77]. Fuzzy logic-based EMSs aim to split the power with fuzzy rules. In this
method, the fuzzy logic rules are usually developed according to the driver power demand and SOC.
A fuzzy logic controller consists of a set of linguistic rules and each of them includes one antecedent
and two consequents. Looking into a hybrid system as a nonlinear and time-varying plant, fuzzy
logic controllers are adjustable to implement in real-time with sub-optimal control by a set of fuzzy
logical rules. Moreover, it is important to devise a membership function in optimizing the power split.
Thus, GA is adopted to optimize the membership function in the reference [78]. Some other forms of
modified fuzzy logic-based EMSs can be referred to in [79–81].

In [82], a fuzzy logic controller (FLC) for parallel Hybrid Electric Vehicles is designed. In [83],
a multi-input fuzzy logic controller for a power-split hybrid vehicle is presented and compared to
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rule-based EMSs in terms of fuel economy and emissions. Given the desired driver torque, vehicle
speed, and battery SOC, the power is distributed using the FLC method. This method achieves a better
fuel economy with good adjustability compared to the conventional rule-based EMSs. Lee et al. [84]
presented a fuzzy logic-based energy management strategy to minimize the NOx emissions while
meeting the driver power demand. The proposed fuzzy logic controller uses an electrical motor speed
as well as an acceleration pedal stroke as the control inputs. It is claimed that the proposed fuzzy
logic controller could reduce about 20% of the NOx emissions compared with the conventional vehicle.
However, the main challenge of this method is that it cannot guarantee the SOC charge-sustainability
of the battery. To address this problem, Lee et al. [85] proposed a more sophisticated fuzzy logic
controller that includes a power balance controller and a driver’s intention predictor for the energy
management. Baumann et al. [86] developed an inclusive fuzzy logic controller based on road load
estimation to compensate for the difference between the actual engine torque and the required torque.
To enhance the adaptability of the fuzzy-based EMS, Tian et al. [87] presented an EMS for a plug-in
hybrid electric bus using adaptive fuzzy logic-based with an optimal SOC reference generated by a
neural network and followed by a fuzzy logic controller.

In principle, the fuzzy rule-based EMSs can be utilized to adjust the control parameters to a
limited extend by predefining a set of fuzzy rules. However, this approach yields less adaptability due
to the difficulty in selecting a proper membership function based on different inputs.

5. Online EMSs

Online EMSs are causal and local optimization-based since they generally do not require a
priori knowledge of the whole driving cycle. They can be implemented in real-time with a limited
computational burden by converting the global optimization problem of off-line EMSs into an
instantaneous optimization problem. Due to less computational effort, on-line EMSs yields the
potential of being implemented in real-time control problems. Three categories are included, namely
instantaneous optimization-based EMSs, predictive EMSs, and learning-based EMSs. The instantaneous
optimization-based EMSs determines the power split with optimal algorithm utilizing the current
driving cycle information while the predictive EMSs mainly employ future information to optimize
the power split. Furthermore, the instantaneous optimization EMSs mainly focus on determining
the optimal power split by minimizing the performance indexes (e.g., fuel economy, emissions, and
drivability) at each instant. In the following subsection, these EMSs are extensively reviewed and
important headlines are highlighted.

5.1. Instantaneous Optimization-Based EMSs

This kind of approach is to optimize the power split by minimizing the instantaneous fuel
consumption and other performances (e.g., emissions and drivability) at each instant. These EMSs can
achieve the best performance at each instant without a priori knowledge of the driving cycle and it is
easy to implement in real-time. Instead of predefining the logical rules, instantaneous optimization
EMSs mainly focus on optimization and implementation on-line, resulting in better fuel economy
and adjustability compared to simple rule-based EMSs. However, only local optimal results can be
obtained instead of global optimization as is possible in offline EMSs.

Due to its reasonable computation burden and no requirements of previewed knowledge, these
are capable of being applied to a real-time controller and achieving approximate optimal results in
comparison with DP. In recent years, many researchers focus on instantaneous optimization EMSs,
including equivalent consumption minimization strategies (ECMS), adaptive-ECMS, Pontryagin’s
minimum principle (PMP), and robust control. In the following section, these are introduced and
discussed in more detail.
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5.1.1. Equivalent Consumption Minimization Strategy (ECMS)

The main idea of ECMS is that the power is distributed by minimizing the instantaneous equivalent
fuel consumption at each instant by converting the electricity consumption into the equivalent fuel
consumption. In contrast to other EMSs, the control variable in ECMS is the equivalent factor (EF),
which is defined as the relation between the energy consumption of the secondary power source and
power requirement. The equivalent factor plays a significant role in improving the fuel economy.
Thus, selecting a suitable equivalent factor according to different driving cycles is a key issue. For this
method, it is easy to implement for real-time control, achieving sub-optimal results without prior
knowledge of the driving cycle. The standard ECMS generally adopts a constant optimal EF obtained
from an iterative method; however, it cannot adapt to the varying driving conditions. Thus, other forms
of ECMSs are proposed, such as adaptive ECMS [88,89], telemetry ECMS [90], predictive ECMS [91],
ANFIS-based ECMS [92], artificial neural network-enhanced ECMS [93], and a driving-style based
ECMS [94]. Since fuel consumption is the main design objective, two key issues need to be considered
for ECMS implementation. One is the drivability, in that the optimal torque usually jumps frequently
at each instant without incorporating engine or motor response time, which may lead to oscillation of
the powertrain. Another is the computation efficiency, in that it cannot directly be utilized in a real
vehicle controller although yielding a lower computational burden compared to DP. Instead, it can be
implemented online in a look-up table. Additionally, it is more challenging to adjust the EF in real
driving cycles.

The basic principle of an ECMS is illustrated in Figure 7, which is depicted for a parallel HEV.
The energy flow when the battery is discharging is shown in Figure 7a. In this state, the electric
motor supplies mechanical power. The route of the red dots is concerned with the return of the used
instantaneous electrical energy in the future, which means that the used electricity is converted into
equivalent consumption. The energy flow when the battery charging is shown in Figure 7b. In this
state, the engine supplies the mechanical power. The mechanical energy is received and converted into
electrical energy by the motor, and then is stored in the battery. The red dotted route is related to the
use of this electrical energy for generating mechanical power in the future. This part of the mechanical
energy will not have to be generated by the engine, which is considered as fuel-saving. The power
split is then determined by minimizing the equivalent fuel consumption.

 

(a) (b) 

Figure 7. The energy path during charge and discharge in a parallel hybrid electric vehicle (HEV):
(a) battery discharging; (b) battery charging [95].
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The equivalent fuel consumption rate is given as Equation (8).

.
meqv =

.
m f +

.
me =

.
m f +

s
Qlhv

Pe (8)

where
.

m f is the engine instantaneous fuel consumption; s is the equivalent factor; Pe is the motor
power, where the value is negative when braking and the value is positive when driving; and Qlhv is
the fuel lower heating value.

As an instantaneous optimization method, an equivalent consumption minimization strategy
(ECMS) is firstly introduced by [95] and an instantaneous optimization algorithm is supplemented
(see [96–98]). Nüesch et al. [99] proposed an approach that minimizes the fuel consumption using
ECMS for a diesel hybrid electric vehicle while tracking a given reference trajectory for both battery
SOC and NOx emissions adjusted by a PI controller. By hardware-in-the-loop (HIL) experiments,
the proposed method not only improves the fuel economy but also implements feedback regulation of
the SOC and NOx emissions. Gao et al. [100] introduced an ECMS for series Hybrid Electric Vehicles
in comparison with on/off EMSs and power follower strategy. The on/off EMS mainly optimizes the
operation region of the engine while the power follower EMS optimizes the operation region of the
battery charging and discharging. The main objective of the ECMS is to implement system optimization
in terms of battery and engine efficiency, which can achieve better fuel economy.

To ensure battery SOC charge-sustainability and keep the EMSs simple to implement,
Skugor et al. [101] proposed an energy management strategy for a power-split hybrid electric vehicle,
integrating rule-based EMS and ECMS to optimize the fuel economy. One-dimensional directional
search-based and two-dimensional directional search-based instantaneous ECMSs were analyzed,
in which the former was performed in two variants, corresponding to the engine maximum torque
target line and constant-power target line, while the latter gave special attention to the offline
optimization of the target region size. The simulation results indicate that the optimization solution of
the rule-based + ECMS is close to that of dynamic programming under an HWFET (Highway Fuel
Economy Test) cycle.

In [102], ECMS is deployed to solve the optimization problem for a hybrid system of fuel cells and
batteries, obtaining suitable energy management of the hybrid system by minimizing the hydrogen
consumption. In [103], Park et al. applied ECMS for the power distribution between the engine and
the motor of Hybrid Electric Vehicles. To find the optimal equivalent factor for a certain driving
cycle, a parameter optimization method based on a model applying a genetic algorithm was studied.
The results represent a promising improvement in fuel economy and the optimal equivalent factor is
considered as a good initial value for vehicle calibration.

5.1.2. Adaptive Equivalent Consumption Minimization Strategy (A-ECMS)

As explained previously, the performance of an ECMS for real-time control is closely related to the
equivalent factor. Therefore, how to tune the equivalent factor is essential to improve the performance
of energy management strategies. The equivalent factor is generally decided by the future power
requirement and the current SOC as well. To achieve this goal, A-ECMS is proposed by refreshing
the control parameters according to the future power demand and current one. The basic principle of
an A-ECMS is that the equivalent factor is regulated accordingly by the current SOC, predicting the
velocity and driver’s power demand in real-time, keeping the SOC in a certain range and minimizing
the fuel consumption. The PI adaptor is commonly adopted in [104]; however, the PI parameters needs
to be adjusted appropriately. Thus, a fuzzy logic-based PI adaptor is proposed in [105] to adapt to the
changing driving conditions. Furthermore, incorporating the uncertainty of the driving cycles and
future information from ITS are utilized in adjusting the EF. The typical structure of an A-ECMS with
ITS is illustrated in Figure 8. With the GPS/ITS and feedback information, the future power demand is
estimated over a certain horizon. The equivalent factor is estimated and tuned online to maintain the
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prescribed SOC by the adaptor. The A-ECMS can be implemented in real-time control without a priori
knowledge of the driving cycle.

Figure 8. Structure of the adaptive equivalent consumption minimization strategy (A-ECMS). Note that
s(t) is the equivalent factor, and α(t) and β(t) is the acceleration and deceleration pedal, respectively.

In [106], Musardo et al. put forward an A-ECMS by estimating the equivalent factor based upon
different road loads to update the control parameters, which minimize fuel consumption and maintain
the battery SOC at a certain range. Sezer et al. [107] introduced a novel ECMS for series Hybrid Electric
Vehicles considering the efficiency of the engine, battery, and generator to gain the combined fuel
consumption and emissions cost map, which optimizes the engine-generator set and ensures battery
charge sustainability. Sciarretta et al. [97] proposed a new approach for redefining an equivalent factor
according to the coefficient of charging and discharging of the battery, which presents great robustness
and reduces the fuel consumption by 30% in comparison to the traditional approaches.

Other approaches to estimate the equivalent factor by combining the ECMS with other optimization
algorithms are proposed in [108–110]. In [108], Zhang et al. proposed two kinds of methods, such as DP
and backward ECMS to estimate the equivalence factor and adopted a backward ECMS sweeping over
the estimated future velocity and exacting the future 3-D terrain information to adjust the parameters
of the ECMS. In [109], Kim et al. developed a method based on Pontryagin’s minimum principle (PMP)
to calculate the optimal equivalence factor. He et al. [110] presented an energy management strategy
that combines rule-based strategy and ECMS for fuel cell vehicles to reduce the hydrogen consumption.

The development of Intelligent Transportation Systems offers a promising way to predict the
velocity and estimate the equivalent factor for an ECMS. The velocity and position of each vehicle as
well as the traffic information in front of a target vehicle can be provided through vehicle-to-vehicle
communication (V2V) and vehicle-to-infrastructure communication (V2I) with a DSRC protocol
to make it possible to adjust the equivalent factor according to the updated predicted velocity.
Serrao et al. [111] indicate that PMP can be shown as the underlying optimization principle for ECMS,
but online implementation is unfeasible due to its iterations in finding the initial value of the dynamic
equivalent factor for charge-sustaining (CS) operation. Mohd et al. [112] proposed a velocity prediction
method combining a car-following model and cell-transmission model (CTM) based on Inter-Vehicle
Communication (IVC) and Vehicle-Infrastructure Integration (VII). A computationally efficient CS HEV
powertrain optimization strategy was then analytically derived based on the PMP and CS condition to
adjust the co-state according to the predicted velocity to evaluate the performance of the proposed
strategy. Zhang et al. [113] proposed an adaptive ECMS on the basis of velocity prediction through
V2V and V2I communications to improve the robustness of the ECMS and maintain a good SOC charge
sustainability. To incorporate the future information into the EF adaptor, Sun et al. [114] developed an
adaptive-ECMS to improve the fuel economy by updating the EF periodically, with the predicted
velocity obtained from neural networks.
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On the basis of recognizing the driving pattern, the equivalent factor can also be assessed.
The driving cycle pattern can be identified by the previous driving pattern. Thus, the equivalent
factor is adjusted adaptively based on driving pattern recognition. In [115,116], Gurkaynak et al. put
forward an energy management strategy using ECMS for a parallel hybrid electric vehicle to obtain
sub-optimal results. The optimal performance is related to the vehicle model and equivalent factor,
which is updated by driving cycle identification using a neural network algorithm. Simulation results
demonstrate that ECMS can obtain approximate optimization results in comparison to DP. In [98],
a novel method is developed to calculate the equivalent factor determined by the change rate of the SOC
in ECMS without a priori knowledge of the entire driving cycle. The robustness and adjustability are
demonstrated through different driving cycles compared with that of estimating the equivalent factor
under specific driving cycles. To catch energy-saving opportunities, Rezaei et al. [117] proposed a novel
energy management based on an adaptive equivalent consumption minimization strategy for series
Hybrid Electric Vehicles by determining a range for the optimal EF of ECMS. Most of the literature
ignore the vehicle lateral dynamic in devising the EMS; to this end, Li et al. [118] developed an energy
management strategy considering the vehicle lateral dynamic with an adaptive ECMS.

5.1.3. Robust Control

Robust control is a branch of control theory whose approach to controller design explicitly deals
with uncertainty. The robust control method is utilized in designs for them to function properly,
provided that there are uncertain parameters and that disturbances exist within some forms (parametric
or structural) [119]. As for this method, the energy management is formulated as an optimal problem,
represented by the state–space equation. The HEV model generally needs to be simplified to devise a
closed-loop system, which can be stable and of strong anti-jamming ability by designing state–feedback
gain matrices, as well as achieving sub-optimal results with higher computational complexity.

In [120], to overcome the presence of parameter uncertainty in the optimal problem,
an optimal-heuristic EMS is presented. The solution is real-time implementable since it is based
on a discrete-time description of the system and the optimal solution can be analytically found.
In [121], a robust energy management strategy for a fuel cell hybrid vehicle is proposed to solve the
sensitivity issue regarding driving cycle uncertainty. This approach improves the robustness of the
energy management strategy against driving cycle variations while minimizing the H2 consumption.
Pisu et al. [122] discussed three kinds of energy management approaches for a parallel hybrid
electric vehicle, namely rule-based EMSs, an adaptive equivalent consumption minimization strategy
(A-ECMS), and H∞ control, compared with DP that presents the disadvantages of computational
complexity and requiring a priori knowledge of the driving cycle. The rule-based EMSs that is of
lower computational burden is easy to implement by pre-defining a series of control rules, dependent
on the brake and accelerator pedal angle, battery SOC, and the torque demand. The A-ECMS is
implemented by establishing an optimization cost function, which takes into account electricity
consumption, fuel consumption, and NOx emissions, and adds a penalty function on an equivalent
factor. The state–feedback H∞ control method aims at minimizing fuel consumption by computing
a control gain matrix. Simulation results show that an A-ECMS achieves a similar performance in
comparison with DP. For the A-ECMS, the optimal control can be calculated offline and stored in the
controller as a look-up table to reduce the computational load, whereas the dynamic characteristics of
the components is neglected.

In principle, although the robust control method can provide dynamic optimization to adjust the
control parameters, it only can achieve sub-optimal solutions because of its simplification of the models.

To clearly show the pros and cons of each method, a comparison of different approaches is
summarized in Table 2.
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Table 2. Comparison of different approaches.

Approaches Main Advantages Main Disadvantages Literature

ECMS
• easy to implement
• on-line implementation

• less adaptability
• obtain local optimal results

[88–103]

A-ECMS
• on-line implementation
• more adaptability

• complex EF adaptor
• obtain local optimal results

[104–118]

RC
• robustness with

uncertainty parameters
• more adaptability

• high computational complexity
• higher vehicle model complexity

[119–122]

Note: The adaptability refers to the flexibility of the energy management strategies (EMSs) adapted in different
driving cycles.

5.2. Predictive EMSs

The main purpose of predictive EMSs is to optimize the power split utilizing predictive information
related to the uncertainty and disturbance of a driving cycle. This strategy requires future driving cycle
information (e.g., future velocity) that can be predicted with available information (e.g., road conditions
and traffic conditions). Thus, to a large extent, the performance of this strategy depends on the power
reference provided at each prediction horizon. In other words, it is mainly based on the predicted
velocity on a flat road without considering road slope. Therefore, it is significant to predict the vehicular
velocity accurately in implementing such approach. Generally, it is impossible to predict the whole
cycle accurately. Alternatively, it should be partially predicted if only a small part of the upcoming trip
is considered [123]. In addition, the factors affecting the prediction accuracy include driver behavior,
road condition, dynamic traffic conditions, preceding vehicles, etc. Inaccurate prediction may worsen
an EMS’s performance. Therefore, in order to improve the prediction accuracy, more surrounding
information needs to be effectively considered. The optimal control input is obtainable by minimizing
the performance indexes (e.g., fuel consumption and emissions) over a certain horizon, and this
approach is in real-time implementation to adapt to the changing driving conditions. In view of this,
researchers increasingly adopt predictive EMSs to improve the fuel economy. Model predictive control
(MPC) is commonly employed to implement predictive energy management. Apart from this approach,
predictive ECMS [124] can also be performed.

The general cost function of the predictive EMSs is commonly formulated as Equation (9) and the
constraint is given as Equation (10). The optimal problem can be solved by minimizing Equation (9)
under the constraint Equation (10).

J =
∫ k+Hp

k
[(

.
m f (u(t))

2 + λF(t))]dt (9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

SOCmin ≤ SOC ≤ SOCmax

we_min ≤ we ≤ we_max

wm_min ≤ wm ≤ wm_max

Pm_min ≤ Pm ≤ Pm_max

Pe_min ≤ Pe ≤ Pe_max

(10)

where J is the cost function; Hp is the prediction horizon;
.

m f (u(t)) is the fuel consumption; u(t) is
the control input (e.g., engine torque, motor torque, and gearshift); F(t) is the other performance
factors, such as emissions and drivability, etc.; λ is the penalty coefficient; SOCmin(t) and SOCmax(t)
are the minimum SOC and maximum SOC, respectively, with SOC being the state of charge; we_min(t)
and we_max(t) are the minimum and maximum speed of the engine; wm_min(t) and wm_max(t) are the
minimum and maximum speed of the motor, respectively. Pm_min(t) and Pm_max(t) are the minimum
and maximum power of the motor; Pe_min(t) and Pe_max(t) are the minimum and maximum power of
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the engine; Pm(t) and Pe(t) are the power of the motor and engine, respectively; and wm(t) and we(t)
are the speed of the motor and engine, respectively.

In the following subsection, typical prediction techniques as well as predictive EMSs are elaborated.

5.2.1. The Driving Cycle Prediction Approach

It is important to predict the driving cycle for EMSs, especially for predictive EMSs. The main
challenge of EMSs is that the power split is conducted under a given standard driving cycle, which cannot
achieve the best fuel economy due to the uncertainty of the driving cycles. Especially for the city
condition, many uncertain factors exist, such as traffic congestion and driving habits. Thus, it is very
important to predict the driving cycle for the energy management of HEVs. In this section, typical
prediction methods are introduced. More predictive techniques can be advised in [125].

A. Driving pattern recognition

The driving database can be obtained by dividing the standard driving cycles into several segments
to extract the feature parameters, including velocity, acceleration, and deceleration. The whole driving
cycle can then be constructed by comparing the current driving pattern with all the past databases to
find a match. At present, this approach is widely used in recognizing driving patterns. However, the
identified driving cycle may be different from the actual one due to the complexity and uncertainty
of the real driving cycle. For this approach, the fuzzy recognition method as well as artificial neural
network are commonly adopted.

Langari et al. [126] proposed an intelligent energy management strategy for a parallel hybrid
electric vehicle on the basis of the driving pattern identification. They utilize vehicle static information
(e.g., velocity and acceleration) to improve fuel economy in different driving conditions. The cycle
characteristic parameters, such as maximum speed, minimum speed, acceleration, and deceleration,
are used to recognize the driving cycle. Wu et al. [127] proposed a learning vector quantization (LVQ)
algorithm by extracting the driving condition parameters to recognize the driving pattern, which can
be integrated into a fuzzy torque distribution controller for improved adaptability. Simulation results
demonstrate that this method enhances the fuel economy more effectively than that of without driving
cycle recognition. Murphey et al. [128] also extracted the driving characteristic parameters from
standard driving cycles by dividing them into several segments and classifying historical data for
different roadway types. The collected data can be trained with a neural network (NN) to identify
the type of driving cycle. Finally, the current driving cycle can be identified according to the input
parameters from the NN. Simulation results show that the EMS with driving identification can
significantly improve the fuel economy.

Driving pattern recognition is usually adopted in optimization for a city bus due to its relatively
fixed route. Zhu et al. [129] proposed a dynamic optimization method based on driving cycle
self-learning in view of a relatively fixed route for a series of hybrid city buses. The velocity and
mileage for certain routes are accumulated by an on-board information unit. The database server
receives the data through GPRS and extracts the kinematics segment, and then the clustering approach
is used to construct the entire driving cycle. Finally, dynamic programming is utilized to optimize
the control parameters and load them into a hybrid controller unit. Bender et al. [130] presented an
energy management strategy for hybrid hydraulic vehicles based on driving cycle prediction in terms
of the repetitive operation characteristics for a city bus. The velocity and acceleration are captured
by a GPS and on-board unit. After data processing and filtering, current driving data, including the
beginning and ending position of the interval, is extracted to obtain the speed–position profiles as a
history database. In the following, the current velocity profile can be predicted by comparing the start
and stop position of each new interval with that of the acceleration process included in the history
database if the set threshold value is satisfied. Finally, DP was implemented according to the predicted
velocity profile to evaluate the effect of prediction error on fuel economy. The results show that fuel
savings increased by 5% with the recognition of the driving cycle.
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B. Traffic flow modeling

The velocity can also be obtained by modeling a driving cycle approximately with the help of a
traffic flow model in the field of transportation. Due to the relationship between vehicle speed and
traffic flow, the velocity is estimated using a mathematical model as well as a probability method
with historical traffic data (e.g., traffic volume, speed, and occupancy). The traffic flow models
(e.g., macroscopic or microscopic models) are utilized to predict the velocity, only reflecting the regular
characteristics approximately and neglecting other factors. Furthermore, it is difficult to accurately
represent the actual cycle conditions because of the uncertainty of the actual driving conditions.

In [131], a piecewise modeling approach is proposed to obtain an entire driving cycle assuming
that velocity and acceleration are kept constant at different intervals. The velocity is also given by
analyzing the historical data. Meanwhile, considering the influence of road slope on fuel economy,
an energy management strategy based on Multi-Information Integrated Trip modeling is developed.
The influence of interval length on fuel economy is analyzed, indicating that a long interval length
leads to less computational time and a worse fuel economy using dynamic programming. In [132],
an optimal EMS is introduced based on a traffic flow model called the gas-kinetic model for highways.
Simulation results show that the gas-kinetic model can reflect the dynamic characteristic of the actual
driving conditions and improve the fuel economy under different driving cycles.

C. Driving cycle prediction based on an Intelligent Transportation System (ITS)

An Intelligent Transportation System (ITS) aims to provide innovative services related to traffic
management and enables various users to be better informed about traffic conditions and having
a safe trip. The ITS does not only offer traffic information for an energy management strategy but
also provides a promising way to enhance the road traffic safety via intelligent vehicle technology.
One way to do so, the vehicular velocity can be predicted over a certain horizon by accumulating
real-time traffic data (e.g., traffic condition, signal phase and timing, and road grade) with Global
Position System (GPS), Geographic Information System (GIS), vehicle-to-vehicle communication,
an on-board units. The predictive EMSs can be then be implemented considering this future information.
The corresponding performances of the EMSs can be highly improved, since multi-source information
from ITS, GPS, and GIS could be combined for reducing the uncertainty of future driving conditions to
further improve the prediction accuracy [125].

To improve the prediction accuracy, He et al. [133] presented a driving cycle prediction method
with real-time traffic data from the communication between a vehicle and infrastructure (V2I) to
predict the velocity using neural networks. The predicted velocity is sent to a vehicle’s on-board
unit to calculate the driver’s power demand. The influence of prediction error, penetration rate,
and window size on fuel economy are also analyzed. Simulation results show that fuel savings can
increase by 14% under the UDDS (Urban Dynamometer Driving Schedule) and the average velocity
prediction error with V2I communication is 13.2%. Considering the influence of road terrain on an
energy management strategy, Zhang et al. [134] proposed a new strategy for solving the problem of not
achieving the best fuel economy with traditional energy management due to a lack of information about
the upcoming driving cycle. With future road terrain determined by Geographic Information System
(GIS), the optimal results using DP and ECMS in comparison to rule-based EMSs are analyzed for the
case of having a terrain preview and no preview. The results show that fuel savings with a terrain
preview increase from 1% to 4% and enhance the longevity of the battery on the uphill. Fu et al. [135]
proposed a real-time optimal energy management strategy based on driving cycle prediction, utilizing
information attainable from Intelligent Transportation Systems (ITS). The effect of prediction error
on the optimal results is also analyzed. The results of using model predictive control (MPC) and
A-ECMS are compared, respectively, which is based on different prediction errors using standard and
actual driving cycles as a prediction benchmark. The results indicate that a small deviation in the
final SOC and fuel economy are introduced when the prediction error is small. Thus, it is important
to investigate the influence of prediction error on fuel economy due to sensor precision and delay
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of ITS. Gong et al. [136–138] modeled a driving cycle using real-time traffic data from ITS, GIS, and
GPS. Two kinds of models are introduced, utilizing historical driving data and only real-time driving
data. The accumulated historical data is classified into urban, highway, and countryside conditions.
The characteristic parameters (e.g., maximum acceleration, maximum speed limit, and average waiting
time) of each segment are extracted to generate an approximate driving cycle. Simulation results under
the two kinds of models were analyzed, indicating that the EMSs with historical data modeling is
better than those without them. The fuel economy of the proposed energy management algorithm is
better than the rule-based EMS.

D. Driving cycle prediction using artificial intelligence

Machine learning is the science of having computers to act without being explicitly programmed,
which can be used to build smart robots (for perception and control), text understanding (web search
and anti-spam), computer vision, medical informatics, audio, database mining, and other areas.
As a machine learning algorithm, Artificial Neural Network (ANN) is deployed in classification,
prediction, pattern recognition, and clustering. The application of ANN to predict driving and
handling behaviors [139], city power load [140], and traffic flows [141] have demonstrated its strong
capability in predicting nonlinear dynamic behaviors. In [142], three kinds of prediction methods,
including exponentially varying, the Markov process, and ANN, are compared. The prediction is
performed over each receding horizon and the predicted velocity is utilized for energy optimization of
a power-split HEV. The results show that the ANN-based velocity predictor yields the best performance
for predictive energy management. In [143], considering the vehicle-to-vehicle communication (V2V)
and vehicle-to-infrastructure communication (V2I) information, a Bayesian Network approach is
presented to predict the velocity by assuming a stochastic model of the velocity of the preceding vehicle.
The results demonstrate that the prediction yields a higher accuracy within a certain horizon.

5.2.2. Model Predictive Control (MPC)

Model predictive control (MPC) describes the development of tractable algorithms for uncertain,
stochastic, and constrained systems. As a mathematical method, model predictive control aims to
optimize a future system output by calculating the system input trajectory [144]. The main idea of
MPC is that the future control output is predicted by an online optimization according to historical
information, as well as by future input and output. The principle diagram of an MPC is shown in
Figure 9. Upon the error between the reference and the predictive output, the control sequence can be
obtained by combining the historical input, historical output, and predictive input. However, it requires
a higher computational burden if the vehicle model is complex. It can be used as a real-time energy
management strategy when the computational load is decreased.

Figure 9. The principle of the model predictive control.
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In recent years, MPC has been widely adopted in EMSs. The purpose of MPC-based EMSs is to
optimize the power split over a prediction horizon and update the control input, by transforming the
global optimization problem into a local optimization for the whole driving condition. Compared with
other EMSs, MPC is a rolling horizon optimization method based on system prediction information.
The main advantages of an MPC are that it can deal with constraints explicitly, i.e., state variables,
input, and output constraints. In addition, the constraints can be formulated as quadratic or nonlinear
programming problems, by predicting the system dynamic behavior [145]. The traditional optimization
algorithm cannot effectively deal with the impact of the uncertainty of the future working conditions on
vehicle performance. In view of this, MPC adopts local optimization, rolling optimization and feedback
correction to solve this problem efficiently. To this end, some forms of MPC has been developed in
optimizing the power split, such as hybrid MPC [146], distributed MPC [147,148], variable horizon
MPC [149], adaptive MPC [150], and tube-based MPC [151].

Generally, linear MPC and nonlinear MPC are commonly formulated in optimizing the power
split. Borhan et al. [115] presented an MPC-based energy management strategy for the power split of a
hybrid electric vehicle. Energy management is a constrained nonlinear optimal problem. The MPC is
utilized to split the power between the engine and motor to regulate the engine operating point at
each sample time. Simulation results of the nonlinear MPC show a noticeable improvement in the fuel
economy with respect to linear time-varying MPC. In [152], the power management based on nonlinear
MPC with an adaptive prediction time horizon is proposed. An MPC-based control algorithm based
on load profile prediction is proposed. In this approach, results show that the MPC-based solution
yields better performance for total energy consumption in comparison to the conventional approach
and strongly depends on the performance of the prediction algorithm. If the predicted velocity could
match well with the measured velocity, then the time horizon increases, and vice versa. Thus, it is
significant to decrease the computational load to improve the performance of energy management.

In [153], an integrated predictive power management controller is studied. A model-based
control approach for a plug-in HEV is proposed to minimize the overall CO2 emissions. The energy
management is formulated as a global optimization problem and cast into a local problem by
applying Pontryagin’s Minimum Principle. Simulation is conducted to calibrate the control parameters
(e.g., environmental factors, vehicle usage condition, and geographic scenarios) and investigate their
influence on the fuel economy. Results show that the sensitivity of proposed EMSs on the driving cycle
is not significant. To design a torque controller for a parallel hybrid electric vehicle, He et al. [154]
developed a torque demand control approach based on MPC. The torque distribution controller has the
function of the torque split, torque demand, torque compensation, and torque limit. The engine torque
controller is designed based on a nonlinear mean-value model with MPC. The difference between
the demand torque and the actual engine torque is compensated for by motor torque because of the
nonlinear and lag of the engine torque response. The motor torque controller is developed based on a
linear MPC and the transient torque load of a hybrid powertrain is estimated with a PI observer.

5.2.3. Stochastic Model Predictive Control (SMPC)

The common MPC generally utilizes the predicted velocity provided by an exponential estimation
or neural network, which have been well studied in [155,156]. This method is based on the standard
driving cycles without considering the uncertainty of the driving cycles. Thus, it yields less adaptability
to the changing driving cycles. To this end, the stochastic model predictive control (SMPC) is proposed
in [157–159], which mainly employs the predicted velocity by a Markov chain and an MPC in optimizing
the power split. In this method, the distribution of the driver’s future power demand can be obtained by
a Markov chain and the MPC is then adopted to obtain the optimal power split. A linear optimization
method is utilized for solving the SMPC with a lower computational burden, which can be regarded
as an online EMS. Stochastic model predictive control (SMPC) accounts for model uncertainties and
disturbances based on their probabilistic description [160].
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In [161], a new model predictive control for a series hybrid electric vehicle is proposed based upon
the Markov chain process. In this method, the driver power demand is modeled as a Markov chain to
represent the driver future power request. All possible distribution of power demand in the next step
with all possible Markov states at each time step are generated iteratively. In the following, SMPC is
used to split the power between the engine and the motor over a distribution of future power demand
given the current one at each sample time. Simulation is conducted under standard driving cycles to
obtain a better fuel economy, compared to other deterministic approaches. The advantage of SMPC
is that its optimization is feasible in real-time control with respect to SDP. Xie et al. [162] proposed a
model predictive energy management for plug-in HEVs based on Pontryagin’s Minimum Principle.
The design utilizes a Markov chain model to predict the velocity and achieves a higher computation
efficiency. Most of the literature works do not consider the battery aging in devising EMSs, especially
for a plug-in HEV. For this purpose, Chen et al. [163] developed a nonlinear model predictive control for
a power-split HEV considering battery aging. Better battery aging performance is achieved compared
with that without considering battery aging while obtaining a similar fuel economy performance.

5.2.4. Learning-Based SMPC

Learning-based SMPC aims to integrate an MPC with machine learning algorithms to improve
the performance of the MPC controller in a data-driven way. In contrast to SMPC, which assumes
that the driver’s power demand can be modeled offline based on the Markov chain, learning-based
SMPC can update the Markov chain by online learning, which allows adjusting to variations in the
driver behavior with minimal computational effort in real-time control. Therefore, it can dynamically
adapt to the changing driving behaviors, such as environmental changes and varying traffic conditions.
This approach is more realistic than SMPC in terms of capturing driver actions as well as driving styles.
In addition, a traditional MPC generally assumes that the vehicle model parameters are time-invariant;
however, actual vehicle models are usually time-varying, such as the vehicle load and battery life
that change with time, for construction vehicles or hybrid electric buses. Thus, to devise a robust
MPC-based energy management, a new learning-based model predictive control should be developed
by adjusting the model parameters adaptively and updating the system model dynamically with
online learning, which can capture the dynamic characteristics of the control objectives.

In [164], the driver’s power demand Markov chain model is updated by online learning, which
can be reconfigured in real-time for accommodating the changes in driver behavior. To capture the
driver behaviors, online learning of the Markov chain is introduced to tackle the uncertainty that arises
from the environment around the vehicle. By updating the Markov model, the controller can adapt to
the changes in driver behavior with less computational effort. Learning-based SMPC is adopted to
determine the power split of a series hybrid electric vehicle, where the driver model predicts the future
power request that relates to the driving style and driving cycle. Simulation results for standard and
real-world driving cycles show that learning-based SMPC improves the performance of classical MPC
with the learned pattern of driver behavior.

5.3. Learning-Based EMSs

The learning-based EMSs aim to update the control parameters of EMSs online by interacting
with the environment to adapt to the various traffic conditions. They generally employ massive
historical and real-time driving-related data to obtain the optimal solution. For this method, the precise
model data is not required. Reinforcement learning (RL) and machine learning are commonly used
to devise such EMSs. This method can capture the dynamic traffic conditions and yield to potential
real-time applications. In [165], the concept of EMSs based on learning is introduced to combine the
optimal EMSs with the learning method to enhance the robustness of the EMSs. A predictive energy
management strategy for a parallel HEV is designed by means of a reinforcement learning approach.
Similar work can also be found in [166–169]. Moreover, an overview of reinforcement learning-based
EMSs can be found in [170]. A reinforcement learning system is composed of two items: a learning
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agent and an environment where the learning agent interacts continuously with the environment.
The state of the environment can be observed at each instant for the learning agent. The learning agent
then selects an action, which is subsequently inputted to the environment. The reward associated with
the transition is calculated and fed back to the learning agent while the environment shifts to a new
state because of the action. Together with each state transition, the agent can receive an immediate
reward to produce a control policy that represents the current state to the best control action for that
state. At each instant, the agent makes a decision based on its control policy. Finally, the optimal
policy can lead the learning agent executing the best series of actions to maximize the cumulated
reward over time, which can be learned after satisfactory training. The advantage is that the design is
a model-free control and provides more adaptability compared other EMSs. However, these require
more driving-related data for training.

To obtain a trade-off between optimal fuel savings and real-time performance, Qi et al [171]
proposed a reinforcement learning-based real-time EMS for PHEVs by learning the optimal decisions
from historical driving cycles. In [172], a deep reinforcement learning-based PHEV EMS is devised
to autonomously learn the optimal behaviors from its own historical driving cycles to adapt to the
changes in driving conditions. Most of the works in the literature ignore battery health in devising
learning-based EMSs; to this end, in [173], a reinforcement learning-based real-time energy management
is developed for PHEV by considering the battery health. To further achieve higher computation
efficiency, Sun et al. [174] developed a reinforcement-learning-based EMS by combining the ECMS for
fuel cell Hybrid Electric Vehicles.

Apart from the learning-based EMSs, the distributed optimization (DO) approach was recently
proposed to solve the complete vehicle energy management problem. Romijn et al. [175] proposed a
distributed optimization (DO) approach for a hybrid truck with a refrigerated semi-trailer, an air
supply system, an alternator, a dc–dc converter, a low-voltage battery, and a climate control system.
A dual decomposition is firstly applied to the optimal control problem such that the problem related
to each subsystem can be solved separately. Then, an Alternating Direction Method of Multipliers
method is used to efficiently solve the optimal control problem for every subsystem in the vehicle.
Simulation results show that the fuel consumption can be reduced up to 0.52% by including auxiliaries
in the energy management problem, assuming that the auxiliaries are continuously controlled.
The computation time is reduced by a factor of 64 up to 1825, compared with solving a centralized
convex optimization problem.

6. Conclusion and Future Trends

The EMSs of Hybrid Electric Vehicles have been extensively studied and compared. The offline
EMSs aim to minimize fuel consumption globally. Although they cannot be directly implemented
in a real vehicle, they provide a benchmark for other energy management strategies and obtaining
modified online EMSs. The online EMSs are relatively easy to implement in a real vehicle due to a
lower computational burden and no prior knowledge of the whole driving cycle, while achieving
similar performance (e.g., fuel economy) as compared to the offline EMSs. The instantaneous
optimization-based EMSs are a promising way to compromise real-time implementation and fuel
consumption minimization. Driving cycle prediction is important in predictive EMSs. As the
ITS technology is increasingly developed, the predictive EMSs are capable of better adjustability
and represent a better performance compared to other EMSs. Although different EMSs have been
conducted in recent years, offering remarkable solutions, some important future trends need to be
further considered.

6.1. The Predictive EMSs Considering Dynamic Traffic Conditions with ITS

The main challenge of current EMSs is that solutions are generally devised under specific driving
cycles, which bring about the impossibility to attain optimal results in a real cycle. Despite the
global optimization that obtains optimal results in theory, it is hard to implement in real-time vehicle
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controllers because of computational complexity. Predicting the driving cycle is an effective way for
real-time optimization-based energy management strategies considering dynamic traffic conditions
and future information. In this design, the real-time traffic data can be dynamically obtained with
intelligent transportation system (e.g., vehicle-to-vehicle communication technology).

If the driving cycle can be predicted as accurate as possible by taking into consideration traffic
congestion and road slope, the EMSs can be effectively performed. Therefore, incorporating dynamic
traffic conditions into EMSs and investigating predictive EMSs based on driving cycle prediction are
possible future trends.

6.2. Real-Time EMSs Incorporating Components Response and Accurate Vehicle Models

Currently, most of the EMSs aim to minimize the fuel consumption and emissions to obtain
global results. Although these EMSs can provide a benchmark for researchers, it is more challenging
to implement in real-time. The vehicle controller not only determines the power split but also is
responsible for acquiring data, monitoring the operation state, and diagnosing the fault required for a
high real-time performance. This is essential for vehicle prompt response once the control command
has been received. The computational complexity of global optimization is acceptable for simulation,
whereas it is impossible to update control parameters for real-time application. The adopted numerical
optimization methods for simplified vehicle models can reduce the computational complexity, which,
on the other hand, become less attractive if the nonlinear characteristic of the vehicle model is
considered. Considering the nonlinear characteristics of the vehicle model results in obtaining a higher
accuracy for the optimization results.

Rule-based EMSs are commonly performed in real vehicles. Because the other optimization
algorithms are hard to implement due to their computational complexity, they utilize simplified
vehicle models, which lead to unexpected energy management results in practice. Consequently, how
to simplify the vehicle model and reduce the computational complexity to ensure the real-time
performance of the optimization algorithm will be an urgent problem that needs to be solved in the
near future.

6.3. Multi-Objectives EMSs Incorporating Battery Aging and Drivability

It is well known that a hybrid electric vehicle is a complex and nonlinear system composed of
many components: engine, motor, and transmission, which are highly coupled. Multiple performance
indexes (e.g., drivability and fuel economy) are influenced by each other. Thus, it is important to
trade-off different performance objectives since these are conflicted with each other in a variety of
operating mode switches. In addition, battery aging will also affect energy efficiency and fuel economy.

Currently, the energy management strategy mainly aims at minimizing fuel economy and
emissions while neglecting other performance factors involving battery life as well as drivability.
Thus, how to incorporate these performance indexes to implement them in an integrated optimization
is a key issue.

6.4. Adaptive EMSs Considering Driver Characteristics and More Influential Factors

To the best of our knowledge, most of the EMSs are demonstrated by simulation over a specific
driving cycle. However, the actual driving condition is complex and diverse; for instance, traffic
congestion in cities, highways, urban, and suburban areas. In addition, driving behaviors (e.g., driving
styles) is another important factor in the driving cycle. Different drivers may take different actions
toward the same situation, leading to uncertainty in driving cycles. The optimal results of the EMSs
are strongly dependent on the driving cycle while it is hard to adapt to various driving conditions
using existing EMSs. Therefore, to develop adaptive EMSs may be a promising solution for the HEVs.
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6.5. Multi-Dimension EMSs Including Route Planning and Velocity Planning

It is well known that the performance of EMSs is related to the vehicular velocity and
traffic conditions. The changing traffic conditions make it challenging to implement a high
energy-efficiency-oriented energy management strategy. This is due to the uncertainty of the vehicle
route and velocity affected by traffic conditions. Moreover, different routes present a distinct traffic
condition, even if the vehicle operates on the same route since the traffic condition may be diverse.
All these factors bring uncertainty and disturbance for optimizing EMSs. Traditional EMSs mainly
consider fuel-to-powertrain optimization instead of combining economic route planning and optimal
velocity planning. Thus, how to integrate powertrain optimization, route, and velocity planning to
further improve the energy efficiency is a key challenge.
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